
Timo Lehtonen
Metrics and Visualizations for Managing Value Creation
in Continuous Software Engineering

Julkaisu 1453 • Publication 1453

Tampere 2017

Tampereen teknillinen yliopisto. Julkaisu 1453
Tampere University of Technology. Publication 1453

Timo Lehtonen

Metrics and Visualizations for Managing Value Creation

in Continuous Software Engineering

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB109,
at Tampere University of Technology, on the 3rd of February 2017, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2017

ISBN 978-952-15-3899-5 (printed)

ISBN 978-952-15-3905-3 (PDF)
ISSN 1459-2045

Metrics and Visualizations
for Managing Value Creation

in Continuous Software Engineering

Doctoral Dissertation

Timo Lehtonen

January 12, 2017

ii

Abstract

Digitalized society is built on top of software. The supplier of a software
system delivers valuable new features to the users of the system in small
increments in a continuous manner. To achieve continuous delivery of new
features, new versions of software are delivered in rapid cycles. The goal is
to get timely feedback from the stakeholders of the system in order to deliver
business value.

The development team needs timely information of the process to be able
to improve it. A demonstrative overview of the process helps to get better
understanding about the development process. Moreover, the development
team is often willing to get retrospective information of the process in order
to improve it and to maintain the flow of continuous value creation.

The team uses various tools in the daily software engineering activities.
The tools generate vast amount of data concerning the development process.
For instance, issue management and version control systems hold detailed
information on the actual development process. Mining software repositories
provides a data-driven view to the development process.

In this thesis, novel metrics and visualizations were built on top of the
data. The developed artifacts help to understand and manage the value cre-
ation process. With this novel, demonstrative information, lean continuous
improvement of the development process is made possible. With the novel
metrics and visualizations, the development organization can get such new
information on the process which is not easily available otherwise.

The new information the metrics and visualizations provide help to differ-
ent stakeholders of the project to get insight of the development process. The
automatically generated data reflects the actual events in the development.
The novel metrics and visualizations provide a practical tool for management
purposes and continuous software process improvement.

Keywords: software visualization, software metrics, mining soft-
ware repositories, value creation, software process improvement,
continuous delivery

iii

iv

Preface

When I started this journey over ten years ago, I had very little knowledge on
how science actually produces new information and how useful the mindset
of scientific reasoning really is. There is no science without people. Luckily,
I have had the opportunity to work with great colleagues in both academia
and industry during all these years.

The most valuable guidance I have received from my two supervisors, pro-
fessors Hannu-Matti Järvinen and Tommi Mikkonen from the Department
of Pervasive Computing in Tampere University of Technology (TUT). Also
all the colleagues in paper related communication channels have been a key
factor for the advancements of this work. First of all, Timo Aho (Yleisradio,
Finnish Broadcasting Company) and Timo Aaltonen (TUT) have guided this
work especially from the data science point of view. Solita ltd. has been an
essential enabler for this work. From Solita, Timo Raitalaakso and Mikko
Puonti have been pioneers in Solita Science program and have supported
this work by defining the constraints and deadlines for advancements. Timo
Honko (Solita) has been in key role for supporting this work from the indus-
trial side by creating the opportunities to advance academic cooperation. I
would also like to thank Petri Sirkkala, Ville Marjusaari and Janne Rintanen
for their great input to support empirical feedback iterations of the work.

Moreover, the research colleagues at TUT have provided their help to
put this work forward. Sampo Suonsyrjä has provided a lot of support for
the research methods of this work. Terhi Kilamo, Kati Kuusinen and Laura
Hokkanen have brought in their great knowledge on how to actually advance
in the process towards dissertation. Anna-Liisa Mattila, Essi Isohanni and
Petri Ihantola have helped in defining the scope for this work. Paavo Toiva-
nen has given a lot of useful hints for writing in English.

Through the national Tekes-funded Need for Speed (N4S) research pro-
gram, I have had the chance to meet many skilled researcher groups. Pasi
Kuvaja and Lucy Lwakatare from University of Oulu have supported this the-
sis with their strong argumentation about the topic. Emilia Mendez and Ville
Leppänen gave great feedback with top expertise during the pre-examination

v

phase. Moreover, Juha Itkonen, Raoul Udd and Casper Lassenius from Aalto
University, have brought in their advanced knowledge on academic work re-
lated to the research on long-term changes in software engineering. Great
discussions with Jürgen Münch about the value creation processes has cre-
ated great insight to the topic. Moreover, many other colleagues have been
important for this work to be done.

My family has supported this work in many ways. Thanks to my parents
for their support. They showed me the way to the field of software engi-
neering. My wife Heidi has been a great help in supporting the decisions in
order to finish this work in time. She has guided the work towards the final
published version in an agile manner.

vi

Contents

Abstract iii

Preface v

Contents vi

List of figures x

List of included publications xi

1 Introduction 1
1.1 Aims and scope . 2
1.2 Research questions . 4
1.3 Results and contributions . 5
1.4 Structure of thesis . 6

2 Research approach 9
2.1 Industrial context . 9
2.2 Action research . 10
2.3 Design science research . 11
2.4 Design science iterations . 12
2.5 Qualitative methods applied 14
2.6 Categories of theories . 14
2.7 Summary . 16

3 Background 19
3.1 Continuous value creation . 19

3.1.1 Value creation in software engineering 19
3.1.2 Continuous software engineering 21
3.1.3 Continuous process improvement 24
3.1.4 Continuous improvement in Lean Software Development 25

3.2 Software analytics . 28

vii

3.2.1 Data analytics . 28
3.2.2 Information visualization 29
3.2.3 Exploring software engineering data 30
3.2.4 Mining software repositories 31
3.2.5 Metrics in software engineering 32
3.2.6 Software visualization 33
3.2.7 Ambient visualizations 34
3.2.8 Categorizing visualizations 34

3.3 Summary . 35

4 Related work 37
4.1 Value creation management 37
4.2 Metrics and measurement in software process improvement . . 38
4.3 Usage data mining . 42
4.4 Information visualization of software engineering data 42
4.5 Summary . 47

5 Results 49
5.1 Summary of contributions per publication 49
5.2 Designed artifacts and their dependencies 51
5.3 Synthesis . 54

5.3.1 Metrics for the process visualization 54
5.3.2 Metrics for the value capture visualization 61

5.4 Feedback from the practitioners 65
5.4.1 Focus group meeting 65
5.4.2 Interview of an agile coach 66

5.5 Summary . 68

6 Discussion 69
6.1 Metrics for continuous value creation 69
6.2 Visualizations for continuous value creation 72
6.3 Managing value creation . 77
6.4 Data sources for the data model 79
6.5 Validity of the research . 82
6.6 Limitations . 86
6.7 Future work . 86

7 Conclusions 89

Bibliography 91

Publications 109

viii

List of Figures

1.1 The supplier releases new features continuously to get fast
feedback from the users. 3

1.2 Visualization of the reference process and the actual process. . 6

2.1 Design science Process Model applied from [129] to the itera-
tive development of the visualization artifact. 12

3.1 Provider and customer spheres where value-in-use and value-
in-exchange occur. Source: [61]. 20

3.2 Larger versus smaller batch size according to Reinertsen [143]. 24

3.3 Three types of waste in the deployment pipeline. 26

4.1 System radiography view of a bug database in [30]. 44

4.2 A cumulative flow diagram by Reinertsen [143]. 45

4.3 A cumulative flow diagram applied in [59]. 45

4.4 A cumulative flow diagram by Evans [43]. 46

5.1 The reference process based on a narrative and the actual pro-
cess based on data. 52

5.2 Synthesis – development time. 54

5.3 Synthesis – development time and deployment time. 55

5.4 Synthesis – from metrics to process visualization. 56

5.5 Synthesis – major version releases, parallel minor development
process and a separate bug fix release. 57

5.6 Synthesis – Rectangle of quality assurance. 59

5.7 Evolution of batch size, cycle time and feedback speed of the
case project. 60

5.8 Potential future improvement of the software development pro-
cess. 60

5.9 Synthesis – Metrics activation time, D2FU and D2VC. 61

5.10 The value capture visualization. 63

ix

5.11 Rectangle of unexploited potential : the area constructed by
invested work multiplied by the number of days the feature is
waiting for first usage. 64

5.12 The rectangle of quality assurance seen by a testing specialist
in the focus group meeting. 65

6.1 Measuring the latencies of the deployment pipeline (modified
from Publication P1). 70

6.2 A reference process shape with major and minor releases (from
Publication P6). 75

6.3 A version release with over 50 issues, a parallel minor devel-
opment release and two fix releases (from Publication P6). . . 75

6.4 Data model of various software engineering events and their
sources with sample systems (from Publication P4). 80

6.5 A deployment pipeline based on feature branches (from Pub-
lication P1). 81

x

List of included publications

[P1] T. Lehtonen, S. Suonsyrjä, T. Kilamo, T. Mikkonen. Defining Met-
rics for Continuous Delivery and Deployment Pipeline. In Proceedings
of the 14th Symposium on Programming Languages and Software Tools
(SPLST), 2015.

[P2] P. Tyrväinen, M. Saarikallio, T. Aho, T. Lehtonen and R. Paukkeri.
Metrics Framework for Cycle-Time Reduction in Software Value Cre-
ation. In The Tenth International Conference on Software Engineering
Advances (ICSEA), 2015.

[P3] T. Lehtonen, S. Suonsyrjä, T. Kilamo, T. Mikkonen. Continu-
ous, Lean, and Wasteless: Minimizing Lead Time from Development
Done to Production Use. In Euromicro Conference series on Software
Engineering and Advanced Applications (SEAA), 2016.

[P4] T. Lehtonen, V. Eloranta, M. Leppänen, and E. Lahtinen. Visu-
alizations as a Basis for Agile Software Process Improvement. In 20th
Asia-Pacific Software Engineering Conference (APSEC), 2013.

[P5] A.-L. Mattila, T. Lehtonen, H. Terho, T. Mikkonen, and K. Systä.
Mashing Up Software Issue Management, Development, and Usage
Data. In Proceedings of the 2nd International Workshop on Rapid
Continuous Software Engineering (RCoSE), 2015.

[P6] T. Lehtonen, T. Aho, T. Mikkonen, and K. Kuusinen. Visualizations
for Software Development Process Management. In the 26th Inter-
national Conference on Information Modelling and Knowledge Bases
(EJC), 2016

The permissions of the copyright holders of the original publications to reprint
them in this thesis are hereby acknowledged.

xi

Author’s contribution to the publications

In Publication P1, the candidate was the first author and the key re-
searcher to collect the data available for the metrics from an industrial case
project which was then used to develop new metrics in cooperation with the
other authors.

In Publication P2, the candidate was the fourth author in role of data
collection and analysis together in a cooperation with the main authors to
connect the industrial data to a wider value oriented framework of metrics.

In Publication P3, the candidate was the first author and conducted the
data collection and analysis. Moreover, the candidate applied the existing
metrics presented in the paper to software engineering context.

In Publication P4, the candidate planned and conducted the study and
interviewed the customer project management personnel in cooperation with
the researchers from Tampere University of Technology.

In Publication P5, the candidate was the second author and the role was
to collect and analyze the data, create the visualizations and explain their
meaning in an industrial context.

In Publication P6, the candidate was the first author that planned, con-
ducted and collected the data for the research. The visualization artifact was
developed further by the candidate.

xii

Chapter 1

Introduction

We are using digital devices all the time. The software in them is continuously
updated. New versions of software with new functionalities and fixes are
continuously delivered to the end-users.

The software development process is a value creation process [140]. In con-
tinuous software engineering, the release frequency has gone up [16]. Value is
created iteratively in small increments by delivering new versions of software
continuously. Techniques and practices of continuous delivery, continuous
integration (CI) and continuous deployment produce rapid cycle feedback to
the organization which continuously develops new features to software.

Agile methods and practices in software development have been widely
adopted [48]. The goal of a software development process is to produce
business value to the stakeholders of the software system. However, term
business value has no rigorous definition [140]. In feature-driven development
[128], the delivery of new features is considered to create value. Furthermore,
the actual usage of the features or value-in-use [61] is a tangible mechanism
for value creation.

Delivery of new features is often achieved with a deployment pipeline,
which consists of computing resources that, among other purposes, perform
continuous, automatic testing to the change sets committed to the software
[73]. The developers of the system continuously integrate their work and
deliver changes to the numerous environments of the pipeline. The purpose
of the several environments of the pipeline is to provide timely feedback for
stakeholders who participate in the development of the system.

The development team utilizes several tools in the development work.
When the developers use the tools in their daily work, a large data set con-
cerning the actual software development process is generated as a side effect.
For instance, a version control system and an issue management system are
often used. This data can then be mined and analyzed. Moreover, a logging

1

tool produces the data of the actual usage of the features. Mining software
repositories [68] provides a data-driven view to the development process.
The analysis produces new information about the deployment pipeline and
the underlying software development process. The information can then be
utilized for software process improvement (SPI) [159] purposes.

Lean software development, which is tightly connected with agile software
development [38], puts emphasis on continuous improvement. The develop-
ment process is continuously improved in order to adapted to any external
changes. Any actions that do not create value, i.e. actions that are waste, are
constantly eliminated. The analysis of data set generated by the development
tools helps to recognize sources of waste. The analysis provides information
which helps to improve the development process.

Loss of management control is one of the greatest concerns when adopt-
ing lean software development methods [153]. Novel tools for measuring and
demonstrating progress may help in software process management. The char-
acteristics of the development process can be understood based on the traces
the development tools leave.

Humble and Farley [73] define cycle time or the time between two subse-
quent releases as the most important metric in software delivery. They refer
to Poppendiecks’ question [136] ”How long would it take your organization to
deploy a change that involves just one single line of code?” They state that
cycle time tells more about the process than any other metric. Moreover, the
importance of cycle time has been presented in numerous white papers and
blogs [145]. In this work, the metrics and visualizations focus on enabling
the improvement of cycle time.

1.1 Aims and scope

The main goal of this thesis is to develop automatic, data-driven metrics and
visualizations for managing value creation in continuous software engineering.
Value creation is a lively, difficult and richly articulated research field in the
software engineering community [141]. The definition for value creation in
this context is based on three points of view. First, the software development
process is seen as a value creation process since a key characteristic of any
software development process is its explicit focus on value creation [140].
By managing the development process, value creation is managed. Second,
value-in-use [61] emphasizes the customers’ perspective for value creation. In
this context, it means the actual usage of the features developed. Value is
created by delivering features that are used by the users. Third, the decisions
related to selecting which features to include in the system being developed

2

are not taken into consideration in the context of this thesis. It is assumed
that the most valuable features have already been selected. The focus is in
the development process and the actual usage of the selected features. Figure
1.1 demonstrates the scope of this work in more detail.

Figure 1.1: The supplier releases new features continuously to get fast feed-
back from the users.

The diagram depicts the flow of a single new feature from development
to production usage. On the left, the supplier implements a new feature to
software. The process for choosing the features to be implemented is outside
of the scope of this work. Apparently, features with high business value
have been chosen and this decision has been made by some stakeholder of
the system, for instance, by the customer, the supplier, or the agile Product
Owner role [149]. When the development of a feature is done, the feature is
then continuously integrated with other features in the numerous execution
environments of the system (Env 1, Env 2 and Env 3 in the diagram). At
this stage, in case of continuous software engineering, the supplier gets rapid
cycle feedback from the CI system. Moreover, acceptance testing may be
performed by the customer, for instance. Finally, on the right, the new
feature is deployed to the production environment. Deployment time, which
measures the time from development done till the production deployment, is
over. This novel metric acts as a key metric in this work. Then, after a while,
a user may use the feature. The supplier then gets the feedback of the actual
usage of the feature. Some feedback can be acquired from the production
logs even without contacting the users directly. For instance, if there are
bugs in the implementation, information on them is acquired through the
logs. Moreover, information on the actual usage frequency of the features
can be acquired by mining the logs.

The goal of this work is to develop novel data-driven metrics and visual-
izations which characterize the software development process. The purpose
of the metrics and visualizations is to create a basis for improvement. The

3

proposed metrics and visualizations help to reduce cycle time [73] in order to
get rapid cycle feedback from the users to the development phase. Moreover,
the metrics developed help the development organization to guide their work
towards value creation. With the developed artifacts, the development team
is able to get information on the process. They get a novel basis for improve-
ment of the process by the information provided by the visualizations and
the metrics.

1.2 Research questions

A key constraint for the developed artifacts in this context is that the data
for them is generated automatically during the software development process.
No extra work is needed to produce the data. The research questions are:

• RQ1: What metrics help to eliminate waste in continuous software
engineering?

• RQ2: How to construct visualizations to demonstrate value creation in
continuous software engineering?

• RQ3: How to manage value creation with metrics and visualizations
based on automatically generated data?

• RQ4: Which data for metrics and visualizations is automatically gen-
erated by the tools used in software development?

The research questions are addressed with empirical evidence from an in-
dustrial context by applying a methodology consisting of several quantitative
and qualitative methods. The research has been conducted in a mid-sized
Finnish software company, Solita ltd., which provides digital business consult-
ing and services to its customers. The main research methods applied are
Action Research [4] and Design Science Research [129] with a data-driven
approach [31] and support of qualitative methods, for instance, thematic
analysis [169]. The focus in this work is in quantitative methods because of
objectivity. A data-driven approach is used in order to produce objective
information on the target of the research. Novel quantitative metrics provide
objective new information on the target of analysis. Moreover, information
visualization is a very powerful tool that extends the cognitive capabilities
of the human mind. Visual representations automatically support a large
number of perceptual inferences that are extremely easy for humans [98]. By
presenting the data visually, a high bandwidth channel from the computer to

4

the human brain is opened [98]. The combination of methodology consisting
of quantitative and qualitative approaches with the mindset of Design Sci-
ence targeting to utility, not truth [168], creates a solid methodological basis
for the work. The key artifacts of the work have been developed in an itera-
tive manner in an industrial context where the results have been constantly
validated both in the industrial context among practitioners and among the
research oriented audiences on the academic side.

There are existing solutions related to applying both information visu-
alization and metrics to software engineering data in order to improve the
process. For instance, a cumulative flow diagram (CFD) provides similar kind
of information on the development process as the visualizations presented in
the publications of this compilation. However, the artifacts developed in this
thesis, contain more information related to continuous software engineering.
For instance, cycle time is included as extra information in the visualizations
developed. Moreover, the relationship between cycle time, batch size and
feedback speed related to a parallel development process is highlighted in a
novel way in the visualizations of this work. The developed metrics and visu-
alizations construct a novel holistic basis for software process improvement.

1.3 Results and contributions

The thesis contributes towards novel metrics and visualizations for continuous
software engineering. The main results are threefold.

First, the contribution consists of a metrics framework developed. The
framework constructs a basis for continuous improvement of a software de-
velopment process. The metrics framework presented in this work helps
to manage continuous value creation in software projects. The key metric,
deployment time, can be used as a tangible tool for software process improve-
ment. Moreover, when the deployment time of thousands of features during
several years is shown in the visualizations, new insight to the evolution of
the process can be constructed.

Second, the visualization artifacts developed in this work construct a
demonstrative basis for understanding and managing a software development
process. The acquired new information can be utilized to improve the process.
For instance, feedback speed, batch size and cycle time can be evaluated
based on the visualization. For instance, a retrospective meeting of an agile
project might benefit from the novel information. Figure 1.2 is introduced
in more detail in Chapter 5. The visualization consists of a huge amount of
data concerning the deployment time of features. This kind of visual image
could be utilized for software process improvement (SPI) purposes.

5

Figure 1.2: Visualization of the reference process and the actual process.

Finally, the contribution consists of demonstrating the existence of novel
software engineering phenomena in an industrial context. For instance, con-
tinuous delivery and continuous deployment [73] have been demonstrated vi-
sually. The empirical evidence of the existence phenomena of this kind in an
industrial context is a result itself. Information visualization provides a high
bandwidth channel from the computer to the human [98]. Visual imagery
in general is a powerful cognitive system with parallel processing capabilities
while the verbal system processes sequentially [127]. For instance, in Figure
1.2, at spot #1, it is easy to point out a visual difference between the reference
software development process and the actual process. The semantics of the
long tail among other visual indicators for the characteristics of the process,
is presented in detail in Chapter 5.

1.4 Structure of thesis

The thesis is structured as follows. Chapter 2 introduces the research ap-
proach, which consists of the industrial context and the research methodol-

6

ogy applied. Chapter 3 presents the relevant background of the research field.
The definitions and existing knowledge in the field of software engineering
related to value creation, software analytics, mining software repositories and
metrics are presented. Related work is presented in Chapter 4. The results
are presented in Chapter 5 and discussed further in Chapter 6 with possi-
ble scenarios for future work. Chapter 7 presents the concluding remarks.
Finally, the publications that construct this compilation, are presented.

7

8

Chapter 2

Research approach

In this chapter, the research approach is introduced. First, the industrial
context in which this research was conducted, is introduced. Then, the re-
search methods used in this work are presented. First, we introduce Action
Research, which was used as a research approach in the publications of this
work. Then, we introduce Design Science, which targets to utility of the
results. Then, we reflect the work to different categories of theories. Finally,
qualitative methods applied are presented.

2.1 Industrial context

The research has been conducted in a mid-sized Finnish software company,
Solita ltd.1. The company provides digital business consulting and services
to its customers both in public and private sectors. During its nearly 20-year
long journey, the company has completed over 1000 projects. Some of the
projects were used as case projects in this research.

The high-tech case company has provided many state-of-the-art techno-
logical solutions available for research. The company is eagerly adopting the
newest useful technologies into use. For instance, continuous integration in-
troduced by Fowler in 2006 [52] was adopted to the organization in 2007.
Term deployment pipeline introduced by Humble and Farley in 2010 [73] was
introduced in the company in 2011. Since then, continuous delivery has been
a standard practice in the customer projects. Nowadays the company is go-
ing beyond DevOps [6] and continuously adopts new concepts. Academic
co-operation in a national Tekes2 funded Need for Speed3 research program

1http://www.solita.fi/en/
2http://www.tekes.fi/en/
3http://www.n4s.fi/en/

9

is continuously importing new knowledge from the academia to the company
and vice versa.

The role of the researcher in the case projects has been two-fold. Firstly,
the researcher has acted as a team member in some of the case projects.
The role has been to design and develop software with skilled colleagues in
customer projects. This kind of position has given good possibilities for de-
signing novel and relevant research settings. Secondly, the role has been to
conduct research in the projects. The combination of two separate roles has
provided a chance to observe the case projects extensively. Industrial data
available has provided good circumstances for acquiring the empirical evi-
dence of contemporary software engineering phenomena. A suitable research
methodology for this kind of setting is presented in the following.

2.2 Action research

Action Research is a collaborative method that can be applied to the coop-
eration of researchers and practitioners and adapt to the process [4]. Action
Research is a suitable approach for working in a complex research environ-
ment.

The key idea in Action Research is to make academic research relevant
as the researchers should try out their theories with practitioners in real
situations and real organizations [4]. Action Research consists of the following
three steps [4]: diagnosis of the problem, action intervention and reflective
learning. The first step in Action Research of diagnosing the problem consists
of creating an overall picture of the status quo. This is followed by an action
intervention and then followed by reflective learning. Action Research is
continuous and iterative in nature and stops when a satisfactory result has
been achieved.

In Action Research, the emphasis is on what practitioners do rather than
on what they say they do [4]. In software engineering, the tools the practi-
tioners use in their daily work produce a vast amount of data that can be
analyzed. The data analysis produces detailed information on what has been
actually done. In this sense, Action Research is a suitable method for the
research conducted.

In article ”Action research is similar to design science” [79], the similarities
between Action Research and Design Science are discussed. A conclusion is
drawn that Action Research and Design Science are similar. Much advice
can be taken from Design Science in the ways how to validate the Action
Research study and what to include to the study report.

10

2.3 Design science research

Science, research and design are related to each other in multiple ways [121].
One of the modern methodologies in Information Systems (IS) research is
Design Science, which has been widely adopted to the IS research commu-
nity [129]. During recent years, several researchers have succeeded in bringing
Design Science research into the IS research community, making Design Sci-
ence a promising IS research paradigm [129].

A number of researchers have provided guidance to define Design Science
[129]. Peffers et al. [129] define Design Science Research Methodology for the
production and presentation of Design Science research in IS. Peffers et al.
[129] define the key activities of applying Design Science to a research problem
by taking into account the boundary conditions, for instance the requirement
stated in [168] of addressing only important and relevant problems or the
system objectives or meta requiremenents in [170].

The activities in Design Science presented in Figure 2.1 [129] are briefly
described in the following. In the case of this research, the iterative cre-
ation of the artifact occurred in several design and development activities
together with active demonstration, evaluation and communication. The re-
sults have been continuously demonstrated, evaluated and communicated to
several professional audiences both in the industry and the academy.

Activity 1: Problem identification and motivation. In this activity, the
problem is defined and the value of a solution is justified.

Activity 2: Define the objectives for a solution. The objectives, which can
be either quantitative or qualitative, are specified. The objectives should be
inferred from the problem specification.

Activity 3: Design and development. In this activity, the actual artifact
is created. The architecture and the design of the artifact are developed.

Activity 4: Demonstration. The artifact is demonstrated in a context
where the goal is to solve one or more instances of the problem specified.

Activity 5: Evaluation. Based on the demonstration, the artifact is ob-
served and measured in order to evaluate how well it supports the solution
to the problem.

Activity 6. Communication. The problem, its importance and effective-
ness are actively communicated to researchers and other professional audi-
ences.

In the following, the iterations related to design science approach are
presented in more detail. The activities in the list are presented step by step.

11

2.4 Design science iterations

The definition of the problem occurred early in the research process during
the first publications of this compilation. The problem to be solved was to
demonstrate a software development process visually in an efficient manner
that would enable process improvement. The need emerged from the cus-
tomer project presented in Publication P4. In general, agile methodologies
put emphasis on retrospective reflection and making problems visible in order
to learn from the past. This acted as a starting point for the development of
the visualization artifact. In the first publication, the visualization artifact
was developed from a first draft to visualization I presented in Figure 2.1.

Figure 2.1: Design science Process Model applied from [129] to the iterative
development of the visualization artifact.

The design process of the visualization artifact presented in this work is
presented in Figure 2.1. The series of visualizations I, II, III, IV and V are
the result of applying the design science research methodology cycles to the
data in industrial context. The work done in Publication P4 was developed
further in Publication P5. The feedback from the previous customer case

12

project was taken as a basis for further development. In visualization II
in Figure 2.1, there were multiple data sources for the visualization. In
addition to issue management data, two more data sources were utilized.
The visualization packs a huge amount of data from a version control system
and production logs to a single visualization. At this point, the personnel
of another case project were utilized for getting feedback from professional
software engineers. In this case, there was no customer involved since the case
project was an internal product developed at the software company. Then, in
the next publication the visualization artifact was again applied to another
context. The architect of the development team gave an idea of using a
triangular shape for the visualization. This occurred after multiple feedback
sessions with the team, the project manager and the architect. Then, in
visualization IV in Figure 2.1, the existing visualization was simplified to
contain only key information. This visualization was then shown to an agile
coach in an interview with a thematic analysis. By utilizing the feedback,
visualization V with layout of a Gantt diagram could be introduced. However,
more feedback from the actual users of the visualization should be acquired
in order to develop the artifact to right direction. A suitable methodology for
future improvement could be found in the field of human computer interaction
(HCI) [35] or user experience (UX) [69].

The case projects have been a target of both demonstration and eval-
uation of the visualizations. The communication through both customer
interaction and scientific conferences have provided valuable feedback to the
further design and development work of the visualizations. Moreover, com-
munication with other stakeholders in the industrial context has provide valu-
able feedback. In all the phases shown in Figure 2.1, the feedback loop from
a single phase to the development of the artifact has been constant. Dur-
ing the iterations, the developed artifact has successfully managed to solve
the problem of demonstrating a software development process visually. The
visualization has brought new insight the target processes of the customer
cases.

The work done related to metrics in Publication P1, P2 and P3 has sup-
ported the development of the visualization artifact in two ways. Firstly, the
metrics developed provide the same information as the visualization from
a single feature point of view. The visualization artifact actually combines
multiple values of the metrics into a single figure. For instance, the horizontal
lines depicted in visualization IV in Figure 2.1 tell the value of metrics de-
velopment time presented in publication P1. The visualization packs a huge
amount of data into a single presentation which makes new inference pos-
sible. Moreover, the key metrics of the framework presented in Publication
P2 are depicted in the visualization II. For instance, the value of metric core

13

cycle (from development done to first usage of the feature) can be easily
observed from the visualization in Publication P5.

2.5 Qualitative methods applied

The methodological approaches presented in this chapter were supported by a
qualitative approach. An interview with a thematic analysis was conducted.
A thematic analysis is an approach often used for identifying, analyzing, and
reporting patterns within data in primary qualitative research [29]. Dyb̊a
et. al [29] present the concept of thematic synthesis applied to the field of
software engineering. They provide a step by step guide for applying the
method. They define the steps of extracting data, coding data, translating
the codes into themes, creating a model of higher-order themes and assessing
the trustworthiness of the synthesis.

In this work, the method of thematic analysis was applied to interpret
how the interviewed subject understands the visualizations. The results and
discussion related to the tangible findings with this method are presented in
Chapter 6.

2.6 Categories of theories

Information systems are implemented within an organization in order to im-
prove the effectiveness and efficiency of the organization [168]. Characteris-
tics of the information system in the organization and its work systems and
people together determine the extent to which that goal is achieved. Acquir-
ing such knowledge involves two complement, distinct paradigms, namely
Behavioral Science and design science [108], where the Behavioral Science
has its roots in natural science research concerning, for instance, principles
and laws that explain or predict organizational and human phenomena. This
is related to the classification presented by Gregor [60] of theory types. Ac-
cording to Gregor, there are five categories of theories:

Type I – a theory for analysis and description. The question is: ”what is”.
A theory in this category describes and classifies the features or properties
of individuals, groups, situations or events. The findings of single cases are
summed up to a more general case.

Type II – a theory for understanding. The questions are: ”how” and
”why”. There are two subtypes of theories in this category. Firstly, there
are theories that can be used to find surprising observations of phenomena.
Secondly, there are theories that contain conjectures about the reasons for

14

the events of real-world issues. Methods suitable are for instance, case study,
phenomenological and ethnographical overviews.

Type III – a theory for prediction. The question is: ”what will be”. The
causalities between the input and output may not be totally understood.
Research methods that are suitable for this kind of theories are: statistical
analysis, for example correlation and regression analysis.

Type IV – a theory for explaining and prediction. The questions are all
the questions from types I, II and III combined. Many researchers understand
this as a traditional way of a theory. The suitable research methods are:
grounded theory [22] in addition to the combination of the research methods
of type I, II and III.

Type V – a theory for planning and acting. The questions for this category
are not provided by Gregor. A theory in this class has two types of aspects.
Firstly, the methods and tools used. Secondly, the design principles including
design information and design decisions, where the latter are meant to be
included in the built artefact, method, process or system.

This work contributes towards Gregor’s categories Type I and Type II
theories. The artifacts and principles developed in this work can be used for
analysis, description and understanding about a software development pro-
cess. The patterns of the process can be revealed by the visualizations created
in this work. When the patterns and properties of the process are visible,
the process is easier to be analyzed and described. The visualizations help
to write descriptions of the process details, because they work as a graphical
reference for the verbal narratives describing the process. Furthermore, the
process can be understood better. Based on the demonstrative information
the metrics and visualizations provide, the human mind is able to create a
holistic conception of the information.

To combine the point of view presented by Gregor [60] with the design
science research presented in [168], the Type IV category of theories corre-
sponds to the behavioral-science paradigm part of explaining and predicting
organizational and human phenomena. The design science paradigm having
its roots in engineering is fundamentally a problem solving paradigm, which
focuses in creating innovations, practices and technical capabilities, and prod-
ucts through which the analysis, design, implementation, management, and
use of information systems is effectively and efficiently accomplished [33].
The creation of such artifacts relies on existing kernel theories applied by the
researcher that solves the problem.

Bock [13] presents four categories of knowledge: speculative, presump-
tive, stipulative and conclusive knowledge. The knowledge the visualizations
create is often speculative. The observations made from the holistic visual-
izations are for the most part opinions formulated by individual people. On

15

the other hand, the visualizations reveal many facts about the process, since
many of the data sources provide the very accurate data of the software
engineering events. Moreover, particularly the metrics provide stipulative
knowledge as numerical facts describing the actual low-level software engi-
neering events.

The complexity of creation of new artifacts due to the growth of knowl-
edge [13,168] forms an ecosystem where the applications of new technologies
are built on top of the existing yet novel applications. The resultant artifacts
extend the boundaries of human problem solving capabilities by providing
new intellectual and computational tools.

Design science research has an emphasis on utility while traditional sci-
entific research methods focus on truth [168]. Moreover, truth and utility are
inseparable and an artifact may have utility because of some yet unknown
truth. The research conducted in this thesis related to information visual-
ization is based on visual representations of information in order to create
a basis for communication. Moreover, visualizations help to understand the
data available and for acquiring new knowledge. In Design science, repre-
sentations have a profound impact on design work [168]. For instance, the
field of mathematics was revolutionized with the constructs defined by Arabic
numbers, zero, and place notation. Furthermore, the search for an effective
problem representation is crucial to finding a solution based on design [173].
On the other hand, theory on information visualization [21] treats visual rep-
resentations as a process for defining new languages and possibilities for other
human beings to learn the symbols and conventions of the language, and the
better we learn them, the clearer that language will be [21]. Diagrams are
effective in the same way as the written words on this page are effective – the
human brain uses its high bandwidth capabilities [98] to acquire the knowl-
edge produced with data ink [157] or the ink that represents data – text or
figures.

2.7 Summary

The research has been conducted in an industrial context. The case company
has provided a fruitful environment for empirical research and for applying
various research methods. Action Research and Design science have been
effective, iterative research methods for a complex industrial environment.
Qualitative methods have supported the other methods applied. The goal
has been to develop the utility of the designed artifacts with the chosen
methodology in an iterative and continuous manner. To get feedback, the
artifacts have been continuously demonstrated to several audiences in the

16

industry and the academy. Several feedback cycles to develop the artifacts
further have been conducted. Following the Design science methodology, the
target has been in utility of the results. The developed visualization arti-
fact has been tested with several stakeholders consisting of experts in the
field of software engineering. According to their feedback, the goal of utility
has been reached. The contributions of the research approach are related
to Gregor’s Type I and Type II categories of analyzing and understanding
phenomena in an industrial context. With the support of qualitative meth-
ods, the methodology applied in this work constructs a solid basis for the
contributions presented in this work.

17

18

Chapter 3

Background

This chapter introduces the background. First, we present continuous value
creation from software engineering point of view. We start by introducing the
topic of continuous software engineering and advance towards lean continuous
improvement. Second, software analytics is presented. We cover the topics
of data analytics, information visualization and mining software repositories.

3.1 Continuous value creation

In this section, we introduce the topic of value creation in feature-driven
software development. We continue by introducing the concepts of continuous
software engineering, continuous integration and continuous delivery. Then,
the topics of software process management and improvement are introduced.
Finally, metrics for supporting continuous improvement are introduced.

3.1.1 Value creation in software engineering

Value creation is a richly articulated research field in the software engineer-
ing community [141]. Many organizations base their software development
method on agile and lean principles [38]. Lean software development is
tightly connected with agile software development [38]. In their first book
”Lean Software Development – An Agile Toolkit” [135], Mary and Tom Pop-
pendieck present the Agile manifesto [8] as a shift of perception of value.
They state it as a shift from process to people, from documentation to code,
from contracts to collaboration and, from plans to action. In agile software
development [37], delivering business value is the heartbeat that drives, for
instance, XP projects [7]. Moreover, the key goal of the widely applied Scrum
method [149] is to deliver business value. However, while term business value

19

is used in the software intensive industry extensively, it has no rigorous def-
inition [140]. Either value creation in software engineering does not have a
single rigorous definition.

Marketing literature and practice present the idea that, especially when it
comes to services, customers play foundational roles in value creation mecha-
nisms [126]. According to service dominant logic (SDL), the customer is not
the target of value [126] but an active stakeholder in value creation and a co-
creator of value [166]. From this point of view, the supplier designs, develops
and delivers potential value and exchanges it with another stakeholder [64].
The production process of potential value overlaps with the customer’s co-
creation participation [64]. Then, through actual usage of the service, value
actualization [63] takes place. In this sense, supplier’s value facilitation is
seen as a foundation for customers’ value creation [64]. The production of
resources by the supplier generates only potential value for the customer [61].
The role of the firm is to facilitate the value creation process by providing
supporting resources for the customer’s use [155].

According to Grönroos and Voima [61], value creation refers to two points
of view, namely value-in-exchange and value-in-use. Value-in-exchange is the
value observed from the provider point of view while value-in-use emphasizes
the customers’ perspective and the actual usage of the service. Figure 3.1
presents two spheres for value creation by Grönroos and Voima [61].

Figure 3.1: Provider and customer spheres where value-in-use and value-in-
exchange occur. Source: [61].

Firstly, the provider sphere consists of steps design, development, manu-
facturing and delivery. The provider produces value that can be exchanged
with another stakeholder. Secondly, the customer sphere consists of value-
in-use i.e. usage of the service by the customer. In software engineering,

20

feature-driven development [128] is one approach to design and deliver valu-
able changes to software. Boehm [11] presents Value-Based Software Engi-
neering (VBSE) where the emphasis is in considering the value propositions
of implemented software components to various stakeholders. Boehm even
mentions visualization techniques as an approach for stakeholder value propo-
sition reconciliation.

A feature is a piece of functionality, something that delivers value to the
user [75]. Features are new functionalities or bug fixes, for instance [75].
Features are often managed in an issue management system, for instance
Jira1. Each new feature to be implemented can be presented as a single task
in the system.

In practice, features are often implemented as source code changes com-
mitted to a version control system (VCS). Earlier, centralized version control
systems, for instance RCS [156] and Subversion [26] were used. Nowadays,
distributed version control systems (DVCS), for instance Git [104], are widely
used. The impact of distributed version control systems compared with cen-
tralized in terms of committed software changes is impressive. Even 30%
higher productivity has been reported [18] by using a distributed version
control system compared with a central approach. This is achieved due to
the possibility to commit changes locally, which leads to a more fluent flow
in programming.

When the development team uses a version control system, they need a
suitable branching model. For instance, the flow branching model presented
by Driessen [36], can be chosen. In the Driessen model, new features are
implemented as separate feature branches that are merged to the develop
branch and then to a release and the master branch. By applying this kind
of a branching model, a clear separation between the commits related to
different features is achieved.

When a feature has been implemented, the changes are delivered to the
users of the system in order to actually produce value-in-use. To achieve this,
several tools and techniques presented in the following are often needed.

3.1.2 Continuous software engineering

In continuous software engineering, the release frequency has gone up [16].
Continuous software engineering resembles the concept of flow found in lean
manufacturing [49]. Adopting a continuous approach to software engineering
enables the development organizations to move towards continuous value cre-
ation with a continuous experimentation approach [45], for instance. Fitzger-

1https://www.atlassian.com/software/jira

21

ald et al. [49] state that a useful concept from the lean approach, namely that
of ’flow’, is useful in considering continuous software engineering. In continu-
ous software engineering, software development is not a sequence of discrete
activities [49]. Rather, development is a set of actions which mimic the con-
cept of lean thinking [176]. In lean thinking, value is defined by the ultimate
customer, and it is created by the producer [176]. The product is constructed
with a flow from raw material to the customer [176] as a continuous move-
ment [49].

Continuous integration

Continuous integration (CI) is a set of tools and practices that automatically
give feedback to the developers of each change committed and pushed to the
version control system (VCS) [18]. A CI system can be seen as a feedback
system for the committed change sets. Automatic commit stage testing [73]
provides the developers a short feedback cycle and a quality assurance system
for supporting the development work. The length of the feedback cycle on
the commit stage is often minutes, which makes continuous improvement
possible. In case of, for instance, a compilation error in the committed change
set, the report is available in minutes and the fix is often committed in
minutes [52]. The fundamental practices related to continuous integration
among other agile software development practices, have a strong effect on
the motivation of the development team [175]. The use of physical artifacts
to present the status quo, for example, such as interactive wall charts is
a key factor in the development team coordination and motivation [175].
Moreover, an information radiator or a screen in the team workspace showing
the information on project status, provides a practical continuous feedback
loop from the CI system to the developers [46,133]. In this sense, the use of
physical artifacts strengthens the impact of CI.

Continuous delivery and deployment

Continuous delivery builds on top of CI [51]. Continuous delivery (CD)
is a set of tools and practices to implement software in such a way that
the software can be released to production at any time [51]. Fowler [51]
introduces four criteria for continuous delivery. Firstly, software is deployable
throughout its life cycle. Secondly, team prioritizes keeping the software
deployable over working on new features. Thirdly, an automated rapid cycle
feedback on the production readiness of after any changes to the software is
present. Finally, anyone can perform a single click deployment of any version
of the software to any environment. In their experience report, Neely et

22

al. [122] accompany the criteria defined by Fowler. They define continuous
delivery as ”the ability to release software whenever we want”. Moreover,
they point out that frequency is not the key factor – it is the ability to
deploy at will. They see continuous delivery as a requirement for continuous
deployment i.e. the software is in such a condition that it can be deployed
at any time.

Humble and Farley [73] present deployment pipeline as an automated
manifestation of the process of getting software from the VCS into the hands
of the users. They define it as a holistic, end-to-end approach that holds
the build, deploy, test and release processes for delivering software. They
end up in a lean pull system where different stakeholders can deploy builds
into various environments at the push of a button. According to Leppänen
et al. [100], achieving continuous delivery comes from establishing a produc-
tized pipeline with adequate tool support and short setup time. A suitable
infrastructure enables small batches [143].

Continuous deployment, as Humble and Farley [73] put it, is a practice
where every change to the source code of a system is delivered immediately
to the hands of users. However, according to a recent mapping study by
Rodriguez et al. [145], most of the scientific literature uses the terms contin-
uous deployment and continuous delivery interchangeably. They build the
concept of CD to three major themes of deployment, continuity and speed.
Firstly, deployment means the ability of bringing valuable product features
to the customer. Secondly, continuity can be seen as the series or patterns
of deployments that aim at achieving a continuous flow. Finally, speed is
about shorter lead times. However, Fitzgerald et al. [49] argue that speed
is not everything. They refer to Taiichi Ohno’s point of view [125]: a more
consistent flow of slower continuous changes is better than a speedy race
which occasionally stops to doze. Continuous delivery aims at delivering
value continuously in smaller batches.

Figure 3.2 illustrates the difference between small and large batch sizes
presented by Reinertsen [143]. Cadence or the regular intervals when the
flow items leave the queue is different for the two processes. The visual
illustration presented is rather similarly to the visualizations presented in
this work. Reinertsen states that reducing batch size reduces cycle time and
accelerates feedback [143]. Moreover, Reinertsen considers large batch sizes
problematic: reduced efficiency, lower motivation, and exponential cost and
schedule growth. In continuous software engineering, release frequency is
higher [16], which leads to more frequent smaller batch sizes compared with
infrequent large batch sizes.

According to Reinertsen [143], we must get a deeper understanding how
queues affect development processes. As queue size increases, more capacity

23

Figure 3.2: Larger versus smaller batch size according to Reinertsen [143].

is needed to process the flow units. Reducing batch sizes has four benefits
in software development [143]. Firstly, smaller changes lead to easier debug-
ging. Secondly, fewer open bugs lead to less non value-added work and fewer
status reports, for instance. Thirdly, faster cycle time causes less refactor-
ing. Finally, early feedback produces faster learning and lower cost changes.
Based on the feedback, the developers can implement new features that the
customers or end users need [88].

As a consequence of continuous delivery and reduced cycle times or smaller
batches, users do not experience significantly more post-release bugs and the
bugs are fixed faster [87]. With continuous delivery, faster feedback cycles,
increased productivity and improved communication are achieved [73, 114].
Rapid releasing implies less time for testing and bug fixing which allows faster
time-to-market and timely user feedback [107]. In this sense, the frequency
of deployments is a key factor in software engineering. Reducing the cycle
time i.e. the time between two subsequent releases has been widely presented
in organizations in numerous white papers and blogs [145].

3.1.3 Continuous process improvement

Software process management is about successfully managing the work as-
sociated with developing, maintaining and supporting software systems [50].
The goal is often to improve the process in order to find out if the software de-
velopment organization is meeting the business objectives in an efficient way.
Software process improvement (SPI) [50] relies on understanding, planning
and assessing a software development process. The process can be observed
from several points of view – performance, stability and capability, for in-
stance [50]. Rico et al. [144] present SPI as the act of changing the software

24

engineering process, which usually leads to improved cycle time, better qual-
ity and happier customers. They point out that processes are often changed
without clear knowledge of the current status of the process. Process perfor-
mance is rarely measured and analyzed as a basis for improvement.

Resolution of the process improvement issues raises a need for the mea-
surement and analysis of the process [50]. Measurements can be used to
manage and improve a process. Florac et al. [50] present a framework for im-
proving the process consisting of six steps: clarify the business goal, identify
and prioritize issues, select and define measures, collect data, analyze process
behavior and evaluate process behavior. They emphasize the importance of
the first step, business goals. The goals should be related to cost or time
to market or quality, for instance. The goals can then be used to prioritize
the issues and selecting the measures. Data collection is an important step
where the data can be used to visualize the process including patterns and
trends [50]. The gathered information can then be used to analyze and evalu-
ate process performance. Florac et al. present several measurable attributes
of software process entities. For instance, processing time, throughput rates,
delays, length of queues and number of development hours can be measured.

According to Unterkalmsteiner et al. [159], ”Pre-post comparison” is very
common practice in software process improvement. In it, the process is eval-
uated before the SPI initiatives have been applied and after it. They state
that it is necessary to setup a baseline from which the improvements can be
measured. As Rozum et al. [147] put it: ”What quantifying measures can be
used to determine the progress of software process improvement efforts, and
what effect have those efforts had on the organization?”. They state that one
measure will typically not be able to show the overall change and benefit of
the software process improvement activities.

3.1.4 Continuous improvement in Lean Software De-
velopment

Lean Software Development refers to applying the principles of lean manufac-
turing into the context of development of software systems [135]. As Kiichiro
Toyoda, the founder of Toyota Motor Company in 1930s puts it [125]: ”I plan
to cut down on the slack time within work processes and in the shipping of
parts and materials as much as possible. As the basic principle in realizing
this plan, I will uphold the just-in-time approach. The guiding rule is not to
have goods shipped too early or too late.”. Applying the same principles to
continuous software engineering context highlights the importance of timing
of the development work and delivery.

25

The Poppendiecks present continuous improvement as a key strategy in
lean manufacturing practices [135]. Production workers are expected to stop
the line when things are not perfect, then find the root cause and fix it before
continuing manufacturing. They state that Toyota Production System [125]
started with few practices which were continuously improved over decades.
Furthermore, they state that in a similar way, in the context of software
systems, the developers should improve the system and the development
process continuously.

The Poppendiecks present waste as a key concept in lean thinking [135].
According to them, eliminating waste is a necessity. Anything that does
not add value to a product is waste [135]. For instance, if developers code
features that are not immediately needed, that is waste. They present that
the ideal is to find out what a customer wants and then develop and deliver
it immediately. They list the seven wastes of software development [135].
In this context, three of them are presented in detail from the deployment
pipeline point of view.

Figure 3.3: Three types of waste in the deployment pipeline.

Defects are waste. In this context, this type of waste is relevant from
the continuous integration point of view. The goal of CI tools and practices
is to automatically test the change sets in order to maintain high quality.
A CI system provides short cycle feedback to the developers of the possible

26

quality problems in the pipeline. Defects are effectively eliminated with the
help of automatic resources provided by the pipeline.

Waiting is waste. In this context, waiting can be considered as relevant
type of waste since the goal of continuous delivery is to deliver changes to
the software system with a short cycle. Any extra waiting in the inventories
of the deployment pipeline can be considered waste.

Extra features are waste. Fowler presents the biggest risk to any
software effort to build something that is not useful [51]. Fowler presents
user feedback as one of the most important principal benefits achieved by
applying continuous delivery. The earlier and more frequent feedback from
the real users helps evaluating how valuable the implemented features are.

Figure 3.3 presents a typical deployment pipeline and the three types of
waste which can occur. The pipeline consists of five environments: Local
(each developer has an own local environment), Dev (the common develop-
ment environment), Test (for acceptance testing), QA (Quality assurance)
and the Production environment. There could be more environments, for in-
stance, a demonstration environment for demonstration purposes. In Figure
3.3, a developer is implementing feature A into the system. The sample fea-
ture consists of three commits which are shown on the timeline of the version
control system branch. In the mean time, another developer is implement-
ing feature B. When the development of feature A is done, deployment D1
to the Dev environment is triggered automatically. When the new version
is deployed, the CI system executes automatic tests and gives commit stage
feedback to the developer. Accordingly, when feature B is done and deployed,
the CI system gives commit stage feedback of deployment D2. When the CI
system integrates the changes continuously, the waste of type defects is effec-
tively eliminated. Without the CI system, the defects would not come into
prominence in this phase and they would enter the other pipeline environ-
ments.

Next, the features are deployed to Test and QA environments. In this
phase, manual acceptance testing may occur. This is a possible source of
waste in terms of waiting. For instance, the features may have to wait for
deployment or acceptance testing. When there are no extra idle steps at this
stage, waste of type waiting is eliminated.

Finally, in Figure 3.3, the features are deployed to the production en-
vironment. In this phase, it is possible to get feedback from the users of
the system. This may help to prevent the implementation of extra features
which are not needed. Thus, waste of type extra features can be eliminated.
For instance, feature C may not be implemented based on the user feedback.
Effort can be invested to implement feature D instead, for instance.

27

3.2 Software analytics

In this section, background for software analytics is presented. Firstly, the
concepts of data analytics, software analytics, and information visualization
are introduced. Secondly, the topic of software engineering data is explored.
Then, research related to mining software repositories is introduced. Finally,
the role of metrics and software visualization is presented.

3.2.1 Data analytics

Today’s society is driven by data [160]. Tremendous amount of data is avail-
able for analysis purposes, which has led to growth of analytics in many
domains [3]. Data analytics is a widely used term which is often defined
by the intent of the activity [160], namely descriptive analytics, predictive
analytics and prescriptive analytics. Descriptive analysis [28] is a basis for
any analysis. It helps to understand the data set and phenomena related to
the history. Predictive analytics then focuses on the future, i.e. predictions
of what will happen in the future. Once the past is understood and predic-
tions can be made, prescriptive analytics, if applicable, then helps to propose
the optimal actions in order to increase the chances of achieving the finest
outcome [28].

Davenport and Harris [31] present the concept of analytics as ”extensive
use of data, statistical and quantitative analysis, explanatory and predictive
models, and fact-based management to drive decisions and actions”. The key
goal of data analytics is to support decision making.

Especially in descriptive analytics, presenting data visually is a common
practice. In the literature, there are two major disciplines of visualiza-
tion [34]. Scientific visualization refers to processing of physical data while
information visualization refers to processing of abstract data. The distinc-
tion is not obvious and the two disciplines overlap [34]. The origins of data
visualization [177] are in the statistical and scientific disciplines. Further-
more, according to Keim et al. [84], visual analytics is defined as the science
of analytical reasoning facilitated by interactive visual interfaces in [27]. They
present visual analytics as an integration of scientific and information visual-
ization with adjacent disciplines related to data mining and human computer
interaction among others [84]. The topic of information visualization as a tool
for data analytics is presented in more detail in the following.

28

3.2.2 Information visualization

Nobody has ever seen an atom, but most of us think of it as a core surrounded
by small spheres or orbital clouds [34]. Visual images help the human mind
to process and remember complex phenomena. Paivio [127] presents visual
imagery as an important cognitive system, not the language related mech-
anisms alone. Paivio over-simplifies as follows: visual imagery is a parallel
processing system while the verbal system is specialized in sequential pro-
cessing. As an example, he states ”Occasionally, when I have been required
to list the names of my colleagues from memory, I have found myself visu-
alizing the hallways in which their offices are located, systematically moving
past these offices, then picturing and naming the occupants.” Paivio presents
visual imagery as an important tool for reasoning.

The early work of Edward Tufte [157] paved the road for information
visualization as an efficient tool for constructing understanding about the
target of the visualization. Today computers are playing an important role
in information visualization and as a consequence visualization has become a
discipline of its own [34]. Card et al. [21] define information visualization as
”the use of computer-supported, interactive, visual representations of abstract
data to amplify cognition”. This definition emphasizes the importance of
computers in the visualization process. However, the definition uses term
abstract data. Which data is abstract and which is not? Is data always
an abstraction of the target entity it represents? Moreover – what is the
cognition that is amplified? Card et al. [21] use term external cognition as
the use of the external world to accomplish cognition, which is then amplified.
They state that visualizations amplify the capabilities of the human brain.
The most important ways information visualization empowers the human
cognition are: increase processing and memory resources, reduce searches,
enable pattern detection, and strengthen perceptual inference operations.

Visualization may pack a huge amount of data into a small space. The
human brain, which has huge cognitive processing capabilities can make
such inferences easy which are not easy otherwise [21]. In their classical
study, Larkin and Simon [98] illustrated three basic ways why diagrams help.
Firstly, diagrams can group information that is used together, thus large
amount of search is avoided. Secondly, diagrams often use location to group
information about an element so that matching of symbolic labels is needed.
Finally, diagrams support a large amount of perceptual inferences which are
extremely easy for humans.

Lately, vision researchers have found out that the retina of the eye already
processes the visual information, not the brain alone [56]. The retina solves a
diverse set of tasks and then sends the results explicitly to downstream brain

29

areas. Information visualization can be considered as a powerful tool that
takes the most efficient cognitive capacities of the human brain to effective
use.

The information seeking mantra presented by Schneidermann et al. [150]
presents data exploration as follows: overview first, zoom and filter, and then
details-on-demand. This way, the user of the visualization can advance from
an overview to a detailed view in an interactive manner. Moreover, Ware
et al. [172] present the ultimate goal of an interactive visualization design
so that they help us perform cognitive work more efficiently. They present
visualization as an ability to comprehend huge amounts of data. Moreover,
visualizations allow both perception of emergent properties and exploration
of both large-scale and small-scale features [172]. In addition to this, in the
work of Wijk et al. [163], visualization is seen even as a scientific discipline.

By following certain rules, for instance, the principles of ink space pre-
sented by Tufte [157], the data available can be put to an effective visual form
for allowing patterns in the data to reveal themselves. Tufte claims that good
graphical representations maximize data-ink, or the ink on a graph that rep-
resents data, and erase as much non-data-ink as possible. This maximizes
the amount of informations the visualization contains, which can then be
used for efficient reasoning.

3.2.3 Exploring software engineering data

Software engineering is a data rich activity [19]. The tools used in a software
development process generate vast amount of data to be available for analytic
purposes. Software analytics is analytics on software data for managers and
software developers [112]. The aim is to get insight on the data in order to
make better decisions. An important part of software analytics is that they
provide actionable advice for different stakeholders [112]. Software analyt-
ics aims to obtain actionable information from software artifacts that help
practitioners to accomplish tasks related to software development, systems,
and users [179]. The audience for analytic results can be e.g. developers,
managers and researches [112]. In general, software analytics employs the
following technologies [179]:

• large-scale computing to handle large scale datasets

• machine-learning-based and data-mining-enabled analysis algorithms

• information visualization to help with data analysis and presenting in-
sights.

30

The large-scale computing and machine-learning algorithms tackle the
problem of large amount of information available. Information visualization
is a tool that can be used to understand the data and to communicate the
data efficiently.

According to Keim et al., visual data mining in general is an efficient
approach to explore large datasets [118]. They state that visual data min-
ing techniques have proven to be of high value in exploratory data analysis
(EDA). According to [9] EDA is a tradition based primarily on the philo-
sophical and methodological work of John Tukey [158]. Exploratory data
analysis is an approach to learning from data in order to create understand-
ing [9]. Natrella et al. [120] present exploratory data analysis as an approach
or philosophy for data analysis that employs a variety of techniques, mostly
graphical. However, they state that EDA is not identical to statistical graph-
ics although these two terms are used interchangeably.

3.2.4 Mining software repositories

Mining Software Repositories (MSR) research focuses on analyzing various
data sources related to software engineering [68]. The aim of MSR is to
provide actionable information about software systems and projects. Hasan
et al. [68] present source control repositories, bug repositories and archived
communication as some examples of repositories for data analysis. They
state that in the mining software repositories field several repositories can be
mined to create insight on software systems and projects.

Kagdi et al. [82] state that empirical and systematic investigations in the
field of MSR uncover pertinent information, relationships and trends about
evolutionary characteristics of a system. In their literature survey on MSR,
they present a taxonomy consisting of four dimensions – the type of software
repositories mined (what), the purpose (why), the adopted methodology used
(how) and the evaluation method (quality). Such a taxonomy can assist in
the continued advancement of the field of MSR. In their literature review,
Hemmati et al. [70] extracted categorized comments which define best prac-
tices from the field since 2004. They identified several common recommen-
dations. Three of them are presented in the following. Firstly, source code
management (SCM) repositories contain a variety of noise making the vali-
dation of heuristics and assumptions essential. Secondly, when working with
issue trackers, it is best to only consider closed and fixed issues. Finally,
they mention visualization as a useful tool. For instance, they state that
visualizing SCMs, bug tracking systems and mailing lists may be helpful.

There has been a wide range of topics in MSR research [91]. For instance,
the development process of an open source project has been analyzed based

31

on version control system and communication data [116]. Another example
is defect analysis and prediction based on the version control system and
bug tracking data [47]. Hassan [68] suggests that research related to MSR
should show and demonstrate the value of data in software repositories. Field
of MSR analyzes and cross-links the rich data available in software reposi-
tories [68]. The data can be utilized to uncover interesting and actionable
information about software systems and projects. Hassan states that met-
rics related to actual time and money savings could help practitioners in
their daily activities. The need for measurement in software and systems is
ubiquitous [130]. Measurement practices are integral to basic management
activities regardless of discipline.

3.2.5 Metrics in software engineering

In their systematic literature review ”Why are industrial agile teams using
metrics and how do they use them?”, Kupiainen et al. [95] present reasons
for usage of metrics. The reasons are related to iteration planning and track-
ing, motivating, and improvement and identifying process problems among
others. Metrics for iteration planning offered help into prioritization work
by introducing estimation metrics for measuring the size of features and the
customer value (revenue) the customer is willing to pay for the features [95].
They conclude that academia has given a lot of emphasis to code metrics yet
they found a little evidence of their use in the industry. Moreover, planning
and tracking metrics were often used and a research gap in this area was
recognized. However, in their systematic literature review, Jaitly et al. [78]
point out that many metrics have been developed and utilized resulting in
remarkable success.

Another approach to categorizing metrics is presented in [115], where the
authors define the core agile metrics to include product, resource, process,
and project centered metrics. The product metrics deal with size, archi-
tectural, structure, quality, and complexity metrics. The resource metrics
are concerned with personnel (effort metrics, etc.), software, hardware, and
performance metrics. The process metrics deal with maturity, management,
and life cycle metrics, and project metrics with earned business value, cost,
time, quality, risk, and so on. Each of these submetrics can define a range
of additional metrics such as velocity, running tested feature, story points,
scope creep, function points, earned business value, return on investment,
effort estimates, and downtime. The researchers conclude that there is no
hard and fast rule on how to select metrics. Furthermore, they point out that
the teams should invent new metrics and not use a metric simply because it
is commonly used.

32

Humble and Farley [73] put emphasis on cycle time as the most important
metric related to continuous delivery by referring to Poppendiecks question:
”How long would it take your organization to deploy a change that involves
just one single line of code?” [136]. Humble and Farley claim that this metric
tells more about the process than any other metric [73].

3.2.6 Software visualization

Software visualization is a concept for applying information visualization to
the domain of software engineering [86]. Diehl et al. [34] define software
visualization as the visualization of artifacts related to the software develop-
ment process and the software itself. A wide variety of artifacts is covered
from program code and documentation to bug reporting and visualizing the
structure and behavior of the software. Software evolves over time through
program code changes to extend the functionality of the system or simply to
remove bugs [34]. The overall goal in software visualization is to improve the
productivity of the software development process [34].

In its narrower meaning, software visualization is often used interchange-
ably with program visualization which means the visualization of the software
as an executable program [154]. From this point of view, software visualiza-
tion is related to computer programs and algorithms. Moreover, according to
Petre et al. [132], software visualization uses visual representations to make
software visible. They refer to loosely distinguished themes within visual-
ization, among them information visualization, software visualization and
program or algorithm visualization.

In addition to software visualization, many researchers have been propos-
ing software evolution visualization [123]. A systematic mapping study of
software evolution visualization by Novais et al. [123] highlights software
evolution as one of the most important topics in software engineering. They
found out that authors present their visualization tools in diverse manners.
Moreover, the formal validation and collaboration in the area is missing.
They list different types of data that can be used to visualize and analyze
evolution, for instance source code management systems, bug or issue track-
ing systems, project documentation and different versions of source code
itself.

The real-world applications of visual data analysis often access informa-
tion from a number of information sources ending up in problems with data
quality [86]. Problem of integrating several data sources into a single visual
representation for visual analysis is related to many fundamental problems
in decision theory, information theory, statistics, and machine learning [86].
The challenges for visual analytics are many. For instance, user acceptabil-

33

ity, where the actual applications of developed visualizations have not taken
place due to the users’ refusal to change their working routines.

Quality problems related e.g. to data capture errors, noise, outliers, low
precision, missing values, coverage errors, clones etc. can already be con-
tained in the raw data which jeopardize the conducted visualizations [86].
Moreover, [146] point out similar flaws for data quality in software engineer-
ing research in general. However, even noisy and incomplete data can be
used as a basis for visualizations when the interpreters of the visualization
are knowledgeable of the data incompleteness.

3.2.7 Ambient visualizations

Ambient information visualization presented in [151] is information visual-
ization application that does not reside on the screen of a desktop computer,
but in the environment or periphery of the users of the visualization. In
a broader meaning, using the physical environment to present information
has been explored previously, in particular in ambient media [76], where in-
formation displays are designed to present information in the same context
where the users are located. In Toyota Production System [125] under the
name Kanban or just-in-time (JIT), visualizations have been under a debate
for decades with an objective of improving production efficiency in terms of
continuously and thoroughly eliminating waste. Kanban is a Japanese word
for ”card”, ”ticket” or ”sign” [101] used for managing the flow and production
of materials and value in a Toyta-Style ”pull” production system [101] where
a visual control device in the production area alerts the workers on defects,
equipment abnormalities, or any other problems by using signals such as
lights or audible alarms. In a similar manner, information radiators [113],
which are placed to the team workspace, can show information to the devel-
opment team. For instance, the status of CI system can be showed constantly
to the team.

3.2.8 Categorizing visualizations

Lam et al. [97] conducted an extensive literature review of over 800 visual-
ization publications and present seven distinguish categories with different
study goals and types of research questions – evaluating visual data analysis
and reasoning, evaluating user performance, evaluating user experience, eval-
uating environments and work practices, evaluating communication through
visualization, evaluating visualization algorithms, and evaluating collabora-
tive data analysis. The scenarios can be used to choose appropriate research
questions and goals for a research. Johnson et al. [80] list top scientific visu-

34

alization problems. They mention that creators of visualization technology
do not spend enough time endeavoring to understand the underlying data
they are trying to represent.

In their mapping study, Keim et al. [85] present several classifications
for visualizations. They present a classification based on the data type to
be visualized, the visualization technique, and the interaction and distortion
technique. Moreover, they present visual data exploration process as a hy-
pothesis generation process – visualizations allow the user to gain insight
into the data and come up with new hypotheses. Visualization is seen as an
iterative exploring method.

Lengler et al. [99] developed a categorization method for visualizations.
They constructed a periodic table of visualization methods to group similar
approaches. They define a visualization method as follows: ”A visualization
method is a systematic, rule-based, external, permanent, and graphic repre-
sentation that depicts information in a way that is conducive to acquiring
insights, developing an elaborate understanding, or communicating experi-
ences.”. The periodic table they developed, consists of six categories: data,
information, concept, strategy, metaphor and compound visualization. The
visualization methods in the categories are then ordered by represented infor-
mation type (process or structure), cognitive process (convergent or divergent
thinking) among other criteria. With the categorization system developed,
it is possible to group for instance Gantt [111] charts and Pert [42] charts
to the same group. Both chart types have been widely used in management
activities.

3.3 Summary

Continuous value creation in contemporary software engineering relies on
rapid cycle delivery of new features to the actual users of the system. With
continuous delivery of new features, the supplier can get the feedback of im-
plemented features with rapid cycle. This helps to gain understanding of
value-in-use, i.e., how do the users of the system adapt the new features.
A deployment pipeline with effective continuous integration and continuous
delivery tools and practices provides rapid feedback to the development or-
ganization. The numerous environments of the deployment pipeline are po-
tential sources of waste. By continuously recognizing waste in the process,
the team can improve its process. High frequency of deployments implies
smaller batch sizes.

The tools used in software development generate a huge data set which
holds detailed information about the events related to development. Min-

35

ing software repositories research focuses on providing actionable informa-
tion about software systems and projects. Metrics based on the software
engineering data can provide new insight of the development process. Infor-
mation visualization is a powerful tool for exploring data sets. Visualizations
enable the effective use of cognitive capabilities of the human brain. By
analyzing and presenting the data related to software engineering visually,
new information concerning the development process can be acquired. Such
information is possible to be shown as an ambient visualization in the team
workspace.

36

Chapter 4

Related work

We start by introducing approaches to value creation management in software
engineering. Then, metrics in software engineering are introduced. Finally,
we discover approaches and examples related to information visualization.
Some empirical work published in the Internet is included in order to con-
struct a comprehensive picture of related work in the field.

4.1 Value creation management

There are different approaches for understanding and managing value cre-
ation in software engineering. The concepts of value creation and business
value are closely related. The objective of agile work is to deliver value [67].
A systematic literature review by Racheva et al. [140] presents how business
value is created in agile projects. They found that most published stud-
ies take the concept of business value for granted. Subjective observations
of value are common. The selection of people affects to value perceived.
They found statement ”different people consider different things valuable” a
common observation. According to them, value creation should be studied
further with empirical research methods.

In their article ”Using Metrics and Diagnostics to Deliver Business Value”
[67], Hartmann et al. collect existing information measurement for agile
delivery of customer value. They state that agile software development con-
tinually measures both the product and the process used to create it. Value
creation management is built in to agile software development. They state
that software is simply inventory until its value is realized. The authors rec-
ommend choosing one key metric that drives towards value creation. The
metric should be closely tied to the economics of investment. As concrete
examples, they present two key metrics. Velocity is a very useful metric for

37

the team, and should be used during the project. The second key metric,
business value delivered, measures net cash flow per iteration. The metric
can be used in multiple phases of a project, for instance in planning and
prioritizing. With the guidance of metrics, more value can be created.

Lindgren et al. [102] studied software development as an experiment sys-
tem. They state that an experiment-driven approach to development is gain-
ing increasing attention as a way to channel limited resources to the efficient
creation of value. They found that experimentation is rarely systematic and
continuous. The study found that there was a wish to focus on customer value
creation in the case companies. Agile development practices together with
continuous integration and short release cycles had been adopted. However,
while the current development practices supported experimentation targeting
to value creation, the state of practice was not yet matured.

Fabijan et al. [44] present an iterative approach for quantifying feature
value. They present a technique for validating the value of features early in
the development process. The goal is to estimate what impact a feature will
have when fully developed. If value is perceived early in the process, the fea-
ture is further developed. The development is stopped if value creation early
in the process does not reach the goals set. With the proposed technique,
the organization can improve its value creation process.

Even the first principle of the agile manifesto focuses to value creation:
”Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.” [8]. However, finding what is valuable software
is not an easy a straightforward task. Some approaches use, for instance, web
based question and answer forum to collect information on valuable features
the customers or end-users need [105]. A literature review by Racheva et
al. [139] presents prioritization techniques in agile development. Some of the
methods used the term importance instead of value when features are pri-
oritized. They observe that knowledge of value in terms of business goals is
crucial for any prioritization process. They propose that business value is cal-
culated based on initial business value and current cost estimate. Moreover,
they put emphasis on customer collaboration.

4.2 Metrics and measurement in software pro-

cess improvement

In their systematic literature review related to the evaluation and measure-
ment of software process improvement, Unterkalmsteiner et al. [159] found
seven distinct evaluation strategies. The most common one ”Pre-post com-

38

parison” was applied in approximately half of the reviewed papers. Statis-
tical analysis, where descriptive analytics is involved, was the second one
most commonly used. Analyzing the variation of the process was a com-
mon use case. The most measured attributes were quality, cost and sched-
ule. According to Unterkalmsteiner et al., measurements most commonly
assess the short-term impact. Moreover, they state that CMMI [2] and ISO
standards [41] propose numerous measurements and metrics, however, often
without showing how the measurements are applied in practice.

In their book ”Best Practices in Software Measurement: How to use met-
rics to improve project and process performance”, Ebert et.al [39] present
metrics as a useful tool from the practitioner’s point of view. They state
that metrics have to be available timely on a push-button approach. Metrics
must be sustainable, meaningful and goal-oriented. With them, concrete, un-
derstandable objectives can be reached. They refer to Goal-Question-Metric
(GQM) approach created by Basili [5]. Basili states that measurement is a
mechanism for creating a corporate memory for answering a variety of ques-
tions related to software development. The GQM approach has three levels:
the conceptual level (goal), the operational level (question) and quantitative
level (metric) [15]. As a concrete metric, for instance, hours per function
point can be used to improve efficiency [15]. By using the GQM approach,
Mahiko et al. [109] build descriptive models of the software process. They
introduce a framework to measure and analyze the development process and
conclude that some results suggest that the architecture of the product in-
fluences the process. The goal of measurement in software development is
often to improve the process [5]. The measurement information fed back to
all stakeholders, e.g. developers, managers, customers and the corporation,
helps to understand and control the process [5]. However, measuring the
success of software process improvement is not a simple and straightforward
task but a multi-dimensional entity of multiple viewpoints [1].

Mishra et al. [115] state that process and project metrics are core agile
metrics, among others. Process metrics refer to management and life cy-
cle metrics. Project metrics describe earned business value, cost, time and
quality. They conclude that there exists a large number of metrics and that
there is no exact rules on how to select metrics for a particular project. They
define a developer centric point of view: the developer defines what he really
needs to make his project and team successful. Johnson et al. [81] present
detailed metrics for characterizing development work, among others. For in-
stance, DevTime describes how much time each developer spends in working
on each file associated with the project. They state that developers and re-
searchers must put emphasis on easily obtained, richer analytics, but in the
mean time, they should have privacy and overhead concerns in mind.

39

In general, software development process is a value creation process [140].
Therefore, metrics related to the development process measure the value
creation process. In their article, Hartmann et al. created a compilation
from various sources to suggest characteristics of good agile metrics to deliver
business value [67]. They state the first tenet of Lean Thinking [176] as:
”Define value in the eyes of the customer”. They collected 11 principles for
good metrics. Four of them are presented in the following:

• is easy to collect

• measures outcome, not output

• follows trends, not numbers.

• provides fuel for meaningful conversation

The principle of easy collection is a necessity. Johnson [81] mentions a
significant overhead cost in a manual collection process of even 500 distinct
values that developers must manually calculate. Ktata et al. [94] investigated
what agile developers need and want to measure. They mention increased
overhead activities to support data collection as one major risk of failure.
Hartmann et al. state ideal as ”one button” automation where data is drawn
directly from operational tools with low overhead. The second principle in
the list above of measuring the outcome, not output, is of ”maximizing the
amount of work not done” where the highest outcome might be achieved
by reducing planned output while maximizing delivered value. The third
principle of following trends, not numbers, is of measuring ”one level up”
where aggregated information is measured instead of optimized parts of a
whole. To summarize, metrics should measure the trend of actual outcomes in
a way that is easy to collect and is also understood and iteratively developed
with the customer. Finally, a good metric provides fuel for communication.
A good metric reveals meaningful characteristics of the target which can then
be discussed about.

From the mining software repositories (MSR) point of view, there is a wide
set of literature of using repository data for process analysis and improve-
ment. Kim et al. [90] mined repository data to analyze lead times of bugs.
They state that this metric is important for analysis. Sliwerski et al. [152]
mined version control system data and combined it to a bug database. With
this information, they are able to identify the change sets that caused the
defects. They use the size of a fix as a metric to predict the existence of
bugs. VanHilst et al. [164] mine object process metrics from repository data.
The metrics they present use data from an issue management system and

40

from a configuration management event log. They apply Little’s law [103] to
interpret the results. According to them, it is good to minimize the amount
of work in process at any given time. They conclude that objective process
metrics can be mined for analyzing the process itself. In their later work,
VanHilst et al. [165] analyze a waterfall project using repository data. They
propose a new approach to process improvement based on empirical data
and analysis. They focused in finding waste in process practices and present
various indicators of various types of waste. With their metrics and process
improvements, it is possible to reduce time to market [25] by several weeks.

In their systematic literature review of industrial studies, Kupiainen et
al. [96] studied using metrics in agile and lean software development. They
found a total number of 102 metrics. The metrics are focusing on the follow-
ing areas: sprint planning, progress tracking, software quality measurement,
fixing software process problems, and motivating people. Some examples of
the metrics are: fix time of failed build, open defects and throughput. For
instance, burndown, check-ins per day or number of automated passing test
steps were used to manage risks and to provide progress monitoring. In some
cases, metrics were used to check if project goals were achieved. According
to them, metrics were also used to motivate people. For instance, the num-
ber of defects was shown to motivate developers to fix the reported defects.
Moreover, employees’ behaviour was also changed with the metrics. In some
cases, measuring the work in progress (WIP) of developers, the focus was put
to implement only a single feature at a time. However, using metrics may
also have negative effects. Using a velocity metric had negative effect such
as cutting corners in the implementation of features. Finally, they conclude
that quality needs to be measured and problems in the process need to be
identified and fixed.

Modig et al. [117] divide the efficiency of a lean process into two different
points of view: flow efficiency and resource efficiency. Flow efficiency is the
proportion of value-added activities to all activities concerning an entity. If
flow efficiency of a flow unit is high, the flow unit flows rapidly through the
process. Resource efficiency targets to maximize the usage of resources. In
general, this means maximizing the time that resources, for instance people
or machines, spend executing their work. When resource efficiency is high,
the lead time of the flow unit through the process may be low.

The Poppendiecks [137] emphasize the importance of customer-centricity
in metrics. They present examples of these including time-to-market (in
product development) and end-to-end response time (for customer requests).
Furthermore, they present the following attributes of metrics important – the
success of a product in the marketplace, business benefits attributable to a
new system, customer time-to-market, and impact of escaped defects.

41

4.3 Usage data mining

Software vendors are unaware of how their software is performing in the
field [161]. According to Schuur et al. [161], the research community has
developed metrics to measure and quantify the quality of service based on
information on end-user usage. Schuur et al. [93] present the concept of
Software Operation Knowledge (SOK) to contain four types: performance,
quality, usage and feedback. In the context of this thesis, usage is the most
relevant point of view. It consists of knowledge how a software solution is
used by its end-users and how they use it. In their reference framework [162],
Schuur et al. state that it remains unclear how and to which extent, end-user
feedback can be used to improve vendor’s practices, processes and products.
Data on software usage [162], in this context, expressed with term usage
data, describes how software is used by the end-users and how it responds to
end-user behavior. They conclude that although software vendors consider
SOK valuable, supporting integrations and infrastructure is missing.

Data analysis is becoming a common practice among software develop-
ment teams [32] as data scientists are working alongside developers. The
purpose of data analysis is often to get insight on some aspect of the software.
Improving software user experience through A/B testing, for instance, is a
promising direction for research [32]. Moreover, testing a hypothesis about
feature usage is possible [32]. In general, data analysis and data scientists
have an emerging role in software development teams [89].

Applying data mining to software usage data reveals valuable information
on software usage and its users [40]. The data contains information on quality
of software and dynamics of software development. Guzdial implemented a
tool for deriving software usage patterns from log files based on Markov
chain analysis [65]. Log files have been analyzed to answer a wide range
of questions, for instance, usability measures and usage patterns [66]. The
authors conclude that use of visualization provides a lot of potential for
working with log files. Moreover, Zhang et al. [180] analyzed users of a
mobile Internet application based on a large data set concerning the usage.
They managed to display several usage patterns of the service.

4.4 Information visualization of software en-

gineering data

In their systematic literature review, Mattila et al. [110] state that the most
studied topics during the past six years (2016) in the field of software visual-
ization are related to software structure, behavior and evolution. According

42

to them, there is a research gap in applying information visualization to data
related to software development process or software usage data. However,
there are multiple examples of applying visualizations to the domain of soft-
ware engineering in general. Chuah et al. [23] use glyphs for demonstrating
software project management data in an efficient way. They present a vi-
sual approach to highlight interesting patterns and anomalies in the data
set. Gall et al. [54] apply information visualization for demonstrating the
release history of a software system. According to them, information visual-
ization technologies can be applied to the analysis of software evolution for
uncovering valuable information. Ohira et al. [124] collected data for soft-
ware process improvement from configuration management systems, mailing
lists and issue management systems. Then, they presented the data visually.
They mention that real-time visualizations motivated developers to fix bugs,
since people were aware that unresolved issues still exist. As a problem, they
report that visualizations can be too complicated to understand. Voinea et
al. [167] make a similar conclusion: the most critical requirement for visual
analysis tools on software repositories is simplicity. Visual techniques and
tools need to be simple to be understood.

In [174], the authors mine version control system data and examine how
developers work together. With the visualizations, they are able to find inter-
esting phases during the evolution. Moreover, Yasutaka et al. [178] propose
a tool that calculates metrics from a variety of software repositories for per-
sonal process improvement. Their retrospective tool provides information on
version control system activities and contribution.

In [30] the authors propose an approach to support the analysis of a
bug database with two visualizations. They provide two views to the data.
System radiography shows the bug database in large and helps understanding
the system products and components over time. Figure 4.1 presents the visual
approach they introduce.

The goal of the visualization they present is to understand where and
when the open bugs are concentrated. In addition to this, the bug watch
view shows the characteristics of a bug visually. Approaches to showing the
number of defects in general, and visualizing the build status in monitors
were found to lead into faster build and fix times [95].

According to [148], software development processes are often chaotic.
They propose a framework for mining the process data. With their tech-
nique, they are able to obtain process models for realistic software projects.
Fischer et al. [47] propose a solution that combines version control data and
bug system data for populating a release history database which can then be
used for querying information on release history of a project. By combining

43

Figure 4.1: System radiography view of a bug database in [30].

data describing the software development process or its release history, new
insight of the process can be constructed.

The latest advancements in the field of mining software repositories in-
troduce use of more advanced analytic methods to analyze the data. Bodo et
al. [14] apply machine learning algorithms with semi-supervised learning to-
gether with information visualization. They propose the use of visualization
techniques of multidimensional information to support the labeling process.

In agile software development, visualizations are often applied to show
progress. Scrum [149] presents the burndown chart which can be used as a
tool for evaluating progress [106]. It shows the amount of work remaining
in, for instance, story points [24]. Extrapolating lines on the burndown chart
may reveal the status of project completion early in an early phase the project
[83]. With the information the burndown chart provides, the organization is
able to get the insight of velocity [67], i.e. how many features can a team
deliver per iteration. Moreover, a burndown chart helps to understand the
workload and it indicates effectively if work is added to a sprint [10].

Cumulative flow diagram (CFD) is a method for tracking the progress of
an agile software project building upon the burndown charts [20]. It allows
further detailed understanding of the process and enables the early detection
and correction of problems [20]. Reinertsen [143] suggests the use of CFD to
monitor queues. According to Reinertsen, CFD is a useful tool for tracking
queues and process progress since it shows exactly which of the factors is the
problem in the process.

Figure 4.2 presents a CFD [143]. Reinertsen uses the diagram to demon-
strate several dimensions of the target process. First, the basis of the diagram
is the dimension of time flowing from left to right. Second, the diagram shows
the arrival of the flow units. Third, the time in queue is demonstrated. Fi-
nally, the diagram demonstrates the quantity of flow units in a queue, i.e.,

44

Figure 4.2: A cumulative flow diagram by Reinertsen [143].

the batch size. Cabri et al. [20] apply cumulative flow diagrams among other
diagram types to show earned value. According to them, earned value is a
project management technique to measure the progress and performance of
a project against the plan. Moreover, future performance can be estimated.
They state that CFDs can show the benefits of earned value concepts.

In their experience report, Greaves et al. [59] applied CFDs to an agile
software project. Figure 4.3 depicts the CFD they used as a simple mecha-
nism to measure the impact of process changes. The cumulative flow diagram
in Figure 4.3 helped the organization to drive quality improvements into the
development process. Moreover, it helped in measuring cycle time and make
predictions of defect fix rate.

Figure 4.3: A cumulative flow diagram applied in [59].

The cumulative flow diagram is also present in issue management software

45

tools commonly used. For instance, Jira1 issue management system has a
cumulative flow chart plugin. The author of the plugin [142] states that such
diagrams help in getting a conception of work in progress. Moreover, the
diagram helps to reach the goals set.

Figure 4.4: A cumulative flow diagram by Evans [43].

In his blog posting, Evans [43] applies a CFD to show the true cost of
holding software inventory. Figure 4.4 presents a ”Release steps CFD” by
Evans. According to Evans, the diagram can be used to convince an orga-
nization of the benefit of delivering small batches frequently. The diagram
contains information on a flow unit. The states of the flow unit are presented
with colors. The states are: ready, development, test, integration ready, in-
tegration, performance and released. The usage context of the diagram is a
team with very long release cycles, even months or years. Evans even presents
a calculation of cost savings for releasing small batches more often. However,
the calculation for cost savings is not a peer reviewed scientific publication.

In their experience report, Wang et al. [171] list visual tools and tech-
niques which were used in 30 experience reports published in agile software
conferences. In them, lean approaches were applied to agile software devel-
opment. In the report, CFD is mentioned as one approach to visualize the
process. Moreover, according to the report, a Kanban board which is seen
as a central communication hub among the members of the development
team [119], is a tool often used. The practitioners have used Kanban boards
successfully even in implementation of very large systems [92, 131]. Princi-

1https://www.atlassian.com/software/jira

46

ple of continuous improvement or Kaizen [72] is often tightly connected with
visual indicators [171]. Moreover, visual indicators on a timeline have been
found useful in evidence-based timelines presented by Bjarnason et al. [12].
They propose using historical data as input to project retrospectives.

4.5 Summary

There is a wide set of literature available for value creation management and
for applying metrics and visualizations to the context of software engineering.
The existing work on useful practical metrics and visualization for continuous
software engineering leaves a research gap to be filled. A novel set of metrics
and visualizations that are targeted to the context of continuous delivery and
deployment provide new meaningful tools for the research community. Novel
metrics and visualizations for filling the gap are presented in the following
chapter.

47

48

Chapter 5

Results

In this Chapter, the main results of this thesis are presented. We start by
summarizing the contributions per publication. Then, we present a synthesis
of the results. We reflect the quantitative results to the empirical evidence
gathered with qualitative methods.

5.1 Summary of contributions per publica-

tion

The thesis contributes towards novel metrics and visualizations in the field of
software engineering. Contemporary continuous software engineering relies
on tools and techniques which enable continuous delivery of valuable features
to the users of the system. The usage of development tools generates vast
amount of data available for analysis. This data provides information on the
development process. The novel metrics and visualizations based on the tool
data create new knowledge of the underlying development process. They
construct a basis for lean continuous improvement.

The empirical data from industrial context provides a solid basis for the
contributions of the publications. The data sets and industrial feedback have
enabled construction of novel metrics and visualization artifacts. The in-
dustrial data collected and demonstrated is a contribution itself. Empirical
evidence related to characteristics of contemporary software engineering phe-
nomena is a contribution from the practitioners to the research community.

A key constraint for the artifacts developed is that all data for them is
automatically generated by the tools used in the development. No extra data
collection work is needed from the development team to utilize the metrics
and visualizations. All publications rely on data-driven metrics and visualiza-

49

tions. Information visualization has been a suitable method for exploratory
data analysis which the designed artifacts are based on.

Publication P1 presents novel metrics for characterizing continuous de-
livery. Research output is definitions for three fundamental metrics: devel-
opment time, deployment time and activation time. The data for the metrics
is automatically generated by the various development tools used in contem-
porary software engineering. The publication paves road for applying lean
principles based on the information the proposed new metrics provide.

Publication P2 defines a metrics framework which measures the pro-
cess from the initial development effort up to the point of customer use and
feedback. The framework can be used to drive cycle time reduction and im-
prove value creation activities and decision making. The publication presents
metrics together with a value capture visualization which constructs a basis
for value creation management. By taking into account the usage of the in-
formation the metrics provide, cycle time reduction and more efficient value
creation is enabled.

Publication P3 applies an existing lean metric, flow efficiency, to the
context of continuous software engineering. The flow efficiency of features
flowing through the deployment pipeline was measured. The metrics can be
applied to analyze the performance and the present status of the pipeline.
The metrics provides valuable information for the team to improve the pro-
cesses and the pipeline. Applying the metrics in a continuous delivery project
setting can help to achieve a continuous flow of value delivery. Moreover, we
introduced the concept of the first usage related to a new feature delivered
through the deployment pipeline in terms of metrics.

Publication P4 uses an Action Research (AR) approach to develop
visualizations to be used as a basis for software process improvement. The
actual data mined from the issue management system of a case project can be
used to evaluate the characteristics of the development process. For instance,
the first version of the process visualization revealed a new fact in a project
setting where the sprint length was reported to be four weeks but in the
visualization the actual timeline was even 10 weeks. The visualization can
be used as a basis for software process improvement.

Publication P5 develops the process visualization further. A wider
range of software engineering development data sources are combined into
a mash-up visualization which demonstrates the software development pro-
cess. The current status of Continuous Delivery [73] can actually be seen in
the visualizations. The combination of mashing up issue management, devel-
opment and usage data makes it possible to measure the lead time from issue
creation till the actual usage of the feature. The novel visualization presented
in the publication helps to understand the value creation processes.

50

Publication P6 utilizes the process visualization artifact developed in
Publications P4 and P5. The visualization artifact is iterated one step further
to show the issue management data in a way that can be used as a basis for
the visual analysis of the process. The verbal description provided by the
team corresponds to the visual reference shape of the process. Moreover, the
transformation during a longer period of time can be visually demonstrated
with the process visualization. The visualization method developed provides
a basis for understanding and improving continuous value creation in an
efficient way.

5.2 Designed artifacts and their dependen-

cies

Table 5.1 describes a summary of the key artifacts of this work including
their dependencies. The metrics are closely related to the visualizations and
vice versa. All the artifacts rely on a data source, for instance, an issue
management system, a version control system or production logs. The data
for them is generated automatically during software engineering activities.
The tools the team uses produces a large data set which can be mined for
interpreting the phenomena related to the software development process.

The list of nine artifacts in Table 5.1 consists of metrics and visualiza-
tions. All the five metrics are related to time elapsed between certain soft-
ware engineering events with exact timestamps. Therefore, all metrics can
be drawn to a timeline. The four visualization artifacts are timeline visual-
izations based on the metrics. When a large amount of exact values for the
metrics are drawn into a single timeline visualization, the characteristics of
the underlying process are revealed. Visual representations amplify human
cognition [21]. Visualizations enable pattern detection and perceptual infer-
ence operations, for instance. The visualization artifacts in Table 5.1 enable
evaluation of characteristics of the process. For instance, cycle time, feedback
speed, batch size and the amount of simultaneous work in progress can be
evaluated. Parallel development processes are revealed. Such information
is not easily available otherwise. Furthermore, the visualizations work as a
basis for communication related to the process. Experts working in the field
of software engineering are able to understand the visualizations and con-
struct new artifacts based on the visualizations. For instance, listed in Table
5.1, artifact rectangle of unexploited potential reveals the amount of waste in
the process. The artifact was designed by an expert working in the field of

51

software engineering during the feedback cycle of the applied Design Science
method.

Figure 5.1 presents a reference visualization based on a narrative and a
visualization based on actual data from industrial context. The visualization
artifacts developed in this work help to pack huge amount of information into
a small space. The visualization artifacts developed reveal the characteristics
of the underlying software development process efficiently. The details of the
visualizations are described in detail in the following sections.

Figure 5.1: The reference process based on a narrative and the actual process
based on data.

The benefits of applying information visualization to software engineering
data are visible in Figure 5.1. Visual perceptual inferences are extremely easy
for humans. Searching similarities and differences between the reference and
actual shapes in Figure 5.1 is almost automatic. For instance, on the left
at spot #1 there seems to be a difference: there is a long tail in the actual
data. At spot #2 there seems to be a similarity: shape of a triangle with a
smaller triangle below. At spot #3, the actual curve differs from the reference
curve. The semantics of the designed artifacts and their utility for SPI, are
presented in the following.

52

Artifact Formula Questions related to
value creation

P/S

Development time DEVT How long does it take to im-
plement a new feature?

P1

Deployment time DT Suppose a feature has been
done. How long does it take
until the feature has been
deployed to the production
environment?

P1

Activation time AT A feature has been de-
ployed. How long does it
take until first user uses the
feature?

P1

Flow efficiency, an
existing metrics
from [117]

proportion of value-
adding-activities to all
activities

What is the proportion of
value-adding activities dur-
ing the life-cycle of the flow
unit?

P3

Development done
to first usage

D2FU = DT + AT Development is done. How
long does it take until the
feature is actually used?

P2

Development done
to value capture

D2VC = DT + AT +
time-to-threshold

How long does it take un-
til the invested DEVT has
been paid back?

P2

Process visualiza-
tion

Draw DT of features
to a timeline visualiza-
tion, order by release
date and done date.

Shape of the triangle
demonstrates the character-
istics of the process. (cycle
time, feedback speed, batch
size, work in progress)

P4,
P5,
P6

Rectangle of quality
assurance

Draw a process visual-
ization. Then, observe
flatness.

Is there a separate quality
assurance period in the pro-
cess?

5.4.1

Value capture visu-
alization

Draw upwards y =
DEVT, then x = DT
+ AT and y = DEVT
* 1/n, where n = num-
ber of usages

When is the invested DEVT
paid back? Enables visual
comparison of feature usage
profiles. Which features are
used frequently?

P2

Rectangle of unex-
ploited potential

Draw a value capture
visualization. Then,
observe the area be-
neath the curve.

What is the amount of
waste in the process?

5.4.2

Table 5.1: Designed artifacts and their relationships.

53

5.3 Synthesis

In this section, a synthesis of the results is presented. The synthesis consists
of metrics and visualizations presented in the publications of this compilation.
Moreover, following the design science research method principles presented
in Chapter 2, the artifacts have been developed one iteration further in Sec-
tion 5.4. We reflect the questions in Table 5.1 to recognize the value creation
mechanism related to the artifact. Then, measures to eliminate waste in the
process are presented.

5.3.1 Metrics for the process visualization

In the following sub sections, we present the metrics needed to construct the
process visualization.

Development time

The first simple metrics introduced in Table 5.1 is development time. It an-
swers to value creation related question How long does it take to implement a
new feature? Development time consists of activities related to implementa-
tion of features. For instance, programming, testing, refactoring, reviewing,
daily practices of the project, communication, specifications, checking CI sta-
tus, fixing broken unit tests etc. To put it short, development time in this
context covers activities that are mandatory to actually implement a new
feature to software with adequate quality. Figure 5.2 presents development
time with yellow color on the left of the timeline.

Figure 5.2: Synthesis – development time.

When development is done, development time ends. Definition of done
(DoD) often consists of automatic testing and pair reviewing activities. In
the context of this thesis, DoD contains an assumption that the feature is
considered to be ready for production use. Naturally, there is a risk of defects.

Measures for eliminating waste: in the context of this thesis, there are
no known measures for eliminating waste related to development time. It is
assumed that the development team does its best in close co-operation with

54

the customer in order to develop valuable new features that have been chosen
to be implemented to software. Therefore, development time is not the most
relevant metrics related to value creation in this context and it is left out from
the final process visualization we are targeting to in this narrative. However,
development time is used as a basis for other metrics.

Deployment time

Metrics deployment time measures the time elapsed from development done
till the feature has been deployed to the production environment. Figure 5.3
presents metrics deployment time visually.

Figure 5.3: Synthesis – development time and deployment time.

The line begins from the moment when development was done. Then,
after some time has passed, often days or even weeks, the feature is released
to the production environment, which stops the deployment time. During the
deployment time, quality assurance work is often performed. For instance,
the customer may perform acceptance testing to the features to be released in
the next version. Moreover, the customer is often willing to be knowledgeable
of new features implemented. Acceptance testing often has a communication
purpose. Deployment time is a key metrics to construct the visualizations
presented in this work.

Measures for eliminating waste: to shorten deployment time, perform
production deployments frequently. Plan the release schedule in co-operation
with the customer to be, for instance, once per week. Plan the customer
acceptance testing in advance and perform it efficiently. The supplier can
make decisions towards reducing deployment time in co-opeartion with the
customer.

Process visualization

Next, we advance towards artifact process visualization with a single metrics,
deployment time. At the top of Figure 5.4, there are five lines depicting
metrics deployment time of features released in two separate releases.

55

Figure 5.4: Synthesis – from metrics to process visualization.

According to the drawing rules of the process visualization, features are
sorted from bottom to top by release date and done date ascending. There-
fore, multiple features in a single release start to resemble a shape of a tri-
angle. Moreover, the number of features released in a single version is shown
as a summary at the bottom of the diagram near the timeline. At the bot-
tom of Figure 5.4, a larger amount of features is included into the reference
process visualization. The resulting triangles reveal the characteristics of the
development process. Batch size equals to the number of features in a single
released version. Feedback speed equals to the deployment time of a feature in
the release. According to the definition presented in Chapter 3, cycle time is
the time between two subsequent releases, which is presented at the bottom

56

of the visualization with vertical bars, which depict the cadence [143] or the
regular intervals of the process.

Figure 5.5: Synthesis – major version releases, parallel minor development
process and a separate bug fix release.

Figure 5.5 demonstrates the reference visualization and an actual visual-
ization based on the data set from a case project. The visualizations resemble
each other. For instance, the triangular shapes are visible in both visualiza-
tions. Therefore, cycle time, batch size and feedback speed of the released
versions can be evaluated. Moreover, at spot #1, a minor development version
in the actual data can be seen. Because of the drawing rules of the process
visualization, the triangular shape of the parallel minor development process
is drawn beneath the triangular shape of the major release. A separate minor
development process enables faster feedback. According to the definition the

57

development team used in the case project, parallel minor development does
not consist of bug fixing. Instead, it consists of rapid cycle implementation
of new features to satisfy urgent needs of the customer.

In the case project, the release cycle of major releases was approximately
one month. In addition to this, the team published minor releases in a
continuous manner. According to another study [77] described in more detail
in Section 6.3, the customer was very satisfied to this kind of dual process
solution. With the help of parallel minor versions, the end-users got their
features in a rapid manner. The communication was focused to instant value
creation. Figure 5.5 shows the reduced cycle time when a separate minor
development process is used. Moreover, feedback is faster when software is
implemented in small batches with frequent releases. In continuous software
engineering, the release frequency has gone up [16]. A consistent flow of slow,
continuous changes is better than a speedy race which occasionally stops to
doze [125].

Measures for eliminating waste with the process visualization: when the
team strives to reduce the deployment time continuously, feedback is faster.
Moreover, the process can be improved by releasing smaller versions, i.e.,
versions with small batch size. Furthermore, a separate minor development
process helps to reduce the cycle time of the process. With the visualization,
the team is knowledgeable of the effect of changes to the development process.
The team can make such decisions in, for instance, retrospective meetings.

Figure 5.6 demonstrates a rectangle of quality assurance suggested by a
testing specialist in a focus group meeting. The shape of a rectangle inside the
triangle occurs because of quality assurance work, e.g., customer acceptance
testing. When the quality assurance phase begins the developers switch
context to the implementation of features of the next release. The context
switch is presented with a small blue arrow at the top of Figure 5.6. Moreover,
the visualization shows the risk of incomplete quality assurance which is
realized as bug fixes after the major release.

The process visualization can be used as a basis for software process im-
provement. In the interview, an agile coach (described in detail in Section
5.4.2) emphasized the importance of the usefulness of the process visualization
for retrospective usage. The visualization shows how the team has managed
to improve the process in a tangbile way. Figure 5.7 shows evolution that
has happened in the case project in Publication P6 during the years.

On the left of the diagram, there is a process visualization of the devel-
opment process which the case project used in 2011. This process is referred
to as ”discontinuous delivery” since long cycle times can be observed at the
bottom of the diagram. On the right, the process has evolved towards con-
tinuous delivery. During years 2012 and 2013, the team improved the de-

58

Figure 5.6: Synthesis – Rectangle of quality assurance.

velopment process in two important ways. First, database management of
the data intensive system was improved to be automatic. Second, the team
implemented single-click deployments to the CI system, which makes the de-
ployments easy and fluent. The cycle time of the process has shortened due to
the frequent deliveries of smaller batches with faster feedback. Earlier there
was no separate parallel minor development process. The minor releases are
visible beneath the major releases. Faster feedback from the actual usage of
the features is acquired with rapid cycles.

59

Figure 5.7: Evolution of batch size, cycle time and feedback speed of the case
project.

Figure 5.8 shows a tangible direction for improvement of the current pro-
cess towards the target process.

Figure 5.8: Potential future improvement of the software development pro-
cess.

In this case, the team could improve the feedback speed of the process
towards a defined target process with fast feedback and short cycle time. The
suggested improvement in Figure 5.8 could be achieved by postponing the
implementation schedule of certain features which were implemented into an
inventory. The process visualization artifact could be useful as a basis for
software process improvement when applying SPI guidelines of, for instance,
[57] or [74].

60

5.3.2 Metrics for the value capture visualization

When the development process has been improved with the process visualiza-
tion, value creation management can be continued by taking use of the value
capture visualization. The metrics the visualization depends on are presented
in the following.

Activation time

Activation time is the time it takes until the feature is actually used by a
user in the production environment. As put in Table 5.1: a feature has
been deployed. How long does it take until the first user uses the feature? In
Publication P3, the latency measured was typically days. Figure 5.9 presents
the activation time of a single feature.

Figure 5.9: Synthesis – Metrics activation time, D2FU and D2VC.

Measures for eliminating waste: The activation time can be reduced, for
instance, by contacting the end-users directly and by asking them to use the
new features available. Moreover, informing the users of the new features,
e.g., by emailing announcements or with a popup in the user interface, may
reduce activation time. This improves the feedback speed not visible in the
process visualization.

Flow efficiency

In Publication P3, an existing metrics, flow efficiency, was applied to the con-
text of continuous software engineering. The lean metric measures how much
a flow unit is processed in a specific time frame. The amount of value-added
activities is divided by the total length of the time frame. In Publication

61

P3, value-added activity was defined strictly. The only value-added activity
was the development time of a feature. Once development was completed,
the time until the first usage in production environment (sum of deployment
time and activation time) was considered waste. The mean flow efficiency
in the case project was 34%. In other words, a feature spent two thirds of
the total time in non value-added activities such as waiting for deployment
or waiting for a user to actually use the newly released feature.

Measures for eliminating waste: reducing the deployment time and acti-
vation time improves flow efficiency. Optimization of deployment time and
activation time guides the software development organization towards a more
efficient development process with less latencies and faster feedback from the
actual users of the system. The decisions towards higher flow efficiency can
be made in co-operation of the supplier and the customer.

Development done to first usage

Table 5.1 presents a novel metrics based on activation time. Development
done to first usage (D2FU) is the sum of deployment time and activation
time (Figure 5.9). When development is done, how long does it take until the
feature is actually used?.

Measures for eliminating waste: the measures for metrics deployment
time and activation time. Metrics D2FU is conceptual. When the team
strives to acquire knowledge about how soon the implemented features are
actually used by the users, waste of type extra features [134] can be elimi-
nated. For instance, if a certain feature is not used at all, this information
may lead to decisions of leaving out other unnecessary features.

Development done to value capture

Development done to value capture (D2VC) takes the concept of value cre-
ation related metrics further. When is the invested development effort paid
back? The metrics is based on development time and the actual usage events
of the feature. The metrics measures how fast a feature acquires actual usage
to cover the invested development effort. A context-specific threshold value
for development time per times used is presented as a dotted line in Figure
5.10.

Measures for eliminating waste: the measures for metrics deployment
time and activation time. When the supplier of software informs the end-
users of the new features, waste can be eliminated, since usage of the features
reveals possible defects and produces new information on how value-in-use is
realized. The D2VC metrics helps to understand the different value creation

62

profiles of the features. If the development organization has an expected
conception of the usage frequency of a feature, the metrics helps to confirm
the conception. By continuously receiving new information on the usage of
the features, waste of type extra features can be eliminated. For instance, if a
certain set of features is used rarely, it may not be meaningful to implemented
new features related to these features.

Value capture visualization

The value capture visualization shown in Figure 5.10 helps to understand the
relationship of metrics D2VC to value creation management.

Figure 5.10: The value capture visualization.

For example, in Figure 5.10, the development effort for the sample fea-
ture at the bottom left corner was two working days (i.e. development time
from step 4 to step 5). Then, the feature was waiting for deployment (i.e.
deployment time from step 5 to step 6). Finally, the first usage of the fea-
ture occurred after two days in production in step 7 (D2FU). In this phase,
the cost ratio was 100% of development time per times used. Then, the
feature was used for the second, the third and the fourth time. The cost
ratio dropped to 50%, 33% and 25% respectively. The threshold in the case

63

project was set on such a level that approximately 10 usage times for the
sample feature were required to reach the threshold. The sample feature was
used for the tenth time approximately 30 days after the development of the
feature had been done. For all the features measured in Publication P2, the
value for D2VC varied from 15 to 50 days. This means that for some features
it took nearly two months until the feature had reached the threshold value
set.

Aho1 suggests that the area under the curve is related to the amount of
waste in the process. The longer the development takes and the longer time
it takes for the first usage to occur, the larger the amount of waste is. The
rectangle of unexploited potential for two separate features is shown in Figure
5.11.

Figure 5.11: Rectangle of unexploited potential : the area constructed by in-
vested work multiplied by the number of days the feature is waiting for first
usage.

For instance, in Figure 5.11, there are two features with different amount
of waste. According to the diagram, the development time of the feature at
the bottom left corner was 2 working days. The first usage occurred after
approximately 17 days of waiting. This, the amount of waste is 2 * 17 = 34
units. For the other feature in the diagram the amount of waste was 9 * 14
= 126 units, i.e. over three times more.

Measures for eliminating waste related to the rectangle of unexploited
potential : First, when deployment time is kept short, the area of the rectangle
of unexploited potential is smaller. Moreover, by reducing the activation
time, the metrics is improved further. By minimizing development time by,
for instance, splitting large features to multiple smaller ones, may reduce the
amount of waste in the process.

1In a private discussion

64

5.4 Feedback from the practitioners

The chosen research methodology, design science, targets to utility [168].
Therefore, the results have been actively communicated both in academic
and industrial contexts. The communication has occurred during the de-
velopment of the artifacts in the publications during the years 2012–2016.
Moreover, two more separate feedback sessions presented in the following,
have been organized to reflect the results. In the following, we introduce
practitioners feedback related to the artifacts developed.

5.4.1 Focus group meeting

Focus group is a group of people assembled in order to discuss a particular
subject of the research to reveal their opinions and thoughts [169]. A focus
group meeting was carried out in the industrial context in the case company,
Solita ltd. In the meeting, the current status of the visualization artifact
was presented. There were participants from the following roles: software
developers, testing specialists, project managers and other roles from the
software company. The output of the meeting produced new ideas to the
latest version of visualizations. For instance, a testing specialist presented
an idea of rectangle of quality assurance which is actually clearly visible in
the visualization in Figure 5.12.

Figure 5.12: The rectangle of quality assurance seen by a testing specialist
in the focus group meeting.

According to the testing specialist who participated the focus group meet-
ing, this kind of pattern (marked with a yellow square in Figure 5.12) in the
information visualization occurs when the customer starts to test the new
version to be released. At this stage, the developers switch context to the
following release (marked with a blue arrow in Figure 5.12) to implement
new features. Therefore, a flat area is constructed into the visualization.

The discussions of the focus group meeting were not analyzed by applying
any formal research method, because many of the participants have already
been familiarized with the theme of the visualizations. Therefore, the setting

65

would not have been neutral. However, another session was organized, and
the output of the session was interpreted with a qualitative method.

5.4.2 Interview of an agile coach

A separate interview session to reflect the results was organized. The subject
of the interview was an agile coach, who had started in the company a week
earlier. It can be assumed that this kind of person has a suitable mindset
for evaluating the artifacts developed without prior knowledge of the topic.
The subject was interviewed and a thematic analysis of the transcript was
conducted. The method is described in more detail in research methodology
in Chapter 2. In this case, thematic analysis was applied to interpret how
the subject understands the visualizations.

The agile coach had not seen the visualizations before, and therefore the
information visualization was totally new to the interviewed subject. The
interview session started with a presentation of the drawing rules of the
visualization. The presentation was neutral and the subject was not led
to any certain direction. Therefore, the output of the subject consisted of
spontaneous reactions to the visualizations that were presented. The result of
the analysis can be interpreted as a sample of how professional people in the
field of software engineering can understand and utilize the visualizations.

The thematic analysis revealed certain topics that were constantly re-
peated in the transcript. The textual output was tagged and common themes
were recognized according to the process of thematic analysis presented by
Braun et al. [17]. The research question behind the session was RQ2: How to
construct visualizations to demonstrate value creation in continuous software
engineering?. However, the research question was not presented to the sub-
ject, because it could have led the discussion to the theme of value creation
in continuous software engineering. The subject mentioned three important
themes in the discussion which are presented in the following with direct
quotes from the transcription of the session.

First, the visualization shows the feedback cycle from the actual usage of
the features to the development team. Such information can then be used
as a basis for future decisions. A direct quote from the transcription of the
session:

Here, a lot of new features are implemented on top of the information gathered
in this earlier phase. The feedback is got at the earliest.. exactly here. If I
try to summarize... a lot of work is lying in an inventory, and somehow, a
lot of capital, too.

66

The subject mentions high amount of implemented features lying in an
inventory with long feedback cycle. This is related to the seven wastes of
software development presented by Poppendiecks [134]. They present the
problems with batches and queues and state that the idea of lean production
is to expose problems as soon as they arise. According to them, batches
and queues hide problems. In this case, the concept of inventory and slow
feedback cycle is familiar to the agile coach and the subject can connect the
concept to the visualization.

Second, the subject mentions concurrent work and work in progress (WIP)
[92]. A direct quote from the transcription of the session:

Is it meaningful to implement this many releases at the same time? Instead,
they could release one version, get the feedback, tune the process and then the
next [version].

Modig et al. [117] present the problem of expensive context switches when
there are a lot of concurrent tasks. If more than one release is implemented
concurrently, a context switch is a possible source of waste. In the visual-
ization presented in the session, there were even six concurrent releases in
the visualization. The agile coach stated that this may be a problem in the
software development process.

Finally, the subject mentions visualizations as a good source of retrospec-
tive information for the team. A direct quote from the transcription of the
session:

They [team] would see themselves that is it really that long? [lead time]

The agile coach states that the visualization could help to set targets for
process improvement. The team could then easily see how they have been
performing during the past months. According to the coach, the team could
see the progress. For instance, they could avoid extra long lead times in the
future based on the information the visualization provides.

Moreover, the subject was missing the existence of a broader lead time in
the visualization. A direct quote from the transcription of the session:

I can not see what has been the lead time of this task.

The subject was missing the actual development time of a feature. A

67

new version of the visualization could be constructed based on this feedback.
In that version, the lead time would be visible. Then, feedback could be
collected and the visualization could be further improved.

5.5 Summary

In this Chapter, novel metrics and visualizations for managing value creation
were introduced. The data-driven artifacts construct great opportunities for
software process improvement. The key artifacts, namely metrics deploy-
ment time and Development Done to Value Capture (D2VC) together with
the process visualization and the value capture visualization help to improve
the process towards continuous value creation. With the novel artifacts, the
characteristics of the development process can be demonstrated. Based on
the new information, the process can then be improved. Moreover, the team
becomes knowledgeable of the effects of the improvement. Software devel-
opment process is a value creation process. With SPI based on the novel
artifacts, value creation is improved.

Based on the feedback from the focus group meeting and the thematic
analysis of the interview, two important points of view can be presented.
First, professional people in the field of software engineering are able to un-
derstand the semantics of the developed artifacts. They are able to evaluate
the process based on the visualizations. Second, the developed visualization
artifact is found to be useful for process improvement purposes. The artifact
could be used for setting a target to the development team and to help to
evaluate if the target has been reached.

68

Chapter 6

Discussion

In this Chapter, we discuss the results by revisiting the research questions
and reflecting the results to existing knowledge in the literature. Each re-
search question is introduced and the key results in the publications are then
discussed. Moreover, we discuss the validity, limitations and opportunities of
future work for the research.

6.1 Metrics for continuous value creation

The first research question addresses metrics for eliminating waste in contin-
uous software engineering:

RQ1: What metrics help to eliminate waste in continuous software engineer-
ing?

The research question is addressed in Publications P1, P2 and P3 where
novel metrics related to value creation in feature-driven development [128]
in the context of continuous software engineering [16] are presented. With
the proposed metrics, the development organization is able to continuously
receive new information on the value creation mechanisms of the software
development process. The presented metrics are based on mining the data
automatically generated by the various tools used in software development.

69

The metrics are based on two points of view. First, they measure value-in-
exchange [61] observed from the provider point of view. Value-in-exchange in
this context consists of activities related to development and delivery of new
features. Second, the customer centric view is important. Value-in-use [61],
i.e., the actual usage of the developed features is measured. By covering
both the spheres of value-in-exchange and value-in-use, the metrics enable
comprehensive measurement and improvement of value creation.

Publication P1 presents three novel metrics: development time, deploy-
ment time and activation time. The metrics measure latencies in the various
execution environments of the deployment pipeline.

Figure 6.1: Measuring the latencies of the deployment pipeline (modified
from Publication P1).

A typical deployment pipeline has multiple execution environments where
the software is running. New versions of software are continuously deployed
to, for instance, test and production environments. Figure 6.1 depicts a
typical pipeline with five environments.

A developer develops a new feature in a Local environment. Each de-
veloper has an own Local development environment where a version control
system tool is used. In Publication P1, metrics development time was pre-
sented. In the literature, a similar metrics related to development time is
presented by Johnson et al. [81] Metrics DevTime measures the amount of
time a developer spends to different artifacts related to the project. The
metrics is measuring the characteristics of the process on a detailed level.
The difference between development time and DevTime is related to level

70

of details included in the measurement. Development time acts on a higher
level.

The work of the members of the development team is then synchronized
in the Dev environment. When new commits are pushed to the version con-
trol system, the CI system triggers an automated build, deployment and
automatic testing. This enables rapid cycle feedback to the developers. In
their systematic literature review, Kupiainen et al. [96] present metrics re-
lated to fix time of failed build. Recovery is important in order to continue
the development work. Sliwerski et al. [152] mined both version control sys-
tem data and issue management system data. With the information they are
able to identify in detail the change sets that caused the defects. In Figure
6.1 software is then released to the Test environment. Testing, for instance,
customer acceptance testing, is executed in this phase. A quality assurance
(QA) environment can also be part of acceptance testing. Finally, a new ver-
sion is released to the Production environment. Existing metrics related to
throughput [96] can help to evaluate the througput of a deployment pipeline.

Deployment time is the time measured from the moment when the feature
was done till the moment when it was deployed to the production environ-
ment. In the literature, several related metrics are found [96], for instance,
velocity, common tempo time, task done, task’s expected end date. More-
over, according to Humble and Farley [73], cycle time is the most important
metric related to continuous delivery. They referred to Poppendiecks ques-
tion: ”How long would it take your organization to deploy a change that
involves just one single line of code?” [136]. Therefore, naturally, deploy-
ment time is not a novel metrics itself. However, the combination of metrics
and visualizations to reveal the characteristics of the target process, is novel.
There is a research gap in this field related to the combination of the research
questions of this thesis.

When the feature has been deployed to the production environment, acti-
vation time is the time it takes until the feature is actually used by a user. In
Publication P3, the value for the presented three metrics were measured in a
case project during a three month period. The longest latencies were related
to deployment time. On average, when a feature was done, it took approx-
imately two weeks to deploy it to the production environment. The extra
waiting in the various execution environments of the deployment pipeline
can be considered waste. By shortening the deployment time, waste can be
eliminated. When the team strives to optimize deployment time, the devel-
opment organization is driven to a direction where extra latencies postponing

71

the deployment are eliminated. For instance, latency in acceptance testing
may form an obstacle for releasing a new version of software. In this kind
of situation, accelerating the acceptance testing schedule may be a means of
improvement of the process. According to the observations in Publication
P3, activation time of features was short and the new features were used for
the first time with very short latency. However, in some cases, activation
time can be a source of waste and effort should be put to, for instance, ad-
vertising the new features in the user interface in order to get rapid cycle
feedback from the users.

To summarize, with the novel metrics presented, it is possible to auto-
matically gather new information concerning the development process. The
information can be utilized in decision making in order to eliminate waste in
three ways. First, metric deployment time can help to eliminate waste related
to extra latencies in the deployment pipeline. Expressed with Poppendiecks’
terminology [135] related to seven wastes of software development, reduc-
ing deployment time reduces amount of features in an inventory. Second,
activation time, helps to identify features which are not used at all. With
Poppendiecks’ terminology, extra features may be eliminated. Moreover, re-
ducing metric D2FU, which is sum of deployment time and activation time,
enables faster feedback from the actual users to the developer. Third, metric
D2VC helps to identify features which are used infrequently compared to the
amount of development effort. The metrics helps to recognize features with
high or low usage. This information can then be utilized in future decisions
in order to create value and eliminate waste. The novel metrics presented
provide new information on the process. Existing metrics related to, for
instance, throughput [96] or flow efficiency, already provide meaningful in-
formation from another point of view. The combination of the metrics and
visualization presented in the following, presents a novel approach for value
creation management.

6.2 Visualizations for continuous value cre-

ation

The second research question addresses the possibilities of information visu-
alization of software engineering data:

72

RQ2: How to construct visualizations to demonstrate value creation in con-
tinuous software engineering?

The research question is addressed in Publications P4, P5 and P6. They
construct a series of publications where a novel visualization artifact is de-
veloped. To demonstrate continuous software engineering effectively, the vi-
sualization artifact depicts the key phenomena of continuous software engi-
neering. Cycle time is seen as an important metric in continuous software
engineering [73]. Moreover, the concepts of flow and batch size are central
concepts in continuous software engineering [48]. The visualization artifact
presents information related to the key concepts effectively. The goal is to
enable continuous improvement based on the new information the visual-
ization provides on the development process. The developed visualization
artifact demonstrates several aspects of a software development process. Vi-
sual representations have multiple benefits which were introduced in detail
in Subsection 3.2.2.

The first version of the visualization artifact was developed with an Action
Research approach in Publication P4. The publication introduces a visual
representation of an agile software development process. The visualization
reveals patterns in the data which are not easy to recognize otherwise. For
instance, it characterizes the properties of a Scrum sprint [149]. The visu-
alization reveals that the sprint length of the target process is longer than
the team claims. Moreover, the flow of the features in the different phases of
development can be evaluated. The visualization reveals problems in the flow
related to a large number of parallel tasks. The observations the visualization
showed to the team were not totally new. However, the visualization provided
extra information about the phenomena regarding the development process.
For instance, the intensity of communication in the issue management sys-
tem was new information to the team. Similar timeline based visualization
approach has been applied in [30] to show where bugs are concentrated. How-
ever, the approach does not show detailed information related to the process.
There are also existing solutions that combine version control data and bug
system data [47] in order to provide information release history of a project.

Publication P5 presents a mash-up visualization that combines informa-
tion from multiple data sources. The visualization makes three software
engineering phenomena visible. First, the realization of continuous delivery
can be observed from the visualization. The visualization shows the trend
of continuous delivery based on data from the version control system. If
features are delivered continuously, the visualization demonstrates that the

73

amount of inventory (or waste) stays low. The visualization technique is sim-
ilar to the information a Kanban board contains [92, 119]. The bottlenecks
of the process are revealed in the same way. Second, the development time
and deployment time of features can be seen. The visualization uses issue
management data, version control system data and production logs as data
sources. This way, the lead time can be tracked from the initial creation
of an issue till the actual usage of a feature in the production environment.
Finally, the usage frequency of the features can be observed visually. The
visualization reveals the variance in the density of usage of features. With
this information it is possible to evaluate which new features are used and
which are not. The visualization could be used as an ambient visualization
in the team workspace in order to spread new information continuously.

In Publication P6, the visualization artifact was further developed to
demonstrate a continuous software development process. The drawing rules
to construct the visualization are presented in the following. Each task of the
issue management system is drawn on the timeline. In the issue management
system, a single new feature to be implemented can be split to multiple tasks.
Thus, a single line drawn on the timeline may present a single feature or a
part of a feature. The vertical order of the features is based on two rules.
First, the features are ordered by release date ascending from bottom to top.
Second, the features are ordered by the date they were done ascending from
bottom to top. Moreover, the trend of the amount of delivered features is
presented at the bottom of the diagram with a bar chart.

When the presented drawing rules are applied to tens or hundreds of fea-
tures, the triangular shapes described in detail in Chapter 5 are shown. The
triangles depict key attributes of the process: batch size, feedback speed and
cycle time. The batch size of a single release is depicted with the height of
the triangle. The feedback cycle is presented on the horizontal axis. The
feature that was done first in a release has the longest feedback time. Cycle
time can be easily observed in the diagram. Reinertsen [143] presents the cu-
mulative flow diagram which contains information related to queues, arrivals,
departures and cumulative quantity. Reinertsen presents example diagrams
with different kinds of shapes depicting the target process. In this sense, the
solution proposed in Publication P6 is similar Reinertsens who emphasizes
the importance of presenting process visually.

According to Reinertsen, reducing batch size reduces cycle time and ac-
celerates feedback [143]. Large batch sizes with slow feedback speed cause
problems, for instance, reduced efficiency and lower motivation [117,143].

74

A reference process shape in Figure 6.2 was constructed based on the
verbal descriptions of the team members of the case project in Publication
P6. The team reported they have a major release cycle and a parallel minor
release cycle.

Figure 6.2: A reference process shape with major and minor releases (from
Publication P6).

Figure 6.3: A version release with over 50 issues, a parallel minor development
release and two fix releases (from Publication P6).

The reference process shape presented consists of one major and two
minor releases. The larger major version release consists of tens of tasks.
The parallel minor releases are located below the major release. With this
information the development organization can find differences between the
reference process and the actual process in Figure 6.3.

75

The two visualizations can be easily compared. Based on visual observa-
tions, the actual process mimics the characteristics of the reference process.
For instance, the existence of minor development can be ensured. Moreover,
the continuity of deliveries can be estimated. With this new information,
the development team can ensure if they are following the process they have
defined. The team can find possibilities for process improvement.

Existing visualization approaches described in Chapter 4, for instance
burndown chart [106] and cumulative flow diagram (CFD) [20, 43, 143] pro-
vide partly similar information. However, the process visualization artifact
developed in this work contains additional information related to continuous
software engineering from two points of view. First, it contains informa-
tion on multiple concurrent released versions. The separate parallel minor
development versions are visible. Second, the visualization summarizes the
trend of released versions to the bottom of the diagram. The cycle time can
thus be easily observed. Such information is not easily available in existing
visualizations.

In the case project, the team reported that the visualization helped to
confirm if the quality of the actual software development process is what is
intended. According to the team, extra long lead times and number of bug
fixes after a version release are effectively revealed by the visualization. The
visualization makes it possible to compare the delivered versions. According
to the team, the visualization helps to get such an overview of the project
which is not available otherwise. The development organization can recognize
possible problems in the process with the help of visual representations. The
new information can be used in agile retrospective meetings, for instance.

By comparing the visual presentations of the processes, the improvement
over time can be perceived. For instance, in the case project, the team did
not have a separate parallel minor releases earlier. Kupiainen et al. [96] state
that Kanban approach has introduced many useful metrics, for instance, work
in progress (WIP). With the visualization, evaluating WIP is a straightfor-
ward task. In the visualizations presented in Chapter 5, WIP is revealed.
According to the agile coach interviewed in Section 5.4.2, concurrent parallel
work is efficiently expressed with the visualization. The team could improve
its process based on novel information on WIP.

Moreover, the existence of new issue management system states can be
easily perceived. Originally, there was no dedicated review state, but later
the team started to use such a state apparently since the process had evolved

76

during years and a separate step was needed for some reason. t is possible to
observe characteristics of the development process based on the information
the visualization provides. Reducing batch size reduces cycle time and accel-
erates feedback [143]. Cycle time of delivered versions can be observed and
continuity of delivery can be evaluated. For example, some released versions
have long tails which mean delayed feedback for some of the features. By
shortening the deployment time of features, the tails can be shortened. The
visualization helps to improve the process.

The graphical elements in the visualizations present real-world activity
by humans. No line would be drawn if there were no people participating in
a software project. Visualizations make the invisible visible [143]. From this
point of view, the novel visualization artifact is a tool for understanding how
human resources are actually developing software. The visualization packs a
huge amount of information on the process into a single image which provides
new information on the formerly invisible phenomena.

6.3 Managing value creation

Research question RQ3 addresses the usefulness of the developed artifacts in
value creation management:

RQ3: How to manage value creation with metrics and visualizations based
on automatically generated data?

The use of software development tools generates vast amount of data
which provides information on the development process. The metrics and
visualizations developed on top of the mined software engineering data help
to understand and manage value creation in continuous software engineer-
ing. The value creation management in this context is based on three points
of view. First, the software development process is a value creation pro-
cess [140]. By improving the software development process, value creation
is improved. In this context, this is enabled by managing the cycle time,
batch size, and feedback speed of the development process based on the in-
formation the metrics and visualizations provide. Second, value creation is
observed through the concept of value-in-use, i.e., the actual usage of the
delivered features by the users of the system. Metrics D2FU and D2VC
can be used to observe and improve value creation related to value-in-use.

77

Third, the decision of which features to implement is not included to value
creation management in this context. It is assumed that the features to be
implemented have already been selected. Only the development process and
value capture through metrics D2FU and D2VC of the features are taken
into consideration. In the following, the results are presented and discussed
from these three points of view. A synthesis of the key results related to the
novel metrics and visualizations is presented.

In Chapter 3 we found out that ”pre-post comparison” is a very common
practice in software process improvement [159]. However, a single measure
may not be able to show the overall change and benefit of SPI activities. In
this sense, a visual approach to support quantitative analysis is promising.

Publication P6 shows the evolution of the development process of the case
project. The same project was a target of another case study by Itkonen et
al. [77] where the customer and the development team were interviewed.
Both stakeholders mentioned several benefits related to value creation due
to the process evolution. The collaboration between the developers and the
customer was more active and focused on value creation. The customer was
more satisfied, because valuable new features were released frequently with
shorter latency. The developers described a better, less stressful working
environment, improved work morale and job satisfaction. The reduction
in stress levels results from the reduced risk of failing deployments because
of smaller batches delivered more frequently and elimination of additional
work related to manual deployments. In general, long queues in product
development have a negative psychological effect [143].

To summarize, value creation can be managed with the novel metrics and
visualizations by three means. First, when metric deployment time is kept
short, feedback is faster, cycle time is shorter and flow efficiency is higher.
The team can apply both the metrics and visualization to improve this metric.

Second, the visualization shows if the development process is delivering
new features continuously. The cycle time and feedback speed of the delivered
batches of new features can be observed visually. Based on this information,
process improvements can be planned. For instance, in the presented case
project, parallel minor development was a good solution for shortening the
cycle time and accelerating feedback.

Third, when the team strives to measure and improve D2VC, the focus
is put to value-in-use. Feedback from the users is acquired actively. The

78

team continuously receives new information on value creation and can make
decisions with rapid cycles.

With the metrics and visualizations the team can get such new infor-
mation on the process which is not easily available otherwise. When the
development process is driven towards the continuous delivery of new fea-
tures in small batches with fast feedback from the users, both the customer
and the developers are more satisfied. Value is created continuously.

6.4 Data sources for the data model

The fourth research question addresses the origins of beneficial software en-
gineering data. A key constraint set to the artifacts developed in this work
is that no extra work is needed to utilize them.

RQ4: Which data for metrics and visualizations is automatically generated
by the tools used in software development?

Continuous software engineering [48] relies heavily on tools. When the
development team uses the tools, a vast amount of data concerning the actual
software engineering activities is automatically generated. In the context of
this thesis, the toolset for feature-driven development [128] consists of three
separate systems. Firstly, for each feature developed, there is a task in an
issue management system. Using an issue management system is a common
practice in software projects. However, not every development project uses
an issue management system and thus this information source may not always
be available. In this context, we concentrate on development projects that
manage their work with an issue management system. Secondly, the change
sets to implement the feature are committed to a version control system.
This data can be used to track the actual development events. Finally, the
production logs are collected and mined with a monitoring platform. This
data source can be used to evaluate the actual usage of the feature, i.e.,
value-in-use presented in Subsection 3.1.1.

With the data sources presented in Figure 6.4, the life cycle of a single
feature can be tracked. The events from the beginning of the development
till the actual use in the production environment can be tracked. Figure
6.4 presents the event types and data sources for the software engineering

79

events in the context of this thesis. The data model is used as a basis for the
visualizations and metrics presented in this work.

Figure 6.4: Data model of various software engineering events and their
sources with sample systems (from Publication P4).

The key concept in the data model is a feature. It has a unique identifier
which originates from the issue management system. The data model relies
on an assumption that the same identifier is used in all tools which are used
in the development. The id can then be utilized to track the software engi-
neering activities related to a single feature. To achieve this, the development
team may have to take the use of certain practices. For instance, the id of
the issue may have to be included in commit messages.

There is a one-to-many relationship from a feature to the software engi-
neering events. Each event has a timestamp and an event type which may be
for instance a state change or a code commit to a feature. The concrete data
types of the events are related to management, development and usage of the
feature. The data sources for the different types of events at the bottom of
Figure 6.4 are: an issue management system, a version control system, and
production logs of the monitoring platform. The different event types enable
an accurate data collection mechanism concerning the life-cycle of a feature.
The events related to development, deployment and usage of the features can
be tracked accurately.

80

Figure 6.5 from Publication P1 presents a state-of-the-art deployment
pipeline based on feature branches [36]. The tools used to implement the
pipeline produce detailed data related to the life-cycle of features developed.

Figure 6.5: A deployment pipeline based on feature branches (from Publica-
tion P1).

When the developers use the various development tools related to the
deployment pipeline, data for various metrics is produced automatically. The
starting time of the development of a new feature is simply the time when
the feature branch is created. When the feature is done, the branch is closed
and then merged back to the master branch. Moreover, the deployment time
of a feature can be tracked accurately from the version control system data.
Finally, the timestamps related to the usage of a feature can be tracked from
the production logs.

Detailed data concerning the life-cycle of a feature can be stored with
the data model presented. The physical implementation of the data model,
e.g., a relational database, can then be used as a source for data analysis
concerning the software engineering activities. A more detailed description of
the physical implementation of the data model and the exact data collection
methods are presented in Publications P1, P4 and P5.

81

6.5 Validity of the research

In this section we address the trustworthy of this research, validity, credibility,
reliability and transferability to other domains. The guidelines presented by
Hevner [71] are applied to address the validity of this research. The guidelines
originally presented in [168] are:

• design as an artifact

• problem relevance

• design evaluation

• research contributions

• research rigor

• design as a search process

• communication of research.

In the following, each of the guidelines is evaluated related to the research
conducted in this work.

Design science research must produce a viable artifact. The visualization
tool developed in this work in the iterative process described in Section 2.3 is
a novel tool for understanding and managing a software development process.
The artifact has been developed in an iterative manner in the publications.
Moreover, the metrics developed in this work are viable artifacts. The data
for the metrics is collected automatically.

The objective in any design science research is to develop technological
solutions to relevant business problems. The presented solution in this work
is relevant from three points of view. Firstly, continuous improvement needs
timely information in order to be efficient. Secondly, the usage of software
development practices needs continuous attention on the development of the
practices in general. Finally, making novel software engineering concepts vis-
ible in industrial context is needful for the co-operation between practitioners
and scientists.

82

The utility, quality and efficacy of a design artifact have to be rigorously
demonstrated via well-executed evaluation methods. The iterative devel-
opment process of the artifacts in co-operation with several industrial case
projects has evolved the artifacts with rigorous evaluation methods during
the process. The spontaneous needs emerged from the case projects have
been fulfilled.

Effective design science research must provide clear and verifiable contri-
butions in the areas of the design artifact. The contributions of the research
conducted in this thesis have been concrete. The visualizations and metrics
developed have been applied in industrial project contexts and communicated
in international scientific conferences.

Design science research relies upon the application of rigorous methods
in the construction and evaluation of the artifact. The context where the
artifacts have been developed is business centric and industrial. In such an
environment accuracy of the developed artifacts have been tested by the prac-
titioners. Errors have been fixed continuously during the development work
in an iterative manner based on the statements presented by the practition-
ers.

The search process of an effective artifact requires utilizing available
means to reach desired ends while satisfying laws on the environment of the
problem. The design of the artifacts in this work has been a search problem
of finding an effective solution. An iterative approach to find solutions that
satisfy the business constraints has been used.

Finally, the seventh guideline related to the communication of the research
was fulfilled. The technology oriented audiences in the industrial context have
validated the work in an iterative manner throughout the whole research
process. The customers of the case projects have been the management-
oriented audience that has been part of communication related to the artifacts
produced in this work.

In general, the validity of quantitative research is defined in [55] by the
traditions of positivist roots as whether the research truly measures what it
was intended to measure or how truthful the research results are.

Walliman [169] defines data seen as bits of information of several levels
of abstraction, namely (from the higher level to the lower level of abstrac-
tion) theory, concepts, indicators, variables and values. In addition to this,

83

the research activities (from higher to lower level of abstraction) are defined
as follows: the main question, the sub questions, data types, data measures
and measurements. The most concrete level of the former, values of mea-
surements, define the basis of the new information created in the research.
In this thesis, the lowest level of data used in the measurements has been
collected from various tools used in the actual development work. In Figure
6.4 we defined the data model for software engineering data and its three
data sources. The issue management system data is prone to human errors,
since the system is maintained as a side-effect of the actual development
work. For instance, a developer or a customer may forget to update the issue
state when actual work has already been done. Thus, the correctness of the
visualizations presented in this work is not absolutely correct. However, it
can be assumed that the typical usage patterns of the tools provide accurate
data.

Rosli et al. in their article ”Can We Trust Our Results? A Mapping
Study on Data Quality” [146] propose a model for describing the lifecycle
of research data that goes through in a research. Their systematic mapping
study performed defines the terms used for data quality problems as miss-
ing data, noisy data, outlier, duplicate data, invalid data, incomplete data,
incorrect data, inconsistent data and inaccurate data.

Data Type / Dimensions Data source
category

Example
system

Data quality
problems

Management Data Issue manage-
ment system

Jira missing data,
duplicate data,
incomplete data,
incorrect data,
inaccurate data

Development Data Version control
system

Mercurial inaccurate data

Usage Data Monitoring plat-
form

Splunk inaccurate data

Table 6.1: Data types and their source, sample and data quality problems

Table 6.1 presents data quality problems related to this work presented
with vocabulary of the mapping study in [146]. The quality problems for
the visualization presented in this research are many. Still, an adequate
quality to present the results can be assumed since the subjects use the
tools on a day-to-day basis in a way that is rigor. For instance, the issue
management system data to create the visualizations has been collected from

84

a project setting where the team uses the tools together with the customer
in an intensive manner, which reduces the possibility of e.g. missing or
incomplete data. Moreover, some of the visualizations use version control
system data as a source. The data in the version control system reflects the
actual events during the development work. However, the actual occurrence
of the development work and the data in the version control system may vary.
For instance, the developer may write the code for the implementation of a
feature and then forget to commit the change sets. This way, the timestamps
of the actual development work done and the timestamps of the data may
differ.

Researcher bias [53] or a situation in which the researcher’s hopes and
expectations may affect the results in this kind of industrial research setting
is unavoidable thereby creating a threat to internal validity. However, the
research conducted in this thesis is quantitative in its nature thus removing
many of the problems related to qualitative research. Ethnological research
attempting to represent the totality of social, cultural and economic situation
[169] faces the problems of the ambiguous meanings of concepts and words
and terms related to them. For instance, in this context, interviewing a
development team members may result in a situation where the researcher
had one meaning to a term while the respondent had another and thus, the
epistemological considerations on for example the quality of the collected data
are many. Furthermore, any idealistic approach [169] to collect data including
human interaction is affected by several biases. In this thesis, materialism (or
reductionism) is emphasized. This results in a situation where phenomena
are independent of the social factors of the people involved.

From the epistemological point of view [62, 138, 169], an empirical ap-
proach in the industrial setting of this research instead of a rationalistic
descriptive reasoning is a clear strength of the thesis. The positivist [169] ap-
proach of this research of assuming the realism related to software engineering
as a technological field of research, leads to results that are convincing and
repeatable. The visualization methods described in this research are possible
to repeat in numerous software project settings using similar kind of toolset
for issue management, development and usage monitoring of the end-users
of the system. Moreover, in terms of transferability [58], the results related
to the domain of software engineering projects, could be extended to any
other domains using digital tools for working, in a broader sense, to any
information system.

However, the research conducted, relies heavily on relativism [169] – a

85

view of the world as a creation of the mind. The process of information
visualization is in fact a process of converting existing physical facts from
data intensive binary data format to a single visual presentation or a fig-
ure that enables the possibilities for speculative knowledge communication
performed by the human mind. Thus, the approach applied in this work
is naturally both positivism and relativism in a sense of avoiding the key
problems in post-modernism, where the meaning of words and discussion in
general are ambiguous. The visualization methods developed in this thesis,
form an ambiguous language of symbols. For instance, the shapes in the
developed visualizations represent truth in a way that is simultaneously both
self-evident, ambiguous and speculative. However, the evolution or change
of the software engineering in the visualization is self evident but only pro-
duction of the human mind.

6.6 Limitations

The research was conducted in an industrial context inside a single company.
This is a clear limitation of the research. The artifacts developed in this
research should be tested in more than one company. However, the case
projects chosen for the studies represent an adequate variety of projects as
both public and private sector projects were selected, and the size of the
projects varied. Moreover, the personnel of the case projects consisted of
different people. Therefore, the results are not limited to a homogeneous set
of exactly similar projects.

The transferability of the results is satisfactory. The tools the data used
in the process relies on are commonly used in software engineering. By using
a similar set of tools in a project setting enables the use of the developed arti-
facts. Moreover, the ideas behind the visualizations developed could possibly
be applied to other domains.

6.7 Future work

Possibilities for future work are many. The designed artifacts presented in
this work could be applied to a wider range of software projects in diverse

86

contexts. We could apparently recognize the patterns of fluent processes and
develop a tool that helps in improving the process towards a healthy and
efficient process. Based on the observations, the artifacts could be further
developed.

The visualizations could be developed further based on feedback from the
actual users of the visualizations. For instance, Gantt chart [111] could be
a suitable layout for showing the software development process data. The
amount of details in the visualizations could be either lower or higher in order
to emphasize relevant data. With feedback from the actual users of the vi-
sualizations, the developed artifacts could be improved further. Fortunately,
in Need 4 Speed1 research program we have an opportunity to collaborate
with Finnish universities. The researchers at TUT have been implementing
a visualization tool which has been published as an open source project2. We
could develop the tool further and use it to mine software engineering data
from several companies. Need 4 Speed research program is still going on for
half a year until May, 2017. This is a tangible opportunity for future work.

The publications of this thesis have also reached international interest.
The researcher was contacted by a chief technical officer (CTO) of a large
international web market platform. The CTO had read the publications and
was interested in the visualizations. Especially the visualizations of the issue
management data were considered relevant. Therefore, the developed visu-
alization artifact could be published as an open source project, for instance,
in order to reach wider audience.

Moreover, the data sources for visualizations could cover data sets related
to usage of the features in a more comprehensive way. We could apply the
visualizations as a basis for continuous experimentation where the develop-
ers could experiment in a lightweight manner. The information could be
presented directly in the development environment in order to experiment
continuously on a daily basis. Moreover, the data for the metrics could be
directly available for the developers both in the information radiator and the
development environment. Furthermore, the metrics presented could be de-
veloped further. For instance, metrics D2VC is promising but the threshold
value is not easy to use. Therefore, for instance, the threshold value could
be replaced with exact number of usages. To present this as a question: how

1http://www.n4s.fi/en/
2https://bitbucket.org/rimina/n4s-visu

87

long does it take until the feature has been used, say, 10 times? Is it one day
or 21 days? This could characterize the features.

The developed artifacts could be applied to other domains outside soft-
ware engineering. The visualization artifact developed in this work could
provide valuable information to any task-oriented development process in
any domain. The tool could provide valuable information for continuous im-
provement of any process. Moreover, the metrics presented in this work could
provide valuable information for improvement.

In the field of analytics there are many promising possibilities. For in-
stance, applying predictive analytics to the data set in order to predict future
events could be beneficial. For instance, machine learning algorithms could
help in value creation management.

88

Chapter 7

Conclusions

Visualizations and metrics presented in this thesis form a novel basis for
continuous software process improvement. Software engineering tools gen-
erate a significant amount of data which can be used for software process
improvement purposes.

We used visualizations and metrics to demonstrate the characteristics of
software development processes from an industrial context. Visual represen-
tations help to understand and evaluate the software development process.
The metrics and the visualizations presented in this thesis help to improve
value creation from three points of view.

First, the metrics deployment time in combination with the visualiza-
tion artifact developed, helps to manage cycle time, batch size and feedback
speed of the process. The visualization provides information on the underly-
ing software development process. According to the qualitative analysis, the
visualization can be understood by professionals working in the field of soft-
ware engineering. The visualization could be beneficial for agile retrospective
purposes, for instance.

Second, the novel metrics D2FU and D2VC, put focus to value-in-use.
With these metrics, the team is able to get information on the actual usage
of the features. With this information the team may put focus into value
creation. By continuously receiving new information on the usage of the
features, waste of type extra features may be eliminated. By focusing to

89

improvement of D2VC the development organization focusing to continuous
value creation.

Finally, the demonstrations of novel software engineering phenomena in
an industrial context are contributions themselves. Visualizations represent-
ing continuous delivery in industrial software projects produces new informa-
tion from the practitioners to the researchers. Moreover, the representations
of projects shifting towards continuous software engineering are compelling.
With the metrics and visualizations developed in this work, this kind of
transformation can be explained and understood more clearly.

90

Bibliography

[1] P. Abrahamsson. Measuring the success of software process improve-
ment: the dimensions. In Proceedings of the European Software Process
Improvement (EuroSPI2000) Conference, 2000.

[2] D. M. Ahern, A. Clouse, and R. Turner. CMMI distilled: a practical
introduction to integrated process improvement. Addison-Wesley Pro-
fessional, 2004.

[3] R. Akerkar. Advanced data analytics for business. Big data computing,
pages 377–379, 2013.

[4] D. E. Avison, F. Lau, M. D. Myers, and P. A. Nielsen. Action research.
Communications of the ACM, 42(1):94–97, 1999.

[5] V. R. Basili. Applying the goal/question/metric paradigm in the ex-
perience factory. Software Quality Assurance and Measurement: A
Worldwide Perspective, pages 21–44, 1993.

[6] L. Bass, I. Weber, and L. Zhu. DevOps: A Software Architect’s Per-
spective. Addison-Wesley Professional, 2015.

[7] K. Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley Professional, 2000.

[8] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and
D. Thomas. The agile manifesto. http://agilemanifesto.org, 2001.
Retrieved: November 2015.

[9] J. T. Behrens and C.-H. Yu. Exploratory data analysis. Handbook of
psychology, 2003.

91

[10] S. Berczuk. Back to basics: The role of agile principles in success with
an distributed scrum team. In Agile Conference (AGILE), 2007, pages
382–388. IEEE, 2007.

[11] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P. Grünbacher. Value-
based software engineering. Springer Science & Business Media, 2006.

[12] E. Bjarnason and B. Regnell. Evidence-based timelines for agile project
retrospectives–a method proposal. In International Conference on Agile
Software Development, pages 177–184. Springer, 2012.

[13] P. Bock and B. Scheibe. Getting it right: R & D methods for science
and engineering. Academic Press, 2001.

[14] L. Bodo, H. C. de Oliveira, F. A. Breve, and D. M. Eler. Performance
indicators analysis in software processes using semi-supervised learn-
ing with information visualization. In Information Technology: New
Generations, pages 555–568. Springer, 2016.

[15] A. Börjesson, A. Baaz, J. Pries-Heje, and M. Timmer̊as. Measuring
process innovations and improvements. In IFIP International Working
Conference on Organizational Dynamics of Technology-Based Innova-
tion, pages 197–216. Springer, 2007.

[16] J. Bosch. Continuous Software Engineering. Springer, 2014.

[17] V. Braun and V. Clarke. Using thematic analysis in psychology. Qual-
itative research in psychology, 3(2):77–101, 2006.

[18] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig. How do
centralized and distributed version control systems impact software
changes? In Proceedings of the 36th International Conference on Soft-
ware Engineering, pages 322–333. ACM, 2014.

[19] R. P. Buse and T. Zimmermann. Analytics for software development.
In Proceedings of the FSE/SDP workshop on Future of software engi-
neering research, pages 77–80. ACM, 2010.

[20] A. Cabri and M. Griffiths. Earned value and agile reporting. In AG-
ILE 2006 Conference (AGILE 2006), 23-28 July 2006, Minneapolis,
Minnesota, USA, pages 17–22, 2006.

[21] S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings in infor-
mation visualization: using vision to think. Morgan Kaufmann, 1999.

92

[22] K. Charmaz and J. Smith. Grounded theory. Qualitative psychology:
A practical guide to research methods, pages 81–110, 2003.

[23] M. C. Chuah and S. G. Eick. Information rich glyphs for software man-
agement data. Computer Graphics and Applications, IEEE, 18(4):24–
29, 1998.

[24] E. Coelho and A. Basu. Effort estimation in agile software develop-
ment using story points. International Journal of Applied Information
Systems (IJAIS), 3(7):7–10, 2012.

[25] M. A. Cohen, J. Eliasberg, and T.-H. Ho. New product development:
The performance and time-to-market tradeoff. Management Science,
42(2):173–186, 1996.

[26] B. Collins-Sussman, B. Fitzpatrick, and M. Pilato. Version control with
Subversion. O’Reilly Media, Inc., 2004.

[27] K. A. Cook and J. J. Thomas. Illuminating the path: The research
and development agenda for visual analytics. Technical report, Pacific
Northwest National Laboratory (PNNL), Richland, WA (US), 2005.

[28] A. Cooper et al. What is analytics? definition and essential character-
istics. CETIS Analytics Series, 1(5):1–10, 2012.

[29] D. S. Cruzes and T. Dyba. Recommended steps for thematic synthesis
in software engineering. In 2011 International Symposium on Empirical
Software Engineering and Measurement, pages 275–284. IEEE, 2011.

[30] M. D’Ambros, M. Lanza, and M. Pinzger. ”a bug’s life” visualizing
a bug database. In 4th IEEE International Workshop on Visualizing
Software for Understanding and Analysis (VISSOFT), pages 113–120.
IEEE, 2007.

[31] T. H. Davenport and J. G. Harris. Competing on analytics: The new
science of winning. Harvard Business Press, 2007.

[32] R. DeLine. Research opportunities for the big data era of soft-
ware engineering. In Big Data Software Engineering (BIGDSE), 2015
IEEE/ACM 1st International Workshop on, pages 26–29. IEEE, 2015.

[33] P. J. Denning. A new social contract for research. Communications of
the ACM, 40(2):132–134, 1997.

93

[34] S. Diehl. Software visualization: visualizing the structure, behaviour,
and evolution of software. Springer Science & Business Media, 2007.

[35] A. Dix. Human-computer interaction. Springer, 2009.

[36] V. Driessen. A succesful Git brancing model. http://nvie.com/

posts/a-successful-git-branching-model/. Retrieved: August
2015.

[37] T. Dyb̊a and T. Dingsøyr. Empirical studies of agile software devel-
opment: A systematic review. Information and software technology,
50(9):833–859, 2008.

[38] C. Ebert, P. Abrahamsson, and N. Oza. Lean software development.
IEEE Software, 29(5):22–25, 2012.

[39] C. Ebert, R. Dumke, M. Bundschuh, and A. Schmietendorf. Best Prac-
tices in Software Measurement: How to use metrics to improve project
and process performance. Springer Science & Business Media, 2005.

[40] M. El-Ramly and E. Stroulia. Mining software usage data. In Proceed-
ings of 1st International Workshop on Mining Software Repositories
(MSR’04), pages 64–8, 2004.

[41] K. E. Emam, W. Melo, and J.-N. Drouin. SPICE: The theory and
practice of software process improvement and capability determination.
IEEE Computer Society Press, 1997.

[42] S. D. Eppinger, D. E. Whitney, R. P. Smith, and D. A. Gebala. Orga-
nizing the tasks in complex design projects. In Computer-Aided Cooper-
ative Product Development, MIT-JSME Workshop, MIT, Cambridge,
USA, November 20/21, 1989, Proceedings, pages 229–252, 1989.

[43] G. Evans. Pattern language of flow release
steps. https://garethevans.geek.nz/2012/01/23/

pattern-language-of-flow-release-steps/, 2016. Accessed:
2016-11-10.

[44] A. Fabijan, H. H. Olsson, and J. Bosch. Early value argumentation and
prediction: an iterative approach to quantifying feature value. In In-
ternational Conference on Product-Focused Software Process Improve-
ment, pages 16–23. Springer, 2015.

94

[45] F. Fagerholm, A. S. Guinea, H. Mäenpää, and J. Münch. Building
blocks for continuous experimentation. In Proceedings of the 1st Inter-
national Workshop on Rapid Continuous Software Engineering, pages
26–35. ACM, 2014.

[46] F. Fagerholm, M. Ikonen, P. Kettunen, J. Münch, V. Roto, and
P. Abrahamsson. How do software developers experience team per-
formance in lean and agile environments? In Proceedings of the 18th
International Conference on Evaluation and Assessment in Software
Engineering, number 7. ACM, 2014.

[47] M. Fischer, M. Pinzger, and H. Gall. Populating a release history
database from version control and bug tracking systems. In Software
Maintenance, 2003. ICSM 2003. Proceedings. International Conference
on, pages 23–32. IEEE, 2003.

[48] B. Fitzgerald and K.-J. Stol. Continuous software engineering and
beyond: trends and challenges. In Proceedings of the 1st Interna-
tional Workshop on Rapid Continuous Software Engineering, pages 1–
9. ACM, 2014.

[49] B. Fitzgerald and K.-J. Stol. Continuous software engineering: A
roadmap and agenda. Journal of Systems and Software, 123:176–189,
2015.

[50] W. A. Florac and A. D. Carleton. Measuring the software process:
statistical process control for software process improvement. Addison-
Wesley Professional, 1999.

[51] M. Fowler. Continuous delivery. http://martinfowler.com/bliki/

ContinuousDelivery.html. Retrieved: June 2016.

[52] M. Fowler and M. Foemmel. Continuous integration, 2006. http://

www.martinfowler.com/articles/continuousIntegration.html,
2012. Retrieved: June 2016.

[53] J. R. Fraenkel, N. E. Wallen, and H. H. Hyun. How to design and
evaluate research in education, volume 7. McGraw-Hill New York, 1993.

[54] H. Gall, M. Jazayeri, and C. Riva. Visualizing software release histo-
ries: The use of color and third dimension. In Software Maintenance,
1999.(ICSM’99) Proceedings. IEEE International Conference on, pages
99–108. IEEE, 1999.

95

[55] N. Golafshani. Understanding reliability and validity in qualitative
research. The qualitative report, 8(4):597–606, 2003.

[56] T. Gollisch and M. Meister. Eye smarter than scientists believed: neural
computations in circuits of the retina. Neuron, 65(2):150–164, 2010.

[57] R. B. Grady. Successful software process improvement. Prentice-Hall,
Inc., 1997.

[58] U. H. Graneheim and B. Lundman. Qualitative content analysis in
nursing research: concepts, procedures and measures to achieve trust-
worthiness. Nurse education today, 24(2):105–112, 2004.

[59] K. Greaves. Taming the customer support queue. 2011.

[60] S. Gregor. The nature of theory in information systems. MIS quarterly,
30(3):611–642, 2006.

[61] C. Grönroos and P. Voima. Critical service logic: making sense of value
creation and co-creation. Journal of the Academy of Marketing Science,
41(2):133–150, 2013.

[62] E. G. Guba and Y. S. Lincoln. Epistemological and methodological
bases of naturalistic inquiry. ECTJ, 30(4):233–252, 1982.

[63] E. Gummesson. Exit services marketing-enter service marketing. Jour-
nal of Customer Behaviour, 6(2):113–141, 2007.

[64] A. Gustafsson, S. Brax, L. Witell, C. Grönroos, and P. Helle. Adopting
a service logic in manufacturing: Conceptual foundation and metrics
for mutual value creation. Journal of Service Management, 21(5):564–
590, 2010.

[65] M. Guzdial. Deriving software usage patterns from log files. 1993.

[66] M. Guzdial, P. J. Santos, A. Badre, S. E. Hudson, and M. H. Gray. An-
alyzing and visualizing log files: A computational science of usability.
1994.

[67] D. Hartmann and R. Dymond. Appropriate agile measurement: Us-
ing metrics and diagnostics to deliver business value. In AGILE 2006
Conference (AGILE 2006), 23-28 July 2006, Minneapolis, Minnesota,
USA, pages 126–134, 2006.

96

[68] A. E. Hassan. The road ahead for mining software repositories. In
Frontiers of Software Maintenance, 2008. FoSM 2008., pages 48–57.
IEEE, 2008.

[69] M. Hassenzahl and N. Tractinsky. User experience-a research agenda.
Behaviour & information technology, 25(2):91–97, 2006.

[70] H. Hemmati, S. Nadi, O. Baysal, O. Kononenko, W. Wang, R. Holmes,
and M. W. Godfrey. The msr cookbook: Mining a decade of research. In
Mining Software Repositories (MSR), 2013 10th IEEE Working Con-
ference on, pages 343–352. IEEE, 2013.

[71] A. Hevner and S. Chatterjee. Design research in information systems:
theory and practice, volume 22. Springer Science & Business Media,
2010.

[72] C. Hibbs, S. Jewett, and M. Sullivan. The art of lean software devel-
opment: a practical and incremental approach. ” O’Reilly Media, Inc.”,
2009.

[73] J. Humble and D. Farley. Continuous delivery: reliable software releases
through build, test, and deployment automation. Pearson Education,
2010.

[74] W. S. Humphrey. Managing the software process. Addison-Wesley
Longman Publishing Co., Inc., 1989.

[75] J. Hunt. Feature-driven development. Agile Software Construction,
pages 161–182, 2006.

[76] H. Ishii and B. Ullmer. Tangible bits: towards seamless interfaces
between people, bits and atoms. In Proceedings of the ACM SIGCHI
Conference on Human factors in computing systems, pages 234–241.
ACM, 1997.

[77] J. Itkonen, R. Udd, C. Lassenius, and T. Lehtonen. Perceived benefits
of adopting continuous delivery practices. In Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement, ESEM 2016, Ciudad Real, Spain, September 8-9,
2016, pages 42:1–42:6, 2016.

[78] S. Jaitly, A. K. Mishra, and L. Singh. A systematic review on the im-
pact of metrics in software process improvement. Compusoft, 3(3):624,
2014.

97

[79] P. Järvinen. Action research is similar to design science. Quality &
Quantity, 41(1):37–54, 2007.

[80] C. Johnson. Top scientific visualization research problems. Computer
graphics and applications, IEEE, 24(4):13–17, 2004.

[81] P. M. Johnson. Searching under the streetlight for useful software
analytics. IEEE Software, 30(4):57–63, 2013.

[82] H. Kagdi, M. L. Collard, and J. I. Maletic. A survey and taxonomy of
approaches for mining software repositories in the context of software
evolution. Journal of software maintenance and evolution: Research
and practice, 19(2):77–131, 2007.

[83] M. Karlesky and M. Vander Voord. Agile project management. ESC,
247(267):p4, 2008.

[84] D. Keim, G. Andrienko, J.-D. Fekete, C. Görg, J. Kohlhammer, and
G. Melançon. Visual analytics: Definition, process, and challenges.
Springer, 2008.

[85] D. Keim et al. Information visualization and visual data mining. Vi-
sualization and Computer Graphics, IEEE Transactions on, 8(1):1–8,
2002.

[86] D. Keim, F. Mansmann, J. Schneidewind, H. Ziegler, et al. Challenges
in visual data analysis. In Information Visualization, 2006. IV 2006.
Tenth International Conference on, pages 9–16. IEEE, 2006.

[87] F. Khomh, T. Dhaliwal, Y. Zou, and B. Adams. Do faster releases
improve software quality? an empirical case study of Mozilla Firefox.
In Mining Software Repositories (MSR), 2012 9th IEEE Working Con-
ference on, pages 179–188. IEEE, 2012.

[88] T. Kilamo, M. Leppänen, and T. Mikkonen. The social developer: now,
then, and tomorrow. In Proceedings of the 7th International Workshop
on Social Software Engineering, pages 41–48. ACM, 2015.

[89] M. Kim, T. Zimmermann, R. DeLine, and A. Begel. The emerging role
of data scientists on software development teams. In Proceedings of the
38th International Conference on Software Engineering, pages 96–107.
ACM, 2016.

98

[90] S. Kim and E. J. Whitehead Jr. How long did it take to fix bugs?
In Proceedings of the 2006 international workshop on Mining software
repositories, pages 173–174. ACM, 2006.

[91] S. Kim, T. Zimmermann, M. Kim, A. Hassan, A. Mockus, T. Girba,
M. Pinzger, E. J. Whitehead Jr, and A. Zeller. Ta-re: An exchange
language for mining software repositories. In Proceedings of the 2006
international workshop on Mining software repositories, pages 22–25.
ACM, 2006.

[92] H. Kniberg. Lean from the trenches: Managing large-scale projects with
Kanban. Pragmatic Bookshelf, 2011.

[93] B. Kristjánsson and H. van der Schuur. A survey of tools for soft-
ware operation knowledge acquisition. Department of Information and
Computing Sciences, Utrecht University, Tech. Rep. UU-CS-2009-028,
2009.

[94] O. Ktata and G. Lévesque. Designing and implementing a measurement
program for scrum teams: What do agile developers really need and
want? In Proceedings of the Third C* Conference on Computer Science
and Software Engineering, pages 101–107. ACM, 2010.

[95] E. Kupiainen, M. V. Mäntylä, and J. Itkonen. Why are industrial agile
teams using metrics and how do they use them? In Proceedings of the
5th International Workshop on Emerging Trends in Software Metrics,
pages 23–29. ACM, 2014.

[96] E. Kupiainen, M. V. Mäntylä, and J. Itkonen. Using metrics in agile and
lean software development–a systematic literature review of industrial
studies. Information and Software Technology, 62:143–163, 2015.

[97] H. Lam, E. Bertini, P. Isenberg, C. Plaisant, and S. Carpendale. Em-
pirical studies in information visualization: Seven scenarios. Visualiza-
tion and Computer Graphics, IEEE Transactions on, 18(9):1520–1536,
2012.

[98] J. H. Larkin and H. A. Simon. Why a diagram is (sometimes) worth
ten thousand words. Cognitive science, 11(1):65–100, 1987.

[99] R. Lengler and M. J. Eppler. Towards a periodic table of visualization
methods for management. In IASTED Proceedings of the Conference on
Graphics and Visualization in Engineering (GVE 2007), Clearwater,
Florida, USA, 2007.

99

[100] M. Leppänen, T. Kilamo, and T. Mikkonen. Towards post-agile devel-
opment practices through productized development infrastructure. In
Proceedings of the Second International Workshop on Rapid Continu-
ous Software Engineering, pages 34–40. IEEE Press, 2015.

[101] J. K. Liker. The toyota way. Esensi, 2005.

[102] E. Lindgren and J. Münch. Software development as an experiment sys-
tem: a qualitative survey on the state of the practice. In International
Conference on Agile Software Development, pages 117–128. Springer,
2015.

[103] J. D. Little and S. C. Graves. Little’s law. In Building intuition, pages
81–100. Springer, 2008.

[104] J. Loeliger and M. McCullough. Version Control with Git: Powerful
tools and techniques for collaborative software development. ”O’Reilly
Media, Inc.”, 2012.

[105] H. Mäenpää, T. Kilamo, and T. Männistö. In-between open and closed-
drawing the fine line in hybrid communities. In IFIP International
Conference on Open Source Systems, pages 134–146. Springer, 2016.

[106] V. Mahnic and N. Zabkar. Measuring progress of scrum-based software
projects. Elektronika ir Elektrotechnika, 18(8):73–76, 2012.

[107] M. V. Mäntylä, F. Khomh, B. Adams, E. Engström, and K. Pe-
tersen. On rapid releases and software testing. In Software Mainte-
nance (ICSM), 2013 29th IEEE International Conference on, pages
20–29. IEEE, 2013.

[108] S. T. March and G. F. Smith. Design and natural science research
on information technology. Decision support systems, 15(4):251–266,
1995.

[109] Y. Mashiko and V. R. Basili. Using the gqm paradigm to investigate
influential factors for software process improvement. Journal of Systems
and Software, 36(1):17–32, 1997.

[110] A.-L. Mattila, P. Ihantola, T. Kilamo, A. Luoto, M. Nurminen, and
H. Väätäjä. Software visualization today: systematic literature review.
In Proceedings of the 20th International Academic Mindtrek Confer-
ence, pages 262–271. ACM, 2016.

100

[111] H. Maylor. Beyond the Gantt chart:: Project management moving on.
European Management Journal, 19(1):92–100, 2001.

[112] T. Menzies and T. Zimmermann. Software analytics: so what? IEEE
Software, 30(4):31–37, 2013.

[113] P. Middleton and D. Joyce. Lean software management: Bbc worldwide
case study. IEEE Transactions on Engineering Management, 59(1):20–
32, 2012.

[114] A. Miller. A hundred days of continuous integration. In Agile Devel-
opment Conference, AGILE 2008, Toronto, Canda, 4-8 August 2008,
pages 289–293, 2008.

[115] S. Misra and M. Omorodion. Survey on agile metrics and their inter-
relationship with other traditional development metrics. ACM SIG-
SOFT Software Engineering Notes, 36(6):1–3, 2011.

[116] A. Mockus, R. T. Fielding, and J. Herbsleb. A case study of open
source software development: the Apache server. In Proceedings of the
22nd international conference on Software engineering, pages 263–272.
ACM, 2000.

[117] N. Modig and P. Åhlström. This is lean: Resolving the efficiency para-
dox. Rheologica, 2012.

[118] W. Müller and H. Schumann. Visual data mining. NORSIGD Info,
2:2002, 2002.

[119] S. Nakazawa and T. Tanaka. Development and application of kanban
tool visualizing the work in progress. In Advanced Applied Informatics
(IIAI-AAI), 2016 5th IIAI International Congress on, pages 908–913.
IEEE, 2016.

[120] M. Natrella, C. Croarkin, and W. Guthrie. Engineering statistics hand-
book. Statistical Engineering Division, NIST2003, 2003.

[121] J. K. Naukkarinen. What engineering scientists know and how they
know it. Towards understanding the philosophy of engineering science
in Finland. Tampereen teknillinen yliopisto. Julkaisu-Tampere Univer-
sity of Technology. Publication; 1344, 2015.

[122] S. Neely and S. Stolt. Continuous delivery? easy! just change ev-
erything (well, maybe it is not that easy). In 2013 Agile Conference,

101

AGILE 2013, Nashville, TN, USA, August 5-9, 2013, pages 121–128,
2013.

[123] R. L. Novais, A. Torres, T. S. Mendes, M. Mendonça, and N. Zaz-
worka. Software evolution visualization: A systematic mapping study.
Information and Software Technology, 55(11):1860–1883, 2013.

[124] M. Ohira, R. Yokomori, M. Sakai, K.-i. Matsumoto, K. Inoue, and
K. Torii. Empirical project monitor: A tool for mining multiple project
data. In International Workshop on Mining Software Repositories
(MSR2004), pages 42–46, 2004.

[125] T. Ohno. Toyota production system: beyond large-scale production.
CRC Press, 1988.

[126] A. Ordanini and P. Pasini. Service co-production and value co-creation:
The case for a service-oriented architecture (soa). European Manage-
ment Journal, 26(5):289–297, 2008.

[127] A. Paivio. Imagery and verbal processes. Psychology Press, 2013.

[128] S. R. Palmer and M. Felsing. A practical guide to feature-driven devel-
opment. Pearson Education, 2001.

[129] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee. A
design science research methodology for information systems research.
Journal of management information systems, 24(3):45–77, 2007.

[130] I. Pentinmaki. It measurement: practical advice from the experts.
ACM SIGSOFT Software Engineering Notes, 28(3):25–25, 2003.

[131] J. Pernst̊al, R. Feldt, and T. Gorschek. The lean gap: A review of
lean approaches to large-scale software systems development. Journal
of Systems and Software, 86(11):2797–2821, 2013.

[132] M. Petre, E. de Quincey, et al. A gentle overview of software visuali-
sation. PPIG News Letter, pages 1–10, 2006.

[133] M. Pikkarainen and A. Mäntyniemi. An approach for using CMMI in
agile software development assessments: experiences from three case
studies. In 6th International SPICE Conference on Software Process
Improvement and Capability Determination, 2006.

102

[134] M. Poppendieck. Lean software development. In Companion to the pro-
ceedings of the 29th International Conference on Software Engineering,
pages 165–166. IEEE Computer Society, 2007.

[135] M. Poppendieck and T. Poppendieck. Lean software development: an
agile toolkit. Addison-Wesley Professional, 2003.

[136] M. Poppendieck and T. Poppendieck. Implementing lean software de-
velopment: from concept to cash. Pearson Education, 2007.

[137] M. Poppendieck and T. Poppendieck. Leading lean software develop-
ment: Results are not the point. Pearson Education, 2009.

[138] K. Popper. The logic of scientific discovery. Routledge, 2005.

[139] Z. Racheva, M. Daneva, and L. Buglione. Supporting the dynamic
reprioritization of requirements in agile development of software prod-
ucts. In Software Product Management, 2008. IWSPM’08. Second In-
ternational Workshop on, pages 49–58. IEEE, 2008.

[140] Z. Racheva, M. Daneva, and K. Sikkel. Value creation by agile projects:
methodology or mystery? In Product-Focused Software Process Im-
provement, pages 141–155. Springer, 2009.

[141] Z. Racheva, M. Daneva, K. Sikkel, and L. Buglione. Business value
is not only dollars–results from case study research on agile software
projects. In Product-Focused Software Process Improvement, pages
131–145. Springer, 2010.

[142] Reese. Jira junkie: Cumulative flow chart: aka a scrummas-
ters dirty little secret! http://jirajunkie.blogspot.fi/2012/06/

cumulative-flow-chart-scrummasters.html, 2012. Accessed: 2016-
11-15.

[143] D. G. Reinertsen. The principles of product development flow: second
generation lean product development, volume 62. Celeritas Redondo
Beach, 2009.

[144] D. F. Rico. ROI of software process improvement: Metrics for project
managers and software engineers. J. Ross Publishing, 2004.

[145] P. Rodŕıguez, A. Haghighatkhah, L. E. Lwakatare, S. Teppola, T. Suo-
malainen, J. Eskeli, T. Karvonen, P. Kuvaja, J. M. Verner, and
M. Oivo. Continuous deployment of software intensive products and

103

services: A systematic mapping study. Journal of Systems and Soft-
ware, 123:263–291, 2016.

[146] M. Rosli. Can we trust our results? a mapping study on data quality.
In Software Engineering Conference (APSEC), 2013 20th Asia-Pacific,
pages 116–123, Dec 2013.

[147] J. A. Rozum. Concepts on measuring the benefits of software process
improvements. Technical report, DTIC Document, 1993.

[148] V. Rubin, C. W. Günther, W. M. Van Der Aalst, E. Kindler, B. F.
Van Dongen, and W. Schäfer. Process mining framework for software
processes. In International Conference on Software Process, pages 169–
181. Springer, 2007.

[149] K. Schwaber and M. Beedle. Agile software development with scrum.
2001. Upper Saddle River, NJ, 2003.

[150] B. Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In Visual Languages, 1996. Proceedings.,
IEEE Symposium on, pages 336–343. IEEE, 1996.

[151] T. Skog, S. Ljungblad, and L. E. Holmquist. Between aesthetics and
utility: designing ambient information visualizations. In Information
Visualization, 2003. INFOVIS 2003. IEEE Symposium on, pages 233–
240. IEEE, 2003.

[152] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce
fixes? In ACM sigsoft software engineering notes, volume 30, pages
1–5. ACM, 2005.

[153] M. Staron, J. Hansson, R. Feldt, W. Meding, A. Henriksson, S. Nilsson,
and C. Hoglund. Measuring and visualizing code stability–a case study
at three companies. In Software Measurement and the 2013 Eighth In-
ternational Conference on Software Process and Product Measurement
(IWSM-MENSURA), 2013 Joint Conference of the 23rd International
Workshop on, pages 191–200. IEEE, 2013.

[154] J. Stasko. Software visualization: Programming as a multimedia expe-
rience. MIT press, 1998.

[155] G. Svensson and C. Grönroos. Service logic revisited: who creates
value? and who co-creates? European business review, 20(4):298–314,
2008.

104

[156] W. F. Tichy. RCS – a system for version control. Software: Practice
and Experience, 15(7):637–654, 1985.

[157] E. R. Tufte. The visual display of quantitative information. Graphics
Press, 1992.

[158] J. W. Tukey. Exploratory data analysis. Reading, Mass., 1977.

[159] M. Unterkalmsteiner, T. Gorschek, A. M. Islam, C. K. Cheng, R. B.
Permadi, and R. Feldt. Evaluation and measurement of software pro-
cess improvement a systematic literature review. IEEE Transactions
on Software Engineering, 38(2):398–424, 2012.

[160] A. Van Barneveld, K. E. Arnold, and J. P. Campbell. Analytics
in higher education: Establishing a common language. EDUCAUSE
learning initiative, 1:1–11, 2012.

[161] H. Van Der Schuur, S. Jansen, and S. Brinkkemper. Becoming respon-
sive to service usage and performance changes by applying service feed-
back metrics to software maintenance. In 2008 23rd IEEE/ACM Inter-
national Conference on Automated Software Engineering-Workshops,
pages 53–62. IEEE, 2008.

[162] H. van der Schuur, S. Jansen, and S. Brinkkemper. A reference frame-
work for utilization of software operation knowledge. In 2010 36th
EUROMICRO Conference on Software Engineering and Advanced Ap-
plications, pages 245–254. IEEE, 2010.

[163] J. J. van Wijk. Views on visualization. Visualization and Computer
Graphics, IEEE Transactions on, 12(4):421–432, 2006.

[164] M. VanHilst and S. Huang. Mining objective process metrics from
repository data. In SEKE, pages 514–519. Citeseer, 2009.

[165] M. VanHilst, S. Huang, and H. Lindsay. Process analysis of a waterfall
project using repository data. International Journal of Computers and
Applications, 33(1):49–56, 2011.

[166] S. L. Vargo and R. F. Lusch. Service-dominant logic. What it is, What
it is not, What it Might be, pages 43–56, 2014.

[167] L. Voinea and A. Telea. Visual querying and analysis of large software
repositories. Empirical Software Engineering, 14(3):316–340, 2009.

105

[168] R. H. von Alan, S. T. March, J. Park, and S. Ram. Design science in
information systems research. MIS quarterly, 28(1):75–105, 2004.

[169] N. Walliman. Research methods: The basics. Routledge, 2010.

[170] J. G. Walls, G. R. Widmeyer, and O. A. El Sawy. Building an in-
formation system design theory for vigilant eis. Information systems
research, 3(1):36–59, 1992.

[171] X. Wang, K. Conboy, and O. Cawley. Leagile software development: An
experience report analysis of the application of lean approaches in agile
software development. Journal of Systems and Software, 85(6):1287–
1299, 2012.

[172] C. Ware. Information visualization: perception for design. Elsevier,
2012.

[173] R. Weber. Still desperately seeking the IT artifact. MIS quarterly,
27(2):183–183, 2003.

[174] P. Weißgerber, M. Pohl, and M. Burch. Visual data mining in soft-
ware archives to detect how developers work together. In Mining Soft-
ware Repositories, 2007. ICSE Workshops MSR’07. Fourth Interna-
tional Workshop on, pages 9–9. IEEE, 2007.

[175] E. Whitworth and R. Biddle. Motivation and cohesion in agile teams.
In Agile processes in software engineering and extreme programming,
pages 62–69. Springer, 2007.

[176] J. P. Womack and D. T. Jones. Lean thinking: banish waste and create
wealth in your corporation. Simon and Schuster, 2010.

[177] W. Wright. Research report: Information animation applications in
the capital markets. In Information Visualization, 1995. Proceedings.,
pages 19–25. IEEE, 1995.

[178] S. Yasutaka, S. Matsumoto, S. Saiki, and M. Nakamura. Visualizing
software metrics with service-oriented mining software repository for
reviewing personal process. In Software Engineering, Artificial Intelli-
gence, Networking and Parallel/Distributed Computing (SNPD), 2013
14th ACIS International Conference on, pages 549–554. IEEE, 2013.

[179] D. Zhang, S. Han, Y. Dang, J.-G. Lou, H. Zhang, and T. Xie. Software
analytics in practice. IEEE Software, 30(5):30–37, 2013.

106

[180] X. Zhang, C. Wang, Z. Li, J. Zhu, W. Shi, and Q. Wang. Explor-
ing the sequential usage patterns of mobile internet services based on
markov models. Electronic Commerce Research and Applications, 17:1–
11, 2016.

107

108

Publication I

T. Lehtonen, S. Suonsyrjä, T. Kilamo, T. Mikkonen. Defining Met-
rics for Continuous Delivery and Deployment Pipeline. In Proceedings of the
14th Symposium on Programming Languages and Software Tools (SPLST),
2015.

109

Defining Metrics for Continuous Delivery and
Deployment Pipeline

Timo Lehtonen1, Sampo Suonsyrjä2, Terhi Kilamo2, and Tommi Mikkonen2

1Solita Ltd, Tampere, Finland
timo.lehtonen@solita.fi

2Tampere University of Technology, Tampere, Finland
sampo.suonsyrja@tut.fi, terhi.kilamo@tut.fi, tommi.mikkonen@tut.fi

Abstract. Continuous delivery is a software development practice where
new features are made available to end users as soon as they have been
implemented and tested. In such a setting, a key technical piece of in-
frastructure is the development pipeline that consists of various tools
and databases, where features flow from development to deployment and
then further to use. Metrics, unlike those conventionally used in software
development, are needed to help define the performance of the develop-
ment pipeline. In this paper, we address metrics that are suited for sup-
porting continuous delivery and deployment through a descriptive and
exploratory single case study on a project of a mid-sized Finnish soft-
ware company, Solita Plc. As concrete data, we use data from project
”Lupapiste”, a web site for managing municipal authorizations and per-
missions.

Keywords: Agile measurements, continuous deployment, lean software
development.

1 Introduction

Software development, as we know it today, is a demanding area of business
with its fast-changing customer requirements, pressures of an ever shorter time-
to-market, and unpredictability of market [1]. Lean principles, such as ”Decide
as late as possible”, have been seen as an attractive way to answer to these de-
mands by academics [2]. With the shift towards modern continuous deployment
pipelines, releasing new software versions early and often has become a concrete
option also for an ever growing number of practitioners.

As companies, such as Facebook, Atlassian, IBM, Adobe, Tesla, and Mi-
crosoft, are going towards continuous deployment [1], we should also find ways
to measure its performance. The importance of measuring the flow in lean soft-
ware development was identified already in 2010 by [3], but with the emergence
of continuous deployment pipelines, the actual implementation of the Lean prin-
ciples has already changed dramatically [4]. Further on, measuring has been a
critical part of Lean manufacturing long before it was applied to software de-
velopment [5]. However, the digital nature of software development’s approach

SPLST'15

16

to Lean (ie. continuous deployment pipelines) is creating an environment, where
every step of the process can be traced and thus measured in a way that was not
possible before. Therefore, the need for a contemporary analysis of what should
be tracked in a continuous deployment pipeline is obvious to us.

In this paper, we address metrics that are suited for supporting continu-
ous delivery and deployment through a descriptive and exploratory single case
study on a project of a mid-sized Finnish software company, Solita Plc (http:
//www.solita.fi). As case studies investigate the contemporary phenomena in
their authentic context, where the boundaries between the studied phenomenon
and its context are not clearly separable [6], we use concrete data from project
”Lupapiste”, or ”Permission desk” (https://www.lupapiste.fi), a web site
for managing municipal authorizations and permissions. The precise research
questions we address are the following:

RQ1: Which relevant data for practical metrics are automatically created
when using a state-of-the-art deployment pipeline?
RQ2: How should the pipeline or associated process be modified to support
the metrics that escape the data that is presently available?
RQ3: What kind of new metrics based on automatically generated data
could produce valuable information to the development team?

The study is based on quantitative data and descriptions of the development
processes and the pipeline collected from the developer team. Empirical data
of the case project was collected from information systems used in the project,
including a distributed version control system (Mercurial VCS) and a monitoring
system (Splunk).

The rest of this paper is structured as follows. In Section 2, we address the
background of this research. In Section 3, we introduce our case project based
on which the research has been conducted. In Section 4, we propose metrics for
continuous delivery and deployment pipeline. In Section 5, we discuss the results
of case study and provide an extended discussion regarding our observations. In
Section 6 we draw some final conclusions.

2 Background and Related Work

Agile methods – such as Scrum, Kanban and XP to name a few examples –
have become increasingly popular approaches to software development. With
Agile, the traditional ways of measuring software development related issues
can be vague. The outcome of traditional measures may become dubious to the
extent of becoming irrelevant. Consequently, one of the main principles of Agile
Software Development is ”working software over measuring the progress” [7].

However, not all measuring can be automatically considered unnecessary.
Measuring is definitely an effective tool for example for improving Agile Software
Development processes [8], which in turn will eventually lead to better software.
A principle of Lean is to cut down waste that processes produce as well as parts
of the processes that do not provide added value [9]. To this end, one should first

SPLST'15

17

recognize the current state of a process [3]. This can be assisted with metrics
and visualizations, for instance. Therefore, one role for the deployment pipeline
is to act as a manifestation of the software development process and to allow the
utilization of suitable metrics for the entire flow from writing code to customers
using the eventual implementation [10].

Overall, the goal of software metrics is to identify and measure the essential
parameters that affect software development [11]. Mishra and Omorodion [11]
have listed several reasons for using metrics in software development. These
include making business decision, determining success, changing the behavior of
teammates, increasing satisfaction, and improving decision making process.

2.1 Continuous Delivery and Deployment

Continuous delivery is a software development practise that supports the lean
principles of ”deliver as fast as possible” and ”empower the team”. In it the
software is kept deployable to the staging and production environments at any
time [12, 13]. Continuous delivery is preceded by continuous integration [14, 15]
where the development team integrates its work frequently on a daily basis. This
leads to a faster feedback cycle and to benefits such as increased productivity
and improved communication [15–17]. Similarly, ”the final ladder ” — continu-
ous deployment — requires continuous delivery. So, continuous deployment [18,
19] takes one step further from delivery. In it software is automatically deployed
as it gets done and tested. Taking continuous deployment to the extreme would
mean deployment of new features directly to the end users several times a day
[20, 21]. Whether software is deployed all the way to production, or to a staging
environment is somewhat matter of opinion [18, 22] but a reasonable way to dif-
ferentiate between delivery and deployment in continuous software development
is the release of software to end users. Delivery maintains a continuously deploy-
able software, deployment makes the new software available in the production
environment.

Regardless of actual deployment, continuous software development requires
a deployment pipeline (Figure 1) [10], which uses an automated set of tools from
code to delivery. The role of these tools is to make sure each stakeholder gets
a timely access to the things they need. In addition, the pipeline provides a
feedback loop to each of the stakeholders from all stages of the delivery process.
An automated system is not about software going into production without any
operator supervision. The point of the automated pipeline is that as the software
progresses through it, different stages can be triggered for example by operations
and test teams by the click of a button.

2.2 Agile Metrics

In [8] the authors categorize agile metrics used in industry into metrics relat-
ing to iteration planning and tracking, motivation and improvement, identifying
process problems, pre-release and post-release quality, and changes in the pro-
cesses or tools. The metrics for iteration planning offered help with prioritization

SPLST'15

18

Fig. 1. Anatomy of a Deployment Pipeline according to [10].

of features. These include estimation metrics for measuring the size of features,
the revenue a customer is willing to pay for a feature, and velocity of the team
in completing a feature development. Iteration tracking include progress met-
rics such as the number of completed web pages, story completion percentage,
and again velocity metrics. In the category of motivation and improvement, ap-
proaches such as visualizing the build status and showing the number of defects
in monitors were found to lead into faster build and fix times. Using metrics
such as lead time and story implementation flow assist in identifying waste and
in describing how efficiently a story is completed compared to the estimate.
Pre-release quality metrics were found to be used for making sure the prod-
uct is tested sufficiently and for avoiding integration fails. Post-release quality
metrics measure attributes such as customer satisfaction and customer respon-
siveness. These can be evaluated for example with the number of defects sent
by customers, change requests from customers, and customer’s willingness to
recommend the product to other potential customers. For the final category of
metrics for changes in processes or tools, sprint readiness and story flow metrics
were found to change company policies to having target values for metrics.

In [11] a more general approach in categorization of agile metrics is used.
The authors define the core agile metrics to include product, resource, process,
and project metrics. Of these, the product metrics deal with size, architecture,

SPLST'15

19

structure, quality, and complexity metrics. Resource metrics are concerned with
personnel, software, hardware, and performance metrics. Process metrics deal
with maturity, management, and life cycle metrics, and project metrics with
earned business value, cost, time, quality, risk, and so on. Each of these sub-
metrics can define a range of additional metrics such as velocity, running tested
feature, story points, scope creep, function points, earned business value, return
on investment, effort estimates, and downtime. The researchers also point out
that teams should invent metrics as they need such, and not use a metric simply
because it is commonly used – this might result in data that has no value in the
development.

Kunz et al. [23] claim that especially source-code based product metrics in-
crease quality and productivity in agile software development. As examples,
the researchers present Number of Name-Parts of a method (NNP), Number of
Characters (NC), Number of Comment-Lines (CL), Number of Local Variables
(NLV), Number of Created Objects (NCO), and Number of Referring Objects
(NRO). All in all, the researchers emphasize the early observation of quality to
keep the software stable through the development process.

In their 2009 book [9] the Poppendiecks emphasize the customer-centricity
in metrics. They present examples of these including time-to-market for product
development, end-to-end response time for customer requests, success of a prod-
uct in the marketplace, business benefits attributable to a new system, customer
time-to-market, and impact of escaped defects.

2.3 Lean Metrics

As lean methods have been developed originally for manufacturing, there are
obviously collections of corresponding metrics. For instance, the following has
been proposed [3]: Day-by-the-Hour (DbtH) measures the quantity produced
over the hours worked. This should correspond to the same rate of customer
need. Capacity utilization (CU) is the amount of work in progress (WIP) over
the capacity (C) of the process. An ideal rate is 1. On-time delivery (OTD) is
presented as the number of late deliveries over the number of deliveries ordered.
Moreover, such metrics or signals that help the involved people to see the whole,
are mentioned in [24].

Petersen and Wohlin [3] present cost efficiency (CE), value efficiency (VE),
and descriptive statistics as measurements for analyzing the flow in software
development. A possible way of measuring CE is dividing lines of code (LOC)
by person hours (PH). However, they point out how this cost perspective is
insufficient as value is assumed to be created always by investment. The increase
in LOC is not always value-added as knowledge workers are not machines. On
the other hand, VE = (V(output) - V(input)) / time window. V(output)
represents the final product, and V(input) the investment to be made. This type
of measuring takes value creation explicitly into account, and therefore it can be
a more suitable option.

Overall, according to van Hilst and Fernandez [25] there are two different
approaches to evaluating efficiency of a process considering Lean ideals. These

SPLST'15

20

views apply models from queuing theory, in which steps of a process are seen as
a series of queues. Work advances from queue to queue as it flows through the
process, and process performance is then analyzed in terms of starvation(empty
queues) and bottlenecks(queues with backlogs). The first approach is to look at a
workstation and examine the flow of work building up or passing through. At the
same time, the activities on the workstation are studied to see how they either
add value or impede the flow. On the contrary, the second approach follows a
unit of work as it passes through the whole process. In that case, the velocity of
this unit is studied. Considering these two approaches, van Hilst and Fernandez
[25] describe two metrics: Time-in-process and work-in-process. Work-in-process
is corresponding with the first approach as it describes the amount of work
present in an intermediate state at a given point in time. The second approach
is measured with time-in-process describing the time needed for a unit of work
to pass through the process. For an optimal flow, both of these need to be
minimized.

Finally, Modig [24] takes an even deeper look into measuring flow efficiency.
This metric focuses on the unit, which is produced by an organization, (flow
unit) and its flow through different workstations. Flow efficiency describes how
much a flow unit is processed in a specific time frame. Higher flow efficiency
is often better from the flow units point of view. For instance, if a resource
processes the flow unit for one hour, and then the flow unit is placed to a queue
of two hours, and then another resource starts to process it for three hours, the
flow efficiency is 4 / 6 = 66%. If the length of the queue is shortened to for
example half an hour, the flow efficiency is higher (4 / 4.5 = 89%).

3 Case Lupapiste

An industrial single case study was conducted to investigate measuring a state-
of-the-art pipeline within a two months time frame of actual development work.
The case project, and its deployment pipeline are introduced in the following.

3.1 Description of the Case Project

The application ”Lupapiste”, freely translated ”Permission Desk”, is a place for
the citizens and companies in Finland to apply for permissions related to the
built environment, available at https://www.lupapiste.fi. The project was
started in 2012, and the supplier of the system is Solita Plc., a mid-sized Finnish
ICT company. The end users of the system consist of various stakeholders, with
various interests. The Environmental Ministry of Finland owns the project code
and acts as a customer in some new functionalities needed to the system.

At the time of research (Fall 2015), the project team consisted of seven devel-
opers, a user experience (UX) designer and a project manager that are co-located
in a single workspace at the supplier. On the management level there are four
more persons in different roles. The team is cross-functional and has also DevOps
[26] capabilities. Some team members have an ownership of certain parts of the

SPLST'15

21

system, but the knowledge is actively transferred inside the team by changing
the areas continuously and for example by applying agile practices like pair re-
viewing of code to spread out the knowledge in a continuous manner. The team
takes use of a custom Lean Software Development process that includes features
from agile Scrum-based processes with lean heritage. The process is ongoing and
has no sprints, but milestone deadlines for certain functionalities are set by the
product owner team, which consists of project management personnel of the
supplier and the formal customer of the project. Furthermore, agile practices,
like daily meetings, have been combined with lean practices and tools, like a
Kanban board.

3.2 Deployment Pipeline of the Project

The pipeline of the case project has several environments (see. Figure 2) – a
personal local development environment (Local), the shared development envi-
ronment (Dev), a testing environment (Test), a quality assurance environment
(QA) and the production environment (Production). Each of these environments
serve different needs, and deployments to the different environments are man-
aged through the version control system. Therefore, it automatically provides
accurate data and meta data to measure the pipeline, which we have already
proposed in an earlier paper [27]. The actual timestamps of deployments are
stored in the meta data of the version control system branches.

Fig. 2. Deployments to the pipeline environments are triggered by push-events to the
distributed VCS. Features f1 and f2 have been merged and pushed to the develop-
branch (triggering deployments D1 and D2 to the Dev-environment), then to the Test-
environment (deployment T1 to Test-environment) and production environment (P1).

SPLST'15

22

The team uses a VCS-driven solution to manage the deployments to the
environments of the pipeline. The team applies the Driessen branching model
[28], which utilizes feature branches. Figure 2 presents the connection between
the branches and the deployments to the various environments of the pipeline.
When the development of a new feature starts, a developer opens a new feature
branch and starts developing the feature in the Local environment by committing
changes to the new branch. The developer may push the local changes to the
version control system from time to time, but no CI jobs are executed in this
phase. When the development of the feature is ready, the feature branch is closed
and the changes are merged to the develop-branch. When the changes are pushed
to the version control system, a stream of CI jobs for deploying a new version
to the Dev-environment is triggered automatically (deployments D1, D2 and D3
in Figure 2). The CI jobs build the software, migrate the database, and deploy
and test the software.

The deployment to the Test environment is accomplished by merging the
develop-branch to a release-branch. Once again, when the changes to a release
branch are pushed to the version control system, a stream of CI jobs for building
the software, migrating the database, and deploying and testing the software
in the Test environment is triggered (deployments T1 and T2). For instance,
deployment t1 in Figure 2 was triggered by a push to branch release/1.10, which
contained features f1 and f2. Similarly, the production deployment happens by
closing the release branch, which is then merged to the master-branch. The
new version to be released can then be deployed to the QA (deployment Q1)
and production environments (deployment P1) with a single click from the CI
server.

In Figure 2, feature f1 flows from the development to production in deploy-
ments D1, T2 and P1. Feature f2 flows in deployments D2, T1 and P1. Feature f3
has flown to the test-environment in deployments D3 and T2. In order to deploy
feature f3 to the production environment, release branch release/1.11 should be
closed and merged to the master branch, which then would be manually released
with a single click from the CI system.

Figure 3 presents the correspondence of the branches in the version control
system and the CI jobs on the radiator screen in the team workspace. If a CI
job fails, the team is immediately knowledgeable of the problems. Moreover, the
current status of the functional end-to-end tests running in the Dev-environment
is visible to the team.

In case of urgent problems in the production environment, the branching
model also allows creation of a hotfix branch. Figure 3 represents a situation
where urgent problems occurred after a deployment to the production environ-
ment. The automated tests had passed, but the login button was invisible on
the front page because of layout problems. In this special case, a hotfix branch
was then opened, the layout problems were fixed, the branch was merged to the
master branch, and when the changes were pushed and a CI job was triggered
manually, the problem was fixed and the users could continue logging in to the
system.

SPLST'15

23

Fig. 3. An actual usage sample of the branching model and its correspondence to the
CI jobs.

4 Defining Metrics for Pipeline

In this section, we define several new metrics which describe the properties of the
deployment pipeline. The goal of the metrics is to provide valuable information
for the team for improving the performance of the pipeline. With them, it is
possible to detect bottlenecks, indicate and consequently eliminate, waste, and
find process improvements.

We divided the metrics into two categories. First, Metrics on the Imple-
mentation Level dependent of the toolset and practices used to implement the
pipeline. Second, Metrics on the Pipeline Level are metrics that are independent
of the actual implementation of the pipeline. The metrics in the two categories
are discussed in more detail in the following.

4.1 Metrics on the Implementation Level

The availability of data to calculate flow and throughput depends on the imple-
mentation of the pipeline and the actual tools and practices used. In essence,
development, deployment and activation time must be available for each feature,
discussed in more detail in the following.

– Development time, or the time it takes for the team to implement a new
feature. The development time of a single feature can be measured in our
case project, as each new feature is a new branch in the version management

SPLST'15

24

system. The starting time for the new feature is simply the time when the
branch is created, and completion time is when the branch is merged with
the master branch. See Figure 2 for an example of development time of
feature/f1. It is the time from opening the feature branch until D1. In an
earlier paper [27] we measured the value of this metric during a three month
period. The value was typically one or two days, but for larger features, it
was even 12 working days.

– Deployment time, or the time it takes to deploy a new feature to production
use when its implementation has been completed. There are two dimensions
to this metric. One is the execution time of the tools needed for the actual
deployment (e.g. seconds or minutes), and the other is the decision process to
deploy the features, if additional product management activities, for example
acceptance testing, are associated with the deployment (e.g. hours or days).
See Figure 2 for an example of deployment time of feature/f1 – the time from
D1 to P1. In [27], we measured a mean value of nine working days during a
three month period.

– Activation time, or the time it takes before the first user activates a new fea-
ture after its deployment. Activation time can only be measured for features
that are specific enough to be visible in production logs. At times, however,
this can be somewhat complicated. For instance when a new layout is in-
troduced, the first time the system is activated can be considered as the
first use of the feature. See Figure 2 for an example of activation time of
features found in the production log. It is the time from P1 to the first use
caught from the production logs. The mean activation time in [27] was three
working days while the median was one working day.

Another viewpoint to the time a feature spends in the deployment pipeline,
is to count the age of the features that have been done, but are still waiting for
production environment deployment. The following metric is based on measuring
the current time spent on the pipeline:

– Oldest done feature (ODF), or the time that a single feature has been in
development done state, but is still waiting for deployment to the production
environment in some of the environments of the deployment pipeline. The
metric is dependent on Definition of Done (DoD) [29]. In our case project,
this data is available from the meta data of the feature branches: a feature
branch closed, but not merged to a closed release branch. At the time of
research (Autumn 2015), the value of ODF in the case project is currently
six days and the weekly release schedule has kept the value in less than one
week constantly.

4.2 Metrics on the Pipeline Level

In the context of continuous delivery and deployment, the throughput of the
pipeline used to deliver features to the end user is an important metric. Out of

SPLST'15

25

the existing metrics, flow efficiency, proposed in [24], best captures the spirit of
the pipeline. We propose the following new metrics to this category.

– Features Per Month (FPM), or the number of new features that have flown
through the pipeline during a month. The metric is based on Day-by-the-
Hour (DbtH), which measures quantity produced over hours worked [3]. In
the case project, the data for this metric can be collected from the implemen-
tation level data (number of feature branches closed and merged to a release
branch that has been closed). Apparently, this metric can be measured in
many other implementation settings, for example in a project that does not
use feature branches. For example, issue management system data or version
commit messages following a certain convention, are possible sources for this
data. At the time of research, the value of this metric for the case project is
27 FPM during the last three months, which is more than one feature per
working day.

– Releases Per Month (RPM), or the number of releases during one month.
Long term change of this metric provides information on changes in the
release cycle. In the case project, this data is available both in the version
control system and the CI server logs. At the time of research, the value of
this metric for the case project is 7 RPM, which is one or two releases per
week.

– Fastest Possible Feature Lead Time, or the actual time the feature spends in
the build and test phase on the pipeline. In our case project, there is latency
which origins from the use of feature branches and separate build processes
for each branch. The code is compiled and packaged multiple times during
the different phases of the pipeline. A build promotion approach in e.g. [30],
where the code is build only once and the same binary is deployed to all
environments, the lead time may be shorter. At the time of research, the
value for this metric is two hours (quick integration and unit tests running
some minutes in the commit stage and functional end-to-end browser tests
running one hour in the pipeline environments). As a shortcut for urgent
issues, the team can also use a hotfix branch, which allows making a quick
fix in minutes.

5 Results

Working in close cooperation with industry to answer to our research questions
has given us important insights over industry tools, processes and needs. Next, we
will revisit our original research questions, and give a short discussion regarding
our observations.

5.1 Research Questions Revisited

Considering the metrics defined above in the light of data available in version
control system has given us high confidence that these metrics can be gathered

SPLST'15

26

in a straightforward fashion, with certain exceptions. However, tools are needed
to automate data collection process, and to help visualizing the results [31]. The
exact answers to research questions are the following.

RQ1: Which relevant data for practical metrics are automatically created
when using a state-of-the-art deployment pipeline?

Data can be collected regarding development, deployment and activation
time from the tool chain that is used by the project. For the two former, data
is precise, but requires following certain conventions, such as creating feature
branches in the version data base for new features – a feature which is not sup-
ported by all version control systems. Regarding feature activation, the situation
is less clear, since for numerous features it is not obvious when they are truly
activated. When referring to a new function in the system, such as a widget in
the screen for instance, the activation produces identifiable traces, whereas a
change in layout or in libraries used are harder to pinpoint. Therefore, to sum-
marize, with version control and usage monitoring system data, it is also possible
to address the numbers of features in development, deployment, and activation,
although for the latter with only some limitations and interpretations.

Regarding practicality, we feel that any team performing continuous delivery
and deployment should place focus on metrics listed above. Based on discussions
with the team developing Lupapiste, visualizing the data regarding features on
the pipeline was found very useful, and exposing developers to it actually led to
faster deployment and to less uncompleted work in the pipeline.

RQ2: How should the pipeline or associated process be modified to support
the metrics that escape the data that is available?

While actions related to actual development are automatically stored in the
version control system, end users’ actions are not. Therefore, better support
for feature activation is needed. This can not be solved with tools only but
require project-specific practices. For instance, additional code could be inserted
to record activation of newly written code, or aspect-oriented techniques could
be used to trace the execution of new functions as proposed in [32].

In the present setup, there is no link to product management activities. In
other words, the pipeline only supports developers, not product management.
More work and an improved tool chain is therefore needed, which is also re-
lated to the above discussion regarding feature activation. However, it can be
questioned if this falls within the scope of the pipeline, or should be considered
separately as a part of product management activities.

RQ3: What kind of new metrics based on automatically generated data
could produce valuable information to the development team

We presented data collection methods for collecting data for new metrics re-
garding the deployment pipeline. We proposed multiple new metrics for the de-
ployment pipeline. For example, metric Oldest Done Feature (ODF), which the

SPLST'15

27

team of the case project found especially potentially useful, could be applied for
measuring the current state of the deployment pipeline. Exposing such a metric
to the team for example on the radiator screen in the team workspace, could
improve the release cycle of the project.

We measured the values for the new metrics proposed for the case project.
The team was producing more than one feature a day and making releases at
least once a week. The Oldest Done Feature (ODF) at the time of research was
only six days old. According to these metrics, the features are flowing fluently
from development to the production environment.

5.2 Observations

To begin with, the deployment to production may have extra latency even in a
state-of-the-art deployment pipeline. For instance, in the case project, many of
the features suffered from a long latency of even weeks or months between the
time the feature was done till the time when it was deployed to the production.
The team was shortly interviewed about the obstacles why the features were
not deployed to the production environment earlier. The obstacles were often
related to features that had been merged to the develop-branch, which then
accompanied the develop branch to a state where it was not possible to deploy
anymore. For instance in one case, a key functionality was broken and the fix
needed data from a design process.

The time after a new feature that has been deployed to the production en-
vironment and is waiting for users to use the feature, can be regarded as waste.
To eliminate such, the users of the system must be informed regarding newly
deployed features, and they also have to have the skills to use them. Because
the users in the case project are the municipal authority users nationwide, an
announcement sent by email as new features are introduced. Moreover, a wizard,
which would tell about the new features, for example after login or in the context
of the features, could help the users to find the new functionality.

We discussed about the proposed new metrics with the development team
of the case project. Oldest Done Feature was found as the most useful metric
that could possibly help the team to improve the flow of the pipeline. The team
even considered that this kind of metric could be shown on the radiator screen
– if the oldest feature is for example two weeks old, the radiator could indicate
the problem in the pipeline. However, the actual usage of such a metric is not
straightforward. There are times, when the develop branch is not deployable
because of, for example, a major refactoring. In this kind of circumstances this
kind of metric may disturb the team.

6 Conclusions

A metric should be used for a purpose. A modern deployment pipeline paves
a highway for the features to flow from the development work to actual usage
in the production environment. The tools on the pipeline produce a lot of data

SPLST'15

28

regarding the development and deployment activities of the new features. We
analyzed the tools and practices of an industrial single case study in order to
identify which data are automatically created by the several tools of the de-
ployment pipeline. The results show that data for many new useful metrics is
automatically generated.

Based on this data, we defined several new metrics for describing the prop-
erties of the deployment pipeline. For instance, the metrics proposed can be
applied to analyze the performance and the present status of the pipeline. The
goal of metrics is to provide valuable information to the team to improve pro-
cesses and the pipeline. Applying the metrics in a continuous delivery project
setting can help to achieve this.

Acknowledgements

This work is a part of the Digile Need for Speed project (http://www.n4s.
fi/en/), which is partly funded by the Finnish Funding Agency for Innovation
Tekes (http://www.tekes.fi/en/tekes/). Persons in Figure 1 are designed by
Paulo S Ferreira from thenounproject.com.

References

1. G. G. Claps, R. B. Svensson, and A. Aurum, “On the journey to continuous deploy-
ment: Technical and social challenges along the way,” Information and Software
Technology, vol. 57, pp. 21–31, 2015.

2. M. Poppendieck and T. Poppendieck, Lean software development: an agile toolkit.
Addison-Wesley Professional, 2003.

3. K. Petersen and C. Wohlin, “Measuring the flow in lean software development,”
Software: Practice and experience, vol. 41, no. 9, pp. 975–996, 2011.

4. M. Fowler, “Agileversuslean,” http://martinfowler.com/bliki/AgileVersusLean.
html, 2008, retrieved: November 2014.

5. R. Shah and P. T. Ward, “Defining and developing measures of lean production,”
Journal of operations management, vol. 25, no. 4, pp. 785–805, 2007.

6. R. K. Yin, Case study research: Design and methods. Sage publications, 2014.
7. K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,

J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin,
S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas, “The agile manifesto,”
http://agilemanifesto.org, 2001, retrieved: November 2014.

8. E. Kupiainen, M. V. Mäntylä, and J. Itkonen, “Why are industrial agile teams
using metrics and how do they use them?” in Proceedings of the 5th International
Workshop on Emerging Trends in Software Metrics. ACM, 2014, pp. 23–29.

9. M. Poppendieck and T. Poppendieck, Leading lean software development: Results
are not the point. Pearson Education, 2009.

10. J. Humble and D. Farley, Continuous delivery: reliable software releases through
build, test, and deployment automation. Pearson Education, 2010.

11. S. Misra and M. Omorodion, “Survey on agile metrics and their inter-relationship
with other traditional development metrics,” ACM SIGSOFT Software Engineer-
ing Notes, vol. 36, no. 6, pp. 1–3, 2011.

SPLST'15

29

12. S. Neely and S. Stolt, “Continuous delivery? easy! just change everything (well,
maybe it is not that easy),” in Agile Conference (AGILE), Aug 2013, pp. 121–128.

13. M. Fowler, “Continuous delivery,” http://martinfowler.com/bliki/
ContinuousDelivery.html, retrieved: November 2014.

14. D. St̊ahl and J. Bosch, “Modeling continuous integration practice differences in
industry software development,” Journal of Systems and Software, vol. 87, pp.
48–59, 2014.

15. M. Fowler, “Continuous integration,” http://martinfowler.com/bliki/
ContinuousDelivery.html, retrieved: November 2014.

16. J. Humble and D. Farley, Continuous delivery: reliable software releases through
build, test, and deployment automation. Pearson Education, 2010.

17. A. Miller, “A hundred days of continuous integration,” in Agile, 2008. AGILE ’08.
Conference, Aug 2008, pp. 289–293.

18. J. Humble, “Continuous delivery vs continuous deployment,” http://
continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment/,
retrieved: November 2014.

19. J. Humble, C. Read, and D. North, “The deployment production line,” in Agile
Conference. IEEE, 2006, pp. 6–pp.

20. D. Feitelson, E. Frachtenberg, and K. Beck, “Development and deployment at
facebook,” IEEE Internet Computing, p. 1, 2013.

21. J. Humble, “Continuous delivery vs continuous deployment,” http://
continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment/,
2010, retrieved: November 2014.

22. B. Fitzgerald and K.-J. Stol, “Continuous software engineering and beyond: trends
and challenges,” in Proceedings of the 1st International Workshop on Rapid Con-
tinuous Software Engineering. ACM, 2014, pp. 1–9.

23. M. Kunz, R. R. Dumke, and N. Zenker, “Software metrics for agile software devel-
opment,” in Software Engineering, 2008. ASWEC 2008. 19th Australian Confer-
ence on. IEEE, 2008, pp. 673–678.

24. N. Modig and P. Åhlström, This is lean: Resolving the efficiency paradox. Rheo-
logica, 2012.

25. M. Van Hilst and E. B. Fernandez, “A pattern system of underlying theories for
process improvement,” in Proceedings of the 17th Conference on Pattern Languages
of Programs. ACM, 2010, p. 8.

26. P. Debois, “Devops: A software revolution in the making,” Cutter IT Journal,
vol. 24, no. 8, 2011.

27. T. Lehtonen, T. Kilamo, S. Suonsyrjä, and T. Mikkonen, “Lean, rapid, and waste-
less: Minimizing lead time from development done to production use,” in Submitted
to publication.

28. V. Driessen, “A succesful git brancing model.” http://nvie.com/posts/
a-successful-git-branching-model/, retrieved: November 2014.

29. K. Schwaber and M. Beedle, “Agile software development with scrum. 2001,” Upper
Saddle River, NJ, 2003.

30. L. Chen, “Continuous delivery: Huge benefits, but challenges too,” Software, IEEE,
vol. 32, no. 2, pp. 50–54, 2015.

31. A.-L. Mattila, T. Lehtonen, K. Systä, H. Terho, and T. Mikkonen, “Mashing up
software management, development, and usage data,” in ICSE Workshop on Rapid
and COntinuous Software Engineering, 2015.

32. S. Suonsyrjä and T. Mikkonen, “Designing an unobtrusive analytics framework for
java applications,” in Accepted to IWSM Mensura 2015, to appear.

SPLST'15

30

Publication II

P. Tyrväinen, M. Saarikallio, T. Aho, T. Lehtonen and R. Paukkeri.
Metrics Framework for Cycle-Time Reduction in Software Value Creation.
In The Tenth International Conference on Software Engineering Advances
(ICSEA), 2015.

125

Metrics Framework for Cycle-Time Reduction in Software Value Creation
Adapting Lean Startup for Established SaaS Feature Developers

Pasi Tyrväinen, Matti Saarikallio
Agora Center, Department of CS and IS

University of Jyväskylä, Finland
pasi.tyrvainen@jyu.fi, matti.saarikallio@gmail.com

Timo Aho, Timo Lehtonen, Rauno Paukkeri
Solita plc

Tampere, Finland
{timo.aho, timo.lehtonen, rauno.paukkeri}@solita.fi

Abstract— Agile software development methodologies driving
cycle-time reduction have been shown to improve efficiency,
enable shorter lead times and place a stronger focus on
customer needs. They are also moving the process development
focus from cost-reduction towards value creation. Optimizing
software development based on lean and agile principles
requires tools and metrics to optimize against. We need a new
set of metrics that measure the process up to the point of
customer use and feedback. With these we can drive cycle time
reduction and improve value focus. Recently the lean startup
methodology has been promoting a similar approach within
the startup context. In this paper, we develop and validate a
cycle-time-based metric framework in the context of the
software feature development process and provide the basis for
fast feedback from customers. We report results on applying
three metrics from the framework to improve the cycle-time of
the development of features for a SaaS service.

Keywords-metrics framework; cycle-time; agile; software
engineering process; lean startup; feedback; SaaS.

I. INTRODUCTION
The software engineering (SWE) process has

traditionally been managed on a cost basis by measuring
programmer effort spent per lines of code, function point or
requirement. These metrics have also been used to guide
software process improvement. In order to align more with
business strategy and value production the focus has shifted
more towards value creation instead of cost reduction. For
example, value-based SWE [1], software value-map [2] and
a special issue on return on investment (ROI) in IEEE
Software [3] have explored value in software development.
As a reaction to move away from a cost-reduction focus, the
recent goal of lean thinking has been to optimize for
perceived customer value [4]. Thus, we can say that
leadership approach for the software development process is
moving from a cost focus to a value focus.

Measuring the value of application software and cloud
services is difficult to do before it is in use, as you need to
consider the value of the software for the potential users, the
business value for the firm developing it and the value for
other stakeholders [1][5][6]. The current theories of value do
not present a simple way of assessing customer value [7].
Although companies put a great amount of effort into
increasing customers' perceived value in the product
development process, determining how and when value is

added is still a challenge even in marketing and management
sciences. [7] Further, the software engineering metrics are
measuring attributes of the software development process
(e.g., cost, effort, quality) while these metrics remain
disconnected from the attributes and metrics developed for
measuring value (see Table I). Various approaches have been
developed to overcome this gap [1][5][6][8][9][10][11][12]
[13][14][15][16] without any major break-through.

The software engineering community has adopted an
iterative approach to software development in form of Scrum
[17], XP [18] and other agile [19] methods. These promote
fast cycle user interaction and development process to keep
the effort focused on customer needs based on fast customer
feedback either interactively or through analysis of service
use behavior. The startup community has adopted a similar
approach and commonly uses the lean startup cycle [20] to
evaluate the hypothesis of customer needs using the build-
measure-learn cycle, which is repeated to improve customer
acceptability of the offering and the business value of the
startup. The common theme of these approaches is that
instead of trying to estimate or predict the value in advance,
try to shorten the cycle time from development to actual
customer feedback, which indicates the value of the software
in use. That is, from the SWE perspective, the speed of
feedback received from users is the best indicator of the
value of the newly created software. This indicates that
shortening the feedback cycle would drive the SWE process
towards faster reaction on customer value and higher value
creation.

Although there exists a common understanding about the
key role of a fast customer feedback cycle in linking the
SWE process to value creation, the measurement methods
and metrics available in literature are positioned either as
cost-based SWE methods or as value-oriented metrics with
little connection to the engineering process providing little
guidance for managing and developing the SWE process (see
Table I). Thus, the research question of this paper is, what
metrics would guide cycle-time-driven software engineering
process development in established organizations?

As the answer is context-dependent, a set of metrics will
be needed. This paper aims at filling this gap by proposing a
metrics framework enabling adoption of such metrics in a
variety of contexts where new features are incrementally
added to software.

220Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

TABLE I. POSITION OF THIS RESEARCH TO BRIDGE COST-
ORIENTED SOFTWARE ENGINEERING (SWE) METRICS
AND VALUE-ORIENTED BUSINESS METRICS

Measurement Domains

SWE Metrics Research Gap
Addressed Here Value Metrics

Scope
(measurement
target)

SWE Process Value Creation
Cycle

Customer Value
of Offering,

Value of Startup
Measured
Attribute

Cost, Effort,
Quality Cycle Time

Value for
Customer,
Value for
Enterprise

Examples
Function Points

per month,
Faults per lines

of code
Value in Use,

ROI, Lean
Analytics

Applying the guidelines of the design science method

[21], this research has been initiated based on company
needs presented in interviews of Software as a Service
(SaaS) development firms in a large industry-driven research
program [22], to target an issues with business relevance in
firms.

In Section II, we construct the metrics framework artifact
based on the analysis and synthesis of previous research
literature selected from the perspective of the research
question. Following the design science research guidelines,
we also demonstrate generalizability of the framework
artifact to several contexts by choosing from a variety of
metrics to target the specific process development needs. We
also propose a simple diagrammatic representation for
visualizing some of the metrics values in operational use to
pinpoint development tracks requiring attention in an
organization with multiple parallel feature-development
teams.

In Section III, we evaluate the metrics framework by
applying it to the case of a firm developing new features for
an existing SaaS service and discuss the impact of the
findings on revising the target of the next process
improvement actions. In Section IV, we summarize the
results, draw the conclusions and propose directions for
further research.

II. THE CYCLE-TIME METRICS FRAMEWORK

A. Developing the Framework
The flow of new features through a SWE process can be

measured at various points in time with an aim to reduce
delay between points to reduce cycle time. The scope of the
process measured will impact the attention of the software
developing organization. In the narrowest scope, the cycle
time measured includes the basic software development
cycle while the widest cycle takes into account the customer
needs and experience and, thus, matches and even expands
the lean startup cycle [20].

In the proposed framework (see right side of Figure 1),
the feature life-cycle begins with three planning phase
events: 1) a need emerges, 2) a software development

organization recognizes the need, and 3) the decision is made
to develop the feature. In large established organizations, the
identification of feature needs has been excluded from the
responsibility of the SWE organization to responsibility of
the product marketing organization, while the
entrepreneurship-oriented startup community has
emphasized the value of including the need identification
step as an inherent part in the fast business development
cycle of the organization developing the software.
Sometimes there is an intentional lag between events 2 and 3
as the decision may be to wait for the right time window (cf.
real options [23][24]), or features with higher priority are
consuming all resources available.

Continuing from the 3 events that form the beginning of
the feature life cycle (above) and for the purposes of
measuring the value creation cycle, the main development
events included in this framework are 4) development starts,
5) development done, and 6) feature deployed. Use of XP,
Scrum and other iterative and incremental development (IID)
processes has aimed at reducing the time between events 4
and 5 (or fixing that to 2–4-week cycles). The cycle-time
from 4 to 5 is here referred to as the Development cycle (see
Figure 1). Moving from packaged software to cloud delivery
and SaaS development along with moving from an annual or
a six-month software release cycle to continuous integration
(CI [25]) and continuous delivery (CD [26]) in development
operations (devops [27]) has reduced the interval between 4
and 6.

After the event 6, the traditional software engineering
process is often thought to be completed, while many
entrepreneurship-oriented approaches, such as Lean Startup
[20], go further, starting from building a product to
measuring the use of it, which produces data used for
learning and for producing ideas for the next development
cycle (see left side of Figure 1). That is, building the product
based on current ideas is only one of the three main events
needed for value creation: build–measure–learn [20]. For
considering the business and customer perspectives in this
metrics framework for the value creation cycle, we need to
expand beyond step 6 to include the use, measuring and
learning phases: 7) when the feature gets used, 8) when
feedback data is collected to support learning, and 9) when a
decision is made based on the feedback. Note that events 8
and 9 resemble events 2 and 3 while not all information from
customer needs is collected through measuring the use of the
current product. It is also commonly assumed that the time
from feature deployed (6) to first use (7) is short, while
without measured data this can be an incorrect assumption.
There have been cases where almost half of software features
were never used [28]. Further, if software quality is high, it
can take some time to get feedback, and it may require many
uses of the feature before customer sends feedback about
problems. Additionally, it can take time for a feature to get
sufficient number of uses to allow for a reliable analysis of
customer behavior (8). Also, the deployment process of the
company can delay the decision to act on the feedback (9).

221Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

 Figure 1. The value-driven metrics framework for driving software engineering cycle-time reduction (on the right), the Lean Startup cycle (on the left)
and example cycles, for which cycle time can be used as the metrics driving cycle-time reduction (in the middle).

Figure 1 depicts the proposed framework. On the right

side we have the sequence of events identified. On the left
side, we have the Lean Startup cycle with horizontal arrows
pointing from the phases to related events of the
framework. The vertical arrows in the middle represent
examples of cycle times that can be used as a target metric
for developing SWE process. The cycles in the center are
labeled as follows: L = Lean Startup cycle, F = Full cycle
including fuzzy front end and full feature development cycle,
V = Value cycle from starting the development to value
capture, C = Core cycle from development start to first
feature use, and finally D+D2VC, where D = Development
cycle from start of development to production readiness and
D2VC = time from development done to value captured. We
emphasize that this list of cycles is not exclusive and new
cycle time metrics can be created with this framework on
demand for each context.

B. Changing Process Development Focus through Metrics
The various cycle-time metrics available in the

framework can be used for focusing process development
activity to specific process areas based on the need (see
Table II). For example, if the basic software development
process has been well developed and if some incremental
development process, automated testing and continuous
integration are applied, it may be useful to shift the attention
to continuous deployment. In that case, the metric to be
followed can be changed from Development cycle to cycle
time between events 4 and 6, from start of development to
start of production (see the second line in Table II).
Changing the metric will also change the focus of attention
and can often result in adjusting the processes, resource
allocations or tools used.

TABLE II. EXAMPLE PROCESS DEVELOPMENT TARGETS WHEN USING ALTERNATIVE CYCLE-TIME METRICS

Cycle Start Event End Event Addressed Capabilities Process Development Focus
D,
Development

4: Development
Started

5: Development
Done

XP, Scrum and other IID processes, automated
testing and continuous integration (CI)

Using this cycle-time metrics addresses
cycle-time of the basic SW development
process

Time to
production

4: Development
Started 6: In Production Same as in D, adding continuous deployment

(CD) to the measurement scope
Using metrics for this cycle time focuses
attention to CD capability

C, Core cycle 4: Development
Started 7: Feature Used Same as previous adding communication

(diffusion) to customer base to the scope
Here the focus shifts to integrating customer
facing team with development

V, Value cycle 4: Development
Started

8: Value
Captured

Adding customer analytics and customer feed-
back capabilities to the previous scope

Shifts focus to integrating analytics capability
to IID+CI+CD capability

Time to Value 4: Development
Started *: Break Even As Value cycle, but using this metrics assumes

that value produced can be evaluated. As in Value cycle
D2VC 5: Development

Done
8: Value
Captured

Post-development processes needed to deliver
the created value and to get the feedback

Focusing on value cycle capabilities after the
basic SW development process.

Fuzzy Front
End

1: Feature
Needed

3: Feature
Ordered

Deep customer understanding (between events
1 and 2) and market understanding (2 to 3)

Measuring capability to find customer needs
close to actionable market

...

222Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

In large organizations, where the product-marketing
department is responsible for collecting market requirements
and for product launches, the processes crossing product
development and product-marketing departments may be
problematic. In these cases, choosing the Value cycle, Time
to Value or Design done to value captured (D2VC) as a
common metric for both of the departments will enforce
collaboration between the departments and will likely
improve the total value creation capability of the
organization, while local metrics within the departments are
likely to lead to local optimization leading to non-optimal
organizational behavior. It should be noted, that this issue
appears mainly in large established organizations rather than
in small startup firms, the needs of which the lean startup
approach has been developed.

The time to value cycle in Table II ends with the event of
reaching the breakeven point, which is marked with an
asterisk “*” rather than a number representing a specific
ordering in the framework. In some cases a pay-per-use
business model provides a basis to determine the break-even
point for a feature, while in some cases the break-even point
is estimated by qualitative means. A new feature may
produce enough value to reach the break-even point when it
is published (event 6) or when it is used for the first time
(event 7). However, in many contexts this event occurs close
to event 8, Value captured, that is, the feature use count is
high enough, and sufficient feedback has been received, to
ascertain whether the feature was worth the development
effort. Based on these examples and the other examples in
Table II we can observe, that the choice of applicable metrics
is context dependent. Thus there is a need for a framework
for metrics, which supports choosing the metric applicable
for a specific situation.

C. Depicting Cycle-Time Elements
Depicting the proposed cycle-time metrics makes it

easier to decide whether to further develop or even to drop a
existing feature and will also help in communicating the
cycle-time reduction agenda to software engineers and other
parties involved. For this purpose we devised a simple
diagrammatic representation presented in Figure 2. In this
example, the development starts at point 4 and ends at point
5. The y-coordinate represents the cumulative development
time, in line with the cumulative cost for the organization.
This linear curve is intentionally simplistic as the focus is on
the form of the curve after event 5. In contrast, software
engineering oriented representations, such as the Kanban
Cumulative Flow Diagram [29], focus on analysis of the
development cycle from 4 to 5 and ignore activity after
production readiness.

From event 5 on, the horizontal line represents the
duration of the waiting time from ready-to-deploy through
deployment to first use. The feature is used for the first time
in production at event 7. After that the dropping logarithmic
curve represents the speed at which feedback has been
received. After the second use the curve comes down to half,
after the third use to one third of the original, and so on.

Figure 2. Depiction of the cycle times for feature analysis and process

development. The numbers refer to the event number in the framework.

That is, the curve represents development time divided by
number of times used. A context-specific target threshold for
development time per times used is presented as a dotted line
and the time when the curve reaches the threshold is marked
with an asterisk “*”.

In line with our approach to focus on the cycle times, this
graphical representation aims at depicting the cumulative
effort invested to the feature during development. There is a
risk embedded in this development effort as it has not
received feedback from the customers. Thus it is potential
waste if customers do not accept the feature. This risk is
mitigated along the narrowing gap of the asymptotic curve
and the horizontal axis and reaching the threshold indicates
that enough customer feedback has been received to
ascertain whether it has been worth developing the feature.
Event 8, Value captured, is serving this purpose as the event
when sufficient user feedback is gained to evaluate the value
of the newly developed feature and for adjusting the
development plans accordingly, to further develop the
feature or to drop it. In addition to guiding value creation,
fast feedback from event 8 makes it easier for software
developers to fix errors and modify the feature as long as
they can still recall the implementation of the feature and
have not moved on to new assignments.

Although measuring value is difficult, we would also like
to identify the time-to-value cycle, that is the time from
starting the development to break even, to the point at which
its value to the customer exceeds the development costs.
Now we face the challenge that while the cost can be easily
measured in terms of time or money, value as a concept is
not clearly defined and even if it were it would be hard to
measure. We can speculate that the break-even point could
be reached already on deployment (for features whose
existence provides value even if they are not used, e.g.,
emergency-situation feature), on first use (when customer
finds it), after a certain amount of uses (some use value
derived from each), or sometimes a feature can fail to
become profitable. Thus, the location of this measurement
point cannot, in general, be identified in the sequence of
events in the proposed framework, rather it is context
dependent.

If we want to measure value, we need to define value.
Historically three forms of economic value are the use value,
exchange value and price [30]. There are many theoretical
divisions of value to support decision making about which

223Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

software feature to work on next [2][5][7][8][9][10][11][12]
[13][14][15][16][24][30][31], but most theories consider the
use value to the customer as essential. For the purposes of
metrics development the focus will be on customer use
value. It is important to note that due to market mechanism,
exchange value is less or equal to use value [30]. This means
that we could calculate a monetary estimate for the upper
bound of the value captured by the software developer, that
can be compared with cost. Still, the issue is problematic.

If we assume that there is use value for a feature, and in
some cases the use value can be estimated as equal for each
use, we would like to measure directly the cost versus
benefits ratio: !"#"$%&'"() !"#$#

!"#"$%&'
. However, as discussed the

benefits are challenging to measure and, at worst, we might
need a new metric for each feature. This leads us to suggest
that we isolate the hard-to-measure part, benefits, by instead
measuring the precisely calculable cost per use 𝛽 =
!"#"$%&'"() !"#$#

!"#$% !"#$
 and only if possible compare it to the

estimated value for the user, based on a case-by-base
estimation method. Next, we will show, using a case study,
that reaching events “*” and 8 produce very similar value for
process development and feature decision making and that
they can be used interchangeably. Thus, time to receive
enough feedback is also a good, practical proxy for value
produced.

III. METRICS VALIDATION CASE STUDY

A. Target Organization and Service
We evaluated the metrics framework in a mid-sized

Finnish software company, Solita Ltd. The case software
development team develops a publicly available SaaS
(lupapiste.fi) used by citizen applying for a construction
permit related to real estate and other structures. This
privately operated intermediary service provides a digital
alternative to avoid the time-consuming paper-based process
of dealing directly with the public authority. This service is
used by employees of the licensing authority in the
municipalities (about 100 users), the applicants (citizens and
companies, about 100 per month), and architects and other
consultants (1-2 per application). The software development
process metrics were evaluated with the usage data collected
from the process flow of five new features of this SaaS
service deployed during the observation period, in mid-2014.

The service has a single page front-end that connects
through a RESTful API to its back-end. Each call to the API
is recorded on the production log files with a time stamp. We
mined and analyzed the log entries together with the
development data captured by the version control system. In
this case, we chose features that introduced a new service to
the API and were thus possible to trace automatically with a
simple script that queried the monitoring system
automatically. Some manual work was needed to find the
features that introduced a new API, but automation of this
work is also possible.

B. Results from Applying the Metrics to Sample Features
From the recorded event time stamps we calculated three

metrics values for the case features. Development cycle (D)
from start (4) to done (5) in working days. Lag to production
from done (5) to deployed (6) in calendar days. And
finally, D2VC, time from development done (5) to value
captured (8). In this context the target company estimated
that enough feedback data was collected for learning when
the feature was used four times per each day spent on
development, which gave the context-specific definition for
the value capture event (8). Table III presents the data that is
depicted in Figure 3. To enable comparison, all the features
are shifted in the time axis to have event 4 (start of
development) at day 0. In a daily use, an alternative
depiction can show the timeline representing the history of
all features to current point of time from which it is easy to
identify development peaks and, more specifically, to notice
the curves that remain high after the peak which indicates a
demand for action. Either a feature has not been deployed
and promoted well for the users or there is no user need for
the feature.

C. Case Analysis and Discussion
From Table III we can see that for these five features the

average of development effort needed to implement and test
the features was about eight working days. When the
development was done, on an average 12 calendar days was
spent on waiting for deployment of the feature to the
production environment. We can also observe that the
features with lower priority (F1647 Unsubscribe and F1332
Note) have almost double the lag to production compared to
the other features.

TABLE III. DESCRIPTION OF THE SAMPLE FEATURES, THEIR PRIORITY,
DEVELOPMENT TIME (IN WORKING DAYS), LAG TO
DEPLOYMENT (IN CALENDAR DAYS) AND DEVELOPMENT
TO VALUE CAPTURED (D2VC; IN CALENDAR DAYS)

Feature id

Pr
io

ri
ty

D

ev
el

op
m

en
t

(d
ay

s)

L
ag

 to

de
pl

oy
m

en
t

(d
ay

s)

D
2V

C
 (

da
ys

)

Description of the
feature

F1332 Note 2 10 24 24
Authority user can add a
textual note that other
users cannot see.

F1498
Attachment 4 9 10 N/A

Applicant user can set
the target of an uploaded
attachment.

F1507
Validate 4 10 1 49

System validates the
form prior the user sends
the application.

F1537 Sign 4 7 11 15
Authority user can
require an applicant to
sign a verdict.

F1647
Unsubscribe 3 2 15 28 Authority user can

unsubscribe emails.
Average 8 12 29

224Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Figure 3. Depiction of the cycle-times of the five features. Development working days share the rising line starting from (event 5) and end in event 6

(start of the gray horizontal line), deployment (7, white dots in the right end of the gray part of the horizontal lines) and usage (yellow dots). To enable
comparison, all the features are synced to have event 5 (start of development) at day 0.

The average time from completion of development to
value capture is 29 days (this does not include feature F1498
Attachment, which did not reached the number of uses
needed for the threshold). From the depiction in Figure 3, we
can also see that this feature is no longer used. This feedback
triggers the discussion on the reasons for the discontinuation
of use of the feature to determine if there is a need to
improve it or remove it from the service. When the target is
to minimize the cycle times, minimizing the lag from
production readiness to deployment (from event 5 to 6) and
the means to increase the use of new features are clearly the
places where major improvement can be reached much
easier than from reducing average development time. By
plotting the events in this way, it is easy to identify the
places where changes can be made as well as to
communicate the need with the development teams.

The results triggered also a discussion on the release
practices of the firm. From the service use statistics it is
possible to see that the service is heavily used from Monday
to Thursday, less on Friday and very little during weekends.
Thus it is likely that features released on Mondays will get
used sooner than the ones released on Fridays, which
provides the additional benefit that the feedback from users
(8) would reach the developers when they still recall the
software they were working on. Even more profound than
the weekly cycle is a similar variation related to the vacation
seasons. Deploying new features just prior to vacations will
have negative impact on the Value cycle, as described above.

IV. SUMMARY, CONCLUSIONS AND FURTHER RESEARCH
The feedback from practitioners suggests that the current

literature lacks metrics that could be used for directing a
software development organization from the business
perspective to enhance effective value creation and value
capture. Although the Lean Startup Methodology proposes to
develop the software via the build–measure–learn cycle, we

seem to lack the means to measure the value that the
delivered software creates. Also the researchers have
observed this problem and conclude [7], that the current
theories of value do not present a simple way of assessing
customer-perceived value. Although companies put a great
amount of effort into increasing customers' perceived value
in the product development process, determining how and
when value is added is still a challenge even in marketing
and management sciences [7]. Previous literature on XP,
Scrum, lean startup and related approaches has indicated that
in the context of SaaS services, delivering new versions of a
service to the customer, collecting the usage data and making
further decisions based on the data provides the most
promising path for the software vendor to understand
customer-perceived value. Agile methods have been shown
to enable shorter lead times and a stronger focus on customer
needs [32].

Shortening the cycle times provides increased flexibility
maintaining options to change development direction with
speed [20][22] as well as other business benefits for software
service firms. This encouraged us to search for metrics that
help software firms in the process development towards
shorter cycles. On this basis, we formulated the research
question as, what metrics would guide the cycle-time-driven
software engineering process development in established
organizations?

As the proposed solution, we adopted and extended the
lean startup [20] value creation cycle and constructed a
framework for metrics based on the times between main
observable events within the cycle, all the way through to
receiving and analyzing user feedback. This focuses attention
on fast execution of the value creation within the user
feedback cycle. That is, we are not trying to measure value
of the results of the cycle, such as the value of the product
produced or the value of the startup or progress of the startup
in creating the offering, as in lean analytics [12].

225Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

By finding the measurable values from within the value
creation cycle, the cycle-time metrics framework aims at
bridging the gap between cost-oriented SWE metrics and
value-oriented business metrics. Cycle-time reduction serves
as the intermediary of increased value creation guiding
software feature development and software process
development. The metrics measure the calendar time
between the key events. The first three events are related to
feature need identification and the business decision to
implement the specific feature (event 3). The core events
following this decision are start of the development (4), the
feature is ready for deployment (5), the feature is deployed
(released, 6), and first use of the feature by a customer (7).
These events are followed by feedback related events, the
feature feedback data has been collected and analyzed (8)
and a decision is made based on the feedback (9). The time
intervals between the core events (4-7) are of most interest
for the engineering while the other events (1-3 and 8-9)
relate to the customer-perceived value analysis of the feature.
We also provided examples on how changing the
measurement cycle directs the process development to new
process areas.

Our empirical focus was at the level of features being
added to an existing SaaS offering. In the empirical part, the
times between the events in the core cycle were measured for
five new features in the development processes of an
independent software vendor’s SaaS service. The results
showed that the core metrics were able to capture and bring
up useful characteristics of the business process that
triggered both a “drop vs. develop feature” discussion (for
feature F1498) and a number of process development
discussions. In these five feature development cases the
average development time was shorter than the waiting time
for the feature to be released. This has negative impact to the
efficiency of fixing potential problems emerging during the
first uses of the feature by first users, as the developers have
already oriented towards another assignment. The detection
of the delay of feature releases lead to a further analysis of
the vendor’s release practices in general and prompted quick
improvements to their process.

Although the results from the empirical part showed that
the metrics are useful in practice, there are still several
avenues of further research that we wish to explore. The
empirical part used data from the engineering system and
customer feedback data to identify the core events. This
seems to be a useful starting point and the firm in our case
study would like to extend the collection of data to cover as
many of the nine events as possible and as automatically as
possible. The time from release readiness to analyzed
customer feedback seems to be a particularly useful
measurement of deployment performance.

In general, collecting the data can and should be
automated using engineering information systems to the
extent possible (events 1 and 8 cannot be detected
automatically). For the other events, we propose collecting
and depicting the data graphically in real-time status displays
providing an overview of the development activities for
business and engineering management. As we can observe
from the empirical case, the results are useful both for

focusing process development activities and for making
business decisions regarding which features will be
developed further, which will be used as they are, and which
features will be removed from the service. This way the
simplified depiction can provide transparency between the
business and the development organization. Thus we
encourage further empirical work on the automation of data
collection and its depiction based on events identified in the
framework.

In startups the result of value creation cycle can be
analyzed in the context of the evolution of the enterprise
[12]. In context of established feature development
processes, this framework adopted the approach of using
only cycle times between events as the metrics within the
value creation cycle. This is due to limited applicability of
suitable previous research results for real-time customer-
perceived value analysis beyond A/B testing and similar
tools that can be used between events 7 and 8. Although
cycle time metrics seems to provide high added value to
focus process development in connecting software
development with customer value, investigating the value
capture events 8 and “*” further is needed. Finding an easy
to apply means for estimating the perceived user benefits
would enable various new developments supporting the
operative business development of a software engineering
team.

ACKNOWLEDGMENT

This work was supported by TEKES as part of the Need
for Speed (N4S) Program of DIGILE (Finnish Strategic
Centre for Science, Technology and Innovation in the field
of ICT and digital business).

REFERENCES
[1] B. W. Boehm, “Value-based software engineering: Overview

and agenda,” in Value-based software engineering, Springer
Berlin Heidelberg, 2006, pp. 3-14

[2] M. Khurum, T. Gorschek, M. Wilson, “The software value
map - an exhaustive collection of value aspects for the
development of software intensive products,” Journal of
software: evolution and process. Wiley, 2012, 711-741.

[3] H. Erdogmus, J. Favaro, W. Strigel, “Return on investment,”
IEEE Software 3(21), 2004, pp. 18–22.

[4] K. Conboy, “Agility from first principles: reconstructing the
concept of agility in information systems development,”
Information Systems Research, 20(3), 2009, pp. 329-354.

[5] S. Barney, A. Aurum, C. Wohlin, “A product management
challenge: Creating software product value through
requirements selection,” Journal of Systems Architecture,
54(6), 2008, pp. 576-593.

[6] A. Fabijan, H, Holström Olsson, J. Bosh, “Customer
Feedback and Data Collection Techniques in Software R&D:
A Literature Review,” in Software Business. Springer
International Publishing, 2015, pp. 139-153.

[7] J. Gordijn, and J.M. Akkermans, “Value-based requirements
engineering: exploring innovative e-commerce ideas,”
Requirements Engineering 8(2), 2003, pp. 114-134.

[8] M. Rönkkö, C. Frûhwirth, S. Biffl, “Integrating Value and
Utility Concepts into a Value Decomposition Model for

226Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Value-Based Software Engineering,” PROFES 2009,
Springer-Verlag, LNBIP 32, 2009, pp. 362–374.

[9] R.B. Woodruff, and F.S. Gardial, Know your customer: New
approaches to customer value and satisfaction. Cambridge,
MA, Blackwell, 1996.

[10] C. Grönroos, “Value-driven relational marketing: from
products to resources and competencies,” Journal of
Marketing Management 13(5), 1997, pp. 407–419.

[11] T. Woodall, “Conceptualising ‘value for the customer’: An
attributional, structural, and dispositional analysis,” Academy
of Marketing Science Review, no. 12, 2003, pp. 1526–1749.

[12] A. Croll, and B. Yoskovitz, Lean Analytics: Use Data to
Build a Better Startup Faste,. O'Reilly Media, Inc. 2013.

[13] P. Tyrväinen, and J. Selin, “How to sell SaaS: a model for
main factors of marketing and selling software-as-a-service,”
in: Software Business, Springer, Berlin Heidelberg, 2011, pp.
2-16.

[14] V. Mandić, V. Basili, L. Harjumaa, M. Oivo, J. Markkula,
“Utilizing GQM+ Strategies for business value analysis: An
approach for evaluating business goals,” The 2010 ACM-
IEEE International Symposium on Empirical Software
Engineering and Measurement, ACM, 2010.

[15] M. Saarikallio, and P. Tyrväinen, “Following the Money:
Revenue Stream Constituents in Case of Within-firm
Variation,” in: Software Business. Springer International
Publishing, 2014, pp. 88-99.

[16] J. Bosch, “Building products as innovation experiment
systems,” in: Software Business, Springer, Berlin Heidelberg,
2012, pp. 27-39.

[17] K. Schwaber, and M. Beedle, Agile Software Development
with SCRUM, Prentice Hall, 2002.

[18] K. Beck, Extreme Programming Explained: Embrace Change.
Addison-Wesley, 1999.

[19] A. Cockburn, Agile Software Development, 1st edition, 256
p. Addison-Wesley Professional, December 2001.

[20] E. Ries, The Lean Startup: How Today's Entrepreneurs Use
Continuous Innovation to Create Radically Successful
Businesses. Crown Publishing Group, 2011.

[21] A.R. Hevner, S.T. March, J. Park, S. Rami, “Design Science
in Information Systems Research,” MIS Quarterly, Vol. 28,
No. 1, 2004, pp. 75-105.

[22] J. Järvinen, T. Huomo, T. Mikkonen, P. Tyrväinen, “From
Agile Software Development to Mercury Business,” in:
Software Business. Towards Continuous Value Delivery,
Springer Berlin Heidelberg, LNIB, vol. 182, 2014, pp 58-71.

[23] H. Erdogmus, and J. Favaro, “Keep your options open:
Extreme programming and the economics of flexibility,” in
Giancario Succi, James Donovan Wells and Laurie Williams,"
Extreme Programming Perspectives", Addison Wesley, 2002.

[24] M. Brydon, “Evaluating strategic options using decision-
theoretic planning,” Information Technology and
Management 7, 2006, pp. 35–49.

[25] M. Fowler, Continuous Integration, 2006.
http://martinfowler.com/articles/continuousIntegration.html
retrieved: Septmeber, 2015.

[26] J. Humble, and D. Farley, Continuous delivery: reliable
software releases through build, test, and deployment
automation, Pearson Education, Jul 27, 2010.

[27] P. Debois, “Devops: A software revolution in the making,”
Cutter IT Journal, vol. 24, no. 8, August, 2011.

[28] J. Johanson, Standish Group Study, presenation at XP2002.
[29] K. Petersen, and C. Wohlin. "Measuring the flow in lean

software development." Software: Practice and experience,
vol. 41, no. 9, 2011, pp. 975-996.

[30] J.S.Mill, Principles of political economy, 1848, abr.
ed., J.L.Laughlin, 1885.

[31] M. Cohn, Agile estimating and planning. Pearson Education
Inc. 2006.

[32] M. Poppendieck and M.A. Cusumano, “Lean software
development: A tutorial,” Software, IEEE, vol. 29, no. 5,
2012, pp. 26–32.

227Copyright (c) IARIA, 2015. ISBN: 978-1-61208-438-1

ICSEA 2015 : The Tenth International Conference on Software Engineering Advances

Publication III

T. Lehtonen, S. Suonsyrjä, T. Kilamo, T. Mikkonen. Continuous,
Lean, and Wasteless: Minimizing Lead Time from Development Done to
Production Use. In Euromicro Conference series on Software Engineering
and Advanced Applications (SEAA), 2016.

134

Continuous, Lean, and Wasteless: Minimizing Lead
Time from Development Done to Production Use

Timo Lehtonen1, Terhi Kilamo2, Sampo Suonsyrjä2, and Tommi Mikkonen2
1Solita Plc. FI-33000 Tampere, Finland

2Tampere University of Technology, FI-33720 Tampere, Finland
timo.lehtonen@solita.fi, terhi.kilamo@tut.fi, sampo.suonsyrja@tut.fi, tommi.mikkonen@tut.fi

Abstract—Modern software organizations invest substantial
effort in building and automating their tool chain. The goal is
to maximize both the speed of development, and how rapidly
new software is deployed. This paper presents results from a
descriptive and exploratory single case study from an ongoing
project of Finnish company Solita. Based on data from version
control and production logs, we investigate the feature flow
in the project to study the effect of lean processes and the
continuous deployment tool chain to waste produced by the
deployment pipeline. We find that flow efficiency can be improved
simply by minimizing the idle time the feature waits in the
production process after its implementation has been finalized.
This reduction of waste benefits both end users and developers –
the users get access to new features, and the developers receive
timely feedback.

I. INTRODUCTION

Software companies are paying increasing attention to their
prompt ability to deliver value to end users. The goal of Lean
Software Development (LSD) [1] – or applying the principles
of Lean manufacturing to software – is to postpone decisions
to the latest possible moment while delivering value as soon
as there is value to deliver. Already completed features are
constantly improved based on data regarding the actual use of
software. In the spirit of LSD, actions that do not serve these
goals and delays in delivering the features to end users can be
regarded as waste. Extensive infrastructure is needed to maxi-
mize the speed of development and deployment. Such pipeline,
including a version control system, build and test servers, and
automated production installations, enables delivering features
to end users more rapidly than ever before [2].

In this paper we study what kind of LSD processes and tools
direct the development towards rapid continuous deployment,
and how giving timely information throughout development
can support team workflows. As concrete data, we use the
project ”Lupapiste”, freely translated ”Permission desk”, a
web site for managing municipal authorizations and permis-
sions created by Solita, a mid-sized Finnish software company
specializing in the design and implementation of web systems,
analytics, and business intelligence. We investigate the feature
flow of the project in regard to the lean concept of waste. To
recognize waste produced in the deployment pipeline, we have
applied the Value Stream Mapping (VSM) [3] method to the
project’s continuous delivery pipeline.

II. BACKGROUND

Lean Software Development (LSD) refers to applying the
principles of lean manufacturing in the development of soft-
ware systems [1]. In LSD, independent teams deliver software
where new features are constantly made available to end users,
and features that already exist are constantly improved based
on data regarding the actual use of software. Actions that do
not serve these goals, as well as delays deploying the features,
can be regarded as waste, which is to be eliminated.

One way to advocate LSD is Continuous Delivery, or the
practice of keeping the software in such a condition that it can
be deployed to staging and production environments at any
time [4]. This enables faster feedback, increased productivity,
and improved communication. Continuous Deployment (CD)
[5] takes one step further from delivery by automatically
deploying software as it gets done and tested. When taking
CDto the extreme, new features are deployed to the end users
several times a day [6].

Regardless of actual deployment, continuous software de-
velopment requires a tool chain – a deployment pipeline,
which uses an automated set of tools from code to delivery.
The role of these tools is to make sure each stakeholder
gets a timely access to the things they need. In addition, the
pipeline provides a feedback loop to each of the stakeholders
from all stages of the delivery process. In this paper we use
the concept of a deployment pipeline based on the ideas of
Humble and Farley [4] as the reference model. The pipeline
they propose is widely used by practitioners especially in the
field of web application development both in the industry and
in open source projects. The approach of [4] is to make use of
a distributed version control system (DVCS), build once, and
then deploy the same binary to any execution environment.

III. WASTE AND THE DEPLOYMENT PIPELINE

In manufacturing context, value stream is a collection of
actions that are required to bring a product through the two
main process flows, starting with a raw material and ending
with the customer [3]. Production is the flow from raw material
to the customer, and design is the flow from concept to launch.
In the context of the deployment pipeline, the production
flow is essential. It is the process where the specifications
are converted into the elements of the software that produce
business value to the stakeholders, as flow items go through
the deployment pipeline. The design flow is out of the scope

for this paper, as it occurs outside the deployment pipeline,
mainly in requirements management and design phases.

In a lean process, resources add value to a flow unit [7].
A flow unit is typically material, information or people. Lead
time is the time it takes for the flow unit to flow through
the process from beginning to end. In software development
context, a flow unit is a new feature implemented into the
software, which may be, for example, new functionality, bug
fix, or technical refactoring. The resources that add value to the
feature are the team of developers, customer-side stakeholders,
and the users of the software. The servers of the deployment
pipeline also add value to the feature as they can verify the
code automatically in the different environments. This shortens
the lead time as no human work is needed for verifying that
the system is still working after the updates.

The efficiency of a lean process is divided to two differ-
ent views: flow efficiency and resource efficiency [7]. Flow
efficiency describes how much a flow unit is processed in a
specific time frame – here, the time it takes for a feature from
completion of development to its first activation in production
use. Resource efficiency is about maximizing the usage of the
resources, which in general means maximizing the time that
resources, in this case people or machines, spend executing
their work. As this issue is hardly a key question in software
development, we focus on flow efficiency of new features from
development to production use.

In LSD, any activity in the value stream that does not
produce value to the flow unit can be regarded as waste
[7] Thus, waste within software development ranges from
unnecessary code getting written to any delays that occur
during the development process [1]. In this paper, the focus is
on waste produced by delays in the deployment pipeline.

All activity that happens in a value stream [3] can be divided
into two categories: value added (VA) activity and non-value
added (NVA) activity. We define value added activity related
to a new feature in the context of this paper very strictly. From
our viewpoint, the only value added activity is the development
phase. Once development is completed, the time until the first
use in production environment is considered waste. In this
context, we have identified three sources of waste – extra steps
in quality assurance, waiting for use after deployment, defects
in production – each contributing to extended lead time. This
is wasteful as with short lead times, the feedback cycle is
also short and effective, whereas with longer lead times, there
are more flow units flowing simultaneously, which forces the
developers to context switching and restarting unfinished tasks.

Extra Steps – Testing and quality assurance: Depending
on the type of application being developed, extensive testing
can be interpreted as extra processing steps on an already
finished feature, i.e. waste. If new features are implemented,
the application is verified to work with extensive regression
testing. The risk that the application does not work at all, or
causes harm that should then later be cleaned up, is usually
rather low. Instead, when the team deploys the software into
the production environment, hidden bugs and defects rise to
prominence. Moreover, the team gets timely feedback from the

actual users of the system. The developers may not understand
the user needs thoroughly and the deployment makes the
conflicting interpretations visible.

Countermeasures: Whenever new features are done, deploy
them to the production the next working day. Plan the de-
ployment schedule with the customer to, for example, once or
twice a week. The definition of done can even be pushed to
mean delivered [4]. In many cases, developer testing locally
is enough, and the users in the production environment can
do the rest of the testing, often without considering (or even
knowing) this. If there are bugs, the users of the system will
report them. Furthermore, the monitoring platform may catch
some of the defects and report them automatically.

Waiting, including the time that a feature waits for first
use after deployment to production environment: By definition,
inventory is waste, and in this case, every execution environ-
ment is an inventory where a feature may be pending. If a
new feature has been deployed into an execution environment
and its testing process is slow, waste may be produced.
Moreover, if a new feature has been deployed into production
environment and is waiting for use, the time spent waiting
is in this context regarded as waste. The reasons why the
users do not use the new feature can vary. For example, it
is possible that the users do not know about the addition of
the new feature, or they may not need the new feature yet.

Countermeasures: Plan the customer acceptance testing in
advance, so that it happens with a short feedback cycle after
the development is done. Communicate effectively with the
testers and inform them about the new features. When the
testers know what to test and how to test it the possible
acceptance testing performed by the testers should proceed
fluently. Demand the customer to test rapidly in the quality
assurance environment and inform the users about the new
features effectively. Help the users find the new features
by keeping them up to date efficiently. One way to inform
the users in some settings is to contact them personally.
Others include sending email announcements or including an
introductory wizard to the user interface of the system to guide
users through the newly added features.

Defects in production environment not caught by developer
tests: If regression and acceptance testing of a new feature
have not been extensive enough, defects that arise in the
production environment produce waste. Part of the waste is
the context switch – if the developer has already started the
implementation of another feature, the context switch to fixing
a critical bug in production environment, and then switching
back to the earlier task is waste. Another form of waste is
the extra communication needed for example for browsing the
issue management system, reading the bug reports and asking
for more information from bug reporters.

Countermeasures: One way to avoid context switching is
to agree on a duty officer where one team member at a time
is responsible for handling the urgent bug requests. This way,
developers’ context switching – obviously waste – is avoided.

The fundamental problem behind all the three wastes of
deployment pipeline — Extra Processing Steps, Waiting, and

Defects — is the long lead time. The first two of the three
wastes lengthen the lead time of a new feature being imple-
mented directly. If the feature is waiting in an inventory, or
if it is processed further in vain, the lead time is prolonged.
When the feature is processed in the testing phase and when
the feature is waiting for deployments of waiting for users, the
lead time is prolonged. The third waste, defects in production,
also prolongs the lead time, because a broken new feature
was incomplete, and the lead time of the new feature can
be interpreted to end only when the feature was completely
implemented. Moreover, the management work needed for
handling the defects is waste, which prolongs the lead time.

The larger the amount of flow units flowing simultaneously,
the more choices there are for context switching and for
restarting unfinished tasks. Context switch for a programmer
is an expensive operation [8] that should be avoided in order
to be more effective in the development process. Restarting a
previously unfinished task produces waste in terms of doing
the same things again.

Finally, the latency between the deployment and the first
use in production makes the feedback cycle even longer. With
latency we mean the extra time a flow unit spends in a non-
value added activity. For example, if a new feature is waiting
for the deployment to the production environment for 10 extra
days, the total lead time is prolonged in vain from the flow
units point of view. There are many reasons for deployment
latency. For example, the current version may have been
refactored in a way that breaks the regression tests.

IV. CASE LUPAPISTE

A descriptive and exploratory single case study industrial
case study [9] was conducted to investigate waste in a state-
of-the-art pipeline within a two month’s time frame of actual
development work. Focus was on what kind of a lean devel-
opment process and toolset direct the development processes
towards CD and how describing timely workflow information
during development can help to detect bottlenecks. The ap-
plication ”Lupapiste” is available at https://www.lupapiste.fi/.
The permission types applied contain e.g. building permis-
sions, environmental permissions and digging permissions.
There is also a lightweight free form information request for
the citizen to ask geolocated questions from the municipal
authority. The municipal authority can start a dialog with the
citizen through the chat functionality of the application, and
then, if needed, the citizen can apply for a formal building
permit with detailed information on the location and properties
of the building including architectural drawings and plans as
attachments. Also some other parties, like an architectural
designer, can be invited to the application easily by email.
When the applicant thinks that everything is ready to be
submitted, the information is then transferred to a municipal
decision making system. Some time later, when the authorities
have handled the application usually in a formal meeting,
the system sends email to the citizen, who is then redirected
back to the application to see the details of the decision. The
usage of the system nation-wide is emerging and some tens of

municipalities have taken the system into use. The amount of
municipal authority users is in the hundreds and the amount
of citizens using Lupapiste is hundreds per month.

The project was started in 2012. The supplier of the system
is Solita Plc., a mid-sized Finnish software company. The
end user of the system consists of various stakeholders,
with various interests. The Environmental Ministry of Finland
owns the project code and acts as a customer in some new
functionalities needed to the system. The business model is
unusual as the marketing of the system has been delegated
to the supplier, providing an opportunity for the supplier
to collect transactional costs of the permissions applied by
the citizens and companies. This motivates the supplier on
marketing the application to the municipal authorities in Fin-
land. Indeed, in comparison to the old fashioned paper based
system, Lupapiste has drastically shortened the lead times of
building applications. For example, as reported at the web site
https://www.lupapiste.fi/, in the city of Järvenpää the lead time
of the permission handling process was shortened from three
weeks to three days.

At the time of research (Fall 2014), the project team
consisted of four developers, a user experience (UX) designer
and a project manager co-located in a single workspace at the
supplier. On the management level there are four more persons
in different roles. Some team members have an ownership
of certain parts of the system, but the knowledge is actively
transferred inside the team by rotating these continuously and
for example by applying agile practices like pair reviewing
of code to spread out the knowledge in a continuous manner.
The team makes use of a custom Agile process that includes
features from Scrum, but with Lean heritage where also
Kanban tools, e.g. WIP-limit or kanban cards [10] are applied.
The case project’s pipeline environment consists of a personal
local development environment, the common development
environment, a testing environment, a quality assurance en-
vironment, and the production environment. The deployments
to the different environments are managed through the version
control system, which then provides the accurate and auto-
matic metadata to measure the process.

The study is based on quantitative data and descriptions of
the development processes and the pipeline collected from the
developer team. Additional informal discussions were carried
out to gain knowledge on team practices for deployment. Em-
pirical data of the case project was collected from the project’s
DVCS – Mercurial VCS (http://mercurial.selenic.com/) – and
monitoring system Splunk (http://www.splunk.com). The data
gathered was then exported and analyzed using statistical tool
R (http://www.r-project.org).

To depict the project’s development and deployment
pipeline direct, informal discussions with the developers were
held by one of the researchers. The researcher works in the
case company and has been working in the case project
earlier, so the current team could be contacted directly by the
researcher to collect the required information. Software mea-
surement as a process of representing software entities, like
processes, in quantitative numbers [11], was further applied

in the study. We also applied descriptive statistics to get an
understanding of the data collected.

Researcher bias in this types of study settings is unavoid-
able. The researcher responsible for the description of the
case projects deployment pipeline has been working in the
case project. Another internal threat is selection bias: the
case project brings with it a plethora of aspects, such as
development and customer culture, that affect the study. A
clear threat to external validity of the research is that it
investigates a single case. Thus, it poses a threat to the
generalization of the results.

V. RESULTS AND DISCUSSION

Identifying Waste: We applied Value Stream Mapping
(VSM) to recognize the waste in the lean process used together
with the deployment pipeline. The VSM current state map [3]
is depicted in Figure 1, with an extension depicting a branching
model [12] on a conceptual level. The figure is a combination
of a process description combined to the inventories of the de-
ployment pipeline. The terms used in the diagram are derived
from the branching model and from Kanban [13] terminology
and the terms that software engineering practitioners use.
The Kanban terminology comes from the team’s development
practices. The team has for example used a Kanban board to
visualize the state of the process [13] in order to recognize
the bottlenecks on the deployment pipeline.

Figure 1. A value stream mapping of the case project.

The development of a new feature is started when developer
starts working on the feature from the ready buffer. Physically
the ready buffer is a column on a Kanban board indicating the
items there are ready to be implemented. The product owner
fills the ready buffer, selecting the most important features at
the moment from the product’s backlog. The backlog in turn
is filled with user needs and requirements from the customer,
or with requirements up with which a UX designer or the
product owner have come. The ready buffer always contains
a small number of the most important features needed to
the system being developed which the developer can start
working on. In the case, the concrete day-to-day software
development process of the team is based on the use of the
version control system and the Hudson continuous integration
system (http://hudson-ci.org/).

At the beginning of the development of a new feature, its
ticket on the Kanban board is moved to the ”development”
column, marking the start of the programming phase. The
developer opens a new local feature branch in the distributed
version control system. The state of the development branch
has to be green according to the information radiator [14],
implying all tests in the development branch must pass. If
broken code has been committed to the development branch, a
lot of waste is generated, and, in addition, other team members
are not able to start the development of new features or
synchronizing with the development branch. Each developer
works on a single item at a time by writing the source code
with comprehensive tests. Value is added in a continuous
manner with local commits [15].

The development process includes programming activities
that introduce value. If the lead time of development phase
is long, the risk of merge conflicts rises, because the longer
the development lead time of a feature is, the more merge
operations are needed, as the develop-branch changes often
on an hourly or daily basis. The developer has to stay up-
to-date with the changes of the development branch at latest
when the feature is ready.

The deployment to the test environment in the pipeline
is made by merging the development branch to the release
branch. When changes are pushed to the release branch, a build
to the test environment is triggered automatically. After this,
there may be some manual testing in this phase performed by
for example the product owner or a user experience designer,
or the different user roles at the customer. For some features,
even some formal acceptance testing for the new features
is needed before deploying them to the QA or production
environments. In the context of this research, this latency in
testing is considered to be waste, because when the feature is
ready, a strict definition of done [16] would enforce it to be
done in the sense of ”ready for production”.

The deployment to the production environment happens by
merging the release branch to the default branch and then
building and deploying the project with a single click in the CI.
When a manual step is required, it is easier for the team to keep
control of the publishing schedule. Another manual step is to
move the tickets on the Kanban board between the columns.
In the case project, the schedule for production deployments
is agreed on with the customer in weekly product owner team
meetings, where involves both the supplier and the customer.

To summarize, the three wastes of the case project are:
• Extra Processing Steps: Testing procedure is too long.
• Waiting: Features are waiting for use in production envi-

ronment, as users do not know about them.
• Defects: There are defects in the production environment

not caught by developer tests.
Feature Flow: During the two month research period, the

team completed a total number of 38 new features (Table I).
The number of features that contained new API interfaces, and
were thus fully trackable through the logs in the monitoring
system, was 5. The mean development days per feature was
5 working days. Thus, on average, if a developer starts devel-

opment on a new feature today, the same developer can start
the implementation of another feature on the same weekday
next week.

Table I
METRICS DURING THE RESEARCH PERIOD.

Business Development
Development Deployment value Flow done to

(days) latency (days) latency efficiency production
(days) use (days)

f1 10 0 1 91 1
f2 4 0 1 80 1
f3 3 0 1 75 1
f4 1 2 1 25 3
f5 7 3 1 64 4
f6 7 7 1 47 8
f7 4 2 1 57 3
f8 1 4 1 17 5
f9 11 4 1 69 5
f10 1 5 1 14 6
f11 12 5 1 67 6
f12 1 5 1 14 6
f13 2 7 1 20 8
f14 2 8 1 18 9
f15 1 8 1 10 9
f16 9 9 1 47 10
f17 1 10 1 8 11
f18 7 10 1 39 11
f19 2 11 2 13 13
f20 7 12 1 35 13
f21 2 8 1 18 9
f22 9 8 2 47 10
f23 10 8 1 53 9
f24 2 10 1 15 11
f25 10 11 1 45 12
f26 1 14 1 6 15
f27 5 17 1 22 18
f28 10 17 1 36 18
f29 1 18 1 5 19
f30 2 18 1 10 19
f31 10 18 0 36 18
f32 6 19 1 23 20
f33 9 20 1 30 21
f34 1 20 1 5 21
f35 2 24 1 7 25
f36 2 1 1 50 2
f37 1 1 1 33 2
f38 2 1 1 50 2

The mean latency in deployment to production was 9
working days. The value is high, as any extra waiting prolongs
the lead time in vain, which leads to the problems related to
a long lead time described in Section III. The mean latency
for production use for the five features that it was possible
to collect the data for was 3 working days. Median was 1
working day and mode was 0 working days. We assume that
latency of one working day is the best assumption of typical
production use to occur, i.e., when the new feature is deployed,
it will be used the next day. Assuming a production use latency
value of 1 working day for the rest 33 features, the mean of
flow efficiency was 34% and the mean time from completed
implementation to production use was 10 working days. In
other words, when the development was done, it took two
weeks to get actual feedback from the production environment
from the real users using the new features. Most of the latency
occurs in the deployment phase (9 out of 10 days).

Summary: A modern development toolset includes a deploy-
ment pipeline built on top of DVCS. Such a toolset enables
rapid and continuous deveplopment, while the obstacles of

the rapid development are visualized and eliminated, thus
continuously optimizing the workflow. The demonstration with
VSM and the feature flow efficiency shows that the flow
efficiency can be improved simply by deploying more often.
With frequent deployment, waste is eliminated. Lowering the
latency of deployment leads to faster use and shorter feedback
cycle.

VI. CONCLUSIONS

We studied the flow efficiency of a software project, with
focus on the lead time from development done to production
use. The goal was to recognize waste in a state-of-the-art
deployment pipeline combined to a lean software development
process. The results show that when the lead time is longer,
the amount of waste increases in terms of context switching,
starting unfinished tasks anew, and longer feedback cycles. In
contrast, together with rapid deployment of new software, the
ability to manage the lean flow efficiency results in shorter
feedback cycles, fewer unfinished tasks and context switches,
and, eventually, eliminating waste.

ACKNOWLEDGEMENTS

This work is supported by Tekes (http://www.tekes.fi/) and
Digile’s Need for Speed program (http://www.n4s.fi/). Thanks
to Antti Virtanen for the idea of considering lead time to cover
the time until the first production use.

REFERENCES

[1] M. Poppendieck and T. Poppendieck, Lean software development: an
agile toolkit. Addison-Wesley Professional, 2003.

[2] K. B. Stone, “Four decades of lean: a systematic literature review,”
International Journal of Lean Six Sigma, vol. 3, no. 2, pp. 112–132,
2012.

[3] M. Rother and J. Shook, Learning to see: value stream mapping to add
value and eliminate muda. Lean Enterprise Institute, 2003.

[4] J. Humble and D. Farley, Continuous delivery: reliable software releases
through build, test, and deployment automation. Pearson Education,
2010.

[5] J. Humble, C. Read, and D. North, “The deployment production line,”
in Agile Conference. IEEE, 2006, pp. 6–pp.

[6] D. Feitelson, E. Frachtenberg, and K. Beck, “Development and deploy-
ment at facebook,” IEEE Internet Computing, p. 1, 2013.

[7] N. Modig and P. Åhlström, This is lean: Resolving the efficiency
paradox. Rheologica, 2012.

[8] R. C. Martin, The clean coder: a code of conduct for professional
programmers. Pearson Education, 2011.

[9] R. K. Yin, Case study research: Design and methods. Sage publications,
2014.

[10] J. Boeg, Priming Kanban: A 10 step guide to optimizing flow in your
software delivery system. Trifork, 2011.

[11] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical software engineering,
vol. 14, no. 2, pp. 131–164, 2009.

[12] V. Driessen, “A succesful git brancing model.” http://nvie.com/posts/
a-successful-git-branching-model/, retrieved: November 2014.

[13] H. Kniberg, Lean from the trenches: Managing large-scale projects with
Kanban. Pragmatic Bookshelf, 2011.

[14] M. Pikkarainen and A. Mäntyniemi, “An approach for using cmmi in
agile software development assessments: experiences from three case
studies,” in SPICE 2006 conference, Luxemburg, 2006, pp. 4–5.

[15] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig, “How do
centralized and distributed version control systems impact software
changes?” Corvallis, OR: Oregon State University, Dept. of Computer
Science, Tech. Rep., 2014.

[16] K. Schwaber and M. Beedle, “Agile software development with scrum.
2001,” Upper Saddle River, NJ, 2003.

Publication IV

T. Lehtonen, V. Eloranta, M. Leppänen, and E. Lahtinen. Visualizations
as a Basis for Agile Software Process Improvement. In 20th Asia-Pacific
Software Engineering Conference (APSEC), 2013.

140

Visualizations as a Basis for

Agile Software Process Improvement

Timo Lehtonen
Solita plc.

Tampere, Finland
timo.lehtonen@solita.fi

Veli-Pekka Eloranta, Marko Leppänen,
Essi Isohanni

Department of Pervasive Computing
Tampere University of Technology

Tampere, Finland
{firstname.lastname}@tut.fi

Abstract—Software projects have usually a lot of software
engineering data available in different kinds of repositories.
This data can be mined and used for software process
improvement purposes. In general, agile methodologies
emphasize reflection, making problems visible, and learning
from the past. As the human mind is powerful in interpreting
visual representations, visualizations could help in recognizing
problems and areas of improvement in an agile software
development process. In this paper an action research
approach was taken to carry out software process
improvement in an industry project. The research resulted in a
visualization of the issue management system’s data. The
visualizations were a tool to identify problems in the
development process and to make them visible for all
stakeholders. The results show that this kind of visual
approach can be used successfully to point out problems in the
process. The visualizations form a basis for communication on
possible software process improvement.

Keywords - visualization; agile software development; SPI

I. INTRODUCTION

One of the cornerstones of Scrum and agile is continuous
improvement. It is based on regular reflection and improving
the efficiency of the development team by learning and
improving the development process. In Scrum this reflection
is carried out in sprint retrospective [20] [21] [18]. In
addition, other systematic methods have been proposed [16].

Sometimes the development team might get complacent
or just blind to their opportunities for process improvement.
This “happy bubble” [17] might be hard to pop and the
process improvement may stagnate. To tackle this, we will
present in this article a way to visualize the software process
to make the problems visible and to encourage the team to do
software process improvement (SPI). The visualizations are
a tool that can be used by the team to identify the problems,
and consequently to monitor if the changes in the
development process are alleviating the problems.

The study is based on data from an industrial ERP
development project. Action Research [1] approach was
taken to find out what kind of visualizations would surface
the problems the best and would be usable for the
development team and to the customer too. In the end,
visualization was used to identify problems in sprint length,

release cycle, task size, lead time and communication
between the development team and the customer. Statistical
analysis on the visualized data was carried out to see if the
visualization really illustrated the problems which were
recurring frequently. Finally, the same visualization
approach was applied in another project to see if the result
can be generalized to other similar projects.

This paper is organized as follows. Section 2 describes
our research methodology, i.e. Action Research. Section 3
characterizes the development method that the team used
before this study was initiated. Section 4 describes the case
project and the subsequent iterations of the action research
are explained in sections 5-7. Section 8 describes the
outcome of the last iteration and thus presents the results of
the study. In section 9 the visualization approach is validated
by applying it to another software project and showing the
results of a statistical analysis. Related work is discussed in
section 10 and section 11 gives some concluding remarks.

II. APPROACH

The chosen methodology for the research was Action
Research (AR) [1] as it gave us opportunity to work within
the complex environment of software development. The
objects of our research, i.e. the problems of the software
project and the visualizations, cannot be separated from their
context in the software development project. The actions of
improving the software process do not have a meaning
independent of their associations in the project. AR is a
situational research method that suits for research work in
such a context [5]. It is also collaborative suiting for the co-
operation of researchers and practitioners and adapts to the
process, like in this case the yet unknown software project
[5]. Action Research is iterative in nature and lasts until a
satisfactory result has been achieved. In the beginning of the
first iteration we had only a very general idea of the problem:
the customer has reported some quality problems in the
project. So, AR suited our study perfectly, as in the
beginning we were not certain how we could solve the
problem and what are the real reasons behind the problem.
Altogether, we carried out four iterations during time period
from November 2012 to May 2013.

Action Research consists of the following three steps [1]:
1. Diagnosis of the problem

2. Action intervention
3. Reflective learning
The first step in AR is to diagnose the problem. In our

case, the purpose was to find out the way the development
team is working and what kind of problems they have in
their development process which caused the quality
problems. Additionally, we needed to map out what kind of
process data is available in our use and how we can use it to
catalyze the team’s SPI process. Diagnosis of the problem is
described in more detail in Section V.

Second, we took the initial steps towards solving the
problems we found out in the step 1. After the first attempt to
solve the problems, reflective learning was carried out
together with the development team, customer and software
development process experts from the university and from
the company. Finally, we repeated steps 2 and 3 three more
times until we were satisfied with the end result.

Once our visualization approach seemed to make
problems visible in the development project, we wanted to
validate the approach in another project to make sure that the
results are applicable to other projects too. Additionally, we
carried out a statistical analysis to validate that the
visualization highlighted issues that were the real problems
in the development.

The initiation of the Action Research project was
partially made by the researchers and partially by the
practitioners. The researchers were looking for suitable
projects to test out their ideas for measuring the effects of
SPI and the effect of applying different software
development practices. At the same time, the target project
members were looking for various ways to improve quality
and their development practices.

Company participants had the authority in the AR
project. So, researchers only suggested possible solutions
and the final call if the action to be taken was on the
organization side. The development team has to deliver
features to the customer and we did not want to disrupt this
process. This affected the research in almost all iterations as
the development team had to decline from trying out
practices suggested by researchers.

The structure of the AR project was between formal and
informal. Researchers were bound by a non-disclosure-
agreement, but otherwise the role of the researchers was
informal and there was no official contract on the research
project.

III. SCRUM IN A NUTSHELL

Scrum is a well-known and widely adopted software
development framework. Here it is presented as described in
[19]. Usually practical implementations have taken this
approach as a starting point and evolved from there by
continuous improvement. Scrum aims at agility by
providing ways to develop software in an incremental and
iterative way. In addition, the development cycle is time-
boxed.

Scrum framework is rather simple as it has only three
roles for the people involved: Scrum Master, product owner
and the development team. For organizing work for the team
there are two backlogs: the product backlog and sprint

backlog. The product owner (PO) is responsible for updating
the product backlog and it should include all work that the
team should do as product backlog items. These items are
ordered so that the items which produce the most return on
investment should be first on the backlog. The PO orders the
backlog by consulting all stakeholders of the product. All
items have their work estimates and estimates of the business
value attached. These items can be a variety of things:
product features, use cases, user stories, requirements, bugs,
documents, technical issues, architectural refactoring and so
on.

The Scrum Master’s (SM) role is to keep an eye on the
Scrum process. SM removes impediments from the work and
makes it possible for the team to achieve the desired end
result. The team is a small self-organized group of people
who commit to implementing the items in the product
backlog. They take the items and split them into tasks and
divide the work autonomously. They keep track of the
finished tasks and hold daily meetings with the SM. In this
stand-up meeting, the team members tell what tasks they
have accomplished, what tasks they’re going to do next and
what problems they have encountered.

The work is done in sprints, which are fixed length time
spans. The original source says it would be 30 days, but
usually companies have implemented shorter spans. Every
sprint starts with a planning meeting where all Scrum roles
gather to check the product backlog and let the team choose
which items they can commit to. After that, these items are
split into tasks whose work amounts are estimated. A task
usually lasts from a half an hour to or 16 hours at maximum.
A task has a definition-of-done, which will clearly state
when a certain task is done and will not require work spent
on it anymore. The team commits to a work amount that can
be accomplished in one sprint. This amount is called the
team velocity. After the team has begun the development, the
sprint backlog cannot be changed. If some change is
mandatory and the team cannot commit to get everything
done, then sprint must be aborted. After the sprint is
completed, there is a demonstration of the new features of
the software and a retrospect meeting, where the sprint is
reflected upon and the team and Scrum master decide on
what they should improve, what to keep and to discard from
the process.

A Scrum project is controlled by means of frequent
inspection of the project and has a goal of making progress
and problems visible [20]. A visual representation is
universal and represents complicated concepts with a
common language [3]. People participating in a Scrum
project often want to understand the project with their own
vocabulary [20]. Therefore, visualizations may work as a
common language in a Scrum project.

IV. CASE PROJECT: LEHTIPISTE ERP ELMO

The case project used in this paper is Lehtipiste ERP
Elmo. The customer is Lehtipiste, a marketing and
distribution organization of single copies of newspapers and
magazines in Finland. The vendor of the system is Solita plc.
[22]. The ERP system manages the logistics of the delivery
chain of magazines. Elmo project involves seven people on

the customer side and seven people on the vendor side. The
development of the system started in 2005 and the system
has been up and running in production since 2010. The
project is in the maintenance phase which consists of bug
fixing and developing of new features.

The current software development process used is a
derivate of Scrum framework: an iterative process, which
produces increments to the software after each sprint. The
product owner role is held by a person on the customer side.
There was no named Scrum master role, but project manager
could be seen as a Scrum master. However, the role of the
project manager as a part of the process improvement was
unclear to the researchers.

The development is carried out in sprints. According to
the project manager and the development team the length of
a sprint is four weeks. The customer lists all features and
issues she wishes to be implemented or resolved in the next
increment. In other words, the customer plans the sprints
beforehand and, typically, there are a couple of sprints
planned beforehand as there is already more work than can
be implemented in one sprint. This deviation from Scrum
makes it hard for the team to commit to the work as they
cannot select the items they take to the sprint by themselves.

As a notable deviation from the usual Scrum approach,
each sprint consists of two phases: a development phase and
a system testing phase. The version control branching model
of the project supports this approach: in the development
phase, all code changes are committed to the trunk. When
the testing phase begins, a new branch is created in SVN.
When the branch is created, a decision on which features to
include in the production release is made. The bugs found in
the testing environment are corrected to the branch and these
fixes are also merged to the trunk.

In each sprint there is a reserved time for the bugs that
are found in the testing environment from the previous
sprint’s increment. Typically, half way through the sprint,
the team gets feedback from the testing environment and
they fix the bugs found. This causes branching in the source
control as the development will continue in the usual fashion,
while the testing environment produces reports about bugs
that should be fixed.

During the sprint, the developers write code and test it on
their own development environment on their workstations.
This local testing environment is a light-weight
implementation of the production environment with a limited
amount of logistics data. In the end of the sprint, the
development version is deployed to the testing environment,
which can be used to more extensive testing. Testing
environment has the same inbound operative integrations to
other systems as the production environment. However, the
real end users are not using the testing server, so their input
is not part of the test framework. Many new features can
only be thoroughly tested in the production environment,
because they may need, for example, real world sales and
shipment data to work properly.

After the testing is over and the bugs are fixed, the
system is deployed to the production environment. The
testing phase takes four weeks and is scheduled so that the
system is deployed in the middle of the current sprint. The

customer will give feedback and bug reports after the
deployment whenever necessary.

The issues and bug reports are collected with Jira issue
management system [8]. It is used extensively in the project
for both bug tracking and initiating development tasks of
new features. The project has a policy to avoid emails and
use Jira for communication instead.

Jira has a specified workflow for all development tasks in
this project setting. When a developer starts the
development, she changes the state of the task to In
Progress. When the development is done, the state is
changed to Fixed. When a test build is done, the fixed tasks
go to state Delivered to Test. The customer carries out the
testing, and when it is completed, the state is changed first to
Ready for Production and then on release day to Delivered to
Production. Then after some time, the task ticket is Closed.

Team members must have a shared understanding of
what it means for work to be complete [20] [21]. Definition
of “Done” in this project is task state Ready for Production
in Jira. It means that the task is ready to be installed to the
production environment.

In the beginning of year 2013, the project had some
problems with the process and the customer reported quality
problems in the new versions delivered. The project manager
was contacted by the researchers and the action research was
started. The goal was to investigate the project and to
identify the root problems the software development process
had. The responsibility on improving the process was left to
the development team as that the team must be willing to
make the changes or otherwise the SPI process wouldn’t be
successful.

V. ITERATION 1

A. Diagnosis of the Problem

In the beginning of the action research cycle it seemed
that there is a rather large and complex ERP system at hand.
There were hundreds of open tasks in the issue management
system and many of them seemed to be actively worked on
simultaneously. It was hard to form a clear big picture, so it
seemed that metrics and visualizations could help to have a
better understanding of the status quo.

The researches met the project manager in Jan 2013. The
project manager explained the software development process
and how Jira was used in the project. One essential
observation was that all communication with the customer
was carried out using Jira, so the researchers could have a
good track of communication with the customer in their
disposal. One of the researchers had been working in the
project as a developer some years ago, so the project was
partly familiar to the research team.

The project manager reported that there are problems
with some of the Jira issues. For example, few
implementation tasks have been open for months causing
problems in an iterative time-boxed approach. The tasks
were such that they were never “done” and thus there was no
commitment to deliver all selected tasks at the sprint end as
some of the tasks would fail anyways. Also, there were tasks

that have been closed for a while and they are then reopened.
Reopening could happen for various reasons.

B. Action Intervention

The researches had an idea to use metrics for analyzing
the project data. Metrics could help to see what kind of
things can be said, for example, about the lead time of a user
story. In the first step the researchers planned mining the
data from the version control system and issue management
system to reveal problems in the development process.

The mined data could be represented visually so that it
helps to form a big picture of the project for SPI purposes. It
was not known, which kind of visualization would be to
most beneficial for SPI. The researchers also planned to use
metrics to describe the project. The first metrics the
researchers had in mind included bug tracking and lead times
for the issues.

First ideas for visualization consisted of visualizing the
data in version control system (SVN). There are lots of tools
like SVNStat [23], which make it possible to visualize the
events in the version control system. So, the SVNStat tool
was used to generate the graphs. However, the graphs were
not useful as the problems of the project seemed not to be
source code dependent. So, the research direction was
changed towards the issues in Jira, because Jira was used
extensively and because the tasks contain a lot of useful
metadata. The metrics on lead times seemed to indicate that
the team had longer sprint cycle than the aforementioned 4
weeks. This had to be investigated further.

The people in Elmo project had a conception of their
software development process as described in the previous
chapter. However, it is hard to see, if the process is under
control and performing well or not, which is crucial start
point for process improvement [6]. Also, different team
members had differing conceptions of the status quo. So,
visualizations of the Jira content could help in forming the
common conception of the project as the main problem with
hundreds of active issues in Jira having tens of comments for
each issue is that the data is in textual format. So, it is
challenging to get a clear overview what is going on.

The Jira content was transformed to a visual form as
follows. First, a Jira filter was applied to find issues from the
past two years. The issue event data consists of state
changes, comments and assignments. For example, an issue
may have changed to state In Progress and it may have 10
comments and three assignments to different people. All
these changes to an issue have timestamps.

The first draft of the visualization of process data was
created by gathering the data from Jira with a simple Jira
(JQL) query and exporting it to HTML format. Then D3 JS-
library [2] was applied to generate a graphical representation.
The visualization at this stage was not very useful, but the
iterative process towards a useful visualization had begun.

C. Reflective Learning

The visualization made it possible to point out some
problems in the project, such as long bug lead times.
However, the data was just a flat export of bugs from Jira.
The data did not contain any time based event data (issue

state changes, assignments) and it did not take into account
Jira comments. Thus a richer data source was needed, which
would have more detailed data of the Jira events. Therefore,
the visualization should illustrate more Jira’s metadata
information. Thus, we decided to drop the idea of visualizing
any of the version control data and focus on data mined from
Jira.

Time is one of the hardest variables to map in any
complex system, but it also reveals a lot of important
information [13]. The data in this iteration was flat and most
of the time dimensional data was missing. The goal in the
second iteration would be to get richer data from Jira and to
represent it on a timeline.

VI. ITERATION 2

A. Action intervention

An issue in Jira encounters many events during its
lifetime. For example, its state can be changed, it can be
assigned to another person or it can be commented on. To
have the time dimension visualized better, the researchers
needed an access to issue event data. However, the Jira
export files do not contain this data. Thus, another way had
to be used to acquire it. A direct connection to Jira database
was not possible in this case because of company level
security policies, so a custom Jira Web Crawler was
implemented. The crawler was implemented with Robot
Framework [15] and Python scripts. These technologies were
chosen because of their familiarity to the researchers.

The visualization at this stage (Fig. 1) contains a timeline
going from left to right, commenting events and state
changes.

Figure 1. The issue life cycle is rendered according to the time based data.

The visualization in Fig. 1 contains a lot of data per issue.
The two circles at point #1 in the figure show the time when
the issue was started working on and then completed. Point
#2 shows the time when the issue was installed to the test
environment and point #3 shows the event when the task was
ready for production. The task was then later installed to the
production among other tasks. Comments are drawn with
small gray bullets.

B. Reflective Learning

The diagrams provided some new information of the
process. For example, now it was possible to see the length

of the testing time of an issue. The visual layout of the
diagrams was still rather poor and the diagrams were
cluttered by several colors. The visualizations now contained
more information, but they were still rather hard to interpret.
The goal of the next iteration would be to make the
visualization easier to read and interpret. It would help to
identify the problem points in the process.

The project manager also reported that large amount of
tasks simultaneously in testing phase is becoming bigger and
bigger problem. This was visible in our visualization, but we
needed to make that more prominent, so the development
team could easily see the problem from the visualization.

VII. ITERATION 3

A. Action intervention

As mentioned, the goal of this iteration was to improve
the readability of the visualization. In addition, we wanted to
emphasize the amount of ongoing work (development and
testing). Kanban based software processes [10] take use of
Work in Progress (WIP) limits. The idea of WIP is to limit
the amount of simultaneous ongoing work. In Scrum, this
principle is called single-piece continuous flow. This
approach keeps individual tickets flowing on the Kanban
board [10]. For example, the product owner may limit the
number of tickets available in the development buffer [10] to
five. This makes the priority of the chosen tickets higher and
makes them flow more fluently.

At this stage, there was an effort to add a WIP limit to the
diagrams. A trend curve summing up the total amount of
ongoing tasks was added to the bottom of the diagram. The
diagram is illustrated in Fig. 2.

Figure 2. A diagram with a trend curve included.

The tasks are presented as rows in the visualization and
the height of the row illustrates the task size. In Fig. 2 each
of the sprint’s tasks were visualized in the diagram.
Comments are marked with blue circles. Red color marks the
testing time of the issue. Green vertical lines mark the start
and the end of the sprint. Red vertical lines mark the date
when new software version is transferred from the testing
environment to the production environment. Weekends are
shown as white vertical lines.

The daily summary can be seen at the bottom of the
diagram. All in progress tasks are summed with yellow
color, and in testing tasks with red. For example, at point #1
in Fig. 2, the sum of the red blocks on the bottom starts to
rise. This happens because there are more red lines on the top
part of the diagram telling that there is a lot of testing going
on. Also the number of comments and assignments per day
were summed to the bottom to show a trend.

B. Reflective Learning

The visualizations at this stage started to be mature
enough to get feedback from the customer. The researchers
met the customer in the beginning of March 2013. The
diagram in Fig. 2 was shown to the customer’s
representatives and it was used as a basis for communication.
The researchers explained some details about the ongoing
tasks of the project based on the diagrams. For example,
some tasks seemed to have a lot of comments during their
testing time.

In total, three persons on the customer side were
interviewed by the researches: the IT manager, customer’s
project manager and a person responsible for infrastructure
of the system. The researchers discussed with them asking
general questions about how the process is going and if the
current situation be seen from the visualization.

Every one interviewed agreed that the work during
sprints is fragmented, as the team should focus on producing
new features. During the sprint the team members still make
bug fixes to the features from the last sprint. One important
observation was that the visualization of the comments on
the time span seems to show that some tasks have unclear
requirements and some tasks get reiterated in testing. This
might be due to the fact that the specifications are
documented too early compared to their development.

The customer representatives could point out from the
graph that the testing phase takes clearly too long for
features. Visualizations could help the customer to motivate
more active testing. This helps in shortening the lead times.

Visualization also illustrates the lead times of the tasks.
Lead times were in many cases longer than the sprint length
and thus, tasks were not completed within a sprint. Some
features even have so long development time that they aren’t
needed anymore when they finally get deployed.
Visualization could help the customer to see all features
currently under development. As task IDs are shown in the
visualization, the customer could identify if the feature in a
sprint is such that it is not needed anymore and could be
terminated. The main result here, however, was that the
visualization revealed that the lead times are too long and a
way to shorten them should be sought out.

The interviews also gave some information on the
reasons why testing phase for some issues is so long: it is not
possible to test some features before they have been running
in the production environment for several weeks. The
customer comments were used as the basis for improving the
visualizations in the next iteration. In addition, UX
specialists at Solita were heard to improve the layout and
colouring of the diagram.

VIII. ITERATION 4

A. Action intervention

In iteration 4, the visualizations were simplified a bit. For
example the color theme was changed based on the
suggestions by the UX specialists.

Figure 3. Lifeline of a single implementation task in a sprint.

The final form for representing a single issue is shown in
Fig. 3. The task is first in ongoing development state (gray
color) for five working days (there is a weekend shown in
white in between). Then the testing phase (yellow color, or
lighter gray if the image is in gray scale) of two days starts
next week. During the testing phase, the task is re-opened
(red line) and the task is returned to state “open”. Finally, the
task is deemed ready for production and on delivery day it is
deployed to the production environment. Blue dots in the
figure are comments. In theory, there should be gray color
after the red line, because the task was now again in
implementation. People tend to forget to change the state of
the task, which happened in this case, too. In this case, there
was a comment and then the task was ready for production.
This implies that there is no need for such a state in Jira set
up.

The real value of visualizing the sprint is that the
diagrams can be used as a basis for communication. The
project manager and the product owner could now get a
better understanding of what is happening during the sprints.
Generating the visualizations does not need any extra
reporting work from the team – all information is pulled
automatically from Jira.

Figure 4. Tasks of one sprint. For a higher quality image, see
http://www.cs.tut.fi/~tile/agile-visualization/

These observations could be pointed out in Fig. 4:
#1: Lot of tasks are simultaneously in testing phase, but
testing does not seem to proceed during next four or five
weeks. #2: Testing seems to proceed very quickly before the

deadline in the end of the sprint. #3: A task has a lot of
commenting going on in the testing phase. This might
indicate a problem in testing. #4: Implementation of a task
takes the whole sprint. Perhaps it should be split into smaller
parts. #5: Sprint length should be four weeks, but it seems to
be over 10 calendar weeks (there is one week Christmas
vacation in the timeline of the diagram).

For example, observation #3 was not new to the project,
but now, when the fact was visible in the diagram, it was
easier to discuss about it and possibly find a solution to fix
the problem. In this case, some people in the project decided
that they could use a chat tool for communication instead of
Jira commenting to make communication more interactive
and quicker.

In Fig. 4 it can be seen that there is a period of four
weeks when testing does not seem to proceed very much.
Lean agile practices suggest one piece continuous flow.
Kanban based process often use WIP limits [10] for ensuring
the flow. Observation #1 is against these principles, because
there are over 10 tasks in testing phase simultaneously. This
can be clearly seen from the diagram. In general,
observations from the diagram could be used as a basis for
SPI. Carrying out the actual SPI was out of this study’s
scope.

The visualization presented in Fig. 4 contains a lot of
information. There are tens of tasks and hundreds of events
shown in a compact form. Card et al. [3] has many examples
on figures that contain a lot of data in an understandable
visual form. Like those diagrams, these visualizations offer a
good basis for discussion between the project members.

IX. VALIDATION

A. Statistical analysis

Does the proposed visualization reveal the problems of
the project? To validate that the phenomena perceived from
the visualizations are relevant, a statistical analyst who was
not involved in the action research team investigated
numerical data related to the project. The data contained
information about all tasks worked on in the project during
one year (6/2012 - 5/2013). Altogether, there were 10 sprints
and 461 tasks of which 137 had failed and 226 succeed.
Failing in this context means that the lead time of a task
exceeded the limit of 30 working days. The limit for failing
was chosen to match the actual average sprint length of the
10 sprints examined. Lead time was defined as the time from
state In Progress to Ready for Production.

On the left of Table I, we present descriptive values of
seven variables (lead time, time spent, etc.) that are related to
the proposed visualizations. These variables were identified
as important factors in customer interviews and thus were
selected for statistical analysis. The amount of tasks varies
between the rows of the table because all the variables were
not available for all tasks. For instance, some of the tasks
were still unfinished and therefore we do not have the lead
time and the time estimate was not conducted for all the
tasks.

The purpose of the statistical analysis was to chart which
characteristics of a task predict failing and compare if they

are visible in the visualization. If these characteristics are
shown in the visualization it can help in paying attention to
the right tasks already during the sprint before the task has
failed and cannot be delivered.

Independent samples T-test was used to analyze the
difference between the tasks that failed and tasks that were
accomplished. On the right of Table I, we present means and
standard deviations for the succeeded and failed tasks
separately. For all the variables, the differences in the means
between the failed and succeeded tasks are statistically
significant (p<0.01). The differences between the means in
lead times are not presented because failure of a task is
defined by its lead time.

According to the statistical analysis, the tasks that failed
in the first sprint were bigger (both in the actual size and in
the estimate), there were more comments and assigns in
these tasks, and there were more people involved in
commenting and working than in the tasks that had been
accomplished. In [14] Rising et al. suggest that task size
should be less than five days to promote success. Our results
are in line with this conclusion. The number of comments in
a Jira issue indicates that the issue management system is
used in communication instead of just documenting the
tasks. Cockburn [4] claims that the communication
efficiency is poor in using textual message exchange instead
of face-to-face communication. Thus, this is a pain point in
project and should be dealt with. Furthermore, this is an
indication that the specifications are not enabling [21] for the
team. However, there exist additional metrics of successful
project management, but in this context they were not
considered as important ones.

Analyzing the proposed visualizations from this point of
view, we can say that it is relevant that the visualization
shows the comments marking them with blue. This will help
paying attention to the tasks getting multiple comments.
When a task starts getting comments, the size of the task can
be checked from the visualization. If the task is big the
multiple comments are particularly critical. A shortcoming of
the visualization is that the amount of different people
involved in a task does not show. However, adding too much
information in the visualization might make it disorganized.
This is an aspect that should be discussed and considered in
the further development of the visualization.

B. Another project context

To validate the generalizability of the visualization it was
tested in the other project. The goal was to ensure that the
crawler can be used in a different project context and
visualization could provide value for the SPI in another

project, too. The other project was a large public sector
project at Solita plc. The project was also in the maintenance
phase with some development of new features. The
visualization for a period of three months is seen in Fig. 5.

Figure 5. Visualization applied to another project.

The project uses three week sprints, but every sprint’s
results are not released to the customer. A separate long term
release plan contains the release dates. In a release, the
results of multiple sprints are delivered to the customer.
During the inspection period the team had a release date at
the end of March 2013.

The tasks in this project seem to flow fluidly and there
are only few tasks in progress simultaneously (#1). Testing
phase is not visible in the Jira task states at all. Instead,
testing is organized separately before the production. Most of
the tasks are short and implemented in a couple of days at
longest (e.g. #4). Some tasks (#2) are taking a longer time to
be implemented. This might be something this project might
want to discuss in detail if it is a problem. Commenting
seems to be on a low level and the larger groups of
comments (#3) are comments made in a project planning
meeting. This project seemed to have fewer problems in the
development process when interviewed, and the same can be
observed from the visualization too. Visualization approach
was useful to some extent in this project, too, even though
they had a different way to work with Jira than Elmo project
had.

X. RELATED WORK

Software process management is about successfully
managing the work process associated with developing and
maintaining software systems [6]. It consists of four key
responsibilities – define, measure, control and improve the
process. The visualizations developed in this work were
mainly targeted to measuring the process. For example, the
sprint length in Elmo project was reported to be four weeks,
but the visualizations show that there is some activity in the
issues during a ten week period. Also lead time as defined in
[9] is easy to measure with visual perception – it can be
pointed out that tasks in Fig. 4 have a very long lead time.
Statistical fact supports this perception as the mathematical
mean is 35 working days, more than the 4 weeks the project
aimed at.

Graphical inventions of all sorts serve two distinct
purposes [3]. Their first purpose is communication (a picture
is worth of ten thousand words) and the second is to discover
the idea by yourself. In both cases, visual representations
produce cognitive amplification by, for example, extending a
person’s working memory. We might imagine a stockbroker,

Table 1 - Statistical analysis of data that were used in the visualization.

watching computer displays of financial data, rushing to act
on events. Whatever the activity is, mental work and
perceptual interactions of the world are likely to be
interwoven.

The most important ways in which visualizations can
amplify cognition are: increase processing and memory
resources, reduce searches, enable pattern detection, and
perceptual inference operations. Visualization may pack a
huge amount of data into a small space and allow patterns in
the data to reveal themselves. They make such inferences
easy which are not easy otherwise. [3]. Also Larkin and
Simon in their classical study [11] illustrated three basic
ways why diagrams helped. By visualizing the data, large
amounts of search can be avoided. Using location to group
elements reduces the load on working memory. Also, visual
representations automatically support a large number of
perceptual inferences that are extremely easy for humans
[11].

Visual displays provide a high bandwidth channel from
the computer to the human [11]. We acquire more
information through vision than through all of the other
senses combined. Improving cognitive systems often means
tightening the loop between a person, computer-based tools,
and other persons. [3]

Diagrams are effective in the same way as the written
words on this page are effective. We must learn the symbols
and conventions of the language, and the better we learn
them, the clearer that language will be [3]. The same applies
to the visualizations created in this study – the customer
company people quickly learned the language of the
visualizations.

XI. CONCLUSIONS

When a project uses an issue management system, it is
possible to visualize the tasks that are involved in the project.
It makes possible to analyze the diagrams and point out
violations of certain agile practices. Visual perceptions and
inference based on them are easy to humans. Visual
approach often makes it possible to point out such problems
that would be hard to find otherwise.

Visualizations represented in this paper offer a good
basis for communication. It is easier to form a common
conception of the project state when a visual diagram is used
as a basis.

The visualizations created in this research gave the
developers a new view on the data. There are still many
ways to improve the visualizations further. In addition, a lot
of useful data for SPI remain still unanalyzed in Elmo
project. For example, it could be useful to combine version
control system data with the issue management system data.
Furthermore, there are other repositories that could still be
combined with the already analyzed data to make more
useful visualizations. Future research could investigate if
these visualizations are useful in other software development
methodologies than Scrum. Additionally, automatic

detection of bad practices basing on the visualized data could
be developed to help the project managers.

REFERENCES
[1] D. Avison, F. Lau, M. D. Myers and P. A. Nielsen, ”Action

Research,” Communications of the ACM, 42, issue 1, pp. 94-97,
January 1999.

[2] M. Bostock, 2012. [Online]. Available: http://d3js.org.

[3] S. Card, J. D. Mackinlay and B. Shneiderman, Readings in
information visualization: using vision to think, Morgan Kaufmann,
1999.

[4] A. Cockburn, ”Characterizing people as non-linear, first-order
components in software development,” In International Conference
on Software Engineering 2000, 1999.

[5] R. D. Evered and G. I. Susman, ”An Assessment of the Scientific
Merits of Action Research,” Administrative science quarterly, pp.
582-603, 1978.

[6] W. A. Florac, R. E. Park and A. D. Carleton, ”Practical Software
Measurement: Measuring for Process Management and
Improvement,” Carnegie Mellon University, Pitsburgh, 1997.

[7] A. E. Hassan and X. Tao, ”Software intelligence: the future of mining
software engineering data.”, ACM, 2010.

[8] ”JIRA Issue Management System”, Atlassian Corp, [Online].
Available: http://www.atlassian.com/software/jira

[9] A. Johnsen and J. Solberg, ”Quantifying the Effect of Using Kanban
versus Scrum: A Case Study.”, IEEE Software, Vol. 29, issue 5, pp.
47-53, 2012.

[10] H. Kniberg, Lean from the Trenches: Managing Large-Scale Projects
with Kanban, The Pragmatic Bookshelf, 2011.

[11] J. Larkin and S. Herbert, ”Why a diagram is (sometimes) worth ten
thousand words.,” Cognitive science 11.1, pp. 65-100, 1987.

[12] T. Lehtonen, ”Agile Visualization,” Tampere University of
Technology, 2013. [Online]. Available:
http://www.cs.tut.fi/~tile/agile-visualization/

[13] M. Lima, Visual Complexity: Mapping Patterns of Information,
Princeton, 2011.

[14] L. Rising, N.S. Janoff, ”The Scrum Software Development Process
for Small Teams,” IEEE Software, Vol. 17, nro 4, pp. 26-32, 2000.

[15] ”Robot Framework - A generic test automation framework,” [Online].
Available: http://code.google.com/p/robotframework/

[16] O. Salo and P. Abrahamsson, ”An iterative improvement process for
agile software development,” Software Process: Improvement and
Practice, osa/vuosik. 12, nro 1, pp. 81-100, 2007.

[17] Scrum Pattern Community, ”Pop the Happy Buble,” 2013. [Online].
Available at: https://sites.google.com/a/scrumplop.org/published-
patterns/very-old-patterns/pop-the-happy-bubble

[18] K. Schwaber, ”Scrum Development Process,”Proceedings of the 10th
Annual ACM Conference on Object-Oriented Programming Systems.
Languages and Applications (OOPSLA), 1995.

[19] K. Schwaber and M. Beedle, Agile Software Development with
SCRUM, Prentice Hall, 2002.

[20] K. Schwaber, Agile Project Management With Scrum, O'Reilly
Media, Inc., 2004.

[21] K. Schwaber and J. Sutherland, ”The Scrum guide – the definitive
guide to Scrum: The rules of the,” 2011. [Online]. Available at:
https://www.scrum.org/Portals/0/Documents/Scrum%20Guides/Scru
m_Guide.pdf.

[22] ”Solita Oy,” [Online]. Available: http://www.solita.fi

[23] SVNStat, 2013. [Online]. Available: http://svnstat.sourceforge.net/

Publication V

A.-L. Mattila, T. Lehtonen, H. Terho, T. Mikkonen, and K. Systä.
Mashing Up Software Issue Management, Development, and Usage Data. In
Proceedings of the 2nd International Workshop on Rapid Continuous Soft-
ware Engineering (RCoSE), 2015.

149

Mashing Up Software Issue Management,
Development, and Usage Data

Anna-Liisa Mattila∗, Timo Lehtonen†, Henri Terho∗, Tommi Mikkonen∗ and Kari Systä∗
∗ Tampere University of Technology, Korkeakoulunkatu 10, FI-33720 Tampere, Finland

Email: {anna-liisa.mattila, henri.terho, tommi.mikkonen, kari.systa}@tut.fi
† Solita Plc., Åkerlundinkatu 11, FI-33100 Tampere, Finland

Email: timo.lehtonen@solita.fi

Abstract—Modern software development approaches rely ex-
tensively on tools. Motivated by practices such as continuous
integration, deployment and delivery, these tools are used in a
fashion where data are automatically accumulated in different
databases as a side-effect of everyday development activities. In
this paper we introduce an approach for software engineering
data visualization as a mashup that combines data from issue
management, software development and production use.

The visualization can show to all stake holders how well
continuous delivery is realized in the project. The visualization
clearly shows the time spent to specify and develop the features
as well the length of the delivery cycle. Further more the
visualization shows how much work is unfinished and waiting
for delivery. This can help the development team to decrease the
amount of unfinished work and by that help them to keep up in
continuous delivery mind set. In addition to development data
usage of the features is also visualized.
Index Terms—Information Visualization, Software Analytics,
Continuous Delivery

I. INTRODUCTION

Modern software development approaches rely extensively
on tools. Due to practices such as continuous integration,
deployment and delivery, these tools are used in a fashion
where data is automatically accumulated in different databases
as a side-effect of everyday development activities. Browsing
and visualizing the content of these repositories then gives an
idea what has taken place in a project.

Motivated by the web mashups that have become increas-
ingly popular we propose combining software engineering data
from various sources and origins into an integrated experience.
Techniques to accomplish this are similar to those commonly
used in mashups – cleansing, unification, and visualization.

In this paper, we demonstrate how to mash software en-
gineering data up from various data sources into an easy-to-
read and easy-to-interpret visualization. For the visualization
we have collected data from three different sources. These
sources include management data from the issue management
system, development data from the version control system, and
actual end-user usage data from the monitoring platform.

The results are based on data collected from a single
project at a mid-sized Finnish software company Solita (http:
//www.solita.fi), a service provider that wished to obtain and
efficiently react to customer behavior and feedback. The data
are from project lupapiste.fi, a service which can be used by

citizens and companies to apply for permissions related to the
built environment in Finland.

The rest of this paper is structured as follows. In Section II,
we address background and motivation of the study. In Section
III, we introduce our data model and data collection method,
and in Section IV we demonstrate our visualization approach.
Finally, in Section V, we draw some final conclusions.

II. BACKGROUND AND MOTIVATION

Software engineering data can be almost anything from version
control logs to software usage data. In many software projects
software engineering data is collected automatically by tools
used e.g. for project management, software development, and
software usage analysis [1].

The data sources for management, development and usage
are however separated, and even if the tools provide visual-
izations and analysis from the data, only the perspective of
one data source is usually covered. Combining data from the
different sources and analyzing the combined data set can
give better overall picture from the project. However, such
combination of data is non-trivial to create. The tools store
data using different data models and formats which makes
combining data difficult. Cleansing and homogenization of the
data is thus needed in order to combine the data for analysis.

Various methods, including statistical analysis and visualiza-
tions, are available to analyze the software engineering data.
In general, information visualization is a powerful tool not
just for presenting results of statistical analysis but also for
exploratory purposes. Good visualization can present large
amounts of data in a relatively small space and pinpoint
insights of what to analyze further [2].

In our study data from issue management system Jira1,
version control system Mercurial2 and software monitoring
platform Splunk3 is combined and visualized to study de-
velopment of a software feature from specification to use.
The motivation of the study is to explore how continuous
deployment is realized in the project lupapiste.fi.

We have chosen to use a timeline based visualization
method as we have used a similar visualization successfully in
our previous work to explore realization of sprints in terms of

1Issue management system – https://www.atlassian.com/software/jira
2Distributed version control system – http://mercurial.selenic.com/
3Software monitoring platform – http://www.splunk.com/

features completed [3]. The timeline is also a natural choice
when the attribute we are interested in is time.

III. DATA COLLECTION

As already mentioned, the data used in the study was col-
lected from three sources of empirical project data, reflecting
different, but inter-related dimensions of a typical software
engineering project. The data collected were converted into
a homogenized data model and combined. In the following,
we cover the aspects of the homogenized data model and the
actual data collection process.

A. Data Model

When data is collected from various sources, a data model
that unifies the data entries from different sources and gives the
data a meaning in its use context is needed. In the following we
describe the homogenized data model for software engineering
data we used in the study.

Because we explore development and usage of features in
a software, a software feature is a central concept in our
data model. Software feature have states that indicate different
phases in the life-cycle of the feature. In addition to state
changes there are other events like adding of a comment or
an attachment to the Jira ticket or usage of the feature by
a customer. All events are time-stamped and called software
engineering event in this paper. The data model and the data
sources used are depicted in Figure 1.

Fig. 1. The homogenized data model. The model presents the concepts of
software process and their relations. The model is used to mash the software
engineering data up.

A feature consists of a unique identifier that is also
used as its name (e.g. LUPA-1537)and a number of time
stamped software engineering events. The unique feature
identifier originates from the issue management system, and
it is used as the common denominator throughout its de-
velopment to track different engineering activities. The state
of the feature is initially ISSUE_CREATED, followed by

DEV_ONGOING, DEV_DONE, IN_PROD, and finally ending
at USED_IN_PROD.

Each software engineering event is either management
event, development event or usage event. Details of the dif-
ferent types of events are the following:

• Management events originate from the issue management
system, where an issue is created per feature. When
an issue is created, the lifetime of a feature begins
with state ISSUE_CREATED. The issue can then be
commented (event type COMMENT), or a specification
may be uploaded (event type ATTACHMENT).

• Development events originate from the version control
system. When the development of a feature begins, the
state of the feature changes to DEV_ONGOING. The
development event of type COMMIT_TO_FEATURE is
produced from version control system commits. When
the development is done, the state of the feature changes
to DEV_DONE. Furthermore, when the feature has been
delivered to the production environment – that is, made
available to end users – the state is changed to IN_PROD.

• Usage events originate from the production logs, which
are accessible through the monitoring platform. When a
feature is used in the production for the first time, its state
changes to USED_IN_PROD.

B. Data Collection Process

The data collection process consisted of three steps, where
data was collected from the version control system, the issue
management system, and the monitoring platform. In this sec-
tion the three steps of the data collection process is explained
in detail.

Combining and collecting the data relies on certain practices
the development team have. The team uses HG flow plugin4

that implements the Driessen branching model [4]. In the
model each feature is developed in its own feature branch
and merged to a release branch, which is then closed when
deployed to the production environment. Moreover, the team
has a practice to have one Jira issue per feature and the team
uses Jira issue identifier as the prefix for the feature branch
name. Without an issue identifier included in the branch name,
the data can not be easily combined with the issue management
system data. The usage data was merged manually because
there were no easy way to deduce automatically to which
feature a use event is related to. The R tool5 was used to
convert the data sets into the homogenized data format and
combine it to one CSV file.

First in the data collection procedure, data from the dis-
tributed version control system (VCS) was collected using
custom scripts. The VCS contains the actual time stamps
for feature development starting from the beginning of the
development (state change to DEV_ONGOING), continuing
with the moment when development was done (DEV_DONE).
Release branches are used for deploying the software to the

4HG flow, A Mercurial extension – https://bitbucket.org/yujiewu/hgflow/
5The R Project for Statistical Computing – http://www.r-project.org/

production environment, thus closing times of the release
branches provide a time stamp for state change to IN_PROD.
The identifiers of the features developed are also deduced from
the version control data and used in collecting the data from
Jira.

As the second step, data from the issue management sys-
tem Jira was collected. Issue creation time and commenting
activity was captured. Also time stamps for uploading files
were collected, because file uploads in this case are usually
specifications created by user experience designers. The data
was collected using a custom web crawler that visited the issue
pages and captured the time stamps and attributes of the issue.
The crawler visits only the issue pages that match the issue
identifiers found from version control system. The crawler is
described in detail in [3].

Finally, as the third step, data was collected from the Splunk
monitoring platform using customized scripts. Log data from
feature usage in production was a list of events of action type
USED_IN_PROD, where every call to the back-end API of
the application was collected. The API call data was collected
only for five features that introduced a new API interface.
There was no easy way to automatically combine the API
call path to the issue identifier, and thus the data was merged
manually.

IV. DATA VISUALIZATION

The visualization presented in Figure 2 shows a mashup from
issue management, version control, and feature use monitoring
system data. The visualization includes some tens of features
developed in the project lupapiste.fi during a 2,5 month period.

The goal of the visualization is to show how long it takes
to specify, develop and deliver a feature as well as the time it
takes to customers to find the feature from the product and start
using it. The visualization shows also the time spent waiting
– waiting for the development to be started after specification
is finished, waiting for the delivery after the development is
completed and waiting the customers to find the feature. Re-
alization of continuous delivery is made visible also showing
the amount of features waiting for delivery. The visualization
is developed using D3JS6 visualization framework.

In the visualization (Figure 2) each feature has its own
lane that represents the lifespan of the feature. The states,
described in previous, are color coded to the feature life span
– light blue color for state ISSUE_CREATED (light gray in
gray scale), yellow color for state DEV_ONGOING (darker
gray in gray scale), dark gray color for DEV_DONE and pink
vertical lines for state USED_IN_PROD. The small black dots
in the visualization mark commits, the larger red dots mark
file uploads and the dots with blue outline and white filling
mark comments. At the bottom of the visualization amounts
of features under work and features waiting deployment are
shown as a stacked bar chart. The dark gray bars show the
amount of features waiting delivery. Yellow bars (lighter gray
in gray scale) show amount of features under development.

6Data Driven Documents – http://d3js.org/

The x-axis is time, which increases form left to right and
weekends are marked with lighter color in order to make
it easier to count number of weeks. The software events
introduced in the data model are annotated to the Figure 2 as
follows: management events (ME), development events (DE),
and usage events (UE).

From the visualization we can observe the lead times of
features as well as the general progress of feature development,
specification updates and commit and delivery frequencies. As
an example in the middle of the visualization in, spot #ME-1,
there is a feature that has a lead time from ISSUE_CREATED
to IN_PROD of four weeks. The dot in the beginning of the
feature #ME-1 represents a comment in Jira. The red dot on
top of text #ME-1 represents a file uploaded to Jira, which
in this case is a specification. When the development of the
feature starts, a new specification is uploaded. The feature has
one day of no commits and then yet another specification
uploaded. There is also a one week period of development
without commits. Then, in the beginning of the next week, a
final commit was pushed to the version control system and the
feature was deployed to the production environment two days
later in a delivery that is annotated with #DE-DELIVERY-3
in the visualization.

When a lot of features are delivered simultaneously,
the height of the gray bars at the bottom of the visu-
alization (#DE-trend) fall down. On the left in spot
#DE-problem-1, the number of features waiting for de-
livery, was large. We can see a drop in the height of the gray
bars in November showing that the process has been delivering
continuously at that time. The drop in the delivery cycle time
can be due that the development team was informed about this
research and its goals at October.

The delivery in top left corner of the visualization, annotated
with #DE-delivery-1, contained a feature that it was
possible to collect usage data for. The usage data (the short
vertical pink lines) are shown on the feature lane, and it can
be observed that the usage ended suddenly at point marked
with #UE-1. The reason was that the API service name was
changed as a part of code refactoring, and the data were no
longer gathered for the feature.

There were two features in delivery #DE-delivery-2,
which usage data were also collected for. During week #UE-2
the two features were used approximately equally, but before
and after that week, the usage density seems to differ. This
kind of rough observations about the usage of the features
can be made on basis of the visualization.

The visualization makes four software engineering phenom-
ena visible. First, the realization of continuous delivery can
be observed from the bar chart. Second, the lead times of
features can be seen from the feature lanes. Third, the timing
of specification work can also be observed. Finally, as the
visualization contains usage data of the features, the density
of usage can be evaluated. The bar chart of the visualization
can also help developers to arrange their work as it shows how
much work is started but not finished.

Fig. 2. A mashup visualization of the issue management, development, and usage data. On the upper part of the visualization software feature lifespans, one
feature per line, are presented. The states related to a feature are color coded: light blue for ISSUE CREATED, yellow for DEV ONGOING and dark gray
for DEV DONE. Other events are presented as different shapes – dots mark commits (black color), comments (red color) and file uploads (light blue outline
with white filling color) and vertical lines (pink color) mark usage. At the bottom of the visualization is stacked bar chart that presents amounts of unfinished
features (yellow) and amount of finished features waiting for delivery (dark gray). The x-axis is time, which increases form left to right and weekends are
marked with lighter color.

V. CONCLUSION

For this study, we implemented a software engineering data
visualization that mashes data up from three different sources
of an industrial software project. These sources cover issue
management, development and usage data of an Web-based
service. We collected, filtered, transformed, and merged data
from Jira (features to be developed), Mercurial (feature devel-
opment and deployment data) and Splunk (production usage
logs). The merged data was shown in a single visualization.
The visualization and data collection procedures are still work
in progress. In future we aim to develop the homogenized
data model further to cover more aspects of software process
as well as improve the visualization format.

The visualization presented can show to all stake holders
how well continuous delivery is realized in the project. The vi-
sualization clearly shows the time spent to specify and develop
the features as well the length of the delivery cycle. Further
more the visualization shows how much work is unfinished
and waiting for delivery. This can help the development team
to decrease the amount of unfinished work and by that help
them to keep up in continuous delivery mind set. In addition

to development data usage of the features is also visualized.
This information is valuable for analyzing how much time it
takes users to find a feature. Moreover some conclusions on
feature usefulness can be drawn from the usage data. However,
further analysis of the use data is left as future work.

ACKNOWLEDGMENT

This work is a part of the Digile Need for Speed
project (http://www.n4s.fi/en/), which is partly funded
by the Finnish Funding Agency for Innovation Tekes
(http://www.tekes.fi/en/tekes/). In addition, this research has
been supported by Foundation of Nokia Corporation.

REFERENCES

[1] T. Menzies and T. Zimmermann, “Software Analytics: So What?” Soft-
ware, IEEE, vol. 30, no. 4, pp. 31–37, 2013.

[2] E. R. Tufte, The Visual Display of Quantitative Information. Graphics
press Cheshire, CT, 1983.

[3] T. Lehtonen, V.-P. Eloranta, M. Leppänen, and E. Isohanni, “Visualiza-
tions as a Basis for Agile Software Process Improvement,” in Software
Engineering Conference (APSEC, 2013 20th Asia-Pacific, vol. 1. IEEE,
2013, pp. 495–502.

[4] V. Driessen, “A Successful Git Branching Model,” 2010. [Online].
Available: http://nvie.com/posts/a-successful-git-branching-model/

Publication VI

T. Lehtonen, T. Aho, T. Mikkonen, and K. Kuusinen. Visualizations for
Software Development Process Management. In the 26th International Con-
ference on Information Modelling and Knowledge Bases (EJC), 2016

154

Visualizations for Software Development
Process Management

Timo LEHTONEN a, Timo AHO a, Kati KUUSINEN b and Tommi MIKKONEN b

a Solita PLC, Åkerlundinkatu 11, FI-33000 Tampere, Finland
b Department of Pervasive Computing, Tampere University of Technology,

Korkeakoulunkatu 1, FI-33720 Tampere, Finland

Abstract. Software development projects have increasingly been adopting new
practices, such as continuous delivery and deployment to enable rapid delivery of
new features to end users. Tools that are commonly utilized with these practices
generate a vast amount of data concerning various development events. Analysis of
the data provides a lightweight data driven view on the software process. We present
an efficient way of visualizing software process data to provide a good overall view
on the features and potential problems of the process. We use the visualization in a
case project that has become more agile by applying continuous integration and de-
livery together with development and infrastructure automation. We compare data
visualizations with information gathered from the development team and describe
how the evolution can be understood through our visualizations. The case project
is a good example of how a change from a traditional long cycle development to
a rapid cycle DevOps culture can actually be made in a few years. However, the
results show that the team has to focus on the process improvement continuously
in order to maintain continuous delivery all the time. As the main contribution, we
present a lightweight way to software process visualization. Moreover, we discuss
how such a heuristic can be used to track the characteristics of the target process.

Keywords. software visualization, continuous delivery, DevOps,

1. Introduction

Implementing a modern development tool chain calls for several technical enablers, such
as continuous integration [1] and smooth deployment [2]. In general, aim at the reduc-
tion of the time it takes from completed implementation to deployment has resulted in
DevOps [3] where developers and operators work as a team to deliver value to end users
with an intensive feedback loop.

In such a setting, where tools are constantly playing a major role in the fashion the
development advances, developers’ actions are reflected as recurring patterns like version
history commit, deployments and issue management events. These patterns form traces
to information systems. This software engineering data can be processed and mined in
the databases.

In this paper, we investigate such traces in the light of the evolution of the devel-
opment process. The paper is built on mined data from the issue management system
of an industrial project executed by Solita PLC, a Finnish software development and

consulting company that specializes in web software and business intelligence. We have
analyzed thousands of issue management system tasks in detail with a visual approach
to describe the actual changes in the development process. The project in question is a
public sector web-based data intensive software project that uses a set of typical software
development tools that have automatically generated data for analysis during the years.

In this study, we apply information visualization to demonstrate the evolution of
the software development process during a five year long period. During the time frame
both development tools and practices have evolved. In the beginning, the process could
be described with manual long-lasting implementation periods and the Scrum culture
approach. After five years, the approach has transformed to rapid cycles and automated
mechanisms for infrastructure with monitoring and quality assurance as an integral part
of daily development work. As a tool for analysis, we use visualizations of the data stored
in the issue management system. Furthermore, we collected the opinions regarding the
visualizations from the developers and the project manager of the case project. Our exact
research question can be formulated as:

RQ: How to demonstrate a software development process by using automatically
generated data?

The rest of this paper is structured as follows. In Section 2 we present the relevant
related work. We continue in Section 3 by going through the case study regarding the
transition between the different development models. Section 4 analyzes the result and
in Section 5 we discuss the results in more detail and finally, Section 6 draws some
concluding remarks.

2. Background

During the recent years, numerous software companies have invested considerable effort
in building and automating their development tool chain often referred to as ”Climbing
the Stairway to Heaven” [4]. The evolution of organizations for adopting continuous in-
tegration, continuous delivery and even continuous deployment [5] is often a step by step
procedure [4]. Continuous integration is a requirement for continuous delivery, which in
turn is a requirement for continuous deployment [6]. These strategies can then be applied
in transformation towards DevOps [9] and reliable, predictable release engineering [10].

This extensive infrastructure, needed to maximize development and deployment
speed as well as feedback collection mechanisms, commonly includes a version control
system, a build server, a test server, automated production installations, and number of
other tools to support development and management. These components form a deploy-
ment pipeline [5], which uses an automated set of tools from code to delivery. Feature-
driven development [7] is one approach for designing and delivering valuable changes
to a software. The development team often manages the features to be implemented in
an issue management system, for instance Jira1. The issue management data can then be
mined, for instance for software process improvement (SPI) [8] purposes.

Various methods are available for analyzing the software engineering data produced
by the tools. For instance, machine learning algorithms could predict forthcoming soft-
ware engineering events. In general, information visualization is a powerful method not

1https://www.atlassian.com/software/jira

just for presenting results of statistical analysis but also for exploratory purposes. In par-
ticular, good visualization can present large amounts of data in a relatively small space
and pinpoint insights of what to analyze further [11]. Visualizations amplify the capa-
bilities of the human brain [12] as they increase processing resources, reduce searches,
enable pattern detection, and perceptual inference operations. Moreover, visualizations
can expand the working memory used for problem solving [13].

In the literature, there are two major disciplines of visualization [15]. Scientific vi-
sualization refers to processing of physical data while information visualization refers to
processing of abstract data. However, the distinction between scientific visualization and
information visualization is not clear [15]. Moreover, software visualization is a term for
applying information visualization to the domain of software engineering [14]. Diehl et
al. [15] present the goal of software visualization as improving the productivity of the
software development process. They define software visualization as the visualization
of artifacts related to software and its development process. This covers a wide variety
of artifacts from program code and documentation to bug reporting and visualizing the
structure and behavior of the software. Software evolves over time through program code
changes to extend the functionality of the system or simply to remove bugs [15]. In a nar-
rower meaning, software visualization is often used interchangeably with program visu-
alization which means the visualization of the software as an executable program [16]. In
this sense, software visualization is related to visualization of computer programs. More-
over, according to Petre et. al [17], software visualization uses visual representations to
make software visible.

There are multiple examples of applying information visualization to data concern-
ing software development. Chuah et. al [18] use glyphs for viewing software project
management data. They applied a visual approach to highlight interesting patterns and
anomalies in the data set. Gall et. al [19] apply information visualization to study the
release history of a software system. They conclude that information visualization tech-
nologies can be effectively applied to the analysis of software evolution and to uncover
valuable information. Ohira et. al [20] collected data for software process improvement
from configuration management systems, mailing list managers and issue tracking sys-
tems and presented the data visually. They mention that real-time visualizations moti-
vated developers to fix bugs, since they were aware that there were still unresolved is-
sues. As a problem, they report that visualizations can be too complicated to understand.
In [21], the authors mine version control system data and examine how developers work
together. With the visualizations they are able to find interesting phases during the evo-
lution.

To our knowledge, there is a research gap in applying information visualization to
software engineering data. We have already studied the relationship of issue management
and other software engineering data in an earlier paper [22]. We developed a mash-up of
information from multiple sources including issue management system, version control
system data and monitoring platform. We applied visualizations to analyze the detailed
development process based on the development data.

3. Case Project

This research is based on mining software process data from an industrial project ex-
ecuted by Solita PLC2, a Finnish software development and consulting company. The
time frame we cover is five years during which both development tools and practices
have evolved. The evolution has started with long-lasting implementation periods and
manual deployment and moved to rapid cycles and automated mechanisms for infras-
tructure, monitoring, and quality assurance. The data we study is produced by a public
sector web-based data intensive software project that uses an issue management system
to manage the process. The teams uses the issue management system very intensively in
their daily work. The tool is used in in daily meetings and in communication with the
customer.

Over the years, there have been several changes in the infrastructure, practices, and
operations related to the system as described in Table 1.

Table 1. Major changes in the case project

2011 Dev / Ops CI-server (Hudson) was taken to use

2012 Dev Scrambled production database dump (nightly dump
automatically available)

2013 Dev Build tool evolution (from Ant to Maven)
Dev Automatic database migration

2014 Dev Environment independent build (Jan)
Ops Scripted production deployment (Jan)
Ops Server configuration automation

(Ansible + Vagrant) (Nov)

2015 Dev Automatic database cloning
Ops Application sets to be installed declared in a text file
Ops Automatic deployment to customer acceptance

testing environment triggered by commits
Ops Interfaces for monitoring, smoke-testing,

and radiator

The changes in Table 1 are divided into categories ”Dev” and ”Ops”. If the changes
is related to development, the category is ”Dev”. For example, scrambled database dump
from the production in 2012 was a change that boosted development. Moreover, auto-
matic deployment to customer acceptance testing environment in year 2015 was a change
related to operations part of DevOps.

The team described that their development process consists of two parts. First, they
use a major project-based development cycle, where development is divided into projects
of length of 1-2 months each yielding a release. Second, the team uses a continuous minor
development cycle that consists of smaller releases. The goal of minor development is to
deliver smaller development items continuously to the production environment in short
cycles. The goal is not to fix bugs, but if there are any, they are fixed and deployed with
a short cycle.

2http://www.solita.fi

4. Results

We applied an interactive visualization tool [24,25] to a case project where a transfor-
mation from older software development methods towards a novel short cycle DevOps-
culture has happened during years. We developed the visualization tool further to contain
metadata based rules that enable the creation of reference process shapes which can be
compared with visual shapes generated from actual software project data. Next, we use
the tool to generate various views of the target process. We start by introducing the tool
output with an example.

4.1. Sample Issues View

Figure 1 presents issue states and three sample issues extracted from the issue manage-
ment system data. The initial state for an issue is Open.

Figure 1. Issue management system states and three sample issues to demonstrate the visualization rules.

In Figure 1, the open state is presented with a dot in the beginning of the issue time
line on the left. The color of the dot is gray for issues with default priority and red color
indicates higher priority. For instance, issue #2 in Figure 1 has a higher priority.

Issue #2 was created to the issue management system first. The development of the
critical issue was started approximately one day after its creation. The developer changes
the state to In Progress, which is presented with yellow color. Then, apparently nothing
happened during the weekend, and finally, issue was done or Resolved after six days
of development. Then, in a few seconds, the issue was put to Review state and then
immediately Closed. Thus, no blue or pink color is visible for issue #2 . Issue #1 was put
to Resolved state (blue color) after three hours of development work. Then the issue went
to state Review (pink color), which means acceptance testing performed by the customer.

The issues are ordered from bottom to top according to the time stamp of Resolved
state. Thus, issue #1 is on the bottom, because it was resolved first. Then, issue #2 is in
the middle because and issue #3last, because it was the latest task that had In Progress
activity i.e. was resolved last. Next, we construct a reference process shape according to
these drawing and ordering rules to Figure 2 and then apply the visualization technique
to some tens of released issues presented in Figure 3.

4.2. Version Release View

Figure 2 presents the larger major release cycle and minor release cycles below it. The
reference process in this case has one major release and two minor releases during a few
weeks period.

Figure 2. A reference process visualization that reflects issue management system states and the verbal de-
scription presented by the team.

Because of the ordering rules described in section 4.1, the reference process forms
a triangular shape. The release date of the major release forms a sharp edge to the right.
The released issues are drawn to the bottom of the diagram as a green bar which indicates
the amount of issues delivered. In the reference process diagram there are three versions
delivered – one major version and two minor versions. States In Progress and Resolved
are in the reference visualization drawn with equal length but in practice, their length
varies from seconds to weeks. Because the customer reviews many tasks at once, the
Review states form a shape of a stairway. The number of tasks in one release varies
significantly. The team stated in discussions that a total number some tens or hundred
tasks would be suitable for their needs.

The visualization in Figure 3 is an actual version released in 2014. The visualization
can be compared to the triangular reference process shape in Figure 2.

We can now point out some spots in the visualization that follow the reference vi-
sualization characteristics. The version contained over 50 issues that were released in
the end of October in one major release annotated in the figure with label #major. In
spot #first, the implementation of the first task belonging to the released version was
finished and the state then changed to Resolved (blue color). Approximately three weeks
later (the weekends are highlighted with translucent white color) the task then went to
review state (pink color) in the middle of October. The issue was released in the major
version (#major) among tens of other features. After the weekend, fix versions #fix1,

Figure 3. Sample major version released that was released in the end of October 2014. Two fix versions and a
smaller minor development release are shown.

#fix2 and #fix3 were released. Some of the tasks in #fix1 was a critical bug pointed
out with a red spot (#critical). In the mean time, there was also a parallel minor
version released in spot #minor on the bottom of the visualization. The minor version
contained approximately ten tasks. Moreover, in spot #bug there was a critical bug fix
deployed with a lead time of some hours.

Figure 4. The evolution of the process – in the past there was no minor parallel development, but nowadays
the team uses rapid cycle minor development.

Figure 4 presents an example of a change in the process. The sample release visual-
ization from Oct 2014 on the right shows that there is a minor release in parallel to the
major release. There was also a critical bug fix in the middle of October in 2014. When
we compare this visualization to the other visualization from Apr 2012 on the left, we
can point out three differences. Firstly, the earlier release visualization is missing a minor
release. However, there are bug fixes visible. Secondly, in the earlier visualization, work
estimates were made per issue, which is shown with character ’W’ in the visualization.

Finally, there is no Review state (pink color) in the earlier release. The team took Re-
view state to use in September 2012. According to these simple visual observations, it is
known that the process has evolved during years. The team has found out a way to fulfill
the urgent needs of the customers with a short feedback cycle. Moreover, the focus of the
team has changed from work estimating to value adding activities.

4.3. Version Release Series View

Figure 5 presents the reference process shapes of a series of versions. The development
work of the previous version continues immediately as development work in the next
version. Continuous delivery is visible at the bottom of the diagram.

Figure 5. A series of reference process visualizations with certain major release cycle and continuous delivery
of parallel minor versions.

Figure 6 presents a wider perspective to the version presented in Figure 3. It is
possible to observe that there are multiple simultaneous development tasks going on in
the mean time in the upper part of the diagram. Furthermore, the number of delivered
features per day are presented in the bottom of the diagram. In spot #empty in February
2015, there is a break in the continuous delivery of features apparently because of the
giant version release on the top of the visualization annotated with label #major.

4.4. Evolution View

To get a total view of the process evolution, we combined an infographic presenting over
5 000 issues from years 2011 to 2015 into Figure 7. There is a reference process in the
bottom left corner of the infographic which gives a hint of what the layout of the actual
process shapes should be. In this case, the reference process consists of 150 issues re-
leased per version with major release cycle of two months, which accompanies the verbal
description in section 3. The combined bar chart presenting the throughput on the top of
the infographic presents the number of issues released per year half. For instance, dur-

Figure 6. A wider perspective to the version released in figure 3

ing the first year half of 2012, a total number of approximately 500 issues was released.
Some of the issues released in the beginning of the year 2012 were developed during the
end of year 2011.

Figure 7. An infographic of the evolution of the software development process during a five year period.

Annotation #slope1 presents the slope factor reflecting the high throughput during
year 2012, which was higher than the slope factor #slope2 in the beginning of year
2013. The throughput of the team was higher in 2012 than it was in 2013. Naturally, the
throughput is affected by, for instance, the size of the tasks – if features are split to smaller

tasks than before, the throughput increases. Moreover, deployment time or the lead time
from Resolved to Released is shown in the middle of the infographic. Deployment time
answers to the following question: when a feature was done, how long did it take until the
feature was deployed to the production environment? When we observe the throughput
bar graph and the deployment time bar graph visually, the first half of year 2014 seems to
have low mean and median deployment time with a high throughput. If we then compare
the first half of year 2014 visually to for example the first year half of 2015, the difference
is clear. Year first year half of 2015 contains issues with very long tails, of even half year
long. This leads to longer deployment times.

5. Discussion

In this section we reflect the results to our research question: How to demonstrate a
software development process by using automatically generated data?. We start by dis-
cussing the results and then reflect them to the opinions collected from the project man-
ager and the developers.

Tools play a major role in novel software development work. The data set of traces
the tool usage produces creates a great possibility to evaluate the evolution of the devel-
opment process. In this paper we combined tens of thousands of events related to issue
management system tasks to a compact visual format. From the visualizations, we are
able to recognize changes in the development process. For instance, the change towards
a development process with separate major and minor cycles can be recognized. More-
over, the continuous delivery phenomenon is made visible and can thus be evaluated. We
pointed out problems in continuous delivery with the new visual representation which
enables pattern recognition and quick inferences of the process. By combining simple
statistics concerning throughput and lead times into a single infographic, we are able to
evaluate the evolution of the process.

The visualizations produced by the tool presented in this paper forms a basis for soft-
ware process evaluation. However, data quality problems related to software engineering
data collected are many. Keim et al. [14] list the following error sources as threats to
visual data analysis: noise, outliers, low precision, missing values, coverage errors and
clones. Problems in raw data quality can jeopardize the conducted visualizations. More-
over, Rosli et al. in their mapping study [26] recognize several typical flaws for data
quality in software engineering research. In the context of this research, a typical source
for inaccurate data is the everyday usage of the issue management system. For instance,
a developer can forget to update the issue management system task state when the actual
development work starts or ends. This leads to inaccurate time stamps which affect the
visualization. However, we assume that the data is adequately accurate for visual analy-
sis. The data describes actual real-world events that were performed by persons partic-
ipating to the development of the software. In this sense, the data consists of facts and
thus the visualizations describe real-world events that actually happened.

The visualizations reveal interesting facts about the software development process.
In Figure 3 it is noteworthy that there are three fix releases after the major release. The
reason for them is unknown, but one obvious explanation is that targeting to zero bugs
is expensive. The team deploys features actively to the production environment with a
short feedback cycle and lets the end-users partly report of the bugs. Naturally, critical

and serious bugs have to be avoided. For instance, bugs in a global marketing system re-
lated to billing functions may have expensive consequences and thus have to be avoided.
However, bugs related to non-critical sections in a standard public sector software are
not life critical and thus partly acceptable.

We collected the opinions regarding the visualizations from the development team
in an informal manner. The project manager mentioned that the visualizations make it
possible to get an overview of the project with a glance. Especially the comparison of
different versions or projects is made possible. According to the project manager, such
a comparison would not be possible otherwise. As an improvement, the project manager
mentioned that textual labels to the versions would make the visualization easier to read.

The developers of the case project mentioned several points that the visualizations
present effectively. Firstly, the visualizations reveal low quality versions by presenting
the number of fix versions needed after the release. Secondly, tasks with exceptionally
long lead times are revealed. According to the developers, exceptionally long lead times
are always a signal of a problem in the development process. Thirdly, the visualization
reveals the amount of continuous bug fixing needed. The bug fixes are visible beneath
the versions released. Finally, the visualizations indicate if smaller versions are released
continuously or not. According to a developer, this reveals if value is produced to the
customer continuously or not.

Moreover, the visualizations were also criticized by the developers. They mentioned
that errors in the visualizations are many. For instance, some work may not be entered to
the issue management system and is thus not visible. Furthermore, one of the developers
mentioned unknown correlations as a problem. The interpretations made based on the
visualizations may not reflect what actually happened in the real world. Use of other
analysis methods to explain the events is needed. As a future work, one of the developers
was interested of the impact of using visualizations as a method for reflection in the
organization.

As future work, the visualizations techniques could be developed further. The tools
developed should be applied to more than one project context in order to evaluate gen-
eralizability of the results. Moreover, an analytic pipeline which could demonstrate the
status of the project in a continuous manner, could produce valuable information to the
project stakeholders. The data collection methods described in this paper can be auto-
mated. A tool chain covering all steps from the initial data collection to the visualization
of the data can be implemented.

6. Conclusions

In this paper we presented a novel visualization approach for illustrating software engi-
neering projects based on issue tracking tool data. It is important to note that this kind of
data is usually generated automatically as a side effect of the project when the tools are
used. Data is usually readily available and does not need any extra activities to be used
as a basis for visualizations.

Visualization is a light-weight way to get a good view on the overall development
process. In addition, it can be used to understand the process more deeply by showing
what kind of sprint lengths and common deployment times actually exist, for instance.
On the other hand, also anomalies like uncommonly long delivery times for some fea-
tures are easily noticeable.

We used the visualization to analyze a case software project. In this, we demonstrate
how evolution towards a more agile process can both be validated and the effects recog-
nized. The general lead time and feedback cycle has significantly reduced and amount of
waste in process diminished. The developed interactive visualization tool can be applied
in different scenarios and with different levels of abstraction.

As future work, we are interested in using this visualization tool for multiple projects
in different kinds of environments. This way we could visually recognize differences
in the patterns of software processes and ask if they actually exist. It would be very
intriguing to find some kind of general fingerprint for a healthy process and see how
actual process visualizations differ from it.

Acknowledgments

The work was supported by Tekes DIGILE Need for Speed project. We would also like
to thank Solita, the case project, and Finnish Broadcasting Company for support and the
possibility to perform this research.

References

[1] M. Fowler, “Continuous integration,” Available at http://www.martinfowler.com/articles/continuousIntegration.html,
2006, accessed 27.11.2015.

[2] J. Humble and D. Farley, Continuous delivery: Reliable software releases through build, test, and de-
ployment automation. Pearson Education, 2010.

[3] J. Humble and J. Molesky, “Why enterprises must adopt devops to enable continuous delivery,” Cutter
IT Journal, vol. 24, no. 8, p. 6, 2011.

[4] H. H. Olsson, H. Alahyari, and J. Bosch, “Climbing the” stairway to heaven”–a mulitiple-case study
exploring barriers in the transition from agile development towards continuous deployment of software,”
in Software Engineering and Advanced Applications (SEAA), 2012 38th EUROMICRO Conference on.
IEEE, 2012, pp. 392–399.

[5] J. Humble and D. Farley, Continuous delivery: reliable software releases through build, test, and de-
ployment automation. Pearson Education, 2010.

[6] M. Fowler, “Continuous integration,” http://martinfowler.com/bliki/ContinuousDelivery.html, retrieved:
November 2014.

[7] S. R. Palmer and M. Felsing. A practical guide to feature-driven development. Pearson Education, 2001.
[8] W. A. Florac and A. D. Carleton. Measuring the software process: statistical process control for software

process improvement. Addison-Wesley Professional, 1999.
[9] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Perspective. Addison-Wesley Profes-

sional, 2015.
[10] A. Dyck, R. Penners, and H. Lichter, “Towards definitions for release engineering and devops,” in Pro-

ceedings of the Third International Workshop on Release Engineering. IEEE Press, 2015, pp. 3–3.
[11] E. R. Tufte and P. Graves-Morris, The visual display of quantitative information. Graphics press

Cheshire, CT, 1983, vol. 2, no. 9.
[12] S. K. Card, J. D. Mackinlay, and B. Shneiderman, Readings in information visualization: using vision

to think. Morgan Kaufmann, 1999.
[13] D. A. Norman. Things that make us smart: Defending human attributes in the age of the machine. Basic

Books, 1993.
[14] D. Keim, F. Mansmann, J. Schneidewind, H. Ziegler et al., “Challenges in visual data analysis,” in

Information Visualization, 2006. IV 2006. Tenth International Conference on. IEEE, 2006, pp. 9–16.
[15] S. Diehl, Software visualization: visualizing the structure, behaviour, and evolution of software.

Springer Science & Business Media, 2007.
[16] J. Stasko. Software visualization: Programming as a multimedia experience. MIT press, 1998.

[17] M. Petre, E. de Quincey, et al. A gentle overview of software visualisation. PPIG News Letter, pages
1–10, 2006.

[18] M. C. Chuah and S. G. Eick. Information rich glyphs for software management data. Computer Graphics
and Applications, IEEE, 18(4):24–29, 1998.

[19] H. Gall, M. Jazayeri, and C. Riva. Visualizing software release histories: The use of color and third
dimension. In Software Maintenance, 1999.(ICSM’99) Proceedings. IEEE International Conference on,
pages 99–108. IEEE, 1999.

[20] M. Ohira, R. Yokomori, M. Sakai, K.-i. Matsumoto, K. Inoue, and K. Torii. Empirical project monitor:
A tool for mining multiple project data. In International Workshop on Mining Software Repositories
(MSR2004), pages 42–46, 2004.

[21] P. Weißgerber, M. Pohl, and M. Burch. Visual data mining in software archives to detect how developers
work together. In Mining Software Repositories, 2007. ICSE Workshops MSR’07. Fourth International
Workshop on, pages 9–9. IEEE, 2007.

[22] A.-L. Mattila, T. Lehtonen, H. Terho, T. Mikkonen, and K. Systä, “Mashing up software issue manage-
ment, development, and usage data,” in Proceedings of the Second International Workshop on Rapid
Continuous Software Engineering. IEEE Press, 2015, pp. 26–29.

[23] J. Pearl, “Heuristics: intelligent search strategies for computer problem solving,” 1984.
[24] T. Lehtonen, V.-P. Eloranta, M. Leppanen, and E. Isohanni, “Visualizations as a basis for agile software

process improvement,” in Software Engineering Conference (APSEC, 2013 20th Asia-Pacific, vol. 1.
IEEE, 2013, pp. 495–502.

[25] A.-L. Mattila, T. Lehtonen, K. Systä, H. Terho, and T. Mikkonen, “Mashing up software management,
development, and usage data,” in RCoSE’15, 2015.

[26] M. Rosli, “Can we trust our results? a mapping study on data quality,” in Software Engineering Confer-
ence (APSEC), 2013 20th Asia-Pacific, Dec 2013, pp. 116–123.

ISBN 978-952-15-3899-5
ISSN 1459-2045

Tampereen teknillinen yliopisto
PL 527
33101 Tampere

Tampere University of Technology
P.O.B. 527
FI-33101 Tampere, Finland

