

Tampereen teknillinen yliopisto. Julkaisu 1211
Tampere University of Technology. Publication 1211

Alexandru Onose

Greedy Adaptive Algorithms for Sparse Representations

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB219,
at Tampere University of Technology, on the 13th of May 2014, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2014

Supervisors:

Dr. Bogdan Dumitrescu,
Department of Signal Processing,
Faculty of Computing and Electrical Engineering,
Tampere University of Technology,
Tampere, Finland.

Prof. Ioan T bu (Custos),
Department of Signal Processing,
Faculty of Computing and Electrical Engineering,
Tampere University of Technology,
Tampere, Finland.

Pre-examiner:

Dr. Radu Bîlcu,
Nokia Research Center,
Tampere, Finland.

Pre-examiner and opponent:

Dr. Stefan Werner,
Department of Signal Processing and Acoustics,
School of Electrical Engineering,
Aalto University,
Aalto, Finland.

Opponent:

Dr. Kristiaan Pelckmans,
Division of Systems and Control,
Department of Information Technology,
Uppsala University,
Uppsala, Sweden.

ISBN 978-952-15-3282-5 (printed)
ISBN 978-952-15-3308-2 (PDF)
ISSN 1459-2045

Abstract

A vector or matrix is said to be sparse if the number of non-zero elements is
significantly smaller than the number of zero elements. In estimation theory the
vectors of model parameters can be known in advance to have a sparse structure,
and solving an estimation problem taking into account this constraint can im-
prove substantially the accuracy of the solution. The theory of sparse models has
advanced significantly in recent years providing many results that can guarantee
certain properties of the sparse solutions. These performance guarantees can be
very powerful in applications and they have no correspondent in the estimation
theory for non-sparse models.

Model sparsity is an inherent characteristic of many applications (image com-
pressing, wireless channel estimation, direction of arrival) in signal processing and
other related areas. Due to the continuous technological advances that allow faster
numerical computations, optimization problems, too complex to be solved in the
past, are now able to provide better solutions by considering also sparsity con-
straints. However, an exhaustive search to finding sparse solutions generally re-
quires a combinatorial search for the correct support, a very limiting factor due
to the huge numerical complexity. This motivated a growing interest towards
developing batch sparsity aware algorithms in the past twenty years.

More recently, the main goal for the continuous research related to sparsity
is the quest for faster, less computational intensive, adaptive methods able to
recursively update the solution. In this thesis we present several such algorithms.
They are greedy in nature and minimize the least squares criterion under the
constraint that the solution is sparse. Similarly to other greedy sparse methods,
two main steps are performed once new data are available: update the sparse
support by changing the positions that contribute to the solution; compute the
coefficients towards the minimization of the least squares criterion restricted to
the current support. Two classes of adaptive algorithms were proposed.

The first is derived from the batch matching pursuit algorithm. It uses a co-
ordinate descent approach to update the solution, each coordinate being selected
by a criterion similar to the one used by matching pursuit. We devised two al-
gorithms that use a cyclic update strategy to improve the solution at each time
instant. Since the solution support and coefficient values are assumed to vary
slowly, a faster and better performing approach is later proposed by spreading the
coordinate descent update in time. It was also adapted to work in a distributed

i

ii

setup in which different nodes communicate with their neighbors to improve their
local solution towards a global optimum.

The second direction can be linked to the batch orthogonal least squares. The
algorithms maintain a partial QR decomposition with pivoting and require a per-
mutation based support selection strategy to ensure a low complexity while allow-
ing the tracking of slow variations in the support. Two versions of the algorithm
were proposed. They allow past data to be forgotten by using an exponential or
a sliding window, respectively. The former was modified to improve the solution
in a structured sparsity case, when the solution is group sparse.

We also propose mechanisms for estimating online the sparsity level. They are
based on information theoretic criteria, namely the predictive least squares and
the Bayesian information criterion.

The main contributions are the development of the adaptive greedy algorithms
and the use of the information theoretic criteria enabling the algorithms to behave
robustly. The algorithms have good performance, require limited prior information
and are computationally efficient. Generally, the configuration parameters, if they
exist, can be easily chosen as a tradeoff between the stationary error and the
convergence speed.

Preface

The research results that coalesced to produce this thesis have been developed
during the period 2010-2013 at the Signal Processing Department of Tampere
University of Technology. So far it has been an interesting and motivating journey,
with the frustration and joy that technical research always seems to bring. Having
just submitted new promising results to a conference and, with hopes of a journal
article to follow, the journey is not over. I hope that the future, and wherever the
journey might take me, will be at least as interesting as these last four years have
been.

Thus, I wish to express my deepest gratitude to my supervisors and co-authors,
Prof. Bogdan Dumitrescu and Prof. Ioan Tăbuş. Especially, I wish to express
my recognition for the continuous guidance received from B. Dumitrescu and for
his support towards the elaboration of the thesis. Special thanks also go to my
co-author and colleague Petri Helin.

I would like to thank the pre-examiners, Dr. Stefan Werner and Dr. Radu
B̂ılcu, for their effort dedicated to reading the manuscript and for their constructive
feedback and recommendations. I also would like to thank Dr. Stefan Werner and
Dr. Kristiaan Pelckmans for agreeing to serve as opponents for the public defense
of the thesis.

Special thanks are due to Virve Larmila, Ulla Siltaloppi and Elina Orava for
their assistance and help with administrative matters.

I am also grateful to all my colleagues and friends, Ionuţ, Jenni, Stefan, Vlad,
Septimia, Victor and Florin, who created an interesting and motivating work en-
vironment and to many other friends from outside the department, too many to
mention here, for all the good moments we spent together.

Last but not least I want to express my warmest gratitude to my parents,
Georgeta and Valentin, and to my brother Cristian, for their support on my four
year endeavor that lead to writing this thesis. At the same time I want to thank
Andrada, for motivating me towards finishing the manuscript.

March 2014, Tampere
Alexandru Onose

iii

iv

Contents

1 Introduction 1

2 Adaptive filtering 3
2.1 Traditional solutions . 3
2.2 Recursive least squares . 4
2.3 Applications . 5

2.3.1 Channel identification . 5
2.3.2 Linear prediction . 7

3 Sparse representations 9
3.1 Batch methods . 10

3.1.1 Convex relaxation techniques 11
3.1.2 Greedy algorithms . 12
3.1.3 Performance analysis . 15

3.2 Adaptive algorithms . 16
3.2.1 Traditional methods and the sparse problem 16
3.2.2 Convex relaxation techniques 17
3.2.3 Greedy algorithms . 18
3.2.4 Support cardinality estimation 18

4 Greedy sparse adaptive algorithms 21
4.1 Greedy sparse coordinate descent methods 21

4.1.1 Recursive implementation 22
4.1.2 Cyclic adaptive matching pursuit 23
4.1.3 Coordinate descent adaptive matching pursuit 29

4.2 Greedy sparse orthogonal algorithms 39
4.2.1 Greedy sparse recursive least squares 40
4.2.2 Sliding window algorithm 46
4.2.3 Group level sparsity estimation 49

5 Conclusions and summary 55
5.1 Overview of the results . 55

5.1.1 Algorithm complexity . 55
5.1.2 Performance assessment . 59

v

vi CONTENTS

5.2 Conclusions . 65
5.3 Author’s contribution . 66

A Mathematical appendix 69
A.1 Matrix inversion lemma . 69
A.2 Sparsity recovery analysis . 69
A.3 Orthogonal transforms . 70

References 73

Publications 81

Afterword 147

List of publications

The thesis consists of seven publications: two journal publications [P1, P5] and
five conference papers [P2, P3, P4, P6, P7]. All publications present different
approaches for solving overdetermined sparse systems of equations and are grouped
below based on the characteristics of the algorithms they present.

Publications [P1, P2, P3, P4] develop fast methods that update the solution
via coordinate descent like approaches. The algorithms from [P5, P6, P7] use
orthogonal transforms to provide accurate solutions but, computationally, are more
intensive.

[P1] A. Onose and B. Dumitrescu. Adaptive matching pursuit using coordinate
descent and double residual minimization. Signal Processing, 93(11):3143–
3150, November 2013.

[P2] A. Onose and B. Dumitrescu. Distributed coordinate descent using adaptive
matching pursuit. In Proceedings of the International Symposium on Intelli-
gent Signal Processing and Communication Systems, pages 513–518, Naha,
Japan, November 2013.

[P3] A. Onose and B. Dumitrescu. Cyclic adaptive matching pursuit. In Proceed-
ings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, pages 3745–3748, Kyoto, Japan, March 2012.

[P4] A. Onose and B. Dumitrescu. Low complexity approximate cyclic adaptive
matching pursuit. In Proceedings of the European Signal Processing Confer-
ence, pages 2629–2633, Bucharest, Romania, August 2012.

[P5] B. Dumitrescu, A. Onose, P. Helin, and I. Tăbuş. Greedy sparse RLS. IEEE
Transaction on Signal Processing, 60(5):2194–2207, May 2012.

[P6] A. Onose, B. Dumitrescu, and I. Tăbuş. Sliding window greedy RLS for
sparse filters. In Proceedings of the IEEE International Conference on Acous-
tics, Speech and Signal Processing, pages 3916–3919, Prague, Czech Repub-
lic, May 2011.

[P7] A. Onose and B. Dumitrescu. Group greedy RLS sparsity estimation via
information theoretic criteria. In Proceedings of the International Confer-
ence on Control Systems and Computer Science, volume 2, pages 359–364,
Bucharest, Romania, May 2013.

vii

viii LIST OF PUBLICATIONS

List of figures

2.1 Adaptive filtering applications: Identification of an unknown process. 6

2.2 Adaptive filtering applications: Prediction. 6

4.1 Graphical representation of the operations from the coordinate de-
scent AMP algorithm. 32

4.2 Graphical representation of the operations for the double residual
coordinate adaptive matching pursuit algorithm. 33

4.3 Example of a connected network N with a random topology T . A
node n[k] can communicate to neighbor nodes N [k]. 35

4.4 Matrix R[t] illustrating the operations from Algorithm 4.7 for m =
4, n = 6; a permutation between the second and the third column
is performed; the non-zero elements are represented by × and those
modified, to a non-zero value by the current operation, by ∗; we
mark with ⊗ the past data not stored explicitly to remind that
the matrix R[t] does not contain the whole input data; the figures
show the initial matrix (Figure 4.4a), the matrix after the permuta-
tions (Figure 4.4b) and after the application of the Givens rotation
(Figure 4.4c). 43

4.5 Matrix R[t] illustrating the operations from Algorithm 4.8 for m =
4, n = 6; a permutation between the forth and the sixth column is
performed; the non-zero elements are represented by × and those
modified, to a non-zero value by the current operation, by ∗; we
mark with ⊗ the past data not stored explicitly and with ⊙ the
past data modified, to a non-zero value by the current operation,
to remind that the matrix R[t] does not contain the whole input
data; the figures show the initial matrix (Figure 4.5a), the matrix
after the permutations (Figure 4.5b) and after the application of
the Householder transform (Figure 4.5c); note that the past data
are modified which justifies the update of the scalar products. . . . 44

ix

x LIST OF FIGURES

4.6 Matrices U[t−1] and R[t−1] illustrating the operations from Algo-
rithm 4.10 for m = 4, n = 6 and w = 7; the non-zero elements are
represented by × and those modified, to a non-zero value by the
current operation, by ∗; the figures show the initial matrices (Fig-
ure 4.6a), the matrices after the Householder transform is applied
(Figure 4.6b) and after the application of the first Givens rotation
(Figure 4.6c); the matrices from (Figure 4.6d) exemplify the changes
that occur in U[t−1] and the upper Hessenberg structure of R[t−1]

after all the Givens transforms are applied. 48

5.1 The evolution in time of MSE[t] for a variation speed governed by
f = 0.001. At time t = 300, three of the lt = 5 coefficients change
position. The forgetting factor used is λ = 0.92. 59

5.2 The average MSE[t] as a function of the true number of coefficients
lt and a constant filter of length n = 200. The variation speed is
governed by f = 0.001. The forgetting factor used is λ = 0.92 for
all algorithms except RLS(1) which uses λ = 0.9825. 60

5.3 The average MSE[t] as a function of the forgetting factor λ for a
number of true coefficients lt = 5 and a constant filter of length
n = 200. The variation speed is governed by f = 0.001. 60

5.4 The average MSE[t] as a function of the filter order n for a number
of true coefficients lt = 5. The forgetting factor used is λ = 0.92 for
all algorithms besides RLS(1) which uses λ optimized for each test
case. The variation speed is governed by f = 0.001. 61

5.5 The evolution in time of MSE[t] for a variation speed governed by
f = 0.002. At time t = 300, three of the lt = 5 coefficients change
position. The forgetting factor used is λ = 0.90. 61

5.6 The evolution in time of MSE[t] for a variation speed governed by
f = 0.0002. At time t = 300, three of the lt = 5 coefficients change
position. The forgetting factor used is λ = 0.96. 62

5.7 The evolution in time of MSE[t] for a variation speed governed by
f = 0.001 in Figure 5.7a and f = 0.002 in Figure 5.7b. The forget-
ting factors are λ = 0.90 and λ = 0.92, respectively. Two test cases,
i.e. two different data sets with lt = 5 and lt = 10, are presented in
each figure. The filter length is n = 200. 62

5.8 The average MSE[t] as a function of the true group size pt for a
number of groups mg = 2. All groups have the same size. The
filter length is n = 180. Figure 5.9a depicts the evolution of the
algorithms that use the BIC criterion while Figure 5.9b contains the
algorithms that use the PLS criterion. The forgetting factor used is
λ = 0.9 for all algorithms and the variation speed is fast, governed
by f = 0.002. 63

LIST OF FIGURES xi

5.9 The average MSE[t] as a function of the true group size pt for a
number of groups mg = 2. All groups have the same size. The
filter length is n = 180. Figure 5.9a depicts the evolution of the
algorithms that use the BIC criterion while Figure 5.9b contains the
algorithms that use the PLS criterion. The forgetting factor used is
λ = 0.96 for all algorithms and the variation speed is slow, governed
by f = 0.0002. 63

5.10 The evolution in time of MSE[t] for a variation speed governed by
f = 0.001. The forgetting factor is λ = 0.92, the filter length is
n = 200 and the true number of coefficients is lt = 5. 64

5.11 The evolution in time of MSE[t] for a variation speed governed by
f = 0.0002. The forgetting factor is λ = 0.96, the filter length is
n = 200 and the true number of coefficients is lt = 10. 64

5.12 The evolution in time of MSE[t] for a variation speed governed by
f = 0.0002. The forgetting factor is λ = 0.96, the filter length is
n = 200 and the true number of coefficients is lt = 10. 65

5.13 The average MSE[t] as a function of the descent step µ. Figure
5.13a depicts the average MSE[t] of the algorithms for f = 0.002
and λ = 0.90 while Figure 5.13b contains the average MSE[t] for
f = 0.0002 and λ = 0.96 . The filter length used is n = 200 and all
simulations have the true number of coefficients lt = 10. 65

xii LIST OF FIGURES

List of tables

5.1 Summary of the approximate complexity for the studied algorithms;
the complexity of the online sparsity estimation is considered sepa-
rately . 56

5.2 Summary of the algorithms used for the performance assessment
and their configuration . 57

5.2 Summary of the algorithms used for the performance assessment
and their configuration . 58

xiii

xiv LIST OF TABLES

List of algorithms

3.1 Matching pursuit (MP) . 13
3.2 Orthogonal least squares (OLS) 14
4.1 Cyclic adaptive matching pursuit (CAMP) 26
4.2 Iterated cyclic adaptive matching pursuit (I-CAMP) 27
4.3 Coordinate descent adaptive matching pursuit (CD-AMP) . 31
4.4 Double residual coordinate descent adaptive matching pur-

suit (DCD-AMP) . 34
4.5 Distributed double residual coordinate adaptive matching

pursuit (D-DCD-AMP) . 38
4.6 Greedy recursive least squares (GRLS) - basic update . . . 42
4.7 Greedy recursive least squares (GRLS) - neighbor permu-

tation . 43
4.8 Greedy recursive least squares (GRLS) - last active column

selection . 45
4.9 Greedy recursive least squares (GRLS) - algorithm summary 47
4.10 Sliding window greedy recursive least squares (SW-GRLS)

- downdate . 49

xv

xvi LIST OF ALGORITHMS

List of acronyms

LMS least mean squares . 3
NLMS normalized LMS . 3
LS least squares . 3
RLS recursive least squares. .3
FIR finite impulse response . 6
BPDN basis pursuit denoising . 11
LASSO least absolute shrinkage and selection operator 11
MP matching pursuit . 12
OMP orthogonal matching pursuit . 12
OLS orthogonal least squares . 12
SPARLS sparse RLS . 17
TWL time weighted LASSO .17
TNWL online cyclic coordinate descent using time and norm

weighted LASSO . 18
AMP adaptive matching pursuit . 18
CMP cyclic matching pursuit . 18
CAMP cyclic AMP . 18
CD coordinate descent . 18
GRLS greedy sparse RLS .18
ITC information theoretic criteria. .19
PLS predictive least squares . 19
BIC Bayesian information criterion . 19
I-CAMP iterated CAMP . 25
I-CAMP-A approximate I-CAMP using the PLS criterion 29
CD-AMP coordinate descent AMP . 29
DCD-AMP double residual CD-AMP .32
D-DCD-AMP distributed DCD-AMP . 35

xvii

xviii LIST OF ALGORITHMS

SW-GRLS sliding window GRLS . 47
G-GRLS group GRLS . 50
RZA reweighted zero attracting sparse diffusion LMS55
RZA-ATC RZA algorithm that adapts the coefficients to include the

new local data and then combines them with the neighbor
data . 58

RZA-CTA RZA algorithm that combines the coefficients with the
neighbor data and then adapts them to include the new
local data . 58

RLS-SP sparsity informed RLS . 64
DCD-AMP-G non distributed DCD-AMP algorithm that has all the data

available locally . 64

Mathematical notations

R set of real numbers.
N set of all nodes belonging to a network.
Nj set of neighbor nodes of node j belonging to network N .
S, C,A, I,P,B,G subsets of positive integers; used for indexing data contained

by matrices and vectors.
a : b notation for the set of positive integers with values between

a and b; matlab notation.
A ∈ Rn×m matrix notation; a matrix of real values having n rows and

m columns.
AC columns of matrix A associated with the set C.
AC,A part of matrix A containing rows associated with the set C

and columns associated with set A.
a ∈ Rn vector notation; a vector of real values having n elements.
aC elements of vector a associated with the set C.
a, ai, ai,j ∈ R element notation; a variable of real value.
{·}T transpose of {·}.
{·}-1 inverse of {·}.
{·}[t,j] time and node notation of any variable {·} at time t and

node j.
{·}[t], {·}(t) time notation for any variable {·} at time t.
⌈{·}⌉ value of {·} rounded up to the nearest integer.
∥{·}∥p norm p of {·}.
|{·}| set cardinality if {·} is a set; absolute value of {·}.
sign({·}) sign of {·}.
Ti, Tr, Tf different network topologies; unconnected, ring and fully

connected, respectively.

xix

xx LIST OF ALGORITHMS

Chapter 1

Introduction

The vast progress made in many science areas during the past decades would not
have been possible without the improvement of the signal models we use. Simple
models have been very appealing since they are easy to comprehend and they
can be used to generate fast solutions to diverse problems. However, due to their
simplicity, many lack precision. This motivated a continuous quest for better
modeling techniques.

Recently, technological developments generally linked to faster computing ca-
pabilities, allowed us to solve increasingly complex problems. The complexity
can however grow very fast when the problem size increases even slightly, mak-
ing many problems intractable. This is motivating a sustained research towards
the development of better ways of finding solutions to increasingly more complex
models.

The concept of sparse and redundant representations started from a very simple
idea. In essence many signals contain redundancies and a good model should
obtain the simplest, sparsest representation. Thus, the redundant signal b ∈ Rt

can be expressed by a simpler, sparse representation x ∈ Rn through a linear
transform,

Ax = b, (1.1)

where A ∈ Rt×n contains the atoms used to express the signal b and x has only
l ≪ n non-zero elements; b is expressed as a linear combination of only l atoms.
This model is very simple but finding the sparse representation, given a large
number n of atoms, is very difficult. A direct approach involves a combinatorial
search for the adequate atoms.

In this thesis we present several greedy algorithms that provide accurate and
robust solutions to sparse problems like (1.1) while having low computational
complexity. One of the main applications of such algorithms is that of producing
sparse adaptive filters. Thus, we begin by introducing some of the traditional
adaptive filtering tools and their applications in Chapter 2. We present the
recursive least squares (RLS) algorithm as an example of an important adaptive
algorithm for generating least squares (LS) non-sparse solutions. It minimizes a

1

2 CHAPTER 1. INTRODUCTION

similar criterion as the sparsity-aware algorithms that are presented herein, but
without any sparsity constraints. Chapter 3 contains a brief summary of the
evolution of the so called sparsity-aware methods. We describe some of the most
relevant batch approaches and present an overview of the adaptive methods that
have been developed in the past two decades. The batch methods mainly belong
to two classes; they are based on convex relaxation techniques and simultaneously
estimate the supports and the coefficient values or are greedy algorithms and
decouple the search for the support from the computation of the coefficient values.
The adaptive methods either follow the transformation of non-sparse methods,
like the least mean squares (LMS), towards being sparsity-aware or are derived
from the two batch classes of methods mentioned above, modified for an adaptive
setup. Finally, the main contributions that serve as a base for this thesis, namely
two families of greedy adaptive sparse algorithms, are summarized in Chapter 4.
The first family is derived from the batch matching pursuit (MP) algorithm [30]
and uses a coordinate descent (CD) approach to estimate the coefficients while
the second has its roots in the batch orthogonal least squares (OLS) method [22].
Their performance is later comparatively assessed in Chapter 5.

Chapter 2

Adaptive filtering

Linear estimation theory has a very long history. It began, in the 17’th century,
with the first attempts of Galileo Galilei to analyze and to model the motions
of planets. The stepping stone of modern estimation theory was, however, the
development of the least squares (LS) method by Gauss [45] and Legendre [63].
Modern studies of the mean squares estimation began in the context of stochastic
processes with pioneer works like those of Kolmogorov [61] and Wiener [96] in
the first half of the 20’th century. Both Wiener and Kolmogorov assumed the
stochastic processes to be stationary and considered the amount of available data
infinite. In practice however this is seldom true; the processes are variable and the
data available is limited.

2.1 Traditional solutions
Starting from the 1950s, algorithms that recursively compute the weights of a
linear filter emerged. The classical approaches that lead to the development of
the adaptive filter theory generally follow two main directions: they are based on
stochastic gradient descent methods, or try to solve an LS estimation problem.
Probably the most studied and used adaptive filtering algorithms are the least
mean squares (LMS), developed by Widrow and Hoff [94, 95], and the recursive
least squares (RLS), which can be credited to [76], although various derivations
existed before.

The LMS minimizes a cost function of the filter weights via a stochastic gradient
descent, and can be viewed as an approximation of the optimal Wiener filter [96].
Although it is fairly simple, it is efficient, robust, and has a very low complexity.
It was thoroughly studied and numerous improvements [53, 80] over the original
form have been proposed. Most notably are the normalized LMS (NLMS) [9, 69]
and various frequency domain approaches [93].

Following an LS strategy, the RLS algorithm minimizes a quadratic cost function
and can be viewed as a special case of Kalman filtering [58, 81]. Although there
exist a plethora of advances over the standard RLS, which either improve the

3

4 CHAPTER 2. ADAPTIVE FILTERING

stability [46] or lower the algorithm complexity [28], herein only some basic details
are presented. This provides a link to the sparsity-aware algorithms that serve as
a basis for this thesis, since they minimize a similar LS criterion.

2.2 Recursive least squares
In the adaptive filtering context, we need to find a recursive solution that minimizes
the LS criterion

J(x(t)) =
t∑

τ=1
λt−τ |e(τ)|2 (2.1)

at each time instant t. The estimation error e(τ) is defined as the difference
between the desired output d(τ) and the output data y(τ) produced by a linear
filter, x(t) ∈ Rn, having as input data u(τ) ∈ Rn,

e(τ) = d(τ)− y(τ) = d(τ)− xT (t)u(τ) = d(τ)−
n−1∑
i=0

xi(t)ui(τ). (2.2)

We use a forgetting factor 0 < λ ≤ 1 to define an exponentially weighing
function that limits the influence of old data and thus allows the tracking of non-
stationary processes. Furthermore, the data may also be windowed using a rect-
angular sliding window of length 0 < w ≤ t, the summation from (2.1) being
performed for t − w + 1 ≤ τ ≤ t. We explicitly treat the sliding window case in
Chapter 4.2.2 and for now we work only with exponentially windowed data.

In a typical scenario, the filter length n is smaller than the total available data,
n ≤ t. Thus, by collecting for all τ the equations from (2.2), we can view the
minimizer x(t) of the criterion (2.1), as the LS solution to the overdetermined
system of linear equations,

A(t)x(t) ≈ b(t). (2.3)

For simplicity, we include the windowing in the data matrices. The input
matrix A(t) ∈ Rt×n is constructed using the input data collected for all time
instants, each row i being equal to

α(i) = λ
t−i

2 u(i). (2.4)

The desired output is therefore,

b(t) = [λ
t−1

2 d(1), λ
t−2

2 d(2), · · · , λ
1
2 d(t− 1), d(t)]T , (2.5)

with direct correspondence to (2.2). This allows for a recursive description and we
can construct the matrices for time t based on the past ones, from time t− 1,

A(t) =
[√

λA(t− 1)
αT (t)

]
, b(t) =

[√
λb(t− 1)

β(t)

]
, (2.6)

2.3. APPLICATIONS 5

where β(t) = λ
t−t

2 d(t) = d(t). The criterion J(x(t)) can be written as the squared
norm of the residual of the linear system defined by (2.3), producing

J(x(t)) = ∥b(t)−A(t)x(t)∥2
2. (2.7)

The number of rows in the matrix A(t) and the vector b(t) depends on the
number of samples available and can grow indefinitely long. Due to memory
limitations, the information can be stored in the form of the scalar products

Ψ(t) = AT (t)A(t) = λΨ(t− 1) + α(t)αT (t) (2.8)

and
ϕ(t) = AT (t)b(t) = λϕ(t− 1) + α(t)β(t). (2.9)

To compute the solution, the RLS algorithm updates the inverse P(t) = Ψ-1(t)
(Lemma A.1.1) and produces the recursive filter coefficient update,

x(t) = x(t− 1) + k(t)
[
β(t)− xT (t− 1)α(t)

]
, (2.10)

where k(t) is a gain vector

k(t) = P(t− 1)α(t)
λ + αT (t)P(t− 1)α(t)

(2.11)

and
λP(n) = P(t− 1)− k(t)αT (t)P(t− 1). (2.12)

2.3 Applications
Due to their ability to track unknown processes, the adaptive filters have been
used in various applications in signal processing covering a broad range of areas,
from communications to radar, sonar or to audio. There are however several main
classes of applications for the adaptive linear filters, e.g. the identification and
modeling of unknown processes; the linear prediction of a given input signal; the
inverse modeling of a process with the goal of recovering the process input from
its output and the interference cancellation of an input signal provided that some
knowledge exists about the interfering signals.

2.3.1 Channel identification
The task of identifying the physical transmission channel plays a crucial role in
communication since an improper model for the way the information is distorted
or perturbed, can produce serious problems, limiting the bandwidth or introduc-
ing transmission errors. For wireless communication, the transmitted carriers are
reflected and scattered by different surfaces or objects. Furthermore, the chan-
nel is not constant since the transmitters are often non-stationary (e.g. mobile
phones). This requires periodical channel estimation and modeling. Traditionally,

6 CHAPTER 2. ADAPTIVE FILTERING

Figure 2.1: Adaptive filtering applications: Identification of an unknown process.

Figure 2.2: Adaptive filtering applications: Prediction.

since the computational complexity of the parametric modeling needs to be low,
finite impulse response (FIR) filters are used.

For the identification task presented in Figure 2.1, we suppose that the process
altering the input data is modeled by an FIR filter

d(t) = hT (t)u(t) + ϵ(t) =
n−1∑
i=0

hi(t)ui(t) + ϵ(t), (2.13)

where ϵ(t) represents some additive noise and

u(t) = [v(t), v(t− 1), · · · , v(t− n + 2), v(t− n + 1)]T . (2.14)

The goal is to find the estimates x(t) of the true values h(t) such that the criterion
(2.1) is minimized.

2.3. APPLICATIONS 7

2.3.2 Linear prediction
In the linear prediction scenario from Figure 2.2, it is required that the adaptive
filter acts as predictor of the input data, with τ steps ahead, such that the desired1

data d(t) is predicted using received past information. We have

d(t) =
n−1∑
i=0

xi(t)ui(t) + ϵ(t), (2.15)

where ϵ(t) is the prediction error and the input to the filter is given by the past
values of the desired data

u(t) = [d(t− τ), d(t− τ − 1), · · · , d(t− τ − n + 1)]T . (2.16)

Again, from the requirement that the estimation error should be minimized,
we can employ adaptive filtering algorithms that minimize the LS criterion. In this
scenario the quantities of interest can be either the prediction errors or the actual
predicted values.

1In this case we have d(t) = v(t)

8 CHAPTER 2. ADAPTIVE FILTERING

Chapter 3

Sparse representations:
From batch to adaptive
algorithms

The development of the classical linear algebra theory generated a thorough anal-
ysis of the problem of solving linear systems of equations, which lies at the core
of many engineering applications [53]. During the last 20 years, the idea of sparse
representations emerged from this traditional theory and is now generating in-
creased interest due to its diverse applications in signal processing or other related
fields (image compressing [15], denoising [54] and deburring [41], wireless channel
estimation [30], direction of arrival [65], audio processing [47, 48]). Many media
types (image, video, audio) can be sparsely represented using transform domain
methods and many tasks related to them can be viewed as finding solutions to
systems of linear equations [32].

A distinct feature of the derived algorithms is the way they process the avail-
able data; the batch algorithms require the whole data to be available, while the
adaptive algorithms take advantage of the previously computed solution and up-
date it recursively. Historically, batch methods have received the most attention
since they allow for a more facile theoretical analysis [38]. Recently, adaptive
methods [P5, 10, 12, 62] have come into focus due to applications that require
low computational complexity. Many other research directions related to sparse
representations are also beginning to be developed [39].

When compared to traditional adaptive approaches, the search for the sparse
solutions poses the additional challenge of finding the correct sparsity. The existent
sparsity-aware algorithms resulted from several distinct directions of research. The
first is based on traditional tools and mostly deals with the improvement of the
LMS that make it sparsity-aware [36, 70, 92]. Convex relaxation techniques, in
which an LS criterion like in (2.1) is penalized with the ℓp-norm, p ≥ 1, of the
solution received much of the interest. This approach leads to the development of
algorithms like [10, 12, 24]. Other directions lead to the development of greedy

9

10 CHAPTER 3. SPARSE REPRESENTATIONS

algorithms [P5, 66, 77] or algorithms based on projections onto ℓ1 balls [62].
The problem all algorithms try to solve is closely related to (2.3) but now has

additional constraints. The solution x(t) is sparse with a sparsity level lt. We
define lt as the number of true coefficients different from zero, lt = ∥x(t)∥0, and
we suppose that the sparsity level is low such that lt ≪ n.

Thus, we can state the problem as the following, non convex, minimization1:

minimize ∥x(t)∥0
subject to A(t)x(t) ≈ b(t). (P0)

A brute force approach to solve (P0) involves a combinatorial search over all possi-
ble subsets of the solution support which is generally unfeasible even for relatively
small dimensions of the data matrices. To overcome such difficulties, various ap-
proximate methods have been proposed together with a theoretical framework
necessary for a thorough analysis of the algorithm performance.

3.1 Batch methods
The optimization problem (P0) can be regarded as being composed of two semi-
independent parts: a search for the support of the non-zero coefficients and the
computation of their values. Two main directions for finding sparse solutions exist.

The first involves the relaxation of the non convex criterion containing the ℓ0
pseudo-norm. Generally an ℓp = ∥x∥p, p > 0, norm or any other smooth function
that can promote sparsity are used2. In this case there is no explicit search for the
support, the zero coefficients result from the optimization problem. Furthermore,
if the relaxed constraint is convex there are efficient convex optimization solvers
and the convex function also guarantees the uniqueness of the solution.

The second approach introduces a separation between the coefficient values
and the solution support. It tries to find the support A with a low cardinality |A|
for which the norm of the residual

rA = b−AAxA (3.1)

is minimized. In what follows, we name the support columns active and the
remaining ones inactive since they do not contribute to the solution. We denote
by A and by I the sets of indexes of the active and inactive columns associated
with a given i-sparse solution, respectively.

Analyzing for all possible support combinations has an exponential complexity
and is not practical, so, typically, a greedy support selection strategy is used. After
the support is selected the coefficients can be easily computed by solving an LS
optimization problem to the data restricted to the support,

xA =
(
AT

AAA
)-1 AT

Ab. (3.2)
1We discuss only approximate recovery problems since the exact recovery case is generally

easier to handle.
2We drop the time index from the notations since it is irrelevant for the batch methods.

3.1. BATCH METHODS 11

The requirement for the system of equations to be overdetermined, to have more
than n equations, is no longer mandatory since we actually only need to compute
the coefficient values xA associated with the support. In this sense, to compute
the solution we require that |A| ≤ t and thus the restricted solution (3.2) is still
computed from an overdetermined system.

While initially the problem was studied in the context of exact representations
where Ax = b, later the techniques were adapted for approximate solutions. We
present some of the main ideas of the convex relaxation and we focus more on the
greedy approaches.

3.1.1 Convex relaxation techniques
The ℓ0 pseudo-norm from problem (P0) has a discrete nature, it counts the number
of non-zero elements,

∥x∥0
∆= lim

p→0

n−1∑
i=0
|xi|p. (3.3)

The definition suggests that we can relax the discontinuous ℓ0 pseudo-norm to a
continuous ℓp norm, p > 0, to make the problem more tractable. A small p ensures
a good approximation but only for p ≥ 1 the problem becomes convex and allows
the use of convex programing solvers for an efficient solution computation.

The basis pursuit denoising (BPDN) optimization problem

minimize ∥x∥p
p

subject to Ax ≈ b
, (Pp)

introduced by [23], has attracted much interest [17, 34, 89, 90]. Choosing p = 1
provides the closest convex relaxation to the ℓ0 pseudo-norm and also takes full
advantage of the convex optimization solvers.

Since the constraint Ax ≈ b can be viewed as an LS approximation problem,
it is readily translated to ∥b−Ax∥2 ≤ ϵ, with a given small ϵ, and thus, a natural
related convex optimization task emerges,

min
x

1
2
∥b−Ax∥2

2 + γ∥x∥1. (3.4)

This is an LS regularization problem, similar to the celebrated Tikhonov regular-
ization [88], and was introduced under the name of least absolute shrinkage and
selection operator (LASSO) [87]. It has efficient batch solver, the least angle regres-
sion [37]. Here, the parameter γ represents a tradeoff between the approximation
error and the sparsity level.

While many other sparsity inducing algorithms have been proposed (e.g. iter-
ative re-weighted least squares [51], Dantzig selector [18] or iterative re-weighted
ℓ1 minimization [19]), the LASSO and BPDN play a central role in the search for
sparsity inducing optimization tasks. The main research goal surrounding them is
the analysis of the performance with the establishment of strong theoretic bounds
for recovering the true support.

12 CHAPTER 3. SPARSE REPRESENTATIONS

3.1.2 Greedy algorithms
Among the existing greedy methods, the most representative are the matching
pursuit (MP), the orthogonal matching pursuit (OMP) [66, 75] and the orthogonal
least squares (OLS) [22], known also as optimized orthogonal matching pursuit
[77]. Other methods have also been developed [71, 86] but all follow the same
general principle. They involve a discrete search for the support followed by the
estimation of the associated coefficients.

Matching pursuit

The greedy MP algorithm selects one by one columns from a set of candidate
columns C such that, by choosing the coefficient xκi associated with the column
κi, we produce the smallest residual norm,

κi = arg min
j∈C
∥ri−1 − ajxj∥2

2, (3.5)

with ri−1 defined by (3.1) for an active set A composed of i − 1 columns. If the
active set is empty, we have r0 = b. For a given column aj , the coefficient xj that
minimizes the residual norm is given by

xj =
aT

j ri−1

∥aj∥2 (3.6)

and thus an equivalent selection criterion can be derived

κi = arg min
j∈C
∥ri−1 − ajxj∥2

2 = arg min
j∈C

∥∥∥∥∥ri−1 −
aT

j ri−1

∥aj∥2 aj

∥∥∥∥∥
2

2

= arg min
j∈C

(
∥ri−1∥2

2 −
|aT

j ri−1|2

∥aj∥2

)
= arg max

j∈C

|aT
j ri−1|2

∥aj∥2 .

(3.7)

This can be seen as the selection of the column κi that has the largest relative
projection on the residual ri−1. After the column is selected, it is included in the
support

A ← A∪ {κi} (3.8)

and the residual is updated

ri = ri−1 − xκiaκi , (3.9)

with xκi given by (3.6). The search for the next column κi+1 continues iteratively
until a stopping criterion is met, generally involving the diminishing of the residual
norm, ∥ri∥2

2 ≤ ϵ or until a certain number of columns l are selected. The MP
pursuit algorithm that searches for l support columns is summarized in Algorithm
3.1.

Any last coefficient xκi computed by (3.6) is optimal only locally, in the context
of the previously selected coefficients. Due to this and the fact that once the

3.1. BATCH METHODS 13

Algorithm 3.1: Matching pursuit (MP)

input: A; b; l;
output: A; xA;

1 For i = 1 : l

1.1 Choose column κi according to (3.7) with C = I, i.e. all inactive columns are
candidates

1.2 Compute the coefficient value xκi like in (3.6)

1.3 Update the active set A and the inactive set I

1.4 Update the residual to account for the new coefficient like in (3.9)

coefficient is computed its value does not change, the global solution is suboptimal
and the residual rA is not orthogonal to the active columns AA. To improve
the solution, after the selection of the support, an orthogonalization step can be
performed to recompute the whole solution by replacing the MP coefficients with
the LS solution restricted to the support A as in (3.2). In this case all coefficient
values change and the residual update is

ri = b−
i∑

j=1
xκj aκj . (3.10)

This produces the OMP algorithm [75].

Orthogonal least squares

The decision, from (3.5), to choose a new position κi is a function of each column
aκi optimally scaled by its associated coefficient. The already selected support is
indirectly considered through the residual ri. This selection does not guarantee
the minimization of the LS criterion, for an i-sparse solution, because the new
column is not orthogonal to the subspace defined by the previous selected i − 1
active columns.

Thus, an improved algorithm, the OLS method, arises from the idea of the
optimal selection and coefficient computation via LS. The selection of a new best
column κi to be added to the active set A changes to

κi = arg min
j∈C
∥b−AAxA − ajxj∥2

2, (3.11)

such that now we select κi based on the best solution from the whole restricted
support A ∪ κi, opposed to just looking for the best xκi and keeping the same
old coefficients xκ1:i−1 , as it is in (3.5). This changes all coefficient values on the
support when we add a new position to it. The naive approach of solving for
each candidate column j ∈ C an LS problem is computationally very intensive.
To overcome this, we can find the solution using a partial QR decomposition with

14 CHAPTER 3. SPARSE REPRESENTATIONS

Algorithm 3.2: Orthogonal least squares (OLS)

input: R = A; b; l;
output: A; xA;

1 For i = 1 : l

1.1 Choose column κi according to (3.15) with all inactive columns as candidates,
C = I

1.2 Swap columns κi and i of matrix R and update the active set A

1.3 Find the Householder reflector Qi that zeros column i from R below the
diagonal

1.4 Apply Qi on R; R ← QiR

1.5 Apply Qi on b; b← Qib

2 Compute the l-sparse solution restricted to the support like in (3.2)

pivoting,
AP = QR, (3.12)

where Q ∈ Rt×t is an orthogonal matrix and R ∈ Rt×n is upper triangular for the
solution support. The matrix P permutes the columns in the support to the first
positions to allow for a simpler description of the method but it is otherwise not
essential. It can be implemented using a permutation vector that records the order
of the columns in A and hereafter we consider the data implicitly permuted to ease
the presentation. The orthogonal matrix Q is not needed explicitly, it only has to
be applied on A and b. After the partial triangularization, any i-sparse solution is
easily found by solving an upper triangular system defined by the matrix R and
vector b restricted to the support,

x = R-1
A,AbA. (3.13)

We define R = QT A and, by an abuse of the notation, we keep b← QT b.
The solution support search is similar to MP and OMP, a greedy search over the

whole set of candidate columns C. However, now the solution needs to minimize
the LS criterion (2.1). Each new selected column κi is permuted to the position
i in the matrix R and a partial triangularization of the matrix is produced, with
the use of a Householder reflector (Definition A.3.1), by introducing zeroes below
the diagonal (Theorem A.3.1). After i − 1 columns are selected, the matrices R
and b can be partitioned as

R =
[

RA,A RA,I
0 F

]
and b =

[
bA
g

]
, (3.14)

where RA,A is upper triangular. Any new column κi is chosen such that its
orthogonal component, in relation to the already selected active columns, has the

3.1. BATCH METHODS 15

largest relative projection on the residual,

κi = arg max
j∈C

|fT
j g|

∥f j∥2
. (3.15)

A selection according to the (3.15) is guaranteed to minimize the LS criterion [P5,
Appendix I]. Afterwards, the upper triangular form is restored and the search for
a new column continues until a stop criterion similar to MP is met. The algorithm
is summarized in Algorithm 3.2. The stopping criterion is met once l columns are
selected.

3.1.3 Performance analysis
It is generally hard to guarantee the optimality of the solutions given by the greedy
or ℓ1 relaxation methods because this would require the verification of the solution
given by every possible support and thus the return to the combinatorial search
that we try to avoid. Due to this, the research focus was directed towards finding
performance (uniqueness, optimality and stability) bounds based on the structure
of the matrix A. The studies started initially from the exact recovery problem
and a matrix A composed of a union of orthogonal basis and developed gradually
towards the more difficult approximate solutions and general matrices [38].

The main tools, used to compute performance bounds, are the spark and the
mutual coherence [33, 34, 51], and the restricted isometry property [17, 16, 32].
However, sometimes in practice, the bounds are too large for an efficient charac-
terization, empirical simulation usually providing better results than the bounds
would suggest. Ongoing research is aiming at providing better bounds and under-
standing of the sparsity recovery conditions.

The Spark and Mutual Coherence

The spark and mutual coherence measure the dependence of the columns of A and
serve as tools for the characterization of the exact recovery conditions.

Definition 3.1.1. Given a matrix A the quantity spark(A) is defined as the
smallest number of columns from A that are linearly dependent.

The spark describes the null space of the matrix and it is difficult to compute.
The computation requires a combinatorial search through all the possible subsets
of the matrix A and has about the same complexity as a naive approach to solving
(P0), thus making its use impractical.

The spark is however naturally bounded, 1 ≤ spark(A) ≤ n + 1. The upper
bound is too large for any practical use thus, a better one is computed with the
use of the mutual coherence.

Definition 3.1.2. Given a matrix A ∈ Rt×n the mutual coherence, µ(A), is
defined as the largest absolute normalized inner product of the columns from A

µ(A) ∆= max
i ̸=j

|aT
i aj |

||ai||2||aj ||2
. (3.16)

16 CHAPTER 3. SPARSE REPRESENTATIONS

It provides a measure of the largest correlations of the columns from A. Small
values characterize near orthogonality of the columns which makes the recovery
process more facile. It can provide a simple criterion for estimating the uniqueness
of the sparse solutions (Theorem A.2.2).

The notion of spark can be extended to incorporate the approximate solutions.
The generalization sparkη(A), characterizes the proximity to the null space of the
matrix A instead of the null space itself. Thus, the sparkη(A) represents the
smallest number of columns that have together the smallest singular value at most
equal to η. In this case the solution is no more unique and the theoretical results
aim to guarantee the solution stability and try to characterize how far it is from
the true solution (Theorem A.2.4).

The mutual coherence can be used to compute bounds for the spark and sparkη

(Theorems A.2.1, A.2.3) and in turn they can be used to refine the recovery con-
ditions of either greedy methods [89] or relaxation methods like BPDN [90].

Restricted Isometry Properties

A different approach to the search for a good way of characterizing the stability
of the solution was developed in [17]. It involves the use of an alternate tool, the
restricted isometry property, instead of the spark and mutual coherence.

Definition 3.1.3. For a matrix A ∈ Rt×n with normalized columns, for every
integer s ≤ n, the s-restricted isometry constant δs is defined as the smallest
quantity such that the matrix AS obeys

(1− δs)∥c∥2
2 ≤ ∥ASc∥2

2 ≤ (1 + δs)∥c∥2
2 (3.17)

for any AS , containing a subset S of at most s columns, and any vector c.

The restricted isometry property provides information about the minimal dis-
tance 1− δs away from singularity, in terms of smallest eigenvalue, of any subset
of s columns. It was developed as a main tool for the stability analysis in [16, 17].

3.2 Adaptive algorithms
In recent years the focus on sparse methods has shifted towards adaptive algo-
rithms. They provide fast implementations and are able to track non-stationary
processes.

3.2.1 Traditional methods and the sparse problem
Sparsity-aware adaptive algorithms generally provide better performance, station-
ary error and convergence speed, over classical methods since the number of coeffi-
cients needed to be estimated is smaller. For example, for a typical RLS algorithm,
a problem where there are less samples t than the number of coefficients n, is
ill-posed and the algorithm can not produce a solution. Sparse methods however,
searching for only few coefficients l≪ n, can compute a precise solution.

3.2. ADAPTIVE ALGORITHMS 17

The research that extends existing classical adaptive methods to deal with
sparse problems consists mainly of enhancements of the LMS algorithm. The main
goal is to provide faster convergence speed by incorporating the sparsity infor-
mation into the solution while maintaining the light computation burden of the
LMS like methods. These methods have been widely used in applications (e.g.
echo canceling, system identification) that require very low computational com-
plexity. While many algorithms exist, the majority start from the NLMS and aim
at penalizing the coefficients to induce sparsity [36, 70, 92].

In [92] the authors use the framework from [91] together with the ideas from
[13] to introduce an improved proportionate NLMS. They propose a family of
robust adaptive filters by constraining the amount of perturbation in the solution
that can be introduced by a new sample

∥x(t)− x(t− 1)∥2
2 ≤ δt−1 (3.18)

and minimizing a criterion function

J(x(t)) = (x(t)− x(t− 1))T X(t)(x(t)− x(t− 1)) + e(t)
αT (t)Y(t)α(t)

. (3.19)

The matrices X(t) and Y(t) are positive definite and different choices will lead to
different algorithm performance.

Building on the NLMS, [36] introduces an uneven adaptation of the solution
coefficients exploiting the sparseness to achieve significantly faster adaptation than
the conventional NLMS with only a modest increase in computational complexity.
Other algorithms usually propose different penalization schemes [70] or require
more prior information about the sparsity [44].

3.2.2 Convex relaxation techniques
The algorithms able to produce recursive solutions have the starting point in the
batch convex relaxation techniques. They are able to reuse past computed solution
and update them with new available data. Generally, the approach of minimizing
an error criterion penalized by the ℓ1 norm of the solution has attracted most of
the interest because it translates to an optimization problem without additional
constraints [10, 11, 12]. The error criterion used is the LS, producing at each time
instant t a criterion similar to (3.4),

min
x(t)

c

2
∥b(t)−A(t)x(t)∥2

2 + γ∥x(t)∥1. (3.20)

Two of the most recent representative methods are the sparse RLS (SPARLS) algo-
rithm [12] and the time weighted LASSO (TWL) [10].

The SPARLS algorithm borrows from [41] the idea of using a low complexity
expectation maximization to generate an iterative shrinkage algorithm [14] that
minimizes the cost function from (3.20, c = σ-2); the constant σ2 is the variance
of the noise that affects the outputs. Other expectation maximization algorithms
have been developed, for instance in [59].

18 CHAPTER 3. SPARSE REPRESENTATIONS

The TWL family of algorithms solves the same optimization problem (3.20, c =
1) but uses an online coordinate descent (CD) strategy to efficiently compute the
solution. It can be modified to include an additional norm weighting of the solution
(resulting in the online cyclic coordinate descent using time and norm weighted
LASSO (TNWL) algorithm) based on the coefficients computed using the ordinary
RLS, that penalize the sparse solution differently and accelerates the convergence
speed. It introduces a linearly decreasing penalty on the coefficients for which the
RLS estimates xi obey µn ≤ xi ≤ aµn and removes the TWL penalty completely
for coefficients greater than aµn (a and µn are configurable parameters).

3.2.3 Greedy algorithms
Research into this direction started with the pioneering work in the batch sparse
methods that resulted in the development of the MP and OLS. The research per-
formed in this direction serves as the basis for this thesis.

The MP was easily transformed allowing for the recursive implementation in
the adaptive matching pursuit (AMP) [29]. Research into the batch MP produced
the cyclic matching pursuit (CMP) [27], which serves as a base for the cyclic AMP
(CAMP) [P3]; this can be seen as a form of CD on the direction given by the MP
estimates [P1].

Spawning form the batch OLS, adaptive methods were devised with the use
of tools like the Householder reflectors and Givens rotations (more details in Ap-
pendix A.3). They include the greedy sparse RLS (GRLS) family of algorithms
[P5, P6, P7] which was first introduced in [35].

Both families of greedy sparse adaptive algorithms are treated in detail in
Chapter 4.

3.2.4 Support cardinality estimation
The task of estimating the cardinality of the support is fundamental for the per-
formance of the algorithms. To this regards, there are two main directions for
finding the sparsity level.

The convex relaxation techniques jointly find the support and the coefficient
values. They usually employ different configuration parameters that represent a
compromise between the sparsity level and the coefficient estimation error. On the
other hand, for greedy methods the true support cardinality is generally harder to
find because of the discrete nature of the search for the support. Generally, the
estimation of the true number of non-zero coefficients is performed by analyzing
the residual. We describe the main ideas surrounding the sparsity estimation for
greedy methods, which is closely related to the problem of order selection (e.g. for
auto regressive models [49]).

Sparsity estimation for greedy methods

The decision when to stop adding columns to the solution is generally quite difficult
for the greedy methods. A stopping criterion ∥ri∥2

2 ≤ ϵ is based on a simple

3.2. ADAPTIVE ALGORITHMS 19

analysis of the residual but it does not provide a reliable estimate without a priori
information (how large or small is ϵ?).

Besides using only the residual alone, we can take advantage of the inherent
order introduced by the selection strategy for the coefficients that are on the
support. This can be exploited to allow the online estimation of the sparsity level
with the use of the information theoretic criteria (ITC). The ITC were developed
mainly for order/model selection tasks but they can be readily adapted to serve as
a tool that decides how many coefficients can be included in the solution. Various
methods for model selection have been suggested [8, 73, 78, 79, 83] for stationary
processes. These can be extended for the non-stationary case [49, 52]; a recent
overview on ITC for forgetting factor least-squares algorithms can be found in [49].

While other ITC may be used, herein we only present two, namely the Bayesian
information criterion (BIC) [83] and the predictive least squares (PLS) [79].

Bayesian information criterion

The BIC uses the squared norm of the residual and penalizes it with the model
complexity (the number of non-zero coefficients) resulting in

BICi = tef ln ∥ri∥2
2 + (i + 1) ln tef . (3.21)

The residual ri is computed using the i-sparse solution. The quantity tef represents
the effective number of samples that are used to compute the solution. In a
non-stationary environment where a forgetting factor λ is used, it is defined by
tef =

∑t
i=1 λt−i. For a large t this can be approximated by tef ≈ 1

1−λ . The
BIC criterion attains its minimum for the solution that has the best compromise
between model complexity and estimation error. This gives an estimate l̃ of the
true sparsity lt,

l̃ = arg min
i

BICi. (3.22)

Predictive least squares criterion

The PLS criterion [79] has the following form

PLSi =
t∑

j=1
λt−jei(j)2, (3.23)

where ei(j) is the a priori estimation error at time j produced by an i-sparse
solution x(j − 1) from time j − 1,

ei(j) = d(j)−α(j)T x(j − 1). (3.24)

The criterion (3.23) can be updated easily by

PLSi(t) = λPLSi(t− 1) + ei(t)2. (3.25)

Similarly to the BIC, the PLS is minimum when the model has a sparsity close to
the best one and produces the estimate

l̃ = arg min
i

PLSi. (3.26)

20 CHAPTER 3. SPARSE REPRESENTATIONS

Chapter 4

Greedy sparse adaptive
algorithms

Research towards adaptive greedy methods has been somewhat limited. Most
was directed towards the development of batch algorithms. This is mainly due
to the difficulties of finding an accurate stopping criterion and of providing a
strong theoretical analysis of the average performance. Different approaches have
been proposed. For instance MP can be converted to an adaptive form [29] but
its performance is usually poor. An adaptive version of the OMP algorithm for
time varying environments is suggested in [60] but no implementation details are
provided.

This chapter follows the developments towards robust, well performing greedy
methods that emerged from two directions of research. The first can be linked with
the batch cyclic matching pursuit (CMP) [27] and AMP [29]. The CMP methods was
transformed to work in a time varying context producing the cyclic AMP (CAMP)
algorithm [P3] and a low complexity approximate variant [P4]. By spreading the
cyclic updates in time, it can be viewed as an CD on the directions given by the
matching pursuit column selection criterion [P1].

A second direction, based on the principles of the OLS, produced the greedy
sparse RLS (GRLS) algorithm [P5] with online sparsity estimation via ITC. It was
adapted for a sliding window input data [P6] and for a group sparsity problem
[P7].

4.1 Greedy sparse coordinate descent methods
Coordinate descent methods are among the simplest approaches that can be de-
vised to solve various convex optimization problems. They have been efficiently
used to produce adaptive algorithms for finding either full or sparse solutions to
the LS problem (2.1). One of the greatest benefits of the CD methods, when applied
to sparse problems, is their computational efficiency [10, 11, 42, 43]. CD remains
a versatile tool that can be incorporated into many algorithms.

21

22 CHAPTER 4. GREEDY SPARSE ADAPTIVE ALGORITHMS

The CD implementation of the RLS algorithm proposed in [99] can be adapted
for the computation of sparse solutions in [98] by adding different penalty func-
tions. The algorithms from [10, 11] propose the use of the CD to allow for a low
complexity, adaptive minimization of the LASSO penalty function.

Batch methods can also be devised. In [84, 85] the MP was combined with
a CD like approach to provide improved performance for computing batch sparse
solutions. This section follows the improvements that sprung from the use of
the CD coupled with a greedy MP like, sparsity inducing strategy, in an adaptive
context. Two families of CD adaptive algorithms have been proposed; the first uses
a cyclic update of the adaptive matching pursuit coefficients [P3, P4] and can be
viewed as a CD towards the current time t optimal solution; the second spreads the
CD in time [P1] with the aim of approaching the optimal solution over a number of
iterations. For both methods, the use of the CD improves the solution compared
to the AMP and produces a relatively low complexity algorithm.

4.1.1 Recursive implementation
An adaptive implementation can not be based on the full length matrices A[t] ∈
Rt×n and b[t] ∈ Rt since they grow indefinitely with the time1. For this purpose
all algorithms are implemented using the scalar products

Ψ[t] = A[t]T

A[t] and ϕ[t] = A[t]T

b[t]. (4.1)

At each time instance t, when new input vector α[t] and output data β[t] are
available, we have

b[t] =
[√

λb[t−1]

β[t]

]
, A[t] =

[√
λA[t−1]

α[t]T

]
. (4.2)

This can be translated to a recursive update of the scalar products,

Ψ[t] = λΨ[t−1] + α[t]α[t]T

ϕ[t] = λϕ[t−1] + β[t]α[t].
(4.3)

Using Ψ[t] and ϕ[t] eliminates the need to store the long matrix A[t] or vectors b[t]

and r[t].
This is a standard approach for adaptive filter algorithms. For example, it can

be also used for the RLS algorithm as presented in Chapter 2. However, in what
follows we still present the operations using the vector form for simplicity. Most
equations involving the coefficient computation or update are already expressed
using the scalar products. For the others, multiplying by A[t]T on the left produces
the necessary scalar product form.

1We switch henceforward to a different time notation by using the upper script [t] to allow
for a more compact presentation.

4.1. GREEDY SPARSE COORDINATE DESCENT METHODS 23

4.1.2 Cyclic adaptive matching pursuit
The CAMP algorithm [P3] has its roots in the MP [66] and its adaptive counterpart
[29]. The solution is improved since the method approximates an orthogonalization
process via a cyclic coefficient update similarly to the batch methods introduced
by [27, 85].

We aim to minimize the squared norm of the residual (2.1) under the constraints
that the solution is sparse. The algorithm follows the MP selection strategy by
picking one by one columns from the matrix A[t] based on their alignment with
the current residual like in (3.7). To ease the presentation and since it does not
affect the algorithm, we permute the selected columns to the first positions of
the matrix A[t] similarly to the orthogonal least squares. This also permutes the
solution moving the non-zero coefficients on the first locations of the vector x[t].

Solution computation and cyclic updates

During the column selection at time t, we perform the search for a best column on
position i like in (3.7) but on a limited subset of columns C. This is possible due to
the assumed slow time variability of the solution and consequently of the solution
support. Thus, we use the existing support of the m-sparse solution from time
t − 1 and update it, after receiving new data at time t, to account for a possible
small variation. This is done as follows:

- for each position i = 1 : m− 1 of the active set we let compete only columns
i and i + 1; this translates to allowing only permutations between neighbors
in the active set;

- for the last active position m, all columns m to n are allowed to compete;
thus, at most a single inactive column may become active at time t and only
enters the active set on the last position.

Such a selection scheme allows only gradual changes in the support but otherwise
does not impose other restrictions.

To exemplify, we consider the past neighbors i and i + 1 from time t − 1 as
candidates for the position current position i < m,

κ = arg max
j∈C

|a[t]T
j r

[t]
i−1|2

∥a[t]
j ∥2

2

, with C = {i, i + 1}. (4.4)

If the column i + 1 is found better by (4.4) then we permute1 columns i and i + 1
and we update the coefficient x

[t]
i based on (3.6) and the residual r

[t]
i like in (3.9),

x
[t]
i =

a
[t]T

i r
[t]
i−1

∥a[t]
i ∥2

2

, (4.5)

1When we apply the permutations we implicitly update the active set A[t]. Also note that the
permutation step is not critical for the algorithms; they can be easily adapted to work without
it.

24 CHAPTER 4. GREEDY SPARSE ADAPTIVE ALGORITHMS

r
[t]
i = r

[t]
i−1 − x

[t]
i a

[t]
i . (4.6)

For the last position in the active set we allow all other inactive columns to
compete. This is necessary if the algorithm needs to track changes in the support
since the neighbor permutation strategy does not allow inactive columns to become
active. Thus we perform the search for the last active column like in (4.4) but
having all other columns as candidates,

κ = arg max
j∈C

|a[t]T

j r
[t]
i−1|2

∥a[t]
j ∥2

2

, with C = {m : n}. (4.7)

The same permutation strategy is used to move any possible better column to
the active set and it is followed by the coefficient computation (4.5) and residual
update (4.6).

After m non-zero positions are found and the coefficients x
[t]
1:m are computed,

we continue with a cyclic optimization of each coefficient i = 1 : m. This is done
by excluding one by one a coefficient i from the solution,

r̃[t]
m = r[t]

m + xia
[t]
i , (4.8)

and recomputing its value

x̃
[t]
i = a

[t]T
i r̃[t]

m

∥a[t]
i ∥2

2

. (4.9)

Equation (4.8) is the reverse of (4.6). It removes the contribution of the coefficient
xi from diminishing the residual r

[t]
m and produces the partial residual r̃[t]

m . The
coefficient update (4.9) can be viewed as a CD on the i’th coordinate since we can
write

x̃
[t]
i = a

[t]T

i (r[t]
m + xia

[t]
i)

∥a[t]
i ∥2

2

= x
[t]
i + µ, with µ = a

[t]T

i r
[t]
m

∥a[t]
i ∥2

2

. (4.10)

In (4.10) the coefficient x̃
[t]
i is updated towards minimizing the residual in the

context produced by all other computed coefficients while in (4.5) this is done
having only the first i − 1 coefficients included in the solution. Since we modify
the coefficient value the residual also changes,

r[t]
m ← r̃[t]

m − x̃
[t]
i a

[t]
i = r[t]

m − µa
[t]
i . (4.11)

The new coefficient value can thus be formally included in the solution

x
[t]
i ← x̃

[t]
i . (4.12)

By cyclically repeating the CD for all i = 1 : m, the coefficients are updated
towards minimizing the residual norm ∥r[t]

m∥2. It can be seen in (4.10) that the CD

is governed by the scalar product a
[t]T

i r
[t]
m and the descent stops once r

[t]
m becomes

orthogonal with a
[t]
i . Thus the cyclic update is approximating an orthogonalization

procedure.

4.1. GREEDY SPARSE COORDINATE DESCENT METHODS 25

An adaptive implementation needs to use the scalar products (4.1). For the
selection criterion and coefficient computation we already have the required form.
It is trivial to replace the vector products with the values stored by Ψ[t] and ϕ[t].
In case of the residual update, to produce the necessary scalar product form, we
need to multiply the equation by A[t]T on the left. For example, instead of (4.6)
we have, for j = 1 : n,

a
[t]T

j r
[t]
i = a

[t]T

j r
[t]
i−1 − x

[t]
i a

[t]T

j a
[t]
i . (4.13)

This update must not overwrite the original scalar product values ϕ[t] = A[t]T

b[t]

since they are needed1 at time t + 1.
Using the cyclic update strategy two algorithms can be developed: the first

named CAMP performs first a sweep in the spirit of AMP to find the support and
then improves the solution by running a number of cyclic sweeps to update all
coefficients. It follows the steps presented in Algorithm 4.1. The second, iterated
CAMP (I-CAMP) improves the coefficients after the introduction of each new column
in the active set to allow for a better support selection and is summarized in
Algorithm 4.2. We present them using the vector notation for simplicity.

Online sparsity estimation

The CAMP algorithms presented so far make no assumptions of the sparsity level.
They require knowledge of the number of columns m which may or may not be
equal to the current true sparsity level l

[t]
t . To account for unknown sparsity

levels or sparsity changes, we propose the use of ITC, namely PLS and BIC briefly
presented in Chapter 3. They were first introduced for the GRLS algorithm [P5]
but can be easily adapted for the sparsity estimation associated with any greedy
method.

The idea behind the sparsity estimation is to run the algorithms for a number
of columns m larger than the true sparsity l

[t]
t , followed by the search for a sparsity

level estimate l[t]. Given the fact that there may be no prior information about
the true sparsity level, m may be chosen fixed but large enough to accommodate
any possible true sparsity or it can be changed online such that it varies according
to the current sparsity estimate. We propose a slow change

m[t] =


m[t−1] + 1 if m[t−1] < l[t] + ∆

m[t−1] if m[t−1] = l[t]

m[t−1] − 1 if m[t−1] > l[t] + ∆
, (4.14)

to filter out any large fluctuations that can result from infrequent but otherwise
large error in the estimates, where l[t] is the current sparsity estimate. The constant
∆ determines how far away we search from the current estimate. We continue by
consider m constant in time, to ease the presentation. This does not interfere with
the prior discussion; a variation in the value of m can easily be implemented by
adding more columns to, or removing the last columns from the solution.

1We remind that r
[t]
0 = b[t].

26 CHAPTER 4. GREEDY SPARSE ADAPTIVE ALGORITHMS

Algorithm 4.1: Cyclic adaptive matching pursuit (CAMP)

input: A[t−1]; A[t−1]; b[t−1]; β[t]; α[t]; m; n;
output: A[t]; A[t]; b[t]; x[t];

0 Update A[t−1] and b[t−1] to include the new available data

1 For all positions i = 1 : m− 1

1.1 Find and permute a new column candidate to position i in the active set like
in (4.4)

1.2 Estimate the value of the new coefficient xi using (4.5)

1.3 Update the residual r
[t]
i like in (4.6)

2 For last position m

2.1 Find and permute a new column candidate for the last position in the active
set like in (4.7)

2.2 Estimate the value of the new coefficient x
[t]
i using (4.5)

2.3 Update the residual r
[t]
i like in (4.6)

3 Estimate the solution sparsity l[t] = l̃[t] where l̃[t] is found using ITC, either PLS of
BIC.

4 Remove the extra columns, i = l[t] + 1 : m, from the solution similarly to (4.8)

5 Cyclically update the l[t]-sparse solution to improve the value of the coefficients

Both ITC can be efficiently implemented and allow a recursive description.
The PLS is naturally recursive in time for each possible sparsity level. The BIC
explicitly requires the computation of the residual norms ∥r[t]

i ∥2 for all allowed
sparsity levels 1 < i ≤ m. Once they are available, they are directly plugged into
(3.21).

Due to the scalar product implementation we do not explicitly store the long
residual vectors. Thus, we need to compute the norm based on the available scalar
products. To estimate the squared norm ∥r[t]

j ∥2
2 = r

[t]T

j r
[t]
j of the residual for a

solution x[t] with a support cardinality j, we use the definition of the residual

r
[t]
j = b[t] −

j∑
i=1

x
[t]
i a

[t]
i , (4.15)

and rewrite the squared norm,

r
[t]T

j r
[t]
j =

(
b[t] −

∑j
i=1 x

[t]
i a

[t]
i

)T (
b[t] −

∑j
i=1 x

[t]
i a

[t]
i

)
= b[t]T

b[t] − 2
∑j

i=1 x
[t]
i b[t]T

a
[t]
i

+
∑j

i=1
∑j

k=1 x
[t]
i x

[t]
k a

[t]T

i a
[t]
k .

(4.16)

For the iterated cyclic adaptive matching pursuit algorithm, since it computes

4.1. GREEDY SPARSE COORDINATE DESCENT METHODS 27

Algorithm 4.2: Iterated cyclic adaptive matching pursuit (I-CAMP)

input: A[t−1]; A[t−1]; b[t−1]; β[t]; α[t]; m; n;
output: A[t]; A[t]; b[t]; x[t];

0 Update A[t−1] and b[t−1] to include the new available data

1 For all sparsity levels i = 1 : m− 1

1.1 Find and permute a new column candidate to position i in the active set like
in (4.4)

1.2 Estimate the value of the new coefficient x
[t]
i using (4.5)

1.3 Update the residual r
[t]
i like in (4.6)

1.4 Cyclically update all coefficients j = 1 : i

1.5 Save the i sparse solution

2 For last position m

2.1 Find and permute a new column candidate for the last position in the active
set like in (4.7)

2.2 Estimate the value of the new coefficient x
[t]
m using (4.5)

2.3 Update the residual r
[t]
m like in (4.6)

1.4 Cyclically update all coefficients j = 1 : m

1.5 Save the m sparse solution

2 Select the l[t] = l̃[t]-sparse solution where the sparsity level estimate l̃[t] is given by
ITC

different solutions for all sparsity levels smaller than m, we need to use (4.16) to
compute the residual norms.

In the case of the simpler CAMP algorithm, (4.16) can be expressed1 recursively
as follows

r
[t]T

j r
[t]
j =

(
b[t] − x

[t]T

1:j a
[t]
1:j

)T (
b[t] − x

[t]T

1:j a
[t]
1:j

)
=

(
b[t] − x

[t]T

1:j−1a
[t]
1:j−1

)T (
b[t] − x

[t]T

1:j a
[t]
1:j

)
−x

[t]
j b[t]T

a
[t]
j + x

[t]
j a

[t]T

j a
[t]
1:jx

[t]T

1:j

= r
[t]T

j−1r
[t]
j−1 − 2x

[t]
j b[t]T

a
[t]
j + x

[t]
j a

[t]T

j a
[t]
1:jx

[t]T

1:j

+x
[t]
j a

[t]T

j a
[t]
1:j−1x

[t]T

1:j−1,

(4.17)

since we have available only one solution, the m-sparse one. For both criteria we
use directly the raw estimate given by (3.23, 3.21), namely l[t] = l̃[t].

1We use a vector notation to be more concise.

28 CHAPTER 4. GREEDY SPARSE ADAPTIVE ALGORITHMS

Approximations and performance improvements

The main computational burden of the cyclic update algorithms is due to the
update of all the scalar products Ψ[t] from (4.3). They are, however, not all
necessary when computing the solution, if the support is the same for all time
instants t.

In a stationary regime, when the active set composition does not change (the
column order may change inside the active set) as new samples are received, to
compute the coefficients x1:m like in (4.5) we only need the data associated with
the current support:

- the active column norms ∥a[t]
i ∥2 for i = 1 : m;

- the scalar products a
[t]T

1:mr
[t]
i−1 for i = 1 : m.

To perform the search for the last position m of the support like in (4.7) we
additionally need the norms ∥a[t]

j ∥2, of all inactive columns j > m together with
the scalar products a

[t]T

m+1:nr
[t]
m−1. This also allows for the exact computation of

the last coefficient m like in (4.5).
The computation of the residuals r

[t]
i−1 and of the associated scalar products

A[t]T

r
[t]
i−1 is more difficult. If we multiply (4.6) on the left with A[t]T to produce

A[t]T

r
[t]
i = A[t]T

r
[t]
i−1 − x

[t]
i A[t]T

a
[t]
i , (4.18)

it can be seen that we need all scalar products A[t]T

a
[t]
i between the current column

and the whole matrix A[t]. In this case, if we allow for any column to possible
become active on position m, we need the whole scalar product matrix Ψ[t], which
is undesirable since the update (4.3) is costly.

To overcome this we only store and update the partial scalar product matrix

Ψ̃ = A[t]T

a
[t]
1:m (4.19)

with the products between the matrix A[t] and the current columns that are active.
Doing so ensures the exact computation of the solution in case the support does
not change. Thus, in the ideal scenario where no support changes are made,
storing and updating only Ψ̃[t] instead of Ψ[t] ensures that all the required data
are available. If the support changes via the permutation of a column from the
inactive set to last position m, we can still compute the coefficient x

[t]
m but we are

unable to update the residual due to the unknown scalar products A[t]T

a
[t]
m .

Under our assumption, there are usually no sudden changes, either in the
support or in the coefficient values. When a coefficient becomes inactive it does so
gradually until the associated column reaches the last position m in the active set
and is then replaced by the new column a

[t]
j , with j > m. We can assume that,

if m > l[t], any coefficient x
[t]
i above the sparsity level l[t] (i > l[t]) is small since

the true solution contains all the relevant coefficients. When the last position in
the support changes, the coefficient x

[t]
m has a negligible influence in decreasing the

4.1. GREEDY SPARSE COORDINATE DESCENT METHODS 29

residual and the scalar products associated with the residual updates (4.6) can be
approximated by

A[t]T

r[t]
m ≈ A[t]T

r
[t]
m−1. (4.20)

This approximation can be computed without the unknown scalar products
A[t]T

a
[t]
j , j > m. When the new coefficient gradually become significant, if the

unknown scalar products A[t]T

a
[t]
j are far from their true values, the performance

may be negatively influenced even leading to instability. To circumvent this we
propose to set them to zero and allow a number of updates to be performed before
the column may be introduced into the active set. For this purpose we use a buffer
B of length p (containing columns a

[t]
m+1:m+p since we work with permuted data)

to delay the introduction of any new column in the active set. The scalar products
are updated also for all the columns associated with the buffer, hence diminishing
the approximation errors.

Thus, a new column a
[t]
j selected to be introduced in the active set on position

m is handled differently:

- if it is inactive and does not belong to the buffer set, i.e. it is from I \ B,
it replaces the last column a

[t]
m+p in B instead of being introduced directly

in the active set A; the associated scalar products are set to zero and the
solution is still computed with the old column a

[t]
m .

- if it belongs to B, it is promoted one position in the set; it becomes active
replacing a

[t]
m in the active set only when it is on the first position in B.

This ensures that a certain column is selected at least p times before becoming
active which, coupled with the update of its associated scalar products as new
samples are received, reduces the approximation errors. All this changes do not
alter the cyclical update procedure since they do not involve other data other than
that associated with the active set. In [P4], only the approximate I-CAMP using
the PLS criterion (I-CAMP-A) version is presented but a similar approach is possible
for the CAMP algorithm.

4.1.3 Coordinate descent adaptive matching pursuit
The coordinate descent AMP (CD-AMP) algorithm [P1] completely reuses the past
solution at current time, as opposed to the cyclic updates that compute the solution
from scratch in the algorithms presented in the previous section. We describe the
basic operation of the algorithm assuming that, at time t− 1, we have computed
an m-sparse solution x[t−1] and we update it to contain the new data from time
t. We use a similar permutation strategy for the data to move the active non-zero
elements in the first m positions. Also, the algorithms are implemented using the
scalar products representation but for simplicity we describe the algorithms using
the vector notations.

The residual, corresponding to the solution x[t−1] at time t− 1, is

r[t−1]
m = b[t−1] −

m∑
i=1

x
[t−1]
i a

[t−1]
i . (4.21)

30 CHAPTER 4. GREEDY SPARSE ADAPTIVE ALGORITHMS

After receiving new data, the same old solution x[t−1] produces a residual

r[t]
m = b[t] −

m∑
i=1

x
[t−1]
i ai =

[
r

[t−1]
m

β[t] −
∑m

i=1 x
[t−1]
i α

[t]
i

]
. (4.22)

At time t we manage the order of the active positions and we update the
values of the solution x[t] associated with the support. The ordering of the active
positions is performed similarly to the previous section. We use a column ordering
scheme that produces a low variation speed of the support since we consider the
support and the coefficient values to be slowly variable. Namely we use the same
neighbor permutation scheme as before but we also show that this is not limiting
the algorithm since other schemes (a sweep of any sorting algorithm based on
permutations) may be used [P1].

The coefficient update is performed via a simple CD on each of the active posi-
tions, optimizing the residual corresponding to the m-sparse solution. The search
for the support and the coefficient updates are intertwined and act successively on
each active coefficient.

To decide the best of two columns i and j, with i < j ≤ m, we compute
a partial residual with the two positions i and j temporarily removed from the
active set,

r̃[t]
m = r[t]

m + x
[t−1]
i a

[t]
i + x

[t−1]
j a

[t]
j . (4.23)

The column that takes position i is decided by looking at the best alignment with
this partial residual similarly to (4.4),

κ = arg max
k∈C

|a[t]T
k r̃[t]

m |2

∥a[t]
k ∥2

2

, with C ∈ {i, j}. (4.24)

If position j is better, then positions i and j are permuted. The optimization used
to produce the coefficient x

[t]
i is a CD on the LS criterion (2.1). This is similar to

the cyclic updates (4.10) and is achieved by projecting the residual on the column
a

[t]
i after excluding position i from the active set like in (4.8),

x
[t]
i = a

[t]T

i (r[t]
m + x

[t−1]
i a

[t]
i)

∥a[t]
i ∥2

2

= x
[t−1]
i + µ, with µ = a

[t]T

i r
[t]
m

∥a[t]
i ∥2

2

. (4.25)

This operation takes place immediately after the index in position i is found via
(4.24). The residual is the updated to account for the modified coefficient,

r[t]
m ← r[t]

m − µa
[t]
i . (4.26)

For the last active column m, the search for the best column is again performed
considering the entire inactive set, C = m : n like in (4.7) but using the partial
residual

r̃[t]
m = r[t]

m + x[t−1]
m a[t]

m . (4.27)

This removes the old coefficient x
[t−1]
m from the solution and allows any other

column a
[t]
j , j > m to compete for the last position using the search criterion

4.1. GREEDY SPARSE COORDINATE DESCENT METHODS 31

Algorithm 4.3: Coordinate descent adaptive matching pursuit (CD-AMP)

input: A[t−1]; A[t−1]; r
[t−1]
m ; x[t−1]; β[t]; α[t]; m; n;

output: A[t]; A[t]; r
[t]
m ; x[t];

0 Update A[t−1] to include the new available data
Compute the residual r

[t]
m using the new available data like in (4.22)

1 For i = 1 : m− 1

1.1 Find and permute a new column candidate to position i in the active set
using (4.24)

1.2 Update the associated coefficient like in (4.25)

1.3 Update the residual r
[t]
m like in (4.26)

2 For last position i = m

2.1 Find and permute a new column candidate to the last position in the active set
based on (4.24) and the partial residual (4.27); search over the set C = {m : n}

2.2 Update the associated coefficient like in (4.28)

2.3 Update the residual r
[t]
m like in (4.29).

(4.24) together with the partial residual from (4.27). After the position is decided
and the column is permuted into place, the optimal coefficient is recomputed

x[t]
m = a

[t]T

m r̃[t]
m

∥a[t]
m∥2

2

(4.28)

and the new residual updated

r[t]
m = r̃[t]

m − x[t]
ma[t]

m . (4.29)

Note that, if an inactive position becomes active, the influence of the former column
m must be removed from the residual, which explains the use of r̃[t]

m from (4.27)
in the above formulas.

The main algorithm, called CAMP is shown in Algorithm 4.3 and follows closely
the equations presented above. Figure 4.1 gives a graphical image of the operations
performed. The support search is based on the neighbor permutation strategy.
Each search and update operation is represented by a horizontal line with one or
several ticks showing the columns that compete for the current position, marked
with an arrow. The arrow also means an update operation. Active columns are
represented by blue bullets, inactive columns by black bullets. It can be observed
that in the active set only neighbors can exchange positions when we update the
support. For the last position, we have all inactive columns as candidates. The
numbers on the left belong to the steps from Algorithm 4.3. On the right, we
remind that the residual is updated at each step.

32 CHAPTER 4. GREEDY SPARSE ADAPTIVE ALGORITHMS

Figure 4.1: Graphical representation of the operations from the coordinate descent
AMP algorithm.

Online sparsity estimation

A sparsity estimation that follows the same strategy as for the CAMP algorithms
does not exploit well the recursive implementation of the CD strategy. While it is
still possible to use the same method as before, we propose a new approach, the
double residual CD-AMP (DCD-AMP) algorithm, that relies on the minimization of
two residuals and does not require any cyclic updates.

We start by supposing that the number of columns m is large enough such that
we can select all columns that contribute to the sparse solution. We require that
m is larger than the true sparsity level which, when having a consistent sparsity
level estimate l[t], can be generally achieved by setting it larger than this estimate,
m > l[t] similarly to the case of the CAMP algorithms. This ensures that we have
a large enough set of ordered columns for which to apply the ITC. Since this set
is generally larger than the true sparsity, any solution computed using all the m

columns is less accurate due to the columns that are not associated with the true
support. This is not vital since it influences the sparsity estimation to a lesser
degree.

However, to accurately compute the solution we introduce a second residual
that is not affected by the extra columns and is associated with a support of size
l[t]. It is used to compute an approximation of the true solution and, since it relies
on the sparsity estimate l[t], the approximation is good when the sparsity estimate
is close to the true sparsity level. The computation of the two residuals follows
the same strategy as for the CD-AMP algorithm with only a few changes. The two
solutions overlap such that the first l[t] coefficients of the m-sparse solution are
computed accurately using r

[t]
l ; that is, coefficients of the l[t]-sparse solution are

the first coefficients of the m-sparse one1.
Although both the PLS and the BIC can be used, [P1] relies only on the use

of the former. The raw estimate l̃[t] found using the ITC (3.21, 3.23) is not used
directly. We set

l[t] = l[t−1] + sign
(

l̃[t] − l[t−1]
)

. (4.30)

1Note that we drop the time [t] index from l[t] when we use the associated residual r
[t]
l

.
Keeping it would make the notation cumbersome.

4.1. GREEDY SPARSE COORDINATE DESCENT METHODS 33

Figure 4.2: Graphical representation of the operations for the double residual
coordinate adaptive matching pursuit algorithm.

It was found that allowing changes by 1 in the value of l[t] ensures smooth tracking.
The exact changes to the algorithm are presented below. The residual r

[t]
l is

used for computing the coefficients on positions 1 : l[t], while the residual r
[t]
m is

used to estimate only the coefficients on positions l[t] + 2 : m. The coefficient on
position l[t] + 1 is estimated using the residual r

[t]
l , in order to provide a good

value in case an increase of the sparsity level is required at the next time instant.
However, not being included in the l[t]-sparse solution, the l[t] + 1 coefficient does
not modify r[t]

l , it only affects r
[t]
m . To ensure computational efficiency, we use the

residual difference δ[t] = r
[t]
m − r

[t]
l to avoid the update of both residuals when a

coefficient is updated. Since the m-sparse solution includes the l[t]-sparse solution,
updating the l[t]-sparse solution does not change the residual difference.

The positions l[t] + 1 : m are named pending (they belong to the set P) since
they do not contribute directly to the solution. The minimization of the residual
r

[t]
l can be seen as the minimization of the LS criterion (2.1) based on the current

estimate of the sparsity level. The modifications of the CD-AMP algorithm to work
with r

[t]
l are minimal. In particular, the computations for positions 1 : l[t] − 1 are

not changed while for position l[t] the only alternative candidate is the position
l[t] + 1. Since the column on position l[t] + 1 belongs to the m-sparse solution, if
we include it in the l[t]-sparse solution and move the column l[t] to the m-sparse
solution, we need to update the residual difference. Once the coefficient on position
l[t] is chosen and computed, r

[t]
l is not modified anymore and we can reconstruct

the residual r
[t]
m based on the residual difference.

For position l[t] + 1, all pending and inactive positions are candidates. The
updated residual r

[t]
l is used in the criterion (4.24), for the best column search,

and also for computing the coefficient value. The updated coefficient modifies
only r

[t]
m since the first l[t] coefficients were previously chosen and r

[t]
l was properly

updated. If a new position i > l[t] + 1 is found best, then the pending positions
are shifted

34 CHAPTER 4. GREEDY SPARSE ADAPTIVE ALGORITHMS

Algorithm 4.4: Double residual coordinate descent adaptive matching
pursuit (DCD-AMP)

input: A[t−1]; P [t−1]; A[t−1]; r
[t−1]
l ; δ[t−1]; x[t−1]; β[t]; α[t]; l[t−1]; m; n;

output: A[t]; P [t]; A[t]; r
[t]
l ; δ[t]; x[t]; l[t];

0 Update A[t−1] to include the new available data
Update the residual r

[t]
m and δ[t] with the new data like in (4.22)

1 For i = 1 : l[t−1]

1.1 Find new best column for position i; update the coefficient based on residual
r

[t]
l ; perform neighbor permutations similarly to Algorithm 4.3, step 1

1.2 Update the residual r
[t]
l

1.3 For position i = l[t−1], update δ[t] if a permutation is performed

2 Compute the residual r
[t]
m using δ[t] and the updated r

[t]
l

r
[t]
m = r

[t]
l + δ[t]

3 For i = l[t−1] + 1

3.1 Find new best columns for position i and the estimate coefficient based on the
residual r

[t]
l ; perform a full search over the pending and inactive set similarly

to Algorithm 4.3, step 2

3.2 Update the residual r
[t]
m instead of r

[t]
l

4 For i = l[t−1] + 2 : m

4.1 Find new best columns for position i; update coefficient based on residual
r

[t]
m ; perform neighbor permutations similarly to Algorithm 4.3, step 1; for

position i = m no search is performed

4.2 Update the residual r
[t]
m

5 Update the difference vector δ[t] = r
[t]
m − r

[t]
l

6 Select the l[t]-sparse solution with l[t] given by (4.30)

- if i ≤ m, then positions l[t] + 1 : i− 1 move into l[t] + 2 : i;

- if i > m, then positions l[t] + 1 : m − 1 move into l[t] + 2 : m, hence the
former position m is discarded from the pending set.

The remaining coefficients on positions l[t] + 2 : m− 1 are computed similarity to
the CD-AMP algorithm but using and updating the residual r

[t]
m . There is no open

selection for position m, only the last coefficient is updated.
Finally, we estimate the current sparsity level l[t] using the PLS criterion. We

use the same approach for choosing the parameter m. It is either fixed to a
sufficiently large value, or is variable, being computed as m = l[t] + ∆, where ∆ is
a small positive integer constant. If the value l[t] is changed, then both residuals
are changed in the variable m case (when m is also changed), but only r

[t]
l is

4.1. GREEDY SPARSE COORDINATE DESCENT METHODS 35

Figure 4.3: Example of a connected network N with a random topology T . A
node n[k] can communicate to neighbor nodes N [k].

changed in the fixed m case. As a last step, the residual difference is stored after
which a new sample can be processed.

A graphical representation is given in Figure 4.2 using the same conventions
as in Figure 4.1; color red is reserved for the pending positions. The algorithm
summary is listed as Algorithm 4.4. Again, the algorithm does not explicitly use
the scalar products to keep the presentation clear.

Distributed coordinate descent adaptive matching pursuit

The CD algorithm can be adapted for a distributed scenario where, at the same
time instant t, new data are available locally at a number of nodes. If we view
the network as a graph with vertices between computing nodes that can commu-
nicate with each other, then a distributed algorithm generally achieves improved
performance by exchanging information between these connected neighbor nodes
and fusing it with the local measurements. To this regard, traditional methods
proposed for distributed scenarios are generally based on LMS [82, 21] or on RLS
[67, 20]. When sparsity is required, distributed algorithms have been developed to
work either in batch mode [68] or to estimate the solution in an adaptive fashion
(e.g. the sparsity-aware, projection based distributed algorithm from [26] or the
sparse distributed LMS algorithm from [31]).

The distributed DCD-AMP (D-DCD-AMP) algorithm from [P2] extends the al-
gorithms from the CD-AMP family to work in a distributed setup with limited
inter-node communication. We use the coordinate descent strategy proposed by
[P1] to compute in each node a local solution estimate (coefficient values, spar-
sity level and solution support) and we allow this data to be exchanged between
neighbor nodes. Each node performs two tasks:

- first it combines the neighbor estimates with the local solution;

- then, performs an adaptation step to update the solution with newly avail-

36 CHAPTER 4. GREEDY SPARSE ADAPTIVE ALGORITHMS

able measurements.

The first task is achieved by averaging the neighbor solution coefficients with
the local solution. This is a standard strategy and is employed in other distributed
algorithms [26, 31]. To allow for all nodes to converge towards a common spar-
sity level, the neighbor sparsity level estimates influence the local sparsity level.
The second task involves a CD on the direction given by the MP criterion [66] and
is governed by a descent step size γ that allows for a tradeoff between the local
adaptation speed and the convergence towards a common neighbor estimate. Ad-
ditionally, to achieve fast convergence to a common solution, we account for the
neighbor coefficient data when deciding the local support.

We study a static network N consisting of p nodes with a fixed topology T .
We consider the network to be connected, namely that there exist a path linking
any two nodes n[i] and n[j]. The true coefficient vector x[t] is the same all over
the network, x[t,i] = x[t,j]. An example of such a network is found in Figure 4.3.
The distributed algorithm uses two sets of data:

- The local data for each n[k]: The input data β[t,k] and output data α[t,k],
different for each node.

- The neighbor nodes data: Since the bandwidth is limited, the node n[k] only
receives from each neighbor node n[j], j ∈ Nk (Nk is the set of all nodes
neighbor with n[k]), data corresponding to the solution from time t− 1:

i) The sparsity level estimate l̃[t−1,j] computed using only the local data;
ii) The l[t−1,j] coefficients of the current active solution x[t−1,j];

iii) The coefficient l[t−1,j] +1, the best of the other coefficients not included
in the current active solution;

iv) The absolute coefficient positions.

We assume that each node computes l[t,k] coefficients associated with the lo-
cal active positions by mixing using local and neighbor information. It can also
independently compute l̃[t,k], the sparsity level estimate found locally using the
information theoretic criteria, via ITC. Thus, the number l[t,k] of active positions
computed using also neighbor data can differ from the raw l̃[t,k], l[t,k] ̸= l̃[t,k]. The
coefficient l[t−1,j] + 1 is transmitted to cover a possible increase of the sparsity
estimate at the next time instant and also to allow better averaging and faster
convergence in case it is actually in the solution support in other nodes. All other
coefficients on positions l[t−1,j] + 2 : n of each neighbor solution x[t−1,j] do not
contribute directly to the solution and are implicitly considered 0.

Thus, after receiving the new data, our goal is to minimize a criterion similar
to (2.1) but based on the local data A[t,k] and b[t,k],

J(x[t,k]) = ∥b[t,k] −A[t,k]x[t,k]∥2
2. (4.31)

We also use the neighbors data to improve the solution and to force the estimates
to converge towards a common value, as explained below.

4.1. GREEDY SPARSE COORDINATE DESCENT METHODS 37

To provide a reliable number l[t,k] of active positions we average the estimated
sparsity level of the current node with the one received from its neighbors. To
prevent large fluctuations, we allow only changes by at most one,

l[t,k] = l[t−1,k] +

sign
(⌈

l[t,k]+
∑

j∈Nk
l̃[t−1,j]

|Nk|+1

⌉
− l[t−1,k]

)
. (4.32)

We compute the average coefficient estimate,

x̄[t−1,k] =
x[t−1,k] +

∑
j∈Nk

x[t−1,j]

|Nk|+ 1
. (4.33)

For positions where the support differs we average with the implicit coefficient
0. Since we will use the average coefficient values, the residual update (4.22)
associated with the l[t,k]-sparse solution changes to

r
[t,k]
l =

[
r

[t−1,k]
l +

∑l[t,k]

i=1 ξia
[t−1,k]
i

β[t] −
∑l[t,k]

i=1 x̄
[t−1,k]
i α

[t]
i

]
, (4.34)

where ξi = x
[t−1,k]
i −x̄

[t−1,k]
i . Thus we replace the local coefficient values existing on

the local support by averaging them with the neighbor data. This data, x̄[t−1,k],
represents the new solution from time t − 1 that has to be updated to include
new available local measurements similarly to the update of x[t−1] in the non
distributed scenario. Thus, to keep the same notations we replace

x[t−1,k] ← x̄[t−1,k] (4.35)

and we update x[t−1,k] as presented below.
The coefficient selection rule (4.24) is changed to use the neighbor coefficients

and thus to improve the accuracy of finding the true support. A coefficient, re-
ceived from one of the neighbor nodes n[j], has associated a partial residual r̃[t,j]

based on the node’s local data. A selection criterion based on each r̃[t,j] can be
written as

κ = arg max
i∈C

|a[t,k]T
i r̃[t,k]|2

∥a[t,k]
i ∥2

2

+
∑

j∈Nk

|a[t,j]T
i r̃[t,j]|2

∥a[t,j]
i ∥2

2

. (4.36)

The neighbor residuals r̃[t,j] are not available locally and we substitute them with
the available coefficient data. Since the underlying process generating the input
data matrix is the same for all nodes, with ∥a[t,k]∥2

2 ≈ ∥a[t,j]∥2
2, we approximate

(see (4.25) and (4.28))

|a[t,j]T r̃[t,j]|2

∥a[t,j]∥2
2
≈
(

x
[t−1,j]
l

)2
∥a[t,k]

l ∥2
2, (4.37)

and incorporate the neighbor residual data into the local selection criterion,

κ = arg max
l∈C

|a[t,k]T
l r̃[t,k]|2

∥a[t,k]
l ∥2

2

+
∑

j∈Nk

(
x

[t−1,j]
l

)2
∥a[t,k]

l ∥2
2. (4.38)

38 CHAPTER 4. GREEDY SPARSE ADAPTIVE ALGORITHMS

Algorithm 4.5: Distributed double residual coordinate adaptive matching
pursuit (D-DCD-AMP)

local input: A[t−1,k]; P [t−1,k]; A[t−1,k]; r
[t−1,k]
l ; δ[t−1,k]; x[t−1,k]; β[t,k]; α[t,k]; l[t−1,k]; m; n;

neighbor input: A[t−1,j]; P [t−1,j]; x[t−1,j]; l̃[t−1,j]; j ∈ Nk

output: A[t,k]; P [t,k]; A[t,k]; r
[t,k]
l ; δ[t,k]; x[t,k]; l̃[t,k]; l[t,k]

0 Update A[t−1] to include the new available data

1 Compute the local l[t,k] from (4.32) using the neighbor data

2 Average the coefficients like in (4.33)
Update the residual r

[t−1,k]
l and δ[t−1,k] to include the averaged coefficients and

the new available data similarly to (4.34)

3 For i = 1 : l[t,k]

3.1 Find new best column candidate for position i based on residual r
[t,k]
l ; per-

form neighbor permutations similarly to Algorithm 4.3, step 1 using the se-
lection criterion (4.38)

3.2 Update the coefficient like in (4.40) and the residual r
[t,k]
l like in (4.39)

3.3 For position i = l[t,k], update δ[t,k] similarly to (4.40) if a permutation is
performed

4 Compute the residual r
[t,k]
m using δ[t,k] and the updated r

[t,k]
l

r
[t,k]
m = r

[t,k]
l + δ[t,k]

5 For position i = l[t,k] + 1

5.1 Find new best column candidate for position i based on residual r
[t,k]
l ; per-

form the full search over the pending and inactive set similarly to Algorithm
4.3, step 2 using the selection criterion (4.38)

5.2 Compute coefficient on position l[t,k] + 1 using r[t,k] but modify the residual
r

[t,k]
m

6 For i = l[t,k] + 2 : m

6.1 Find new best columns for position i; update coefficient based on residual
r

[t,k]
m ; perform neighbor permutations similarly to Algorithm 4.3, step 1 using

the selection criterion (4.38); for position i = m no search is performed

6.2 Update the residual r
[t,k]
m

7 Update the difference vector δ[t,k] = r
[t,k]
m − r

[t,k]
l

8 Estimate the new sparsity level l̃[t,k] using the local data

We also change the update rule (4.25) to

x
[t,k]
i = x

[t−1,k]
i + γµ, (4.39)

creating a slower CD governed by the descent step γ ∈ (0, 1]. A smaller value of γ

means a lower influence of the local data. This allows the algorithm to remain close

4.2. GREEDY SPARSE ORTHOGONAL ALGORITHMS 39

to the mean coefficient values computed from neighbor data but also allows the
adaptation to take advantage of new local data. The residual update is modified
in a similar fashion,

r[t,k] ← r[t,k] − γµa
[t,k]
i . (4.40)

For the additional coefficient l[t,k] +1 we use the same averaging strategy (4.33)
and the updated residual r[t,k]; the selection criterion (4.38) is used for all column
searches to introduce a preference for positions existing in neighbor nodes. For the
other positions l[t,k] + 2 : m, since there is a low probability that the columns are
in the active set of the neighbor nodes, we use the full length CD, with γ = 1, to
compute their associated coefficients. This achieves the fastest convergence given
the local data. An overview of the full distributed algorithm presenting the main
steps is available in Algorithm 4.5.

4.2 Greedy sparse orthogonal algorithms
The straightforward use of the batch OLS in an adaptive scenario is prohibitive due
to its huge complexity. If we assume that the algorithm selects the same support
all the time, transforming the batch method to work recursively and reuse the
past solution is relatively simple. Having performed the orthogonalization for m

columns at time t−1, the new data available at time t can be directly appended to
the matrices from (3.14), namely to the block upper triangular input matrix R[t−1]

and corresponding output data vector b[t−1], to produce the arrow like structure

R[t] =

 √λ

[
R[t−1]

A,A R[t−1]
A,I

0 F[t−1]

]
α[t]T

 and b[t] =

 √λ

[
b

[t−1]
A

g[t−1]

]
β[t]

 . (4.41)

To restore the upper triangular structure a simple procedure that uses Givens
rotations is used.

If the support changes however, the restoration of the triangular form becomes
very computationally intensive especially if inactive columns are selected to be
included in the active set. In this case the triangular form is completely destroyed
to the right of the insertion point. We describe in what follows an efficient re-
cursive algorithm derived from the batch OLS, namely the GRLS algorithm. The
development of the method started with [35], which proposed a first version, and
it was later improved to work with the online estimation of the sparsity in [P5]
and thus it provides a robust solver for the sparsity estimation problem. Both [35]
and [P5] work for an exponentially windowed input data, however, for low sparsity
levels a sliding window may provide the same performance with lower computa-
tional complexity by using an efficient implementation [P6]. The algorithm can
be also adapted for a group sparsity problem where the non-zero coefficients are
grouped together. With this a priori information available, a group level column
selection was developed in [P7] and different group sparsity level selection criteria
were proposed and analyzed.

40 CHAPTER 4. GREEDY SPARSE ADAPTIVE ALGORITHMS

4.2.1 Greedy sparse recursive least squares
The GRLS algorithm is an adaptive method able to produce a sparse solution
which, at each time t, is in principle equivalent to the OLS output from Algorithm
3.2. We implicitly maintain the same column reshuffling strategy of the OLS to
bring the support column on the first positions in the input data matrix. The only
difference is that, in order to achieve a low complexity, a different support selection
strategy is generally used. This is the same neighbor permutation1 strategy that
was used for the CD-AMP family of algorithms. After a sufficient amount of data
are available, the permutation is usually the same as the one given by OLS, in
the sense that it selects the same active columns. However, due to the selection
strategy used the adaptive algorithm is less prone to errors in the support since it
allows for a lower variability of the support.

In order to restore the upper triangular matrix factorization from (3.14) after
the new data are appended like in (4.41), the algorithm needs to update, at each
t, the first m rows of the input and output matrices, precisely the matrix

R[t]
A =

√
λ
[
R[t−1]

A,A R[t−1]
A,I

]
, with R[t]

A ∈ Rm×n, (4.42)

and the vector b
[t]
A ∈ Rm, while introducing zeros on the first m positions in the

newly appended data. Since this information is associated with present active
columns and it is used to compute the current LS solution,

xA = (R[t]
A,A)-1b

[t]
A , (4.43)

it is needed explicitly. The past information of the other inactive columns, stored
by F[t] and g[t], is needed only in the case the active columns change. It can not
be stored explicitly however, since it grows indefinitely with t. We replace it with
the fixed size scalar product matrices Ψ[t] ∈ Rn−m×n−m and ϕ[t] ∈ Rn−m,

Ψ[t] = F[t]T

F[t] and ϕ[t] = F[t]T

g[t]. (4.44)

This is similar to the use of scalar products for the algorithms derived from the
MP presented in the previous subsection. We remind that Ψ[t] is a symmetric
matrix, hence only its upper triangle has to be computed and stored. We update
the full matrix in the description of the algorithms to allow for an easier presen-
tation but we count only the relevant operations when we estimate the algorithm
complexity. By an abuse of notation we denote henceforward with R[t] and b[t]

only the present data, i.e. we drop the index A used in (4.42) and for b
[t]
A . The in-

formation presented so far, namely R[t], b[t], Ψ[t], ϕ[t], is required for the solution
computation.

Upon receiving new data α[t] and β[t], if we impose constrains for the support
selection, the GRLS data can be maintained with relatively low complexity. Allow-
ing a potential complete support change between two time instants t−1 and t, like

1Chronologically, the permutation strategy was first introduced for the GRLS algorithm.
While for the CD-AMP algorithms other permutation based, ordering strategies can be used, for
the GRLS algorithms only neighbor permutation ensures a low complexity.

4.2. GREEDY SPARSE ORTHOGONAL ALGORITHMS 41

in the case of applying the batch OLS algorithm from scratch two times for the two
corresponding data sets, is destructive for the triangular form of R[t] and renders
the past triangular form useless since the arbitrary reshuffle of the active columns
generally requires a full triangularization. Furthermore, it is unlikely that the so-
lution changes drastically from one iteration to the other. Due to the windowing,
the algorithm can react only after the past data has been sufficiently forgotten in
case of sharp changes of the support.

Thus, we rely on the slow time variability of the solution support and replace
the full search done by the OLS with the neighbor permutation strategy:

- for each position k = 1 : m − 1 of the active set, only columns i and i + 1
compete;

- for the last active position m all columns m to n are allowed to compete.

Basic update

When the active set does not change, the necessary operations are those of a typical
orthogonal triangularization update. Actually, the same operations are employed
every time since the new data can be added and the triangular form restored before
the new column order has to be decided. This is due to the fact that we employ
only orthogonal transforms and, when they multiply several vectors, they do not
modify the scalar products (Property A.3.5).

The arrow like structure from (4.41) is updated to produce a triangular form
in the first m columns by zeroing the elements of the last row via Givens rotations.
The data matrices are not stored in full and we only work with present data R[t−1]

and b[t−1], to which we append the new data available at time t,

R[t] =

[√
λR[t−1]

A,A
√

λR[t−1]
A,I

α
[t]T

A α
[t]T

I

]
and b[t] =

[√
λb

[t−1]
A

β[t]

]
. (4.45)

This does not introduce any limitations since we operate only with orthogonal
transforms and we can update Ψ[t] and ϕ[t] (Property A.3.6). Notice that we
implicitly account for the forgetting factor in the scalar products

Ψ[t] = λΨ[t−1] = λF[t−1]T F[t−1],

ϕ[t] = λϕ[t−1] = λF[t−1]T

g[t−1].
(4.46)

After zeroing the first m elements on the last column, the remaining transformed
elements of the new row are moved into the past by updating the associated scalar
products and are not stored explicitly. Thus the last row from R[t] and element
from b[t] can be formally deleted. The operations are summarized in Algorithm
4.6.

Neighbor permutation

Appending the new data available at time t and restoring the triangular form does
not change the decision associated with the support selection. Thus we describe

42 CHAPTER 4. GREEDY SPARSE ADAPTIVE ALGORITHMS

Algorithm 4.6: Greedy recursive least squares (GRLS) - basic update

input: R[t−1]; b[t−1]; Ψ[t−1], ϕ[t−1]; α[t]; β[t]; m; n;
output: R[t]; b[t]; Ψ[t]; ϕ[t];

0 Append current data like in (4.41)

1 For i = 1 : m restore the upper triangular by zeroing each position i on row m + 1
of R[t]

2.1 Compute the Givens rotation Gi that zeros R[t]
m+1,i using R[t]

i,i (Theorem
A.3.2)

2.2 Apply the rotation on R[t], R[t] ← GiR[t]

2.3 Apply the rotation on b[t], b[t] ← Gib
[t]

3 Update the past by exponentially weighting the scalar products and include the
remaining non-zeroed data of the appended row
Ψ[t] ← λΨ[t−1] + R[t]

m+1,m+1:nR[t]T
m+1,m+1:n,

ϕ[t] ← λϕ[t−1] + bm+1R[t]
m+1,m+1:n

4 Delete row m + 1 from R[t] and b[t]

the neighbor permutation strategy based on the data updated according to the
re-triangularization from Algorithm 4.6.

At iteration i, instead of choosing the best next column among all columns
i : n, we restrain our search to columns i and i + 1. The column selection test is
the restrained version of (3.15) and the best candidate column κ is given by

κ = arg max
j∈{i,i+1}

|
∑i+1

k=i Rk,jbk|√∑i+1
k=i R2

k,j

. (4.47)

Since the matrix R[t] contains zeros below the diagonal, columns i and i + 1 have
only one and two, respectively, relevant non-zero elements on and below row i.
This translates to selecting to permute the neighbors if

|bi| <
|Ri,i+1bi + Ri+1,i+1bi+1|√

R2
i,i+1 + R2

i+1,i+1

. (4.48)

A permutation introduces only a sub-diagonal element that can be eliminated
with a single Givens rotation. The situation is illustrated in Figure 4.4. The
whole permutation strategy is presented in Algorithm 4.7.

Last column search

After the neighbor permutations are performed, the last active column is selected
like in the OLS algorithm. However, for the inactive columns, found in positions
m + 1 : n, the matrix R[t] does not contain all necessary information. The past

4.2. GREEDY SPARSE ORTHOGONAL ALGORITHMS 43

× × × × × ×
× × × × ×
× × × ×
× × ×
⊗ ⊗
⊗ ⊗

(a)

× ∗ ∗ × × ×
∗ ∗ × × ×
∗ 0 × × ×

× × ×
⊗ ⊗
⊗ ⊗

(b)

× × × × × ×
∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗

× × ×
⊗ ⊗
⊗ ⊗

(c)

Figure 4.4: Matrix R[t] illustrating the operations from Algorithm 4.7 for m = 4,
n = 6; a permutation between the second and the third column is performed; the
non-zero elements are represented by × and those modified, to a non-zero value
by the current operation, by ∗; we mark with ⊗ the past data not stored explicitly
to remind that the matrix R[t] does not contain the whole input data; the figures
show the initial matrix (Figure 4.4a), the matrix after the permutations (Figure
4.4b) and after the application of the Givens rotation (Figure 4.4c).

Algorithm 4.7: Greedy recursive least squares (GRLS) - neighbor permu-
tation

input: R[t−1]; b[t−1]; α[t]; β[t]; m; n;
output: R[t]; b[t];

1 For i = 1 : m− 1, if column i + 1 is found better than i by (4.47)

1.1 Swap columns i and i + 1 in R[t]

1.2 Compute Givens rotation Gi that zeroes R[t]
i+1,i using R[t]

i,i (Theorem A.3.2)

1.3 Apply the rotation to R[t], R[t] ← GiR[t]

1.4 Apply the rotation to b[t], b[t] ← Gib
[t]

information is needed for the search of the best column. The selection criterion is
given by

κ = arg max
j∈{m:n}


|b[t]

m | if j = m
|R[t]

m,j
b[t]

m +ϕ
[t]
j−m

|√
R[t]2

m,j
+Ψ[t]

j−m,j−m

if j > m. (4.49)

This means that performing the permutation and restoring the triangular form as
presented in Figure 4.5 is done only if

|b[t]
m | < max

j∈{m+1:n}

|R[t]
m,jb[t]

m + ϕ
[t]
j−m|√

R[t]2

m,j + Ψ[t]
j−m,j−m

. (4.50)

The form of the equation (4.49) results from (3.15) by properly replacing the past
data with the corresponding scalar products. Note that Ψ[t] and ϕ[t] are defined
only for the inactive columns, hence index j−m corresponds to column j; also for

44 CHAPTER 4. GREEDY SPARSE ADAPTIVE ALGORITHMS

× × × × × ×
× × × × ×
× × × ×
× × ×
⊗ ⊗
⊗ ⊗

(a)

× × × ∗ × ∗
× × ∗ × ∗
× ∗ × ∗
∗ × ∗
⊙ ⊗ 0
⊙ ⊗ 0

(b)

× × × × × ×
× × × × ×
× × × ×
∗ ∗ ∗
0 ⊙ ⊙
0 ⊙ ⊙

(c)

Figure 4.5: Matrix R[t] illustrating the operations from Algorithm 4.8 for m = 4,
n = 6; a permutation between the forth and the sixth column is performed; the
non-zero elements are represented by × and those modified, to a non-zero value
by the current operation, by ∗; we mark with ⊗ the past data not stored explicitly
and with ⊙ the past data modified, to a non-zero value by the current operation,
to remind that the matrix R[t] does not contain the whole input data; the figures
show the initial matrix (Figure 4.5a), the matrix after the permutations (Figure
4.5b) and after the application of the Householder transform (Figure 4.5c); note
that the past data are modified which justifies the update of the scalar products.

column m the past data are already zeroed and since no scalar products are used
the expression is much simpler in (4.49).

A summary of the operations is presented in Algorithm 4.8 and a visual aid
to the modifications that occur in R[t] is included in Figure 4.5. If column m is
still the best, there is nothing more to be done. If the inactive column κ > m is
better, it has to be permuted to position m and then zeroed below the diagonal,
using a Householder reflector. However, since the past of the column is not stored
explicitly, we operate with the scalar products instead. This is possible because the
Householder transform used, like in theorem A.3.1, only require the scalar products
of the indefinite long vectors. Coupled with the observation that any orthogonal
transform does not change the scalar product values when it is applied, properties
(A.3.5, A.3.6), the update presented in Algorithm 4.8 is straightforward.

Online sparsity estimation and the complete algorithm

Knowing a priori the number of non-zero elements m is generally quite restrictive.
We assume that m is an upper bound for the maximum number of non-zero ele-
ments similarly to the algorithms described in the previous sections. If this bound
is good, in particular equal to the true value, the behavior of greedy recursive least
squares is very good; however, a too large m can degrade the performance.

It is reasonable to assume that for slowly time varying processes and after a
sufficiently long transitory regime, the first elements of the active set given by
the algorithm are the true non-zero positions. Thus, since a good guess for the
sparsity level estimate l[t] is usually not available a priori and may change in time,
we select m large enough to accommodate any possible sparsity level and find the
estimate online using information theoretic criteria. We keep the same strategy
for changing m like we did for the CAMP and CD-AMP algorithms. Namely, we

4.2. GREEDY SPARSE ORTHOGONAL ALGORITHMS 45

Algorithm 4.8: Greedy recursive least squares (GRLS) - last active column
selection

input: R[t−1]; b[t−1]; Ψ[t]; ϕ[t]; α[t]; β[t]; m; n;
output: R[t]; b[t]; Ψ[t]; ϕ[t];

1 Find the best column κ like in (4.49)

2 If the new column is found better i.e. (4.50) is true

2.1 Swap columns m and κ of R[t].

2.2 Save the partial scalar product data
ϕ̃

[t] = R[t]
m,m+1:nb

[t]
m

Ψ̃[t] = R[t]T
m,m+1:nR[t]

m,m+1:n

2.3 Compute the Householder reflector H that zeros column m in R[t] below the
diagonal (Theorem A.3.1)

2.4 Apply the H to R[t] and b[t] (Property A.3.2)

2.5 Update the scalar products (Property A.3.6)
ϕ[t] ← ϕ[t] + ϕ̃

[t] −R[t]
m,m+1:nbm

Ψ[t] ← Ψ[t] + Ψ̃[t] −R[t]T
m,m+1:nRm,m+1:n

propose two choices for the value of m. We can either have a fixed value m chosen
such that is greater than the true sparsity level or allow it to vary such that it is
linked to the estimated sparsity level like in (4.14). Let us note here that a change
of m[t−1] by 1 to produce m[t] can be easily incorporated in the algorithm.

Decreasing m[t−1] means simply deleting row m[t−1] of R[t] and b[t], but not
before using it for updating the past information, similarly to the last step in
Algorithm 4.6. Increasing m[t−1] can be done by running an algorithm similar with
Algorithm 4.8 for the selection of an extra column active column. We continue the
discussion as we did before only for the fixed m since there are no major differences
for the case when it varies.

The BIC can be easily computed in the context of the greedy recursive algo-
rithm, taking advantage of the properties of the orthogonal triangularization. The
residual of any i-sparse solution has the same norm as the vector b[t] (after apply-
ing in place all the orthogonal transforms Q[t] that produce the upper triangular
form in R[t]) with the first i elements removed. With the notation from (4.42) the
residual r

[t]
i is defined by the lower part of the vector b[t] that is not stored explic-

itly after the orthogonalization procedure is performed for i columns. It results
that the residual r

[t]
i is given by applying the inverse orthogonal transform Q[t] on

46 CHAPTER 4. GREEDY SPARSE ADAPTIVE ALGORITHMS

g[t],

r
[t]
i = Q[t]


0
...
0

g[t]

 . (4.51)

Since we only need the residual norm in (3.21), not having g[t] stored explicitly
does not cause any problems. The squared norm of any full vector c can be
computed with the recursion in time

∥c[t]∥2
2 = λ∥c[t−1]∥2

2 + c
[t]2

t ; (4.52)

here we consider the data to be exponentially weighted with the use of the forget-
ting factor λ. Since the orthogonal transforms do not change the norm when they
are applied to a vector (Property A.3.5), it results that ∥Q[t]T

c[t]∥2
2 = ∥c[t]∥2

2.
Thus, at time t, the squared norm of the residual (4.51) produced by the i-

sparse solution can be computed as

∥r[t]∥2
2 = ∥b[t]∥2

2 −
j∑

k=1

b
[t]2

k , (4.53)

where b[t] is the vector from (4.41), as updated by the algorithm at time t. We
note that (4.53) can be used to compute the residual norms recursively for all
j = 1 : m.

For the PLS, the computation of the a priori errors needed by (3.23) requires
the algorithm to find all solutions of sparsity levels j = 1 : m by solving upper
triangular systems of equations. An efficient recursive implementation is present
in [P5, Appendix II]. Note that if at time t we increase m[t] = m[t−1] +1, there are
no past a priori errors produced by the m[t]-sparse solution and we replace them
with the errors of the m[t−1] − 1-sparse solution. The criterion tends to its true
value, due to the effect of the forgetting factor. Also, an implicit approximation is
made at neighbor permutations, where the past values are preserved, although the
new models are actually different. Despite these approximations, the PLS criterion
works well in practice.

The structure of the overall algorithm is shown in Algorithm 4.9. It combines
the basic update and the column selection strategies.

4.2.2 Sliding window algorithm
Until now we considered the data to be exponentially windowed such that the
older information has a decreasing influence on the results. Another possibility is
to completely remove the old data by using a rectangular sliding window of length
w. When using the sliding window, at each time instant t, the LS criterion is
defined by

J(x[t]) =
t∑

i=t−w+1
λt−i|e[i]|2, (4.54)

4.2. GREEDY SPARSE ORTHOGONAL ALGORITHMS 47

Algorithm 4.9: Greedy recursive least squares (GRLS) - algorithm sum-
mary

input: R[t−1]; b[t−1]; Ψ[t−1]; ϕ[t−1]; α[t]; β[t]; m; n;
output: R[t]; b[t]; Ψ[t]; ϕ[t];

1 Perform the basic update from Algorithm 4.6

2 Reorder the support and restore the upper triangular form by searching between
neighbors as in Algorithm 4.7

3 Search for a possible better candidate for the last position in the active set like in
Algorithm 4.8

4 Estimate the current sparsity level l[t] = l̃[t]-sparse solution using either PLS or
BIC.

5 Produce the l[t]-sparse solution like in (4.43).

which translates into the same matrix expression (2.7). The main difference is
that now the matrices have a fixed size, equal to the window length w. Thus we
have A[t] ∈ Rw×n and b[t] ∈ Rw. We continue to use the same notations as for the
exponential windowed data since essentially they represent the same concepts.

For a non-sparse solution x[t], it is necessary to take w ≥ n in order to obtain
a LS solution. However, for sparse filters, the required condition is w ≥ l

[t]
t , which

leaves open the possibility to take w < n. In what follows we consider a sufficiently
fast time varying scenario where the past data soon begins to misrepresent the
current environment and we show how the GRLS algorithm [P5, 35] is adapted to
work with a sliding window in [P6].

The sliding window GRLS (SW-GRLS) algorithm is based on the same partial
QR factorization with pivoting (3.12), on the first m columns,

A[t]P[t] = Q[t]R[t], (4.55)

like the OLS and GRLS algorithms but this time both the orthogonal matrix Q[t] ∈
Rw×w and the upper triangular matrix R[t] ∈ Rw×n need to be stored. Note that
we store the whole matrix R[t] not just the upper part. While we do not use the
scalar products Ψ[t] since we store the full matrix A[t], we still use ϕ[t] to achieve
lower computational complexity. At time t, the algorithm has two main steps,
downdating and updating [64].

The downdating has the purpose of eliminating the oldest equation from the
previous window. Starting from (4.55) at time t− 1, we compute

A[t−1]P[t−1] =
[

1 0
0 Q̃[t−1]

] [
α[t−w]T

R̃[t−1]

]
, (4.56)

where α[t−w] is the input data from time t − w which is to be eliminated. The
matrix R̃[t−1] ∈ Rw−1×n is upper triangular in its first m columns, hence it corre-
sponds to the data from time t− 1 produced with a smaller window of size w− 1.

48 CHAPTER 4. GREEDY SPARSE ADAPTIVE ALGORITHMS

U[t−1]︷ ︸︸ ︷
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×

R[t−1]︷ ︸︸ ︷
× × × × × ×
× × × × ×
× × × ×
× × ×
× ×
× ×
× ×

(a)

U[t−1]︷ ︸︸ ︷
× × × × × ×
× × × × × ×
× × × × × ×
× × × × × ×
∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗

R[t−1]︷ ︸︸ ︷
× × × × × ×
× × × × ×
× × × ×
× × ×
∗ ∗
∗ ∗
∗ ∗

(b)

U[t−1]︷ ︸︸ ︷
× × × × × ×
× × × × × ×
× × × × × ×
∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 × × × × ×
0 × × × × ×

R[t−1]︷ ︸︸ ︷
× × × × × ×
× × × × ×
× × × ×
∗ ∗ ∗
∗ ∗ ∗
× ×
× ×

(c)

U[t−1]︷ ︸︸ ︷
∗ 0 0 0 0 0
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 × × × × ×
0 × × × × ×
0 × × × × ×

R[t−1]︷ ︸︸ ︷
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
× × ×
× ×
× ×

(d)

Figure 4.6: Matrices U[t−1] and R[t−1] illustrating the operations from Algorithm
4.10 for m = 4, n = 6 and w = 7; the non-zero elements are represented by × and
those modified, to a non-zero value by the current operation, by ∗; the figures show
the initial matrices (Figure 4.6a), the matrices after the Householder transform is
applied (Figure 4.6b) and after the application of the first Givens rotation (Figure
4.6c); the matrices from (Figure 4.6d) exemplify the changes that occur in U[t−1]

and the upper Hessenberg structure of R[t−1] after all the Givens transforms are
applied.

This is like removing the first row from the permuted A[t−1] to produce Ã[t−1]

and then computing its QR factorization Ã[t−1]P[t−1] = Q̃[t−1]R̃[t−1]. Note that
the output vector b[t−1] is also modified and its first element is similarly removed
to produce the output b̃

[t−1] associated with the smaller window.
The downdating procedure consists of computing the elementary orthogonal

transformations that bring Q[t−1] to the form (4.56) by forcing zeros in its first
row and column, in an order chosen to damage the least the triangular form of
R[t−1]. We work with the inverse matrix U[t−1] = Q[t−1]T ∈ Rw×w since we apply
all transformations from the left to produce R[t−1] = U[t−1]A[t−1]. The process
is similar with that from [64]. We use a Householder reflector to zero the last
w −m + 1 elements of the first column of U[t−1] and we update both R[t−1] and
b[t−1]. The remaining w−1 non-zero elements from positions 2 : w are zeroed with
several Givens rotations. After applying the last rotation the particular structure
from (4.56) is produced because the matrix U[t] is orthogonal. This operation
order ensures that at the end R[t−1] is upper Hessenberg in the first m columns

4.2. GREEDY SPARSE ORTHOGONAL ALGORITHMS 49

Algorithm 4.10: Sliding window greedy recursive least squares (SW-GRLS)
- downdate

input: U[t−1]; R[t−1]; b[t−1]; w; m; n;
output: Ũ[t−1]; R̃[t−1]; b̃

[t−1];

1 Compute the Householder reflector H that zeroes U[t−1]
w+1:m,1 and apply it on U[t−1],

R[t−1] and b[t−1] (Theorem A.3.1)

2 For j = w : −1 : 1

2.1 Compute the rotation G that zeroes U[t−1]
j+1,1 and modifies U[t−1]

j,1 and apply
it on U[t−1], R[t−1] and b[t−1] (Theorem A.3.2)

and, after eliminating its first row, it becomes upper triangular. An example of
the operations used for downdating is given in Figure 4.6 and the whole sequence
of operations is summarized in Algorithm 4.10.

The update procedure is the same as for the exponential window greedy recur-
sive least squares algorithm. It starts by adding the current equation to the data
factorization

A[t]P[t−1] =
[[

Ã[t−1]P[t−1]]
α[t]T

]
=
[

Q̃[t−1] 0
0 1

] [
R̃[t−1]

α[t]T

]
(4.57)

and the solution is revised like in Alg. 4.9 to include the new data. We also note
that updating or downdating can be performed singly at time t, hence increasing
or decreasing w. Also, the above algorithms can be easily modified for allowing m

to increase or decrease and thus to allow the online sparsity estimation.

4.2.3 Group level sparsity estimation
Until now we considered the solution sparsity to be unstructured; the non-zero
elements can take any position in the vector x[t]. We now assume that the solution
has a simple structure produced by having the non-zero elements grouped together
in a small number of clusters [40, 74]. In this case we say that the solution x[t] ∈ Rn

is group sparse. Its number of non-zero elements is still much smaller than n but
additionally the non-zero elements are present in few clusters with variable sizes.
The difference from the standard sparse problem is that now it is more efficient to
work with groups of non-zero elements instead of individual non-zeros. Working
on a group level, one has to decide the number of such groups and the size of each
group which introduces additional challenges.

We maintain the same assumption about the environment; it is time varying,
hence the values and the positions of the non-zero elements of x[t] may change in
time. In [P7], we extend the GRLS algorithm to work for group sparse problems
and we explore the use of ITC for estimating the group sparsity online. Other
algorithms able to produce group sparse solutions are generally based on convex

50 CHAPTER 4. GREEDY SPARSE ADAPTIVE ALGORITHMS

relaxation techniques and use the ℓ1,∞ norm. They are working either in batch
mode [56, 72] or have an adaptive implementation [25].

For the group sparsity, the non-zero coefficients locations are supposed to be
found in mg blocks of sizes pi, i = 1 : mg. Similarly to the GRLS algorithm,
at each time t, for computing the sparse solution we employ a greedy strategy
to select m active columns a

[t]
i from A[t] forming the mg active groups. In the

group GRLS (G-GRLS) algorithm, the column selection is performed on a group
level however. Herein we assume that all groups1 have the same size p̌.

We work on groups of columns Gi containing p̌ consecutive indices of the non-
zero coefficients of the solution. The algorithm maintains the same partial QR
factorization with pivoting of the matrix A[t] like the GRLS algorithm but per-
forms all permutations and searches on a group level. We always consider the
groups to be formed by adjacent columns from the original matrix A[t] before any
permutations are applied.

The choice to include a new group Gi into the active set is based on the min-
imization of the LS criterion. The group becomes active if, by adding it to the
previously selected groups, decreases with the largest amount the error sum from
J(x[t]). This selection strategy also ensures a group order at time t based on the
contribution of each group in decreasing J(x[t]). Thus, to work on a group level
we only require changes to the column selection criteria from the GRLS algorithm,
namely we transform the neighbor permutation and the last search to work on a
group level. The basic update from Algorithm 4.6 remains unchanged.

Neighbor group permutations

After receiving new data, the group order is prone to change. Under the assump-
tion that the change is slow, we use a group neighbor permutation strategy to
restore the group order.

Given two neighbor groups Gi and Gj the decision to permute them is based
on the decrease of the residual their permutation produces. If we select from R[t]

and b[t] only the part associated with the two groups we have[
R[t]

Gi,Gi
R[t]

Gi,Gj

0 R[t]
Gj ,Gj

][
x

[t]
Gi

x
[t]
Gj

]
=

[
b

[t]
Gi

b
[t]
Gj

]
, (4.59)

where R[t]
Gi,Gi

and R[t]
Gj ,Gj

are upper triangular matrices2. The residual decrease

1 A mechanism for splitting the groups up to a minimum size p̂ ≤ p̌/2 and for joining them
is present in [P7] where it is assumed that that the real group sizes pi are bounded by p̂ and p̌,

p̂ ≤ pi ≤ p̌ with i = 1 : mg . (4.58)

2We remind that for any matrix X, the notation XGi
selects the column subset of X as-

sociated with the set Gi and the actual positions of the columns in X can vary. For a vector
zT , the partition zT

Gi
selects in a similar fashion the elements (columns) associated with the set

Gi and we use the same notation zGi
for z to select the same elements (corresponding to the

rows). The notation XGj ,Gi
selects the partition from XGi

defined by the rows from the set Gj ,
XGj ,Gi

= ((XGi
)T
Gj

)T .

4.2. GREEDY SPARSE ORTHOGONAL ALGORITHMS 51

due to selecting first group Gi is δGi = ∥b[t]
Gi
∥2

2.
Any change in the group order affects the output vector b[t] and we need to

compute δGj after we perform the permutation. By permuting Gi and Gj the
upper triangular form is destroyed and thus, we need to restore it with the use of
Householder reflectors. We start from the left and compute each reflector such that
it zeros |Gi| sub diagonal elements on each column while modifying the diagonal
element. After we permute and restore the triangular form we have[

R̃[t]
Gj ,Gj

R̃[t]
Gj ,Gi

0 R̃[t]
Gi,Gi

][
x̃

[t]
Gj

x̃
[t]
Gi

]
=

[
b̃

[t]
Gj

b̃
[t]
Gi

]
, (4.60)

and δGj can be computed, δGj = ∥b̃[t]
Gi
∥2

2. Note that, the permuted columns as-
sociated with Gi and the whole matrix R[t] may not updated now since we only
apply the triangularization to compute δGj and the permutation is temporary. The
permutation is permanent only if

δGj

|Gj |
>

δGi

|Gi|
, (4.61)

and so the reflectors used to obtain it are applied to the whole R[t] to the right of
the permuted group.

Last group

To allow changes in the active group set, any possible inactive group can compete
for the last active position. An exhaustive search for all possible inactive groups
of size p̌ is performed. Smaller groups are allowed only if the previously selected
active groups limit the number of adjacent inactive columns.

We can write an alternate way of determining the criterion1 J(x[t]),

J(x[t]
Gi

) = (b[t]
o −A[t]

Gi
A[t]+

Gi
b[t]

o)T (b[t]
o −A[t]

Gi
A[t]+

Gi
b[t]

o)
= b[t]T

o b[t]
o − b[t]T

o A[t]
Gi

A[t]+

Gi
b[t]

o ,
(4.62)

with A[t]+

Gi
= (A[t]T

Gi
A[t]-1

Gi
)A[t]T

Gi
. Including the group Gi in the solution is therefore

decreasing the criterion by

δGi = b[t]T

o A[t]
Gi

A[t]+

Gi
b[t]

o . (4.63)

This holds for any orthogonal transformation of A[t] and b[t]
o , particularly for R[t]

and b[t].
To replace the last group Gmg with a new group Gi (Gi can overlap with Gmg)

we require that
δGmg

|Gmg |
< max

Gi

δGi

|Gi|
. (4.64)

1The notation b
[t]
o is used to denote the original vector b(t) from (2.5) without any orthogonal

transforms applied.

52 CHAPTER 4. GREEDY SPARSE ADAPTIVE ALGORITHMS

Computing the criterion (4.63) requires the inversion from A[t]+

Gi
which is very

computationally demanding. To overcome this we propose to estimate δGi from
the orthogonally transformed data, R[t] and b[t]. We define

δGi = (R[t]T

Gmg ,Gi
b

[t]
Gi

+ ϕ
[t]T

Gi
)s, (4.65)

with s being the solution of

(R[t]T

Gmg ,Gi
R[t]

Gmg ,Gi
+ Ψ[t]

Gi,Gi
)s = R[t]T

Gmg ,Gi
b

[t]
Gmg

+ ϕGi
. (4.66)

Note that we can use the scalar products Ψ[t] and ϕ[t] instead of the whole matrices
R[t] and b[t].

Let the matrix R[t]T

Gmg ,IR[t]
Gmg ,I + Ψ[t] and the associated R[t]T

Gmg ,IbGmg
+ ϕ[t] be

permuted back to the original column order from A[t] and for simplicity lets assume
that the set I is contiguous. Each p̌ × p̌ diagonal block defines a systems from
(4.65). To find the solution we transform the system to be upper triangular and
use a downdate update procedure [64] to morph between every possible diagonal
block.

Group aware online sparsity estimation

The group order introduced by the permutation strategy can be exploited to allow
the online estimation of the sparsity level with the use of the PLS and BIC criteria
in addition to the column level criteria used so far. While the computation of
the column aware ITC is similar to [P5], it is used to infer a group level sparsity
estimation instead.

Thus, for the column based estimators BICc and PLSc, the sparsity estimate
is the minimizer l̃ of the criterion chosen, either (3.21) or (3.23). To adapt the
sparsity estimate for our group problem, we compute the group number estimate
lg by finding the group containing the column l̃.

Since the ordering performed with the permutations is done at the group level
without any column ordering in the groups, the column sparsity estimation strat-
egy can potentially provide inaccurate estimates. To alleviate this we propose
group aware forms for the ITC. In the BIC case the changes are straightforward,
the criterion is computed for solutions x[t] produced by the whole groups G1:k,

BICg
Gi

= nef ln ∥rGi∥2
2 + (1 + s) ln nef = BICs. (4.67)

where s =
∑i

j=1 |Gj | and rGi is the residual produced by a solution containing
groups G1:i. Note that we consider the penalty for the model complexity1 +

i∑
j=1
|Gj |

 ln nef (4.68)

to depend on the number of columns in the groups.

4.2. GREEDY SPARSE ORTHOGONAL ALGORITHMS 53

The PLS has a temporal dependence on the previous solutions and the direct
generalization to the group case does not maintain the group structure. We pro-
pose several ways of extending the PLS criterion to work with groups of columns.
The simplest uses the current group structure G1:m from time t and computes the
solution at group level,

PLSg
Gi

=
∑t

j=0 λt−je
[k]2

s = PLSs, (4.69)

where, similarly to (3.23), e
[j]
s is the solution produced by the s =

∑i
k=1 |Gk|-

sparse solution from time j. If the groups are atomic, then we use the past group
structure Gj

i from each time instant j ≤ t. In this case the group level PLS criterion
is given by

PLSga

Gi
=

t∑
j=1

λt−je
[k]2∑j

i=1
|Gj

i
|
. (4.70)

The splitting of groups and the different size of the groups potentially adversely
influence the ability of PLSga to produce a good sparsity estimate. To overcome
these problems in [P7] we also propose several weighted versions of (4.70).

54 CHAPTER 4. GREEDY SPARSE ADAPTIVE ALGORITHMS

Chapter 5

Conclusions and summary

The research directed towards the development of the two sparsity-aware algorithm
families was triggered by the desire of fast, robust and efficient methods for finding
sparse solutions. We started with the development of the algorithms derived from
the MP algorithm and then focused more on the methods that employ orthogonal
transforms. The former are less computationally intensive without performance
and robustness degradation.

5.1 Overview of the results
The complexity and the performance of the algorithms are better generally than
those of competing methods. We have mainly used for comparison the SPARLS
algorithm [12] and the best CD method from [10]. For the distributed scenario we
compared the performance against the reweighted zero attracting sparse diffusion
LMS (RZA) algorithms developed in [31].

5.1.1 Algorithm complexity
Under the assumption of slow support variation, the greedy methods may mod-
ify positions or number of non-zero coefficients less frequently than they estimate
the coefficient values. The support essentially changes very slowly; faster changes
corrupt the input data and the algorithms behave poorly until the past data asso-
ciated with the past support is sufficiently forgotten for a chosen forgetting factor
or sliding window. Because of this, the permutation operations from the GRLS
family of algorithms can be performed less often, once every τp input samples. For
the G-GRLS algorithm the splitting and the group joining presented in [P7] may
similarly be performed every τs and τj input samples, respectively. For the algo-
rithms derived from the MP, the cyclical update (associated with CAMP, I-CAMP
and the I-CAMP-A) may be performed a number of times τc per time instant to
provide a more accurate solution. Taking this into account, we present in Table
5.1 the summary of the complexity of the algorithms presented in Chapter 4. To

55

56 CHAPTER 5. CONCLUSIONS AND SUMMARY

Table 5.1: Summary of the approximate complexity for the studied algorithms;
the complexity of the online sparsity estimation is considered separately

Algorithm Worst case complexity ITC complexity
PLS BIC

CAMP 3
2 n2 + (1

2 + τc)m2 + nm τcl2 + m2 τcl2 + m2

I-CAMP 3
2 n2 + τc

3 m3 + (1
2 + 4τc)m2 + nm m2 3

2 m3 + 3m2

I-CAMP-A
3
2 (2n−m− p)(m + p)

m2 -+ τc

3 m3 + (1
2 + 4τc)m2 + nm

CD-AMP 3
2 n2 + 2mn - -

DCD-AMP 3
2 n2 + 2mn + 10n 5m -

D-DCD-AMP1 3
2 n2 + 4mn + 10n 5m -

GRLS (3
2 + 2

τp
)(n−m)2 +O(mn) 2m2 2m

SW-GRLS (4 + 4
τp

)nl + (4 + 4
τp

)l2 2m2 2m

G-GRLS (3
2 + 2

τp
)p(n−m)2 +O(p2n) 2m2 2m

RLS O(4n2) - -

RZA1 O(4n) - -

SPARLS2 O(τ ln) - -

TNWL3 O(3
2 n2) +O(6n2) - -

provide the means of comparison, we include the SPARLS method from [12] and
the TNWL algorithm from [10] together with the RLS algorithm. For comparison
in the distributed scenario we use the RZA algorithms [31]. We only count the
most significant operations.

We note that in many applications, the matrix A[t] has a special structure
because of time shifted input data as in (2.13). In such case, the complexity of
the algorithms4 is much lower since they can be implemented to take advantage
of the special input structure and the costly update of the scalar products that
requires 3

2 n2 computations is implemented using only 3n total operations. This is
possible because the scalar products Ψ[t] from (4.3) are computed by copying the
upper left block and then only the first row is updated.

1We report the number of computations from a single node at time t.
2The parameter τ represents the number of times the SPARLS algorithm calls a low com-

plexity expectation maximization routine.
3The complexity corresponds to the best performing but also the most complex of the meth-

ods from [10] and it includes that of the RLS algorithm which runs in parallel.
4This does not apply to the GRLS based algorithms due to the special QR decomposition

they maintain.

5.1. OVERVIEW OF THE RESULTS 57

Table 5.2: Summary of the algorithms used for the performance assessment and
their configuration

Algorithm Description
camp The CAMP algorithm family from [P3]. The camp algo-

rithm is running with prior knowledge about the sparsity
level m = lt. The two other methods, camp-p and camp-b
use the PLS and BIC criteria, respectively, to estimate online
the sparsity level. For both we use a variable1 parameter
m[t] with ∆ = 5.

camp-p
camp-b

i-camp The I-CAMP algorithm family from [P3]. The i-camp algo-
rithm is running with prior knowledge about the sparsity
level m = lt. The i-camp-p and i-camp-b methods use the
PLS and BIC criteria, respectively, to estimate online the
sparsity level. For both we use a variable1 parameter m[t]

with ∆ = 5.

i-camp-p
i-camp-b

grls The GRLS algorithm family from [P5]. The grls algorithm
is running with prior knowledge about the sparsity level
m = lt. The two other methods, grls-p and grls-p use
the PLS and BIC criteria, respectively, to estimate online
the sparsity level. For both we use a variable1 parameter
m[t] with ∆ = 5.

grls-p
grls-b

sw-grls The sliding window algorithm from [P6] running with prior
knowledge about the sparsity level m = lt.

g-grls The group algorithms from [P7] running with prior knowl-
edge about the sparsity level m = lt. The two other meth-
ods, g-grls-p and g-grls-p use the group level PLS and
BIC criteria from (4.69) and (4.67), respectively, to estimate
online the sparsity level. For both we use a variable num-
ber2 of groups m

[t]
g with ∆g = 2 and a minimum group size

p̂ = 2.

g-grls-p
g-grls-b

cd-amp The CD-AMP algorithm from [P1] running with prior knowl-
edge about the sparsity level m = lt.

dcd-amp The DCD-AMP algorithms from [P1] using the PLS criterion
to estimate online the sparsity level. A variable1 parameter
m[t] is used with ∆ = 5.

1For a constant value of m the performance is similar thus we only show the results of the
more robust version of the algorithms that also estimates m[t] online.

2 Like for the column based algorithms, for a constant value of mg the performance is similar
thus we only show the results of the more robust version of the algorithms that also estimates
m

[t]
g online.

58 CHAPTER 5. CONCLUSIONS AND SUMMARY

Table 5.2: Summary of the algorithms used for the performance assessment and
their configuration

Algorithm Description
d-dcd-amp The distributed algorithm from [P2]. It uses as network

topology T : a ring Tr or a fully connected setup Tf . The
network size is |N | = 10. Similarly to the centralized case
we use a variable1 m[t] with ∆ = 5

rls The standard and the sparsity informed RLS algorithms.
The rls-sp algorithm knows the number and positions of
the non-zero coefficients and thus estimates only the true
coefficients. It provides the best performance that can be
achieved by minimizing the LS criterion.

rls-sp

sparls The algorithm from [12] using optimally selected parame-
ters.

tnwl The algorithm from [10] using optimally selected param-
eters and a tuned λ for the RLS algorithm that runs in
parallel.

rza-atc The LMS based, diffusion algorithms from [31]. Two strate-
gies are used producing an RZA algorithm that adapts the
coefficients to include the new local data and then com-
bines them with the neighbor data (RZA-ATC) and an RZA
algorithm that combines the coefficients with the neigh-
bor data and then adapts them to include the new local
data (RZA-CTA).

rza-cta

In the general case, the algorithms from the CD-AMP family have good com-
plexity when compared to the GRLS methods. In the GRLS algorithm, the term
depending on nm generally involves more operations than the whole DCD-AMP
for time shifted input data. If the input data structure can not be exploited, the
update of the scalar products raises the complexity of DCD-AMP such that, for low
values of m and large n, the complexity of GRLS is generally more than 5

3 times
higher. The TNWL algorithm, which uses an efficient CD coupled with an inner
RLS loop, is essentially1 more than three times more complex than the DCD-AMP
and has about twice the complexity of GRLS. Since the computation of the RLS
solution can be implemented to consider the time shifted input data, in such case,
the complexity of the TNWL is slightly higher than that of the DCD-AMP. When
compared to the SPARLS algorithm2, only DCD-AMP has a similar complexity. For

1Depends on the implementation of the RLS algorithm. A stable implementation using the
QR decomposition has about O(6n2) operations.

2Our algorithms have much better performance.

5.1. OVERVIEW OF THE RESULTS 59

0 100 200 300 400 500 600

10
−2

10
−1

10
0

t (time)

M
S
E
[t
]

RLS−SP
SPARLS
TNWL
GRLS
GRLS−B,∆ = 10
GRLS−P,∆ = 10
GRLS−B,∆ = 5
GRLS−P,∆ = 5

500 550 600

Figure 5.1: The evolution in time of MSE[t] for a variation speed governed by
f = 0.001. At time t = 300, three of the lt = 5 coefficients change position. The
forgetting factor used is λ = 0.92.

the distributed D-DCD-AMP algorithm, the complexity is higher than that of the
RZA algorithms which are based on the NLMS algorithm. If the input is time
shifted, then the complexity of the two approaches becomes comparable.

5.1.2 Performance assessment
The performance of our algorithms was validated for an FIR channel identification
problem (2.13). We used a sparse filter h[t] with a length n to generate the output
data give a random input generated according to a normal distribution with zero
mean and unit variance. Each non-zero coefficient has a sinusoidal variation given
by

h
[t]
i = υi cos(2πft + ζi). (5.1)

The lt non-zero coefficient positions i are randomly chosen, each with the ampli-
tude υi and the phase ζi distributed uniformly in [0.05, 1] and [0, 2π]. We impose
a group structure over a grid of size p only for the test involving G-GRLS. The
coefficient vector is normed such that its average squared norm over all t is 1.
The outputs, corresponding to the filtered inputs, are corrupted by a zero mean,
additive noise, normally distributed with σ2 = 0.01.

The performance of the algorithms is measured in terms of the mean square
error of the coefficients

MSE[t] = E{∥h[t] − x[t]∥2
2}, (5.2)

where x[t] is the estimate of the true coefficient vector h[t]. The value of MSE[t]

is evaluated by averaging over multiple runs at each time t. We also report the
average value of the MSE[t] over the last 100 samples of the steady state.

The algorithms used for the performance assessment are summarized in Table
5.2. To keep the presentation clear we use the GRLS and the CD-AMP algorithms as
a baseline and we compare the other developed algorithms with them. These are
also compared with the SPARLS and TNWL algorithms to give insight on how our
algorithms perform against other recently developed methods. We use different
coefficient variation speeds, namely f = 0.002 and f = 0.001, to generate fast

60 CHAPTER 5. CONCLUSIONS AND SUMMARY

10 20 30 40 50
10

−2

10
−1

10
0

lt (number of nonzero coefficients)

A
v
er
a
ge

M
S
E

[t
]

RLS(1)
RLS(2)
RLS−SP
GRLS

TNWL(1)
TNWL(2)
SPARLS(1)
SPARLS(2)

10 20 30 40 50
10

−2

10
−1

10
0

lt (number of nonzero coefficients)

A
v
er
a
ge

M
S
E

[t
]

RLS−SP
GRLS
GRLS−B,∆ = 10
GRLS−P,∆ = 10
GRLS−B,∆ = 5
GRLS−P,∆ = 5

Figure 5.2: The average MSE[t] as a function of the true number of coefficients
lt and a constant filter of length n = 200. The variation speed is governed by
f = 0.001. The forgetting factor used is λ = 0.92 for all algorithms except RLS(1)
which uses λ = 0.9825.

0.86 0.88 0.9 0.92 0.94 0.96 0.98

10
−2

10
−1

10
0

λ (forgetting factor)

A
v
er
ag
e
M
S
E

[t
]

RLS
RLS−SP
GRLS
TNWL(1)
TNWL(2)
SPARLS

0.86 0.88 0.9 0.92 0.94 0.96 0.98

10
−2

10
−1

lt (number of nonzero coefficients)

A
v
er
ag
e
M
S
E

[t
]

RLS−SP
GRLS
GRLS−B,∆ = 10
GRLS−P,∆ = 10
GRLS−B,∆ = 5
GRLS−P,∆ = 5

Figure 5.3: The average MSE[t] as a function of the forgetting factor λ for a number
of true coefficients lt = 5 and a constant filter of length n = 200. The variation
speed is governed by f = 0.001.

coefficient changes and f = 0.0002 for a slower evolution. We also compare the
D-DCD-AMP algorithm with the distributed LMS based algorithms, RZA-ATC and
RZA-CTA, introduced by [31].

We begin by presenting the time evolution, in a time varying setup, for the GRLS
algorithm family in Figure 5.1 to give an idea about the convergence speed and
stationary error. The GRLS algorithm, having prior knowledge of the true sparsity
level, has the fastest convergence speed but requires information that is generally
unavailable. The fully adaptive algorithms that use the BIC and PLS criteria
to estimate online the number of coefficients converge more slowly but are still
comparable with the GRLS in terms of convergence speed. The stationary error is
essentially the same for all of them proving the ability of the ITC to select to correct
sparsity level. When compared to the TNWL and the SPARLS algorithms, our
algorithms have a better performance. In [P5], extensive simulations are presented
to validate the performance for different channel variations. It was concluded
that, for very slow variation speeds or for constant channels, the TNWL algorithm
produces good results that approach those produced by the GRLS algorithms. This
can also be seen later in Figure 5.6 which contains tests for a slow variations speed.

5.1. OVERVIEW OF THE RESULTS 61

50 100 150 200 250 300
10

−2

10
−1

10
0

n (filter order)

A
v
er
a
ge

M
S
E

[t
]

RLS(1)
RLS(2)
RLS−SP
GRLS

TNWL(1)
TNWL(2)
SPARLS(1)
SPARLS(2)

50 100 150 200 250 300
10

−2

n (filter order)

A
v
er
a
ge

M
S
E

[t
]

RLS−SP
GRLS
GRLS−B,∆ = 10
GRLS−P,∆ = 10
GRLS−B,∆ = 5
GRLS−P,∆ = 5

Figure 5.4: The average MSE[t] as a function of the filter order n for a number of
true coefficients lt = 5. The forgetting factor used is λ = 0.92 for all algorithms
besides RLS(1) which uses λ optimized for each test case. The variation speed is
governed by f = 0.001.

0 100 200 300 400 500 600

10
−1

10
0

t (time)

M
S
E
[t
]

RLS−SP
SPARLS
TNWL
CD−AMP
GRLS−P,∆ = 5
DCD−AMP ,∆ = 5

500 550 600

Figure 5.5: The evolution in time of MSE[t] for a variation speed governed by
f = 0.002. At time t = 300, three of the lt = 5 coefficients change position. The
forgetting factor used is λ = 0.90.

To assess the robustness of the proposed methods we include in Figure 5.2
the evolution of the average MSE[t] as a function of the true sparsity level lt.
Similarly, Figures 5.3 and 5.4 contain the average MSE[t] as a function of the
forgetting factor λ and of the filter length n, respectively. The SPARLS and TNWL
algorithms marked in with a dotted line use the parameters, namely γ for SPARLS
and the forgetting factor used by the internal RLS in the case of TNWL, optimally
chosen for lt = 5 and n = 200 for all other test cases. The versions marked with
a continuous line use optimized parameters for each test case. In the case of the
RLS algorithm the dotted line uses λ = 0.92 while the algorithm marked by a
continuous line uses λ that produces the best performance.

The GRLS algorithms perform robustly and maintain good performance. The
only case when there is a large performance degradation is when the true sparseness
of the solution decreases. In such case the ITC fail to produce good estimates. It
should be noted that the PLS criterion is more robust.

Figures 5.5 and 5.6 contain the time evolution of the MSE[t] for the CD-AMP
algorithms and show how they compare to the more computationally intensive
GRLS algorithms and to the other competing methods, SPARLS and TNWL. We

62 CHAPTER 5. CONCLUSIONS AND SUMMARY

0 100 200 300 400 500 600

10
−2

10
−1

10
0

t (time)

M
S
E
[t
]

RLS−SP
SPARLS
TNWL
CD−AMP
GRLS−P,∆ = 5
DCD−AMP ,∆ = 5

500 550 600

Figure 5.6: The evolution in time of MSE[t] for a variation speed governed by
f = 0.0002. At time t = 300, three of the lt = 5 coefficients change position. The
forgetting factor used is λ = 0.96.

0 50 100 150 200 250
10

−2

10
−1

10
0

t (time)

M
S
E
[t
]

RLS−SP−SW, lt = 5
RLS−SP−SW, lt = 10
GRLS, lt = 5
GRLS, lt = 10
GRLS−SW, lt = 5, w = 30
GRLS−SW, lt = 10, w = 40

200 250 200 250

(a)

0 50 100 150 200 250

10
−2

10
−1

10
0

t (time)

M
S
E
[t
]

RLS−SP−SW, lt = 5
RLS−SP−SW, lt = 10
GRLS, lt = 5
GRLS, lt = 10
GRLS−SW, lt = 5, w = 40
GRLS−SW, lt = 10, w = 40

200 250 200 250

(b)

Figure 5.7: The evolution in time of MSE[t] for a variation speed governed by
f = 0.001 in Figure 5.7a and f = 0.002 in Figure 5.7b. The forgetting factors are
λ = 0.90 and λ = 0.92, respectively. Two test cases, i.e. two different data sets
with lt = 5 and lt = 10, are presented in each figure. The filter length is n = 200.

only use the PLS criterion since it is more robust but a similar comparison is
possible also for the BIC criterion. The simulations are performed for both a
fast and slow variation speed. They also act to complement the ones performed
solely for the GRLS since the setup is different. It can be seen that in both cases
the DCD-AMP algorithm performance is very close to that of the GRLS-P and it
converges marginally faster.

We compare the sliding window and exponential window GRLS algorithms in
Figure 5.7. It can be seen that the sliding window approach is able to produce
comparable results with those produced using the exponential windowed data.
For small window length w < 0.25n, like those employed for fast varying chan-
nels, the algorithms is less computationally expensive than its forgetting window
counterpart.

In case of a setup where the coefficients are grouped together, the performance
of the algorithms can be improved by using a group aware algorithm. We present
in Figure 5.8 and Figure 5.9 the average MSE[t] of the group aware GRLS algorithm
for the different ITC introduced by [P7]. The group aware G-GRLS algorithms gen-

5.1. OVERVIEW OF THE RESULTS 63

4 6 8 10 12 14
10

−2

10
−1

10
0

pt (true group size)

A
v
er
a
ge

M
S
E

[t
]

RLS
RLS−SP
GRLS
GRLS−B,∆ = 10
GRLS−B−Gc,∆g = 2
GRLS−B−Gg,∆g = 2

(a)

4 6 8 10 12 14
10

−2

10
−1

10
0

pt (true group size)

A
v
er
a
ge

M
S
E

[t
]

RLS
RLS−SP
GRLS
GRLS−P,∆ = 10
GRLS−P−Gc,∆g = 2
GRLS−P−Gg,∆g = 2

(b)

Figure 5.8: The average MSE[t] as a function of the true group size pt for a number
of groups mg = 2. All groups have the same size. The filter length is n = 180.
Figure 5.9a depicts the evolution of the algorithms that use the BIC criterion while
Figure 5.9b contains the algorithms that use the PLS criterion. The forgetting
factor used is λ = 0.9 for all algorithms and the variation speed is fast, governed
by f = 0.002.

4 6 8 10 12 14

10
−2

10
−1

pt (true group size)

A
v
er
ag
e
M
S
E

[t
]

RLS
RLS−SP
GRLS
GRLS−B,∆ = 10
GRLS−B−Gc,∆g = 2
GRLS−B−Gg,∆g = 2

(a)

4 6 8 10 12 14

10
−2

10
−1

pt (true group size)

A
v
er
ag
e
M
S
E

[t
]

RLS
RLS−SP
GRLS
GRLS−P,∆ = 10
GRLS−P−Gc,∆g = 2
GRLS−P−Gg,∆g = 2

(b)

Figure 5.9: The average MSE[t] as a function of the true group size pt for a number
of groups mg = 2. All groups have the same size. The filter length is n = 180.
Figure 5.9a depicts the evolution of the algorithms that use the BIC criterion while
Figure 5.9b contains the algorithms that use the PLS criterion. The forgetting
factor used is λ = 0.96 for all algorithms and the variation speed is slow, governed
by f = 0.0002.

erally outperform the GRLS algorithms for both the BIC and the PLS criteria. The
BIC criteria are not very robust and for large number of groups and fast varia-
tion speeds they underestimate the true sparsity level. Both group and column
based PLS criteria are more robust and perform better than the corresponding BIC
counterparts and the original GRLS algorithm.

The performance of the CAMP algorithms can be judged from Figure 5.10. It
contains the CAMP and I-CAMP algorithms that use both BIC and PLS criteria
and the approximate version of the I-CAMP algorithm with the online sparsity
estimation given by the PLS criterion. For comparison we also show the evolution
of the GRLS algorithm that knows the true number of non-zero coefficients. It

64 CHAPTER 5. CONCLUSIONS AND SUMMARY

0 100 200 300 400 500 600

10
−2

10
−1

10
0

t (time)

M
S
E
[t
]

RLS−SP
TNWL
GRLS
CAMP−B,∆ = 5
CAMP−P,∆ = 5
ICAMP−B,∆ = 5
ICAMP−P,∆ = 5
ICAMP−A,∆ = 5

500 550 600

Figure 5.10: The evolution in time of MSE[t] for a variation speed governed by
f = 0.001. The forgetting factor is λ = 0.92, the filter length is n = 200 and the
true number of coefficients is lt = 5.

0 100 200 300 400 500 600
10

−3

10
−2

10
−1

10
0

t (time)

M
S
E
[t
]

RLS−SP
DCD−AMP−G
D−DCD−AMP−Tf
D−DCD−AMP−Tr
D−DCD−AMP−Ti

500 550 600

Figure 5.11: The evolution in time of MSE[t] for a variation speed governed by
f = 0.0002. The forgetting factor is λ = 0.96, the filter length is n = 200 and the
true number of coefficients is lt = 10.

can be seen that the MSE[t] of the CAMP algorithms approaches that of GRLS
showing that the cyclic update scheme is able to provide a good approximation
of the true coefficients. The performance of the approximate I-CAMP algorithm
is improved because it does not allow fast changes in the support and thus bad
positions enter the solution rarely. This affects however the convergence speed
which almost doubles.

The performance in time of the distributed algorithm introduced in [P2] is
presented in Figure 5.11 and Figure 5.12, respectively. First we compare the
D-DCD-AMP algorithm running on two network topologies, a ring Tr and a fully
connected network Tf , with the sparsity informed RLS (RLS-SP) algorithm running
on one node and the non distributed DCD-AMP algorithm that has all the data
available locally (DCD-AMP-G). We also include a unconnected topology Ti, where
each node is independent. This represents the DCD-AMP running on each node
without any communication and is included to provide insight into the ability
of the distributed algorithm to improve the solution by communicating over the
network. Figure 5.12 includes the recent distributed algorithms proposed by [31]
and shows how D-DCD-AMP behaves when compared to existing state of the art
methods.

Figure 5.13 contains the average MSE[t] as a function of the configuration

5.2. CONCLUSIONS 65

0 100 200 300 400 500 600

10
−2

10
−1

10
0

t (time)

M
S
E
[t
]

D−DCD−AMP−Tr
RZA−CTA−Tr - µ= 0.025
RZA−CTA−ME−Tr - µ= 0.03
RZA−ATC−Tr - µ= 0.03
RZA−ATC−ME−Tr - µ= 0.035

500 550 600

Figure 5.12: The evolution in time of MSE[t] for a variation speed governed by
f = 0.0002. The forgetting factor is λ = 0.96, the filter length is n = 200 and the
true number of coefficients is lt = 10.

0.2 0.4 0.6 0.8 1

10
−2.6

10
−2.5

10
−2.4

10
−2.3

10
−2.2

µ (descent step)

A
v
er
ag
e
M
S
E

[t
]

RLS−SP
D−DCD−AMP−Tf
D−DCD−AMP−Tr
D−DCD−AMP−Ti

(a)

0.2 0.4 0.6 0.8 1

10
−1

µ (descent step)

A
v
er
ag
e
M
S
E

[t
]

RLS−SP
D−DCD−AMP−Tf
D−DCD−AMP−Tr
D−DCD−AMP−Ti

(b)

Figure 5.13: The average MSE[t] as a function of the descent step µ. Figure 5.13a
depicts the average MSE[t] of the algorithms for f = 0.002 and λ = 0.90 while
Figure 5.13b contains the average MSE[t] for f = 0.0002 and λ = 0.96 . The filter
length used is n = 200 and all simulations have the true number of coefficients
lt = 10.

parameter µ which acts as a tradeoff between convergence speed and stationary
error. It can be seen that for fast channel variation, the best results are produced
for a larger µ while for a slow variation a smaller µ allows for a better stationary
error.

5.2 Conclusions
We have proposed several greedy adaptive algorithms for finding sparse solutions.
Their performance has been extensively tested for a simulated FIR channel iden-
tification task. The algorithms belong to two different families of methods. The
algorithms from the first one are derived from the MP and use a CD approach to
estimate the solution. The latter are based on the batch OLS and compute the so-
lution by maintaining a partial QR triangularization with pivoting. They generate
the solution by solving a system of equations defined by the upper triangular part
of the data matrix.

66 CHAPTER 5. CONCLUSIONS AND SUMMARY

All algorithms require little configuration, generally one or two, easy to choose,
parameters. No precise a priori information is necessary, conferring robust behav-
ior for unknown environments. Generally the GRLS family has higher compu-
tational complexity if compared to the CD-AMP algorithms. However, since it
generates the proper LS solution for the given sparsity, it produces slightly better
results. The CD-AMP algorithms achieve the same performance and have consid-
erably lower complexity. If compared to competing methods, our algorithms have
better performance and generally lower complexity.

The algorithms use ITC to estimate online the sparsity level. Using extensive
simulations, it was shown that both criteria proposed, the PLS and BIC, are able to
generate reliable estimates. The PLS behaves more robustly than the BIC although
it may sometimes produce slightly worse performance.

5.3 Author’s contribution
The research which led to the publications presented in this thesis was performed
while the author was a researcher at the Department of Signal Processing of Tam-
pere University of Technology. The work was supervised by Prof. Bogdan Du-
mitrescu1 and Prof. Ioan Tăbuş. All the publications are a result of the collab-
oration with the supervisors. The author of the thesis is the main contributor to
publications [P1, P2, P3, P4, P6, P7] and also contributed to [P5].

A brief description of the contributions to each article is found below:

[P1] The author of the thesis proposed the main idea of the algorithms, the coor-
dinate descent strategy for the recursive update of the coefficients. He also
was responsible for the algorithm implementation, the various experimental
simulations and the writing of the publication. The article was finalized with
help from B. Dumitrescu.

[P2] The main ideas of the article were proposed by the first author, which was
also responsible for the implementation and the writing of the publication.
The collaboration with the second author consisted of several constructive
discussions which lead towards the final version of the algorithm and article.

[P3] The two algorithms proposed were mainly developed by the author of this
thesis but include some suggestions from B. Dumitrescu. The implementa-
tion and the writing of the publication were done mainly by the first author.
Some improvements to the final form of the publication resulted from the
collaboration between the two authors.

[P4] The article introduces a series of approximations, all originally proposed by
the author of the thesis. The implementation and writing of the publication
were performed independently apart from several constructive discussions
with B. Dumitrescu.

1FiDiPro (Finland Distinguished Professor) fellow at the Department of Signal Processing

5.3. AUTHOR’S CONTRIBUTION 67

[P5] The author of the thesis contributed to the development of the use of ITC
for online sparsity estimation. He was responsible with the implementation
of the algorithms and the generation of the simulated tests from [P5, Section
VI] as well as the writing of that section. He was also involved in efforts to
improve the final version of the article.

[P6] The development of the sliding window algorithm was mainly a joint collab-
oration between the first two authors. The first author was the main contrib-
utor for the development and implementation of the proposed method but
received several suggestions from B. Dumitrescu and I. Tăbuş. The writing
of the publication was performed by B. Dumitrescu; towards the final stages
it consisted of collaboration between all the authors.

[P7] The article extends the GRLS algorithm to produce improvements for group
sparse solutions. The first author has the main contributions in the devel-
opment and implementation of the methods. He also was responsible with
writing the publication. Several fruitful discussions with the second author
produced the final form of the article and the algorithm.

68 CHAPTER 5. CONCLUSIONS AND SUMMARY

Appendix A

Mathematical appendix

A.1 Matrix inversion lemma
Lemma A.1.1 (matrix inversion1). For any invertible matrices Y ∈ Rn×n, Z ∈
Rm×m and U ∈ Rn×m, V ∈ Rm×n the following equation holds,

(Y + UZV)-1 = Y-1 −Y-1U(Z-1 + VY-1U)-1VY-1. (A.1)

In particular if B = Y-1, C = U = VT and D = Z-1 we have that

A-1 = B−BC(D + CT BC)-1CT B, (A.2)

where A = B-1 + CD-1CT .

A.2 Sparsity recovery analysis
Theorem A.2.1 (spark lower bound). For any matrix A ∈ Rn×m the following
relation holds

spark(A) ≥ 1 + 1
µ(A)

. (A.3)

Theorem A.2.2 (uniqueness of a sparse solution). If the solution x of a system
of linear equations Ax = b obeys

∥x∥0 <
1
2

(
1 + 1

µ(A)

)
, (A.4)

then the solution is the sparsest possible.

Theorem A.2.3 (sparkη lower bound). If the matrix A has normalized columns
and a mutual coherence µ(A) then, for any given η we have

sparkη(A) ≥ 1 + 1− η2

µ(A)
. (A.5)

1Also known as the Woodbury matrix identity [97].

69

70 APPENDIX A. MATHEMATICAL APPENDIX

Theorem A.2.4 (stability of a sparse solution). If we have a solution x verifying
the conditions posed by Theorem A.2.2 then any other solution xϵ verifying ∥Ax−
b∥2 ≤ ϵ must obey

∥x− xϵ∥2
2 ≤

4ϵ2

1− µ(A)(2∥x∥0 − 1)
. (A.6)

A.3 Orthogonal transforms
Definition A.3.1. Let u ∈ Rn, then the transformation H ∈ Rn×n,

H ∆= In −
uuT

β
, (A.7)

with β = 1
2∥u∥

2
2, is named a Householder reflector1.

Property A.3.1. The Householder reflector is symmetric and orthogonal,

H = HT= H-1. (A.8)

Theorem A.3.1 (introducing zeroes in a vector using a Householder transform2).
For any vector x ∈ Rn and a given integer 1 ≤ k ≤ n− 1 for which

σ
∆= sgn(xk)

√√√√ n∑
i=k

x2
i ̸= 0, (A.9)

there exists a vector u with

ui =


0, for i < k

xk + σ, for i = k

xi, for i > k

, (A.10)

defining a Householder transform H that zeroes the vector x on positions greater
than k. Here we have β = 1

2∥u∥
2
2 = ukσ. Moreover, the transformed vector is

Hx =


xi, for i < k

−σ, for i = k

0, for i > k

. (A.11)

Property A.3.2. Let H ∈ Rn×n be a Householder transform defined with the use
of u ∈ Rn and x ∈ Rn. The applied Householder transform Hx is a reflection of
x over the hyperspace perpendicular to the vector u,

Hx = x− uT x

β
u. (A.12)

1Introduced by Householder in [55].
2The use of sgn(xk) in the definition of σ is only required for the numerical stability of the

transformation.

A.3. ORTHOGONAL TRANSFORMS 71

Note that the application of a Householder does not involve a multiplication by H.
It requires the computation of the scalar

ν = uT x

β
(A.13)

and the subtraction of the scaled vector νu from x. Also, a reflector constructed
according to Theorem A.3.1 has an associated vector u having elements u1:k−1
equal to zero and thus does not modify x1:k−1.

Definition A.3.2. Let k and i be two integers with 1 ≤ i < k ≤ n. The matrix
G defined as

G =


Ii−1

c s

Ik−i−1
−s c

In−k

 , (A.14)

with s and c obeying s2 + c2 = 1, is named a Givens rotation 1,2.

Property A.3.3. The Givens rotation matrix G is orthogonal,

GT = G-1. (A.15)

Property A.3.4. Let G be a Givens rotation matrix defined for two integers i < k

and x ∈ Rn be any vector. Then, by applying the transformation, we modify only
the elements i and k; that is

Gx =


x1:i−1

cxi + sxk

xi+1:k−1
−sxi + cxk

xk+1:n

 . (A.16)

Theorem A.3.2 (introducing zeroes in a vector using Givens transforms). Let k

and i be two integers with 1 ≤ i < k ≤ n and a vector x ∈ Rn. If

r
∆= x2

i + x2
k ̸= 0, (A.17)

then we can construct a matrix G with c = xi

r and s = xk

r that zeroes the vector
x on position k,

Gx =


x1:i−1

r

xi+1:k−1
0

xk+1:n

 . (A.18)

1The modifications required for i > k are trivial and are not presented herein.
2First derived by Jacobi [57]; later introduced as a numerical tool by Givens [50].

72 APPENDIX A. MATHEMATICAL APPENDIX

Property A.3.5. Let Q ∈ Rn×n be an orthogonal transform and x and y be
two vectors in Rn. The multiplication with Q of both vectors preserves the inner
product xT y,

(Qx)T (Qy) = xT QT Qy = xT y. (A.19)

Property A.3.6. Let x and y be two vectors in Rn and Q ∈ Rn×n be an orthog-
onal transform. Then if we denote z = Qx and w = Qy we have that

zT
i:nwi:n = xT

i:nyi:n + xT
1:i−1y1:i−1 − zT

1:i−1w1:i−1, (A.20)

for any 1 ≤ i ≤ n.

References

[P1] A. Onose and B. Dumitrescu. Adaptive matching pursuit using coordinate
descent and double residual minimization. Signal Processing, 93(11):3143–
3150, November 2013.

[P2] A. Onose and B. Dumitrescu. Distributed coordinate descent using adaptive
matching pursuit. In Proceedings of the International Symposium on Intelli-
gent Signal Processing and Communication Systems, pages 513–518, Naha,
Japan, November 2013.

[P3] A. Onose and B. Dumitrescu. Cyclic adaptive matching pursuit. In Proceed-
ings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, pages 3745–3748, Kyoto, Japan, March 2012.

[P4] A. Onose and B. Dumitrescu. Low complexity approximate cyclic adaptive
matching pursuit. In Proceedings of the European Signal Processing Confer-
ence, pages 2629–2633, Bucharest, Romania, August 2012.

[P5] B. Dumitrescu, A. Onose, P. Helin, and I. Tăbuş. Greedy sparse RLS. IEEE
Transaction on Signal Processing, 60(5):2194–2207, May 2012.

[P6] A. Onose, B. Dumitrescu, and I. Tăbuş. Sliding window greedy RLS for
sparse filters. In Proceedings of the IEEE International Conference on Acous-
tics, Speech and Signal Processing, pages 3916–3919, Prague, Czech Repub-
lic, May 2011.

[P7] A. Onose and B. Dumitrescu. Group greedy RLS sparsity estimation via
information theoretic criteria. In Proceedings of the International Confer-
ence on Control Systems and Computer Science, volume 2, pages 359–364,
Bucharest, Romania, May 2013.

[8] H. Akaike. A new look at the statistical model identification. IEEE Trans-
actions on Automatic Control, 19(6):716–723, 1974.

[9] A.E. Albert and Gardner L.S. JR. Stochastic Approximation and Nonlin-
ear Regression. Cambridge, Massachusetts Technology Press of the Mas-
sachusetts Institute of Technology, 1967.

73

74 REFERENCES

[10] D. Angelosante, J.A. Bazerque, and G.B. Giannakis. Online adaptive esti-
mation of sparse signals: Where RLS meets the l1-norm. IEEE Transaction
on Signal Processing, 58(7):3436–3447, July 2010.

[11] D. Angelosante and G.B. Giannakis. RLS-weighted LASSO for adaptive es-
timation of sparse signals. In Proceedings of the IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, pages 3245–3248, Taipei,
Taiwan, April 2009.

[12] B. Babadi, N. Kalouptsidis, and V. Tarokh. SPARLS: The sparse RLS
algorithm. IEEE Transaction on Signal Processing, 58(8):4013–4025, August
2010.

[13] J. Benesty and S.L. Gay. An improved PNLMS algorithm. In Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, volume 2, pages 1881–1884, Orlando, USA, May 2002.

[14] A.M. Bruckstein, D.L. Donoho, and M. Elad. From sparse solutions of
systems of equations to sparse modeling of signals and images. Society for
Industrial and Applied Mathematics Review, 51(1):34–81, 2009.

[15] O. Bryt and M. Elad. Compression of facial images using the K-SVD
algorithm. Journal of Visual Communication and Image Representation,
19(4):270–282, May 2008.

[16] E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact
signal reconstruction from highly incomplete frequency information. IEEE
Transactions on Information Theory, 52(2):489–509, February 2006.

[17] E.J. Candes and T. Tao. Decoding by linear programming. IEEE Transac-
tions on Information Theory, 51(12):4203–4215, 2005.

[18] E.J Candes and T. Tao. The Dantzig selector: statistical estimation when
p is much larger than n. Annals of Statistics, 35(6):2313–2351, 2007.

[19] E.J. Candes, M.B. Wakin, and S.P. Boyd. Enhancing sparsity by reweighted
ℓ1 minimization. Journal of Fourier Analysis and Applications, 14(5-6):877–
905, 2008.

[20] F.S. Cattivelli, C.G. Lopes, and A.H. Sayed. Diffusion recursive least-squares
for distributed estimation over adaptive networks. IEEE Transactions on
Signal Processing, 56(5):1865–1877, 2008.

[21] F.S. Cattivelli and A.H. Sayed. Diffusion LMS strategies for distributed
estimation. IEEE Transactions on Signal Processing, 58(3):1035–1048, 2010.

[22] S. Chen, S.A. Billings, and W. Luo. Orthogonal least squares methods and
their application to non-linear system identification. Intentional Journal on
Control, 50(5):1873–1896, 1989.

REFERENCES 75

[23] S.S. Chen, D.L. Donoho, M. Saunders, and A. Saunders. Atomic decompo-
sition by basis pursuit. SIAM Journal on Scientific Computing, 20:33–61,
1998.

[24] Y. Chen, Y. Gu, and A.O. Hero. Sparse LMS for system identification. In
Proceedings of the IEEE International Conference on Acoustics, Speech, and
Signal Processing, pages 3125–3128, Taipei, Taiwan, April 2009.

[25] Y. Chen and A.O. Hero III. Recursive ℓ1,∞ group LASSO. IEEE Transac-
tions on Signal Processing, 60(8):3978–3987, August 2012.

[26] S. Chouvardas, K. Slavakis, Y. Kopsinis, and S. Theodoridis. A sparsity
promoting adaptive algorithm for distributed learning. IEEE Transactions
on Signal Processing, 60(10):5412–5425, 2012.

[27] M.G. Christensen and S.H. Jensen. The cyclic matching pursuit and its
application to audio modeling and coding. In Proceedings of the Asilomar
Conference on Signals, Systems, and Computers, pages 550–554, Nov. 2007.

[28] J.M. Cioffi and T. Kailath. Fast recursive-least-squares transversal filters
for adaptive filtering. IEEE Transactions on Acoustics, Speech and Signal
Processing, 32(2):304–337, 1984.

[29] S.F. Cotter and B.D. Rao. The adaptive matching pursuit algorithm for
estimation and equalization of sparse time-varying channels. In Proceedings
of the Asilomar Conference on Signals, Systems, and Computers, volume 2,
pages 1772–1776, 2000.

[30] S.F. Cotter and B.D. Rao. Sparse channel estimation via matching pursuit
with application to equalization. IEEE Transactions on Communications,
50(3):374–377, 2002.

[31] P. Di Lorenzo and A.H. Sayed. Sparse distributed learning based on diffusion
adaptation. IEEE Transactions on Signal Processing, 61(6):1419–1433, 2013.

[32] D.L. Donoho. Compressed sensing. IEEE Transactions on Information The-
ory, 52(4):1289–1306, 2006.

[33] D.L. Donoho and M. Elad. Optimally sparse representation in general
(nonorthogonal) dictionaries via l1 minimization. Proceedings of the Na-
tional Academy of Sciences, 100(5):2197–2202, 2003.

[34] D.L. Donoho and X. Huo. Uncertainty principles and ideal atomic decompo-
sition. IEEE Transactions on Information Theory, 47(7):2845–2862, 2001.

[35] B. Dumitrescu and I. Tăbuş. Greedy RLS for sparse filters. In Proceedings
of the European Signal Processing Conference, pages 1484–1488, 2010.

[36] D.L. Duttweiler. Proportionate normalized least-mean-squares adaptation
in echo cancelers. IEEE Transactions on Speech and Audio Processing,
8(5):508–518, 2000.

76 REFERENCES

[37] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression.
Annals of Statistics, 32:407–499, 2004.

[38] M. Elad. Sparse and Redundant Representations - From Theory to Applica-
tions in Signal and Image Processing. Springer, 2010.

[39] M. Elad. Sparse and redundant representation modeling - what next? IEEE
Signal Processing Letters, 19(12):922–928, 2012.

[40] Y.C. Eldar, P. Kuppinger, and H. Bolcskei. Block-sparse signals: uncertainty
relations and efficient recovery. IEEE Transactions on Signal Processing,
58(6):3042–3054, June 2010.

[41] M.A. Figueiredo and R.D. Nowak. An EM algorithm for wavelet-based image
restoration. IEEE Transactions on Image Processing, 12(1):906–916, 2003.

[42] J.H. Friedman, T. Hastie, and R. Tibshirani. Pathwise coordinate optimiza-
tion. Annals of Applied Statistics, 1(2):302–332, 2007.

[43] J.H. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for gener-
alized linear models via coordinate descent. Journal of Statistical Software,
33(1):1–22, 2010.

[44] T. Gansler, S.L. Gay, M. Sondhi, and J. Benesty. Double-talk robust fast
converging algorithms for network echo cancellation. IEEE Transactions on
Speech and Audio Processing, 8(6):656–663, 2000.

[45] C.F. Gauss. Theoria Motus Corporum Coelestium in Sectionibus Conicis
Solem Ambientium. Hamburg, 1809.

[46] W.M. Gentleman and H.T. Kung. Matrix triangularization by systolic ar-
rays. In Proceedings of the International Society for Optics and Photonics,
volume 298, Real-Time Signal Processing IV, pages 298–303, 1981.

[47] D. Giacobello, M.G. Christensen, J. Dahl, S.H. Jensen, and M. Moonen.
Sparse linear predictors for speech processing. In Proceedings of the ISCA
InterSpeech Conference, pages 1353–1356, 2008.

[48] D. Giacobello, M.G. Christensen, M.N. Manohar N. Murthi, S.H. Jensen,
and M. Moonen. Sparse linear prediction and its applications to speech
processing. IEEE Transactions on Audio, Speech and Language Processing,
20(5):1644–1657, 2012.

[49] C.D. Giurcaneanu and S.A. Razavi. AR order selection in the case when
the model parameters are estimated by forgetting factor least-squares algo-
rithms. Signal Processing, 90(2):451–466, 2010.

[50] W. Givens. Computation of plane unitary rotations transforming a general
matrix to triangular form. Journal of the Society for Industrial and Applied
Mathematics, 6(1):26–50, 1958.

REFERENCES 77

[51] I.F. Gorodnitsky and B.D. Rao. Sparse signal reconstruction from limited
data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans-
actions on Signal Processing, 45(3):600–616, 1997.

[52] E.J. Hannan, A.J. McDougall, and D.S. Poskitt. Recursive estimation of
autoregressions. Journal of the Royal Statistical Society. Series B, 51(2):217–
233, 1989.

[53] S. Haykin. Adaptive Filter Theory. Prentice Hall, 2002.

[54] Y. Hel-Or and D. Shaked. A discriminative approach for wavelet denoising.
IEEE Transactions on Image Processing, 17(4):443–457, 2008.

[55] A.S. Householder. Unitary triangularization of a nonsymmetric matrix.
Journal of the Association for Computing Machinery, 5(4):339–342, October
1958.

[56] K. Hwanjoon and B.D. Rao. On the benefits of the block-sparsity structure in
sparse signal recovery. In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing, pages 3685–3688, March 2012.

[57] C.G.J. Jacobi. Über ein leichtes verfahren, die in der theorie der säku-
larstörungen vorkommenden gleichungen numerisch aufzulösen. Journal für
die reine und angewandte Mathematik, 30:51–94, 1846.

[58] R.E. Kalman. A new approach to linear filtering and prediction problems.
ASME Journal of Basic Engineering, 82, series D:35–45, 1960.

[59] N. Kalouptsidis, G. Mileounis, B. Babadi, and V. Tarokh. Adaptive algo-
rithms for sparse system identification. Signal Processing, 91(8):1910–1919,
2011.

[60] G.Z. Karabulut and A. Yongacoglu. Estimation of time-varying channels
with orthogonal matching pursuit algorithm. In Proceedings of the IEEE
Symposium on Advances in Wired and Wireless Communication, pages 141–
144, 2005.

[61] A.N. Kolmogorov. Sur l’interpolation et l’extrapolation des suites station-
naires. Comptes Rendus de l’Acadamie des Sciences, 208:2043–2045, 1939.

[62] Y. Kopsinis, K. Slavakis, and S. Theodoridis. Online sparse system identi-
fication and signal reconstruction using projections onto weighted l1 balls.
IEEE Transaction on Signal Processing, 59(3):936–952, March 2011.

[63] A.-M. Legendre. Méthode des moindres carrés, pour trouver le milieu le plus
probable entre les résultats de différentes observations. Memoires Présentés
par Divers Savants à la l’Académie des Sciences de l’Institut de France, pages
149–154, 1819.

78 REFERENCES

[64] M.P. Mahon, L.H. Sibul, and H.M. Valenzuela. A sliding window update
for the basis matrix of the QR decomposition. IEEE Transactions on Signal
Processing, 41(5):1951–1953, May 1993.

[65] D. Malioutov, M. Cetin, and A.S. Willsky. A sparse signal reconstruction
perspective for source localization with sensor arrays. IEEE Transactions
on Signal Processing, 53(8):3010–3022, 2005.

[66] S.G. Mallat and Z. Zhang. Matching pursuit with time frequency dictionar-
ies. IEEE Transactions in Signal Processing, 41(12):3397–3415, 1993.

[67] G. Mateos, I.D. Schizas, and G.B. Giannakis. Distributed recursive least-
squares for consensus-based in-network adaptive estimation. IEEE Transac-
tions on Signal Processing, 57(11):4583–4588, 2009.

[68] J.F.C. Mota, J. Xavier, P.M.Q. Aguiar, and M. Puschel. Distributed basis
pursuit. IEEE Transactions on Signal Processing, 60(4):1942–1956, 2012.

[69] J. Nagumo and A. Noda. A learning method for system identification. IEEE
Transactions on Automatic Control, 12(3):282–287, 1967.

[70] P.A. Naylor, J. Cui, and M. Brookes. Adaptive algorithms for sparse echo
cancellation. Signal Processing, 86(6):1182–1192, 2006.

[71] D. Needell and J.A. Tropp. CoSaMP: Iterative signal recovery from in-
complete and inaccurate samples. Applied and Computational Harmonic
Analysis, 26(3):301–321, 2009.

[72] S.N. Negahban and M.J. Wainwright. Simultaneous support recovery in
high dimensions: benefits and perils of block ℓ1/ℓ∞-regularization. IEEE
Transactions on Information Theory, 57(6):3841–3863, June 2011.

[73] M. Niedzwiecki. Bayesian-like autoregressive spectrum estimation in the
case of unknown process order. IEEE Transactions on Automatic Control,
30(10):950–961, 1985.

[74] F. Parvaresh, H. Vikalo, S. Misra, and B. Hassibi. Recovering sparse signals
using sparse measurement matrices in compressed DNA microarrays. IEEE
Selected Topics in Signal Processing, 2(3):275–285, June 2008.

[75] Y.C. Pati, R. Rezaiifar, and P.S. Krishnaprasad. Orthogonal matching pur-
suit: recursive function approximation with applications to wavelet decom-
position. In Proceedings of the Asilomar Conference on Signals, Systems,
and Computers, pages 40–44, 1993.

[76] R.L. Plackett. Some theorems in least squares. Biometrika, 37(1/2):149–157,
1950.

[77] L. Rebollo-Neira and D. Lowe. Optimized orthogonal matching pursuit ap-
proach. IEEE Signal Processing Letters, 9(4):137–140, 2002.

REFERENCES 79

[78] J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–
471, 1978.

[79] J. Rissanen. Order estimation by accumulated prediction errors. Journal of
Applied Probability, 23:55–61, 1986.

[80] A.H. Sayed. Fundamentals of Adaptive Filtering. John Wiley & Sons, 2003.

[81] A.H. Sayed and T. Kailath. A state-space approach to adaptive RLS filtering.
IEEE Signal Processing Magazine, 11(3):18–60, 1994.

[82] I.D. Schizas, G. Mateos, and G.B. Giannakis. Distributed LMS for
consensus-based in-network adaptive processing. IEEE Transactions on Sig-
nal Processing, 57(6):2365–2382, 2009.

[83] G. Schwarz. Estimating the dimension of a model. Annals of Statistics,
6(2):461–464, 1978.

[84] B.L. Sturm, M. Christensen, and R. Gribonval. Cyclic pure greedy algo-
rithms for recovering compressively sampled sparse signals. In Proceedings
of the Asilomar Conference on Signals, Systems and Computers, pages 1143–
1147, 2011.

[85] B.L. Sturm and M.G. Christensen. Cyclic matching pursuits with multiscale
time-frequency dictionaries. In Proceedings of the Asilomar Conference on
Signals, Systems and Computers, pages 581–585, 2010.

[86] V.N. Temlyakov. Weak greedy algorithms. Advances in Computational
Mathematics, 12(2-3):213–227, 2000.

[87] R. Tibshirani. Regression shrinkage and selection via the LASSO. Journal
of the Royal Statistical Society, Series B, 58:267–288, 1994.

[88] A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-Posed Problems. Winston
& Sons, Washington, D.C, 1977.

[89] J.A. Tropp. Greed is good: algorithmic results for sparse approximation.
IEEE Transactions on Information Theory, 50(10):2231–2242, 2004.

[90] J.A. Tropp. Just relax: convex programming methods for identifying sparse
signals in noise. IEEE Transactions on Information Theory, 52(3):1030–
1051, 2006.

[91] L.R. Vega, H. Rey, J. Benesty, and S. Tressens. A new robust variable step-
size NLMS algorithm. IEEE Transactions on Signal Processing, 56(5):1878–
1893, 2008.

[92] L.R. Vega, H. Rey, J. Benesty, and S. Tressens. A family of robust algorithms
exploiting sparsity in adaptive filters. IEEE Transactions on Audio, Speech,
and Language Processing, 17(4):572–581, May 2009.

80 REFERENCES

[93] T. Walzman and M. Schwartz. A projected gradient method for automatic
equalization in the discrete frequency domain. IEEE Transactions on Com-
munications, 21(12):1442–1446, 1973.

[94] B. Widrow. Adaptive filters. In Aspects of Network and System Theory,
pages 563–586. Holt, Rinehart and Winston, 1971.

[95] B. Widrow and M.E. Jr. Hoff. Adaptive switching circuits. Institute of
Radio Engineers - Western Electronic Show and Convention Record, 4:96–
104, August 1960.

[96] N. Wiener. Extrapolation, Interpolation and Smoothing of Stationary Times
Series with Engineering Applications. Cambridge, Massachusetts Technology
Press of the Massachusetts Institute of Technology, 1949. (first published as
a classified National Defense Research Report in 1942).

[97] Max A. Woodbury. Inverting Modified Matrices. Number 42 in Statisti-
cal Research Group Memorandum Reports. Princeton University, Princeton,
NJ, 1950.

[98] Y.V. Zakharov and V.H. Nascimento. DCD-RLS adaptive filters with penal-
ties for sparse identification. IEEE Transactions on Signal Processing,
61(12):3198–3213, 2013.

[99] Y.V. Zakharov, G.P. White, and J. Liu. Low-complexity RLS algorithms us-
ing dichotomous coordinate descent iterations. IEEE Transactions on Signal
Processing, 56(7):3150–3161, 2008.

Publications

81

PUBLICATIONS 83

Publication 1
Reprinted from

[P1] A. Onose and B. Dumitrescu. Adaptive matching pursuit using coordinate
descent and double residual minimization. Signal Processing, 93(11):3143–
3150, November 2013.

Copyright c⃝2013, with permission, from Elsevier.

84 PUBLICATIONS

Adaptive Matching Pursuit Using Coordinate Descent and Double Residual
Minimization

Alexandru Onose1, Bogdan Dumitrescu1

Abstract

We present a greedy recursive algorithm for computing sparse solutions to systems of linear equations. Derived from
adaptive matching pursuit, the algorithm employs a greedy column selection strategy which, combined with coefficient
update via coordinate descent, ensures a low complexity. The sparsity level is estimated online using the predictive least
squares (PLS) criterion. The key to performance is the minimization of two residuals, corresponding to two solutions
with different sparsity levels, one for finding the values of the nonzero coefficients, the other for maintaining a large
enough pool of candidates for the PLS criterion. We test the algorithm for a sparse time-varying finite impulse response
channel; the performance is comparable with or better than that of the competing methods, while the complexity is
lower.

Keywords: sparse filters, matching pursuit, adaptive algorithm, greedy method, channel identification

1. Introduction

In recent years numerous problems like compression,
prediction, array processing, channel identification or echo
cancellation have generated much interest in the devel-
opment of algorithms for recursively finding sparse solu-
tions to systems of linear equations [1, 2]. The search for
methods that produce sparse solutions began with the de-
velopment of batch algorithms like the basis pursuit [3],
the least absolute shrinkage and selection operator [4] or
the orthogonal least squares [5]. In practice however, the
data is often available sequentially and thus adaptive al-
gorithms that compute the solution recursively are much
more efficient. The different adaptive methods proposed
range from convex relaxation techniques [6, 7, 8] to algo-
rithms based on projections onto convex sets [9] or greedy
methods [10, 11]. With roots in the traditional adaptive
filtering, sparsity aware LMS algorithms have also been
developed [12, 13].

The aim of this paper is to present a new adaptive greedy
algorithm that uses a selection strategy inspired from [11],
but now coupled with coefficient update based on coordi-
nate descent, thus having low complexity without nega-
tively affecting the performance.

Let us consider a typical finite impulse response (FIR)
channel identification problem where the input u(t) and
the output d(t) are known at each time instance t. We

1The authors are with Department of Signal Processing,
Tampere University of Technology, Finland. Email: first-
name.lastname@tut.fi. B. Dumitrescu is also with Department
of Automatic Control and Computers, University Politehnica of
Bucharest, Romania. This work has been supported by a Tekes
FiDiPro grant and by GETA.

desire to estimate the true coefficients hj that result from
the minimization of the estimation error

e(t) = d(t)−
N−1∑
j=0

hju(t− j). (1)

Using an exponential window with forgetting factor 0 <
λ ≤ 1, the least-squares criterion to be minimized is

J(t) = ∥b(t) −A(t)x(t)∥2. (2)

The solution x(t) resulting from the minimization of J(t)
is the estimate of the vector h of true coefficients, which is
assumed to be sparse, with Lt ≪ N nonzero elements. The
matrix A(t) ∈ Rt×N , constructed using the input data, has

the i-th row equal to λ
t−i
2 α(i)T with

α(i) = [u(i) u(i− 1) . . . u(i−N + 1)]
T
. (3)

The vector b(t) ∈ Rt is composed of the exponentially

weighted output data bi = λ
t−i
2 d(i). The index (i) is used

to indicate the data from time i; we define β(i) = d(i) for
later use. We presume the environment to be slowly vary-
ing such that the solution does not change greatly between
two consecutive time instances.

We develop an adaptive algorithm for finding a sparse
minimizer of the criterion (2). The most remote ancestors
of our algorithm are the matching pursuit (MP) algorithm
[14] and its adaptive counterpart, the adaptive matching
pursuit (AMP) [10]. The solution is updated at each time
t via coordinate descent. This technique is used in other
adaptive algorithms; it can be tailored for finding either
full solutions like in [15] or sparse solutions, for example in
[8]. A related algorithm is the (batch) cyclic MP [16, 17],

Preprint submitted to Elsevier May 26, 2014

which uses several rounds of coordinate descent at each
step of the greedy search. We have presented an adaptive
version of cyclic MP [18]; however, the current algorithm
is quite different in the organization of the computation
and does not repeat the optimization of a coefficient at
the same time instance, but spreads it over time; hence,
its complexity is lower.

Since we use some techniques from the GRLS algorithm
[11], we discuss here the differences and similarities be-
tween this work and [11]. Our new algorithm requires a
pseudo ordering of the columns from A that contribute
to the solution; any method providing such an order may
be used but we only present two approaches. The first is
inspired from [11] and uses neighbor permutations, while
the second, simpler, only tries to find the worst column.
The neighbor selection strategy is used in [11] for a com-
pletely different underlying algorithm and it is one of the
few viable methods that allow low complexity, while for
the algorithm herein such restrictions do not apply.

We estimate online the sparsity level Lt using the pre-
dictive least squares criterion (PLS) [19], like in [11], al-
though other model selection criteria exist [20, 21] and
the Bayesian information criterion [20] is also used in [11].
However, the mechanism that is created to allow the use
of PLS is new and is specifically tailored for the algorithm
presented here. A distinctive feature is the minimization
of two residuals related to criterion (2), corresponding to
solutions with different sparsity levels; this also implies
some modifications in the column selection strategy, com-
pared to [11]. Finally, the coefficient estimation strategy is
completely different from the orthogonalization from [11];
here, the coordinate descent ensures a good approximation
of the least-squares solution, with significantly lower com-
plexity than in [11]; the only similarity is that we use a
fixed number of scalar products instead of the indefinitely
long matrix A and vector b, but this is a standard storage
technique.

The contents of this paper is as follows. In section 2
we present our proposed algorithm for computing a sparse
solution with fixed sparsity level. In section 3 we describe
our procedure based on the minimization of two residuals
for the online estimation of the sparsity level Lt and the
computation of the solution. In section 4 we discuss the
complexity of our algorithm, compared to that of other
algorithms. Section 5 contains the simulation results used
to validate the performance.

2. Fixed-sparsity level adaptive matching pursuit
with coordinate descent

We describe the basic operation of our algorithm assum-
ing that, at time t, we have computed anm-sparse solution
x(t), permuted such that its nonzero elements are in the
first m positions, which are named active. The columns
of the matrix A(t) are permuted accordingly; we will not
show the permutation explicitly, but only explain how it

changes. The value m ≥ Lt is assumed to be fixed in this
section. The residual corresponding to the solution x(t) is

r(t)m = b(t) −
m∑
i=1

x
(t)
i a

(t)
i , (4)

where a
(t)
i is the i-th column of (the permuted) A(t).

At time t+ 1, the new (permuted) data are appended

b(t+1) =

[√
λb(t)

β(t+1)

]
, A(t+1) =

[√
λA(t)

α(t+1)T

]
. (5)

To ease the notation, from now on we remove the upper
index t + 1 that marks the variables affected by current
computations. Using the solution from time t, the new
residual is

rm,0 = b−
m∑
i=1

x
(t)
i ai =

[
r
(t)
m

β −
∑m

i=1 x
(t)
i αi

]
. (6)

At time t + 1 we perform two tasks: i) we manage the
order of the active positions and ii) we update the values
of the solution x. Task i) is typical to greedy algorithms
and MP in particular; it aims to identify the nonzero co-
efficients and order them based on their importance. To
reduce complexity and relying on the slow variability of
the channel, we use for now the search scheme from [11]
that allows order changes almost only between neighbors;
the only exception is the last position in the active set, for
which we permit all the inactive columns to compete with
the current active column occupying that position. Task
ii) is performed by a simple coordinate descent on each of
the active positions, optimizing the residual corresponding
to the m-sparse solution. The two tasks are intertwined
and act successively on each active coefficient.

To update the coefficient i, with i < m, we compute a
partial residual with the two neighbor positions i and i+1
temporarily removed from the active set:

r̃m,i = rm,i−1 + x
(t)
i ai + x

(t)
i+1ai+1. (7)

The column that takes position i is decided by looking at
the best alignment with this residual, i.e. with the stan-
dard MP criterion

k = argmax
l∈S

|aT
l r̃m,i|2

∥al∥2
, (8)

with S = {i, i+1}. If position i+1 is better, then positions
i and i+1 are permuted. The optimization of coefficient xi

is a coordinate descent on the least-squares criterion (2),
by projecting the residual (after excluding position i from
the active set) on the i-th column:

xi =
aT
i (rm,i−1 + x

(t)
i ai)

∥ai∥2
= x

(t)
i + µ, (9)

with µ =
aT

i rm,i−1

∥ai∥2 . This operation takes place immedi-

ately after the index in position i is found via (8). The
new residual is rm,i = rm,i−1 − µai.

2

For the last active column (i = m), the search for the
best column is performed with (8), but now on the index
set S = m : N and with the partial residual

r̃m,m = rm,m−1 + x(t)
m am, (10)

because x
(t)
k = 0, k > m. The optimal coefficient is

xm =
aT
k r̃m,m

∥ak∥2
(11)

and the new residual is rm,m = r̃m,m − xmak. Note that
if an inactive position becomes active (k > m), then the
influence of the former column m must be removed from
the residual, which explains the use of r̃m,m from (10) in
the above formulas. After these computations, the matrix
A is permuted accordingly.

Because the matrix A grows indefinitely in time, it is
impossible to store it explicitly. We implement all the
above operations using only the scalar products Φ = ATA
between the columns of A and the scalar products Ψ =
ATrm between the data matrix and the residual of the m-
sparse solution. The transformation is simple: each equa-
tion involving a residual is multiplied by AT . The main
algorithm, called CD-AMP (Coordinate Descent Adaptive
Matching Pursuit), is shown in the table titled Alg. 1; the
first operation (at current time) is the update (12) of the
scalar products, based on (5) and (6). Then, Alg. 2 is
called m − 1 times for the active positions that are man-
aged with neighbor search; to illustrate the transformation
into scalar product operations, note that steps 1 and 2 of
the algorithm correspond to (7) and (8), respectively. It
can easily be observed that the scalar product form is ob-
tained by multiplying (7) to the left with AT and that
(8) is already expressed using only scalar products. Fi-
nally, Alg. 3 is called for setting the last active position;
any inactive column may become active at this stage, the
search from step 2 being performed over the whole inactive
column set.

Fig. 1 gives a graphical image of CD-AMP. Each search
and update operation is represented by a horizontal line
with one or several ticks showing the columns that com-
pete for the current position, marked with an arrow. The
arrow also means an update operation. Active columns
are represented by blue bullets, inactive columns by black
bullets. The numbers on the left belong to the steps in CD-
AMP. On the right, we remind that the (product scalars
with the) residual are updated at each step.

The neighbor permutation is not the only column or-
dering strategy that can be applied. A sweep of any sort-
ing algorithm based on permutations may be used. The
main requirement is that it eventually moves the worst ac-
tive column into the last position m such that it may be
replaced when Alg. 3 is called. Thus, we also can use a
column ordering strategy that involves permuting between
the column m and all other columns from m−1 to 1. The
modifications to Alg. 1 are straightforward, the loop from
step 2 is performed in reversed order and Alg. 2 is called

Alg. 1. (CD-AMP: Coordinate descent adap-
tive matching pursuit)

1 update scalar products with current data permuted ac-
cordingly

Φ1:N,1:N ← λΦ1:N,1:N +α1:NαT
1:N

Ψ1:N ← λΨ1:N +α1:N (β −
∑m

i=1 xiαi)
(12)

2 for i = 1 : m− 1

2.1 find and update coefficient on position i, Alg. 2
(i, i+ 1)

3 estimate coefficient on position m, Alg. 3 (m,m + 1 :
N)

Figure 1: Graphical representation of CD-AMP operations.

now for i and m. This strategy does not produce an or-
dered active set; it only ensures that the worst column is
moved into the last position.

3. Support cardinality estimation and full algo-
rithm

In the CD-AMP algorithm, we have made no assump-
tions on the true number Lt of nonzero elements of the
solution x. We still assume for a while that we run CD-
AMP with m ≥ Lt, but will later refine the algorithm.
After enough data is available, the algorithm will hope-

Alg. 2. (Update coefficient i, search between
columns i and j)
inputs: i, j

1 remove column i and j influence from the residual
Ψ̃{i,j} = Ψ{i,j} + xiΦ{i,j},i + xjΦ{i,j},j

2 find best i-th column searching between i and j
k = argmaxl∈{i,j} Ψ̃

2
l /Φl,l

3 if k ̸= i (column j is better)

3.1 swap columns (and lines) i and j in Φ
swap elements i and j in x and Ψ

4 compute coefficient update µ = Ψi/Φi,i

5 update coefficient and corresponding scalar products
xi ← xi + µ, Ψ1:N ← Ψ1:N − µΦ1:N,i

3

Alg. 3. (Estimate coefficient i, search in the set
S)
inputs: i, S
1 remove last active column influence from the residual

Ψ1:N ← Ψ1:N + xiΦ1:N,i

2 find best candidate column searching all columns in S
k = argmaxl∈{i,S} Ψ

2
l /Φl,l

3 if k > i (another column is better than i)

3.1 swap columns (and lines) i and k in Φ
swap elements i and k in Ψ

4 evaluate coefficient value xi = Ψi/Φi,i

5 update scalar product based Ψ
Ψ1:N ← Ψ1:N − xiΦ1:N,i

fully select the nonzero locations of the true solution on
the first Lt positions. Relying on this inherent order and
similarly to [11], we use the predictive least squares (PLS)
criterion to compute an estimate L̂ of Lt. The PLS crite-
rion [19], at time t, is defined as

PLS(t)
c =

t∑
i=0

λt−ie(i)2c , (13)

where e
(i)
c = β(i) −

∑c
j=1 α

(i)
j x

(i−1)
j is the a priori estima-

tion error at time i produced by the c-sparse solution at
time i − 1; note that this solution is made of the first c
elements of the current m-sparse solution, hence the error
can be cheaply computed. Only O(m) operations are nec-
essary at each time instance if the criterion is recursively
computed as

PLS(t)
c = λ ·PLS(t−1)

c + e(t)2c . (14)

An estimate of the true sparsity level is given by

L̂ = arg min
c=1:m

PLS(t)
c . (15)

However, unlike [11] where arbitrary changes are allowed,
we only change the estimated sparsity level by at most 1
at each time, setting L̂(t+1) = L̂(t)+sign(L̂− L̂(t)). It was
noticed that this choice ensures smoother tracking. The
estimate L̂(t+1), denoted simply L in what follows, is used
in the algorithm at time t+ 1, as discussed below.

We present now the main features of our AMP algorithm
with support estimation, named Double CD-AMP (DCD-
AMP), because it consists of running a modified version
of CD-AMP with the goal of minimizing two residuals,
rL, corresponding to an L-sparse solution, and rM , cor-
responding to an M -sparse solution, with M > L. The
minimization of the residual rL aims to compute an ap-
proximation of the true nonzero coefficients of the sparse
solution x, given the estimated sparsity level. The ap-
proximation is good when L is a good estimate of Lt. The

Alg. 4. (DCD-AMP: Double residual CD-
AMP)

1 update scalar products with current data permuted ac-
cordingly, equation (12) with m = L

2 update scalar product differences between L-residual
and M-residual scalar products
δ1:N ← λδ1:N +α1:N

∑M
i=L+1 xiαi

3 for i = 1 : L− 1

3.1 find and update coefficient on position i, Alg. 2
(i, i+ 1)

4 estimate coefficient on position L, Alg. 3 (L,L+1); if
column L+ 1 is better than L
before step 3.1 in Alg. 3, update scalar product differ-
ence δ
δ = δ + xL+1Φ1:N,L+1 − xLΦ1:N,L

in Alg. 3, step 3.1, permute also x

5 construct the M-residual scalar product Ω
Ω = Ψ− δ

6 estimate coefficient on position L+1, Alg. 5 (L+1, L+
2 : N)

7 for i = L+ 2 : M − 1

7.1 find and update coefficient on position i, Alg. 2
(i, i+ 1) with Ω instead of Ψ

8 for position M only apply Alg. 2, steps 4 and 5, with
i = M and Ω instead of Ψ

9 estimate L using the PLS criterion; if L or M change,
update scalar products Ψ and Ω

10 compute the differences between L-residual and M-
residual scalar products
δ = Ψ−Ω

residual rM allows the calculation of the PLS criterion
for solutions with assumed higher sparsity level, covering
potential increases of Lt. The optimization of rM alone
would give less accurate estimation of the true nonzero co-
efficients, since other coefficients are also involved. How-
ever, the accuracy is sufficient to obtain good estimates L
with the PLS criterion. So, the two residual optimizations
work in tandem: through rL we get accurate coefficients
and through rM an accurate sparsity level.

The residual rL is used for computing the coefficients on
positions 1 : L, while the residual rM is used to estimate
only the coefficients on positions L + 2 : M . The coeffi-
cient on position L+1 is also estimated using the residual
rL, in order to provide a good value in case an increase
of the sparsity level is required at the next time instance.
However, not being included in the L-sparse solution, the
L + 1 coefficient does not modify rL, it only affects rM .
To ensure computational efficiency, we use the residual
difference rL − rM to avoid the update of both residuals
when a coefficient is updated. Since the M -sparse solu-
tion includes the L-sparse solution, updating the L-sparse
solution does not change the residual difference. We will
show in section 5 that, despite optimizing two residuals,

4

Figure 2: Graphical representation of DCD-AMP operations.

the complexity of DCD-AMP is only marginally higher
than that of CD-AMP.

The positions 1 : L are now named active, since they
refer to the estimated nonzero coefficients; the positions
L+1 : M are named pending and the remaining positions
are inactive. We describe below the details that differenti-
ate DCD-AMP from the the basic algorithm from Section
2. The full algorithm is listed as Alg. 4. It uses scalar prod-
ucts similarly to CD-AMP, namely δ = AT (rL−rM), the
scalar product of the residual difference rL − rM with the
columns from A, Ψ = ATrL, and Ω = ATrM . A graph-
ical representation of DCD-AMP is given in Fig. 2, using
the same conventions as in Fig. 1; color red is reserved for
the pending positions. Additionally, the Matlab source
code can be found at http://www.cs.tut.fi/∼bogdand/
Software/cdamp.zip.

The minimization of the residual rL can be seen as the
minimization of the least-squares criterion (2) based on the
current estimate of the sparsity level. The modifications of
CD-AMP for working with rL are minimal. In particular,
the computations for positions 1 : L − 1 are not changed
(Alg. 4, step 3). For position L, the operations are as in
Alg. 3, but with position L + 1 as the only alternative
candidate. Since the column on position L + 1 belongs
to the M -sparse solution, if we include it in the L-sparse
solution and move the column L to the M -sparse solution,
we need to update the residual difference resulting in the
extra operations from Alg. 4, step 4. Once the coefficient
on position L is chosen and computed, rL is not modified
anymore and we can reconstruct the residual rM based on
the residual difference (Alg. 4, step 5).

For position L+1, all pending and inactive positions are
candidates and Alg. 5, which is a modified version of Alg. 3
for the two residuals case, is used. The (updated) residual
rL is used in the MP criterion (8), for the best column
search, and also for computing the coefficient value (Alg.
5, steps 1 and 3). The updated coefficient modifies only
rM since the first L coefficients were previously chosen
(and rL was properly updated). If a new position k >
L+1 is found best, then the pending positions are shifted
accordingly (if k ≤M , then positions L+1 : k−1 move into
L+2 : k; if k > M , then positions L+1 : M −1 move into
L+ 2 : M , hence the former position M is discarded from
the pending set (Alg 5, step 2.3). Thus, depending on the

position of the best candidate, the removed or recomputed
coefficients modify the residual as in Alg. 5, steps 2 and 4.
The remaining coefficients on positions L+ 2 : M − 1 are
computed similarity to the CD-AMP algorithm but using
and updating the residual rM (Alg. 4, step 7). There is
no open selection for position M , i.e. Alg. 3 is not called.

Finally, we estimate the current sparsity level L using
the PLS criterion (Alg. 4, step 9). The parameter M is
either fixed to a sufficiently large value, or variable, being
computed as M = L + ∆, where ∆ is a small positive
integer constant. If the value L is changed, then both
residuals are changed in the variable M case (when M is
also changed), but only rL is changed in the fixed M case.
As a last step, the residual difference is stored after which
a new sample can be processed.

In addition to the DCD-AMP algorithm, we introduce
two other versions of CD-AMP for the purpose of offering
performance insight for the double residual scheme. The
first algorithm, named 1CD-AMP, is the naive approach
equivalent to running CD-AMP with m = M but having
the sparsity level L ≤ M estimated online using the PLS
criterion; a single residual is optimized. The solution is
composed of the first L out of theM computed coefficients.
The second algorithm, named MCD-AMP, involves run-
ning CD-AMP M times, with m = 1 : M , respectively; it
generates a solution for each sparsity level independently.
Similarly, the sparsity level estimate L is found online, but
the solution is now given by the CD-AMP algorithm hav-
ing m = L. Since it optimizes a distinct residual for each
sparsity level, the MCD-AMP algorithm produces the best
solution given by this class of algorithms. Note that 1CD-
AMP requires an ordered solution, thus the second permu-
tation strategy presented in Section 2 may not be applied
in this case. For the MCD-AMP there are no difficulties
in this regard.

4. Complexity

For the CD-AMP algorithm, the main computational
burden is given by the update (12) of the scalar prod-
ucts Φ, which needs about CΦ = 3

2N
2 operations due to

the matrix symmetry (additions and multiplications are
counted separately). In many applications, the matrix A
has special structure because of time shifted input data
as in (3) (e.g. the FIR channel identification problem pre-
sented herein). In such case, the complexity is much lower,
only CΦ = 3N operations are required for the scalar prod-
uct update. The scalar products Φ are computed by copy-
ing the upper left block, Φ2:N,2:N ← Φ1:N−1,1:N−1, and by
updating the first row Φ1,1:N ← λΦ1,1:N +α1α

T (the ma-
trix is symmetric, so the first column has the same values).
Algorithms 2 and 3 and the update of Ψ require addition-
ally about 2mN + 3N operations.

Despite the double bookkeeping of the residuals, the
complexity of DCD-AMP is only slightly larger than that
of a single CD-AMP of size M . The update of the scalar
products between the columns of A in (12) is performed

5

Alg. 5. (Estimate coefficient i, search in the set
S, two residuals)
inputs: i, S
1 find best candidate column searching all columns in S

k = argmaxl∈{i,S} Ψ
2
l /Φl,l

2 if k > i (another column is better than i)

2.1 if k > M (the best column is inactive)

2.1.1 remove old coefficient i from the M-sparse
solution associated with Ω
Ω1:N ← Ω1:N + xiΦ1:N,i, xi ← 0

2.2 else (the best column is pending)

2.1.1 remove old coefficient k from the M-sparse
solution associated with Ω
Ω1:N ← Ω1:N + xkΦ1:N,k, xk ← 0

2.3 insert column k on position i; push columns L+
1 : k − 1 one position to the right
apply the order changes in x, Φ, Ψ, δ and Ω

3 evaluate coefficient value xi = Ψi/Φi,i

4 update scalar product Ω
Ω1:N ← Ω1:N − xiΦ1:N,i

like in CD-AMP. The cost of the update of the scalar prod-
ucts between the columns of A and the residuals is indeed
increased, but this is only 3N . Using a judicious update of
the residuals (Alg. 4) via the scalar product difference δ,
the complexity of DCD-AMP is about CΦ + 2MN + 10N
operations, which is only about 10N more than for a CD-
AMP of size M . The complexity introduced by the PLS
criterion is negligible, only about 5M . The simpler CD
algorithm 1CD-AMP has about the same complexity as
CD-AMP with m = M (the PLS complexity being negli-
gible) and thus comparable also with that of DCD-AMP.
The MCD-AMP has a higher complexity, approximately
CΦ +M2N ; the PLS criterion is this case in computed in-
dependently for each m-sparse solution with m = 1 : M ,
thus its added complexity is about 5

2M
2. This translates

to MCD-AMP being M
2 times more complex than DCD-

AMP.

When compared with other algorithms, DCD-AMP has
good complexity without sacrificing the performance (ex-
tensive simulations are presented in Section 5). In the
GRLS algorithm [11], the coefficient computation is more
complex, requiring approximately 5

2 (N −M)2 + O(MN)
operations (in the worst case, with the parameter τ0 = 2,
see relation (20) from [11]); furthermore, the term depend-
ing on MN generally involves more operations than the
whole DCD-AMP for time shifted input data. If the input
data structure can not be exploited, the update of Φ raises
the complexity of DCD-AMP such that, for low values of
M and large N , the complexity of GRLS is generally more
than 5

3 times higher than that of DCD-AMP. The TNWL
algorithm from [8] uses an efficient coordinate descent cou-
pled with an inner RLS algorithm for finding the solution

estimate. The computation of the RLS solution can be
implemented to consider the time shifted input data and
thus, in this case, the complexity of the TNWL is slightly
higher than that of the DCD-AMP. For general input data
without any particular exploitable structure, the TNWL is
essentially more than three times more complex than the
DCD-AMP (depending on the implementation of the RLS
algorithm). The SPARLS algorithm [6] has a complexity
similar to that of DCD-AMP (but produces much worse
results).

5. Simulations

We validate the performance of our algorithms in the
simulation setup from [11]. The sparse filter in the FIR
channel identification problem (1) has length N = 200.
Its Lt = 5 nonzero coefficients have a sinusoidal variation
according to

h
(t)
i = ai cos(2πfTst+ αi). (16)

The nonzero coefficient positions i are randomly chosen;
the amplitude ai and the phase αi are distributed uni-
formly in [0.05, 1] and [0, 2π]. The variation speed is con-
trolled by the product fTs between the frequency f and
the sampling interval Ts. We norm the coefficient vector
so that its average squared norm over all t is 1. The input
test data are generated from N (0, 1); the outputs, corre-
sponding to the filtered inputs, are corrupted by a zero
mean additive noise, normally distributed with σ2 = 0.01.
The datasets are exactly as in [11].

We assess the performance of the algorithms in terms of
the mean square error of the coefficients

MSE(t) = E{||h(t) − x(t)||22}, (17)

where h(t) is the true coefficient vector and x(t) its esti-
mate. The value of MSE(t) is evaluated by averaging over
1000 runs at each time t, while the average MSE is defined
as the mean MSE(t) over the last 100 values of t.

Our algorithms are CD-AMP, in the form presented in
Alg. 3 with known sparsity level m = Lt, and DCD-AMP-
F/V, the algorithm using the PLS criterion and the dou-
ble residual optimization presented in Section 3. Since
it requires a priori information about the sparsity level,
CD-AMP is used only as a reference for the performance
of DCD-AMP. To provide further insight into the perfor-
mance we also include the two algorithms, 1CD-AMP-F/V
and MCD-AMP-F/V, presented at the end of Section 3.
The final letter means a fixed (F) or variable (V) upper
bound M for all algorithms that use such a bound.

We compare them with the following algorithms: RLS-
SP, the sparsity informed RLS algorithm knowing a priori
the number of nonzero coefficients and their position, as
reference for the best attainable performance; GRLS-PLS-
F/V, the algorithms from [11], implementing an adaptive
version of the greedy least squares algorithm; SPARLS,

6

Table 1: Average MSE for the studied algorithms, Lt = 5.

fTs 0.005 0.002 0.001 0.0005 0.0002 0.0001
λ 0.86 0.90 0.92 0.94 0.96 0.98

RLS-SP 0.089 0.0267 0.0110 0.00518 0.00246 0.00306
SPARLS 0.824 0.4417 0.1578 0.04225 0.01120 0.00767

TNWL-OPT 0.498 0.1491 0.0311 0.01248 0.00471 0.00386
CD-AMP 0.401 0.0514 0.0177 0.00773 0.00340 0.00343
M = 20

GRLS-PLS-F 0.213 0.0511 0.0189 0.00853 0.00356 0.00357
DCD-AMP-F 0.365 0.0556 0.0184 0.00806 0.00349 0.00358
MCD-AMP-F 0.304 0.0473 0.0168 0.00766 0.00342 0.00340
1CD-AMP-F 0.879 0.1484 0.0415 0.01501 0.00558 0.00545

M = 40
GRLS-PLS-F 0.194 0.0500 0.0180 0.00824 0.00374 0.00373
DCD-AMP-F 0.373 0.0551 0.0185 0.00801 0.00351 0.00353
MCD-AMP-F 0.319 0.0478 0.0168 0.00770 0.00343 0.00340
1CD-AMP-F 1.671 0.2940 0.0614 0.02016 0.00722 0.00705

∆ = 5
GRLS-PLS-V 0.285 0.0569 0.0187 0.00762 0.00330 0.00340
DCD-AMP-V 0.339 0.0525 0.0179 0.00786 0.00342 0.00353
MCD-AMP-V 0.265 0.0456 0.0165 0.00754 0.00338 0.00339
1CD-AMP-V 0.519 0.0843 0.0266 0.01063 0.00431 0.00433

∆ = 10
GRLS-PLS-V 0.242 0.0570 0.0196 0.00845 0.00341 0.00346
DCD-AMP-V 0.362 0.0545 0.0183 0.00801 0.00349 0.00355
MCD-AMP-V 0.279 0.0464 0.0167 0.00762 0.00341 0.00340
1CD-AMP-V 0.689 0.1164 0.0343 0.01292 0.00501 0.00495

0 200 400 600 800 1000
10

−2

10
−1

10
0

t (time)

M
S

E

RLS−SP
CD−AMP
DCD−AMP−V
GRLS−PLS−V
SPARLS
TNWL−OPT

Figure 3: MSE(t) for Lt = 5, fTs = 0.002 and λ = 0.9.

the algorithm presented in [6]; TNWL-OPT, the best of
the algorithms presented in [8] using an optimized forget-
ting factor λ for the inner RLS loop. Their configuration
parameters are set as explained in [11].

Table 1 contains the average MSE for the above algo-
rithms for different variation speeds of the coefficients val-
ues. The tests are performed for variation speeds ranging
from (the highest) fTs = 0.005, corresponding to a period
of 200 samples, to (the lowest) fTs = 0.0001, correspond-
ing to a period of 10000 samples. The forgetting factor
λ was chosen smaller for higher variation speeds, to allow
the coefficient tracking. We group the algorithms based
on the value of the threshold M or parameter ∆ to al-
low easy comparison between algorithms having the same
configuration. We note that for ∆ = 5, DCD-AMP-V
which has the best average MSE among the DCD-AMP
versions and also the lowest complexity, performs almost
as well as CD-AMP, which knows the number of nonzero
coefficients; hence, PLS gives accurate information on the

sparsity level. Also, DCD-AMP-V has similar performance
with GRLS-PLS-V, despite its simpler optimization tech-
nique. The simpler algorithm, 1CD-AMP-F/V, performs
poorly because it can not simultaneously provide consis-
tent sparsity level estimates and good values for the co-
efficients, due to the use of a single residual. By using
two residuals, DCD-AMP produces a good L-sparse solu-
tion estimate and, at the same time, allows the estimation
of the PLS criterion for large enough sparsity. Opposed
to the GRLS algorithm where, due to the orthogonaliza-
tion technique, solutions for different sparsity levels can
be computed, the CD-AMP gives good approximates only
for the m-sparse solution. This motivates the use of the
two residuals rL and rM in the DCD-AMP instead of the
naive approach from 1CD-AMP. The more complex MCD-
AMP-F/V algorithm, which should provide the best pos-
sible performance for this class of algorithms, does not
show big performance improvements when compared to
the DCD-AMP-F/V algorithms; still, because it has ac-
curate solutions for all sparsity levels, MCD-AMP-F/V is
consistently better when compared to all the other algo-
rithms for low and medium variation speeds. Thus, the
double residual optimization can be seen as a good com-
promise between performance and algorithm complexity.

The new introduced algorithms also outperform
SPARLS and TNWL-OPT in all simulations; the simplest
algorithm, 1CD-AMP, provides comparable results, while
the others are consistently better. For fast time-varying
environments with fTs = 0.005, DCD-AMP-F/V shows a
performance degradation due to the large differences in the
coefficient values between consecutive time instances. The
performance can be improved by running multiple times
the coordinate descent part in steps 2 and 3 of Alg. 1, in
the spirit of cyclic matching pursuit [16, 18]. For the lower
variations speeds, the performance gap between the GRLS
algorithm and the DCD-AMP becomes small, DCD-AMP
even managing to outperform GRLS.

We present in Fig. 3 and 4 the MSE(t) of the stud-
ied algorithms as a function of time t, giving an example
of the evolution of the algorithms for both fast and slow
variation speeds fTs. The simulations are performed for
a channel sparsity level Lt = 5; at time t = 500, three
of the five nonzero coefficients randomly change position.
The algorithms GRLS-PLS-V and DCD-AMP-V use the
parameter ∆ = 5. We note that DCD-AMP-V has better
convergence speed than all other previous algorithms and
is only barely slower than CD-AMP. Both the SPARLS
and TNWL algorithms perform worse in terms of both
the convergence speed and the stationary MSE.

We do not include explicitly the results of the simula-
tions with the different column ordering strategy (intro-
duced at the end of Section 2). The performance is similar
to that of the algorithms employing the neighbor permu-
tations, the MSE is about 1−2% worse and the covergence
speed marginally slower.

7

0 200 400 600 800 1000

10
−2

10
−1

10
0

t (time)

M
S

E

RLS−SP
CD−AMP
DCD−AMP−V
GRLS−PLS−V
SPARLS
TNWL−OPT

Figure 4: MSE(t) for Lt = 5, fTs = 0.0002 and λ = 0.96.

6. Conclusions

We have proposed an adaptive algorithm that, using a
coordinate descent update strategy coupled with a greedy
column selection derived from the adaptive matching pur-
suit algorithm, is able to compute online, sparse solutions
to systems of linear equations. The complexity is low,
while its performance is similar or better than that of
other, more complex methods. There is a single, easy to
choose, configuration parameter (M or ∆) and no precise
a priori information is required, conferring robust behavior
for unknown environments.

References

[1] A. M. Bruckstein, D. L. Donoho, M. Elad, From Sparse Solu-
tions of Systems of Equations to Sparse Modeling of Signals and
Images, SIAM Review 51 (1) (2009) 34–81.

[2] D. Giacobello, M. Christensen, M. Murthi, S. Jensen, M. Moo-
nen, Sparse Linear Prediction and Its Applications to Speech
Processing, IEEE Trans. Audio Speech Lang. Proc. 20 (5)
(2012) 1644–1657.

[3] S. S. Chen, D. L. Donoho, M. A. Saunders, Atomic decomposi-
tion by basis pursuit, SIAM J. Sci. Comput. 20 (1998) 33–61.

[4] R. Tibshirani, Regression Shrinkage and Selection via the
LASSO, J. Royal Stat. Soc., Ser. B 58 (1994) 267–288.

[5] S. Chen, S. Billings, W. Luo, Orthogonal Least Squares Meth-
ods and Their Application to Non-Linear System Identification,
Int. J. Control 50 (1989) 1873–1896.

[6] B. Babadi, N. Kalouptsidis, V. Tarokh, SPARLS: The Sparse
RLS Algorithm, IEEE Trans. Sign. Proc. 58 (8) (2010) 4013–
4025.

[7] N. Kalouptsidis, G. Mileounis, B. Babadi, V. Tarokh, Adaptive
Algorithms for Sparse System Identification, Sign. Proc. 91 (8)
(2011) 1910–1919.

[8] D. Angelosante, J. Bazerque, G. Giannakis, Online Adaptive
Estimation of Sparse Signals: Where RLS Meets the l1-Norm,
IEEE Trans. Sign. Proc. 58 (7) (2010) 3436–3447.

[9] Y. Kopsinis, K. Slavakis, S. Theodoridis, Online Sparse Sys-
tem Identification and Signal Reconstruction Using Projections
Onto Weighted l1 Balls, IEEE Trans. Sign. Proc. 59 (3) (2011)
936–952.

[10] S. Cotter, B. Rao, The Adaptive Matching Pursuit Algorithm
for Estimation and Equalization of Sparse Time-Varying Chan-
nels, in: 34th Asilomar Conf. Sign. Syst. Comp., Vol. 2, 2000,
pp. 1772–1776.

[11] B. Dumitrescu, A. Onose, P. Helin, I. Tăbuş, Greedy Sparse
RLS, IEEE Trans. Sign. Proc. 60 (5) (2012) 2194–2207.

[12] Y. Chen, Y. Gu, A. Hero, Sparse LMS for system identification,
in: ICASSP, Taipei, Taiwan, 2009, pp. 3125–3128.

[13] L. Vega, H. Rey, J. Benesty, S. Tressens, A Family of Ro-
bust Algorithms Exploiting Sparsity in Adaptive Filters, Audio,
Speech, and Language Processing, IEEE Transactions on 17 (4)
(2009) 572–581.

[14] S. Mallat, Z. Zhang, Matching Pursuit with Time Frequency
Dictionaries, IEEE Trans. Sgn. Proc. 41 (12) (1993) 3397–3415.

[15] Y. Zakharov, G. White, J. Liu, Low-Complexity RLS Al-
gorithms Using Dichotomous Coordinate Descent Iterations,
IEEE Trans. Sign. Proc. 56 (7) (2008) 3150–3161.

[16] M. Christensen, S. Jensen, The Cyclic Matching Pursuit and its
Application to Audio Modeling and Coding, in: 41th Asilomar
Conf. Sign. Syst. Comp., 2007, pp. 550–554.

[17] B. L. Sturm, M. Christensen, Cyclic matching pursuit with
multiscale time-frequency dictionaries, in: 44th Asilomar Conf.
Sign. Syst. Comp., 2010, pp. 581–585.

[18] A. Onose, B. Dumitrescu, Cyclic Adaptive Matching Pursuit,
in: ICASSP, Kyoto, Japan, 2012, pp. 3745–3748.

[19] J. Rissanen, Order Estimation by Accumulated Prediction Er-
rors, J. Appl. Probab. 23 (1986) 55–61.

[20] G. Schwarz, Estimating the dimension of a model, J. Appl.
Probab. 6 (2) (1978) 461–464.

[21] J. Rissanen, Modeling by shortest data description, Automatica
14 (5) (1978) 465–471.

8

PUBLICATIONS 93

Publication 2
Copyright c⃝2013 IEEE. Reprinted, with permission, from

[P2] A. Onose and B. Dumitrescu. Distributed coordinate descent using adaptive
matching pursuit. In Proceedings of the International Symposium on Intel-
ligent Signal Processing and Communication Systems, pages 513–518, Naha,
Japan, November 2013.

kulkki
Typewritten Text
In reference to IEEE copyrighted material which is used with permission in this thesis,
the IEEE does not endorse any of Tampere University of Technology's products or services.
Internal or personal use of this material is permitted. If interested in reprinting/republishing
IEEE copyrighted material for advertising or promotional purposes or for creating
new collective works for resale or redistribution, please go to
http://www.ieee.org./publications_standards/publications/rights/rights_link.html to learn
how to obtain a License from RightsLink.

kulkki
Typewritten Text

kulkki
Typewritten Text

kulkki
Typewritten Text

kulkki
Typewritten Text

kulkki
Typewritten Text

kulkki
Typewritten Text

kulkki
Typewritten Text

kulkki
Typewritten Text

kulkki
Cross-Out

kulkki
Cross-Out

94 PUBLICATIONS

Distributed Coordinate Descent Using Adaptive

Matching Pursuit

Alexandru Onose∗, Bogdan Dumitrescu∗†

∗Tampere University of Technology,

Department of Signal Processing,

FI-33101 Tampere, Finland
†’Politehnica’ University of Bucharest,

Department of Automatic Control and Computers,

RO-060042 Bucharest, Romania

emails: alexandru.onose@tut.fi, bogdan.dumitrescu@tut.fi

Abstract—We propose a distributed adaptive algorithm for
finding sparse solutions to systems of linear equations. The
algorithm is greedy in nature. At each time moment, it first
combines the current nonzero elements of the solution received
from neighbor nodes by averaging them and then adapts the
solution via a coordinate descent update using the local data.
The column selection strategy, derived from adaptive matching
pursuit, also fuses the received neighbor information with local
data. The algorithm provides good performance with limited
inter node communication and relatively low computational
complexity.

Keywords—coordinate descent, matching pursuit, sparse filters,
distributed algorithm, greedy algorithm

I. INTRODUCTION

The need for algorithms able to find sparse solutions
is present in many areas of signal processing like chan-
nel identification, prediction, acoustics, image processing or
classification [1]. Considerable effort has been directed into
the development of batch methods where all the information
is locally stored and processed [2], [3]. Since usually data
are available sequentially, adaptive methods recently attracted
increased interest resulting in the development of fast sparse
algorithms [4], [5], [6].

In a distributed setup (e.g. a sensor network), where at the
same time instant t new data are available locally at a number
of nodes, a distributed algorithm operating over the network
needs to produce good estimates (better than the ones possible
with only the local node data). If we view the network as a
graph with vertices between computing nodes that can com-
municate with each other, then the performance improvements
are generally achieved by exchanging information between
these connected neighbor nodes and fusing it with the local
measurements. Traditional methods proposed for distributed
scenarios are generally based on LMS [7], [8] or on RLS
[9], [10]. When sparsity is required, distributed algorithms
have been developed to work either in batch mode [11] or to
estimate the solution in an adaptive fashion (e.g. the sparsity
aware, projection based distributed algorithm from [12] or the
sparse distributed LMS algorithm from [13]).

This work was supported by Tekes FiDiPro—Finland Distinguished Profes-
sor Programme and by GETA Finland.

In this paper we aim to develop a greedy adaptive dis-
tributed algorithm that is derived from [14], which in turn
is related to the adaptive matching pursuit (AMP) [15]. The
algorithm requires limited inter node communication and has
a low complexity. To our knowledge this is the first greedy
adaptive distributed algorithm for finding sparse solutions to
linear systems.

We use the coordinate descent strategy proposed by [14]
to compute in each node a local solution estimate (coefficient
values, sparsity level and solution support) and we allow this
data to be exchanged between neighbor nodes. Each node
performs two tasks: first it combines the neighbor estimates
with the local solution; then, performs an adaptation step to
update the solution with newly available measurements.

The first task is achieved by averaging the neighbor so-
lution coefficients with the local solution. This is a standard
strategy and is employed in other distributed algorithms [12],
[13]. To allow for all nodes to converge towards a common
sparsity level, the neighbor sparsity level estimates influence
the local sparsity level. The second task involves a coordinate
descent on the direction given by the matching pursuit (MP)
criterion [16] and is governed by a descent step size γ that
allows for a tradeoff between the local adaptation speed and
the convergence towards a common neighbor estimate. Addi-
tionally, to achieve fast convergence to a common solution,
we account for the neighbor coefficient data when deciding
the local support.

Let us begin by describing a typical finite impulse response
(FIR) channel identification scenario at any existing node. At
time instant t, the node has the local input and output data,
u(t) and d(t). We need to estimate the values of the filter
coefficients xj(t) that minimize the estimation error

e(t) = d(t)−
N−1
∑

j=0

xj(t)u(t− j) = β[t] −α[t]Tx[t], (1)

where α[t] ∈ R
N contains input data, β[t] is the output data

and x[t] ∈ R
N is the vector of coefficients, all at current time

t.

In a slow varying environment, when the solution changes
slightly between consecutive samples, all past data from time

τ ≤ t are exponentially windowed with a forgetting factor
λ ≤ 1 and produce the least-squares criterion

J [t] =
∥

∥

∥
b[t] −A[t]x[t]

∥

∥

∥

2

. (2)

The input matrix A[t] ∈ R
t×N and the output vector b[t] ∈ R

t

are constructed using α[τ] and β[τ] from each time instant
τ ≤ t. The minimization of J [t] produces the solution
estimate x[t]; we assume x[t] to be sparse with L[t] ≪ N
nonzero coefficients. In a distributed environment each node k
minimizes a local criterion J [t,k] but also exchanges some local
information with other nodes over the network accelerating
the convergence speed and improving the local estimate of an
unique global solution. Henceforward we use the index [t,k]

for data from time t available at a node k and the index [t] to
refer to data from time t in the non distributed scenario.

The content of this paper is organized as follows: in Section
II we present the general ideas of the non distributed version
on the algorithm presented in [14]; Section III contains the
proposed strategy for the distributed algorithm; Sections IV
and V contain details regarding the algorithm complexity and
the simulations used to validate the performance, respectively.

II. ADAPTIVE MATCHING PURSUIT WITH COORDINATE

DESCENT

We provide a brief description of the coordinate descent
AMP (CD-AMP) [14] algorithm in the non distributed case,
when only a single node exists. Lets suppose that at time t−1
the algorithm has an L-sparse solution x[t−1]; we also assume
that the input data matrix A[t−1] is permuted such that, ideally
the nonzero coefficients are on the first L positions (L = L[t]

is fixed for now for any t and the positions corresponding to
nonzero elements are named active).

The solution x[t−1] produces a residual

r[t−1] = b[t−1] −
L
∑

i=1

x
[t−1]
i a

[t−1]
i ; (3)

the i-th column of A[t−1] is denoted by a
[t−1]
i .

After a new input vector α[t] and the corresponding output
β[t] are received at time t, the input matrix and the output
vector become

A[t] =

[√
λA[t−1]

α[t]T

]

, b[t] =

[√
λb[t−1]

β[t]

]

, (4)

and the residual r[t] has initially the form

r[t] =

[

r[t−1]

β[t] −∑L

i=1 x
[t−1]
i α

[t]
i

]

. (5)

The solution x[t−1] is then updated to take advantage of the
newly acquired data. We perform this in two steps: i) we
manage the support, i.e. the order of the active positions; ii)
we update the coefficient values to incorporate the new data.

Step i) identifies the nonzero coefficients and orders them
using a permutation scheme [14], [17]. For each active position

i = 1 : L−1 we decide the best candidate column a
[t]
k , with

k∈S={i, i+1}, based on the alignment of the partial residual

r̃[t] = r[t] + x
[t−1]
i a

[t]
i + x

[t−1]
i+1 a

[t]
i+1, (6)

with the two neighbor columns a
[t]
i and a

[t]
i+1 (this is similar

to the MP column selection),

k = argmax
l∈S

|a[t]T
l r̃[t]|2

‖a[t]
l ‖2

. (7)

If column a
[t]
i+1 is found better than a

[t]
i , we permute them

in the matrix A[t] (the corresponding coefficients x
[t−1]
i and

x
[t−1]
i+1 are also permuted).

Step ii) represents the optimization of the coefficient i, se-
lected by the permutation associated with (7), via a coordinate

descent. The residual is projected on column a
[t]
i to produce

the update step

µ =
a
[t]T
i r[t]

‖a[t]
i ‖2

, (8)

that would minimize J [t] in the context given by the other

coefficients x
[t]
j , j < i and x

[t−1]
j , j > i,

x
[t]
i = x

[t−1]
i + µ =

a
[t]T
i (r[t] + x

[t−1]
i a

[t]
i)

‖a[t]
i ‖2

. (9)

Since we change the coefficient value, the residual needs to be
updated also,

r[t] ← r[t] − µa
[t]
i . (10)

For the last position L we perform step i), the search for

a candidate column a
[t]
k , in the index set S = L : N . The

partial residual is now r̃[t] = r[t]+x
[t−1]
L a

[t]
L , since x

[t−1]
j = 0,

j > L. If a new column is found better by (7), we permute in
A[t] columns L and k (implicitly we also permute x[t]). The
coefficient update for step ii) is then given by

x
[t]
L =

a
[t]T
L r̃[t]

‖a[t]
L ‖2

. (11)

The associated updated residual is

r[t] ← r̃[t] − x
[t]
L a

[t]
L . (12)

A summary of the CD-AMP algorithm is presented in
Alg. 1. Before introducing the distributed algorithm we give
the main ideas on how CD-AMP is modified to work with
online sparsity estimation (L is allowed to change). In [14],
the predictive least squares (PLS) [18] is used to estimate the
sparsity level L but the Bayesian information criterion (BIC)
[19] may serve the same purpose.

The fully adaptive algorithm that estimates online the spar-
sity, named Double CD-AMP (DCD-AMP) [14], minimizes
two residuals r[t] and g[t], corresponding to an L-sparse and
to an M -sparse (with M > L) solution, respectively. The M -
sparse solution is not very accurate, but allows the computation
of the PLS/BIC criteria to give good estimates L of the true
number of nonzero coefficients. The L-sparse solution is then
computed with much better accuracy, since it often has the
correct support.

The two solutions overlap such that the L-sparse solution
is included in the M -sparse one. Essentially, the CD-AMP
algorithm is used for the computation of both solutions. There

Alg. 1. CD-AMP

input: r[t−1]; x[t−1]; β[t]; α[t]; L; N ;

output: r[t]; x[t];

1 Update the residual with the new available data like in
(5).

2 For i = 1 : L− 1

2.1 Find the best candidate column for position i
using (7).

2.2 Update the associated coefficient like in (9) and

the residual r[t] like in (10).

3 For last position i = L

3.1 Find the best candidate column using (7) but
searching over the set S = {L :N}.

3.2 Update the associated coefficient like in (11)

and the residual r[t] like in (12).

are however important differences. The candidates for position
L are now only L and its neighbor L + 1. In turn, the
competition for position L+1 is open to all remaining columns,
i.e. S = L+1:N in (7). Moreover, the selection and the update
of the coefficient on position L + 1 are based on the residual
r[t]. All these operations are meant to not only quickly bring
into position L+1 the most likely nonzero coefficients that are
not yet included in the solution, but to estimate them accurately
even before they enter the solution.

We consider M fixed during the presentation, for simplic-
ity. However, a change in the value of M can be cheaply
implemented by a proper update of the residuals. Note that the
algorithms are efficiently implemented using only the scalar
products between the input data and the residual A[t]Tr[t],
A[t]Tg[t] and between the input data matrix A[t]TA[t]. The
complexity is presented in section IV for the scalar product
implementation.

III. DISTRIBUTED ALGORITHM

We study the channel identification problem on a network
N consisting of P nodes. We assume it to be static (it has
a fixed topology T) and connected (there exists a network
path between any two nodes n[k] and n[l] in N). The true
coefficient vector x[t] is the same over the network, x[t,k] =
x[t,l], ∀n[k], n[l] ∈ N . The goal is to jointly improve the local
node estimates of x[t] by using, besides the locally available
data, also information received from neighbors.

We present in what follows the extension of DCD-AMP to
the distributed case; we explain the main ideas and changes
from the non distributed algorithm and how they affect a
generic node n[k] at time t. The following notations for the
data belonging to the k-th node are used: x[t,k] is the solution
computed locally at each time instant t; it contains L[t,k]

coefficients associated with the local active positions (thus
named active solution) but also the other coefficients computed
to allow the sparsity estimation (in particular the coefficient
L[t,k]+1); ℓ[t,k] represents the sparsity level estimate computed
locally using the information theoretic criteria. The number
L[t,k] of active positions is computed using also neighbor data
and hence, L[t,k] 6= ℓ[t,k] in general.

At each time instant t, a node n[k] receives two sets of
data:

• The local data: The input data β[t,k] and output data
α[t,k], like (1) but different for each node.

• The neighbor nodes data: Since the bandwidth is lim-
ited, the node n[k] only receives from each neighbor
node n[j], j ∈ Nk (Nk is the set of all nodes neighbor
with n[k]), data corresponding to the solution from
time t− 1:
i) The sparsity level estimate ℓ[t−1,j] computed using
only the local data.
ii) The L[t−1,j] coefficients of the current active solu-
tion x[t−1,j].
iii) The coefficient L[t−1,j] + 1, the best of the other
coefficients not included in the current active solution.
iv) The absolute coefficient positions.

The coefficient L[t−1,j] + 1 is transmitted to cover a
possible increase of the sparsity estimate at the next time
instance and also to allow better averaging in case it is
actually in the solution support in other nodes; this produces
a faster convergence. All other coefficient values (on positions
L[t−1,j]+2 : N) of x[t−1,j] do not contribute directly to the
solution and are implicitly considered 0. After receiving the
new data we minimize a criterion J [t,k] like in (2) based on the
local data A[t,k] and b[t,k] but we also use the neighbors data
to improve the solution and to force the estimates to converge
towards a common value, as explained below.

To provide a reliable number L[t,k] of active positions we
average the estimated sparsity level of the current node with the
one received from its neighbors. To prevent large fluctuations,
we allow only changes by at most one:

L[t,k] = L[t−1,k] +

sign

(⌈

ℓ[t,k]+
∑

j∈Nk
ℓ[t−1,j]

|Nk|+1

⌉

− L[t−1,k]

)

. (13)

Any change of the values of L[t,k] when compared to L[t−1,k]

produces an update of both local residuals, r[t,k] and g[t,k].

We compute the average coefficient estimate,

x̄[t−1,k] =
x[t−1,k] +

∑

j∈Nk
x[t−1,j]

|Nk|+ 1
. (14)

For positions where the support differs we average with the
implicit coefficient 0. Since we will use the average coefficient
values, the residual update (5) changes,

r[t,k] =

[

r[t−1,k] +
∑L[t,k]

i=1 δia
[t−1,k]
i

β[t] −∑L[t,k]

i=1 x̄
[t−1,k]
i α

[t]
i

]

, (15)

where δi = x
[t−1,k]
i − x̄

[t−1,k]
i . Thus we replace the local

coefficient values existing on the local support by averaging
them with the neighbor data. This data, x̄[t−1,k], represents
the new solution from time t − 1 that has to be updated
to include new available local measurements similarly to the
update of x[t−1] in the non distributed scenario. Thus, to keep
the same notations we replace x[t−1,k] ← x̄[t−1,k] and we
update x[t−1,k] as presented below.

The coefficient selection rule (7) is changed to use the
neighbor coefficients and thus to improve the accuracy of
finding the true support. A coefficient, received from one of
the neighbor nodes n[j], has associated a partial residual r̃[t,j]

based on the node’s local data. A selection criterion based on
each r̃[t,j] can be written as

k = argmax
l∈S

|a[t,k]T
l r̃[t,k]|2

‖a[t,k]
l ‖2

+
∑

j∈Nk

|a[t,j]T
l r̃[t,j]|2

‖a[t,j]
l ‖2

. (16)

The neighbor residuals r̃[t,j] are not available locally and we
substitute them with the available coefficient data. Since the
underlying process generating the input data matrix is the same
for all nodes, with ‖a[t,k]‖2 ≈ ‖a[t,j]‖2, we approximate (see
(9) and (11))

|a[t,j]T r̃[t,j]|2
‖a[t,j]‖2 ≈

(

x
[t−1,j]
l

)2

‖a[t,k]
l ‖2, (17)

and incorporate the neighbor residual data into the local
selection criterion,

k = argmax
l∈S

|a[t,k]T
l r̃[t,k]|2

‖a[t,k]
l ‖2

+
∑

j∈Nk

(

x
[t−1,j]
l

)2

‖a[t,k]
l ‖2.

(18)

We also change the update rule (9) to

x
[t,k]
i = x

[t−1,k]
i + γµ, (19)

creating a slower coordinate descent governed by the descent
step γ ∈ (0, 1]. A smaller value of γ means a lower influence
of the local data. This allows the algorithm to remain close to
the mean coefficient values computed from neighbor data but
also allows the adaptation to take advantage of new local data.
The residual update is modified in a similar fashion,

r[t,k] = r[t,k] − γµa
[t,k]
i . (20)

For the additional coefficient L[t,k] + 1 we use the same
averaging strategy (14) and the updated residual r[t,k]; the
selection criterion (18) is used for all column searches to
introduce a preference for positions existing in neighbor nodes.
For the other positions L[t,k] + 2 : M , since there is a
low probability that the columns are in the active set of the
neighbor nodes, we use the full length coordinate descent (with
γ = 1) to compute their associated coefficients. This achieves
the fastest convergence given the local data. An overview of the
full distributed algorithm presenting the main steps is available
in Alg. 2.

IV. COMPLEXITY AND COMMUNICATION

The complexity of the DCD-AMP algorithm is reported
in [14] to be about 3

2N
2 + 2MN + 10N . The complexity of

the distributed algorithm is slightly higher due to the residual
update from (15). This accounts for about 2LN operations
per time instant with L being the current sparsity estimate,
L < M . The other operations are cheaply performed. Thus
the overall complexity grows to about 3

2N
2 + 4MN + 10N .

The algorithm requires limited communication between
nodes since it transmits almost only the nonzero coefficients
and their positions. Each node transmits 2(L+ 1) + 1 values.

Alg. 2. Distributed DCD-AMP

local input: r[t−1,k]; x[t−1,k]; β[t,k]; α[t,k]; L[t−1,k]; M ; N ;

neighbor input: x[t−1,j]; ℓ[t−1,j]; j ∈ Nk

output: r[t,k]; x[t,k]; ℓ[t,k]; L[t,k]

1 Compute the local L[t,k] from (13) considering the data
received from the neighbors.

2 Average the coefficients like in (14).

3 Update the residual r
[t−1,k] to include the averaged

coefficients and the new available data like in (15) (a

similar operation is performed for g
[t−1,k]).

4 For i = 1 : L[t,k]

4.1 Find the best candidate column for position i
using (18) and searching over the set S = {i :
i+ 1}.

4.2 Update the associated coefficient like in (19)

and the residual r[t,k] like in (20).

5 For position i = L[t,k]
+ 1

5.1 Find the best candidate column using (18)

searching over the set S = {L[t,k]
+ 1 :N}.

Moving it on position L[t,k]
+1 pushes the old

columns one position to the right.

5.2 Compute coefficient L[t,k]
+ 1 using r

[t,k] but

modify the residual g[t,k] since the coefficient
is not in the active set.

6 For i = L[t,k]
+ 2 : M

6.1 Find the best candidate column for position i
using (18) searching over the set S = {i :
i+ 1}. For i = M this step is not performed.

6.2 Update the associated coefficient like in (9) but

based on the residual g[t,k].
6.3 Update the residual g

[t,k] to account for the
new coefficient value.

7 Estimate the new sparsity level ℓ[t,k] using the local
data.

V. SIMULATIONS

We test the performance of the introduced distributed DCD-
AMP algorithm for a network of 10 sensors. We use three
topologies; TR, a ring configuration, TF , a full broadcast
configuration where each node is connected to all the others
and TI , which has no communication paths between nodes,
each node using only its local data.

We test the algorithms for a time varying FIR channel
identification task like in (1). The filter length N = 200 and
the filter has 10 true nonzero coefficients randomly distributed.
Each nonzero coefficient i changes in time according to a
sinusoidal law

hi = αicos(2πfTs + ηi), (21)

with the amplitude αi and the phase ηi distributed uniformly in
[0.05, 1] and [0, 2π]. The simulations contain a sudden change
of the position of half of the coefficients to allow the evaluation
of the convergence speed.

The coefficient vector is normed such that its average
squared norm is 1. The input data is generated at each node
according to a zero mean Gaussian distribution with variance 1.
The outputs are affected by white noise with σ2 = 0.01. The
performance is given by the coefficient mean squared error,

0 100 200 300 400 500 600
10

−2

10
−1

10
0

t (time)

M
S
E

RLS-SP
DCD-AMP-G
DCD-AMP-TF
DCD-AMP-TR
DCD-AMP-TI

Fig. 1. Average MSE for fTs = 0.002; λ = 0.9.

0 100 200 300 400 500 600

10
−2

10
0

t (time)

M
S
E

RLS-SP
DCD-AMP-G
DCD-AMP-TF
DCD-AMP-TR
DCD-AMP-TI

Fig. 2. Average MSE for fTs = 0.0002; λ = 0.96.

MSE = E{||h − x||2}. We estimate its value by averaging
over 1000 tests and over all nodes in the network.

For comparison we include the sparsity informed RLS
algorithm (RLS-SP) running on one node and the global DCD-
AMP algorithm from [14] that has all the data from across the
network available at each time instance (DCD-AMP-G). We
present the performance for two variation speeds, fTs = 0.002
and fTs = 0.0002 in Fig. 1 and 2, respectively. The distributed
algorithms DCD-AMP-TR and DCD-AMP-TF use γ = 0.4
while DCD-AMP-TI has γ = 1. In all experiments M is
adapted such that M = L+5, where L is the current sparsity
estimate.

For the ring network configuration, TR, we compare our
algorithms with the RZA-ATC and RZA-CTA algorithms from
[13] in Fig. 3 and 4. In [13] it was concluded that the RZA-
ATC algorithms have similar performance with the projection
based algorithms from [12] and to our knowledge these are the
best performing sparsity aware adaptive distributed algorithms.
A direct comparison is not immediate since the algorithms
from [13] are LMS based while ours minimizes the RLS
criterion. For this purpose we searched for the best adaptation
step µRZA on a grid with step of 0.005. The parameter
γRZA was estimated online as specified in [13] and we chose
ǫRZA = 0.001. The combination strategy averages the neighbor
estimates (our algorithm uses the same strategy). Additionally,
the performance of the RZA-ATC and RZA-CTA algorithms
can be improved by exchanging local measurements over the
network. The algorithms using this strategy are named RZA-
ATC-ME and RZA-CTA-ME and assign the same weight,

1
|Nk|+1 , for the measurements received at each node k.

In Fig. 5 we present the performance of the algorithms as a
function of coordinate descent adaptation step γ. It has marked
with green dots the simulation conditions for the algorithms
presented in Fig. 1 and 2.

We also present in Fig 6 a simulation setup where the
coefficients remain constant in time (fTs = 0). We only

0 100 200 300 400 500 600
10

−2

10
−1

10
0

t (time)

M
S
E

DCD-AMP-TR
RZA-CTA-TR - µ = 0.035
RZA-CTA-ME-TR - µ = 0.05
RZA-ATC-TR - µ = 0.035
RZA-ATC-ME-TR - µ = 0.05

Fig. 3. Comparison with the RZA algorithms for fTs = 0.002; λ = 0.9.

0 100 200 300 400 500 600

10
−2

10
0

t (time)

M
S
E

DCD-AMP-TR
RZA-CTA-TR - µ = 0.025
RZA-CTA-ME-TR - µ = 0.03
RZA-ATC-TR - µ = 0.03
RZA-ATC-ME-TR - µ = 0.035

Fig. 4. Comparison with the RZA algorithms for fTs = 0.0002; λ = 0.96.

include the best of the algorithms from [13], namely RZA-
ATC-ME, with the parameter µRZA = 0.015 chosen such that
it has approximately the same stationary error like DCD-AMP-
TR with γ = 0.4.

The performance of the distributed DCD-AMP algorithms
is dependent on the network topology but remains robust. The
two used topologies are a showcase of the best and worst
performance, respectively. Thus, although a loosely connected
network suffers performance degradation the performance will
be at worst the equal to that of DCD-AMP-TR. The parameter
γ is a tradeoff between adaptation speed and the steady state er-
ror, the larger the value the more the local data is emphasized.
For small values of γ more of the influence received from
neighbor nodes is retained. In Fig. 6 it can be seen that for
very small values of γ the algorithm approaches the solution
given by DCD-AMP-G which has all data available locally.

When compared with the algorithms from [13] our algo-
rithm always achieves better performance. The RZA-ATC and
RZA-CTA algorithms are unable to properly track the variable
FIR channels (Fig. 3 and 4) due to the low convergence
speed achieved by the methods (which can be assessed in
Fig. 6). It should be noted that while we explicitly searched
for the near optimal parameter µRZA, the parameter γ for the
distributed DCD-AMP is not optimal as can be seen from Fig.
5. Moreover, the forgetting factor λ is chosen in the spirit of
[14], [17] such that it is lower for faster coefficient variations
but no search for the optimal parameter is performed. While
our algorithm is more complex, in order to achieve good
performance RZA-ATC-ME requires the exchange of more
local data and two communication sessions per time moment,
which can be prohibitive. The distributed DCD-AMP algorithm
only requires limited communication between neighbor nodes.
If the input data is time shifted like in the FIR channel
identification problem such that the communication of the
neighbor measurements is cheaper, the complexity of the
distributed DCD-AMP also becomes of the same order with
that of the algorithms from [13].

0.2 0.4 0.6 0.8 1

10
−1

γ

M
S
E

RLS-SP
DCD-AMP-TF
DCD-AMP-TR
DCD-AMP-TI

a) fTs = 0.002, λ = 0.9.

0.2 0.4 0.6 0.8 1

10
−2.6

10
−2.5

10
−2.4

10
−2.3

10
−2.2

γ

M
S
E

RLS-SP
DCD-AMP-TF
DCD-AMP-TR
DCD-AMP-TI

a) fTs = 0.0002, λ = 0.96.

Fig. 5. Average MSE as a function of γ

0 100 200 300 400 500 600

10
−4

10
−2

10
0

t (time)

M
S
E

DCD-AMP-TG
DCD-AMP-TR - γ = 0.4
DCD-AMP-TR - γ = 0.1
DCD-AMP-TR - γ = 0.05
RZA-ATC-ME-TR - µ = 0.015

Fig. 6. Average MSE for constant channel and λ = 0.99.

VI. CONCLUSIONS

We have presented a distributed sparse adaptive algorithm
that uses a coordinate descent strategy on local data coupled
with the averaging of neighbor node information to provide
good performance. It requires little communication in the
network and it is robust with regard to its topology. The com-
plexity is low being comparable to that of the base algorithm
DCD-AMP. The algorithm requires little prior information;
the configuration parameter γ is easy to choose as a tradeoff
between convergence speed and stationary error.

REFERENCES

[1] A.M. Bruckstein, D.L. Donoho, and M. Elad, “From Sparse Solutions
of Systems of Equations to Sparse Modeling of Signals and Images,”
SIAM Rev., vol. 51, no. 1, pp. 34–81, 2009.

[2] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM J. Sci. Comput., vol. 20, pp. 33–61, 1998.

[3] R. Tibshirani, “Regression Shrinkage and Selection via the LASSO,”
J. Royal Stat. Soc., Ser. B, vol. 58, pp. 267–288, 1994.

[4] B. Babadi, N. Kalouptsidis, and V. Tarokh, “SPARLS: The Sparse RLS
Algorithm,” IEEE Trans. Sign. Proc., vol. 58, no. 8, 2010.

[5] D. Angelosante, J.A. Bazerque, and G.B. Giannakis, “Online Adaptive
Estimation of Sparse Signals: Where RLS Meets the l1-Norm,” IEEE

Trans. Sign. Proc., vol. 58, no. 7, pp. 3436–3447, Jul. 2010.

[6] Y. Kopsinis, K. Slavakis, and S. Theodoridis, “Online Sparse Sys-
tem Identification and Signal Reconstruction Using Projections Onto
Weighted l1 Balls,” IEEE Trans. Sign. Proc., vol. 59, no. 3, pp. 936–
952, Mar. 2011.

[7] I.D. Schizas, G. Mateos, and G.B. Giannakis, “Distributed LMS for
Consensus-Based In-Network Adaptive Processing,” IEEE Trans. Sign.

Proc., vol. 57, no. 6, pp. 2365–2382, June.

[8] F.S. Cattivelli and A.H. Sayed, “Diffusion lms strategies for distributed
estimation,” IEEE Tran. Sign. Proc., vol. 58, no. 3, pp. 1035–1048,
2010.

[9] G. Mateos, I.D. Schizas, and G.B. Giannakis, “Distributed Recursive
Least-Squares for Consensus-Based In-Network Adaptive Estimation,”
IEEE Trans. Sign. Proc., vol. 57, no. 11, pp. 4583–4588, 2009.

[10] F.S. Cattivelli, C.G. Lopes, and A.H. Sayed, “Diffusion recursive least-
squares for distributed estimation over adaptive networks,” IEEE Trans.

Sign. Proc., vol. 56, no. 5, pp. 1865–1877, 2008.

[11] J.F.C. Mota, J. Xavier, P.M.Q. Aguiar, and M. Puschel, “Distributed
Basis Pursuit,” IEEE Trans. Sign. Proc., vol. 60, no. 4, pp. 1942–1956,
2012.

[12] S. Chouvardas, K. Slavakis, Y. Kopsinis, and S. Theodoridis, “A
Sparsity Promoting Adaptive Algorithm for Distributed Learning,”
IEEE Trans. Sign. Proc., vol. 60, no. 10, pp. 5412–5425, 2012.

[13] P. Di Lorenzo and A.H. Sayed, “Sparse distributed learning based on
diffusion adaptation,” IEEE Tran. Sign. Proc., vol. 61, no. 6, pp. 1419–
1433, 2013.

[14] A. Onose and B. Dumitrescu, “Adaptive Matching Pursuit Using
Coordinate Descent and Double Residual Minimization,” Sig. Proc.,
vol. 93, no. 11, pp. 3143–3150, 2013.

[15] S.F. Cotter and B.D. Rao, “The Adaptive Matching Pursuit Algorithm
for Estimation and Equalization of Sparse Time-Varying Channels,” in
34th Asilomar Conf. Sign. Syst. Comp., 2000, vol. 2, pp. 1772–1776.

[16] S.G. Mallat and Z. Zhang, “Matching Pursuit with Time Frequency
Dictionaries,” IEEE Trans. Sgn. Proc., vol. 41, no. 12, pp. 3397–3415,
1993.

[17] B. Dumitrescu, A. Onose, P. Helin, and I. Tăbuş, “Greedy Sparse RLS,”
IEEE Trans. Sign. Proc., vol. 60, no. 5, pp. 2194–2207, 2012.

[18] J. Rissanen, “Order Estimation by Accumulated Prediction Errors,” J.

Appl. Probab., vol. 23, pp. 55–61, 1986.

[19] G. Schwarz, “Estimating the dimension of a model,” Ann. Stat., vol.
6, no. 2, pp. 461–464, 1978.

PUBLICATIONS 101

Publication 3
Copyright c⃝2012 IEEE. Reprinted, with permission, from

[P3] A. Onose and B. Dumitrescu. Cyclic adaptive matching pursuit. In Proceed-
ings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, pages 3745–3748, Kyoto, Japan, March 2012.

kulkki
Typewritten Text
In reference to IEEE copyrighted material which is used with permission in this thesis,
the IEEE does not endorse any of Tampere University of Technology's products or services.
Internal or personal use of this material is permitted. If interested in reprinting/republishing
IEEE copyrighted material for advertising or promotional purposes or for creating new
collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn
how to obtain a License from RightsLink.

102 PUBLICATIONS

CYCLIC ADAPTIVE MATCHING PURSUIT

Alexandru Onose, Bogdan Dumitrescu

Department of Signal Processing
Tampere University of Technology

PO BOX 553, 33101, Tampere, Finland
e-mail: alexandru.onose@tut.fi, bogdan.dumitrescu@tut.fi

ABSTRACT

We present an improved Adaptive Matching Pursuit algo-
rithm for computing approximate sparse solutions for overde-
termined systems of equations. The algorithms use a greedy
approach, based on a neighbor permutation, to select the or-
dered support positions followed by a cyclical optimization of
the selected coefficients. The sparsity level of the solution is
estimated on-line using Information Theoretic Criteria. The
performance of the algorithm approaches that of the sparsity
informed RLS, while the complexity remains lower than that
of competing methods.

Index Terms— matching pursuit, adaptive algorithm,
sparse filters, channel identification

1. INTRODUCTION

In recent years, sparse approximation problems have been
of a major interest due to their practical applicability in ar-
ray processing, compression, denoising and many other tasks.
The aim of this paper is to present a series of improvements
to an adaptive version of Matching Pursuit (MP) [1] making
it a viable alternative to more complex methods like [2, 3].

Let us consider a typical example of an FIR channel iden-
tification task. At time t the channel input u(t) and output
d(t) are measured and our aim is to find the coefficients hi,
i = 0 : N , such that the estimation error

e(t) = d(t)−

N−1
∑

i=0

hiu(t− i) (1)

is minimized. In a slow time varying environment, with λ as
the forgetting factor, this can be translated into minimizing

J(t) =

t
∑

i=1

λ
t−i|e(i)|2. (2)

This is equivalent to minimizing, at each time instance t,
the norm of the residual ||b −Ax||2, where the matrix A ∈
R

t×N and the vector b ∈ R
t are built with the input and

output data, respectively. Furthermore, we consider that the
coefficient vector has at most M ≪ N non-zero coefficients (x

Work supported by Tekes FiDiPro – Finland Distinguished
Professor Programme grant. B. Dumitrescu is also with Depart-
ment of Automatic Control and Computers, ”Politehnica” Univer-
sity of Bucharest, Romania.

is sparse), fact usually valid in many practical applications.
The number of significant coefficients and their positions are
not known a priori.

For finding sparse approximate solution to the minimiza-
tion problem presented in (2) we use an Adaptive Matching
Pursuit (AMP) [4] algorithm combined with a Cyclic Match-
ing Pursuit approach [5]. The algorithm provides models with
different sparsity levels and we apply Information Theoretic
Criteria (ITC) in a similar way as in [6] to choose the model
that best fits the data. We present two algorithms, each as-
suming either a fixed or variable upper sparsity level bound
M , and we show how the ITC can be computed; we prove,
by empirical simulations, that the performance of these low-
complexity algorithms is good.

This paper is organized as follows: in section 2 we present
an improved adaptive matching pursuit algorithm; section 3
presents details regarding the ITC that are used to selecting
the best support size while section 4 details their use in con-
junction with our algorithms; section 5 contains the results
of our simulations.

2. CYCLIC ADAPTIVE MATCHING PURSUIT

We begin by presenting an extension to the classic MP algo-
rithm adjusted for an adaptive context. At the base of our
method resides an improved AMP that uses a cyclic coeffi-
cient re-computation [5] to minimize the prediction error.

Like in the MP case, the algorithm selects one by one
columns from the matrix A (named active columns) such
that they are best aligned with the residual. Upon selecting
the first column ak1

best aligned with b0 = b, the projection
of the current residual, b0, on the direction of ak1

is removed
from itself, thus resulting a new residual b1. At step i, the
search for the best aligned column aki

continues in the set
I of columns not yet chosen; a new column is selected such
that is best aligned with the current residual bi−1

ki = arg max
l∈I

|aT
l bi−1|

2

||al||2
; (3)

the new coefficient represents the alignment of the column
with the residual

xki
=

aT
ki

bi−1

||aki
||2

; (4)

the residual bi is then computed by removing the influence
of the column aki

form bi−1

bi = bi−1 − xki
aki

. (5)

The selection of active columns stops once a given number of
columns M is reached.

The selection of the new column based on (3) guarantees
that the residual is decreased by the largest amount at each
step, without changing the values of the previously computed
coefficients. Once a set of Mi columns is selected, the value of
the coefficients can be updated by cyclically optimizing one
coefficient at a time while holding the other Mi − 1 coeffi-
cients fixed. An update of the coefficient xki

is performed
by removing the associated column ak1

from the active set,
restoring the influence it had in decreasing the residual

b
′

Mi
= bMi

+ xki
aki

(6)

and reintroducing it in the active set again. By plugging
equation (6) into (4), the new coefficient value is

x
′

ki
=

aT
ki

b
′

Mi

||aki
||2

= xki
+ γ, with γ =

aT
ki

bMi

||aki
||2

. (7)

Using the coefficient expression and the residual updates (5)
and (6), the cyclic update, made in place, is summarized by

bMi
← b

′

Mi
− (xki

+ γ)aki
= bMi

− γaki
(8)

xki
← x

′

ki
. (9)

Cyclically performing the update for each coefficient a num-
ber of times further minimizes the residual.

We propose two methods for estimating the values of M

coefficients; the first, named Cyclic Adaptive Matching Pur-
suit (CAMP) and presented in Alg. 3, cyclically updates the
coefficients after all the active columns are chosen; the second,
named Iterated Cyclic Adaptive Matching Pursuit (ICAMP)
and presented in Alg. 4, cyclically improves the coefficients
after the introduction of each new column in the active set.

The algorithms are efficiently implemented using only in-
formation about the scalar products Φi,j = aT

i aj between the
columns of the matrix A and the scalar products Ψi = aT

i b
between the the columns of A and output vector b. Equa-
tions (5), (6) and (8) can be expressed with the use of the
scalar products Ψ and Φ by multiplying on the left with AT ,
while for the others, the introduction of the scalar products
is immediate.

At time t, upon receiving a new input data vector α and
output data β, the scalar products Φ and Ψ are updated in
place and a copy, Ψ̃ of Ψ, is used to store the scalar products
with the current residual (Alg. 3 and 4, equation (∗)). Due
to the slow varying nature of the considered problem, when
we choose the active column set (Alg. 3 and 4, step 2.1)
we reuse the previous selection computed at time t − 1 and
allow changes in the column order only between neighbor
positions. The only exception is the last position, for which
all the remaining columns compete.

For the column selection and the coefficient estimation
(Alg. 1) we use the scalar products Ψ̃ between A and the
current residual and update them in place (Alg. 1, steps 1.1,
2.1, 5). This is performed after each new column is selected,
according to a vectorial version of (5). We note that, although
the algorithm can be implemented without permuting the
matrix A, to make the presentation simpler we consider that
the columns in A (and the other corresponding matrices)
are ordered according to their influence on the residual (Alg.

Alg. 1 (Estimate the coefficient i).

1 if i < M

1.1 update scalar product for next column
Ψ̃i+1 ← Ψ̃i+1 −Φi+1,1:i−1x1:i−1

1.2 ki = arg maxl∈[i,i+1]
Ψ̃2

l

Φl,l
(find best candi-

date column searching between neighbors)

2 if i == M

2.1 update remaining scalar products
Ψ̃M+1:N ← Ψ̃M+1:N−ΦM+1:N,1:M−1x1:M−1

2.2 ki = arg maxl∈[M :N]
Ψ̃2

l

Φl,l
(find the best ki

candidate column searching all remaining
columns)

3 swap columns (and lines) i and ki in Φ
swap elements i and ki in Ψ̃, x and Ψ

4 xi = Ψ̃i

Φi,i
(evaluate the coefficient value)

5 Ψ̃1:i+1 ← Ψ̃1:i+1 − xiΦ1:i+1,i (update the scalar
product considering the new residual)

Alg. 2 (Cyclic update of Mi coefficients).

1 for i = 1 : Mi

1.1 γ = Ψ̃i

Φi,i

1.2 xi ← xi + γ (update the coefficient)

1.3 Ψ̃1:Mi+1 ← Ψ̃1:Mi+1 − γΦ1:Mi+1,i

Alg. 3 (CAMP: Cyclic adaptive matching pur-
suit).

1 update scalar products with current data; save a
copy of scalar products Ψ1:N

Φ1:N,1:N ← λΦ1:N,1:N + α1:N α
T
1:N

Ψ1:N ← λΨ1:N + βα1:N

Ψ̃1:N = Ψ1:N

}

(∗)

2 for i = 1 : M (select coefficients one by one)

2.1 estimate the coefficient i as in Alg. 1

3 for l = 1 : Nit

3.1 update Mi = M coefficients as in Alg. 2

Alg. 4 (ICAMP: Iterated cyclic adaptive match-
ing pursuit).

1 update scalar products like in (∗)
2 for i = 1 : M (select coefficients one by one)

2.1 estimate the coefficient i as in Alg. 1

2.2 for l = 1 : Nit

2.2.1 update Mi = i coefficients as in Alg. 2

2.3 x̌i,1:i = x1:i (store the current coefficients)

1, step 3). The computation of the coefficient value (Alg. 1,
step 4), if we consider the permutation influence on x, follows
directly from (4).

For both CAMP and ICAMP algorithms, after the col-
umn selection and the initial coefficient estimation, Nit cycli-
cal updates are performed such that the residual is further

decreased. The procedure is presented in Alg. 2 and follows
closely (7) and (8), the main difference consisting in the use
of the scalar products Ψ̃ defined with the residual bMi

from
(8).

The number of operations necessary for implementing the
selection of active columns and computation of the coeffi-
cients is the same for both CAMP and ICAMP ν ≈ 3

2
N2 +

1
2
M2 + NM . The added complexity due to the cyclical up-

date is different for the two algorithms; in case of CAMP
it is ρ0 ≈ NitM

2; for ICAMP the computational burden is
greater, τ0 ≈

1
3
NitM

3 + 4NitM
2.

3. INFORMATION THEORETIC CRITERIA

The algorithms presented so far order the elements of the
solution based on their contribution in decreasing the resid-
ual. If we consider that the real cardinality Lt of the solu-
tion support is unknown and we apply the algorithms for a
number of non-zero elements M ≥ Lt then, it is plausible
to assume that, when enough data are available, the first Lt

positions chosen by the CAMP and ICAMP algorithms cor-
respond with high probability to the non-zero locations of the
true solution.

To find an estimate L for the true cardinality of the sup-
port Lt we employ information theoretic criteria (ITC). We
use two model selection methods, Bayesian information cri-
terion (BIC) [7] and Predictive least squares criterion (PLS)
[8] as suggested by [6] for a similar order selection task.

3.1. Bayesian information criterion (BIC)

Consider, at time t, the squared norm of the residual Γk =
bT

k bk computed for a solution x with a support cardinality

k; if we use the fact that bk = b0−
∑k

i=1
xiai, it results that

bT
k bk =

(

b0 −
∑k

i=1
xiai

)T (

b0 −
∑k

i=1
xiai

)

= Γ0 − 2
∑k

i=1
xiΦi +

∑k

i=1

∑k

j=1
xixjΨi,j .

(10)

Using the norm of the residual, we can define the BIC
criterion [7] at time t as

BICk,t = nef ln Γk + (k + 1) ln nef , (11)

where nef =
∑t

i=0
λt−i is the effective number of samples

used to determine the solution x.
For the ICAMP algorithm, the criterion (11) can be com-

puted directly with (10) and the stored values for the coeffi-
cients x̌k,1:k, while for CAMP the following recursion is used

Γk = Γk−1 − 2xkΦk + 2xkxT
1:kΨk,1:k − x

2
kΨ2

k,k. (12)

3.2. Predictive least squares criterion (PLS)

The PLS criterion [8] at time t is defined as

PLSk,t =

t
∑

i=0

λ
t−i

e
2
k,i, (13)

where ek,i = β − α
T
1:kx1:k is the a priori estimation error at

time i produced by the k-sparse solution x computed at time

Alg. 5 (ITC CAMP).

1 estimate the coefficients as in Alg. 3

2 estimate the support size L using BIC or PLS

3 Ψ̃1:L ← Ψ̃1:L + Φ1:L,L+1:M xL+1:M (remove the
contribution of the other M − L columns)

4 for l = 1 : Nit

4.1 update Mi = L coefficients as in Alg. 2

5 if the variable M algorithm is used, increase or
decrease M by 1 such that it approaches L + ∆

Alg. 6 (ITC ICAMP).

1 estimate the coefficients as in Alg. 4

2 estimate the support size L using BIC or PLS

3 use the stored values x̌L,1:L for the coefficients

4 if the variable M algorithm is used, increase or
decrease M by 1 such that it approaches L + ∆

i− 1, α and β are the input and output at time i. The PLS
criterion is given by

PLSk,t = λPLSk,t−1 + e
2
k,t. (14)

4. ITC AND THE CAMP ALGORITHMS

We propose two variants of the algorithms. For the first
we define a maximum, fixed, sparsity level M chosen large
enough to accommodate all possible values for the true sup-
port size Lt and apply the ITC to choose an estimate L for
the support size. The second uses a variable upper spar-
sity level M which is increased or decreased by one at each
sample time such that it approaches L + ∆, where ∆ is a
parameter guaranteeing that there are enough candidates for
finding the best number of non-zero elements and L is the es-
timate for the support size. The use of a variable M ensures
a lower number of operations and an improved robustness to
unknown sparsity levels.

The estimation L of the true number of non-zero elements
Lt results from minimizing the criterion

L = arg min
k=1:M

BICk,t or PLSk,t. (15)

By using the BIC and PLS criteria in conjunction with CAMP
and ICAMP, two algorithms result (Alg. 5 and Alg. 6).

The use of the ITC increases the complexity of the base
algorithms. For CAMP, the additional complexity is ρ1,bic ≈
ρ1,pls ≈ NitL

2 + M2 when using BIC and PLS; for ICAMP,
the added complexity is τ1,bic ≈

2
3
M3 + 3M2 for BIC or

τ1,pls ≈M2 for PLS.

5. SIMULATIONS

The algorithms were tested for a FIR channel identification
problem (1) with Lt = 5 nonzero coefficients and a filter order
N = 200. The coefficient positions are randomly chosen while
their variation is described by

x̃i(t) = ai cos(2πfTst + φi), (16)

0 100 200 300 400 500 600 700 800 900 1000

10
−2

10
−1

10
0

t (time)

M
S

E

OCCD−TNWL

SPARLS

RLS−SP

CAMP−BIC−V

ICAMP−BIC−V

CAMP−PLS−V

ICAMP−PLS−V

Fig. 1. Squared coefficient error for M = 5.

where the amplitude ai and phase φi are distributed uni-
formly in [0.05, 1] and [0, 2π], respectively. Afterwards, the
filter is normed so that its average norm is E{||x̃||22} = 1.
The inputs are normally distributed according to N (0, 1) and
the outputs are affected by an additive Gaussian noise with
σ2 = 0.01. The channel variation speed is controlled by the
product fTs. The measure for the performance is the coeffi-
cient mean squared error (MSE)

MSE(t) = E{||x̃− x||22}, (17)

where x̃ contains the real value of the coefficients and x their
estimate. The estimate of the MSE is computed over 1000
runs for each of the variation speeds fTs.

In Table 1 we present the MSE of several algorithms, av-
eraged over the last 100 samples, for different variation speeds
fTs and forgetting factors λ: RLS-SP, the sparsity informed
RLS algorithm with prior knowledge of the nonzero filter co-
efficients positions; RLS, the standard algorithm that consid-
ers a full filter of order N ; GRLS, the greedy algorithm with
prior knowledge of the support size from in [6]; CAMP and
ICAMP, the variants of our algorithms with prior knowledge
of the support size; (I)CAMP-PLS/BIC-F/V, the fixed and
variable M variants of the algorithms presented in Alg. 5 and
6; SPARLS, the algorithm presented in [3]; OCCD-TNWL,
the best of the algorithms from [2].

The configuration of the GRLS, SPARLS and OCCD-
TNWL algorithms is done according to the recommendations
from the corresponding articles. The parameter γ, used in
SPARLS and presented in Table 1, was optimized using a
grid search. For GRLS, CAMP and ICAMP algorithms the
value for the sparsity was chosen M = Lt; the algorithms
that employ ITC use M = 20 for the fixed threshold ver-
sion and ∆ = 5 for the variable threshold algorithm; for all
our algorithms the number of cyclic optimization rounds was
Nit = 5.

In Fig. 1 we present the time evolution of our algorithms
with a variable upper sparsity level limit together with evolu-
tion of OCCD-TNWL, SPARLS and RLS-SP for fTs = 0.001.

6. CONCLUSIONS

We proposed two adaptive MP algorithm families (CAMP
and ICAMP) employing a cyclical coefficient re-computation
and using ITC (BIC and PLS) to estimate on-line the support
size. The complexity of the algorithms is lower than that of

Table 1. MSE for the studied algorithms.

fTs 0.002 0.001 0.0005 0.0002 0.0001
λ 0.90 0.92 0.94 0.96 0.98

RLS 5.3012 1.4565 0.36427 0.09774 0.04734
RLS-SP 0.0267 0.0110 0.00518 0.00246 0.00306
GRLS 0.0501 0.0178 0.00785 0.00343 0.00343
CAMP 0.0700 0.0266 0.01161 0.00453 0.00352
ICAMP 0.0534 0.0181 0.00790 0.00346 0.00343

CAMP-BIC-F 0.0805 0.0244 0.00928 0.00380 0.00367
CAMP-BIC-V 0.0649 0.0225 0.00984 0.00445 0.00379
CAMP-PLS-F 0.0899 0.0288 0.01117 0.00430 0.00371
CAMP-PLS-V 0.0745 0.0246 0.01030 0.00430 0.00366
ICAMP-BIC-F 0.0769 0.0220 0.00856 0.00377 0.00377
ICAMP-BIC-V 0.0639 0.0210 0.00992 0.00487 0.00397
ICAMP-PLS-F 0.0881 0.0249 0.00898 0.00343 0.00348
ICAMP-PLS-V 0.0683 0.0194 0.00762 0.00326 0.00340

SPARLS 0.4417 0.1578 0.04225 0.01120 0.00767
γ 170 110 75 50 75

OCCD-TNWL 0.4802 0.0436 0.01231 0.00447 0.00372

competing methods; for the ICAMP algorithms the MSE is
in general comparable with that of GRLS, while for the less
complex CAMP algorithms the MSE slightly degrades; the
additional complexity due to the ITC is low if M is small
while giving increased robustness.

7. REFERENCES

[1] S.G. Mallat and Z. Zhang, “Matching Pursuit with Time
Frequency Dictionaries,” IEEE Trans. Sgn. Proc., vol. 41,
no. 12, pp. 3397–3415, 1993.

[2] D. Angelosante, J.A. Bazerque, and G.B. Giannakis, “On-
line Adaptive Estimation of Sparse Signals: Where RLS
Meets the l1-Norm,” IEEE Trans. Sign. Proc., vol. 58,
no. 7, pp. 3436–3447, July 2010.

[3] B. Babadi, N. Kalouptsidis, and V. Tarokh, “SPARLS:
The Sparse RLS Algorithm,” IEEE Trans. Sign. Proc.,
vol. 58, no. 8, 2010.

[4] S.F. Cotter and B.D. Rao, “The Adaptive Matching Pur-
suit Algorithm for Estimation and Equalization of Sparse
Time-Varying Channels,” in 34th Asilomar Conf. Sign.

Syst. Comp., 2000, vol. 2, pp. 1772–1776.

[5] M.G. Christensen and S.H. Jensen, “The Cyclic Match-
ing Pursuit and its Application to Audio Modeling and
Coding,” in 41th Asilomar Conf. Sign. Syst. Comp., nov.
2007, pp. 550–554.

[6] B. Dumitrescu, A. Onose, P. Helin, and I. Tăbuş, “Greedy
Sparse RLS,” Submitted to IEEE Trans. Sign. Proc., July
2011.

[7] G. Schwarz, “Estimating the Dimension of a Model,”
Ann. Stat., vol. 6, no. 2, pp. 461–464, 1978.

[8] J. Rissanen, “Order Estimation by Accumulated Predic-
tion Errors,” J. Appl. Probab., vol. 23, pp. 55–61, 1986.

PUBLICATIONS 107

Publication 4
Copyright c⃝2012 IEEE. Reprinted, with permission, from

[P4] A. Onose and B. Dumitrescu. Low complexity approximate cyclic adaptive
matching pursuit. In Proceedings of the European Signal Processing Confer-
ence, pages 2629–2633, Bucharest, Romania, August 2012.

kulkki
Typewritten Text
In reference to IEEE copyrighted material which is used with permission in this thesis,
the IEEE does not endorse any of Tampere University of Technology's products or services.
Internal or personal use of this material is permitted. If interested in reprinting/republishing
IEEE copyrighted material for advertising or promotional purposes or for creating new
collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn
how to obtain a License from RightsLink.

kulkki
Typewritten Text

kulkki
Typewritten Text

108 PUBLICATIONS

LOW COMPLEXITY APPROXIMATE CYCLIC ADAPTIVE MATCHING PURSUIT

Alexandru Onose, Bogdan Dumitrescu

Department of Signal Processing

Tampere University of Technology

PO BOX 553, 33101, Tampere, Finland

e-mail: alexandru.onose@tut.fi, bogdan.dumitrescu@tut.fi

ABSTRACT

Based on the iterated cyclic adaptive matching pursuit algo-

rithm, we construct a low complexity approximate variant for

finding sparse solutions to systems of linear equations. We

employ a greedy neighbor permutation strategy coupled with

an approximate scalar product matrix to ensure that the com-

plexity of the algorithm remains low. The sparse solution is

cyclically updated improving the performance while the spar-

sity level is estimated online using the predictive least squares

criterion. The performance of the algorithm is similar to that

of the non approximate variants while the complexity can be

considerably lower.

Index Terms— matching pursuit, sparse filters, greedy

algorithm, channel identification

1. INTRODUCTION

Sparse approximation problems have arisen in recent years

from many practical application like compression, denoising

or array processing. Several algorithms [1, 2, 3] have been

proposed with applications to typical signal and image pro-

cessing tasks. We aim to present in this paper a low com-

plexity version of the iterated cyclic adaptive matching pur-

suit (ICAMP) [4] algorithm that employs a series of approx-

imations and adaptation steps to provide a lower complexity

without negatively influencing the estimation error.

Consider a typical FIR channel identification problem

where, at time t, the input u(t) and the output d(t) are mea-

sured. The goal is to estimate the true coefficients hj that

minimize the estimation error

e(t) = d(t)−
N−1
∑

j=0

hju(t− j), (1)

where N is the filter length.

Work supported by Tekes FiDiPro – Finland Distinguished Professor

Programme and by GETA – Graduate School in Electronics, Telecommunica-

tions and Automation. B. Dumitrescu is also with Department of Automatic

Control and Computers, ”Politehnica” University of Bucharest, Romania.

Minimizing the estimation error at each time instance can

be transformed towards minimizing a least squares criterion

J(t) =

t
∑

i=1

λt−i|e(i)|2, (2)

where 0 < λ ≤ 1 is a forgetting factor. Written in matrix

form, the criterion is equivalent to minimizing the norm of the

residual ||b−Ax||2; the solution vector x corresponds to the

estimated coefficients hj that result from the minimization of

(2). We consider the solution x to be sparse, henceforth it has

at most M ≪ N non zero coefficients. Moreover, the number

and the positions of the coefficients are a priori unknown. The

matrix A ∈ R
t×N is built with the input data, its i-th row

being equal to λ
t−i
2 α(i)T where

α(i) = [u(i), u(i− 1), . . . , u(i−N + 1)]
T
. (3)

The vector b ∈ R
t contains the weighted output data bi =

λ
t−i
2 d(i). We denote hereafter β(i) = d(i) and, for simplicity,

we drop the index (i) from α(i) and β(i) when they refer to

the current available data at time t.

We develop an approximate variant of the ICAMP algo-

rithm by selectively storing the information about the input

data matrix A. The algorithm updates and uses only the scalar

products between the full matrix A and a set of columns from

A that are associated with the current solution support. When

a decision to modify the support is made, we delay the ac-

tual change by introducing a constant length buffer to temper

any rapid support variation. The scalar products associated

with the buffer are also updated and can contribute directly to

changes in the support. We propose two algorithms that use

a fixed respectively a variable upper sparsity bound and esti-

mate the sparsity level with the predictive least squares (PLS)

criterion.

The content of this paper is as follows: in section 2 we

present the proposed low complexity approximate algorithms;

a brief overview of the ICAMP algorithm and the PLS cri-

terion in conjunction with the approximate algorithms is in-

cluded in section 3; section 4 contains the results of our sim-

ulations proving the performance of the algorithms.

2. LOW COMPLEXITY APPROXIMATE

ALGORITHMS

We begin by briefly reviewing the classic matching pursuit

(MP) algorithm [5] and its adaptive counterpart, the adaptive

matching pursuit (AMP) [6]. Starting from AMP, we intro-

duce a series of approximations that provide lower complex-

ity which, used in conjunction with the iterated cyclic adap-

tive matching pursuit algorithm [4] coupled with a buffer that

mitigates fast changes in the solution support, form the basis

of our proposed low complexity iterated adaptive matching

pursuit algorithm.

The algorithm follows the MP column selection strategy

selecting one by one columns (named active columns) from

the matrix A based on their alignment with the residual. The

selection starts by finding the best column ak1
aligned with

output data vector representing the first residual b0 = b (the

solution x is null); the column ak1
is included in the active

column set A. The projection of the current residual b0 on

ak1
is then removed from b0, producing the new residual b1

used in the selection of the next active column. After i − 1
columns are selected, the search for the column aki

, best

aligned with the current residual bi−1, continues in the re-

maining column set I composed by columns not yet included

in A,

ki = argmax
l∈I

|aTl bi−1|2
||al||2

. (4)

The new residual is computed by projecting bi−1 on aki
,

bi = bi−1 − xki
aki

, (5)

where the coefficient xki
represents the alignment of the col-

umn aki
with the residual bi−1,

xki
=

a
T
ki
bi−1

||aki
||2 . (6)

The selection continues until M columns are chosen.

The above equations are implemented using only the

scalar products Ψ = A
T
b between the input matrix and the

output vector b and Φ = A
T
A between the columns of the

matrix A. The norms of the columns from the matrix A are

stored separately in Θ to simplify the presentation, otherwise

they are present on the diagonal of Φ. Equation (5) can be

easily expressed using the scalar products by multiplying it

with A
T on the left.

Additionally, a neighbor search strategy is employed for

the column selection. Relying on the slow variation of the

channel, we reuse the selection order found at time t−1 when

we perform the search at time t. Thus, starting from the old

active set A we constrain the search for each new column po-

sition j between neighbor positions j and j+1 in the set. The

resulting permutations are performed only between neighbor

positions and produce the updated active set at current time t.

Changes in the composition of the active set A are achieved

by allowing all remaining inactive columns to compete for the

last position M .

At each time instance t, when new input vector α and

output data β are available, all the scalar products are updated

in place,

Φ1:N,1:N ← λΦ1:N,1:N +α1:NαT
1:N

Ψ1:N ← λΨ1:N + βα1:N

Θj ← λΘj + α2
j with j = 1 : N,

(7)

and the solution and column selection are revised.

Consider the true sparse solution having Lt ≪ N non

zero coefficients; by choosing M ≥ Lt small enough the

main computational burden is due to the update of the scalar

products Φ. They are however not all necessary when com-

puting the solution at a given time. In a stationary regime,

where the active set A composition does not change as new

samples are received, the only scalar products required are

the column norms Θ and the scalar products between the ac-

tive columns ak1:M
and the full matrix A. Thus, in the ideal

scenario where no support changes are made, storing and up-

dating only the partial scalar product matrix Φ̄ = A
T
ak1:M

instead of the whole Φ = A
T
A ensures that all the required

data are available.

When an inactive column akj
becomes active instead of

the old column akM
, the associated coefficient x

′

kj
can still be

computed precisely like in (6) using the stored column norms

Θ; it produces an updated residual

b
′

M = bM−1 − x
′

kj
akj

. (8)

Because the channel is slow varying, there are usually no sud-

den changes, either in the support or in the coefficient values.

Thus, when a coefficient becomes inactive it does so gradu-

ally until the associated column reaches the last position akM

in the active set A and is then replaced by the new column

akj
. If M > Lt, then we can assume that any coefficient xki

above the sparsity level Lt (i > Lt) is small since the true so-

lution contains all the relevant coefficients. When the support

changes, the coefficient x
′

kj
has a negligible influence in de-

creasing the residual and the scalar products associated with

(8) can be approximated by

A
T
b

′

M ≈ A
T
bM−1 (9)

This does not require any information regarding the unknown

scalar products A
T
akj

. When the new coefficient gradually

become significant, if the unknown scalar products A
T
akj

are far from their true values, the performance is negatively

influenced even leading to instability. To circumvent this we

propose to set AT
akj

to zero and allow a number of updates

to be performed before the column may be introduced into

the active set. For this purpose we use a buffer B of length

P (containing columns akM+1:M+P
) to delay the introduction

of any new column in A. The scalar products are updated

for all the columns associated with B, hence diminishing the

approximation errors. Furthermore, since the scalar products

with the columns from the active set are computed exactly,

the errors introduced by the unknown scalar products after

the column is included inA on position i do not affect signif-

icantly the coefficients xk1:i
.

Thus, if the column akj
, selected to be introduced in the

active set A on position M , belongs to I \ B, it replaces the

last column akM+P
in B instead of being introduced directly

in the active set A. The associated scalar products are set to

zero and the solution is still computed with the old column

akM
. If akj

belongs to B, it is promoted one position in the

set, kj−1 ↔ kj . It becomes active replacing akM
in the ac-

tive set, kM ↔ kM+1, only when it is on the first position

in B. This ensures that a certain column is selected at least

P times before becoming active which, coupled with the up-

date of their associated scalar products as new samples are

received, reduces the approximation errors.

We present in Alg. 1 the algorithm that constructs the set

B and performs the neighbor permutations. We consider that

the elements in x, the columns in the matrix A and all the

associated scalar products are permuted according to the col-

umn selection order implicitly present in the active set A and

in the buffer B. Additionally, the partial matrix Φ̄ is stored

in the full matrix Φ to simplify the notations. Also, note that

the scalar products between the active columns (and columns

from B) and all the other columns have exact values and are

never set to zero (Alg. 1, step 1.3).

The complexity due to the scalar product update Φ is re-

duced from 3
2N

2 to 3N(M + P) − 3
2 (M + P)2. The scalar

product update complexity is decreased by a factor propor-

tional with 1
2

N
M+P

.

3. APPROXIMATE ITERATED CYCLIC ADAPTIVE

MATCHING PURSUIT

Selecting the column aki
and computing the solution coef-

ficient xki
like in the AMP algorithm decreases the residual

by the largest amount when the previously computed coeffi-

cients, xk1:i−1
, are kept fixed. To further minimize the resid-

ual, a cyclical update [7] is performed by optimizing one coef-

ficient at a time while keeping the rest i−1 coefficients fixed.

The coefficient xkj
, j ∈ {1, . . . , i} is updated by removing

the corresponding column akj
from the active set, hence pro-

ducing the residual

b
′

i = bi + xkj
akj

, (10)

and then reincluding it in the active set. The updated coeffi-

cient is

x
′

kj
=

a
T
kj
b

′

i

||akj
||2 = xkj

+ γ, (11)

Alg. 1 (Introduce the candidate column j in B, per-

form the necessary neighbor permutations).

1 if j > M + P (the column is not in buffer B)

1.1 Swap columns (and rows) M + P and j in Φ

Swap elements M + P and j in Ψ̃, x and Ψ

The information on row j in Φ is discarded

1.2 Set to zero the unknown scalar products for col-

umn M + P

ΦM+P+1:N,M+P = 0

1.3 Keep the known scalar products

ΦM+P,M+P = ΘM+P

Φ1:M+P−1,M+P = ΦT
M+P,1:M+P−1

2 if 1 < j ≤M + P (the column is in B or in A)

2.1 Swap columns (and rows) j − 1 and j in Φ

Swap elements j − 1 and j in Ψ̃, x and Ψ

where γ =
a
T
kj

bi

||akj
||2 . This produces a residual update similar

to (5),

bi ← b
′

i − (xkj
+ γ)akj

= bi − γakj

xkj
← x

′

kj
.

(12)

The cyclic update step, performed Nit times for all columns

considered by the solution, further minimizes the residual. All

the above updates can be expressed with the use of the scalar

products Ψ and the partial scalar products Φ̄ such that the ap-

proximate version of the ICAMP algorithm only requires the

approximation steps presented in section 2. The column se-

lection and coefficient estimation is presented in Alg. 2 while

the cyclic update is included in Alg. 3.

The true sparsity level Lt of the solution x can be esti-

mated with the use of information theoretic criteria [3, 4]. If

Lt is unknown, we can apply the relations presented so far to

find M , M ≥ Lt, columns ak1:M
that correspond to a M -

sparse solution x. Because the selection process introduces

an inherent column order, we assume that after enough data

are available the first selected positions correspond with high

probability to the true support of the solution. The threshold

M can be either fixed or can change such that it approaches

Lt +∆, where ∆ is a predefined constant ensuring that there

are enough candidates for estimating the sparsity level [4].

For clarity we present only the fixed version of the algorithm,

the variable one being rather straightforward. Note that for

the variable version, due to the changes of the threshold M ,

the buffer B needs to be adjusted such that its size is always

P . Thus, if M decreases, the last column from the active set

A will be moved to B while the last column in B is discarded.

If M increases, the first column from B moves to A and on

the last position in B a new (random) column is promoted.

The estimate L of the true sparsity level Lt is computed as

the point for which the predictive least squares (PLS) criterion

Alg. 2 (Estimate the coefficient i).

1 if i < M

1.1 Update scalar product for next column

Ψ̃i+1 ← Ψ̃i+1 −Φi+1,1:i−1x1:i−1

1.2 Find best candidate column between neighbors

ki = argmaxl∈[i,i+1]
Ψ̃2

l

Θl

2 if i == M

2.1 Update remaining scalar products

Ψ̃M+1:N ← Ψ̃M+1:N−ΦM+1:N,1:M−1x1:M−1

2.2 Find best ki candidate column between all re-

maining columns

ki = argmaxl∈[M :N]
Ψ̃2

l

Θl

3 Permute necessary columns (Alg. 1)

4 xi =
Ψ̃i

Φi,i
(evaluate coefficient value)

5 Update scalar product considering new residual

Ψ̃1:i+1 ← Ψ̃1:i+1 − xiΦ1:i+1,i

Alg. 3 (Cyclic update of j coefficients).

1 for i = 1 : j (cyclically update each coefficient)

1.1 γ = Ψ̃i

Θi

1.2 xi ← xi + γ (update the coefficient)

1.3 Ψ̃1:Mi+1 ← Ψ̃1:Mi+1 − γΦ1:Mi+1,i

[8] attains its minimum. At time instance t, the PLS criterion

is

PLS
(t)
j =

t
∑

i=0

λt−ie
(i)
j

2
, (13)

where e
(i)
j = β(i) − α

(i)T
k1:j

x̌j,k1:j
; the index (i) denotes the

time at which the data are considered, x̌
(i)
j,k1:j

contains the co-

efficients of the j-sparse solution. The PLS criterion can be

therefore computed recursively by

PLS
(t)
j = λ ·PLS

(t−1)
j + e

(t)
j

2
. (14)

The approximate ICAMP algorithm using the PLS crite-

rion is summarized in Alg. 4. The number of operations re-

quired by the column selection and coefficient computation

is 3N(M + P) −M2 + NM while the cyclic update adds
1
3NitM

3 + 4NitM
2 operation. The computation of the PLS

criterion is fast requiring only M2 operations.

4. SIMULATIONS

The performance of the algorithms was tested using a sparse

FIR channel identification problem (1) with N = 200 and

the true solutions having Lt = 5 non zero coefficients. The

channel non zero coefficients are described by

hj(t) = aj cos(2πfTst+ φj). (15)

Alg. 4 (Iterated cyclic adaptive matching pursuit with

PLS column selection, approximate version).

1 Update needed scalar products between columns of A

Φ1:N,1:M+P ← λΦ1:N,1:M+P +α1:NαT
1:M+P

Update scalar products Θ and Ψ like in (7)

Save copy of scalar products Ψ̃1:N = Ψ1:N

2 for i = 1 : M (select coefficients one by one)

2.1 Estimate coefficient i as in Alg. 2

2.2 for l = 1 : Nit (improve the j-sparse solution)

2.2.1 Update j = i coefficients as in Alg. 3

2.3 x̌i,1:i = x1:i (store current coefficients)

3 Estimate the support size L using PLS

4 Use the stored values x̌L,1:L for the coefficients

The coefficient positions j are chosen randomly, the ampli-

tude aj and the initial phase φj are uniformly distributed in

[0.05, 1] and [0, 2π]. The variation speed is given by the prod-

uct fTs. The filter is normed such that the average norm is

E{||hi||22} = 1. The inputs d(t) are normally distributed ac-

cording to N (0, 1) and the outputs are corrupted by an ad-

ditive Gaussian noise with σ2 = 0.01. We measure the per-

formance of the algorithms in terms of the coefficient mean

square error

MSE(t) = E{||h− x||22}, (16)

where h contains the actual values of the coefficients and x

their estimates; 1000 test runs were used to estimate the MSE.

The tested algorithms are as follows: RLS, the standard

algorithm using the full filter of length N ; RLS-SP, the spar-

sity aware RLS algorithm with prior knowledge of the po-

sition and number of coefficients; GRLS and ICAMP algo-

rithms from [3] respectively from [4] and ICAMP-A, the ap-

proximate algorithm presented herein, with prior knowledge

of the support size, M = Lt; GRLS/ICAMP(-A)-F/V, the

versions of the above algorithms that estimate online the spar-

sity level using the PLS criterion in conjunction with a fixed (-

F) threshold M = 20 or a variable (-V) threshold with ∆ = 5;

SPARLS, the algorithm presented in [2]; TNWL, the best of

the algorithms from [1], using an optimized forgetting factor

for the inner RLS loop.

The GRLS, SPARLS and TNWL algorithms are config-

ured according to the recommendations from the correspond-

ing articles. The parameter γ used in SPALRS and the forget-

ting factor fRLS used in the inner RLS loop in TNWL were

optimized using a grid search. For all the cyclic algorithms

the number of optimization rounds was Nit = 5.

In Table 1 we present the average MSE (averaged over the

last 100 samples) for all the studied algorithms. Fig. 1 con-

tains the time evolution of our algorithm using a fixed M for

fTs = 0.001; at time t = 500, three of the Lt = 5 coeffi-

cients randomly change positions. In Fig. 2 we present the

0 200 400 600 800 1000

10
−2

10
0

t (time)

M
S

E

GRLS

ICAMP−F

ICAMP−A−F

TNWL

RLS−SP

Fig. 1. MSE for Lt = 5 and fTs = 0.001.

Table 1. Average MSE for the studied algorithms.

fTs 0.002 0.001 0.0005 0.0002 0.0001

λ 0.90 0.92 0.94 0.96 0.98

RLS 5.3012 1.4565 0.36427 0.09774 0.04734

RLS-SP 0.0267 0.0110 0.00518 0.00246 0.00306

GRLS 0.0501 0.0178 0.00785 0.00343 0.00343

GRLS-F 0.0511 0.0189 0.00853 0.00356 0.00357

GRLS-V 0.0569 0.0187 0.00762 0.00330 0.00340

ICAMP 0.0534 0.0181 0.00790 0.00346 0.00343

ICAMP-F 0.0881 0.0249 0.00898 0.00343 0.00348

ICAMP-V 0.0683 0.0194 0.00762 0.00326 0.00340

ICAMP-A 0.0321 0.0139 0.00673 0.00310 0.00338

ICAMP-A-F 0.0409 0.0155 0.00706 0.00320 0.00342

ICAMP-A-V 0.0370 0.0146 0.00703 0.00323 0.00340

SPARLS 0.4417 0.1578 0.04225 0.01120 0.00767

γ 170 110 75 50 75

TNWL 0.1491 0.0311 0.01248 0.00471 0.00386

λRLSopt
0.9975 0.9825 0.9800 0.9850 0.9900

evolution of the MSE and the convergence time as a function

of the buffer length P , also for fTs = 0.001. For low val-

ues of the buffer length P the algorithms (ICAMP-A-F for

P = 2, ICAMP-A-V for P = 2, 3) exhibit large errors for

a small number of tests; we removed the associated test runs

from the data presented in the figures. The buffer B mitigates

any unwanted rapid changes in the support and allows the al-

gorithms to achieve a lower MSE. The length P can be chosen

as a trade off between the complexity and the MSE; it should

be selected sufficiently large to reject the possible instabili-

ties due to the approximations made; too large values have a

negative impact on the convergence time (Fig. 2).

5. CONCLUSIONS

We propose an adaptive low complexity algorithm, employ-

ing a fixed length buffer and a series of approximations, able

to outperform the non approximate counterpart and other

competing adaptive algorithms. The decrease in complexity

due to the update of the scalar products is proportional with

2 4 6 8 10 12 14 16 18 20

0.01

0.012

0.014

0.016

0.018

P (buffer length)

A
v
e

ra
g

e
 M

S
E

ICAMP−A

ICAMP−A−F

ICAMP−A−V

2 4 6 8 10 12 14 16 18 20

100

200

300

P (buffer length)

S
a

m
p

le
s

ICAMP−A

ICAMP−A−F

ICAMP−A−V

Fig. 2. Top: Average MSE as a function of the buffer length

P . Bottom: Convergence time (number of samples until the

MSE is within 5% of the average MSE) as a function of the

buffer length P . The variation time is given by fTs = 0.001.

1
2

N
M+P

which, for low sparsity levels and small buffers, be-

comes substantial. The choice of buffer length P is a trade

off between complexity and robustness.

6. REFERENCES

[1] D. Angelosante, J.A. Bazerque, and G.B. Giannakis,

“Online Adaptive Estimation of Sparse Signals: Where

RLS Meets the l1-Norm,” IEEE Trans. Sign. Proc., vol.

58, no. 7, pp. 3436–3447, Jul. 2010.

[2] B. Babadi, N. Kalouptsidis, and V. Tarokh, “SPARLS:

The Sparse RLS Algorithm,” IEEE Trans. Sign. Proc.,

vol. 58, no. 8, 2010.

[3] B. Dumitrescu, A. Onose, P. Helin, and I. Tăbuş, “Greedy

Sparse RLS,” IEEE Trans. Sign. Proc. (to appear), 2012.

[4] A. Onose and B. Dumitrescu, “Cyclic Adaptive Matching

Pursuit,” in ICASSP, Kyoto, Japan, Mar. 2012.

[5] S.G. Mallat and Z. Zhang, “Matching Pursuit with Time

Frequency Dictionaries,” IEEE Trans. Sgn. Proc., vol. 41,

no. 12, pp. 3397–3415, 1993.

[6] S.F. Cotter and B.D. Rao, “The Adaptive Matching Pur-

suit Algorithm for Estimation and Equalization of Sparse

Time-Varying Channels,” in 34th Asilomar Conf. Sign.

Syst. Comp., 2000, vol. 2, pp. 1772–1776.

[7] M.G. Christensen and S.H. Jensen, “The Cyclic Match-

ing Pursuit and its Application to Audio Modeling and

Coding,” in 41th Asilomar Conf. Sign. Syst. Comp., Nov.

2007, pp. 550–554.

[8] J. Rissanen, “Order Estimation by Accumulated Predic-

tion Errors,” J. Appl. Probab., vol. 23, pp. 55–61, 1986.

114 PUBLICATIONS

PUBLICATIONS 115

Publication 5
Copyright c⃝2012 IEEE. Reprinted, with permission, from

[P5] B. Dumitrescu, A. Onose, P. Helin, and I. Tăbuş. Greedy sparse RLS. IEEE
Transaction on Signal Processing, 60(5):2194–2207, May 2012.

kulkki
Typewritten Text
In reference to IEEE copyrighted material which is used with permission in this thesis,
the IEEE does not endorse any of Tampere University of Technology's products or services.
Internal or personal use of this material is permitted. If interested in reprinting/republishing
IEEE copyrighted material for advertising or promotional purposes or for creating new
collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn
how to obtain a License from RightsLink.

116 PUBLICATIONS

1

Greedy Sparse RLS
Bogdan Dumitrescu, Member, IEEE, Alexandru Onose, Student Member, IEEE, Petri Helin, Ioan Tăbuş, Senior

Member, IEEE

Abstract—Starting from the orthogonal (greedy) least squares
method, we build an adaptive algorithm for finding online sparse
solutions to linear systems. The algorithm belongs to the exponen-
tially windowed RLS family and maintains a partial orthogonal
factorization with pivoting of the system matrix. For complexity
reasons, the permutations that bring the relevant columns into
the first positions are restrained mainly to interchanges between
neighbors at each time moment. The storage scheme allows the
computation of the exact factorization, implicitly working on
indefinitely long vectors. The sparsity level of the solution, i.e.
the number of nonzero elements, is estimated using information
theoretic criteria, in particular Bayesian Information Criterion
and Predictive Least Squares. We present simulations showing
that, for identifying sparse time-varying FIR channels, our algo-
rithm is consistently better than previous sparse RLS methods
based on the ℓ1-norm regularization of the RLS criterion. We
also use our sparse greedy RLS algorithm for computing linear
predictions in a lossless audio coding scheme and obtain better
compression than MPEG4 ALS using an RLS-LMS cascade.

Index Terms—adaptive algorithms, sparse filters, orthogonal
least squares, channel identification, audio coding

I. INTRODUCTION

Sparse solutions to systems of linear equations can be found,
in various ways, by many algorithms developed in the latest 15
years, with applications to typical signal and image processing
problems [1]. Most of these algorithms are in batch form, i.e.
need the whole data for computing the solution. However, in
applications like channel identification or echo cancellation,
where sparse filters are natural models, adaptive processing
is the adequate approach, able to cope with the time-varying
environment. Adaptive algorithms for sparse problems have
received less attention until recent years. They have the extra
challenge that not only the values of the filter coefficients may
change in time, but also its support. Here is a short review of
existing literature.

We discern two main directions of research. The first draws
its tools from the traditional arsenal of adaptive filtering
and is illustrated by papers like [2], [3], [4], [5], dealing
mostly with enhancements of the LMS algorithm. The second
starts from typical batch sparse approximation algorithms and
tries to find efficient adaptive counterparts. Convex relaxation
techniques (Basis Pursuit), in which the ℓ1 norm of the filter
is minimized together with an error criterion, have received
most of the attention. They have been used for deriving a

The authors are with Department of Signal Processing, Tampere University
of Technology, Finland. E-mails: firstname.lastname@tut.fi. B. Dumitrescu is
also with Department of Automatic Control and Computers, ”Politehnica”
University of Bucharest, Romania. This work has been supported by a Tekes
FiDiPro grant.
Copyright (c) 2012 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

specific LMS in [6] and sparse RLS algorithms in [7] and [8];
the latter two works (practically simultaneous and listed here
in alphabetical order) use low-complexity algorithms, namely
coordinate descent and approximate expectation maximization,
for adapting the filter coefficients at each time step; both
methods employ an exponential window. An algorithm based
on projections onto convex sets, using a sliding window and ℓ1
errors, was proposed in [9]. Expectation maximization, used
in [8], is extended to other adaptive algorithms in [10].

Greedy algorithms for sparse approximation have inspired
less adaptive methods. Matching Pursuit (MP) can be con-
verted to a low complexity adaptive form, as done in [11],
but its performance is usually much worse than that of
other sparse approximation algorithms. There is a mention
to Orthogonal MP (OMP) used in time-varying context [12];
however, the paper gives no efficient implementation. In [13],
an extended support is greedily estimated, normalized LMS is
used for coefficient adaptation, then only the most significant
coefficients are retained.

We propose here a greedy RLS (GRLS) algorithm with
exponential window, based on the Orthogonal Least Squares
(OLS) algorithm [14], known also as optimized OMP [15]. To
our knowledge, this is the first such algorithm. Essentially, at
each time moment, the algorithm updates a partial orthogonal
triangularization with pivoting of the data matrix. As such,
it is able to compute a true sparse least-squares solution.
Since OLS or OMP could imply a complete reshuffle of the
matrix columns, we put a cap on complexity by allowing
almost only neighbor permutations, i.e. permutations between
adjacent columns of the data matrix. Moreover, we are able
to limit also the necessary memory, by efficiently storing
information that allows the use of Householder reflectors on
indefinitely long vectors; we have found no similar trick in
the literature.

While Basis Pursuit gives itself an estimate of the number
of nonzero coefficients, greedy algorithms are somewhat rudi-
mentary in this respect. To overcome this difficulty, we take
advantage of the inherent ordering of the columns selected by
a greedy algorithm and employ information theoretic criteria
(ITC) for selecting the number of relevant columns of the data
matrix. This is a novelty in adaptive context, but ITC were used
with greedy algorithms in [14], [16]; there is also a theoretical
discussion in [17].

The contents of the paper is as follows. Section II presents
the basic problem of minimizing an RLS criterion and Section
III its solution with the OLS algorithm. Section IV is dedicated
to our greedy sparse RLS; it presents in detail the update of
the triangular factorization, using the assumption that a bound
for the number of nonzero coefficients is known. Section
V shows how ITC can be integrated in the algorithm such

2

that it can work without additional information regarding the
sparsity level. Section VI contains simulations for time-varying
FIR channel identification, including comparisons with the
algorithms from [7] and [8]. Section VII presents lossless
coding results using a coder based on our GRLS algorithm.

A first form of our algorithm appeared in [18]. An extension
to sliding window RLS (not treated at all here) can be found
in [19].

II. THE PROBLEM

The adaptive filtering problem consists of estimating, at
each time moment t ∈ N, the value of a (possibly time-
varying) vector xt ∈ RN , given input vectors aτ ∈ RN and
output dτ , with τ ≤ t, based on the errors

eτ = dτ − aT
τ xt. (1)

A standard example is that of FIR channel identification, in
which xt is the vector—to be estimated—of filter coefficients
and the filter input and output samples at time τ are uτ and
dτ , respectively; for a filter with length N , the input vector
contains consecutive (in time) inputs

aτ = [uτ uτ−1 . . . uτ−N+1]
T . (2)

Most currently, a least-squares criterion is employed and the
errors are exponentially windowed, giving the RLS criterion

Jt(xt) =
t∑

τ=0

λt−τe2τ , (3)

where λ is the forgetting factor. The same criterion can be
written as the squared norm of the residual of the linear system
Atxt ≈ dt, in the form

Jt(xt) = ∥dt −Atxt∥2, (4)

where At ∈ R(t+1)×N , dt ∈ Rt+1; the i-th row of matrix
At, i = 1 : t + 1, is

√
λt−i+1aT

i−1 and the i-th element of
vector dt is

√
λt−i+1dt (all indices of matrices and vectors

start from 1), hence allowing the recursive description

At =

[√
λ ·At−1

aT
t

]
, dt =

[√
λ · dt−1

dt

]
. (5)

We investigate the problem of minimizing the RLS criterion
(3) when it is known that the solution xt is a sparse vector, i.e.
the number of its nonzero elements, denoted ∥xt∥0, is small
compared to its length N . For most of the presentation we
will assume that a bound M is known such that ∥xt∥0 ≤M ,
but in Section V we will treat algorithmically the case where
such a bound is not available. We name M -sparse a solution
with at most M nonzeros.

III. ORTHOGONAL LEAST SQUARES

The base of our adaptive approach is the orthogonal least
square (OLS) algorithm [14], which belongs to the group of
greedy algorithms for solving LS problems like minimizing
(4), along with orthogonal matching pursuit (OMP) and its
many variations. The algorithm computes the partial orthogo-
nal triangularization with pivoting

AtPt = QtRt, (6)

where Qt ∈ R(t+1)×(t+1) is an orthogonal matrix, Rt ∈
R(t+1)×N is upper triangular in its first M columns and Pt is
a permutation matrix that brings the columns corresponding
to the nonzero elements of xt into the first M positions; these
columns are named active, while the remaining N −M are
called inactive. The active columns are selected one by one,
the k-th column being chosen such that, when appended to the
already selected k−1 ones, produces the k-sparse solution with
smallest LS residual. The algorithm is shown in Table I, with
all computations performed in place.

We denote A and I the sets of indices of the active and
inactive columns, respectively; for notation simplicity, we
often drop the index t; we denote xA the vector of nonzero
elements of xt; for a matrix, a similar notation is used for its
restriction to the respective set of columns. The output of the
algorithm is

QT
t AtPt = Rt =

[
RA RI
0 F

]
, QT

t dt =

[
b
g

]
. (8)

The solution is obtained by solving an M × M triangular
system:

xA = R−1
A b, xI = 0. (9)

The orthogonal matrix Qt is not needed explicitly, it only
has to be applied on At and dt; the permutation matrix Pt

can be stored in the vector p, which contains the order of
the variables in xt. The distinctive feature of the algorithm
is the greedy column selection in step 1.1 [14]: the chosen
column has the largest relative projection on the residual,
but the projection is computed using only the components of
these vectors (columns and residual) that are orthogonal on the
subspace of already selected k−1 columns (in contrast, OMP
uses the full vectors). This choice minimizes the LS residual,
given the previous k − 1 columns; hence, OLS is also named
the ”greedy LS” algorithm. For the sake of completion, we
give in the Appendix 1 a full justification of the choice (7).

Obviously, applying the OLS algorithm at each t has huge
complexity, both in terms of computation and memory; the
next section will present an approximate on-line version.

IV. GREEDY SPARSE RLS ALGORITHM

We present here an adaptive algorithm that is able to main-
tain information which, at each time t, is essentially equivalent
to the OLS output from (8), but with a different permutation,
which results from low-complexity considerations. Despite this
difference, the simulations described in Section VI show that
the adaptive algorithm gives results that are comparable or
even better than those of OLS.

A. Principles of the algorithm

The algorithm, named Greedy RLS (GRLS), updates at each
t only the first M rows of the data from (8), precisely the
matrix R = [RA RI] ∈ RM×N and the vector b ∈ RM .
This information is associated with the present, since its active
part, RA and b, is used for computing the current solution.
The past information, represented by F and g in (8), cannot
be dismissed, since the active columns may change, and it
cannot be stored explicitly, since it grows indefinitely with t.

3

TABLE I
ORTHOGONAL LEAST-SQUARES ALGORITHM.

Algorithm OLS (Orthogonal least-squares)
Input. A ∈ R(t+1)×N , d ∈ Rt+1, M
0. p = [1 2 . . . N]
1. for k = 1 : M

1.1. Choose ”best” column:

j = arg max
ℓ=k:N

|A(k : t+ 1, ℓ)Td(k : t+ 1)|/∥A(k : t+ 1, ℓ)∥ (7)

1.2. Swap columns k and j of matrix A. Swap p(k)↔ p(j).
1.3. Find Householder reflector Uk that zeros the k-th column of A below the diagonal.
1.4. Put A← UkA, d← Ukd.

Output: active columns indices A = p(1 : M); the nonzero elements of the solution are obtained by solving the upper triangular
system A(1 : M, 1 : M) · xA = d(1 : M).

We replace it with the fixed-size scalar products among the
past vectors:

Ψ = F TF ∈ R(N−M)×(N−M), s = F Tg ∈ RN−M .
(10)

Note that Ψ is a symmetric matrix, hence only its upper
triangle should be stored; for brevity reasons, we will update
the full matrix Ψ in the description of the algorithms but count
only the relevant operations. Also, the permutation vector
p ∈ NN is used for storing column order. This information,
namely R, b, p, Ψ, s, will be called GRLS data.

The GRLS data can be maintained with relatively low
complexity, as we will show later, if some constraints on
the possible permutations are imposed. Allowing arbitrary
permutations, as dictated by the full OLS algorithm, is not
possible due to the potential destruction of the triangular
form of R; imagine that the first column chosen by the OLS
algorithm at time t is one of the inactive columns at time t−1;
if this happens, permuting this column in the first position
completely destroys the triangularity, in the sense that the
triangularization of the permuted R has to be made as for
a full matrix. To avoid this situation, we rely on the slow
time-variability of the support of the solution and we replace
the full search from (7) with the following strategy:

• for each position k = 1 : M − 1 we let compete only
columns k and k+1; so, the permutations that may occur
are only between neighbors in the active set;

• for the last active position (M), we allow all columns
(positions M to N) to compete, like in (7); so, at most
a single inactive column may become active at time t.

Moreover, the complexity of the algorithm can be further de-
creased by performing the permutations only at time moments
that are multiple of some small integer τ0.

We describe next the most important parts of the algorithm.

B. Basic update

When the active set A is not changed and no permutations
are performed (i.e. when t mod τ0 ̸= 0), the necessary
operations are those described in Table II and have the typical
form of an orthogonal triangularization update. Actually, the
same operations are employed at all times t, as explained later.
In step 1, the current data vector is appended to the matrix R,

producing an arrow matrix; the triangular form is restored in
the first M columns by zeroing, in step 2, the elements of the
last row via Givens rotations. The remaining (transformed)
elements of the new row are moved into the past in step 3 and
then the row can be formally deleted in step 4.

The complexity of step 1 is about MN operations; an
operation is either a multiplication or an addition. The re-
triangularization also needs O(MN) operations, since at each
k only rows k and M + 1 are involved and the number of
operations is proportional to N − k. The past update (12) is
the most time consuming task, requiring about 3/2 ·(N−M)2

operations.

C. Neighbor permutation

We describe now the permutation operations that involve
two neighbor columns. Let us first notice that the test (7)
can be applied as well before or after the Basic update re-
triangularization; this is due to the fact that Givens rotations
are orthogonal matrices and, when they multiply several
vectors, they do not change the scalar products among these
vectors. Hence, we work on the GRLS data as given by the
Basic update algorithm.

The permutation algorithm is shown in Table III. At iteration
k, instead of choosing the best next column among all columns
k : N , we restrain our search to columns k and k + 1.
The test (13) is the restrained version of (7). It is so simple
because columns k and k + 1 have only one and two,
respectively, relevant nonzero elements (on and below row k).
A permutation introduces only a subdiagonal element, that can
be eliminated with a single Givens rotation; the situation is
illustrated in Figure 1 for k = 1; the nonzero elements are
represented by × and those modified by an operation by ∗;
the figures show R: (a) initially, (b) after the permutation and
(c) after the application of the Givens rotation.

The number of operations is at most O(MN), if all permu-
tations are performed, and is small compared to the cost of
the Basic update algorithm.

D. Selection of last active column

After the neighbor permutations have been performed, the
M -th and last active column is selected like in the OLS

4

TABLE II
BASIC UPDATE BY RE-TRIANGULARIZATION.

Algorithm Basic update
Input. Current data: at ∈ RN , dt ∈ R. GRLS data: R ∈ RM×N (upper triangular), b ∈ RM , p ∈ NN , Ψ, s as in (10).
1. Append current data to present information:

R←
[√

λ ·R
aT
t (p)

]
, b←

[√
λ · b
dt

]
. (11)

2. for k = 1 : M (re-triangularization of arrow matrix)
2.1. Compute Givens rotation Gk that zeros R(M + 1, k) using R(k, k)
2.2. Put R← GkR, b← Gkb

3. Denoting φT = R(M + 1,M + 1 : N), γ = b(M + 1), update past:

Ψ← λΨ+φφT , s← λs+ γφ (12)

4. Delete row M + 1 of R and b
Output: updated GRLS data.

TABLE III
NEIGHBOR PERMUTATIONS ALGORITHM AND RE-TRIANGULARIZATION.

Algorithm Neighbor permutation
for k = 1 : M − 1

1. if column k + 1 is better than k, i.e. if

|b(k)| <
|R(k, k + 1)b(k) +R(k + 1, k + 1)b(k + 1)|√

R(k, k + 1)2 +R(k + 1, k + 1)2
(13)

1.1. Swap columns k and k + 1 of R. Swap p(k)↔ p(k + 1).
1.2. Compute Givens rotation Ĝk that zeros R(k + 1, k) using R(k, k)
1.3. Put R← ĜkR, b← Ĝkb

× × × × ×
× × × ×
× × ×
(a)

∗ ∗ × × ×
∗ × × ×
× × ×
(b)

∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
× × ×
(c)

Fig. 1. Matrix R during the first iteration of algorithm Neighbor permutation
(M = 3, N = 5).

algorithm, using the criterion (7). However, for the inactive
columns, found in positions ℓ = M + 1 : N , past information
is needed; recalling the definition (10) of past scalar products,
the quantity whose maximum is sought is

α(ℓ) =
|R(M, ℓ)b(M) + s(ℓ−M)|√
R(M, ℓ)2 +Ψ(ℓ−M, ℓ−M)

. (14)

(Remind that Ψ and s are defined only for the inactive
columns, hence index ℓ − M corresponds to column ℓ.)
Accordingly, the test from step 2 of the algorithm in Table IV
decides the last active column; the left term of the inequality
is similar to that from (13), since the M -th column has no
past (is zero below the diagonal). If the M -th column is still
the best, there is nothing more to be done. If the inactive
column j > M is better, it has to be permuted into the
M -th position and then zeroed below the diagonal, using a
Householder reflector. However, since the past of the column
is not stored explicitly, this operation and the remainder of the
algorithm require explanations.

At this point, the first M − 1 rows of the matrix and vector
from (8) are no longer relevant. We work only with vectors

(columns) of unknown length m, having a known value on
their first position, which belongs to the M -th row of (8), and
other values stored indirectly through scalar products. If c is
such a vector, we split it as

c =

[
c1
c̃

]
, (15)

where c1 is a scalar. Let c be the new M -th column of Rt with
the first M − 1 elements removed; the Householder reflector
that zeroes all its elements but the first is

U = I − (uuT)/β, (16)

where the vector u ∈ Rm (split like in (15)) and the scalar β
are defined by

σ = sgn(c(1))

√√√√ m∑
i=1

c(i)2 = sgn(c1)
√
c21 + c̃T c̃, (17a)

u1 = c1 + σ, (17b)
ũ = c̃, (17c)
β = u1σ. (17d)

The first element of the transformed vector Uc is equal to
−σ. The values σ, u1 and β from (17a), (17b), (17d) can
be computed since the scalar product c̃T c̃ is stored. This is
reflected in lines 2.4–2.7 of the Last active column algorithm.
The vector ũ = c̃ is not explicitly available, but it turns out
that this is not necessary.

5

TABLE IV
ALGORITHM FOR SELECTION OF THE M -TH ACTIVE COLUMN AND RE-TRIANGULARIZATION.

Algorithm Last active column
1. Compute j = argmaxℓ=M+1:N α(ℓ), see (14)
2. If |b(M)| < α(j) (column j is the best and must enter the active set)

2.1. Swap columns M and j of R. Swap p(M)↔ p(j)
2.2. Save z = Ψ(:, j −M). Set column and row j −M of Ψ to zero.
2.3. Save η = s(j −M), put s(j −M)← 0.
2.4. σ = sgn(R(M,M))

√
R(M,M)2 + z(j −M). Put z(j −M)← 0

2.5. u(1) = R(M,M) + σ, β = u(1)σ
2.6. Save φT = R(M,M + 1 : N), γ = b(M)
2.7. R(M,M)← −σ
2.8. for k = M + 1 : N

2.8.1. θ = [u(1)R(M,k) + z(k −M)]/β
2.8.2. R(M,k)← R(M,k)− θu(1)

2.9. b(M)← b(M)− [u(1)b(M) + η]u(1)/β
2.10. s← s+ γφ−R(M,M + 1 : N)b(M)
2.11. Ψ← Ψ+φφT −R(M,M + 1 : N)TR(M,M + 1 : N)

Let v be another column of Rt or QT
t dt from (8), with

the first M − 1 elements removed; to update the ortogonal
triangularization, we have to multiply this column with the
Householder reflector, i.e. to compute

w = Uv = v − uTv

β
u.

Splitting again like in (15) and taking into account that ũ = c̃,
this amounts to

θ = uTv/β = (u1v1 + c̃T ṽ)/β, (18a)
w1 = v1 − θu1, (18b)
w̃ = ṽ − θc̃. (18c)

Relations (18a), (18b) and (17b) show that w1 can be com-
puted, since the past scalar product c̃T ṽ is available. Hence,
the M -th row of the representation (8) can be computed, which
is explicited in lines 2.8 and 2.9 of the Last active column
algorithm.

It remains to update the past scalar products (10). Let now y
and v be two distinct arbitrary columns of Rt or QT

t dt from
(8), with the first M−1 elements removed; their multiplication
with the reflector (16) produces the vectors z = Uy and w =
Uv. Since U is orthogonal, the scalar products zTw and yTv
are equal. Using again the splitting (15), it results that

z̃T w̃ = ỹT ṽ + y1v1 − z1w1. (19)

So, the scalar products can be updated using only the values
on the M -th row of the representation (8), before and after
the multiplication with the Householder reflector (16). This is
implemented in lines 2.10 and 2.11 of the Last active column
algorithm.

The complexity of the Last active column algorithm is
dominated by the scalar product updates and is about 2(N −
M)2 operations if an inactive column becomes active and
O(N −M) otherwise.

E. Algorithm overview
The structure of the overall GRLS algorithm is shown in

Table V. If a regularization term δλt∥xt∥22 is added to the cri-
terion (3), the initialization A−1 =

√
δIN , b−1 = 0 is needed

for the construction (5). This amounts to the initialization of
R and Ψ as in Table V. The processing required at each time
t is in accordance with the developments from the previous
sections; it is understood that all the operations are performed
on the GRLS data described in algorithm Basic update. We
note that the estimation xt is typically used at time t+1, e.g.
for prediction. The overall average number of operations is(

3

2
+

2

τ0

)
(N −M)2 +O(MN), (20)

which is typically less than the standard RLS complexity of
4N2 operations for a full filter of length N . The worst case
complexity is about 7/2 · (N −M)2, for τ0 = 1 and assuming
that all column permutations are necessary; in this case, the
constant multiplying the MN term in (20) is about 12; so, for
reasonable sparse systems with M = N/10, the worst case
complexity of GRLS is about the same as that of standard
RLS.

F. Modifying the number of active columns

The GRLS algorithm from Table V has the drawback of
assuming that a bound M for the number of nonzeros is
known. If this bound is good, in particular equal to the true
value, the behavior of GRLS is very good, as the experiments
will show. However, a large M can degrade the performance,
and this was suggested by some simulations shown in [18].
Since a good guess for M is usually not available, it may be
desirable to vary M in the GRLS algorithm. Postponing for
the next section the criteria that decide how M should vary,
let us note here that decreasing or increasing M by 1 can be
easily incorporated in the GRLS algorithm.

Decreasing M means simply deleting the M -th row of R
and b, but not before using it for updating the past information,
similarly to steps 3 and 4 of Basic update; this can be done
after step 2.2.1 of the GRLS algorithm; when M is decreased,
step 2.2.2 is no longer necessary. Increasing M can be done by
running an algorithm similar with Last active column for the
selection of the (M + 1)-th active column; for keeping worst
case complexity under control, this can be done at times t that
follow a multiple of τ0. Since the formal description of these

6

TABLE V
OVERVIEW OF THE GRLS ALGORITHM.

Algorithm GRLS
Parameters: M—sparsity level, τ0—permutation update lag, λ—forgetting factor, δ—regularization factor
1. Initialization: R(:, 1 : M) =

√
δI , b = 0, Ψ = δI , s = 0, p = [1 2 . . . N].

2. At each time t
2.1. Get current data at ∈ RN , dt ∈ R and run Basic update
2.2. If t mod τ0 = 0

2.2.1. Run Algorithm Neighbor permutation
2.2.2. Run Last active column

2.3. Estimation: the nonzero elements of xt are obtained by solving the upper triangular system R(:, 1 : M) · xA = b, with
A = p(1 : M) the set of active column indices

operations takes too much space and is rather straightforward,
the reader interested in details can consult our programs at
http://www.cs.tut.fi/∼bogdand/Software/grls.zip.

V. SPARSITY LEVEL SELECTION USING INFORMATION
THEORETIC CRITERIA

Greedy algorithms like GRLS order the elements of the
solution xt according to their (approximated) relevance. If
Lt = ∥xt∥0 is the true number of nonzeros of the solution
and if the parameter M is large enough, i.e. M ≥ Lt, it is
reasonable to assume that for slowly time-varying processes
and after a sufficiently long transitory regime, the first Lt

elements of the active set given by the GRLS algorithm are
the true nonzero positions. Assuming that an estimated value
L̂t ≤M is available for Lt, there is no problem in computing
an L̂t-sparse solution in step 2.1 of the GRLS algorithm,
instead of an M -sparse one. The only question is how to
estimate Lt reliably.

Information theoretic criteria (ITC), as traditionally used for
order selection (like e.g. for AR models), are a perfect tool in
this context; assuming that the model coefficients are ordered,
the only decision is on how many coefficients to consider.
A recent discussion on ITC for forgetting factor least-squares
algorithms can be found in [20]; basic work on this topic was
done in [21], [22], [23]. Among the several ITC, with possible
parameterized extensions, we have found two criteria giving
good results in the GRLS context. (We do not exclude the
possibility that other criteria give better results.)

A. Bayesian Information Criterion (BIC)
The Bayesian Information Criterion [24] uses the squared

norm (4) of the residual in the form

Jt(x̂t,k) = ∥dt −Atx̂t,k∥2, (21)

where x̂t,k is the k-sparse solution at time t, as computed by
the GRLS algorithm, with k taking values between 1 and M .
BIC combines the squared norm (21) of the residual with the
number of samples, i.e. the size of dt, taking into account the
forgetting factor; the effective number of samples is defined as

nef,t =

t∑
τ=0

λτ = 1 + λnef,t−1. (22)

Using these ingredients, the BIC criterion has the expression

BICt(k) = nef,t lnJt(x̂t,k) + (k + 1) lnnef,t. (23)

The BIC criterion can be easily computed in the GRLS
context, taking advantage of the properties of the orthogonal
triangularization (8). The residual of a k-sparse solution has
the same norm as the vector QT

t dt from (8) with the first k
elements removed, e.g. the residual of a M -sparse solution
has the squared norm equal to ∥g∥2; see (33) in Appendix 1.
The squared norm of the full vector, ∥QT

t dt∥2 = ∥dt∥2, can
be computed with the recursion in time

νt = d2t + λνt−1, ν0 = d0. (24)

At time t, the squared norm (21) of the residual can be
computed with the recursion (in ”order”)

Jt(x̂t,k) = Jt(x̂t,k−1)− b(k)2, Jt(x̂t,0) = νt, (25)

where b is the vector from (8), as updated by the GRLS
algorithm at time t. We note that the number of operations
required by the recursions (22), (24) and (25) is insignificant
in the GRLS algorithm, being only O(M).

B. Predictive Least Squares (PLS)

The PLS criterion [22] is

PLSt(k) =
t∑

τ=0

λt−τeτ (k)
2, (26)

where eτ (k) is the a priori estimation error at time τ produced
by the k-sparse solution x̂τ−1,k, i.e. eτ (k) = dτ − aT

τ x̂τ−1,k

(compare with (1)). The criterion (26) can be updated easily
by

PLSt(k) = λ · PLSt−1(k) + et(k)
2. (27)

The computation of the a priori errors et(k), k = 1 : M , can
be implemented through a recursion shown in Appendix 2 and
requires O(M2) operations, hence it is still relatively cheap
in the context of the GRLS algorithm.

C. ITC in the GRLS algorithm

We describe here two variants of GRLS in conjuction with
ITC use. In the first, the maximum sparsity level M is fixed.
Its value should be large enough to cover all practical cases of
sparse filters occurring in the application at hand, but as small
as possible for complexity reasons. The ITC criteria (23) or
(26) are computed before step 2.3 of GRLS. Their minimal
value is attained for

L̂t = arg min
k=1:M

BICt(k) or PLSt(k). (28)

7

Then, in step 2.3 of GRLS, the nonzero elements of the
solution are computed by solving the triangular system R(1 :
L̂t, 1 : L̂t) · xA = b(1 : L̂t), with A = p(1 : L̂t).

The second variant of GRLS employs a variable M , modi-
fied using a parameter ∆. This parameter has the significance
of a safety cushion which ensures that there are enough
candidates for finding the best number of nonzeros (28). More
precisely, the value of M is modified with the objective of
making it equal to L̂t + ∆. Since, as explained in section
IV-F, it is more natural to modify the value of M only by
1, the following simple approach is used. After computing
(28), the value of M is increased by 1 if M < L̂t + ∆,
decreased by 1 if M > L̂t+∆ and preserved if M = L̂t+∆.
The BIC criterion can be computed as for fixed M , since
the only required past information is (24). However, PLS
needs the past a priori errors for all k = 1 : M ; after M
increases, the past values of eτ (M) are no longer available
for some τ < t. In this situation, lacking other information,
we put PLSt(M) = PLSt(M − 1); if M does not decrease,
the PLS will tend to its true value, due to the effect of the
forgetting factor. Also, an implicit approximation is made
at neighbor permutations, where the past PLS values are
preserved, although the new models are actually different.
Despite these approximations, PLS works well in practice, as
shown in the next sections.

VI. SIMULATIONS

The performance of the algorithms was tested for a sparse
FIR channel identification problem (1), (2) with the true
number of nonzero coefficients Lt = 5 and Lt = 10 and
a filter length N = 200. The positions of the nonzero
coefficients are randomly chosen and the coefficient variation
is described by three different models. Most of the simulations
were performed for a coefficient variation according to the
sinusoidal model

xt(i) = ai cos(2πfTst+ αi), (29)

where i is the position of a nonzero coefficient in the vector xt

and the amplitude ai and phase αi are uniformly distributed
in [0.05, 1] and [0, 2π], respectively. The product fTs, where
f is the frequency and Ts is the sampling interval, determines
the variation speed of the channel. We have also used the
Gauss-Markov model

xt(i) = βxt−1(i) +wt(i), (30)

where x0(i) is generated independently with the distribution
N (0, 1) and wt(i) is generated independently with N (0, 1−
β2). The variation speed is controlled by the parameter β ∈
(0, 1). The third model is a sparse multipath channel generated
using Jakes’ sum of sinusoids model. Each coefficient xt(i) is
a sum of 10 sinusoids with frequencies fn = f cosϑn, where
ϑn is uniformly distributed in [0, 2π]. Similarly to (29), the
variation speed is determined by the product fTs. In all cases
the coefficients vector is normed such that its average squared
norm over all t is 1.

The input samples, associated with the input vectors (2), are
normally distributed according to N (0, 1), while the outputs

are corrupted by an additive Gaussian noise with σ2 = 0.01.
The performance of the algorithms is measured in terms of
the coefficient mean squared error

MSEt = E{||x̂t − xt||22}, (31)

where xt contains the actual values of the coefficients and
x̂t their estimates. MSEt is evaluated by averaging over 1000
runs at a given t, for each model and each algorithm, and the
average MSE is defined as the average of MSEt (31) over the
last 100 values of t.

The tested algorithms are named as follows: RLS, the
standard algorithm that computes the full filter of length N ;
RLS-SP, a sparsity informed RLS algorithm, i.e. having prior
knowledge of the nonzero coefficients number and positions;
GRLS, the algorithm presented in Table V, running with
M = Lt, i.e. knowing only the true number of nonzeros; OLS,
the batch algorithm run at each time t on all accumulated data,
knowing Lt; GRLS-BIC-F, the algorithm that uses the BIC
criterion for estimating the number of nonzeros and employs
a fixed upper bound M ; GRLS-BIC-V, the algorithm that uses
the BIC criterion for estimating the number of nonzeros and
employs a variable upper bound using the parameter ∆, as
described in Section V-C; GRLS-PLS-F and GRLS-PLS-V,
similar with the above two algorithms, but using the PLS
criterion; SPARLS, the algorithm presented in [8]; OCCD-
TNWL, the best (but also the most complex) among the
algorithms presented in [7].

All the algorithms based on GRLS use τ0 = 2, i.e. the per-
mutations are performed only at every other time sample. The
configuration parameter γ for SPARLS is optimized by grid
search with the step 5 for each of the simulation conditions,
if not otherwise specified; the other parameter is α = σ

2

√
N ,

chosen as recommended in [8]. For OCCD-TNWL, the penalty
term of the filter ℓ1-norm regulatization term in the RLS

criterion was taken as λt =
√

2σ2 log(N)
√∑t

i=1 λ
2(t−i);

other parameters are µt = λt/
∑t

i=1 λ
t−i and a = 3.7; these

choices are the same as in [7]. The true value of σ was
provided to both SPARLS and OCCD-TNWL.

The OCCD-TWNL algorithm uses an inner RLS to provide
weights for its l1-norm regularization solver that generates the
sparse estimator, thus the performance of RLS can influence
the resulting solution. Especially for fast varying channels, the
RLS algorithm behaves poorly if we use a small forgetting
factor. In order to asses the impact the RLS performance
has, we performed tests (as suggested by a reviewer) in
which the inner RLS used in OCCD-TNWL had a different
forgetting factor λRLSopt , chosen such that the RLS algorithm
would produce the smallest MSE. This forgetting factor was
found using a grid search with a step size 0.0025. We name
OCCD-TNWL-OPT the resulting algorithm (and RLS-OPT
the underlying RLS).

In Table VI we present the average MSE for the algorithms
presented above, together with the parameters used for the
configuration of the algorithms, in the case where Lt = 5.
The forgetting factor λ was chosen upon the principle that it
should decrease as the variation speed increases, but otherwise
not optimized; we will present later a discussion on the effect

8

of λ. The best MSE value of an algorithm, excluding RLS-SP,
GRLS and OLS (which have the benefit of prior information),
for a set of simulation conditions, is marked with bold digits.
For the values marked with ∗ only the stable tests were
considered because the algorithm OCCD-TNWL was unstable
for a small number of tests.

Table VII presents information similar to that from Table VI,
but for Lt = 10. Due to the relatively similar performance,
we give in Table VIII only a shorter set of results for the
Gauss-Markov and Jakes models.

We conclude from the simulations that, excepting the con-
stant channel case, where OCCD-TNWL gives the best MSE,
our algorithms are superior to those from [7] and [8]; for
varying channels, OCCD-TNWL-OPT is best in a single case;
in all the others, a GRLS algorithm is the best. The gap
widens as the variation speed increases. For smoothly varying
coefficients, like in the sinusoidal and Jakes models, the
GRLS family is clearly better than the competitors. For the
Gauss-Markov model, where the variation has an impulsive
component, the gap between GRLS and OCCD-TNWL-OPT
is relatively narrow.

Remarkably, the use of ITC puts the results on par with
those given by the GRLS algorithm that knows the true number
of nonzeros; for varying channels, a possible explanations for
the better results given by BIC or PLS is that they are able to
adapt to the situations when some coefficients become nearly
zero, while GRLS is not. It is hard to point out a clear winner,
but BIC seems to give slightly better results than PLS for
variable M , while the situation is reversed for fixed M . Higher
values of M and ∆ appear to be better for high variation
speeds. From these and other experiments, we estimate that
the GRLS family of algorithms seems robust to the values
of these parameters, as long as they are not too small. Taking
∆ = 5 appears as a safe choice for the variable M algorithms.
If M is fixed, then a good choice, as long as only MSE is
concerned, would be to take M ≥ maxt Lt +5; of course, an
estimate for maxt Lt should be available.

The poor behavior of the batch OLS algorithm for quickly
varying channels (associated with a relatively low forgetting
factor) is somewhat surprising. One would expect OLS and
GRLS have similar performance. The explanation is that, in
case of adverse noise, OLS has occasionally large errors due
to the selection in the first positions of a wrong column,
which completely spoils the support. The wrong support is
quickly corrected in the next moments, since OLS can change
the whole support at each time. On the contrary, GRLS
reacts slower due to the neighbor exchange mechanism; the
wrong columns enter in the last position of the active set and
do not have time to advance further, hence the errors they
cause are small. So, by tempering the support changes, GRLS
is inherently more robust than the (sometimes) excessively
greedy OLS.

To have an idea of the convergence speed of the algorithms,
we present in Figure 2 the evolution in time of MSEt. The
channel is variable according to a sinusoidal model with
fTs = 0.001. At time t = 500, three of the Lt = 5 coefficients
suddenly and randomly change positions. The forgetting factor
is λ = 0.92 for all algorithms; the optimal forgetting factor

λRLSopt = 0.9825 was used for both RLS-OPT and the
internal RLS of OCCD-TNWL-OPT. The left figure presents
the evolution of only one BIC algorithm and the right figure
allows a comparison of the effects of M and ∆ (GRLS and
RLS-SP are shown for reference). The algorithms using the
PLS criterion behave similarly. We remark that a large value
of M for the fixed case causes a slower convergence speed,
but the fixed M algorithm with relatively low M (still much
larger than Lt) and the variable M algorithm have convergence
speeds comparable to OCCD-TNWL and better than SPARLS.

A series of tests were also performed for different filter
lengths, but keeping Lt = 5, to assess the performance as a
function of N . Figure 3 shows the average MSE for λ = 0.92
and fTs = 0.001; the PLS algorithms (not shown) behave
similarly with BIC ones. We note that the GRLS algorithms
perform robustly, the MSE increasing moderately with N ;
the BIC and PLS versions give results that are similar and
often better than those of GRLS for all tested values of N .
In contrast, the performance of OCCD-TNWL, very good for
low N , deteriorates more abruptly.

Similarly, in Figure 4, we present average MSE values
for varying number Lt of nonzero coefficients and fixed
filter length N , again for λ = 0.92 and fTs = 0.001.
As Lt increases, the performance of all sparse algorithms
deteriorates, SPARLS behaving the most robustly. However,
GRLS is still better in this Lt range, which is high enough
for barely qualifying the model as sparse at the upper end. The
BIC and PLS algorithms have now different behaviors, with
PLS being clearly better for large Lt. Only the PLS algorithm
with fixed M = Lt + 10 is now constantly better than the
basic GRLS.

We have also varied the forgetting factor λ, keeping Lt = 5,
N = 200, fTs = 0.001. The obtained average MSE are shown
in Figure 5; again, the PLS algorithms give results similar with
BIC. The optimal λ is different for the different algorithms
(in particular, we note that the value λ = 0.92 chosen for the
previous simulations is not optimal for any algorithm); GRLS
algorithms attain their best performance for smaller forgetting
factors than SPARLS and OCCD-TNWL. However, unless the
forgetting factor is near 1 and all algorithms behave similarly
(but rather poorly), our algorithms are superior, for each λ and
also in the best case.

The above simulation results show that our GRLS algo-
rithms are almost always better than SPARLS and better than
OCCD-TNWL for time-varying channels. The complexity of
SPARLS is estimated at 20-30% of that of RLS in [8], by
effectively counting the operations performed by the running
algorithm. For τ0 = 2, we estimate based on (20) that our
algorithms have about 60-80% of RLS complexity, hence they
are about three times slower than SPARLS. OCCD-TNWL has
a clearly higher complexity, since it is built on top of the full
RLS; we estimate its complexity at 150% of that of RLS, so
GRLS is about twice faster. However, a definitive comparison
between the algorithms should be based on execution times
of professional implementations. The robustness of the GLRS
family to parameter variations and different channel conditions
also recommends it as a first choice algorithm in FIR channel
identification.

9

0 200 400 600 800 1000

10
−2

10
−1

10
0

t (time)

M
S

E
t

RLS−OPT

RLS−SP
GRLS

OCCD−TNWL−OPT

SPARLS

GRLS−BIC−F, M=20

0 200 400 600 800 1000

10
−2

10
−1

10
0

t (time)

M
S

E
t

GRLS−BIC−F, M=20

GRLS−BIC−F, M=40

GRLS−BIC−V, ∆=5

GRLS−BIC−F, ∆=10

RLS−SP
GRLS

Fig. 2. MSEt variation as a function of time t, for Lt = 5.

50 100 150 200 250 300

10
−2

10
−1

10
0

10
1

N (filter order)

A
ve

ra
ge

 M
S

E

RLS
RLS−OPT
RLS−SP
GRLS
OCCD−TNWL
OCCD−TNWL−OPT
SPARLS (1)
SPARLS (2)

50 100 150 200 250 300

10
−2

N (filter order)

A
ve

ra
ge

 M
S

E

GRLS−BIC−F, M=20
GRLS−BIC−F, M=40
GRLS−BIC−V, ∆=5
GRLS−BIC−V, ∆=10
RLS−SP
GRLS

Fig. 3. Average MSE as a function of N , for Lt = 5, λ = 0.92 and fTs = 0.001. For the SPARLS algorithm, the curve marked SPARLS (1) uses the
configuration parameters chosen for N = 200 in all other tests, while for SPARLS (2) the configuration parameters were tuned for each test case.

10 20 30 40 50
10

−2

10
−1

10
0

10
1

Lt (number of nonzero coefficients)

A
ve

ra
ge

 M
S

E

RLS
RLS−OPT
RLS−SP
GRLS
OCCD−TNWL
OCCD−TNWL−OPT
SPARLS (1)
SPARLS (2)

10 20 30 40 50
10

−2

10
−1

10
0

10
1

Lt (number of nonzero coefficients)

A
ve

ra
ge

 M
S

E

GRLS−BIC−F, M=L

t
+10

GRLS−PLS−F, M=L
t
+10

GRLS−BIC−V, ∆=10
GRLS−PLS−V, ∆=10
RLS−SP
GRLS

Fig. 4. Average MSE as a function of Lt, for N = 200, λ = 0.92 and fTs = 0.001.

10

TABLE VI
AVERAGE MSE VALUES FOR FILTER ORDER N = 200, WITH TRUE NUMBER OF NON-ZEROS Lt = 5 AND SINUSOIDAL COEFFICIENT VARIATION.

Variable Constant
fTs 0.005 0.002 0.001 0.0005 0.0002 0.0001 0 0
λ 0.86 0.90 0.92 0.94 0.96 0.98 0.99 0.995

RLS 13.06 5.3012 1.4565 0.36427 0.09774 0.04734 0.012360 0.005814
RLS-SP 0.089 0.0267 0.0110 0.00518 0.00246 0.00306 0.000260 0.000124
GRLS 0.277 0.0501 0.0178 0.00785 0.00343 0.00343 0.000260 0.000124
OLS 0.475 0.1130 0.0310 0.00923 0.00350 0.00344 0.000260 0.000124

GRLS-BIC-F
M = 20 0.211 0.0507 0.0174 0.00783 0.00334 0.00360 0.000450 0.000188
M = 40 0.194 0.0507 0.0173 0.00775 0.00353 0.00358 0.000391 0.000182

GRLS-BIC-V
∆ = 5 0.280 0.0540 0.0190 0.00881 0.00427 0.00384 0.000506 0.000190
∆ = 10 0.224 0.0485 0.0175 0.00763 0.00352 0.00364 0.000475 0.000189

GRLS-PLS-F
M = 20 0.213 0.0511 0.0189 0.00853 0.00356 0.00357 0.000324 0.000148
M = 40 0.194 0.0500 0.0180 0.00824 0.00374 0.00373 0.000336 0.000150

GRLS-PLS-V
∆ = 5 0.285 0.0569 0.0187 0.00762 0.00330 0.00340 0.000317 0.000147
∆ = 10 0.242 0.0570 0.0196 0.00845 0.00341 0.00346 0.000322 0.000149
SPARLS 0.824 0.4417 0.1578 0.04225 0.01120 0.00767 0.001267 0.000624

γ 215 170 110 75 50 75 95 150
OCCD-TNWL 2.72∗ 0.4802 0.0436 0.01231 0.00447 0.00372 0.000304 0.000127

OCCD-TNWL-OPT 0.498 0.1491 0.0311 0.01248 0.00471 0.00386 0.000298 0.000126
RLS-OPT 1.325 1.2808 0.8544 0.25247 0.06968 0.04406 0.002971 0.002974
λRLSopt 0.9975 0.9975 0.9825 0.9800 0.9850 0.9900 0.9975 0.9975

0.86 0.88 0.9 0.92 0.94 0.96 0.98

10
−2

10
−1

10
0

10
1

λ (forgetting factor)

A
ve

ra
ge

 M
S

E

RLS
RLS−SP
GRLS
OCCD−TNWL
OCCD−TNWL−OPT
SPARLS

0.86 0.88 0.9 0.92 0.94 0.96 0.98

10
−2

10
−1

λ (forgetting factor)

A
ve

ra
ge

 M
S

E

GRLS−BIC−F, M=20
GRLS−BIC−F, M=40
GRLS−BIC−V, ∆=5
GRLS−BIC−V, ∆=10
RLS−SP
GRLS

Fig. 5. Average MSE as a function of the forgetting factor λ, for Lt = 5, N = 200 and fTs = 0.001.

VII. APPLICATION TO LOSSLESS AUDIO CODING

The GRLS family of algorithms has been applied to lossless
audio coding by computing linear predictors that use the pre-
vious N samples for estimating the current sample. The same
prediction algorithm is run at the encoder and the decoder. At
the encoder, the prediction residuals are entropy coded using
the Golomb-Rice method and sent to the decoder. The decoder
restores the residuals and adds them to the predicted values,
thus retrieving the original samples.

To test the method, we used one minute extracts from 13
pieces of music. They were all 16-bit audio tracks sampled at
44100Hz. The material included pop music with human voice,
clean guitar and drums (’conga’, ’pinkmoon’, ’pocket’, ’or-
deal’), loud rock music (’forty’, ’mummified’), jazz (’sowhat’)
and classical music with full orchestra (’finlandia’, ’morgen’),
a few instruments (’prelude’, ’sunflower’, ’weep’) or choir

(’de ore leonis’).

Each extract was divided into 60 frames (each holding
44100 samples and encoded independently), to enable a more
arbitrary beginning point for decoding. The GRLS algorithms
were rerun with no prior information at the beginning of each
frame. Golomb-Rice was utilized to code the residual values
in blocks of 900 samples. For each block, the optimal number
of bits used for the remainder was sought by trying out each
value between 0 and 15. The forgetting factor is λ = 0.9965
and the permutation update lag is τ0 = 3. The BIC criterion
was modified by taking the effective number of samples as
nef = 4/(1−λ), which is 4 times higher than the asymptotic
value given by (22); this is justified by the compression results;
we mention that a factor of 2 was advocated in [21]. BIC and
PLS criteria have been used as in the algorithms GRLS-BIC-F
and GRLS-PLS-F from the previous section.

11

TABLE VII
AVERAGE MSE VALUES FOR FILTER ORDER N = 200, WITH TRUE NUMBER OF NON-ZEROS Lt = 10 AND SINUSOIDAL COEFFICIENT VARIATION.

Variable Constant
fTs 0.005 0.002 0.001 0.0005 0.0002 0.0001 0 0
λ 0.86 0.90 0.92 0.94 0.96 0.98 0.99 0.995

RLS 12.68 5.2811 1.4596 0.3666 0.09333 0.04312 0.012303 0.005795
RLS-SP 0.144 0.0393 0.0159 0.0077 0.00370 0.00327 0.000521 0.000256
GRLS 0.760 0.1128 0.0357 0.0153 0.00672 0.00428 0.000521 0.000256
OLS 1.014 0.3887 0.1425 0.03237 0.00743 0.00431 0.000521 0.000256

GRLS-BIC-F
M = 20 0.489 0.1082 0.0336 0.0132 0.00556 0.00412 0.000749 0.000324
M = 40 0.411 0.1029 0.0349 0.0140 0.00559 0.00409 0.000671 0.000317

GRLS-BIC-V
∆ = 5 0.699 0.1100 0.0328 0.0140 0.00643 0.00430 0.000777 0.000326
∆ = 10 0.571 0.1036 0.0322 0.0130 0.00557 0.00412 0.000747 0.000324

GRLS-PLS-F
M = 20 0.471 0.1035 0.0351 0.0141 0.00561 0.00399 0.000588 0.000289
M = 40 0.383 0.0929 0.0340 0.0144 0.00595 0.00423 0.000598 0.000290

GRLS-PLS-V
∆ = 5 0.701 0.1147 0.0328 0.0131 0.00552 0.00395 0.000584 0.000287
∆ = 10 0.569 0.1124 0.0351 0.0139 0.00553 0.00399 0.000591 0.000288
SPARLS 0.858 0.5223 0.2257 0.0657 0.01545 0.00894 0.002097 0.001052

γ 165 130 85 55 30 50 75 125
OCCD-TNWL 2.90∗ 0.7613 0.0984 0.0266 0.00937 0.00488 0.000631 0.000265

OCCD-TNWL-OPT 0.763 0.3866 0.0840 0.02788 0.00984 0.00511 0.000614 0.000263
RLS-OPT 1.325 1.2805 0.8565 0.25141 0.06496 0.03797 0.002969 0.002966
λRLSopt 0.9975 0.9975 0.9825 0.9800 0.9850 0.9900 0.9975 0.9975

TABLE VIII
AVERAGE MSE VALUES FOR FILTER ORDER N = 200, WITH TRUE NUMBER OF NON-ZEROS Lt = 5, RESPECTIVELY Lt = 10, AND COEFFICIENT

VARIATION ACCORDING TO THE GAUSS-MARKOV AND JAKES MODELS.

Gauss-Markov Model Jakes Model
Lt = 5 Lt = 10 Lt = 5 Lt = 10

β 0.99 0.999 0.99 0.999 fTs 0.001 0.0005 0.001 0.0005
λ 0.9 0.95 0.9 0.95 λ 0.92 0.94 0.92 0.94

RLS 4.941 0.6355 4.899 0.5857 0.8880 0.24613 0.8564 0.23998
RLS-SP 0.144 0.0303 0.188 0.0346 0.0071 0.00368 0.0112 0.00595
GRLS 0.289 0.0386 0.535 0.0552 0.0114 0.00556 0.0237 0.01161
OLS 0.383 0.0395 0.763 0.0650 0.0283 0.00832 0.1560 0.03225

GRLS-BIC-F
M = 20 0.269 0.0391 0.511 0.0513 0.0115 0.00540 0.0215 0.00982
M = 40 0.267 0.0400 0.509 0.0555 0.0113 0.00548 0.0239 0.01054

GRLS-BIC-V
∆ = 5 0.269 0.0388 0.494 0.0501 0.0128 0.00671 0.0219 0.01107
∆ = 10 0.260 0.0383 0.484 0.0498 0.0112 0.00542 0.0208 0.00971

GRLS-PLS-F
M = 20 0.282 0.0421 0.495 0.0534 0.0128 0.00601 0.0227 0.01030
M = 40 0.279 0.0419 0.482 0.0559 0.0124 0.00613 0.0240 0.01128

GRLS-PLS-V
∆ = 5 0.282 0.0390 0.493 0.0504 0.0117 0.00535 0.0212 0.00968
∆ = 10 0.295 0.0412 0.497 0.0533 0.0125 0.00574 0.0228 0.01025
SPARLS 0.554 0.0997 0.611 0.1175 0.1126 0.03173 0.1766 0.05071

γ 145 105 100 60 90 60 65 40
OCCD-TNWL 0.723 0.0468 0.863 0.0579 0.0257 0.00876 0.0610∗ 0.02060

OCCD-TNWL-OPT 0.290 0.0407 0.456 0.0544 0.0221 0.00908 0.0602 0.02192
RLS-OPT 1.048 0.3300 1.058 0.3025 0.5154 0.16287 0.5074 0.15757
λRLSopt 0.9975 0.9925 0.9975 0.9925 0.9825 0.9800 0.9800 0.9825

12

0 20 40 60 80 100 120 140 160 180 200

96

97

98

99

100

101

R
el

a
ti

v
e

co
d
e

le
n
g
th

/
%

M

conga
de_ore_leonis
finlandia
mummified
sowhat
de_ore BIC
de_ore PLS

Fig. 6. Relative code lengths with respect to a full predictor of length N =
200.

A. Performance of sparse predictors

We assess first the preformance of sparse predictors in
comparison with full ones computed with RLS. We take as
reference the results obtained with a full predictor of length
N = 200; for other predictors we report the relative code
length filesizepredictor/filesizefull,N=200 · 100%, where filesize
is the length of the compressed file (so, smaller values are
better). Figure 6 shows typical relative code lengths, other
test pieces being quite similar to ’finlandia’ and ’mummified’.
When GRLS with fixed number M of nonzeros (and order
N = 200) is used, it is clear that values of M in the range 20–
50 give better compression than the full predictor. However,
the optimal M is different for different pieces. When the BIC
or PLS criteria are used for order selection, the situation is
similar to that shown in the figure for ’de ore leonis’: the
compression is better than that with the best fixed M . For
BIC and PLS, M represents the allowed maximum number of
nonzeros; compression becomes slightly better as M increases;
a value of around 60 gives a good compromise between quality
and complexity.

To illustrate the ability of ITC to adapt the predictor order
to the audio contents, we show in Figure 7 the average (over
frames of 44100 samples) selected sparsity level, µL, for PLS
and BIC run on ’finlandia’. The structure of the song is visible
in the sense that at frames 5, 9 and 13 there are loud horn
sections while there is silence in between. Then comes a more
uniform part where there are multiple instruments, until about
frame 40 at which a quiet flute passage begins.

Increasing prediction order improves the best sparse predic-
tor results for almost all test pieces. Figure 8 shows relative
code lengths for several predictor orders, again with respect
to a full predictor of length N = 200. While the optimal
M increases relatively slowly, the compression is better as N
grows.

0 10 20 30 40 50 60

10

20

30

40

50

60

70

80

frame

µ
,
σ

’finlandia’

µ
L
 PLS

µ
L
 BIC

σ
L
 PLS

σ
L
 BIC

Fig. 7. Average selected L̂t based on ITC for ’finlandia’. The blue curves
show the standard deviation.

B. Comparison with MPEG-4 ALS

To evaluate the compression quality, we used
for comparison the reference software of MPEG-
4 Audio Lossless Coding, version RM23 (see
http://www.nue.tu-berlin.de/menue/research/projects/projects/
mpeg-4 audio lossless coding als/parameter/en/#230252),
selecting its compression mode based on a prediction scheme
similar to ours, where MPEG-4 uses a cascade made of an
RLS and several LMS full predictors [25]. In Table IX we
report the obtained compression ratios, defined as the ratio
(original file size)/(compressed file size).

MPEG-4 ALS was run with the parameters -z1 -r10
-n1764, which means that the orders were 8 for RLS and
128, 32 and 4 for the cascaded LMS predictors. The overall
predictor order is then 173. The option -r10 means that a
”random access” scheme was utilized so that decoding can
start at each 10 · 0.1 = 1 s. This is similar to our scheme and
relates to what we name frame length. The option -n1764
sets the frame length for LPC. Within this backward adaptive
context, it merely sets the block size for Golomb-Rice at
1764/4 = 441.

GRLS was run with the same order, N = 173, and the
residuals were entropy coded with the MPEG-4 method, such
that only predictors performance is compared. (We note that
our previously used simple Golomb-Rice residual coding gives
only slightly worse results.) The columns BIC 8 and PLS 8
correspond to predictors that always have nonzeros on their
first 8 positions; this is justified by the presence of these posi-
tions in practically all observed sparse predictors computed by
GRLS; this choice slightly improves the compression ratios.
It can be seen from Table IX that our sparse predictors are
better than the cascaded MPEG-4 predictors. However, at this
moment, without having a fully optimized implementation that
would compete not only in compression ratio but also in speed,
we do not claim that our coder is better than MPEG-4 ALS.
We claim only that sparse adaptive predictors are better than
full ones for audio signals.

13

0 50 100 150 200 250 300

98

98.5

99

99.5

100

100.5

101

M

R
e
la

ti
v
e

c
o
d
e

le
n
g
th

/
%

’pinkmoon’

N=100
N=150
N=200
N=250
N=300

0 50 100 150 200 250 300

98.5

99

99.5

100

100.5

101

M

R
e
la

ti
v
e

c
o
d
e

le
n
g
th

/
%

’pocket’

N=100
N=150
N=200
N=250
N=300

Fig. 8. Relative code lengths for different predictor orders.

TABLE IX
COMPRESSION RATIOS COMPARED TO MPEG-4 ALS, N = 173,

M = 100

BIC PLS BIC 8 PLS 8 MPEG-4
conga 1.349 1.357 1.349 1.358 1.357
de ore leonis 3.099 3.105 3.099 3.105 3.075
finlandia 2.273 2.273 2.273 2.274 2.242
forty 1.905 1.910 1.905 1.910 1.909
morgen 2.358 2.359 2.359 2.359 2.330
mummified 1.380 1.381 1.380 1.381 1.383
ordeal 1.965 1.967 1.966 1.968 1.961
pinkmoon 1.972 1.983 1.973 1.984 1.971
pocket 1.675 1.678 1.676 1.679 1.671
prelude 2.721 2.725 2.722 2.727 2.725
sowhat 2.012 2.013 2.012 2.014 2.014
sunflower 4.002 4.042 4.003 4.044 3.927
weep 2.403 2.405 2.403 2.406 2.386
average 2.240 2.246 2.240 2.247 2.227

VIII. CONCLUSIONS

We have presented a family of adaptive greedy RLS (GRLS)
algorithms derived from the Orthogonal Least Squares batch
algorithm, appropriate for the online computation of sparse
solutions to linear systems, with applications to FIR channel
identification and linear prediction. The complexity of GRLS
is lower than that of the full RLS, while the performance is
significantly better when the solution is indeed sparse. For
time-varying channels, GRLS produces estimates with lower
MSE than the algorithms from [7] and [8]. It appears more
robust to variations of the channel conditions, which can be
explained in part by the fact that, using information theoretic
criteria for estimating the number of nonzero variables, the
GRLS algorithms need a single parameter, namely a not
necessarily tight upper bound of this number; otherwise, GRLS
does not have tunable parameters and does not need the value
of the noise variance. Further work will aim to find low-
complexity variations of the algorithm that only approximately
minimize the RLS criterion, but still have good behavior.

APPENDIX 1: EXPLANATION OF OLS GREEDY CHOICE (7)

After k − 1 steps of the OLS algorithm, the input data are
transformed, similarly to (8), into (we drop all indices)

QTAP =

[
R . . . v . . .
0 . . . w . . .

]
, QTd =

[
c
h

]
, (32)

where R ∈ R(k−1)×(k−1), c ∈ Rk−1 and we highlight a
single (yet) inactive column of the transformed data matrix.
Denote x̂t,k−1 the (k − 1)-sparse solution thus obtained,
whose nonzero elements are R−1c. Since Q is orthogonal,
the criterion (4) is

Jt(x̂t,k−1) = ∥h∥2 = ∥d∥2 − ∥c∥2. (33)

Lemma. If the highlighted column is included in the active
set, the criterion (4) becomes

Jt(x̂t,k) = ∥d∥2 − ∥c∥2 −
(wTh)2

∥w∥2
. (34)

Remark. At step k, the OLS greedy selection (7) chooses
the column for which |wTh|/∥w∥ is maximum, hence indeed
minimizes the criterion (4), for the given first k− 1 columns.

Proof. Let U be an orthogonal matrix, e.g. a Householder
reflector, such that Uw = ρe1, where ρ = ∥w∥ and e1 is the
unit vector with 1 in the first position and zeros elsewhere.
Denoting uT the first row of U , since w = ρUTe1 = ρu, it
follows that u = w/ρ. To continue the QR factorization, we

multiply (32) by
[

I 0
0 U

]
at the left, obtaining

[
I 0
0 U

] [
c
h

]
=

[
c

Uh

]
=

 c
γ

h̃

 ,

where

γ = eT1 Uh = uTh =
1

ρ
wTh =

wTh

∥w∥
.

The criterion is now

Jt(x̂t,k) = ∥h̃∥2 = ∥d∥2 − ∥c∥2 − γ2,

which is (34).

14

APPENDIX 2: EFFICIENT COMPUTATION OF A PRIORI
ESTIMATION ERRORS

We show here how the a priori estimation errors et(k) =
dt − aT

t x̂t−1,k, k = 1 : M , used in the PLS criterion, can
be computed efficiently. After the operations at time t− 1 are
completed, denoting Rk = R(1 : k, 1 : k), bk = b(1 : k) for
some k ≤M , the GRLS data are split as

Rk =

[
Rk−1 v
0 ρ

]
, bk =

[
bk−1

β

]
.

The (permuted) input vector at time t is split accordingly into

aT
t (p(1 : k)) = [aT α].

The nonzero elements of x̂t−1,k−1 are equal to R−1
k−1bk−1

and so

et(k − 1) = dt − aTR−1
k−1bk−1 = dt − zT

k−1bk−1,

where we define zT
k−1 = aTR−1

k−1. Similarly, the a priori
estimation error of the k-sparse solution is

et(k) = dt − zT
k bk, (35)

where

zT
k = [aT α]R−1

k = [aT α]

[
Rk−1 v
0 ρ

]−1

= [aT α]

[
R−1

k−1 − 1
ρR

−1
k−1v

0 1
ρ

]
=

[
zT
k−1

1
ρ

(
α− zT

k−1v
)] def

= [zT
k−1 ζ].

This recursion, initialized with z1 = at(p(1))/R(1, 1), shows
that zk can be computed from zk−1 with O(k) operations.
Moreover, the scalar product appearing in (35) can be updated
as

zT
k bk = zT

k−1bk−1 + ζβ,

hence needs only O(1) operations. Overall, it results that
O(M2) operations are needed for all a priori errors et(k),
k = 1 : M .

REFERENCES

[1] A.M. Bruckstein, D.L. Donoho, and M. Elad, “From Sparse Solutions
of Systems of Equations to Sparse Modeling of Signals and Images,”
SIAM Rev., vol. 51, no. 1, pp. 34–81, 2011.

[2] D.L. Duttweiler, “Proportionate Normalized Least-Mean-Squares Adap-
tation in Echo Cancelers,” IEEE Trans. Speech Audio Proc., vol. 8, no.
5, pp. 508–518, Sept. 2000.

[3] R.K. Martin, W.A. Sethares, R.C. Williamson, and C.R. Johnson, Jr.,
“Exploiting Sparsity in Adaptive Filters,” IEEE Trans. Signal Proc.,
vol. 50, no. 8, pp. 1883–1894, Aug. 2002.

[4] P.A. Naylor, J. Cui, and M. Brookes, “Adaptive Algorithms for Sparse
Echo Cancellation,” Signal Proc., vol. 86, no. 6, pp. 1182–1192, 2006.

[5] L.R. Vega, H. Rey, J. Benesty, and S. Tressens, “A Family of Robust
Algorithms Exploiting Sparsity in Adaptive Filters,” IEEE Trans. Audio
Speech Lang. Proc., vol. 17, no. 4, pp. 572–581, May 2009.

[6] Y. Chen, Y. Gu, and A.O. Hero III, “Sparse LMS for System
Identification,” in Int. Conf. Acoustics, Speech, Signal Proc., 2009, pp.
3125–3128.

[7] D. Angelosante, J.A. Bazerque, and G.B. Giannakis, “Online Adaptive
Estimation of Sparse Signals: Where RLS Meets the ℓ1-Norm,” IEEE
Trans. Signal Proc., vol. 58, no. 7, pp. 3436–3447, July 2010.

[8] B. Babadi, N. Kalouptsidis, and V. Tarokh, “SPARLS: The Sparse RLS
Algorithm,” IEEE Trans. Signal Proc., vol. 58, no. 8, pp. 4013–4025,
Aug. 2010.

[9] Y. Kopsinis, K. Slavakis, and S. Theodoridis, “Online Sparse Sys-
tem Identification and Signal Reconstruction Using Projections Onto
Weighted ℓ1 Balls,” IEEE Trans. Signal Proc., vol. 59, no. 3, pp. 936–
952, Mar. 2011.

[10] N. Kalouptsidis, G. Mileounis, B. Babadi, and V. Tarokh, “Adaptive
Algorithms for Sparse System Identification,” Signal Proc., vol. 91, pp.
1910–1919, 2011.

[11] S.F. Cotter and B.D. Rao, “The Adaptive Matching Pursuit Algorithm
for Estimation and Equalization of Sparse Time-Varying Channels,” in
34th Asilomar Conf. Sign. Syst. Comp., 2000, vol. 2, pp. 1772–1776.

[12] G.Z. Karabulut and A. Yongacoglu, “Estimation of Time-Varying
Channels with Orthogonal Matching Pursuit Algorithm,” in Symp. Adv.
Wired Wireless Comm., 2005, pp. 141–144.

[13] G. Mileounis, B. Babadi, N. Kalouptsidis, and V. Tarokh, “An Adaptive
Greedy Algorithm With Application to Nonlinear Communications,”
IEEE Trans, Signal Proc., vol. 58, no. 6, pp. 2998–3007, June 2010.

[14] S. Chen, S.A. Billings, and W. Luo, “Orthogonal Least Squares Methods
and Their Application to Non-Linear System Identification,” Int. J.
Control, vol. 50, no. 5, pp. 1873–1896, 1989.

[15] L. Rebollo-Neira and D. Lowe, “Optimized Orthogonal Matching
Pursuit Approach,” IEEE Signal Proc. Letters, vol. 9, no. 4, pp. 137–
140, April 2002.

[16] G.V. Rocha and B. Yu, “Greedy and Relaxed Approximations to
Model Selection: a Simulation Study,” in Festschrift in honor of Jorma
Rissannen on the occasion of his 75th birthday, pp. 63–80. TICSP Series
no.38, 2007.

[17] J. Rissanen, Information and Complexity in Statistical Modeling,
Springer, 2007.

[18] B. Dumitrescu and I. Tăbuş, “Greedy RLS for Sparse Filters,” in
European Sign. Proc. Conf. EUSIPCO, Aalborg, Denmark, 2010, pp.
1484–1488.

[19] A. Onose, B. Dumitrescu, and I. Tăbuş, “Sliding Window Greedy RLS
for Sparse Filters,” in ICASSP, Prague, Czech Republic, 2011.

[20] C.D. Giurcăneanu and S.A. Razavi, “AR Order Selection in the Case
When the Model Parameters Are Estimated by Forgetting Factor Least-
Squares Algorithms,” Signal Proc., vol. 90, pp. 451–466, 2010.

[21] M. Niedzwiecki, “Bayesian-like Autoregressive Spectrum Estimation in
the Case of Unknown Process Order,” IEEE Trans. Auto. Control, vol.
30, no. 10, pp. 950–961, Oct. 1985.

[22] J. Rissanen, “Order Estimation by Accumulated Prediction Errors,” J.
Appl. Prob., vol. 23, pp. 55–61, 1986.

[23] E.J. Hannan, A.J. McDougall, and D.S. Poskitt, “Recursive Estimation
of Autoregressions,” J. Royal Stat. Soc.. Ser. B, vol. 51, no. 2, pp.
217–233, 1989.

[24] G. Schwarz, “Estimating the Dimension of a Model,” Ann. Stat., vol.
6, no. 2, pp. 461–464, 1978.

[25] H. Huang, P. Franti, D. Huang, and S. Rahardja, “Cascaded RLS-LMS
Prediction in MPEG-4 Lossless Audio Coding,” IEEE Trans. Audio
Speech Lang. Proc., vol. 16, no. 3, pp. 554–562, Mar. 2008.

Bogdan Dumitrescu (M’01) was born in Bucharest,
Romania, in 1962. He received the M.S. and Ph.D.
degrees in 1987 and 1993, respectively, from the
”Politehnica” University of Bucharest, Romania.

He is now a Professor with the Department of
Automatic Control and Computers, ”Politehnica”
University of Bucharest and a FiDiPro Fellow with
the Department of Signal Processing, Tampere Uni-
versity of Technology, Finland. He is an Associate
Editor for IEEE Transactions on Signal Processing
since 2008. His scientific interests are in numerical

methods, optimization, and their applications to signal processing.

15

Alexandru Onose (S’11) was born in Bârlad, Ro-
mania. He received the Diploma Engineer degree
in automatic control and applied informatics from
”Politehnica” University of Bucharest, Bucharest,
Romania, in 2009.

He is currently working towards the Ph.D. degree
in signal processing at the Department of Signal
Processing, Tampere University of Technology, Tam-
pere, Finland. His research interests include adaptive
signal processing, sparse representation and com-
pressed sensing.

Petri Helin was born in Turku, Finland, in 1987. He
received the B.Sc. degree in signal processing from
Tampere University of Technology in 2011. He has
been working in the field of lossless audio compres-
sion as a research assistant with the Department of
Signal Processing since 2009.

Ioan Tăbuş (SM’99) Ioan Tabus received the
M.S. degree in electrical engineering in 1982, the
Ph.D. degree from the ”Politehnica” University of
Bucharest, Romania, in 1993, and the Ph.D. degree
(with honors) from Tampere University of Technol-
ogy (TUT), Finland, in 1995. He was a Teaching
Assistant, Lecturer, and Associate Professor with
the Department of Control and Computers, ”Po-
litehnica” University of Bucharest between 1984
and 1995. From 1996 to 1999 he was a Senior
Researcher and since January 2000 he has been a

Professor with the Signal Processing Department at TUT. He is coauthor
of more than 170 publications in the fields of signal processing, signal
compression, and genomic signal processing. He is a Senior Member of IEEE
and was an Associate Editor for IEEE Transactions on Signal Processing
between 2002 and 2005. He was a member of the TC Bio Image and Signal
Processing of IEEE Signal Processing Society. He currently is the Editor-in-
Chief of EURASIP Journal on Bioinformatics and Systems Biology. Dr. Tabus
is co-recipient of 1991 ”Traian Vuia” Award of the Romanian Academy and
co-recipient of the NSIP 2001 Best Paper Award and Norsig 2004 Best Paper
Award.

132 PUBLICATIONS

Publication 6
Copyright c⃝2011 IEEE. Reprinted, with permission, from

[P6] A. Onose, B. Dumitrescu, and I. Tăbuş. Sliding window greedy RLS for sparse
filters. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 3916–3919, Prague, Czech Republic, May
2011.

kulkki
Typewritten Text
In reference to IEEE copyrighted material which is used with permission in this thesis, the
IEEE does not endorse any of Tampere University of Technology's products or services.
Internal or personal use of this material is permitted. If interested in reprinting/republishing
IEEE copyrighted material for advertising or promotional purposes or for creating new
collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn
how to obtain a License from RightsLink.

kulkki
Typewritten Text

kulkki
Typewritten Text

kulkki
Typewritten Text

SLIDING WINDOW GREEDY RLS FOR SPARSE FILTERS

Alexandru Onose, Bogdan Dumitrescu, Ioan Tăbuş

Department of Signal Processing

Tampere University of Technology

PO BOX 553, 33101 Tampere, Finland

e-mail: alexandru.onose@tut.fi, bogdan.dumitrescu@tut.fi, ioan.tabus@tut.fi

ABSTRACT

We present a sliding window RLS for sparse filters, based

on the greedy least squares algorithm. The algorithm adapts

a partial QR factorization with pivoting, using a simplified

search of the filter support that relies on a neighbor permu-

tation technique. For relatively small window size, the pro-

posed algorithm has a lower complexity than recent exponen-

tial window RLS algorithms. Time-varying FIR channel iden-

tification simulations show that the proposed algorithm can

also give better mean squared coefficient errors.

Index Terms— adaptive algorithm, recursive least squares,

sliding window, sparse filters

1. INTRODUCTION

The recursive least squares (RLS) algorithm is most often

implemented using an exponential window (EW). Although

sliding window (SW) algorithms exist [1, 2], they offer rela-

tively few benefits, while having a higher complexity; hence,

they are much less used than EW RLS. The recent interest in

RLS algorithms for sparse filters [3, 4, 5] was focused on EW

RLS. Our aim in this paper is to show that, opposite to the full

filters case, a sliding window RLS can have lower complexity

than EW RLS.

At each time t ∈ N, the RLS algorithm provides a least-

squares solution xt ∈ R
N to the overdetermined linear

system Atxt ≈ bt, taking into account the new equation

aT
t
xt ≈ bt together with previous equations of the same

form. In a time-varying context, more weight is given to

recent equations, while the past needs to be forgotten. The

SW RLS criterion for a window of length L is

J(t) =

L−1
∑

τ=0

λτ |e(t− τ)|2, (1)

where λ is the forgetting factor and

e(t) = bt − aT

t
xt (2)

This work was supported by Tekes FiDiPro – Finland Distinguished Pro-

fessor Programme. B.Dumitrescu is also with Department of Automatic Con-

trol and Computers, ”Politehnica” University of Bucharest, Romania.

is the approximation error for the equation appeared at time

t. So, only the most recent L equations are considered for

computing xt. For example, in an FIR channel identification

problem, the error (2) has the form

e(t) = y(t)−
N−1
∑

i=0

hiu(t− i), (3)

where u(t) is the input, y(t) is the output and h ∈ R
N is

the vector of filter coefficients; the correspondence with (2) is

immediate.

We consider the SW RLS problem for sparse filters: we

assume that the solution xt has at most M nonzero elements,

M being given; the typical case is M ≪ N . For full filters, it

is necessary to take L > N in order to obtain a least-squares

solution. However, for sparse filters, the required condition

is L > M , which leaves open the possibility to take L <

N . This is the key to low complexity and good performance

is obtained for sufficiently fast time-varying channels, as we

will show later.

For solving the sparse SW RLS problem, we adapt the

greedy least-squares (GLS) algorithm [6] (known also, in a

modified form, as optimized orthogonal matching pursuit [7])

to the QR factorization update algorithm from [1]. In partic-

ular, for the greedy selection of the nonzero elements of the

solution, we employ the neighbor-restricted search technique

introduced in [5].

2. SLIDING WINDOW GREEDY RLS

Using a sliding window, the least-squares approximation

problem corresponding to the criterion (1) is to minimize

‖bt − Atxt‖2, with At ∈ R
L×N , under the constraint that

xt has M nonzero elements. (For simplicity, we assume that

the forgetting factors are included in At and bt.) The algo-

rithm we propose maintains the partial QR factorization with

pivoting

AtP t = QtRt, (4)

where Qt ∈ R
L×L is an orthogonal matrix, Rt ∈ R

L×N is

upper triangular in its first M columns and P t is a permu-

tation matrix responsible for bringing into the first M posi-

tions the columns corresponding to the nonzero elements of

xt (called active columns). These elements are computed by

solving the triangular system with the matrix Rt(1 : M, 1 :
M) and the right hand side made by the first M elements of

QT

t
bt.

At time t, the algorithm has two main steps: downdating

and updating [1]. Downdating has the purpose of eliminating

the oldest equation from the previous window, i.e., starting

from (4) at time t− 1, to compute

At−1P t−1 =

[

1 0

0 Q̃t−1

] [

ãT

t−L

R̃t−1

]

, (5)

where ãT

t−L
= aT

t−L
P t−1; hence, the first row of (5) reads

ãT

t−L
= ãT

t−L
and can be eliminated. The matrix R̃t−1 ∈

R
(L−1)×N is upper triangular in its first M columns, hence

the last L − 1 rows of At−1P t−1 have the QR factorization

Q̃t−1R̃t−1.

Updating starts from adding the (permuted) current equa-

tion to the above factorization

AtP t−1 =

[

Q̃t−1 0
0 1

] [

R̃t−1

ãT

t

]

, (6)

where ãT

t
= atP t−1, and obtains (4). It is in the updating

stage that active columns are (re)selected. Following the strat-

egy introduced in [5], we allow at most one inactive column

to enter (and hence another column to leave) the active set at

time t.

All downdating and updating operations use orthogonal

transformations and hence are numerically reliable. We give

below details on the operations performed in the two steps.

The matrix variables in the algorithm are R ∈ R
L×N for

storing Rt and U ∈ R
L×L for storing QT

t (we work on the

transposed for applying all transformations from the left); the

column permutations will be described informally. The vari-

able b will store QT

t bt.

2.1. Downdating

Downdating consists of computing the elementary orthogo-

nal transformations that bring Qt−1 to the form from (5), i.e.

force zeros in its first row (and column), in an order chosen

to damage the least the triangular form of Rt−1. The initial

and final form of the matrices U and R are shown in Figure

1, where M = 3, L = 6 and only the first 5 of the N columns

of R are depicted. The downdating process is similar with

that from [1], excepting that here a Householder reflector can

be used for zeroing the last L −M + 1 elements of the first

column of U , instead of several Givens rotations. The main

operations are the following.

1. Compute reflector H that zeroes U(M + 2 : L, 1) and

apply it: U ←HU , R←HR, b←Hb.

2. For k = M : −1 : 1

U R U R

× ×××××
× ×××××
× ×××××
× ×××××
× ×××××
× ×××××

××× ××
0 ×× ××
0 0 × ××
0 0 0 ××
0 0 0 ××
0 0 0 ××

1 0 0 0 0 0

0 ×××××
0 ×××××
0 ×××××
0 ×××××
0 ×××××

× ×× ××
× ×× ××
0 ×× ××
0 0 × ××
0 0 0 ××
0 0 0 ××

Fig. 1. U and R before and after downdating.

2.1. Compute rotation G that zeroes U(k + 1, 1), based

on U(k, 1), and apply it: U ← GU , R← GR, b← Gb.

Of course, the above operations are performed efficiently:

in step 1, only rows M + 1 : L of the matrices are modified;

in step 2.1, only rows k and k+1 are affected. This operation

order ensures that at the end R is upper Hessenberg in the

first M columns and, after eliminating its first row, it becomes

upper triangular in the first M columns.

2.2. Updating

Greedy LS belongs to the family of matching pursuit algo-

rithms and finds the nonzero (active) positions of xt (or the

corresponding columns of At) one by one. Each position

is chosen such that, when adding it to the active set, the LS

residual corresponding to the solution obtained using the cur-

rent active positions is minimized. In the original batch algo-

rithm, all positions are allowed to compete for the active set.

In a recursive context, it is unlikely that radical changes of the

active set are possible to detect immediately. So, it is enough

to allow gradual changes. We have shown in [5] that, with an

exponential window, the following strategy for changing the

active set is successful in tracking a time-varying channel:

• For position k ≤M −1, choose only between columns

k and k + 1 of the current active set, process called

neighbor permutation.

• For positionM , choose between all remaining columns.

So, at most one new column enters the active set at time

t. We adopt the same strategy for the SW algorithm and give

next a formal description of the update step, then explain it in

more detail. Remind that the update starts with R as in (6),

i.e. upper triangular in the first M columns, with the exception

of the last row, as in the leftmost diagram from Figure 2.

A. Neighbor permutation

1. For k = 1 : M − 1
1.1. Find the index of the best column in S = {k, k+1}:

k̃ = argmax
i∈S

R(k : L, i)T · b(k : L)

‖R(k : L, i)‖22
(7)

1.2. If k̃ = k + 1 (permutation is needed)

1.2.1. Swap columns k and k + 1 of R

××× ××
0 ×× ××
0 0 × ××
0 0 0 ××
0 0 0 ××
××× ××

⋆ ⋆ × ××
⋆ 0 × ××
0 0 × ××
0 0 0 ××
0 0 0 ××
⋆ ⋆ × ××

⋆ ⋆ ⋆ ⋆ ⋆

× 0 × ××
0 0 × ××
0 0 0 ××
0 0 0 ××
0 ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆

0 ⋆ ⋆ ⋆ ⋆

0 0 × ××
0 0 0 ××
0 0 0 ××
0 ×× ××

Fig. 2. Evolution of R in first neighbor permutation.

1.2.2. Compute rotation G that zeroes R(L, k), based

on R(k, k), and apply it: U ← GU , R← GR, b← Gb.

1.3. Compute rotation Γ that zeroes R(k + 1, k), based

on R(k, k), and apply it: U ← ΓU , R← ΓR, b← Γb.

B. Selection of last active column

2. Find the best column in S = M : N , by computing (7)

3. Swap columns k and k̃ of R

4. Compute the reflector H that zeroes U(M + 2 : L, 1)
and apply it: U ←HU , R←HR, b←Hb.

Figure 2 illustrates the operations made on R in steps 1.2

and 1.3, for k = 1. (The operations on U are trivial, since U

is practically a full matrix.) Nonzero elements are marked by

×, modified elements are marked by ⋆. The second diagram

shows R after swapping the first two columns. The next two

diagrams depict the successive elimination of the two nonzero

subdiagonal elements on the first column.

Figure 3 shows the transformations of R after the selec-

tion of the last active column. The second diagram shows

the matrix after the permutation of column k̃ (here k̃ = 5) in

position M and the third after the application of the House-

holder reflector that completes the upper triangular structure

in the first M columns and hence the updating process. The

M nonzero elements of the solution are computed by solving

the triangular system R(1 : M, 1 : M) · x = b(1 : M).
The criterion (7) has the general form for GLS: it selects

the column that is best aligned with the residual, after orthog-

onalization of the active columns. In step 1.1, due to the

structure of R, the computation of (7) involves only a few

operations. In step 2, we have not implemented (7) directly,

but via scalar products R(M + 1 : L, i)T · b(M + 1 : L),
i = M + 1 : N , that are cheaply updated at each time t.

We also note that updating or downdating can be per-

formed alone at time t, hence increasing or decreasing L.

Also, the above algorithms can be easily modified for allow-

ing M to increase or decrease. Further work will be directed

towards finding a criterion for adapting M dynamically to-

wards the true number of nonzero elements of the LS solu-

tion.

2.3. Complexity issues

The active set needs not be changed at each moment, but only

when t is a multiple of a small integer τ0. When the active set

is not changed, the updating algorithm becomes much sim-

××× ××
0 ×× ××
0 0 × ××
0 0 0 ××
0 0 0 ××
0 0 × ××

××× ××
0 ×× ××
0 0 ⋆ × ⋆

0 0 ⋆ × 0

0 0 ⋆ × 0

0 0 ⋆ × ⋆

××× ××
0 ×× ××
0 0 ⋆ ⋆ ⋆

0 0 0 ⋆ ⋆

0 0 0 ⋆ ⋆

0 0 0 ⋆ ⋆

Fig. 3. Evolution of R after selection of last active column.

pler; column permutations are not needed and the triangular

structure is restored plainly with Givens rotations.

We assume that M ≪ N , i.e. the solution is indeed

sparse. With a careful implementation, the average num-

ber of operations (multiplications or additions) required by

downdating and updating is

ν ≈
(

4 +
4

τ0

)

L(N + L). (8)

Taking τ0 = 2, then for L = N/2 it results that ν ≈ 4.5N2,

which is already less than the cost of a full length RLS. For

L = N/4, it results that ν < 2N2; in this case the algorithm

becomes cheaper than the EW greedy LS from [5] or other

EW algorithms [3, 4].

So, if the window size is small enough, the sliding win-

dow algorithm has a complexity advantage over algorithms

based on exponential window. In the next section we will

show that for some time-varying systems one can take L small

enough, with quality comparable to that of EW algorithms.

3. SIMULATION RESULTS

We have tested the SW RLS algorithm for the FIR channel

identification problem (3), where the channel filters have

M̃ = 5 nonzero coefficients and order N = 200. The

nonzero coefficients are in random positions and are time-

varying upon the multipath fading model

hi(t) = ci cos(2πfdTst+ αi), (9)

with amplitude ci and phase αi uniformly distributed in

[0.05, 1] and [0, 2π], respectively; fd is the Doppler fre-

quency shift and Ts is the channel sampling interval; the

product fdTs determines the variation speed of the channel.

The input u(t) is Gaussian from N (0, 1) and the output y(t)
is affected by additive white noise with variance σ2 = 0.01.

Denoting h(t) ∈ R
N+1 the true vector of coefficients and

ĥ(t) the estimated one at time t we have measured the mean

squared coefficient error

MSE(t) =
E{‖ĥ(t)− h(t)‖22}

E{‖h(t)‖22}
(10)

by averaging 1000 runs with different channel filters at each

run, all with the same variation speed fdTs. In Table 1, we

SW-GRLS EW-GRLS RLS SI-SW-RLS

fdTs MSE MSE MSE MSE

(L, λ) (λ) (λ) (L, λ)

0.0002 0.00352 0.00333 0.051 0.00182

(55,0.98) (0.96) (0.98) (55,0.98)

0.0005 0.00606 0.00621 0.176 0.00328

(45,0.96) (0.94) (0.96) (45,0.96)

0.001 0.01202 0.01233 0.568 0.00599

(40,0.92) (0.92) (0.96) (40,0.92)

0.002 0.02684 0.02883 1.333 0.01363

(40,0.90) (0.90) (0.98) (40,0.90)

0.005 0.11973 0.13187 1.391 0.05128

(25,0.90) (0.86) (0.995) (25,0.90)

Table 1. MSE for the studied algorithms.

report the time-average of MSE(t) (computed after the end of

the initial transient regime) for four algorithms: SW-GRLS,

the algorithm presented in this paper; EW-GRLS, from [5],

RLS, the standard algorithm that assumes a full filter of or-

der N ; SI-SW-RLS, a sparsity informed SW RLS, know-

ing the positions of the nonzero coefficients. Both SW and

EW-GRLS assume that M = M̃ and use τ0 = 2. Besides

MSE, the table contains the optimized values of (L, λ) for

SW-GRLS (used also by SI-SW-GRLS) and of λ for EW-

GRLS; the optimization was done for each algorithm sepa-

rately. Figure 4 shows the evolution of the squared coefficient

error (10) averaged over the 1000 runs, for fdTs = 0.001.

It can be noticed from Table 1 that, as the channel vari-

ation speed increases, the best window length L decreases

and also SW-GRLS becomes increasingly better compared to

its EW counterpart. Since L is about or less than N/4, the

complexity of SW-GRLS is lower than that of EW-GRLS.

While SW-GRLS largely (and expectedly) outperformes the

full RLS algorithm (which is unable to give meaningful re-

sults for higher variation speeds), it gives a MSE only about

twice larger than the sparsity informed RLS, which is the best

attainable by an RLS algorithm. If M > M̃ , the performance

degrades, but is still acceptable if M is only slightly larger

than M̃ . For example, for M = 10, MSE is about twice

larger than the values from Table 1.

Comparisons with SPARLS [4] appear to be favorable, but

not included here since SPARLS adapts also to the true num-

ber of coefficients M̃ , while our algorithm does not yet adapt.

4. CONCLUSIONS

We have presented a sliding window RLS that uses a greedy

approach for finding the nonzero coefficients of the sparse so-

lution. The algorithm is based on orthogonal operations and

hence is numerically stable. Theoretical and simulation study

show that, for small window length (L < N/4) and for suffi-

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

10
1

Time (t)

S
q
u
a
re

d
 c

o
e
ff
ic

ie
n
t
e
rr

o
r

EW−GRLS
SW−GRLS

SI−SW−RLS

RLS

Fig. 4. Squared coefficient error for M = 5.

ciently fast time-varying channels, the algorithm is less com-

plex and gives better coefficient errors than exponential win-

dow greedy RLS. So, for sparse filters, the sliding window

can give benefits in terms of both complexity and estimation

quality, a property that does not hold for nonsparse filters.

5. REFERENCES

[1] M.P. Mahon, L.H. Sibul, and H.M. Valenzuela, “A Slid-

ing Window Update for the Basis Matrix of the QR De-

composition,” IEEE Trans. Signal Proc., vol. 41, no. 5,

pp. 1951–1953, May 1993.

[2] C. Papaodysseus, “A Robust, Parallelizable, O(m), A

Posteriori Recursive Least Squares Algorithm for Effi-

cient Adaptive Filtering,” IEEE Trans. Signal Proc., vol.

47, no. 9, pp. 2252–2257, Sept. 1999.

[3] D. Angelosante and G.B. Giannakis, “RLS-Weighted

Lasso for Adaptive Estimation of Sparse Signals,” in Int.

Conf. Acoustics, Speech, Signal Proc., 2009, pp. 3245–

3248.

[4] B. Babadi, N. Kalouptsidis, and V. Tarokh, “SPARLS:

The Sparse RLS Algorithm,” IEEE Trans. Signal Proc.,

vol. 58, no. 8, pp. 4013–4025, Aug. 2010.

[5] B. Dumitrescu and I. Tăbuş, “Greedy RLS for Sparse Fil-

ters,” in European Sign. Proc. Conf. EUSIPCO, Aalborg,

Denmark, 2010, pp. 1484–1488.

[6] S. Chen, S.A. Billings, and W. Luo, “Orthogonal Least

Squares Methods and Their Application to Non-Linear

System Identification,” Int. J. Control, vol. 50, no. 5, pp.

1873–1896, 1989.

[7] L. Rebollo-Neira and D. Lowe, “Optimized Orthogonal

Matching Pursuit Approach,” IEEE Signal Proc. Letters,

vol. 9, no. 4, pp. 137–140, April 2002.

PUBLICATIONS 137

Publication 7
Copyright c⃝2013 IEEE. Reprinted, with permission, from

[P7] A. Onose and B. Dumitrescu. Group greedy RLS sparsity estimation via in-
formation theoretic criteria. In Proceedings of the International Conference on
Control Systems and Computer Science, volume 2, pages 359–364, Bucharest,
Romania, May 2013.

kulkki
Typewritten Text
In reference to IEEE copyrighted material which is used with permission in this thesis,
the IEEE does not endorse any of Tampere University of Technology's products or services.
Internal or personal use of this material is permitted. If interested in reprinting/republishing
IEEE copyrighted material for advertising or promotional purposes or for creating new
collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn
how to obtain a License from RightsLink.

kulkki
Typewritten Text

kulkki
Typewritten Text

kulkki
Typewritten Text

kulkki
Typewritten Text

138 PUBLICATIONS

Group Greedy RLS Sparsity Estimation via

Information Theoretic Criteria

Alexandru Onose∗, Bogdan Dumitrescu∗,†

∗Tampere University of Technology,

Department of Signal Processing,

FI-33101 Tampere, Finland
†’Politehnica’ University of Bucharest,

Department of Automatic Control and Computers,

RO-060042 Bucharest, Romania

emails: alexandru.onose@tut.fi, bogdan.dumitrescu@tut.fi

Abstract—This work introduces a group sparse adaptive
greedy algorithm that uses information theoretic criteria (ITC)
to estimate online the sparsity level. The algorithm selects a
set of candidate groups using group neighbor permutations and
maintains a partial QR decomposition to compute the solution.
It contains a mechanism that allows group joining which, com-
plementing the splitting of groups, produces a robust algorithm.
We focus here on a study of the ITC use, namely the predictive
least squares (PLS) and Bayesian information criterion (BIC), in
conjunction with the group sparse algorithm. We propose several
forms of group oriented ITC and evaluate them with extensive
simulations for a time-varying channel identification problem.
Compared to the non group aware counterparts, the performance
is improved at the cost of higher complexity. The best results are
given by a group PLS criterion directly generalizing the standard
PLS.

Keywords—adaptive greedy algorithm, group sparse filters,
model selection, channel identification

I. INTRODUCTION

In the quickly expanding field of sparse approximations,
the development of adaptive algorithms is an important topic
receiving much interest in recent years. Most of the latest
work addresses the modifications needed by classic algorithms,
like LMS or RLS, to obtain good performance on finding
on-line sparse linear models and thus solving typical signal
processing problems like channel identification. Sparse LMS
was pioneered in [1], while for sparse RLS there are several
approaches, using techniques inspired by convex relaxation [2],
[3] or having greedy nature [4]. Among other notable works,
the first sparse adaptive algorithm was a direct modification
of matching pursuit [5]; more recently, projections onto hyper-
slabs were used in [6] and techniques resulting from traditional
adaptive filtering in [7].

One of the significant difficulties in sparse adaptive filtering
is to decide on-line, at each time moment, the sparsity level of
the filter, i.e. the number of nonzero coefficients. Algorithms
based on ℓ1 relaxation do this implicitly, by the choice of a
trade-off parameter between sparsity and representation error.
A different approach was promoted in [4], by using Informa-
tion Theoretic Criteria (ITC), allowing to select the sparsity

This work was supported by Tekes FiDiPro—Finland Distinguished Profes-
sor Programme and by GETA Finland.

level without using any extra parameters, by proposing low
complexity adaptive implementations of ITC like Predictive
Least Squares (PLS) [8] and Bayesian Information Criterion
(BIC) [9].

The adaptive filtering problem at hand is to find a recursive
least-squares solution to the linear system Ax = b, where
A ∈ R

t×N is a matrix whose number of rows is t, the current
time. The solution x ∈ R

N is assumed to be group sparse [10]:
its number of nonzero elements is much smaller than N and
the nonzero elements are grouped in few clusters with variable
sizes. The environment is time varying, hence the values and
the positions of the nonzero elements of x may change in time.

The solution is found at each time moment t, after a
new equation is appended to the system and the matrix
A is exponentially weighted with a forgetting factor λ, by
minimizing the typical least-squares criterion

J(x) = ‖b−Ax‖2. (1)

The aim of this paper is to introduce the group greedy
RLS and explore the use of ITC for estimating the sparsity
online. Other existing algorithms able to produce group sparse
solutions, [11], [12] and [13] (the latter being an adaptive
algorithm), are based on convex relaxation techniques and
use the ℓ1,∞ norm. The difference from the standard sparse
problem is that now the nonzero coefficients appear in clusters,
not independently. Since their positions are consecutive, it is
more efficient to work with groups of nonzeros instead of
individual nonzeros. Working on a group level, one has to
decide the number of such groups and the size of each group.

The content of the paper is organized as follows. We
introduce the greedy group RLS algorithm in Section II. In
Section III we show how the ITC can be tailored for the
task of estimating online the group sparsity while in Section
IV we present a series of simulations giving insight into the
performance of the group sparse algorithm and the proposed
sparsity selection criteria. Section V contains a brief analysis
of the performance for the proposed ITC.

II. GROUP SPARSE GREEDY RLS

For the group sparsity, the non zero coefficients locations
are supposed to be found in M blocks of sizes Pi, i = 1:M .

Similarly to the GRLS [4] and OLS [14] algorithms, we
employ a greedy strategy to select Mc active columns ai from
A (forming the M active groups) for computing the sparse
solution. The column selection is performed on a group level;
we assume for now that all groups have the same size P ,
afterwards we provide a mechanism for splitting the groups
up to a minimum size p ≤ P/2 and for joining them. Also,
the group number is considered known. We postpone the
description of the online group sparsity estimation via the ITC.

The set Gi contains the P (consecutive) indices of the
nonzero coefficients of the solution belonging to the i-th group
(the indices of the columns of A which are used to compute
the solution and correspond to nonzero coefficients from x).
The algorithm maintains a QR factorization with pivoting of
the matrix A, such that the first columns are those of the active
columns (all other remaining columns are called inactive).

At time t, when a new equation arrives, the algorithm
performs the following operations

• restores the triangular factor;

• reorders the active groups upon their significance in
reducing the criterion (1);

• recomputes the solution.

The choice to include a group Gi into the active set is made
based on (1); the group becomes active if, by adding it to the
previously selected groups, decreases with the largest amount
the error sum from the criterion J(x). This selection strategy
also ensures a group order based on the group’s contribution
in decreasing J(x). The algorithm is recursive and, once new
input samples are received, reuses the previous group order to
minimize the computational cost.

A. Partial QR factorization

To compute the solution we maintain, similarly to [4], a
partial QR factorization with pivoting,

R ← ∏

i Qi
T
A
∏

i Pi

b ← ∏

i Qi
T
y.

(2)

The orthogonal matrices Qi produce a superior triangular form
for the active columns in R. They are applied successively
allowing in place computations of the data matrices R and b
and thus eliminating the need for explicit storage. The matrices
Pi permute the non zero elements of x (and the corresponding
columns in A and R) to the first Mc positions. We always
consider the groups to be formed by adjacent columns from
the original matrix A before any permutations are applied. The
notation RGi

implies the column subset form R associated
with the group Gi (the permutations can change its actual
position in R); Ri:j contains the columns from R on positions
i:j; RGi,Gj

selects a partition defined by the rows Gi and the
columns Gj .

Any k-sparse solution, k ≤ Mc, is computed by solving
the upper triangular system defined by R1:k,1:k and b1:k. Since
only the first Mc rows are used, the information contained in
the remaining rows is stored in the form of the scalar products

Ψ = R
T
Mc+1:t,Mc+1:NRMc+1:t,Mc+1:N

φ = R
T
Mc+1:t,Mc+1:NbMc+1:t,

(3)

and it is deleted from R and b; the matrices have predeter-
mined sizes, R ∈ R

Mc×N and b ∈ R
Mc eliminating the need

to store the indefinitely long A and y.

Due to the orthogonal triangularization the criterion be-
comes the norm of the residual

J(x) = bTMc+1:tbMc+1:t (4)

and thus the decrease of J(x) due to each group of coefficient
xGi

is δGi
= ‖bGi

‖2.Note, this is valid for a given group order,
any change in the order can modify the elements of bGi

and
consequently δGi

.

B. Basic update

When new input and output data, αT and β, are available
they are included in A and in y or correspondingly in R and
b,

R←
[√

λ ·R
αT

]

, b←
[√

λ · b
β

]

. (5)

This however changes the upper triangular structure of the
matrix R. Using Givens rotations we zero the first Mc newly
introduced elements with the modification of the diagonal
elements in R. The remaining N − Mc non-zero elements
are included in the scalar products

Ψ ← Ψ+R
T
Mc+1,1:NRMc+1,1:N

φ ← φ+R
T
Mc+1,1:NbMc+1,

(6)

and the last row in R and b is deleted thus restoring the upper
triangular structure. More details can be found in [4].

C. Neighbor group permutations

After receiving new data, the group order is prone to
change; we assume that the change is slow, allowing the use,
once every θp samples, of a neighbor permutation strategy that
restores the group order (in [4] similar permutations are used
element wise, not group wise).

Given two neighbor groups Gi and Gj the decision to
permute them is based on the decrease of the residual their
permutation produces. If we select from R (and b) only the
triangular part associated with the two groups we have

[

RGi,Gi
RGi,Gj

0 RGj ,Gj

] [

xGi

xGj

]

=

[

bGi

bGj

]

, (7)

where RGi,Gi
and RGj ,Gj

are upper triangular matrices. The

residual decrease due to selecting first Gi is δGi
= ‖bGi

‖2.

Any change in the group order affects the output vector b
thus we need to compute δGj

after we perform the permutation.
By permuting Gi and Gj the upper triangular form is destroyed
and thus computing δGj

is not immediate. We apply |Gj |
Householder reflectors (|Gj | is the number of columns in group
Gj) to restore the triangular form. Each reflector is computed
such that it zeros |Gi| sub diagonal elements on each column,
starting from the left, and modifies the diagonal element. After
the triangular form is restored

[

R
′

Gj ,Gj
R

′

Gj ,Gi

0 R
′

Gi,Gi

][

x
′

Gj

x
′

Gi

]

=

[

b
′

Gj

b
′

Gi

]

, (8)

δGj
can be computed, δGj

= ‖b′

Gi
‖2. Note that, the permuted

columns associated with Gi may not updated now since we
only apply the triangularization to compute δGj

and the per-
mutation is temporary. We make it permanent only if

δGj

|Gj |
>

δGi

|Gi|
, (9)

and so the reflectors used to obtain it are applied to the whole
R to the right of each zeroed column, not only for the group
Gj . Applying each reflector changes only |Gi|+ 1 rows.

D. Last group

To allow changes in the active group set, every θp samples,
any possible inactive group can compete for the last active
position. An exhaustive search for all possible inactive groups
of size P is performed; smaller groups are allowed only if the
previously selected active groups limit the number of adjacent
inactive columns.

Let us first examine an alternate way of determining the
criterion J(x). Consider the partition Gi of A; we can write

J(xGi
) = (y −AGi

A
+
Gi
y)T (y −AGi

A
+
Gi
y)

= y
T
y − y

T
AGi

A
+
Gi
y,

(10)

with A
+
Gi

= (AT
Gi
AGi

)−1
A

T
Gi

. Including the group Gi in
the solution is therefore decreasing the criterion with δGi

=
y
T
AGi

A
+
Gi
y. This holds for any orthogonal transformation of

A and y, particularly R and b.

To replace the last group GM with a new group Gi (Gi can
overlap with GM) we require that

δGM

|GM |
< max

Gi

δGi

|Gi|
. (11)

We compute δGi
= (RT

GM ,Gi
bGi

+ φGi
)T s, with s given by

(RT
GM ,Gi

RGM ,Gi
+ΨGi,Gi

)s = R
T
GM ,Gi

bGM
+ φGi

, (12)

to avoid the inversion from R
+
Gi

. Note that we only need the
scalar products Ψ and φ not the whole matrices R and b.

Consider the matrix R
T
GM ,1:NRGM ,1:N +Ψ (and the asso-

ciated R
T
GM ,1:NbGM

+φ) permuted back to the original column
order from A; each P × P -diagonal block defines a systems
from (12). To find the solution we transform the system to be
upper triangular and use a downdate-update procedure [15],
[16] to morph between every possible diagonal block.

Let Si = {i : i + 2P − 1} for any possible i, U =
R

T
GM ,Si

RGM ,Si
+ ΨSi,Si

and d = R
T
GM ,Si

bGM
+ φSi

. We
construct the orthogonal matrix H and zero, with P reflectors,
the subdiagonal elements from U. A solution s of (12) is
then found by solving the upper triangular system defined
by U1:P,1:P and d1:P . All transformations we consider are
applied implicitly on all matrices including H.

To find the solution for the next system associated with
Si+1, we use a downdate-update procedure to remove the first
row and column from the matrix U and to add a new end row.
The downdate requires the use of P − 1 rotations to zero the
first column of H, starting from the last row and continuing
upwards (we zero the first element of the current row and
modify the current row and the one immediately above). The

downdate and the removal of the first row maintains the upper
triangular structure in U but the removal of the first column
does not (subdiagonal elements are introduced). Therefore, we
require P − 1 additional rotations (applied diagonally from
left to right) to zero the subdiagonal elements and to produce
a triangular system containing P − 1 equations.

Appending a new row changes the group for which the
system (12) is defined. After restoring the triangular form with
P − 1 Givens rotations applied on the matrices like in Section
II-B, the solution can be computed easily from the triangular
part of the matrices. The same recursion is used to compute
all values of δGi

but care should be taken when we encounter
the already selected groups and the procedure is restarted. The
chosen group is then permuted to the last position and, using
P reflectors, the upper triangular form is restored. Note that
for the permuted columns the scalar products are non zero and
they also need to be updated when the reflectors are applied;
more details can be obtained from [4].

E. Split groups

Imposing a strict group size P can degrade the performance
if groups of smaller size exist. In what follows we propose an
heuristic approach, applied once every θs samples, for splitting
each group. We decide to split each group creating a new
group Gi,−k or Gi,k− (formed from Gi by taking the first/last
k columns) such that the new group may exit the active set
via permutations at a later time. The last group is never split
because it is used to determine the split point in all the others.
Also we limit the smallest group size to p.

We use a criterion similar to (9) applied for the bGi,−k

(or bGi,k−
) subgroup and the last active group. Computing

the decrease δGi,−k
(or δGi,k−

) is immediate as presented in
Section II-C. The computations involving the last active group
permutation to the position occupied by the subgroup and the
computation of δGM

are more demanding; in (7) the triangular
matrix RGj ,Gj

is replaced by the tall matrix RGj:M ,GM
because

the groups are not neighbors. We apply a procedure similar to
the basic update from Section II-B and compute the δGM

for
all permutation positions. Sequentially adding to RGM ,GM

all
rows Rk,GM

from RG1:M−1,GM
and restoring the triangular

form generates the decrease δGM
for all needed permutation

places. Depending on the number of rows added, we use |GM |
Givens rotations or |GM | Householder transforms.

F. Joining groups

Since continuous group splitting can potentially fragment
all active groups to the minimum size p, we allow every θj
samples the joining of the active groups Gi and Gj , with
i > L and j ≤ L, if they contain adjacent columns. This
involves permuting Gi to be adjacent to Gj and restoring the
triangular form. For efficient computation the restoration of
the triangular form is done only after all possible groups are
joined (and the corresponding permutations are performed).
The joining of groups is only necessary in case when new
support positions arise to allow for low group fragmentation
and should not introduce any performance gains if the support
does not chance.

G. Complexity

The algorithm is more complex than GRLS due to the block
level operations. The most demanding operation is the restora-
tion of the triangular form. This is especially computational
intensive when the groups are joined since the whole triangular
form may be damaged; we suppose that the group joining is
performed infrequently. Taking all into consideration the worst
case complexity is O(P (N −Mc)

2) + O(P 2N) or about P
times that of the base GRLS algorithm. Due to the greedy
nature the average complexity is usually lower because the
group order and number may not change frequently.

III. INFORMATION THEORETIC CRITERIA

The group order introduced by the permutation strategy can
be exploited to allow the online estimation of the sparsity level
with the use of the PLS and BIC criteria. Since the solution
has a double granularity given by the columns and the groups,
it can be exploited to produce column or group level criteria.
While the computation of the column aware ITC is similar to
[4], it is used to infer a group level sparsity estimation instead.
For the group aware ITC, the estimate is computed with the
groups as the atomic entities.

A. Column aware ITC

The column level PLS criterion at time t is given by

PLS
(c)
t (k) =

t
∑

τ=0

γt−τ ǫτ (k)
2 (13)

where the a priori error ǫτ (k) from time τ is computed using
the k sparse solution x (the solution computed using the first k
columns) from time τ − 1. The exponentially decaying factor
γt−τ windows the past error allowing for variations in the
sparsity level estimate.

The BIC criterion uses the criterion J(x) for each k sparse
solution x and combines it with the effective number of
samples nt used to compute x, nt =

∑t

τ=0 λ
τ . It produces

the expression

BIC
(c)
t (k) = nt ln J(x) + (k + 1) lnnt. (14)

The sparsity estimate is the minimizer of the criterion

chosen, L(c) = mink PLS
(c)
t (k) or L(c) = mink BIC

(c)
t (k).

To adapt the sparsity estimate for our group problem, we
compute the group number estimate L by finding the group
containing the column L(c), L = k, such that L(c) ∈ Gk.

B. Group aware ITC

The ordering performed with the permutations is done at
the group level without any inherent in-group column order.
Because of this, the column sparsity estimation strategy can
potentially provide inaccurate estimates. To alleviate this we
propose the use of a group aware form for the ITC. In the BIC
case the changes are straightforward, the criterion is computed
for solutions x produced by the whole groups G1:k,

BIC
(g)
t (k) = nt ln J(x) +

(

1 +
∑k

i=1 |Gi|
)

lnnt =

= BIC
(c)
t (
∑k

i=1 |Gi|).
(15)

Note that we consider the penalty for the model complexity

(1 +
∑k

i=1 |Gi|) lnnt to depend on the number of columns in
the groups.

The PLS has a temporal dependance on the previous
solutions and the direct generalization for the group aware case
does not maintain the group atomicity. Due to this, we propose
several versions. The simplest uses the current group structure
G1:M from time t and computes the solution at group level,

PLS
(g)
t (k) =

∑t

τ=0 γ
t−τ ǫτ

(

∑k

i=1 |Gi|
)2

=

= PLS
(c)
t

(

∑k

i=1 |Gi|
)

.
(16)

If we consider the groups to be atomic, then we use the group
structure Gτ1:M obtained at each time instant τ . In this case the
group level PLS is given by

PLS
(ga)
t (k) =

t
∑

τ=0

γt−τ ǫτ

(

k
∑

i=1

|Gτi |
)2

. (17)

The splitting of groups and the different size of the groups

potentially adversely influence the ability of PLS
(ga)
t to pro-

duce a good sparsity estimate. To overcome these problems
we propose a weighted PLS criterion,

PLS
(gw)
t (k) =

t
∑

τ=0

γt−τ

|Gτk |
ǫτ

(

k
∑

i=1

|Gτi |
)2

. (18)

Special care should be taken in the case when a group Gi
is split; the PLS criterion for the first new formed group is

approximated as the mean of PLS
(gw)
t (i−1) and PLS

(gw)
t (i)

where PLS
(gw)
t (0) = bT b and the criterion for the second

group remains the same as for group Gi.
If the weighting is not performed directly like in (18),

the influence of different group sizes is mitigated when the
permutations are performed by using a weighted average

PLS
(gwa) of the PLS for the affected groups. When we split

a group a similar weighted average is used.

IV. SIMULATIONS

The behavior of the group GRLS algorithm using the
different ITC proposed in the previous section is studied for an
FIR channel identification problem. The variation of the true
coefficients is sinusoidal given by

x̃i = αicos(2πfTs + βi), (19)

with the amplitude αi and the phase βi distribute uniformly in
[0.05, 1] and [0, 2π]. We consider the filter length N = 180 and
we generate Mt = 2 groups, containing Pt nonzero elements,
randomly on a grid with step Pt. The inputs are generated
random according to N (0, 1) and the outputs are corrupted by
white noise with σ2 = 0.01. The filter is normed such that
E{||x̃||2} = 1. We define the performance measure as

MSE = E{||x̃− x||2} (20)

and we estimate it by averaging 300 runs.

We use two versions of the algorithms employing the online
groups sparsity estimation criteria. The first version (named
GRLS-Gg) knows the grid distribution of the groups (in the

4 6 8 10 12 14

10
−1

10
0

Pt (true group size)

M
S

E

RLS−SP

GRLS

GRLS−B

GRLS−P

GRLS−G−B
(g)

GRLS−G−P
(g)

4 6 8 10 12 14

10
−1

10
0

Pt (true group size)

M
S

E

RLS−SP

GRLS−G
g
−B

(c)

GRLS−G
g
−B

(b)

GRLS−G−B
(c)

GRLS−G−B
(g)

Fig. 1. Average MSE as a function of Pt; Mt = 2, fTs = 0.002.

4 6 8 10 12 14

10
−1

10
0

Pt (true group size)

M
S

E

RLS−SP

GRLS−G
g
−P

(c)

GRLS−G
g
−P

(g)

GRLS−G−P
(g)

4 6 8 10 12 14

10
−1

10
0

Pt (true group size)

M
S

E

RLS−SP

GRLS−G−P
(c)

GRLS−G−P
(g)

GRLS−G−P
(g

a
)

GRLS−G−P
(g

w
)

GRLS−G−P
(g

wa
)

Fig. 2. Average MSE as a function of Pt; Mt = 2, fTs = 0.002.

search for the last group M) and uses the group size fixed
to P = Pt. The second version (named GRLS-G) uses a
exhaustive sweep over all possible groups and the split and
join strategies with θs = 20 and θj = 100, respectively. It also
uses the group size P = Pt but can accommodate any other
size. The algorithms use either the PLS or the BIC criteria
presented in Section III (the names end with -P for PLS and
-B for BIC). For all algorithms p = 2, θp = 2 and ∆g = 2.

Additionally, we use the column GRLS algorithms from
[4] to illustrate the performance in the group unaware case; the
algorithm GRLS is the algorithms that knows the true number
of columns but not their positions while the fully adaptive
algorithms named GRLS-B and GRLS-P use BIC and PLS to
estimate the sparsity level. The algorithms use the parameter
∆ = 10 and τ0 = 2. As e reference we also include the sparsity
aware RLS algorithm (RLS-SP) which knows both the column
positions and the number of non zero coefficients.

Fig. 1 and 2 contain the MSE for the studied algorithm
for a high variation speed, fTs = 0.002, as a function of the
true group size Pt. Similarly, Fig. 3 and 4 show the MSE for
a low variation speed, fTs = 0.0002. In both cases Mt = 2
and the forgetting factors are λ = γ = 0.9 and λ = γ = 0.96,
respectively.

Since the parameter γ from the PLS criterion is not
necessary linked with the global forgetting factor λ, we study
the MSE as a function of γ for the best of the PLS criteria in
Fig. 5.

The convergence speed can be evaluated from Fig. 6. The
test is performed for fTs = 0.0002, λ = 0.96 and a different
group sparsity setup. The filter length is now N = 240,
the number of groups is Mt = 3 and the group size is
Pt = 8. We only include one selection criterion; the others
that achieve comparable MSE are performing similarly. The
group algorithm has better convergence speed than the group
unaware GRLS and GRLS-P.

4 6 8 10 12 14

10
−2

10
−1

Pt (true group size)

M
S

E

RLS−SP

GRLS

GRLS−B

GRLS−P

GRLS−G−B
(g)

GRLS−G−P
(g)

4 6 8 10 12 14

10
−2

10
−1

Pt (true group size)

M
S

E

RLS−SP

GRLS−G
g
−B

(c)

GRLS−G
g
−B

(b)

GRLS−G−B
(c)

GRLS−G−B
(g)

Fig. 3. Average MSE as a function of Pt; Mt = 2, fTs = 0.0002.

4 6 8 10 12 14

10
−2

Pt (true group size)

M
S

E

RLS−SP

GRLS−G
g
−P

(c)

GRLS−G
g
−P

(g)

GRLS−G−P
(g)

4 6 8 10 12 14

10
−2

Pt (true group size)

M
S

E

RLS−SP

GRLS−G−P
(c)

GRLS−G−P
(g)

GRLS−G−P
(g

a
)

GRLS−G−P
(g

w
)

GRLS−G−P
(g

wa
)

Fig. 4. Average MSE as a function of Pt; Mt = 2, fTs = 0.0002.

V. PERFORMANCE ASSESSMENT

The simulations suggest that the performance of the group
algorithms is generally better than that of the groups unaware
counterparts. The ability of the ITC to select the right group
sparsity varies however among the two BIC and the five
PLS criteria. On average the PLS criteria are superior if
compared to the BIC ones. In what follows we present a
detailed performance analysis and identify the possible causes
for performance degradation.

A. BIC performance

In general the BIC criteria provide similar performance
to that of the PLS criteria for low group sizes but show
fast performance degradation as the size increases. Since BIC
depends solely on the penalized residual from current time,
its performance is greatly influenced by the column and the
group order. Thus if a group contains columns which do not
correspond to nonzeros, BIC can produce spurious estimates.
Furthermore it has the tendency to underestimate the sparsity
level, especially for higher levels.

As can be seen from Fig. 1, for a fast variation speed and
small groups BIC provides good performance approaching that
of the sparsity aware RLS. As the group size increases the
performance degrades fast. The grid unaware algorithms are
still able to find parts of the support but they also include many
false columns resulting in the BIC being unable to estimate
the correct sparsity. The grid aware algorithms, since they
can find the true support easier, produce better results but the
BIC estimate is still poor for large groups underestimating the
sparsity level.

For the lower variation speed presented in Fig. 3, it is
notable that the grid aware algorithms provide near oracle
performance. The other BIC algorithms still show performance
degradation for large groups but, due to the lower variation
speed of the coefficient, they maintain their ability to estimate
the support for group sizes up to 10.

0.85 0.9 0.95

10
−1.3

10
−1.2

10
−1.1

γ (PLS fogetting factor)

M
S

E

RLS−SP

GRLS−G
g
−P

(g)

GRLS−G−P
(g)

GRLS−G−P
(g

aw
)

(a) fTs = 0.002, λ = 0.90

0.9 0.92 0.94 0.96 0.98

10
−2

γ (PLS fogetting factor)

M
S

E

RLS−SP

GRLS−G
g
−P

(g)

GRLS−G−P
(g)

GRLS−G−P
(g

aw
)

(b) fTs = 0.0002, λ = 0.96

Fig. 5. Average MSE as a function of γ for the PLS criterion; Mt = 2.

0 50 100 150 200 250 300 350 400

10
−2

10
−1

10
0

t (time)

M
S

E

RLS−SP

GRLS

GRLS−P

GRLS−G
g
−P

(g)

GRLS−G−P
(g)

Fig. 6. MSE for N = 240, Mt = 3 and Pt = 8.

B. PLS performance

The PLS criteria achieve better results than the BIC and
are consistent for all group sizes. Since the PLS depends on
past estimation errors, having different group sizes generates
difficulties for the group level criteria. Among the ones pro-

posed, the best performers are the naive group level PLS
(g)

and the weighted average PLS
(gwa). The group weighted

criterion PLS
(gw) has the worst performance but is still robust

to changes in the group sizes. For the grid aware algorithm all
the group level criteria are equivalent and are treated as such.

The performance of the grid aware algorithm using PLS
(g)

is close to that of the sparsity informed RLS suggesting almost
perfect support and sparsity level estimation. The column

based criterion PLS
(c) provides slightly inferior estimates.

While most of the group level PLS criteria (besides

PLS
(gw)) produce similar results, for the grid unaware al-

gorithms, PLS
(g) is the best by a small margin. PLS

(ga)

is very close but sometimes exhibits large error spikes, due
to permutations between small and large groups, although its
average performance is good.

The algorithms can benefit to some degree from a different
exponential window applied to the estimation error involved
in the computation of the PLS. Since the support size is not
necessary linked to the variation speed of the coefficients,
using a γ 6= λ can improve the sparsity level estimation.
Ideally γ needs to be related to the support size variation rate.
In Fig. 5, the support remains the same during the simulation
and a higher γ produces improved performance. A too large γ
however lowers the convergence speed and may produce worse
estimates because it favors too much the past. A smaller γ
favors an estimate based on more recent data but can be easier
influenced by noise; as γ grows more data is included in the
decision and any perturbations are averaged out. Thus γ can
be considered a tradeoff between consistency and adaptation
speed. In any case, the conservative choice γ = λ appears

to be robust; in all all simulations, this choice provides a
performance that is near the best attainable by a different γ.

VI. CONCLUSIONS

We have proposed a group aware sparse algorithm based
on the OLS and GRLS algorithms. The method uses orthog-
onal transformations to maintain a partial QR factorization.
A neighbor permutation strategy keeps the group order and
allows the use of the ITC to estimate online the number of
solution groups. Additionally a group slitting and joining strat-
egy was introduced. We studied several group level selection
strategies, based on ITC, for the task of online group sparsity
estimation. The simulations confirm the ability of the ITC
to estimate online the group sparsity level and suggest that
the PLS is more robust than BIC. On average, due to group
operations, it is P times more computationally intensive than
GRLS but has improved performance; the added complexity
due to ITC is very low.

REFERENCES

[1] Y. Chen, Y. Gu, and A. Hero III, “Sparse LMS for System Identifica-
tion,” in Int. Conf. Acoustics, Speech, Signal Proc., 2009, pp. 3125–
3128.

[2] D. Angelosante, J. Bazerque, and G. Giannakis, “Online Adaptive
Estimation of Sparse Signals: Where RLS Meets the ℓ1-Norm,” IEEE

Trans. Signal Proc., vol. 58, no. 7, pp. 3436–3447, July 2010.

[3] B. Babadi, N. Kalouptsidis, and V. Tarokh, “SPARLS: The Sparse RLS
Algorithm,” IEEE Trans. Signal Proc., vol. 58, no. 8, pp. 4013–4025,
2010.

[4] B. Dumitrescu, A. Onose, P. Helin, and I. Tăbuş, “Greedy Sparse RLS,”
IEEE Trans. Signal Proc., vol. 60, no. 5, pp. 2194–2207, 2012.

[5] S. Cotter and B. Rao, “The Adaptive Matching Pursuit Algorithm for
Estimation and Equalization of Sparse Time-Varying Channels,” in 34th

Asilomar Conf. Sign. Syst. Comp., vol. 2, 2000, pp. 1772–1776.

[6] Y. Kopsinis, K. Slavakis, and S. Theodoridis, “Online Sparse Sys-
tem Identification and Signal Reconstruction Using Projections Onto
Weighted ℓ1 Balls,” IEEE Trans. Signal Proc., vol. 59, no. 3, pp. 936–
952, Mar. 2011.

[7] L. Vega, H. Rey, J. Benesty, and S. Tressens, “A Family of Robust
Algorithms Exploiting Sparsity in Adaptive Filters,” IEEE Trans. Audio

Speech Lang. Proc., vol. 17, no. 4, pp. 572–581, May 2009.

[8] J. Rissanen, “Order Estimation by Accumulated Prediction Errors,” J.

Appl. Probab., vol. 23, pp. 55–61, 1986.

[9] G. Schwarz, “Estimating the Dimension of a Model,” Ann. Stat., vol. 6,
no. 2, pp. 461–464, 1978.

[10] Y. Eldar, P. Kuppinger, and H. Bolcskei, “Block-Sparse Signals: Un-
certainty Relations and Efficient Recovery,” IEEE Trans. Sign. Proc.,
vol. 58, no. 6, pp. 3042–3054, June 2010.

[11] S. Negahban and M. Wainwright, “Simultaneous support recovery in
high dimensions: Benefits and perils of block ℓ1/ℓ∞-regularization,”
IEEE Trans. Info. Theory, vol. 57, no. 6, pp. 3841 –3863, June 2011.

[12] S. Wright, R. Nowak, and M. Figueiredo, “Sparse Reconstruction by
Separable Approximation,” IEEE Trans. Sign. Proc., vol. 57, no. 7, pp.
2479 –2493, July 2009.

[13] Y. Chen and A. Hero III, “Recursive ℓ1,∞ Group Lasso,” IEEE Trans.

Signal Proc., vol. 60, no. 8, pp. 3978–3987, Aug. 2012.

[14] S. Chen, S. Billings, and W. Luo, “Orthogonal Least Squares Methods
and Their Application to Non-Linear System Identification,” Int. J.

Control, vol. 50, pp. 1873–1896, 1989.

[15] M. Mahon, L. Sibul, and H. Valenzuela, “A Sliding Window Update
for the Basis Matrix of the QR Decomposition,” IEEE Trans. Signal

Proc., vol. 41, no. 5, pp. 1951–1953, May 1993.

[16] A. Onose, B. Dumitrescu, and I. Tăbuş, “Sliding Window Greedy RLS
for Sparse Filters,” in ICASSP, May 2011, pp. 3916–3919.

PUBLICATIONS 145

Afterword

One kind word can warm three winter months.
Japanese proverb

You are never truly prepared when you move to a new place. There are always
a lot of small things that have the potential to amaze or shock you. Among all
the good and the bad, there will always be kind people, friends whose sympathy
and support will motivate you to carry on.

I wish to thank everybody who ’was there’ during the journey that led me,
from my early days of school in Bârlad and at the university in Bucharest, to
Tampere and to writing this thesis1: my good friends and colleagues that I met
during all my time spent in school; my family; all my professors, especially to those
that had a great influence on me and even those that I didn’t really like back then;
the mountain-loving friends with whom I traveled much of the Carpathian Moun-
tains every summer; the friends with whom I spent some wonderful times at the
seaside or in the Danube Delta; a particular friend for offering me a place to stay
during some tough times in my second university year; all my rock-loving friends
with whom I went to plenty of concerts and had such a good time; my roommates
and friends from in and around ’Regie’; the ’amiq-s’ for a very flexible but mo-
tivating work environment that allowed me to follow my dreams2; all those with
whom I shared a beer over the years; all the ’ciorba-s’ for a great summer trip
in the Carpathians and to the Black Sea; the friend, without whom, this thesis
would have had 100 commas less; the ’dai’ and ’bai’ for an intriguing trip in the
Himalayas and in a particularly rainy jungle; all my friends for all the sauna and
’avanto’ that made the long, dark and cold Finnish winter more enjoyable; the
’Monday-then-Thuesday’ ’beer-then-pepsi’ evening people; my friends for all the
football, floorball, badminton, volleyball we played together and for trying to teach
me how to skate and play hokey; those who trained for and suffered with me dur-
ing the marathon and two half-marathons I managed to run; all the friends for the
nice camping/forest trips we made; my flatmates from Mikontalo, well, most of
them; the board game and computer game geeks; a typically troubled policeman
who shall not be named; all those who endured the awful Juvenes food and lived
to have a coffee with me in Café Rom afterward; one friend who has sworn never

1In no particular order.
2I had to resign twice to do so but that’s a different story.

147

148 AFTERWORD

to return to Finland; the people I met during the conference trips I made in Japan
and the Czech Republic; my friends and colleagues from geta and all the geta
staff for the wonderful boat seminars and meetings; the friends, all of them with
their peculiar ways ranging from potato maniacs to chilly or crêpe fanatics, who
cooked such wonderful food during the years; all the ’bastards’ who enjoyed our
cooking but never cooked anything in return; two particular Chinese friends that
thought me to see things differently; my friends who kept in touch with me despite
the long distance between us; the friends who found some time to come and visit
me in Tampere; everybody else who I, deliberately or not, forgot to mention.

Thank you all!
Alex

	Introduction
	Adaptive filtering
	Traditional solutions
	Recursive least squares
	Applications
	Channel identification
	Linear prediction

	Sparse representations
	Batch methods
	Convex relaxation techniques
	Greedy algorithms
	Performance analysis

	Adaptive algorithms
	Traditional methods and the sparse problem
	Convex relaxation techniques
	Greedy algorithms
	Support cardinality estimation

	Greedy sparse adaptive algorithms
	Greedy sparse coordinate descent methods
	Recursive implementation
	Cyclic adaptive matching pursuit
	Coordinate descent adaptive matching pursuit

	Greedy sparse orthogonal algorithms
	Greedy sparse recursive least squares
	Sliding window algorithm
	Group level sparsity estimation

	Conclusions and summary
	Overview of the results
	Algorithm complexity
	Performance assessment

	Conclusions
	Author's contribution

	Mathematical appendix
	Matrix inversion lemma
	Sparsity recovery analysis
	Orthogonal transforms

	References
	Publications
	Afterword

