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ABSTRACT

With ever higher data rates, the complexity of baseband processing increases basi-

cally for two reasons. Firstly, the required processing rate is proportional to the bit

rate and, secondly, with higher data rates, more demanding and sophisticated algo-

rithms must be applied. For example, new wireless telecommunications systems like

3G long term evolution (LTE) can have even a 100 Mbps data rate and multiple-

input multiple-output (MIMO) transmission methods are applied. Thus, the problem

domain of implementation of baseband functions includes both addressing the high

computational complexity and describing the implementations in a flexible way so

that even complex algorithms can be used without extensive efforts.

In this Thesis, implementations and implementation methods of baseband processing

functions are proposed. Computational complexity and flexibility of implementation

are approached with application-specific processors (ASP). The computing demands

can be met with high parallelism when parallelization of the targeted algorithm is

possible, and the software description of the computation possesses flexibility. Es-

pecially, the error correction decoding, matrix decomposition, and symbol detection

tasks of the baseband processing chain are targeted in this Thesis. Both processor im-

plementations and implementations of assisting hardware units are presented. With

all the presented principles and implementations, programmable ASPs are targeted

even though other platforms could also be used.

As a result, the essential computational challenges and the design space of wireless

receivers is clarified. The work in this Thesis shows how the computation of the

addressed baseband functions can be implemented efficiently, and the work shows

how they can be implemented when a programmable platform is targeted. The re-

sults show that the benefits of the programmability do not sacrifice efficiency of the

implementation.
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1. INTRODUCTION

In the field of telecommunications, there is a constant drive for ever higher data rates.

For example, mobile telecommunications systems have evolved from the first digital

2G systems to 3G systems and descendants of the 3G are under development. The

transitions between telecommunications system generations have never been sharp

but there have been enhancements like general packet radio service (GPRS) or high-

speed downlink packet access (HSDPA) and the 3G long term evolution (LTE) is

coming in the near future for a smooth migration to higher data rates. Updating stan-

dards and higher data rates affect computation requirements of baseband processing,

i.e., processing which operates at the same rate as the data is received or transmit-

ted. In addition to only scaling proportionally to the data rate, the demands of base-

band processing are also affected by the required more sophisticated algorithms for

achieving the high data rates. For example, multiple-input multiple-output (MIMO)

and orthogonal frequency division multiplexing (OFDM) techniques will be used in

3G LTE [16] and to utilize the available gain in transmission capacity, computation-

ally demanding symbol detection methods must be used. Another demanding task is

error correction with turbo decoding [21] both due to the computational complexity

and due to the complex control of parallel processes.

Typically, the initial goals of the upcoming data rates and other system performance

metrics are set before the technology to implement them is mature. The first im-

plementations are being developed even if the new standards were not yet finalized.

This is natural, since it is advantageous for commercial vendors to provide the first

products as soon as possible. For example, rapid development may provide opportu-

nities to patent developed solutions. It is also advantageous if the migration to higher

data rates proceeds as fast as possible, since consumers have been willing to adopt

products whose features are based on ever higher data rates.

The aforementioned progression results in several challenges to the development and
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implementation of baseband functions. In addition to the plain need for implementa-

tions of baseband functions, the work of this Thesis can be motivated by the following

four challenges. The first challenge is the high computational load which is caused

by high data rate. In other words, higher data rates require more computations to

be carried out in the receiver than lower data rates. In addition to the computational

complexity, the design complexity is also increased, i.e., the high data rates require

complex algorithms and designing efficient implementations of such algorithms re-

quires extensive efforts. This is the second challenge. As a third one, the design time

should be as short as possible for the aforementioned requirement of rapid time-to-

market and for the rapid updates of telecommunications standards with new trans-

mission techniques. The fourth challenge is the requirement of efficiency. If the final

products are targeted to high volume consumer markets, wasteful simple solutions

using more resources than it is required in reality, would be inefficient and result in

high costs.

There exists some approaches how the aforementioned four challenges can be faced.

The high computational load is typically met with an application-specific hardware

implementation. Moreover, the computing capacity of the application-specific hard-

ware implementation typically originates from a high parallelism. Thus, if the com-

putations can be parallelized, the parallelization provides one solution to achieve high

computational capacity. On the other hand, if parallelization is impossible, sequen-

tial operations can be accelerated by shortening the critical path of the computing

hardware implementation.

Describing complex algorithms is more convenient with higher level languages than

with accurate hardware descriptions. This is natural, as there are less details to be

specified in higher level presentation than in a lower level presentation. Higher level

descriptions or their compiled descriptions can be, typically, simulated faster than

hardware descriptions. This shortens the delay of a design cycle, which begins at

a change in the desired functionality of the system and ends in the verification of

the results. If the applied description language is a programming language and a

programmable implementations are targeted, the functionality of the system can be

changed afterward. For example, software defined radios (SDR) [75, 76] require

programmable implementations. The idea of the SDR is that it can be adapted to

several transmission techniques by re-programming. The whole baseband processing

architecture would be re-programmable in an ideal SDR. However, area-efficient or



1.1. Scope and Objective of Research 3

power-efficient implementations require often detailed, highly optimized hardware

descriptions as the design tools cannot always optimize high-level descriptions suffi-

ciently. Therefore, it is advantageous to describe some parts of the targeted functions

on low level as pure hardware.

In this Thesis, the aforementioned methods to meet the design challenges are put into

practice by applying application-specific processors (ASP). In general, the ASP lies

in the range between digital signal processors (DSP) and pure hardware implemen-

tations. The benefits of DSPs are their programmability and, therefore, flexibility

and rapid design time. On the other hand, pure hardware implementations tend to

achieve highest efficiency and computing capacity. Naturally, with ASPs, it is tar-

geted to obtain the benefits of both DSPs and pure hardware implementations. As

the applied ASP template is customizable, the level of parallelism of the processor

can be adjusted. Thus, the first challenge of high computing capacity can be met

with parallel computing resources assuming that the computations of the algorithm

can be parallelized. Naturally, the processor is programmable, so the behavior can be

described at higher level than with pure hardware implementation. Since the ASP is

customizable, also low-level detailed hardware descriptions of kernel computations

can be utilized as dedicated hardware units can be included in the data path of the

processor.

1.1 Scope and Objective of Research

In this Thesis, implementations of certain baseband functions of the receiver are con-

sidered. The scope is exemplified with a simplified transmission system consisting

of a transmitter, channel, and receiver shown in Fig. 1. There exist several important

baseband functions. Some of them are present only when certain transmission tech-

niques are applied. Different standards applying the same transmission techniques

may still require different parameters of the respective baseband functions. In this

Thesis, the error correction decoders, list processing and matrix processing required

by MIMO symbol detection, and inverse square root function approximation required

by matrix processing are considered in detail. As the implementations of the ad-

dressed baseband functions are developed, they are implemented with customizable

ASPs or as hardware blocks, which can be included in the datapath of such ASPs.

The objective of this Thesis is to show how such baseband functions can be imple-
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Fig. 1. A high-level block diagram showing the position of baseband functions in wireless

digital transmission system.

mented with the applied ASP template and to show that the price of programmability

and flexibility does not exceed their benefits. In other words, a reasonable efficiency

can be obtained even if the underlying architecture is programmable and its behavior

is described at higher level than pure hardware implementations. When plain hard-

ware blocks, which can be used in the data path of such ASPs, are presented, the

objective is to show how the targeted function can be accelerated conveniently with

such hardware blocks. In other words, the targeted function possesses a division into

high-level control and low-level computation kernels and such division lends itself to

the ASP implementations.

1.2 Main Contributions

The contributions in this Thesis are ASP or hardware implementations of particular

functions, which are required in the baseband processing of the receiver. As the im-

plementations are considered relatively deeply, there are implementations of assisting

functions like parallel memory access methods even if its real target function is turbo

decoding. To summarize the implementations, also a part of the whole baseband

processing chain applying the ASP implementations is analyzed.

The main contributions of this Thesis can be stated as follows:

• Function units for Viterbi decoding. A set of four units are proposed per soft-

ware pipelined radix-2 add compare select (ACS) task.

• A method for time-multiplexing modified ACS units (ACSU) for all the re-

quired computations of max-log-MAP algorithm.

• Function units for stage-parallel turbo decoding.

• Two parallel memory access methods for stage-parallel turbo decoding.
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• Function unit for generating the interleaving pattern of 3G LTE turbo codes.

• A scalable low-complexity function unit for coarse approximation of inverse

square root function.

• An application-specific processor for complex-valued QR decomposition tar-

geted to MIMO systems.

• List processing function units for list sphere detection.

• Complexity and power estimations of a baseband processing chain consisting

of fast Fourier transform (FFT), turbo decoder, QR decomposition, and K-best

list sphere decoder (LSD).

Even if the number of presented baseband functions is limited, their implementations

present a variety of methods and principles which could be applicable also with other

functions or in other fields.

1.3 Author’s Contribution

The author has acted as the first author of all the publications [P1]–[P9], on which this

Thesis is based. For turbo decoding, the author has been responsible for finding the

ways how parallel memory accesses can be established [P6, P9] and the author has

carried out the required simulations and implemented the hardware units. The author

has designed the turbo and Viterbi decoder processors and the accompanied acceler-

ating units [P2, P8], programmed the parallel assembly codes, and implemented the

processors. The applied time-multiplexing of computing resources [P7], normaliza-

tion method, and the used partitioning of tasks to computing units were ideas of the

author. The author was also responsible for the comparisons of turbo decoders in

[P2].

Computation of polynomials modulo integer for interleaving pattern generation [P3]

was derived by the author. Also the simulation model and the hardware unit were

developed by the author. The memory and register based list processing units and the

processor using heap for list processing [P5] were developed by the author.

The key idea of inverse square root approximation was invented by Dr. Tech. Adrian

Burian, and the author extended the idea to a scalable form. The author also wrote
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the derivations, implemented the computation units, and prepared the comparisons.

The inverse square root unit was used in QR decomposition processor [P4], which

was designed and programmed by the author.

The analysis of the baseband processing chain and the processing requirements for

the targeted data rate in [P1] are derived by the author. In [P1], processors developed

by Juho Antikainen, M.Sc. and Teemu Pitkänen, M.Sc. are used as a part of the

analyzed baseband processing chain.

The work reported in this Thesis has been reported earlier in [P1]–[P9]. For this

reasons, many Chapters contain verbatim extracts of [P1]–[P9]. The extracts are

under copyright of respective copyright holders. None of the publications [P1]–[P9]

has been used in another academic Thesis.

1.4 Thesis Outline

The Chapter 2 provides the necessary background information and serves as a map

of the addressed baseband functions. The Chapter shows where the functions reside

in the receiver and explains their operation on a high level. In addition, the applied

ASP template is introduced in Chapter 2.

The error correction decoders are considered in Chapters 3–6. First, a Viterbi decoder

is presented in Chapter 3. In the succeeding chapters, a partial-stage turbo decoder,

stage-parallel turbo decoder, and parallel memory accesses of turbo decoding are

presented.

The Chapter 7 presents the inverse square root approximation method which is put

into practice with the QR decomposition in the same Chapter. The Chapter 8 ad-

dresses list processing which is required by symbol detection. Before conclusions,

the Chapter 9 summarizes the presented work by analyzing the complexity and power

consumption of the processing chain.



2. RECEIVER MODEL AND PROCESSOR TEMPLATE

In this Thesis, several implementations are proposed for a limited set of baseband

functions of digital receivers. With baseband it is meant that the processed signal

has been demodulated and, therefore, the processing time requirements are deter-

mined by the data rate but not by the carrier frequency. Naturally, as there exists

several inevitable baseband functions, only a couple of them are considered in de-

tail in this Thesis. In this Chapter, a high-level MIMO–OFDM receiver model is

used as an example to clarify where the targeted functions reside in the baseband

processing chain. Naturally, the proposed implementations can be applied also with

other transmission techniques when applicable. Most the addressed implementations

are based on a specific processor template, namely transport triggered architecture

(TTA) [32] processors in this Thesis. The principal structure of TTA processors and

principles of programming them are presented in this Chapter. However, the methods

and techniques presented in this Thesis could be applied also with other flexible ASP

templates or with pure hardware implementations.

2.1 System Model

A high-level description of an example MIMO–OFDM receiver is presented in Fig. 2.

The input ports of radio frequency functions are connected to the antennas of the

receiver. The functional block diagram is only a high-level model as it does not

suggest how the functions should be mapped to the processors nor it does not suggest

how data is passed between the functions and whether the data vectors have serial

or parallel presentations. In the following, the applied transmission techniques are

presented briefly.
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Fig. 2. A simplified block diagram of baseband processing of a MIMO-OFDM receiver using

K-best LSD for symbol detection.

2.1.1 Orthogonal Frequency Division Multiplexing

OFDM uses the frequency spectrum efficiently as the used frequency band is di-

vided into several orthogonal subcarriers [27]. The OFDM uses the discrete Fourier

transform (DFT) and inverse DFT (IDFT) for conversions between the time and fre-

quency domains. Typically, the transforms are computed with FFT and inverse FFT

(IFFT) [36] in practice. The time domain signal is generated in the transmitter side

with inverse transform,

XT = IDFT (XF) , (1)

i.e., data belonging to several parallel subcarriers is fed to the IDFT. In the receiver

side, parallel subcarriers XF are extracted from the time domain signal XT with

XF = DFT (XT) . (2)
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To alleviate timing synchronization, additional cyclic prefix is inserted to the signal.

The channel estimation can be alleviated with pilot symbols. In the receiver side,

distortion of the channel can be equalized conveniently in frequency domain. The

equalization takes place by multiplication with equalizing factors which are deter-

mined with the aid of pilot symbols. Another advantage of the OFDM transmission

is robustness against intersymbol interference with guard interval and low symbol

rate. Before the DFT, the cyclic prefix must be removed from the signal, and tim-

ing synchronization is responsible for feeding the time domain signal, whose length

equals the DFT length, with correct timing offset to the DFT block.

2.1.2 Symbol Detection

In a spatial multiplexing MIMO system, multiple antennas are used to transmit in-

dependent data streams. Spatial multiplexing gain, i.e., increase in capacity, is pro-

portional to the number of antennas and it does not require extra power nor band-

width [83]. Two transmit and receive antennas is a highly probable configuration for

the first 3G LTE systems, since a higher number of antennas increases the compu-

tational requirements of symbol detection significantly. Therefore, a 2 × 2 MIMO

configuration is assumed in this Thesis.

The computational complexity of maximum likelihood (ML) detection of transmitted

symbols depends exponentially on the number of spatial channels. Therefore, even

with a modest number of antennas, simpler approximative methods must be used.

The usage of list sphere decoding algorithms is tempting as they can achieve higher

performance than linear minimum mean square error (LMMSE) algorithm [78], even

though they are computationally demanding. The sphere detector restricts the search

space by evaluating only the symbols inside the sphere centered in the received sym-

bol [50]. In the example system model in Fig. 2, K-best LSD is assumed. The K-best

LSD operates by gradually increasing the dimension of the symbol vector [135]. At

each level, a list of the K best partial solutions is selected for continued processing.

The list processing of the LSD is a likely bottleneck of the list sphere decoding and,

therefore, there is a strong demand for efficient implementations.

The QR decomposition is required by the K-best LSD as is shown in Fig. 2. The

decomposition transforms a channel matrix H to a decomposition of an orthogonal Q

and an upper triangular R matrices. The matrices are required by the LSD algorithm,
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which detects the received symbols. The LSD is used to estimate the transmitted

symbol vector, s, by approximating ML detection

s′ = arg min
s

‖y − Hs‖2 (3)

where the y is the received symbol vector and H is the channel matrix whose dimen-

sions equal to the number of transmit and receive antennas of the MIMO system. The

approximation is based on substitution with QR decomposition QR=H , i.e.,

s′ = arg min
s

‖y′ − Rs‖2 where y′ = QHy . (4)

The LSD approximates (4) by gradually increasing the dimensions of symbol vector

and computing partial euclidean distances (PED). With this practice, the search space

can be limited efficiently.

The coherence time, tcoh, indicates how long the channel impulse response is essen-

tially invariant. Thus, the minimum update rate of Q and R is inversely proportional

to the tcoh. The coherence time can be expressed as

tcoh = c/(vrfcarrier) (5)

where c is the speed of light, vr is the speed of the receiver, and fcarrier is the carrier

frequency.

2.1.3 Forward Error Correction

The forward error correction (FEC) [12] operates by adding redundant data to the

transmitted signal. With the aid of redundancy, errors caused by interfered channel

can be corrected up to a certain limit. Naturally, with severely interfered channel

all the errors cannot be corrected. The degree of added redundancy is defined by

the code rate of the error correction code. Thus, the FEC is a vital part of modern

telecommunications systems. In 3G and 3G LTE, both the convolution code and

turbo code are used [2, 3] and Viterbi and turbo decoding are efficient algorithms for

decoding such codes, respectively.

Principles of Viterbi Decoding

In principle, the Viterbi algorithm [121] traverses through a trellis consisting of al-

ternative paths via states of the convolutional encoder. The target of the algorithm
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Fig. 3. The Viterbi decoding consists of four loosely distinct computation phases.

is to find the most likely sequence of the states. Basically, the Viterbi decoding can

be divided into four tasks. The first task includes generating branch metrics of the

received bits. The branch metrics present the distances between received symbols

and the symbol alphabet. The second and the most computing intensive task is the

computation of path metrics. In practice, the computation takes place by repetitions

of ACS operations. As a third task, the path selection information of the previous

phase must be saved. In the last phase, the trellis is traversed backward via survivor

path which describes the estimated bit sequence. These four phases are illustrated on

high level in Fig. 3.

Principles of Turbo Decoding

In principle, the turbo decoder decodes parallel concatenated convolutional codes

(PCCC) in an iterative manner [21]. In addition to the variations in the actual de-

coding algorithm, the implementations can be characterized also with the level of

parallelism, scheduling, or the required memory throughput.

The functional description of the PCCC encoding and turbo decoding is shown in

Fig. 4. The encoding process in Fig. 4 passes the original information bit, i.e., sys-

tematic bit, unchanged. Two parity bits are created by two component encoders. One

of the component encoders takes systematic bits in sequential order but the input se-

quence of the second component encoder is interleaved. The interleaving is denoted

by π in Fig. 4.

The turbo decoding is described with the aid of soft-input soft-output (SISO) com-

ponent decoders [24]. The soft information is presented as logarithm of likelihood

ratios. The component decoder processes systematic bit vector, ys, parity bit vector,

yp, and a vector of extrinsic information λin. As a result new extrinsic information,

λout, and soft-bit estimates, L, of the transmitted systematic bits are generated, i.e.,

(λout, L) = fSISO(λin, ys, yp). (6)
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Fig. 4. Turbo encoding and decoding. The decoding is an iterative process, which runs SISO

component decoder several times. Interleaving and de-interleaving are denoted with

π and π−1, respectively.

Passing the extrinsic information between the component decoders describes how a

priori information of the bit vector estimates is used to generate new a posteriori

information. The turbo decoding is an iterative process where generated soft infor-

mation is passed to the next iteration. Every second half iteration corresponds with

the interleaved systematic bits. Since the interleaving changes the order of the bits,

the next component decoding cannot be started before the previous is finished. There-

fore, the signals passed between the SISO component decoders in Fig. 4 are, in fact,

vectors whose length is determined by the code block length.

Due to the long code block lengths a practical decoder implementation in Fig. 5 con-

sists of the actual SISO decoder and memories. Since only one component decoding

phase, i.e., half iteration, can be run at a time, it is economical to have only one SISO

whose role is interchanged on every half iteration [123]. Although, if decoding is

block-wise pipelined, then several component decoders can be used [24]. The extrin-

sic information is passed via a dedicated memory between the half iterations. If the

component decoder is capable of processing one trellis stage on every clock cycle,

dual access to the extrinsic information memory is required. The interleaving takes

place by accessing the memory with interleaved addresses as shown in Fig. 5. In

practice, the extrinsic information can reside in the memory in sequential order and

no explicit de-interleaving is needed [123]. When the interleaving is required the

extrinsic information is read from and written to according to interleaved addresses.

Thus, the order remains unchanged and no explicit de-interleaving is required be-

fore accessing the memory in sequential order. In the end of decoding, the soft-bit

estimates can overwrite the extrinsic information memory in Fig. 5.



2.2. Transport Triggered Architecture Processor Implementations 13

M
U
X

M
U
X

parity
1

parity
2

address

data

data

address

systematic

π delay
extrinsic

write address

read address

SISO

read address

data

address

write data

read data

Fig. 5. Practical decoder requires SISO component decoder, interleaved address generation,

and memories. Extrinsic information memory is both read and written.

The SISO component decoder can be implemented with, e.g., soft-output Viterbi

algorithm or some variation of a maximum a posteriori (MAP) algorithm. The MAP

algorithm is also referred as the Bahl, Cocke, Jelinek, and Raviv (BCJR) algorithm

according to its inventors [17]. In this Thesis a max-log-MAP algorithm [41,60,88] is

assumed. The basic MAP algorithm consists of forward and backward processes and

both forward and backward path metrics are required to compute the final outcome.

Due to the long block lengths, some type of sliding window algorithm, like the one

presented in [120], is usually applied to reduce the memory requirements. In the

sliding window algorithm, the backward computation is not started in the end of

code block but two window length blocks before the beginning of current forward

process. The backward path metrics are initialized with an acquisition process to

appropriate values during the first window length trellis stages. After the acquisition,

the backward process generates valid path metrics for the next window length stages.

Two alternative schedules for forward and backward computations are shown in

Figs. 6(a) and (b). The stage-parallel schedule in Fig. 6(a) processes one trellis stage

with three parallel processes. The partial-stage schedule in Fig. 6(b) processes one

trellis stage sequentially, i.e., only one process running at a time.

2.2 Transport Triggered Architecture Processor Implementations

In this Thesis, the TTA has been used as the architecture template for ASPs. The TTA

processors can be created and programmed with up-to-date TTA-based Codesign En-

vironment (TCE) tools [54] or with the original MOVE toolset [33]. Processors with
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similar efficiency and performance could be implemented also with some other ASP

templates if sufficient parallelism and customizability were supported. In TTA, the

computations are triggered by data transported to the computing unit, which is con-

trary behavior to conventional operation triggered architectures. The processor is

programmed with data transports, which reflects the architecture to the programmer.

The maximum number of parallel data transports is determined by the number of

buses of the interconnection network. As the interconnection network connecting the

computing resources is visible to the programmer, there is accurate control of all the

operations.

The modularity of TTA processors allows to tailor them by including only the nec-

essary function units (FU). Application-specific functions are implemented as user

defined special FUs (SFU) which are utilized in a similar way as conventional FUs,

i.e., by transporting data on assembly level or by using function-like macros in C lan-

guage. Due to frequent direct data transports between the FUs or SFUs, the register

pressure is very low. However, the modularity of the processor allows a variable num-

ber of register files (RF) with variable numbers of input and output ports. In Fig. 7,

a high-level example of a TTA processor is given. The figure highlights the modular

and customizable structure of the processor by denoting the variable numbers of the

respective resources. The control unit (CU) in Fig. 7 allows data transports to access

the program counter and the return address register, which is required for jump or call

operations. Basically, the data transports transport data via buses and the computing

resources are connected to the buses with sockets. The instruction word controls the

sockets so that the data is passed to the correct bus and the operands are read from

the correct bus.
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Fig. 7. TTA processors consist of control unit (CU), function units (FU), special FUs (SFU),

load/store units (LSU), register files (RF), and an interconnection network between

the resources.

The load on the buses of the interconnection network can be lowered by excluding the

unnecessary connections if the work load of the processor is known beforehand. In

this case, the targeted application program determines which connections are used.

Typically, one application requires only a fraction of all the possible connections

between the computing resources. If any other application is run on the same pro-

cessor, it must be able to use the same connections. As a consequence of the limited

connectivity and lowered load on the buses, the maximum clock frequency of the

interconnection network is raised.

In addition to customization by computing resources and their connections, also the

word length of each bus, FU, SFU, and RF can be set according to the requirements

of the application. Furthermore, even if the interconnection network had longer word

length, the SFUs can use shorter words internally when appropriate. The possibility

to vary word length is beneficial since the minimum word length requirements are

known if the application is transformed from floating-point version to a fixed-point

version and the word length requirements are analyzed during the transformation.

Since the TTA processors are fully generic, there does not exist any particular con-

ventional or regular TTA processor as a counterpart to the more optimized and cus-

tomized TTA processors. However, some classifications can be based on the applied
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toolset. For example, if the processor development tools have a full support for at

maximum two load/store units (LSU) but using wider memory bandwidth requires

more user interaction, the processors could be classified according to their memory

interfaces. In a similar way, they could be classified to the processors using only

the FUs provided by the toolset and to the processors accompanied with user defined

SFUs. In practice, such a classification would be quite arbitrary as it would depend

more on the features of the design tools than on the fundamental structure of the pro-

cessor. Furthermore, TTA processors are typically used with applications which lend

themselves to acceleration with SFUs. Thus, it could be concluded that conventional

TTA processors include SFUs but less conventional TTA processor exclude SFUs.

2.2.1 Programming TTA Processors

The computation kernels of all the proposed TTA processor implementations are pro-

grammed in parallel assembly. The syntax of the TTA processor assembly language

consists of only one operation. The move operation, src → dst, moves data from

left-hand side source, src, to the right-hand side destination, dst. The maximum

number of moves in the instruction is determined by the number of buses in the inter-

connection network. In practice, the assembly instruction word consists of a series of

move operations which are mapped to the buses in the same order as they appear in

the word. Conditional execution takes place by guarding the move operations. The

value of the guard can be read from a RF or from a FU in some cases. Guarded

move operations with the program counter as their destination are used for condi-

tional branching.

To achieve high efficiency, the principles of software pipelining have been applied in

the computation kernels of the proposed TTA processor implementations. The soft-

ware pipelining is a technique which allows executing loops in such a way that sev-

eral loop iterations are issued in parallel. An example case is presented in Figs. 8(a)

and (b). It shows how a total of four instances of loop iterations are run in parallel.

Depending on the total number of required iterations, four parallel instances are it-

erated by conditionally branching from instructions at 07 back to instructions at 04.

The example in Fig. 8(b) shows that during any of the instructions 03. . . 07 all the

four operations A, B, C, and D are executed in parallel and, therefore, they must be

mapped to four separate FUs.
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for i:=1:N step 1 do
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Fig. 8. Principles of software pipelining: a) an example loop consisting of operations A, B,

C, and D, b) pipelined iterations are mapped to function units FU0...3.

2.2.2 Developing TTA Processor Applications

Typically, developing a TTA processor application begins with a target algorithm

given in fully sequential form, e.g., as a C program or a pseudo code which can

be transformed to a C program. If fixed-point implementation is targeted, similar

transformations from floating-point to fixed-point presentations as with any fixed-

point processor application must be carried out. Since the compilation and scheduling

of move operations map execution to a particular processor architecture, the initial

architecture must be created before compilation. Typically, a minimum architecture

capable of executing any programs generated by the compiler can be used as an initial

TTA processor architecture. Naturally, instead of C compilation, the algorithm can

be written also in parallel assembly.

Next, the processor design is iterated by including accelerating units or resources and

excluding resources which have minor effect on the performance. The bottleneck

operations, i.e., candidates for acceleration with SFUs, can be identified with the aid

of profiling a compiled program or if the designer is familiar with the application, the

likely bottlenecks are known beforehand. A candidate operation for a SFU can be

determined, e.g., by chaining consecutive operations. Naturally, operation chaining

leads to trade-off between cycle time of the SFU and the number of clock cycles taken

by the application. In principle, the minimum latency of a SFU is one clock cycle

due to the input registers. As the SFUs may contain arbitrary number of pipeline
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stages, the cycle time can be decreased efficiently with increased latency. The trade-

off between TTA processors accompanied with SFUs and processors without SFUs

depends heavily on the application. For example, if the compiler can efficiently map

the desired functionality to conventional FUs and use them in a pipelined fashion, it

can be possible that simple SFUs do not accelerate the application significantly but

they still take some extra area.

When compared to pure hardware implementations the main benefit of processor

based implementations is their programmability. If the data path of a TTA processor

is optimized only for a single application it may resemble the data path of a pure hard-

ware implementation. However, at least some programmability is still present and de-

signing and programming a TTA processor with up-to-date tools takes typically less

time than designing a pure hardware implementation with the same functionality.

2.2.3 Multiprocessor Systems with TTA Processors

The system example in Fig. 2 suggests that a fully functional receiver could be built as

a heterogeneous multiprocessor system consisting of several TTA processors or other

ASPs. Implementation techniques of multiprocessor systems are beyond the scope

of this Thesis. In other words, the targeted functions are considered independently.

Some requirements for an ideal inter-processor communication (IPC) of baseband

processing are derived in Chapter 9 but also the implementation of IPC is left beyond

the scope of this Thesis and an abstract multiprocessor system using shared memory

banks or shared RFs as communication links is assumed.

However, as a related work, many multiprocessor systems applying TTA processors

can be referred. In [58], a simple asynchronous communication link between TTA

processors is enabled with units containing a first in, first out (FIFO) buffer. TTA

and LEON3 processors are connected with an AMBA bus in [43]. On the contrary

to a shared bus, a network-on-chip approach has been applied in [6] where two Cof-

fee RISC processors, a TTA processor, and a shared memory are connected with a

network. A bio-inspired multiprocessor system is presented in [109] and [90] where

TTA processors are abstracted as cells of a biological system. Multiple processors

could be also abstracted as a hierarchical structure where the SFUs would be com-

prised of TTA sub-processors. Another way would be to combine all the TTA proces-

sors to a set of loosely connected clusters inside a single TTA processor. However,
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assembly programming such a processor would be error prone due to the extremely

long instruction word and the scheme would limit the control flow of the clusters very

strictly to a single combined flow.
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3. SPECIAL FUNCTION UNITS FOR VITERBI DECODING

In this Chapter, an ASP implementation of Viterbi decoder is addressed and SFUs

suitable for continuous path metric computation are proposed. Further parallelization

of the ACS computation with the proposed SFUs is mainly limited by the memory

throughput of the applied processor. The SFUs are experimented with an implemen-

tation of a 256-state, rate 1/2 decoder. As a result, high utilization is achieved as the

path metrics can be computed with a software-pipelined schedule.

3.1 Viterbi Decoding Principles

Viterbi decoding can be illustrated with the aid of trellis diagrams. In Fig. 9(a), a

trellis diagram with Nstates-states is shown. The diagram expresses, which state

transitions are possible. The convolutional encoder has an internal state and the state

transitions follow some path via trellis diagram as the input bits are encoded. The

Viterbi algorithm [121] is used to restore the traversed path. In Fig. 9(b) a path via

4-state trellis is shown as an example.

Each state transition corresponds to a transmitted symbol. The number of bits in

symbol depends on the code rate. Based on the received symbol estimates the path

metrics are computed for each state. The path metric is the minimum of previous

state path metrics, to which a branch metric describing the distance between symbol

estimate and a symbol corresponding to respective state transition is added. For each

state, information describing the selected state transition which ends in the current

state is saved. After the path metrics have been computed for a code block, a trace-

back procedure traverses the states backwards and restores the state transition path

and information bits corresponding to the path.
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Fig. 9. Trellis diagrams: a) an example of Nstates-state trellis shows valid state transitions.

b) An example path via states 0, 2, 3, 3, and 1 of a 4-state trellis is shown.

3.2 Previous Work

Several Viterbi decoder implementations on processor platforms have been reported.

Roughly, the processor based implementations can be divided into three categories.

Firstly, the Viterbi algorithm can be implemented with conventional DSPs, which are

often augmented with units alleviating fast decoding. Secondly, the processor can be

accompanied by a co-processor, which performs most of the decoding task. Thirdly,

a very long instruction word (VLIW) processor can utilize its inherent parallelism

and dedicated units to speed up the decoding. Naturally, the aforementioned DSP

and VLIW categories can overlap.

In [49], a Viterbi decoder is implemented on C54x DSP. The implementation utilizes

compare, select, and store unit (CSSU) which is incorporated into the datapath of

the processor. Also with the C55x DSP the same principles can be used but it has

greater parallelism [111]. The drawback of this approach is that the processor has

rather limited parallelism for the Viterbi algorithm, thus the inherent parallelism of

the algorithm can be exploited only partially. The performance can be improved by

including Viterbi decoder co-processor (VCP) into DSP like in C6416 DSP [113].

The drawback of this approach is that the implementation is strictly separated from

the host processor and it is monolithic, i.e., it has a memory of its own and the user

cannot have a full control of the internal resources of the VCP. A VLIW DSP core

SPXK5 is presented in [61]. The processor has seven FUs, of which four units can

operate in parallel, and it has highly orthogonal instruction set, i.e., for each appropri-

ate instruction there are no hard restrictions on the choice of registers and addressing
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mode. Due to its parallelism, it lends itself also to Viterbi decoding. The IA32 ar-

chitecture is also capable of efficient Viterbi decoding with streaming SIMD (Single

Instruction Multiple Data) extension (SSE) instruction set [51].

Finally, there exist variety of intellectual property (IP) cores for Viterbi decoding [8,

94,100]. Naturally, the dedicated core cannot be used for other tasks like processors.

As a benefit, the core can be optimized only for Viterbi algorithm. Therefore, it may

have shorter word length than the processor, which decreases the complexity of the

datapath efficiently.

In this Chapter, the main computations, i.e., computation of path metrics, are ad-

dressed and SFUs are designed for maintaining a continuous software-pipelined ACS

computation. In addition to actual ACS operation, the SFUs feed operands and save

the results continuously, so that the memory throughput is the main limiting factor

of further parallelization. The proposed SFUs are experimented with 256-state code

and an ASP with dual-port memory. With the proposed SFUs, the inherent paral-

lelism of the algorithm can be exploited. As a second benefit, the SFUs are designed

to be tightly integrated within the datapath. On the contrary to the monolithic co-

processor, the SFUs can be fully controlled and used also for other tasks than the

intended Viterbi decoding. Furthermore, the implementation does not require addi-

tional dedicated memory for Viterbi decoding. As a result of high resource utiliza-

tion, computation of one radix-2 ACS operation takes only one clock cycle with dual

memory accesses.

3.3 Special Function Units

The SFUs are designed to support rapid radix-2 ACS computations. In addition to

the actual ACS, pre- and post-processing of operands and results is required for a

continuous computation.

3.3.1 Add Compare Select Unit

The structure of the ACSU is straightforward as there is a direct mapping between

the computations and computing resources. The structure of the ACSU is illustrated

in Fig. 10 where the path metrics of kth trellis stage and ith state are denoted with
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Pk(i) and the corresponding branch metrics with Bk(i). Due to the structure of the

experimented trellis, one branch metric input port can be avoided if two additions

are substituted with subtractions as shown in Fig. 10. This practice alleviates SFU

instantiation in ASPs as there are less operands to pass and, therefore, lower internal

data transfer overhead when the SFU is used. As the SFU is targeted to 32-bit ASPs,

two 16-bit path metrics and two 16-bit branch metrics are packed into 32-bit words.

The correct branch metric is selected with the operation code of the SFU.

The SFU must also save the information about the selected branch. The SFU in

Fig. 10 packs the bits indicating the selection in 32-bit words by shifting the survivor

path information word one bit right and, thereafter, updating the most significant bit

(MSB). On the contrary to simple hardwired logic, such bit-wise operations would

take at least two clock cycles with conventional instruction set. Since the selections

are required for each state for each processed trellis stage before the traceback rou-

tine, it is advantageous to pack them to avoid extensive memory consumption. The

pth 32-bit word for packing survivor path information is denoted with Sp
k in Fig. 10.

3.3.2 Branch Metric Generation Unit

In principle, the symbol alphabet depends on the code rate. For example, with code

rate 1/2, there are two bits per transmitted symbol, i.e., the alphabet is {00, 01, 10, 11}.

The branch metrics describe distances between the received symbols and the ele-
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Fig. 11. Branch metrics are generated by selecting the metric corresponding to the trans-

mitted symbol according to the index of the ACS operation. Negating the value is

denoted with (−1).

ments of symbol alphabet. However, the branch metrics corresponding to symbols

with complemented bits have negated values with respect to each other. Therefore,

they can be computed with the aid of only two initial branch metrics, Binitial
k (i) and

Binitial
k (i′). This practice is applied in the branch metric generation unit in Fig. 11.

The figure shows how the state index, i, of the radix-2 ACS operations is used to

select the correct branch metric, i.e., the trellis states, for which branch metrics are

generated, control the multiplexers via look-up-tables (LUT).

3.3.3 Path Metrics Packing Unit

The function of the path metrics packing unit in Fig. 12 is to organize data in such

a way that it can be read and written in one access cycle. With 32-bit wide data bus,

two adjacent 16-bit path metrics should be read or written at once. Therefore, the

accessed path metrics should always be adjacent even if the results of the ACSU are

not mapped to adjacent memory locations.

The diagram in Fig. 9(a) indicates that with the exemplified Nstates-state trellis, the

radix-2 ACSU, and even state index i, processing the path metrics of the states i and

i + 1 generates new path metrics for the states i/2 and (Nstates + i)/2 for the next

trellis stage. Thus, the generated path metrics are not mapped to adjacent memory

locations. However, if the computation is followed with another radix-2 ACS opera-

tion for states i + 2 and i + 3, the new path metrics for states (i + 2)/2 = i/2 + 1
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Fig. 12. Path metrics packing SFU alleviates efficient usage of 32-bit load and store opera-

tions.

and (Nstates + i + 2)/2 = (Nstates + i)/2 + 1 are adjacent with previously gener-

ated path metrics. Thus, storing the path metrics can be delayed for one clock cycle

and thereafter 16-bit path metrics for adjacent states can be packed to a single 32-bit

word which can be stored in one clock cycle. The SFU in Fig. 12 is used for the

required interchanging of half words. Again, with conventional instruction set such

interchanging would require shifting and masking operations taking several clock

cycles.

3.3.4 Address Generation Unit

The address generation unit generates addresses for loading and storing the path met-

rics. The principal computation flow of the unit is shown in Fig. 13. The SFU is

targeted for byte-wise addressing, i.e., the minimum distance between 32-bit words

store address1

load address

read base address

previous load address

write base address

254

>>1
2

4

store address0

Fig. 13. Address generation unit generates one load address and two store addresses. Right

shift is denoted with >> 1.
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Fig. 14. Viterbi decoder TTA processor. Controllable connections between resources and

buses are denoted with circles. AGU: address generation unit, BMGU: branch metric

generation unit, PMPU: path metric packing unit, LSU: load store unit, CNTL: status

word, ADD/SUB: addition and subtraction, SHU: left and right shifting, LU: logical

operations, CMP: comparison, INC: increment by one, BR: boolean register, PC:

program counter, IR: long immediate register, RF1. . .RF5: integer register files.

in memory is four address units. The load address operand is fed back to the unit

via internal buses of the processor. On the contrary to load address, the base address

operands of the SFU are locally constants and they can be saved in the registers of

the input ports of the SFU. Since the path metrics are stored in two phases there are

two different address generation functions for store addresses. The first one gener-

ates addresses for the states 0, 1, . . . , Nstates/2 − 1 and the next one for the states

Nstates/2, Nstates/2 + 1, . . . , Nstates − 1.

3.4 Viterbi Decoder Implementation

The SFUs are applied on a TTA [32] processor developed and programmed with

the original MOVE toolset [33]. A high-level block diagram of the Viterbi decoder

TTA processor is shown in Fig. 14. The processor has two LSUs which determine

the memory throughput which limits maximum parallelism of path metric compu-

tations. In addition to the proposed SFUs, the processor has conventional FUs for

addition/subtraction, comparison, shifting, and logic operations.

The SFUs and the processor are synthesized with 130 nm technology and area esti-

mates are given in terms of logic gate equivalents (GE). The resources and perfor-

mance of the TTA processor applying the proposed SFUs are summarized in Table 1.

The area of the SFUs is given for independent units, i.e., they are not connected to

any other logic which would increase the critical path and result in higher area. De-
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Table 1. Characteristics of the SFUs and Viterbi decoder TTA processor with 100 MHz clock

frequency.

Area of the ACSU 1.4 kGEs

Area of the address generation unit 2.2 kGEs

Area of the path metric packing unit 0.7 kGEs

Area of the branch metric generation unit 0.7 kGEs

Clock cycles per bit (Nstates = 256) 175 cycles / bit

Decoding rate 0.57 Mbps

Number of internal buses 13

Area of the TTA processor 46 kGEs

coding a code with 256-state trellis require 128 radix-2 ACS operations and with the

proposed SFUs the radix-2 ACS operations can be computed continuously at rate

one operation per clock cycle. Thus, the traceback routine and any extra overhead

take 175 − 128 = 47 clock cycles per trellis stage. The number of buses in Table 1

gives the minimum parallelism in terms of internal data transports for applying the

proposed SFUs efficiently.

3.4.1 Decoder Program

The core of the decoder program consists of two nested loops which are followed by

a traceback routine as shown in Fig. 15. The path metric memory is divided into two

parallel accessible regions, whose roles are interchanged as the decoding proceeds to

the next trellis stage. The decoder is programmed with C but the innermost loop is

optimized manually and programmed with parallel assembly language.

loop (TRACEBACK DEPTH)
call Swap path metric memory pointers
loop (32)

call Generate branch metrics
call ACS(1)
call ACS(2)
call ACS(3)
call ACS(4)

end
call Update survivor path memory

end
loop (TRACEBACK DEPTH)

call Traceback
end

Fig. 15. Pseudo code of the core decoder program.
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0: AGUl→LD LD→ACSU rs01→ACSU Rs11→ACSU BMGU→ACSU ACSUp→PMPU

PMPUl→ST AGUs→ST AGUl→AGU ACSUs0→Rs00 ACSUs1→Rs10 INC→INC BR→PC

1: AGUl→LD LD→ACSU Rs02→ACSU Rs12→ACSU BMGU→ACSU ACSUp→PMPU

PMPUh→ST AGUs→ST AGUl→AGU ACSUs0→Rs01 ACSUs1→Rs11 INC→CMP0

30→CMP1

2: AGUl→LD LD→ACSU Rs03→ACSU Rs13→ACSU BMGU→ACSU ACSUp→PMPU

PMPUl→ST AGUs→ST AGUl→AGU ACSUs0→Rs02 ACSUs1→Rs12 INC→BMGUi

Rbm→BMGUb

3: AGUl→LD LD→ACSU Rs00→ACSU Rs10→ACSU BMGU→ACSU ACSUp→PMPU

PMPUh→ST AGUs→ST AGUl→AGU ACSUs0→Rs03 ACSUs1→Rs13 CMP→BR

Fig. 16. Pseudo assembly code of the main loop kernel.

A pseudo assembly listing of the loop kernel is given in Fig. 16. Due to the jump

latency the loop contains four instruction words. The parallel data transports are

indicated by → in Fig. 16. The left and right hand side of the move operation are the

source and destination resources. The subscripts indicate the output port of the units

or identifies the register. The move BR→PC is a conditional branch, i.e., guarded

modification of the program counter. The first move provides load address to the

load unit. Second move passes previously loaded path metric to the ACSU. Third

and fourth moves pass survivor path operands to the ACSU. Fifth move passes branch

metrics to the ACSU. Sixth move passes previously computed path metrics to the path

metric packing unit and the next move passes packed path metrics to the store unit

which gets the store address by eighth move. Previous load address is fed back to

the address generation unit in ninth move. The updated survivor path information is

stored into registers by the next two moves.

3.4.2 Discussion

In principle, multiple sets of the proposed SFUs could be applied in parallel for

achieving higher throughput. In this case, each set of the SFUs would decode the

same trellis stage with different offset of the state index. Naturally, such a practice

would require higher memory throughput as each set would load and store path met-

rics in parallel.

Finally, different processor architectures can be characterized by analyzing how they

lend themselves to ACS computations. In Table 2, the ACS computation with C54x
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Table 2. Radix-2 ACS computations with different processor architectures.

Architecture Cycles Resources Instructions of the ACS computation

TTA with SFUs 1 ACSU 7 parallel moves

C54x [110] 4 ALU and CSSU 2 dual addsub, 2 compare select store

C55x [111] 3 ALU 2 dual addsub, 1 dual comparison

C64 VCP [4] 0.25 4 ACSUs N/A

SPXK5 [61] 2 2 ALUs 1 quadruple addsub, 1 dual maximum

DSP [110], C55x DSP [111], VCP of C64x DSP [4], and a VLIW processor [61]

are exemplified. The table shows that typical DSPs have sufficient instructions for

efficient path metric computation. However, their computation requires more clock

cycles than computation with proposed SFUs. The VCP in Table 2 contains dedicated

ACSUs but a monolithic structure requires dedicated memory. The proposed SFUs

can be integrated in the data path of the ASP and, therefore, conventional memory

accesses can be used.

The throughput of the ACS computation with processors in Table 2 is directly pro-

portional to the clock frequency and inversely proportional to the cycles in the second

column. For example, even if the C55x requires three clock cycles per radix-2 ACS,

its throughput is comparable with TTA with the SFUs as the C55x can achieve 300

MHz clock frequency [115]. The level of parallelism used for the ACS computation

is indicated by the Resources and Instructions of the ACS computation columns in

Table 2. For example, the SPXK5 VLIW processor uses two arithmetic logic units

(ALU) each capable of dual operations. In the first clock cycle, two additions and

two subtractions are executed in parallel in the two ALUs. In the next clock cycle,

two maximum operations are executed in parallel.

The ACS computation with a TTA processor without any SFUs depends heavily on

the available FUs, RFs, interconnection network, and on the program. Therefore,

computation with such a processors is exemplified with the number of basic opera-

tions carried out by the SFUs in Table 3. The rightmost column in Table 3 shows the

number of clock cycles if there are sufficient FUs for each basic operation of the sec-

ond column, i.e., no resource multiplexing is required and only the data dependencies

and the assumed one clock cycle latency of the FUs limits the total delay. Naturally,

even if several clock cycles are taken in total, the operations can be computed in a

pipelined manner when there are no restricting data dependencies.
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Table 3. Computation of accelerated functions with conventional operations.

SFU operation Basic Cycles with

operations max parallelism

Radix-2 ACS and survivor 2 add, 2 sub, 2 cmp 3

path update 2 shift, 2 or

Address generation 3 add, 2 sub, 1 shift 4

Path metric packing 2 shift, 2 and, 2 or 2

Branch metric generation 2 shift, 2 and, 2 sub 3
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4. MULTIPLEXED ACSUS FORMAX-LOG-MAP COMPUTATION

Max-log-MAP algorithm, a simplification of log-MAP algorithm, can be used in

SISO component decoding of turbo decoders. In this Chapter, it is shown how all the

computations of the max-log-MAP algorithm can be computed by time-multiplexing

a slightly modified ACSU. As a result of mapping all the computations to a single

type of resource, the dimensions, in terms of parallel computing resources, of the

design space are reduced as different decoder structures can be derived by varying

only a single parameter, i.e., the number of ACSUs. Obviously, such a reduction of

dimensions simplifies the design of max-log-MAP decoders. The proposed method

is applied in practice as SFUs for a decoder compatible with the eight state trellis and

2.0 Mbps data rate of Universal Mobile Telecommunication System (UMTS) [1] are

developed and applied in an ASP.

4.1 Parallelism and Throughput

Basically, the throughput of the max-log-MAP SISO component decoder of the turbo

decoder is proportional to the level of parallelism. With radix-2 algorithms the level

of parallelism can be increased up to a level where one trellis stage is processed

in a one clock cycle, i.e., a stage-parallel decoding. Thereafter, the recursive data

dependencies prevent efficient utilization of additional resources. Fig. 17 illustrates

this relation. In one extreme, a simple processor with a limited instruction set can

sequentially carry out all the computations. In the other extreme, a stage-parallel

decoder carries out all the computations per trellis stage in parallel.

Many implementations reside close to the two extremes. A fully sequential program

describing turbo decoding is easy to develop as there are no parallel operations with

conflicting data dependencies. However, depending on the applied technology, it is

possible that the desired data rate can be achieved between the two extremes. The
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Fig. 17. The throughput increases as parallel computing resources are increased until a com-

ponent decoder processing one trellis stage in one clock cycle is achieved.

derivation in this Chapter shows how all the computations of max-log-MAP algo-

rithm can be mapped to slightly modified ACSUs. The main benefit of this notion is

that it simplifies the design of decoders residing between the two extremes in Fig. 17.

As all the computations can be mapped to a single type of resource, part of the design-

ing of a decoder is reduced to scheduling and exploring of a one type of a resource.

Naturally, designing with a set of homogeneous resources is simpler than with het-

erogeneous resources.

The increasing level of parallelism and throughput as presented in Fig. 17 corre-

sponds also with increasing memory bandwidth requirements. The partial-stage turbo

decoder processor presented in this Chapter has such a high parallelism that it re-

quires parallel memory accesses which cannot be met with simple dual-port memory.

However, the memory accesses can be mapped to separate memory banks straight-

forwardly. On the contrary, the stage-parallel decoder in Chapter 5 has even higher

memory bandwidth requirements and it requires more sophisticated parallel memory

access methods which are presented in Chapter 6.

4.2 Max-Log-MAP Algorithm

The max-log-MAP algorithm is a simplified, approximative, derivation of the MAP

algorithm [17]. Basically, max-log-MAP algorithm [41, 60, 88] can be divided into

four computation tasks, which are branch metrics generation, forward metrics gen-

eration, backward metrics generation, and generation of soft or hard bit estimates

together with new extrinsic information. The forward path metric of state u at trellis



4.3. Re-Organized Forms for Efficient Resource Mapping 35

stage k, αk(u), is defined recursively as

αk(u) = max
u′∈Upred(u)

(αk−1(u
′) + dk(u

′, u)) (7)

where dk(u
′, u) is the branch metrics, u′ is the previous state, and the set Upred(u)

contains all the predecessor states of u, i.e., the states from which there is a state

transition to the state u [122]. Respectively, the backward path metrics are defined as

βk−1(u
′) = max

u∈Usucc(u′)
(βk(u) + dk(u

′, u)) (8)

where the set Usucc(u
′) contains all the successor states of state u′ [122].

The soft output, Lk, is computed with the aid of the forward, backward, and branch

metrics as a difference of two maximums [122]. In the following, the minuend max-

imum corresponds to the state transitions with transmitted systematic bit xs = 0 and

the subtrahend maximum corresponds to the state transitions with xs = 1,

Lk = max
(u′,u):xs=0

(αk−1(u
′) + βk(u) + dk(u

′, u)) −

max
(u′,u):xs=1

(αk−1(u
′) + βk(u) + dk(u

′, u)). (9)

The hard bit estimate is obtained simply by the signum function, sgn(·), of the Lk.

The new extrinsic information λout
k is computed with the aid of Lk, i.e., a posteriori

information λout
k is obtained as

λout
k =

1

2
Lk − ys

k − λin
k (10)

where λin
k is the a priori information, and ys

k is the received soft systematic bit, i.e.,

ys
k can have positive or negative non-integer values [122].

4.3 Re-Organized Forms for Efficient Resource Mapping

Mapping of computations of forward and backward metrics is trivial, since the re-

cursive computation in (7) and (8) are already in a form suitable for ACS operations.

The only re-organization is required if the maximums in (7) and (8) contain more

arguments than the targeted ACS operation takes, e.g., there are more than two state

transitions (u′, u) leading to a state and radix-2 ACS operations are targeted. In such
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a case, the computations must be split and carried out in steps consisting of maximum

operations with two arguments.

The computation of soft output, Lk, must be re-organized to several steps. First, the

computations are grouped by applying the fact that

max
(u′,u)∈Usp

(αk−1(u
′) + βk(u) + dk(u

′, u))

= max
(u′,u)∈Usp

(αk−1(u
′) + βk(u)) + dk(v

′, v) where (v′, v) ∈ Usp (11)

where the set Usp consists of all the state transitions (u′, u) which correspond with

the same combination of systematic and parity bits. As the last term is moved outside

of the maximum in (11), the states of the last term, dk(v
′, v), can be defined by any

of such a state pair in the set Usp. This re-organization is applied for each Usp, i.e.,

for all the systematic and parity bit combinations. Thus,

Lk = max
(u′,u):xs=0

(αk−1(u
′) + βk(u) + dk(u

′, u)) −

max
(u′,u):xs=1

(αk−1(u
′) + βk(u) + dk(u

′, u))

= max
Usp:xs=0

(

max
(u′,u)∈Usp

(αk−1(u
′) + βk(u)) + dk(Usp(0))

)

− (12)

max
Usp:xs=1

(

max
(u′,u)∈Usp

(αk−1(u
′) + βk(u)) + dk(Usp(0))

)

(13)

= L0
k − L1

k (14)

where the state pair sets, Usp, in (12) correspond with state transitions in which trans-

mitted systematic bit xs = 0 and in (13) the corresponding systematic bit xs = 1. As

any branch metric of the respective set Usp can be used, the first state pair, which is

indexed with zero, is used in the term dk(Usp(0)) in (12) and (13). The maximums

in (12) and (13) are denoted as L0
k and L1

k, respectively, in (14) to clarify further

derivations. Next, the maximums with multiple arguments can be split to maximums

of two arguments, which can be mapped straightforwardly to ACS operations.

Computation of new extrinsic information λout
k is defined with the aid of Lk in (10).

However, it can be computed in parallel with the last step of the computation of the

Lk. In (10) a sum ys
k + λin

k is required. It can be obtained from branch metrics with

dk(u
′, u) + dk(v

′, v) = 2ys
k + 2λin

k (15)
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Fig. 18. Trellis of eight state 3GPP constituent code. Transmitted systematic and parity bit

pairs (xs, xp) correspond with state transitions of the component encoder.

where the branch metrics corresponding with state transitions (u′, u) and (v′, v) are

chosen so that they correspond with transmitted systematic bit xs = 0 and parity

bits with respectively opposite signs. This step is further illustrated with an example

case in (18)–(21) and (30). With this practice the parity bits cancel each other in the

sum. With this substitution and with previously chosen (u′, u) and (v′, v) the (10) is

expressed as

λout
k =

1

2
(Lk − (dk(u

′, u) + dk(v
′, v)))

=
1

2
(L0

k − L1
k − dk(u

′, u) − dk(v
′, v)). (16)

However, it is also possible to use a state transition (w′, w) corresponding to the

branch metric with negated value, i.e., dk(w
′, w) = −dk(u

′, u). Thus,

λout
k =

1

2
(L0

k + dk(w
′, w) − (L1

k + dk(v
′, v))), (17)

which is a more suitable form for resource mapping.

4.3.1 Example with 3GPP Constituent Code

With the presented method, the structure of the max-log-MAP decoder is simplified

and the computing resources can be shared economically. The eight state trellis of
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3GPP constituent code in Fig. 18 is used as an example case to clarify the derivation.

Since the trellis is fixed, a more suitable presentation for the branch metrics can be

used. There are only eight states and four possible systematic and parity bit combi-

nations in Fig. 18. However, there are 16 possible branches expressed as dk(u
′, u).

All the branch metrics dk(u
′, u) correspond to the transmitted systematic and parity

bit pairs (xs
k, xp

k) and, therefore, the branch metrics notation can be defined also with

the following four symbols

γ00
k = dk(u

′, u)
xs

k
=0,xp

k
=0

= ys
k + λin

k + yp
k (18)

γ01
k = dk(u

′, u)
xs

k
=0,xp

k
=1

= ys
k + λin

k − yp
k (19)

γ10
k = dk(u

′, u)
xs

k
=1,xp

k
=0

= −ys
k − λin

k + yp
k (20)

γ11
k = dk(u

′, u)
xs

k
=1,xp

k
=1

= −ys
k − λin

k − yp
k (21)

where the received soft parity bit is yp
k. Previous notation shows how the branch met-

rics are computed. Since the branch metrics with complemented indices are negations

of each other, computing only two branch metrics is sufficient if respective additions

in (7)–(9) were substituted with subtractions.

The computation of forward and backward metrics is straightforward by following

the state transitions in Fig. 18. For example,

αk(0) = max(αk−1(0) + γ00
k , αk−1(1) + γ11

k ) (22)

αk(4) = max(αk−1(0) + γ11
k , αk−1(1) + γ00

k ) (23)

βk−1(4) = max(βk(2) + γ01
k , βk(6) + γ10

k ) (24)

βk−1(5) = max(βk(2) + γ10
k , βk(6) + γ01

k ). (25)

The soft output, Lk, in (9) can be written with the aid of branch metrics, γ00...11
k , as

Lk = max( αk−1(0) + βk(0) + γ00
k , αk−1(1) + βk(4) + γ00

k ,

αk−1(2) + βk(5) + γ01
k , αk−1(3) + βk(1) + γ01

k ,

αk−1(4) + βk(2) + γ01
k , αk−1(5) + βk(6) + γ01

k ,

αk−1(6) + βk(7) + γ00
k , αk−1(7) + βk(3) + γ00

k ) −
max( αk−1(0) + βk(4) + γ11

k , αk−1(1) + βk(0) + γ11
k ,



4.3. Re-Organized Forms for Efficient Resource Mapping 39

αk−1(2) + βk(1) + γ10
k , αk−1(3) + βk(5) + γ10

k ,

αk−1(4) + βk(6) + γ10
k , αk−1(5) + βk(2) + γ10

k ,

αk−1(6) + βk(3) + γ11
k , αk−1(7) + βk(7) + γ11

k ). (26)

Common γxsxp

k addends can be extracted from maximum operations as follows,

Lk = max( max( αk−1(0) + βk(0), αk−1(1) + βk(4),

αk−1(6) + βk(7), αk−1(7) + βk(3)) + γ00
k ,

max( αk−1(2) + βk(5), αk−1(3) + βk(1),

αk−1(4) + βk(2), αk−1(5) + βk(6)) + γ01
k ) −

max( max( αk−1(0) + βk(4), αk−1(1) + βk(0),

αk−1(6) + βk(3), αk−1(7) + βk(7)) + γ11
k ,

max( αk−1(2) + βk(1), αk−1(3) + βk(5),

αk−1(4) + βk(6), αk−1(5) + βk(2)) + γ10
k ). (27)

Next, for brevity, maximums are denoted with variables s0...3
k and t0...3

k as follows,

s0
k = max(αk−1(0) + βk(0), αk−1(1) + βk(4))

t0k = max(αk−1(0) + βk(4), αk−1(1) + βk(0))

s1
k = max(αk−1(6) + βk(7), αk−1(7) + βk(3))

t1k = max(αk−1(6) + βk(3), αk−1(7) + βk(7))

s2
k = max(αk−1(2) + βk(5), αk−1(3) + βk(1))

t2k = max(αk−1(2) + βk(1), αk−1(3) + βk(5))

s3
k = max(αk−1(4) + βk(2), αk−1(5) + βk(6))

t3k = max(αk−1(4) + βk(6), αk−1(5) + βk(2)).

Next, the soft output, Lk, can be further simplified to

Lk = max( max(s0
k, s

1
k) + γ00

k , max(s2
k, s

3
k) + γ01

k ) −
max( max(t0k, t

1
k) + γ11

k , max(t2k, t
3
k) + γ10

k ) (28)

and with new variables s4
k, s

5
k, t

4
k, and t5k

s4
k = max(s0

k, s
1
k) , s5

k = max(s2
k, s

3
k)

t4k = max(t0k, t
1
k) , t5k = max(t2k, t

3
k)
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it can be written in the following form

Lk = max(s4
k + γ00

k , s5
k + γ01

k ) −
max(t4k + γ11

k , t5k + γ10
k ), (29)

whose intermediate terms are defined as s6
k and t6k,

s6
k = max(s4

k + γ00
k , s5

k + γ01
k )

t6k = max(t4k + γ11
k , t5k + γ10

k ).

Computation of new extrinsic information, λout
k , can be defined with the aid of s6

k

and t6k instead of using Lk. First, the sum ys
k + λin

k is obtained from branch metrics,

since

γ00
k + γ01

k = ys
k + λin

k + yp
k + ys

k + λin
k − yp

k

= 2ys
k + 2λin

k . (30)

With this substitution to (10)

λout
k =

1

2
(Lk − (γ00

k + γ01
k ))

=
1

2
(s6

k − t6k − γ00
k − γ01

k ). (31)

The values of branch metrics with complement indices are negated with respect to

each other, i.e., γ11
k = −γ00

k . Thus,

λout
k =

1

2
(s6

k + γ11
k − (t6k + γ01

k )). (32)

To compute the branch metrics, they are grouped as follows,

γ00
k = (ys

k + λin
k ) + yp

k (33)

γ01
k = (ys

k + λin
k ) − yp

k (34)

γ10
k = yp

k − (ys
k + λin

k ) (35)

γ00
k =−yp

k − (ys
k + λin

k ) (36)

where intermediate terms can be defined with the aid of s7
k and t7k as,

s7
k = ys

k + λin
k (37)

t7k =−yp
k. (38)
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4.4 Decoding with Modified ACSUs

In this Section, a slightly modified ACSU and decoding with the proposed ACSUs

are presented.

4.4.1 Modified Add Compare Select Unit

The structure of the proposed ACSU is shown in Fig. 19. When compared to conven-

tional ACSU, it is enhanced with an additional multiplexer which allows subtraction

operations. With ACS mode selected, the ACSU computes

m0 = max(a0 + b0, a1 + b1) (39)

m1 = max(a0 + b1, a1 + b0) (40)

and with a difference of sums mode, it computes

m0 = a0 + b0 − (a1 + b1) (41)

m1 = a0 + b1 − (a1 + b0). (42)

Thus, the unit is capable of computing: 1) radix-1 ACS, 2) radix-2 ACS, 3) maxi-

mum, 4) sum, 5) difference, or 6) difference of sums. For example, when computing

the maximum of a0 and a1, the operands b0 and b1 are set to zero.

4.4.2 Decoding Example

The 3GPP constituent code is used as an example for decoding with the presented

principles and the computations are mapped to four modified ACSUs. The mapping
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Fig. 20. Soft output, Lk, and extrinsic information, λout
k , can be computed within four steps

with the proposed ACSUs.

of forward and backward metrics computations in (22)–(25) is trivial. Four radix-2

ACS operations are required for the computations in both directions and they can be

executed in parallel.

In (28), all the (si
k, tik), i = 0 . . . 3, pairs can be computed with radix-2 ACS opera-

tions. This practice is indicated in Fig. 20, in step 1. In (29), the maximums s4
k, s

5
k, t

4
k,

and t5k are computed with ACSUs as shown in Fig. 20, step 2. Single maximums are

computed and, therefore, the inputs b0 and b1 of the ACSUs are set to zero. In a

similar way, s6
k and t6k are computed with ACSUs as shown in Fig. 20, step 3. In this

case, two radix-1 ACS operations are computed, since the computations do not share

the same operands as required for radix-2 ACS. The final subtraction in (29) takes

place in the last step in Fig. 20.

In (32), a difference whose subtrahend and minuend are sums of two operands is

computed. Therefore, it can be computed with the proposed ACSU as shown in

Fig. 20, in step 4. The final scaling by 1
2 is trivial by hardwiring the output bits.

Branch metrics can be computed in two steps. First, intermediate values, s7
k and

t7k, which require only the addition and subtraction capabilities of the ACSUs, are
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Table 4. Internal utilization of the computing resources of four ACSUs in max-log-MAP de-

coding example.

Computation process Step # of steps Utilization (%)

Forward metrics αk(0 . . . 7) 1 1 100

Backward metrics βk(0 . . . 7) 1 1 100

Soft output Lk and λout
k 1 100

2 17

3 25

4 4 17

Branch metrics γ00...11
k 1 8

2 2 17

Total – 8 48

Total with sliding window – 9 54

computed. During the second step (33)–(36) are computed. With four ACSUs, they

can be computed in parallel.

The internal utilization of the four ACSUs is shown in Table 4. As the internal utiliza-

tion is computed, the number of required additions, subtractions, or comparisons is

compared to the total resources inside the four ACSUs. With sliding window schedul-

ing there is an extra backward metrics process and the total utilization is higher. With

the additional backward process of sliding window algorithm one trellis stage can be

processed in a total of 9 steps as shown in Table 4. If a decoder structure with more

dedicated units were designed, the Table 4 shows that the computation of branch

metrics γ00...11
k is the most inefficient taking two steps and having modest utiliza-

tion. Therefore, if more heterogeneous resources than a set of homogeneous ACSUs

were applied it would be efficient to first map the computation of branch metrics to a

dedicated unit. If the branch metrics were computed in parallel with other decoding

tasks, processing one trellis stage would take seven clock cycles. In other words, the

speedup would be 9/7 = 1.29.
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4.5 Special Function Units for an ASP Implementation of Max-Log-MAP

Turbo Decoder

In an ASP implementation, the kernel computations are mapped to SFUs. In addition

to the plain computations in Sections 4.2–4.4, also memory interfaces, storing of tem-

porary values, feedback circuitry, and normalization must be considered in practical

implementation.

4.5.1 Multiplexed ACSUs and Forward Metric Stack SFU

The unit computes the forward, αk(0 . . . 7), and backward, βk(0 . . . 7), path metrics,

extrinsic information, λout
k , and the hard output, sgn(Lk), with multiplexed ACSUs

as described in Section 4.4. The structure of the SFU is shown in Fig. 21. Basically,

the unit consists of four ACSUs, multiplexers which select the input operands for

the ACSUs, sets of registers for storing the state of the process, and a stack for the

forward path metrics.
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The operation codes of the SFU are tabulated in Table 5. Several operation codes in

Table 5 do not have external operands nor results, since the internal state of the unit

is used instead. Ten operation codes are required since seamless context switches

between operation modes are established with initialization and finishing steps of

respective operation modes. Except for the stack memory of forward path metrics,

all the other intermediate data is stored in internal registers. The same registers act

as the mandatory delay component in the feedback loop structure of the multiplexed

ACSUs. The registers can be divided into the registers holding the values of forward

path metrics, backward path metrics, and intermediate results when computing the

extrinsic information and the soft bit estimates.

The forward path metrics, αk(0 . . . 7), are pushed into a stack, since they must be

read in a reverse order during the extrinsic information computation. The stack con-

trol unit in Fig. 21 maintains the stack pointer and interfaces an external memory. The

stack size equals to the window length of the sliding window algorithm. The window

length can be varied easily, since the stack resides in the external memory. The word

length of the forward path metrics is 11 bits. Applying longer word length does not

give significant improvement on error correction performance and even shorter word

lengths can be used for lowering the hardware costs [129]. So, the word length of the

stack is 8 × 11 bits = 88 bits. The window length, i.e., the maximum depth of the

stack, is 32 stages. With only the conventional LSUs and dual-port memory, pushing

eight path metrics would take four clock cycles meanwhile all the other memory ac-

cesses were blocked. Thus, using a dedicated stack memory instead of conventional

LSUs has a significant impact on the performance of forward path metric computa-

tion.

The computation according to (7) and (8) shows the recursive dependency of path

metrics. Due to the recursiveness, the latency of pipelined execution of (7) or (8)

would limit the throughput. As single cycle computation results in a long critical

path, it is also beneficial to feed back the intermediate results internally as shown in

Fig. 21 instead of using the interconnection network of the processor. Naturally, the

SFU includes also input and output registers to limit the critical path to the internal

computations of the unit.



46 4. Multiplexed ACSUs for Max-Log-MAP Computation

Table 5. Operation codes of the multiplexed ACSUs SFU.

Operation code Description Operands Results

AFB Feedback αk(0 . . . 7) γ00...11
k –

BCSI Initialize βk(0 . . . 7) γ00...11
k –

BFB Feedback βk(0 . . . 7) γ00...11
k –

LLR1 Compute λout
k step 1 – –

LLR2 Compute λout
k step 2 – –

LLR3 Compute λout
k step 3 γ00...11

k –

LLR4 Compute λout
k step 4 γ00...11

k λout
k , sgn(Lk)

BZERO Init. the last βk(0 . . . 7) – –

AINIT1 Init. αk(0 . . . 7), step 1 – –

AINIT2 Init. αk(0 . . . 7), step 2 γ00...11
k –

Path Metric Normalization

The path metric normalization limits the word length of path metrics, which results in

smaller area, shorter critical path for arithmetic units, and smaller storage space. The

recursive update in (7) and (8) shows that without any limitations the path metrics

would increase continuously.

The applied simple normalization requires non-negative path metrics. Therefore,

non-negative initialization is used. It sets α0(0) to a large positive value and α0(1, . . . , 7)

to the zero. This has the same effect as the more common initialization by setting

α0(0) to the zero and α0(1, . . . , 7) to large negative values. After non-negative initial-

ization, the recursive update in (7) and (8) maintains the path metrics non-negative.

This can be verified with the trellis in Fig. 18, which shows that any state can be

reached only with state transitions corresponding to pairwise complement systematic

and parity bit pairs (xs, xp). Branch metrics with such complemented indices are

negations, i.e.,

γ00
k = −γ11

k (43)

γ01
k = −γ10

k , (44)

as (18)-(21) show. Thus, the update of, e.g., αk(0), can be written as

αk(0) = max(αk−1(0) + γ00
k , αk−1(1) − γ00

k ) . (45)

With non-negative initialization, αk−1(0) and αk−1(1) are non-negative. If γ00
k is
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positive, then αk−1(1) − γ00
k can be negative. In this case αk−1(0) + γ00

k must be

positive. Similarly, with negative γ00
k , the term αk−1(1) − γ00

k must be positive.

Similar derivation can be presented for all αk(1), . . . , αk(7) and βk(0), . . . , βk(7),

respectively.

The most obvious normalization method searches for the minimum of path metrics

and subtract it from all the path metrics. Lower complexity variations have been

introduced, e.g., in [7, 127, 129]. The presented normalization methods compare the

path metrics against a threshold value and when any of the path metrics exceeds the

thresholds, a predefined value is subtracted from all the path metrics.

In this Thesis, the applied normalization method is based on fixed-point binary repre-

sentation of path metrics. Subtracting 2j from a binary number, whose jth bit is one,

is simple by setting the jth bit to zero. The applied method detects when the same bit

is one in all the path metrics of the current stage and it can be set to zero. The nor-

malization circuitry of jth bit is shown in Fig. 22. Path metrics are denoted with mi

and the jth bit of mi is denoted with mi,j , since the same circuitry applies both for

the forward, αk(i), and backward, βk(i), metrics. The same circuitry is repeated for

all the bit indices j, which will be normalized. Thus, there is no path going from the

least significant bit (LSB) to the MSB and the extra length of the critical path is inde-

pendent of the word length. If time-multiplexed structure of multipurpose ACSUs is
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targeted, the normalization can be enabled with one additional AND gate instead of

multiplexers.

The operation of the normalization can be clarified by expressing the path metrics,

mi, as a sum of constant and variable terms,

mi = c + ∆i (46)

where min∆i = 0 and the maximum word length of ∆i is defined as

W∆ = ⌊log2(max
i

∆i)⌋ + 1. (47)

The W∆ is bounded, since the difference between maximum and minimum path met-

rics,

max ∆i = max mi − minmi, (48)

is bounded for all the trellis stages [48]. If the constant term, c, of path metrics has

zero bit at jth position, i.e., cj = 0, then binary representation of path metrics mi is

mi = (cMSB . . . cj+10cj−1 . . . cLSB)2 + ∆i. (49)

Now, if j > W∆ and the addition in (49) is carried out, then all the path metrics mi

share the same leftmost bits down to the (j + 1)th bit, i.e.,

m0,MSB = m1,MSB = . . . = m7,MSB (50)

m0,MSB−1 = m1,MSB−1 = . . . = m7,MSB−1 (51)

. . .

m0,j+1 = m1,j+1 = . . . = m7,j+1. (52)

The leftmost bits remain unaltered, since the cj prevents carry bit propagation. Thus,

the method can always normalize the bits from the MSB down to the (j +1)th bit for

all the path metrics mi, when cj = 0 and j > W∆.

4.5.2 Branch Metric Computation SFU

The branch metric computation unit can be used for further acceleration with hetero-

geneous resources instead of using only homogeneous ACSUs. The unit computes

the branch metrics, γ00...11
k , and interfaces the memories for soft systematic, ys

k, and
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parity bits, yp
k, extrinsic information, λout

k ,λin
k , and hard output, sgn(Lk). Even if the

computation of branch metrics is possible with ACSUs as shown in Subsection 4.3,

a dedicated unit can be used for obtaining higher utilization as indicated by Table 4,

for avoiding branch metric buffer memory, and for grouping branch metric related

memory interfaces into the same unit.

The structure of the SFU is shown in Fig. 23. The branch metrics are computed

straightforwardly according to (33)–(36). The main advantage of the SFU is the in-

tegration of five different memory interfaces and branch metric computation. The

integration hides memory accesses, interleaving, and their latencies which simplifies

programming and requires fewer buses in the interconnection network of the proces-

sor. When computing branch metrics, γ00...11
k , the operands are trellis stage index k

and a flag bit, which indicates whether the interleaved addressing mode is used. The

interleaving sequence is read from the memory but, in principle, it could be replaced

with a hardware unit capable of generating one interleaved address in one clock cycle.

As a second operation, the SFU is used to write the new extrinsic information, λout
k ,

and hard bit estimates, sgn(Lk), to the memory. Again, the stage index, k, and flag

bit are given as operands in addition to the actual data. The extrinsic information

and hard bit estimates are stored into separate memory banks. In the last iteration,

the extrinsic information could be overwritten by the hard bit estimates. However,

such an approach would prevent variable number of iterations. In that case, stopping
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Table 6. Sizes of external memory banks with 5120 length code block. The length of the

sliding window is denoted with Lwin.

Memory Addr. width Data width Size (bits)

Systematic bits, ys 13 7 35840

Parity bits, yp 14 7 71680

Extrinsic inf., λout, λin 13 10 51200

Interleaver 13 13 66560

Hard output, sgn(L) 13 1 5120

Frwd. metrics, αk...k−Lwin+1(0 . . . 7) 5 88 2816

criterion like cyclic redundancy check [18] would determine the number of iterations

and it is not known in advance, when the last iteration has been started. In principle,

if the operation code encoding of the SFU were extended, it could operate also as a

conventional LSU.

Table 6 summarizes the sizes of external memory banks. The required data widths

depend on the initial scaling of the input data and the code block length. In this

Thesis, the maximum code block size is 5120, which requires 13-bit address and

data buses for e.g, interleaver memory. Since both parity bits are not accessed on the

same half iteration, they can be stored in the same memory bank. So, the parity bit

memory is double sized when compared to the systematic bits. Eight path metrics are

read from or written to the stack memory and, therefore, it has wide data width.

4.5.3 Applying the SFUs in Turbo Decoder TTA Processor

The turbo decoder is implemented on a customizable ASP by applying the principles

presented in previous sections. In this experiment, TTA [32] has been used as the

architecture template. The TTA was chosen mainly for up-to-date tool support [54].

However, a somewhat similar implementation could be possible with any highly cus-

tomizable processor with sufficient parallelism.

The block diagram of the proposed turbo decoder TTA processor is presented in

Fig. 24. The addition/subtraction unit and comparison unit are the only conventional

FUs. Since the processor is customized only for turbo decoding and the main compu-

tations are carried out with SFUs, no other FUs are required. Jumps, subroutine calls,
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and return operations access the program counter via control unit, CU, in Fig. 24.

The processor contains one general purpose RF of four registers. In addition, there

are four dedicated RFs of one register. They are used for temporarily storing branch

metrics when the old extrinsic information is overwritten.

Turbo Decoder Program

A high-level pseudo code of the turbo decoder program is shown in Fig. 25. In prac-

tice, the program is written in parallel assembly and it follows the sliding window

schedule with one process running at a time. Since the computation of the first and

last windows are special cases, they are separated as shown in Fig. 25. In addition

to the backward path metrics, βk(0 . . . 7), also computations of extrinsic informa-

tion, λout
k , and soft output, Lk, are included in backward process procedure in

Fig. 25, since they are always computed for the same trellis stage as backward met-

rics. The backward cold start process procedure in Fig. 25 is the process

of sliding window algorithm, which initializes the backward metrics beginning from

an unknown initial state.

Complexity and Performance

The processor was synthesized on 130 nm standard cell technology and 1.35 V volt-

age. The area of the processor in terms of logic GEs is given in Table 7. Of the
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procedure main begin
call max log MAP || π:=False # The first
call max log MAP || π:=True # iteration
...
call max log MAP || π:=False # The last
call max log MAP || π:=True # iteration

end
procedure max log MAP begin

callfirst forward process
loop (Block length / Window length)-1

call backward cold start process
call backward process
call forward process

end
call last backward process

end

Fig. 25. High-level turbo decoder program flow. Parallelism is denoted with | | and π presents

the flag indicating interleaved access.

four clock frequency alternatives in Table 7 the throughput of the 180 and 210 MHz

processors is sufficient for UMTS.

The actual max-log-MAP algorithm is not altered, so the error correction perfor-

mance is the same as with typical max-log-MAP turbo decoders with the same win-

dow and block lengths. Therefore, only the throughput is analyzed in detail. De-

coding 5120 length code block takes 76408 clock cycles, so the throughput of one

iteration with clock frequency, fc, is

R = 5120 bits/(76408/fc) . (53)

The number of clock cycles per trellis stage, Cstage, describes how efficiently the

resources are used. It is inversely proportional to the throughput but independent of

the clock frequency. The proposed processor achieves

Cstage = (76408/2)/5120 = 7.46 . (54)

Also a relative efficiency can be defined as the ratio between the theoretical minimum

of required clock cycles and the used clock cycles for analyzing the proposed pro-

cessor further. The proposed method in Section 4.4 requires seven clock cycles per

trellis stage for computing forward and backward path metrics, extrinsic information,

and hard bit estimates when the additional branch metric computation SFU is used.

The last 32 stages long window takes six cycles per stage, as there is no additional

backward path metric computation process of the sliding window algorithm. In one

full iteration, all the trellis stages are processed twice. Thus, the relative efficiency of
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Table 7. Area as GEs and throughput of the turbo decoder TTA processor.

Clock Area Throughput Throughput

freq. (MHz) (kGE) 1 iter. (Mbps) 6 iters. (Mbps)

100 12.722 6.70 1.12

150 14.942 10.05 1.68

180 17.886 12.06 2.01

210 20.750 14.08 2.35

the proposed turbo decoder processor would be

Edecoding =
2 × ((5120 − 32) × 7 + 32 × 6)

76408
= 0.94 . (55)

The efficiency of any processor can be degraded by, e.g., loop prologues and epi-

logues, jump latency, or poor software pipelining of loops. The achieved relative

efficiency indicates that such unavoidable overhead has very minor effect on the de-

veloped processor. The relative efficiency, Edecoding, equals also to the utilization

of the multiplexed ACSUs SFU, which indicates that the processor is used almost as

efficiently as it is theoretically possible with the given resources.

To avoid redundancy, the proposed turbo decoder processor is compared with other

turbo decoders in Section 5.4, Table 10 in the next Chapter where a more parallel

turbo decoder processor implementation is presented. Naturally, when the results in

Table 10 are interpreted, it has to be taken into account that different implementations

can be targeted to different telecommunications systems applying different data rates.
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5. SPECIAL FUNCTION UNITS FOR STAGE-PARALLEL TURBO

DECODING

In this Chapter, SFUs for the kernel computations of a stage-parallel turbo decoder

applying max-log-MAP algorithm are proposed. The eight state trellis used in Chap-

ter 4 is used again as an example target for the units. The SFUs are applied in practice

as highly-parallel ASP applying them is implemented. On the contrary to previous

partial-stage turbo decoder in Chapter 4, far higher parallelism is applied and higher

throughput is targeted. As a consequence, also higher memory throughput is re-

quired. Expensive dual-port memory is avoided with a novel memory interface of the

extrinsic information memory. The SFUs are connected directly to the memory in-

terfaces of the processor to enable fast memory access. The proposed ASP achieves

22.7 Mbps throughput for the eight-state code, [1 1+D+D3

1+D2+D3 ], with six iterations at

277 MHz clock frequency with 130 nm technology.

5.1 Previous Work

Turbo decoders are implemented on high-performance DSPs in [45, 57, 81]. How-

ever, their throughput is not sufficient even for current 3G systems if interfered chan-

nel conditions require several turbo iterations. Obviously, common DSPs are mainly

targeted for other algorithms like digital filtering, but not for turbo decoding. The

complexity of typical computations of turbo decoding is high and in the lack of ap-

propriate computing resources the throughput is modest.

Higher throughput can be obtained if the processor is designed especially for turbo

decoding, i.e., it has dedicated computing units for typical tasks of decoding algo-

rithms. Such an approach is applied in [68, 124] where SIMD processor turbo de-

coders are presented. In [68], three pipelines and a specific shuffle network is ap-

plied. In [124], the pipeline has specific stages for turbo decoding tasks. With this
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approach the computing resources are more tightly dedicated to specific tasks of the

decoding algorithm.

Even higher throughput can be obtained with pure hardware designs like [22, 137].

However, the programmability and flexibility is lost. Naturally, the more parallelism

is used the higher throughput can be obtained. For example, by applying radix-4

algorithms the decoders in [22, 30] can process more than one trellis stage in one

clock cycle. A slightly more flexible solution is to use monolithic accelerator, which

is accompanied with a fully programmable processor like in [4, 96]. However, a

monolithic solution can be uneconomical if the memory banks are not shared. Turbo

coding requires long code blocks, so the memories can take significant chip area.

When compared to DSPs in [45, 57, 81], the proposed SFUs and ASP are mainly

optimized for turbo decoding. There are no typical signal processing resources like

multipliers. The resources of the proposed processor can be used in a pipelined fash-

ion but there is no similar pipeline as in SIMD processor in [124]. In addition, more

computing resources are used in the proposed processor as the targeted throughput

is one trellis stage per clock cycle. Instead of using a specific shuffle network as

a separate operation [68], the permutations are integrated in the internal feedback

circuits of the path metric computations in the proposed processor. On the contrary

to [22,137], the proposed processor is programmable. When compared to [4,96], the

application-specific computing resources are accessed via datapath in the proposed

processor. Thus, the resources can be controlled in detail with software. A similar

processor template was applied in the previous Chapter, but far higher parallelism

and throughput are targeted in this Chapter.

5.2 Special Function Units for Kernel Computations

The kernel computations of max-log-MAP algorithm include computation of forward

metrics defined in (7), backward metrics (8), soft output (9), extrinsic information

(10), and branch metrics (18)–(21). Three SFUs are proposed for these computations.

The structure and operation of the units are discussed in the following.
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5.2.1 Forward Computation SFU

The forward computation SFU generates forward path metrics, αk(i), normalizes

them and continuously reverse orders one window of forward path metrics. The path

metric computation in (7) requires ACS operations. All the path metrics for one trellis

stage are computed in parallel, so the number of ACSUs depends on the size of the

trellis. With the eight state example trellis in Fig. 18, four ACSUs are required. The

structure of the unit with four ACSUs is shown in Fig. 26. Since the ACSUs followed

by normalization reside in the critical path of the processor, the path metrics are fed

back internally, instead of using internal buses of the processor where the unit will be

instantiated.

Reverse ordering a window length block of path metrics is required since the extrin-

sic information, λout
k , and hard output, sgn(Lk) are computed together with the back-

ward path metrics. The path metrics are reverse ordered with a stack which resides

in external memory as in Section 4.5.1. The SFU updates read and write pointers

of the stack memory. Instead of having two stacks, the same memory area can be

used for continuous reverse ordering. The new samples are stored to the memory
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locations which were previously loaded. The direction of the stack is interchanged

after a window length of push and pop operations. In other words, the pointers are

first incremented, then they are decremented and so on. With this practice, the stack

memory area remains full all the time after the first window length push operations.

Since the push and pop operations access always consecutive memory locations, the

parallel access can be implemented trivially by two memory banks.

5.2.2 Backward Computation SFU

The backward computation SFU is divided into several stages as indicated by Fig. 27.

The first stage computes the backward path metrics of the acquisition mode and the

second stage computes valid path metrics, βk(0 . . . 7). The first two stages are struc-

tured similarly as the forward path metric computation SFU, i.e., both stages contain

four ACSUs.

The next stages in Fig. 27 are responsible for computing the extrinsic information,

λout
k , and hard output, sgn(Lk). Since there is no feedback loop, the computations

can be pipelined freely to several stages. The structure takes an advantage of mapping

the computations of (9) to radix-2 ACS operations, maximum operations, and radix-1

ACS operations as described in Section 4.3. The computation of λout
k in the last stage

in Fig. 27 uses (30) to obtain ys
k+λin

k required by (10). With this practice the required

term, ys
k + λin

k , can be obtained without additional memory access. Otherwise, the

memory of systematic bits, ys
k, would need parallel access or there should be a long

delay line preserving the values of ys
k to provide ys

k for (10). The backward path

metric computation SFU includes a lot of arithmetic operations but, on the other

hand, the design is straightforward since there is a one-to-one mapping between the

computations and arithmetic units. Control signals are required for initialization and

passing forward the path metrics from the acquisition mode process.

5.2.3 Branch Metric Computation SFU

On the contrary to the previous branch metric computation SFU in Section 4.5.2, the

proposed SFU in Fig. 28 is targeted for higher throughput and, therefore, it includes

a buffer of branch metrics. The SFU computes the branch metrics and interfaces the

external memories for soft systematic, ys
k, and parity bits, yp

k, extrinsic information,
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Fig. 28. Branch metric computation unit interfaces external output, extrinsic information,

systematic bit, parity bit, interleaver, address queue, and branch metric buffer mem-

ories.

λin
k , λout

k , hard output, sgn(Lk), interleaving sequence, address queue, and branch

metric buffer. Generated branch metrics are buffered in memory banks as proposed

in Section 6.4. The SFU groups all the branch metric related memory interfaces into

the same unit. The SFU hides memory accesses and, therefore, fewer internal buses

are required in the interconnection network of the ASP. Since the branch metrics with

complemented indices are negations of each other, only the branch metrics γ00
k and

γ01
k are buffered for a four window length block. The branch metrics generated for

the acquisition mode backward process are passed forward and stored in the buffer.

The branch metrics for the forward and backward processes are read from the buffer.

The second operation of the SFU is writing the new extrinsic information, λout
k , and

hard bit estimates, sgn(Lk), to the memory. The parallel memory accesses are im-

plemented with the structure proposed in Section 6.5. In the proposed processor the

interleaving sequence is read from a dedicated memory. If a hardware interleaver
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Table 8. External memory banks. Turbo code block length is 5120.

Memory Address Data Size

width width (bits)

Systematic bits, ys 13 7 5120 × 7 = 35840

Parity bits, yp 14 7 10240 × 7 = 71680

Extrinsic inf., λout, λin 11 10 4 × 1280 × 10 = 51200

Interleaver, 13 13 5120 × 13 = 66560

Hard output, sgn(L) 13 1 5120 × 1 = 5120

Address queue 7 13 73 × 13 = 949

Branch metric buffer,

γ00
k...k+4Lwin−1, γ

01
k...k+4Lwin−1 5 20 4 × 32 × 20 = 2560

Fwrd. metric stack,

αk...k+Lwin−1(0 . . . 7), 5 88 32 × 88 = 2816

were used, generating two interleaved addresses in one clock cycle would increase

the complexity of the interleaver. To enable an option for using hardware interleaver

instead of memory, the addresses are buffered in a queue data structure, which is de-

noted as address queue in Fig. 28. As the two access sequences of the address queue

are sequential with a constant offset between them, the memory can be divided into

two banks according to the LSB trivially. In principle, with the window length, Lwin,

and an implementation dependent inherent delay, crw, the address queue buffer de-

lays the addresses 2Lwin + crw = 73 clock cycles, which is the difference between

read and write indices with the access sequence B(i) defined in (59). The memories

interfaced by the branch metric and forward computation SFUs are summarized in

Table 8.

5.3 Turbo Decoder Processor

The proposed turbo decoder ASP applies the SFUs presented in previous Section. In

the proposed implementation, the TTA [32] has been used as the architecture tem-

plate. However, similar principles can be applied on any customizable processor,

which possesses sufficient parallelism.

The principal block diagram of the developed TTA processor is shown in Fig. 29.

Since the processor is targeted only to turbo decoding, it has only two conventional
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FUs, namely addition and comparison units. The control unit, CU, in Fig. 29 is used

for jump, call, and return, i.e., the new value of program counter is written to the

CU and the return address is read from the CU. Due to the frequent bypassing of data,

the processor contains only two general purpose registers in two RFs. In the turbo

decoding program, the registers are used in parallel to delay continuously generated

values, which are needed also on the next clock cycle.

The SFUs presented in previous Section carry out the core computations of max-

log-MAP algorithm. However, implementation of a decoder requires also assisting

functions which control the core computations and provide the correct data at correct

time to the respective SFU. The assisting SFUs for address generation and control of

computations are presented in the following.

5.3.1 Address Generation SFU

The address generation SFU generates addresses for accessing branch metrics, γ00
k

and γ01
k . As it is shown by the schedule in Fig. 6(a), there are three parallel processes

and all of them require branch metrics. The branch metrics are generated and buffered

in the branch metric computation SFU. Thus, the generated addresses are addresses

of the buffer and they are not affected by the interleaving mode.

The access sequence of the addresses of the forward path metric, αk(0 . . . 7), com-

putation is sequential but the backward processes require sawtooth access patterns as

shown in Fig. 6(a) and Fig. 34. The previous addresses are operands of the SFU and

they are fed back via the interconnection network. The internal operation of the SFU

is depicted in Fig. 30. The window length parameter, Lwin, in Fig. 30 determines the

period of the sawtooth pattern.

5.3.2 Control SFU

The purpose of the controlling SFU is to generate a control word, which is used as

an argument of other SFUs. Even if the highest level control takes place in software

level, the lowest level control can be implemented more conveniently in hardware.

With this practice unnecessary details are hidden from the application program. The

word is used to control multiplexers, initialization of state registers, and signals in the

memory interfaces.
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Generating the control word requires evaluating several conditionals in parallel as

depicted in Fig. 31. The parameter, 2Lwin + crw in Fig. 31 is the constant distance

between read and write operations of the extrinsic information, λin
k , λout

k , memory.

The operands of the SFU are current trellis stage, k, and interleaving mode. Even

if the control could be distributed among the SFUs, the verification and any future

changes, if required, are alleviated since the control signals are packed to the single

control word generated with an independent unit.
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length with K. Input k is the current trellis stage.
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procedure turbo begin
# First iteration
call max-log-MAP || interleaving := false
call max-log-MAP || interleaving := true
...
# Last iteration
call max-log-MAP || interleaving := false
call max-log-MAP || interleaving := true

end

procedure max-log-MAP begin
call initialization of SFUs
loop (K + 2 × Lwin) begin

call run SFUs
end
call finish computations

end

Fig. 32. High-level program flow of the turbo decoder. Parallelism is denoted with | |. Code

block length and window length are denoted with K and Lwin, respectively

5.3.3 Turbo Decoder Program

The turbo decoder program is programmed in parallel assembly and it follows the

sliding window schedule in Fig. 6(a). The highest-level pseudo code is shown in

Fig. 32. The subprograms of the max-log-MAP procedure are inlined to avoid jump

latency. The first procedure, initialization of SFUs, feeds the initial constants

to the control and address generation SFUs. The loop kernel repeats instruction words

consisting of computation and loop control parts. The computation part of the instruc-

tion word feeds the control word to all the SFUs, addresses to branch metric compu-

tation SFU, branch metrics to forward and backward computation SFUs, and hard bit

estimates and extrinsic information to the branch metric computation SFU. The loop

control part includes addition, comparison, and conditional jump operations. In total,

the instruction word consists of 30 parallel data transports.

The number of iterations of the main loop in Fig. 32 exceeds the block length K.

Additional clock cycles are taken by the first window length Lwin trellis stages as

the branch metrics buffer is filled with the values of first window. The last window

requires also additional Lwin clock cycles, as the results can not be computed before

the forward path metrics for the last window are ready. Due to the latencies of the

SFUs, valid results are not generated immediately. Therefore, the total number of

activations of SFUs exceeds the number of iterations in the loop. The last stages are

not processed in the loop to match the total number of required activations.
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Table 9. Complexity and throughput of the turbo decoder TTA processor.

Clock Area Throughput Throughput

frequency 1 iteration 6 iterations

100 MHz 27.9 kGEs 49 Mbps 8.2 Mbps

200 MHz 31.9 kGEs 98 Mbps 16.4 Mbps

250 MHz 35.7 kGEs 123 Mbps 20.5 Mbps

277 MHz 43.2 kGEs 136 Mbps 22.7 Mbps

5.3.4 Performance and Complexity

The throughput is determined by the number of clock cycles per code block. The

developed TTA turbo decoder processor takes 10404 clock cycles with the length-

5120 code block. So, the throughput of one iteration is

R = 5120 bits/(10404
1

fc
) (56)

where fc is the clock frequency. The processor was synthesized on 130 nm stan-

dard cell technology with 1.35 V voltage. The area in terms of logic GEs of the

generated netlist and the corresponding throughput are given in Table 9. The design

is area-efficient as the computing resources are used efficiently, there are no large

multiplexers, and the high-level structure of the processor is very simple as shown in

Fig. 29. The dynamic power consumption of the decoder is 50.8 mW with 250 MHz.

So, decoding a length-5120 code block would take 0.0127 mJ energy.

In addition to absolute valued throughput in Table 9, the relative efficiency of the

developed processor and decoder program can be analyzed. The number of clock

cycles per trellis stage, Cstage, of max-log-MAP computation, i.e., half iteration is

Cstage = (10404/2)/5120 = 1.016 . (57)

The efficiency can be described as a measure how close to the theoretical cycle count

the achieved number of clock cycles approaches. With the applied resources, the

theoretical cycle count equals to the block length. Thus the efficiency can be defined

as

Edecoding = 1/Cstage = 0.984 . (58)

Since the efficiency in (58) can be interpreted similarly as the efficiency in (55), it

shows that any unavoidable overhead has only minor part in the total cycle count and

the utilization of the SFUs is very high.



5.4. Comparison of Turbo Decoder Implementations 67

5.4 Comparison of Turbo Decoder Implementations

A comparison with other turbo decoder implementations is summarized in Table 10.

The implementations are categorized into three classes. Pure hardware designs are

not programmable. Monolithic accelerators are implementations where processor is

accompanied by a dedicated hardware decoder. The third category contains proces-

sors, in which the computing resources are accessed via a datapath.

Naturally, turbo decoders applying more accurate algorithms like log-MAP instead of

max-log-MAP require more area and the longer critical path lowers clock frequency.

In log-MAP algorithms, an approximation, ln(ea + eb) = max(a, b) + f(a, b), is

used and comparisons are difficult since the accuracy of the correction term, f(a, b),

may vary. Typically the recursive update in (7) and (8) dominates the critical path

and prevents high clock frequencies. However, the path metric computation can be

accelerated also by expressing the recursion in such a way that the control signals of

selection operations are computed in parallel with additions like in [66, 125].

The complexity is tabulated if it is given as logic GEs excluding the memories in

the respective reference. Due to the differing underlying cell structures, comparing

different FPGA architectures would be difficult and the size of the memories depends

on the targeted block size and technology. For example, [117] takes 250 kGEs with

memories but the computing units of the core decoder take only 24 kGEs. Even if the

memories are excluded in Table 10, it is still possible that some implementations may

use register based delay lines for queue data structures and the registers are naturally

included in the gate count. Such a register based approach is simple to design as it

does not require address generation nor memory bank selection logic. As a drawback,

transferring electric charge through all the registers in a delay line consumes a lot of

energy.

The throughput metrics are normalized to one iteration to alleviate comparisons. The

throughput is directly proportional to the clock frequency, which results in a low

throughput for some FPGA based implementations. Therefore, also the last column

should be observed, as it gives the number of clock cycles per trellis stage, Cstage.

It is calculated from the throughput and the clock frequency, unless it is given in

respective reference. For [80], an achievable 300 MHz clock frequency has been

assumed to calculate the throughput.
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The implementations [22] and [30] in Table 10 have Cstage < 1, as they apply the

radix-4 algorithm. The architecture in [30] includes two component decoders. The

decoders in [23] and [25] support also Viterbi decoding. The area of [25] includes a

path metric memory of the Viterbi decoder and an embedded interleaver. The inter-

leaver is included also in the area of [19]. The implementation in [117] is targeted

for high-speed turbo architecture consisting of several parallel decoders. The per-

formance and complexity are reported for one decoder in Table 10. Naturally, non-

programmable decoders tend to have a lot of dedicated computing resources for the

functions of the decoding algorithm and they have high throughput when compared

to majority of programmable processors.

For [4, 134] the complexity in Table 10 includes only the turbo co-processor, but not

the accompanying C64x VLIW DSP. The accompanying processor is included in the

complexity of [96] since the proportion of only the decoder part was not available.

The interleaving pattern is computed with the processor and the decoder supports

both max-log-MAP and log-MAP algorithms in [96]. In both implementations, the

decoder is not tightly connected to the datapath of the processor, so it is not flexibly

controllable. Instead, the decoder must process independently which resembles pure

hardware decoders. As a second drawback of monolithic accelerators, some memory

is dedicated only for the turbo decoder component.

The ASP in [124] supports also Viterbi decoding. The ASP has an 11 stage pipeline.

There are dedicated pipeline stages for address generation, branch metric generation,

state metric computation, and four stages for computing the soft output. The pro-

cessor in [68] has three pipelines and trellis butterflies are alleviated with a specific

shuffle network. The decoding algorithm of the processors in [52, 53] is selectable.

In the table, performance of max-log-MAP is given as it achieves higher clock fre-

quency.

The processor presented in Chapter 4 applies more sequential schedule, which is

presented in Fig. 6(b), as it contains less computing resources than the proposed

processor in this Chapter. However, it achieves sufficient performance for the UMTS

data rate 2 Mbps. Most of the implementations with higher throughput in Table 10

exceed the UMTS data rate drastically. If their architectures are designed only for

decoding, they cannot be used for other tasks and they have to idle most of the time

if they were used in UMTS receivers. Naturally, such an approach would not be

economical. Finally, the Table 10 shows that conventional commercial DSPs have



70 5. Special Function Units for Stage-Parallel Turbo Decoding

modest throughput and Cstage. This is understandable, since their architectures are

optimized mainly for high throughput multiply and accumulate operations but not for

turbo decoding.

The proposed processor has the highest throughput of all the programmable turbo

decoder processors. The performance is comparable with pure hardware implemen-

tations and the number of clock cycles per trellis stage, Cstage, is best of all the

implementations, which do not apply the radix-4 algorithm. For example, even if the

clock frequency is lower when compared to [137], the proposed processor has only

slightly worse performance, since it has better Cstage. The low Cstage shows that

the programmability and flexibility of the processor does not degrade the efficiency.

The utilization of the computing resources is even higher than with the pure hardware

decoder.

5.4.1 Scaling and Processing without SFUs

In Chapter 4, it was shown that in principle all the computations of max-log-MAP

algorithm can be mapped to slightly modified ACSUs. Therefore, one way to scale

the decoder design in order to target it to different throughput requirements would

be to vary the number of ACSUs. With this practice there would be only one major

design parameter which is varied and the other resources were tailored according to

the requirements of ACSUs. For comparison, with several design parameters, the

number of their different combinations may increase too rapidly.

Processing solely without SFUs and without any tailoring of the processor can be

exemplified by assuming that there were only two LSUs available, i.e., dual-port

memory would be used. The memory bandwidth limitation gives a coarse estimate

on the maximum performance of such a TTA processor. The branch metric gen-

eration requires accessing extrinsic information, systematic and parity bits for each

trellis stage. On every second half iteration, interleaved accesses are used which

requires accessing the interleaving sequence. Thus, the total number of load opera-

tions is 3.5 where the fraction 0.5 originates from the interleaving. Naturally, stor-

ing branch metrics requires two store operations when only one of the respectively

complement branch metrics is stored. The forward metric computation requires two

loads for obtaining the branch metrics and eight stores for saving the forward met-

rics. The acquisition mode of backward metric requires only loading branch metrics.
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The computation of backward path metric, extrinsic information, and soft output re-

quires again two loads for the branch metrics and eight loads for the forward path

metrics. Storing the extrinsic information or soft output requires one store operation.

On every second half iteration, the store operations use interleaved access sequence

which requires an additional load of interleaving sequence. Thus, roughly 3.5 + 2 +

2 + 10.5 load operations and 2 + 8 + 1 store operations, in total 29 operations, are

required per trellis stage. Even if only 15 dual memory accesses, i.e., 15 clock cycles

per trellis stage, would be sufficient in theory, developing a program which achieves

full utilization of LSUs can be challenging due to the data dependencies between the

computation loops.
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6. PARALLEL MEMORY ACCESS IN TURBO DECODERS

In this Chapter the parallel memory accesses of the turbo decoders are addressed.

Parallel access methods are proposed for the extrinsic information memory and for

the branch metric memory.

6.1 Principles of Extrinsic Information Memory Accesses

In general, parallel access can be implemented with separate read and write mem-

ories, dual-port memory, a memory running with higher clock frequency, or some

type of memory banking structure. A general structure consisting of Nbanks parallel

memory banks and T parallel access interfaces is presented in Fig. 33. The struc-

ture abstracts the Nbanks memory banks so that the T interfaces can use them as a

continuous single array of words. The purpose of the address generation and bank

selection functions is to map parallel accessed data to separate banks. The derivation

of conflict-free bank selection and address generation functions is typically the main

design problem of parallel memory bank structures.

Computing the branch metrics according to (18)–(21) requires reading the extrinsic

information memory. If the decoder processes one trellis stage in one clock cycle,

the new extrinsic information must be written to the extrinsic information memory at

the same time. Thus, at least dual access is required. The sliding window schedule

in Fig. 6(a) shows that, in fact, there are three parallel processes requiring branch

metrics. Instead of quadruple access of the extrinsic information and triple access

of systematic and parity bit memories, the locality of branch metric accesses can be

utilized as shown in Section 6.4.

For clarity, when accessing the extrinsic information memory the term index is used

instead of the term trellis stage, since both component decoders can access the same

data at different trellis stages. The index can be interpreted as an array index pointing
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Fig. 33. General parallel memory bank structure with T parallel access interfaces and

Nbanks memory banks. The encoding unit selects address, data, and rw signals

of that interface which has selected the respective bank.
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time

trellis stage
accessed

Fig. 34. Access sequence of the extrinsic information is based on the sawtooth pattern.

to elements of the extrinsic information vector, λin, λout. The half iterations require

different access sequences. In this Thesis, the term linear access sequence is used

for the locally linear access of the first half iteration. The term interleaved access

sequence is used for the second half iteration. With sliding window scheduling both

access sequences are based on the sawtooth sequence shown in Fig. 34. With a win-

dow length Lwin and a code block length K the sawtooth access sequence can be

defined as,

B(i) = Lwin⌊i/Lwin⌋ + Lwin − 1 − (i mod Lwin) (59)

where i ∈ {0, 1, . . . , K − 1 + 2Lwin + crw} and constant term crw originates from

from the delay of computations in the decoder. The accessed indexes of the linear

access sequence are generated with B(i) by updating the i with i+1. The interleaved

access sequence is generated in a similar way with π(B(i), K) where π(·, ·) is the

interleaving function. The write operations of the extrinsic information follow the

read operations with the same but delayed access sequence. The delay equals to

2Lwin + crw. The generation of the read and write indexes of both access sequences

is clarified with the structure shown in Fig. 35.

M

U

X

i

K

1 π
B(i)

write index

read index

half iteration
first / second

delay

(B(i),K)

Fig. 35. Generation of read and write indexes of linear access sequence and interleaved ac-

cess sequence.
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6.1.1 3GPP Turbo Coding Interleaver

Since the parallel memory access sequences depend on the interleaving function,

π(j, K), the 3GPP turbo code internal interleaver [2] is used as an example and pre-

sented in the following. Basically, the 3GPP interleaver is defined with the aid of a

matrix. The number of rows, R, and columns, C, of the matrix depend on the code

block length, K, which can vary in the range 40 ≤ K ≤ 5114. The derivation of the

matrix dimensions, R×C, is defined in [2]. In the following the dimension functions

are denoted with R = Mrows(K) and C = Mcols(K). The matrix can contain more

elements than the code block, i.e., there are unused elements in the matrix.

First, the matrix is filled with elements, ej , j ∈ {0, . . . , K − 1} row-wise beginning

on the first row and the first column. Each matrix element, ej , corresponds to a unique

row, row(j, K), and column, col(j, K), i.e.,

row(j, K) = ⌊j/Mcols(K)⌋ ; col(j, K) = j mod Mcols(K). (60)

Thus, the row(j, K) and col(j, K) denote the original row and column of the ej

before any subsequent permutations. Next, intra-row permutations, denoted with

Pintra(col(j), row(j), K) in this Thesis, are applied as defined in [2]. The intra-row

permutation function gives the new column of the respective element. The intra-row

permutations depend on the row and they are based on the exponentiation function

in a finite field. As the base of the exponentiation is primitive root of the field, the

powers of the primitive root give all the elements of the field except zero [73]. The

first two steps of the interleaving are illustrated in Fig. 36(a) and (b).

In the third step, inter-row permutations, Pinter(row(j, K), K), are applied. The

R ∈ {5, 10, 20} and there are only four different inter-row permutations [2]. The

applied inter-row permutation is selected according to the code block length, K. In

the last step, the matrix is read column-wise beginning on the first column and first

row. If the matrix contains more than K elements, the additional elements are pruned,

i.e., only the original elements ej are output when reading the matrix. These two steps

are shown in Fig. 36(c) and (d).

Thus, if the matrix is originally filled with elements ej = j, ∀j ∈ {0, . . . , K − 1},

the jth element read from the matrix column-wise gives the value of interleaving

function, π(j, K), which denotes the interleaved index of the original index j. If the
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a)

...
write 2

write 0

...

R −1write

write 1

b)

c) d)

read C −1

...

...
read 2
read 1
read 0

Fig. 36. 3GPP interleaving: a) the interleaving matrix is filled row-wise, b) intra-row per-

mutations are applied, c) inter-row permutation is applied, and d) the matrix is read

column-wise.

bits were used as elements, i.e., ej = xs
j , then reading the matrix column-wise would

result in the interleaved bit sequence.

6.2 Previous Work

In [108], a conflict free mapping is derived with an iterative annealing procedure. The

native block length of the algorithm is a product of the number of parallel component

decoders and the number of memory banks. Even if the reconfiguration is mandatory

for varying interleaving patterns, no hardware implementation is presented for the

annealing procedure. The turbo decoder implementation studies [4, 22, 30, 137] do

not provide details of the applied access methods.

In [47], graph coloring is used to find mappings. It uses more memory banks than

[108], but a hardware architecture for the reconfiguration is presented. The reconfig-

uration takes about 10K clock cycles for K length code block [47]. For comparison,

one conflict would take one additional clock cycle. Therefore, it can be more ad-

vantageous to suffer all the conflicts instead of reconfiguration in some cases. In

addition, the address computations in [47] require division and modulus, which are

difficult to implement on hardware when the block length is not a power of two.

In [97], a conflict free access scheme for extrinsic information memory is developed.

The bank mapping is based on the interleaving matrix and derived with the aid of
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exclusion sets. Since the parity of columns is used in bank selection, it is unclear

how parallel accesses are mapped when there is odd number of columns. A different

approach is applied in [20, 116, 117, 126, 128] where buffers are applied instead of

deriving conflict free address generation and bank selection functions. In [20, 116,

117], high-speed decoding with several write accesses is assumed. For each writer

there is one memory bank and for each bank there is a dedicated buffer. In [117],

the buffered approach is developed further and the memories are organized in ring

or chordal ring structures. The work is continued in [79] where a packet switched

network-on-chip is used and several network topologies are presented. To reduce the

sizes of queue buffers and to prevent overflows, the network flow control is applied.

In [126], multiple parallel decoders decoding the same code block are targeted.

For 3GPP interleaving, a simple structure with four or six memory banks is proposed

in this Thesis. Six memory banks are required for conflict free access and only 3.2%

of the accesses conflict with four banks. Instead of focusing only on a predefined in-

terleaving function, also a more general memory structure is proposed. The structure

applies simple address generation and bank selection functions and buffering of con-

flicting accesses. Instead of solving all the conflicts with memory bank selection as

in [47,97,108], the proposed approach is to use a very simple memory bank selection

function and to maintain a constant throughput with buffering in spite of conflicting

accesses.

6.3 Parallel Memory Structure for 3GPP Turbo Decoding

The general structure in Fig. 33 indicates that the address generation and bank se-

lection are the key functions of parallel memory structures. In this Section, address

generation and bank selection functions are designed for the access sequences of the

3GPP turbo decoding.

Naturally, if the code block length is less than half of the maximum, i.e., K < 2557,

the memory banks can be always organized as separate read and write memories,

which limits efficiently the number of different interleaved access sequences that

must be considered. Since parallel read and write operations can be substituted with

parallel read operations followed by parallel write operations, the analysis of paral-

lel accesses can be focused on adjacent accesses, i.e., accessing extrinsic informa-

tion in parallel with indexes j, j + 1 or with indexes π(j, K), π(j + 1, K) where
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j ∈ {0, 2, 4, . . .K − 2}. Naturally, parallel access with linear access sequence can

be implemented with low-order interleaving. In that case the memory bank is se-

lected of a total of Nbanks banks with j mod Nbanks when accessing the jth ele-

ment. However, applying such an approach straightforwardly with interleaved ac-

cess sequence would require de-interleaving function, π−1(j, K) to calculate bank

selection function π−1(j, K) mod Nbanks which would map accesses of indexes

π(j, K), π(j+1, K) to separate banks. Since the 3GPP interleaving function is based

on exponentiation functions in finite fields, the π−1(j, K) would require discrete log-

arithm. Computing discrete logarithm would be almost impractical as indicated by

cryptosystems utilizing the fact, that power function can be computed relatively eas-

ily, whereas the discrete logarithm requires extensive computational effort [38].

6.3.1 Proposed Structure

Instead of deriving π−1(j, K), the proposed method organizes the data as an abstract

data structure of row-wise filled R × C matrix and takes an advantage of the fact

that parallel operations at indexes π(j, K), π(j +1, K) always map to separate rows.

The accesses do not necessarily map to the same column since the matrix is not

permuted like the interleaving matrix in Section 6.1.1. Thus, the access conflicts with

interleaved access sequence can be avoided by mapping data, which corresponds with

parallel accessed rows, to separate memory banks.

The principal structure of the proposed bank selection and address generation func-

tions is shown in Fig. 37. The generation of the sawtooth sequence, B(i), is included

in the diagram for clarity. The structure in Fig. 37 can be instantiated for address

generation and bank selection in the general parallel memory structure in Fig. 33.

Since the data is abstracted as a matrix, the row and column of the accessed ele-

ment is required. With linear access sequence row(j, K), col(j, K) defined in (60)

give the row and column of the jth element and with interleaved access sequence the

permutation functions Pinter(row(j, K), K) and Pintra(col(j), row(j), K) give the

required information. As they are intermediate functions of the computation of the

interleaving function, it can be assumed that they are available without extra costs.

The structure shows that the memory banks are selected both according to the low-

order interleaving, i.e., the LSB, and according to the row. The selection with the

LSB allows parallel accesses with linear access sequence.
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Fig. 37. Proposed structure for interleaved and linear access sequences. The word length of

the output of the LUT-1 depends on the number of banks.

Since there are only four different inter-row permutation sequences and R ≤ 20 [2]

the contents of the LUTs are efficiently limited. The LUT-2 in Fig. 37 is used for

the address generation and it provides the base address of each row. The proposed

structure can be used with four or six memory banks. With six memory banks all

the conflicts can be avoided. With four banks, 3.2% of the accesses conflict. The

conflicts occur when R × C > K and the column-wise reading of the interleaving

matrix in Section 6.1.1 has to skip the pruned entry and continue to the next row.

The content of the LUT-1 depends on the inter-row permutation. For example, with

permutation mapping row i to the new position according to the ith element of the

set {19,9,14,4,0,2,5,7,12,18,16,13,17,15,3,1,6,11,8,10} [2], it is sufficient to map row

sets {3,5,6,8,14,16,17,19}, {2,4,7,10,11,13,15,18}, and {0,1,9,12} to separate banks.

6.3.2 Area of Memory Configurations

Estimates of the required chip area for different memory configurations are presented

in Fig. 38. The areas required by dual-port memory and single bank single-port

memory are included as reference. The technology of the memories is Mitel Semi-

conductor SCA200 0.35 micron Embedded Arrays and the measures are obtained by

Paracell Model Generator program. The word length is eight bits. The memory chip

area estimates show that, as the memory is divided into banks, additional chip area is

required. Thus, the memory should not be divided into too many banks. The single
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Fig. 38. Required area for different memory configurations.

bank memory takes 73% of the area required by six memory banks, even if both of

them have a total of 5120 words. However, the area for six single-port memory banks

is 72% of the area required by the dual-port memory.

Typically, faster memories have higher costs in terms of area than slower memories,

i.e., there is a trade-off between costs and access time. The access times of memories

have not been used as design parameters in this Section nor in Section 6.4. However,

if memory banking structure results in smaller total memory requirements than a

straightforward solution, the obtained savings may give some freedom to replace

memories with memory banks having faster access time, in theory.

6.4 Branch Metric Buffering

The sliding window schedule in Fig. 39(a) indicates that, in fact, three trellis stages

are accessed in parallel. Instead of boosting the proposed parallel memory system

for even higher throughput, buffering of branch metrics can be applied. There are

certain advantages of such buffering. Firstly, the buffer requires only a small amount

of memory when compared to the systematic bit, parity bit, and extrinsic information

memories, whose sizes are determined by the maximum code block size. Secondly,

single-port memory can be used for all the memories. Thirdly, the access sequence

of the buffer is independent of the interleaving. The proposed method in this Section

is applied in the stage-parallel turbo decoder processor in Chapter 5.

The accesses of the forward, backward, and initialization of backward path metric
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Fig. 39. Buffering of branch metrics: a) mapping the accessed windows to four memory

banks, b) structure of memory interface with four banks.

computations can be mapped efficiently to separate windows. This practice is il-

lustrated in Fig. 39(a) where accessed memory banks and windows are denoted. In

theory, three memory banks are required. However, with four memory banks delays

of memory banks or processes do not cause short-term conflicts when transition from

previous window to the next one takes place. In addition, implementation complexity
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of division and modulo operations is avoided with simple hardwired logic.

The forward and backward path metric computation processes read branch metrics

from the buffer. The data is written to the buffer by the backward path metric acqui-

sition process. The bank mapping in Fig. 39(a) shows that the acquisition process of

backwards metrics is always ahead of other processes. With window length Lwin,

the bank selection, Bsel, of the process accessing the kth trellis stage can be defined

as high-order interleaving, i.e.,

Bsel = ⌊k/Lwin⌋ mod Nbanks. (61)

The address of the accessed bank, Baddr, is defined as

Baddr = k mod Lwin. (62)

Naturally, division and modulo operations are avoided if the window length, Lwin,

and the number of banks, Nbanks, are powers of two. With this practice, the Bsel is

formed by the bits log2 Lwin . . . log2 Lwin + log2 Nbanks − 1 of the binary presen-

tation of the k. In a similar way, the Baddr is given by the bits 0 . . . log2 Lwin − 1

of the k. The structure of the memory interface applying the bit-wise bank selection

and address generation with Lwin = 32 and Nbanks = 4 is shown in Fig. 39(b).

Due to the hardwired logic, the overhead and delay of the interface is kept at mini-

mum. Furthermore, using the buffer does not require any changes to the accessing

processes.

6.5 Extrinsic Information Memory Access with Buffered Write Operations

The next proposed method is used in the stage-parallel turbo decoder processor in

Chapter 5. Briefly, on the contrary to resolving the conflicts by analyzing π(j, K),

the method delays write accesses to prevent simultaneous read and write access in

the same memory bank.

6.5.1 Parallel Memory Access Method

The proposed parallel access method combines simple memory bank mapping and

buffering of conflicting accesses. With simple bank selection the number of conflicts



84 6. Parallel Memory Access in Turbo Decoders

L b L b−1)WL...[( WL−1]

bL[0... WL−1]

M
U
X

interface

bank

201

201

interface

bank

interfaces
memory

MUX MUX

wr data, wr index

memory
banks

rd index

rd data

. . .

...

...

...

...

WL

MUX

write
access buffer

[WL...2WL−1] [2WL...3WL−1][0...WL−1] [3WL...4WL−1]

N

N

banks−1

banks−1

MUX MUX

interface

bank

200

200

Fig. 40. Proposed memory structure with buffered write operations. Word length of data and

address pair is denoted with WL. Indices in brackets index the bus connected to the
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is decreased to a tolerable level and the performance penalty of memory access con-

flicts can be overcome with a short buffer. This practice of combining memory banks

and a buffer is illustrated in Fig. 40.

The bank selection function is a simple modulo operation of the address and the num-

ber of banks, Nbanks. Thus, when accessing the kth trellis stage the bank selection,

Bsel, and address, Baddr, are generated according to

Bsel = k mod Nbanks ; Baddr = ⌊k/Nbanks⌋ . (63)

So, if the number of banks is a power of two, the bank selection and address gen-

eration can be generated by low-order interleaving. In other words, bank selection

is implemented by simply hardwiring the lowest bits to the selection signal and the

highest bits form the address.

In Fig. 40, each memory bank is accompanied with an interface. The functionality of

the memory interface is shown in Fig. 41. In principle, the memory interface gives

the highest priority for memory read operations. The read operations must be always

served to allow continuous decoding. On the contrary, write operations are inserted

to the buffer, which consists of registers in Fig. 40. All the memory banks that do

not serve the read operation are free to serve write operations waiting in the buffer.
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The proposed buffer must be able to be read and written in a random access manner

and in parallel by all the memory bank interfaces. Thus, it must be implemented with

registers. However, the length of the buffer for practical systems will be modest as

will be shown later on.

Basically, the buffer balances memory accesses. Balancing is targeted also with a

single shared buffer instead of dedicated buffers for each memory bank. If there

were dedicated buffers for memory banks, their length should match the maximum

requirements. However, the length of combined buffer is less than sum of dedicated

buffers. This is natural, since only one buffer could be filled at a time if dedicated

buffers were used.

The decoder produces memory accesses at a constant rate, two accesses per clock

cycle, i.e., one read and one write operation. On the contrary, the memory system

is capable of maximum throughput directly proportional to the number of banks.

In other words, the ability of the proposed method to perform without performance
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degradation is based on the asymmetric throughput rates and throughput capability

between the decoder side and memory bank side.

6.5.2 Operation with 3GPP Interleaving Pattern

For the 3GPP interleaving function [2], four memory banks are required. With

Lwin = 32, crw = 9, and Nbanks = 4 a buffer of 16 data and address pairs is suf-

ficient to avoid buffer overflows with all the 3GPP interleaving patterns with block

length, K = 2557, . . . , 5114. The buffer length requirement is verified with simula-

tion. If the code block is shorter than 2557, memory banks can always be organized

as dedicated read and write memories. In addition to the number of memory banks,

the required overflow free buffer length depends also on the distance between read

and write operations, 2Lwin + crw, but it is not directly proportional to the distance.

In other words, the required buffer length can be shorter or longer with some other

values of crw and the required minimum length must be searched with simulation.

In the end of a half iteration, there are no parallel read accesses but only write accesses

for the last samples and the utilization of the buffer cannot increase. If the buffer is

not emptied during this phase, extra clock cycles are spent to empty the buffer. The

experimented cases with 3GPP interleaving pattern and K = 2557, . . . , 5114 do not

require such extra cycles, i.e., the buffer is empty when the decoder issues the last

write operation. Since extra clock cycles are not required, there is no performance

degradation due to the buffering of conflicting accesses.

The area costs in terms of logic GEs is only 3.3 kGEs for the buffer and 0.5 kGEs for

one memory interface with fc=100 MHz clock frequency and 130 nm technology.

With four memory banks, four interfaces are required. The complexities of memory

interface and buffer are relatively low, since they do not require complex arithmetic

and the buffer length is short.

6.6 Discussion

The main benefit of the proposed structure with buffer is that it can be applied with

different interleaving functions by adjusting the buffer length and the number of

banks. The only requirement is that there is sufficient variation in the low-order
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bits to avoid too large buffer. The main drawback of the structure is that the buffer

must be implemented with registers which increases the power consumption.

The structures with six or four memory banks in Section 6.3 require only input or out-

put registers but they are targeted only for 3GPP interleaver. The structure with four

memory banks in Section 6.3 results in few access conflicts. The conflicts originate

from the pruned entries in the interleaving matrix. However, to provide new value

of π(j, K) on every clock cycle, the data path of the interleaving function generator

must be doubled due to the pruned entries [23]. Thus, if the data path is not doubled

and π(j, K) generation stalls in the presence of pruned entries, there will be single

access instead of dual access and conflicts could be avoided.

Methods in [47,108] solve conflicts with complex memory bank mapping and address

generation mechanism. However, their complexity limits their practical applicability.

Buffered accesses are presented in [20, 116, 117], but the ratio of memory banks to

the number of parallel accesses differs and the methods are targeted for systems con-

sisting of multiple parallel decoders. The proposed method relies on the asymmetric

throughput rates of turbo decoder side and memory subsystem side. As a second

difference there are dedicated buffers for each memory bank, which increases the to-

tal length of the buffers. The proposed structure applies single shared buffer which

decreases the number of registers.

6.7 3G LTE Interleaving Sequence Generation

In this Section, it is shown that an interleaving sequence generator for 3G LTE turbo

codes can be derived as a special case of polynomials modulo integer with linearly

incremented variable. As the main result, a systematic method for deriving hardware

structures for such computations is proposed. The method is derived by recursively

applying principles of simplifying modulo operations in a limited domain. With the

aid of the proposed method, efficient hardware structures can be derived for any poly-

nomials and significant savings can be obtained.

6.7.1 Previous Work

Pseudo random number generators are typically defined with the aid of modulo oper-

ation. If the value of the modulus is a power of two, hardware implementation of the
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modulo operation is trivial by excluding the higher bits. On the contrary, if modulus

is chosen more freely, a straightforward implementation of the modulo operation re-

sults in increased hardware complexity. Also software implementations slow down,

since the modulo and division operations are excluded from the instruction sets of

typical DSPs and software emulation [29] is required.

An implementation of 3G standard compliant interleaver is presented in [5]. Even

if the interleaver is more complex than in 3G LTE, the modulo operation dominates

the critical path. In [11], the division operation affects heavily on the area of the 3G

interleaver. A software implementation of 3G interleaver is presented in [95] and

the presented method avoids straightforward modulo operations. An implementa-

tion applying similar principles, i.e., avoiding straightforward modulo operation, as

proposed in this Thesis is also presented in [104]. Several studies present implemen-

tations of elementary operations modulo integer. For example, the multiplication is

considered in [9] and [39], square in [85], and addition/subtraction in [64]. Serial

computation of whole polynomials is considered in [71]. In this Thesis, the targeted

application has useful limitations, which are shown in Section 6.7.2, and due to the

limitations, too general implementations in [9, 39, 64, 71, 85] would be inefficient.

In this Thesis, the targeted number generators are polynomials modulo integer, which

are evaluated at consequent points with constant distances. On the contrary to soft-

ware implementation of a first degree polynomial in [95], a systematically derived

hardware is presented to arbitrary high degree polynomials. It is also shown that

incrementing variable by one is a special case of the more general constant step in-

crementation. To achieve low complexity or area costs of hardware implementation,

the proposed method does not apply multiplications nor general purpose modulo op-

erations. Instead, only addition/subtraction units, multiplexers, registers, and basic

logic gates are required. It is shown that the hardware structures can be derived sys-

tematically from a given polynomial. The number of elementary blocks in the derived

structure is directly proportional to the degree of the polynomial. The results show

that the reduction in the implementation complexity is significant when compared to

a straightforward implementation. The interleaving function of the 3G LTE telecom-

munication systems is used as an example case of the targeted number generators.
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6.7.2 Problem Definition

The targeted function has the form

y(j) = W (j) mod K, j ∈ {0, c, 2c, 3c . . . (N − 1)c} (64)

where W (j) is an nth degree polynomial

W (j) = wnjn + wn−1j
n−1 + wn−2j

n−2 + · · · + w1j + w0 (65)

and K and c are some positive integers. The application of the polynomial of the

targeted form as interleaving sequence generator is illustrated in Fig. 42.

Further derivation is simplified by considering a polynomial

P (i) = anin + an−1i
n−1 + an−2i

n−2 + · · · + a1i + a0 (66)

where ak = wkc
k, k ∈ {0, 1, 2, . . . n}. With this substitution W (j) = P (i) with

i = j/c. Thus, with the aid of substitution of the coefficients, further derivation can

be limited to polynomials where the variable i is incremented with the step size of

one. In other words, i gets values 0, 1, 2, . . . N − 1 in sequential order.

6.7.3 Modulo in Limited Domain

The computation of modulo operation

E(i) = ai mod K where i ∈ {0, 1, 2, . . . , N − 1} (67)

can be transformed to a form

E(i) = (E(i − 1) + a) mod K where i ∈ {1, 2, . . . , N − 1} . (68)
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The constant a can be substituted with a′ = a mod K to guarantee that 0 ≤ a′ < K.

With this substitution,

0 ≤ E(i − 1) + a′ < 2K − 1 and (69)

E(i) = (E(i − 1) + a′) mod K (70)

can be expressed as a selection between two alternatives,

E(i) =

{

E(i − 1) + a′ if E(i − 1) + a′ < K

E(i − 1) + a′ − K otherwise.
(71)

Computing (71) is far simpler than general modulo operation. This kind of practice

has been applied in [95] for software implementation of 3G standard conforming

interleaver, which requires only first degree polynomial.

In the following derivations, a limited domain modulo operation, xmod∗ K, is ap-

plied. It can be defined as

xmod∗ K =







x − K if x ≥ K

x + K if x < 0

x otherwise.

(72)

The domain of xmod∗ K covers the range −K ≤ x < 2K − 1, which includes also

a short range of negative values. In other words,

xmod∗ K = x mod K when − K ≤ x < 2K − 1 . (73)

Such a limited domain xmod∗ K operation can be implemented with a far simpler

hardware than the general x mod K.

6.7.4 Modulo of High-Degree Polynomials

A more general case of computing a modulo of a polynomial is more demanding due

to the higher order terms. For computing the modulo of a general polynomial, P (i),

i.e.,

P (i) mod K =

(
n∑

k=0

aki
k

)

mod K , (74)

the polynomial is presented as a sum of the value of polynomial with i − 1 and a

difference polynomial P(0)(i). More formally,

P (i) mod K = (P (i − 1) + P(0)(i)) mod K , (75)
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which can be presented as

P (i) mod K = (P (i − 1) mod K + P(0)(i) mod K)mod∗ K (76)

with xmod∗ K operation. However, (75) nor (76) cannot be computed with straight-

forward application of (70) and (71), since the difference polynomial

P(0)(i) mod K = (P (i) − P (i − 1)) mod K (77)

is not a constant, but a function of i. The differences, P(k)(i), are denoted with

subscripts in parentheses as they resemble slightly the derivatives of P (i) as will be

shown later on.

In principle, a simplified modulo of a polynomial is derived by recursively apply-

ing the (80). The procedure is repeated for the differences as long as the degree of

difference deg P(k)(i) > 0. The next two differences are

P(1)(i) mod K = (P(0)(i) − P(0)(i − 1)) mod K (78)

P(2)(i) mod K = (P(1)(i) − P(1)(i − 1)) mod K (79)

and in general

P(k−1)(i) mod K = (P(k−2)(i) − P(k−2)(i − 1)) mod K . (80)

In the end,

P(n)(i) = d mod K (81)

and the last polynomial has a constant value for all i.

The procedure terminates, since

deg P(k)(i) < deg P(k−1)(i) . (82)

This can be verified by considering the highest order term of P (i) − P (i − 1). The

highest order terms of the P (i) and P (i − 1) are anin and an(i − 1)n, respectively.

Again, the highest order term of (i−1)n is in, so the nth order term of the difference

is anin − anin = 0. A similar proof can be applied for each P(k)(i), k ∈ {1, . . . , n}.

Since the degree decreases on every step of the procedure, the difference resembles

slightly the derivative of a polynomial.
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As an example the procedure is shown for a third degree polynomial P (i) with con-

stant coefficients and K = 13. First, (80) is applied as follows,

P (i) mod 13 = (5i3 + 4i2 + 3i + 2) mod 13 (83)

P(0)(i) mod 13 = (P (i) − P (i − 1)) mod 13 (84)

= (15i2 − 7i + 4) mod 13 (85)

P(1)(i) mod 13 = (P(0)(i) − P(0)(i − 1)) mod 13 (86)

= (30i − 22) mod 13 (87)

P(2)(i) mod 13 = (P(1)(i) − P(1)(i − 1)) mod 13 (88)

= 30 mod 13 . (89)

It should be noted that the intermediate forms (83)–(89) are defined with the aid of

general modulo x mod K, instead of xmod∗ K.

The initial values for i = 0 are,

P (0) mod 13 = 2 mod 13 = 2 (90)

P(0)(0) mod 13 = 4 mod 13 = 4 (91)

P(1)(0) mod 13 =−22 mod 13 = 4 (92)

P(2)(0) mod 13 = 30 mod 13 = 4 (93)

If the coefficients of the polynomial are constants, the modulos in (90)–(93) can

be computed in advance and stored instead of polynomial coefficients. Otherwise,

their modulos can be computed iteratively during an initialization phase, which is

explained with a hardware example in Section 6.7.5.

Next, the values are derived for i = 1 by substitutions according to (76) except the

first constant terms in (94) and (101),

P(2)(1) mod 13 = 4 (94)

P(1)(1) mod 13 = (P(1)(0) mod 13 +

P(2)(1) mod 13)mod∗ 13 (95)

= (4 + 4)mod∗ 13 = 8 (96)

P(0)(1) mod 13 = (P(0)(0) mod 13 +

P(1)(1) mod 13)mod∗ 13 (97)

= (4 + 8)mod∗ 13 = 12 (98)
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P (1) mod 13 = (P (0) mod 13 +

P(0)(1) mod 13)mod∗ 13 (99)

= (2 + 12)mod∗ 13 = 1 (100)

and for i = 2 with

P(2)(2) mod 13 = 4 (101)

P(1)(2) mod 13 = (P(1)(1) mod 13 +

P(2)(2) mod 13)mod∗ 13 (102)

= (8 + 4)mod∗ 13 = 12 (103)

P(0)(2) mod 13 = (P(0)(1) mod 13 +

P(1)(2) mod 13)mod∗ 13 (104)

= (12 + 12)mod∗ 13 = 11 (105)

P (2) mod 13 = (P (1) mod 13 +

P(0)(2) mod 13)mod∗ 13 (106)

= (1 + 11)mod∗ 13 = 12 (107)

and so on for i = 3, 4, 5, . . . It can be noticed that in (94)–(107) computations of only

the simplified modulo operations, xmod∗ K, are required. The general modulos,

x mod K, in (94)–(107) have been computed in previous steps.

6.7.5 Hardware Implementations

A simple hardware structure for computing the modulo of a polynomial according

to the proposed principles can be derived systematically. In Fig. 43, such a structure

is shown for a general case. The basic building block of the hardware structure in

Fig. 43 is a computing element consisting of register, multiplexer, adder, and modulo

operator in the limited domain, i.e., xmod∗ K. The computing element is shown in

Fig. 44(a). According to the derived equations, the elements are repeated and their

inputs and outputs are connected to pass forward P(k)(i) for computing the P(k−1)(i)

with the next element as shown in Fig. 43.

Implementation of the proposed xmod∗ K operation has very low complexity. A unit

capable of computing xmod∗ K operation of (72) is shown in Fig. 44(b). The unit

consists of an AND gate, one addition or subtraction unit, and 2-input multiplexer.
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Fig. 43. A general structure for computing modulo of a polynomial with linearly incremented

variable. The structure consists of systematically repeated computing elements.

The comparison, x ≥ K, of (72) is carried out with the aid of subtraction operation.

The subtraction operation, x − K, is computed only if x is greater or equal to zero,

which is indicated by the MSB of the x. Otherwise, x is negative and the addition

operation, x + K, is computed.

The four different conditions, which affect selection of addition or subtraction and

selection of the multiplexer in Fig. 44(b), are tabulated in Table 11. If x < 0, the

output is always x+K. If x−K < 0, the multiplexer selects x, since x = x mod K

in that case. An optional output signal can be used to indicate this condition. The
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Fig. 44. Structures of: a) elementary block for structures computing the modulo of poly-

nomials, b) computing element for xmod∗ K, and c) elementary block capable of

computing x mod K iteratively. The dashed line denotes an optional output signal.
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Table 11. Modes of the addition/subtraction unit and the multiplexer of xmod∗ K computing

element.

Sign of Add / sub Sign of MUX x = x mod K

x add / sub selects indicator

x ≥ 0 sub x − K ≥ 0 x − K False

x ≥ 0 sub x − K < 0 x True

x < 0 add x + K ≥ 0 x + K False

x < 0 add x + K < 0 x + K False

signal is shown as a dashed line in Fig. 44(b). Basically, the signal tells that the input,

x, was already in the range of x mod K and the unit did not change the value.

The optional output signal can be used if the x exceeds the valid domain, i.e., x <

−K or x > 2K, and the unit is used iteratively by feeding back the last result until

the signal indicates that x = x mod K. In this case, the second last value would

be already correct but the last iteration is required to raise the indicating signal. If

the input, x, is always in the valid domain, the output is always correct and no itera-

tions are required. A structure capable of iterative computation of x mod K without

limitations on the domain of x is shown in Fig. 44(c). The extra input signal iterate

prevents addition operations to allow the current value to evolve to x mod K. The

ready signal indicates when the iterative computation can be stopped. The option for

iterative computation of x mod K is the main reason why the xmod∗ K operation

must be able to process also negative values of x. The intermediate values of the

structure in Fig. 43 remain non-negative with non-negative initialization.

6.7.6 Case Study on 3G LTE Interleaver

As a case study, the method is applied on the 3G LTE interleaver. In principle,

quadratic permutation polynomial interleaver [103] is used in 3G LTE. The inter-

leaver permutes bits according to the interleaving function, Π(i, K), which gives the

permuted index of the ith bit. The interleaving function is defined as

Π(i, K) = (f1(K)i + f2(K)i2) mod K (108)

where K can take 188 different values [3]. The minimum and maximum of the K

are 40 and 6114, respectively. The values of f1 and f2 are tabulated for each K
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in [3], i.e., they are read from the LUTs. The (108) is far simpler than the older 3GPP

interleaving function in Section 6.1.1.

In principle, the turbo decoder can use Π(i, K) with linear increments, i = 0, 1, 2 . . . , K−
1, as an address generator. However, internally the decoder applies also addressing

in reverse order as indicated by the sawtooth sequence B(i) in (59) and Fig. 34. This

practice can be solved by caching the accessed data with an additional buffer mem-

ory, i.e., only the main memories are accessed with the aid of Π(i, K) and the buffer

memory is used for accessing the data in reverse order.

According to the proposed principles, the interleaving function (108) can be ex-

pressed with polynomials,

Π(0)(i, K) mod K = (Π(i, K) − Π(i − 1, K)) mod K

= (2f2(K)i − f2(K) + f1(K)) mod K (109)

Π(1)(i, K) mod K = (Π(0)(i, K) − Π(0)(i − 1, K)) mod K

= 2f2(K) mod K

and the initial values with i = 0 are

Π(0, K) = 0 (110)

Π(0)(0, K) = (−f2(K) + f1(K)) mod K (111)

Π(1)(0, K) = 2f2(K) mod K . (112)

Instead of tabulating values of f1 and f2 in a LUT, pre-computed constant values

(−f2 + f1) mod K and 2f2 mod K can be stored without extra costs.

The Π(i, K) interleaver function is implemented with the computing elements pre-

sented in Section 6.7.5. The implementation is synthesized with 130 nm technology,

1.35 V voltage and the area is given in terms of logic GEs in Table 12. Only the

area of computing unit without any processor or other decoder implementation is

presented in Table 12. For comparison, a straightforward implementation can be

implemented with multiplier(s), adder, and x mod K unit(s). The number of units

depends on the parallelism of the implementation, i.e, whether the same unit is time-

multiplexed. Since the (108) is quite simple and there are several ways to organize

the computations, areas of elementary operations are tabulated in Table 12. As it

is possible to limit the word length of intermediate terms by applying more than one
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Table 12. Complexity in terms of logic kGEs of the proposed 3G LTE conforming interleav-

ing function unit and complexity of elementary operations for a straightforward

implementation.

Clock freq. (MHz) 100 150 200

Proposed structure (kGE) 0.963 1.402 2.326

13-bit adder (kGE) 0.064 0.064 0.064

13-bit multiplier (kGE) 0.848 0.911 1.083

13-bit div/mod unit (kGE) 3.191 N/A N/A

modulo operation, the word length of the elementary operations is 13 bits in Table 12.

On the last row, complexity of an off-the-shelf division and/or modulo component is

given. The component contains six pipeline stages but higher clock frequencies were

not achieved with prevailing operating conditions. The area estimates show clearly

that the complexity of any straightforward implementation would be manifold when

compared to the proposed structure.
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7. INVERSE SQUARE ROOT APPROXIMATION AND QR

DECOMPOSITION

Ever higher data rates require sophisticated transmission techniques. Such algorithms

apply matrix operations which require highly non-linear division by square root op-

eration. For example, for the current 3G UMTS the LMMSE estimation, in which

Cholesky decomposition can be applied, has been proposed [34]. In the upcoming

3G LTE systems, symbol detection methods like LSD can apply QR decomposition

of a matrix as shown in Fig. 2. In this Chapter, a scalable low-complexity inverse

square root approximation method is proposed for baseband matrix operations and

the method is applied in practice with a QR decomposition ASP.

7.1 Low-Complexity Inverse Square Root Approximation

In this Section, a method for approximating inverse square root is proposed. The

method relies on binary presentation of the fixed-point number system and the prin-

cipal idea of the method is to substitute the highly non-linear inverse square root

function with a more implementation appropriate function with appropriate pre- and

post-processing. The accuracy and complexity of the method can be adjusted with

one design parameter. As a result, the method can accelerate any fixed-point system

where cost efficiency and low power consumption are of high importance, and coarse

approximation of inverse square root operation is required.

7.1.1 Previous Work

There are several methods to compute the inverse square root function. One of the

basic approaches is to use LUTs for obtaining an initial value for iterations, which

refine the value to higher accuracy [63, 82]. The main differences among these kind
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of methods are in the size and content of the LUT and the used iteration algorithm.

In [82], a large multiplier is used since it is available in the targeted general purpose

processor. In [136], savings are obtained by using a m × n multiplier, m ≤ n, and

utilizing the fact that less significant bits of intermediate result do not contribute to

the accuracy of the final result. A software implementation using a LUT initialization

followed by iterations is presented in [118]. Another software approximation in [70]

relies heavily on the binary representation of floating-point numbers.

LUTs using low order polynomial approximation are applied in [55]. In [86], a sec-

ond degree minimax polynomial approximation is followed by modified Goldschmidt

iteration. Digit recurrence methods are proposed in [65,106]. The main disadvantage

of using digit recurrence when compared to iterative algorithms is their linear con-

vergence. Approximation based on a LUT followed by multiplication with operand

modification is proposed in [105, 107], and used also in [93]. Argument reduction

followed by series expansion is applied in [40]. Another approach is to work in loga-

rithmic domain [31, 46] where the computation of the inverse square root is straight-

forward [28, 44].

For shorter word lengths and for using fixed-point numbers, table addition methods

have been proposed. These methods consists of parallel LUTs and multi-operand ad-

ditions. As a benefit, no multipliers are required. In [102], a symmetric table addition

method (STAM) is developed as an extension to a simpler bipartite method. Selecting

appropriate multipartite method, i.e., design space exploration, is considered in [35].

The STAM enhanced with an error correction term and internal presentation in expo-

nent and mantissa form is used in [91].

When compared to the previously mentioned methods, the proposed method is not

a derivative of any of the existing methods. The area costs are kept low as large

LUTs and large multipliers are avoided. The method can be adjusted to work only

in subunitary domain, which is sufficient for e.g., Cholesky decomposition with ap-

propriate pre-scaling, and the accuracy of the method can be adjusted along with the

complexity up to a certain level while maintaining high area-efficiency.

7.1.2 Low-Complexity Approximation Method

As the baseband functions are applied in receivers of, e.g., hand-held telecommuni-

cations devices, low complexity is important for decreasing the area costs and power
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consumption. Therefore, fixed-point number system is preferred, i.e., limited accu-

racy is applied. Naturally, the quantization creates some noise. The noise can be

modeled as a sum of signal and a random variable [101]. In this Section, the targeted

fixed-point number system has a fractional word length (FWL) of 11 bits and integer

word length (IWL) of 5 bits, i.e., 16-bit words are assumed.

The main principle of the proposed method is to avoid straightforward approximation

of 1/
√

x function which is highly non-linear in subunitary domain 0 < x ≤ 1.

Instead, the more softly non-linear function 1/
√

c + u with c ≥ 1 and 0 < u ≤ 1

is approximated. The usage of 1/
√

c + u is justified by the following fixed-point

representations in two’s complement format of x, c, and u. If the positive subunitary

x has α leading zeros, c and u can be defined so that

x = 0.00 . . . 0
︸ ︷︷ ︸

α

cN−1cN−2 . . . c0uM−1uM−2 . . . u0 . (113)

In other words, the bits of c and u do not overlap and the word lengths of c and u

are denoted with N and M , respectively. Positive non-subunitary domain, x > 1,

is presented similarly, except that the number of leading zeros, α, can have negative

values. Since cN−1 = 1 for all valid values of x, the x can be presented with the aid

of shift by α, i.e.,

x × 2α = 1.cN−2 . . . c0uM−1uM−2 . . . u0 (114)

⇔ x = 2−α × 1.cN−2 . . . c0uM−1uM−2 . . . u0 . (115)

Thus, the desired form, c + u, is obtained and it can be noticed that u is a positive

subunitary number. The targeted function can be written as

1√
x

=
1

√

2−α(c + u)
= 2

α
2

1√
c + u

. (116)

Two cases can be distinguished depending on the value of α, which represents the

number of leading zeros of fixed point binary representation of x (113). This distinct

behavior is obtained because the remainder of α/2 in (116) can be either zero or one.

For even values α = 2k
1√
x

= 2k 1√
c + u

, (117)

and for odd values α = 2k + 1,

1√
x

= 2k
√

2
1√

c + u
. (118)
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In order to approximate (117) or (118), the expressions 1/
√

c + u must be consid-

ered. A tempting solution is to approximate 1/
√

c + u with binomial series. In prin-

ciple, the 1/
√

c + u could be approached with arbitrarily high precision, as the bino-

mial series converges. Multipliers are required if polynomial approximation [55, 86]

or series expansion [40] are applied. Although the approximation with binomial se-

ries has a solid basis, it does not lend itself to low-complexity implementations due

to the high order terms.

Linear Approximation

The characteristic of 1/
√

c + u are identified to determine a first degree polynomial

for a low-complexity hardware implementation. The expression 1/
√

c + u is approx-

imated with straight lines, i.e.,

1/
√

c + u ≃ at − bt(c + u) (119)

where at, bt > 0 and subscript t is an integer interpretation of the concatenation

cN−2 . . . c0α0. The number of approximating lines, i.e., the accuracy of the approx-

imation, depends on the word length of c. Since, the MSB of c has always constant

value, cN−1 = 1, the number of approximating lines is 2N .

The range of the targeted expression is 1 ≤ 1/
√

c + u ≤ 1/
√

2, since 1 ≤ c+u < 2.

The range of c is defined by the word length, N , i.e., 1 ≤ c ≤ 2(1−2−N ). Naturally,

the range of u depends on N and M , i.e., 0 ≤ u ≤ 2−(N−1) − 2−(M+N−1). In

practice, the approximating lines are formed by dividing the range of c + u into

evenly spaced regions, which are determined by the N MSBs of c. The values in

the start and end points are given by 1/
√

c and the value of the last end point is

1/
√

2. The linear approximation is illustrated in Fig. 45(a) where 1/
√

c + u, with

even α is approximated with N = 1, 2, 3. The error of approximation is shown in

Fig. 45(b). The figures indicate that by increasing the word length N , the accuracy

of the approximation can be adjusted conveniently.

For odd values α = 2k+1, the
√

2/
√

c + u is approximated in a similar fashion. The

lines used for even values, α = 2k, cannot be used without multiplication with
√

2

and, therefore, different approximating lines are preferred. To obtain the final result,

i.e., the approximation of 1/
√

x, the approximating straight lines in must be scaled
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Fig. 45. Linear approximation of 1/
√

c + u: a) approximating lines, b) approximation error

decreases as N is increased.

with 2k as shown in (117) and (118). The scaling can be carried out easily with shift

operation, whose direction depends on the sign of α.

Coefficients for Hardware Implementation

The linear approximation has the form at − bt(c+u), which includes multiplication.

However, for obtaining low complexity, the multiplications should be avoided. Braun

multiplier adds shifted values of the multiplicand multiplied with one bit of the mul-

tiplier. The principle of adding shifted values can be used to approximate the product

bt(c + u). Since bt ≤ 1/2, the product can be presented as

bt(c + u) = d1,t
c + u

21
+ d2,t

c + u

22
+ . . . + dM+N−1,t

c + u

2M+N−1
(120)

where di,t ∈ {−1, 0, 1}. As division with powers of two can be implemented with

hardwired shifting in hardware, an approximation of the previous form is suitable

for low-complexity implementation. Naturally, the accuracy depends on the number

of terms included in the sum. In the proposed method, at maximum three terms are

included, i.e., an approximation,

bt(c + u) ≃ d1,t
c + u

2e1,t
+ d2,t

c + u

2e2,t
+ d3,t

c + u

2e3,t
, (121)
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in which di,t ∈ {−1, 0, 1} and ei,t ∈ {1, . . . , 8}, are used. The coefficients di,t

and ei,t are searched for each approximating line, i.e., for each c and α0, separately.

Instead of three shifters with freely variable shift count, three multiplexers can be

used.

7.1.3 Inverse Square Root Unit Implementations

The block diagrams of the hardware implementations of the inverse square root units

are shown in Fig. 46. The Fig. 46(a) shows only the linear approximation at −
bt(c + u). The top three multiplexers correspond with term bt(c + u) and the fourth

multiplexer outputs at. The selections of multiplexer are controlled by parity of α

and bits of c excluding the cN−1 which has constant value.

In the next block diagram in Fig. 46(b), the previous unit is instantiated in the inverse

square root unit. The domain of the unit in Fig. 46(b) is positive subunitary, i.e.,

0 < x ≤ 1, which is sufficient for e.g., the Cholesky decomposition. The structure

is further extended in Fig. 46(c) to allow free domain, i.e., x > 0. Basically, non-

subunitary domain of x results also in negative values of α and, therefore, both left

and right shifting is required as indicated in Fig. 46(c). As the input signal x has

wider word length in Fig. 46(c), the negative α is detected by comparing the number

of leading zeros and IWL.

Only basic arithmetic and logic units are being used. The key components are prior-

ity encoder, adders, multiplexers, and shifters. Part of the functionality, e.g., constant

scaling, is implemented by hardwiring bits to the new positions. Due to the scaling,

word lengths of intermediate signals are relatively short. As the targeted accuracy

depends on N , different implementations can be generated according to targeted ap-

plication. Fig. 46(a) shows a general case, i.e., the number of inputs of multiplexers

and N are free variables. In Figs. 46(b) and (c) N = 1 and, therefore, multiplexers

are controlled solely by α0. If N > 1, the c is obtained from the output of the first

shifter(s) and the control signal is generated by concatenation of cN−2 . . . c0 and α0.

Only the structure of linear approximation depends on N , the other components in

Figs. 46(b) and (c) remain unaltered if N is increased.
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Table 13. Estimated area of basic units and LUTs in compared implementations.

unit operands GE

inverter 1 0.75

XOR 1 × 1 2.25

full adder 1 × 1 × 1 6.50

adder 8 × 6 34.8

adder 19 × 10 76.50

adder 20 × 9 78.8

multiplier 7 × 7 247

multiplier 20 × 20 2050

multiplier 22 × 23 2540

multiplier 16 × 56 4250

multiplier 56 × 56 14700

multiplier 76 × 76 26600

LUT size GE

108 × 16 489

29 × 6 506

216 × 8 594

29 × 8 670

29 × 10 872

27 × 36 944

29 × 19 2260

821 × 22 3720

210 × 23 4740

210 × 25 5070

211 × 23 9330

7.1.4 Comparison

In this Section, the efficiency of the proposed method is compared. The proposed

method is synthesized with 130 nm technology. The areas of other methods are esti-

mated by considering their most area expensive components, such as multipliers and

LUTs, unless more accurate details are clearly specified in the referred design. Only

the mantissa of floating-point implementations is considered, since its computation

is similar in fixed-point number system.

Areas in terms of logic GEs of the synthesized arithmetic and logic operations with

different word lengths are given in Table 13. On the contrary to simple cost estimation

of LUTs in [86], the areas of all LUTs have been estimated individually. If structures

of LUTs are not specified in detail, fair assumptions are made for the referred works.

The synthesized LUTs are filled with pseudo random bits. The main reason for more

accurate modeling of LUT complexity is that the area of the LUT depends both on

the address line width and word length of the data. Estimated areas of all the LUTs

are given in Table 13.
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Table 14. Suggestive comparison of inverse square root methods.

method FWL of result area (kGE) FWL / area

[82] 52 40.67 1.28

[136] 52 38.04 1.37

[86] 52 32.7 1.59

[105] 23 7.12 3.23

[102] 16 4.60 3.48

[40] 23 4.38 5.25

[91] 16 1.6 9.99

Proposed N = 1 4 0.41 9.86

Proposed N = 2 6 0.44 13.8

Proposed N = 3 8 0.51 15.6

Proposed N = 4 10 0.62 16.1

Compared Implementations

Since low area is emphasized in the targeted application domain of baseband pro-

cessing, the methods are compared using the area-efficiency as the ratio of average

FWL versus area. The metric is defined as

area-efficiency = 103 FWL

area in GEs
. (122)

For single precision (SP) methods the accuracy is 23 bits and for dual precision (DP)

methods 52 bits. The area-efficiency results for all the methods are shown in Ta-

ble 14. The average accuracy of the proposed method in Table 14 is obtained in the

subunitary domain. There are four versions of the proposed method with design pa-

rameter N = 1, 2, 3, 4. The results show that the proposed method has lowest area

and even if the accuracy is adjusted with N , the area-efficiency remains highest ex-

cept with N = 1. Naturally, the accuracy is relatively modest, as the lowest area is

preferred instead of high accuracy.

The first method in Table 14 is targeted to DP general purpose processor [82]. It

requires LUTs of sizes 210 × 23 and 211 × 23 and a multiplier for 76× 76 operands.

Since the implementation is targeted to a general purpose processor, the hardware

resources are not dedicated only to the inverse square root function. In [136], two

16×56 and one 56×56 multipliers are required. The total memory size is 72192 bits

divided into four tables. For smaller gate count, a uniform division to four tables of
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18048 bits with 22-bit word length, which is the widest word fetched from the tables,

is assumed. High speed is emphasized in [86] and the method with single multiply

and accumulate unit is compared, as it has better area-efficiency. The authors also

report the complexity of 5030 full adders and, therefore, their value is used. In [105],

SP floating-point numbers are targeted. A 210 × 25 LUT is required and a 20 × 20

multiplier. In addition, a requirement of 15 inverters is reported. The STAM is used

in [102]. The smallest total LUT size is obtained with four LUTs of sizes 29 × 19,

28 × 10, 28 × 8, and 28 × 6. In addition, a sum of all the data read from LUTs must

be generated, which requires adders with operand sizes 19 × 10, 8 × 6, and 20 × 9.

Also a requirement of 45 XOR gates is reported. Both SP and DP are targeted in [40]

but the method for SP gives better area-efficiency. The SP method requires 27 × 36

LUT, four 4×4 multipliers, and one 22×23 multiplier. Fixed-point number systems

are targeted in [91]. The method applied STAM enhanced with added correction

value. Estimated complexity of 625 GEs and LUT size of 3456 bits are given in [91].

Since the structures of LUTs are not reported, it is assumed that, due to the STAM,

the memory is divided at least to two LUTs. Also a 16-bit word length is assumed

for the LUTs. Several smaller LUTs or shorter word length would degrade the area-

efficiency. The estimated complexity of LUTs is added to the reported gate count.

Power Consumption

The power consumption of the largest proposed unit (N = 4) with 100 MHz and

1.35 V voltage is 0.339 mW, which includes the power required by input and out-

put registers. Naturally, the static power consumption is proportional to the area and,

therefore, low complexity has been targeted. The dynamic power is proportional both

to the area and average switching activity of the gates. Even if the average switching

activity of competitive methods cannot be estimated sufficiently accurately, the dif-

ferences in the area are significant. For example, [91] has the smallest area, 1602 GE,

of the referred methods and the average switching activity of [91] should get as low

as 622/1602 × 100% = 39% of the average switching activity of largest proposed

unit (622 GE, N = 4) to achieve roughly the same dynamic power consumption.
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7.2 QR Decomposition

The QR decomposition is one vital function of the MIMO receiver. In this Section,

a processor based complex-valued QR decomposition is presented. The matrix is de-

composed according to the modified Gram-Schmidt process [42] and the processor

is enhanced with complex arithmetic SFUs and an inverse square root approxima-

tion SFU, which applies the principles presented in previous Section. The proposed

processor fits well with the throughput requirements of a MIMO–OFDM receiver.

7.2.1 Previous Work

There are several ways to obtain QR decomposition. It can be computed, e.g, us-

ing Householder transformations, Givens rotations, or Gram-Schmidt process. The

inherent regularity of matrix operations can be utilized with systolic structures [62].

Elementary operations can be alleviated with a coordinate rotation digital computer

(CORDIC) algorithm [13] which lends itself to low-complexity hardware realization.

Such an approach is followed, e.g., in [10,69,72]. Another way to alleviate hardware

complexity is to carry out computations in logarithmic domain. This practice is used

in [99].

The MIMO receiver requires relatively small matrix size and low throughput for QR

decomposition. Therefore, extensively parallel solutions like systolic array proces-

sors in [62, 72] or processor arrays with reduced dimensions [69] can be oversized

for such systems. However, even if the throughput were oversized, the short delay

obtained with such processors, can be beneficial.

In [37], a complex-valued matrix inversion based on QR decomposition is presented.

The method uses squared Givens rotations. Instead of traditionally triangular array

of processing elements, a linear array structure is used. Inverting a complex-valued

4× 4 matrix takes 175 cycles. As a drawback, such an array processor is not flexibly

programmable like ASPs. In [69], a floating-point real-valued programmable ASP

for QR and singular-value decomposition is presented. The ASP contains CORDIC

module and ASPs can be structured as an array for high throughput. The ASPs are

programmable, but the structure resembles array processors as the processing ele-

ments are substituted with the presented ASPs. A structure with Nios processor and

CORDIC accelerator in FPGA is presented in [10]. The CORDIC elements are used
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for QR decomposition and the following back substitution for solving a set of equa-

tions is computed on Nios processor. As a drawback, the accelerating CORDIC el-

ements are not tightly connected to the data path. Instead, the CORDIC accelerator

and Nios processor communicate via memory. Computations in log2 domain are ap-

plied in [99]. The parallel architecture for 4 × 4 matrix inversion with the aid of QR

decomposition takes 72 kGEs and achieves a latency of 0.24 µs.

Typically, floating-point presentation is avoided to save area and power in baseband

processing. With fixed-point number system the IWL and FWL must be chosen

appropriately to avoid overflows and to maintain desired accuracy. An error analysis

of fixed-point implementation of QR decomposition with Gram-Schmidt process is

presented in [98].

In this Thesis, the ASP implementation of the QR decomposition targets low com-

plexity, flexibility, and programmability as the main objectives. As all the acceler-

ating SFUs reside on the datapath of the processor, they can be used without extra

overhead. The flexibility is a consequence of the programmability and arithmetic

SFUs, which can be used also for other computations. The simple approximation

method of the 1/
√

x contributes to the low-complexity.

7.2.2 Modified Gram-Schmidt QR Decomposition

In this Thesis, the modified Gram-Schmidt algorithm [42] is used for the proposed

QR decomposition. The modified Gram-Schmidt algorithm has better numerical

properties than the classical Gram-Schmidt algorithm. As high throughput as achiev-

able with systolic array processors or decomposition level pipelining using Givens

rotations is not targeted. Instead, by using modified Gram-Schmidt algorithm the

ASP can be composed of a set of FUs or SFUs, which could be used easily also

with other applications, in principle. Basically, the algorithm orthogonalizes a set of

vectors. QR factorization with modified Gram-Schmidt algorithm is shown in Fig.

47 for square matrix Hn×n. It decomposes Hn×n to the orthogonal Qn×n and up-

per triangular Rn×n. Conjugated transpose is denoted with (·)H . The lines 2 and 3

show that division by square root is required as the elements are divided by diagonals

which are norms, ‖ · ‖. The division can be substituted with multiplication by inverse

square root.
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1 for k = 1 : n
2 Rk,k = ‖H1:n,k‖
3 Q1:n,k = H1:n,k/Rk,k

4 for j = k + 1 : n
5 Rk,j = QH

1:n,kH1:n,j

6 H1:n,j = H1:n,j− Q1:n,kRk,j

7 end

8 end

Fig. 47. Modified Gram-Schmidt algorithm decomposes Hn×n to the orthogonal Qn×n and

upper triangular Rn×n. Conjugated transpose is denoted with (·)H .

7.2.3 Application-Specific Processor for QR Decomposition

The proposed QR decomposition is implemented on a TTA processor [32]. How-

ever, the presented principles can also be applied on other customizable processors.

The organization of the proposed TTA processor is shown in Fig. 48. There are two

dedicated units for complex-valued arithmetic in the processor. The applied practice

of using complex numbers as the native data type accelerates computations and sim-

plifies programming significantly. In practice, the complex numbers are presented

as 32-bit words where real and imaginary parts use upper and lower 16 bits, re-

spectively. The SFUs extract real and imaginary parts when necessary and compose

complex numbers, so all the data passed between the computing resources has always

the same representation. Extracting real and imaginary parts or composing complex

numbers is very simple in hardware, i.e., hardwiring bits to the new positions in the

target signal.

The complex multiplier SFU of the processor supports two operations; it can com-

pute the complex-valued multiplication and complex-valued multiplication with con-

jugated multiplicand. The modified Gram-Schmidt algorithm in Fig. 47 requires con-

jugated multiplication for computing the vector norm and for conjugated dot product.

The second complex-valued arithmetic SFU supports complex addition and subtrac-

tion operations. The modified Gram-Schmidt algorithm requires division with the

(real-valued) norm ‖ · ‖. However, the multiplication is simpler operation in hard-

ware than division. For this reason, the division is substituted with multiplication

with an inverse value, i.e., inverse of Euclidean norm. Thus, it is inverse of the

square root. With this substitution two demanding operations, division and square

root, are replaced with computation of the inverse square root function, 1/
√

x, and

multiplication. Naturally, also 1/
√

x is very demanding function but the low com-
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 CMUL

[CONJ.]

CADDSUB LOAD-

STORE A

1/SQRT LOAD-

STORE B

REGISTER

FILE 5 x 32

CONTROL

Fig. 48. Proposed TTA processor for QR decomposition has LSUs, RF, SFU for the approxi-

mation of 1/
√

x, and SFUs for complex-valued addition, subtraction, and optionally

conjugated multiplication. Filled circles denote connections to buses.

plexity approximation principles presented in the Section 7.1 are used. The approx-

imation of 1/
√

x can be used also for
√

x function with one multiplication, since

x 1√
x

= xx− 1

2 = x
1

2 =
√

x.

7.2.4 Throughput and Complexity

The spectrum of an OFDM signal consists of several subcarriers and the channel ma-

trix R must be computed for all the subcarriers at least within coherence time, tcoh,

defined in (5). With fcarrier = 2.4 GHz, vr = 250 km/h, and c = 3 × 108 m/s the

coherence time tcoh = 1.8 ms. The proposed QR decomposition processor is synthe-

sized on 130 nm standard cell technology for obtaining complexity and performance

estimates. The proposed QR decomposition of complex-valued 4 × 4 matrix takes

139 clock cycles. So, the decompositions with, e.g., 2048 subcarriers takes

TQR = (2048 × 139)/fc (123)

where fc is the clock frequency. The execution times for several clock frequencies

with 2048 subcarriers are tabulated in the Table 15. The execution time should be

compared to the available time frame of 1.8 ms. Naturally, some computing time

should be reserved for higher level control flow and polling for a new input matrix,

H , in real application.
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Table 15. Area of the proposed processor and execution time of 2048 QR decompositions.

Clock frequency Area Execution time TQR

269 MHz 23.2 kGEs 1.058 ms

212 MHz 17.7 kGEs 1.343 ms

160 MHz 16.3 kGEs 1.779 ms
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8. LIST PROCESSING FOR SYMBOL DETECTION

MIMO techniques can be used to enable high-rate wireless communication [83].

However, to exploit additional gain of MIMO transmission efficient symbol detec-

tion like LSD [50] is required. The LSD algorithm requires maintaining a list of

candidate symbols with shortest PEDs to the received symbol and the list processing

is likely to be the bottleneck of the LSD and, therefore, there is a strong demand for

efficient list processing implementations. For energy efficiency, memory-based list is

preferred over registers with long list lengths. On the other hand, with short lists, a

register based list processing can be a preferred solution for its rapid processing. In

this Chapter, SFUs for alleviating both memory and register based list processing are

presented.

8.1 List Processing in List Sphere Decoding

The purpose of LSD is to find the transmitted multidimensional symbol vector with-

out trying every alternative systematically. The LSD computes PEDs by step-wise

increasing the dimensionality of the current candidate and it maintains a list of the

best candidates which are found so far. The elements of the list contain the distance

to the received symbol and the symbol identifier. When a new PED is computed, it

is compared with the maximum distance in the list. If the new candidate has shorter

distance, the element with the maximum distance is replaced with the new one. More

formally, if all the candidates are denoted with A and L presents a list of n elements,

then the maximum element of L is less or equal to the minimum of A from which

elements of L are excluded, i.e.,

maxL ≤ min(A \ L), |L| = n (124)

where maximum, minimum, and comparison consider the distance information of the

elements.
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If the LSD computes distances and manages the list in a pipelined fashion, then the

slower task will determine the throughput of the pipeline. Since the list update pro-

cess is difficult to parallelize, it is usually the bottleneck, which limits the decoding

throughput. In this case, the throughput of the LSD is directly proportional to the

throughput of the list updating.

8.2 Memory-Based List Updating for List Sphere Decoders

An obvious solution for fast list updating is a register-based approach where the

whole list can be processed in parallel. Even if the complexity of the register-based

approach can be reduced [138], it still has high energy consumption. Memories con-

sume less energy and, therefore, they allow long list lengths. As a drawback, the list

cannot be processed in fully parallel manner. Using the heap data structure for list

updating has been suggested in LSD decoder studies [131, 132] earlier. An off-the-

shelf DSP using the heap data structure is applied for LSD in [56] where long la-

tency memory accesses were considered as drawbacks. The heap is a natural choice

with long list lengths, since the insertion has logarithmic computational complexity,

O(log2 n). However, actual implementations of fast heap insertion routines have not

been discussed in detail in the previous studies.

In this Section, two SFUs for the memory based list insertion methods are proposed

and they are demonstrated with a highly parallel processor template. The list insertion

is divided both into hardware unit and software routine. The two units differ in the

performance and hardware requirements. The faster method applies principles of

software pipelining, even if the list insertion is inherently data dependent operation.

It is shown that the list can be maintained with very low computational overhead

compared to the O(log2 n) order of the algorithm. Thus, the proposed methods and

SFUs can be used to accelerate any memory-based LSDs with a long list length.

8.2.1 List Updating with Heap Data Structure

Throughout this Chapter, it is assumed that both the distance and symbol identifier

are packed to the same data word, i.e., the element of the list. When any comparisons

between elements are made, the distances are compared. When elements are loaded,



8.2. Memory-Based List Updating for List Sphere Decoders 117

7 10 8 4 9 381 10 420 11 76 12 32 13 210 14 249

3 411 4 590 5 81 6 257

1 676 2 519

7120

Fig. 49. An example of heap data structure. Addresses are marked in square boxes and data

in rounded boxes.

stored, or swapped, both the distance and symbol information are carried in the same

data word.

Updating a sorted list is straightforward. In that case, the maximum element of the

sorted list can be obtained easily and the new candidate element can be compared

with the maximum element. As a drawback, sorting either as a separate step or with

insertion sort are complex procedures requiring several clock cycles and accesses of

list elements. If the list is not sorted, the maximum element must be searched some-

how. Again, simple brute force search would require several clock cycles and several

memory accesses. However, time consuming sorting and search can be avoided if

the applied data structure alleviates fast look-up of the maximum element and if the

insertion of a new element is simpler than insertion sort. The heap data structure

possesses these features. The maximum element is always in a known position, i.e.,

the root of the heap, and insertion routine can be accelerated with low complexity

hardware unit as will be shown in Section 8.2.2.

Heap Condition

An example of a heap is shown in Fig. 49. The data is organized in binary tree so that

each non-root node, d, satisfies the heap condition,

val(parent(d)) ≥ val(d) (125)

where the parent and value of the node are denoted with parent() and val(), respec-

tively. Thus, as long as the heap condition (125) is valid, the root node will contain

the node with the maximum value. The data structure does not consider whether the

left or right child node has respectively greater value. The example heap in Fig. 49

shows also that data cannot be extracted in sorted order straightforwardly from the
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heap, i.e., maintaining the heap condition (125) does not automatically sort inserted

elements.

Data Organization in Memory

The data organization in memory is also showed in Fig. 49 where the addresses of

nodes are marked in square boxes. It can be noticed that for each non-leaf node

at address, a, the addresses of its left and right children are 2a + 1 and 2a + 2,

respectively. The low complexity addressing is vital for fast list insertion routine. If

nodes contained links to other nodes, the delay of addressing would be manifold due

to the additional memory accesses.

Insertion

Insertion to a full heap is carried out as follows:

1. If val(candidate) < val(root), current root is replaced with candidate and

it will become the current parent node. Otherwise heap remains untouched.

2. If current parent node is smaller than any of its children nodes, the parent node

is swapped with maximum of its children nodes. The swapped child node will

become the new parent node, for which the same procedure is repeated.

Naturally, the process is terminated also when the leaf stage of the tree is reached.

Avoiding Partially Filled List

If the heap is not full, the insertion routine begins from the leaf stage and proceeds

up to the root by swapping nodes until the heap condition (125) is not violated. This

would need an additional step to decide which insertion routine is used. However,

such an approach is not efficient. Another way is to fill the heap with maximum

values, so that the heap is always full and there will be only one insertion routine.

With list length n, filling the heap takes n clock cycles with single-port memory. The

insertion routine takes f(n) cycles per insert. The routine is run a total of kn times.
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So, the number of clock cycles with separate filling routine would be

Cfill = knf(n) + n (126)

= n(kf(n) + 1) . (127)

If there are two insertion routines and the decision of choosing the right routine and

jump latency take b clock cycles, the total execution time will be

Cbranch = kn(f(n) + b) (128)

= n(kf(n) + kb) (129)

clock cycles. Typically, kb > 1, so it is more efficient to fill the heap as a separate

step and to have only one type of insertion routine. With dual-port memory or parallel

accessible memory modules, the initial filling takes even less than n clock cycles.

8.2.2 List Updating Special Function Units

Two alternative list updating units are proposed. The main differences are in the

memory throughput requirements and the number of clock cycles per insertion.

List Updating SFU for Non-Pipelined Execution

The first list updating unit is used without applying principles of software pipelining.

The proposed unit is applied in practice in the K-best LSD TTA processor presented

in [14]. The computation proceeds iteratively by alternating load operations and

simultaneous computation of new load addresses and store operations. The decision

whether to choose the left or right branch is based on the loaded nodes. Thereafter,

new children nodes can be loaded again. So, there is a dependency between load

addresses and data loaded previously.

Input and output ports of the proposed list updating SFU are shown in Fig. 50(a).

Clarifying naming is used to indicate purposes of ports in Fig. 50(a). The unit pro-

cesses a node triple of parent, and two children at once as indicated by the input ports.

On every invocation, the SFU generates operands for LSUs as indicated by the output

ports. The SFU is used as follows:



120 8. List Processing for Symbol Detection

a)

store data 2

continue

SFUA

new parent addr

new left addr

new right addr

store data 1

parent addr
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left

right

b)

continue

store data 2

SFUB

load addr a

load addr c

load addr d

store data 1

load addr b

new parent addrparent addr

parent

left

right

direction

Fig. 50. List updating SFUs for: a) non-pipelined execution, b) software pipelined execution.

1. The candidate item is given in a register. Also a copy of the current root ele-

ment is held in a register for fast access. Therefore, the first stage of the heap

is processed as a special case. The SFU is used to compute the minimum of

the root and candidate nodes. The result will overwrite the root node. In other

words, in the first step it is checked if the candidate can be inserted to the heap

at all. On the same clock cycle, the left and right children nodes are loaded.

2. On the second clock cycle the root node is the current parent node. The left

and right nodes, the (new) parent node, and the address of the parent are fed

to the unit. The addresses of the next left and right nodes are computed. The

unit chooses from the left and right the next parent node, whose address is

outputted. The unit also outputs data which will overwrite the current parent

node data and data which will overwrite the data on the next parent node. In

this way the current parent and one of its children can be swapped in memory.

3. On the third clock cycle, data is loaded according to the addresses generated on

the previous cycle. Since data is not available on this cycle, there is no further

processing.

4. On the fourth clock cycle, the computation continues as on the second clock

cycle. In addition, the data generated two clock cycles ago is written to the

memory on the current cycle.

5. Thereafter, the computation continues as on the previous two cycles until the

last stage is reached. After the last stage, there are no load operations but the

data is written to the memory immediately after the last stage.
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procedure nonPipelined(parent, left,

right, parentAddr)

if parent ≤ left ∧ left > right then

storeData1 := left

storeData2 := parent

newParentAddr := 2 × parentAddr + 1

continue := True

elsif parent ≤ right ∧ right ≥ left then

storeData1 := right

storeData2 := parent

newParentAddr := 2 × parentAddr + 2

continue := True

else

storeData1 := parent

storeData2 := left

newParentAddr := 2 × parentAddr + 1

continue := False

end

rightAddr := 2 × newParentAddr + 1

leftAddr := 2 × newParentAddr + 2

end

procedure swPipelined(parent, left,

right, parentAddr)

if parent ≤ left ∧ left > right then

storeData1 := left

storeData2 := parent

newParentAddr := 2 × parentAddr + 1

direction := toLeft

continue := True

elsif parent ≤ right ∧ right ≥ left then

storeData1 := right

storeData2 := parent

newParentAddr := 2 × parentAddr + 2

direction := toRight

continue := True

else

storeData1 := parent

storeData2 := left

newParentAddr := 2 × parentAddr + 1

direction := toLeft

continue := False

end

loadAddrA := 4 × newParentAddr + 3

loadAddrB := 4 × newParentAddr + 4

loadAddrC := 4 × newParentAddr + 5

loadAddrD := 4 × newParentAddr + 6

end

a) b)

Fig. 51. Functional description of SFUs for: a) non-pipelined execution, b) software

pipelined execution.

There is a status bit continue as an output port in Fig. 50(a). On every cycle, the

status bit of the SFU indicates whether the processing should be continued or stopped.

Because the jump latency is typically several clock cycles, the processing cannot be

stopped immediately. However, the proposed SFU preserves the valid heap structure

even if the processing should have been stopped. During the clock cycles that have

to be waited until the jump is really executed, no nodes are swapped but the values

are only rewritten to their original locations.

The functionality of the SFU is described in detail in Fig. 51(a). Only three com-

parators are required for hardware implementation. On the first clock cycle of the

list insertion the minimum of two positive numbers is required. The description in

Fig. 51(a) shows that it can be computed if operands are fed to the parent and left

input ports and the right input port is set to zero.
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LDs LDs LDs LDs ... LDs

SFU SFU SFU SFU ... SFU

STs STs STs STs ... STs
- time

parallel
units

Fig. 52. In software pipelined version all the participating units, the SFU and LSUs with

load (LD) and store (ST) operations run in parallel.

List Updating SFU for Software Pipelined Execution

The second proposed unit can be used in software pipelined way. With software

pipelining all the participating units run in parallel during the computation kernel.

In this case, computations with the SFU and loading and storing of data are run in

parallel, which is exemplified in Fig. 52.

The inherent data dependency between load addresses and previously loaded data

makes software pipelining demanding. Even if the SFU cannot generate exactly two

valid load addresses due to the data dependency, it is possible to generate a set of

four addresses, which includes the required two addresses. Fig. 53 exemplifies this

practice. In Fig. 53 it is not known should the pair (11,12) or (13,14) be loaded. For

this reason, both pairs are loaded. On the next clock cycle, it is known which pair is

selected and the next set of four nodes is loaded again. The selected pair of nodes is

fed to the SFU with guarded parallel instructions, so the conditional execution will

not take extra clock cycles. In other words, the software pipelined execution is made

possible by prefetching four words from the memory on every clock cycle as the

heap is traversed. Only the first stage is a special case as there are only two children

65

1211 13 14

2

At the same clock cycle,

right branch is unknown.

1

Process current parent, left, and right nodes.0

start loading all the four descendants,
even if the selection between left and

Fig. 53. Prefetching loads four descendants, from which only two will be selected. Selection

decision will be available at the next clock cycle.
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nodes to be fetched. The input and output ports of the SFU are shown in Fig. 50(b).

The direction output indicates which branch was selected and it determines which

pair of the two prefetched pairs will be processed next. The functional description

in Fig. 51(b) shows that the fundamental operations are almost similar to the non-

pipelined version. The main difference is generating addresses one clock cycle ahead

of processing.

8.2.3 Resource Requirements and Performance

Both list updating methods can be characterized by resource requirements and the

worst case throughput. In principle, the proposed units can be used in pure hardware

implementations or as SFUs of any customizable processor with sufficient parallelism

and memory interfaces. In this Thesis, the list processing with the SFUs is experi-

mented with TTA [32] processors.

Requirements of Processors Applying the SFUs

The Figs. 54(a) and (b) show structures of TTA processors capable of applying the

SFUs. The number of buses in the processor equals to the required number of parallel

data transports to use the SFUs. The software part issuing the data transports is an

assembly routine, which basically loads and stores data according to the results of the

SFU. The next main difference is the number of required LSUs. The SFU for non-

pipelined execution requires 11 parallel data transports and two LSUs and the SFU

for software pipelined execution requires 16 parallel data transports and six LSUs.

The SFU for non-pipelined execution requires dual-port memory. The Figs. 53 and 49

show that regardless of the selected branch, the SFU for software pipelined execution

loads simultaneously descendant nodes whose addresses have the form a, a + 1, a +

2, a + 3. Thus, the memory can be divided into four banks of dual-port memory with

low-order interleaving bank selection function. Usage of the proposed SFUs requires

also that the read cycle time of the memories is one clock cycle. Since the total

memory size equals to the list length, the costs of memory do not grow excessively.

If the memory has higher latency, the prefetching should be extended to cover more

heap stages. As a drawback, such a practice would suffer from a more demanding

parallel access pattern. Typically, widely used DSPs are able to fetch even three
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Fig. 54. TTA processors which are capable of exploiting the proposed SFUs: a) processor

for non-pipelined processing, b) processor for software pipelined processing. The

memory is accessed with LSUs. Filled circles denote connections with buses.

16-bit operands [114] and high-end DSPs [112] can fetch even four 32-bit words in

parallel. However, the latency of the memories in typical DSPs can be high, since the

memories are larger and they are not designed particularly for LSD algorithms.

Latency of List Insertion

Computational complexity of insertion to a heap is of order O(log2 n) for binary

tree-shaped heaps. Since the main term of the number of clock cycles will have the

log2 form in any case, lower order terms and constant coefficient of logarithm term

characterize how efficiently the list is processed. In the following, the worst case

execution time is analyzed.
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Fig. 55. Comparison of list processing methods: a) throughput, b) area-efficiency as through-

put / area of SFUs and accompanying LSUs.

It is assumed that the number of elements in the heap is n = 2m−1 and all the leaves

have the same depth. The list insertion routine without software pipelining takes

Cnon-pipelined = 2 log2(n + 1) − 1 (130)

cycles per insertion with one clock cycle read cycle time of the list memory. Thus,

one stage of the heap introduces always a delay of 2 clock cycles. The constant

term, −1, originates from the computation of the root stage, which can be computed

immediately, since a copy of the root node is cached in a register. Also processing of

the last stage is a special case as there are only store operations.

The software pipelined insertion routine takes

CSW -pipelined = log2(n + 1) + 1 (131)

cycles with one clock cycle read cycle time of the list memory. With this routine, one

stage is processed in one clock cycle. The additional constant term, +1, originates

from the last instruction, which writes the nodes of the last swap operation to the

memory.

Discussion

The SFUs and accompanying LSUs are synthesized with 130 nm technology with

100 MHz clock frequency. Naturally, the software pipelined execution has better
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throughput than without pipelining. The throughput of the SFUs is illustrated in

Fig. 55(a) as a function of the list length. The SFUs for non-pipelined and pipelined

execution take 1822 and 2007 GEs, respectively. So, the difference between the

areas of plain SFUs is low if the accompanied LSUs are not taken into account.

The area-efficiency of the units can be defined as throughput / area of the SFUs and

accompanying LSUs. The applied LSU consists mainly of registers and minor control

logic and it takes 570 GEs with the same operating conditions. The ratio between the

areas of SFUs with LSUs is (1822 + 2 × 570)/(2007 + 6 × 570) = 0.546 but, on

the other hand, also CSW -pipelined/Cnon-pipelined > 0.5 due to the constant terms

−1 and +1 in (130) and (131). The area-efficiency is illustrated in Fig. 55(b). The

curves intersect with unpractical list length 217 − 1. Thus, the SFU for software

pipelined execution is not as area-efficient as the SFU for non-pipelined execution

but the difference in area-efficiency is relatively low.

The main target in the designing of the SFUs and assembly routines was to minimize

the constant and coefficient terms of (130) and (131). The obtained results show that

the additional overhead is kept at almost minimum. In conclusion, the computations

are not the main bottleneck but capability for even more parallel memory accesses

limits practical throughput.

8.3 Register-Based List Updating for List Sphere Decoders

The list can be stored also in registers. The main benefit of using registers is their

parallel accessibility. The parallelism of memory accesses is limited by the number

of memory banks, number of ports of the memory, and by the access sequence. When

compared to memories, the main drawback of using the registers is their higher power

consumption. For these reasons, the register based list processing is tempting with

short list lengths. An obvious register-based list processing method uses an insertion

sort which has been applied, e.g., in [15]. Sorting with registers is used also in K-

best LSD hardware implementation in [130]. However, just like in the case of heap

data structure also register based methods can benefit from the fact that the data does

not need to be sorted but it is sufficient to find the maximum element. This practice

is applied in the register based structures in Sections 8.3.2 and 8.3.3.
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insertion operation.

8.3.1 Insertion Sort SFU

The proposed insertion sort SFU is applied in the K-best LSD TTA processor in [15].

The list is kept in order all the time. The new candidate element is compared with

all the elements of the list in parallel. The comparisons indicate, in which place the

new element should be inserted or whether it should be discarded. In other words, the

candidate x is compared to successive elements e, g with e ≤ g. If e ≤ x ≤ g, then

the x can be inserted between the e and g to preserve the ordering of the list. With

register-based list it is natural to move all the elements from the insertion point to the

beginning of the list, which can be implemented with a simple shift register structure,

i.e., input and output of consecutive registers are connected and the transfer of the

element is enabled conditionally.

In principle, the structure of the SFU can be derived systematically for any list length.

For simplicity, but without loss of generality, an example structure of the SFU is pre-

sented for a list of eight samples in Fig. 56. The results of the parallel comparisons

are connected to the CTRL block, which contains simple combinatorial logic to gen-
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Fig. 57. List processing SFU applying a binary tree of comparisons to find the maximum

value.

erate the control signals for the multiplexers, which drive the inputs of registers. The

list can be read from the registers, i.e., explicit output signals are not shown in the

diagram. Naturally, the comparisons in Fig. 56 use only the PED part of the word in

register, the remaining part of the word presents symbol information.

8.3.2 Comparisons with Binary Tree

The insertion with insertion sort SFU may require changing the state of all the regis-

ters at maximum. Such a transferring of electric charge between registers consumes

energy and, therefore, it would be advantageous if the states of registers remained

unchanged most of the time. Even if the sorting without moving samples were im-

possible it is possible to focus only in finding the maximum element. Like the (124)

shows, it is sufficient if the new candidate is compared with the maximum of the

list and the maximum is replaced conditionally. In other words, the sorting is not

mandatory even if it helps finding the maximum.

The second alternative register-based list processing SFU keeps the list unordered
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Fig. 58. List processing SFU applying more parallelism in comparisons.

and uses a binary tree of maximum operations to find the element with maximum

value. The structure of the unit for a list of eight elements is shown in Fig. 57. The

diagram shows that with list length, n, the depth of the maximum tree is log2 n and

in addition to the maximum operations the tree is extended with one comparison op-

eration, which compares the new candidate with the maximum of the list. Again, the

CTRL block contains combinatorial logic to control the multiplexers, which either

preserve the state of the register or replace the content of the register with the new

candidate element. The Fig. 57 shows clearly that the main drawback of the maxi-

mum tree structure is a long critical path when compared to the insertion sort unit in

Fig. 56. The length of the critical path is proportional to the depth of the tree, i.e.,

log2 n.

8.3.3 Comparisons with High Parallelism

The third alternative register-based list processing SFU strives to shorten the critical

path by applying higher parallelism. In other words, there is a trade-off between the

number of parallel computing resources and the critical path, and the critical path is
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Fig. 59. Comparison of register based list units with 16-length list: a) power consumption,

b) area in terms of logic GEs.

shortened by using more resources. The proposed structure is shown in Fig. 58. The

structure is shown for a list of eight samples. The operations in the first stage find the

maximum of every set of four elements with six comparisons per set. For example,

with 16-length list the second stage must determine the maximum of five samples

since also the new candidate is included in the parallel comparison. Naturally, the

critical path is shortened but the number of comparators is increased with the structure

in Fig. 58 when compared to Fig. 57.

8.3.4 Power and Complexity Estimates

The alternative register-based list processing methods are compared in terms of power

consumption and complexity. As all the methods process the new candidate in one

clock cycle the throughput is directly proportional to the clock frequency. For this

reason, the complexity estimates as functions of clock frequency are comparable.

All the three methods are synthesized with the same operating conditions, 130 nm

technology, 1.35 V voltage, clock gating is enabled in the synthesis, and the list

length is 16 samples. The word length of the PEDs which is used in comparison

units is 16 bits, and the word length of the symbol information is 16 bits.

The power estimation results are shown in Fig. 59(a). The results show that the in-

sertion sort unit has the highest power consumption and it can achieve the highest

throughput. The figure shows also that due to the long critical path the structure with

the binary tree of maximum operations cannot achieve high clock frequency. The
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third remark is that the power consumption of the structure with highly parallel com-

parisons achieves almost as low level as the structure with binary tree comparisons

network. This indicates that the major part of the power consumption originates from

the registers, as both designs use registers in a similar way, i.e., the ordering of the

elements of the list is the same.

The complexity estimation results are shown in Fig. 59(b) in terms of logic GEs. As

expected, the insertion sort unit has the lowest complexity. Again, when compared

with the power estimation in Fig. 59(a), it can be noticed that the large area does not

correspond heavily with high power consumption in this particular case. According

to this notion, proper decision can be made when the list processing unit is designed,

if the low power is more important than small area.
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9. COMPLEXITY AND POWER ESTIMATIONS OF BASEBAND

PROCESSINGWITH ASPS

In this Chapter, 100 Mbps data rate is targeted and ASP implementations of the four

essential baseband functions of the 3G LTE receiver, namely, list sphere decoding,

FFT, QR decomposition, and turbo decoding are analyzed. As a result, the design

space that describes the essential computational challenges of 3G LTE receivers is

clarified and estimates of area, power, and IPC requirements are presented.

On the contrary to focusing on the implementation of solely one function, even a

couple of inter-operating functions complicate the design. For example, the number

of clock domains and the most suitable clock frequencies must be determined for all

the functions. In addition, there is always a trade-off between area and throughput.

Furthermore, even if the throughput is adequate, the delay can be too long. Thus,

the dimensions of the design space include clock frequency, area, power, parallelism,

number of processors, clock domains etc. To find answers to the multivariable and

multiobjective design problems, the design space must be explored by focusing on

promising candidates, i.e., design alternatives, and analyzing them. Naturally, such

analysis is far away from evaluation of a fully functional system-on-chip (SoC) but it

provides inevitable insight into the design problem in hand.

In this Chapter, TTA processors are applied to the 3G LTE baseband processing.

Baseband functions are separated from system level operations as the area and power

analysis focuses on the core computations. The assisting IPC is analyzed in terms

of data buffer requirements of ideal IPC links. The presented work forecasts how

demanding the implementation of these baseband functions of the 3G LTE receiver

would be, and what would be the number of logic GEs, power, number of processors,

and IPC requirements with realistic clock frequencies. The results also show how

strongly an efficient symbol detection method dominates the total complexity.
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9.1 System Model

The high-level description of the targeted two antenna MIMO–OFDM receiver is

presented in Fig. 2 in Chapter 2. Naturally, for the turbo decoding and QR decom-

position the processors presented in Chapter 5 and in Chapter 7 are applied. The

TTA processors presented in [87] and [15] are used for the FFT and symbol detection

tasks, respectively.

The applied FFT TTA processor [87] implements mixed-radix FFT consisting of

radix-2 and radix-4 computations and it supports several power-of-two transform

sizes. It has 11 RFs containing 25 general-purpose registers and three Boolean regis-

ters, 17 buses in the interconnect network, a conventional adder, a comparison unit,

and two LSUs. The main computations are carried out with the complex-valued

adder, complex-valued multiplier, address generator, and coefficient generator SFUs.

The processor applies a complex-valued number presentation where the real and

imaginary parts both take 16 bits. Data is stored in single-port memory banks and

the kernel loop applies the principles of software pipelining. Code compression is

applied to enhance the code density and lower the power consumption.

The applied LSD TTA processor [15] generates a 16-element list of candidate solu-

tions to approximate the symbol vector s′ in (4). The processor uses 16-bit arithmetic

and it is targeted for 2×2 antennas and 64-quadrature amplitude modulation (QAM).

Instead of 2 × 2 complex-valued matrix, a real-valued matrix with doubled dimen-

sions is processed. Therefore, a real-valued 4 × 4 QR decomposition is required for

the LSD. The arithmetic operations are computed with two addition units, a subtrac-

tion unit, a multiplier, and a squaring unit. The following SFUs are targeted for the

applied K-best algorithm: insertion sorter, PED extractor, storage format composer,

and a unit combining a multiplexer and LUT for format conversions. There are three

RFs of sizes 16, 10, and 4 registers. On the contrary to conventional processors, the

LSD TTA processor does not have LSUs nor data memory, since there is no need for

accessing large arrays. The input data is passed via two RFs and the results of the

computations are available in the registers of the insertion sorter SFU.
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9.2 Processing Requirements and Complexity

The number of processors, their total area and memory requirements, and inter-

processor communication requirements are derived from the targeted 100 Mbps through-

put.

9.2.1 Time and Throughput Requirements

There are seven OFDM symbols per transmit antenna in 0.5 ms time frame in 3G

LTE downlink [16]. Thus, the processing time requirement TFFT = 0.5 ms/7 = 71

µs includes also the additional time contributed by the cyclic prefix of the OFDM

symbol. The FFT must be computed for both antennas.

The QR decomposition must be processed in the coherence time, tcoh, of the channel.

If bullet train speed vr = 500 km/h is assumed for the receiver, the coherence time

is tcoh = c/(fcarriervr) = 0.9 ms where c is the speed of light and fcarrier = 2.4

GHz is the carrier frequency. However, with a more rapidly varying channel, the

QR decomposition must be computed more frequently, i.e., shorter tcoh must be used

in (133). A single QR decomposition combines information from all the antennas.

In other words, the matrix and vector sizes of the QR decomposition depend on the

number of antennas.

The LSD must be computed for each subcarrier. So, the time requirement equals to

the time requirement of the FFT. However, even if the maximum length of the FFT

is 2048, only 1201 subcarriers are in use. A single LSD processes the signals of both

antennas, i.e., it outputs estimates of symbols transmitted from both antennas.

Since the turbo decoder processes soft bits instead of QAM symbols, it is meaningful

to express throughput as data rate. The throughput requirement of turbo decoding

equals the maximum data rate of 100 Mbps. Naturally, with code rate R = 1/2 and

64-QAM symbols, the data rate on the LSD side is 200 Mbps and symbol rate 33.3

Msps.

9.2.2 Required Number of Clock Cycles

The FFT TTA processor in [87] takes 12332 clock cycles for the 2048-point transform

and the transform must be computed for both antennas. So, the required clock cycles
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of the FFT task are

CFFT = 2 × 12332 = 24664 . (132)

The QR decomposition algorithm is of order O(n3) and the QR decomposition TTA

processor in Chapter 7 takes 139 clock cycles for a 4 × 4 matrix. The dimensions

of the decomposed matrix are doubled, since the LSD TTA processor applies real-

valued computation. Since the Q matrix is the argument of matrix-vector product in

(4), the products are mapped to the same processor. The products must be computed

continuously for each received symbol vector, but the QR decomposition only once

in the coherence time. So, the average number of clock cycles in TFFT time period,

for both computations is approximately

CQR avg = 1201 × (139 × (TFFT/tcoh) + 16) = 32386 (133)

where 4×4 matrix multiplication takes 16 clock cycles. Naturally, with more rapidly

varying channel, the CQR avg increases as the tcoh must be decreased. The products

take approximately 59% of the CQR avg. The maximum number of clock cycles is

spent when the decomposition of a new channel matrix is computed for each subcar-

rier, i.e.,

CQR = 1201 × (139 + 16) = 186155 . (134)

The average number of clock cycles, CQR avg, is only 17% of the maximum, CQR.

The LSD TTA processor in [15] takes 441 clock cycles for processing one symbol

vector. Thus, in TFFT time period the number of required clock cycles for the LSD,

CLSD, is approximately

CLSD = 1201 × 441 = 529641 . (135)

Fortunately, the LSD can be parallelized among the subcarriers.

In order to compare turbo decoding with the other baseband functions, the clock

cycles of turbo decoding must be normalized to clock cycles, CTurbo, taken in TFFT

time frame. The turbo decoder TTA processor in Chapter 5 takes 1.016 clock cycles

per trellis stage processed in half iteration. With six iterations each trellis stage is

processed 12 times. Therefore,

CTurbo = TFFT × 100 × 106 × 12 × 1.016 = 86563 (136)
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where the first multiplications TFFT×100×106 express how many bits are processed

in TFFT. Turbo decoding can be parallelized to several processors with block-by-

block pipelining where each processor decodes a code block of its own independently.

The required number of clock cycles of all the four functions are illustrated in Fig. 60.

The figure shows clearly how the LSD dominates the computation load. Obviously,

the requirements cannot be met with single processor systems with currently achiev-

able clock frequencies.

9.2.3 Number of Processors

The required minimum number of processors is determined by the throughput per

processor, clock frequency, fi, and parallelization scheme of the targeted functions.

If a task i can be parallelized to several processors and the throughput is directly

proportional to the number of processors, then the minimum required number of

processors, Pi, of the task i taking Ci clock cycles in time frame TFFT is

Pi = ⌈(Ci/TFFT)/fi⌉ . (137)

The utilization, Ui, of Pi processors dedicated to task i tells how efficiently the com-

puting resources are used. It can be defined in a similar way as

Ui = Ci/(PiTFFTfi) . (138)

Naturally, 100 × (1 − Ui) tells how many percent of the time the Pi processors idle.

For the QR decomposition and matrix-vector product task, the average number of



138 9. Complexity and Power Estimations of Baseband Processing with ASPs

clock cycles, CQR avg, is used to calculate the minimum number of processors and

utilization. The total utilization of the whole processing chain can be computed as

U =
∑

i∈Stasks

Ci/(TFFT

∑

i∈Stasks

Pifi) (139)

where the sums are computed for all the elements of the task set Stasks ={FFT,

QR avg, LSD, Turbo}. The total utilization in (139) expresses the ratio between the

required execution cycles of all the tasks and the available execution cycles of all the

processors.

9.2.4 Delay

The delay of a task depends on the maximum size of the processed data vector and

the scheduling. Except for the first half iteration, the turbo decoder requires that the

whole code block is received before decoding. The maximum code block length is

6144 [3], which is about 20% longer than in the current 3G systems. With code rate

R = 1/2, the required number of soft-bits is naturally 2 × 6144 = 12288. For two

OFDM symbols, the LSD generates symbol candidate lists, which can be converted

to 2× 1201× 6 = 14412 soft bit estimates with 64-QAM (6 bits per symbol). Since

the number of soft-bits exceeds the required number for the maximum code block

length, the analysis of the delay of FFT and LSD can be limited to the processing of

two OFDM symbols.

With at maximum two processors, the delay of the FFT is simply

DFFT = CFFT/(PFFTfFFT), PFFT ∈ {1, 2} (140)

and in a similar way the delay of the LSD is

DLSD = CLSD/(PLSDfLSD) (141)

where PLSD ∈ {1, 2, . . . , 1201} as the LSD can be parallelized among the subcarri-

ers. The QR decomposition processor has two tasks, the QR decomposition and the

matrix-vector products, of which the QR decomposition is computed only once in

the coherence time, tcoh = 0.9 ms. Thus, the worst case delay when both tasks are

computed is

DQR = CQR/(PQRfQR) (142)
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Fig. 61. Configurations as functions of fi with single clock domain: a) total utilization, b)

total delay in ms, c) the number of processors. The x-axis denotes fi in MHz.

where PQR ∈ {1, 2, . . . , 1201} as the decompositions and multiplications can be

parallelized among the subcarriers. For an average delay, CQR avg can be used in a

similar way. The delay of turbo decoding is determined by the maximum code block

size, 6144. Thus, the delay with six turbo iterations is

DTurbo = 6144 × 6 × 2 × 1.016/fTurbo (143)

where processing one trellis stage with the turbo decoder TTA processor takes on

average 1.016 clock cycles. Distributing the turbo decoding to several processors

with block-by-block pipelining would affect only the throughput but not the delay

and, therefore, the number of processors is omitted from (143).

9.2.5 ASP Configurations as Functions of Clock Frequency

Utilization, delay, and number of processors are analyzed in Fig. 61 as functions

of clock frequency, fi. The total utilization in Fig. 61(a) shows that the utilization

is always greater than 0.93 in the explored clock frequency range. High utilization

can be obtained easily, since the LSD dominates the computational load and it can
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be parallelized with very fine granularity. In other words, since the utilization of

the LSD task is always high, also the utilization of the whole processing chain is

relatively high. The peaks in the utilization occur, when the number of processors of

some task can be decremented. In that case, the utilization grows. On the contrary, if

the number of processors remains untouched and the clock frequency is increased the

utilization decreases. The discontinuations of delay in Fig. 61(b) originate from the

same phenomenon. The greatest discontinuation at 229 MHz takes place as the QR

decomposition is mapped from three to two processors. The number of processors

in Fig. 61(c) decreases quite steadily, since it is dominated by the LSD task, which

requires the largest number of processors.

9.2.6 Analysis

An example configuration of TTA processor based baseband processing chain is pre-

sented in Table 16. A single clock domain with fi = 250 MHz is applied and the

processors have been synthesized with 130 nm technology for obtaining complexity

and power estimates. Even if higher clock frequencies were used in previous Chap-

ters for achieving high throughput, a common clock domain is assumed for eased

system integration. The area and power estimates exclude the memories. The power

estimates are scaled with the number of respective processors and their utilization in

the eighth row of the Table 16. The results in Table 16 show that since the LSD task

takes only 441 clock cycles per subcarrier and it can be computed for each subcarrier

independently, the task can be easily divided among several processors to achieve a

high utilization. On the contrary, it is more difficult to obtain very high utilization for

both the FFT and the QR processors with the same clock frequency, as the granularity

of the tasks is more coarse. As a second remark, the delay of the QR decomposition

is long when compared to other functions, even though the other functions are more

complex. However, the QR decomposition must be computed only once in the co-

herence time tcoh = 0.9 ms, i.e., the delay in Table 16 is the worst case delay. On

average, the delay of the QR decomposition and the matrix-vector products is only

17% of the delay in Table 16.

In principle, the FFT and QR tasks could be mapped to the same processor. The pro-

cessor should be formed as a hybrid of both processors in this case. The resources

could be combined with the aid of multiset unions, i.e., the maximum multiplicity
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Table 16. The baseband processing chain with TTA processors, 2 × 2 antennas, 1201 sub-

carriers, 64-QAM, 6144-length turbo code block, list length n = 16, data rate 100

Mbps.

FFT Turbo dec. QR & prod. LSD Total

Clk. freq., fi (MHz) 250 250 250 250

Num. procs., Pi 2 5 2 30 39

Utilization, Ui 0.69 0.98 0.91 0.99 0.97

Delay, Di (ms) 0.049 0.300 0.372 0.071 0.792

Area (kGE) 30.5 35.1 17.7 23.6

Area ×Pi 61.0 175.5 35.4 708.0 979.9

Power est. (mW) 36.3 50.8 13.1 20.8

Power est. ×Pi × Ui 50.1 248.9 23.8 617.8 940.6

Technology (nm) 130 130 130 130

Reference [87] Chapter 5 Chapter 7 [15]

of resources of both processors determines how many resources of respective type

are instantiated [92]. Since both functions require complex arithmetic, the same re-

sources could be shared efficiently. With fi = 402 MHz, both tasks could be mapped

to two hybrid FFT/QR TTA processors and a utilization, UFFT/QR = 1.00, would be

obtained.

Mapping the turbo decoding and some other function to the same processor could not

benefit as much from sharing the resources, since the turbo decoding requires mostly

real-valued ACS operations. Shortening the delay of the turbo decoding is difficult

for two reasons. Firstly, turbo decoding is an iterative process where the previous

iteration must be finished before the next one can begin. Secondly, the component

decoder applying the radix-2 algorithm processes at maximum one trellis stage in

one clock cycle. The next path metrics cannot be computed according to (7) and

(8) before the previous ones are computed. For these reasons, increasing the clock

frequency or applying the radix-4 algorithm are the only ways to shorten the delay of

the turbo decoding task in Table 16.

To illustrate more deeply the computational requirements of the baseband process-

ing, example configurations consisting of other implementations are shown in Tables

17–19. As the respective implementations in Tables 17–19 are not necessarily tar-

geted to the 3G LTE system or they are not targeted to operate among each other,
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Table 17. An example baseband processing chain with 2 × 2 antennas, 1201 subcarriers,

16-QAM, 4804-length turbo code block, data rate 68 Mbps.

FFT & Turbo dec. QR Sphere Dec. Total

Clk. freq., fi (MHz) 600 & 300 223 213

Num. procs., Pi 5 1 1 7

Utilization, Ui 0.36 0.29 0.92 0.38

Delay, Di (ms) 0.396 0.259 0.065 0.720

Area (kGE) – 198 61

Area ×Pi – 198 61 –

Power est. (mW) 718 – –

Power est. ×Pi × Ui 1303 – – –

Technology (nm) 130 130 130

Reference [4] [26] [26]

Table 18. An example baseband processing chain with 4 × 4 antennas, 601 subcarriers, 16-

QAM, 4808-length turbo code block, list length n = 10, data rate 68 Mbps.

FFT Turbo dec. QR LSD Total

Clk. freq., fi (MHz) 45 400 80 50

Num. procs., Pi 2 5 1 2 10

Utilization, Ui 0.63 0.82 0.54 0.85 0.80

Delay, Di (ms) 0.045 0.288 0.489 0.060 0.882

Area (kGE) – 64.1 – 132

Area ×Pi – 320.5 – 264 –

Power est. (mW) 480 – – –

Power est. ×Pi × Ui 608.45 – – – –

Technology (nm) 350 65 250 130

Reference [67] [124] [84] [130]

the Tables 16–19 should be not considered as comparisons of TTA processors and

other implementations. Instead the tables show indicative example configurations of

baseband processing chains.

For some implementations, all the required information is not available or it is given

with different units. The area is reported if it has been given as GEs. For some

implementations the performance data is not available for the targeted configuration
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Table 19. Requirements of 4G baseband processing chain for 100 Mbps data rate [133].

FFT STBC LDPC Total

Assumed clk. freq. (MHz) 360 240 385

Assumed num. procs., Pi 1 1 20 22

MCycles/s 360 240 7700 8300

Utilization, Ui 1.00 1.00 1.00 1.00

Reference [133] [133] [133]

of 2048-length FFT, 2 × 2 antennas, 64-QAM, and list length 16. For this reason,

alternative MIMO–OFDM configurations with lower data rate, 68 Mbps, have been

used. Shorter code blocks are assumed for turbo coding in Tables 17 and 18. With

shorter code blocks, the delay of the FFT can be limited to processing one OFDM

symbol per each antenna.

In the configuration in Table 17, hardware implementations presented in [26] are used

for the matrix decomposition and symbol detection. For the FFT and turbo decoding

the TI’s C6416 DSP has been applied as it can compute the FFT with an efficient

software library routine and it includes a turbo co-processor which runs with halved

clock frequency. Since the core DSP and turbo co-processor are mapped to the same

device, the number of required processors is determined by the more dominating task,

i.e., turbo decoding. The idling of the DSP core while turbo decoding is taken into

account when the utilization in Table 17 is calculated and, therefore, the utilization

is low in Table 17 but still several processors are required. The hardware imple-

mentations for QR and symbol detection in Table 17 are targeted for MIMO–OFDM

systems [26]. However, the sphere detector applies a different algorithm than the

K-best LSD which is used in TTA processor implementations.

In Table 18, a 1024-point FFT is applied. The applied turbo decoder processor sup-

ports also Viterbi decoding. The list length of the K-best LSD is 10 elements. In

principle, a complex-valued K-best LSD with 64-QAM, 2 antennas, and list length

n = 16 must process 64 + 16 × 64 = 1088 elements and with 16-QAM, 4 antennas,

and n = 10 it must process 16+10×16+10×16+10×16 = 496 elements during

the symbol detection. Thus, the processing requirements of different symbol detec-

tors can be characterized by the number of visited elements during a tree traversal of

the LSD algorithm. The applied QR decomposition hardware accelerator is presented

in [84] as a part of MIMO–OFDM transceiver for WLANs. The decomposition takes
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Table 20. Area of the core processor without memories and data memory requirements of the

processors.

TTA Clk. freq. Area Data memory requirements

processor fi (MHz) (kGE) (kbits)

FFT 250 30.5 65.5 divided into 2 single-

port memory banks

QR 250 17.7 1.5 dual-port memory

LSD 250 23.6 0.0 (uses only registers)

Turbo decoder 250 35.1 281.7 divided into 16 single-

port memory banks

65 clock cycles for 4 × 4 matrix.

In Table 19, the workload of 4G baseband processing with 100 Mbps is presented in

terms of required execution cycles on a SODA architecture [133]. For each task a

realistic clock frequency is assumed and the tasks are divided to separate processors.

Furthermore, it is assumed that the low-density parity-check (LDPC) error correction

decoding task can be parallelized to several processors. The Table 19 shows that the

LDPC task dominates clearly the workload.

In conclusion, the results in Tables 16–19 show that in addition to the data rate, the

computational requirements depend heavily on the applied algorithms and on the

parameters of the algorithms. Furthermore, efficiency in terms of high utilization

requires that the tasks can be mapped among the processors or hardware units in a

flexible way.

9.2.7 Memory Requirements

The area estimates in Table 16 exclude the memories and memory requirements are

reported separately in Table 20. In other words, the area in terms of logic GEs ex-

presses the complexity of the actual computations of baseband processing. The sep-

aration eases future comparisons, since the memory requirements depend heavily on

the targeted data vector lengths and technology. For example, long code blocks are

preferred in turbo decoding, as they enhance the error correction performance. A

second reason for separating the memories is that the IPC requires also memories
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Table 21. Additional buffer memory requirements for seamless IPC.

IPC buffer Memory Memory

(words) (kbits)

FFT: next input 2 × 2048 131.1

FFT: prev. result 2 × 2048 131.1

QR: R, QHy 1201 × (10 + 4) 538.0

QR: prev. results 1201 × (10 + 4) 538.0

Turbo: next input 3 × 6114 128.4

and, therefore, the total area with all the memories of the whole baseband processing

chain would depend on the implementation method of the IPC.

The data memory requirements in Table 20 show that due to the small matrix size,

the QR decomposition requires a very small memory. The LSD processor has no

memory requirements at all, as the data is stored in registers. On the other hand, the

turbo decoder and the FFT processors require large memories as they have to process

long data vectors. The memory of the FFT is divided into two banks and a memory

interface hides the banking structure from the programmer, i.e., the memory system

imitates dual-port memory.

9.2.8 Inter-Processor Communication Requirements

As the analyzed processors lack extra facilities for IPC, only requirements but not

costs can be stated. There exists many methods for SoCs but they are beyond the

scope of this Thesis. Therefore, the effects of using some particular method or SoC

platform are not considered. In Table 21, the IPC requirements are tabulated for an

assumed system using shared memory banks between the processors.

The FFT processor uses an in-place algorithm, i.e., the result overwrites the input

vector and processing does not require additional memory. However, passing the

data to and from the FFT processors requires buffer memories. In practice, there

must be an extra input buffer which is written while the data in the main memory is

processed in-place. In a similar way, there must be an extra output buffer, from which

the previous result can be read at the same time. The first two buffers in Table 21 are

dedicated for such an IPC. The roles of the three memory banks, i.e., the input buffer,

the output buffer, and the processing memory, can be interchanged on every two
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completed OFDM symbols.

The QR processor generates the triangular 4×4 matrix, R, with 10 nonzero elements

and 4-element vector for each subcarrier. The results are written to one buffer. The

other identical buffer holds the previous results which are passed to the LSD proces-

sors at the same time. Since there are several QR and LSD processors, the buffer

must be divided into several parallel accessible banks. Again, the roles of the buffers

can be interchanged on OFDM symbol boundaries.

The turbo decoder processors require an additional input buffer which is filled with

the soft-bits while the decoders are processing. There is no need for an additional

output buffer, since the decoder overwrites the previous output only on the last half

iteration. The buffer size of the turbo decoder input in Table 21 allows code rate

R = 1/3 with the maximum block size. The input word length of the applied turbo

decoder TTA processor is 7 bits but all the other applied TTA processors use 16 bits

for the real or imaginary parts.

In general, the complexity of IPC buffers depend on the sizes of memory banks,

their throughput or clock frequency, and the number of memory banks as each bank

requires interfacing logic. In addition, the IPC increases also the computational load

which is not included in Tables 16–19. Therefore, if a fully functional SoC were

designed, full utilization should not be targeted when solely the core computations

are analyzed. Instead, with lower utilization, computing capacity would be reserved

also for the IPC. Also, the delays in Tables 16–19 exclude the effect of IPC. As it is

assumed that one buffer is written while the other is read in a pipelined fashion, it can

be assumed that the IPC has a constant delay.

Since the workloads of the processors depend only on the applied block lengths, static

scheduling could be applied, which would ease synchronization of the tasks. Even if

the number of processors is very high, in principle, similar IPC requirements would

be met also with smaller number of processors if they applied higher parallelism

internally or if they applied higher clock frequency. The first option would require

parallel IPC links and the second option would require smaller number of IPC links

but higher throughput for each link.
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In this Thesis, several implementations for baseband processing of digital receivers

were presented. ASPs were the primary target platform, and both assisting hardware

units and processor architectures were proposed. The main design goal throughout

the design process was the efficiency, in terms of computations per clock cycle with

the available computing resources. With this goal, the performance of the implemen-

tations was not degraded by the inherent sequentiality of the programmable processor

applications. Instead, with sufficiently parallel architectures, the kernel computations

could be executed continuously with software pipelined schedules. With this prac-

tice of high parallelism and high utilization of the main computing resources, there

was no performance degradation due to the programmability. Applying the princi-

ples of software pipelining allowed high utilization. To allow continuous loading

of operands and storing of results, assisting functions for parallel memory accesses

were proposed. Other demanding assisting functions were the approximation of the

highly non-linear inverse square root function and the list processing for the LSD.

The presentation of the proposed implementations was summarized by estimating

the complexity and power consumption of a system with 100 Mbps data rate. In con-

clusion, the baseband functions can be implemented efficiently with ASPs, as long

as sufficient parallelism, flexibility, and customizability are provided by the applied

ASP template.

10.1 Possible Future Trends of Baseband Processing Implementations

Alan Kay, a visionary inventor at Xerox PARC, has said, “The best way to predict the

future is to invent it” [59]. Based on this quote, the best future prediction would rely

on the proposed implementations and it would state that in the future there will be

baseband processing chains consisting solely of programmable ASPs. Such an im-

plementation would make up an ideal SDR if it could adapt to different transmission
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techniques by re-programming [75,76]. It can be also predicted that as new standards

and transmission techniques are developed, there will be always some gap between

the computing requirements and the performance that can be obtained with a pro-

cessor programmed using a high-level language. In other words, the SDR cannot be

programmed only with a high-level language but assembly programming similar to

what was applied in this Thesis will be still needed, but only in a minor role.

Another prediction is that the role of electronic system level design tools will increase

and future baseband processing chains are designed on a high abstraction level. This

conforms with the proposed ASP implementations if they were programmed solely

with a high-level language. In that case, the applied framework of ASPs would pro-

vide a design flow from a description written in a high-level language to a hardware

implementation.

The key benefit of the SDR is the ability to adapt to several transmission techniques.

This is required currently and in the near future as the new communication devices

must conform also to previous standards. The adaptability is also useful since func-

tions like, e.g., Viterbi decoding and turbo decoding are not run at the same time. In

the remote future, the adaptability can be required by cognitive radio systems [77].

The cognitive radio changes its parameters efficiently according to the prevailing con-

ditions of the channel, other users of the channel, and the data rate requirements. In

this Thesis, the SFUs and ASPs were synthesized with an ASIC technology. How-

ever, modern FPGA devices also provide a lot of computing capacity. Instead of

adaptability with programmable SDRs, it might be also possible to obtain the adapt-

ability by reconfiguration of FPGAs. As a drawback, the FPGAs suffer from a high

power consumption currently and, therefore, ASIC technology is preferred when in-

tensive computing like baseband processing is required.

It can be assumed fairly that with a reconfigurable implementation, higher perfor-

mance can be obtained since the whole architecture can be changed instead of chang-

ing only the program code. This practice does not exclude programmable imple-

mentations. Even if the programs were bound with their respective architectures, the

programming is a more flexible and more rapid design method than pure hardware

design with low-level hardware description languages. However, regardless of the

aforementioned benefits, the reconfigurable baseband processing with FPGA devices

cannot be established in the targeted telecommunication systems unless their power

consumption achieves lower levels.
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