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AbstratThis thesis is onerned with the mehanial behavior and onstitutive modeling of amor-phous polymers. Amorphous polymers are employed in numerous appliations that overeletronis, optial instruments, the automotive industry as well as onsumer produts.This broad range of appliations is due to their good optial properties, high hemialresistane, high �exibility, good reforming properties, low weight relative to strength andtheir high energy absorption under impat loadings. Due to the numerous engineeringappliations, the aurate modeling of mehanial behavior is of major importane.Amorphous polymers are haraterized by a disordered mirostruture whih is formedof long polymer hains. In onstitutive models for amorphous polymers, the mirostrutureis usually represented by an overall hain network whih onsists of an assembly of individ-ual hains arranged in unit ells. The transition from mirostruture to marosopi levelis performed via a homogenization whih allows the miro-strethes to �utuate aroundthe maro-strethes. The present state of modeling amorphous glassy polymers is revealedthrough reviewing several models that an be onsidered as pioneering works in this �eldof researh. To evaluate the models, several numerial examples are presented.A omparison of the state-of-the-art model responses and the experimental data revealsthat the models are not able to apture the transient e�ets after loading rate hanges andlong-term behavior involving reovery, whih is highly overestimated by the models. Toompensate for the shortomings of the models, this thesis proposes an extension for theeight-hain version of the Boye et al. (1988) model (BPA model) and it will be termedthe EBPA model. The isotropi part of intrinsi hardening in the material is rheologiallydesribed by a dashpot whih is arranged in parallel with a nonlinear Langeving spring formodeling kinemati hardening. The two omponents for the isotropi and the kinematihardening are modeled by the internal state variables. The purpose of the extra dashpotis to inrease the isotropi hardening in relation to the kinemati hardening and therebysuppress a premature Bauhinger e�et observed in the simulations. This is of majorimportane during relaxation simulations at low stress levels where the plasti evolutionis partiularly governed by the internal state variables under onsideration. Moreover, theelasti spring in the original BPA model is replaed by a simple Kelvin-hain involving aKelvin-like element in series with an elasti spring. The Kelvin element is employed forprediting reep and reovery, while its ombination with the elasti spring is aimed atdesribing the stress relaxation.In addition to homogenous deformation, the EBPA model is alibrated to experimentaldata for inhomogeneous deformation. The tests were performed in the Laboratory ofthe Department of Materials Siene (DMS) in Tampere university of Tehnology (TUT).The data aquired from the old drawing of the dumbbell-shaped polyarbonate speimenontains the load-displaement diagrams for monotoni as well as non-monotoni loadingsinvolving several loading yles and long-term reovery.i



Based on the alibration of the EBPA model both for the homogeneous and inhomoge-neous deformation, the old drawing proess is simulated using the �nite element method.The model responses obtained from the simulations show that the parameters whih werederived from alibration for homogeneous deformation annot be used to predit experi-mental response of inhomogeneous deformation. In order to �nd the mehanisms that areable to explain this disrepany, the role of strain loalization in the hain density, the ini-tiation and propagation of shear bands and razes as well as in the nuleation and growthof voids is investigated. The �nite element simulations for inhomogeneous deformationindiated only a small in�uene of the number of entanglements and hain density on themarosopi stress response when they were modeled without taking volume hanges intoonsideration. However, a redution in hain density together with void growth and raz-ing led to more di�use and stable nek. The present numerial results also indiated thatthe plasti stability is essentially ontrolled by razing, whereas void growth in onjuntionwith an inreased interation between the voids redues amount of intrinsi softening duringloalized deformation. As a result, the di�erene between the model alibrations governingintrinsi softening under homogeneous and inhomogeneous deformation dereased onsid-erably. The EBPA model augmented by the models for void growth and razing allows thesimulation of inhomogeneous deformation by utilizing the material parameters obtainedfrom simple uniaxial tests for homogeneous deformation.Using the alibrated parameters, the preditive apability of the EBPA model both forhomogeneous and inhomogeneous deformation is evaluated. Despite the relative simpliityof this model, a omparison with the experimental results shows that the model is well ableto apture the nonlinear response of amorphous glassy polymers during monotoni loading,unloading, reep and reovery. The proposed model is also found to be preditive forisothermal responses at various strain rates as well as for large strain anisotropi responsesof preoriented polymers.

ii



PrefaeThe researh presented in this thesis was onduted during the years 2008-2011 at theDivision of Solid Mehanis in Lund University and from 2011 to 2012 at the Departmentof Mehanis and Design in Tampere University of Tehnology. I would like to take thisopportunity to express my sinere gratitude to my supervisor, Professor Reijo Kouhia forhis guidane and support during my graduation period in Tampere. I am also grateful toDr. Jari Mäkinen for fruitful disussions, his guidane and for arranging all the failitiesI have needed in my studies. My preeding supervisor Mathias Wallin in Lund deservesspeial thanks for his guidane as well as for his TEXnial assistane. I am also gratefulto the head of the department, Professor Timo Kalema, for giving me the opportunity toontinue my studies and for the exellent working environment. I would also like to thankProfessor Matti Ristinmaa in Lund for providing me with this interesting researh topi.I further aknowledge Dr. Seppo Syrjälä, M.S. Ilari Jönkkäri and Mr. Voitto Känkä-nen for sharing their expertise in the �eld of measurements. I would also like to thank allthe people at the department for the pleasant working atmosphere.Professors Erik Van der Giessen in Delft University and Martin Kroon in Royal Insti-tute of Tehnology, Stokholm, are gratefully aknowledged for pre-examination and theirvaluable omments for improving the manusript.During the graduation period, I had the good fortune to be involved with inspiring, profes-sional and internationally working researh groups. I learned to push the limits of what itreally means to take the �nal steps towards produing onise and understandable sienti�reporting.Lastly, I want to thank my family for their patiene, enouragement and support.This thesis is dediated to my dear son Eino.Tampere, Deember 2012Sami Holopainen

iii



iv



CONTENTS vContents1 Introdution 11.1 Sope of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Charaterization of polymers . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Desription of the hain network . . . . . . . . . . . . . . . . . . . . . . . . 32 Mehanial behavior of amorphous glassy polymers 82.1 In�uene of mirostruture on marosopi mehanial behavior . . . . . . 82.2 Marosopi mehanial behavior . . . . . . . . . . . . . . . . . . . . . . . 103 Charaterization of onstitutive models 144 State-of-the-art models of amorphous glassy polymers 194.1 Basi kinematis - multipliative approah . . . . . . . . . . . . . . . . . . 204.2 Single hain deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244.3 Miro-maro transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254.3.1 The 8-hain model . . . . . . . . . . . . . . . . . . . . . . . . . . . 274.3.2 Full network models . . . . . . . . . . . . . . . . . . . . . . . . . . 284.4 Elasto-visoplastiity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314.5 Argon (1973) plasti evolution model . . . . . . . . . . . . . . . . . . . . . 344.6 Plasti part of the free energy ϕp
c of a single hain . . . . . . . . . . . . . . 384.7 The BPA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434.8 The Wu and Van der Giessen (1993) model . . . . . . . . . . . . . . . . . 454.9 The Miehe et al. (2009) model . . . . . . . . . . . . . . . . . . . . . . . . . 474.10 The Anand and Ames (2006) model . . . . . . . . . . . . . . . . . . . . . . 494.11 The Dupaix and Boye (2007) model . . . . . . . . . . . . . . . . . . . . . 524.12 Summary of state-of-the-art models . . . . . . . . . . . . . . . . . . . . . . 575 Preditive apability of state-of-the-art models 605.1 The BPA model - monotoni loading . . . . . . . . . . . . . . . . . . . . . 605.2 Non-monotoni loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625.3 The Anand and Ames (2006) model . . . . . . . . . . . . . . . . . . . . . . 645.4 Simulation of the glass transition - the Dupaix and Boye (2007) model . . 655.5 Comparison of the models . . . . . . . . . . . . . . . . . . . . . . . . . . . 666 The BPA model extension 696.1 Model desription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 696.2 Calibration of the EBPA model . . . . . . . . . . . . . . . . . . . . . . . . 746.2.1 Compression and simple shear - monotoni loading . . . . . . . . . 746.2.2 In�uene of the entanglements . . . . . . . . . . . . . . . . . . . . . 766.2.3 Strain rate dependene . . . . . . . . . . . . . . . . . . . . . . . . . 78



vi Contents6.2.4 Uniaxial ompression - non-monotoni loading . . . . . . . . . . . . 807 Investigations on inhomogeneous deformation state 877.1 Algorithmi setting of the EBPA model . . . . . . . . . . . . . . . . . . . . 877.2 Comparison of the BPA and EBPA model preditions for long-term behavior 897.3 Evaluation of shear band propagation in a thin sheet . . . . . . . . . . . . 907.3.1 Edge e�ets and in�uene of the entanglements . . . . . . . . . . . 947.4 Experiment and simulation of old drawing proess of a PC speimen . . . 977.4.1 Test arrangement and the omputational model . . . . . . . . . . . 977.4.2 Calibration for inhomogeneous deformation . . . . . . . . . . . . . . 997.4.3 Evaluation of the model results . . . . . . . . . . . . . . . . . . . . 1017.5 Investigation of void growth . . . . . . . . . . . . . . . . . . . . . . . . . . 1067.5.1 Shear band patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 1117.6 Investigation of the damage behavior . . . . . . . . . . . . . . . . . . . . . 1167.6.1 Modeling of void growth . . . . . . . . . . . . . . . . . . . . . . . . 1167.6.2 Calibration and evaluation of the augmented EBPA model for voidgrowth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1197.6.3 Modeling of razing . . . . . . . . . . . . . . . . . . . . . . . . . . . 1227.6.4 Calibration and evaluation of the augmented EBPA model for voidgrowth and razing . . . . . . . . . . . . . . . . . . . . . . . . . . . 1268 Summary and onluding remarks 132Referenes 136Appendix A. Numerial treatment of the EBPA model 145Appendix B. Stability of nek drawing 149







11 Introdution1.1 Sope of the studyThe �rst objetive of this thesis is to present the urrent state of modeling amorphouspolymers and evaluate the importane of di�erent rheologial properties employed in themodels for regarding mehanial behavior of amorphous polymers under di�erent stressstates, strain rates, temperatures and anisotropi state of preoriented polymers. The re-searh related to this topi was arried out during 2008-11 at the Department of SolidMehanis in Lund University, Sweden. The hapters 2-5 are onerned with the �rst ob-jetive being a part of the lientiate dissertation whih was aomplished in Lund at the endof 2011, f. Holopainen (2011). The researh was ontinued and �nished at the Departmentof Mehanis and Design in Tampere University of Tehnology during 2011-2012.Motivated by the shortomings observed in the urrent models, the seond objetiveis the development of a state-of-the-art model (termed the EBPA model) whih is ableto predit transient e�ets, i.e nonlinear loading-unloading response, reep and reoveryfor di�erent strain levels, stress levels and for various dwell periods. The EBPA modelinluding both visoelasti and visoplasti ingredients is based on the 8-hain versionof the Boye et al. (1988) onstitutive model for amorphous polymers. The aim of theproposed model is to signi�antly improve the predition of the mehanial response duringomplex loading situations ompared to existing models in this �eld. The proposed modelis implemented in a �nite-element program for simulation of inhomogeneous deformation.The third objetive of this thesis is evaluation of the proposed EBPA model on the ba-sis of the alibration to the experimental data both for homogeneous and inhomogeneousdeformation modes. Various loading situations are experimented involving old drawingtest program whih was onduted by using the Instron © tension/ompression eletrome-hanial testing mahine in the Laboratory of DMS. Comparison of the model and theexperimental responses showed that the parameters whih were obtained from alibrationto homogeneous deformation annot be used to predit satisfatorily the experimental re-sponse of inhomogeneous deformation. As the fourth objetive, role of strain loalizationinto this disrepany is investigated and its importane into initiation and propagation ofshear bands and razes as well as into the number of entanglements is addressed. In orderto investigate nuleation and growth of voids as well as shear band propagation within theligaments between the voids, the Gurson model is augmented for these purposes and it inonjuntion with the EBPA model is implemented in a �nite-element program. In�ueneof the model parameters on the marosopi responses as well as on the deformation be-havior is disussed in detail. Using the alibrated parameters, the preditive apability ofthe EBPA model under various loading onditions is evaluated.



2 1 Introdution1.2 Charaterization of polymersThe word polymer refers to a long-hain moleule whih onsists of a large number ofrepeated units of idential struture alled monomers. Moreover, the term polymer is fre-quently used to desribe the whole material ontinuum. Polymers an be found in nature,alled natural polymers, while others are produed synthetially in a proess whih is alledpolymerization, f. Fig. 1.1. In this work, the interest is plaed on syntheti, dutile amor-phous polymers whih exludes e.g. brittle amorphous polymers and omposite polymers.Even though amorphous polymers are able to resemble di�erent states involving solid, liq-uid and even gas, only their glassy and melt states are onsidered in the present study.For further reading, the textbooks by Haward and Young (1997), Perez (1998), Courtney(1999), Ward and Sweeney (2004) and Fried (2009) give omprehensive overviews of poly-mer siene, overing the material harateristis and mehanial behavior of amorphouspolymers.Syntheti polymers are typially formed by hundreds or thousands of idential repeatedunits having a high moleular weight. Polymer moleules onstituting of fewer than tenrepeated units and thus a low moleular weight are termed oligomers. Polymers havingonly a single type of repeated unit are termed homopolymers, while polymers omprised ofdi�erent repeated units are termed opolymers. Eah repeated unit onsists of a bakboneand a moleule whih is often built up of arbon, hloride, hydrogen or nitrogen, f. Fig.1.2. The bakbone of a repeated unit enables substituent to be attahed to the polymer.The onnetions within the bakbone are relatively weak seondary bonds termed the vander Waals fores. The moleules are onneted together via the end units with hemialbonds in a ertain order and at a rotation angle that de�nes the geometri struture termedthe onformation. Syntheti polymers an be lassi�ed in several ways. Here, the proess-
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Figure 1.1: Classi�ation of materials.



1.3 Desription of the hain network 3
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backboneFigure 1.2: Polymerization of bisphenol A polyarbonate (BPA-PC). The repeated units of BPA-PC onsist of a moleule and a bakbone. The full moleule onsists of a large number n ofrepeated units onneted together by end units, f. Fried (2009).ing harateristis and the polymerization mehanism will be onsidered. Based on theirproessing harateristis, polymers an be divided into thermoplastis and thermosets, f.Fried (2009). Thermoplastis an be reformed by a heat-softening proess, whereas ther-mosets, one formed, annot be thermally proessed. Sine amorphous polymers belong tothe set of thermoplastis, thermosets are not onsidered in this work.Based on the polymerization mehanism, polymers an be lassi�ed as addition or on-densation polymers. This lassi�ation, however, is a bit old-fashioned and more reentlypolymerization mehanisms are lassi�ed as either step-growth or hain-growth. Most ofthe addition polymers are formed through hain-growth, i.e. a high-moleular-weight poly-mer is formed early during the polymerization, whih results in the sequential addition ofmonomers. An example of hain-growth polymers is polymethyl metharylate (PMMA).In ontrast to addition polymers, a majority of ondensation polymers are produed viastep-growth, i.e. a high-moleular-weight polymer is only formed near the end of the poly-merization proess. An important example of step-growth polymerization is polyarbonate(PC) whih is proessed from bisphenol A and phosgene in the presene of an aid atalystsuh as hydrogen hloride, f. Fig. 1.2. As a result of the polymerization, two moleulesof hydrogen hloride HCl are formed for eah repeated unit of PC, generating long poly-mer hains. In this ase, the bakbone onsists of hydrogen and arbon atoms. However,the bakbone an be �exible, i.e. it an obtain di�erent onformations depending on thepolymerization proess. Note, that in literature bisphenol A is often simply alled PC.1.3 Desription of the hain networkThe mirostruture of polymers is de�ned by a network of moleular hains. The hainsan be arranged in di�erent ways and the struture of the hains have di�erent forms:long linear, branhed and ross-linked, f. Fig. 1.3. If single hains are solely oiled



4 1 Introdutionto eah other without branhing, the hains are alled linear whereas in the branhedstruture, substituent side hains are onneted to long linear or main hains. Due tothe side branhes, the distane between the main hains inreases whih results in a lowerhain density, i.e. the branhed struture may be weaker than the linear hain struture.In a ross-linked struture, the hains are onneted by strong hemial bonds whih donot allow signi�ant slipping between the hains. Based on the mirostruture, polymers
Figure 1.3: Chain struture of polymers: linear hain, branhed hain and ross-linked network.The moleules are onneted through hemial bonds.an be lassi�ed into amorphous or non-rystalline, and rystalline polymers. This split isbased on the degree of rystallinity whih is due to the hain length and hain branhing.Crystallinity an be expressed in terms of a weight fration or as a volume fration of therystalline regions, typially ranging from 10% to 80%, f. Fried (2009). Methods used toevaluate the degree of rystallinity are e.g. di�erential sanning alorimetry (DSC) and X-ray di�ration (XRD). Polymers having a low degree of rystallinity are alled amorphous,whereas other polymers are termed rystalline or semi-rystalline. In ontrast to rystallinepolymers where the hains are branhed or ross-linked, the hains of amorphous polymershave a linear struture, f. Fig. 1.4. PC is an important example of amorphous polymers,having numerous appliations ranging from soda bottles to appliations in the automotiveand aerospae industries. Another important amorphous polymer is PMMA. Due to itstranspareny, it is also termed aryli glass. Compared to PC, PMMA is brittle anddoes not ontain the environmentally harmful bisphenol A. An example of semi-rystallinepolymers is polyethylene (PE) whih is the most widely produed thermoplasti polymer.Sine PE is a heap and tough polymer, it is frequently used in pakaging produts.The degree of rystallinity in a polymer is not �xed but varies between solid and melt.The temperature at whih a polymer transforms from a solid to a melt is alled the glasstransition temperature, Tg. The glass transition ours gradually whih results in the glasstransition temperature not being unique, but is instead de�ned as an average temperature.The glass transition temperature an be de�ned based on the energy release during heatingin di�erential sanning alorimetry (DSC), f. Fig. 1.5.In general, the glass transition temperature of polymers with a �exible bakbone andhigh moleular weight is relatively low ompared to polymers with a rigid bakbone andlow weight, i.e. there exists a wide range of glass transition temperatures. For example, theglass transition temperature of PC is 150◦C, whereas for high density atati polypropy-lene (PP) room temperature represents a relative high temperature ompared to its glasstransition temperature, −20◦C.



1.3 Desription of the hain network 5a) b)
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Figure 1.4: Mirostruture of a) amorphous and b) semi-rystalline polymers. In the amorphousregion, polymer hains are intertwined in a network of entangled hains (entanglements). Themarkers • indiate the statistial links in the hain between entangled points, ⊙.Frequently, the terms amorphous and glassy are used synonymously. However, theterm glassy should be onsidered as a speial ase of amorphous being �rmly onnetedto the transformation from a solid into a melt upon heating through the glass transi-tion temperature. Following this de�nition, ertain gels, thin �lms and nanostruturedpolymers an be lassi�ed as amorphous polymers but not neessarily as glassy polymers.Furthermore, no polymer is ompletely rystalline and therefore rystalline polymers mayalso exhibit a glass transition temperature. In this work, the term amorphous glassy poly-mer denotes polymers whih are both amorphous and glassy.
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The hains in rystalline polymers areonneted ompatly together in orderedregions, f. Fig. 1.4(b). The onne-tions between the hains are formed by se-ondary, rystalline bonds. In ontrast torystalline polymers, the hains in amor-phous polymers are oiled and randomlyoriented and onneted to eah other byrelatively weak seondary bonds alled vander Waals fores. In addition to the van derWaals fores, the long polymer hains in anamorphous hain network are onneted viaphysial entanglements in entangled points.The part of a hain between entanglementsis alled a hain segment, f. Fig. 1.6. The seondary bonds are losely related to thephysial entanglements; an inreasing grade of entanglements ativates more bonds and in-reases the van der Waals fores whih results in the resistane to slipping between hainsinreases. Due to the di�erent level of rystallinity, hain density et., the ability to formentanglements varies between polymers. Entanglements are also of major importane in



6 1 Introdutionrelation to mehanial properties suh as stress relaxation and reep; an issue of that willbe disussed in subsequent setions.During initial deformation the hains slip against eah other and under large strainsthey align with the loading diretion whih results in an anisotropi response. After initialyielding, the threshold for signi�ant slipping between the hains is reahed and the mate-rial response suddenly softens. One a majority of the hains have aligned with the loadingdiretion, a signi�ant inrease in sti�ness an be observed. A representative marosopistress-strain response is shown in Fig. 2.1. In ontrast to the glassy state, the mobility ofindividual hains above the glass transition temperature strongly inreases whih resultsin the material softening towards a melt.
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Figure 1.6: Mirostruture of amorphous polymers represented in a) undeformed and b) deformedon�guration. Mirostruture of rubbery polymers in ) undeformed and d) deformed on�gura-tion. Chains in rubbery polymers are ross-linked whereas the network of amorphous polymersis formed by hain segments of initial length r0 and urrent end-to-end distane r between en-tanglements. The thin hains in ) and d) indiate non-equilibrium networks extending betweenentanglements with an equilibrium network, f. Bergström and Boye (1998).Comparison of rubbery polymers and amorphous glassy polymersElastomers, also termed rubbery or rubber-like polymers, share many harateristis withamorphous glassy polymers, inluding e.g. the high energy absorption under impat load-ings and good formability properties that allow reuse and manufaturing of geometriallyhallenging onsumer produts. Moreover, sine both rubbery and amorphous glassy poly-mers are often omprised of similar onstituents and they share many similar proessingtehniques, the manufaturing of rubbery and amorphous polymers is more or less lus-tered. However, their network struture di�ers onsiderably whih results in di�erentmehanial behavior.An important di�erene in the rubbery polymers, ompared to the amorphous glassypolymers, is the dominating non-linear elasti behavior whih an already be observed



1.3 Desription of the hain network 7in small strains. The Poisson's ratio for the majority of amorphous glassy polymersvaries between 0.35-0.40 whereas 0.45-0.49 is a typial range for rubbery polymers in-diating almost inompressible deformation. In ontrast to the rubbery polymers, theamorphous glassy polymers are haraterized by the plasti behavior whih initiates imme-diately under deformation. Sine the plasti deformation is lose to inompressible, amor-phous glassy polymers an also be onsidered nearly inompressible at large deformations.
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Figure 1.7: Nominal stress vs strain response ofHNBR50 rubber-like polymer in uniaxial ylideformation (thin line), f. Göktepe (2007). Arelaxation of visous over-stress is depited bynon-equilibrium point A and equilibrium point B.The elasti equilibrium urve without hysteresisis depited by the thik line.

In Fig. 1.6, the networks of rubbery andamorphous glassy polymers are ompared.In ontrast to the rubbery polymers, inwhih the network is ross-linked by hemi-al bonds, the network of amorphous glassypolymers is formed by the physial jun-tions. Moreover, the rubbery hain networkforms the ground-state network for the su-perimposed hains. Similar to the entan-gled points in the amorphous network, thesuperimposed hains are onneted to theground-state network at the points whihresemble entangled points in their funtion.The strething of superimposed hains is as-sumed to be the soure of the visous re-sponse while the deformation of the ground-state network results in the marosopiequilibrium stress-strain urve, f. Fig. 1.7.As a result of the mirostruture, the rubbery hain network an streth without signi�anthain slipping.To this end, amorphous glassy polymers an be haraterized as follows:- Light weight relative to strength, high �exibility, and good reforming properties.- Polymer hains are formed by a large number of repeated units that onsist of amoleule and a bakbone.- Polymer network is formed by long linear hains that are oiled and randomly dis-tributed.- The hains are onneted together by weak van der Waal fores and via entangledpoints.- Network is relatively weak ompared to rystalline and rubbery polymers.- An inrease of temperature inreases mobility of hains and leads to the transforma-tion from a solid towards a melt.



8 2 Mehanial behavior of amorphous glassy polymers2 Mehanial behavior of amorphous glassy polymersA variety of experiments on amorphous glassy polymers have been performed during thelast deades, most of whih have been uni- and biaxial ompression/tensile tests, simpleshear tests, miro-indentation experiments and birefringene measurements. The ompres-sion/tensile/shear tests are onventionally applied in maro-sale (millimeters), whereas theother methods are suitable in miro/nano-sales (miro/nanometers). The latter methodis an optial proedure, whih is used to estimate the anisotropy of the material from thinpolymer slies. Due to the high energy absorption, amorphous glassy polymers are sensitiveto the plastiity indued and adiabati heating. To avoid the heating during the ompres-sion/tension tests, relatively low strain rates, typially ranging from 0.0001− 0.01 s−1, areemployed. Moreover, the response of glassy polymers is highly rate-dependent giving riseto the need for experiments at di�erent loading rates. To irumvent the inhomogeneousdeformation present in tensile experiments, ompression tests have frequently been em-ployed to investigate the marosopi stress-strain response. Among more reent methods,G'Sell et al. (2002) developed a video-ontrolled tensile testing method for determinationof volume hanges during inhomogeneous deformation.In order to learn about the underlying mirostrutural deformation mehanisms ofamorphous polymers, a speialized experimentation is needed. Apart from the above ex-perimental methods, the density �utuation and amount of free volume around the hainmoleules have been estimated by X-ray sattering and by positron annihilation spe-trosopy employed on the thin polymer slies, f. Hasan et al. (1993). The rapid de-velopment of depth-sensing experiments for nano/miro-indentation during the past twodeades allows aurate experiments on very small volumes. For instane, Hohstetter et al.(2002) determined the true stress-strain urves of PC, PMMA and diethylene glyol bisal-lyl arbonate (CR39) employing nano-indentation. Anand and Ames (2006) ondutedmiro-indentation experiments on PMMA to investigate reep and reovery at di�erentload levels. The inventions of optial instruments, suh as the atomi fore mirosope(AFM), the magneti levitation fore mirosope (MLFM) as well as the single moleulefore spetrosopy (SMFS), have made possible to measure the physial properties of ma-terials at the moleular level and led to the new �eld of nanomehanis, f. Ortiz andHadziioannou (1999).2.1 In�uene of mirostruture on marosopi mehanial behav-iorThe mirostruture of amorphous polymers is to a large extent a result of the manufa-turing proess, suh as forging, stamping or extruding whih are olletively known assolid phase deformation proesses. During these proesses, temperature, pressure as wellas deformation state of the material vary. At the end of the forming proess, the materialshows mirosopi, diretion-dependent harateristis whih are due to the evolution ofmiro-raks and shear banding. Brown and Ward (1968) onduted tension tests to inves-



2.1 In�uene of mirostruture on marosopi mehanial behavior 9tigate the e�ets of initial anisotropy on polyethylene terephthalate (PET). Also Arrudaet al. (1993) investigated the e�ets of initial anisotropy on PC and PMMA at di�erenttemperatures and strain rates. Their uni- and biaxial ompression experiments, as well asthe birefringene measurements, indiated that the resulting anisotropi response is vir-tually una�eted by the strain history. The yield stress, strain hardening and limit ofextensibility were remarkably similar when subjeted to di�erent level of straining prior tothe experiments at di�erent temperatures. However, Capaldi et al. (2004) showed that themehanial behavior may onsiderably alter due to ertain mehanial pre-onditioning,e.g. by quenhing and slow-ooling. In Caddell and Woodli� (1977), Melik (2003) andWeltevreden (2009), the diretion-dependent yield behavior through both initially isotropiand pre-strained glassy polymers was investigated. It was observed that the ompressiveyield stress of initially isotropi material is higher than the yield stress in extension, whereasthe yield stress of the pre-strained material in tension typially reahes onsiderable largervalues than in ompression.Several experiments have been onduted in order to gain knowledge of the underlyingdeformation mehanisms of amorphous polymers. Based on experiments on PMMA, Hasanet al. (1993) and later also Stahurski (2003) proposed a way to represent the evolution ofplasti deformation in terms of mirostrutural harateristis. Capaldi et al. (2004) andLyulin et al. (2006) onduted moleular dynamis (MD) simulations to investigate thein�uene of mirostruture on plasti deformation. It an be onluded that the maro-sopi mehanial behavior stems from three major mirostrutural harateristis: thenumber of entanglements and statistial links between the entanglements, the growth ofshear bands, and the extent of free volume around the hain moleules.Raha and Bowden (1972) and Arruda et al. (1995) onduted experiments that indi-ated that the number of entanglements is not onstant, but depends on temperature.Aording to Tomita and Uhida (2003), the number of hains n in a unit volume and thenumber of statistial links N on a hain between entanglements an also vary under isother-mal loading onditions while the moleular weight of the polymer remains unhangeable.As a result of redued hain density, the sti�ness of the network redues. The onept offree volume is frequently employed to desribe the loosely paked regions having reduedhain density. Due to the existene of free volume around the hain moleules, the yieldbehavior of amorphous glassy polymers depends on hydrostati pressure. Experiments onamorphous polymers proessed by quenhing show a muh lower yield stress and greateramount of free-volume ompared to the experiments on slowly ooled amorphous polymers,f. Anand and Ames (2006).In tensile tests, the initial hain distribution have been found to be marosopiallyuniform while large-sale MD simulations have shown that the hain distribution loally isheterogeneous. The heterogeneity is assumed to generate nuleation sites for shear bands.As a result of heterogeneity, polymer material shows loalized deformation where miro-sopi shear bands in losely paked regions develop and annihilate into marosopi shearbands, f. Tomita and Uhida (2003). Bowden and Raha (1970) onduted plane strain



10 2 Mehanial behavior of amorphous glassy polymersompression tests on PMMA and polystyrene (PS) to investigate the formation of shearbands. Aording to their observations, the growth of shear bands is the primary sourefor the evolution of plasti deformation in amorphous glassy polymers. The plane straintension tests by Tomita and Uhida (2003) showed a remarkable drop in the marosopistress immediately after development of the marosopi shear bands. During ontinueddeformation, the propagation of shear bands and development of inhomogeneous deforma-tion were observed whih is marosopially manifested by neking. The nek propagationis disussed below.2.2 Marosopi mehanial behaviorThe mehanial properties of amorphous glassy polymers are to a large extent ditatedby their hemial omposition and mirostruture. As temperature inreases, most amor-phous glassy polymers show inreased deformability in shear. Moreover, experiments showstrong strain rate sensitivity, although this dereases during transition from a solid to amelt, f. Arruda et al. (1995). The mehanial behavior of amorphous glassy polymers isharaterized by initial yielding and subsequent strain softening, followed by strain hard-ening due to the reorientation of polymer hains, f. Haward and Thakray (1968) andArgon (1973). A representative "S-shaped" true stress-strain urve is presented in Fig.2.1. One the hains reah their limit for extensibility, a dramati inrease of stress an beobserved.When the deformation is small and the deformation rate is slow, the moleules haveenough time to relax and the amorphous struture remains unaltered. At this state, theplasti deformation is yet small and the response is nearly linear elasti. During ontinueddeformation, the plasti strains develop and the total plasti strain near the limiting strainis at least ten times greater than the initial elasti strain up to the elasti limit, f. Hawardand Thakray (1968). The evolution of plasti deformation in amorphous glassy polymersis a thermally ativated statistial proess whose rate is proportional to exp(−∆Gf/kT )where ∆Gf , k and T are the amount of ativation free enthalpy, the Boltzmann onstant,and the absolute temperature, respetively. The yield stress is reahed one the level ofthermal ativation energy for hain segment rotation is reahed. This barrier is loselyrelated to the intermoleular resistane. The isotropi hardening results from intermole-ular resistane to hain segment rotation while the softening in the material is believedto be the result of loalized shear band formation whih usually ours at strains between5%-50%, f. Argon (1973), Boye et al. (1988) and Hasan and Boye (1995).During deformation, the hains align with the prinipal plasti strethes of ontinuumwhih results in an anisotropi response. Moreover, amorphous glassy polymers exhibitloalized deformation whih is due to shear band propagation under shearing and nekpropagation under tension. Nek propagation an be utilized in forming proesses, e.g. itis exploited in old drawing whih results in a strongly oriented struture in amorphouspolymer materials. During old drawing, the load is nearly onstant as the nek propagatesthrough the struture. Several studies have been onduted to investigate nek propagation,f. G'Sell and Jonas (1979), Stokes and Nied (1986) and Miehe et al. (2009). Stokes
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Figure 2.1: Stress vs strain response of PC in a) uniaxial and b) plane strain ompression. The testshave been performed by Arruda and Boye (1993a) at two onstant true strain rates ǫ̇ = 0.001 s−1(solid line) and ǫ̇ = 0.01 s−1 (dashed line) at room temperature. An inrease of ǫ̇ results in theyield stress inreasing.and Nied (1986) performed tension tests on PC, polybutylene terephthalate (PBT) andpolyetherimide (PEI) whih indiated that the limit of elasti deformation is followed bythe onset of loalized deformation through a nek formation. The propagation of thenek results in the alignment of the hains whih appears marosopially as a highlyanisotropi response. Near the limiting strain, there appears a sti�ening of the materialand a onsiderable inrease in stress.Strain rate and temperature dependeneExperiments indiate that the mehanial behavior of amorphous glassy polymers is stronglystrain rate and temperature-dependent. Haward and Thakray (1968) and Arruda et al.(1995) performed uniaxial tests that indiated a strong strain rate dependene in yield stressand in strain hardening.
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Figure 2.2: Yield stress versus strain rate forPC. The marker � represents experimental datapoint and the solid line a �t using the Eyringrelation.

The representative stress-strain responsesof PC under uniaxial and plane strain om-pression at di�erent strain rates are de-pited in Fig. 2.1. An inreased load-ing rate results in an inreased stress levelwhih indiates the material behavior israte-dependent. The yield stress σY is pro-portional to the logarithmi strain rate ǫ̇and it an be desribed using the Eyringrelation
σY =

kT

V ∗
sinh−1(

ǫ̇

ǫ̇0
) (2.1)where V ∗ is the ativation volume and ǫ̇0 isa pre-exponential fator, f. Fig. 2.2. Inaddition to the strain rate dependene, the yield stress is substantially in�uened by pres-



12 2 Mehanial behavior of amorphous glassy polymers

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

PSfrag replaements
ǫ

σ

[MPa℄
a)

θ = 293 K
θ = 333 K
θ = 350 K

0 0.5 1 1.5
0

20

40

60

80PSfrag replaements[MPa℄a)
ǫ

σ

[MPa℄b)
a) b) θ = 293 K

θ = 333 K
θ = 350 K

Figure 2.3: Stress vs strain response of PETG in uniaxial ompression at 293K, 333K andat glass transition temperature 350K. The tests have been performed by Dupaix and Boye(2005) employing onstant true strain rates, a) ǫ̇ = 0.01 s−1 and b) ǫ̇ = 0.5 s−1. An inrease oftemperature results in the yield stress as well as large strain hardening derease.sure, f. Christiansen et al. (1971). Aording to the experiments by Ginzburg (2005), thestress-strain urve of semi-rystalline polymers is also shown to depend on the tempera-tures during the manufaturing proesses prior to the old drawing. At high strain rates,temperature and strain rate are oupled whih is due to the plastiity indued heating.Dupaix and Boye (2005) and Dupaix and Boye (2007) onduted experiments onpolyethylene terephthalate (PET) and polyethylene terephthalate-glyol (PETG) over awide range of temperatures. The experimental uniaxial stress-strain urves at three di�er-ent temperatures are depited in Fig. 2.3. A rise in temperature inreases the moleularhain �exibility, and that leads to a redution in the yield stress and the elasti sti�ness.Around the glass transition temperature, the experimental response shows less hardeningand the yield peak and the ensuing softening are onsiderably redued. A omparisonof Figs. 2.3(a-b) shows the e�ets of the hanges in strain rate and temperature. Aninteresting remark is that the yield peak and the following softening below the glass tran-sition temperature annot be observed at ǫ̇ = 0.01 s−1, whereas they both are present at
ǫ̇ = 0.5 s−1.G'Sell and Jonas (1981) performed tension experiments that indiated strong transiente�ets after strain rate hanges in PE, polytetra�uoroethylene (PTFE), PP, PVC, andpolyamide (PA), f. Fig. 2.4(a). Lu and Ravi-Chandar (1999) onduted tension exper-iments on PC that showed relatively small hysteresis and only minor transient e�ets atsmall strains before softening. Arruda et al. (1995) onduted uniaxial ompression exper-iments on PMMA whih indiated that the yield stress inreases and the strain hardeningdereases with the inreased strain rate. More reently, Khan and Zhang (2001) and Khan(2006) investigated the in�uene of strain rate on strain hardening, reep and relaxationfor PTFE, and Zaïri et al. (2005) for PC. Krempl and Khan (2003) onduted a set ofuniaxial monotoni tests at several loading rates that showed similarities in deformationbehavior between polymers and metals: almost linear elasti phase, nonlinear strain rate
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ǫ̇ = 0.001 s−1 to ǫ̇ = 0.01 s−1 and 2, 4 from ǫ̇ = 0.01 s−1 to ǫ̇ = 0.001s−1. b) Experimental stressvs strain response of PMMA in yli uniaxial ompression, f. Anand and Ames (2006). Thearrow indiates the diretion of the shift between yles in the hysteresis loops.sensitivity, nonlinear reep and hysteresis during a loading yle. Cola and Dusuneli(2008) performed uniaxial tensile tests that showed a strong strain rate sensitivity andreep/relaxation behavior on semi-rystalline high density polyethylene (HDPE). Anandand Ames (2006) showed that PMMA exhibits a strong Baushinger-like e�et when un-loaded. Their experiments also indiated a progressive shift between yles in the hysteresisloops, f. Fig. 2.4(b).Dreistadt et al. (2009) onduted uniaxial experiments to investigate the in�uene ofrelaxation time and repeated unloadings on bisphenol A polyarbonate (BPA-PC). The
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14 3 Charaterization of onstitutive modelsexperimental stress-strain responses are depited in Fig. 2.5. At the beginning of theunloading phase, the response shows ontinued deformation opposite to the loading ratediretion. In ontrast to many other materials, this feature is frequently observed in amor-phous polymers. During reloadings, the response shows signi�ant stress peaks whih arefollowed by softening bak to the monotoni loading path. As shown, the response is notsensitive to the duration of dwell at the given stress levels. It will be pointed out, however,that reovery is progressively replaed by reep and it strongly depends on the presribeddwell period when the dwell stress inreases, f. also Dreistadt et al. (2009).To this end, the material behavior of amorphous glassy polymers an be summarizedas follows:- Initial yielding and subsequent strain softening followed by strain hardening an bedesribed by the typial "S-shaped" stress-strain response.- The initial response prior to the stress drop is nearly linear.- Due to the existene of loosely paked regions (free volume) around the hain moleules,the yield behavior of amorphous glassy polymers depends on hydrostati pressure.- Temperature- and strain rate-dependene: dereasing strain rate and inreasing tem-perature result in a lower yield stress.- Changes in loading rate ause strong transient e�ets: reep/reovery (dwell) andstress relaxation.3 Charaterization of onstitutive modelsMost onstitutive models for amorphous glassy polymers are based on network modelsoriginally designed for rubber elastiity. These models date bak to the beginning of thelast entury, f. e.g. James and Guth (1943) and Wang and Guth (1952). In amorphouspolymers, long moleular hains are randomly distributed in spae. The desription of thehain distribution is based on statistial models whih an be divided into two ategories:Gaussian and non-Gaussian statistis. In probability theory, Gaussian distribution is alledthe normal distribution, being one of the simplest ontinuous probability distributions. Itis frequently used to desribe real-valued random variables having a widely known "bell"-shaped probability density funtion. However, at large strains the distribution of polymerhains does not follow Gaussian statistis, i.e. non-Gaussian statistis is frequently em-ployed. In statistial models, one end of the hain is �xed while the other end has someprobability to reah an in�nitesimal volume dv. This simple model is termed an ideal ora freely jointed hain. Applying non-Gaussian statistis, the probability for �nding theend-position in dv is expressed by the two limits: initial random walk-type mean-squarevalue r0 and the fully extended hain length, rL. Non-Gaussian models have been appliedto amorphous glassy polymers sine 1960s. In the pioneering work by Haward and Thak-ray (1968), a one-dimensional model was presented. In this model, the rate-dependentsoftening/hardening behavior was aptured by using an Eyring dashpot in parallel with a



15Langevin spring whih takes the kinemati hardening into aount.In ontrast to Newtonian �uids, visosity of amorphous glassy polymers is not onstantbut depends on the rate of deformation. Based on spring-dashpot analogies there existtwo main strategies to systematially build relatively simple models. The �rst approah isbased on a modi�ation of the Kelvin-Voigt model involving a nonlinear visous dashpotin parallel with a nonlinear spring whih takes hardening into aount at large strains.Moreover, the initial elasti behavior is aptured via an elasti spring. A shemati repre-sentation of this approah is given in Fig. 4.6. Furthermore, a model an onsist of severalsuh Kelvin-Voigt elements arranged in series, f. Fig. 4.11. In the seond approah, twoor more Maxwell elements involving a spring and a visous dashpot in series are arrangedin parallel. One spring is linear, whereas a nonlinear spring aptures hardening in thematerial. This approah is shematially represented in Fig. 4.13. Models onsisting ofKelvin-Voigt elements are typially employed for modeling of amorphous polymers in theglassy state, f. Arruda and Boye (1993a), whereas the Maxwell-based approah is appliedto amorphous polymers in the rubbery or melt state, f. e.g. Boye and Arruda (2000)and Dupaix and Boye (2007).Models for amorphous glassy polymers involve both phenomenologial and mirome-hanially based aspets. The strain energy is frequently desribed phenomenologially interms of the prinipal invariants. In ontrast to the strain energy, the plasti potential aswell as the hain motion are usually desribed by a physially motivated network model.In both the phenomenologial and the network models, the strain invariant I1 := ∑

i λ
2
i isof major signi�ane. However, the strain energy expressions must be highly nonlinear in

I1 to apture the non-Gaussian nature of a large deformation. In addition to the mixedphenomenologial and miromehanially based models, there are also purely phenomeno-logial models. Zaïri et al. (2005) developed a phenomenologial model whih adequatelyaptures the behavior of PC during monotoni loading, reep and stress relaxation. Thismodel, however, involves a large number of onstitutive parameters. Despite the smallnumber of material parameters employed in miromehanially based models, they arefound to aurately support experimental results. Due to the suess of miromehani-ally based models for amorphous glassy polymers, all subsequent onsiderations will bedisussed on this basis.Modeling of the hain networkIn the network models, the overall hain network is modeled by single hains whih arearranged in small ells. The network models an be ategorized to full-network modelsand to models, where a redued set of hains in a ell are assumed to be representativefor the entire network. In the early models, the ells were desribed as tetrahedrons orubes involving three or four hains, f. James and Guth (1943) and Treloar (1946). Sinethe 3- and 4-hain model annot aurately reprodue the strain hardening in di�erentdeformation modes, the 8-hain model has beome the most popular model during the
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Figure 3.1: The idealized hain struture aording to a) the 3-hain model, b) the 8-hain modeland ) the full network model. The dimension of the 3- and the 8-hain ube is a0, and R0 denotesthe radius of the miro-sphere.last two deades, f. Arruda and Boye (1991) and Arruda and Boye (1993a). In the8-hain model, the ells onsist of eight polymer hains that extend from the enter alongthe diagonals, f. Fig. 3.1. In full network models, the hains extend from the enterof a miro-sphere and ross the surfae forming a ontinuous hain distribution on thesphere, f. Fig. 3.1. The overall plasti potential in the full network models, found byintegrating the plasti part of the free energies of all the individual hains over the unitsphere, is omputationally very expensive. For this reason, full network models are usuallyemployed in redued dimensions. Treloar (1954) proposed a full network model for simpleuniaxial tension whih was later extended to biaxial tensile deformations by Treloar andRiding (1979). In the Wu and Van der Giessen (1993) full network model, the distributionof hains is governed by a hain orientation distribution funtion (CODF). The streth ofindividual hains is assumed to follow the ontinuum deformation whih makes the Wu andVan der Giessen (1993) model a�ne in that sense. As it was pointed out by Boye andArruda (2000), the a�ne streth assumption, however, is not able to apture deformationbehavior at large strains. Later, Beatty (2003) showed that the 3-hain model by Jamesand Guth (1943) and the 8-hain model by Arruda and Boye (1993b) follow on from theWu and Van der Giessen (1993) full network model. Wu and Van der Giessen (1993)also showed that the 3-hain model overestimates the sti�ness of the network while the8-hain model gives a lower bound. Motivated by these observations and also to avoid theexpensive integration in the full network model, Wu and Van der Giessen (1993) proposedan approximation where the response is obtained from a linear ombination of the 3- andthe 8-hain model. In the same spirit, Miehe et al. (2002) proposed a model in whih theintegration over the unit sphere is approximated by a 21-point integration sheme.The key in mehanial models for amorphous glassy polymers is to �nd the link betweenthe miro-strethes of hains and the maro-strethes of ontinuum. There exist two majorpriniples for this transition: a�ne models where the miro-strethes follow ontinuumdeformation, and non-a�ne models where the miro-strethes are allowed to �utuate



17around the maro-strethes. Some authors refer to a�ne models as models in whih thenumber of entangled points of moleular hains are assumed to remain unaltered duringdeformation. In that sense, the models mentioned above are a�ne. In this work, however,the a�nity is determined on the basis of miro-strethes of hains. The motivation for non-a�ne network models is that the a�ne network models are not able to reah the limit ofextensibility. Near the limiting strain, some of the hains in the real network are strethedmore than predited by a�ne models, while some hains are strethed less, espeially in thediretion of the prinipal strethes. As a result, the a�ne assumption of hain deformationis devalued whih neessitates the development of more apable non-a�ne models.One of the pioneering models for amorphous glassy polymers, inluding orientationalhardening, is a non-a�ne 3-hain model proposed by Boye et al. (1988). Later, Arrudaand Boye (1991) proposed a non-a�ne 8-hain network model whih improves the strainhardening behavior at large strains and in di�erent deformation states (and will herein betermed the BPA model). These pioneering works were on�rmed by Arruda and Boye(1993a), Arruda et al. (1993), Hasan and Boye (1995), Arruda et al. (1995) and Anandand Gurtin (2003) to mention a few. In the 8-hain model, the miro-maro transitionis determined by an average network streth whih is given in terms of prinipal plastistrethes. Based on the 8-hain model, Anand and Ames (2006) proposed a visoelasti-visoplasti onstitutive model whih was originally used to predit miro-indentation.However, due to the large number of material parameters inluded, this model is di�ultto alibrate and apply in pratie. Miehe et al. (2004) proposed a full network model for�nite rubber elastiity whih was later extended to amorphous glassy polymers by Göktepe(2007). In this model, a ontinuous distribution of hains is represented by a miro-sphere,and the miro-maro transition is given by a p-root averaging operator.Modeling of marosopi deformationBasially, the kinematial approahes for modeling marosopi deformation of amorphousglassy polymers an be split into the two main ategories based on:(i) the multipliative deomposition of the total deformation gradient F into an elastiand a plasti omponent,(ii) an additive kinematial onept based on the notion of a plasti metri.In the �rst approah (i), the plasti omponent F p represents the irreversible deformationfrom the referene on�guration to the intermediate on�guration and is onsidered tobe an internal variable whih desribes the marosopi plasti deformation. The elastiomponent F e represents the elasti deformation from the intermediate on�guration tothe urrent on�guration. Based on the seond approah (ii) Miehe et al. (2002) proposed amodel for anisotropi plastiity in whih the elasti strain is oneptually de�ned in additiveform ǫe := ǫ− ǫp. In Miehe et al. (2009), the multipliative approah and the kinematial



18 3 Charaterization of onstitutive modelsapproah by Miehe et al. (2002) are ompared for both isotropi and anisotropi materialsand the results indiate similarities for a wide range of boundary value problems.The miromehanially based models an be regarded as a three dimensional extensionof the onstitutive model for rubber elastiity by Wang and Guth (1952), in parallel with therate- and temperature-dependent Argon (1973) model. The Argon (1973) model is basedon the double-kink theory whih results in a rate- and temperature-dependent evolutionequation for the plasti �ow. Later Boye et al. (1988) improved the Argon (1973) modelby making yield pressure sensitive and by introduing softening. In addition to the Argon(1973) model, the temperature-dependent plasti evolution law proposed by Robertson(1966) should be mentioned. In ontrast to the Argon (1973) model where the resistaneto plasti deformation is attributed to intermoleular interations, the evolution of theplasti �ow in the Robertson (1966) model requires a threshold for the intramoleularresistane to be reahed. Compared to the Argon (1973) model, the Robertson (1966)model yields more aurate results both lose to the glass transition temperature and inmelt state, whereas the Argon (1973) model is superior in glassy state. It an be onludedthat the intermoleular resistane is of major importane in the evolution of the plastideformation below the glass transition temperature.Despite the intensive researh during the past deades, the physial link betweenthe mirostruture and the marosopi mehanial behavior is not yet fully understood.Stahurski (2003) made a review of the studies whih onern the in�uene of miromeh-anisms on the marosopi stress-strain behavior. These studies pointed to the onlusionthat the plasti deformation evolves due to the tension in the hain segments whih resultsin slipping through neighboring entanglement sites. Furthermore, in Kameda et al. (2007),a large number of experiments have been studied to �nd the mehanisms for the onset ofplasti deformation in non-rystalline polymers. The development of omputational powerand moleular dynamis (MD) simulation methods have failitated investigation of miro-sopi deformation behavior espeially at high strain rates. Reently, Capaldi et al. (2004)and Lyulin et al. (2006) onduted MD simulations to investigate the e�ets of temperatureon deformation of the moleular struture when subjeted to high strain rates.In onlusion, the main features of urrent models of amorphous glassy polymers anbe summarized as follows:- Material behavior is desribed as elasti-visoplasti or visoelasti-visoplasti.- Models an be lassi�ed as phenomenologial and miromehanially based models.- The 8-hain model and full network models with a redued integration sheme areonsidered most apable miromehanially based models.- Miromehanially motivated models are based on non-Gaussian statistial mehanisand on non-a�ne hain motion.- The miro-maro transformation is determined by an average network streth whihallows �utuation of the miro-strethes around the maro-strethes.



194 State-of-the-art models of amorphous glassy polymersDespite the vast amount of researh arried out during the past four deades, modeling ofamorphous glassy polymers is still an ative researh �eld. The objetive of the ongoingresearh is to develop onstitutive models whih are able to reprodue the experimentalresponse at a minimum number of material parameters while temperature, loading rateand deformation state vary. Moreover, to be of pratial importane, the models should besuitable for numerial solution methods. A omparison of models and experimental resultsin the literature reveals that models based on the 8-hain model and the full networkmodels with redued integration shemes are most apable for modeling of amorphousglassy polymers. The models by Boye et al. (1988), Arruda and Boye (1991), Arrudaand Boye (1993a), Wu and Van der Giessen (1993) and Anand and Gurtin (2003) aresome examples of models within this group. These models an be onsidered as three-dimensional extensions of the James and Guth (1943) 3-hain model for rubber elastiityand the Haward and Thakray (1968) model for glassy polymers. However in detail, thesemodels di�er and many reent studies are based on them.In this hapter, the 8-hain model by Arruda and Boye (1993a) and the full networkmodel by Wu and Van der Giessen (1993) will be disussed in detail. In Sweeney (1999),these two models are ompared and it was onluded that the Arruda and Boye (1993a)model better aptures the rubber-like material behavior. A omparison of rubber-likematerials also reveals that the stress response by the Wu and Van der Giessen (1993)model is in between those of the 3-hain model by Boye et al. (1988) and the 8-hainmodel by Arruda and Boye (1993a).In addition to the elebrated Arruda and Boye (1993a) and Wu and Van der Giessen(1993) models, the reent models by Anand and Ames (2006), Dupaix and Boye (2007)and Miehe et al. (2009) will be reviewed in this hapter. The major di�erene betweenthe reviewed models is the desription of the polymer network. The models by Wu andVan der Giessen (1993) and Miehe et al. (2009) are full network models, whereas the othermodels are based on the 8-hain network model. Due to the inability of a�ne networksmodels to predit the behavior at large deformations, the only a�ne model onsidered hereis the one by Wu and Van der Giessen (1993). In all models, the plasti evolution equationrelies on the well-aepted double-kink theory of Argon (1973).In Miehe et al. (2009), the marosopi deformation is desribed by the onept of aplasti metri, whereas the multipliative split of the deformation gradient is employedin the remaining models. An advantage of the Miehe et al. (2009) onept is that theplasti spin never enters into the formulation, whereas the multipliative split results in therotation of the intermediate on�guration not being unique. To speify the orientation ofthe intermediate on�guration, a onstitutive law for the plasti spin must be postulated.A detailed disussion of that matter an be found e.g. in Boye et al. (1989). In theAnand and Ames (2006) and Dupaix and Boye (2007) models, the plasti spin is assumedto vanish whereas in the Arruda and Boye (1993a) and Wu and Van der Giessen (1993)



20 4 State-of-the-art models of amorphous glassy polymersmodels, the elasti part of the deformation gradient is assumed to be symmetri whihresults in the plasti spin being nonzero.In state-of-the-art models onsidered in this thesis, the plasti deformation stems fromisotropi resistane due to hain segment rotations parallel with anisotropi resistane,whih results from the strething of the entire network and reorientation of the polymerhains. This notion for the hardening mehanism is usable under isothermal loading on-ditions far below the glass transition temperature Tg as well as it is motivated by theomplete reversibility of plasti deformation at temperatures higher than Tg, f. Melik(2003). However, several laims that show evidene against this approah are presented inthe literature. Boye and Haward (1997) showed that the strain hardening tends to dereasewith inreasing temperature and the dynami mehanial thermal analysis (DMTA) per-formed by Melik (2003) indiated that hardening lose to the glass transition temperatureis essentially governed by the hain density of the polymer network. Aording to Tomitaand Tanaka (1995), the extension along the hain diretion and ompression perpendiularto the hain diretion inreases the number of entanglements and a�ets hardening in thematerial. Basu et al. (2005) proposed a onstitutive model where yield, network hardeningand disentanglement are aounted for �bril growth and failure. Klompen et al. (2005)and Hoy and Robbins (2007) pointed out that the strain hardening sales with both theyield stress and visosity of the material. In Bardenhagen et al. (1997) and Khan andZhang (2001), visosity, whih was attributed to the disentanglement of hain network,was shown to inrease with elasti strain and redue with the inreasing strain rate. Itshould be mentioned that many of these approahes, as will be shown, an be readilyimplemented as a part of state-of-the-art models. One onsequene of their appliation isthat the number of material parameters needed in the models inreases. Simulations, how-ever, indiate that suh omplexity is required to satisfatorily predit the experimentallyobserved thermomehanial behavior of polymer glasses.In all the models under onsideration, the single hain deformation is desribed ina similar manner. However, the desription of the transformation from a single haindeformation to the ontinuum deformation di�ers onsiderably between the 8-hain modeland full network models. Hene, the single hain deformation, ontinuum deformationas well as the Argon (1973) model will be disussed together, whereas the miro-marotransformation and its ontribution to marosopi stresses will be disussed separately.4.1 Basi kinematis - multipliative approahSine most of the onstitutive models of amorphous glassy polymers rely on the multiplia-tive split, the fundamental elements of that approah will be reviewed below. The loaldeformation is governed by the deformation gradient F whih an be onsidered as a linearmap of the referential vetors dX onto the spatial ounterparts dx, i.e. dx = F dX, f.Fig. 4.1. The referene and the spatial positions in a material body within the Eulideanspae are given by the referene and the spatial oordinates X and x, respetively. Based



4.1 Basi kinematis - multipliative approah 21on the total deformation, the onstitutive laws in the models under onsideration are de-�ned in terms of the Cauhy-Green deformation tensor C or the Finger tensor b, de�nedas
C := F TF (4.1)and
b := FF T (4.2)respetively. The supersript T denotes the transpose. Aording to the multipliativedeomposition, the deformation gradient is split into its elasti and plasti omponent as
F = F eF p. (4.3)The intermediate on�guration N̄ is only loally de�ned, i.e. the elasti and the plastideformation gradient, F e and F p respetively, are not true deformation gradients. How-ever, both are mappings for whih det(F e) > 0 and det(F p) > 0, i.e. the inverses F e−1and F p−1 exist. Using (4.3), dx is given by dx = F eF pdX and sine the inverse F e−1exists, the vetors in the intermediate on�guration are given by dX̄ = F pdX = F e−1dx,f. Fig. 4.1. Moreover, the elasti onstitutive law an be given in terms of the elasti�nger tensor
be := F eF e,T . (4.4)In the intermediate setting, the elasti onstitutive law is de�ned by the elasti Cauhy-Green deformation tensor
C̄

e
:= F e,TF e. (4.5)The plasti deformation an be de�ned via the plasti deformation tensor

bp := F pF p,T (4.6)or alternatively in the referene on�guration by
Cp := F p,TF p. (4.7)In aordane with the polar deomposition, the deformation gradient an be given interms of the rotation tensor R and the symmetri, positive de�nite strethes v and U as
F = vR = RU . (4.8)In analogy with (4.8), the polar deomposition of the elasti deformation gradient F eresults in

F e = veRe = ReŪ
e (4.9)where ve and Ū

e are symmetri, positive de�nite left and the right elasti streth tensor,respetively, and Re is the elasti rotation. In aordane with (4.9), use will be made of
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Figure 4.1: Deformation of a solid body and the mappings between di�erent on�gurations. a)The multipliative deomposition of the deformation gradient F into an elasti and a plasti part
F e and F p, and the polar deompositions based on the right strethes U , Ū e and Up. b) Thepolar deompositions based on the left strethes v, V̄ p and ve.the polar deomposition of F p, i.e.

F p = V̄
p
Rp = RpU p (4.10)where V̄ p and U p are the plasti strethes and Rp is the plasti rotation. The deformationrate orresponding to deomposition (4.3) is given by the spatial veloity gradient l de�nedas

l := Ḟ F−1 = le + F eL̄
p
F e−1 =: le + lp (4.11)where lp := F eL̄

p
F e−1 is the spatial form of the plasti veloity gradient L̄p. In (4.11) ˙(·),denotes the material time derivative. The elasti and the plasti veloity gradients le and

L̄
p introdued in (4.11), are de�ned as

Ḟ
e
= leF e, Ḟ

p
= L̄

p
F p. (4.12)Based on (4.12) the rate of the plasti deformation tensor ḃp an be derived as

ḃ
p
=

˙
F pF p,T = Ḟ

p
F p,T + F pḞ

p,T
= Ḟ

p
F p−1F pF p,T + F pF p,TF p−T Ḟ

p,T

= L̄
p
bp + bpL̄

p,T
.

(4.13)For later purposes, the spatial veloity gradient is deomposed into its symmetri andskew-symmetri parts as
l = d+ ω (4.14)



4.1 Basi kinematis - multipliative approah 23where d := sym(l) is the rate of deformation and ω := skew(l) is the spin both given inthe spatial on�guration. The symmetri and the skew-symmetri part were de�ned by
sym := 1/2([·]+ [·]T ) and skew := 1/2([·]− [·]T ), respetively. Similar to (4.14), the elastiand plasti veloity gradients an be deomposed into their symmetri and skew-symmetripart, i.e.

le = de + ωe, L̄
p
= D̄

p
+ W̄

p (4.15)where
de := sym(le), ωe := skew(le),

D̄
p
:= sym(L̄

p
), W̄

p
:= skew(L̄

p
).

(4.16)Based on (4.16), the rate of the elasti deformation tensor ˙̄Ce an be determined as
˙̄Ce =

˙
F e,TF e = F e,TF e−T Ḟ

e,T
F e + F e,T Ḟ

e
F e−1F e = 2F e,TdeF e, (4.17)i.e. ˙̄Ce is related to the spatial rate of elasti deformation de through F e. As a onsequeneof the multipliative deomposition of the deformation gradient,

F = F eR̃R̃
T
F p = F̃

e
F̃

p
,i.e. the rotation R̃ of the relaxed, stress-free intermediate on�guration is not unique andertain additional kinematial assumptions are needed. In the Anand and Ames (2006)and Dupaix and Boye (2007) models, the plasti spin is assumed to vanish, whereas inthe Arruda and Boye (1993a) and Wu and Van der Giessen (1993) models the plasti spin

W̄
p is onsidered as nonzero. Agah-Tehrani et al. (1987) derived an expression for W̄

pbased on the assumption that the elasti rotation Re is unity. Post multiplying (4.11) by
F e and making use of (4.14) and (4.15) yield

(d+ ω)F e = Ḟ
e
+ F e(D̄

p
+ W̄

p
). (4.18)Taking the skew-symmetri part of (4.18) results in the following omponent relation

F e
ij(ωjk − W̄ p

jk) + (ωij − W̄ p
ij)F

e
jk = F e

ij(djk + D̄p
jk)− (dij + D̄p

ij)F
e
jk, i, j, k = 1, 2, 3, (4.19)where F e

ij = F e
ji due to the irrotational elasti deformation. The equation (4.19) revealsthat the spin terms (ωαβ − W̄ p

αβ) an be given in terms of (dαβ + D̄p
αβ).



24 4 State-of-the-art models of amorphous glassy polymers4.2 Single hain deformationTo avoid a omplex and omputationally expensive treatment of the hain network atthe mirosopi level, a representative network model is required as well as the transitionbetween miro- and maro-strethes must be determined. The desription of a networkstruture is given in terms of the four idealized quantities: (1) average initial length of hainsegments r0 between physial entanglements, f. Fig. 4.2; (2) average fully extended length
rL of a hain segment; (3) funtion of entangled points; and (4) the average orientationdistribution of the hain segments.One the deformation is applied, the hains extend while the on�gurational entropydereases. To desribe the deformation of a single hain, a model of freely jointed andvolumeless hains is frequently used as the starting point. One end of this hypothetialhain is �xed (e.g. the enter point in a ell) while the other end has a �nite probability toreah any other position in some in�nitesimal volume dv, f. Flory (1969) and Fried (2009).The non-Gaussian �nite extensibility of a single hain is given by the ontour length as
rL = lN where N is the number of statistial links (also alled "kinks", f. Argon (1973),Tomita and Tanaka (1995)) of length l between the physial entanglements, f. Fig. 4.2.Beause the hain is freely jointed, the three axes are independent of eah other and theprobability that a hain has an end-position in dv is the produt of the probabilitiesW (x),
W (y) and W (z) for eah of the axes onsidered separately. One of many possibilities todesribe the original undeformed length r0 is de�ned by a simple stohasti proess whihresults in the random walk a Gaussian distribution

∫

V

W (x)W (y)W (z)dxdydz = (
β√
π
)34πr2e−β2r2dr =: W (r)dr.The maximum value of this distribution ours at rmax = 1/β ≈ 0.82l

√
N . The mean-squared value of r is found by the integrating

〈r2〉 =
∫ ∞

0

r2W (r)dr = l2N,whih is used to de�ne the random walk-type mean-squared value r0 as r0 = √

〈r2〉 = l
√
N .Hene, the hain loking streth is given by

λL = rL/r0 ∈ (1,
√
N ]. (4.20)The urrent streth of a single hain is given by the end-to-end distane r ∈ (0, rL) as

λ =
r

r0
∈ (0,

√
N). (4.21)Chains are oriented along the diretions for whih λ > 1 and oiled along the diretionshaving λ < 1.So far, the hain density n has not expliitly been taken into aount. In the modelsunder onsideration, the number of entanglements is assumed to be onstant. However,
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Figure 4.2: Illustration of a freely jointed polymer hain in di�erent on�gurations: a) the urrentend-to-end vetor r and b) the geometry of a single polymer hain onsisting of N segments ofequal length l between physial entanglements. The probability for �nding the end-position inin�nitesimal volume dv = dxdydz during deformation is expressed by the limits: initial randomwalk-type mean-square value r0 and the fully extended hain length rL.aording to the experiments by Raha and Bowden (1972) and Tomita and Uhida (2003),the number of entanglements may hange due to deformation and temperature hanges. Interms of network theory, inreasing number of hains n dereases the number of statistiallinks N on a hain between the entanglements. Also, the hain density is losely relatedto the number of entangled points and inreasing hain density auses sti�ening in thematerial and results in the extensibility being dereased. Motivated by these observations,the hain density n is assumed to be related to the number of statistial links N betweenthe entanglements via
n(θ)N(θ) = Ntot = const. (4.22)where θ is temperature, f. Arruda et al. (1995).4.3 Miro-maro transitionThe key in network models is to �nd a link between the deformation of a single hainand the marosopi, ontinuum deformation. Aording to the a�ne streth assumption,the maro-streth λ̄ of the ontinuum and the miro-streth of a single hain λ de�ned by(4.21) are equal, i.e.

λ = λ̄. (4.23)This relation, however, was originally used to desribe the deformation of a single polymerhain between the juntions of a ross-linked network, f. Treloar and Riding (1979). LaterArruda and Boye (1993b) showed that the a�ne streth assumption is not suitable for largestrains and the extensibility of hains should be determined on the basis of non-Gaussianstatistis. To allow the miro-streth of the hains to �utuate around the maro-streth,



26 4 State-of-the-art models of amorphous glassy polymers(4.23) is generalized to
λ = λ̄f (4.24)where the multiplier f is the streth-�utuation �eld on the unit sphere whih in a mul-tipliative format transforms the a�ne streth. As it was pointed out in the preedingsetion, the loation of the free end of a freely jointed hain is given by non-Gaussianstatistis. In ontrast to the end points of hains, the intersetions of hains and thesurfae of a unit sphere de�ne the transformation between the miro- and maro-strethes.Let us now onsider the averaging of a mirosopi variable h. Let p denote the proba-bility for �nding the rossing point of a single hain within the in�nitesimal area element

da := sin(θ)dθdϕ, θ ∈ [0, π], ϕ ∈ [0, 2π] on the unit sphere. The average of a mirosopivariable h under a ontinuous hain distribution p is de�ned as
〈h〉 :=

∫

A

p(a)h(a)da (4.25)where A denotes the surfae of the unit sphere. The homogenization (4.25) allows us tode�ne the homogenized miro-streth 〈λ〉 as
〈λ〉 :=

∫

A

λpda. (4.26)The non-a�ne miro-streth λ is assumed to be onstrained by
〈λ〉 = 〈λ̄〉, (4.27)i.e. the in�uene of hain �utuation around the network streth λ̄ vanishes in homoge-nization. In many amorphous polymers, the initial hain distribution p0 is uniform whihresults in p0 = 1/A, A = 4π being onstant. The representation of (4.26) in the referentialon�guration is derived by the transformation λ(θ, ϕ) = λ(θ0, ϕ0), i.e.

〈λ〉 =
∫

A

λ(θ0, ϕ0)p0dA (4.28)where dA = sin(θ0)dθ0dϕ0, θ0 ∈ [0, π], ϕ0 ∈ [0, 2π]. Taking advantage of (4.27), p0 = 1/Ain (4.28) yields
〈λ̄〉 = 1

A

∫

A

λ̄da. (4.29)In addition to the averaging (4.29), Göktepe (2007) proposed an alternative averaging of
λ̄

〈λ̄〉m =
( 1

A

∫

A

(λ̄)mdA
) 1

m , m > 0 (4.30)whih an be onsidered as the p-root average of λ̄. Based on the minimization of theaveraged free energy Göktepe (2007) onluded that the non-a�ne miro-streth is obtained



4.3 Miro-maro transition 27only if λ = λ̄f being onstant. Together with (4.27) this gives
λ = 〈λ̄〉m. (4.31)Moreover, let us also remark that the spei� hoie m = 2 in (4.30) orresponds to thenon-a�ne miro-streth used in the 8-hain model and it will be presented in the nextsetion. In the following, the homogenized maro-strethes 〈λ̄〉 and 〈λ̄〉m will be termedthe network streth.4.3.1 The 8-hain modelIn the 8-hain model, the initial orientation of a single hain segment is governed by theinitial end-to-end vetor r0. The angles between the referene axes and the end-to-endvetor have the same initial value φ0 = 54.7◦, f. Fig. 3.1. During deformation, the hainsin the prism remain linked through the �xed enter point whih results in the elongationof the hains being equal. The urrent end-to-end vetor is denoted by r.In the models for amorphous glassy polymers, the desription of the miro-maro tran-sition is based on hain strething whih is due to the plasti deformation. The edges ofthe 8-hain prism are assumed to align with the unit eigenvetors N̄α, α = 1, 2, 3, whihare the prinipal diretions of the plasti streth V̄

p, f. Fig. 4.3. The plasti miro-streth
λp is de�ned by analogy to (4.21), i.e.

λp = r̄/r0 (4.32)where r̄ denotes the end-to-end vetor solely due to the plasti strething. In ontrastto the a�ne deformation, the plasti miro-streth λp is allowed to �utuate around theontinuum deformation. In terms of the unit vetor N̄ := 1/
√
3
∑

α N̄α, let us de�ne the
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Figure 4.3: The hain geometry aording to the 8-hain model in a) undeformed and b) deformedon�guration. The base vetors N̄α, α = 1, 2, 3, align with the unit eigenvetors of V̄ p. Thedimension of the undeformed element is a0 and λ̄p denotes the plasti hain streth whih appearsin the diretion m̄. The unit vetor m̄ is de�ned by the angles θ̄ and ϕ̄, whereas the plastinetwork streth λp
ec is related to the diretion N̄ .
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e2Figure 4.4: Illustration of an 8-hain polymer model. A material body omprises k3 piees of 8-hain elements with equal dimension, a0 = 2/
√
3r0. The total number of entangled points (blaknodes) in a body an be evaluated via the number of entangled points in one element.plasti network streth λp

ec as
λp
ec =

√

N̄ · bpN̄ =
1√
3

√
∑

α

(λ̄p
α)2 =:

1√
3

√

Ip1 . (4.33)In (4.33), (λ̄p
α)

2, α = 1, 2, 3, denote the prinipal strethes of bp. It emerges from (4.33)that the plasti network streth is obtained as a projetion of the plasti deformation inthe diretion N̄ , whereas the single hain diretion is given by m̄ =
∑

α m̄αN̄α with theomponents m̄1 = sin θ̄ cos ϕ̄, m̄2 = sin θ̄ sin ϕ̄ and m̄3 = cos θ̄, f. Fig. 4.3. Sine theplasti network streth λp
ec is independent of θ̄ and ϕ̄, (4.27) in (4.30) yields

〈λp
ec〉m = λp

ec, (4.34)i.e. the general non-a�ne hain model presented in the previous setion inludes the eighthain model as a speial ase.The following small example illuminates the onstrution of the hain network in the8-hain model. Assuming that the material body is a retangular prism omprising k3piees of 8-hain ubes with the dimension a0 = 2/
√
3r0, f. Fig. 4.4. The number ofhains in the prism is q = 8k3 and the number of entangled points is j = (k+1)3+k3. Fora large k, the ratio beomes q/j = 4. The relation (4.22) then gives the number of kinksin a single hain is to be found by N = Ntot/(4j). For instane, the set of parameters forPC on the �rst line in Table 5.1 yields Ntot = 6.73 · 1027, f. Tomita and Tanaka (1995).4.3.2 Full network modelsSimilar to the 8-hain model, the orientation of the hains is desribed by the vetor rhaving the length r ∈ [r0, rL]. The hain orientation distribution over the unit sphere is



4.3 Miro-maro transition 29given by the distribution funtion p whih must satisfy the normalization ondition
∫ π

θ=0

∫ 2π

ϕ=0

p(θ, ϕ; t)da = 1. (4.35)In the Wu and Van der Giessen (1993) full network model, the distribution funtion pis termed the Chain Orientation Distribution Funtion (CODF), f. also the ontributionHarrysson et al. (2010) in this regard. The Lagrangian form of the hain distribution as wellas the representation in the intermediate on�guration an be found by the transformations
∫

A

pda =

∫

Ā

p̄dĀ =

∫

A

p0dA = 1 (4.36)where the in�nitesimal area elements are
da = sin(θ)dθdϕ, dĀ = sin(θ̄)dθ̄dϕ̄, dA = sin(θ0)dθ0dϕ0.The in�nitesimal area elements da, dĀ and dA on the unit sphere in the referene, inter-mediate and the spatial on�guration, respetively, an be represented via the unit normalvetors and the orresponding in�nitesimal area element vetors da, dĀ and dA as

da = m♭ · da, dĀ = m̄♭ · dĀ , dA = m0 · dA (4.37)where the unit normals m♭, m̄♭ and m0 are ovariant vetors. Sine the unit normalvetor m0 is equal to the initial diretion of a single hain, one an de�ne m0 := r0/r0.Moreover, the unit normals m̄♭ and m♭ are nothing but the representations of the initialnormal vetor m0 in the intermediate and the spatial on�guration, respetively, and theyan be derived via the linear maps
m♭ =

r0
r
F−Tm0 =

1

λ̄
F−Tm0, m̄♭ =

r0
r̄
F p−Tm0 =

1

λ̄p
F p−Tm0. (4.38)In (4.38), the a�ne assumption λ = λ̄ was employed. Sine the network strethes followthe ontinuum deformation, they an be found by

λ̄ =
√
m0 ·Cm0, λ̄p =

√
m0 ·Cpm0. (4.39)Sine the plasti deformation is assumed to be isohori, det(F p) = 1. Employing theNanson's formula da = JF−TdA and dĀ = F p−TdA in (4.36) together with (4.38) and(4.37) results in

∫

A

pda−
∫

A

p0dA =

∫

A

(Jp
1

λ̄
m0C−1 − p0m

0)dA
∫

Ā

p̄dĀ−
∫

A

p0dA =

∫

A

(p̄
1

λ̄p
m0Cp−1 − p0m

0)dA
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Figure 4.5: The hain geometry aording to the full network model in a) undeformed and b)deformed on�gurations. The initial radius R0 = 1 and R denotes the urrent distane from theenter point to the deformed surfae. The orientation of a hain is determined by the angles θand ϕ with the initial values θ0 and ϕ0. The base vetors Nα, α = 1, 2, 3 align with the uniteigenvetors of C.whih allow the distributions to be written as
p(θ, ϕ; t) =

p0
J
λ̄(θ0, ϕ0; t)

3, p̄(θ̄, ϕ̄; t) = p0λ̄
p(θ̄, ϕ̄; t)3. (4.40)Let us now onsider an averaging of a mirosopi variable h in (4.25). For later purposes,use is made of the intermediate setting. The number of hains dQ̄ in an in�nitesimal area

dĀ is given by
dQ̄ = np̄(θ̄, ϕ̄; t)dĀ (4.41)where n is the number of hains per unit volume. With (4.41), the averaging (4.25) beomes

〈h〉 =
∫

Ā

p̄(θ̄, ϕ̄; t)h(θ̄, ϕ̄; t)ndĀ. (4.42)Substitution of (4.40)2 into (4.42) yields
〈h〉 =

∫

Ā

(λ̄p)3hp0ndĀ. (4.43)For a uniform distribution, the average of h an be extrated from (4.43) taking p = p0 =

1/A into aount, i.e
〈h〉 = n

A

∫

Ā

(λ̄p)3hdĀ. (4.44)The averaging (4.44) is employed in the Wu and Van der Giessen (1993) full network modelfor the plasti part of the free energy ϕp.



4.4 Elasto-visoplastiity 314.4 Elasto-visoplastiityIn this setion, the fundamental ingredients of elasto-visoplastiity suitable for amorphousglassy polymers will be reviewed. In the models onsidered, the plasti deformation stemsfrom two soures: a) isotropi resistane due to hain segment rotations parallel with b)anisotropi resistane whih results from the strething of the entire network and reorienta-tion of the polymer hains.
σ

σ

L
e )

a) b)
σ̃ βdevFigure 4.6: Shemati representation of the ap-plied models. The models are governed by theelements: a) visoplasti dashpot, b) nonlinearLangevin spring and ) elasti spring.

A shemati representation of the model isgiven in Fig. 4.6. Resistane a) is desribedby a visous dashpot representing rate- andtemperature-dependent yield while a non-linear Langevin spring in resistane b) al-lows the sti�ening at large strains to bemodeled. In addition, the initial elasti re-sponse is modeled by a linear spring havingthe sti�ness L
e. During deformation thedistribution of hains beomes non-uniformwhih results in an anisotropi response.Without loss of generality, let us on-sider the setting in the intermediate on-�guration, f. e.g. Arruda and Boye(1993a). The thermomehanial potential,also alled Helmholz' free energy per unit volume, is assumed to be given by

ϕ = ϕ(C̄
e
, bp) = ϕe(C̄

e
) + ϕp(bp) (4.45)where ϕe and ϕp are the elasti and the plasti part of the free energy, respetively. Theelasti and the plasti deformation tensor C̄

e and bp were de�ned by (4.5) and (4.6),respetively. As it was pointed out in Se. 2, the elasti deformation of amorphous glassypolymers is relatively small, f. e.g. Haward and Thakray (1968). As a onsequene,Arruda and Boye (1991) and Arruda and Boye (1993a), for example, assumed the initialresponse is linear without visoelasti e�ets. Moreover, the initial response is onsideredisotropi due to the uniform hain distribution. The elasti response of many amorphousglassy polymers an be modeled in terms of an isotropi strain energy, i.e.
ϕe =

1

2
κ(Ie1)

2 + 2µJe
2 (4.46)where κ and µ are the bulk and the shear modulus, respetively. The logarithmi invariantspresent in (4.46), are de�ned as

Ie1 := trace(ln Ū
e
) = ln Je and Je

2 := 1/2(ln Ū
e
)dev : (ln Ū

e
)dev



32 4 State-of-the-art models of amorphous glassy polymerswhere Je := det(Ū
e
). The deviatori part is de�ned as (·)dev := (·) − 1/3trace(·)Ī inwhih Ī is the identity tensor. Conerning tensorial notations, see e.g. Bonet and Wood(1997) and Belytshko et al. (2000) for a more detailed aount. In ontrast to the plastipart of the free energy, the strain energy expression (4.46) is purely phenomenologial. Toderive the onstitutive relations for the stresses, let us onsider the rate of the free energy

ϕ̇. Assuming isothermal onditions to prevail, the loal dissipation per unit volume in thereferene on�guration is governed by
D := S : Ė − ϕ̇ ≥ 0 (4.47)where the seond Piola-Kirhho� stress S and the rate of the Green-Lagrange strain Ė arede�ned as

S := F−1τF−T , Ė := F TdF (4.48)and τ is the Kirhho� stress. The rate of the free energy beomes
−ϕ̇(C̄e

, bp) = −∂ϕ
e(C̄

e
)

∂C̄
e : ˙̄Ce − ∂ϕp(bp)

∂bp
: ḃ

p
, (4.49)Using (4.17) it follows diretly that

∂ϕe

∂C̄
e : ˙̄Ce = 2(F e ∂ϕ

e

∂C̄
eF

e,T ) : de. (4.50)Taking the symmetri part of (4.11) yields
d = de + dp. (4.51)Taking advantage of (4.13) and assuming that the plasti part of the free energy is anisotropi funtion of bp yields

∂ϕp

∂bp
: ḃ

p
= 2sym(

∂ϕp

∂bp
bp) : D̄

p
. (4.52)Substituting (4.50) and (4.52) into the dissipation inequality (4.47) and taking (4.51) intoaount give

D :=

(

τ − 2F e ∂ϕ
e

∂C̄
eF

e,T

)

: d+ 2(F e ∂ϕ
e

∂C̄
eF

e,T ) : dp − B̄ : D̄
p ≥ 0 (4.53)where the bakstress B̄ in the intermediate on�guration was de�ned as

B̄ := 2sym(
∂ϕp(bp)

∂bp
bp). (4.54)Using the arguments by Coleman and Gurtin (1967) turns out the following expression for
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τ = 2F e ∂ϕ

e

∂C̄
eF

e,T . (4.55)Taking advantage of (4.55), the loal dissipation (4.53) redues to
D := Σ̄ : D̄

p − B̄ : D̄
p ≥ 0 (4.56)where the Mandel stress

Σ̄ = 2C̄
e ∂ϕe

∂C̄
e (4.57)was introdued. For later purposes, the dissipation inequality (4.56) an be represented as

D := Σ̃ : D̄
p ≥ 0, Σ̃ := Σ̄− B̄ (4.58)where Σ̃ is the thermodynami driving stress in the intermediate on�guration. Sine notall of the plasti work is dissipated, a part of the plasti work is stored in the materialduring deformations. In the models, the bakstress represents the non-dissipative storedstress. Later on, it will be shown that the models under onsideration satisfy (4.56) and(4.58).It should be noted that the Mandel stress in general is not symmetri. However, ifthe strain energy ϕe is assumed to be an isotropi tensor funtion, it turns out that theMandel stress is symmetri. Expressing the elasti deformation tensor C̄e in terms of theeigenvetors N̄

e
α and the elasti prinipal strethes λ̄e

α =
√

N̄
e
α · C̄

e
N̄

e
α, α = 1, 2, 3, andusing the hain rule in the isotropi strain energy ϕe results in

∂ϕ̄e(C̄
e
)

∂C̄
e =

3∑

α=1

1

2(λ̄e
α)

2

∂ϕ̄e

∂ ln λ̄e
α

N̄
e
α ⊗ N̄

e
α. (4.59)Substitution of (4.59) into (4.55) yields

τ = 2F e ∂ϕ̄
e

∂C̄
eF

e,T = F e
(

3∑

α=1

1

(λ̄e
α)

2

∂ϕ̄e

∂ ln λ̄e
α

N̄
e
α ⊗ N̄

e
α

)
F e,T . (4.60)Taking F eN̄

e
α = λ̄e

αR
eN̄

e
α into aount in (4.60) and noting λ̄e

α = λe
α, the Kirhho� stress

τ takes the following form
τ =

3∑

α=1

∂ϕe

∂ lnλe
α

ReN̄
e
α ⊗ N̄

e
αR

e,T . (4.61)Sine CeN̄
e
α = (λ̄e

α)
2N̄

e
α, the Mandel stress beomes
Σ̄ := 2

(∂ϕ̄e(C̄
e
)

∂C̄
e C̄

e)
=

3∑

α=1

∂ϕ̄e

∂ ln λ̄e
α

N̄
e
α ⊗ N̄

e
α. (4.62)
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Σ̄ = Re,TτRe (4.63)and thus for the assumption Re being unity, the omponents of the Mandel stress and theKirhho� stress are equal. Using the strain energy (4.46), the Mandel stress Σ̄ takes thefollowing form

Σ̄ = 2µ(ln Ū
e
)dev + κ lnJeĪ. (4.64)4.5 Argon (1973) plasti evolution modelIn this setion, the evolution equation for plasti deformation by Argon (1973) is outlined.The details involving the double-kink theory an be found in Love (1944), Li and Gilman(1970) and Argon (1973). The plasti deformation of amorphous glassy polymers is athermally ativated stohasti proess whih is desribed by the Arrhenius-type equation,i.e.

γ̇p = γ̇0 exp(−∆Gf/kT ) (4.65)where γ̇0 is a onstitutive parameter and ∆Gf is the amount of ativation free enthalpy.Aording to the double-kink theory, the rotation of the polymer moleule segments gener-ates the plasti deformation. The ativation free enthalpy ∆Gf is due to the formation ofa pair of kinks in a polymer moleule segment embedded in the surrounding material. Leta) b)
ω

ω

r̄

z̄

Figure 4.7: Modeling of a kink pair by the Argon (1973) model. a) A pair of kinks are formedby taking two irular uts of radius r̄, removing wedges of angle ω and b) �nally arranging thewedges in the opposite side. The distane of the wedges is denoted by z̄.us onsider a referene ylinder of a radius r̄ whih represents a straight hain moleulebeing embedded in an elasti media, f. Fig. 4.7. The pair of moleular kinks an beformed by removing two wedges separated by a distane z̄, then inserting the wedges intothe opposite side and �nally joining the parts together. The amount of ativation free
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Figure 4.8: Illustration of Argon (1973) double-kink theory. a) Formation of double-kink by apair of wedge dislination loops of a moleule segment in the surrounding material. The plane
AL aligns with the xz-diretions whih are the prinipal diretions of the applied shear stressstate. The initial ut-surfae S0 of a loop is in the xy-plane perpendiular to z-diretion. b) Themiro-free energy ∆F as a funtion of distane ratio z̄/r̄.enthalpy required for the kink formation is de�ned as the di�erene

∆Gf = ∆W −∆F (4.66)where ∆W is the work done by an externally applied stress τ during the formation ofthe dislination loops, f. Fig. 4.8. In the material surrounding the hain, the e�etiveshear stress τ is onsidered onstant. ∆F in (4.66) is the hange in the free energy dueto the formation of a pair of dislination loops in the surrounding material. In amorphouspolymers, dislinations are primarily aused by hain kinking alled wedge dislinations,whereas twist dislinations an be ignored, f. Li and Gilman (1970). Also disloations,whih are reognized as ommon defets in rystalline polymers, are not su�ient to exeutearbitrary onformational hanges in amorphous polymers. For a wedge dislination loop,the rotation angle is denoted by ω and the axis of the rotation is in the plane of the loop, f.Fig. 4.8. One the wedge dislination loops are formed, the rotation results in an averageompressive strain inrement ∆ǫzz. Based on simple linear kinematis,
∆ǫzz = −

πr̄2

AL
z̄(1− cos(ω)) ≈ − πr̄3

2AL

z̄

r̄
ω2where A is the ross-setional area and L is the length of the domain under onsideration,f. Fig. 4.8. The latter result relies on an expansion for ω << 1. Sine the kinking takesplae around the y-axis and the ontinuum in the y-diretion is onsidered in�nite, the



36 4 State-of-the-art models of amorphous glassy polymersplane strain state prevails, i.e. ∆ǫyy = 0. Moreover, �rst order hanges in volume areonsidered negligible and hene ∆ǫxx = −∆ǫzz . Hene, the work done by the applied stress
τ beomes

∆W =

∫

L

∫

A

(−τ ·∆ǫzz + τ · −∆ǫzz)dAdL = −2ALτ ·∆ǫzz = πr̄3ω2τ
z̄

r̄
. (4.67)Next, let us onsider the approximation of the free energy ∆F based on the distantstress �eld. For further reading, Huang and Mura (1972) onduted more aurate ompu-tations for the elasti free energy outside the dislination loops. In the formation of wedgedislinations, ∆F is primarily due to the work done by the stress omponent σzz(x, y, z).Following Li and Gilman (1970), the free energy ∆F onsists of two parts. The �rst part

∆Fself is due to the elasti interation of the two wedge dislination loops with their neigh-bours, and the seond part ∆Fint is due to the interation between the two dislinationloops. The displaement �eld at large distanes from the loop is obtained by applyingthe Volterra method, f. Volterra (1907) and Love (1944). For instane the displaement
uxx(x, y, z) is aused by a point fore fxx applied at a loation P (x, y, z) of an elasti sur-rounding. Sine the Volterra method is beyond the sope of this work, the displaementsare extrated from Li and Gilman (1970):

uxx =
3ωr̄4

32(1− ν)
(
z2

R5
(
5x2

R2
− 1) +

1− 2ν

R3
(
1

3
− x2

R2
)),

uyy =
3ωr̄4xy

32(1− ν)R5
(
5z2

R2
− 1 + 2ν),

uzz =
3ωr̄4xz

32(1− ν)R5
(
5z2

R2
+ 1− 2ν)

(4.68)
where ν is the Poisson's ratio and R :=

√

x2 + y2 + z2. The displaements (4.68) give riseto the strain �eld
ǫxx =

15xωr̄4

32R5(1− ν)
(
z2

R2
(3− 7x2

R2
)− (1− 2ν)(

3

5
− x2

R2
)),

ǫyy =
15xωr̄4

32R5(1− ν)
(
z2

R2
(1− 7y2

R2
)− (1− 2ν)(

1

5
− y2

R2
)),

ǫzz =
15xωr̄4

32R5(1− ν)
(
z2

R2
(3− 7z2

R2
) + (1− 2ν)(

1

5
− z2

R2
)).

(4.69)
Based on the strains (4.69) at large distanes from the loops, and assuming linear elastiity,the stress omponent σzz beomes

σzz =
3r̄4µω

16(1− ν)

x

R5
(1 +

10z2

R2
− 35z4

R4
) (4.70)where µ is the shear modulus. In the derivation of (4.70), �rst order hanges in volumewere negleted. The stress �eld σzz is shown in Fig. 4.9. The miro-free energy ∆F
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Figure 4.9: Stress �eld σzz of a wedge dislination loop. The stress is saled by 3r̄4ωµ/16(1−ν)z4.is due to the work done by the in�nitesimal fore d∆fzz = σzzda, whih results in thein�nitesimal displaement duzz = xdω, f. Fig. 4.8. Sine the self energy ∆Fself arisesfrom the resistane of the elasti surroundings, it is obtained by integrating the stress �eld
σzz at the ut plane z = 0 outside the two dislination loops. The in�nitesimal area elementoutside the dislination loop is given by da = rdrdθ and the integration yields

∆Fself = 2

∫ 2π

0

∫ ∞

r̄

∫ ω

0

σzz(xdω)rdrdθ =
3πr̄3µω2

16(1− ν)
. (4.71)This result an be onsidered as an estimate sine the stress �eld is only aurate at largedistanes from the loops in atomi dimensions, f. Li and Gilman (1970). The interationenergy ∆Fint is due to the formation of the seond loop within the stress �eld of the �rstloop. The in�nitesimal area element inside the dislination loop is given by da = 1/2rdrdθ,f. Fig. 4.8. The integration over the stress �eld σzz inside the two dislination loops resultsin the amount of the interation energy being

∆Fint = −2
∫ 2π

0

∫ r̄

0

∫ ω

0

σzz(xdω)
1

2
rdrdθ = −9πr̄

3µω2

8(1− ν)

( r̄

z̄

)5 (4.72)where z = z̄, i.e. the distane between the two dislination loops. Sine r̄ << z̄, aomparison of (4.71) and (4.72) reveals that the miro-free energy ∆F results primarilyfrom the self energies of the loops. The miro-free energy ∆F as a funtion of distane ratio
z̄/r̄ is represented in Fig. 4.8(b). In the derivation of (4.72), the two loops are assumed tobe relatively far apart and the stress �eld is assumed to be linear elasti. As a result, thefree energy ∆F does not vanish as the ratio z̄/r̄ goes zero. Substitution of (4.67), (4.71)



38 4 State-of-the-art models of amorphous glassy polymersand (4.72) into (4.66) yields
∆Gf = ∆F −∆W =

3πr̄3µω2

16(1− ν)
− 9πr̄3µω2

8(1− ν)

( r̄

z̄

)5 − πr̄3µω2
(τ

µ

)( z̄

r̄

)
. (4.73)The extremum of the total ativation energy ∆Gf is determined by setting the derivativeof ∆Gf with respet to the ratio (z̄/r̄) to zero. This yields the extremum

(z̄/r̄)∗ = (
45

8(1− ν)

µ

τ
)1/6and the substitution of (z̄/ā)∗ into (4.73) yields,

∆G∗
f =

3πr̄3µω2

16(1− ν)

(
1− (

τ

s0
)
5
6

) (4.74)where s0 is the athermal shear strength having a onstant value s0 = 0.077µ/(1− ν). Useof (4.74) in (4.65) yields the evolution law for the plasti deformation, i.e.
γ̇p = γ̇0 exp

(
−As

T
(1− (

τ

ss
)
5
6 )
) (4.75)where A := 39πω2r̄3/(16k). The onstant athermal stress s0 in (4.74) is replaed by sswhih takes pressure into aount, i.e.

ss = s + αp, p = −1/3trace(σ) (4.76)where s is the athermal stress. The parameter α is the pressure dependene fator, rangingfrom 0.1-0.2 for amorphous glassy polymers, f. Bowden and Jukes (1972). Aording toBoye et al. (1988), the athermal shear strength s is assumed to obey the evolution rule
ṡ = h(1− s/sss)γ̇

p, s(0) = s0 (4.77)where h and sss are onstitutive parameters.4.6 Plasti part of the free energy ϕp
c of a single hainThe free energy of the entire network is assumed to be equal to the sum of the free energiesof the single hains. Sine the desription of the marosopi deformation through all singehains beomes very ompliated, statistial methods are employed. Based on statistialmehanis, the polymer hains are desribed by an idealized hain whih onsists of freelyrotating links. The idealized hain is omposed of N statistial links having an equal length

l. Based on the fundamental postulate of statistial mehanis for an isolated system inmarosopi equilibrium, the rotation of eah link has an equal probability, i.e. no mutualorrelation exists between adjaent links, f. Diu et al. (1990). However, the rotations of



4.6 Plasti part of the free energy ϕp
c of a single hain 39links in real polymers are onstrained by neighboring hains to vary on a limited interval.It then follows from this assumption that the undeformed length of a hain is given bythe random walk-type mean-square value as r0 = l

√
N . The goal of using a statistialapproah is to desribe the mean behavior of a hain in equilibrium. The onstrainedneighborhood of a hain is onsidered as a heat reservoir whih keeps one or some of thequantities, suh as energy, volume, pressure or temperature in a hain onstant, but allowsthe energy exhange between the hain and the heat reservoir, f. Göktepe (2007).Let us �rst onsider a freely jointed hain in a state where energy exhange betweenthe hain and the reservoir is solely due to heating while the temperature of the hain isonstant. The hain within the reservoir onstitutes a system whih onsists of i = 1, ..., Nlinks. The task is then to �nd the statistial distribution of the mirosopi states whihmaximizes the statistial entropy

η = −k
∑

i

pi ln pi (4.78)with the onstraints
∑

i

pi = 1, e =
∑

i

piei = onstant (4.79)where k is the (positive) Bolzmann's onstant and pi is the probability of �nding thefreely jointed hain in the state with internal energy ei, f. Diu et al. (1990). The seondonstraint, e being onstant, states that the externally imposed total energy of the systemis �xed. Moreover, if one on�guration has the probability pk = 1, k ∈ [1, ..., N ], theentropy vanishes. The solution of the maximization problem (4.78) an be found using themethod of Lagrange multipliers whih leads us to the following form
L =

∑

i

pi ln pi + β(
∑

i

piei − e+
∑

i

pi − 1) (4.80)where β := 1/kT is the Lagrange multiplier. The neessary ondition for the minimizationproblem is that the gradient of the Lagrangian funtion vanishes, i.e. ∂L/∂pi = 0, i =
1, ..., N , and the result is

pi =
exp(−βei)

Z
. (4.81)In the solution (4.81), the partition funtion Z = Ẑ(T ) =

∑

i(exp(−βei)) is found bysubstituting the probabilities (4.81) into (4.79)1. With the probabilities (4.81), the totalenergy e is obtained as the sum over the hains, i.e.
e =

∑

i

eipi =

∑

i ei(exp(−βei))
Z

. (4.82)From (4.82), it an be onluded that
e = −∂ lnZ

∂β
. (4.83)
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Figure 4.10: A hain on�guration. a) Idealized geometry of a single polymer hain onsisting of
N segments of equal length l. b) The elongation of a hain is due to a onstant fore F and theprojetions of the segments on z-axis is denoted by lz,i, i = 1, ..., k, ..., N .Moreover, edβ = −(∂ lnZ/∂β)dβ =: −d(lnZ). Using the produt derivative rule resultsin

edβ = d(eβ)− βde = −d(lnZ). (4.84)Sine the energy hange de is solely due to heat exhange, de = Tdη whih together with(4.84) yields
edβ = d(eβ)− βTdη = −d(lnZ). (4.85)Taking note of the total energy hange being e, integration of (4.85) yields the followingmean value for entropy

η = k(lnZ + βe) (4.86)For brevity, the integration onstants were suppressed in the derivation of (4.86). However,in addition to the onstant temperature, the hain is also subjeted to onstant pressure.In this situation, the hain is neither isolated nor rigid, i.e. an energy hange between thehain and the reservoir takes plae in the form of both heat and work. The work on thesurroundings is done by a onstant axial "tip fore" F := ∂ϕ/∂λ where ϕ denotes the freeenergy of a single hain, f. Fig 4.10(b). A on�guration of the hain is desribed by lz,i,
i = 1, ..., N , whih are the projetions of eah segment of equal length l on the z-axis. Alladmissible on�gurations belong to the set

A :=

{

{lz,i, i = 1, 2, ..., N} | r = r̂(lz,i) =
N∑

i

lz,i =: Nlz

} (4.87)where lz is the average projetion length. The hain on�guration in equilibrium possessesthe enthalpy of eah segment hi = ĥi(r) = êi(r) − Fr, i = 1, ..., N where the end-to-enddistane r is onsidered as an internal variable that ontinuously hanges within the domain
A. The problem at hand is now to �nd a on�guration in A that maximizes the statistial
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c of a single hain 41entropy

η =

∫

A

−k
∑

i

(pi ln pi)dr (4.88)subjeted to the onstraints
∫

A

∑

i

pidr = 1, h =

∫

A

∑

i

pihidr = onstant, e =

∫

A

∑

i

pieidr = onstant. (4.89)Using the method of Lagrange multipliers in the same way as above, the solution of themaximization problem beomes
pi = p̂i(r) =

exp(−βĥi(r))

Z
(4.90)where

Z = Ẑ(T, F ) =

∫

A

∑

i

exp(−βĥi(r))dr. (4.91)Using the probabilities pi in (4.90) the mean enthalpy h is derived in analogy to (4.82), i.e.
h =

∫

A

∑

i

pihidr =

∫

A

∑

i hi(exp(−βhi))

Z
dr. (4.92)Similar to (4.83), the mean enthalpy h an be identi�ed as

h = −∂ lnZ
∂β

(4.93)and the average end-to-end distane as
r =

1

β

∂ lnZ

∂F
. (4.94)Multipliation of h by dβ yields

hdβ = −d(lnZ). (4.95)In addition to the energy hange de = Tdη, the hange of enthalpy dh inludes the in-�nitesimal work rdF , i.e. dh = −rdF + Tdη. Taking this result into aount and usingthe produt derivative rule, (4.95) an be rewritten as
hdβ = d(hβ)− βdh = d(hβ)− β(−rdF + Tdη) = −d(lnZ). (4.96)Taking note of F being onstant and the total enthalpy of the system being h, the inte-gration of (4.96) yields the entropy

η = k(lnZ + βh) = k lnZ +
e− Fr

T
. (4.97)



42 4 State-of-the-art models of amorphous glassy polymersUsing the entropy (4.97) in the de�nition of the free energy ϕ := e− Tη results in
ϕ = −kT lnZ + Fr. (4.98)Sine the length of eah segment is l, the projetions are restrited to the interval lz,i ∈

[−l, l], f. Fig 4.10. Moreover, sine orientation of eah hain segment is a priori uniform,the normalization ondition results in
∫ l

−l

p(lz,i)dlz,i = 1 ⇒ pi(lz,i) = 1/(2l),i.e. the probability density in all diretions is equal pi(r(lz,i)) = pj(r(lz,j)) for all i, j =

1, ..., N . It then follows from (4.90) that hi as well as ei, i = 1, ..., N are equal. Taking thisresult into aount and using the properties of the exponential funtion allow the partitionfuntion (4.91) to be written as
Z = Ẑ(T, F ) =

∫

A

exp(βFr)dr. (4.99)Note, that the onstant terms were negleted in (4.99) due to the identity d(lnZ) = 1/ZdZ,whih was needed to obtain the free energy (4.98). Let us then onsider an in�nitesimalhange in the hain on�guration. The hange in the hain length is denoted by dr and it isdue to the hange in a hain on�guration with the equal distributions pi = p̂i(lz,i) = 1/2lfor eah segment i = 1, ..., k, ..., N . The probability that the segment k obtains the proje-tion length lz,k is given by Pk = lz,k/2l. Sine the hain motion is Brownian, the alignmentof eah segment takes plae simultaneously. As mentioned above, the alignment of thesegments is assumed to be independent from the others whih de�nes the probability dPfor an in�nitesimal hange of the projetion length lz to be alulated by the multipliativerule, i.e.
dP =

∏

i

dPi =
∏

i

pidlz,i = (
1

2l
)N

∏

i

dlz,i ≈ (
dlz
2l

)N (4.100)where the error in approximation vanishes as the number of hain segments N approahesto in�nity. It then follows from (4.87) that dr = rdP = NlzdP whih together with (4.100)in (4.99) yields
Z(T, F ) =

( 1

2l

∫ l

−l

exp(βF lz)dlz
)N

=
(sinh(χ)

χ

)N (4.101)where χ := βF l. Substitution of (4.101) into (4.94) gives the end-to-end distane r =

lNL(χ), where L is the Langevin funtion de�ned by L(χ) = coth(χ)−1/χ. The inversionof the Langevin funtion results in χ := L
−1(r/lN) = L

−1(λ/
√
N) and thus

F =
kT

l
L
−1(λ/

√
N). (4.102)When evaluating the inverse of the Langevin funtion, the Pade approximation L−1(λ/

√
N) =
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λ(3−(λ)2)/(1−(λ)2) proposed by Cohen (1991) is employed. The error assoiated with thisapproximation vanishes as N approahes to in�nity. In the extension of the non-Gaussianfree energy for rubber elastiity to the plasti potential for glassy polymers, the prinipalstrethes of v are replaed by the prinipal plasti strethes of V̄ p. Let us then assumethat r̄ is the end-to-end distane of the hain whih results solely from plasti deformation.The plasti miro-streth was already given by (4.32), i.e. λp = r̄/r0. Using λp, insertion of(4.102) into (4.98) results in the following expression for the plasti part of the free energyof a single hain

ϕp
c = kNT

( λp

√
N
χ + ln

( χ

sinh(χ)

))
. (4.103)Based on the expression (4.103) the total stored energy will be determined for the state-of-the-art models.4.7 The BPA modelIn this setion, the BPA model will be reviewed, f. Arruda and Boye (1991) and Arrudaand Boye (1993a). In the BPA model, the hain network is modeled by the 8-hain model,i.e. the hain segments extend from the enter point of the ubi ell along its diagonals.Sine the streth of all hain segments is idential, the total stored energy onsists of thestored energies ϕp

c of n single hains aording to
ϕp = nϕp

c . (4.104)The stored energy of eah hain ϕp
c was given by (4.103) where the plasti hain streth

λp is now replaed by a non-a�ne plasti network streth λp
ec. In analogy to (4.33), theplasti network streth an be de�ned in terms of the plasti deformation tensor bp as

λp
ec =

√

N̄ · bpN̄ =
√

1/3trace(bp) (4.105)where N̄ := 1/
√
3
∑

α N̄α and N̄α, α = 1, 2, 3, are the prinipal diretions of bp. Applyingthe hain rule in (4.54) yields
B̄ := 2sym

(∂ϕp(λp
ec)

∂λp
ec

∂λp
ec

∂bp
bp
)
,

∂ϕp(λp
ec)

∂λp
ec

= nkT
√
NL

−1(
λp
ec√
N
). (4.106)The inverse Langevin funtion present in (4.106) results in an asymptotially inreasingbakstress as the streth in the hains reahes the limit λL, f. (4.20). Di�erentiation of(4.105) and multipliation by bp yield

2
∂λp

ec

∂bp
bp =

1

3λp
ec
bp. (4.107)



44 4 State-of-the-art models of amorphous glassy polymersSubstitution of (4.106)2 and (4.107) into (4.106)1 yields
B̄ =

CR

3λp
ec

√
NL

−1(
λp
ec√
N
)bp (4.108)where CR := nkT is a material parameter, also termed the hardening modulus. In theBPA model, the �ow rule is postulated in terms of the Cauhy stress σ aording to

D̄
p
:=

γ̇p

√
2
n, n =

σ̃dev

τ
, σ̃dev := σdev − βdev, τ :=

√

1

2
σ̃dev : σ̃dev (4.109)where γ̇p is given by (4.75) involving the pressure-dependent athermal shear strength whihevolves aording to (4.77). The prinipal omponents of the deviatori part of the bak-stress in the intermediate on�guration are given by

B̄dev
α =

CR

3λp
ec

√
NL

−1(
λp
ec√
N
)
(
(λ̄p

α)
2 − (λp

ec)
2
)
. (4.110)In the BPA model, the elasti response is onsidered as isotropi and the elasti rotationis assumed to be unity, whih result in the omponents of the Mandel stress (4.64) beingequal with the omponents of the Kirhho� stress τ via the relation (4.63). The elastionstitutive law in the BPA model is given by

τ = 2sym(
∂ϕe

∂be
be). (4.111)Sine Ie1(Ū e

) = Ie1(v
e) and Ie2(Ū

e
) = Ie2(v

e), the Kirhho� stress beomes
τ = 2µ(lnve)dev + κ lnJei (4.112)where i is the spatial identity tensor. In the original BPA model, however, the Cauhystress σ = 1/Jτ is used. Based on (4.112), the elasti onstitutive law an be formulatedas

σ =
1

J
L

e : lnve (4.113)where L
e := 2µ(I + (3κ− 2µ)/(6µ)i⊗ i) is the fourth order sti�ness tensor and I is thefourth order identity tensor. The omponents of Le in an orthonormal artesian oordinatesystem are given by

Le
ijkl := 2µ

[
1

2
(δikδjl + δilδjk) +

3κ− 2µ

6µ
δijδkl

]

. (4.114)In the �ow rule (4.109), the rate of plasti deformation D̄
p is assumed to align with thespatial normalized diretion of σ̃dev. This assumption is based on the fat that the elastistrethes in many appliations are small ompared to the plasti strethes. Moreover,omparison of (4.64) and (4.112) reveals that the stress omponents in the intermediate



4.8 The Wu and Van der Giessen (1993) model 45and spatial on�gurations are equal. It an be onluded that the plasti deformation whihfollows from the evolution law (4.109) is isohori. Sine, the volumetri deformation issuppressed in (4.109), the �ow rule is generally inappropriate for modeling razing. TheBPA model is summarized in Table 4.1.4.8 The Wu and Van der Giessen (1993) modelIn the Wu and Van der Giessen (1993) model, the hain network is modeled by the fullnetwork model. Aording to the full network model, the hain segments extending fromthe enter point of the unit sphere are ontinuously distributed on its surfae. The end-to-end vetor r̄ in the intermediate on�guration is obtained from strething and rotatingof the initial end-to-end vetor r0 in an a�ne manner, i.e. r̄ = F pr0. Thus, the plastinetwork streth λ̄p in the diretion of unit vetor m0 = r0/r0 is given by
λ̄p =

√
m0 ·Cpm0. (4.115)The stored energy is represented in terms of the plasti network streth λ̄p in the refereneon�guration, and it is derived by an integration over the unit sphere

ϕp =

∫

Q

ϕp
cdQ, ϕp

c = ϕ̄p
c(λ̄

p) (4.116)where ϕp
c was given by (4.103). Analogously with (4.41), the number of hains on anin�nitesimal area of a unit sphere dQ is de�ned as

dQ = np0(θ0, ϕ0;λ
p
α)dA = n

dA

4π
, dA := sin(θ0)dθ0dϕ0. (4.117)Substitution of (4.117) into (4.116) results in the plasti part of the free energy being

ϕp =
n

4π

∫

A

ϕp
cdA. (4.118)The bakstress in the referene on�guration is given by

B := 2sym(
∂ϕp

∂CpC
p) = 2sym(

∂ϕp(λ̄p)

∂λ̄p

∂λ̄p

∂CpC
p) (4.119)where

∂ϕp(λ̄p)

∂λ̄p
=

n

4π

∫

A

∂ϕp
c

∂λ̄p
dA =

nkT

4π

√
N

∫

A

L
−1(

λ̄p

√
N
)dA. (4.120)Making use of (4.115), the seond term in (4.119) takes the following form

∂λ̄p

∂Cp = (2λ̄p)−1m0 ⊗m0. (4.121)



46 4 State-of-the-art models of amorphous glassy polymersSubstitution of (4.120) and (4.121) into (4.119) leads us to the form
B =

CR

√
N

4π

∫

A

L
−1(

λ̄p

√
N
)(λ̄p)−1sym(m0 ⊗m0)dA ·Cp. (4.122)Let Nα, α = 1, 2, 3 be the prinipal diretions of Cp. The diretion of the hains an thenbe expressed as m0 =

∑

α m
0
αNα. The omponents of m0 are given by m0

1 = sin θ0 cosϕ0,
m0

2 = sin θ0 sinϕ0 and m0
3 = cos θ0. Multipliation of (4.122) from both sides by Nα resultsin the prinipal omponents of the bakstress being

Bα =
CR

√
N

4π

∫

A

L
−1(

λ̄p

√
N
)(λ̄p)−1(λp

α)
2(m0

α)
2dA. (4.123)Similar to the BPA model, the bakstress an be identi�ed in the intermediate on�gura-tion. The unit vetor in the diretion of r̄ is m̄ =

∑

α m̄αN̄α. For further referene, it isnoted that the prinipal plasti strethes λ̄p
α and λp

α of bp and Cp are equal. Employingthe relationship F pNα = λ̄p
αN̄α one obtains

r̄ = r̄m̄ = r̄m̄αN̄α = F pr0 = r0F
pm0 = r0m

0
αλ

p
αN̄α,from whih together with r̄ = λ̄pr0 it follows that

m0 = λ̄pm̄F p−T and m0
α = m̄α

λ̄p

λ̄p
α
. (4.124)Using (4.40) in (4.41), the number of hains rossing an in�nitesimal area element dĀ onthe unit sphere is given by

dQ̄ = np0(λ̄
p)3dĀ =

n

4π
(λ̄p)3dĀ, dĀ = sin θ̄dθ̄dϕ̄. (4.125)Hene, the plasti part of the free energy in the intermediate on�guration takes the form

ϕ̄p =
n

4π

∫

Ā

(λ̄p)3ϕp
cdĀ (4.126)and thus

∂ϕ̄p

∂λ̄p
=

nkT

4π

√
N

∫

Ā

L
−1(

λ̄p

√
N
)(λ̄p)3dĀ. (4.127)The bakstress B̄ in the intermediate on�guration is derived as the push-forward of (4.122)by F p and using the transformation (4.124) whih together with (4.127) yield

B̄ =
CR

√
N

4π

∫

Ā

L
−1(

λ̄p

√
N
)(λ̄p)4(m̄⊗ m̄)dĀ. (4.128)



4.9 The Miehe et al. (2009) model 47Similar to the BPA model, the plasti strething is onstitutively desribed by (4.109). Thedeviatori part of the bakstress βdev present in (4.109) is derived by the push-forward of(4.128) to the spatial on�guration by F e. The prinipal deviatori omponents of (4.128)are
B̄dev

α =
CR

√
N

4π

∫

A

L
−1(

λ̄p

√
N
)(λ̄p)4(m̄2

α −
1

3
)dĀ. (4.129)In the 8-hain model, the non-a�ne network streth λp

ec does not depend on the an-gles θ0, ϕ0. Moreover, the unit diretion vetors m0 in (4.122) are replaed by N =

1/
√
3
∑

αNα, α = 1, 2, 3. Hene, the representation (4.122) beomes
B =

CR

√
N

4π
L
−1(

λp
ec√
N
)(λp

ec)
−1

∫

A

N ⊗NdA ·Cp =
CR

3λp
ec

√
NL

−1(
λp
ec√
N
)Cp. (4.130)A omparison of (4.108) and (4.130) reveals that the omponents of the bakstresses areequal, i.e. in the omponent level, the Wu and Van der Giessen (1993) model is reduedto the BPA model as a speial ase.Based on the simulations of rubber-like materials, Wu and Van der Giessen (1993) on-luded that the stress response by the Wu and Van der Giessen (1993) model lies betweenthose of the 3-hain Boye et al. (1988) model and the 8-hain Arruda and Boye (1993a)model. As with the approximation of stresses for rubber-like materials, this observationmotivated an approximation of the bakstress by

B̄α = (1− ρ)B̄tc
α + ρB̄ec

α , α = 1, 2, 3,where ρ ∈ [0, 1] is the �tting parameter, and B̄tc
α and B̄ec

α are the prinipal bakstressesaording to the 3- and the 8-hain model, respetively, f. Wu and Van der Giessen(1993). The kinematis and the onstitutive equations of the Wu and Van der Giessen(1993) model are summarized in Table 4.2.4.9 The Miehe et al. (2009) modelThe stored energy in the Miehe et al. (2009) model is given by the sum of the storedenergies of the single hains ϕp
c , i.e. ϕp = nϕp

c . The plasti miro-strethes λp of the hainsare allowed to �utuate around the plasti maro-strethes λ̄p in the format (4.24). The�utuation �eld f for the plasti streth is derived from the minimization priniple for theaverage free energy, whih results in the miro-streth being relaxed by (4.31). Using thep-root averaging operator (4.28), the non-a�ne plasti network streth is
〈λ̄p〉m =

( 1

A

∫

A

(λ̄p)mdA
) 1

m , m > 0, (4.131)and the total stored energy is given by ϕp(〈λ̄p〉m). In the Miehe et al. (2009) model, theplasti network streth is given in terms of the referene plasti metri Gp whih allows



48 4 State-of-the-art models of amorphous glassy polymersthe logarithmi plasti strain to be de�ned as
ǫp :=

1

2
lnGp. (4.132)Using the total logarithmi strain ǫ = lnU , Miehe et al. (2009) de�ned the elasti strain

ǫe as
ǫe := ǫ− ǫp. (4.133)It should be noted that the elasti strain is oneptually de�ned and is not the result ofkinematial onsiderations. The bakstress is derived by the di�erentiation of the plastipotential ϕp(〈λ̄p(Gp)〉m) with respet to the plasti metri Gp applying the hain rule, i.e.

β :=
∂ϕp(〈λ̄p〉m)
∂〈λ̄p〉m

∂〈λ̄p〉m
∂ǫp

=
∂ϕp(〈λ̄p〉m)
∂〈λ̄p〉m

∂〈λ̄p〉m
∂Gp :

∂Gp

∂ǫp
(4.134)where

∂ϕp(〈λ̄p〉m)
∂〈λ̄p〉m

= kT
√
NL

−1(
〈λ̄p〉m√

N
). (4.135)In the Miehe et al. (2009) model, the plasti maro-streth λ̄p is given in terms of theplasti metri as

λ̄p =
√
m0 ·Gpm0 (4.136)where m0 = r0/r0. Making use of (4.136) and (4.131), one obtains

∂〈λ̄p〉m
∂Gp =

〈λ̄p〉1−m
m

2
〈(λ̄p)m−2m0 ⊗m0〉, 〈(•)〉 = (

1

4π

∫

A

(•)mdA) 1
m . (4.137)Substituting (4.135) and (4.137) into (4.134) yields

β = CR

√
N〈λ̄p〉1−m

m L
−1(
〈λ̄p〉m√

N
)sym

(

〈(λ̄p)m−2m0 ⊗m0〉 : ∂G
p

∂ǫp

)

. (4.138)In the Miehe et al. (2009) model, the �ow rule is postulated aording to
ǫ̇p :=

γ̇p

√
2
n, n =

τ̃ dev

τ
, τ̃ dev := τ dev − βdev, τ :=

√

1

2
τ̃ dev : τ̃ dev (4.139)where the stress τ is de�ned in terms of the elasti logarithmi strain ǫe as

τ := 2µ(ǫe)dev + κ trace(ǫe)I.As in previously presented models, the isotropi hardening is de�ned via the evolutionlaw (4.77) and γ̇p is given by (4.75). Employing the Gauss theorem, one an show thatisotropy and the stress-free state are satis�ed through the onstraints 〈m0〉 = 0 and
〈m0 ⊗m0〉 = 1/3I. In the eight hain model, the plasti network streth λp

ec does not



4.10 The Anand and Ames (2006) model 49depend on the spherial oordinates θ0 and ϕ0 when the speial hoie of m = 2 results in(4.105) and (4.131) being equal, i.e. 〈λ̄p〉m = λp
ec. As a result, the representation (4.138)beomes

β =
CR

3λp
ec

√
NL

−1(
λp
ec√
N
)sym

(
I :

∂Gp

∂ǫp
)
. (4.140)A omparison of the representations (4.140) and (4.108) reveals that the bakstresses in theBPA model and in the Miehe et al. (2009) model di�er. It appears from (4.106) and (4.134)that their omponent representations are equal only if ∂ϕp/∂ǫp = 2sym(∂ϕp/∂Gp ·Gp).The Miehe et al. (2009) model is summarized in Table 4.3.4.10 The Anand and Ames (2006) modelAnand and Ames (2006) proposed a visoelasti-visoplasti onstitutive model whih wasoriginally developed for prediting miro-indentation. In ontrast to lassial linear vis-oelastiity, whih is desribed by one Kevin-Voigt element, the Anand and Ames (2006)model onsists rheologially of several Kelvin-Voigt elements arranged in series, f. Fig.4.11, element b).
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Figure 4.11: Shemati representationof the Anand and Ames (2006) model.The model is governed by the elements:a) elasti spring, b) Kelvin-Voigt ele-ments, i = 0, ..., N , and ) nonlinearLangevin spring.

One onsequene of this relatively omplex modelis that the number of material parameters used in themodel is large. Simulations, however, indiate thatsuh omplexity is required to satisfatorily preditthe experimentally observed load-indentation (P-h)urves. The Kelvin-Voigt-like elements represent in-elasti miromehanisms involving the evolution ofisotropi and anisotropi hardening. Visoelasti ef-fets are taken into aount through the miromeha-nisms i = 1, ..., N and the nonlinear Langevin spring,f. Fig. 4.11, element ). The strain softening ineah miromehanism i = 0, ..., N is modeled by tak-ing the athermal shear stress si to evolve to a satura-tion value sss,i. Moreover, the plasti deformation ineah miromehanism is given by D̄
p
i and the salarvariable ϕ whih represents the loal free volume.The hain network is desribed by the 8-hain modelwhih has already been touhed upon in Se. 4.3.1.In aordane with the BPA model, the kinematisis based on the multipliative deomposition of thedeformation gradient into an elasti and a plasti part, f. Se. 4.1, and the marosopistress is given in terms of a homogenized network streth λ̂ec. As with the models above,Anand and Ames (2006) model has been formulated for isothermal onditions below theglass transition temperature. For thermodynamial onsiderations of the model, we referto Anand and Gurtin (2003), Anand and Ames (2006) and Srivastava et al. (2010).



50 4 State-of-the-art models of amorphous glassy polymersLet us �rst onsider the stress σA in the leg A. Aording to (4.63), the Mandel stress inthe ase of isotropi elastiity an be onsidered as the elastially rotated Kirhho� stress
σA = 1/JeτA = 1/JeRe

Σ̄AR
e,T . The Mandel stress Σ̄A is de�ned analogously with (4.64)in the intermediate on�guration, i.e.
Σ̄A = 2µ(ln Ū

e
)dev + κ ln JeĪ. (4.141)The stress σB in the leg B is obtained analogously with (4.108), i.e.

σB =
1

Je
µBb̂

dev
:=

1

Je

µR

3λ̂ec

√
NL

−1(
λ̂ec√
N
)b̂

dev
,

λ̂ec =
1√
3

√

trace(b̂) =
1√
3

√
∑

α

(λ̂α)2.
(4.142)In (4.142), µR is a onstitutive parameter and b̂ := Je−2/3b is the isohori part of theFinger tensor b. To suppress the volume hange during the visous �ow, the stress σB isonsidered to be deviatori and the deviatori prinipal omponents are given by

σdev
B,α =

1

Je

µR

3λ̂ec

√
NL

−1(
λ̂ec√
N
)
(
(λ̂α)

2 − (λ̂ec)
2
)
. (4.143)The total stress is the sum of the two omponents σ = σA + σdev
B . In ontrast to theBPA model where the plasti spin is nonzero as a result of the imposed symmetry of F e,Anand and Ames (2006) assumed that the plasti spin vanishes. As a result, the evolutionequation for the plasti deformation takes the form D̄

p
= Ḟ

p
F p−1. The rate of plastideformation D̄

p is onstitutively desribed by the sum of the plasti strething in eah
N + 1 miromehanism

D̄
p
=

N∑

i=0

D̄
p
i =

N∑

i=0

γ̇p
i N̄ i (4.144)where γ̇p

i ≥ 0, i = 0, ..., N , are de�ned below. The diretion of the plasti �ow is given by
N̄ i :=

S̃
dev

i

2τi
, S̃

dev

i := Σ̄
dev
A − B̄

dev
i , τi :=

√

1

2
S̃

dev

i : S̃
dev

i . (4.145)It follows from (4.144) and (4.145) that the plasti deformation is volume onserving, i.e.
trace(D̄

p
) = 0 and det(F p) = 1. The bakstresses B̄i in (4.145) are given by

B̄i = µiĀi (4.146)where the internal variables Āi evolve aording to
˙̄Ai = D̄

p
i Āi + ĀiD̄

p
i .



4.10 The Anand and Ames (2006) model 51For a single mehanism, ˙̄Ai =
˙̄A = ḃ

p, i.e. Ā = bp := F pF p,T . In (4.146), the bakstressmoduli µi, i = 0, ..., N , is hosen to evolve with the free volume ϕi = ϕ, i.e.
µ̇i := ci(1−

µi

µi,s
)ϕ̇, µi(ϕ(0)) = µi,0 (4.147)where ci, µi,s and µi,0 are positive material onstants de�ned for eah miromehanism. Theevolution equation for the free volume ϕ is de�ned below. Sine in the model µi,0 ≥ µi,s,the bakstress moduli µi dereases to its saturation value µi,s as the free volume inreases.In ontrast to the other presented models, where the Argon (1973) model is used todesribe the magnitude of the plasti �ow, Anand and Ames (2006) made use of a simplepower-law, i.e.

γ̇p
i := γ̇p

0(
τi

si + αp
)

1
mi , i = 0, ..., N (4.148)where p = −1/3trace(σA) is the pressure and γ̇p

0 > 0 is the referene shear strain ratebeing equal for eah miromehanism. The strain rate sensitivity parameters mi > 0 ofthe ith miromehanism result in the limit mi → 0 in the rate-independent plastiity. In(4.148), α is the pressure-dependene fator, assumed to oinide in all miromehanisms.The miromehanism represented by the Kelvin-voigt element with index i = 0 representsthe dominant maro-yield response. For the athermal shear strength s0 with initial value
s0,0 the evolution equation (4.77) is employed but its saturation value s0,ss is assumed todepend on the free volume ϕ as

s0,ss := scv(1 + b(ϕcv − ϕ)) (4.149)where b, ϕcv and scv are onstitutive parameters. The evolution equation for the freevolume ϕ is oupled to athermal strength s0 aording to
ϕ̇ = g0(

s0
scv
− 1)γ̇p

0 , ϕ(0) = ϕ0 (4.150)where g0 is a material parameter and the initial free volume ϕ0 ≤ ϕcv. Sine by (4.77) s0dereases, a glane at (4.150) reveals that the free volume ϕ inreases until the saturationvalue scv of s0 is reahed, i.e. ϕ = ϕcv in (4.149). The internal salar variables si assoiatedto the remaining miromehanisms are assumed to be onstants, i.e. si = si(0), i = 1, ..., N .As a result, the material parameters (12+ 5(N +1) ps.) that are needed in the proposedmodel for miro-indentation are
µ, κ, µR, N, γ̇p

0 , α, h,mi, g0, scv, b, si,0, ϕcv, ϕ0, ci, µi,0, µi,s, i = 0, ..., Nwhere the �rst seven parameters also appear in the BPA model. The kinematis and theonstitutive equations of the model are summarized in Table 4.4.



52 4 State-of-the-art models of amorphous glassy polymers4.11 The Dupaix and Boye (2007) modelDuring inreasing temperature, the slip resistane begins to redue whih results in thesolid polymer transforming from a solid towards a melt. During the transformation, theshort-range motion of the hains dereases, and near the glass transition temperature thepolymer hains start to move by loal Brownian motion restrited by the neighboringhains. In aordane with Brownian motion, the veloity of a hain is in�nite whihrepresents an idealized approximation of the atual random physial motion having a �nitetime sale. This motion of hains in the melt state is alled the long-range motion, orreptation, and is desribed by the reptation theory (snakelike motion), f. Fried (2009).Aording to reptation theory, the motion of a single hain is on�ned within a tube whih isde�ned by the neighboring entanglement sites, f. Fig. 4.12. The dereasing temperaturethrough glass transition may result in rystallization and the reptation eases. Dupaixand Boye (2007) proposed a model for amorphous glassy polymers whih aptures the�nite strain behavior under a wide range of strain rates and temperatures. This model,however, does not take strain-indued rystallization during glass transition into aount.
• • • • • •
• • • • • •

a

Figure 4.12: Illustration of a virtual tube of ra-dius a and motion of a single hain (thik line) a-ording to the reptation model. The blak nodesrepresent the neighboring entanglement sites.

In the Dupaix and Boye (2007) model, themehanial behavior of glassy polymers isaused by two mehanisms: resistanes dueto (i) intermoleular interations and (ii)strething and reorientation of the mole-ular hain network. The rheologial repre-sentation of the model is given in Fig. 4.13.Resistane (i) is intended to apture the in-terations between neighboring hain seg-ments between physial entanglements. Itis the primary soure of the initial sti�ness,and also results in the plasti �ow whih ismodeled by the visoplasti dashpot, f. Fig. 4.13, element b). Resistane (ii) a�etssti�ening in the large strain regime and it also aptures moleular relaxation during glasstransition, f. Fig. 4.13, elements ) and d). The visous dashpot in resistane (ii) alsotakes reptation at high temperatures into aount, f. Bergström and Boye (1998). Sinethe two resistanes work in parallel, the deformation gradients in both resistanes must beequal to the total deformation gradient, i.e.
F = F (i) = F (ii). (4.151)Moreover, the total stress is the sum of the stresses in the two parallel resistanes
σ = σ(i) + σ(ii). (4.152)



4.11 The Dupaix and Boye (2007) model 53Modeling of resistane (i)Sine the multipliative deomposition for the two arms shown in Fig. 4.13 is employed,it then follows from (4.151) that
F (i) = F e

(i)F
p
(i). (4.153)The kinematis of resistane (i) is desribed by (4.9)-(4.12) and (4.14)-(4.15). The elastionstitutive law is given by

σ(i) =
1

Je
(i)

L
e : lnve

(i) (4.154)where lnve
(i) is the Henky strain in resistane (i) and Je

(i) = det(F e
(i)).

σb) d)
a) )
σi σdev

ii

σ

(i) (ii)
Figure 4.13: Rheologial illustration of the Du-paix and Boye (2007) model. The model on-sists of two resistanes (i) and (ii). Resistane(i) is governed by a) an elasti spring and b) avisoplasti dashpot, and resistane (ii) by ) anonlinear spring and d) a visous dashpot.

The fourth order sti�ness tensor is given by
L

e := 2µI +
3κ− 2µ

3
i⊗ iwhere the shear modulus µ is temperature-dependent. The evolution of the plasti de-formation is governed by

d
p
(i) = γ̇pn(i) (4.155)where γ̇p is assumed to be thermally ati-vated aording to

γ̇p = γ̇0 exp
(
−∆G

kT
(1− (

τ(i)
s
))
)
. (4.156)The athermal shear strength s is onsid-ered as onstant or it an be replaed by(4.76) whih takes pressure into aount.The diretion of the plasti �ow in resis-tane (i) n(i) is assumed to be aligned withthe deviatori stress, i.e.

n(i) :=
σdev

(i)√
2τ(i)

, τ(i) :=

√

1

2
σdev

(i) : σdev
(i) . (4.157)To make the plasti evolution law for resistane (i) omplete, the plasti spin ω

p
(i) is hosento vanish.Modeling of resistane (ii)As with resistane (i), the deformation gradient in resistane (ii) is multipliatively split,i.e.

F (ii) = F e
(ii)F

p
(ii). (4.158)



54 4 State-of-the-art models of amorphous glassy polymersThe kinematis of resistane (ii) is given through (4.4), (4.9)-(4.12) and (4.14)-(4.15).Aording to the Dupaix and Boye (2007) model, the bakstress used in the BPA modelis not able to reprodue the deformation behavior of PETG either at large strains or in amelt state. As a remedy, Dupaix and Boye (2007) desribed the network streth in termsof the prinipal elasti strethes λ̂e
(ii),α, α = 1, 2, 3 as

λ̂e
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2. (4.159)In (4.159), b̂e(ii) = F̂
e

(ii)F̂
e,T

(ii), F̂ e

(ii) = J
e−1/3
(ii) F e

(ii) and Je
(ii) := det(F e

(ii)). The network stressin resistane (ii) is taken to be analogous with (4.110), i.e. in terms of elasti strethes
λ̂e
(ii),α, α = 1, 2, 3, it is given by
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−1(
λ̂e
(ii)√
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(λ̂e

(ii),α)
2 − (λ̂e

(ii))
2
)
. (4.160)The inverse Langevin funtion L

−1 results in the stress rising dramatially one λ̂e
(ii) reahesthe limiting streth, √N .The rate of the moleular relaxation in resistane (ii) is analogously desribed with theevolution of plasti deformation in resistane (i), i.e.

d
p
(ii) = γ̇p

(ii)n(ii) (4.161)where
n(ii) :=

σdev
(ii)√
2τ(ii)

, τ(ii) :=

√

1

2
σdev

(ii) : σ
dev
(ii). (4.162)To omply with the plasti evolution laws, the plasti spin ω

p
(ii) in resistane (ii) is assumedto vanish. The rate of moleular relaxation γ̇p

(ii) is experimentally determined as a funtionof visosity at di�erent strain levels and temperatures, f. Dupaix and Boye (2007). Basedon the experiments, Dupaix and Boye (2007) determined the rate of the relaxation as afuntion of τ(ii) as
γ̇p
(ii) = C̃τ

1
n

(ii) (4.163)where n is a positive parameter and C̃ is a miromehanially based variable whih inludesthe temperature dependene of the moleular relaxation and also takes the hain orientationduring deformation into aount. The hain motion is desribed by the hain reptationwhere the hains slide through tube-like paths reated by the entangled hains aroundthem, f. Fig. 4.12. As has already been mentioned in preeding setions, the Argon (1973)double-kink theory annot apture the deformation behavior through the glass transitiontemperature. Dupaix and Boye (2007) onduted experiments on PETG whih indiatedthat the alignment of the hains at the limiting streth is independent of strain rate,



4.11 The Dupaix and Boye (2007) model 55temperature as well as deformation state. Motivated by this observation, they introduedan orientation parameter φc whih governs γ̇p
(ii). The reorientation and the elongation ofsingle hains in a representative volume element during deformation are expressed by theorientation angle, f. Fig. 4.14. In the undeformed state, the angles between the prinipal

e1

e3

e2

φ0

√
3
2
a0

Figure 4.14: The idealized hain struture aording to the 8-hain model. The dimension of the8-hain ube is a0 and φ0 denotes the initial orientation angle between a hain and the prinipalaxes. The unit vetors eα, α = 1, 2, 3, align with the prinipal diretions of be.axis and a hain are equal, i.e. φi = φ0 = 54.7◦, i = 1, 2, 3 (0.955 rad). As deformationproeeds, the angles are no longer equal and the orientation parameter φc is de�ned as
φc := π/2 − φmax, where φmax := max{φi, i = 1, 2, 3}. Aording to experiments, thelimiting streth of hains is reahed at a ommon value, φ̄max being independent of strainrate and temperature. In aordane with Adams et al. (2000), Dupaix and Boye (2007)proposed a model for moleular relaxation in terms of the orientation angle, i.e.

γ̇p
(ii) =

( φ
φc
− 1)

(φR

φc
− 1)

(Cφτ(ii))
1/n (4.164)where φR := π/2 − φ0 and φ is the urrent orientation angle. Based on single haingeometry, cos(φ) = 1/

√
3λ2/λ̄ where λ2 is the seond prinipal streth of C and λ̄ wasgiven by (4.39). The parameter C inludes the temperature dependene of the moleularrelaxation aording to C = D exp(−Q/(Rθ)) where D and Q are material parameters and

R is the gas onstant, f. Dupaix and Boye (2007).Temperature dependent material onstantsSine the glass transition takes plae gradually, the glass transition temperature is notwell-de�ned. Dupaix and Boye (2007) de�ned the glass transition as being initialized atthe phase where a solid material starts rapidly soften to a rubbery-like state. The initialelasti response is primarily governed by the elasti spring in resistane (i) whih is givenin terms of the bulk modulus κ and the temperature-dependent shear modulus µ. Based onthe dynami mehanial analysis (DMA) experiments, Dupaix and Boye (2007) proposed



56 4 State-of-the-art models of amorphous glassy polymersthe following approximation for the shear modulus:
µ =

1

2

(
(µg + µr)− (µg − µr)

)
· tanh

( χ

∆θ
(θ − θg)

)
+Xg(θ − θg) (4.165)where µg and µr are the shear modulus in the glassy and rubbery regions, respetively, and

∆θ represents the temperature interval in whih polymer transforms from the glassy phaseto the melt phase.
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Figure 4.15: The temperature dependeneof the shear modulus µ and an illustrationof the slope-parameters, Xg and χ. Theurve is based on the DMA-experiments onPETG for uniaxial ompression, f. Dupaixand Boye (2007).

In (4.165), the oe�ient Xg < 0 denotesthe slope of the µ − θ urve outside the glasstransition, whereas χ is the average slope of the
µ − θ urve in glass transition. The parame-ter values are obtained using the �tting to theexperimental µ − θ response. In Fig. 4.15, thetemperature dependene of the shear modulus ispresented, this being typial for high-moleular-weight amorphous polymers, f. Fried (2009).In the glass transition regime, the shear modulusdepends strongly on the strain rate. The depen-dene of the strain rate ǫ̇ is taken into aountby shifting the glass transition temperature as

θg = ξ log10(

√
3ǫ̇

γ̇ref
) + ζ + θ∗g (4.166)where γ̇ref , ξ and ζ are material onstants and

θ∗g is the referene transition temperature. These parameters an be found by taking theshifting θg into aount in the �tting to the experimental µ − θ response. At slow strainrates, θg = θ∗g , f. Dupaix and Boye (2007). For the sake of onveniene, the onstitutivemodel proposed by Dupaix and Boye (2007) is summarized in Table 4.5.



4.12 Summary of state-of-the-art models 574.12 Summary of state-of-the-art modelsTable 4.1: Summary of the BPA model.
1. Kinematis: F = F eF p, bp := F pF p,T , be := F eF e,T , ve :=

√
be, Re is unity.

2. Stress: σ :=
1

Je
(2µ(ln ve)dev + κ ln Jei).

3. Miro-maro transition: λp
ec =

1√
3

√

trace(bp).

4. Flow rule: D̄
p
= γ̇pn, n :=

σ̃dev

√
2τ

, σ̃dev := σdev − 1
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βdev, τ :=

√
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σ̃dev : σ̃dev.

5. Bakstress: B̄
dev
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3λp
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−1(
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ec√
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)(bp)dev push-forward → βdev

6. Isotropi hardening: γ̇p := γ̇0 exp
(
−As

T
(1− (

τ

ss
)
5
6 )
)
, ss = s+ αp, p = −1

3
trace(σ),

s is given by (4.77) and s(0) = s0.Table 4.2: Summary of the Wu and Van der Giessen (1993) model.
1. Kinematis: F = F eF p, Cp := F p,TF p, be := F eF e,T , ve :=

√
be, Re is unity.

2. Stress: σ :=
1

Je
(2µ(ln ve)dev + κ ln Jei).

3. Miro-maro transition: λ̄p =
√
m0 ·Cpm0 ∈ (0,

√
N) where

m0
1 = sin θ0 cosϕ0, m0

2 = sin θ0 sinϕ0, m0
3 = cos θ0.

4. Flow rule: D̄
p
= γ̇pn, n :=

σ̃dev

√
2τ

, σ̃dev := σdev − 1

Je
βdev, τ :=

√

1

2
σ̃dev : σ̃dev.

5. Bakstress: B̄
dev

=
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√
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4π
(

∫

Ā
L
−1(

λ̄p

√
N

)(λ̄p)4(m̄⊗ m̄)devdĀ) where m̄ = λ̄p−1F pm0push-forward → βdev.

6. Isotropi hardening: γ̇p := γ̇0 exp
(
−As

T
(1− (

τ

ss
)
5
6 )
)
, ss = s+ αp, p = −1

3
trace(σ),

s is given by (4.77) and s(0) = s0.



58 4 State-of-the-art models of amorphous glassy polymersTable 4.3: Summary of the Miehe et al. (2009) model.
1. Kinematis: ǫe := ǫ− ǫp, Gp := exp(2ǫp).

2. Stress: τ := 2µ(ǫe)dev + κ trace(ǫe)I.

3. Miro-maro transition: 〈λ̄p〉m =
( 1

A

∫

A
(λ̄p)mdA

) 1
m , m > 0, where

λ̄p =
√
m0 ·Gpm0 ∈ (0,

√
N), m0

1 = sin θ0 cosϕ0, m0
2 = sin θ0 sinϕ0, m0

3 = cos θ0.

4. Flow rule: ǫ̇p = γ̇pn, n :=
τ̃ dev

√
2τ

, τ̃ dev := τ dev − βdev, τ :=

√

1

2
τ̃ dev : τ̃ dev.

5. Bakstress: βdev = CR

√
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.

6. Isotropi hardening: γ̇p := γ̇0 exp
(
−As

T
(1− (

τ

ss
)
5
6 )
)
, ss = s+ αp,

p = −1

3
trace(

1

Je
τ ), s by (4.77) and s(0) = s0.Table 4.4: Summary of the Anand and Ames (2006) model.

1. Kinematis: F = F eF p, b̂ = J−2/3b, C̄
e
:= F e,TF e, Ū

e
=

√

C̄
e
, Re = F eŪ

e−1
.

2. Stresses: Σ̄A = 2µ(ln Ū
e
)dev + κ ln JeĪ, σA =

1

Je
Re

Σ̄AR
e,T ,

σdev
B =

1

Je

µR

3λ̂ec

√
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−1(
λ̂ec√
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)b̂
dev and σ = σA + σdev

B .

2. Miro-maro transition: λ̂ec =
1√
3

√

trace(b̂).Miromehanisms: i = 0, ..., N :

3. Flow rule: D̄
p
=

N∑

i=0

γ̇pi N̄ i, W̄
p
= 0, N̄ i :=

S̃
dev
i

2τi
, S̃

dev
i := Σ̄

dev
A − B̄

dev
i and

τi :=

√

1

2
S̃

dev
i : S̃

dev
i .

4. Internal kinematial variables: ˙̄Ai = D̄
p
i Āi + ĀiD̄

p
i .

5. Bakstresses: B̄i = µiĀi, µ̇i := ci(1−
µi

µi,s
)ϕ̇, µi(ϕ(0)) = µi,0 > µi,s.

6. Isotropi hardening: γ̇pi := γ̇p0(
τi

si + αp
)

1

mi , p = −1

3
trace(σA), si(0) = si,0, s0 by (4.77)in whih s0,ss := scv(1 + b(ϕcv − ϕ)) and ϕ̇ = g0(

s0
scv
− 1)γ̇p0 , ϕ(0) = ϕ0 < ϕcv.



4.12 Summary of state-of-the-art models 59Table 4.5: Summary of the Dupaix and Boye (2007) model.
1. Kinematis: F = F (i) = F (ii), F (i) = F e

(i)F
p
(i), F (ii) = F e

(ii)F
p
(ii), be(i) := F e

(i)F
e,T
(i) ,

ve
(i) =

√

be(i), be(ii) := F e
(ii)F

e,T
(ii), b̂

e
(ii) = J−2/3be(ii).

2. Stresses: σ(i) =
1

Je
(i)

(2µ(ln ve
(i))

dev + κ ln Je
(i)i) where µ = µ(θ) by (4.165),

σdev
(ii) =

1

Je
(ii)

CR

3λ̂e
(ii)

√
NL

−1(
λ̂e
(ii)√
N

)(b̂
e

(ii))
dev, σ = σ(i) + σdev

(ii)

3. Miro-maro transition: λ̄e
(ii) =

1√
3

√

trace(b̂
e
ii).

4. Flow rules: d
p
(i) = γ̇p(i)n(i), ω

p
(i) = 0, n(i) :=

σdev
(i)√
2τ(i)

, τ(i) :=

√

1

2
σdev
(i) : σdev

(i) ,

d
p
(ii) = γ̇p(ii)n(ii), ω

p
(ii) = 0, n(ii) :=

σdev
(ii)√
2τ(ii)

, τ(ii) :=

√

1

2
σdev
(ii) : σ

dev
(ii) .

5. Isotropi hardening: γ̇p(i) = γ̇0 exp
(
−∆G

kT
(1− (

τ(i)

s
))
)where s = const. or it is replaed by ss, f. (4.76).

6. Moleular relaxation: γ̇p(ii) =
( φ
φc
− 1)

(φR

φc
− 1)

(Cφτ(ii))
1/n, f. (4.164).



60 5 Preditive apability of state-of-the-art models5 Preditive apability of state-of-the-art modelsIn this hapter, the apability of the presented models will be evaluated and ompared toexperimental results available for homogeneous deformation involving various deformationmodes, deformation rates and a wide range of temperatures. The models are alibrated tothe experimental data for homogeneous deformation using least-square �tting based on theNelder-Mead simplex algorithm. The homogeneous deformation modes allow the numerialintegration to be performed using an ODE-solver instead of solving entire boundary valueproblem. The integration of the onstitutive equations is performed by a Runge-Kuttaintegration sheme, the details of the Runge-Kutta-based method employed an be foundin Shampine et al. (1999).5.1 The BPA model - monotoni loadingLet us �rst onsider uniaxial and plane strain ompression modes. Arruda and Boye(1990a) onduted monotoni ompression experiments on PC at room temperature. Toinvestigate the rate dependene, the tests were performed at several strain rates. Here, thetwo onstant strain rates ǫ̇ = 0.001 s−1 and ǫ̇ = 0.01 s−1 will be onsidered. The simulationsare performed using the material parameters taken from Wu and Van der Giessen (1993)as well as using the parameters alibrated herein. In the alibration, both the uniaxialand the plane strain ompression responses, as well as both strain rates, were taken intoonsideration. The parameters obtained from the alibrations are listed in Table 5.1.The simulations and the experimental responses are shown in Figs. 5.1-5.2. The modelpreditions �t well to the experimental data for both ompression modes and strain rates
ǫ̇ = 0.001 s−1 and ǫ̇ = 0.01 s−1. However, the yield peak as well as the initial strain softeningare not aurately aptured by the model. Aording to Hasan and Boye (1995), theseshortomings are due to the linear elasti onstitutive assumption. A omparison of Figs.5.1 and 5.2 reveals that an inrease of ǫ̇ results in the yield stress inreasing. Moreover,the yield stress is lower in uniaxial ompression than in plane strain ompression, whihis assumed to be aused by the pressure dependene of the yield stress, f. Arruda andBoye (1993a).Table 5.1: Constitutive parameters of the BPA model for PC are taken from Wu and Van derGiessen (1993) based on the experiments by Arruda and Boye (1990a). The alibrations arebased on the experimental data for PC and BPA-PC given in Arruda and Boye (1990a) andDreistadt et al. (2009), respetively.

E ν s0 sss h γ̇0 A CR N αMPa MPa MPa MPa s−1 MPa−1K MPaPC Wu and van der Giessen 2300 0.30 97 76.6 500 2.0 · 1015 240 12.8 2.15 0.08Calibrated parametersPC, ǫ̇ = (1 and 10) · 10−3 s−1 2348 0.30 85.9 75.9 458 6.39 · 107 140 10.6 2.19 0.12BPA-PC 2300 0.37 99 73 370 2.0 · 1015 241 14 1.85 0.08
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Figure 5.1: Comparison of a) uniaxial and b) plane strain ompression responses for PC betweenthe experiments and the BPA model. The tests were performed by Arruda and Boye (1990a)at onstant true strain rate ǫ̇ = 0.001 s−1 at room temperature. Simulations are performed usingboth the alibrated parameters and the parameters taken from Wu and Van der Giessen (1993),f. Table 5.1. Both uni- and biaxial deformation states and the two strain rates ǫ̇ = 0.001 s−1 and
ǫ̇ = 0.01 s−1 were taken into aount in the alibration. Mixed isotropi hardening and softeningresults in the stress, σ̃, whereas anisotropi strain hardening results in the bakstress, β.
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Figure 5.2: Comparison of a) uniaxial and b) plane strain ompression responses for PC betweenthe experiments and the BPA model. The tests were performed by Arruda and Boye (1990a) atonstant true strain rate ǫ̇ = 0.01 s−1 at room temperature. Simulations are performed using boththe the alibrated parameters and the parameters taken from Wu and Van der Giessen (1993), f.Table 5.1. Both uni- and biaxial deformation states and the two strain rates ǫ̇ = 0.001 s−1 and
ǫ̇ = 0.01 s−1 are taken into aount in the alibration.The following strain hardening is relatively well aptured by the model in both ompressionmodes. The hardening in plane strain ompression inreases more rapidly than in uniaxialompression. The deformation state dependene in hardening an be explained by thedi�erent hain orientation. It an be onluded that the BPA model is able to apturethe deformation state dependene as well as the strain rate dependene during monotoniloading.
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Next, the BPA model is evaluated undernon-monotoni loading. Dreistadt et al.(2009) onduted uniaxial experiments onbisphenol A polyarbonate (BPA-PC) foromplex load histories and a wide rangeof time spans. In ontrast to the experi-ments by Arruda and Boye (1990a), theaim of these experiments was to investigatethe deformation behavior of PBA-PC dur-ing long-term non-monotoni loading. Inthe experiments, a onstant true strain rate
ǫ̇ = 0.001 s−1 was employed and the spei-men was strethed up to 0.75 whih is wellbelow the limiting streth, λL. In the sim-ulations, the BPA model is employed usingelasti onstitutive parameters E = 2300MPa and ν = 0.37 and the rest of the modelparameters were alibrated to the exper-imental data for monotoni loading takenfrom Dreistadt et al. (2009). The materialparameters are listed in Table 5.1. In the �rst experiment, the loading phase is followedby unloading, during whih the resulting fore is linearly removed. The speimen was thenkept unstressed for 400 days. The simulated and the experimental response are presentedin Fig. 5.3.As with the previous examples, the BPA model aptures the monotoni loading au-rately. At the beginning of unloading, however, the experimental response shows inreasingstrain whereas the model results in almost linear response. Later in the unloading phase,the model shows a reversed plastiity whih is initialized at σ = 45 MPa. In ontrast tothe model preditions, the experimental response shows a smooth transition. At the endof unloading, a premature Bauhinger e�et is observed in the model response and thepredited true strain at zero stress is approximately 0.40. After the dwell period of 400days the experiments indiates a permanent strain of 0.62, whereas the model predits onemagnitude lower value, 0.062. It an be onluded that the model is inapable of preditingunloading and reovery. Hasan and Boye (1995) and Anand and Ames (2006) pointed outthat aurate modeling of the visoelasti behavior early in the loading phase is essentialto predit the subsequent nonlinear unloading as well as a reep response. However, theArruda and Boye (1991) model is based on the linear elasti onstitutive desription.Next, the uniaxial ompression responses for repeated unloadings are simulated. Fol-lowing Dreistadt et al. (2009), unloadings are performed at �ve progressively inreasing



5.2 Non-monotoni loading 63strain levels: ǫ = 0.05, 0.13, 0.27, 0.45 and 0.59. After eah unloading, the nominal stressis kept �xed during a presribed dwell period. To examine reep and reovery, two di�erentstress levels π = 59MPa and π = 1.2 MPa and a relatively long dwell period of 12,000 s areonsidered. After eah dwell period, the reloadings are performed until the next unloadinglevel is reahed. The �nal unloading is performed to zero stress.Let us �rst onsider the dwell stress π = 59MPa. The model predits exaggerated reepduring the �rst two dwell periods and the predited strain at the end of the seond dwellperiod is lose to the unloading strain value of the third yle, f. Fig. 5.4(a). In ontrastto the model preditions, the experimental response shows onsiderably less reep duringthe �rst two dwell periods. Moreover, the stress peak during reloading is not apturedby the model whih tends diretly bak to the monotoni loading path. Similar to thesingle unloading, premature Bauhinger e�et is observed during the last unloading andonsequently the true strain beomes strongly underestimated at the end of this unloadingphase.A omparison of Figs. 5.4(a) and 5.4(b) reveals that reep is replaed by reovery whenthe dwell stress dereases from π = 59 MPa to π = 1.2 MPa. The �rst yle is nearlyelasti whereas inreasing reovery is observed in the subsequent yles. As shown in Fig.5.4(b), the BPA model strongly underestimates reovery during the seond and the thirdyles, whereas reovery during the fourth yle is highly overestimated.
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� xFigure 5.5: Comparison of the Anand and Ames(2006) model and the experimental responses forPMMA in uniaxial ompression at onstant truestrain rates ǫ̇ = 0.0003 s−1 and = 0.003 s−1. Thealibration was performed to experimental datataken from Anand and Ames (2006). In alibra-tion, both strain rates are taken into aount.

In addition to the miro-indentation ex-periments on PMMA, Anand and Ames(2006) onduted uniaxial ompression ex-periments in the maro-sale involvingmonotoni loading followed by unloadingto zero stress. In their experiments, thetwo onstant strain rates ǫ̇ = 0.0003 s−1and ǫ̇ = 0.003 s−1 were employed. The testspeimens were annealed at the glass tran-sition temperature 105 ◦C for 2 h and thenfurnae-ooled to room temperature over 15h to avoid the formation of loosely pakagedregions (free volume) in the material. Basedon the Anand and Ames (2006) model us-ing four miromehanisms, i = 0, 1, 2, 3,the material parameters were alibrated tothis data taking both strain rates into a-ount. In the alibration, the elasti mod-ulus E = 4200 MPa, the Poisson's ratio
ν = 0.34 and the pressure-dependene parameter α = 0.204 were kept �xed. The alibra-tion resulted in µR = 22 MPa, N = 2.52, scv = 32.5 MPa, c1 = 4.2 TPa and m0 = 0.085,whereas the other parameters are taken from Anand and Ames (2006). In their alibration,only a single strain rate ǫ̇ = 0.0003 s−1 was employed. The alibrated parameters are listedin Table 5.2.A omparison of the simulations to the experiments shows that the proposed modelaptures not only the monotoni loading, but also the transient e�ets during initial yieldingand initial unloading, f. Fig. 5.5. The strain at the end of unloading, however, isunderestimated. A omparison of the experimental and model responses at di�erent strainrates indiates that the model is able to apture the strain rate dependeny relatively well.Table 5.2: Calibrated onstitutive parameters of the Anand and Ames (2006) model for PMMA.The alibration was performed to the experimental data for the two strain rates ǫ̇ = 0.0003 s−1and ǫ̇ = 0.003 s−1. The experimental data is taken from Anand and Ames (2006).

m0 mi g0 E h γ̇0 b µR N ϕcv ϕ0 µ0,0 µi,0MPa MPa s−1 MPa MPa MPa0.085 0.19 0.009 4200 4500 5 · 10−4 825 22 2.52 0.001 0 0 3500
s0,0 s1,0 s2,0 s3,0 ssv µ0,s µ1,s µ2,s µ3,s c0 c1 c2 c3MPa MPa MPa MPa MPa MPa MPa MPa MPa TPa TPa TPa TPa35 13 23 33 32.5 0 1100 400 200 5.0 4.2 1.8 1.3



5.4 Simulation of the glass transition - the Dupaix and Boye (2007) model 655.4 Simulation of the glass transition - the Dupaix and Boye(2007) modelThe Dupaix and Boye (2007) model is applied to polyethyle terephthalate-glyol (PETG)and the apability is evaluated over a broad range of temperatures. Sine PETG does notundergo strain-indued rystallization near the glass transition temperature, the Dupaixand Boye (2007) model an be used in the simulations. In ontrast to (4.156), the evolutionof the plasti deformation in resistane (i) is based on the Argon (1973) model via (4.75) andthe isotropi hardening is modeled aording to (4.77). The temperature dependene of themoleular relaxation γ̇p
(ii) in (4.164) is governed by the parameters D ≈ 2.46 MPa−1s−n,

Q/R ≈ 10200 K and n ≈ 0.15. The values of the parameters have been obtained byleast-square �tting to the experimentally observed visosity-shear strain rate response atdi�erent values of the orientation parameter φc, f. Dupaix and Boye (2007). Moreover,the uniaxial ompression tests on PETG indiated that the limiting streth is reahed bythe onstant maximum angle φmax ≈ 1.52 between the prinipal axis and the individualhains and thus φc ≈ 0.05. The parameters γ̇ref = 0.00173 s−1, ξ = 3 K, ζ = 8.23 Kand the referene transition temperature θ∗g = 346 K have been derived by �tting the
µ − θ response to the DMA experiments at various strain rates. The rest of the materialparameters employed in the simulations were obtained using the least-square �tting to theexperimental uniaxial stress-strain urves at 333 K and at the two onstant strain rates
ǫ̇ = 0.01 s−1 and ǫ̇ = 0.5 s−1. The experimental data is taken from Dupaix and Boye(2007). During alibration, both the strain rates were taken into aount. The alibratedparameters are listed in Table 5.3.In Fig. 5.6, the model and the experimental stress-strain urves are ompared at threedi�erent temperatures: a) at room temperature, b) at alibration temperature 333 K and )in the glass transition temperature, 350 K. As both the strain rates are taken into aountin alibration, it follows that the model aptures the experimental responses on average:at ǫ̇ = 0.01 s−1 the model underestimates the stress response, whereas the experimentalresponse at ǫ̇ = 0.5 s−1 is more or less below the model results. It an be onludedthat the Dupaix and Boye (2007) model is able to apture the mehanial behavior ofPETG relatively well over a wide range of temperatures. During the glass transition, thefree volume in amorphous polymers as well as the sti�ness and the yield stress dereasesimultaneously with inreasing pressure. As a result, the value of the pressure dependenefator α in (4.76) should be manipulated so that the initial isotropi hardening and post-yield softening derease, f. Kameda et al. (2007). This feature as well as redued freeTable 5.3: Constitutive parameters employed in the simulations for PETG. The alibrations wereperformed for uniaxial test data taken from Dupaix and Boye (2007). In the alibration, bothstrain rates ǫ̇ = 0.5 s−1 and ǫ̇ = 0.01 s−1 were taken into aount. The average slope fator
Xg = 5.0 MPa K−1 and s0 = 0.15µ.

κ sss/s0 µr µg h γ̇0 A CR N α ∆θ/χMPa MPa MPa MPa s−1 MPa−1K MPa K1248 0.80 15.68 453 700 2.73 · 107 147 8.59 4.57 0.10 31.8
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Figure 5.6: Comparison of the model and experimental responses for PETG in uniaxial ompres-sion at 293K, 333K, and 350K. The tests have been performed by Dupaix and Boye (2005)employing onstant true strain rates, a) ǫ̇ = 0.01 s−1 and b) ǫ̇ = 0.5 s−1. The material parametersare alibrated for both strain rates, and they are given in Table 5.3.volume, however, are negleted in the model under onsideration whih partially explainsthe overpredition of the yield stress around the glass transition temperature. Moreover,the Dupaix and Boye (2007) model does not inlude the e�ets of aging whih also reduesthe temperature sensitivity of the yield stress near the glass transition temperature, f.Hasan et al. (1993).5.5 Comparison of the modelsNext, the apability of the models are ompared under non-monotoni loading. The modelswere alibrated to the experimental data for BPA-PC, f. Se. 5.2. The ommon param-eters of the models are given in Table 5.4. In addition, the parameters s1,0 = 4.0 MPa,
s2,0 = 9.0 MPa, s3,0 = 28 MPa and ssv = 17.5 MPa in the Anand and Ames (2006) modelare realibrated. The rest of the parameters are equal to those listed in Tables 5.2 and 5.3for the Anand and Ames (2006) and the Dupaix and Boye (2007) models, respetively.Table 5.4: Calibrated ommon parameters of the models for BPA-PC. In addition, the alibratedparameters s1,0 = 4.0 MPa, s2,0 = 9.0 MPa, s3,0 = 28 MPa and ssv = 17.5 MPa are used in theAnand and Ames (2006) model. The rest of the parameters are equal to those listed in Tables 5.2and 5.3 for the Anand and Ames (2006) and the Dupaix and Boye (2007) models, respetively.The experimental data for BPA-PC employed in the alibrations is given in Dreistadt et al. (2009).

E ν s0 sss h γ̇0 A CR N αMPa MPa MPa MPa s−1 MPa−1K MPaBPA model 2300 0.37 99 73 370 2.0 · 1015 241 14 1.85 0.08A&A model 2300 0.37 35 4500 5.0 · 10−4 19 2.00 0.20D&B model 2230 0.38 94 72 370 2.0 · 1015 241 14 1.78 0.08
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Figure 5.7: a) Comparison of the model responses for BPA-PC under uniaxial ompression. Thetest has been performed by Dreistadt et al. (2009) at onstant true strain rate ǫ̇ = 0.001 s−1 atroom temperature. b) The Dupaix and Boye (2007) model response for BPA-PC. The repeatedunloadings are performed to π = 1.2 MPa and then the nominal stress π is kept �xed for 1200 s.The last unloading is performed to zero stress.The model and the experimental response are presented in Fig. 5.7(a). During mono-toni loading up to the strain limit of 0.75, the models aurately apture the experimentalresponse and no signi�ant di�erenes between the responses an be observed. In the ini-tial unloading, the models annot predit the inreasing strain but result in almost linearresponse. The di�erenes between the models beome apparent later during the unloadingphase. Similar to the BPA model response, the Anand and Ames (2006) model annotaurately reprodue the transient e�et of the PBA-PC response, but yields a prematureBauhinger e�et and as a result the strain ǫ ≈ 0.46 at the end of unloading is underes-timated. A omparison of the model responses reveals that the Dupaix and Boye (2007)model is able to satisfatorily predit the experimental data, the strain at the end of un-loading is ǫ ≈ 0.59.In addition to the monotoni loading, the models are also evaluated for repeated un-loadings. Sine the Dupaix and Boye (2007) model is aimed at modeling the mehanialbehavior lose to the glass transition temperature, the bakstress is not inluded in themodel. It then follows that the Bauhinger-like e�ets via the bakstress annot be repro-dued by that model. As shown in Fig. 5.7(b), the Dupaix and Boye (2007) model annotreprodue reovery and simulations also result in vanishing reep.Let us then onsider the Anand and Ames (2006) model for the dwell stress level π = 59MPa and the dwell period 1200 s. Similar to the BPA model, the Anand and Ames (2006)model is aurate for monotoni loading but it fails during reep, i.e. the strain at the endof the �rst yle is signi�antly overpredited and the model annot reprodue the stresspeaks followed by reloadings, f. Fig. 5.8(a). However, reep during the following yles issatisfatorily aptured and the Bauhinger e�et does not evolve during the dwell periodof 1200 s. In ontrast to the BPA model, the Anand and Ames (2006) model is also able toreprodue reovery during the �rst yles, f. Fig. 5.8(b). Moreover, omparison of Figs.



68 5 Preditive apability of state-of-the-art models5.8(b) and 5.9(b) reveals that reovery during the yles as well as the Bauhinger e�etduring the last unloading are more aurately estimated by the Anand and Ames (2006)model than by the BPA model.
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Figure 5.8: The Anand and Ames (2006) model responses for BPA-PC at room temperature andat a onstant strain rate, ǫ̇ = 0.001 s−1. The repeated unloadings are performed to a) π = 59 MPaand b) π = 1.2 MPa and then the nominal stress π is kept �xed for 1200 s. The last unloading isperformed to zero stress. Uniaxial ompression data is taken from Dreistadt et al. (2009).
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Figure 5.9: The BPA model responses for BPA-PC at room temperature and at a onstant strainrate, ǫ̇ = 0.001 s−1. The repeated unloadings are performed to a) π = 59 MPa and b) π = 1.2MPa and then the stress π is kept �xed for 1200 s. The last unloading is performed to zero stress.Uniaxial ompression data is taken from Dreistadt et al. (2009).



696 The BPA model extension6.1 Model desriptionA omparison of the model and the experimental responses reveals the following shortom-ings in the present models:- The models predit a premature Bauhinger e�et.- The long-term reovery is highly overpredited by the models.- The models are not able to apture a nonlinear response during initial loading, un-loading and reloading.To ompensate for the shortomings of the models, an extension for the BPA model isproposed in this work. State-of-the-art (entropi network) models postulate that the bak-stress favors strain redution but that relaxation is too slow to observe during unloadingand may lead to exessive strain relaxation during long-term dwell, f. Haward and Thak-ray (1968) and Arruda and Boye (1993a). In thermodynami terms, the hains, whihare extended and then released, tend to the most probable, unstrethed and high-entropystate. The present models, however, are not able to trae this state orretly. Motivatedby these �ndings, two dashpots in parallel with the nonlinear Langevin spring are usedin the Extended BPA (EBPA) model to apture isotropi hardening behavior in the ma-terial. The purpose of the extra dashpot is to inrease the isotropi hardening e�et andthereby suppress the in�uene of kinemati hardening. A rheologial illustration of theEBPA model is shown in Fig. 6.1. The original and extra dashpot are modeled by theinternal state variables s1 and s2, respetively, i.e.
s = s1 + s2. (6.1)The evolution laws for the isotropi hardening variables s1 and s2 are taken as

ṡ1 = h1(1− s1/sss)γ̇
p, s1(0) = s0,

ṡ2 = h2(1−H(s2 − s̄2))γ̇
p, s2(0) = 0

(6.2)where γ̇p was introdued in (4.75), sss is a onstitutive parameter and H is the Heaviside-funtion whih prevents an exessive hardening e.g. during yli loading. The threshold s̄2an be found experimentally. To take the pressure into aount, the internal state variable
s in (4.75) is replaed by ss whih was given by (4.76). Here, h1 and h2 are onstitutiveparameters governing the isotropi softening and hardening. A glane at (4.75) and (6.2)2reveals that ṡ2 is positive and thus, s2 is monotonially inreasing. Sine s2 > 0 the amountof isotropi hardening inreases ompared to the original BPA model whih, thanks to themodel alibration, suppresses the evolution of the bakstress in the EBPA model. Havinga less pronouned evolution of the bakstress is of major importane during relaxationsimulations at a low-stress level, where the plasti evolution is partiularly governed bythe internal stress state, i.e. by the bakstress. Hoy and Robbins (2007) showed that
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σ̃ βFigure 6.1: Rheologial illustration of the EBPA model. The model is governed by the elements:two elasti springs a) and b), a visoelasti dashpot ), two visoplasti dashpots d) and a nonlinearLangevin spring e).the network of entangled hains has ability to prevent hains from deorienting withoutreovery of the marosopi strain. Sine this e�et is redued in the EBPA model results,isotropi hardening mehanism may be related to this mirostrutural harateristi ofpolymer glasses.VisoelastiitySine the initial response of amorphous glassy polymers an be onsidered nearly elasti,most of the models are based on a linear elasti onstitutive assumption. However, suhmodels are not able to satisfatorily reprodue transient e�ets during non-monotoniloading, whih shortomings are primarily a onsequene of negleted visoelasti e�ets,f. Hasan and Boye (1995). The in�uene of visoelastiity beomes also apparent inreep and relaxation as well as in yli loading proesses, f. Miehe and Kek (2000).The time-dependent behavior is a one onsequene of the maromoleular haraters ofthe moleules: the moleules need a relaxation time to attain the equilibrium state afterdeformation. Based on the experiments on amorphous polymers the following typialvisoelasti harateristis an be observed:- Under a onstant stress, the strain inreases (reep) or dereases (reovery) over time,f. Figs. 2.5 and 5.4.- Under a onstant strain, the stress dereases over time (relaxation), f. Fig. 6.2.- The e�etive sti�ness as well as the magnitude of the stress response depend on theapplied loading rate, f. Figs. 2.1 and 2.4.- Hysteresis during a loading yle is observed already in small strains, f. Fig. 2.4.There are two ways to desribe visoelasti material behavior: linear and nonlinear vis-oelastiity. For an overview of visoelasti theory, see e.g. Findley et al. (1989). Theunderlying assumption of linear visoelastiity is the Boltzmann superposition priniple



6.1 Model desription 71whih states that load or deformation responses applied to a material at di�erent times arelinearly additive, i.e. the stress is separable in both load and reep response aording to
σ(t) = Erǫ(t) +

∫ t

0

F (t− t′)ǫ̇(t′)dt′, or ǫ(t) =
σ(t)

Ec

+

∫ t

0

K(t− t′)σ̇(t′)dt′. (6.3)In (6.3), Er and Ec are the elasti moduli for relaxation and reep, respetively, and Fand K denote the relaxation and reep funtion, respetively. Nonlinear visoelastiityis when the stress annot be separated. Aording to (6.3), the stress depends on theentire deformation history or onversely, the strain depends on the entire stress history. Inontrast to the integral formulation, a multipliity of visoelasti models rely on di�erentialformulations, whih allow use of spring dashpot analogies.
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Figure 6.2: In�uene of the relaxation time onthe stress vs strain response of PVC. The testspeimen was subjeted to relaxation for periodsof 10 s, 20 s, 30 s, 40 s and 60 s. Experimentaldata is taken from G'Sell and Jonas (1981).

Many of the nonlinear visoelasti mod-els for amorphous polymers are based onthe Langevin statisti employed for rub-ber elastiity, f. e.g. Wu and Van derGiessen (1993), Zhang and Huang (2004)and Anand and Ames (2006). Klom-pen et al. (2005) proposed a nonlinearvisoelasti-plasti model whih also takesthe physial aging into aount. This modelis shown to aurately apture the yieldstress and the mehanial response duringmonotoni loading. However, the hara-terization of aging kinetis needs severalmaterial parameters to be determined.Examples of linear visoelasti modelsare the Zener (1948) model, whih onsistsof an elasti spring in parallel with a Maxwell element and the Burger's model, whihonsists of an elasti spring and a damper arranged in series with the Kelvin element.These simple models are later employed instead of generalized Kelvin and Maxwell models(Prony-series) to avoid the identi�ation of a large number of material parameters. In orderto desribe hysteresis of �lled rubbers, Huber and Tsakmakis (2000) proposed a modi�edZener model whih was later used by Amin et al. (2002) to predit the rate-dependentbehavior of high damping natural rubbers. Bergström and Boye (1998) proposed a rate-dependent model in whih two networks are used to desribe the mehanial behavior ofrubber; one network aptures the elasti behavior, whereas a Maxwell element is used topredit the visoelasti behavior. The Bergström and Boye (1998) model was later ex-tended to the modeling of mehanial behavior of �lled polymers in high strain rates, f.Quintavalla and Johnson (2004). In ontrast to the nonlinear visoelasti models, manyof the linear visoelasti models an satisfatorily be applied to model pratial behaviorof glassy polymers in only small strains and strain rates, f. Ward (1983) and Amin et al.



72 6 The BPA model extension(2002). Cao et al. (2012) proposed a linear visoelasti model onsisting of a spring anda Maxwell element for modeling the rate-dependent deformation behavior of glassy poly-mers prior to yielding. To aount for nonlinear deformation behavior in large strains,the models whih inlude both visoelasti and visoplasti ingredients need to be ap-plied, f. Chabohe (2008). Among suh models, Khan and Zhang (2001) and Khan et al.(2006) proposed a nonlinear visoelasti-plasti model whih is able to apture the defor-mation behavior of PTFE and Adiprene-L100 polymer, respetively. Based on the modi�edvisoelastiity-plastiity theory with overstress (VBO), Cola and Dusuneli (2006) mod-eled mehanial behavior of high density polyethylene (HDPE) under uniaxial monotoniand yli loading. Hasanpour and Ziaei-Rad (2008) presented a model based on the as-sumption that stress an be deomposed into visoelasti and elasti-plasti omponent.However, the apability of the models mentioned above is addressed only in a restrited setof loading situations and many of them deal with a numerial approah where an appliablehypoelasti stress equation must be applied in are.To better apture a large strain mehanial response during unloading and reloading,the EBPA model needs to be further modi�ed. In this extension, the elasti spring in theBPA model is replaed by a simple Kelvin hain involving a visoelasti dashpot and anelasti intermediate spring (Kelvin-Voigt element) in series with an elasti spring, f. Fig.6.1. The Kelvin-Voigt element is employed for prediting reep and reovery, while itsombination with the elasti spring is aimed at desribing the stress relaxation. Moreover,the visoelasti onstitutive desription allows the rate-dependent stress response to beaptured by the EBPA model.The idea to replae a single elasti spring by a Kelvin hain is motivated by the on-stitutive models for polymers, able to apture the initial visoelasti response prior to themarosopi yielding. Sine the Kelvin model alone is not able to desribe the magnitudeof reep and reovery in glassy polymers orretly, a spring needs to be added in seriesin order to take non-reoverable portion of strain into onsideration. Albeit the two dis-tint Kelvin-like elements present in the EBPA model are widely applied in modeling ofthe elasti and plasti deformation, respetively, their ombination has not been employedby author's knowledge. For high stresses and strain rates, the visoelasti dashpot resistselongation of the parallel spring, whereas the e�et of the dashpot beomes negligible inlow stress and strain rate levels. As a result, the dashpot dominates deformation behav-ior in high strain rates prior to yielding and results in an inreased e�etive sti�ness, i.e.the stress being inreased and the strain dereased. For low strain rates and longer timeperiods, the e�et of the visoelasti dashpot is attenuated and the intermediate springontributes to the total strain in the system.In terms of mirostrutural harateristis, the entanglements onneted to stronglyextended hains slip past one another during yield, while oiled neighboring hains resultin an inrease in the number of hain segments between entanglements, f. Fig. 7.7.This mehanism is attributed to the disentanglement proess and it results in visositybeing inreased, f. Khan and Zhang (2001) and Hoy and Robbins (2007). If a highstrain rate in relation to the relaxation time of the material is applied, the moleules have
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2.not enough time to relax and reah their equilibrium. Aording to Bardenhagen et al.(1997), elasti strething auses an inrease in visosity, while inreasing elasti strainrate redues visosity of the material. Based on these observations, visosity is related todisentanglement, it depends on strain level and rate and it is modeled in the EBPA modelby the two Kelvin-like elements whih are related to the plasti and elasti strething,respetively.To improve the auray of the linear visoelasti models in large multi-dimensionaldeformations, a multipliative deomposition of the elasti deformation gradient F e into avisous and an elasti part needs to be applied, i.e.
F e = F e

1F
e
2 (6.4)where F e

1 and F e
2 take the elasti strething in the spring a) and b) into aount, f. Fig.6.1. Similar to (4.9), use will be made of the polar deomposition of F e

1 and F e
2, i.e.

F e
1 = ve
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e
1 and F e
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e
2 (6.5)whih de�ne the orientation of the intermediate elasti on�guration in terms of the elastistreth tensors ve

1 and ve
2 and the elasti rotations Re

1 and Re
2, f. Fig. 6.3.One onsequene of the visoelastiity is that the rate form of the elastiity equationmust be derived. The governing equation for the system illustrated in Fig. 6.1 is given by

τ = L
e(E) : lnve

1 = η :
d

dt
(lnve

2) +L
e(E1) : lnv

e
2 (6.6)where the fourth order elastiity tensor Le was introdued by (4.114), E and E1 are elastionstitutive parameters and η is the sti�ness of the visous damper. In general, η is



74 6 The BPA model extensionregarded as a fourth order tensor and it depends on temperature, pressure and deformationrate, f. e.g. Khan et al. (2006). Typially, suh onditions an be met in manufaturingproesses, less under operating onditions. Considering relatively low strain rates underisothermal onditions and assuming visosity η to be a salar, only three new materialparameters h2, E1 and η enter the extended model. The details for the numerial treatmentof the proposed model under homogeneous and inhomogeneous deformation are given inthe Appendix A and in Se. 7.1, respetively.6.2 Calibration of the EBPA modelGlassy polymers show a strong dependene on a deformation state and therefore, the EBPAmodel is alibrated for three deformation modes: simple shear, uniaxial ompression andplane strain ompression. These homogenous deformation modes allow the numerial inte-gration to be performed using an ODE-solver instead of solving the boundary value prob-lem. The details of the Runge-Kutta-based method employed an be found in AppendixA.6.2.1 Compression and simple shear - monotoni loadingFirst, the EBPA model is alibrated to uni- and bi-axial ompression as well as to simpleshear tests for PC, onduted by Arruda and Boye (1993a) and G'Sell and Gopez (1985),respetively. During the tests, the stress-strain response of eah deformation mode hasbeen reorded for evaluation of the mehanial behavior of polymers. The tests have beenperformed at room temperature using a onstant strain rate, ǫ̇ = 0.001 1/s for ompressionand γ̇ = 0.003 1/s for simple shear. The elasti onstitutive parameters E = 3300 MPa,
E1/E = 0.35 and ν = 0.3 are kept �xed in the alibration and the parameters, A and α, aretaken to oinide with the values in Wu and Van der Giessen (1993). Identi�ation of thevisosity η = 6.0 ·104 MPas is done by �tting the initial response to the experimental data.The threshold value of the shear strength s̄2 = 40 MPa in (6.2) is determined throughalibration to a uniaxial ompression test program. Aording to this test, a speimen is�rst ompressed to ǫ = 0.8 followed by unloading to zero stress, then kept unstressed untilthe strain ǫ = 0.66 is reahed and �nally reloaded at the same strain rate ǫ̇ = 0.001 1/s, f.Table 6.1: Constitutive parameters of the BPA and EBPA model for PC. The alibration of theEBPA model is based on the experiments given in Arruda and Boye (1993a) and G'Sell andGopez (1985) for the ompression and simple shear, respetively. The BPA model parameters aretaken from Wu and Van der Giessen (1993).

E ν s0 sss h1 h2 γ̇0 A CR N αMPa MPa MPa MPa MPa s−1 MPa−1K MPaBPA 2300 0.30 97 76.6 500 2.0 · 1015 240 12.8 2.15 0.08EBPA 3300 0.30 96 61.3 168 9.9 5.4 · 1015 240 17.8 2.42 0.08
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Figure 6.4: Stress-strain urves for a) uniaxial and b) plane strain ompression of PC. Exper-imental data is taken from Arruda and Boye (1993a). The test has been performed at roomtemperature using a onstant strain rate ǫ̇ = 0.001 1/s.Arruda et al. (1995). The remaining parameters CR, N , s0, sss, h1, h2, and γ̇0 are obtainedusing the least-square �tting. The optimization problem is solved using the Nelder-Meadsimplex algorithm. The alibrated set of parameters for the EBPA model is given in Table6.1. For omparison, the original BPA model parameters, taken from Wu and Van derGiessen (1993), are also presented.
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Figure 6.5: Stress-strain urves for simple shearof PC. G'Sell and Gopez (1985) performed thetest at room temperature using a onstant strainrate γ̇ = 0.003 1/s.

Let us �rst onsider the ompressionmodes. Based on the parameters in Table6.1 the response of the original and the ex-tended BPA model are simulated and om-pared to the experimental results, f. Figs.6.4. Due to the linear elasti onstitutivelaw being used in the BPA model, f. Eq.(4.113), its initial elasti response deviatesfrom the EBPA model and the experimen-tal results that show nonlinear response.Later, in large plasti strains the model pre-ditions �t well to the uniaxial experimentaldata. Under plain strain ompression, theEBPA model �rst overestimates the stressresponse whereas in large strains the EBPAand the BPA models give the lower and theupper bounds, respetively.In ontrast to the uniaxial and plane strain ompression modes, the prinipal diretionsalter during simple shear, and onsequently the plasti spin is nonzero. Despite the vis-oelasti onstitutive desription, the EBPA model predition also deviates from the initialexperimental response and as a result the strain at the stress peak is underestimated, f.Fig. 6.5. After the initial yielding, the response is satisfatorily aptured by both the



76 6 The BPA model extensionmodels. When the shear strain reahes approximately 1.0, both the model preditionsdeviate signi�antly from the experiment. This disrepany between the models and theexperiment an be explained by shear band propagation and boundary e�ets, f. G'Selland Gopez (1985).6.2.2 In�uene of the entanglementsThe softening/hardening behavior of amorphous glassy polymers is asribed to spei�mirostrutural mehanisms. It is widely aknowledged that the softening of amorphousglassy polymers is mainly due to the ativation and growth of mirosopi shear bands.Argon (1973) and Bowden and Raha (1970) showed that softening followed by the yieldpoint is assoiated with the thermally ativated overoming of van der Waals interationbetween neighboring maromoleules. The van der Waals interation is losely relatedto the physial entanglements; an inreasing grade of entanglements sustains the van derWaals fores whih results in an inrease in the resistane to slipping between hains.Melik (2003) investigated the diretion-dependent behavior of both initially isotropiand pre-strained glassy polymers. They observed that the yield stress and the hardeningbehavior in tension onsiderably di�er from those in ompression. Tomita and Tanaka(1995) pointed out that the extension along the hain diretion inreases the number ofentanglements and a�ets the sti�ening of the material. Unlike in the tests for homogeneousdeformation, the experimental response of inhomogeneous deformation shows that thespeimen's elongation takes plae almost at onstant fore, f. e.g. Tomita and Tanaka(1995) and Wu and Van der Giessen (1995). Deformation loalizes in �ne shear bandswhih grow during elongation and prevent hardening in large strains. G'Sell and Gopez(1985) observed that the deformation behavior in shear is, for the one part, attributed to theintrinsi material behavior and for the other part to the propagation of marosopi shearbands. Wu and Van der Giessen (1994) onluded that the most important fator thatontrols the initiation of shear bands is the intrinsi softening, whereas the orientationalhardening is ruial for widening and loalization of the shear bands.In ontrast to the a�ne network models, where the number of entangled points of mole-ular hains is onsidered to be onstant, the experimental investigations impliitly suggestthe possibility of hanging the number of entanglements due to the plasti deformation,f. Tomita and Tanaka (1995). Melik (2003) performed uniaxial tests on semi-rystallinepolymers, whih indiated strain hardening being dominated by the resulting number ofentanglements. Chain slip and derease in entanglement density, i.e. disentanglement,were found to derease strain hardening and stress build-up. To evaluate the in�uene ofthe entanglements, a simple evolution equation for the number of entanglements will bepresented based on the following material harateristis:- The extension of a hain and the ompression perpendiular to the diretion of thehain inrease the number of entanglements and vie versa, whereas- the number of entanglements redues due to the shear deformation parallel to thehain diretion.
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Figure 6.6: a) Comparison of the BPA, EBPA and TT-BPA model responses under simple shear.b) N vs γ urve based on the evolution equation (6.7). Experimental data points of the shearand normal stress are depited by the markers "•" and "�", respetively. Experimental data istaken from Wu and Van der Giessen (1994). In aordane with the experiment, the strain rate
γ̇ = 0.003 is employed in the simulations.Based on the work of Tomita and Tanaka (1995), the number of entanglements m evolvesaording to

ṁ = χ(θ) : D̄
p
, m(0) = m0 (6.7)where χ(θ) is a temperature-dependent tensor-valued oe�ient, and D̄

p is the rate of plas-ti deformation. In the diretion of prinipal plasti strethes, the material harateristisare satis�ed by the following omponents
χii = c1(θ)(1−

m

mu
), χij = c2(θ)(1−

m

ml
), i 6= j = 1, 2, 3 (6.8)where c1 and c2 are temperature-dependent positive variables, mu is the upper and ml thelower bound of the number of entanglements. Based on (4.22) Tomita and Tanaka (1995)proposed the following relation for the kink number

N =
NA

4m
. (6.9)Sine the moleular weight of the polymer remains unhangeable, the total number ofstatistial links NA in the material element is onstant, f. Fig. 4.4. Using T = 296K, the BPA model parameters in Table 6.1 and the relation CR = nkT in whih k isthe Bolzmann onstant, one obtains NA = 6.73 · 1027 m−3 and m0 = 7.83 · 1026 m−3.The additional parameters needed in the model are mu = m0, ml = 0.34m0, c1 = 0 and

c2 = 0.43m0, f. Tomita and Tanaka (1995).Fig. 6.6(a) shows the model responses under homogeneous simple shear deformation.In ontrast to the BPA and the EBPA models, the BPA model augmented by the evolutionequation (6.7) (termed here the TT-BPA model) is able to aurately apture the experi-mental data also in large strains, γ > 1.0. The evolution of the number of hain segments
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N during deformation is illustrated in Fig. 6.6(b). The growth of N is almost 170% whih,in onsistent with (4.22), results in that the number of hains n and entanglements m ina unit volume signi�antly derease during the shear deformation, f. also Arruda et al.(1995). As a result of disentanglement, the sti�ness of the hain network redues and theshear stress response shows redued hardening in the material.6.2.3 Strain rate dependeneExperimental tests on amorphous polymers indiate their signi�ant sensitivity to strainrate, whih appears as inreasing yield stress, overall sti�ness, ompressive strength andinreasing strain energy as the strain rate inreases. Due to dissipative heating, the strainrate and temperature are oupled under high rates of plasti deformation. Even at therelatively low strain rate ǫ̇ = 0.1 1/s, Arruda and Boye (1990b) observed a 20 ◦C tem-perature rise in ompressed PMMA disks in large plasti strains. As a result, softeninghas two ontributions - material strain softening and thermal softening, f. Arruda et al.(1995). Mulliken and Boye (2006) assumed that the thermal softening in large strainsis due to the heat generation in the material, sine the plasti part of the strain energydoes not have time to transfer to the surroundings but is stored in the material as thedeformation rate inreases.Based on the alibrated material parameters, the ability of the EBPA model to apturestrain rate dependene of PC and PMMA is evaluated. Both the model results and theexperimental data for PC and PMMA at two di�erent strain rates are depited in Fig. 6.7.Let us �rst onsider the model preditions for PC. Even though the initial elasti sti�ness
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Figure 6.7: Comparison of the experimental and the model responses for a) PC and b) PMMAunder uniaxial ompression at di�erent strain rates. Experimental data for PC at ǫ̇ = 0.001−0.011/s is taken from Arruda and Boye (1993a). Experimental data for PMMA at ǫ̇ = 0.01 1/s istaken from Arruda et al. (1995) and at ǫ̇ = 0.0003 1/s data is taken from Anand and Ames (2006).The parameters needed in (6.10) are m0 = 1.09 · 1027, c0 = 0.5m0, βc = 100 s and ǫ̇ref = 0.0011/s. The EBPA model parameters for PC and PMMA are listed in Table 6.1 and 6.2, respetively.



6.2 Calibration of the EBPA model 79orresponding to the strain rate ǫ̇ = 0.01 1/s is overestimated, and as a result the strainat the yield point is underestimated, the experimental response is relatively well apturedin the strains greater than 0.1. At the low strain rate ǫ̇ = 0.001 1/s, the experimentaldata is aurately aptured in small strains as well. In ontrast to the preditions forPC, the experimental and the EBPA model responses for PMMA are almost inseparablewhen the low strain rate ǫ̇ = 0.0003 1/s is employed. As the strain rate inreases, theEBPA model annot reprodue the harateristi features of the PMMA-response involvingredued hardening in large strains. In order to apture the hardening behavior in largestrains, the following material harateristis are assumed to be of major importane:- An inreased rate of hain extension and hain ompression perpendiular to thehain diretion inrease the number of entanglements.- The number of entanglements redues due to an inreased rate of hain ompressionand hain tension perpendiular to the hain diretion.Basially, the above assumptions are satis�ed by the evolution equation (6.7). To strengthenthe strain rate e�et, the parameter c1 needed for the omponents in (6.8) is taken to bea linear funtion of the strain rate, i.e.
c1(ǫ̇) = c0(1 + βc(| ± ǫ̇| − ǫ̇ref)) > 0 (6.10)where c0 and βc are material parameters and 0 < ǫ̇ref < |ǫ̇| is the referene strainrate. The minus sign for ǫ̇ refers to ompression.
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Figure 6.8: Comparison of the experimental andthe model responses for PMMA under uniaxialompression at ǫ̇ = 0.01 1/s. Experimental datafor PMMA is taken from Arruda et al. (1995).The parameters needed in (6.11) are r = 4.0,
a = 10, 000 s, b = 2.6 and η0 = 8.0 · 104 MPas.

Sine only relatively small strain ratehanges are onsidered in this work, morerealisti models that take aount of theoupling between temperature and strainrate are of no interest here. Despite thissimple desription, the model response for
ǫ̇ = 0.01 1/s exhibits redued hardening inlarge strains, whih orresponds well withthe experimental result for PMMA, f. Fig.6.7(b). In ontrast to the onvex γ − Nurve present in Fig. 6.6, the growth of N isdesribed by a onave urvature. Despitethe visoplasti onstitutive desription, alinear dashpot with a onstant η is gener-ally inadequate to represent visous e�etsin amorphous polymers under loading ratehanges. Based on the work by Bardenhagen et al. (1997) and Khan and Zhang (2001),visosity η is assumed to be a nonlinear funtion of both the strain and strain rate, i.e.

η = ǫre
η0

(1 + (aǫ̇e)2)b
(6.11)



80 6 The BPA model extensionwhere r, a, b and η0 are material parameters. In the relation (6.11), the �rst term ǫrerepresents inrease in visosity with inreasing elasti strain, while the seond term re-dues visosity with the inreasing strain rate. This feature has been attributed to thedisentanglement, f. Khan and Zhang (2001). Fig. 6.8 represents the stress response at
ǫ̇ = 0.01 1/s as ǫe := 1 + ln(ve11) is used in (6.11). Compared to the EBPA model responseat ǫ̇ = 0.01 1/s in Fig. 6.7(b), the response of the nonlinear visosity model shows reduedhardening whih is in better agreement with the experiment. Moreover, the model is ableto apture the nonlinear initial response prior to the marosopi yield point well.6.2.4 Uniaxial ompression - non-monotoni loadingIn this setion, in�uene of the dwell stress level and duration of the dwell period onthe bisphenol A polyarbonate (BPA-PC) is investigated. In addition, the BPA and theEBPA models are evaluated by omparing their results with the experiments on BPA-PCand on PMMA under yli loading. Based on the experimental data taken from Dreistadtet al. (2009) for BPA-PC, and Anand and Ames (2006) for PMMA, the EBPA model isalibrated by using the least-square �tting. The elasti onstitutive parameters for BPA-PC are E = 3700MPa and η = 5.0·104 MPas, apart from the PMMA parameters E = 2700MPa and η = 8.0 · 104 MPas. For both the materials, the Poisson's ratio is ν = 0.37 andthe sti�ness of the intermediate spring is given by E1/E = 0.35, f. Fig. 6.1. The materialparameters resulting from the alibration are given in Table 6.2. For ompleteness, theBPA model parameters are also given in Table 6.2.In the �rst experiment, the speimen is loaded up to the true strain of 0.75 followedby unloading, during whih the resulting fore is linearly removed. The speimen is thenkept unstressed for 400 days. Sine the mehanial behavior after the dwell period is notof interest here and the duration of the test prior to dwell is short, the initial age of thespeimen an be onsidered large ompared to the test time and thus the aging e�ets anbe negleted, f. Govaert et al. (2000) and Klompen et al. (2005). In aordane with theexperiments, the strain rate 0.001 s−1 is onsidered in the simulations. In Fig. 6.9(a), thesimulated BPA and EBPA responses are ompared to the experimental data. As in theTable 6.2: Constitutive parameters of the BPA and EBPA model for BPA-PC and PMMA. Theparameters are obtained from the alibration to the tests performed at room temperature foruniaxial ompression, f. Dreistadt et al. (2009) and Anand and Ames (2006).

E s0 sss h1 h2 γ̇0 A CR N αBPA-PC MPa MPa MPa MPa MPa s−1 MPa−1K MPaBPA 2300 99 73 370 2 · 1015 241 14.0 1.85 0.08EBPA 3700 100 56.5 205 40 5.6 · 1015 241 14.0 2.2 0.08PMMA MPa MPa MPa MPa MPa s−1 MPa−1K MPaBPA 3700 121 91 300 5.6 · 1015 241 14.4 2.45 0.08EBPA 2700 121 63.3 184 38 5.6 · 1015 241 14.0 2.3 0.08
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Figure 6.9: a) True stress vs true strain for uniaxial ompression of bisphenol A polyarbonate.The experimental data is taken from Dreistadt et al. (2009). b) Athermal shear strength s andits omponents s1 and s2 vs true strain aording to the EBPA model. βdev
BPA and βdev

EBPA denotethe bakstress omponents in the diretion of the applied load.previous examples, both the BPA and the EBPA model apture the experimental responseaurately during monotoni loading. One unloading is initialized, the experimental re-sponse shows more inreasing strain than the model results. Later in the unloading phase,the BPA model shows a distint threshold for reversed plastiity, whereas the EBPA modeland the experimental response show a smooth transition, i.e. no distint Bauhinger e�etan be observed. The original BPA model predits a premature Bauhinger e�et whih isinitiated at 45 MPa, f. Fig. 6.9(a). At the end of the unloading phase, the EBPA modelresponse is lose to the experimental strain 0.66, whereas the original BPA model preditsa strain of 0.39 whih indiates the BPA model being inapable of prediting unloading.After a dwell period of 400 days, the permanent strain predited by the EBPA modelis approximately 0.50 whereas the experiment indiates a permanent strain of 0.62. Theoriginal BPA model is not able to predit reovery but results in a one-magnitude lowerpermanent strain of 0.062.The athermal strength s, its omponents s1 and s2, and the bakstress βdev as thefuntion of total strain are represented in Fig. 6.9(b). As shown, the new variable s2,present in the EBPA model, inreases along with the plasti deformation, and as a resultthe bakstress is redued. The maximum bakstress prior to unloading is about 30% greaterusing the BPA model than the EBPA model. As a onsequene, the EBPA model resultsshow a lower Bauhinger e�et than the BPA model preditions, f. Fig. 6.9(a). Fig.6.10(a) presents the model responses subjeted to di�erent pre-strains ǫ = 0.30, ǫ = 0.45and ǫ = 0.60 followed by unloadings to zero stress. The EBPA model predits nonlinearunloading response, whih meets the behavior observed in the experiments, f. Hasan andBoye (1995) and Weltevreden (2009). Again, the BPA model predits a reversed plastiitywhih initiates at di�erent stress levels depending on the pre-straining. If unloadings areontinued past zero stress, it appears that the residual strain and stress are not dependent
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Figure 6.10: a) The BPA and EBPA model urves representing the pre-straining and unloading.b) Evolution of the bakstress βdev. The pre-strains used are ǫ = 0.30, ǫ = 0.45 and ǫ = 0.60.The BPA and EBPA model responses are highlighted by the dashed and solid line, respetively.The inset in b) presents the total strain vs logarithmi time predited by the BPA model.on the applied pre-strain, but onverge approximately at the strain ǫ = 0 and the tensilestress σ ≈ 27 MPa. A premature Bauhinger e�et present in the BPA model results isdue to the exaggerated evolution of the bakstress, f. Fig. 6.10(b). In the inset, the totalstrain vs logarithmi time aording to the BPA model is presented, showing relaxation ofthe strain to be an instantaneous proess. However, the experiments as well as the EBPAmodel results indiate some retardation, f. e.g. Fig. 6.9.
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Figure 6.11: Comparison of the BPA and the EBPA model urves in small strains against theexperimental data in whih the speimen was ompressed to strain level of ǫ = 0.20 and then a)unloaded to ǫ = 0 or b) strained via ǫ = 0 to ǫ = 0.20. The inset plot highlights the evolutionof the bakstress βdev . Responses are alulated using the alibrated material parameters forPMMA. The experimental data is taken from Anand and Ames (2006).
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Figure 6.12: a) The EBPA and b) the BPA model responses under yli loading. The inset plotsshow the evolution of the bakstress βdev. Responses are alulated using the alibrated materialparameters for PMMA, f. Table 6.2.Anand and Ames (2006) onduted uniaxial ompression tests on PMMA involvingboth a single unloading and yli loadings, in whih the speimen was pre-strained up tothe two di�erent limits 13.5% and 19.9%. Both the BPA and the EBPA model responsesand the experimental data are shown in Fig. 6.11. Even if the EBPA model underestimatesthe stress at strains below 0.1 during the unloading phases, it does apture the loadingphases as well as the initial unloading aurately. Due to the linear elasti onstitutivedesription, the BPA model annot satisfatorily reprodue experimental response duringeither loading or unloading.Fig. 6.11(b) also shows the evolution of the bakstress aording to the models. Com-pared to the EBPA model result (solid line), the BPA model predits signi�antly greaterbakstress during the loading phase, whih then rapidly dereases during subsequent un-loading. As a onsequene, the BPA model predits almost linear response both duringinitial unloading and initial reloading, followed by ontinued deformation at almost on-stant stress. In ontrast to a purely elasti deformation, visoplasti deformation resultsin a loss (dissipation) of mehanial energy whih is equal to the area of the hysteresisloop through a loading yle. It an be observed from Fig. 6.11(b) that the BPA modelpredits muh greater dissipation than the EBPA model. Moreover, the models show theBauhinger e�et whih stabilizes during few yles led to the saturated state of hardening,f. Fig. 6.12. Sine the in�uene of isotropi hardening in the EBPA model is small in thisstrain regime, f. Fig. 6.9(b), both the model results and the amount of dissipation onlydeviate beause of the di�erent elasti onstitutive desriptions.Arruda et al. (1995) onduted experiments on PMMA in whih a speimen was sub-jeted to uniaxial ompression up to the strain ǫ = 0.890, then unloaded and �nally keptunstressed until the two strain values ǫ = 0.659 or ǫ = 0.832 were reahed. In order to re-veal an anisotropi state of the material, the speimen was reloaded at the same strain rate
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Figure 6.13: a) Comparison of the BPA and the EBPA model responses for PMMA under mono-toni loading and subsequent unloading to zero stress. The experiment, performed at a onstantstrain rate ǫ̇ = 0.0003 s−1, is taken from Anand and Ames (2006). b) Comparison of the modelresponses for PMMA: the anisotropi responses result from loading of an initially isotropi spei-men followed by unloading and a dwell period at zero stress. The tests are performed at onstantstrain rate ǫ̇ = 0.001 s−1 at room temperature, f. Arruda et al. (1995). The positions A and Bindiate the strains after the two di�erent dwell periods.and test temperature of its initial ondition. In large strains, polymer hains must undergoa signi�ant reorientation whih is primarily retained upon unloading. As a onsequene,reloading reveals anisotropy of the material whih is manifested as inreased hardeningone the yield point is reahed. Figs. 6.13 and 6.14(a) show the BPA and EBPA models'apability to predit the orientation-indued hardening behavior of PMMA. In ontrast tothe EBPA model, whih aptures monotoni loading, unloading and reloading followed bythe presribed dwell period well, the BPA model overestimates reovery during the dwellperiod and results in a premature Bauhinger e�et whih is initialized at σ = 30 MPa.
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Figure 6.14: a) Uniaxial isotropi response and anisotropi responses resulting from the twodi�erent deformation histories depited in Fig. 6.13(b) as the origin of reloading is set to ǫ = 0.b) Evolution of the bakstress during the deformation. The bakstress responses at the end of thedwell periods are depited by the letters A and B.



6.2 Calibration of the EBPA model 85Fig. 6.14(a) represents the anisotropi response resulting from the deformation history asthe origin of the reloading is set to ǫ = 0. Upon reloading, the EBPA model results, whihare followed by vastly di�erent strain histories, exhibit very similar anisotropi responsesbeing in good agreement with the experimental response.Arruda et al. (1995) onduted birefringene measurements on PMMA that indiatedthat the same orientation state exists in eah tests speimen and the resulting anisotropiresponse is virtually una�eted by the strain history. They showed that the di�erent strainhistories that resulted in equal bakstresses, in�uene very similar subsequent anisotropiresponse. It also appears from Fig. 6.14(b) that the bakstress responses evolving fromthe positions A and B are almost the same shape and therefore the EBPA model results inalmost idential anisotropi stress-strain responses upon reloading from zero stress. Basedon experimental observations, Hasan et al. (1993) and Melik et al. (2003) onluded thatthe mehanial history only in�uenes the yield stress, whereas the subsequent state an beregarded as independent of any prior history. It an be onluded that the proposed EBPAmodel satisfatorily aptures not only the mehanial behavior of an initially isotropimaterial but also the behavior of subsequent response in a pre-oriented material.Dreistadt et al. (2009) also onduted uniaxial ompression tests for repeated unloadingswhere the speimen was unloaded at �ve progressively inreasing strain levels: ǫ = 0.05,0.13, 0.27, 0.45, and 0.59. After eah unloading, the speimen was kept at a �xed nominalstress level during a presribed dwell period. Here, two di�erent stress levels are examined:
π = 59 MPa and π = 1.2 MPa for the dwell time of 12,000 s. After the dwell period,the speimen is reloaded until the next unloading level is reahed. The �nal unloading isperformed to zero stress.Let us �rst onsider the stress-strain response for π = 59 MPa, f. Fig. 6.15(a)-(b).During the �rst two dwell periods, exaggerated reep is predited by the BPA model.Contrary to the experimental response, the predited strain at the end of the seond dwellperiod is lose to the unloading strain value of the third yle. Note, that the in�uene ofthe new variable s2, present in the EBPA model, is small in this phase and therefore themodels deviate only due to the di�erent elasti onstitutive desription. It also appearsfrom the simulations that neither the original nor the extended model an reprodue thestress peak during reloading but tend towards the monotoni loading path.Next, let us onsider the low dwell stress, π = 1.2 MPa. A omparison of Figs. 6.15(a)-(b) and 6.15()-(d) reveals that reep is progressively replaed by reovery when the dwellstress dereases. Even though the EBPA model overpredits the reovery during the �rstyle, it is superior to the BPA model during the next two yles when the BPA modelpredits almost elasti response. Moreover, the BPA model strongly overestimates thelong-term reovery during the fourth yle, whereas the EBPA model and the experimentalresponse an be regarded as almost indistinguishable. As with the single unloading, theBPA model predits a premature Bauhinger e�et during the last unloading and as aresult, the true strain is strongly underestimated at the end of the unloading phase, f.Figs. 6.15(a) and 6.15().
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Figure 6.15: Uniaxial ompression responses for BPA-PC aording to the BPA and the EBPAmodel. The repeated unloadings are performed to π = 59 MPa a)-b) and π = 1.2 MPa )-d).Experimental data is taken from Dreistadt et al. (2009).The insets in Figs. 6.15() and (d) show the evolution of the bakstress aording to theBPA model and the EBPA model, respetively. The values of the bakstress prior to thetwo last unloadings are muh higher predited by the BPA model than by the EBPA model.As a result, the BPA model predits an exessive reovery or a premature Bauhinger e�etduring the subsequent dwell period or during the last unloading. Unlike the EBPA model,whih predits nearly similar repeated yles, the BPA model response shows a markeddrop in the bakstress during the fourth dwell period as well as during the last unloading.Consequently, the BPA model result shows almost linear stress response upon subsequentreloading from zero stress.



877 Investigations on inhomogeneous deformation state7.1 Algorithmi setting of the EBPA modelIn order to use the original BPA model and the proposed EBPA model for the simulationsof inhomogeneous deformation, they are implemented in the �nite element method. Sinelong-term behavior will be investigated, the proposed algorithm is based on a fully impliitbakward Euler method whih allows large time steps to be used. Similar to the BPAmodel, the elasti rotation Re in the EBPA model is hosen to be unity and onsequentlythe plasti spin W̄
p is nonzero. The plasti spin is numerially solved by introduinga skew-symmetri algorithmi plasti spin W̃

p whih is determined so that the elastipart of the deformation gradient F e is symmetri at the end of the integration interval,f. Holopainen and Wallin (2012). To speify the orientation of the elasti intermediateon�guration, the �rst omponent F e
1 in the deomposition (6.4) is hosen to be symmetri.For the sake of simpliity, the quantities at the known state tn are indiated by the subsript

n whereas the subsript n+ 1 for the updated state is omitted. In aordane with Weberand Anand (1990), the exponential update is applied to the plasti part of the deformationgradient F p, i.e.
F p = exp(∆tL̄

p
)F p

n. (7.1)A glane at (4.16) and (4.109) reveals that the exponential update (7.1) preserves theplasti inompressibility, i.e. det(F p) = 1. The tensor exponent is alulated by using thePade approximation, f. Steinmann and Stein (1996). Using (7.1) in (4.3), results in
F e = FF p−1 = FF p−1

n exp(−∆tL̄
p
). (7.2)As with the homogeneous deformation, the visous damping is desribed by a salar tar-geted to the one part of the elasti streth, ve

2. Based on the stress equilibrium (6.6), thestrain rate evaluates aording to
d

dt

(
lnve

2

)
=

1

η
(Le(E) : lnve

1 −L
e(E1) : lnv

e
2). (7.3)In all, the non-linear system of the residuals is given by

R1 : = F e − FF p−1
n exp

(

−∆t(D̄
p
+ W̃

p
)
)

,

R2 : = F e,T − F e,

R3 : = W̃
p,T

+ W̃
p
,

R4 : = F
e,T
1 − F e

1,

R5 : = (I +
∆t

η
L

e(E1)) : lnv
e
2 −

∆t

η
L

e(E) : lnve
1 − lnve

2,n,

R6 : = (s1 − s1,n − ṡ1∆t)/sss,

R7 : = (s2 − s2,n − ṡ2∆t)/sss

(7.4)



88 7 Investigations on inhomogeneous deformation statewhere the parameter sss was de�ned in (6.2)1. It should be mentioned that the nonlinearresiduals R4, R5 and R7 are omitted in the original BPA model. Note also, that theresidualsR2 andR4 onsist of three and the residualsR3 andR5 of six linearly independentequations. Compared to the other approahes referred in this thesis, stress rates whih needa spei� treatment involving e.g. objetivity, do not expliitly appear in the proposednumerial algorithm. The nonlinear system (7.4) is solved using the Newton-Raphsonmethod, i.e. Y i+1 = Y i+∆Y where Y := [F e W̃
p
F e

1 s1 s2] is the vetorized form of thestate variables. The inrement of the internal variables is given by
∆Y = −J−1R, where J :=

∂R

∂Y
(7.5)is the Jaobian and R := [R1 R2 R3 R4 R5 R6 R7] is the vetorized form of the residuals.For onveniene, the steps of the numerial integration algorithm for updating the internalvariables are summarized in Table 7.1. Linearization of the stress-strain relation neededin an impliit �nite element solution proedure is disussed in Miehe (1998), Stein andSagar (2008), Holopainen and Wallin (2012) and Holopainen (2012). The performane ofthe proposed integration sheme and the algorithmi tangent sti�ness (ATS) tensor thatenters the linearization of the equilibrium equations was evaluated during simulations. Theequilibrium state was typially found within 3-5 iterations.Table 7.1: Algorithmi update of internal variables based on the multipliative deomposition ofthe deformation gradient.

1. Load data: F , Y n := [F e
n W̃

p
n F e

1,n s1,n s2,n].

2. Set k = 0 and initialize F p|k=0 = F e−1
n F , F e

2|k=0 = F e−1
1,n F e

n.

3. Impliit update of the internal variables:WHILE ‖R‖ > tol
(i) Compute τ by (6.6) and β by (4.110).
(ii) Compute γ̇p by (4.75) and D̄

p by (4.109).
(iii) Compute the residuals R aording to (7.4).
(iv) Compute the Jaobian J := ∂R/∂Y .

(v) Update internal variables, Y ← Y n +∆Y by (7.5) and set k ← k + 1.END WHILE LOOP
4. Store updated variables Y := [F e W̃

p
F e

1 s1 s2] and proeed to the equilibriumiteration for F .



7.2 Comparison of the BPA and EBPA model preditions for long-term behavior 897.2 Comparison of the BPA and EBPA model preditions for long-term behaviorIn the subsequent examples, the ability of the proposed model to predit intrinsi materialbehavior as well as inhomogeneous, loalized deformation on amorphous glassy polymers isinvestigated. In the �rst example, the BPA model and the EBPA model are ompared. Atapered sheet is subjeted to tension followed by bending, then unloaded and �nally relaxedfor two months, f. Fig. 7.1. The boundary at y = 0 is lamped and the displaementat y = L is presribed during tension and subsequent bending. After these two loadingphases, the displaements ux/L = 0.2 and uy/L = 0.2 are reahed and then the resultingfore f is linearly removed during 60 s. The onstitutive parameters used in the simulationsare given in Table 6.2.The initial geometry and the deformed meshes are shown in Fig. 7.1. The three stagesof deformation orrespond to: the end of the seond displaement ontrolled phase, theend of unloading and the end of the dwell period. At eah stage, a ontour plot of theplasti streth λ̄p
ec, de�ned by (4.105), illustrates the loalization phenomenon. After theloading phase, the plasti deformation is learly loalized and the loalized region remainsalmost onstant during ontinued deformation. To highlight the di�erene between themodel preditions after long-term dwell, the deformed meshes predited by both the BPAand the EBPA model are shown in Fig. 7.1(d). In ontrast to the EBPA model result, theinitial shape of the speimen is almost reovered during the dwell period with the BPAmodel.
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Figure 7.1: a) The geometry of the BPA-PC speimen subjeted to ombined tension and bending.The geometry is governed by w/L = 1/5, r/L = 1/5 and H/L = 9/10. Visualization of the plastistreth λ̄p
ec in the deformed meshes at the end of b) loading (by EBPA), ) unloading (by EBPA),and d) dwell period of two months (by both the BPA and EBPA model). The element meshonsists of 450 mixed 4-node plane elements.
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Figure 7.2: The displaement omponent ux vs time during unloading and the dwell period oftwo months. The solid and dashed lines present the EBPA and BPA responses, respetively. Themarkers � and � indiate the �nal positions.In Fig. 7.2, the simulated displaement omponent ux versus the time is presented.During unloading, the model preditions are very similar albeit a slight deviation an beobserved at the end of the unloading phase. The predited displaement at the end ofunloading is approximately ux/L = 0.125 with the BPA model and ux/L = 0.137 withthe EBPA model. After the dwell period, the simulated displaement is ux/L = 0.022aording to the BPA model whih is well below the EBPA model result, ux/L = 0.100,f. also Fig. 7.1(d). Based on the disussion in Se. 6.1, we onlude that the amount ofisotropi hardening in relation to the amount of kinemati hardening is of major importanewhen modeling reovery.7.3 Evaluation of shear band propagation in a thin sheetIn this example, in�uene of the intrinsi material behavior, boundary onditions and initialimperfetion on the initiation and the propagation of shear bands along a parallel-pipedsolid are investigated. It will be shown that the material parameters whih are suitable formodeling homogeneous deformation behavior annot be used to predit typial S-shapedresponse under inhomogeneous deformation. The speimen with the initial length 2L andinitial width 2w subjeted to the simple shear deformation is shown in Fig. 7.3. Theinitial geometry is given by the ratio L/w = 7.5. Variations in the thikness are onlysigni�ant to seond order terms in strain, and thus plane strain ondition an be assumedto prevail. As the �rst attempt, a relatively oarse mesh onsisting of 6× 42 4-node planeelements is employed. The boundary at y = 0 is lamped and the displaement on theboundary y = 2w is presribed by the onstant deformation rates u̇x/2w = 7.5 · 10−3 s−1and u̇y = 0. During the loading phase, the resulting fores fx and fy at y = 2w aremonitored. In order to trigger the initiation of a marosopi shear band propagation dueto some inhomogeneity in the material, an initial imperfetion of the shear strength s0 ofthe form
∆s1 = ξs0 exp

[

−(x− L)2 + (L/w)2(y − w)2

0.01(L2 − w2)

] (7.6)
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Figure 7.3: The geometry and �nite element mesh of the retangular speimen subjeted to theplane strain simple shear. The geometry is given by L/w = 7.5.is employed. In (7.6), ξ determines the intensity of the imperfetion. Hene, the initialshear strength is s0 −∆s1.The EBPA model response based on the material parameters given in Table 6.1 is shownin Fig. 7.4(a). The overall response of the speimen is presented in terms of the shearstress, the normal stress and the applied shear strain whih are de�ned by τ := fx/(2L),
σ := fy/(2L) and γ := ux/(2w), respetively. One the shear stress maximum is reahed, amarked drop in the shear stress and a rise in the normal stress an be observed. It an beassumed that these responses do not represent real material behavior. The model whih anapture mehanial behavior of amorphous glassy polymers under di�erent homogeneousdeformation states ollapses as the same parameter values are applied to inhomogeneousdeformation. So, next the ability of the loalization phenomena and the boundary e�etsto explain this disrepany is investigated.Sine experimental results for the plane strain simple shear are not available, the EBPAmodel is alibrated to the experimental data for homogeneous shear deformation. Theparameters obtained from the alibration are listed in Table 7.2.Based on the parameters given in Tables 6.1 and 7.2 the initial and the realibratedEBPA model response are depited in Fig. 7.4(a). Even if the model responses deviatefrom the experimental data in the initial, visoelasti region, the alibrated model apturesTable 7.2: The values of the EBPA model parameters. Calibration of the EBPA model is basedon the experiments for simple shear given in G'Sell and Gopez (1985).

E η s0 sss h1 h2 γ̇0 A CR N αMPa MPa MPa MPa MPa MPa s−1 MPa−1K MPa2600 1.5 · 105 96 76 720 38 5.6 · 1015 240 13.8 2.22 0.08
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Figure 7.4: a) The initial and alibrated stress responses under the plane strain simple shear.b) The in�uene of the mesh on the predited shear and the normal stress response. Experi-mental data points of the shear and normal stress under homogeneous deformation are depitedby the markers "•" and "�", respetively. Experimental data is taken from Wu and Van derGiessen (1994). Based on ) the initial and d) the alibrated parameters, the deformed meshes at
ux/(2w) = 0.80 are visualized by the plasti streth λ̄p

ec, de�ned by (4.105).experimental data in large strains fairly well. Sine the material response aording to theEBPA model is intrinsially rate-dependent, the mesh sensitivity an be assumed to besmall, f. Needleman (1988). Fig. 7.4(b) shows the simulated responses under plane strainsimple shear for two di�erent regular meshes onsisting of 6× 42 and 12× 60 4-node planeelements. As shown, the shear stress responses are virtually indistinguishable and thedi�erene between the normal stress responses an also be onsidered as relatively small.However, the oarse mesh depited in Figs. 7.4(-d) is not �ne enough to satisfatorilypresent neither the shear band propagation nor the thikness of the shear band. In orderto resolve these matters, the mesh onsisting of 12×60 elements will be used in subsequentonsiderations.Fig. 7.5(a) ompares the EBPA model and the original BPA response, whih is basedon the parameters given in Table 6.1. Opposite to the ompression responses, the di�er-ene of the initial shear responses between the models is shown to be small. The modelresults are almost idential in small strains up to 0.06 but they di�er onsiderably from theexperimental response. As was shown in Fig. 6.9(b), the in�uene of the shear strength
s2 in the EBPA model is negligible in this phase and thus the BPA and the EBPA modelsonly deviate beause of the di�erent elasti onstitutive desriptions, f. (4.113) and (6.6),respetively. It an be assumed that the di�erene between the model preditions and theexperimental data is due to the initiation of �ne shear bands already in an early stage ofloalization.



7.3 Evaluation of shear band propagation in a thin sheet 93

0 0.1 0.2 0.3 0.4 0.5 0.6
−10

0

10

20

30

40

50

60

70

EBPA model

BPA model

PSfrag replaements
γ

τ,
σ

[MPa℄
0 0.5 1 1.5 2

−100

−50

0

50

100

150

           TT−BPA model

            BPA model

           EBPA model

PSfrag replaements[MPa℄
γ

τ,
σ

[MPa℄
0 0.5 1 1.5 2 2.5

2

3

4

5

6

PSfrag replaements[MPa℄[MPa℄
γ

N

a) b)

Figure 7.5: a) Comparison of the BPA and the EBPA model responses under the plane strainsimple shear. b) Comparison of the BPA, EBPA and TT-BPA model responses for homogeneoussimple shear deformation and evolution of N during deformation based on the evolution equation(6.7). Experimental data points of the shear and the normal stress are depited by the markers"•" and "�", respetively. Experimental data is taken from Wu and Van der Giessen (1994).Apart from the initial response, both the models apture the experimental large strainresponse relatively well; the BPA model gives the upper bound and the EBPA model thelower bound, f. Fig. 7.5(a). The di�erenes between the model preditions in the normalstress are larger than those in the shear stress. In strains greater than 0.1, the modelspredit inreasing tension whereas the experimental normal stress response shows almostzero stress. Moreover, the normal stress responses under homogeneous shear deformationshow inreasing ompression opposite to the plane strain simple shear, f. Fig. 7.5(b).The deformed meshes are depited in Fig. 7.6. The three stages of deformation orre-spond to: ux/2w = 0.15, ux/2w = 0.38 and ux/2w = 0.60. The �rst two stages are visual-ized by a ontour plot of the plasti streth, λ̄p
ec. The loalization of the plasti deformationis initialized at the enter of the speimen and it widens in the diretion perpendiular tothe shear diretion. A glane at Fig. 7.4 reveals that the shear stress drops owing to theintrinsi softening one the shear band is initialized. During ontinued deformation, theloalized zone rapidly expands towards the free edges. In addition to the ontinuous zone,small loalized regions an be observed around the orners of the speimen. In order tolearly show the expeted propagation of shear bands at large strains, the deformed meshis visualized by the normalized plasti shear strain γp/Γp in whih Γp := γ− fx/(2Lµ) and

µ is the shear modulus. At ux/2w = 0.60, the shear band pattern onsists of riss-rossingpaths whih diagonally expand from the orners towards the enter of the speimen.
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Figure 7.6: The geometry of the speimen subjeted to the plane strain simple shear. Thedeformed meshes at ux/(2w) = 0.15 and ux/(2w) = 0.38 are visualized by the plasti streth
λ̄p
ec, whereas the normalized plasti shear strain γp/Γp is hosen to illustrate the shear bandpropagation at ux/(2w) = 0.60. The intensity of the initial imperfetion is ξ = 0.01.7.3.1 Edge e�ets and in�uene of the entanglementsDuring deformation, the free edges beome urved with an S-shaped or a onvex urvature,f. Fig. 7.4(-d). Comparisons of the responses in Fig. 7.4(a) and the deformed shapes inFigs. 7.4(-d) reveal that the softening in the material is to some extent due to the defor-mation of the boundaries. Wu and Van der Giessen (1994) investigated boundary e�etsin simple shear deformation by inreasing the ratio L/w. Aording to their observations,in the speimen having in�nite length, the absene of free edges led to a marked redutionof the deformation inhomogeneity and to the loss of shear band propagation in the sheardiretion. To evaluate the edge e�ets, the stress responses for homogeneous simple sheardeformation are also presented in Fig. 7.5(b). In aordane with the experimental data
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Figure 7.7: Illustration of the disentanglement proess: a) initial network, b) deformed networknear the limit of the hain extensibility, ) disentanglement of hains and d) loal failure due tobreakdown of the entanglements. While the number of entanglements between the two hainsderease, oiled substituent side hains result in an inrease in the number of hain segmentsbetween the entanglements.taken from G'Sell and Gopez (1985), the shear rate γ̇ = 0.003 is employed in the simula-tions, f. Se. 6.2.2. The material parameters are given in Table 6.1. One the strain 1.0is reahed, the model responses show more hardening in the material than do the exper-imental data. As a result of shear band propagation and the deformation of boundaries,the shear fore fx needed for further inhomogeneous deformation remains almost onstant,whih agrees more losely with the experiments, f. 7.5(a). Also, the normal stresses ofopposite sign in Figs. 7.5(a-b) an be explained by the edge e�ets: the free boundariesunder homogeneous deformation remain straight lines, whereas under inhomogeneous de-formation they obtain a onvex or S-shaped urvature. The values of the tensile normalstress are even higher as the boundaries are S-shaped.Based on the evolution equation (6.7), the in�uene of the number of entanglementson the stress responses is also investigated. Using the EBPA model parameters in Table7.2, one obtains the initial values m0 = 8.56 · 1026 m−3 and NA = 7.53 · 1027 m−3. Theother parameters needed in the model are hosen to be c1 = c2 = 0.43m0, mu = 1.1m0 and
ml = 0.64m0. Based on the relation (6.9) and the model assumptions under onsideration,it an be onluded that under shear deformation the number of entanglements and haindensity derease while the number of kinks N inreases. As is depited in Fig. 7.5(b), theloking streth √N during the homogeneous shear deformation reahes almost a twofold in-rease whih denotes signi�ant disentanglement in the material. One some hains reahtheir limit of extensibility, the entanglements onneted to these hains slip open whileoiled neighboring hains result in an inrease in the number of rigid links and hain seg-ments between entanglements, f. Fig. 7.7. In ontrast to the homogeneous deformation,the number of entanglements grows slightly due to the loalization phenomenon but itsin�uene on the marosopi stress responses is negligible, f. Fig. 7.8. Moreover, the sim-



96 7 Investigations on inhomogeneous deformation stateulations indiate that the number of entanglements alters only slightly as the parametersin (6.7) are varied. Sine this simple rule is not able to apture disentanglement duringinhomogeneous deformation, also another rule for the hain density will be introdued lateron. However, it an be onluded that in loalized regions (shear bands) ompression per-pendiular to the hain diretion inreases and this together with the extension of hainsinreases the number of entanglements in relation to the homogeneous shear deformation.As shown, the redued number of entanglements is of a major importane when model-ing homogeneous loal deformation behavior in shear, whereas the inhomogeneous deforma-tion is dominated by the propagation of shear bands and by the boundary onditions. Oneonsequene of this is that under homogeneous deformation the EBPA model predits lesssoftening and more orientational hardening than under inhomogeneous deformation. It anbe onluded that the intrinsi softening promotes the initiation of shear bands, whereasthe kinemati hardening is seen to be a driving fore for widening of shear bands. Thenumerial results in Wu and Van der Giessen (1994) also show that there is no evidene ofshear band propagation without intrinsi softening in the material. Sine softening in theEBPA model is primarily ontrolled by the softening slope parameter h1 and the intensity
sss/s0, their values under inhomogeneous deformation need to be signi�antly inreased.The goal of the subsequent setions is to �nd the mehanisms whih, one implementedin the model, allow the same material parameters to be used for both homogeneous andinhomogeneous deformation modes.

x

y
m/m0

2w

2L

ux

fy

fx

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

20

25

30

35

40

45

c
1
=c

2
=0

c
1
=c

2
=0.43m

0
, m

u
/m

0
=1.10, m

l
/m

0
=0.64PSfrag replaements

γ

τ,
σ

[MPa℄
Figure 7.8: In�uene of the number of entanglements on the overall stress vs strain response.Deformed mesh of the retangular speimen is visualized by the number of entanglements m/m0.The parameters used in the simulation are given in Table 7.2.



7.4 Experiment and simulation of old drawing proess of a PC speimen 977.4 Experiment and simulation of old drawing proess of a PCspeimen7.4.1 Test arrangement and the omputational modelIn order to evaluate the propagation of inhomogeneous deformation and to study thein�uene of the mirostrutural mehanisms to this proess, old drawing experimentson PC were performed. Based on the experiments, the auray of the EBPA modeland its numerial implementation are also evaluated. Cold drawing, also termed nekpropagation, is a standard tehnique whih is used to produe anisotropi harateristisand hardening in polymers. The test speimen under onsideration is dumbbell-shaped,and a layout of the testing arrangement is depited in Fig. 7.9. The details of the speimen'sgeometry are spei�ed in ISO 527-2. The displaement at y = 0 is �xed by a grip and thedisplaement at y = L during drawing is presribed by a onstant deformation rate. Sine inessene propagation of plasti instability along the speimen is a mehanial phenomenon,isothermal onditions are assumed to prevail. To restrain an inrease in temperature dueto the dissipative heating, a slow ross head speed u̇ = 2 mm/min was used in the test. Theelongation was restrited to u = 40 mm to prevent loalized deformation at the interfaeof the gauge setion and the grips. Unloadings to di�erent dwell levels were performed ata onstant rate 1 kN/min. During the tests, the displaement u and the applied load fwere monitored. The tests were performed by using the Instron © 5967 tension/ompressioneletromehanial testing mahine equipped with a variety of load ells. The mahine givesa fore measurement with error less than 0.5% of the reading down to 1/500 of load ellapaity, 30 kN. The testing mahine was ontrolled by Blue Hill 3 software. The softwarewas used to make three types of tests for the speimens:1. The test speimen is drawn until the elongation of u = 15 mm or u = 40 mm isreahed. The drawing is followed by unloading to zero stress. Finally, the speimenis relaxed for one month.2. As with the �rst test onerning the elongation up to u = 40 mm, but several loadingyles are performed involving unloadings to f = 60 N. Unloadings are initialized atprogressively inreasing levels u = 2.0 mm, u = 8.4 mm, u = 15.8 mm and u = 39.3mm. The �rst three unloadings are followed by a dwell period of 120 s when the loadlevel is kept at onstant.3. As with the seond test, but the dwell level of f = 1000 N is applied.In addition, the �rst test was reorded by a digital amera whih aquired the images ofthe deformed shape at intervals of one millimeter.Tomita (1999) and also Miehe et al. (2009) investigated the thikness-redution of thedumbbell-shaped PC-speimen during a old drawing experiment. The experimental re-sults obtained using optial measurements showed that the thikness-redution of the sam-ple remains small until the deformation starts to loalize. The thikness-redution reahedits maximum value of 20-25% (≈ 1 mm) being onstant over the loalized zone. Aording
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w uFigure 7.9: The layout of the test arrangement. The test speimen under study is dumbbell-shaped, the geometry is given by H/L ≈ 0.90, w/L ≈ 0.17, w2/L ≈ 0.09 and t/L ≈ 0.035 where tdenotes the speimen's thikness. Nek initiation is depited by ȳ. The details of the speimen'sgeometry are spei�ed in ISO 527-2. The tests were performed in the Laboratory of DMS at TUT.to our tests, the redution of the width in the gauge setion was virtually the same, 22% (≈2.2 mm). Wu and Van der Giessen (1995) investigated in�uene of a redution of the rosssetional area (geometri softening) in relation to the intrinsi softening. Even though thethikness-redution was moderate, the intrinsi softening dominated the loalization phe-nomenon involving nek pattern and the rate of nek propagation. Moreover, the thiknessof the speimen in relation to the other dimensions an be onsidered relatively large andthus plane strain ondition is assumed to be suitable for the alibration.Sine the initial amorphous struture of the material in the model is onsidered ashomogenous, the loalization is triggered by introduing a small initial imperfetion
∆w2 = w2ξ0 (7.7)so that the width of the gauge setion at y = ȳ is w2 − ∆w2, f. Fig. 7.9. In the �rstexperiment, nek was initiated near the enter of the speimen, i.e. ȳ = L/2, whereas in theseond and the third experiment nek started to propagate at ȳ = 0.55L. In the numerialanalysis, only a quarter and a half of the speimen are modeled beause of the symmetryof the geometry and boundary onditions. The �nite element disretization employed is ofa mesh with 196 and 392 4-node plane elements, respetively. Moreover, there exist severalstudies that show the initial response of amorphous polymers to be heterogeneous. Tomita



7.4 Experiment and simulation of old drawing proess of a PC speimen 99

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

EBPA model, ξ=0
EBPA model, ξ=0.03
Data

PSfrag replaements
u [mm℄

f

[N℄ PSfrag replaements[mm℄[N℄
0 5 10 15 20 25

0

500

1000

1500

2000

2500

3000

3500
EBPA model, C

R
/s

0
=0.1379, s

ss
/s

0
=0.5729

EBPA model, C
R
/s

0
=0.1675, s

ss
/s

0
=0.5729

Data

EBPA model, C
R
/s

0
=0.1546, s

ss
/s

0
=0.6804

PSfrag replaements[mm℄[N℄
u [mm℄

f

[N℄ PSfrag replaements[mm℄[N℄[mm℄[N℄
a) b)

Figure 7.10: E�et of a) the intensity ξ and b) the orientation hardening parameter CR and thesaturation value sss on the predited fore vs elongation response. The rest of the parametersare listed in Table 6.2. The deformed meshes for ξ = 0.03 and for the ratio CR/s0 = 0.1675are visualized by the plasti streth λ̄p
ec at the end of loading. The initial mesh is also disturbedaording to (7.7) using the intensity ξ0 = 0.002.and Uhida (2003) proposed that the heterogeneity should be taken into aount eitherby the inhomogeneous distribution of hain density or by the initial heterogeneous shearstrength distribution. In the EBPA model, the hain density is inluded in the modelingof kinemati hardening via the bakstress, whereas the shear strength s1 evolves aordingto (6.2). In addition to the width redution (7.7), the initial shear strength distribution inthe EBPA model is disturbed by the following form

∆s0 = ξs0 cos
(π(ȳ − y)

ȳ

)
, s0 = s0 −∆s0, (7.8)where ξ is the intensity, f. Wu and Van der Giessen (1995).7.4.2 Calibration for inhomogeneous deformationAs well as the material of the test speimen (Lexanr 223R) di�ering from the PC-polymersgiven in Tables 6.1 and 6.2, the loalization phenomenon whih was disussed in Se. 7.3neessitates that some of the material parameters needs to be alibrated to the data of theold drawing experiment. The alibration is initialized using the BPA-PC parameters forhomogeneous deformation given in Table 6.2.The in�uene of the intensity ξ, the orientation hardening parameter CR and the sat-uration value sss on the predited f − u response is shown in Fig. 7.10. As the intensities

sss/s0 and CR/s0 derease, the response shows stronger intrinsi softening, whereas nosigni�ant e�et due to the hange of the intensity ξ an be observed, f. also Wu andVan der Giessen (1995). It is also found that the loalized zone does not extend but isonentrated during further elongation. However, experimental investigations show thatthe plasti instability (neking) does not ontinue to loalize, but tends to propagate along
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Figure 7.11: In�uene of a) the saturation value sss and the hardening slope h1 and b) the ratios
mu/ml and c1/c2 on fore vs elongation response. In b), the deformed mesh at the end of loadingis visualized by the hain density m/m0. The intensity of the initial imperfetion in (7.7) is setto be ξ0 = 0.002 while ξ = 0 in (7.8).the sample, f. G'Sell and Jonas (1979), G'Sell and Gopez (1985), Arruda and Boye(1990a) and Wu and Van der Giessen (1995). If higher values for CR/s0 and sss/s0 areapplied while the rest of the parameters are kept the same, nek does not stabilize andthe response shows only a gradual softening slope. As it is pointed out in Fig. 7.11(a),high values of h1 result in a deep post-yield drop and ompensate for the redued softeningslope as the values of CR/s0 and sss/s0 are inreased.In addition to the strain softening behavior, we will now study the in�uene of thenumber of entanglements to the loalization phenomena. The evolution equation for thenumber of entanglements is given by (6.7). As the ondition ml/mo < mo/mu is satis�ed,and the ratio c1/c2 is hosen to be large enough, the in�uene of the shear deformationredues with regard to tension. Fig. 7.11(b) presents the e�et of the intensities mu/mland c1/c2 on both the f − u response and the evolution of the hain density. A raise inthe values mu/ml and c1/c2 in (6.7) results in an inrease in the hain density while thenumber of statistial links N dereases. Aording to the model assumptions, this denotesthat the polymer hains extend and align with the loading diretion while ompressionperpendiular to the hain diretion inreases. Despite the use of a relative-large rangeof the model parameters, the simulations indiated that the growth of the hain densitywithin loalization is minor (≈ 5%) and only a small hange in the f − u response an beobserved.One the alibrated values c1 = c2 = 0, h1 = 720 MPa, sss = 77 MPa and s0 = 96MPa for monotoni loading have been found, the in�uene of the visosity η on the modelresponse for yli loading is studied, f. Fig. 7.12. During the �rst yle, the response isvisoelasti and unlike in the experimental data, some reep an be observed. Creep tendsto inrease as the visosity dereases. In large strains, reep is progressively replaed byreovery. The higher values of the visosity and the dwell stress are applied, the smaller
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Figure 7.12: In�uene of the visosity η on the fore vs elongation response at two di�erent dwelllevels a) f = 1 kN and b) f = 60 N. In the simulations, the �tting c1 = c2 = 0, E = 2550 MPa,
sss/s0 = 0.80 and h1 = 720 MPa is employed. The rest of the parameters are listed in Table 6.2.The intensities of the initial imperfetions in (7.7) and (7.8) are set to be ξ0 = 0.002 and ξ = 0,respetively.amount of reovery an be observed. The in�uene of the visosity on the large-strainresponse is relatively small during monotoni loading but it dominates the response priorto the maro-yield point as well as reovery at both dwell levels f = 60 N and f = 1kN. Reovery is most aurately predited by a relatively high value η = 1.5 · 105 MPaswhile the Young's modulus needs to be redued to E = 2550 MPa to better apture theinitial response. It should be notied that the experimental response for old drawing anbe aptured fairly well using the alibrated parameters for plane strain simple shear, f.Table 7.2.7.4.3 Evaluation of the model resultsDuring the tests, the displaement u versus applied load f was monitored. The experi-mental response as well as both the EBPA and the BPA model responses are presented inFigs. 7.13 and 7.14. Apart from the realibrated softening parameters s0 = 92 MPa and
sss = 69 MPa, the BPA model response is obtained using the material parameters given inTable 6.2. Aording to the EBPA model, the yield point is reahed at u ≈ 5.5 mm whihslightly di�ers from the experimental data thanks to the relatively high visosity applied tothe model. Due to the elasti onstitutive desription, the BPA model predits almost lin-ear initial response and as a result, the displaement at the yield point is underestimated.One the yield point is passed, the responses show a signi�ant drop in fore, whih is dueto softening in the material. During ontinued deformation, the loalized zone extendsmore or less at onstant fore, whih indiates that stable nek is present, f. Stokes andNied (1986).A omparison of Figs. 7.13 and 7.14 reveals that the magnitude of reovery dereasesas the dwell level inreases. In ontrast to the EBPA model, unloadings to f = 60 N are
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Figure 7.13: Comparison of a) the EBPA and b) the BPA model with the experimental PC-response. A dumbbell-shaped speimen is subjeted to the extension at a ross-head speed u̇ = 2mm/s. The unloadings are performed to f = 60 N followed by the dwell period of t = 120 s. Inthe BPA model response, the arrow indiates an additional loop. The deformed shapes at the endof loading are visualized by the plasti streth λ̄p
ec.
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Figure 7.14: Comparison of a) the EBPA and b) the BPA model with the experimental PC-response. A dumbbell-shaped speimen is subjeted to the extension at a ross-head speed u̇ = 2mm/s. During the dwell period of 120 s, the fore f = 1000 N is kept at onstant. The deformedshapes at the end of loading are visualized by the plasti streth λ̄p
ec.not satisfatorily aptured by the BPA model whih predits an almost elasti responseduring the seond yle and a premature Bauhinger e�et during the last unloading tozero stress. If an additional loop is performed, only a small yli shift of the hysteresis loopduring this last unloading an be observed, i.e. the BPA model shows the saturated stateof hardening, f. Fig. 7.13(b). Comparison also reveals that the BPA model in relationto the EBPA model results in less plasti strething and more di�use nek. The di�erenetends to inrease as the dwell level is redued. Unlike with the model responses, small
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Figure 7.15: a) Comparison of the EBPA model and the experimental PC-response involving long-term dwell. b) The displaement u vs time during the dwell period of one month. The markers •and � (almost superposed) indiate the elongations at 60 s, 300 s, after one week and after onemonth aording to the EBPA model and the experiment, respetively. The deformed shape atthe end of the loading phase is visualized by s2/s0.peaks during reloadings an be observed in the experimental response. However, the peaksour in a narrow strain regime and do not in�uene the subsequent deformation behavior.It an be onluded that the models are able to apture the harateristi features of load-elongation response during monotoni loading. In ontrast to the BPA model, the EBPAmodel aptures not only the elongation where the softening is initialized, but also amountof softening as well as reovery during the dwell periods at presribed fores.In order to investigate the amount of relaxation, the speimen is drawn until the elonga-tion u = 15 mm is reahed and then the load is linearly removed. Both the fore-elongationresponse and the elongation versus time are depited in Fig. 7.15. During relaxation, thelength of the speimen is measured at four di�erent phases: t = 60 s, t = 300 s, afterone week and after one month. As shown, the EBPA model aurately aptures the ex-perimental data through the whole relaxation period. The new variable s2, whih in theEBPA model ontrols isotropi hardening in the material, inreases along with the plastideformation and reahes onsiderable values ranging 0.10−0.15s0. Similar to homogeneousdeformation, we onlude that the amount of isotropi hardening in relation to kinematihardening inreases aording to the EBPA model, and as a result, long-term reovery issigni�antly redued.The development of inhomogeneous deformation during the �rst test is presented inFig. 7.16. The average plasti streth λ̄p
ec, de�ned by (4.105), is hosen to visualize thephenomenon. For omparison, the images reorded during the �rst test are presentedin Fig. 7.17. The seleted stages of deformation depit the initiation, stabilization andpropagation of nek. As the neked region approahes the grips, the f−u response exhibitshardening again. In small strains below the maro yield point, the material behavior isvisoelasti and the streth �eld is uniform. Further extension develops inelasti strain
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Figure 7.16: a) The geometry and �nite element mesh of a dumbbell shaped speimen. Thedeformed shapes are visualized by the plasti streth λ̄p
ec at three di�erent phases: b) u = 10 mm,) u = 20 mm and d) at the end of the last unloading. The simulation using the EBPA model isperformed at onstant deformation rate u̇ = 2 mm/min at room temperature. In the simulations,the �tting, ξ = 0, ξ0 = 0.002, c1 = c2 = 0, E = 2550 MPa, sss/s0 = 0.80, η = 1.5 · 105 MPas and

h1 = 720 MPa, was used. The rest of the parameters are listed in Table 6.2.

Figure 7.17: Snapshots of a dumbbell shaped test speimen during elongation: u = 6 mm, u = 20mm, u = 30 mm, u = 40 mm, u = 50 mm, u = 60 mm and u = 70 mm. The test was performedat a onstant ross-head speed u̇ = 2 mm/min at room temperature.loalization in the material, whih extends from the enter of the speimen towards thegrips, f. phases (b-d) in Fig. 7.16. The loalized zone is not onentrated but expands
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+•Figure 7.18: a) Comparison of the experimental and the EBPA model responses for two- andthree-dimensional deformation. b) The thikness-redution ratio t/t0 at x = 0 and y = (L+u)/2.) The development of s1, s2 and the plasti streth λ̄p
ec in the middle of the speimen. The markers

• and + indiate the thikness ratio aording to the model and the experiment, respetively. Thedeformed shapes during the stabilized nek, u = 15 mm and u = 20 mm, are visualized by λ̄p
ec.through the gauge setion, i.e. the nek is rather di�use. Comparison of Figs. 7.13, 7.14,7.16 and 7.17 reveals that, aording to both the BPA model and the experiment, theloalized zone extends and reahes the end of the gauge setion more rapidly than in theEBPA model. The deformed shapes are haraterized by a smooth width redution whihis initialized at the enter and moves towards the grips during elongation. Compared tothe EBPA model result, the test speimen exhibits a rather sharp nek pro�le, whih isprobably due to the negleted volume hanges (geometri softening) assoiated with thethree-dimensional deformation, f. Wu and Van der Giessen (1995), Steenbrink et al.(1997) and Zaïri et al. (2008).In order to investigate the thikness-redution and its in�uene on the marosopiload-elongation response, the simulation was performed using a three-dimensional �nite-



106 7 Investigations on inhomogeneous deformation stateelement ode where the EBPA model was employed. The �nite element disretization isof a mesh with 8-node linear hybrid brik elements (onstant pressure). In addition tothe displaements, the logarithmi strain �eld ǫ in the loading diretion is monitored. Fig.7.18(a) shows the in�uene of the deformation mode on the f − u response. Even thoughthe model responses slightly di�er during the softening phase, the results are virtuallyindistinguishable one nek has been stabilized. Fig. 7.18(b) shows a rapid dereasealso in setion thikness, whih is due to softening in the material. Sine the relativethikness redution is almost equal with the relative width redution (≈ 22%), geometrisoftening whih appears as the di�erene between the true and the nominal stress responsesis signi�ant. With further elongation, the thikness-redution reahes a plateau at almostthe same phase with the axial fore indiating stabilization of neking. As shown, thethikness-redution in relation to the elongation is small, (t0 − t)/u ≈ t0/H where t0 and
t are the initial and urrent thikness, respetively. Moreover, the softening/hardeningbehavior in the material is very similar to that observed under uniaxial ompression, f.Figs. 6.9(b) and 7.18().The deformed shapes of the test speimen are also presented in Fig. 7.18. A omparisonwith Fig. 7.16 reveals that the deformation mode has not marked in�uene on the nekpropagation and the intensity of plasti strething under hange of the modes remainsalmost unaltered. G'Sell et al. (2002) onduted tensile tests on amorphous PET thatindiated the importane of strain-indued volume hanges on plasti instability due tothe damage proesses. They onluded that the kinetis of plasti instability (the rate ofnek growth) is a ombination of the shear band propagation and damage evolution.7.5 Investigation of void growthIt is widely aknowledged that the marosopi mehanial behavior of amorphous glassypolymers stems from three major mirostrutural harateristis: the number of entan-glements and statistial links between the entanglements, the growth of shear bands, andthe extent of free volume around the hain moleules, f. e.g. Argon (1973), Hasan andBoye (1995), Steenbrink and Van der Giessen (1998b) and Anand and Gurtin (2003).However, most of the urrent models are based on the assumption that the plasti defor-mation only evolves beause of the development and propagation of shear bands withoutvolume hanges. The objetive of this setion is to investigate the amount of void growth,the shear band formation in the ligaments between the voids and the possibility to voidoalesene during deformation. Here, the onept of free volume is employed to desribethe voids or the loosely paked regions in the PC under onsideration. In ontrast torubber-toughened polymers, the void is onsidered as oneptual with no lear physialinterpretation. However, sine the voids are evenly distributed in the material, the growthof voids is approximated by using the models whih are onventionally applied to the mod-eling of void growth due to avitation of small rubber partiles (seond-phase partiles) orimpurities present in polymer-rubber blends. An example of these polymer blends is PC in-orporating small polyarylonitrile-butadiene-styrene (ABS) partiles, f. e.g. Pijnenburg
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Figure 7.19: Transmission optial mirograph of shear bands whih form a honeyomb networkin a PET sample subjeted to uniaxial tension. Sanning eletron mirograph on the right sideshows razes of about 1 µm in length. The tensile axis is vertial. After G'Sell et al. (2002), Figs.7-8.et al. (2005).Onset of the volume hanges in amorphous glassy polymers are the growth and oa-lesene of existing voids in addition to the nuleation and growth of new voids. G'Sellet al. (2002) investigated the in�uene of damage (razing, avitation of rubber partilesand miro-raking within the matrix material) on the plasti deformation and stabilityin PET and high-impat polystyrene (HIPS). Based on the optial mirographs, f. Fig.7.19, they onluded that shear bands are nuleated from the tips of existing razes, ratherthan the razes being nuleated at the intersetion of �ne shear bands. To trigger a tran-sition from razing to shear yielding, some heterogeneity, whih relieves the build-up ofhigh hydrostati stress, is needed in the amorphous struture, f. Melik (2003). Theyalso showed that the thikness of the ligaments within the struture is ruial. As a re-sult of the damage proesses, volume strains in relation to total strains, i.e. the plastidilatation, was found to be signi�ant. G'Sell et al. (2002) onluded that the onset ofplasti deformation is razing and the plasti stability is essentially ontrolled by dam-age proesses. Mahajan et al. (2010) onduted MD simulations to investigate the roleof deformation-indued disentanglement to void nuleation in amorphous glassy polymers.They onluded that disentanglement inreases under highly triaxial stress states, whihresults in void nuleation being inreased. They also pointed out that porous regions arereated at the loations where almost all the polymer hains have slipped away exept afew that are �rmly anhored at their ends and pulled taut, f. Fig. 7.7.Due to the existene of voids around the hain moleules, the yield behavior of amor-phous glassy polymers depends on hydrostati pressure. In subsequent onsiderations,damage is asribed to the distributed growth of void volume during plasti deformation.The damage mehanism is shematially illustrated in Fig. 7.20. During nuleation andinitial growth of voids, the deformation is onsidered as homogeneous. One the oales-ene of voids is initialized, the transformation to the loalized deformation phase takesplae.Miromehanial models are frequently invoked to investigate the bifuration away froma nominally uniform state of deformation. The following features should be inluded in
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Figure 7.20: A shemati representation of the dilatational damage mehanism: a) nuleation ofvoids, b) void growth, ) initialization of void oalesene and d) the oalesed voids. The �gureis modi�ed from the original taken from Alibadi (2001).models suitable for multi-phase polymers:- A geometri desription of a representative volume element (RVE) used to embodythe essene of the mirostruture under study.- The onstitutive desription of the mehanial behavior of eah phase.- The onstitutive desription of the phase interfaes.- A treatment of homogenization for prediting the marosopi mehanial behaviorof the RVE.With regard to the onept of free volume, only the onstitutive model for the matrixmaterial (PC) is of an interest and needs to be de�ned. The interfae between the voidand the matrix material is modeled as a tration-free boundary for the matrix phase. Itis also assumed that eah RVE deforms periodially, being idential to the neighbors. Inorder to ensure the ompatibility of suh a deformation �eld, periodi boundary onditionsare also imposed on eah RVE. The growth of voids by the the plasti deformation inpropagating shear bands is studied on the basis of �nite element analyses of the planarRVE approah, also referred to as a Simple Square Array (SSA) or a planar ell model.The planar ell model has been shown to yield su�iently aurate preditions for themarosopi behavior of the two-phase aggregate as long as the triaxiality of the stressstate is low, the void volume fration is low (< 8%) and the response is not dominated bythe interation between the voids, f. Steenbrink and Van der Giessen (1998b) and Sorateand Boye (2000). Aording to this model, unit ells represent a material with a doublyperiodi paking of ylindrial voids, f. Fig. 7.21. The initial irular ross setion of thevoids is hosen for omputational onveniene.The diretions of the prinipal marosopi stress align with the oordinate axes x1, x2and x3 and the initial dimensions of the ell in x1- and x2-diretions are given in termsof the half-spaings b0 and h0, respetively. The initial radius of the void is denoted by
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Figure 7.21: Illustration of the planar ell model for a periodi material involving ylindrial voids.Due to the symmetry, the meshed area is onsidered in the �nite element analyses. The �gure ismodi�ed from the original taken from Steenbrink and Van der Giessen (1998b).
a0. Sine the plane strain ondition prevails, the strain rate Ė3 vanishes. Due to thesymmetry, only the meshed region needs to be analyzed. Sine the region is subjeted tothe far-�eld tension, the boundaries are assumed to remain straight during deformationwithout shear trations. The deformation rate u̇2 on the boundary x2 = h is presribed bya onstant applied strain rate Ė2 = u̇2/h where h is the deformed height of the ell, i.e.
h = h0 + u2. Similarly, b = b0 + u1 is the urrent width of the ell. In terms of the appliedloads f1 and f2, the marosopi prinipal stresses in the diretion of x1 and x2 are de�nedas Σ1 := f1/h and Σ2 := f2/b, respetively. To investigate the in�uene of the stress stateon void growth, the strain rate Ė1 at x1 = b is presribed so that1. The nominal stress ratio or equivalently the ratio of the applied loads νR := f1/f2remains onstant during deformation.2. The true stress ratio νR := Σ1/Σ2 is kept onstant.Applying Hooke's law in plane strain state, the rate of the prinipal stress Σ2 at eahinstant is presribed by the applied strain rate Ė2 aording to
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u̇1 (7.9)where Em is an overall elasti modulus. As with the stress rate Σ̇2, the rate of the transverseprinipal stress Σ̇1 is presribed via the applied strain rate Ė2 as
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110 7 Investigations on inhomogeneous deformation stateDue to the elasti isotropy, the overall elasti moduli in eah diretion are taken to beequal with Em. Let us �rst onsider a onstant nominal stress ratio. Based on (7.9) it ispossible to extrat ḟ2, and its substitution into (7.10) together with ḟ1 = νRḟ2 yields
u̇1 =

b

h

νR(1− ν − f̂2)− νh/b

(1− ν)h/b− νR(ν + f̂2)
u̇2. (7.11)In (7.11), the dimensionless variable f̂2 := f2/Emb was introdued. Aording to theGoodier (1933) solution for elasti media, the highest value of the e�etive stress τ oursat the equator of the void, i.e. at x1 = a0. Therefore, the plasti deformation is initializedat the equator. Sine f̂2 ≪ ν, the solution is not sensitive to the value of the overall elastimodulus Em and it is hosen to be onstant. Aording to the simulations, the valuesranging from Em = 900 MPa to 3000 MPa have no marked in�uene on the marosopistress-strain response under onsideration. Moreover, the void volume fration has onlya small in�uene on the elasti material properties in porous media, f. Steenbrink et al.(1997). Aording to Hooke's law for plane strain state, Em = E/(1 + ν)(1− 2ν).Let us now onsider a onstant true stress ratio. Sine f1 = νRhf2/b, the loading ratein the x1-diretion beomes
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).One the loading rate ḟ2 is solved from (7.9), substitution of ḟ1 and ḟ2 into (7.10) resultsin
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u̇2. (7.12)In ontrast to the onstant nominal stress state, the veloity u̇1 under a onstant truestress state does not expliitly depend on the load f2. The only dimensions involved inthe model are the initial radius a0, the width b0 and the height h0. Considering b0 = h0,the solution only depends on the ratio a0/h0 whih an equivalently be given by the initialvoid volume/area fration
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)2 (7.13)where dVv0 and dVc0 are the initial void volume and the elementary apparent volume of thematerial, respetively, f. Steenbrink and Van der Giessen (1998b) and Zaïri et al. (2008).In order to desribe the marosopi distortion, an overall e�etive strain Ee is de�ned as
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i Ei, i = 1, 2, 3. Moreover, the marosopi e�etive stress is de�ned
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i )2. (7.15)Under plane strain state, the expressions of Ee and Σe beome
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|Σ2 − Σ1|.For later purposes, let us de�ne a marosopi shear rate as Γ̇ := 1/

√
2Ė2, whih representsthe applied shear strain rate for the material without voids.The EBPA model is employed in the �nite element analyses, the onstitutive parametersbeing given in Table 7.2. To aurately resolve the development of thin shear bands, avery �ne mesh, espeially near the equator x1 = a0, would be needed. The element meshonsisting of 566 4-node plane elements has been found to meet the ase for �nding themain harateristis of the shear band patterns and the magnitude of void growth duringthe deformation proess. The size of the initial voids is assumed to be a0/h0 = 0.2, whihaording to (7.13) orresponds to the initial void volume fration, fv0 = 0.03. The largervalues are relevant for rubber-polymer blends in whih avitation of the rubber partilesours. In order to apture the stress state in the speimen during the old drawing proess,the stress triaxiality ratio νR is assumed to be relatively low. The two values νR = 0 and

νR = 0.3 are onsidered as representative in the gauge setion.7.5.1 Shear band patternsThe normalized plasti shear rate γ̇p/Γ̇ is used to desribe the shear band pattern duringdeformation. The distribution of γ̇p/Γ̇ in the ell for the PC-material under study is shownin Fig. 7.22. Aording to the simulations, the di�erene between the γ̇p/Γ̇-distributionsunder the onstant nominal and true stress states an be onsidered as small, so the nominalstress state is hosen to illustrate the loalization phenomena. Under both the triaxialities
νR = 0 and νR = 0.3, the plasti deformation �rst loalizes at the equator of the void andthen rapidly expands around the void. Initially the shear band pattern is uniform involvinga single band whih appears at approximately 45◦ relative to x2-diretion. In view of theshape, these inlined shear bands are termed "wings" and they an frequently be observedunder low triaxial loadings, f. Sue and Yee (1988) and Steenbrink and Van der Giessen(1998b). During ontinued deformation, the material inside the band �rst softens andthen hardens due to the strething and alignment of the hain network. One the stressinside the band beomes large enough, the surrounding material yields and results in theinitiation and propagation of new bands.Under low triaxiality, νR = 0, two distint and parallel shear bands have developed at
Ee = 0.10, f. Fig. 7.22(a). Even though delayed, a very similar propagation of wing-shaped bands an also be observed for higher triaxiality loading, νR = 0.3, f. Fig. 7.22(b).During further deformation, more shear bands appear until they arete and form several
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Figure 7.22: Deformed shape of the void with the initial size a0/b0 = 0.20 for low triaxial stressstates a) νR = 0 and b) νR = 0.3 at three di�erent phases, Ee = 0.05, Ee = 0.10 and Ee = 0.20.The deformed meshes of the ell are visualized by the normalized plasti shear rate γ̇p/Γ̇. Thematerial data for PC is given in Table 7.2. The applied strain rate is Ė2/γ̇0 = 1.2 · 10−19.disrete zones. As is shown in Fig. 7.22, the region of the loalization extends throughthe ligament leading to a strong interation between the neighboring voids. As a resultof inhomogeneous deformation, the void grows into a strongly prolate shape while thematerial is drawn into the ligament between the voids. As was mentioned above, the unitell model annot aurately predit the pattern of loalized deformation in this phase.Better agreement may be obtained, e.g., with the RVEs based on a staggered square arraywhih is the two-dimensional analog to a three dimensional BCC-lattie (Body CenteredCubi array of voids), f. e.g. Steenbrink and Van der Giessen (1998a) and Sorate andBoye (2000) for more detailed aount.Void growth and softening/hardening harateristisDuring deformation, the applied fore f2 is also monitored and the orresponding maro-sopi e�etive stress Σe versus the e�etive strain Ee responses for di�erent stress states,as well as parameter values h1 and sss, are shown in Fig. 7.23(a). As the stress triaxialityratio inreases from zero to 0.3, a marked drop in the the Σe−Ee response an be observed,whereas the in�uene of the softening slope h1 on the response an be regarded as small.In ontrast to the in�uene of h1, a redution of the saturation value sss onsiderably de-reases the e�etive stress Σe one the yield peak is reahed. As it is shown in 7.23(b),
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Figure 7.23: E�et of the stress state and the parameters h1 and sss on a) the marosopi e�etivestress-strain response and on b) void volume fration-e�etive strain response for PC. The initialvoid size a0/b0 = 0.20 orresponds to the initial void volume fration fv0 = 0.03. Rest of theparameters used in the simulations are listed in Table 7.2.the triaxiality also strongly in�uenes void growth: the higher the triaxiality is appliedthe faster the growth. Unlike with the overall e�etive stress response, void growth issubstantially aelerated by the softening slope h1 whereas the in�uene of the saturationvalue sss on the fv −Ee response remains relatively small. Moreover, the true stress ratiosin onjuntion with the high value h1 = 720 MPa lead to an unrealisti void growth. Aredution of h1 results in the di�erene between the fv − Ee responses at di�erent stressstates is onsiderably redued. As the higher triaxiality νR = 0.3 and the lower value of
h1 = 500 MPa are applied, void growth is approximately 10%, whih an be onsideredrealisti for the PC under study. It an be onluded that the stress state in the ell issimilar to the onstant nominal stress state rather than to the onstant true stress state,the overall stress triaxiality remains low during deformation and the softening slope shouldbe substantially redued.A omparison of Figs. 7.22 and 7.23(a) reveals that the �rst shear band is initializedone the marosopi e�etive yield stress is reahed. Under uniaxial marosopi tension
νR = 0, softening inside the band appears as a drop in the Σe − Ee response, whereas theresponse for νR = 0.3 only exhibits a redued hardening. Hardening of the material takesplae sine the portion of the loalized zone ompared to the visoelasti region at thisphase is small. During ontinued deformation, the region of loalization expands while themarosopi response shows a redution, this being due to the stronger intrinsi softeninginside the new bands ompared to hardening within the highly onentrated regions.In�uene of the entanglements and hydrostati pressure in ligamentBased on the evolution equation (6.7), the role of the entanglement density in the propaga-tion of shear bands and void growth is investigated. Fig. 7.24 pertains to the PC-polymer
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Figure 7.24: Deformed shape of the void with the initial size a0/b0 = 0.20 for low triaxial stressstate νR = 0 at three di�erent phases, Ee = 0.05, Ee = 0.10 and Ee = 0.20. The deformed meshesof the ell are visualized by the relative hain density m/m0.under low triaxial stress state νR = 0 and the initial void volume fration fv0 = 0.03 as thenumber of entanglements is allowed to vary. Aording to the simulations, the number ofentanglements has only a small in�uene on the deformation behavior in relatively smallstrains, i.e. the distribution of the normalized plasti shear rate γ̇p/Γ̇ aurately onformsto the two �rst distributions in Fig. 7.22(a). Thus, the deformed mesh is only visualizedat the last phase Ee = 0.20 by γ̇p/Γ̇, f. Fig. 7.25(b). Moreover, the deformed meshesof all three di�erent phases Ee = 0.05, Ee = 0.10 and Ee = 0.20 are visualized by therelative hain density m/m0, f. Fig. 7.24. A glane at Fig. 7.22(a) reveals that thestrongest growth of the entanglement density initially appears within the shear bands. Inontrast to the formation of shear band patterns during further deformation, the regionwith the highest entanglement density does not divide into two parallel zones but remainsontinuous and widens in its lateral diretion. Under the largest strain Ee = 0.20, thedistribution of the entanglement density onsiderably di�ers from shear band propagation.However, similar to the shear band pattern, the growth of the entanglement density beyondthe equator of the void is small, ranging between 0.5% - 2%.Let us then onsider the e�etive stress-strain responses in Fig. 7.25(a). As shown, aninrease in the number of entanglements leads to a slightly redued initial overall sti�ness.One the strain level Ee ≈ 0.12 is passed, the e�etive stress-strain response for an inreasedentanglement density shows a small inrease in e�etive stress meanwhile the response forthe onstant entanglement density shows redution. The di�erenes between the responsesan be explained by the softening behavior. In omparison with the plasti shear rate inFig. 7.22(a), the intensity of the loalization phenomenon, and as a result the amount ofintrinsi softening, are substantially redued and only a one sharp shear band around thevoid an be observed, f. Fig. 7.25(b). It an also be observed from Figs. 7.22(a) and 7.24that the size and shape of the void are almost una�eted by the present hanges in theentanglement density.Fig. 7.26 presents the distribution of the hydrostati pressure p for the low triaxialloading states νR = 0 and νR = 0.3 at Ee = 0.20. Similar to purely elasti mean stress�elds, f. Goodier (1933), the highest absolute values of p are found at the equator of thevoid. Moreover, the values around the void are approximately 20% larger for νR = 0.3
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Figure 7.25: a) In�uene of the number of entanglements on the marosopi e�etive stress-strainresponse. b) Deformed mesh at Ee = 0.20 for low triaxial stress state νR = 0 is visualized bythe the normalized plasti shear rate γ̇p/Γ̇. The initial void size a0/b0 = 0.20 orresponds to theinitial void volume fration fv0 = 0.03. The rest of the parameters used in the simulations arelisted in Table 7.2.
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Figure 7.26: Distribution of the hydrostati pressure p/s0 = −1/3trace(Σ)/s0 for low triaxialnominal stress states a) νR = 0 and b) νR = 0.3 at Ee = 0.20. ) Mean stress σm := −pdistributions for νR = 0.3 beyond the equator at x2 = 0. The solid line orresponds to thedistribution in b) meanwhile the dot-and-dash line represents the distribution near the maximumof Σe at Ee = 0.12, obtained by using a very �ne mesh. The initial size of the void is a0/b0 = 0.20.than under uniaxial marosopi tension, νR = 0. Fig. 7.26() shows the in�uene of themesh on the mean stress σm (σm := −p) distribution along the equatorial plane at x2 = 0.Owing to the highly onentrated plastiity in the ligament, the elasti mean stress �eldis disturbed and high values of σm beyond the equator an be found by using a �ne mesh.Sine neking is losely related to high mean stress onentrations, f. Steenbrink et al.(1997), nek propagation in the ligament between the voids may be possible during furtherdeformation. At the present instant, however, the deformed shape of the void is prolaterather than oblate whih impliates that the ligament elongates without neking.The numerial results also show that the hydrostati pressure around the void rapidly



116 7 Investigations on inhomogeneous deformation stateinreases and, one the yield point is passed, reahes relatively stable values, ranging be-tween 1.0s0− 1.2s0. Assuming that the initiation of raze is ontrolled by the value of thehydrostati pressure during initial yielding, void growth is attributed to razing around thevoids. Under suh irumstanes, some of the moleules break and the mirostruture ofthe polymer around the voids alters substantially. As a result, the pronouned loalizationwithin the ligaments and razing around the voids inrease the interation between thevoids, whih may lead to ollapse of the ligament by neking and eventually to oaleseneof neighboring voids. As a onsequene, void oalesene in relation to void growth sub-stantially inreases in large strains, and this property should be taken into aount in themodels.7.6 Investigation of the damage behaviorAmorphous glassy polymers exhibit several damage proesses suh as razing, avitationof rubber partiles, or impurities and miro-raking within the matrix material. In thisontext, damage is asribed to the distributed growth of void volume (inreased porosity)and razing during loalized deformation. Conerning void growth, many of the inelastidamage models available for amorphous glassy polymers are based on the expliit knowl-edge of the yield surfae involving a large number of material parameters to be identi�ed,f. Gologanu et al. (1997), Seeling and Van der Giessen (2002), Pijnenburg et al. (2005),Zaïri et al. (2008) and Zaïri et al. (2011). However, the damage proesses observed inamorphous glassy polymers are omplex phenomena and their modeling seems to requiresuh omplexity. The models developed for metals have initially been onsidered for thatpurpose, f. Rie and Traey (1969) and Needleman and Tvergaard (1984). A widely useddilatational plastiity model is the one introdued by Gurson (1977) and later modi�edby Tvergaard (1981). The Gurson model is based on the assumption that the deforma-tion mode of the material surrounding a void is homogenous. Aording to this model,softening behavior in the material results from the growth of voids, i.e. the model doesnot possess the intrinsi ability to predit loalized deformation by void oalesene. How-ever, as it was pointed out in the preeding setion, the voids beome oalesed in verylarge strains whih annot be ahieved e.g. during the old drawing experiment underonsideration. Hene, the di�erene between the model alibrations for homogeneous andinhomogeneous deformation an be asribed to the nuleation and growth of voids insteadof void oalesene.7.6.1 Modeling of void growthIn order to investigate the damage behavior aused by void growth, marosopi onsti-tutive relations in the EBPA model are modi�ed by using an augmented Gurson model,whih also takes the nuleation of new voids into aount. The proposed model is formu-lated in terms of the multipliative deomposition of the total deformation gradient intoan elasti and a plasti part and it is implemented in a �nite element setting.



7.6 Investigation of the damage behavior 117The damage evolution is assumed to be isotropi and it is represented by a void volumefration fv = dVv/dVc, whih is the average measure of a void-matrix aggregate with theinitial value 0 ≤ fv0 ≤ fv < 1, f. (7.13). Sine the inelasti Gurson potential Φp ats asboth a yield funtion and a potential for plasti �ow, the theory is onsidered as assoiative.To better predit the instability in the material due to the interation of voids, Tvergaard(1981) proposed a modi�ed Gurson damage model in whih the inelasti potential is givenby
Φp(τ, σm, fv, σe) = τ 2 + 2fvq1σ

2
e cosh(
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2
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σm

σe

)− σ2
e(1 + q21f

2
v ) (7.16)where σm := 1/3trace(σ) is the marosopi mean stress. In aordane with the previousapproahes by Tvergaard (1981) and Beker and Needleman (1986), the mirosopi e�e-tive stress of the solid ligaments σe is introdued separately from the marosopi e�etivestress τ . The mirosopi e�etive stress σe is determined from the ondition Φp = 0.Based on the potential (7.16), the rate of plasti deformation is governed by the modi�ednormality rule

dp = Λ̇p∂Φ
p

∂σ
(7.17)where Λ̇p is a salar valued parameter de�ned below. The kinemati hardening e�et isinluded in the model via the marosopi e�etive stress τ(σ̃), whih was de�ned by(4.109). As with the BPA model, the intrinsi softening is modeled via the athermal shearstrength s1, whih is taken to evolve aording to (6.2).In ontrast to the original Gurson spherial model for inompressible, rigid-plasti ma-terial, Tvergaard (1981) suggested that the values q1 = q2 = 1 in (7.16) need to be replaedby q1 = 1.5 and q2 = 1.0 to better apture bifuration away from the nominally homoge-neous deformation. For amorphous glassy polymers, however, the onstant values of q1 and

q2 annot satisfatorily predit either void growth or the hange of the void shape duringdeformation. To apture the expeted harateristis of void growth, Zaïri et al. (2008)suggested that q1 and q2 should be onsidered as internal variables given by the followingempirial power laws:
q1 = q10(1 + cpv)

Nv , q2 = q20(1 + cpv)
Nv (7.18)where q10, q20, c and Nv are onstitutive parameters and pv denotes an internal variablede�ned subsequently. The low values of q10 and q20 indiate weak interations between thevoids while softening in the material dereases, f. Zaïri et al. (2008). In the �ow rule (7.17),a salar parameter Λ̇p was introdued. This an be determined from equivalene betweenthe plasti power whih is dissipated into the porous media and into the orrespondingsolid ligaments between the voids, i.e.

σ̃ : dp = (1− fv)
√
2σeṗv. (7.19)In (7.19), ṗv denotes the e�etive plasti strain rate, whih is hosen to be equal to theplasti shear strain rate γ̇p given in (4.75). Sine γp is monotonially inreasing, f. Figs.



118 7 Investigations on inhomogeneous deformation state6.9 and 7.18, the variables q1 and q2 given by (7.18) inrease during deformation. Moreover,sine γ̇p > 0, a glane at (4.58) reveals that σe > 0. This ondition must be handled withare, sine it is not generally satis�ed by the solution of Φp = 0. It then follows from (7.17)and (7.19) that
Λ̇p =

√
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∂σ
)−1.Based on the normality rule (7.17), the rate of plasti deformation takes the following form
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(7.20)It should be notied that the ondition Φ = 0 yields σe = τ if q10 = q20 = 0, i.e. nointeration between the voids exists. Under this ondition, a realisti assumption is thatdamage does not evolve, i.e. ḟv = 0 and the normality rule (7.20) is equal with (4.109) forthe plasti deformation through shear yielding. Compared to (4.109), (7.20) allows dilativeplasti �ow to be evolved in the material.The damage proess due to the presene of voids an be separated into the two phases,f. Fig. 7.20(a-b) and (-d). First, the homogenous deformation takes plae with voidnuleation and growth, whih is followed by the loalized deformation due to void oales-ene. The orresponding evolution law for the �rst phase is additively deomposed intothe two parts
ḟv = ḟg + ḟn, fv(0) = fv0 (7.21)where ḟg desribes the growth of existing voids under plasti strething being de�ned as

ḟg = 3(1− fv)D
p
h. (7.22)In (7.22), Dp

h := 1/3trace(dp) is the plasti volumetri strain rate. The nuleation of newvoids is assumed to be signi�ant but the proess is not well understood yet. It is a materialintrinsi property being dependent on the strength of the polymeri material as well as onthe size and shape of existing voids. Large voids usually nuleate new voids earlier thansmall voids, and inlusions with di�erent length sales may also lead to di�erent nuleationriteria, f. Zhang et al. (2000). To apture the aelerated damage due to the nuleationof new voids, Chu and Needleman (1980) proposed the following strain-ontrolled law forthe nuleation rate
ḟn =
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)2)
γ̇p (7.23)where fN is a onstant whih denotes the volume fration of voids aused by void nuleation.The mean value εN of the normal distribution desribes the ritial strain beyond whihthe �rst new voids appear. Sine not all the inlusions/partiles will nuleate new voids,the parameters fN , εN and the standard deviation sv are obtained from alibration to thematerial's marosopi response.One important aspet is the ability of the proposed model to aount for the real defor-



7.6 Investigation of the damage behavior 119mation behavior as well as quantitative damage predition. For the numerial evaluationof the model, the onstitutive equations (7.4) are ompleted by the integration of the voidvolume fration rates given by (7.22) and (7.23). It should be notied that the plasti shear
γp, whih is needed in (7.23), is available from the solution of the hardening variable s2,f. (6.2).7.6.2 Calibration and evaluation of the augmented EBPA model for voidgrowthThe augmented Gurson model in onjuntion with the EBPA model is alibrated to dataobtained from the old drawing experiment. In the alibration, the same element mesh asbefore is employed. Sine the model inludes a relatively large number of parameters, thealibration is initialized using the parameters for rubber-toughened PMMA (RTPMMA)taken from Zaïri et al. (2008). Both the alibrated and the parameters for RTPMMA arelisted in Table 7.3. By analogy to the initial shear strength distribution (7.8), the valuesof fN , or alternatively the initial porosity fv0, an be disturbed. However, the alibrationindiated that their in�uene on the marosopi f − u response is small as the intensityof the initial imperfetion varied between ξ = 0 − 0.03. In the subsequent simulations,the intensity ξ is kept at zero and the loalization is triggered aording to (7.7) using
ξ0 = 0.002. Calibration also indiated that- the growth of void volume suppresses the isotropi softening e�et,- the hange in the initial void volume fration from fv0 = 0 to fv0 = 0.05 only has asmall e�et on the marosopi f − u response,- the values c > 0 whih in�uene damage evolution via (7.18), redue void growth.Sine the PC polymer under study is not interspersed by small rubber partiles, andthe in�uene of a low initial void volume fration on the marosopi response is negligible,we set fv0 = 0. Moreover, numerial investigations under low triaxial stress states indiatethat the in�uene of the initial void volume fration on the marosopi elasti properties,as well as on the Gurson's yield funtion, is small, f. Steenbrink et al. (1997).Having less intrinsi softening due to void growth allows the softening slope h1 andthe intensity sss/s0 to be redued to a level whih agrees more losely with the valuesobtained from the alibration for homogeneous deformation. As a onsequene, the in-tensity sss/s0 = 0.80, whih was previously employed in the EBPA model, is redued to0.65. It an be onluded that the di�erene between the alibrations for homogeneousand inhomogeneous deformation is strongly a�eted by void growth in the material.The in�uene of the parameters q10, q20 and c on the overall fore-elongation responseis shown in Fig. 7.27. As the parameters q10 and q20 are dereased, nek stabilizes ina redued range, followed by a weak hardening whih is initialized at u = 22 − 24 mm.The applied load f is seen to be inreased by the nonzero values of c, i.e. the interationbetween the voids ompensates for the redution of intrinsi softening and allows for the
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σe of the ligaments and the di�erene σe − τ are also presented in Fig. 7.27. Apart fromthe highly onentrated region around the interfae of the gauge setion and the grip, thee�etive stress is propagated similarly to the loalized deformation. At the end of loading,the values of σe in the gauge setion are approximately three times greater than the valuesof the marosopi e�etive stress τ , whih indiates a strong interation between the voidsand the possibility to void oalesene during further deformation.Based on the model simulations the plasti streth distributions are highlighted in Fig.7.28. It an be observed that damage redues the intensity of the plasti strething, whilethe loalized deformation expands more rapidly along the speimen. A glane at Fig. 7.17reveals that the neked region whih is predited by the ombined EBPA and the damagemodel reahes the end of the gauge setion simultaneously with the experiment.Fig. 7.29 presents the total growth of void volume and the in�uene of the hardeningslope h1 on the void growth. The values ranging between 385 − 560 MPa are seen tohave only a minor e�et on void growth. It an also be observed that the void nuleationis prohibited until the elongation u ≈ 5 mm is reahed. This threshold orresponds ap-Table 7.3: Constitutive parameters of the damage model for RTPMMA and PC. Calibration of theproposed model is performed to data obtained from the old drawing experiment. The RTPMMAparameters are taken from Zaïri et al. (2008).

η h1 sss εN sv fN q10 q20  NvMPas−1 MPa MPaRTPMMA 0.03 0.15 0.15 0.9 1.2 0.2 1.5EBPA for PC 1.5 · 105 385 61 0.03 0.15 0.05 1.5 1.0 0.2 1.5
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Figure 7.28: Distribution of the plasti streth λ̄p
ec at the end of loading (u = 40 mm) aordingto the BPA model, the EBPA model and the EBPA model in onjuntion with the damage model(on the right). The simulation based on the damage model is performed using the alibratedmaterial parameters given in Table 7.3.
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PSfrag replaements[mm℄Figure 7.29: In�uene of the parameter h1 on void growth, whih is represented by the norm ofvoid volume fration ‖fv‖ := √∑

i(fv,i · fv,i) where fv,i are the extrapolated values of void volumefration at the nodes of the mesh. The deformed shapes at u = 20 mm and at the end of loadingare visualized by void volume fration fv. The highest porosity fv is highlighted in white.



122 7 Investigations on inhomogeneous deformation stateproximately to the elongation prior to the yield drop. One the yield point in the stressresponse is passed, the voids grow rapidly and inrease the porosity in the loalized zone,f. Fig. 7.29. Similar to the plasti strething, the highest values appear in a region whihgradually expands from the enter of the speimen towards the grips during elongation.At the end of loading, the porous region overs the gauge setion entirely, and the highestporosity ours in the two separate regions beyond the mid-plane, y = L/2.As has been shown, the EBPA model, along with the augmented Gurson model forvoid growth, is able to predit the transformation from the homogeneous deformationphase to the loalized deformation phase well. Applying this model, the di�erene betweenthe model parameters, whih result from the alibration for homogeneous and inhomoge-neous deformation, also dereased onsiderably. A shortoming of the model is that thefore-elongation response during nek shows a premature hardening while the void volumefration grows and attains values too high for unvoided polymers.7.6.3 Modeling of razingUnder ompression, amorphous polymers frequently show dutile loalized deformationbehavior, whih is due to shear yielding with small volume hanges. In ontrast to theshear yielding mehanism, whih involves shear band propagation and eventual frature bya hain sission in large strains, the governing mehanism of inelasti deformation undertension is a dilatational loalization in zones of �brillation, termed razing, f. Anand andGearing (2004) and Argon (2011). More preisely, razing is assumed to result from disen-tanglement in highly onentrated regions of maximum prinipal stress. Disentanglementnuleates new miro-voids whih grow and oalese to form initial razes and ause streth-ing and eventually failure of the thin �brils between the two faes of the initial razes, f.Kramer (1983) and Basu et al. (2005). As a result of the breakdown of the �brils, razeswiden leading to loal brittle failure while material behavior at the marosopi level stillshows a little dutility. In all, the nominally brittle failure an be separated into the threedi�erent phases: raze-initiation, widening and raze-breakdown.Despite all the ative researh arried out during the last deades, the governing mi-romehanism that ontrols razing is still not fully understood. Experimental investiga-tions have shown a major importane of the entanglement density in marosopi failurethrough razing or shear yielding. Initial plasti deformation through shear yielding inamorphous glassy polymers is usually followed by razing or alternatively razing propa-gates on stable manner, f. Ishikawa and Ogawa (1981) and G'Sell et al. (2002). Examplesof the polymers in the �rst group are e.g. PC and PMMA, and polymers involving stablerazing are e.g. HIPS and ABS that are frequently used in toughened polymer blends. A-ording to Ishikawa and Ogawa (1981), derease of temperature and inrease of the strainrate result in more brittle failure in amorphous glassy polymers, i.e. the di�erene betweenthe time instants for raze-initiation and breakdown dereases. They also pointed out thatthe void nuleation is a preursor to razing and razes initiate due to high mean stress



7.6 Investigation of the damage behavior 123onentrations around the miro-voids, f. also Fig. 7.26.In reent years, ohesive-surfae models have been widely applied to the numerialsimulation of raze-initiation, growth and breakdown with the �nite element method, f.e.g. Estevez et al. (2000) and Pijnenburg et al. (2005). In a �nite element setting, however,ohesive interfae approahes allow for the nuleation and growth of the rak only along theelement boundaries. In order to avoid mesh dependene and priori assumptions onerningthe orientation of interfae elements for razing, an alternative, ontinuum-based model isproposed here. Aording to this model, raze-initiation whih takes plae during shearyielding is followed by widening of razes and failure due to the breakdown of the �brils. Asimple raze-initiation riterion is introdued and the transition from shear-�ow to raze-�ow is arried out by a hange of the �ow rule, where the inelasti deformation is takento our in the diretion of the loal maximum prinipal stress. One the loal ritialplasti strain is reahed, razes rapidly widen whih eventually leads to loal frature orhain-breakdown under ompression or tension, respetively.The raze-initiation an be governed by strain- or stress-based riteria. Argon andHannoosh (1977) onduted tension-torsion stress-ontrolled experiments on thin-walledtubular speimens, whih indiated that there is a time delay between the appliationof stress and the �rst appearane of razing. At the stress levels, where the equivalentstress τ and the mean normal stress σm exeed 0.4 - 0.5 of the yield stress, the delay timeonsiderable dereases and as a result raze-initiation an be onsidered as instantaneousevent. Sine the razing proess in the present drawing experiments ours in stress levelshigher than 0.4 - 0.5 of the yield stress, the inubation time for raze-initiation an beassumed negligible and a time-independent riterion an be applied in the proposed model.In general, the development of razing may be expeted to have diretional properties.Based on the assumption that the razes grow in the diretion of the maximum prinipaltensile stress, Anand and Gearing (2004) proposed that razing initiates when the meanstress is positive σm > 0, and the highest prinipal stress σ1 reahes a σm-dependent ritialvalue σ1 = σcr(σm) > 0. They estimated the ritial value σcr from the tension experimentson a smooth-bar, nothed-bar and a ompat tension speimen. They observed that theurve for raze-initiation just prior to the yield-peak load is reasonably-well aptured bythe funtion
σcr = c1 +

c2
σm

(7.24)where c1 and c2 are positive parameters. In general, stress-based riteria may be di�ultto de�ne with preision from experiments due to inauraies in ontrolling loal stressstates and the sites of raze-initiation, f. Argon and Hannoosh (1977). For this reason, aorresponding strain-based riterion needs to be determined. It an be assumed that therazes are initiated if the following two onditions are satis�ed:[1. ℄ The highest prinipal tensile stress and the mean normal stress are positive, i.e.
σ1 > 0 and σm > 0,[2. ℄ the raze-strain ζp, whih evolves in the diretion of the highest prinipal tensilestress, reahes a ritial value ζp := ∫

ζ̇pdt = ζpcr > 0. Correspondingly, σ1 = σcr > 0.
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ζ̇p

ζ̇pFigure 7.30: Widening of razes at an average spaing L0. The marosopi tensile raze strainrate ζ̇p is determined by the thikening rate δ̇ of razes. After Argon (1999), Fig. 7.One razing has been initiated, the transition from shear-�ow to raze-�ow takes plaewhile the plasti �ow aligns with the diretion of the maximum prinipal stress σ1, and theinelasti deformation begins to evolve through widening of the razes. Instead of attemptingto represent a detailed sheme for raze-widening, f. Kramer and Berger (1990) andEstevez et al. (2000), a ontinuum-based model, whih de�nes the inelasti deformationas an average over a mirostrutural representative volume element, is proposed. It isassumed that the material element ontains enough plate-like raze regions that allow formarosopially smooth raze-widening proess prior to failure. The magnitude of theraze-�ow is given by the marosopi tensile raze-strain rate ζ̇p and it evolves as long as
σ1 is positive. Following Argon (1999), ζ̇p is assumed to be aounted for by the thikeningrate δ̇ of the ative planar razes whih are separated by an average spaing L0, f. Fig.7.30. Thus the average tensile raze-strain rate beomes ζ̇p = δ̇/L0. In terms of theeigenvetors n1 assoiated with the highest prinipal stress, the transition from shear-�owto raze-�ow is given by

dp =

{

ζ̇pn1 ⊗ n1 if the onditions [1℄-[2℄ are satis�ed,
Λ̇p(σ̃dev + Ξi) otherwise (7.25)where Λ̇p :=

√
2(1 − fv)γ̇

pσe(2τ
2 + Ξtrace(σ̃ ))−1 and Ξ := q1q2fvσe sinh

(
3/2q2σm/σe

), f.(7.20). The magnitude of the rate of plasti deformation ζ̇p = |dp| is determined suhthat some ontinuity during the transition from shear-�ow to raze-�ow is ensured. Theequality between the plasti work rate in the porous material per unit volume and thedissipation in the matrix material is governed by
σ̃ : dp = (1− fv)

√
2σeγ̇

p∗(
σ1

σ∗
1

)m (7.26)where the quantities with the supersript (∗) are determined at the instant when the hangein the �ow rule is triggered. It then follows from (7.23) that nuleation of new voids is
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Figure 7.31: The potentials (7.16) and (7.28) in τ − σm and σ1 − σe spae, respetively. Thein�uene of the two di�erent values fv = 0.02, fv = 0.2 and q1 = 1.0, q1 = 1.5 are investigated.governed by the onstant rate γ̇p∗ during razing. Sine the experiments show an inreasedraze widening veloity with the applied stress intensity, f. e.g. Estevez et al. (2000),the plasti work rate is reformulated in terms of the stress ratio σ1/σ

∗
1. The parameter min (7.26) is found from the alibration to the experimental data. During shear �ow, thestress ratio σ1/σ

∗
1 remains unity and the plasti shear strain rate γ̇p evolves aording to(4.75), i.e. (7.26) equals with (7.19). It follows from (7.25) and (7.26) that the magnitude

ζ̇p = |dp| is given by
ζ̇p =

√
2(1− fv)σeγ̇

p∗(
σ1

σ∗
1

)m(σ̃ : n1 ⊗ n1)
−1. (7.27)The mirosopi e�etive stress σe of ligaments is determined from the potential Φp = 0,whih for the raze-�ow is modi�ed suh that the �ow beomes oriented in the diretionof the highest prinipal stress, i.e.

Φp(σ1, fv, σe) =
σ2
1

2
+ 2fvq1σ

2
e cosh(

q2
2

σ1

σe
)− σ2

e(1 + q21f
2
v ). (7.28)Alternatively, employing the funtion (7.28) in the �ow rule (7.17) (replaing Λ̇p by ζ̇p)and taking advantage of ∂σ1/∂σ = n1⊗n1 also results in the raze-�ow rule (7.25), where

ζ̇p is given by (7.27). Fig. 7.31 presents the potentials in (7.16) and (7.28) for di�erentvalues of fv and q1. The stress trajetories in σ1 − σe spae show proportionality betweenthe marosopi prinipal stressing and mirosopi stress in ligaments between the voids.Sine the �nal raze-breakdown an be onsidered as a physially unlear proess, f.Kramer and Berger (1990) and Estevez et al. (2000), a simple riterion for raze-breakdownand frature are proposed as a �rst attempt. Following Anand and Gearing (2004), theraze-breakdown under ondition σ1 > 0 ours when the loal raze-strain ζp reahes athreshold value ζpt > ζpcr > 0. In the situations where σ1 ≤ 0, dutile frature by moleularhain-sission is initialized as the plasti streth λ̄p
ec reahes a threshold λ̄p

t . The two
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Figure 7.32: a) True stress vs true strain and b) void volume fration for uniaxial tension of BPA-PC aording to the model. Craze-initiation is presribed by the plasti streth at λ̄p
ec = 1.04,

λ̄p
ec = 1.05, λ̄p

ec = 1.08, λ̄p
ec = 1.12, λ̄p

ec = 1.15 and λ̄p
ec = 1.20. In b), the urve involving aplateau represents void nuleation (fg = 0) being virtually independent on raze-initiation. Thesimulation overs the time period of 750 s at ǫ̇ = 0.001 1/s.thresholds ζpt and λ̄p

t , in relation to the raze-initiation riteria ζp = ζpcr, de�ne the lengthof the razing proess.The proposed onstitutive model for razing is implemented in a �nite element program.The non-linear system of the residuals (7.4) is augmented by the integration of the strainrate ζ̇p for razing.7.6.4 Calibration and evaluation of the augmented EBPA model for voidgrowth and razingBased on the simulations of the old drawing experiment for monotoni loading the in�u-ene of razing on the overall load-elongation response and nek propagation is evaluated.In the simulations, the same element mesh as before is employed. The ritial value ζpcr andthe parameter m for the evaluation of raze-�ow are obtained from the alibration to theoverall load-elongation urve. Based on the disussion above, f. also G'Sell et al. (2002),the plasti deformation in large strains evolves primarily due to razing and typially showsan inreased rate of evolution one razing has been initialized in the material. Sine thestress level dereases during the razing proess, the plasti work rate in the porous mate-rial and the dissipation in the matrix material derease, and as a result, the void volumefration tends to inrease, f. (7.26). This e�et is shown in Fig. 7.32. To prevent anexessive void growth during razing, the amount of existing voids as well as their growthneed to be limited in the model. Consequenes of this restrition are that razing promotesvoid nuleation and the dissipation alters due to the stress σe in the ligaments between thevoids.The in�uene of razing on void growth is shown in Fig. 7.33. A omparison withthe responses of purely porous material reveals that razing, whih initiates one the yieldpoint is passed, inreases signi�antly void growth during the nek. Similar e�et was



7.6 Investigation of the damage behavior 127also observed in amorphous entanglement network through MD simulations, f. Mahajanet al. (2010). Reduing void nuleation setting fN = 0.02 in (7.23) ompensates for thegrowth whih in turn, as already touhed upon, suppresses the initiation of new razes.The di�erene an be further illustrated by the void volume frations given in Figs. 7.29and 7.33. Due to razing, loalized region (in terms of λ̄p
ec) in the gauge setion shows morepronouned intensity of porosity, whereas the area and shape of the porous region remainvirtually unaltered during razing.
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i(fv,i · fv,i) where fv,i are the extrapolated values of void volume fration atthe nodes of the mesh. Using fN = 0.02, the deformed shapes at u = 20 mm and at u = 30 mmare visualized by the void volume fration fv. The white olor indiates the highest porosity.An exessive void growth during neking is suppressed by hoosing the ritial strainfor raze-initiation to be ζpcr = 0.42, whih value approximately orresponds to the elon-gation u = 21 mm and to the plasti streth λ̄p
ec = 1.055 in the early-stage of hardening.Moreover, razing is assumed to result from disentanglement in highly onentrated regionsof maximum prinipal stress, whih nuleates new miro-voids and allows their oalese toform initial razes rather than larger voids. Thus, use is made of an assumption that thegrowth of existing voids is inhibited by razing, i.e.

ḟg =

{

0 during razing,
3(1− fv)D

p
h otherwise. (7.29)Sine the strething in relation to the limiting streth √N in a representative volumeelement an be regarded as small during the entire old drawing proess, raze-breakdownbarely initiates and will be negleted in the subsequent numerial simulations. To exludethe integration of ζpcr, the orresponding stress riterion σcr = 62 MPa for raze-initiationan be used in the simulations. This threshold as well as the values λ̄p

ec = 1.05−1.12 in Fig.
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Figure 7.34: In�uene of void growth and razing on the overall f − u response. The marker �indiates the position at �rst raze-initiation. The void fration parameter in (7.23) is fN = 0.02and the rest of the parameters is given in Table 7.3. The deformed meshes at a) u = 20 mm andb) u = 33 mm are visualized by the plasti streth λ̄p
ec, mean stress σm and by the raze-strain

ζp.7.32 for raze-initiation are reasonable-well aptured by the parameters c1 = 36 MPa and
c2 = 650 MPa, f. (7.24). Due to neking, the stress ratio σ1/σ

∗
1 remains almost unaltered(near unity) during elongation and thus the parameter m in (7.27) is hosen to vanish.In the numerial analysis, the same element mesh as before is employed. Sine razingin a �nite element setting evaluates through the integration points, the in�uene of themesh does need attention. Simulations with onsiderably �ner mesh, however, indiatedonly a small mesh-sensitivity on both the f − u response and loalization phenomenon.In Fig. 7.34, both the porous and the razed response is depited. It is found thatthe void volume fration, albeit it is almost one magnitude lower ompared to the resultin Fig. 7.33, has the e�et of making the desending portion in the fore-elongation urvemore gradual. Crazing, however, is seen to ompensate this e�et. Owing to razing,premature hardening whih appears in the augmented EBPA model preditions for purelyporous material is substantially redued in the model preditions for razed material. Thisis in better agreement with the experimental response that shows very stable nek.To evaluate the stability of marosopi deformation during drawing, a simple modelproposed by Melik (2003) is applied. By this approah, the marosopi tensile de-formation is related to the intrinsi deformation parameters that govern yield, strainsoftening and strain hardening, determined from the experiments. The draw ratio ofthe nek nR := σy,r/CR, where σy,r is the rejuvenated yield stress and CR the strainhardening modulus, is employed as a representative estimator for stable nek. Detailsof this approah are found in Appendix B. The tensile limit and equilibrium urve ofstable nek aording to the experiment and the models are presented in Fig. 7.35.
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The streth λn represents initiation of sta-ble nek. The value λn is estimated fromthe asending portion of experimentally ob-served uniaxial ompression response bytaking σ = σy, i.e. the stress state is largeenough to indue yield in the material. Dueto loalization, the equilibrium urve is ini-tially zero, i.e. strain softening is triggeredby loalization in region I. The thik line inregion II, where the draw ratio ranges be-tween nR = 0.7− 1.7, indiates stable nekupon drawing. The upper bound nR = 1.7is the value where the dashed line of tensilelimit and the solid line of the equilibriumurve interset. In region III, stable nekannot be formed sine maximum draw ra-tio for stable nek is already reahed. Com-pared to the stable portion of the experimental equilibrium urve, the models result inonsiderably redued range for stable nek, i.e. n̄M1
R < n̄M2

R < 1.7 in Fig. 7.35. Sine therejuvenated yield stress σy,r is extrated from the experiment, the ratio nR an inreaseonly due to a derease of the hardening modulus CR. By the de�nition CR := nkT em-ployed, the reduing strain hardening modulus is attributed to disentanglement. Based onthe idea that entanglements represent topologial onstraints and on the observation thatthe topology does not evolve onsiderably in glassy state, the network density in state-of-the-art models is taken to be onstant during deformation. However, the present numerialresults expliitly suggest that a redution of CR should be onsidered in the models.Assuming disentanglement is related to elevated visosity with inreasing elasti strain,numerial simulations based on the simple expression (6.11) were performed to see if hard-ening redues. However, the results indiated only a small in�uene of visosity on themaximum attainable draw ratio and loalized deformation. Disentanglement was alsomodeled by assuming that the network density n evolves with time t as
∂n

∂t
= −np0

τ
(7.30)where τ denotes a time interval, needed that a partiular entangled point vanishes, and

p0 = exp
(
−U0 − β∆beq

kT

) (7.31)is the probability that a partiular hain slips through an entangled point. In the above



130 7 Investigations on inhomogeneous deformation stateequation, U0 is the ativation energy, β is the ativation volume and
∆beq =

√

trace
(1

2
(βdev)2

)represents the di�erene in network stress between the two strands of a hain onnetedto a ommon entangled point, f. Basu et al. (2005) for a more detailed aount. When(7.30) is employed, disentanglement evolves already during softening and numerial sim-ulations indiate a signi�ant inrease in void growth during nek. The free volume be-tween the hains dereases pressure, and onsequently the Brownian motion of hainseases and visosity dereases. Assuming razing evolves due to disentanglement and aritial amount of porosity for the nuleation of razes is reahed at the last part ofsoftening, use is made of an assumption that the growth of existing voids is attenu-ated during neking, i.e. the equation (7.29) is employed.
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The simulated f − u response in Fig. 7.36shows stabilizing e�et due to disentangle-ment, i.e. the tensile limit of stable nekannot be observed during elongation upto u = 35 mm. Loss of the network den-sity 15% is reahed at u ≈ 20 mm, whihvalue remains almost onstant during fur-ther elongation. As it has been pointed outin preeding setions, similar e�ets annotbe observed if the network density alterswithout volume hanges, i.e. the modelsfor both void growth and razing need tobe applied. It an be onluded that thenetwork density plays a pivotal role in de-termining the type of marosopi failurethrough either shear yielding or razing.In order to evaluate possible raze-breakdown, the ontour plot of the raze-strain ζp during the nek is shown in Fig.7.34. The deformed meshes just prior torazing and at u = 33 mm are also visualized by the plasti streth λ̄p
ec and the mean stress

σm. A glane at the preeding results in Fig. 7.28 reveals that razing has no notable in�u-ene on the loalization of plasti deformation, i.e. the intensity and the rate of expansionremain virtually unaltered. It appears from Fig. 7.34 that the distribution of λ̄p
ec is similarto the ζp-distribution whih ontrols raze-initiation. The raze-strain ζp in its loalizedregion ranges between ζp = 0.40−0.50, whih values with together the low intensity of theplasti strething imply that the threshold ζpt for raze-breakdown should be signi�antlygreater than 0.50. In ontrast to the expansion of loalized deformation, the region of



7.6 Investigation of the damage behavior 131pronouned mean stress rapidly propagates over the gauge setion and reahes relativelystable values ranging between 27 − 32 MPa. Sine these values are higher than 0.4 − 0.5times the yield stress for PC, raze-initiation an be onsidered as an instantaneous pro-ess. As a onlusion of the present numerial results an be mentioned that razing isseen to be a ontrolling mehanism for stable nek, whereas void growth governs the rateof nek propagation and the amount of intrinsi softening during loalized deformation.



132 8 Summary and onluding remarks8 Summary and onluding remarksThis work is onerned with various aspets of the mehanial behavior and modeling ofamorphous polymers. This work also provides an overview of miromehanially motivatedonstitutive models of amorphous glassy polymers developed over the past four deades.Speial emphasis is devoted to the models of Arruda and Boye (1991), Arruda and Boye(1993a), Wu and Van der Giessen (1993), Anand and Ames (2006), Dupaix and Boye(2007) and Miehe et al. (2009), these being representative of a whole range of urrentmodels. In these models, the hain network is represented by small ells and the onstitutivedesription is based on Langevin hain statistis and the rate- and temperature-dependentArgon (1973) model. The models under onsideration over a broad range of strain ratesas well as temperatures ranging from zero degrees to the glass transition temperature.The mirostruture of amorphous glassy polymers is formed by long linear moleularhains whih form a network. The onnetions between the hains are formed by rela-tively weak seondary bonds alled van der Waals fores. The seondary bonds are loselyrelated to the physial entanglements: the inreasing number of entanglements ativatesmore bonds when the van der Waals fores grow and the resistane to slipping betweenhains inreases. Due to the di�erent mirostruture, the ability to form entanglementsduring large deformation and a hange of temperature di�ers between amorphous poly-mers. Entanglements also in�uene the mobility of hains during glass transition as wellas mehanial properties, suh as stress relaxation and reep.During initial deformation, the hains slip against eah other, and if the deformationrate is slow the hain moleules have enough time to relax and the amorphous strutureremains unaltered. One the yield limit is reahed, the slipping between the hains inreasesand the response suddenly softens. In the large strain regime, the hains align with theloading diretion whih results in anisotropi response. As a majority of the hains havealigned with the loading diretion and they have beome fully strethed, a signi�antinrease in sti�ness of the polymer network an be observed. The desribed materialbehavior an be represented by an "S-shaped" response. In ontrast to the glassy state,where only short-range motions an take plae, the motion of individual hains near theglass transition temperature strongly inreases and results in the material softening towardsa melt.The di�erene in the mehanial behavior under di�erent onditions is explained by theamorphous network-struture. The primary variables for the desription of the networkstruture are the initial and fully extended length of the hain segments between physialentanglements. Moreover, an average distribution of the hain segments, as well as thefuntion of the entanglements, have to be de�ned. To allow for �nite strains of polymerhains, non-Gaussian statistis have been employed and the motion of individual hains isallowed to �utuate non-a�nely around the maro-strethes. Aording to non-Gaussianstatistis, an idealized hain onsists of N statistially independent links of equal length
l, and its fully extended length is given by rL = lN . The initial length is de�ned by the



133random walk-type mean-square value as r0 = l
√
N . In reent models, the overall hainnetwork is desribed by ells involving eight individual hain segments (8-hain model) oran in�nite number of ontinuously distributed hains segments (full network model). Boththe number of hains in a unit volume and the number of statistial links between theentanglements are typially onsidered to be onstant. Due to the redued set of hains,the models based on the 8-hain model are numerially more e�ient than the full networkmodels. However, the e�ieny of the full network models an be improved using reduedintegration shemes.In a majority of the reent models, the initial material response is regarded as homo-geneous. However, there exist a multipliity of amorphous polymers having heterogeneousinitial struture. Some heterogeneity is needed to relieve the build-up of high hydrostatistress for a transition from razing to shear yielding. In a part of the proposed models,the heterogeneity is aounted for by the inhomogeneous distribution of the hain densityor by the initial heterogeneous shear strength distribution. In state-of-the-art models on-sidered in this thesis, the plasti deformation stems from isotropi resistane due to hainsegment rotations parallel with anisotropi resistane, whih results from the strething ofthe entire network and reorientation of the polymer hains. The notion for this hardeningmehanism is usable under isothermal loading onditions well below the glass transitiontemperature Tg as well as it is motivated by the omplete reversibility of plasti defor-mation at temperatures higher than Tg. In general, however, the strain hardening annotbe solely governed by the strething of the network, but the hardening tends to dereasewith temperature and, lose to the glass transition temperature, the hardening is stronglyin�uened by the hain density of the polymer network. The strain hardening is also shownto alter with both the yield stress and visosity of the material. Obviously, further researhand validation is required onerning these topis.In ontrast to monotoni loading, most of the existing models are not able to auratelyapture nonlinear unloading, reep and reovery, i.e. the transient e�ets after loading ratehanges. These shortomings are primarily a onsequene of negleted visoelasti e�ets.Even if models have been proposed for these purposes, they have been written under theassumption of small strains, or they inlude a large number of material parameters tobe alibrated. The BPA model simulations performed in this work indiated that thebakstress whih was generated during the loading phase led to a premature Bauhingere�et and unrealisti reovery during long-term dwell. Motivated by these �ndings, anextension for the BPA model (termed the EBPA model) was proposed in this thesis. Inontrast to the BPA model, the isotropi hardening is augmented by using an additionalvisous dashpot, and the single linear spring is replaed by a simple Kelvin hain whih isable to apture reep and nonlinear response during the loading yles. The purpose of anadditional visous dashpot is to inrease the amount of isotropi hardening in relation to theamount of kinemati hardening and thereby suppress the exessive Bauhinger e�et andreovery during long-term dwell. Compared to the BPA model, only three new onstitutiveparameters need to be determined in the EBPA model.



134 8 Summary and onluding remarksThe EBPA model is formulated in terms of the multipliative deomposition of the totaldeformation gradient into an elasti and a plasti part. In order to use the proposed modelin a �nite element setting, an impliit integration algorithm was derived. Sine the elastirotation is onstrained to be unity in the BPA model, the plasti spin generally is nonzero.To enfore this onstraint, an algorithmi plasti spin is introdued in the integrationalgorithm. Due to the proposed visoelasti desription, the elasti deformation gradientmust be further deomposed into the two parts and the rate form of the onstitutive lawmust be derived. To speify the orientation of the elasti intermediate on�guration, the�rst omponent of the elasti deformation gradient was hosen to be symmetri. As aresult of the imposed symmetries of the elasti strethes, the rate form of the onstitutivelaw was determined and introdued in the integration algorithm. Moreover, the tangentsti�ness tensor onsistent with the integration algorithm was derived and implemented ina �nite element program. The numerial examples revealed that the numerial algorithmsfor updating the internal state variables as well as the equilibrium state are robust.The EBPA model was alibrated for the di�erent homogeneous deformation modesinvolving monotoni and non-monotoni loading onditions. Using the alibrated param-eters, the preditive apability of the EBPA model was evaluated. Despite the relativesimpliity of this model, omparison with the experiments showed that the model apturesthe nonlinear response of PC and PMMA during monotoni loading, unloading and reepwell. Moreover, the alibrations indiated that a redued evolution of the bakstress in theEBPA model was ruial when modeling reovery. The proposed model was also found tobe preditive for isothermal responses at various strain rates as well as for the large strainanisotropi responses of preoriented polymers.The EBPA model was also alibrated to the fore-displaement responses for inhomo-geneous deformation aquired from old drawing experiments on polyarbonate speimens.Various loading situations were experimented by using the Instron © tension/ompressioneletromehanial testing mahine provided by the Laboratory of Department of Mate-rial Sienes. It was shown that the parameters whih were obtained from alibration tohomogeneous deformation annot be used to predit the experimental response of inho-mogeneous deformation. In order to �nd the mehanisms that are able to explain thisdisrepany, the models for the number of entanglements, void growth and razing wereimplemented in a part of the EBPA model. Based on �nite element analyses of the planarell model, also the role of strain loalization in the void growth, hain density as well asinto the initiation and propagation of shear bands in the ligaments between the voids wasaddressed. The simulations showed that the initiation of shear bands promotes the intrin-si softening in the material, whereas the kinemati hardening is seen to be a driving forefor widening of shear bands. The numerial results indiated also only a small in�ueneof the number of entanglements and hain density on the marosopi responses, whereasvoid grow signi�antly redued intrinsi softening in the material. It was shown that theEBPA model, in onjuntion with the modi�ed Gurson model for void growth, preditsinreased porosity and interation between the voids and less intrinsi softening. As a re-



135sult, the di�erene between the alibrated parameters for homogeneous and inhomogeneousdeformation onsiderably dereased.In order to suppress an exessive void growth during loalized deformation and a pre-mature hardening present in the simulations of the old drawing experiment, a model forrazing was proposed in this thesis. In this model, razing is assumed to result from dis-entanglement in highly onentrated regions of maximum prinipal stress, whih nuleatesnew miro-voids. However, these voids do not grow, but oalese to form initial razes thatwiden and eventually ause loal failure in the material. As a onlusion of the presentnumerial results an be mentioned that the plasti stability is essentially ontrolled byrazing, whereas void growth governs the rate of nek propagation and the amount ofintrinsi softening during loalized deformation.Despite the ative researh arried out during the last two deades, the governing mi-romehanism that ontrols marosopi mehanial behavior of amorphous glassy poly-mers is still not fully understood. A variety of models whih are suitable only for a relativelynarrow problem �eld and for a restrited set of amorphous polymers have been proposed.Moreover, the apability of the models to predit real material behavior is addressed only ina restrited set of loading situations. Thus the hallenge is to develop aurate and reliabletesting methods that ontribute to the development of overall models suitable for predit-ing the material behavior at di�erent length-sales, deformation states, temperatures aswell as at di�erent loading rates.
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Appendix A. Numerial treatment of the EBPA modelThe evolution equations used in the simulations for homogeneous deformation are derived below.One the uniaxial and plane strain ompression ase have been presented, the simple shear aseis obtained by analogue and it is not presented here. In ontrast to plane strain ompression,whih is simulated using monotoni loading, uniaxial ompression is simulated using monotoniloading, unloading, and dwell. The total deformation gradient during uniaxial and plane strainompression an be expressed by
F = v11e1 ⊗ e1 + v22e2 ⊗ e2 + v33e3 ⊗ e3, (A.1)where {ei, i = 1, 2, 3} are the unit base vetors and vii are the prinipal strethes. Based on thepolar deomposition the elasti part of the deformation gradient F e in (6.4) an be written as

F e = veRe = F e
1F

e
2 = ve

1R
e
1v

e
2R

e
2. (A.2)Assuming Re

1 to be unity, it follows that the omponents of Re
2 and Re are equal and (A.2) anbe formally written as

ve = ve
1v

e
2. (A.3)Sine the total elasti deformation is also irrotational, the omponents of F e and ve are equal and(A.3) beomes F e = ve = ve

1v
e
2 = ve

2v
e
1. Thus, the logarithm of ln ve is given by
ln ve = ln ve

1 + ln ve
2. (A.4)Substituting the material time derivative of (A.4) into (6.6) yields the following expression for thestress rate

τ̇ = L
e(E) :

[ d

dt
(ln ve) + η−1 : Le(E1) : ln v

e − η−1 : (Le(E1) : L
e−1(E) + I) : τ

]

=: g(τ , ln ve;
d

dt
(ln ve)).

(A.5)Employing the onveted stress rate of the Kirhho� stress
τ▽ = τ̇ − lτ − τ lT , (A.6)the rate form retains objetivity, f. Belytshko et al. (2000). Another frequently used objetivestress rate is the Jaumann rate of the Kirhho� stress, whih under these stress states beomes

τ̇ J = τ̇ − ωτ + τω = τ̇ .In general, as with the isotropi elastiity tensor L
e, η is regarded as a fourth order tensor,given by

η = η1I + η2i⊗ iwhere η1 and η2 are visosities that govern elasti shear and volumetri deformation, respetively.They may also depend on temperature and the elasti strain rate, f. Hasanpour and Ziaei-Rad(2008). For a onveniene, however, visosity is regarded as a salar in subsequent onsiderations.In the experiments, unloading and dwell are ontrolled by a onstant nominal or Piola-



146Kirhho� stress rate, π▽, de�ned by
π▽ := τ▽F−T + τ

d

dt
(F−T ). (A.7)During uniaxial and plane strain ompression (4.12)2, (6.2), (A.5) and (A.7) an be ombined toyield a system of di�erential equations that governs the response in one material point. We willrepresent the governing equations as

M(y)ẏ = f(y), (A.8)where M ,y and f are de�ned below for both load ases. The system (A.8) is solved using abakward-di�erentiation based Runge-Kutta integration sheme, f. Shampine et al. (1999).Plane strain ompressionIn plane strain ase, the prinipal diretions remain unaltered and thus d/dt ln veii = v̇eiiv
e−1
ii ,

i = 1, 2, 3. A glane at (4.12)1 and (4.9), and noting that the elasti deformation is irrotational,reveals that v̇eii = deiiv
e
ii, i.e. d/dt ln veii = deii = dii − veiiD̄

p
iiv

e−1
ii = dii − D̄p

ii. Assuming τ̇22 = 0 and
τ22 = 0 and using (A.5), the elasti deformation is onstrained to satisfy

d22 =
1

η

(
((Le

1 : L
e−1)22ii + δ2i)τii − Le1,22ii ln veii

)
+ D̄p

22, i = 1, 2, 3, (A.9)where the notation L
e
1 := L

e(E1) was introdued for the sake of simpliity. In the numerialsheme, the omponent d11 is given. Based on (A.5) the nonzero omponents of the onvetedstress rate evolve aording to
τ▽jj =

(

Lejjiideii −
1

η

(
((Le : Le

1 : L
e−1)jjii + Ljjii)τii − (Le : Le

1)jjii ln v
e
ii

)
)

−

2τ11d11 =: gjj,

(A.10)
i = 1, 2, 3 and j = 1, 3. Due to the plane strain ompression state, a glane at (4.8) reveals that
v33 = 1. Based on the multipliative split (4.3) we onlude that ve33 = (V̄ p

33)
−1. The system ofdi�erential equations (A.8) is now governed by the unit matrix as
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(A.11)
The rows 4-6 and 8 in (A.11) are needed only in the EBPA model. Aording to the BPA model,



147the elasti deformation is onstrained to satisfy
ln ve33 = −(ln ve11 +

1− ν

ν
ln ve22). (A.12)Based on Eq. (A.12) the stress omponent in the diretion of the applied load is given by

τ11 =
E

(1 + ν)
(ln ve11 − ln ve22). (A.13)Uniaxial ompressionDue to the uniaxial stress state, the onstraint (A.9) for the elasti deformation is redued to

d33 = d22 =
1

η

(
((Le

1 : L
e−1)2211)τ11 −Le1,22ii ln veii

)
+ D̄p

22 (A.14)and d11 is given during the loading phase. Due to the symmetry, v33 = v22 in (A.1) and thus itfollows from (4.3) and (4.8) that ve33 = ve22 and V̄ p
33 = V̄ p

22. The only nonzero stress omponent isdenoted by τ11. During unloading and dwell, the omponent d11 is not presribed but it is solvedfrom (A.8). Based on (A.5)
τ▽11 =
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2Le1122de22 + Le1111(d11 − D̄p
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e−1)1111 + Le1111)τ11−
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e
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)

− 2τ11d11.

(A.15)Aording to the simulations, the experimental response an be aptured more aurately usingthe visous damping only in the �rst diretion, i.e. ηde22 = ηde33 = 0. This onstrains the elastideformation to be
ln ve33 = ln ve22 = −ν ln ve11 (A.16)where ν is the Poisson's ratio. The stress rate equation beomes
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(A.17)where
g11 := −Le1111D̄p
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|i=1,2,3,

̺ := (Le1111 − 2τ11)v
−1
11 .Use of (A.1) in (A.7) results in π▽

11 = τ▽11v
−1
11 −τ11v

−2
11 v̇11. During dwell and unloading π▽

11 = 0 and
π▽
11 = 2.3 MPa/s, respetively. The governing di�erential equations (A.8) an now be summarized
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(A.18)
The rows 3, 5 and 6 in (A.18) are needed only in the EBPA model. In the BPA model, the stressis given by (4.113) and the last row in (A.18) for unloading and dwell is replaed by

−ve11 ˙̄V p
11 + (1− ln ve11)v̇11 =

π▽
11

E
(v11)

2.



149Appendix B. Stability of nek drawingA model to evaluate the stability of marosopi deformation during drawing is presented below.In ontrast to the original approah by Haward (1987), this model takes also strain softening,spei� to amorphous polymers, into onsideration, f. Melik (2003). The marosopi tensiledeformation is related to the intrinsi deformation parameters that govern yield, strain softeningand strain hardening, determined from the experiments. The true stress vs streth urve in Fig.B.1(a) after the point λi is relatively well aptured by the expression
σ = κtσy,r = σy,r + CR(λ

2 − 1

λ
) ⇒ nR :=

σy,r
CR

=
λ2 − 1

λ

κt − 1
(B.1)where σy,r is the rejuvenated yield stress, CR is the hardening modulus and nR is the drawratio of nek. Taking the stress of the strethed polymer to be σ = σt in (B.1), de�nes thetensile limit λ = λt for stable nek. For (semi-)rystalline polymers, however, the true stress
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Figure B.1: a) Illustration of intrinsi strain softening in terms of the yield stress σy and therejuvenated yield stress σy,r. The stress response during strain hardening is proportional to
λ̃ = λ2 − 1/λ. b) Stability of nek. The solid and dashed line represent the equilibrium urveof stable nek growth and the stable nek limit, respetively. The trajetories with the markers
∗ and � are the stable limits aording to the model for void growth and for void growth andrazing, respetively.is not able to represent a reversed transition after the marosopi yield point, whih e�et thenominal (engineering) stress does apture. This feature is known as geometri softening. Alsoin testing of amorphous polymers, shear banding and neking make generally the nominal stressmore measurable quantity. By analogy to (B.1), but using the nominal stress π := 1/λσ, thestress vs streth relation is given by

π = κ̃y
σy,r
λr

:= κyσy,r =
1

λ

(
σy,r + CR(λ

2 − 1

λ
)
)
⇒ nR :=

σy,r
CR

=
λ2 − 1

λ

κyλ− 1
(B.2)where κ̃y := κyλr, λr is the streth orresponding to the rejuvenated stress σy,r and κy is amultiplier representing strain softening. The estimated streth λn for a stable nek is reahedwhen σ = σy in (B.2), i.e. the stress state is large enough to indue yield in the material, f.



150Fig. B.1(a). This limit as well as σy,r an be extrated from a uniaxial ompression experiment,f. Melik et al. (2003). Softening of the experimental response is typially haraterized by thevalues κy = 1.2− 1.3, f. Figs. 6.4 and 7.17.A non-dimensional quantity λ = (u+L)/L is introdued for the evaluation of the true overallstress from old drawing experiments, whereas the nominal stress π := f/A0 is de�ned as theapplied load f divided by the initial ross-setion A0. The hardening modulus CR = 14.0 MPaand the position u ≈ 63 mm in whih stabilized nek ends de�ne an approximation for the fator
κt = 1.9, f. Fig. 7.17.Both the tensile limit of stable nek (B.1) and the equilibrium urve (B.2) are presented in Fig.B.1(b). The thik line indiates stable nek upon drawing. The upper bound nR = 1.7 is the valuewhere the dashed line of tensile limit and the solid line of the equilibrium urve interset. Foromparison, also the tensile limits resulting from the model responses are presented, determinedby analogy to the experimental one. For both the models, κy = 1.3 is used. The values nM1

R ≈ 1.25and nM2
R ≈ 1.50 are the upper limits for stable nek aording to the models.




