
Francesc de Borja Ramis Ferrer
An Approach to Automatically Distribute and Access
Knowledge within Networked Embedded Systems in
Factory Automation

Julkaisu 1526 • Publication 1526

Tampere 2018

Tampereen teknillinen yliopisto. Julkaisu 1526
Tampere University of Technology. Publication 1526

Francesc de Borja Ramis Ferrer

An Approach to Automatically Distribute and Access
Knowledge within Networked Embedded Systems in
Factory Automation

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Festia Building, Auditorium Pieni Sali 1,
at Tampere University of Technology, on the 9th of February 2018, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2018

Doctoral candidate: Francesc de Borja Ramis Ferrer

Laboratory of Automation and Hydraulic Engineering
Faculty of Engineering Sciences
Tampere University of Technology
Finland

Supervisor: Jose Luis Martinez Lastra, Prof.
Laboratory of Automation and Hydraulic Engineering
Faculty of Engineering Sciences
Tampere University of Technology
Finland

Pre-examiners: Ignacio Bravo, Prof.

Electronics Department
University of Alcala
Spain

Birgit Vogel-Heuser, Prof.
Department of Mechanical Engineering
Technical University of Munich
Germany

Opponent: Robert W. Brennan, Prof.
Department of Mechanical & Manufacturing Engineering
University of Calgary
Canada

ISBN 978-952-15-4083-7 (printed)
ISBN 978-952-15-4090-5 (PDF)
ISSN 1459-2045

Ramis Ferrer, Francesc de Borja: An Approach to Automatically Distribute and Ac-
cess Knowledge within Networked Embedded
Systems in Factory Automation

Tampere University of Technology, Faculty of Engineering Sciences, Finland 2017

Keywords: KNOWLEDGE ENGINEERING, KNOWLEDGE
ACQUISITION, KNOWLEDGE REPRESENTA-
TION, INTELLIGENT SYSTEMS, AUTONO-
MOUS SYSTEMS, CYBER-PHYSICAL SYS-
TEMS, INDUSTRIAL AUTOMATION

Abstract

This thesis presents a novel approach for automatically distribute and access
knowledge within factory automation systems built by networked embedded systems.
Developments on information, communication and computational technologies are
making possible the distribution of tasks within different control resources, resources
which are networked and working towards a common objective optimizing desired pa-
rameters. A fundamental task for introducing autonomy to these systems, is the option
for represent knowledge, distributed within the automation network and to ensure its
access by providing access mechanisms. This research work focuses on the process-
es for automatically distribute and access the knowledge.

Recently, the industrial world has embraced service-oriented as architectural (SOA)
patterns for relaxing the software integration costs of factory automation systems. This
pattern defines a services provider offering a particular functionality, and service re-
questers which are entities looking for getting their needs satisfied. Currently, there are
a few technologies allowing to implement a SOA solution, among those, Web Technol-
ogies are gaining special attention for their solid presence in other application fields.
Providers and services using Web technologies for expressing their needs and skills
are called Web Services. One of the main advantage of services is the no need for the
service requester to know how the service provider is accomplishing the functionality or
where the execution of the service is taking place. This benefit is recently stressed by
the irruption of Cloud Computing, allowing the execution of certain process by the cloud
resources.

The caption of human knowledge and the representation of that knowledge in a ma-
chine interpretable manner has been an interesting research topic for the last decades.

A well stablished mechanism for the representation of knowledge is the utilization of
Ontologies. This mechanism allows machines to access that knowledge and use rea-
soning engines in order to create reasoning machines. The presence of a knowledge
base allows as clearly the better identification of the web services, which is achievable
by adding semantic notations to the service descriptors. The resulting services are
called semantic web services.

With the latest advances on computational resources, system can be built by a large
number of constrained devices, yet easily connected, building a network of computa-
tional nodes, nodes that will be dedicated to execute control and communication tasks
for the systems. These tasks are commanded by high level commanding systems,
such as Manufacturing Execution Systems (MES) and Enterprise Resource Planning
(ERP) modules. The aforementioned technologies allow a vertical approach for com-
municating commanding options from MES and ERP directly to the control nodes. This
scenario allows to break down monolithic MES systems into small distributed function-
alities, if these functionalities use Web standards for interacting and a knowledge base
as main input for information, then we are arriving to the concept of Open Knowledge-
Driven MES Systems (OKD-MES).

The automatic distribution of the knowledge base in an OKD-MES mechanism and the
accomplishment of the reasoning process in a distributed manner are the main objec-
tives for this research. Thus, this research work describes the decentralization and
management of knowledge descriptions which are currently handled by the Represen-
tation Layer (RPL) of the OKD-MES framework. This is achieved within the encapsula-
tion of ontology modules which may be integrated by a distributed reasoning process
on incoming requests. Furthermore, this dissertation presents the concept, principles
and architecture for implementing Private Local Automation Clouds (PLACs), built by
CPS.

The thesis is an article thesis and is composed by 9 original and referred articles and
supported by 7 other articles presented by the author.

Acknowledgements

Certainly, this has been a thrilling journey. Back in the end of 2013, Prof. Lastra asked
me if I would be interested in applying for a doctoral student position at TUT after fin-
ishing my M.Sc. Although time will tell, I think that the continuation of my academic life
was the right choice. Anyway, I would like to thank the people that, somehow, made my
challenges easier, my waiting shorter and my life more beautiful.

First of all, I would like to thank Prof. Lastra for everything that he has given to me. I
cannot describe with words how I feel about his help, support, guidance and encour-
agement, simply, as indescribable as unpayable. ¡Muchas gracias profesor!

Then, I would like to thank my colleagues at FAST-Lab. and some mates that already
left looking for new challenges out of our unit. Thanks to Anne and Andrei for all what
we shared during these years. Further, thanks a lot to Sergii and Wael as I truly believe
that a small portion of my success, it’s yours. You taught me that true friendship can be
found abroad, without caring about having different language, nationality or culture.
Luisito, ahí también entras tú, ¡baby!

I would like to thank my close friends who supported me. Thanks to my namesake,
Borja, for the countless hours that we spend together even being at different locations
of the world. Also, thanks to Jaumet, the master of D&D masters and to Alex, an unex-
pected brother in law.

Here, I want to thank my relatives. Thanks to my parents, Jose Maria and Magdalena,
and my sister Constança. Ho hem fet i direu: “eres el mejor!” Però, sa veritat es que ho
som un poc tots, vos estim molt! Thanks also to my grandmothers, still in shape, Kika
and Smith. Also, I want to thank Juani and Rafael for their love to me, siempre me
habeis tratado como vuestro hijo.

Finally, I would like to thank my lovely wife, Amalia. If this journey has been at some
(many) moments difficult, she has been the one to cheer me up, to show me the way,
to do whatever is needed for helping to reach the goal. Definitely, without her, this
would not be possible. Muchísimas gracias princesa, TKMHEIYS! SJ! OUI!

Francesc de Borja Ramis Ferrer (M.Sc., B.Sc.),
Tampere, Finland
18. 12. 2017

Foreword

The research outcome reported in this thesis was performed within the Factory
Automation Systems and Technologies Laboratory (FAST-Lab.) currently
belonging to the Laboratory of Automation and Hydraulic Engineering, in
Tampere University of Technology, Finland, during the period 2014-2017. The
research leading to these results has received funding from:

I. the Graduate School of Tampere University of Technology
II. the ARTEMIS Joint Undertaking1 under grant agreement n°332946 and

from the Finnish Funding Agency for Technology and Innovation
(TEKES), correspondent to the project shortly entitled eScop 2 ,
embedded systems for service-based control of open manufacturing and
process automation.

III. the European Union’s Horizon 2020 research and innovation program
under grant agreement n°636909, correspondent to the project shortly
entitled C2NET3, Cloud Collaborative Manufacturing Networks.

IV. the European Union’s Horizon 2020 research and innovation programme
under grant agreement n°644429 correspondent to the project shortly
entitled MUSA4, Multi-cloud Secure Applications

1 http://www.artemis-ju.eu/
2 http://www.tut.fi/escop/
3 http://c2net-project.eu/
4 http://musa-project.eu/

“Els grassos sempre reben”

– Francisca Martorell Martorell (my grandmother)

7

Contents

1	 INTRODUCTION ... 21	

1.1	 Motivation and Justification .. 21	

1.2	 Problem Statement and Research Questions .. 23	

1.3	 Methodology ... 24	

1.4	 Objectives ... 24	

1.5	 Contributions .. 25	

1.6	 Thesis Outline ... 25	

2	 LITERATURE AND TECHNOLOGY REVIEW .. 27	

2.1	 Artificial intelligence .. 28	

2.1.1	 Knowledge representation and reasoning ... 28	

2.1.1.1	 Ontology ... 29	

2.1.2	 Automated planning and scheduling ... 30	

2.2	 Distributed systems .. 31	

2.2.1	 Problem solving ... 31	

2.2.2	 Resource allocation ... 32	

2.3	 Cloud computing ... 32	

2.4	 Architecture, methods and tools ... 33	

2.4.1	 Component .. 34	

2.4.1.1	 Service oriented .. 34	

2.4.1.2	 Function block oriented .. 35	

2.4.1.3	 Agent oriented .. 37	

2.4.2	 Interaction ... 37	

8

2.4.2.1	 Time triggered .. 38	

2.4.2.2	 Event driven .. 38	

2.5	 Summary of the literature and technology review .. 39	

3	 AN APPROACH TO SYSTEMATICALLY DISTRIBUTE, ACCESS AND REASON
KNOWLEDGE WITHIN NETWORKED EMBEDDED SYSTEMS IN FACTORY
AUTOMATION .. 41	

3.1	 Knowledge-based web service integration for industrial automation
(Publication I) .. 43	

3.2	 Cyber–Physical Systems for Open-Knowledge-Driven Manufacturing
Execution Systems (Publication II) ... 44	

3.3	 Towards the encapsulation and decentralization of OKD-MES services within
embedded devices (Publication III) .. 45	

3.4	 Exemplifying the Potentials of Web Standards for Automation Control in
Manufacturing Systems (Publication IV) ... 46	

3.5	 Product, process and resource model coupling for knowledge-driven assembly
automation (Publication V) ... 47	

3.6	 Private local automation clouds built by CPS: Potential and challenges for
distributed reasoning (Publication VI) ... 48	

3.7	 Management of distributed knowledge encapsulated in embedded devices
(Publication VII) .. 49	

3.8	 An Architecture for Implementing Private Local Automation Clouds Built by
CPS (Publication VIII) ... 51	

3.9	 Principles and risk assessment of managing distributed ontologies hosted by
embedded devices for controlling industrial systems (Publication IX) 52	

3.10	 Summary .. 53	

4	 CONCLUSIONS AND RECOMMENDATION FOR FUTURE WORKS 57	

4.1	 Concluding Remarks .. 57	

4.2	 Further Work ... 58	

9

REFERENCES ... 61	

PUBLICATIONS ... 73	

10

List of Figures

Figure 1: Structure of the literature and technology review .. 27	

Figure 2: An example on ontology classes and their relationships [32] 29	

Figure 3: Architecture, methods and tools .. 33	

Figure 4: A Function Block model [95] ... 36	

Figure 5: Sparse time base presented in [113] .. 38	

11

List of Tables

TABLE. I: Main results and outcomes .. 53	

12

List of abbreviations

AI Artificial Intelligence

BPEL Business Process Execution Language

BPMN Business Process Modeling Notation

C2NET Cloud Collaborative Manufacturing Networks

CAN Control Area Network

CC Cloud Computing

CEP Complex Event Processing

CN Collaborative Network

DoS Denial of Service

DPWS Device Profile for Web Services

DS Distributed Systems

ECC Execution Control Chart

EDA Event-Driven Architecture

ERP Enterprise Resource Planning

eScop Embedded systems for Service-based Control of Open manufacturing
and Process automation

ET Event-Triggered

FB Function Block

FIPA Foundation for Intelligent Physical Agents

GCE Google Compute Engine

IaaS Infrastructure-as-a-Service

ICT Information and Communication Technologies

13

IEC International Electrotechnical Commission

INDIN IEEE International conference on Industrial Informatics

I4.0 Industry 4.0

IIoT Industrial Internet of Things

IoT Internet of Things

ISA International Society of Automation

ISO International Organization for Standardization

JCR Journal Citation Report

KB Knowledge Base

KR Knowledge Representation

KR&R Knowledge Representation and Reasoning

MAS Multi-Agent System

MES Manufacturing Execution System

MESA Manufacturing Execution Systems Association

MSO Manufacturing System Ontology

OWL Ontology Web Language

OWL-S Ontology Web Language for Services

PaaS Platform-as-a-Service

OASIS Organization for the Advancement of Structured Information Standards

OKD-MES Open Knowledge-Driven Manufacturing Execution System

OLE Object Linking and Embedding

OPC Object Linking and Embedding for Process Control

OPC-UA Object Linking and Embedding for Process Control Unified Architecture

14

ORL Orchestration Layer

PHL Physical Layer

PLAC Private Local Automation Cloud

PPR Product Process and Resource

PLC Programmable Logic Controller

REST Representational State Transfer

RDF Resource Description Framework

RPL Representation Layer

RPL-S Representation Layer Service

SaaS Software-as-a-Service

SCADA Supervisory, Control and Data Acquisition

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SPAQRL SPARQL Protocol and RDF Query Language

SPARUL SPARQL Update Language

SWRL Semantic Web Rule Language

TTA Time-Triggered Architecture

UML Unified Modeling Language

VDI Verein Deutsche Ingenieure

VIS Visualization Layer

W3C World Wide Consortium

WS Web Service

WS-* Web Service standards

15

WS-CDL Web Service Choreography Description Language

WSDL Web Services Description Language

XML eXtensible Markup Language

16

Refereed Publications

I. B. Ramis Ferrer, L. Gonzalez, S. Iarovyi, A. Lobov, J. L. Martinez Lastra, V.
Vyatkin, and W. Dai, “Knowledge-based web service integration for industrial
automation,” in 2014 12th IEEE International Conference on Industrial Informat-
ics (INDIN), 2014, pp. 733–739.

II. S. Iarovyi, W. M. Mohammed, A. Lobov, B. Ramis Ferrer, and J. L. Martinez
Lastra, “Cyber–Physical Systems for Open-Knowledge-Driven Manufacturing
Execution Systems,” Proc. IEEE, vol. 104, no. 5, pp. 1142–1154, May 2016.
(JCR Q1, JUFO 3)5

III. B. Ramis Ferrer and J. L. Martinez Lastra, “Towards the encapsulation and de-
centralisation of OKD-MES services within embedded devices,” Int. J. Prod.
Res., May 2017. doi: 10.1080/00207543.2017.1328141. (JCR Q1, JUFO 1)

IV. B. Ramis Ferrer, S. Iarovyi, W. M. Mohammed, A. Lobov, and J. L. Martinez
Lastra. 2016. “Exemplifying the Potentials of Web Standards for Automation
Control in Manufacturing Systems.” International Journal of Simulation Systems,
Science & Technology 17 (33): 3.1–3.12. doi:10.5013/IJSSST.a.17.33.03.

V. B. Ramis Ferrer, B. Ahmad, D. Vera, A. Lobov, R. Harrison, and J. L. M. Lastra,
"Product, process and resource model coupling for knowledge-driven assembly
automation," at-Automatisierungstechnik, vol. 64, no. 3, pp. 231-243, 2016.

VI. B. Ramis Ferrer and J. L. Martinez Lastra, “Private local automation clouds built
by CPS: Potential and challenges for distributed reasoning,” Adv. Eng. Inform.,
vol. 32, pp. 113–125, Apr. 2017. (JCR Q1, JUFO 1)

VII. B. Ramis Ferrer, S. Iarovyi, L. Gonzalez, A. Lobov, and J. L. Martinez Lastra,
“Management of distributed knowledge encapsulated in embedded devices,” Int.
J. Prod. Res., vol. 54, no. 18, pp. 5434–5451, Sept. 2016. (JCR Q1, JUFO 1)

VIII. B. Ramis Ferrer and J. L. Martinez Lastra, “An Architecture for Implementing
Private Local Automation Clouds Built by CPS,” in IECON 2017 – 43rd Annual
Conference on IEEE Industrial Electronics Society, 2017.

IX. B. Ramis Ferrer, S. O. Afolaranmi and J. L. Martinez Lastra, “Principles and risk
assessment of managing distributed ontologies hosted by embedded devices
for controlling industrial systems,” in IECON 2017 – 43rd Annual Conference on
IEEE Industrial Electronics Society, 2017.

5 JCR is the international Journal Citation Report quartile ranking and JUFO is a Finnish
classification system for assessing the quality of the research output.

17

Author’s Contribution on Refereed Publications

Publication I “Knowledge-based web service integration for industrial automa-
tion”

The scientific work was done by the doctoral student in collaboration of a set of re-
search fellows within the research scope of the eScop project. The main contribution of
the doctoral student was the development of the ontology and the web-based interface
as well as leading the performance of the presented experiment. The work was super-
vised by the eScop technical project coordinator Dr. Lobov and by the close supervisor
Prof Lastra. On the other hand, M.Sc. Gonzalez and M.Sc. Iarovyi provided program-
ming support for the encapsulation as service of different component functionality. Prof.
Vyatkin and Dr. Dai revised the manuscript and final results, and presented the work in
the 12th IEEE International Conference on Industrial Informatics (INDIN), 2014. Fur-
thermore, it is interesting to mention that Dr. Lobov exploited and disseminated the
results reported in the article in the ARTEMIS-ITEA2 Co-Summit.

Publication II “Cyber–Physical Systems for Open-Knowledge-Driven Manufactur-
ing Execution Systems”

This is the only publication wherein the doctoral student does not have the correspond-
ing author role. Nevertheless, this work is included in this doctoral thesis due to the
importance of the provided results and collaboration which, indeed, served as inspira-
tion for the thesis topic. The doctoral student contributed to the required research and
performance of distributed systems and knowledge-driven approach paper sections.
Moreover, the doctoral student belonged to the OKD-MES development team, more
precisely in the part of designing and developing ontology-based experiments for the
OKD-MES approach. M.Sc. Iarovyi was the main author of the publication and was
involved in all parts of the presented research work. Then, M.Sc. Mohammed contrib-
uted in both development and description of the FASTory Simulator, which is described
in [1]. Finally, the research was supervised by the eScop technical project coordinator
Dr. Lobov and by the close supervisor Prof Lastra.

18

Publication III “Towards the encapsulation and decentralization of OKD-MES
services within embedded devices”

The work reported in this manuscript was contributed by the doctoral student, super-
vised by Prof. Lastra.

Publication IV “Exemplifying the Potentials of Web Standards for Automation
Control in Manufacturing Systems”

The scientific work was done by the doctoral student in collaboration of a set of re-
search fellows within the research scope of the eScop project. The doctoral student
belonged to the eScop development team, more precisely in the part of designing and
developing ontology-based experiments for the eScop project proof of concepts. Also,
as main author of this publication, the doctoral student wrote the majority of the article.
Some effort on writing the article as well as the provision of examples on different web
standards were provided by M.Sc. Iarovyi. In addition, M.Sc. Mohammed contributed in
both development and description of the FASTory Simulator. The work was supervised
by the eScop technical project coordinator Dr. Lobov and by the close supervisor at
TUT, Prof Lastra. Furthermore, it is interesting to mention that this journal article was
performed after receiving and invitation for extending an article presented in the
UKSim-AMSS 9th IEEE European Modelling Symposium on Mathematical Modelling
and Computer Simulation [2].

Publication V “Product, process and resource model coupling for knowledge-
driven assembly automation”

This international collaboration was proposed and led by the doctoral student. The sci-
entific writing was also mainly done by the doctoral student but with the support of Dr.
Ahmad. Moreover, the University of Warwick as an international collaborator, provided
a testbed and supervision on the developments related to their industrial equipment.
Therefore, Dr. Ahmad, Dr. Vera and Prof. Harrison were involved in the supervision of
the approach implementation. Finally, from the side of Tampere University of Technol-
ogy, the research and results were supervised and revised by Dr. Lobov and by the
close supervisor Prof Lastra. Furthermore, it is interesting to mention that this publica-
tion is a research result from previous collaboration also led by the doctoral student in
the same topic [3]–[5]. Currently, both organizations are working together in the same
line of research and looking forward the publication of accepted manuscripts and the
performance of more articles showing further results in the area.

19

Publication VI “Private local automation clouds built by CPS: Potential and chal-
lenges for distributed reasoning”

The work reported in this manuscript was contributed by the doctoral student, super-
vised by Prof. Lastra.

Publication VII “Management of distributed knowledge encapsulated in embed-
ded devices”

The work reported in this manuscript was mainly contributed by the doctoral student.
Nevertheless, M.Sc. Iarovyi supported with the research and discussion of ways to
design the behavior of devices and M.Sc. Gonzalez supported with descriptions of the
embedded devices for both the performance of the experiments and related information
included in the article. The work was supervised by the eScop technical project coordi-
nator Dr. Lobov and by the close supervisor Prof Lastra.

Publication VIII “An Architecture for Implementing Private Local Automation
Clouds Built by CPS”

The work reported in this manuscript was contributed by the doctoral student, super-
vised by Prof. Lastra.

Publication IX “Principles and risk assessment of managing distributed ontolo-
gies hosted by embedded devices for controlling industrial systems”

The work reported in this manuscript was contributed by the doctoral student, super-
vised by Prof. Lastra. In addition, Mr. Afolaranmi had an important role in the research
work performance since he supported in the research and documentation of related
work on security as well as in the performance of the threat modelling and risk as-
sessment.

21

1 Introduction

This section presents the research problem addressed by this dissertation. The chapter begins
with the motivation and justification for this doctoral research. Then, the section introduces the
methodology and the main research questions derived from it. The chapter is finished by outlining
the main contributions achieved by this research.

1.1 Motivation and Justification

Technology is a main player in the development of the industrial world. The industrial revolution
was driven by the mechanization of tasks and process at the factory floor, consecutively the intro-
duction of electrification and informatization played a pivotal role for arriving to the current industrial
solutions. The German Academy of Science and Technology numbers these as the first, second
and third Industrial Revolutions. Technologies are mechanisms for facing problems, the current
global volatile markets, shorter product life cycles and across-the -broad supply chains are calling
for new solutions. These solutions are according to Germany the introduction of Internet of Things
and Services into the manufacturing world, this new era is called Industrie 4.0 [6]–[9]. Germany is
not alone trying to tackle these societal and economical issues affecting the manufacturing sector
by increasing the presence of "smart" solutions, and similarly other European countries are work-
ing towards the Factories of the Future [10]. Western countries are not the exception working in
these issues, for example China created a large technological program named Made in China
2025 basically addressing the same issues and embracing the same potential technological solu-
tions [11]–[13].

Within the scope of these large technological programs, factory automation plays a major role con-
tributing the entire digitalization of the product life cycle. Transparent factories, capable of reacting
the customer needs and automatically trigger production capabilities are an area of major attention.
In such scope, the factory automation domain seeks for novel types of Manufacturing Execution

22

Systems (MES) [14] which are interoperable with Web Service (WS) technologies that enable the
orchestration of machine operations at factory shop floor. WS technologies are implementable into
current embedded devices within few protocols, such as the Device Profile for Web Services
(DPWS) which, in turn, enables the implementation of Service Oriented Architectures (SOA) [15].

Recently, the industrial world has adopted architectural SOA patterns for reducing the integration
costs of factory automation systems. WS-enabled devices can act as gateways with factory shop
floor machines and higher management and controlling systems as Supervisory, Control and Ac-
quisition (SCADA), MES or Enterprise Resource Planning (ERP) systems, following the automation
pyramid described by the ANSI/ISA95 [16]. In this scenario, and due to the fact that service re-
questers do not need to know where and how the required functionality is achieved by service pro-
viders, systems located at different levels of manufacturing enterprises can control and monitor
factory shop floor operations.

For the last decades, the representation of human knowledge in a machine interpretable manner
has been an interesting research topic. In the industrial domain, there is a trend of applying
Knowledge Representation (KR) techniques [17] in order to model and describe system capabili-
ties and functionalities in both human and machine-readable manner. This is achieved within the
use of semantic technologies, such as ontologies [18] that may be processed and extended at sys-
tem run time. This permits the implementation of intelligent-based solutions that automate pro-
cesses and make decisions in order to enhance the productivity of modern factories.

Through the synergy of SOA and KR, the so-called Knowledge-Driven (KD) solutions permit the
control and monitoring of semantic web service operations within both retrieval and update of
Knowledge Base (KB) information [19]. Conceptually, KBs are repositories that contain semantic
descriptions of system components. As an example of KD solutions, the embedded systems for
service-based control of open manufacturing and process automation (eScop) project generated
and validated the Open Knowledge-Driven Manufacturing Execution System (OKD-MES) frame-
work [14]. The OKD-MES framework permits the implementation and control of MES functions
within web-based standards [20]. One of the main characteristics for the utilization of the OKD-
MES solution is its placement on top of Cyber-Physical Systems (CPSs) [21], such as specific in-
dustrial controllers [14]. These devices contain service operation descriptions which can be in-
voked by a service composition engine [22] and permit the vertical communication between differ-
ent levels of the automation pyramid.

On the other hand, the advent of Cloud Computing (CC) permits the abstraction of computation
resources that can be remotely stored and provisioned on user demand [23]. In fact, there is a
trend on applying CC paradigm concepts to the industry [24]–[26]. The implementation of Collabo-
rative Networks (CNs) and the combination of CC and the Internet of Things (IoT) concept, which
is based on the connection of all the “things” (i.e., resources), can provide the optimization of man-
ufacturing and logistics assets of supply chains [27], [28]. Therefore, in the context of I4.0, the in-

23

terconnectivity of cloud-based platforms with industrial equipment can be achieved within the use
of IoT-based devices. Such kind of devices are the key to push information to the cloud. One of the
major benefits for the industry of using this kind of devices is that meanwhile their computational
capabilities increase on new device variants, the price does not grow accordingly. In fact, although
these devices are cheap, they permit the performance of computationally expensive functions, e.g.,
KR and Reasoning (KR&R) at system runtime.

The integration cost at modern factories can be reduced within distributed intelligence [29] and the
research community presented many approaches to solve this issue during last decade. Neverthe-
less, the emergence of the Industrial IoT (IIoT) and the increment of the computational power of
embedded devices presents a novel scenario that must be explored.

More precisely, the embedded devices (i.e., control units) that are now used for industrial applica-
tions should not act only as gateways to enable connectivity and vertical communication but also to
perform more functionalities which are currently managed at upper automation levels. In other
words, there is a need of exploiting the unused resources of new embedded devices that may sup-
port to reduce the high cost of integration in the industrial field.

1.2 Problem Statement and Research Questions

Integration efforts are large when factory automation systems are built by interconnecting control
units. These control units, very successful at the time of executing distributed tasks, are suffering
when system changes overall objectives or the system is reconfigured. An approach to solve this
problem is to increase machine interpretable knowledge, yet this usually generates new problems
because of the centralized approach of building the knowledge base. Thus, the implementation of
a knowledge base, easily to adapt over the time and with guaranties for being accessed by all the
interested parties remained as an unanswered research problem.

In order to solve the previously stated research problem, this doctoral work shall answer the follow-
ing main research questions:

1. How to distribute the knowledge among the different control units building the automation
system?

2. How to access the knowledge by control units located in a different control unit?

24

1.3 Methodology

This doctoral work follows the inductive research method. The starting point has been the observa-
tion of the current needs faced by current, and near future, Discrete Event Dynamic Automation
Systems in order to cope with the demands of Smart Factories. Special attention has been given to
those needs calling for easy integration of devices at the factory floor. Witnessing the latest devel-
opments of the ratio price/computational power, systems are being built by a large amount of con-
trol nodes, interconnected via fast and reliable communication networks. These nodes need to
collaborate in order to achieve common goals. A proposed approach for relaxing that collaboration
process is to represent knowledge in a machine interpretable manner (i.e., ontologies) in order to
automatically reason and decide. While the current approach to implement knowledge is a central-
ized one, this thesis tries to bring that concept to the next level by providing an approach for dis-
tributing that knowledge base within a large network of control units. Furthermore, the research
presents a method for accessing that knowledge at runtime.

1.4 Objectives

This research work aims to create a solution for automatically distribute, access and reason
knowledge descriptions within factory automation systems built by networked embedded systems
(i.e., control units). Therefore, the three main research objectives are:

I. To identify an approach for creating and distributing semantic knowledge representations
among the embedded systems that build the automation system

II. To design a mechanism that permits embedded devices to access knowledge descriptions
hosted by different control units

III. To develop a goal-oriented mechanism for integration of semantic resources

IV. To propose an infrastructure that is capable of handling a set of networked control units
which are capable of hosting, managing, accessing and integrating semantic descriptions at
runtime

25

1.5 Contributions

The following is a list of main contributions of this research.

I. A structure for ontologies in order to support reusability and expandability for describing
factory manufacturing systems and devices' capabilities

II. A methodology for integrating and reasoning system's knowledge within interconnected re-
source-constrained control nodes

III. A reference architecture for implementing Private and Local Automation Clouds as a con-
sequence of interconnecting networked control units targeting the distributed knowledge
within the system as main base for reasoning at runtime

The doctoral research also provides another set of contributions, mainly derived as consequence
of the core ones, or by the need of solving side problems associated to the main one. The main
non-core contributions are:

IV. A structure for ontologies in order to describe manufacturing equipment and services infor-
mation for the OKD-MES framework

V. A multiple domain ontology enriched with semantic rules for modelling and integrating
Product, Process and Resource knowledge to be updated and accessed throughout the
lifecycle of manufactured products

VI. A solution for processing large amounts of events within ontology-based descriptions in
highly dynamic environments, such as supply chain

These non-core contributions have been reported within several publications [2]–[5], [30]–[32].

1.6 Thesis Outline

The remaining of the document is structured as follows: Section 2 presents a literature and tech-
nology review in the scope of this research work. Then, Section 3 describes the design of private
local automation clouds, built by CPS. Afterwards, Section 4 concludes the thesis work and sug-
gests further work. Finally, this document presents a reproduction of each refereed publication that
has been performed during the doctoral studies in order to achieve the aforementioned objectives
in 1.4 Objectives.

27

2 Literature and Technology Review

This chapter presents a review and assessment of several computer science disciplines that are
applied in the industrial automation domain. More precisely, this review focuses on the three main
areas of study that are related to the presented research work: Artificial Intelligence (AI), Distribut-
ed Systems (DS) and Cloud Computing (CC). In addition, the overview of other subareas of study,
such as Knowledge Representation or Problem Solving provide the necessary knowledge about
relevant concepts that have been investigated, exploited and/or applied during this research work.
Following Figure 1 depicts a hierarchy chart that presents the review structure of this review. Each
block is separately described as subsections of this section.

Figure 1: Structure of the literature and technology review

28

2.1 Artificial intelligence

Artificial Intelligence (AI) [33] is a field of study that focuses in the creation of intelligent machines
and/or software. This is achieved throughout the design, implementation and deployment of intelli-
gent behaviour that machines and/or computer programs will follow in order to perform actions.
According to [33] there are many different features that are needed for achieving AI. These fea-
tures are organized in several traits, which are concern in distinct aspects of AI e.g. problem solv-
ing, knowledge representation, planning, or natural language processing, among others.

2.1.1 Knowledge representation and reasoning

KR is a part of AI that is concerned with how computer systems use their knowledge about specific
domains and decide what to do depending on certain situations. The domain knowledge is de-
scribed as a set of statements forming a semantic repository, known as a Knowledge Base (KB).
As the storage of information about the status of systems is frequently required in the industrial
field to allow the adaptation and re-configurability of systems, the implementation of KR in current
manufacturing systems becoming popular.

Examples of industrial automation research works that utilize a KB for storing data used for control-
ling processes is presented in [19], [34], [35]. Then, software and design engineers are now capa-
ble to describe physical and logical systems in a KB, which permit not only the collection of system
data but also its accessibility from interested parties. It should be noted that, due to the abstraction
of syntax that different tools offer to design KBs and because of the expressivity of employed lan-
guages in KR, the described knowledge is interpretable by both humans and machines.

The first decision for employing KR techniques to formally describe any domain knowledge to be
used is the format of such representation. There are many different formalisms that can be em-
ployed e.g. ontologies, semantic nets, frames, production rules or even databases, among others.
Probably, ontologies are the most current mean being used to describe knowledge in systems
driven by computation of knowledge. On the other hand, semantic reasoning engines allow the
conclusion of implicit knowledge that is inferred from explicit knowledge. In fact, KR is often re-
ferred as KR and reasoning (KR&R) because the field is not only concerned on describing explicit
facts but inferring implicit information. This characteristic is crucial in knowledge-driven approaches
because it is then possible to extend on runtime the KB with statements that are not included in
design, configuration or operation phases. In addition, the inference of KB descriptions permits the
validation of the model consistency, which can be altered when updating semantic descriptions
with automated solutions.

29

2.1.1.1 Ontology

Ontologies permit the formal knowledge representation of any domain as e.g. manufacturing sys-
tems [36]. This kind of models are designed within the description of specific components that
permit a rich description of the specific domain to represent semantically. The main components of
ontologies are classes, relations, attributes, individuals, functions, axioms [18]. On the other hand,
supporting the standardization of ontology design, there are some methodologies that guides on-
tology designers to implement ontological models [37]. In particular, aforementioned methodology
consist on a set of steps that covers the main parts to be implemented when designing an ontology.
As an example of an ontology employed in the factory automation field, Figure 2 shows an Unified
Modeling Language (UML) class diagram that depicts the main objects and relationships of an on-
tology that belongs to the research work presented in [32].

Figure 2: An example on ontology classes and their relationships [32]

There are many languages for implementing ontologies [38], [39]. Nevertheless, the common on-
tology language used in recent research works e.g., [34], [40] is the Web Ontology Language
(OWL) [41].

OWL is presented as a mature language for implementing ontologies in the industrial automation
field [42] because it offers higher degree of representation than other ontology languages as e.g.
the Resource Description Framework (RDF) [43] language, which is based on the Extensible

30

Markup Language (XML) [44]. In fact, OWL is a RDF based language and, consequently, the use
of RDF-based query languages for manipulating OWL KBs is possible.

The SPARQL Protocol and RDF Query Language (SPARQL) [45] can be employed for querying
OWL models. SPARQL queries permit humans and systems to retrieve information of the
knowledge. Moreover, the SPARQL Update Language (a.k.a. SPARUL) is a SPARQL extension
that permit the update of the KB statements. Then, dynamic environment that uses a central repos-
itory of knowledge as e.g. manufacturing systems, can employ OWL models updated within SPA-
RUL to actualize the status of systems [19], [46]. In addition, as ontologies can be accessed and
modified on runtime, OWL model is a central component in knowledge-driven approaches, wherein
behavior of systems is controlled according to the information of the system components [14].

In order to provide model inference, there are many semantic reasoning engines [47]. For example,
the Pellet reasoner [48] is capable to understand and evaluate Semantic Web Rule Language
(SWRL) rules which are added to the KB that, in turn, should be implemented within RDF-based
languages [49]. Besides the inference of implicit knowledge, reasoning engines also provide the
validation of ontologies by checking its consistency. This is particularly useful when knowledge of
different domain is mapped in semantic models [49]–[51].

Aforementioned languages for implementing ontologies and rules are recommendations of the
World Wide Web Consortium (W3C), which provides specifications for each language in [52]. The
interrelation between different standards used for implementing ontologies can be understood with-
in the Semantic Web, which is described in detail in [53]. Fundamentally, the concept of the Se-
mantic Web is adopted by the industry in order to link resources in a web, which can be actually
implemented within ontologies. The resulting map of semantic resources can then be used for di-
verse things e.g. checking dependencies of processes, discovering services or describing systems
and/or services.

2.1.2 Automated planning and scheduling

Automated planning and scheduling is a part of AI that focuses on the organization and execution
of activities in certain order which are needed to achieve certain goals. The sequence of activities,
or plan, is normally managed by software engines that permits the monitoring and supervision of
the process execution. Such plans may be created offline or even dynamically modified on runtime.
The automated planning and scheduling is in relation with the decision-making of systems because
the plans may vary depending on the requirements of the goal to be achieved. In addition, prede-
fined plans can be optimized by same or external applications [27].

This area is relevant for the industrial automation because production systems are highly dynamic
and require planning the execution of multiple operations to, e.g., manufacture customized prod-
ucts [54]. The planning and scheduling is not only concerned about the creation of products but

31

also in shipment and delivery, as part of the supply chain. In fact, the automated planning and
scheduling is also applied in cases of failure or re-configuration of systems and unexpected events
which should affect as less as possible to the value chain of the product [55].

Recent research work combines the implementation of semantic and web-based technologies for
creating flexible and dynamic solutions for creating, controlling and supervising production plans
[56]. Furthermore, the optimization of production plans and their distribution throughout the supply
chain within a cloud-based platform is the core objective of contemporary European projects, such
as the C2NET project.

2.2 Distributed systems

Distributed systems (DS) are formed by entities that are located in networked computers which
coordinate their actions within the exchange of information. The handshake of messages permits
DS to employ resources that are not owned by the same entity. Thus, one of the most important
advantages of this systems is the possibility to have different entities that manage and share in-
formation. The main principles of distributed systems are described in [57].

In the industrial automation field, DS networks have been applied since many decades ago. In fact,
besides the employment of Programmable Logic Controllers (PLCs) for distributed process control,
modern production systems incorporate new types of embedded devices that allow building CPS.
One of the valid approaches, which is in the scope of this research work, is the implementation of
the SOA paradigm, which permits encapsulating the functionality of system components and ex-
posing it as Web Services [58], [59]. The principles and a brief introduction on this topic is present-
ed in 2.4.1.1 Service oriented.

2.2.1 Problem solving

Problem solving is concerned about techniques and methods that permit finding a solution for a
problem. Diverse areas, such as computer science, AI, mathematics or medicine implement prob-
lem solving methods. For example, the industrial automation domain implements and applies dif-
ferent algorithms in order to solve specific problems [60]–[62].

Furthermore, problems can be solved within collaboration. In this scope, collective problem solving
consists on utilizing the collection of efforts of multiple individuals in order to solve a specific prob-
lem [63]–[67]. As it can be seen in aforementioned research works, individuals (i.e., hardware
and/or software) share and employs conjunctly their resources for solving a common problem.

32

2.2.2 Resource allocation

Resource allocation is a concern on different areas, e.g., computer science or project management.
Conceptually, as resources are finite the resources must be employed efficiently in order to avoid
delays or carrying out tasks without guarantees of a satisfactory performance. In computer science,
any running application forces computers to allocate resources for such task. This may not be a
concern for computers with high processing power or for performing small processes. However,
resource-constrained embedded devices must be aware of the allocation of their resources due to
their limitations. Then, hardware and software engineers make a great effort on researching about
methods that allow the diminution of the computational power needed to perform tasks or, on the
other hand, the reduction of size and cost of more powerful chips for such kind of embedded de-
vices [68], [69]. In addition, other large systems, such as cloud-based systems, are also concerned
about resource allocation due to the management of large amount of access requests to cloud
resources [70].

2.3 Cloud computing

Cloud computing (CC) is a paradigm that is implemented in multiple domains, such as the industri-
al automation domain. Conceptually, CC permits not only the abstraction and storage of computa-
tional resources but also the remote access to such resources [71], [23]. Basically, a cloud-based
model is composed by networked entities which manage and give access to their own resources.
The computing resources are hosted locally by each entity, such as a server. From a higher per-
spective, the cloud is seen by outsiders as a unique system that contains many services that may
be requested on-demand. This services can be understood as a type of WS [72].

There are three different service models of CC: IaaS, PaaS and SaaS. First, Infrastructure-as-a-
Service (IaaS), e.g., the Google Compute Engine (GCE)6, employs virtual resources which are
outsourced by an organization [73]. The users of IaaS are capable of remotely accessing and the
cloud data. On the other hand, Platform-as-a-Service (PaaS), e.g., Microsoft Azure7, permits de-
velopers to implement their applications in the cloud. Finally, Software-as-a-Service (SaaS), e.g.,
Google Gmail8, permits users to access applications developed and distributed by different ven-
dors within the web.

Moreover, the deployment of CC can be done in three different configurations: private, public or
hybrid clouds. A comparison on such different options is presented in [74]. A private cloud Is oper-

6 https://cloud.google.com/compute/
7 http://azure.microsoft.com/en-us/
8 https://mail.google.com/

33

ated by a specific organization although it can be hosted at internal or external location. Therefore,
the services included in private clouds are offered only to users that belong or have an agreement
to/with the private cloud organization. In the case of public cloud configuration, the services are
available by anyone. Thus, the access to such services will be given by public networks. Finally,
the hybrid configuration presents a type of cloud that is indeed a composition of several clouds.
Hybrid clouds permit the combination of private and public clouds. The hybrid cloud configuration is
useful when an organization needs extra computing resources which may be obtained from other
clouds, such as public ones.

2.4 Architecture, methods and tools

As described along this section 2 Literature and Technology Review, there are multiple disciplines
and concepts that are in relation to this research work. This subsection aims to present a collection
of the most relevant methods and tools that inspired this investigation.

An architecture can be defined as a framework that allows the design, analysis and comparison of
a range of systems over time [75]. The main elements of a system architecture are the compo-
nents that form the system and their interactions. Therefore, the methods and tools to be consid-
ered in the scope of this research work are presented as i) components and ii) interactions of an
architecture. This is depicted in Figure 3.

Figure 3: Architecture, methods and tools

34

2.4.1 Component

This research work considers three different components that can inspire system architectures:
Service, Function block and Agent. Furthermore, as presented in [75], there are other types of
components that might be included, such as API and Object.

2.4.1.1 Service oriented

Service-oriented architectures [59] permit the encapsulation of system functionality and its expo-
sure in form of WS in the industrial automation domain [34], [76]. Some different applications of
WS in the factory automation field are cross-layer communication and integration, which is needed
in very dynamic environments wherein heterogeneous systems inhabit in collaboration for common
goals [77]. In fact, the cross-layer integration permits the vertical communication between different
International Society of Automation (ISA)-95 standard levels [16], which allow monitoring and con-
trolling processes being performed in factory shop floors [78]. However, for achieving the complete
re-configurability in large-scale systems, other concepts are still needed as the consumption and
analysis of systems’ knowledge to enable autonomous decision making. This can be achieved e.g.
with repositories of data that become accessible to systems and even humans through WS.

WS may be deployed in industrial devices within the implementation of the WS-* from the Organi-
zation for the Advancement of Structured Information Standards (OASIS)9, the OPC Foundation10
OLE for Process Control Unified Architecture (OPC-UA) model or through the REST (Representa-
tional State Transfer) architectural style. Firstly, the set of OASIS standards (WS-*) include the
DPWS. This specification stack is based on the Simple Object Access Protocol (SOAP) and can be
implemented in combination with the Web Services Description Language (WSDL) in order to pro-
vide WS in resource-constrained embedded devices [22], [76]. Then, SOA can be handled by de-
vices that are deployed at different layers of an enterprise for controlling and monitoring control
processes which are executed at factory shop floors [79], [80]. On the other hand, the OPC-UA
provides SOAP web services. In fact, DPWS and OPC-UA are both based on SOAP WS. Never-
theless, REST emerged as a natural competitor for similar implementations. In principle, REST
requires a simpler infrastructure for its implementation and, thus, engineers tend now to use it
more since last decade [14]. Interesting works based on OPC UA for enhancing the interoperability
between automation systems can be found in [81]–[85].

Furthermore, the composition of WS can be implemented following different approaches, such as
choreography and orchestration. Firstly, the orchestration suggests the composition of WS with
predefined sequences that are centrally controlled by an orchestrator engine in order to execute

9 https://www.oasis-open.org/
10 https://opcfoundation.org/

35

WS operations. On the other hand, the choreography proposes a distributed and decentralized
approach that allows the services to interact between themselves throughout a set of rules for ex-
changing messages. There are many languages for implementing WS compositions and it is im-
portant to select them according to the specific application needs and target scenarios [86]. For
example, the Business Process Execution Language (BPEL) [87] is commonly used for implement-
ing compositions of WS to be controlled by orchestrator engines [88].

Furthermore, the Business Process Modeling Notation (BPMN)11 is a standard for describing busi-
ness processes which maps directly to BPEL. In fact, current version of BPMN added an own XML
format which makes now possible to execute BPMN based processes. On the other hand, the Web
Service Choreography Description Language (WS-CDL) [89] is one standard language that can be
used for modeling choreography WS compositions. The WS-CDL determines the workflow and
behavior for service interaction [90]. Finally, the Ontology Web Language for Services (OWL-S) [91]
may be used also for both orchestration and choreography compositions.

2.4.1.2 Function block oriented

The IEC-61499 standard is used for modeling distributed control systems [92], [93]. Principally, this
standard presents Function Blocks (FBs) as the main components for the design of systems. This
is why this is also referred also as the IEC-61499 function block standard. In fact, the standard’s
FB is an extended software unit based on the IEC-61131:3 [94], wherein the syntax and semantics
of several languages for programming PLCs are described. From a high-level perspective, there
are various models that form the architecture for a FB-based distributed control system: System,
Device, Resource, Application, FB, distribution, Management and Operational State models. A
detailed description of aforementioned models is found in [95].

Conceptually, IEC-61499 FBs are objects that create outgoing event and data flow throughout pre-
defined and Execution Control Chart (ECC) and a set of algorithms. The ECC and algorithms re-
quire certain incoming event and data flow, respectively. In fact, there exist different types of FBs
that depend on the defined kind of ECC and algorithms. Such algorithms can be implemented us-
ing several standard languages as e.g., Ladder Diagram or Structured Text, among others. Follow-
ing Figure 4 depicts a Function Block model included in [95]. Such model shows the flow of both
events and data as well as the different elements of Function Block instances.

11 http://www.bpmn.org/

36

Figure 4: A Function Block model [95]

Meanwhile basic FBs defines fundamental blocks of the distributed control system being modelled;
composite FBs are built by multiple FBs which are networked. Then, sub-application FB type con-
sist on interconnected basic and composite FBs which performs part of the control of an applica-
tion. This enhances the reusability of components and, then, the flexibility and re-configurability of
the model with no need of editing monolithic large-sized implementations [90], [96]. In contrast to
basic and composite FBs, sub-application type can be distributed in more than only one resource.
This and other aspects of the interrelation between IEC-61499 models is represented in [97].
Moreover, there are other type of FBs as the Service Interface FB, for service sequences model-
ling, or the Adapter Interfaces, which is a special interface.

There are many research works and implementations for the industrial automation domain e.g.,
[93], [98]–[100]. In addition, Distributed Control Systems design and implementation within IEC-
61499 is well-addressed in [101]. Previous cited works present different industrial environments
wherein IEC-61499 permits the modelling of distributed control systems. But one of the most im-
portant feature to be implemented in industrial systems is the dynamic integration of heterogene-
ous data sources. Actually, industrial systems can be located at the same enterprise or in common
supply chain of products being manufactured. This increases the complexity of solutions that must
fill the gap in different environments.

37

2.4.1.3 Agent oriented

Inspired on different bibliographic sources that formally define the term agent it can be stated that
an agent is an autonomous computer system that is capable of exchanging information with other
peers throughout an agreed communication language [33], [102], [103]. Furthermore, the deploy-
ment of multiple agents that exchange messages and negotiate in order to work and collectively
perform tasks for a common goal is known as a Multi-Agent System (MAS) [104]. According to
[102], engineers that implement agents confront two types of design: agent design and society
design. First, the agent design is concerned about the capabilities of agents that allow the perfor-
mance of specific activities. Then, the society design establishes the behavior and procedures that
the agents will develop for the exchange of information between other peers.

MAS are deployed in different domains. For example, such kind of autonomous, intelligent and
dynamic systems may provide useful applications and domains e.g., game theory, travel agency
systems, scheduling, logistics and industrial systems. Basically, MAS assist humans for carrying
out tasks that are sometimes ineligible. Specifically, in the industrial field, MAS are usually em-
ployed for the control of distributed systems as it can be seen in following research works: [105]–
[108]. Moreover, other applications in the same domain, such as integration, security or data pro-
cessing may also be performed by MAS [109]. Among the benefits of MAS, aforementioned re-
search works show enhancements for autonomous behavior, dynamism, data processing, negotia-
tion, decision support, scalability and self-organization of agents.

Although, eventually, software engineers implement ad hoc MAS-based solutions, there are many
frameworks that can be employed for implementing MAS. As one of the most known, the Founda-
tion for Intelligent Physical Agents (FIPA)12 is an organization that presents a set of specifications
for developing agents following a standard manner. Furthermore, there are research works that
provide comparisons of different MAS frameworks and tools [110], [111].

2.4.2 Interaction

As introduced at the beginning of this section, system architectures describe not only the compo-
nents but also the interaction between them. This permits developers and users to understand how
the different elements of the architecture share and exchange information in order to let processes
to be executed. This research work presents two different types of interactions that are common in
ICT-based solutions that are applied to multiple domains, such as the industrial automation field.

12 http://www.fipa.org/

38

2.4.2.1 Time triggered

A Time Triggered Architecture (TTA) bases the execution of system tasks on a predefined sched-
ule [112]. Similar to the description made about orchestration in section 2.4.1.1 Service oriented, a
scheduler may be used for managing the execution of tasks at the required time according to the
schedule.

In systems that follow the TTA, the notion of time is critical. As described in [113], one of the main
characteristics of TTA is the use of real time as a primary quantity. To depict this, Figure 5 repre-
sents the sparse time base model. Basically, the real-time base is divided into time ticks which, in
turn, are mapped to the duration of activities or silence, i.e. nothing occurs in such fraction of time.

Figure 5: Sparse time base presented in [113]

One of the common applications of TTA is to develop safety-critical systems. In the industrial do-
main, this architecture is linked to the IEC 61508 standard [114]. Moreover, other domains, such as
automotive [115] and medical systems [116] employ TTA based systems for safety applications.

Furthermore, TTA is also associated with Event Triggered (ET) or event-driven architectures. A
theoretical comparison between ETA and TTA is found in [117]. In the scope of industrial automa-
tion, the aforementioned research work presents results on ET and TT based Control Area Net-
work (CAN) measurements, as an industrial domain experiment. Following subsection introduces
the event driven architectures.

2.4.2.2 Event driven

An Event Driven Architecture (EDA) is a software architecture for systems that produce, detects,
consume and reacts to events in order to perform operations. Conceptually, an event is a change
in the state of something that may be observed [118]. The EDA concept and its foundations are
defined in [119]. Many domains have potential EDA applications, such as the industrial automation
field. Nevertheless, as highlighted by [119], any domain system that produce or consumes data
continuously and that requires responding to events on specific time is a potential employer of the
EDA. In fact, the article [119] makes an special mention to the “cyber infrastructures”, clarified by
the author as “the integration of physical infrastructure with information technology”. This, ex-
plained within current terminology, is mapped to the CPS concept, which is one of the main topics

39

of this research work and, indeed, refers to systems that are frequently based on event driven ap-
plications.

Furthermore, the combination of EDA and SOA provides the Event-driven SOA, which is also
known as SOA 2.0. This form of SOA is extended by EDA in order to activate services by the oc-
currence of events. In this scope, [120] presents and describes separately SOA and EDA, and ex-
plains how the latter extends SOA and why this is important from the author perspective.

On the other hand, the order of the occurrence of events is an important knowledge for distributed
systems. The research on this matter is not new [121]. Contemporary, this is covered by the area
of Complex Event Processing (CEP), which is concerned about the application of techniques for
processing streams of data about events that are triggered at some time. CEP emerged due to the
need of exploiting the information that can be collected from the meaning, reason and time occur-
rence of events. This makes intelligent engines to conclude facts out of the processing of the in-
coming events, which may be in the range of thousands or even more depending on the environ-
ment that is monitored. Therefore, CEP requires systems that are not only capable to process a
vast number of requests, but also to handle the asynchronous nature of event occurrence. Some
works that present novel approaches on CEP for the industrial automation domain are [122], [123],
[31], [81]. The aforementioned works are in the scope of this research because depict the combi-
nation of different areas and technologies included in this 2 Literature and Technology Review.

2.5 Summary of the literature and technology review

The previous subsections present the most relevant areas of study that are in relation with the im-
plementation of CPS, in the scope of this research work. It can be concluded that the area of CPS
is broad as it involves the knowledge of multiple disciplines. Although AI, DS and CC are not novel
fields of research, there is a tendency on combining them in order to create CPS to be further de-
ployed in the industrial domain. Conceptually, the synergy of such fields’ applications enables the
implementation of intelligent, autonomous and connectable systems thanks to the description and
exchange of specific information about the working environment. Indeed, aforementioned charac-
teristics are aligned with needed systems for achieving the I4.0 vision, which demands the imple-
mentation of significant ICT-based solutions.

While the technologies are prepared for performing required CPS functionalities, there is a lack of
reference architectures that could be followed for implementing alike systems. Such architectures
must present the different components and their interactions for performing factory automation
operations. Commonly, adhoc solutions are implemented for facing specific challenges. This re-
duces the reusability of such solutions. Therefore, the design of reference architectures could sup-
port the industrial domain with generic means for the implementation of CPS.

41

3 An Approach to Systematically Distribute, Access
and Reason Knowledge within Networked Embed-
ded Systems in Factory Automation

This chapter presents nine peer-reviewed manuscripts, related to this thesis work, that
have been published in international journals and proceedings of international confer-
ences which are linked to the domain of industrial automation.

Publication I contributes to the implementation of knowledge-driven solutions based on
the employment of an ontology as the system KB. The provided model is used for i)
describing the actual status of industrial resources and ii) provide any required infor-
mation for orchestrating service operations executed at factory shop floors. In addition,
the approach is presented as a web service integration that permits the encapsulation
of each component as individual services. The research results served as a proof of
principal concepts of the eScop project approach. Furthermore, the presented scenario
was later used for teaching students of industrial informatics about features of
knowledge-driven systems.

Publication II presents the so-called OKD-MES concept as a solution located on top of
CPSs for controlling industrial equipment which is the main focus of the eScop project.
This is shown throughout a concrete implementation in a production line previously
retrofitted with web services technology [78]. One of the main and relevant facts
claimed in the article is that there exist already a set of web standards and Internet-
based technologies which are sufficiently mature in order to provide solutions as the
OKD-MES that are fully functional, rapidly implementable and operable by end-users
entirely from a web browser.

Publication III proposes to lower part of the OKD-MES framework functionality at the
factory shop floor level. Conceptually, the OKD-MES concept defends a centric ap-

42

proach for managing and storing system semantic descriptions. Then, the article claims
that such approach might be decentralized and deployed at the device level, closer to
where manufacturing process data is generated within the employment of contempo-
rary embedded devices. Then, the article i) sketches a set of diagrams that depict how
some OKD-MES services can be encapsulated into such devices and ii) discusses the
strengths and weaknesses of the new approach. This article that principal focus of this
doctoral research.

Publication IV discusses and exemplifies the use of certain web standards that may be
implemented along all the automation pyramid levels [16] for different and particular
actions required for controlling and monitoring industrial process operations. The article
provides a set of examples that demonstrate the implementation of web standards for
enabling OKD-MES and other similar functionalities, such as service and ontology de-
scription, exchange of messages, query execution and web-based interaction and vis-
ualization.

Publication V proposes the employment of a modular ontology for integrating product,
process and resource semantic descriptions. The presented approach is in the scope
of model coupling and permits the matching of the requirements of products for execut-
ing assembly operations. Besides ontologies, the article proposes the employment of
SWRL rules in order to link objects and instances of data models from diverse engi-
neering domains and tools.

Publication VI presents the principles and main requirements of private local automa-
tion clouds which are built by CPS. In such context, the article defines Distributed Rea-
soning as a specific process that permits the integration of decentralized portions of
knowledge that are located at the shop floor level throughout embedded devices. In
addition, the article addresses how such devices interact in order to execute the pro-
cess of distributed reasoning. On the other hand, the manuscript presents the ontology
structure that permits the description of system knowledge. Finally, the potential and
challenges of the approach are also provided.

Publication VII focuses on the execution of the distributed reasoning process which is
required for integration of system knowledge descriptions in Private Local Automation
Clouds (PLACs). First, a set of diagrams explain i) the mechanism for including devices
in the PLACs, ii) the election of a device as leader of distributed reasoning processes
and iii) the management and execution of a distributed reasoning process. In addition,
the article presents simple scenarios for demonstrating the approach.

43

Publication VIII aims the presentation of an architecture for implementing PLACs which
are built by CPS. In order to show a formal design of such architecture, the article
shows a set of architectural views following the “4+1” view model. Then, this article
presents the PLAC architecture within four views (i.e., logical, process, development
and physical views) and a representative scenario. Furthermore, the article reviews
relevant qualitative attributes of multiple CPS-based architectures, research works and
solutions that have been published during the last years.

Publication IX suggests the implementation of techniques for protecting ICT-based so-
lutions from different types of malicious access. More precisely, the article addresses
the implementation of threat modeling and risk using the PLAC as a use case. The
manuscript i) claims that presented CPS and ICT based research works do not fre-
quently provide any kind of security validations and ii) discusses a set of recommenda-
tions for the implementation of PLACs.

3.1 Knowledge-based web service integration for industrial au-
tomation (Publication I)

The use of RDF-based models, such as OWL ontologies for describing the different
kinds of information generated and consumed throughout all the automation pyramid
layers may be used by other components in order to control and monitoring industrial
processes. In this context, the synergy of knowledge models and web services permits
the creation of knowledge driven systems.

This manuscript shows that the information included in an ontology can be queried and
updated by independent services that need to exchange system information in order to
execute operations. The approach distinguishes between three different component
groups: Shop floor, Cloud and Third-Party Server. Then each service of the resulting
knowledge-based web service integration approach will belong to one of such group. It
should be mentioned that one of the main requirements for implementing similar solu-
tions on modern product lines is the deployment of web service enabled controllers that
permit the remote invocation of service operations.

Then, as shown in the article, the Shop floor includes an update manager, an orches-
trator and the industrial controllers, which, in turn, are interconnected with the physical
equipment. Without using the term, this article presents a cyber-physical integration.
The orchestrator service is connected to the industrial controllers in order to be the
component that triggers service operations in certain order. On the other hand, the up-

44

date manager, is an interface between the controllers and the ontology that is in charge
of sending the updates on any resource of the system that changes its status. This
update is done through SPARQL Update queries as they are compliant with RDF-
based ontologies.

On the other hand, ontology service is deployed in the Cloud that acts as an interface
to the ontology, which will be the central component of the solution since it will be ac-
cessed by different components. Besides the aforementioned access from the shop
floor components, the user interface from the Third-Party Server may be used for send-
ing SPARQL queries in order to retrieve information.

The presented knowledge-based service integration enables run-time reconfiguration
of industrial systems because i) the ontology is updated during system operation and ii)
the orchestration engine decides which operation to execute accordingly. Therefore,
the system will adapt its behavior depending on KB changes. Furthermore, as a princi-
pal feature of ontologies as well as a recommendation in ontology design methodolo-
gies, such as [37], ontology models should be reused. In this context, the provided on-
tology may be reused for describing similar manufacturing systems that intend to im-
plement a knowledge-based web service integration approach.

3.2 Cyber–Physical Systems for Open-Knowledge-Driven Man-
ufacturing Execution Systems (Publication II)

Manufacturing enterprises demand ICT-based solutions that enhances the efficiency of
their systems in order to improve their productivity and scale up un the competitive
market. This is achievable within the deployment of modern MES that facilitate the in-
tegration of heterogeneous systems located at different layers of the automation pyra-
mid. There are several standards that describe the main functionalities that should be
provided by any MES. For example, the Manufacturing Execution Systems Association
(MESA)13 organization presents a set of functions in [124]. On the other hand, this arti-
cle presents the mapping of similar set of functions defined by other organizations as
the Verein Deutsche Ingenieure (VDI)14.

The work performed in this publication addresses the OKD-MES framework, which is
the main contribution of the eScop project. Explicitly defined by its own term, this solu-

13 http://www.mesa.org/en/index.asp
14 https://www.vdi.de

45

tion is an open and knowledge-driven based MES that allow users to develop their
functions in order to control and monitor industrial systems operation. As the principal
duties of MES, the OKD-MES framework permits the integration of the Execution Re-
source Planning with shoo floor levels. The followed methodology for implementing the
modular OKD-MES is based on the SOA paradigm. More precisely, this is performed
within the implementation of REST-WS [125]. In addition, the OKD-MES employs web-
based standards in order to represent system information as well as for creating visual-
izations and interfaces for the end users.

The OKD-MES is presented as a stack of four layers: Physical layer (PHL), Represen-
tation layer (RPL), Orchestration layer (ORL) and Visualization layer (VIS). Firstly, PHL
is composed by RTUs that expose i) the descriptions of controlled machines and ii)
available services and data. Secondly, the RPL is concerned about the maintenance of
the MES KR. Thus, the RPL includes an OWL ontology that describes the manufactur-
ing system information. In addition, the ontology provides means for reasoning and
querying any kind of system information. Thirdly, the ORL is in charge of executing
sequences of operations which are described in the RPL. Finally, the VIS exposes the
web user interfaces that are used for interacting with the multiple system components.

All important information on each layer is addressed in the article, which validates and
discusses the approach with representative examples in a specific assembly line i.e.,
the FASTory line.

3.3 Towards the encapsulation and decentralization of OKD-
MES services within embedded devices (Publication III)

At present, the industry seeks for novel, efficient and cheaper solutions that facilitate
the access, management, control and monitoring of information of their systems. In
addition, such solutions should provide remote accessibility in order to i) integrate iso-
lated systems that must interact in the same value chain and ii) allow users to request
system functionality from different locations and without critical delays.

The eScop framework presents a set of services that permits the control and monitor-
ing of modern production systems ensuring the re-configurability of resources on oper-
ation time [14]. The eScop solution is based on the synergy between SOA, KR and the
use of contemporary RTUs. The most particular characteristic of the OKD-MES frame-
work in the context of knowledge management is that the RPL becomes a central ser-
vice. The reason is that any component of the system that requires to access the KB

46

must interact with the RPL service (RPL-S), which might be presented as the unique
access point of the stored data.

This research proposes the decentralization of the KB, which can be divided into por-
tions that, in turn, may be hosted and managed by contemporary resource constrained
embedded devices. This research work is motivated by the fact that such type of recent
devices is enhanced with higher computational resources. This permits the manage-
ment of more functionalities as well as the increment of storage capabilities. Then, the
authors belief that the decentralization of some parts of the OKD-MES framework may
led i) to find a faster solution in terms of computation of information and ii) to employ
available resources of embedded devices that are not yet exploited.

Then, this article presents a roadmap that may be followed to lower part of the OKD-
MES at the device level. This is demonstrated with a set of diagrams that depict how
the RPL-S may be handled by embedded devices. Conceptually, the RPL-S can be
replicated and deployed on each device that is already located at the shop floor. Then,
each device may include the portion of knowledge related to the controlled industrial
equipment and, when needed, share it with peers. In this manner, updates to the
knowledge model are directly triggered on the model, which is closer to where the data
is generated.

In addition, the strengths and weaknesses of the proposed approach are discussed. In
fact, this discussion is provided throughout a comparison of qualitative attributes of
decentralized and centralized OKD-MES. Although the main focus of the proposal is to
lower and implement the RPL-S at device level, it also states that, further, more OKD-
MES might be descended. In the future, this will depend on the performance and capa-
bilities of embedded devices.

3.4 Exemplifying the Potentials of Web Standards for Automa-
tion Control in Manufacturing Systems (Publication IV)

International consortiums as the W3C and the OASIS develop and release recommen-
dations on standards for web based applications and systems. Such standards are
prepared for dealing with common situations and fulfilling specific requirements of
smart factories. For example, they allow the location of resources in networks, design-
ing, defining and as well as dynamically routing system messages and graphical repre-
sentation and navigation of models.

47

This article presents a selection of specific standard languages that are employed at
different locations of the OKD-MES framework. In addition, important and representa-
tive examples are shown within simple and described scenarios. To demonstrate this,
the article describes each of the OKD-MES framework layers. At PHL (i.e., device lev-
el), web-based standards are presented as an option for enabling vertical communica-
tion. The article highlights the utilization of the OPC UA, DPWS and REST. These
standards permit the implementation of the SOA-based communication within industrial
controllers which are deployed at the shop floor layer. As an example, the paper pre-
sents a sample of REST description for conveyor services. The following layer i.e., the
RPL requires the implementation of a KB that must i) allow the system description and
ii) be accessible through the web. that must be accessible by other service layers.
Then, the article describes the implementation of models aligned with the Semantic
Web stack and, more precisely, the utilization of RDF-based languages as the OWL.
To show an example, a specific OWL model is presented i.e., Manufacturing System
Ontology (MSO) [126]. Besides describing its main classes, a set of SPARQL and
SPARQL Update queries that may be used for retrieving and updating model infor-
mation are also depicted and explained. Afterwards, the article shows the potential of
web-standards for the orchestration of services at the ORL. More precisely, the paper
mentions WS-BPEL, BPMN and OWL-S. As an example, the orchestration of REST
based services is discussed. Finally, in the scope of VIS, the article describes HTML,
JS, CSS and SVG as a set of web-based standards that may be used for implementing
web interfaces for user frontend visualization. This is exemplified throughout the de-
scription of the FASTory simulator interface, which is described in [1].

As a conclusion of the research work, the authors claim that there is a variety of web-
based standards that may be used to create complete frameworks for controlling and
monitoring systems. Such standards cover from the description of system capabilities
and operations until the exposure of services and interfaces to users. In addition, the
structure as well as the communication protocol of messages can also be handled with
web-based standards.

3.5 Product, process and resource model coupling for
knowledge-driven assembly automation (Publication V)

The amount of information about manufacturing systems that needs to be processed in
order to control and monitor production processes has grown dramatically during the
last decades. This is because the interconnection of physical resources with cyber sys-
tems in modern factories permits the supervision of different kinds of data that can lead

48

to a better understanding of the system performance. In this context, the industry faces
the challenge of managing huge volumes of data that is heterogeneous due to the dif-
ferent formats in which it is presented. Moreover, the information is commonly allocated
in multiple models that are isolated. Therefore, there is a need of novel solutions that
permit the integration of data models which describes diverse domain information.

This research work presents a proof of concept for coupling domain ontologies de-
signed for describing manufacturing systems information. More precisely, the article
discusses the need of integrating product, process and resource (PPR) domains. To
achieve such coupling, the approach suggests the implementation of SWRL rules that
are included into a higher ontology which imports the PPR models. The implemented
model not only permits the retrieval of different domain information, but also the infer-
ence of implicit knowledge throughout the use of reasoning engines. The latter model
characteristic is a clear benefit because it permits to automatically discover information
about the manufacturing system which is not known at design phase. Finally, the em-
ployment of reasoning engines permits the validation of the model. In other words,
such engines allow to find semantic incoherencies in the ontology. Then, any conflict
created i) in imported ontologies at model design phase or ii) in SWRL rule implemen-
tation process can be found, reported and, afterwards, fixed within semantic engines.

3.6 Private local automation clouds built by CPS: Potential and
challenges for distributed reasoning (Publication VI)

This research work presents the main principles, requirements and challenges for the
design and operation of PLACs built by CPS. Thus, this article is one of the most im-
portant documents of the doctoral research as it sets the bases of the upcoming inves-
tigation and experiments.

The combination of ontology-based knowledge representation and the SOA paradigm
implemented within industrial controllers which, in turn, are deployed at factory shop
layer can be a suitable approach for modelling and controlling industrial systems. This
is actually realized in previous approaches e.g., the OKD-MES. However, the semantic
models are located far away where the data is generated. This implies the need of
cross-domain communication which adds delays and complexity to different processes
of pushing information to the model. This might be changed within the implementation
of Private Local Automation Clouds (PLACs).

49

This research proposes the employment of available resources of new embedded de-
vices that are deployed at the factory device level for performing some tasks that are
done at upper levels. For example, the encapsulation and management of ontological
descriptions may be carried out by such devices. This permits a faster update of data
model and the avoidance of cross-domain or vertical communications along the auto-
mation pyramid.

Then, the PLAC consists on a set of CPS devices that are networked and capable of
not only sharing and exchanging information but also to execute operations. In this
manner, upcoming user requests may be handled and responded by the PLAC. To
achieve this, the article defines and describes the execution of the distributed reason-
ing process. Basically, the PLAC concept suggests that the systems’ KB is divided into
portions (i.e., smaller ontologies) that are encapsulated in embedded devices. As the
devices exchange information within SPARQL over HTTP, any RDF-based model can
be queried. Then, the distributed reasoning defines a set of steps that i) are managed
by one of the embedded devices ii) permits the integration of semantic descriptions.
Thus, any request can be responded because the PLAC is capable of i) executing in-
coming queries and ii) integrating all related information of such queries.

The article describes potential benefits as the enrichment of network descriptions, re-
duction of the high integration cost, the decentralization of knowledge-driven solutions
using central KBs and the possibility of integrating the PLAC with other systems and
even other cloud-based platforms throughout web-based technologies. On the other
hand, some of the reported challenges are on: device behavior implementation, mes-
sage development, horizontal scalability, fault tolerance, service composition, and
cloud security. In addition, the research work benchmarks the implementation of the
approach in the FASTory line in terms of production type, communication protocols, IT
infrastructure, control architecture, number of computational nodes, data formats, or
horizontal and vertical communication, among others.

3.7 Management of distributed knowledge encapsulated in
embedded devices (Publication VII)

The implementation of PLACs requires the development of device behavior that per-
mits the execution of the distributed reasoning process, which is needed for integrating
decentralized semantic descriptions in order to respond to user queries. Therefore, this
research work presents an approach for managing the distributed knowledge that is
encapsulated in embedded devices.

50

To proof the main concept of this article requires the duplication of ontology model
structure into different devices. The convention of similar ontologies to be deployed on
each device is needed to avoid integration problems. Then, each device may populate
the model with instances that represents the resources that are linked to the corre-
sponding device. Once this is one, the set of behaviors presented in the research work
may be executed.

The first behavior is the one that permits the devices to expose themselves to the rest
of devices that inhabit in the PLAC. This is called device initialization and it mainly con-
sists in a broadcast of the device address and ID for other peers to inscribe it in their
KB. Then, the new device will receive a message from each device that is in the PLAC.
In this moment, newer and older devices may interact further for solving incoming re-
quests.

The second behavior consists in the election of the requester device, which is the given
name to the device that will lead the distributed reasoning process per each incoming
query. According to this article, the decision is to be made based on the first device that
responses to a request of requester device. However, a more recent work explains that
more complex processes might be implemented in order to select requester devices
according to configurable parameters [127]. Once a requester device is elected, the
distributed reasoning process for a specific query may be executed. This means that
per each query a different election will be performed that might end up with a different
requester device choice.

The third behavior is the distributed reasoning process itself. This is a more complex
behavior compared with the previous ones because implies a larger number of steps
and more computation of information. The requester device will receive the incoming
query that will be then re-routed to all PLAC devices. Then, each device will respond to
the query according to the encapsulated knowledge. In fact, such response is not a
plain execution of the query but an aggregation of query execution and linked
knowledge to the query result. This is because the addition of linked knowledge might
end up with an answer that is not achievable within just a portion of knowledge. Once
the information is sent to the requester device, it will execute the query on the combina-
tion of their own knowledge and all the information received. The result will be as-
sumed as the final response to be sent to the user.

The article presents a proof of the concept in two scenarios. As the focus of the paper
is the demonstration of management of distributed knowledge, the examples are gen-
eral i.e., not focused on industrial domain processes. In any case, the results achieved
at different stages of the distributed reasoning process are explained and depicted.

51

3.8 An Architecture for Implementing Private Local Automation
Clouds Built by CPS (Publication VIII)

During the last years, several research works related to the development of PLACs
built by CPS have been published and there is a need of presenting a reference archi-
tecture which may be followed by engineers willing to implement a similar solution. In
this scope, this article presents an architecture for implementing PLACs.

The resulting architecture is designed within the known “4+1” view model, which per-
mits a formal representation within different architectural views for identifying and de-
scribing the system components. The first architectural view of the presented architec-
ture is the logical view. According to the 4+1 view model, this view must address the
mechanisms and design elements of different system parts that will be implemented.
Then, the article presents an UML class diagram that depicts different objects of
PLACs. The main parts included in such diagram are the ones related to users and
devices as e.g., the web user interface in case or user types of in the case of users and
the KB or distributed reasoning process in case of devices. Afterwards, the process
view describes the interaction of the main objects that are depicted in the logical view.
To show this, the article presents a set of activity diagrams that describes the infor-
mation flow and requirements when it is exchanged between different PLAC compo-
nents. This interactions are aligned with the behavior of devices presented in previous
publications [128], [129]. Then, the article presents the development architectural view,
which is shown as an UML component diagram. This diagram is composed by a set of
components that must be developed and interconnected in order to achieve the main
functionalities of the PLAC-based approach. The last architectural view is the physical
view, which presents a diagram of physical components that will be the ones to be in-
terconnected from an engineer point of view. More precisely, this diagram includes,
from bottom to up i) the industrial equipment, ii) the devices, iii) the web based server
and iv) the user system. Finally, following the “4+1” a general scenario is presented in
order to describe the role and involvement of each component in different activities i.e.,
Place Request, Check Response, Reasoning Process and Manage Devices.

Furthermore, the article presents a comparison of different CPS-based architectures
and research works. This is done in order to present a discussion on critical qualitative
attributes that should be addressed by any CPS-based solution.

52

3.9 Principles and risk assessment of managing distributed
ontologies hosted by embedded devices for controlling in-
dustrial systems (Publication IX)

Industrial organizations employ different solutions that permits to handle different
needs, such as interoperability of remote systems, system modelling and validation or
data reasoning. These needs are addressed within IT-based solutions. As the employ-
ment of such kind of solutions is a trend in the industrial automation domain, the re-
search community is continuously presenting novel research works that may increase
the efficiency of solutions being used by companies. However, one of the bigger issues
when such works are presented is the lack of security consideration.

Web-based technologies brings remote connectivity and accessibility but increases the
exposure of system data over the Web. Obviously, this increases the vulnerability of
systems which might be maliciously accessed. Thus, this article suggests the applica-
tion of risk assessment and threat modelling techniques in order to identify weak points
of solutions at design phase. In this manner, developers may bring security means to
their implementations, ensuring the creation of less vulnerable solutions. Particularly,
this research work focuses on solutions to be deployed in the industrial automation field.

This article presents the principles of risk assessment and threat modeling to enhance
the security due to web exposure of the PLACs. This study is made at design phase in
order to affect to the system design decisions. The benefit of this is that is more com-
plex to modify decided interactions and/or technologies at advanced stages of a solu-
tion development than to do it at design phase i.e., when nothing is yet implemented.

In the particular case of PLACs, the implementation of aforementioned techniques
identified the different points of system vulnerability. One of the advantages of PLACs
is that there is no single point of failure because, due to the decentralization of
knowledge, the system might operate with some devices down. Nevertheless, the risk
assessment, suggests the backup of models in order to have a way of recovering dam-
aged models. On the other hand, the study highlights the devices might be affected by
different attacks, such as spoofing, tampering and Denial of Service (DoS). Meanwhile
the authentication, authorization and identification of users is recommended to mitigate
spoofing and DoS, the tampering may be avoided within the communication of devices
through HTTPs.

53

3.10 Summary

This section outlines the main contribution of the research work throughout the TABLE.
I, which summarizes the main results from the presented publications that supported
the design and implementation tests of this doctoral research. In addition, TABLE. I
links each publication with the objectives and contributions presented in sections 1.4
Objectives and 1.5 Contributions, respectively.

TABLE. I: Main results and outcomes

Publication title Main results
Doctoral research Ob-
jectives and contribu-
tions

I

Knowledge-based
web service integra-
tion for industrial
automation

• Main components and
demonstration of the
knowledge-based web ser-
vice integration solution for
industrial systems

• Structure of an ontology
model that can be reused for
describing production sys-
tems

Objective: 1.4 I

Contribution: 1.5 I

II

Cyber–Physical Sys-
tems for Open-
Knowledge-Driven
Manufacturing Exe-
cution Systems

• Presentation of the OKD-
MES concept as the ultimate
result of the eScop project

• Discussion on application
and application of the OKD-
MES framework

Objective: 1.4 I

Contribution: 1.5 I

Non-core contribution:
1.5 IV

III

Towards the encap-
sulation and decen-
tralization of OKD-
MES services within
embedded devices

• Proposal for decentralization
of OKD-MES services and
functionalities to be handled
at device level

• Strengths and weaknesses
of the proposal which could
be appreciated at early stage

Objective: 1.4 I

Contribution: 1.5 II

54

IV

Exemplifying the
Potentials of Web
Standards for Auto-
mation Control in
Manufacturing Sys-
tems

• Exemplification and discus-
sion of using web standards
at all the levels of the auto-
mation system, inspired in
the needs of the OKD-MES
development

Objective: 1.4 I, 1.4 II

Contribution: 1.5 I

Non-core contribution:
1.5 IV

V

Product, process
and resource model
coupling for
knowledge-driven
assembly automa-
tion

• PPR model coupling demon-
stration within RDF-based
ontologies and SWRL rules.

Objective: 1.4 I

Contribution: 1.5 I

Non-core contribution:
1.5 V

VI

Private local auto-
mation clouds built
by CPS: Potential
and challenges for
distributed reasoning

• Main principles and compo-
nents description of PLACs
build be CPS.

• Distributed reasoning defini-
tion and exemplification

• Benchmarking of the ap-
proach in a specific assem-
bly line

• Challenges and potential of
the proposal

Objective: 1.4 I, 1.4 II,
1.4 IV

Contribution: 1.5 I, 1.5 II

VII

Management of dis-
tributed knowledge
encapsulated in em-
bedded devices

• Description, implementation
and demonstration of the dis-
tributed reasoning process

• Structure of decentralized
ontology models to be en-
capsulated in embedded de-
vices

• SPARQL query transfor-
mation in the distributed rea-
soning process

Objective: 1.4 I, 1.4 II,
1.4 III, 1.4 IV

Contribution: 1.5 II

VIII
An Architecture for
Implementing Pri-
vate Local Automa-

• A reference architecture for
developing PLACs, built by
CPS

Objective: 1.4 IV

Contribution: 1.5 I, 1.5 II,

55

tion Clouds Built by
CPS

• The architecture is presented
throughout the “4+1” formal
view model

• Comparison of different re-
search works, solutions and
other architectures within a
set of important qualitative
attributes

1.5 III

IX

Principles and risk
assessment of man-
aging distributed
ontologies hosted by
embedded devices
for controlling indus-
trial systems

• Recommendation of applying
threat modelling and risk as-
sessment techniques at de-
sign phase of IT-based solu-
tions

• Qualification of the security
in PLACs

Objective: 1.4 II, 1.4 IV

Contribution: 1.5 III

57

4 Conclusions and Recommendation for Future
Works

4.1 Concluding Remarks

The research work presented in this dissertation answers the original research ques-
tions outlined from the main research problem outlined in Chapter 1. The answer
is grounded by:

Research Question #1:

The distribution of knowledge among the different control units that build automation
systems has been achieved within the design and deployment of ontology models on
each control unit. These models describe the knowledge of the system being controlled
for the corresponding unit in RDF-based language. Then, the knowledge can be dis-
tributed within the exchange of messages between networked control units. Moreover,
due to the technological features, the distribution, update and retrieval of knowledge
descriptions can be done at run time. Practical examples of ontology models that can
be deployed in control units are described and demonstrated in Publications I, II, III, IV,
V, VI, VII and VIII.

Research Question #2:

The access of the knowledge by the controls units located in other control units has
been achieved throughout the execution of the device behaviour presented and ex-
plained on several of the refereed publications. Meanwhile Publication VI and VIII de-
scribe such behaviour within a set of UML diagrams, Publication VII shows concrete
scenarios that demonstrate the access and integration of knowledge in order to re-
spond to user queries.

58

Therefore, this research work solves the original research problem by specifically an-
swering the two research questions.

It has been proved that this research work advances the current state-of-the-art prac-
tices in the scope of knowledge representation and reasoning machines within the ap-
plication of factory automation in general, and to the distribution and access of
knowledge in particular.

4.2 Further Work

This section presents a set of suggestions for continuing with the development of this
research theme. It sums up a few of the individual recommendations outlined in the
refereed publications, and group them in a consistent manner.

As claimed in Publication III, solutions based on the employment of centralised models
for the description, access and management of knowledge can be lightened on regard-
ing the computation processing within the decentralization of such models and its dis-
tribution on control units currently deployed at factory shop floors.

Then, as pointed out in Publication VI, the distribution of knowledge descriptions
among networked control units brings to the current structure of manufacturing systems
a set of potential benefits, such as the reduction of high integration time and costs be-
cause of the diminution of cross-layer communication.

On the other hand, due to the irruption of cloud computing in the manufacturing domain,
the execution of processes can be performed remotely by cloud resources. In this con-
text, Publication VIII presents an architecture that can be followed for implementing the
distribution and access of knowledge through networked control units which build the
so-called private local automation cloud.

Furthermore, there are many technologies that can be used for building solutions
based on the concepts described along this dissertation. Although some of them are
addressed in Publication IV, the advances and appearance of new technologies must
be considered in further implementations.

As a concluding remark, the author would like to point the attention of the research
community towards the utilization of ontologies as an engineering artifact that can be
used to describe the knowledge of system status at run time. The resulting knowledge
model, in turn, can be hosted and managed with contemporary control units at the de-

59

vice level which provide sufficient computational power for model processing function-
alities. Therefore, current functionalities being controlled at higher levels of manufactur-
ing enterprises (e.g., MES and ERP), can be now performed by control units and, thus,
saving time and costs on configurability and vertical communication.

61

References

[1] W. M. Mohammed, A. Lobov, B. R. Ferrer, S. Iarovyi, and J. L. M. Lastra, “A
web-based simulator for a discrete manufacturing system,” in IECON 2016 -
42nd Annual Conference of the IEEE Industrial Electronics Society, 2016, pp.
6583–6589.

[2] B. R. Ferrer, S. Iarovyi, A. Lobov, and J. L. M. Lastra, “Potentials of Web Stand-
ards for Automation Control in Manufacturing Systems,” in 2015 IEEE European
Modelling Symposium (EMS), 2015, pp. 359–366.

[3] M. Ahmad et al., “A knowledge-based approach for the selection of assembly
equipment based on fuel cell component characteristics,” in IECON 2015 - 41st
Annual Conference of the IEEE Industrial Electronics Society, 2015, pp.
001002–001007.

[4] B. R. Ferrer, B. Ahmad, A. Lobov, D. Vera, J. L. Martinez Lastra, and R. Harrison,
“A knowledge-based solution for automatic mapping in component based auto-
mation systems,” in Industrial Informatics (INDIN), 2015 IEEE 13th International
Conference on, 2015, pp. 262–268.

[5] B. R. Ferrer, B. Ahmad, A. Lobov, D. A. Vera, J. L. Martinez Lastra, and R. Har-
rison, “An approach for knowledge-driven product, process and resource map-
pings for assembly automation,” in 2015 IEEE International Conference on Au-
tomation Science and Engineering (CASE), 2015, pp. 1104–1109.

[6] K. Henning, “Recommendations for implementing the strategic initiative INDUS-
TRIE 4.0,” 2013.

[7] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The Future of Industrial Com-
munication: Automation Networks in the Era of the Internet of Things and Indus-
try 4.0,” IEEE Ind. Electron. Mag., vol. 11, no. 1, pp. 17–27, Mar. 2017.

[8] B. Sniderman, M. Mahto, and M. Cotteleer, “Industry 4.0 and manufacturing eco-
systems,” DU Press, Feb-2016. [Online]. Available:
https://dupress.deloitte.com/dup-us-en/focus/industry-4-0/manufacturing-
ecosystems-exploring-world-connected-enterprises.html. [Accessed: 07-Jun-
2017].

[9] S. Biffl and M. Sabou, “Introduction,” in Semantic Web Technologies for Intelli-
gent Engineering Applications, Springer, Cham, 2016, pp. 1–13.

[10] International Electrotechnical Commission, “IEC - White Paper > Factory of the
future,” 2015. [Online]. Available: http://www.iec.ch/whitepaper/futurefactory/.
[Accessed: 10-Oct-2017].

62

[11] J. Li, “Analyzing ‘Made in China 2025’ Under the Background of ‘Industry 4.0,’” in
Proceedings of the 23rd International Conference on Industrial Engineering and
Engineering Management 2016, Atlantis Press, Paris, 2017, pp. 169–171.

[12] C. M. Shi, “„Made in China 2025“: Chinas Vision zu Industrie 4.0,” Wirtsch.
Manag., vol. 9, no. 2, pp. 70–77, Apr. 2017.

[13] H. Huang and G. Wang, “Comparison study on the industrial policies of additive
manufacturing in U.S. and China,” in 2016 International Conference on Industrial
Economics System and Industrial Security Engineering (IEIS), 2016, pp. 1–6.

[14] S. Iarovyi, W. M. Mohammed, A. Lobov, B. R. Ferrer, and J. L. M. Lastra,
“Cyber-Physical Systems for Open-Knowledge-Driven Manufacturing Execution
Systems,” Proc. IEEE, vol. PP, no. 99, pp. 1–13, 2016.

[15] I. M. Delamer and J. L. M. Lastra, “Service-Oriented Architecture for Distributed
Publish/Subscribe Middleware in Electronics Production,” IEEE Trans. Ind. In-
form., vol. 2, no. 4, pp. 281–294, Nov. 2006.

[16] ISA, “ANSI/ISA-95.00.03-2013 Enterprise-Control System Integration - Part 3:
Activity Models of Manufacturing Operations Management,” 2013. [Online].
Available: https://www.isa.org/store/products/product-detail/?productId=116782.
[Accessed: 02-Aug-2017].

[17] R. J. Brachman and H. J. Levesque, Knowledge Representation and Reasoning.
Morgan Kaufmann, 2004.

[18] T. R. Gruber, “A translation approach to portable ontology specifications,” Knowl.
Acquis., vol. 5, no. 2, pp. 199–220, 1993.

[19] B. Ramis et al., “Knowledge-based web service integration for industrial automa-
tion,” in 2014 12th IEEE International Conference on Industrial Informatics
(INDIN), 2014, pp. 733–739.

[20] B. Ramis Ferrer, S. Iarovyi, W. M. Mohammed, A. Lobov, and J. L. M. Lastra,
“Exemplifying the Potentials of Web Standards for Automation Control in Manu-
facturing Systems,” Int. J. Simul. Syst. Sci. Technol., vol. 17, no. 33, p. 3.1-3.12,
2016.

[21] A. W. Colombo, S. Karnouskos, O. Kaynak, Y. Shi, and S. Yin, “Industrial Cy-
berphysical Systems: A Backbone of the Fourth Industrial Revolution,” IEEE Ind.
Electron. Mag., vol. 11, no. 1, pp. 6–16, Mar. 2017.

[22] J. Puttonen, A. Lobov, and J. L. Martinez Lastra, “Semantics-Based Composition
of Factory Automation Processes Encapsulated by Web Services,” IEEE Trans.
Ind. Inform., vol. 9, no. 4, pp. 2349–2359, Nov. 2013.

[23] M. Armbrust et al., “A view of cloud computing,” Commun. ACM, vol. 53, no. 4, p.
50, Apr. 2010.

63

[24] K. M. Alam and A. El Saddik, “C2PS: A Digital Twin Architecture Reference
Model for the Cloud-Based Cyber-Physical Systems,” IEEE Access, vol. 5, pp.
2050–2062, 2017.

[25] B. Andres, R. Sanchis, and R. Poler, “A Cloud Platform to support Collaboration
in Supply Networks,” Int. J. Prod. Manag. Eng., vol. 4, no. 1, pp. 5–13, Jan. 2016.

[26] J. Puttonen, A. Lobov, M. A. C. Soto, and J. L. M. Lastra, “Cloud computing as a
facilitator for web service composition in factory automation,” J. Intell. Manuf., pp.
1–14, Nov. 2016.

[27] B. Ramis Ferrer, A. Nieto, and S. Iarovyi, “C2Net | D6.6 - White Paper of C2NET
platform / openness and portability - Deliverables,” 2016. [Online]. Available:
http://c2net-project.eu/deliverables/-/blogs/d6-6-white-paper-of-c2net-platform-
openness-and-portability. [Accessed: 21-Apr-2017].

[28] W. Mohammed M., D. Aleixo, B. Ramis Ferrer, C. Agostinho, and J. L. Martinez
Lastra, “Configuring and Visualizing The Data Resources in a Cloud-based Data
Collection Framework,” in 2017 IEEE International Conference on Engineering,
Technology and Innovation/ International Technology Management Conference
(ICE/ITMC), 2017, pp. 1242–1249.

[29] J. L. M. Lastra and I. M. Delamer, “Semantic web services in factory automation:
fundamental insights and research roadmap,” IEEE Trans. Ind. Inform., vol. 2, no.
1, pp. 1–11, Feb. 2006.

[30] S. Iarovyi, B. Ramis, X. Xiangbin, A. Sampath, A. Lobov, and J. L. Martinez
Lastra, “Representation of manufacturing equipment and services for OKD-MES:
From service descriptions to ontology,” in 2015 IEEE 13th International Confer-
ence on Industrial Informatics (INDIN), 2015, pp. 1069–1074.

[31] B. R. Ferrer, W. M. Mohammed, and J. L. M. Lastra, “A solution for processing
supply chain events within ontology-based descriptions,” in IECON 2016 - 42nd
Annual Conference of the IEEE Industrial Electronics Society, 2016, pp. 4877–
4883.

[32] B. Ramis Ferrer, W. M. Mohammed, A. Lobov, A. Moreno Galera, and J. L. M.
Lastra, “Including Human Tasks as Semantic Resources in Manufacturing On-
tology Models,” in IECON 2017 - 43rd Annual Conference of the IEEE Industrial
Electronics Society, 2017.

[33] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Prentice
Hall, 2010.

[34] A. Lobov, F. U. Lopez, V. V. Herrera, J. Puttonen, and J. L. M. Lastra, “Semantic
Web Services framework for manufacturing industries,” in IEEE International
Conference on Robotics and Biomimetics, 2008. ROBIO 2008, 2009, pp. 2104–
2108.

64

[35] J. Puttonen, A. Lobov, and J. L. M. Lastra, “Maintaining a Dynamic View of Se-
mantic Web Services Representing Factory Automation Systems,” in 2013 IEEE
20th International Conference on Web Services (ICWS), 2013, pp. 419–426.

[36] J. L. M. Lastra, I. M. Delamer, and F. Ubis, Domain Ontologies for Reasoning
Machines in Factory Automation. ISA, 2010.

[37] N. F. Noy, D. L. McGuinness, and others, Ontology development 101: A guide to
creating your first ontology. Stanford knowledge systems laboratory technical re-
port KSL-01-05 and Stanford medical informatics technical report SMI-2001-
0880, 2001.

[38] V. Maniraj and R. Sivakumar, “Ontology Languages–A Review,” Int. J. Comput.
Theory Eng., vol. 2, no. 6, pp. 887–891, 2010.

[39] E. Negri, L. Fumagalli, M. Garetti, and L. Tanca, “A review of semantic lan-
guages for the conceptual modelling of the manufacturing domain,” in Proceed-
ings of the XIX Summer School Francesco Turco, 2014, Senigallia, Ancona,
2014, pp. 1–8.

[40] C. Hildebrandt et al., Semantic Modeling for Collaboration and Cooperation of
Systems in the production domain. 2017.

[41] “OWL Web Ontology Language Reference,” 2004. [Online]. Available:
http://www.w3.org/TR/owl-ref/. [Accessed: 01-Apr-2015].

[42] I. M. Delamer and J. L. M. Lastra, “Ontology Modeling of Assembly Processes
and Systems using Semantic Web Services,” in 2006 IEEE International Confer-
ence on Industrial Informatics, 2006, pp. 611–617.

[43] “RDF 1.1 Primer,” 2014. [Online]. Available: http://www.w3.org/TR/rdf11-primer/.
[Accessed: 01-Apr-2015].

[44] “Extensible Markup Language (XML),” 2015. [Online]. Available:
https://www.w3.org/XML/. [Accessed: 01-Jun-2016].

[45] “SPARQL Query Language for RDF,” 2008. [Online]. Available:
http://www.w3.org/TR/rdf-sparql-query/. [Accessed: 01-Apr-2015].

[46] J. Puttonen, A. Lobov, and J. L. M. Lastra, “On the Updating of Domain OWL
Models at Runtime in Factory Automation Systems:,” Int. J. Web Serv. Res., vol.
11, no. 2, pp. 46–66, 32 2014.

[47] S. Abburu, “A Survey on Ontology Reasoners and Comparison,” Int. J. Comput.
Appl., vol. 57, no. 17, 2012.

[48] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A Practical
OWL-DL Reasoner,” Web Semant, vol. 5, no. 2, pp. 51–53, Jun. 2007.

65

[49] B. Ramis Ferrer, B. Ahmad, D. Vera, A. Lobov, R. Harrison, and J. L. Martínez
Lastra, “Product, process and resource model coupling for knowledge-driven as-
sembly automation,” - Autom., vol. 64, no. 3, Jan. 2016.

[50] S. Feldmann, M. Wimmer, K. Kernschmidt, and B. Vogel-Heuser, “A compre-
hensive approach for managing inter-model inconsistencies in automated pro-
duction systems engineering,” in 2016 IEEE International Conference on Auto-
mation Science and Engineering (CASE), 2016, pp. 1120–1127.

[51] E. Estevez and M. Marcos, “Model-Based Validation of Industrial Control Sys-
tems,” IEEE Trans. Ind. Inform., vol. 8, no. 2, pp. 302–310, May 2012.

[52] W3C, “All Standards and Drafts - W3C,” 2017. [Online]. Available:
https://www.w3.org/TR/. [Accessed: 11-Jul-2017].

[53] E. Friedman-Hill, JESS in Action, vol. 46. Manning Greenwich, CT, 2003.

[54] C. Legat and B. Vogel-Heuser, “A configurable partial-order planning approach
for field level operation strategies of PLC-based industry 4.0 automated manu-
facturing systems,” Eng. Appl. Artif. Intell., vol. 66, no. Supplement C, pp. 128–
144, Nov. 2017.

[55] D. Trentesaux et al., “Benchmarking flexible job-shop scheduling and control
systems,” Control Eng. Pract., vol. 21, no. 9, pp. 1204–1225, Sep. 2013.

[56] J. Puttonen, A Semantically Enhanced Approach for Orchestration of Web Ser-
vices in Factory Automation Systems. Tampere University of Technology, 2014.

[57] G. F. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems: Concepts
and Design. Pearson Education, 2005.

[58] A. Lobov, J. Puttonen, V. V. Herrera, R. Andiappan, and J. L. M. Lastra, “Service
oriented architecture in developing of loosely-coupled manufacturing systems,”
in 6th IEEE International Conference on Industrial Informatics, 2008. INDIN 2008,
2008, pp. 791–796.

[59] M. Qusay H., “SOA and Web Services,” 2005. [Online]. Available:
http://www.oracle.com/technetwork/articles/javase/soa-142870.html. [Accessed:
11-Jul-2017].

[60] T. K. Liu, Y. P. Chen, and J. H. Chou, “Solving Distributed and Flexible Job-Shop
Scheduling Problems for a Real-World Fastener Manufacturer,” IEEE Access,
vol. 2, pp. 1598–1606, 2014.

[61] M. K. Tiwari, S. Kumar, S. Kumar, Prakash, and R. Shankar, “Solving Part-Type
Selection and Operation Allocation Problems in an FMS: An Approach Using
Constraints-Based Fast Simulated Annealing Algorithm,” IEEE Trans. Syst. Man
Cybern. - Part Syst. Hum., vol. 36, no. 6, pp. 1170–1184, Nov. 2006.

[62] N. Wu, C. Chu, F. Chu, and M. C. Zhou, “A Petri Net Method for Schedulability
and Scheduling Problems in Single-Arm Cluster Tools With Wafer Residency

66

Time Constraints,” IEEE Trans. Semicond. Manuf., vol. 21, no. 2, pp. 224–237,
May 2008.

[63] M. G. Hinchey, R. Sterritt, and C. Rouff, “Swarms and Swarm Intelligence,”
Computer, vol. 40, no. 4, pp. 111–113, Apr. 2007.

[64] J. E. Inglett and E. J. Rodríguez-Seda, “Object transportation by cooperative
robots,” in SoutheastCon 2017, 2017, pp. 1–6.

[65] H. Rezaee and F. Abdollahi, “A Decentralized Cooperative Control Scheme With
Obstacle Avoidance for a Team of Mobile Robots,” IEEE Trans. Ind. Electron.,
vol. 61, no. 1, pp. 347–354, Jan. 2014.

[66] Y. Su and J. Huang, “Cooperative Output Regulation of Linear Multi-Agent Sys-
tems,” IEEE Trans. Autom. Control, vol. 57, no. 4, pp. 1062–1066, Apr. 2012.

[67] W. Zhuang and M. Ismail, “Cooperation in wireless communication networks,”
IEEE Wirel. Commun., vol. 19, no. 2, pp. 10–20, Apr. 2012.

[68] A. Sehgal, V. Perelman, S. Kuryla, and J. Schonwalder, “Management of re-
source constrained devices in the internet of things,” IEEE Commun. Mag., vol.
50, no. 12, pp. 144–149, Dec. 2012.

[69] M. Vögler, J. Schleicher, C. Inzinger, S. Nastic, S. Sehic, and S. Dustdar, “LE-
ONORE – Large-Scale Provisioning of Resource-Constrained IoT Deployments,”
in 2015 IEEE Symposium on Service-Oriented System Engineering, 2015, pp.
78–87.

[70] Z. Xiao, W. Song, and Q. Chen, “Dynamic Resource Allocation Using Virtual
Machines for Cloud Computing Environment,” IEEE Trans. Parallel Distrib. Syst.,
vol. 24, no. 6, pp. 1107–1117, Jun. 2013.

[71] F. Xhafa and N. Bessis, Eds., Inter-cooperative Collective Intelligence: Tech-
niques and Applications, vol. 495. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014.

[72] D. K. Barry, Web Services, Service-Oriented Architectures, and Cloud Compu-
ting: The Savvy Manager’s Guide. Newnes, 2012.

[73] K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes, “Sky Computing,” IEEE
Internet Comput., vol. 13, no. 5, pp. 43–51, Sep. 2009.

[74] S. Goyal, “Public vs Private vs Hybrid vs Community - Cloud Computing: A Criti-
cal Review,” Int. J. Comput. Netw. Inf. Secur., vol. 6, no. 3, pp. 20–29, Feb. 2014.

[75] J. L. Martinez Lastra, Reference mechatronic architecture for actor-based as-
sembly systems. Tampere University of Technology, 2004.

[76] A. Lobov, F. U. Lopez, V. V. Herrera, J. Puttonen, and J. L. M. Lastra, “Semantic
Web Services framework for manufacturing industries,” in IEEE International

67

Conference on Robotics and Biomimetics, 2008. ROBIO 2008, 2009, pp. 2104–
2108.

[77] “IBM developerWorks : New to SOA and web services,” 05-Mar-2007. [Online].
Available: http://www.ibm.com/developerworks/webservices/newto/service.html.
[Accessed: 01-Apr-2015].

[78] L. E. G. Moctezuma, J. Jokinen, C. Postelnicu, and J. L. M. Lastra, “Retrofitting a
factory automation system to address market needs and societal changes,” in
2012 10th IEEE International Conference on Industrial Informatics (INDIN), 2012,
pp. 413–418.

[79] I. M. Delamer and J. L. M. Lastra, “Self-orchestration and choreography: towards
architecture-agnostic manufacturing systems,” in 20th International Conference
on Advanced Information Networking and Applications, 2006. AINA 2006, 2006,
vol. 2, p. 5 pp.-.

[80] A. N. Lee and J. L. M. Lastra, “Data aggregation at field device level for industrial
ambient monitoring using Web Services,” in 2011 9th IEEE International Confer-
ence on Industrial Informatics (INDIN), 2011, pp. 491–496.

[81] M. J. A. G. Izaguirre, A. Lobov, and J. L. M. Lastra, “OPC-UA and DPWS in-
teroperability for factory floor monitoring using complex event processing,” in
2011 9th IEEE International Conference on Industrial Informatics (INDIN), 2011,
pp. 205–211.

[82] D. Schilberg, M. Hoffmann, S. Schmitz, and T. Meisen, “Interoperability in Smart
Automation of Cyber Physical Systems,” in Industrial Internet of Things, Springer,
Cham, 2017, pp. 261–286.

[83] S. Iarovyi, J. Garcia, and J. L. M. Lastra, “An approach for OSGi and DPWS in-
teroperability: Bridging enterprise application with shop-floor,” in Industrial Infor-
matics (INDIN), 2013 11th IEEE International Conference on, 2013, pp. 200–205.

[84] F. Pérez, E. Irisarri, D. Orive, M. Marcos, and E. Estevez, “A CPPS Architecture
approach for Industry 4.0,” in 2015 IEEE 20th Conference on Emerging Tech-
nologies Factory Automation (ETFA), 2015, pp. 1–4.

[85] M. Hoffmann, T. Meisen, and S. Jeschke, “OPC UA Based ERP Agents: Ena-
bling Scalable Communication Solutions in Heterogeneous Automation Envi-
ronments,” in Advances in Practical Applications of Cyber-Physical Multi-Agent
Systems: The PAAMS Collection, 2017, pp. 120–131.

[86] J. Minor, J. Garcia, J. Martinez, A. Lobov, and J. L. M. Lastra, “Evaluating Ser-
vice-Oriented Orchestration Schemes for Controlling Pallet Flow,” presented at
the ICONS 2012, The Seventh International Conference on Systems, 2012, pp.
88–92.

[87] OASIS, “Web Services Business Process Execution Language,” 2007. [Online].
Available: http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html. [Accessed:
11-Jul-2017].

68

[88] J. Puttonen, A. Lobov, and J. L. M. Lastra, “An application of BPEL for service
orchestration in an industrial environment,” in 2008 IEEE International Confer-
ence on Emerging Technologies and Factory Automation, 2008, pp. 530–537.

[89] W3C, “Web Services Choreography Description Language Version 1.0,” 2005.
[Online]. Available: https://www.w3.org/TR/ws-cdl-10/. [Accessed: 11-Jul-2017].

[90] B. Ramis, J. Garcia, and J. L. M. Lastra, “Assessment of IEC-61499 and CDL for
Function Block composition in factory-wide system integration,” in 2013 11th
IEEE International Conference on Industrial Informatics (INDIN), 2013, pp. 212–
217.

[91] W3C, “OWL-S: Semantic Markup for Web Services,” 2004. [Online]. Available:
https://www.w3.org/Submission/OWL-S/. [Accessed: 11-Jul-2017].

[92] C. Sunder et al., “Usability and Interoperability of IEC 61499 based distributed
automation systems,” in Industrial Informatics, 2006 IEEE International Confer-
ence on, 2006, pp. 31–37.

[93] V. Vyatkin, “IEC 61499 as Enabler of Distributed and Intelligent Automation:
State-of-the-Art Review,” IEEE Trans. Ind. Inform., vol. 7, no. 4, pp. 768–781,
Nov. 2011.

[94] IEC, “IEC 61131-3:2013 | IEC Webstore | water automation, water management,
smart city,” 2013. [Online]. Available: https://webstore.iec.ch/publication/4552.
[Accessed: 11-Jul-2017].

[95] R. W. Lewis, Modelling Distributed Control Systems Using IEC 61499. Steven-
age, UK, UK: Institution of Electrical Engineers, 2001.

[96] R. W. Brennan, M. Fletcher, and D. H. Norrie, “An agent-based approach to re-
configuration of real-time distributed control systems,” IEEE Trans. Robot. Au-
tom., vol. 18, no. 4, pp. 444–451, Aug. 2002.

[97] O. J. L. Orozco and J. L. Lastra, “Adding Function Blocks of IEC 61499 Semantic
Description to Automation Objects,” in 2006 IEEE Conference on Emerging
Technologies and Factory Automation, 2006, pp. 537–544.

[98] A. Dennert, A. Gössling, J. Krause, M. Wollschlaeger, and A. M. H. Montoya,
“Vertical data integration in automation based on IEC 61499,” in 2012 9th IEEE
International Workshop on Factory Communication Systems, 2012, pp. 99–102.

[99] V. Vasyutynskyy, C. Hengstler, D. Nadoveza, J. McCarthy, K. G. Brennan, and A.
Dennert, “Layered architecture for production and logistics cockpits,” in Proceed-
ings of 2012 IEEE 17th International Conference on Emerging Technologies
Factory Automation (ETFA 2012), 2012, pp. 1–9.

[100] S. Kožár and P. Kadera, “Integration of IEC 61499 with OPC UA,” in 2016 IEEE
21st International Conference on Emerging Technologies and Factory Automa-
tion (ETFA), 2016, pp. 1–7.

69

[101] V. Vyatkin, IEC 61499 Function Blocks for Embedded and Distributed Control
Systems Design. ISA, 2007.

[102] W. Michael, An Introduction to MultiAgent Systems, Second edition. John Wiley
& Sons, 2009.

[103] F. Jaques, Multi-Agent Systems: An Introduction to Distributed Artificial Intelli-
gence. Addison-Wesley Longman, 1999.

[104] S. S. Walker, R. W. Brennan, and D. H. Norrie, “Holonic job shop scheduling
using a multiagent system,” IEEE Intell. Syst., vol. 20, no. 1, pp. 50–57, Jan.
2005.

[105] V. V. Herrera, A. Bepperling, A. Lobov, H. Smit, A. W. Colombo, and J. Lastra,
“Integration of Multi-Agent Systems and Service-Oriented Architecture for indus-
trial automation,” in 6th IEEE International Conference on Industrial Informatics,
2008. INDIN 2008, 2008, pp. 768–773.

[106] P. Leitao, S. Karnouskos, L. Ribeiro, J. Lee, T. Strasser, and A. W. Colombo,
“Smart Agents in Industrial Cyber–Physical Systems,” Proc. IEEE, vol. 104, no. 5,
pp. 1086–1101, May 2016.

[107] B. Vogel-Heuser, C. Diedrich, D. Pantförder, and P. Göhner, “Coupling hetero-
geneous production systems by a multi-agent based cyber-physical production
system,” in 2014 12th IEEE International Conference on Industrial Informatics
(INDIN), 2014, pp. 713–719.

[108] R. Priego, N. Iriondo, U. Gangoiti, and M. Marcos, “Agent-based middleware
architecture for reconfigurable manufacturing systems,” Int. J. Adv. Manuf.
Technol., vol. 92, no. 5–8, pp. 1579–1590, Sep. 2017.

[109] W. Mohammed M., B. Ramis Ferrer, R. Sanchis, B. Andres, C. Agostinho, and J.
L. Martinez Lastra, “A Multi-agent Approach for Processing Industrial Enterprise
Data,” in 2017 IEEE International Conference on Engineering, Technology and
Innovation/ International Technology Management Conference (ICE/ITMC), 2017,
pp. 1250–1256.

[110] R. J. Allan, “Survey of Agent Based Modelling and Simulation Tools,” Report DL-
TR-2010-007, 2009.

[111] C. N. and G. Madey, “Tools of the Trade: A Survey of Various Agent Based
Modeling Platforms,” 31-Mar-2009. [Online]. Available:
http://jasss.soc.surrey.ac.uk/12/2/2.html. [Accessed: 21-Apr-2017].

[112] M. J. Pont, Patterns for Time-triggered Embedded Systems: Building Reliable
Applications with the 8051 Family of Microcontrollers. Addison-Wesley, 2001.

[113] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proc. IEEE, vol. 91,
no. 1, pp. 112–126, Jan. 2003.

70

[114] IEC, “IEC 61508: Functional Safety - IEC 61508 Explained,” 2017. [Online].
Available: http://www.iec.ch/functionalsafety/explained/. [Accessed: 14-Jul-2017].

[115] ISO, “ISO 26262-1:2011 - Road vehicles -- Functional safety -- Part 1: Vocabu-
lary,” 2011. [Online]. Available: https://www.iso.org/standard/43464.html. [Ac-
cessed: 14-Jul-2017].

[116] IEC, “IEC 62304:2006 | IEC Webstore | Medical device software - Software life
cycle processes,” 2006. [Online]. Available:
https://webstore.iec.ch/publication/6792. [Accessed: 14-Jul-2017].

[117] A. Albert, “Comparison of event-triggered and time-triggered concepts with re-
gard to distributed control systems,” Embed. World, vol. 2004, pp. 235–252,
2004.

[118] K. M. Chandy, M. Charpentier, and A. Capponi, “Towards a theory of events,” in
Proceedings of the 2007 inaugural international conference on Distributed event-
based systems, 2007, pp. 180–187.

[119] K. M. Chandy, “Event Driven Architecture,” in Encyclopedia of Database Sys-
tems, L. LIU and M. T. ÖZSU, Eds. Springer US, 2009, pp. 1040–1044.

[120] J. Van Hoof, How EDA extends SOA and why it is important. unpublished, 2006.

[121] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System,”
Commun ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.

[122] O. Etzion and P. Niblett, Event Processing in Action, 1st ed. Greenwich, CT,
USA: Manning Publications Co., 2010.

[123] Y. Evchina and J. L. M. Lastra, “Semantic-driven CEP for delivery of information
streams in data-intensive monitoring systems,” in 2015 IEEE 13th International
Conference on Industrial Informatics (INDIN), 2015, pp. 1251–1256.

[124] MESA International, “MESA White Paper #39: MESA Model Evolution,” 2011.

[125] IBM, REST: Advanced Research Topics and Practical Applications | Cesare
Pautasso | Springer. 2015.

[126] M. Garetti, “P-PSO Ontology for Manufacturing Systems,” 2012, pp. 449–456.

[127] B. Ramis Ferrer and J. L. M. Lastra, “An Architecture for Implementing Private
Local Automation Clouds Built by CPS,” in IECON 2017 - 43rd Annual Confer-
ence of the IEEE Industrial Electronics Society, 2017.

[128] B. Ramis Ferrer, S. Iarovyi, L. Gonzalez, A. Lobov, and J. L. Martinez Lastra,
“Management of distributed knowledge encapsulated in embedded devices,” Int.
J. Prod. Res., pp. 1–18, Dec. 2015.

71

[129] B. Ramis Ferrer and J. L. Martinez Lastra, “Private local automation clouds built
by CPS: Potential and challenges for distributed reasoning,” Adv. Eng. Inform.,
vol. 32, pp. 113–125, Apr. 2017.

73

Publications

This part of the thesis present a reproduction of the original publications related to the
doctoral research. As it can be seen, the reproduction of each publication has been
requested to the corresponding organisation.

ORIGINAL PAPERS

I

KNOWLEDGE-BASED WEB SERVICE INTEGRATION FOR IN-
DUSTRIAL AUTOMATION

by

Borja Ramis Ferrer, Luis Gonzalez, Sergii Iarovyi, Andrei Lobov, José L Mar-
tinez Lastra, Valeriy Vyatkin, William Dai, July 2014

12th IEEE International Conference on Industrial Informatics (INDIN)

2014 IEEE. Reprinted, with permission, from Borja Ramis Ferrer, Luis Gonzalez, Sergii
Iarovyi, Andrei Lobov, José L Martinez Lastra, Valeriy Vyatkin, William Dai, Knowledge-
Based Web Service Integration for Industrial Automation, 12th IEEE International Con-

ference on Industrial Informatics (INDIN), July 2014.

Knowledge-based web service integration for
industrial automation

Borja Ramis1, Luis Gonzalez1, Sergii Iarovyi1, Andrei Lobov1,
José L. Martinez Lastra1, Valeriy Vyatkin2,3, William Dai3

1Tampere University of Technology, Tampere, Finland
2Aalto University, Helsinki, Finland

3Luleå University of Technology, Luleå, Sweden
{borja.ramis, luis.gonzalezmoctezuma, sergii.iarovyi, andrei.lobov, jose.lastra}@tut.fi, vyatkin@ieee.org, william.dai@ltu.se

Abstract—Web services are widely used for enterprise
software development. Web service protocols simplify application
integration thanks to interface description that can be processed
at runtime and, in addition, due to mature and widely used
standards for transportation and internetworking.
Implementation of service-oriented architecture starts to get
acceptance in the field of industrial automation ranging from
international research project to the first implementations in
industry including first commercial controller devices supporting
web service communication protocols and executing deterministic
control at the same time. The current research step is to allow
knowledge-based integration of industrial automation systems
and to exploit full potentials of run-time reconfiguration and
adaptation of industrial systems. This paper demonstrates
implementation of knowledge-based industrial system, the
architecture and ontology model that can be generalized for
implementation of other production systems.

Keywords—Industrial automation; web services; web service
integration; knowledge-base; ontology; Web Ontology Language
(OWL), SPARQL.

I. INTRODUCTION
Traditionally, industrial automation systems are designed

and implemented in a hierarchical structure. This is also known
as the industrial automation pyramid [31]. This design
approach imposes several challenges from an integration
perspective because horizontal and vertical communications
are heterogeneous. Therefore gateways are needed between
layers in order to communicate different protocols. Changes in
the components or topology imply a big cost in reintegrating
the system.

In the last years, software integration has been pushed
towards Service Oriented Architecture (SOA) design, where
the functionality of the components of a system, is
encapsulated and exposed as services [1]. The most common
implementation of SOA is by encapsulating software
components in Web Services (WS). SOA offers many benefits,
the most important of which are: seamlessly vertical and
horizontal communications, deployment of components across
different networks and flexible reconfiguration of the system.

The academia and industry have started to adopt SOA
architecture for industrial systems. Several research projects
have targeted the use of WS for controlling [2] and monitoring

[3] purposes. Lot of work has also been done for deploying WS
at industrial devices. The result of this is the creation of
DPWS; a protocol stack aligned with WS specifications and
tuned to be implemented in resource-constrained embedded
devices [4].

On the other hand ontologies have demonstrated to be a
flexible, extensible and scalable mechanism to describe and
store information that models the components of a system. The
Web Ontology Language (OWL) [5] offers rich properties to
describe knowledge about entities and their relations. An
important feature of OWL models is that they can be
distributed and accessed through networks.

This work proposes the use of OWL to describe completely
all the levels and parts that compose an industrial automation
system. Different components of the industrial system are
modeled, such as: equipment, actuators and sensors. Control
parameters that are used for the orchestration of the processes
like physical layout of the equipment or current location of the
products across the production system. Enterprise level
information like requested orders or definition of operations
per product are also described in OWL.

The model is exposed to the other components of the
industrial system as a Knowledge-based Web Service. The
information contained in models can be queried and updated by
other entities as, for instance, industrial orchestration engines,
user interfaces and devices. All this components converge in
the use of a Knowledge-based service, which acts as an
integrator node.

 This paper proposes architecture to achieve the previous
functionality. The different components of the system have
been deployed as WSs across different networks to
demonstrate the versatility and scalability of the approach.

The rest of the paper is structured as follows: Section II
presents a start of the art of the core developments, focused in
the fields that this work encompasses. Section III describes the
proposed architecture that allows the integration of the
different components of an industrial automation system,
through a Knowledge-based service. The description of
knowledge modeling and reasoning is detailed in Section IV.
Finally, Section V summarizes and identifies points for further
work.

II. STATE OF THE ART
In this section, the overview of research in implementation

of SOA and Knowledge-based systems concepts and related
technologies for factory automation domain is described.

A. Web Services
WS is widely assumed to be a preferred set of standards to

implement SOA [6], [7]. W3C defines two main classes of
WSs in the WS architecture: Representational State Transfer
(REST)-compliant WS and Arbitrary WS. Both service
architectures provide operations to be invoked, but REST
restricts these operations to be “stateless”, i.e. context or state
of service provider does not have impact on the operation
result [8].

Arbitrary WS, also referred as SOAP WS, are more mature
and employ more generic architecture and include more
specified standards to address discovery, addressing, security
and functionality of WS. Having more standards SOAP WS
are more complicated in development, although provide more
functionality, such as dynamic discovery, asynchronous
messaging, notification mechanisms and others. SOAP WS
standard was defined earlier and together with the benefits it
provides it is often employed for enterprise integration
applications [9], [10]. In addition, several endeavors took
place last years to adapt SOAP WS technology for devices.
The most prominent realizations are Device Profile for Web
Services (DPWS) and OPC-UA. Both of these technologies
were applied by real devices [11], [12], [13], [14].

REST architecture is also defined by employment of
uniform interface, which allows decoupling functionality [15].
This WS architecture was developed considering mainly
HTTP protocol and as result RESTful WS can be interacted
with via web browser with minimal additional software, which
simplifies development of user interfaces for the system.
REST services are widely considered to be a lightweight and
simple solution for SOA implementation. These and other
benefits in application to enterprise applications were studied
in several research works, but still, to the knowledge of
authors, the concept has not been implemented for industrial
controller devices [11], [12].

Web services are also compatible with Event-driven
Architecture. Business processes require more than one
service to be employed in order to execute business logic and
these processes should be invoked by the events in the system.
This leads to event driven nature of the processes in dissimilar
systems including industrial ones. To address this issue Event-
driven SOA (EDSOA) concept was introduced. The EDSOA
concept combines benefits provided by SOA with the ones
provided by event-driven architecture such as asynchrony,
modularity and concurrency [18], [19].

B. Knowledge-based systems
While SOA provides facilitation to interactions for

knowledge-based system, the service description should be
machine-readable. The means for such description lies in
semantics, which can provide metadata about devices. In [20],
it is defined that for explicit knowledge representation of

services employed in factory automation domain Web
Ontology language as a mature mean to implement a
Knowledge Base (KB).

OWL is RDF (Resource Definition Framework) based
XML language, which provides level of abstraction required
for Knowledge Representation (KR). Employing object-
oriented perception, it introduces concepts of classes,
properties and individuals in order to describe the structured
information. There are several OWL dialects that enable
creation of the complex models, which are both machine and
human readable [21].

SPARQL Protocol and RDF Query Language (SPARQL)
allows retrieving the data from ontology using simple
querying. SPARQL standard was developed to satisfy needs of
data access [22]. In order to modify RDF graphs, SPARQL
update may be employed. This language allows updating RDF
graphs by adding, removing or modifying resources and their
relations [23]. OWL being RDF based also can be queried
within SPARQL and SPARQL Update queries. OWL and
SPARQL languages are providing sufficient means to keep the
KR of system up to date [24] and even sufficient to control the
workflow execution based on the knowledge base [25].

III. ARCHITECTURE
Usually, information and communication technology (ICT)

infrastructure of industrial automation systems follows a
layered architecture, commonly known as automation ICT
pyramid. The proposed architecture resembles more a star
topology having a Knowledge-based service as an integrator
element that is used by other components. Four main elements
compose this architecture:

• Knowledge-based service,

• Physical equipment,

• Orchestration service and

• User Interface.

The star topology central element is the Knowledge-based
service component, which holds the information of the whole
system. The physical equipment refers to the actual industrial
sensors, actuators and controllers, which are located in the
factory floor. These devices map their status into the
knowledge-based component. The orchestration service is in
charge of controlling and driving the physical equipment to
achieve the desired task and the user interface, where operators
or managers can visualize the state of the production, or request
an order to be produced. The proposed architecture is depicted
in Fig. 1.

The proposed architecture follows the SOA paradigm,
where all the components are encapsulated and exposed as
WSs. Most of them are deployed as RESTful WSs, while few
others are deployed as DPWS. This provides four main
features:

• Components can communicate between themselves
across networks. Requests can pass easily through
firewalls.

• Reconfigurability is improved, since components can be
moved between platforms without major configuration
changes.

• Seamless horizontal and vertical communications.

• Reuse of tools and libraries used in the Information and
Communication Technologies (ICT) realm.

Fig. 1. Proposed Architecture

The diagram in Fig. 1 shows in solid line boxes the
implementations that compose each of these groups. The
architecture groups are highlighted by the background color of
the boxes and the dotted boxes specify the actual location,
where these components were deployed.

A. Knowledge-based service
 In order to describe and model all the components and
information of the system, OWL models are used. OWL
models inherit the great flexibility of ontologies making them
readable to humans and machines.

 In this work, an ontology API is encapsulated as a RESTful
WS. This opens the possibility to execute SPARQL and
SPARQL Update queries on the OWL models through
RESTful WSs. The implementation of this component is
referred as Ontology Service.

 This service was deployed on a cloud platform; therefore it
is accessible through the Internet from everywhere. This is
necessary since the other components of the architecture can be
deployed on different geographical places.

B. Physical equipment
The industrial controllers used in this work are connected to

real sensors and actuators. The used controllers are S1000 from
Inico Technologies [26]. These controllers perform scan cycle
logic as a basic industrial controller, but use DPWS for
communication purposes. The controller encapsulates and
exposes its functionality as WS operations. These operations
are invoked by the orchestration service to indicate the
controller actions to be performed in the physical equipment.

The industrial controllers can notify to other services when
relevant events occur in the process. This is done by using the
WS-Eventing protocol [27], which is implemented by the
DPWS stack. WS-Eventing allows publishing notifications just
to the endpoints, which are subscribed to specific topics. Event-
driven systems reduce considerably the network overhead
when compared with polling systems and improves
considerably its reconfigurability by using the subscription
mechanism.

As it has been previously mentioned, the industrial
equipment maps its current status to the knowledge-based
OWL model. This is achieved by translating the WS events
generated by the devices into SPARQL Update queries. This
translation is done by a component called Update Manager
service.

The Update Manager service works with a Rules-Actions
list. This list contains a mapping of which SPARQL Update
queries should be executed based on the received WS events.
For instance, if a motor starts to move, the headers of the event
are detected and the corresponding query that updates the
OWL model is selected. This SPARQL Update query is then
executed on the ontology service and the model is updated.
Thus, the system ontology gets the latest status of a system.

C. Orchestration service
The orchestration service contains the business logic that

controls the physical equipment. It gets the status of the
equipment and the requested order from the Knowledge-based
service. Therefore, the orchestration service is capable of
submitting SPARQL queries and reading the SPARQL
response document.

Once the information is acquired, the ontology service
plans a set of actions that is executed in the physical
equipment. The orchestration service invokes in the right
sequence these operations by invoking WS operations on the
physical equipment, which as mentioned earlier, implements
the DPWS stack.

D. User interface
 The User Interface (UI) is the access point for human
interaction with the system. The UI offers the possibility to
entry new orders to the system and visualize graphically the
state of the equipment. Since the orders and equipment status is
contained in OWL models, the user interface service is capable
of executing SPARQL Update (INSERT type) queries for
adding new orders and SPARQL (SELECT type) queries to
read the status of the equipment. Hence, the UI service

consumes the functionality exposed by the Ontology Service
through RESTful WSs.

 This UI service is implemented with HTML and
JavaScript; therefore, the Ontology Service is consumed
through AJAX requests.

It is important to notice, from architecture proposed in Fig.
1, that all the services could be deployed within the same local
network, for example, at the factory floor facilities.
Nevertheless, by placing the ontology service on the cloud,
third parties can interact with the system and offer services, for
example an user interface, which can be located in another
server across the Internet. The selected deployment is to
demonstrate the potential of the architecture and different
deployment configurations can be achieved with minor
settings.

IV. KNOWLEDGE MODEL AND REASONING

A. Production Line system description
An ontology model is developed for representation of the

production line system, which is visualized in the web browser
by the UI service. The layout of the modelled system is shown
in the following Fig. 2.

Fig. 2. Production Line system visualization

Previous visualization sketches a production line system
that consists of three manufacturing cells. Each cell contains
one robot that can perform distinct assembling operations, in
which their corresponding components are needed to produce a
desired product. In addition, each cell includes one conveyor
that is the transport mechanism and link between different
manufacturing cells. Observe that meanwhile the red circles
depict conveyor zones; the grey arrows show the flow of
pallets within the system. In addition, the pallet is represented
by a rectangle that is animated according to the system model
updates. Finally, some light indicators are represented in the
left side of the visualization to show users to verify that the
lights, pallet flow and system model coincide about the pallet

location. Note that the light indicators are not described in the
model since is a feature of the visualization for facilitating the
user interpretation of the pallet flow.

B. Modelling the system using OWL
During the last years a large amount of researches have

been used OWL for modelling systems at different domains.
Although it is true that a system can be modelled using an
ontology from scratch, it is likewise true that following a
methodology the ontology designer can perform models in an
easier manner. A simple knowledge-engineering methodology
for designing ontologies is described in [28] presenting seven
steps to design an ontology. The second step of the
methodology, describes several advantages about reusing
existing ontologies. For the system modelling presented in this
article, an existing model in has been reused.

In fact, [29] presents an OWL domain model that describes
a generic production system ontology, adaptable to different
use cases. Then, the model of the production line presented in
previous Fig. 2 is based on the one presented in [29] because,
for instance, the domain is the same, there is a common
terminology between models and class hierarchy can be reused.

The following Fig. 3 presents a class diagram that is useful
for representing the hierarchy of ontology concepts using the
UML standard notation.

The presented class diagram is not only useful for
representing given 14 main ontology concepts (classes), but
also describes object properties that are included in the OWL
model showing relationships that class instances inherit.

The OWL model of the system describes a set of default
instances (individuals), which are listed in below Table I. The
individuals that are real world devices are easily identifiable
elements in the presented system visualization (Fig. 2). On the
other hand, some status, assembly operations and components
are also defined. These reflect operational status of the system.

TABLE I. DEFAULT MODEL INSTANCES

Class Instances
Conveyor conveyor_1, …, conveyor_3

ConveyorZone

input_Cell_1, …, input_Cell_3
output_Cell_1, …, output_Cell_3
systemInput, systemOutput
workingPosition_Cell_1,…,workingPosition_Cell_3

ManufacturingCell manufacturingCell_1, …, manufacturingCell_3
Robot robot_1, …, robot_3
ManufacturingCellStatus CelldownStatus, CellworkingStatus
RobotStatus downStatus,executingStatus, idleStatus
AssemblyOperation assemblyOperation_1, …, assemblyOperation_6
Component component_A, …, component_F

Table I is labelled as ‘default model instances’ because as it
is explained in Section III, the model changes based on
execution of SPARQL Update queries. Thus, by default, there
are no pallet or product individuals defined. These are
instantiated at runtime as actual physical pallets enter the
system and products are made. Similarly, the instances can be
deleted from the knowledge base, as if it is no longer needed
(e.g. the pallet has successfully gone through the

Fig. 3. Production Line system ontology class diagram

system and the product has been made; thus, no need anymore
to represent information on the pallet and its location). In the
same way, the starting relationships between device and status
of robots and manufacturing cells are idleStatus and
CellworkingStatus respectively, which can be updated as
production system is running.

C. Query execution for updating and checking the model state
Section III described how the implemented architecture

includes an Ontology Service that permits the interaction of
other modules and the OWL model. Meanwhile SPARQL
queries are used for checking desired information about the
actual state of the model; SPARQL Update queries are used for
manipulating it to achieve the representation of, for instance,
the location of pallets in the system.

Fig. 4 shows a SPARQL Update query used for inserting a
pallet into the system. This action involves the definition of
three statements that can be understood through the SPARQL
syntax. Firstly, a pallet_product_1 instance is introduced in the
Pallet class of the model. Secondly, the pallet instance location
is defined as systemInput, which means that the pallet is placed
in the input of the production line and, hence, transported in
that position of the visualization. Finally, a product is linked to
the pallet that is introduced into the system to map the product
and pallet instances. Observe that the product must be
previously included to the system within another SPARQL
Update query, which also defines its pending components that
have to be assembled.

Fig. 4. SPARQL Update query for inserting a pallet in the system

As it has been stated previously, the state of the model can
be checked using SPARQL queries. An example of using a
SELECT type query for checking the location of a specific
pallet in the system is shown in following Fig. 5.

Fig. 5. SPARQL SELECT query for checking the pallet location in the system

Then, the above code presents how a pallet that flows in the
system can be located through a SPARQL. In this case, the
pallet is selected harnessing the mapping that it has to a
specific product. Then, the location of the found pallet is
directly retrieved within last statement.

D. Model usage
Revising the architecture explanations in Section III, the

WS interface developed in the Ontology Service allows the
interaction with the model, which is kept in the cloud. The
Update Manger service is an entity that its objective is to
transform event notifications of the physical equipment into
SPARQL Update queries. Moreover, observe that the model is
not only available for different module functionalities, but also
permits human users to interact through the designed UI.

In fact, the web browser UI allows the insertion of queries
in commented text areas to directly check and/or manipulate
the model. In this way, actions as pallet insertion demonstrated
in Fig. 4 are possible. More detailed descriptions of the
designed OWL model, as well as a guided test for interacting
with the production line model, are available in [30].

PREFIX bo:<http://www.tut.fi/FAST/productionLineSystem#>
SELECT ?pallet ?product ?location
WHERE {
?product bo:hasPallet ?pallet. FILTER (?product = bo:product_1)
?pallet bo:hasLocation ?location.
}

PREFIX bo:<http://www.tut.fi/FAST/productionLineSystem#>
INSERT DATA{
bo:pallet_product_1 a bo:Pallet.
bo:pallet_product_1 bo:hasLocation bo:systemInput.
bo:product_1 bo:hasPallet bo:pallet_product_1.
}

V. CONCLUSION
This paper outlined the architecture and production system

ontology. It has shown the main components, their use and
querying (reasoning) principles for ontology model. The
knowledge-based system and ontology is accessible online to
test queries and get additional details on implementation. It
should be noted that online system is not connected at the
moment to actual physical layer, as it is not an intension to
allow everyone to control the system, but to demonstrate the
role and use of ontology. In the given online setup, the queries
executed on cloud-hosted ontology service result in update of
user interface, which in its turn also retrieves information on
system status through the ontology service.

Currently, there are many solutions of production and
manufacturing systems dealing with knowledge that do not use
the SOA paradigm. Then, observe that adapters or gateway
devices would need to be integrated with information systems
as the one that is presented in this paper.

This approach permits a knowledge-based integration of
industrial automation systems. Thus, the presented knowledge-
based service integration exploits full potentials of run-time
reconfiguration of industrial systems. The key to the
reconfigurability of industrial automation system resides in
capacity of the system to adapt its behavior according to
changes in system KR.

In addition, another benefit of the proposed approach is the
reusability of the OWL domain model. The presented model
describes a generic production system ontology, adaptable to
different use cases in the manufacturing domain.

The equipment is located in FAST lab at Tampere
University of Technology and it has been demonstrated during
ARTEMIS-ITEA2 Co-Summit in December 2013.

In the future work we plan to elaborate basic architecture
blocks performance and handling of exceptional cases at the
production floor. In addition, runtime knowledge aggregation
principles have to be elaborated, as the use of distributed
Knowledge Bases and reasoning capabilities at embedded
device level may be a key enabler for wide acceptance of
knowledge-based systems for different domains.

On the other hand, updates on the model are performed by
using an algorithm of queries. Further on, we plan to add a set
of rules to support the knowledge and we expect to infer the
model with the use of reasoner. Observe that in the actual
implementation, the reasoner allows to check the consistency
of the model once new instances are added due to the
production process progress.

ACKNOWLEDGMENT
This work has been funded by the ARTEMIS First Call

2012 Program under Grant Agreement number 332946,
correspondent to the eScop project: Embedded systems for
Service-based control of Open Manufacturing and Process
Automation.

REFERENCES
[1] A. Lobov, J. Puttonen, V. V. Herrera, R. Andiappan, and J. L. M.

Lastra, “Service oriented architecture in developing of loosely-coupled
manufacturing systems,” in 6th IEEE International Conference on
Industrial Informatics, 2008. INDIN 2008, 2008, pp. 791–796.

[2] I. M. Delamer and J. L. M. Lastra, “Self-orchestration and
choreography: towards architecture-agnostic manufacturing systems,” in
20th International Conference on Advanced Information Networking
and Applications, 2006. AINA 2006, 2006, vol. 2, p. 5 pp.–.

[3] A. N. Lee and J. L. M. Lastra, “Data aggregation at field device level for
industrial ambient monitoring using Web Services,” in 2011 9th IEEE
International Conference on Industrial Informatics (INDIN), 2011, pp.
491–496.

[4] A. V. Ramos, I. M. Delamer, and J. L. M. Lastra, “Embedded service
oriented monitoring, diagnostics and control: Towards the asset-aware
and self-recovery factory,” in 2011 9th IEEE International Conference
on Industrial Informatics (INDIN), 2011, pp. 497–502.

[5] “OWL Web Ontology Language Reference.” [Online]. Available:
http://www.w3.org/TR/owl-ref/. [Accessed: 05-Mar-2014].

[6] “SOA and Web Services.” [Online]. Available:
http://www.oracle.com/technetwork/articles/javase/soa-142870.html.
[Accessed: 05-Mar-2014].

[7] “IBM developerWorks : New to SOA and web services.” [Online].
Available:
http://www.ibm.com/developerworks/webservices/newto/service.html.
[Accessed: 05-Mar-2014].

[8] “Web Services Architecture.” [Online]. Available:
http://www.w3.org/TR/ws-arch/. [Accessed: 04-Mar-2014].

[9] M. Benaissa, A. Benabdelhafid, M. Baccouche, and A. Alim,
“Integration of manufacturing production and planning based in SOAP
system,” in 2004 IEEE International Conference on Industrial
Technology, 2004. IEEE ICIT ’04, 2004, vol. 2, pp. 938–943 Vol. 2.

[10] V. V. Herrera, A. Bepperling, A. Lobov, H. Smit, A. W. Colombo, and
J. Lastra, “Integration of Multi-Agent Systems and Service-Oriented
Architecture for industrial automation,” in 6th IEEE International
Conference on Industrial Informatics, 2008. INDIN 2008, 2008, pp.
768–773.

[11] H. Bohn, A. Bobek, and F. Golatowski, “SIRENA - Service
Infrastructure for Real-time Embedded Networked Devices: A service
oriented framework for different domains,” in International Conference
on Networking, International Conference on Systems and International
Conference on Mobile Communications and Learning Technologies,
2006. ICN/ICONS/MCL 2006, 2006, pp. 43–43.

[12] A. Cannata, M. Gerosa, and M. Taisch, “SOCRADES: A framework for
developing intelligent systems in manufacturing,” in IEEE International
Conference on Industrial Engineering and Engineering Management,
2008. IEEM 2008, 2008, pp. 1904–1908.

[13] J. M. Mendes, A. Rodrigues, P. Leitao, A. W. Colombo, and F. Restivo,
“Distributed Control Patterns using Device Profile for Web Services,” in
Enterprise Distributed Object Computing Conference Workshops, 2008
12th, 2008, pp. 353–360.

[14] E. Zeeb, G. Moritz, D. Timmermann, and F. Golatowski, “WS4D:
Toolkits for Networked Embedded Systems Based on the Devices
Profile for Web Services,” in 2010 39th International Conference on
Parallel Processing Workshops (ICPPW), 2010, pp. 1–8.

[15] R. T. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” University of California, Irvine, 2000.

[16] W. Junye, M. Lirui, and C. Hongming, “A REST-Based Approach to
Integrate Enterprise Resources,” in International Forum on Computer
Science-Technology and Applications, 2009. IFCSTA ’09, 2009, vol. 3,
pp. 219–223.

[17] G. Mulligan and D. Gracanin, “A comparison of SOAP and REST
implementations of a service based interaction independence
middleware framework,” in Simulation Conference (WSC), Proceedings
of the 2009 Winter, 2009, pp. 1423–1432.

[18] S. Overbeek, B. Klievink, and M. Janssen, “A Flexible, Event-Driven,
Service-Oriented Architecture for Orchestrating Service Delivery,”
IEEE Intell. Syst., vol. 24, no. 5, pp. 31–41, Sep. 2009.

[19] Z. Laliwala and S. Chaudhary, “Event-driven Service-Oriented
Architecture,” in 2008 International Conference on Service Systems and
Service Management, 2008, pp. 1–6.

[20] J. L. M. Lastra and I. M. Delamer, “Semantic web services in factory
automation: fundamental insights and research roadmap,” IEEE Trans.
Ind. Inform., vol. 2, no. 1, pp. 1–11, Feb. 2006.

[21] “OWL Web Ontology Language Reference.” [Online]. Available:
http://www.w3.org/TR/owl-ref/. [Accessed: 05-Mar-2014].

[22] “SPARQL Query Language for RDF.” [Online]. Available:
http://www.w3.org/TR/rdf-sparql-query/. [Accessed: 05-Mar-2014].

[23] “SPARQL 1.1 Update.” [Online]. Available:
http://www.w3.org/TR/2013/REC-sparql11-update-20130321/#sec-
intro. [Accessed: 05-Mar-2014].

[24] A. Lobov, F. U. Lopez, V. V. Herrera, J. Puttonen, and J. L. M. Lastra,
“Semantic Web Services framework for manufacturing industries,” in
IEEE International Conference on Robotics and Biomimetics, 2008.
ROBIO 2008, 2009, pp. 2104–2108.

[25] J. Puttonen, A. Lobov, and J. L. Martinez Lastra, “Semantics-Based
Composition of Factory Automation Processes Encapsulated by Web

Services,” IEEE Trans. Ind. Inform., vol. 9, no. 4, pp. 2349–2359, Nov.
2013.

[26] “Inico Technologies.” [Online]. Available: http://www.inicotech.com/.
[Accessed: 05-Mar-2014].

[27] “Web Services Eventing (WS-Eventing).” [Online]. Available:
http://www.w3.org/Submission/WS-Eventing/. [Accessed: 05-Mar-
2014].

[28] N. F. Noy and D. L. Mcguinness, “Ontology Development 101: A Guide
to Creating Your First Ontology,” 2001.

[29] J. Puttonen, A. Lobov, and J. L. M. Lastra, “Maintaining a Dynamic
View of Semantic Web Services Representing Factory Automation
Systems,” in 2013 IEEE 20th International Conference on Web Services
(ICWS), 2013, pp. 419–426.

[30] “eScop Demonstration Wizard.” [Online]. Available: http://www.escop-
project.eu/teaser/. [Accessed: 05-Mar-2014].

[31] ISA, “ISA-95 Manufacturing Enterprise Systems Standards”, March
2011

II

CYBER–PHYSICAL SYSTEMS FOR OPEN-KNOWLEDGE-
DRIVEN MANUFACTURING EXECUTION SYSTEMS

by

Sergii Iarovyi, Wael M Mohammed, Andrei Lobov, Borja Ramis Ferrer, Jose L
Martinez Lastra, May 2016

Proceedings of the IEEE, Volume: 104, Issue: 5

2016 IEEE. Reprinted, with permission, from Sergii Iarovyi, Wael M Mohammed, An-
drei Lobov, Borja Ramis Ferrer, Jose L Martinez Lastra, Cyber-Physical Systems for

Open-Knowledge-Driven Manufacturing Execution Systems, Proceedings of the IEEE,
May 2016.

 1

Abstract—Manufacturing execution systems play an important
role of bridging high-level enterprise functions and production or
manufacturing operations. The embedded systems are usually in
charge of controlling execution of the operations. Modern
embedded systems have become capable of simultaneous and
deterministic execution of control algorithms and IP-based
communication, making it possible to create complex cyber–
physical systems (CPSs), where the computational and
communication resources of a device can be used directly for
various control, supervisory, or monitoring functions. The
complexity for defining open-knowledge-driven manufacturing
execution system (OKD-MES) is in maintaining awareness of
overall system state to avoid disruptive actions as various
functions may be requested from a system. The problem is that
obtaining such information on system state may necessitate
collecting data from a number of devices, as there may not be a
single data point for state information. This paper describes and
illustrates an approach for designing OKD-MES on top of CPSs
that controls robot workstations and conveyor-based
transportation system of a pallet-based production system.

Index Terms—Cyber–physical systems (CPSs); knowledge-
based systems; manufacturing automation; manufacturing sys-
tems

I. INTRODUCTION
ONTEMPORARY manufacturing enterprises both big and
small require new generation information systems to ena-

ble efficient operation of factories by reducing the time and
costs of building and extending manufacturing system func-
tionality, being aware of the current state and therefore being
able to make better decisions. The desired efficiency can be
achieved through the deployment of affordable manufacturing
execution systems (MESs) that are easy to integrate with het-
erogeneous cyber– physical systems (CPSs) [1] operating at
different levels of an enterprise. In order to improve the inte-
gration capabilities, various standards and methodologies have
to be used for building such distributed networked systems. In
addition, it could be beneficial to have system information
represented in a common format at all the levels, so that the
same language is used to describe heterogeneous components,
which in its turn may reduce the time for system components
integration.

The next section provides background in the areas of MESs,
CPSs, distributed systems, and knowledge-driven approach,
which are required to illustrate the approach and case study

presented, respectively, in Sections III and IV. These sections
demonstrate how the conjunction of the mentioned areas could
improve the development and exploitation of CPS in manufac-
turing. The main improvements and challenges related to the
proposed approach are given in Section V. Section VI presents
the conclusions and proposals for future work.

II. BACKGROUND

A. Manufacturing Execution Systems
The information systems applied in manufacturing enter-

prises are complex systems which should provide various
functionalities and be adjusted to the needs of particular enter-
prise. The more complex the manufacturing process becomes
the more challenging is the problem of efficient management
of the enterprise. Addressing a problem of complexity, it is
usually beneficial to apply a divide and conquer approach
defining the independent problem parts and resolving them
separately. The efforts to determine which functions the in-
formation system components have to provide have been duly
applied and resulted in several standards, the most prominent
of which are Purdue Enterprise Reference Architecture
(PERA)1 and ANSI/ISA-952.

ANSI/ISA-95 defines a hierarchy of control between the en-
terprise resource planning (ERP) systems and control systems.
In this hierarchy, the MESs assume the role of connecting the
office ERPs with the shop-floor equipment implementing
manufacturing operational management (MOM) functions in
the enterprise. In [2], the following definition of MES is pro-
posed: “A manufacturing execution system... is an online inte-
grated computerized system that is the accumulation of meth-
ods and tools to accomplish production,” where “online” is
used as connected. Another important organization Manufac-
turing Execution Systems Association (MESA) [3] generally
assigns MESs the same role. Moreover, as Table 1 shows,
ISA-95, MESA, and Verein Deutsche Ingenieure (VDI)3 pro-
pose that almost identical sets of functions be provided on
MOM level.

1 http://www.pera.net/
2 https://www.isa.org/isa95/
3 https://www.vdi.de/

Sergii Iarovyi, Wael Mohammed, Andrei Lobov, Borja Ramis Ferrer and Jose L. Martinez Lastra

Tampere University of Technology, FAST laboratory, PO Box 600, 33101 Tampere, Finland

{sergii.iarovyi, wael.mohammed, andrei.lobov, borja.ramisferrer, jose.lastra}@tut.fi

Cyber-Physical Systems for Open Knowledge-
driven Manufacturing execution systems

C

 2

Table 1. Functions of MES systems

For this study, MES function’s classification by MESA

model [3] was selected. In the model, “resources allocation
and status” functions provide access to all resources in MESs
and manage the needs for material from suppliers. “Opera-
tions/detail scheduling” functions translate orders to shop-
floor schedules and may provide the estimated time for prod-
uct delivery. Decomposition of an order to a task for the shop
floor and updates of the order during execution are imple-
mented within “dispatching production unit” functions. “Doc-
ument control” functions facilitate document generation and
flow in the manufacturing system. “Data collec-
tion/acquisition” functions accumulate all data in the manufac-
turing system, especially from shop-floor hardware and pro-
vide these data to other functions. Management of shift sched-
ules for workers belongs to the scope of “labor management”
functions. “Quality management” functions facilitate the
quality assurance in the manufacturing system in general.
“Process management” function takes control to ensure the
correct process on the shop floor and issues instantaneous
alarms to anticipate and mitigate faults early. “Maintenance
management” function provides maintenance schedules for
shop floor by alarm management or by periodic maintenance.
“Product tracking and genealogy” functions record production
information for each product in order to apply performance
analysis or for faults recall. “Performance analysis” function
analyzes the performance of the facility (production rate, en-
ergy consumption, and order manipulation) with the support of
graphs.

Commercially available MES solutions are mostly central-
ized systems, tightly coupled horizontally (between MES
functions) and vertically (with ERP and shop floor). Such
systems are usually developed by business intelligence or
industrial automation companies (e.g., SAP and Siemens,
respectively). This leads to a strong connection between such
MES solutions and the ecosystem of other software provided
by the company and arguably reduces the openness for inte-
gration with third party components. A tightly coupled ap-
proach increases the challenge of customization for enterprise
needs, and consequently the introduction of an MES solution

usually entails a tradeoff between the modifications of soft-
ware solution and business process.

Currently, MESs are mostly used by large enterprises fol-
lowing a mass production paradigm. For such enterprises the
production volumes are significant, while the variation in the
products is limited [4]. Nevertheless, the trends in industry are
heading toward increasing customization [5] and an increasing
role of SME in economy [6].

The adaptation of conventional MES solutions may be pos-
sible, but the authors discuss a more efficient concept for MES
system. The requirement of modularization for MESs is sug-
gested by Kletti in 2007 [7]. In more detail, the concept of
modularized MESs is proposed in [8]. Bratukhin and Sauter in
2011 suggest the concepts for distributed MESs. The eScop4
solution—open-knowledge-driven MES (OKD-MES)—
proposes combining the modularity of the system with the
knowledge-driven approach.

The core concepts on which the architecture of OKDMES is
based are CPSs, service orientation, and knowledge-driven
approach. Contemporary ERP solutions commonly provide
web service interfaces for integration. Given the service-
oriented nature of OKD-MES, the challenge of integration
with ERP could and should be addressed through the shared
knowledge about the services available in MESs and ERP.
Integration with the factory shop floor in turn is more chal-
lenging, as in addition to the shared knowledge it is mandatory
to enable web services on the constrained equipment of the
factory shop floor. More details on OKDMES concepts in
relation to CPSs will be provided in Section III, while later in
this section the background on the named core concepts will
be provided.

B. Cyber-Physical Systems
As the computational power of embedded systems has in-

creased and information and communication technologies
(ICT) standards have been refined to support the development
and integration of large-scale networked systems, it has be-
come possible to design, implement, and distribute networked

4 http://escop-project.eu/

 3

embedded systems currently known as CPSs.
Rajkumar et al. [9], [10] outlined the profound effects that

development of CPSs may have on society. These include
improvements in the energy sector, which could start using
smart power grids [11]. CPS also tends to affect the automo-
tive industry and transportation systems in general, the first
successful experiments having already been carried out [12]
with autonomous vehicles. In agriculture, deployment of CPS
may increase yields due to better monitoring of the condition
of crop fields as well as the utilization of autonomous ma-
chines. CPS requires new approaches to create real-time em-
bedded software [13].

The development of CPS requires multidisciplinary
knowledge. Besides knowledge of the domain in which the
system and its components physically operate, knowledge of
software, communication, control theories, methods, and tools
is required. Therefore, the management of interdisciplinary
knowledge in order to build a CPS demands good engineering
methodologies. In order to address issues arising in the im-
plementation of generally loosely coupled CPS [14], a cyber-
application framework is proposed. The framework advocates
the use of a number of patterns to handle partially ordered
knowledge for building pervasive applications.

New standards and new methodologies make it possible to
seamlessly integrate information available on different levels
into a single CPS. The decisions in such a system can be made
autonomously based on the most recent situation observed at
the “physical end”—the process, and throughout the “cyber-
netics” part of the system—the control functions which can be
integrated at all the levels. Also, the manufacturing domain
starts to benefit from recent approaches such as cloud compu-
ting [15] that provides tools, methods, and techniques to enlist
additional computational resources on demand to support the
enterprise.

OKD-MES can be positioned at level 3 according to ISA-
95, between the factory shop floor and ERP components.
MES, as an intermediate element in this perspective, should
contain all the necessary functionality not only for covering
traditional MES functions, but also to seamlessly link factory
floor and enterprise business functionality.

C. Distributed Systems
Distributed systems are formed by components residing in

networked computers, which coordinate their actions through
the exchange of messages. One of the most valuable benefits
and the main motivation for using distributed systems is the
option to utilize resources that do not belong to the entity. The
definitions and principles of distributed systems are described
in [16].

In recent decades, aside from the utilization of PLCs for dis-
tributed process control, the factory automation domain has
also introduced new types of embedded devices that permit the
implementation of CPS in modern production lines. In the last
few years, one approach that has been intensively researched
and tested is the implementation of the service-oriented archi-
tecture (SOA) paradigm, which permits encapsulating the
functionality of system components and exposing it as web

services (WS) [17], [18]. WS may be deployed in industrial
devices employing different approaches such as WS-* from
OASIS, OPC-UA model, or following RESTful architectural
style. For WS-* one of the most important implementations is
a device profile for web services (DPWS), which is a modified
WS specification stack based on SOAP protocol that can be
implemented in resource-constrained embedded devices. In
this manner, SOA can be handled by networked devices locat-
ed at different levels of an enterprise for controlling and moni-
toring control processes [19], [20]. These processes are physi-
cally executed on shop floors. Being based on the previous
OPC standards, OPC-UA is widely accepted in industry and
also provides SOAP web services. OPC-UA defines a com-
plex data model which introduces the limits of the application,
as it may bring unnecessary complexity to the business appli-
cations.

DPWS and OPC-UA are both based on SOAP-based web
services rivalled significantly in recent years by the newer
representation states transfer (REST) web services. The archi-
tectural constraints of REST have been developed to utilize
the nature of the web, allowing more scalability and requiring
simpler infrastructure to support the applications. The com-
munity using REST for general applications exceeded that of
SOAP5 at the beginning of the 2010s and as a result the share
of open RESTful APIs is currently over 70%.6 Constrained
application protocol (CoAP) in turn is commonly employed in
the Internet of Things domain, implementing simple represen-
tational state transfer (RESTful) architecture which enables
simple mapping to generic HTTP RESTful services. Basic
HTTP RESTful service may also find its niche in the industri-
al applications domain, mainly for monitoring and non-time-
critical tasks.

The embedded devices enabling web services can serve as
gateways permitting cross-layer integration between physical
equipment and cyber-systems, managed and coordinated with-
in the distribution of information and referred to as remote
terminal units (RTUs). As a commercial example, S1000 (by
Inico Technologies)7 is a WS-enabled controller that has been
used in several research works for controlling the operations
of modern production lines. Each device exposes the equip-
ment functionality as service operations which can be invoked.
Moreover, information messages are distributed among all the
networked devices that participate on the process control,
which allows the coordination of each device operation. Some
studies using these devices for distributing data and control-
ling processes are described in [21] and [22].

D. Knowledge-Driven approach
The preceding sections described the application of CPSs in

the industrial domain and presented tools and technologies
enabling it in modern manufacturing enterprises. Today, one
of the biggest problems that engineers confront is managing
the large volumes of information, which flow between the

5 http://www.google.com/trends/explore#q=%2Fm%2F077dn%2C
%20%2Fm%2F03nsxd&cmpt=q&tz=Etc%2FGMT-2
6 http://www.programmableweb.com/search
7 http://www.inicotech.com/

 4

different layers of enterprises. In fact, the issue is not only to
handle it but also to extract valuable data that permit the anal-
ysis, tracking, evaluation, and understanding of ongoing pro-
cesses in production lines. This need is crucial in a time when
each decision on manufacturing processes directly affects the
economies of organizations.

Knowledge representation (KR) and reasoning are a part of
the artificial intelligence field that is concerned with describ-
ing world information in certain formalisms that can be inter-
preted and used by computer systems for accomplishing com-
plex tasks. Main concepts and several formalisms (e.g., frames
and ontologies) are described in [23]. In the industrial automa-
tion domain, the main benefit of KR is the creation of a system
model which incorporates all the required information that is
generated and consumed by manufacturing systems in both
human and machine-readable form. Recent works in the field
describe how the utilization of KR and its combination with
SOA implementation facilitate the management of manufac-
turing system information [24], [25]. In fact, the scenarios
presented in these works envision requirements for implemen-
tation of the CPS integration.

Recently, the knowledge-driven approach and main con-
cepts for manufacturing systems have been presented in [26]
as the solution for achieving the eScop project objectives.
Garetti et al. present a multilayer architecture for organizing
the entire manufacturing system that manages the orchestra-
tion of service operations execution by consulting a central
system model, which is updated on runtime with the actual
status of the system.

This knowledge-driven approach proposes the use of ontol-
ogies as a technology that in recent years has been utilized in
the industrial automation domain. Among other benefits, on-
tologies offer a hierarchical and well-organized framework for
the description of the system model. Additionally, ontologies
enable reasoning—the process of the generation of new facts
in the model based on available facts and predefined sets or
axioms and rules. The reasoning automates runtime update
and consistency check for the model. Applying semantic rules
in ontologies it is also possible to implement data mapping
and classification.

There are many languages for implementing ontologies [27]
but the most used ones are the resource definition framework
(RDF)-based ones [28]. Following the semantic web stack
presented in [29], RDF is built on the top of the XML syntax,
which does not include any semantic constraint, into the struc-
tured documents. Then, RDF Schema is used for defining the
taxonomy of document resources, which means semantic con-
straints (attributes and types) that allow the interrelation of
RDF resources in XML-based documents. Ontology models
implemented within RDF are RDF graphs that are a set of
RDF statements, or RDF triples. Such RDF triples consist of a
concrete relation: subject–predicate–object. Ontology web
language (OWL) [30] is an extension of RDF language that
permits richer knowledge descriptions because it adds more
vocabulary for describing types (e.g., disjoint and cardinality
constraints) and attributes (e.g., symmetry). It should be noted
that OWL is classified into distinct sublanguages that offer

different description capabilities: OWL-Lite, OWL-DL, and
OWL-Full.

Since the decision by manufacturing system components
depends on the status of the system, model information can be
consulted within queries. Queries can be formulated within
different languages but for querying RDF-based models,
SPARQL protocol and RDF query language (SPARQL) [31]
are the most used. On the other hand, RDF-based graphs can
be updated within SPARQL update (SPARUL) [32], which is
an extension of SPARQL. Briefly put, SPARUL is a language
used for adding, removing, or modifying RDF triples. In fact,
RDF graphs can be totally populated with instances through
SPARUL queries. Recent studies showing some of the func-
tionality of SPARQL and SPARUL languages in the industrial
automation domain are described in [33]–[36].

III. APPROACH
This section presents a description of the approach for the

creation of an open-knowledge-driven manufacturing execu-
tion system. As mentioned in the background, the MES oper-
ates on the level between ERP and shop floor and should con-
nect them. From the bottom-up perspective ERPs are central-
ized cybernetic solutions (although technically ERP may be
implemented in several components), while the control
equipment on the shop floor is distributed and resource con-
strained. This means that the OKD-MES needs to interconnect
two systems of different natures.

The basic set of requirements for an MES solution has been
summarized in [7] by Kletti and includes ERP production
system requirements mapping, modular and expandable na-
ture, adaptability to process and functional needs, and stand-
ardized interfaces on all levels.

RTUs are commonly used as a gateway between physical
shop-floor devices and systems on higher levels of the auto-
mation hierarchy. Considering the increasing computation and
communication capabilities of such RTUs, the devices may
provide their functions in the form of services, data, and de-
scriptions from their physical components. Such capabilities
reduce the required depth of coordination during the develop-
ment of the system components. Although the recent devel-
opments in the field of embedded systems enable more func-
tionality and data on the factory shop-floor level, such func-
tions and data have limited scope and are machine centric
(e.g., manufacturing operations, or device-specific data).

The MES solution should handle the shop-floor CPS and
provide the functionalities of higher levels of abstraction and
complexity. Moreover, a contemporary MES solution should
be able to use data and descriptions hosted by the shop-floor
device. This information provided by this device can be pro-
cessed in order to obtain higher level knowledge of the manu-
facturing system. Such knowledge may be used to make the
MES solution more flexible and loosely connected to the un-
derlying shop floor.

Besides providing flexibility on the factory shop-floor level,
a contemporary MES must itself be flexible. Such considera-
tion transforms to a design requirement for modularity of MES
architecture. The modular architecture should allow the selec-

 5

tion of the optimal solution for MES functionality. Such an
approach provides great benefit to the domain and is constant-
ly requested by consumers. The concept for OKD-MES is
being developed taking the aforementioned points into consid-
eration. In the following sections the architecture of OKD-
MES will be described.

The methodology to implement modular OKD-MES is
based on SOA. Service orientation should allow the required
level of loosely coupled integration to keep the parts inter-
changeable while maintaining the capability for the interaction
of the system. A particular approach for the system architec-
ture REST is selected in this approach for several reasons.
First, REST RESTful-WS exploits the web-based nature of the
system and uses ubiquitous Internet standards, thus providing
an accessible toolkit for interactions with other systems and
users. Finally, the application of RESTful services provides
easy integration with the tools to place the orders in the sys-
tem, whether through a third-party ERP system or directly
from the system user.

The components of the OKD-MES may be grouped into
two sets—those that provide core functionalities to the system
and those introducing the additional MES functions exploiting
the underlying core. The core functionalities should:
• define and handle configuration of the MES with relation

to internal and external components;
• facilitate interactions with shop-floor equipment;
• facilitate interactions with MES users;
• facilitate interactions between the internal components of

MES and external systems.
Following the needs for named core functionalities four

main layers of OKD-MES core were defined: physical layer
(PHL), representation layer (RPL), orchestration layer (ORL),
and visualization layer (VIS). PHL in OKD-MES is embodied
in service-enabled RTUs which expose the descriptions of
controlled devices as well as available services and data.

PHL implements discovery protocols based on multicasting
of Hello/Bye messages and on listening for discovery prob-
ing/heartbeat requests. Discovery functionality allows syn-
chronization representation of the factory shop floor in RPL
with real-world in-system runtime.

RPL serves to maintain the KR of the MES and related
components. The knowledge about MES is represented in the
manufacturing system ontology (MSO) [24]. Exploiting OWL
as a language to describe the manufacturing system enables
reasoning and querying for the required information when
required in the system. RPL contains the system configuration,
such as knowledge about component functionality and rela-
tions. Employing discovery protocols the system representa-
tion is being synchronized with the real world.

ORL enables the execution of sequences of operations pro-
vided by the system components according to defined pro-
cesses. Considering that for the execution of most simple
RESTful operations only URL is required, ORL is capable of
requesting the next operations from other system components
and of dynamically executing them in the system while main-
taining the closed loop in the system.

Finally, the visualization layer exposes the user interfaces to

interact with system components. This layer is developed to
dynamically adjust the user interfaces based on the system
configuration available in the ontology. Such an approach
reduces the burden on the system reconfiguration related to the
development of the user interfaces. Fig. 1 presents the struc-
ture for OKD-MES including core layers and complimentary
MES functions defined by MESA.

Fig. 1. Structure for OKD-MES.

The system status is primarily defined by the status of facto-
ry shop-floor equipment. Efficiency of dispatching is based on
how precise the representation of the system status is at the
moment of dispatching decisions and the possibility to predict
the status of the system when the dispatched operation is exe-
cuted. In case of an integrated OKD-MES solution the deci-
sion about dispatch may be made close to the moment of exe-
cution of the required operation, thereby reducing the possibil-
ity of an erroneous prediction of system status. Moreover, as
the status of the equipment is provided by the equipment itself,
possible distortions in the precision of system status represen-
tation can be improved. The improvement is possible because
each piece of equipment starts to assess its status locally in-
stead of reporting often-limited set of data to some central
diagnostic application, which may become difficult to change
or extend to support the extension of a production line. In
mission-critical applications, where also the situation of wrong
status reporting by a machine should be avoided or mitigated,
the role of “external” observers for particular equipment can
be taken by its neighbor machines. It becomes more computa-
tionally expensive in comparison to the use of a single super-
visor, but can be paid back by simplified dynamic reconfigu-
rability available at system runtime.

IV. CASE STUDY
To demonstrate the capabilities of the OKD-MES the sam-

ple MES function implementation will be described. This

 6

section presents selected MES function, its design and imple-
mentation, and the application case.

The case study for a proposed solution is based on dispatch-
ing production unit (DPU) MES function. The DPU function
should analyze the production order and dispatch it on the
manufacturing equipment in the production line. This demon-
strates vertical and horizontal integration for visual and under-
standable process. As well in OKD-MES DPU has to interact
with all layers and may interact with other MES function im-
plementations. Concluding, the DPU function implementation
provides a comprehensive example of MES functionality, and
consequently was chosen to be used as for current case study.

A. FASTory Line
As a testbed for the implementation of the DPU the FASTo-

ry production line (see Fig. 2) was selected. The line is used to
simulate the process of mobile phone assembly. The real oper-
ations of mobile phone assembly are imitated by drawing the
components on the pallet. Considering the nature of the robot-
ic operations required for the real assembly process, scribed
simulation is a relatively close approximation. The imitation
process includes drawing the three main parts of mobile phone
(frame, screen, and keyboard) in different colors and shapes,
these variations provide 729 different products.

The FASTory line contains ten identical workstations which
can draw the phone parts on paper, one buffer station for load-
ing/storing empty pallets and one station for loading new pa-
per onto the pallet and unloading the ready papers. In this
sense, the paper represents the product while the colored
shapes represent the components of the mobile phone.

Fig. 2. FASTory line.

Fig. 3 presents the physical structure of FASTory work-
stations (to be referred to as W#). The pallet buffer station is
labeled W7, paper loading station is labeled W1, and finally,
the ten processing workstations are labeled W2–W6 and W8–
W12. Each processing workstation contains two conveyors
paths: a main conveyor to deliver a pallet to the robot and a
bypass conveyor moving the pallet to the next station once the
workstation is busy. The production line arranged in the
closed loop. Such typology provides a continuous path for
pallets, thereby increasing the productivity/space ratio [21].

All conveyors are divided into different zones (to be re-
ferred to as Z#) as marked in Fig. 3. The inlets and outlets of
the workstations are located at Z1 and Z5, respectively, in all
stations but W7, where the inlet is in Z2. The possible posi-
tions of the pallets in main and bypath routes are marked as
Z2, Z3, and Z4. The processing point of each station is in Z3.

Fig. 3. FASTory line typology.

With this structure, FASTory is considered to be a flexible
assembly line as a pallet can reach any workstation from any
position. For each zone, there is a sensor to detect the pallet
and a stopper to precisely stop the pallet. Z1 of each station
also contains an RFID reader to read the pallet ID.

The FASTory line is equipped with S1000, WS-enabled
controllers, managing the shop floor hardware. In addition to
the generic controller functionality S1000 is capable of expos-
ing the procedures and data from the line equipment in the
form of RESTful services. Among such service the event sub-
scription mechanism is developed. Such mechanism enables
event-driven behavior in the system. The component based on

its internal logic may send the predefined events to the dynam-
ic list of subscribers. For example, if orchestrator should trig-
ger some process in response to the appearance of the pallet in
Z1 of certain station, it may subscribe to corresponding
event—Z1_Changed—provided by the controller in the line.
For subscription, the client should provide the event sink to
which the notification should be sent when status of Z1
changes.

Following the service-oriented constrains on development
of control logic it is possible to encapsulate the underlying
complexity and expose relevant level of abstraction to shop-
floor service consumers. Additionally such approach enables

 7

exploitation of the web simulators. The simulator for the
FASTory line is described below.

B. FASTory Simulator
FASTory simulator was developed as a platformindepend-

ent solution. The web application is considered the strongest
candidate among other solutions [35]. The FASTory simulator
is a web server which hosts RESTful services and web pages
that can be accessed via internet browser. The services are
virtualizing the shop-floor functionalities, while the set of web
pages provides basic information about simulator as well user
interface including the visual representation of the status of
simulated system.

Simulator significantly accelerates the development process
and reduces the potential risks and cost of running a real sys-
tem. Being online, web-based solution, the simulator provides
realistic development environment open for general public. It
simulates the real line in terms of interface and functionality.

In the scope of development of OKD-MES the simulator is
used for development of ORL, RPL, and MES functions. The
solutions developed and tested in the simulated environment
are then deployed to real system. If the constrains of simulator
were properly addressed in the development, migration from
the virtual to real line is a seamless process. In the OKD-MES
exploiting the capabilities of RPL and PHL the migration pro-
cess is reduced to basic connection to the proper networks.

FASTory simulator is accessible online8.

C. DPU implementation
The implementation of the DPU function in OKDMES re-

quires interaction with PHL, RPL, ORL, and other MES func-
tions. DPU function should provide a service to deploy assign
the operation to shop-floor equipment based on the order and
status of the system. To facilitate the information about the
status DPU should interact with RPL, requesting the infor-
mation about the available and required functionalities. In
order to enforce the decision execution the ORL can be used
to manage the complexity of direct interactions with the PHL.
Finally some other services such as implementation of opera-
tion/detail scheduling (ODS) or resource allocation and status
(RAS) functions may be used in dispatcher for decision.

An example of the DPU configuration for FASTory line is
provided below. The assumption is made that a certain number
of pallets are constantly available to be introduced to the sys-
tem. In such a case the appearance of the pallet on the inlet of
any workstation is the event (Z1_Changed) which should trig-
ger the ORL to request the displacement function for particu-
lar order in particular station. ORL analyzes the notification to
retrieve pallet ID and workstation ID. These are the parame-
ters for which ORL requests DPU to provide the list of pro-
duction tasks to be dispatched.

Fig. 4 shows the sequence diagram for the scenario. In this
representation, ORL focuses only on the request and execution
of the task list. RPL provides information once it is required
and dispatcher is the part which makes decisions for the pro-
duction sequence.

8 http://escop.rd.tut.fi:3000/

Fig. 4. Sequence diagram for the dispatching scenario

The particular decision in the scenario depends on the cir-
cumstances in which the DPU was called. If a pallet enters a
zone of a workstation, DPU should analyze if the current or
any of the following zones of the workstation may provide the
services required for the current product. If there are no ser-
vices to be provided for a product, the pallet is moved from
the workstation in a predefined optimal path. If the operations
provided by the workstation are required for a product and
achievable by the pallet, the pallet has to be moved to the re-
quired zone and possible operations are to be executed. In the
case of complex and interdependent operations in the product
recipe, an additional request for dispatching may be issued
after the execution of the manufacturing operations are com-
plete, as new operations may become enabled for the product
or in the equipment.

Such a decision-making process requires certain models for
the representation of the required knowledge in RPL. The part
of eScop MSO used in the FASTory DPU use case is depicted
in Fig. 5. Conveyor may have event emitted when the pallet
appears in one of its zones. Description of event is defined as a
triggering event for the DPU, so ORL can subscribe to it. Such
an event includes information about the location and ID of the
pallet. The pallet belongs to the container concept in MSO and
is related to a product from the production order. Product in
turn has a production routing or routing, which is a sequence
of operations which have to be performed in order to manufac-
ture the product. The operations may match the description of
services from the processor in a workstation. In addition to the
semantic description, the service may have a technical descrip-
tion required for the invocation of the operation. In the FAS-
Tory scenario, the complete technical details are embedded in
the URL of the service. Employing such a representation DPU
by the set of interactions with the PHL and RPL may retrieve
a set of executable URLs which invokes real operations in the
manufacturing system based only on information about the
location and ID of the pallet.

 8

Fig. 5. Excerpt from eScop MSO required for DPU service.

V. DISCUSSION
Manufacturing systems would generally appear to be doing

the same or similar things as before. Just as the appearance of
an autonomous vehicle on the road [12] will not generally
change its main function, which is to transport people and/or
goods from some arbitrary point A to another point B, manu-
facturing systems equipped with OKD-MES will continue to
deliver their main functionality—manufacturing of corre-
sponding products. The adoption of new technologies, meth-
odologies, and standards changes rather the nonfunctional
requirements or qualities of a manufacturing system. It is pos-
sible to list the four most appealing improvements.

The first one is “time and cost reduction” for the develop-
ment of MES. The use of common web standards and technol-
ogies developed and matured in the field of general ICT re-
duces development time and costs due to widely available and
advanced tools in addition to available expertise and APIs for
application development. For instance, it takes just several
days for an engineer to develop a fully functioning online
simulator of the production system presented in the previous
section. It enables fast prototyping evaluating different ideas.
Furthermore, the only tool needed to operate the simulator and
the actual production line is a basic web browser.

The web browser can be used to visualize information on
the line and to interact with it by invoking services on the
controllers. For instance, among other tools Advanced REST
Client by Google can be mentioned,9 which is accessible via a
web browser. The tool can be directly used as an engineering
tool, for example, to test the operations of line controllers. On
the other hand, sales and marketing personnel get new oppor-
tunities to present solutions to their potential customers as the

9 Advanced REST client, https://chrome.google.com/webstore/
detail/advanced-rest-client/hgmloofddffdnphfgcellkdfbfbjeloo

majority of people are familiar with handling a web browser.
In comparison to commercially available products, such as, for
example, totally integrated automation10 by Siemens, present-
ed approach is open for different service-enabled controllers.
In fact, the approach is meant for service-oriented systems.
Although major PLC vendors did not pick up the approach
yet, the general IT sector moves and evolves around the web
standards. The authors predict that similarly to the Ethernet,
which was adapted to various industrial Ethernet protocols in
industry, the adaptation of software engineering paradigms
will follow. The authors also understand that major vendors
may still want to bind their customers to their solutions by
providing virtuous kinds of “integrated” solutions. As good as
such solutions can be they will cause a vendor lockup prob-
lem. OKD-MES approach can be followed by those, who may
also want to avoid being locked up to the particular vendor.

Second, system “extendibility” is increased. New functions
can be relatively easily added using web service standards,
thus extending the overall system functionality. In general,
since web standards and IP-based networks are used on the
factory floor, the CPS can be integrated into a global network
if necessary. In the example of dispatch function outlined in
the previous sections, the set of services required to address
particular product needs may be extended or changed over
time, but without requiring reprogramming of MES functions.
This is possible due to late binding in the loosely coupled
OKD-MES based on the domain knowledge. Consequently to
introduce new manufacturing system entities in most cases it
should suffice to use the same concept vocabulary or to map
the domain vocabularies of the application. In the case of more
complex modifications, a change of OWL (knowledge) mod-
els may be required to facilitate the representation of addition-

10 http://www.industry.siemens.com/topics/global/en/tia/pages/
default.aspx

 9

al concepts. Yet even in this case, an engineer can already use
online tools11 (requiring just a web browser). The complete
eScop MSO ontology can be accessed using the aforemen-
tioned online tools.

Third, systems can be characterized by “adaptability” with
respect to new conditions, which may be due to changes in
production processes or in production equipment. The change
is noted in the knowledge model and the model can be directly
updated via a SPARUL query sent to RPL by a device inte-
grated into the physical environment. The word “query”
should not be confused here. The “update query” is sent to
make a change in the knowledge model rather than to retrieve
some information. Thus, an engineer should develop and test
valid queries when deploying devices. The same online tools
mentioned for “extendibility” can be used for developing and
testing the queries.

Finally, system “availability” is improved due to better
awareness of system resources and their status. Introduction or
removal of the hardware which follows certain constraints can
be reflected in the system model within seconds. Given the
event-driven and service-oriented nature of the proposed sys-
tem, the status of system resources can also be updated. For
more elaborated resource representation, additional MES ser-
vices (such as resource status and allocation) may be devel-
oped. The awareness of configuration and status of the com-
ponents contributes to improved decision making and failure
handling.

In addition to qualitative improvements, there are certain
risks or challenges associated with the use of CPS for OKD-
MES. The three most relevant of these can be described as
follows.

“Security” is a general demand for any networked system.
Since it is now easy to access CPS on the factory floor, as
even a basic tool such as a web browser can be used not only
to obtain information on the status of a device or the process it
controls, but also to invoke an operation on the device, there-
fore security measures should be carefully implemented.
Again, general IT policies and standards developed for global
networks can be applied here. As soon as public networks are
used for data transmission, the data can be encrypted decreas-
ing the chances of security breaches. The factory floor should
be isolated behind network firewalls, with analytical tools and
procedures in place for detecting possible attacks.

“Observability” can be seen as a more important challenge
specifically for manufacturing. Observability is an ability to
know the system state, as and when it is needed. As decision
making is pushed to the lower levels to increase system re-
sponsiveness and adaptability, it becomes more challenging to
observe the overall system state. In manufacturing, many
products may be handled in parallel, competing for the same
resources of the manufacturing system, and the system must
provide mechanisms for handling conflict resolution. Orches-
trators that do service composition for making a product
should be aware of other production workflows and their sta-
tuses.

11 eScop online tools, http://www.escop-project.eu/tools

Another issue for implementing CPS is fast changing stand-
ards. For example, there are different versions of simple object
access protocol (SOAP)12 that can be used for invoking web
services. There are different versions of device profile for web
services (DPWS)13 that can be used to build service-enabled
CPS. There are a number of versions for business process
execution language (BPEL)14 that can be used for service
composition. There are different versions of HTML, and so
on. A CPS following web standards needs to use several
standards and protocols at the same time. Aiming a functional
integration of such standards and protocols, the implementa-
tion of OKD-MES is developed within open standards, which
are mature enough to perform required features. Although web
standards evolve, they are often compatible extensions of their
predecessors, providing more complex, richer or, simply, new
features (e.g., RDF and OWL or SPARQL and SPARUL). On
the other hand, APIs developed for one version of the standard
may not have forward compatibility, thus solutions developed
earlier may not be directly integrated with newer applications.
In order to mitigate this risk, a web browser can be used as a
benchmarking tool. That is, if the technology and/or protocol
is supported by a web browser, then it is more likely to be
around for a longer time. Due to the application scale of Inter-
net technologies, those which are supported by the majority of
the web browsers would tend to have the most mature and
highly developed APIs. Then, applications developed within
web standards, which are directly supported in different web
browsers, will be compatible with future technologies.

The presence of MES solutions in SMEs is limited due to
the complexity, inflexibility, and high implementation and
customization costs of an existing solution. OKD-MES is
being developed to address this niche. In order to address the
MES system migration for enterprises already having an MES
solution, the migration approach is required. Such an approach
might be based on the advantage of the open and knowledge-
driven nature of the system. Openness makes it possible to
develop the solution to bridge the gap once and share it with
the community, while knowledge-driven nature supports the
reusability of a developed block providing a shared but flexi-
ble model of required knowledge.

The challenge of “performance” is often an obstacle to the
widespread application of knowledge-driven solutions. In light
of the dependence of the performance of the interactions with
the knowledge base on the complexity of queries and the size
of the knowledge base, the surest approach to verify the re-
quired performance may be achieved only through extensive
testing and benchmarking. The prototype implementation of
OKDMES solution was capable to process tens of mixed que-
ries per second in persistent mode and hundreds in nonpersis-
tent mode. Regarding the application of the prototype in sev-
eral medium-sized pilot cases (e.g., FASTory line) it was es-
timated that it is realistic to maintain the representation of
system configuration in the knowledge base and use it for

12 http://www.w3.org/TR/soap/
13 http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01
14 https://www.oasis-open.org/committees/tc_home.php?wg
_abbrev=wsbpel

 10

decision making in MES functions. Additional research and
optimization may enable better performance and as a result
should be capable of managing larger systems.

Having discussed four qualities and challenges of CPS for
manufacturing, it is also important to stress that the manufac-
turing of devices that can be used for controlling industrial
equipment is currently in the hands of only a few rather small
companies. As APIs, standards, and tools reach maturity, the
use of CPSs in conjunction with knowledge-driven approaches
in domain of manufacturing will become common. Mean-
while, the adaptation of the approach to the legacy systems
can be carried out in two basic ways.

The first approach is servitization of high-level supervisory
and monitoring applications providing service interfaces for
other high-level enterprise applications. The supervisors or
monitors can continue to use traditional fieldbuses to com-
municate with the equipment wrapping and translating infor-
mation between the equipment and enterprise functions.

The second approach is servitization of controller devices
by installation of gateway devices at the factory floor. The role
of the device is the same as in the first case—to translate and
wrap the functionality of a controller as a set of web services,
but it can be a dedicated solution for particular industrial con-
troller. The cost of the gateway hardware can be relatively
low, in terms of tens of euros15 and it is already capable to run
applications using latest service APIs

VI. CONCLUSION AND FUTURE WORK
The use of CPSs for OKD-MES was illustrated using FAS-

Tory production line. The main challenges as well as the im-
provements of the approach proposed were discussed. Web
standards and mature Internet-based technologies made it
possible to develop and integrate an application using less
time due to affordable and widely used basic tools such as a
web browser. Future work on developing integrated method-
ology that would combine methods, tools, and techniques used
in heterogeneous disciplines may be required to improve the
adoption of the approach in the manufacturing domain. The
development of the consumer market for handheld devices
making, for instance, a smartphone a common and widely
used tool, the functions of which can be extended with the
installation of new applications using the same web standards
to interact with the manufacturing systems may contribute to a
paradigm shift toward the use of open-knowledge-driven
manufacturing execution systems.

Because of the advantages mentioned in Section V, the
OKD-MES concept may become more desirable in the manu-
facturing domain. CPS is one of key systems with significant
potential in implementing the OKD-MES concept. Since tradi-
tional manufacturing systems can in principle deliver the basic
functionality expected from such systems, the OKD-MES
concept faces challenges in the adoption of the approach by
industrial community. A solution to this challenge would re-
quire new system architecture which homogenizes the manu-
facturing ecosystem applying the proposed approach.

15 https://www.raspberrypi.org/

ACKNOWLEDGMENT
The research leading to these results has received funding

from the ARTEMIS Joint Undertaking under grant agreement
n° 332946 and from the Finnish Funding Agency for Technol-
ogy and Innovation (TEKES), correspondent to the project
short title eScop16, Embedded systems for service-based con-
trol of open manufacturing and process automation.

REFERENCES
[1] J. Sztipanovits, X. Koutsoukos, G. Karsai, N. Kottenstette, P. Antsaklis,

V. Gupta, B. Goodwine, J. Baras, and S. Wang, “Toward a Science of
Cyber-Physical System Integration,” Proc. IEEE, vol. 100, no. 1, pp.
29–44, Jan. 2012.

[2] M. McClellan, Applying Manufacturing Execution Systems. CRC Press,
1997.

[3] “MESA International - Home.” [Online]. Available:
http://www.mesa.org/en/index.asp. [Accessed: 03-Oct-2014].

[4] A. Bratukhin and T. Sauter, “Functional Analysis of Manufacturing
Execution System Distribution,” IEEE Trans. Ind. Inform., vol. 7, no.
4, pp. 740–749, Nov. 2011.

[5] V. Modrak, S. Bednar, and D. Marton, “Generating product variations
in terms of mass customization,” in 2015 IEEE 13th International Sym-
posium on Applied Machine Intelligence and Informatics (SAMI), 2015,
pp. 187–192.

[6] “Manufacturing Execution Systems - Accenture,” 2010.
[7] J. Kletti, Manufacturing execution systems-MES. Springer, 2007.
[8] F. K. Johnson, “Future of manufacturing execution systems: the brave

new modular world of manufacturing intelligence,” Rev. Manag., vol.
1, no. 1, pp. 4–14, 2011.

[9] R. Rajkumar, “A Cyber-Physical Future,” Proc. IEEE, vol. 100, no.
Special Centennial Issue, pp. 1309–1312, May 2012.

[10] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical
systems: the next computing revolution,” in Proceedings of the 47th
Design Automation Conference, 2010, pp. 731–736.

[11] S. Galli, A. Scaglione, and Z. Wang, “For the Grid and Through the
Grid: The Role of Power Line Communications in the Smart Grid,”
Proc. IEEE, vol. 99, no. 6, pp. 998–1027, Jun. 2011.

[12] E. Guizzo, “Autonomous Vehicle Driving from Italy to China,” 21-
Sep-2010. [Online]. Available:
http://spectrum.ieee.org/automaton/robotics/robotics-
software/autonomous-vehicle-driving-from-italy-to-china. [Accessed:
04-Jun-2015].

[13] J. C. Eidson, E. A. Lee, S. Matic, S. A. Seshia, and J. Zou, “Distributed
Real-Time Software for Cyber-Physical Systems,” Proc. IEEE, vol.
100, no. 1, pp. 45–59, Jan. 2012.

[14] J.-S. Choi, T. McCarthy, M. Yadav, M. Kim, C. Talcott, and E. Gressi-
er-Soudan, “Application patterns for cyber-physical systems,” in 2013
IEEE 1st International Conference on Cyber-Physical Systems, Net-
works, and Applications (CPSNA), 2013, pp. 52–59.

[15] A. Colombo, T. Bangemann, S. Karnouskos, J. Delsing, P. Stluka, R.
Harrison, F. Jammes, and J. L. Lastra, Industrial Cloud-Based Cyber-
Physical Systems: The IMC-AESOP Approach. Springer Publishing
Company, Incorporated, 2014.

[16] G. F. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems:
Concepts and Design. Pearson Education, 2005.

[17] “SOA and Web Services.” [Online]. Available:
http://www.oracle.com/technetwork/articles/javase/soa-142870.html.
[Accessed: 04-Jun-2015].

[18] A. Lobov, J. Puttonen, V. V. Herrera, R. Andiappan, and J. L. M.
Lastra, “Service oriented architecture in developing of loosely-coupled
manufacturing systems,” in 6th IEEE International Conference on In-
dustrial Informatics, 2008. INDIN 2008, 2008, pp. 791–796.

[19] I. M. Delamer and J. L. M. Lastra, “Self-orchestration and choreogra-
phy: towards architecture-agnostic manufacturing systems,” in 20th In-
ternational Conference on Advanced Information Networking and Ap-
plications, 2006. AINA 2006, 2006, vol. 2, p. 5 pp.–.

[20] A. N. Lee and J. L. M. Lastra, “Data aggregation at field device level
for industrial ambient monitoring using Web Services,” in 2011 9th

16 http://www.escop-project.eu/

 11

IEEE International Conference on Industrial Informatics (INDIN),
2011, pp. 491–496.

[21] L. E. G. Moctezuma, J. Jokinen, C. Postelnicu, and J. L. M. Lastra,
“Retrofitting a factory automation system to address market needs and
societal changes,” in 2012 10th IEEE International Conference on In-
dustrial Informatics (INDIN), 2012, pp. 413–418.

[22] S. Iarovyi, J. Garcia, and J. L. M. Lastra, “An approach for OSGi and
DPWS interoperability: Bridging enterprise application with shop-
floor,” in 2013 11th IEEE International Conference on Industrial In-
formatics (INDIN), 2013, pp. 200–205.

[23] R. J. Brachman, Knowledge representation and reasoning. Amster-
dam ; Boston: Morgan Kaufmann, 2004.

[24] L. Fumagalli, S. Pala, M. Garetti, and E. Negri, “Ontology-Based
Modeling of Manufacturing and Logistics Systems for a New MES Ar-
chitecture,” in Advances in Production Management Systems. Innova-
tive and Knowledge-Based Production Management in a Global-Local
World, B. Grabot, B. Vallespir, S. Gomes, A. Bouras, and D. Kiritsis,
Eds. Springer Berlin Heidelberg, 2014, pp. 192–200.

[25] B. Ramis, L. Gonzalez, S. Iarovyi, A. Lobov, J. L. Martinez Lastra, V.
Vyatkin, and W. Dai, “Knowledge-based web service integration for
industrial automation,” in 2014 12th IEEE International Conference on
Industrial Informatics (INDIN), 2014, pp. 733–739.

[26] M. Garetti, L. Fumagalli, A. Lobov, and J. L. Martinez Lastra, “Open
Automation of Manufacturing Systems through Integration of Ontology
and Web Services,” presented at the 7th IFAC Conference on Manufac-
turing Modelling, Management, and Control, 2013, 2013, vol. 7, pp.
198–203.

[27] D. Kalibatiene and O. Vasilecas, “Survey on Ontology Languages,” in
Perspectives in Business Informatics Research, J. Grabis and M. Kiri-
kova, Eds. Springer Berlin Heidelberg, 2011, pp. 124–141.

[28] “RDF 1.1 Concepts and Abstract Syntax.” [Online]. Available:
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/. [Ac-
cessed: 03-Oct-2014].

[29] “Semantic Web Architecture - Introduction to ontologies and semantic
web - tutorial.” [Online]. Available:
http://obitko.com/tutorials/ontologies-semantic-web/semantic-web-
architecture.html. [Accessed: 27-Oct-2015].

[30] “OWL 2 Web Ontology Language Document Overview (Second Edi-
tion).” [Online]. Available: http://www.w3.org/TR/owl2-overview/.
[Accessed: 05-Mar-2014].

[31] I. Kollia, B. Glimm, and I. Horrocks, “SPARQL query answering over
OWL ontologies,” in The Semantic Web: Research and Applications,
Springer, 2011, pp. 382–396.

[32] “SPARQL 1.1 Update.” [Online]. Available:
http://www.w3.org/TR/2013/REC-sparql11-update-20130321/#sec-
intro. [Accessed: 05-Mar-2014].

[33] J. Puttonen, A. Lobov, and J. L. Martinez Lastra, “Semantics-Based
Composition of Factory Automation Processes Encapsulated by Web
Services,” IEEE Trans. Ind. Inform., vol. 9, no. 4, pp. 2349–2359, Nov.
2013.

[34] J. Puttonen, A. Lobov, and J. L. M. Lastra, “Maintaining a Dynamic
View of Semantic Web Services Representing Factory Automation
Systems,” in 2013 IEEE 20th International Conference on Web Ser-
vices (ICWS), 2013, pp. 419–426.

[35] B. R. Ferrer, S. Iarovyi, L. Gonzalez, A. Lobov, and J. L. M. Lastra,
“Management of distributed knowledge encapsulated in embedded de-
vices,” Int. J. Prod. Res., vol. 0, no. 0, pp. 1–18, Dec. 2015.

[36] T. Preobrazhenskaya, M. Bakaev, and T. Avdeenko, “The role of data
structures design in modern web applications development,” in 2013
8th International Forum on Strategic Technology (IFOST), 2013, vol.
2, pp. 276–279.

ABOUT THE AUTHORS

Sergii Iarovyi received the M.Sc. degree (with
distinction) in electromechanics from the Na-
tional Technical University “KhPI,” Kharkiv,
Ukraine, in 2011 and the M.Sc. degree in facto-
ry automation from Tampere University of
Technology, Tampere, Finland, in 2014.

Since 2012, he has worked at the FAST Laboratory, Tampe-
re University of Technology, as a Project Researcher. His
research interests are in the application of semantic web ser-
vices, cyber– physical systems, and enterprise integration for
factory automation

Wael M. Mohammed received the B.Sc. degree
in mechatronics engineering from Jordan Uni-
versity, Amman, Jordan, in 2010.

From 2010 to 2011, he was a Research Assis-
tant at Tampere University of Technology, Tam-
pere, Finland, and from 2011 to 2013, he worked

as Head of the Technical Department at Etihad Alafandi LLC
in Eastern Province, Kingdom of Saudi Arabia. Since 2015, he
has been a Research Assistant with the FAST Laboratory at
Tampere University of Technology.

Andrei Lobov received the B.S. degree in com-
puter and system engineering from Tallinn Uni-
versity of Technology, Tallinn, Estonia, in 2001,
the M.S. degree in automation engineering from
Tampere University of Technology, Tampere,
Finland, in 2004, and the Dr. Tech. degree on the

subject of formal methods in factory automation from Tampe-
re Universtiy of Technology in December 2008.

He is a University Lecturer at Tampere University of Tech-
nology. His research interests include development of archi-
tectures, methodologies, and technologies for industrial manu-
facturing systems. He is a technical coordinator in the eScop
project.

Borja Ramis Ferrer received the B.Sc. degree in
electrical engineering from the Universidad de
las Islas Baleares, Islas Baleares, Spain, in 2011
and the M.Sc. degree (with distinction) in factory
automation from Tampere University of Tech-
nology, Tampere, Finland, in 2013, where he is

currently working toward the Ph.D. degree.
He is a Fellow of the President’s Doctoral School at Tampe-

re University of Technology. His research interests include the
deployment of knowledge-based and cyber–physical systems
in factory automation.

Jose L. Martinez Lastra received the Ingeniero
Tecnico Industrial degree in electrical engineer-
ing from the Universidad de Cantabria, Santan-
der, Spain, and the M.Sc. degree (with Distinc-
tion) and the Dr.Sc. in Technology degree (with
Commendation) in automation engineering from

the Tampere University of Technology, Tampere, Finland.
He joined Tampere University of Technology, Tampere,

Finland, in 1997, and became University Full Professor in
2006. His research interest is in applying information and
communication technologies to the fields of factory automa-
tion and industrial systems. He leads the FAST Laboratory,
Tampere University of Technology, with the ultimate goal of
seamlessly integrating the knowledge of humans and ma-

 12

chines. He has co/authored over 250 scientific papers and
holds a number of patents in the field of industrial informatics
and automation.

Dr. Martinez Lastra serves as an Associate Editor of the
IEEE TRANSACTIONS ON INDUSTRIAL
INFORMATICS, and he is a Technical Editor of the
IEEE/ASME TRANSACTIONS ON MECHATRONICS.

III

TOWARDS THE ENCAPSULATION AND DECENTRALIZATION
OF OKD-MES SERVICES WITHIN EMBEDDED DEVICES

by

Borja Ramis Ferrer, Jose Luis Martinez Lastra, May 2017

International Journal of Production Research.

Reproduced with permission: ‘Towards the encapsulation and decentralisation of OKD-
MES services within embedded devices’ by Borja Ramis Ferrer & Jose Luis Martinez
Lastra International Journal of Production Research pp. 1-13 (2017). This is the au-
thors accepted manuscript of an article published as the version of record in Interna-

tional Journal of Production Research on 13th May 2017. www.tandfonline.com/
http://dx.doi.org/10.1080/00207543.2017.1328141

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tprs20

Download by: [Tampere University of Technology] Date: 22 May 2017, At: 23:35

International Journal of Production Research

ISSN: 0020-7543 (Print) 1366-588X (Online) Journal homepage: http://www.tandfonline.com/loi/tprs20

Towards the encapsulation and decentralisation of
OKD-MES services within embedded devices

Borja Ramis Ferrer & Jose Luis Martinez Lastra

To cite this article: Borja Ramis Ferrer & Jose Luis Martinez Lastra (2017): Towards the
encapsulation and decentralisation of OKD-MES services within embedded devices, International
Journal of Production Research, DOI: 10.1080/00207543.2017.1328141

To link to this article: http://dx.doi.org/10.1080/00207543.2017.1328141

Published online: 13 May 2017.

Submit your article to this journal

Article views: 43

View related articles

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tprs20
http://www.tandfonline.com/loi/tprs20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00207543.2017.1328141
http://dx.doi.org/10.1080/00207543.2017.1328141
http://www.tandfonline.com/action/authorSubmission?journalCode=tprs20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tprs20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00207543.2017.1328141
http://www.tandfonline.com/doi/mlt/10.1080/00207543.2017.1328141
http://crossmark.crossref.org/dialog/?doi=10.1080/00207543.2017.1328141&domain=pdf&date_stamp=2017-05-13
http://crossmark.crossref.org/dialog/?doi=10.1080/00207543.2017.1328141&domain=pdf&date_stamp=2017-05-13

Towards the encapsulation and decentralisation of OKD-MES services within embedded
devices

Borja Ramis Ferrer* and Jose Luis Martinez Lastra

Factory Automation Systems and Technologies Laboratory (FAST-Lab.), Tampere University of Technology, Tampere, Finland

(Received 9 June 2016; accepted 28 April 2017)

Traditionally, the resources of embedded devices which are employed for process control at shop floors were resource
constrained. However, advances in embedded system technologies permit the enhancement of the processing and storage
capabilities of embedded devices. Therefore, semantic descriptions of manufacturing systems can now be hosted and
computed at the device level. This fact permits the creation of a decentralised solution for controlling processes at the
lowest level of the manufacturing enterprises and the reduction in the time and effort requirements for the configuration
and information exchange. The eScop project presented the Open Knowledge-Driven Manufacturing Execution System
(OKD-MES) solution, which enables monitoring and controlling production systems openly and allows runtime re-con-
figurability of interconnected industrial equipment and services. This research work presents how part of the OKD-MES
functionality can be handled at lower level. More precisely, the OKD-MES representation and management of knowl-
edge can be decentralised and handled at the shop floor level, where the industrial machines are connected to devices
that are capable of controlling the execution of processes. The main objective of this paper is to describe a decentralised
vision for the OKD-MES framework, which is a centric solution in terms of knowledge management. Moreover, the arti-
cle also discusses some of the advantages to be gained from decentralising the management of knowledge model seman-
tic descriptions.

Keywords: cyber-physical systems; service oriented architecture; OKD-MES; decentralised knowledge bases; industrial
automation

1. Introduction

Nowadays, the industry is facing an incessant demand of new, efficient and cheaper platforms, frameworks and tools
that permit different stakeholders to access, monitor and manage information about production along the supply chain.
Furthermore, interested parties request those systems to be remotely accessible and configurable. Therefore, the industry
is now employing a large amount of new information and communication technologies-based solutions that permit the
manipulation of information through networks and, more precisely, the Internet. The advent of the Internet of Things
(IoT) makes possible the connection and information exchange for the ‘things’, such as sensors, wearables, industrial
equipment and computers of different domains across the Internet.

Recently, the EU eScop project1 has presented and validated the eScop solution, which is based on the Open
Knowledge-Driven Manufacturing Execution System (OKD-MES) approach (Iarovyi et al. 2016). Conceptually, the eScop
framework provides a reference architecture formed by several services that permit the supervision and control of produc-
tion systems in an open manner, allowing runtime re-configurability and initialization of new equipment and services. The
OKD-MES has been implemented within the combination of a Service-Oriented Architecture (SOA), Knowledge
Representation (KR) and the use of contemporary industrial controllers. Therefore, the OKD-MES can be considered as a
cyber-physical system implementation because it enables the synergy between cyber and physical domains.

One of the particular features of the eScop solution is that the management of knowledge model descriptions is per-
formed within a central service: The Representation Layer Service (RPL-S). Basically, the RPL-S provides the unique
access point to the data stored in the central Knowledge Base (KB), which describes the system being controlled. There-
fore, in terms of knowledge management, trade and consumption, the OKD-MES is a centralised solution (Fumagalli
et al. 2014).

This research work is motivated by the enhancement of computational resources of resource-constrained embedded
devices that are only used for service description and reduced control algorithms. Due to aforementioned highlight, these

*Corresponding author. Email: borja.ramisferrer@tut.fi

© 2017 Informa UK Limited, trading as Taylor & Francis Group

International Journal of Production Research, 2017
https://doi.org/10.1080/00207543.2017.1328141

http://orcid.org/0000-0002-0525-163X
http://orcid.org/0000-0002-0525-163X
http://orcid.org/0000-0002-0525-163X
http://orcid.org/0000-0001-6227-3408
http://orcid.org/0000-0001-6227-3408
http://orcid.org/0000-0001-6227-3408
mailto:borja.ramisferrer@tut.fi
http://www.tandfonline.com
http://www.tandfonline.com
http://www.tandfonline.com
https://doi.org/10.1080/00207543.2017.1328141
http://crossmark.crossref.org/dialog?doi=10.1080/00207543.2017.1328141&domain=pdf

devices are now capable of (i) encapsulating more data and (ii) managing new functionalities that demand computation
at device level. In such scope, the main objective of this article is to propose placing at lower level certain parts of the
OKD-MES functionality to be implemented and managed by cooperative embedded devices. Hence, this research work
describes an alternative for the eScop centric solution. The presented approach depicts how to achieve the decentralisa-
tion of the entire system KB and discusses some of the advantages that can offer if compared to the OKD-MES
implementation.

The rest of the paper is structured as follows: Section 2 provides a short review of the literature and industrial prac-
tices related to the scope of this research work. Afterwards, Section 3 describes briefly the OKD-MES architecture.
Then, Section 4 presents the main principles of the decentralised proposal. Section 5 discusses the proposed alternative
and compares it with the actual OKD-MES implementation. Finally, Section 6 concludes the article.

2. Review of literature and industrial practices

2.1 Manufacturing Execution Systems

A Manufacturing Execution System (MES) is a control system implemented in the industrial automation domain for
monitoring and managing runtime processes on a factory shop floor. A formal definition and foundations of MES and
main features were early addressed in McClellan (1997). Since then, different research works describing strategies and
technologies for implementing and modelling new MES have emerged as e.g. the ones described in Gao, Li, and Chen
(2015), Iarovyi et al. (2016) and Witsch and Vogel-Heuser (2012). Nevertheless, the main features and requirements for
these systems remain. Basically, MES must be an online system connected to both business and factory shop floor
levels’ systems. In addition, the system has to be integrated with the levels so that cross-level communication is
feasible.

The need of employing MES solutions in manufacturing systems can be understood within a set of functions that
the Manufacturing Enterprise Solutions Association (MESA) defines in MESA International (2011). In fact, aforemen-
tioned white paper describes how the MESA model has evolved until current version from its first definition in 1992.

Initially, the first MESA model identified 11 main functions that should be provided by a MES solution to facilitate
the manufacturing production. Other organisations, such as the International Society of Automation (ISA) and the Verein
Deutsche Ingenieure provide similar set of functions, which can be mapped as shown in Iarovyi et al. (2016). The func-
tionality of MES is critical to enable the production of a manufacturing system within the integration of different levels
depending on the model. For example, the current MESA model levels show in ‘MESA International – MESA Model’
(2016) are: Strategic initiatives, business operations, manufacturing/production operations and the manufacturing/pro-
duction bottom level. On the other hand, according to the ISA-95 model levels show in ISO (2007) are: business plan-
ning and logistics, manufacturing operations management, batch control, continuous control, discrete control and
production process bottom level. In fact, the ISA-95 automation pyramid presents the MES an intermediate level
between manufacturing operations management level systems, such as the Enterprise Resource Planning (ERP) and con-
trol level systems as, for example, the Supervisory Control and Data Acquisition (SCADA). Hence, the MES fills the
gap between the management and the shop floor control. In this case, MES is integrated with the ERP for scheduling
and supporting the dispatch of orders to the control system, which increases the productivity by reducing its cycle time.

2.2 Related work: a knowledge-driven solution for the industrial automation domain

The eScop project has provided the OKD-MES solution. Through this platform, researchers plan the deployment of a
new MES that improves the competitiveness of the European industry (eScop 2016; Tampere University of Technology
2016). The developers claim that the eScop framework enhances the industrial efficiency within e.g. the reduction of
time and effort for configuration, supervision and control of assembly line equipment and processes. The OKD-MES
solution has been implemented through the synergy of three important areas: SOA, KR and embedded devices. Each of
these areas is briefly introduced in following subsections to describe its role and functionality in this particular knowl-
edge-driven solution to be deployed in the industrial automation domain.

2.2.1 SOA related work for the OKD-MES

SOA (Qusay 2005) started to be used in the industrial automation domain for encapsulating functionality of system
components and exposing it as services (Lobov et al. 2008). The software encapsulation is performed using the Web
Service (WS) technology, which includes a set of standards to implement SOA.

2 B. Ramis Ferrer and J.L. Martinez Lastra

Some of the important applications of WS for the industrial automation domain are: cross-layer communication, inte-
gration of components that manages heterogeneous data and adaptation of existing applications (‘IBM developerWorks’
2007). Moreover, SOA is used for monitoring and control of manufacturing system processes (Moctezuma et al. 2012).
Nevertheless, the degree of re-configurability and interoperability required for large-scale dynamic production systems is
not covered entirely by the SOA paradigm. Therefore, the OKD-MES proposes the combination of SOA with KR so
that knowledge of the system can be manipulated by any service of the platform.

2.2.2 KR related work for the OKD-MES

The abstraction and storage of knowledge about the system status is required to allow the adaptation and re-configura-
bility of systems. This is traduced in the implementation of KR in current manufacturing systems. Through KR, engi-
neers are able to describe physical and logical systems, allowing the collection of system data, which is later
transformed into information that can be used by other subsystems. Examples of industrial automation research works
that utilise a KB for storing data used for controlling processes are presented in Lobov et al. (2009), Puttonen, Lobov,
and Lastra (2013) and Ramis et al. (2014).

Ontologies are used as a formal representation of manufacturing systems. Although there are many options for
designing ontologies (Lastra, Delamer, and Ubis 2010) and a wide variety of languages (Maniraj and Sivakumar 2010;
Negri et al. 2016), the most prominent ontology language is the Web Ontology Language (OWL) (‘OWL Web Ontology
Language Reference’ 2004).

OWL has already been presented as a mature language for KR in factory automation (Delamer and Lastra 2006)
and it has a higher degree of representation than other ontology languages. OWL is a Resource Description Framework
(RDF) (‘RDF – Semantic Web Standards’ 2014), which is an Extensible Markup Language (XML)-based language
(‘Extensible Markup Language (XML)’ 2015). Consequently, the use of RDF-based languages for retrieving information
of OWL KBs is appropriated. It should be noted that cited research works use SPARQL Protocol and RDF Query Lan-
guage (SPARQL) (‘SPARQL Query Language for RDF’ 2008) for querying ontological OWL models. Moreover, due to
the adaptation and re-configurability of production lines, implementations must use another language, which permits the
update of KBs. The SPARQL Update (‘SPARQL 1.1 Update’ 2013) permits the modification of OWL models. An
example on how SPAQRL and SPARQL Update can be utilised on industrial systems can be found in Puttonen, Lobov,
and Martinez Lastra (2013). Fundamentally, the implementation of KD approaches permits the runtime process control
of systems in the industrial automation field. Then, the enormous advance that the use of ontologies offers in this
domain is not only the knowledge representation, but also letting them play an important role in the system control.

Furthermore, reasoning engines permit the inference of implicit facts that are concluded from explicit knowledge.
This is a powerful feature provided by ontologies because machines can extend on runtime the system’s KB, which con-
tains the data from the system being controlled. Semantic reasoning is commonly achieved within semantic reasoners as
e.g. Pellet (Sirin et al. 2007) and, if desired, Semantic Web Rule Language for defining rules in RDF-based ontologies
(Ramis Ferrer, Ahmad, et al. 2016).

2.2.3. Embedded devices related work for the OKD-MES

Finally, as presented in Garetti et al. (2013, Iarovyi, Garcia, and Lastra (2013) and Moctezuma et al. (2012), Remote
Terminal Units (RTUs) are a type of industrial controllers that can be used in production lines for process control imple-
menting SOA, as a gateway between the lowest and higher levels of manufacturing systems. More precisely, these
RTUs may employ the Device Profile for Web Services (DPWS) technology as an alternative for having the service
functionality. Then, such DPWS devices are capable of real-time control, Web-based monitoring and integration to
SCADA systems, among other applications.2

Current RTUs not only have increased their communication and networking capabilities, but also the processing
power of CPUs. Therefore, due to the evolution of embedded devices the expanded resource power can be used for
other functionalities, rather than just work as gateways for vertical communication through different levels of automation
systems. Among other functionalities, the possibility of hosting KR models is proposed in Ramis Ferrer et al. (2015). It
should be noted that there are nowadays so many IoT commercial-embedded devices that can be employed to manage
functionality of factories as e.g. the addition of certain shields for increasing the computational power and connectivity
to devices as Raspberry Pi,3 Arduino4 or Onion Omega.5

International Journal of Production Research 3

3. The OKD-MES architecture

The objective of the OKD-MES is to exploit the synergy of new generation of industrial controllers with a KD SOA for
monitoring and controlling an entire automated manufacturing environment. The research work (Garetti et al. 2013)
presented an innovative solution for the control processes in manufacturing systems, based on the integration of web-
services technologies and an ontological model, allowing an easy configuration, update and scalability of the control
system. In fact, this is the first presentation of the OKD-MES.

Furthermore, Garetti et al. (2013) presents a comparison between the architecture of conventional MES and the
OKD-MES. The main difference between the two architectures is the appearance of an ontology in the control layer. In
addition, the control layer is divided in two layers for differentiate between the functionalities of representation and
orchestration of WSs.

On the other hand, Fumagalli et al. (2014) presents the main concept of the eScop project, which is the combination
of embedded systems and an ontology-driven service-based architecture for realising the OKD-MES, defined also as a
fully open-automated manufacturing environment. The architecture of the OKD-MES is presented in Figure 1, which is
an abstract representation of the initial eScop project kernel model view described in Fumagalli et al. (2014). The main
differences between initial and final implementation are described throughout this section.

Initially, the architecture of the OKD-MES consisted in five layers: Physical (PHL), Representation (RPL), Orches-
tration (ORL), Interface (INT) and Visualisation (VIS) layers. It should be noted that VIS is not shown in Figure 1
because it was not included in the kernel module representation. Moreover, INT functionality was finally not imple-
mented as a separated layer but as a module in each layer. In other words, INT is implemented within each layer satisfy-
ing the corresponding requirements of authentication and authorization where appropriate.

The lowest layer is the PHL, which can be mapped to the hardware components located in the shop floor: machines,
sensors, actuators, control units and the RTUs, which are the devices appearing in Figure 1. The objective of PHL is the
real-time control of devices. These are the devices that expose the functionalities of the production line as services and
provide access to service description. Therefore, RTUs enable cross-layer communication because they serve as an inter-
face between the PHL and other layers of the architecture.

Then, the RPL contains the ontological model of the production system i.e. the KB. The Production Systems Model,
which is based on the Politecnico di Milano Production Systems Ontology (P-PSO) (Garetti 2012), is an example of a
model that can be included and exploited in the RPL. According to the P-PSO approach, the system KB will contain
information about the different domains of the system e.g. physical, technological and control. Moreover, the formal rep-
resentation of the production line status and service functionality supports the operation of SOA based orchestration
tools, located at the ORL.

The ORL hosts the Supervisory Control System of the shop floor equipment. This system is composed by a set of
orchestration tools and a production scheduler. Through these entities, the ORL is capable of composing and control the
process that must be executed in the shop floor. The composition starts with incoming orders from the factory Order
Entry System, which is indeed exposed to the user by the corresponding MES function through the VIS layer. There-
fore, the ORL consists both in the service composition and orchestration for controlling not only the shop floor equip-
ment, but also for coordinating actions of the entire system.

Interface layer (INT)

Orchestration Layer (ORL)

Representation Layer (RPL)

Physical Layer (PHL)

Knowledge
Base

a b

Figure 1. Abstract representation of the initial eScop project kernel model view.

4 B. Ramis Ferrer and J.L. Martinez Lastra

In addition, the OKD-MES includes the VIS, which is as layer that is in charge of offering graphical visualisation of
the actual status of components and user interfaces. This layer is used for runtime monitoring of the production system
that is possible within an interface with the RPL, which permits the monitoring of the line status at any time.

Moreover, the research work presented in Ramis et al. (2014) is a first prototype implementation that fulfils the main
requirements of the presented architecture in Figure 1 within two main differences: (i) the VIS and the INT layers are
developed jointly in the User Interface service and (ii) the ORL is situated in the shop floor. Such research work tested
the main concepts of the OKD-MES by exposing layer functionalities as services and presents the solution as a knowl-
edge-based WS integration.

The characteristic of any of the system versions described in this section is that RPL becomes a central component
because any of the services or layers require the interaction with the model of the system for retrieving and updating
the KB. To highlight that the management and consumption of system knowledge included in the KB is done centrally,
Figure 2 shows another perspective of the eScop kernel. The diagram extends the names of each module with ‘-S’ for
indicating that the entire layer and, hence, its functionality is implemented as a service.

4. The alternative

The processing power of CPUs at resource-constrained embedded devices, which serve as industrial controllers, has
grown dramatically. This fact permits the growth of the communication and networking capabilities of these devices.
Due to the use of larger memories, RTUs have also increased the storage for different types of resources as i.e. libraries,
data and user programmes. Then, recent embedded devices have sufficient resources to perform deterministic control
and networking functions.

On the other hand, Figure 2 demonstrates that the actual OKD-MES architecture is centralised by means of interac-
tion with the system KR. More precisely, the KB hosted in the RPL and managed by the RPL-S becomes a central com-
ponent for the execution of system processes. This happens because any layer of the system must interact with the
RPL-S.

Then, this research work proposes the implementation of the RPL-S functionality inside the embedded devices,
which are used in shop floors mostly as gateways between PHL and other layers of the OKD-MES. The resulting
embedded system is a device that not only keeps the objective of interfacing shop floor equipment with the rest of the
MES, but also includes a similar instance of the RPL-S that is used for interaction with a KB. A conceptual view of the
proposed service encapsulation and device structure is depicted in Figure 3. In addition, the following considerations are
applied to the device architecture presented in Figure 3:

(1) ‘RP-S’ is a service, which is encapsulated by the embedded device, which implements the functionality of the
OKD-MES RPL-S.

(2) The ‘x’ notation is used for indicating a specific device that hosts its own KB. For example, a Device1 would
host the KB1.

KB

RPL-S ORL-S

PHL

Orchestration
tools

Production
scheduler

Shop floor equipment

RTU1 RTU2 RTU3 RTUn

VIS-S

…

Figure 2. Interaction of OKD-MES layers, implemented as services, with the RPL-S.

International Journal of Production Research 5

(3) The KB of each device will be a portion of the entire system’s KB, which must be integrated when an incoming
request needs to be answered. This is represented in Figure 4.

The main objective of this research work is to propose a decentralised architecture, as an alternative of the KR utili-
sation in OKD-MES. At least, each device hosts the description of (i) itself, (ii) controlled equipment capabilities and
(iii) distributed network, in which all the devices are interconnected. This is traduced to an ontological model i.e. the
systems’ KB. A first version of such kind of model has been presented in Ramis Ferrer and Martinez Lastra (2017).
Such ontological model is accessible by other devices and Layer-Services6 within SPARQL and SPARQL Update end-
points. This is to be implemented as other embedded device interfaces.

This approach is looking towards the cooperation of intelligent embedded devices. Conceptually, the presented
approach designs a distributed network, in which devices will enhance their autonomy for performing different tasks,
such as knowledge management and decision-making. Then, the implementation on new industrial controllers, which
intends to implement this approach, must include the capability of:

• WS implementation: embedded devices must be capable of implementing services for (i) controlling processes in
the industrial automation domain and (ii) handling the functionality of the RP-S.

• Ontological model (RDF-based) hosting: the device must have sufficient resources for storing its own KB. Such
model describes the required knowledge that the device needs for operating and performing specific tasks.

Devicex

RPL-S

KBx

Figure 3. Encapsulation of RPL-S functionalities in embedded devices.

KB1
KB

KB2

eScop RPL Device1

Device2

KB6

Device6

KB5

Device5

KB3

KB4

Device3

Device4

Figure 4. Representing the decentralisation of the system KB into separate KBs.

6 B. Ramis Ferrer and J.L. Martinez Lastra

• User programme implementation: designers must be capable to implement algorithms. As an example, Ramis Fer-
rer et al. (2015) presents the knowledge management and device behaviour algorithms to be executed by devices.

• Interface for connection with shop floor equipment: an interface is required (i) for activating machine inputs,
which are triggered from invoked WS operations and (ii) for reading system outputs in order to update the actual
system status, which is represented in the ontological model.

Once the device architecture is described, the disposition of them and interaction with remaining Layer-Services are
depicted in Figure 5. This diagram represents the interconnection between devices and the shop floor equipment. In
comparison with the connections shown in Figure 2, the represented knowledge is now decentralised due to the encap-
sulation of a RP-S instance into each device. The union of all device KBs result in the entire manufacturing system
model, as previously represented in Figure 4. Each device hosts the description of its own related functionality for
avoiding redundant data in different embedded devices. Fundamentally, the duplication of data must be avoided because
it occupies memory that can be used for other purposes, such as for the OWL expansion due to update queries.

The implementation of this approach imposes the need of managing the knowledge at device level. This manage-
ment allows the response to incoming queries of other Layer-Service. For instance, if the ORL-S is invoking operations
of certain process, it will send a request to the device network in order to know which device is in charge of the desired
service operation to be invoked. Therefore, such request is delivered to the devices, which in cooperation, will find a
response and send it back to the requestor. The management of KBs, which are encapsulated in embedded devices is
described in Ramis Ferrer et al. (2015). In this work, the algorithm and flow of queries within the distributed network
of embedded devices is presented and demonstrated.

Moreover, as the encapsulation of KR into embedded devices will reduce the number of requests sent from the field
level to higher levels, efforts and time in both configuration and information exchange will be also reduced. Basically,
this particular benefit of the proposed approach, if compared with the OKD-MES solution, is due to the encapsulation

Figure 5. Ontology design within Protégé and an OWL format fragment of the implemented model.

International Journal of Production Research 7

of the RP-S into the devices, which allows the direct interconnection between shop floor equipment and its model, with
no need of intermediate layers.

The rest of the interactions and functionalities remain in a similar distribution to the recent OKD-MES architecture. The
VIS-S is used for monitoring of shop floor processes, for example, within a Human Machine Interface (HMI). Besides, the
ORL-S interacts with devices for executing operations that are described in the local resources of the industrial controllers.
The interconnection of each Layer-Service with devices is implemented as a communication channel that implements its
corresponding interface in the RP-S instance. In this manner, devices handle requests from any Layer-Service independently
of its type. More precisely, cause the ontological model is described using OWL, queries from any Layer-Service are sent
to the device SPARQL over HTTP endpoint, which is described in ‘SPARQL 1.1 Graph Store HTTP Protocol’ (2013). This
interface is a bidirectional interconnection that devices use also for sending responses to Layer-Service requests.

4.1 KR implementation through ontologies

There are many types of formal representation, such as frames, production rules and ontologies for describing knowl-
edge of specific domains (Brachman and Levesque 2004). This research work proposes the implementation of KBs
within ontologies. One of the difficulties on implementing models within such formalism is the verbosity of languages.
This can lead to make some mistakes if the models are created manually. However, the design of ontologies is nowa-
days easier within the use of ontology editors which allow users to abstract from the model syntax. For instance, Pro-
tégé7 is an open source ontology editor that provides an intuitive graphic user interface. Figure 5 shows the interface of
Protégé and a fragment of the generated ontology, which is written in OWL format.

Then, the main objectives of Figure 5 are (i) to depict the editor interface being used at the design phase of the
ontology and (ii) to show a specific ontology format. At left hand side of such picture, the interface of Protégé shows a
set of views of an ontology for describing a production line, inspired on the one shown in Ramis et al. (2014). More
precisely, Figure 5 shows two hierarchy views i.e. class and object property hierarchies. In addition, meanwhile the in-
stances view presents all robot instances; the property assertions view displays the relationships of the robot_1 individ-
ual. On the other hand, the right side of the Figure 5 presents the interface of a text editor that shows the ontology
format, which in this case is written in OWL.8 In fact, as the ontology file is automatically generated by the editor, it is
possible to generate ontologies in several formats, such as RDF/XML,9 Turtle10 or JSON-LD.11

Figure 6. SPARQL SELECT execution through Protégé.

8 B. Ramis Ferrer and J.L. Martinez Lastra

Furthermore, as described in this Section 4, ontologies will be queried in order to retrieve and update information
within SPARQL12 and SPARQL Update,13 respectively. The result of SPARQL queries can be provided in different for-
mats, such as XML or JSON. In addition, there are different forms of SPARQL queries: SELECT, ASK, CONSTRUCT
and DESCRIBE. Each form will provide a different type of result. For instance, SELECT queries provide results in tabu-
lar form. This is demonstrated through Figure 6 which shows the result of executing a query in the Protégé interface.
More precisely, the displayed query is used for checking relevant information about the production of specific products
being manufactured in a production line. Moreover, SPARQL Update queries only return an acknowledgment notifica-
tion as a result in order to indicate if the update operation has been successfully performed. Such kind of updates can
perform different actions e.g. ADD, MODIFY or DELETE data graphs of the ontology. The research work (Ramis Ferrer,
Iarovyi, et al. 2016) demonstrates the combination of SPARQL and SPARQL Update queries in the industrial domain.

Due to the increment of the utilisation of semantic descriptions in the industrial domain, there are many research
works that implement solutions with domain ontologies for describing industrial systems. Common practices and
methodologies are useful for different organisations that develop ontologies in the same domain for supporting the
knowledge sharing and distributed collaboration (Lin et al. 2011). In the industrial domain, the research work (Negri
et al. 2017) provides a representation of industrial logistics aspects within existing ontologies that are compared and
reused. In fact, one of the most important attributes of ontologies is the reusability which implies the need of standardis-
ing the terminology used for different models in the same domain (Usman et al. 2013). A review on ontologies per-
formed in the context of product lifecycle management is provided in Kadiri and Kiritsis (2015). On the other hand,
semantic rules permit the inference of implicit knowledge. For example, the research work (Zhang et al. 2016) shows
how semantic rules can be used for predicting process and resource modifications when product requirements change.

5. Discussion

This research work presents an approach to manage the knowledge of the system in a decentralised manner, based on
employing unused computational resources of current embedded devices. This section discusses the advantages and
drawbacks of the presented approach, which propose the decentralisation of some OKD-MES functionality. As it can be
seen in Figure 7, the main focus of the presented alternative is the distribution and decentralisation of (i) system KB
and (ii) functionality of the RPL-S. Then, the management of portions of KB will be performed by a network of inter-
connected devices which are the ones used currently for the process control at factory floor shops. From a conceptual
perspective, this network could be defined as a cloud of devices that is capable of receiving requests that are solved
within the cooperation of devices.

Although it is arguable when a centralised and decentralised approach are more suitable in the industrial domain, the
proposed alternative in this research work can provide a more robust, flexible, dynamic and scalable than the

Shop floor equipment

PHL
Device1

RPL-S

KB1

RPL-S RPL-S RPL-S

VIS-S ORL-S

KB2 KB3 KBn

Device2 Device3 Devicen

…

Figure 7. Decentralised RPL-S alternative for the actual OKD-MES.

International Journal of Production Research 9

OKD-MES solution. However, the efficiency of the decentralised approach might be limited by the computational
resources of embedded devices and affected by possible conflicts in device communication. To compare the proposed
approach with the current OKD-MES framework, Table 1 presents strengths and weaknesses of both system solutions.

As this research work is presented as a source for establishing the grounds of an alternative to the current OKD-
MES, there are not actual results to enforce some of the stated advantages. In any case, it can be claimed that the cur-
rent OKD-MES is not scalable. VIS-S, ORL-S and even PHL are layers that can be easily decentralised because they
can reside out of the framework and can be reproduced several times with no harm to the system. However, each sys-
tem must work with a unique RPL. Such requirement disallows the OKD-MES to be fully scalable. This would be
allowed throughout the proposed decentralised approach. The encapsulation of RPL-S functionality and the partition of
the entire system KB enable the solution to be scalable within the addition of needed embedded devices. Simply, when-
ever more resources are needed, extra devices may be deployed on runtime, due to both flexibility and plug and play
stated features in Table 1.

On the other hand, due to the described time in small systems, wherein the complexity is not high, the performance
of the presented approach would be weaker than the current OKD-MES. Nevertheless, the performance of the proposed

Table 1. Strengths and weaknesses of the decentralised OKD-MES approach.

Feature Strength Weakness Description

Robustness Yes No One of the main disadvantages of current OKD-MES is that all the knowledge resides
in a central point. Thus, if it fails, the system will not work until the central RPL
components are fixed. In the proposed approach, the knowledge is decentralised and
distributed along a network of embedded devices. Devices are easily replaceable and
knowledge can be automatically migrated or reproduced in new devices so that the
information is not lost. As happens in other domains, in which topologies with no
central node are more robust, the proposed OKD-MES alternative would be more
prepared, having to resist to small nodes’ failures, rather than resisting a failure on the
central component of the system

Flexibility Yes No The proposed alternative is flexible in terms of adding new devices to the system.
Devices can be re-configured and added to the network because they will include on
its RPL-S functionality the required behaviour to perform when appearing in a
network or discovering new devices

Plug and play, even
for knowledge

Yes No One important feature of the proposed alternative is that devices can be added on
runtime. This feature is inherited from the current OKD-MES, wherein devices of the
PHL that control factory shop floor equipment can be added without the need of
stooping the system. In addition, the proposed alternative permits the OKD-MES to
add description of knowledge also in runtime. This is because the knowledge is
encapsulated in devise. Thus, the alternative enables plug and play, even for
knowledge

Scalability Yes No Throughout the alternative, the OKD-MES would become fully scalable. Currently,
the only module or functionality that impedes the system to be scalable is the RPL,
which must be unique for any system. Within the employment of devices that hosts
the functionality of the RPL-S in a decentralised approach, the OKD-MES becomes
scalable

Resource costly on
devices

No Yes The first limitation of the proposed alternative is obviously the availability of
resources in devices. In the decentralised approach, the system will have actually
more resources according to the number of devices employed. Then, it can be stated
that the implementation of presented approach can be expensive when more powerful
devices are employed

Possible device
conflicts

No Yes A new weakness that appears in this alternative is the management of device conflicts.
The conflict may come when knowledge of the system represented in different devices
is redundant or contradictory. For example, this problem can be avoided within the
employment of semantic reasoners that validate the entire system KB frequently, or
introducing a conflict resolution approach within a distributed querying protocol

Time in small systems Yes/No Yes/No In relation to the scalability, if may be argued that the performance, in terms of time,
of the presented alternative in small systems using the proposed approach might be
slower than within current OKD-MES. In principle, it is expected that at higher
system’s complexity the performance of the alternative will be faster, but using many
devices for controlling a simple (small) system would be slower due to the number of
connections and communication between devices

10 B. Ramis Ferrer and J.L. Martinez Lastra

solution would be better when the size and complexity of the system increases. In such case, the decentralisation of
RPL-S would provide a faster approach for process control and decision-making to the manufacturing system. Funda-
mentally, the deployment of embedded devices close to where data are generated permits the transformation of such data
into information with no need of intermediate layers and vertical communication. This means that interoperability prob-
lems, delays in transporting data and network overload may be dramatically reduced. Therefore, the decentralised
approach may perform decision-making tasks faster than centralised approaches that require the transformation and
exchange of information with systems that are located at higher levels of the manufacturing enterprise. Moreover, this
matter is enhanced with the scalability principles of the decentralised proposal, which would permit the OKD-MES
accommodating to larger systems.

6. Conclusion

This article presents the organisation and different functionality of the OKD-MES layered solution. Afterwards, the pre-
sented research work proposes a decentralised architecture as an alternative for moving down the management of knowl-
edge to the device level. In fact, one of the direct impacts of such approach is the reduction of vertical communication
since part of the interactions between the PHL and RPL are replaced by horizontal communication. This means that
some of the required OKD-MES layer-to-layer communication is replaced by a device-to-device interaction, due to the
encapsulation of functionality at device level (i.e. PHL).

Moreover, Section 5 aims to emphasise in explaining the strengths and weaknesses of the presented alternative. In
principle, the implementation of the presented approach would create a solution that is more robust, flexible and scalable
in terms of knowledge management than the OKD-MES solution. However, the cost of resource on devices and possible
conflicts when communicating among each other must be considered and further investigated.

Another important fact to conclude with the proposed alternative is that the encapsulation of the RPL-S OKD-MES
functionalities inside embedded devices could be just a first step in the modification of the eScop project solution. More
precisely, the encapsulation of other Layer-Service functionalities into embedded devices could be tried as long as there
are available resources which allow the management of such functionalities. Then, this progressive approach would offer
same kind of benefits, such as avoiding vertical communication for the orchestration of service execution. This could be
actually achieved within the encapsulation of the ORL-S into devices. Nevertheless, this requires (i) a deep study about
the limits of encapsulation in the embedded devices, which are employed at the factory shop floor and (ii) a definition
of required algorithms for device cooperation in order to substitute other layer functionalities.

Hence, the further work of this research includes the evaluation of aforementioned limits and the definition of a
methodology for descending functionalities to be managed at the device level, wherein the processes are executed. Then,
the next step of this research work is to define how devices, aside from RP-S functionalities, are able also to host the
visualisation of themselves, which e.g. can feed the information required of dedicated HMIs. Afterwards, the implemen-
tation and testing of a complete solution will be possible.

Acknowledgement
The authors gratefully acknowledge the support of the graduate school funding of Tampere University of Technology in carrying out
this work.

Disclosure statement
No potential conflict of interest was reported by the authors.

Notes
1. http://www.escop-project.eu/.
2. http://www.inicotech.com/
3. https://www.raspberrypi.org/
4. https://www.arduino.cc/
5. https://www.onion.io/
6. Layer-Service refers to the service naming in actual OKD-MES architecture as e.g. RPL-S or ORL-S.
7. http://protege.stanford.edu/
8. https://www.w3.org/TR/owl-guide/
9. https://www.w3.org/TR/rdf-syntax-grammar/
10. https://www.w3.org/TR/turtle/

International Journal of Production Research 11

http://www.escop-project.eu/
http://www.inicotech.com/
https://www.raspberrypi.org/
https://www.arduino.cc/
https://www.onion.io/
http://protege.stanford.edu/
https://www.w3.org/TR/owl-guide/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/turtle/

11. https://www.w3.org/TR/json-ld/
12. https://www.w3.org/TR/rdf-sparql-query/
13. https://www.w3.org/TR/sparql11-update/

ORCID
Borja Ramis Ferrer http://orcid.org/0000-0002-0525-163X
Jose Luis Martinez Lastra http://orcid.org/0000-0001-6227-3408

References

Brachman, R. J., and H. J. Levesque. 2004. Knowledge Representation and Reasoning. Morgan Kaufmann.
Delamer, I. M., and J. L. M. Lastra. 2006. “Ontology Modeling of Assembly Processes and Systems Using Semantic Web Services.”

In 2006 IEEE International Conference on Industrial Informatics, 611–617. doi:10.1109/INDIN.2006.275631.
Extensible Markup Language (XML). 2015. Accessed 1 June 2016. https://www.w3.org/XML/
Fumagalli, L., S. Pala, M. Garetti, and E. Negri. 2014. “Ontology-based Modeling of Manufacturing and Logistics Systems for a

New MES Architecture.” In Advances in Production Management Systems. Innovative and Knowledge-based Production Man-
agement in a Global-local World, 192–200. Springer. http://link.springer.com/chapter/10.1007/978-3-662-44739-0_24.

Gao, Q., F. Li, and C. Chen. 2015. “Research of Internet of Things Applied to Manufacturing Execution System.” In 2015 IEEE
International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 661–665.
doi:10.1109/CYBER.2015.7288019.

Garetti, M.. 2012. “P-PSO Ontology for Manufacturing Systems.” In edited by B. Theodor, 449–456. Elsevier. doi:10.3182/
20120523-3-RO-2023.00222.

Garetti, M., L. Fumagalli, A. Lobov, and J. L. Martinez Lastra. 2013. “Open Automation of Manufacturing Systems through Integra-
tion of Ontology and Web Services.” In edited by B. Natalia, 198–203. Elsevier. doi:10.3182/20130619-3-RU-3018.00169.

Iarovyi, S., J. Garcia, and J. L. M. Lastra. 2013. “An Approach for OSGi and DPWS Interoperability: Bridging Enterprise Application
with Shop-floor.” In 2013 11th IEEE International Conference on Industrial Informatics (INDIN), Bochum, Germany, 200–205.
IEEE: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6622882.

Iarovyi, S., W. M. Mohammed, A. Lobov, B. R. Ferrer, and J. L. M. Lastra. 2016. “Cyber-physical Systems for Open-knowledge-dri-
ven Manufacturing Execution Systems.” Proceedings of the IEEE 104 (5): 1142–1154. doi:10.1109/JPROC.2015.2509498.

IBM developerworks: New to SOA and Web Services. 2007. [CT801], March 5. Accessed 1 April 2015. http://www.ibm.com/develop
erworks/webservices/newto/service.html

ISO. 2007. “IEC 62264-3:2007 – Enterprise-control System Integration – Part 3: Activity Models of Manufacturing Operations Man-
agement.” Accessed 2 June 2016. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=40949

Kadiri, S. E., and D. Kiritsis. 2015. “Ontologies in the Context of Product Lifecycle Management: State of the Art Literature
Review.” International Journal of Production Research 53 (18): 5657–5668. doi:10.1080/00207543.2015.1052155.

Lastra, J. L. M., I. M. Delamer, and F. Ubis. 2010. Domain Ontologies for Reasoning Machines in Factory Automation. ISA.
Lin, L. F., W. Y. Zhang, Y. C. Lou, C. Y. Chu, and M. Cai. 2011. “Developing Manufacturing Ontologies for Knowledge Reuse in

Distributed Manufacturing Environment.” International Journal of Production Research 49 (2): 343–359. doi:10.1080/
00207540903349021.

Lobov, A., F. U. Lopez, V. V. Herrera, J. Puttonen, and J. L. M. Lastra. 2009. “Semantic Web Services Framework for Manufacturing
Industries.” In IEEE International Conference on Robotics and Biomimetics, 2008. ROBIO 2008, Bangkok, Thailand, 2104–
2108. doi:10.1109/ROBIO.2009.4913327.

Lobov, A., J. Puttonen, V. V. Herrera, R. Andiappan, and J. L. M. Lastra. 2008. “Service Oriented Architecture in Developing of
Loosely-coupled Manufacturing Systems.” In 6th IEEE International Conference on Industrial Informatics, 2008. INDIN
2008, Daejeon, Korea, 791–796. doi:10.1109/INDIN.2008.4618209.

Maniraj, V., and R. Sivakumar. 2010. “Ontology Languages – A Review.” International Journal of Computer Theory and Engineer-
ing 2 (6): 887–891.

McClellan, M. 1997. Applying Manufacturing Execution Systems. CRC Press.
MESA International. 2011. “MESA White Paper #39: MESA Model Evolution.” https://services.mesa.org/ResourceLibrary/ShowRe

source/73b23d9e-133e-456b-b844-d7ba5ff8278a.
MESA International – MESA Model. 2016. Accessed 2 June 2016. http://www.mesa.org/en/modelstrategicinitiatives/MESAModel.asp
Moctezuma, L. E. G., J. Jokinen, C. Postelnicu, and J. L. M. Lastra. 2012. “Retrofitting a Factory Automation System to Address

Market Needs and Societal Changes.” In 2012 10th IEEE International Conference on Industrial Informatics (INDIN), Beijing,
China, 413–418. doi:10.1109/INDIN.2012.6301202.

Negri, E., L. Fumagalli, M. Garetti, and L. Tanca. 2016. “Requirements and Languages for the Semantic Representation of Manufac-
turing Systems.” Computers in Industry 81: 55–66. doi:10.1016/j.compind.2015.10.009.

Negri, E., S. Perotti, L. Fumagalli, G. Marchet, and M. Garetti. 2017. “Modelling Internal Logistics Systems through Ontologies.”
Computers in Industry 88: 19–34. doi:10.1016/j.compind.2017.03.004.

12 B. Ramis Ferrer and J.L. Martinez Lastra

https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/sparql11-update/
http://orcid.org
http://orcid.org
http://orcid.org
http://orcid.org/0000-0002-0525-163X
http://orcid.org
http://orcid.org
http://orcid.org
http://orcid.org/0000-0001-6227-3408
https://doi.org/10.1109/INDIN.2006.275631
https://www.w3.org/XML/
http://link.springer.com/chapter/10.1007/978-3-662-44739-0_24
https://doi.org/10.1109/CYBER.2015.7288019
https://doi.org/10.3182/20120523-3-RO-2023.00222
https://doi.org/10.3182/20120523-3-RO-2023.00222
https://doi.org/10.3182/20130619-3-RU-3018.00169
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6622882
https://doi.org/10.1109/JPROC.2015.2509498
http://www.ibm.com/developerworks/webservices/newto/service.html
http://www.ibm.com/developerworks/webservices/newto/service.html
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=40949
https://doi.org/10.1080/00207543.2015.1052155
https://doi.org/10.1080/00207540903349021
https://doi.org/10.1080/00207540903349021
https://doi.org/10.1109/ROBIO.2009.4913327
https://doi.org/10.1109/INDIN.2008.4618209
https://services.mesa.org/ResourceLibrary/ShowResource/73b23d9e-133e-456b-b844-d7ba5ff8278a
https://services.mesa.org/ResourceLibrary/ShowResource/73b23d9e-133e-456b-b844-d7ba5ff8278a
http://www.mesa.org/en/modelstrategicinitiatives/MESAModel.asp
https://doi.org/10.1109/INDIN.2012.6301202
https://doi.org/10.1016/j.compind.2015.10.009
https://doi.org/10.1016/j.compind.2017.03.004

OWL Web Ontology Language Reference. 2004. Accessed 1 April 2015. http://www.w3.org/TR/owl-ref/
Puttonen, J., A. Lobov, and J. L. M. Lastra. 2013. “Maintaining a Dynamic View of Semantic Web Services Representing Factory

Automation Systems.” In 2013 IEEE 20th International Conference on Web Services, 419–426. Santa Clara, CA.
Puttonen, J., A. Lobov, and J. L. Martinez Lastra. 2013. “Semantics-based Composition of Factory Automation Processes Encapsu-

lated by Web Services.” IEEE Transactions on Industrial Informatics 9 (4): 2349–2359. doi:10.1109/TII.2012.2220554.
Qusay, H. M. 2005. “SOA and Web Services.” Accessed 2 March 2016. http://www.oracle.com/technetwork/articles/javase/soa-

142870.html
Ramis Ferrer, B., and J. L. Martinez Lastra. 2017. “Private Local Automation Clouds Built by CPS: Potential and Challenges for

Distributed Reasoning.” Advanced Engineering Informatics 32: 113–125. doi:10.1016/j.aei.2017.01.007.
Ramis Ferrer, B., S. Iarovyi, L. Gonzalez, A. Lobov, and J. L. Martinez Lastra. 2015. “Management of Distributed Knowledge Encap-

sulated in Embedded Devices.” International Journal of Production Research 1–18. doi:10.1080/00207543.2015.1120902.
Ramis Ferrer, B., B. Ahmad, D. Vera, A. Lobov, R. Harrison, and J. L. Martínez Lastra. 2016. “Product, Process and Resource Model

Coupling for Knowledge-driven Assembly Automation.” At – Automatisierungstechnik 64 (3): 231–243: doi:10.1515/auto-
2015-0073.

Ramis Ferrer, B., S. Iarovyi, W. M. Mohammed, A. Lobov, and J. L. M. Lastra. 2016. “Exemplifying the Potentials of Web Standards
for Automation Control in Manufacturing Systems.” International Journal of Simulation Systems, Science & Technology 17
(33): 3.1–3.12. doi:10.5013/IJSSST.a.17.33.03.

Ramis, B., L. Gonzalez, S. Iarovyi, A. Lobov, J. L. Martinez Lastra, V. Vyatkin, and W. Dai. 2014. “Knowledge-based Web Service
Integration for Industrial Automation.” In 2014 12th IEEE International Conference on Industrial Informatics (INDIN), Porto
Alegre RS, Brazil, 733–739. doi:10.1109/INDIN.2014.6945604.

RDF – Semantic Web Standards. 2014. Accessed 1 June 2016. https://www.w3.org/RDF/
eScop. 2016. “Media Releases | EScop.” http://www.escop-project.eu/media-releases/.
Sirin, E., B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. 2007. “Pellet: A Practical OWL-DL Reasoner.” Web Semantics: Science,

Services and Agents on the World Wide Web 5 (2): 51–53. doi:10.1016/j.websem.2007.03.004.
SPARQL 1.1 Graph Store HTTP Protocol. 2013. Accessed 1 April 2015. http://www.w3.org/TR/sparql11-http-rdf-update/
SPARQL 1.1 Update. 2013. Accessed 1 April 2015. http://www.w3.org/TR/sparql11-update/
SPARQL Query Language for RDF. 2008. Accessed 1 April 2015. http://www.w3.org/TR/rdf-sparql-query/
Tampere University of Technology. 2016. “New Manufacturing Execution System Improves the Competitiveness of European Indus-

try.” Tampere University of Technology. Accessed 2 June 2016. http://www.tut.fi/en/about-tut/news-and-events/new-manufactur
ing-execution-system-improves-the-competitiveness-of-european-industry-x154451c2

Usman, Z., R. I. M. Young, N. Chungoora, C. Palmer, K. Case, and J. A. Harding. 2013. “Towards a Formal Manufacturing
Reference Ontology.” International Journal of Production Research 51 (22): 6553–6572. doi:10.1080/00207543.2013.801570.

Witsch, M., and B. Vogel-Heuser. 2012. “Towards a Formal Specification Framework for Manufacturing Execution Systems.” IEEE
Transactions on Industrial Informatics 8 (2): 311–320. doi:10.1109/TII.2012.2186585.

Zhang, J., B. Ahmad, D. Vera, and R. Harrison. 2016. “Ontology Based Semantic-predictive Model for Reconfigurable Automation
Systems.” In 2016 IEEE 14th International Conference on Industrial Informatics (INDIN), Poitiers, France, 1094–1099.
doi:10.1109/INDIN.2016.7819328.

International Journal of Production Research 13

http://www.w3.org/TR/owl-ref/
https://doi.org/10.1109/TII.2012.2220554
http://www.oracle.com/technetwork/articles/javase/soa-142870.html
http://www.oracle.com/technetwork/articles/javase/soa-142870.html
https://doi.org/10.1016/j.aei.2017.01.007
https://doi.org/10.1080/00207543.2015.1120902
https://doi.org/10.1515/auto-2015-0073
https://doi.org/10.1515/auto-2015-0073
https://doi.org/10.5013/IJSSST.a.17.33.03
https://doi.org/10.1109/INDIN.2014.6945604
https://www.w3.org/RDF/
http://www.escop-project.eu/media-releases/
https://doi.org/10.1016/j.websem.2007.03.004
http://www.w3.org/TR/sparql11-http-rdf-update/
http://www.w3.org/TR/sparql11-update/
http://www.w3.org/TR/rdf-sparql-query/
http://www.tut.fi/en/about-tut/news-and-events/new-manufacturing-execution-system-improves-the-competitiveness-of-european-industry-x154451c2
http://www.tut.fi/en/about-tut/news-and-events/new-manufacturing-execution-system-improves-the-competitiveness-of-european-industry-x154451c2
https://doi.org/10.1080/00207543.2013.801570
https://doi.org/10.1109/TII.2012.2186585
https://doi.org/10.1109/INDIN.2016.7819328

IV

EXEMPLIFYING THE POTENTIALS OF WEB STANDARDS FOR
AUTOMATION CONTROL IN MANUFACTURING SYSTEMS

by

Borja Ramis Ferrer, Sergii Iarovyi, Wael M. Mohammed, Andrei Lobov, José L.
Martinez Lastra, 2016

International Journal of Simulation Systems, Science & Technology. Volume: 17,

Number: 33, pp 3.1–3.12

Reproduced with kind permission: The paper was published in the International Journal
of Simulation: Systems, Science & Technology, Volume 17, Issue number 33, paper

number 3 with DOI: 10.5013/IJSSST.a.17.33.03.

BORJA RAMIS FERRER et al: EXEMPLIFYING THE POTENTIALS OF WEB STANDARDS FOR AUTOMATION …

DOI 10.5013/IJSSST.a.17.33.03 3.1 ISSN: 1473-804x online, 1473-8031 print

Exemplifying the Potentials of Web Standards for Automation Control in
Manufacturing Systems

Borja Ramis Ferrer, Sergii Iarovyi, Wael M. Mohammed, Andrei Lobov, José L. Martinez Lastra
Factory Automation Systems and Technologies Laboratory (FAST-Lab),

Tampere University of Technology,
Tampere, Finland

{borja.ramisferrer, sergii.iarovyi, wael.mohammed, andrei.lobov, jose.lastra}@tut.fi

Abstract — Web standards developed mainly by W3C and OASIS shape the general IT domain and its applications. Due to the
scale of web applications, the web standards have matured to deal with typical situations of finding the right node on the network,
reconfiguring the routing for messaging, using common standards for representing graphical information and many others.
Industrial manufacturing can benefit from the web standards due to interoperability and simplified application integration. This
article reviews the current use of web standards in the industrial automation domain. In addition, it describes and discusses the
potential of using web standards at all the levels of the automation system: from high level web-based user interfaces to the
industrial controllers located in the lowest layer of the well-known automation pyramid. Aligned with such a description, the article
presents a framework for Open, Knowledge Driven Manufacturing Execution Systems (OKD-MES), which enables the systematic
use of web standards and technologies in factories. Finally, the manuscript exemplifies the use of web standards for automation
control in real implementations in a mobile phone assembly line.

Keywords - web standards; industrial automation; OKD-MES; Semantic Web; Service-oriented Architecture; Cyber-physical
systems

I. INTRODUCTION

In the domain of industrial manufacturing throughout last

decade the level of competition for customers and resources
has been constantly increasing. One of the most important
approaches to reducing operating costs related to
manufacturing and the customization of goods is linked to
the possibilities of more interoperable automation systems.
The concept of Industrial Internet is one of the possible
approaches to achieve new quality in factories.

The concept of Industrial Internet requires more capable
devices which can interact in the web system. In the last few
years, certain efforts have been made to create such smart
devices. Some of these devices are able to interact with
significant levels of autonomy and to provide more
interactive and adaptable functionalities for industrial
systems [1], [2], [40].

Modern factory shop floor equipment and software
provide more heterogeneous and interoperable infrastructure
for automation. One of the key problems in such large-scale
systems is lack of interoperability and a need for customized
integration of components. In fact, as the nature of the
Industrial Internet system is very similar to that of the
consumer Internet, it affords an opportunity to employ
solutions of the latter in factories.

Web standards are critical enabling factors of Internet
success. The World Wide Web Consortium (W3C) and
OASIS are the leading standardization organizations in the
domain and provide a comprehensive and versatile set of
standards to enable web based systems. The application of

such web standards in industrial systems may make it
possible not only to resolve technical difficulties, but also to
remove the actual barrier that prevents the complete
integration of two domains: general IT and factory
automation.

 According to their use, specifications, and demonstrated
implementations, web standards are open, mature, and
usually efficient. Some of the standards, such as the concept
of Web Services (WS), and some specific implementations
of this, have already been successfully adapted to factory
shop floor control devices [3]–[5]. In fact, based on service-
enabled devices, the application of Semantic WS for
manufacturing has already been researched and documented
in several articles [6]–[8]. Also, an evaluation of applying
web standards for system and knowledge representation
systems, decision support and visualization is presented in
[9].

The ongoing EU Project eScop 1 (Embedded systems
Service-based Control for Open manufacturing and Process
automation) currently employs web standards for multiple
purposes in a factory wide Manufacturing Execution System
(MES). Within the use of web standards, the eScop project is
developing a framework for realizing a new concept: Open,
Knowledge Driven Manufacturing Execution Systems
(OKD-MES). Descriptions of the novel OKD-MES concept
can be found in [15], [32], [46]. The purpose of this article is
to demonstrate the possibilities and potentials of employing
web standards at different levels of manufacturing systems

1 http://www.escop-project.eu/

BORJA RAMIS FERRER et al: EXEMPLIFYING THE POTENTIALS OF WEB STANDARDS FOR AUTOMATION …

DOI 10.5013/IJSSST.a.17.33.03 3.2 ISSN: 1473-804x online, 1473-8031 print

with the example of the implementation of the OKD-MES
framework.

The research on applying web standards at different
levels of manufacturing systems is presented in this paper as
follows: Section I describes the possibilities of different
applications of WS standards for factory shop floor devices.
Section III describes a set of standards that are applicable for
modeling industrial systems. Section IV then presents the
possibility of applying web standards for coordinating
systems, the use of which is described in Section II and
Section III. Section V presents discussion on some of the
possibilities for exploiting some of the web standards for
industrial system visualization. In Section VI, the synergy of
the standards applied at all levels of the system is described
and practical examples are also given. In fact, the description
of such integration of standards permits the presentation of
the OKD-MES concept. Aiming at a demonstration of how
web standards are actually implemented, Section VII
provides examples of developments employed in a mobile
phone assembly line for automation control. Finally, Section
VIII concludes the paper and offers suggestions for further
work. It should be noted that this article is an extension of
the research work presented in [48].

II. DEVICES
The main goal of industrial automation is to control and

monitor processes in an automated manner. To achieve this,
industrial controllers are used for controlling sensors and
actuators that, conjunctly, are the devices enabling the
physical execution of process. Usually, industrial controllers
are deployed near to where the sensors and actuators reside.
The deployment of industrial controllers in a facility implies
that these units have a small form factor that, in return,
constrains its computational resources [10]. In addition,
industrial controllers need to execute the control logic and
exchange information with other controllers on same level
(horizontal communication) or with higher-level components
(vertical communication) of the entire industrial automation
system.

 Several communication protocols enable horizontal
integration between controllers, such as CAN, etherCAT and
Modbus, among many other fieldbuses. Nevertheless, web-
based technologies are the most convenient and suitable for
allowing the vertical communication of controllers and other
industrial components like MESs or even Enterprise
Resource Planning (ERP) modules [11].

A. Web standards for devices
Some of the service-oriented communication standards

and approaches attracting special scholarly and industrial
attention include: OPC Unified Architecture (OPC UA),
Device Profile for Web Services (DPWS) and
Representational States Transfer (REST) architecture [12],
which are described below.

OPC UA is the successor to Object Linking and
Embedding (OLE) for process control (OPC). This
communication stack offers several features such as
scalability, multi-threading, and security. An outstanding
characteristic is that OPC UA is a Service Oriented

Architecture (SOA). It exposes methods and device
functionality as services which are protocol independent.
Two protocols are defined for this purpose: binary
Transmission Control Protocol (TCP) protocol and Web-
service oriented. The binary protocol is highly efficient and
reduced significantly the transaction overheads [13]. Web
Service Simple Object Access Protocol (SOAP) protocol
facilitates integration with traditional IT components, tools,
and technologies. It is easily understood by firewalls and
uses Hypertext Transfer Protocol (HTTP), which is the
foundation protocol of the World Wide Web. The main
drawback of OPC UA is that it is required to be part of the
OPC foundation in order to gain access to stack
specification.

The DPWS standard [14] defines and tunes a set of
SOAP based WS protocols for devices. This stack profile
enables WS capabilities on resource-constrained devices.
Such capabilities include secure invocation of WS
operations, description, and dynamic discovery of WSs and
mechanisms to subscribe and receive events from WSs. An
important characteristic is that devices that implement
DPWS are fully aligned with the WS technology. This
facilitates the vertical integration of devices with high-level
applications. This synergy between physical devices and
cyber systems realizes one of the topics currently widely
discussed in industrial automation: cyber-physical systems
(CPS) [1], [2], [38], [39]. Nevertheless, one drawback of this
protocol is its verbosity due to the fact that SOAP messages
are XML formatted. It is important to note that DPWS is an
open standard, hence any manufacturer can adopt it. In the
industrial domain there are already commercial industrial
controllers that implement the DPWS stack such as, for
example, the S1000 by Inico Technologies2.

Both OPC-UA and DPWS use Remote Procedure Call
(RPC) as an architectural style for the services. In this case
most of the HTTP capabilities are not used. It may be useful
if the system employs services utilizing different protocols,
but this is rather rare. RPC services likewise tend to be more
tightly coupled with clients than some other implementations
of WS.

Representational States Transfer (REST) is another
software architectural style applicable for WS. REST defines
a set of constraints which makes WS more compatible with
Web infrastructure and technologies. The constraints of
REST enable more scalable, loosely-coupled and efficient
services compared to RPC. The RESTful WSs often employs
HTTP/HTTPS as the transport and application protocol [16].
These web mechanisms are very well understood and can be
easily ported over the web. Currently the payload in
RESTful WSs is often formatted as JavaScript Object
Notation (JSON), which is less verbose than XML and still
human readable. A vast number of technologies,
frameworks, and tools from traditional IT can be exploited in
the industrial automation field if industrial controllers are
implemented with RESTful capabilities [17].

For the formal description of WS, several description
languages may be applied. The most important for the

2 http://www.inicotech.com/

BORJA RAMIS FERRER et al: EXEMPLIFYING THE POTENTIALS OF WEB STANDARDS FOR AUTOMATION …

DOI 10.5013/IJSSST.a.17.33.03 3.3 ISSN: 1473-804x online, 1473-8031 print

description of SOAP services is Web Service Description
Language (WSDL). WSDL provides a complete technical
description of services. In order to enrich this description
with metadata about services, Semantic Annotations for
WSDL (SAWSDL) is generally used. It makes it possible to
connect the service with related concepts in the model. It
should be noted that WSDL2.0 can be equally well applied
to RESTful services. However, a different approach is
usually applied in this case for reasons some of which are
described below.

B. Application of REST
Application of RESTful WS on the factory shop floor

level may require and approach different than the
implementation of RPC services. This relates mainly to the
different perception of the system in these approaches. If
RPC usually focuses on the actions in the system, REST
suggests concentrating on resources. HTTP verbs such as
GET, PUT, POST, and DELETE are used with the resources
to describe the action to be performed on the resource.
Furthermore, HTTP response codes and other headers may
provide additional information on service execution.

The resources in REST are defined by their
representation. The concept of Hypermedia (linked media) is
usually applied to resource representation in order to define
resource relations with other resources. This approach allows
further exploitation of web architecture, as links to other
resources may be dereferenced without any extra tools or
technologies. Furthermore, Hypermedia is recommended for
use as the Engine of Application States (HATEOAS). This
approach allows services to instruct clients on further
possible operations and, hence, to remove the need for a
client to guess the next operation. It means that in case of
changes in service implementation it will inform the client
immediately on execution of the service. An approach for
semantically rich HATEOAS descriptions is being
developed within Hypermedia Driven Web APIs (Hydra)
[18], [19].

III. MODELS
 Models are another important element for contemporary

industrial automation systems. According to stated
conditions, knowledge of system properties and their
interrelations allows adequate acting and reacting in the
modeled system. While the previous section concentrated on
how to provide interaction of the automated system with the
physical world, this section focuses on the representation of
available knowledge about the system.

A. Models for design and runtime support
Enabling the management of manufacturing processes by

information systems necessitates transforming real world
assumptions into a formal model, which must be
understandable by cyber systems. Ontologies may be used
for representing the real world because they provide a
pragmatic means of modeling domain specific knowledge.
An ontology is an explicit and formal specification of a
shared conceptualization [20]. In other words, ontologies are
employed to represent knowledge of a certain domain as a

set of concepts, their definitions and interrelationships. Web
Ontology Language (OWL) is one of the languages used for
constructing ontologies. The language is characterized by
formal semantics and RDF/XML-based serializations for the
Semantic Web. As illustrated in Figure 1, a hierarchical stack
represents the architecture of the Semantic Web [35].

Figure 1. The Semantic Web Stack [35]

In the stack presented, XML is a surface syntax of
structured documents and imposes no semantic constraints
on the document. Then, XML Schema defines the structure
constraints of XML documents. RDF [22] is a data model of
resources and their relationships expressed by XML syntax
that provides simple semantics for the data model. RDF
Schema [23] is a vocabulary describing the attributes and
types of the RDF resources. Hence it provides generic
semantics for the attributes and types. Finally, OWL adds
more vocabulary to describe attributes and types, such as
disjoint and cardinality constraints in types and symmetry in
attributes.

OWL is often presented as one of the richer ontology
languages because it has more mechanisms for representing
semantics in comparison with XML, RDF, and RDFSchema.
Nevertheless, Table I shows a comparison of various
syntaxes for OWL 2, which is an extension and revision of
OWL developed by the W3C Web Ontology Working Group
and published in 2004 [21]. As shown in Table I, several
syntaxes can be used to store OWL 2 ontologies and to
exchange them among tools and applications. It should be
noted that the primitive exchange syntax for OWL 2 is
RDF/XML. Thus RDF/XML is the syntax that must be
supported by all OWL 2 tools.

BORJA RAMIS FERRER et al: EXEMPLIFYING THE POTENTIALS OF WEB STANDARDS FOR AUTOMATION …

DOI 10.5013/IJSSST.a.17.33.03 3.4 ISSN: 1473-804x online, 1473-8031 print

TABLE I. COMPARISON OF SYNTAX FOR OWL 2

Name of Syntax Status Purpose

RDF/XML Mandatory Interchangea

OWL/XML Optional Easier to process with XML
tools

Functional Syntax Optional Easier to see the formal structure
of ontologies

Manchester Syntax Optional Easier to read/write DL Ontology
Turtle Optional Easier to read/write RDF triples

aCan be written and ready by OWL 2 software

Users and applications can interact with ontologies and
data by querying the ontology model using SPARQL query
language [24], which was standardized in 2008 by W3C. The
standard query evaluation mechanism is based on sub-graph
matching and is called simple entailment because it can
equally be defined in terms of the simple entailment relation
between RDF graphs [25]. Like other database query
languages, SPARQL uses several keywords to form a pattern
to query data. A SPARQL query contains three parts. Firstly,
the pattern matching part includes fundamental features of
pattern matching of graphs such as optional parts, union of
patterns, nesting, filtering (or restricting) values of possible
matches. Secondly, the solution modifiers part allows
modifying the obtained query values applying classical
operators like DISTINCT, ORDER and LIMIT. Thirdly, the
output of a SPARQL query can be of different types:
Boolean queries (true/false) for ASK query type, selections of
values of the variables which match the patterns for SELECT
query type, construction of new triples from these values for
CONSTRUCT query type. Moreover, SPARQL Update [34]
is an extension of SPARQL, which permits the update of the
model within different operations such as DELETE or
INSERT for deleting or inserting triples. It should be noted
that the output of such queries is an execution message for
indicating the success of the update operation.

Ontology also supports reasoning which derives facts that
are not explicitly asserted in the ontology. For example, if a
model describes that A is an ancestor of B and B is an
ancestor of C, then, although the conclusion that A is also an
ancestor of C is trivial, the model needs an additional engine
called a reasoner, which is capable of inferring this new fact.
Then, a reasoner (or reasoning engine) is a piece of software
capable of performing reasoning tasks. In other words, a
reasoner is capable of inferring logical consequences from a
set of assertions in the ontology. Several reasoners are
currently available, such as FaCT++, Pellet and HermiT.
Nevertheless, Pellet seems to be one of the most common
reasoning engines used for reasoning OWL models in
current implementations. It should be noted that rule
languages, such as Semantic Web Rule Language (SWRL)
[41], are used for defining rules in ontological models that
are also interpretable by reasoning engines. Within the
employment of semantic rules, automatic mapping of
ontological individuals can be achieved, as demonstrated in
[42], [45].

According to these explanations, it is obvious that
ontologies enable the construction of models for design and

runtime support of systems. This is feasible because
ontologies allow the description of models that are
understandable in machine-to-machine, human-to-machine
and even human-to-human communications. In addition, the
computational inference achieved thanks to reasoning
engines permits an automatic solution for deriving new facts,
which are later included in the model. Finally, it should be
noted that ontologies are reusable, extendible, and flexible.
This means that population of data in ontological models is
possible after model definition at runtime. This feature
makes them even more powerful in the industrial domain
because the system model changes continuously due to the
large number of events that occurred in manufacturing
systems. The benefits of ontologies for manufacturing and
logistics operations management are presented in [47].

B. Use of ontologies at runtime
Modeling within ontology is one aspect of knowledge

driven information systems involving the use of ontologies
in the development phase. The other aspect is its usage
during runtime. In the latter case the ontological models act
as semantic data as opposed to the mere syntactic data
managed in databases. An Ontology Management System
(OMS) is needed to manage the semantic data such as
Sesame [36] and Jena [37] frameworks.

The OMS serves as a repository where ontology models
can be imported or exported. On the other hand, an OMS
may need to manage the ontology models, for instance,
updating the concepts and relationships. Implementing a
SPARQL query engine in OMS is one of the easy ways to
manage ontology models upon the demand of external use.
An inference engine of the OMS can also be used so that for
retrieving information this engine can return the entailed
information derived by a reasoner from the asserted facts and
axioms. In addition, OMS can offer universal access to data
sources. Heterogeneous data sources can be accessed by
mapping schema based on certain rules so that various
specific data sources can be wrapped into one source. Users
or applications can simply use OMS to obtain information
from different sources independent of their locations and
schemas.

IV. SYSTEM COMPOSITION
 Automated service-oriented manufacturing system

composition requires coordinating service executions. One of
the problems for composing systems is the description of
processes in a certain format that can later be executed by
machines. This problem is generally addressed by using
workflow or orchestration engines. Such engines are capable
of executing services according to their technical
descriptions. This approach works well with static service
inventories. But once there are changes in the service
inventory, due, for example, to equipment replacement, the
process must be reconfigured. This raises a second problem:
that of process composition. In systems with rich knowledge
models, it should be possible to address the second problem
using more abstract process descriptions, which are later
mapped to particular service implementations. This section
will first review some of applicable web standards for the

BORJA RAMIS FERRER et al: EXEMPLIFYING THE POTENTIALS OF WEB STANDARDS FOR AUTOMATION …

DOI 10.5013/IJSSST.a.17.33.03 3.5 ISSN: 1473-804x online, 1473-8031 print

system composition and then describe the composition
process available within the proposed set of technologies.

A. System composition standards
One of the standards which may be applied to describe

the executable process is Web Services Business Process
Execution Language (WS-BPEL) [26]. WS-BPEL defines
the sequences and patterns of service executions. There are
several engines capable of processing WS-BPEL description
and executing the related process. The applicability of WS-
BPEL for industrial automation was presented by J. Puttonen
in 2008 [27]. Some other efforts were directed in another
language for process description: Business Process Model
and Notation (BPMN) [28]. Originally developed for
modeling processes, BPMN 2.0 addresses the problem of
executing such compositions.

Another approach to composition is the application of
OWL to WS is OWL-S [29]. OWL-S aims to provide means
for service discovery, invocation, and composition. It
describes services from technological aspects (grounding)
through the description of communication patterns to the
logical pre-conditions of service execution and the impact of
execution on the system [30], [31].

B. Composition process in automation systems
 Service composition is a knowledge-intensive process.

Information is required about service inventory, equipment
status, processes and requirements, schedules, and others as
well as relations between domains. In most cases it is also a
time consuming process.

Querying ontology is slower than direct data access,
noting that the complexity of queries will directly affect the
speed of the process, being slower with more complex
queries. Therefore, the load on the ontology should be
minimized by simplifying queries and reducing their number
when possible.

Firstly, it is possible to use the ontologies to configure
the process executions. In such cases the knowledge base
provides not particular data but rather the source of this data
as direct data access is faster that querying. Once the system
composition tool is connected to the required data source it
may directly interact with it as long as the configuration of
the system does not change.

In addition to access to data sources information from
ontologies, the engine executing an automated process may
require some data not separately available in any component
of the system. But as regards the reasoning capabilities of
ontology the knowledge base may be used as a source for
such data. Following this approach, it is possible to provide
the orchestration tools with the required information, which
can be efficiently accessed in the system.

V. VISUALIZATION
 Interaction with a human is another important function

of industrial systems in which web standards may be applied.
Currently multiple hand-held or even wearable devices are
becoming one of the most practical interfaces for human-
machine interactions. The application of web browser based

user interfaces provides the benefits of being cross-platform,
powerful, and a user-friendly framework.

The most basic standard for web-based visualization is
Hyper Text Markup Language (HTML). Besides its ability to
represent the industrial system, it provides some out-of-the-
box compatibility with RESTful architecture. In fact, through
its integration with JavaScript (JS), HTML may be employed
to provide the user with access to all WS functionality.
Additionally, to enrich the data driven capabilities for
representation Cascading Style Sheets (CSS) and Scalable
Vector Graphics (SVG) may be applied.

A. Visualization supported by ontologies
Visualization applications have been developed for

monitoring the manufacturing system. These applications
form the front end of the OKD-MES concept by providing a
graphical visualization of the system in web-enabled devices
such as computers, smart phones, or tablets. Manufacturing
System Ontology (MSO) for OKD-MES aims at a general
description of the components of the manufacturing system
[32]. These descriptions should also include information to
generate visualization of the system based on certain rules.
Such rules allow mapping the MSO data required, for
example, for configuring visualization symbols.

 Visualization symbols may be simple or complex.
Simple symbols adopting visualization standards like SVG
can be directly represented in the knowledge base with
different levels of detail in the graphics. A basic SVG
symbol defines the shape, position of the shape (x, y), its size
(height, width) and style (fill, stroke, and color) [33]. By
modeling these features, the data required to create SVG
symbols can be stored in the ontology.

To support visualization, the ontology must provide
mapping between the real component of the system and its
visualization symbol. For example, if a conveyor is located
in the system and is represented by an instance of Conveyor
class in the MSO, then it can be mapped to its corresponding
symbol instance in Symbol class using the “hasSymbol”
object property. This kind of mapping offers flexibility to
store the visualization related information about the
components in MSO and provides the information to create
visualization displays. Also, it enables a dynamic graphical
visualization that reflects the changes in the system during
runtime. Whenever a new device is added to the system, the
ontology will be updated (e.g. via SPARQL Update for an
RDF-based model) with the description of the device, which
also includes visualization data. Hence, the added device
appears in the visualization display making the visualization
dynamic.

Another important concept to be represented in the
ontology is the display composition. The display usually
includes visual elements like screens, graphs, tables, maps,
buttons, and objects (single symbol). An element can be
composed of other elements, e.g. a screen may include
graphs, objects etc., and these are present at a certain
position on the element. The same element can be in a
different position in different displays. All these concepts
related to display composition should be represented in MSO
to facilitate the creation of the visualization display.

BORJA RAMIS FERRER et al: EXEMPLIFYING THE POTENTIALS OF WEB STANDARDS FOR AUTOMATION …

DOI 10.5013/IJSSST.a.17.33.03 3.6 ISSN: 1473-804x online, 1473-8031 print

Some visualization information may not be available
during modeling and may depend to some extent on the user
to provide the missing data to configure the display screen.
The MSO will not contain metadata information like the
position of an element if it is not initially possible to pre-
define such data. User Interface (UI) could be a solution in
this case to obtain the missing information from the user.
MSO is flexible enough for storing the metadata obtained
from the user and, together with other visualization
information, it is feasible the configuration of the display
screen.

Therefore, the visualization of the system is supported by
the ontology because it makes possible a dynamic graphical
visualization, supporting the extendibility and evolution of
UIs. The visualization information is also represented in the
knowledge base like any other system information providing
universal information representation format and simplifies
system management.

VI. INTEGRATING DIFFERENT LAYERS OF AUTOMATION
SYSTEMS WITH WEB STANDARDS: THE OKD-MES

POTENTIALS
This section will discuss the benefit exploitation of the

approaches and standards proposed before in integrated
industrial automation system. The general discussion of the
possible benefits and risks of web standards exploitation in
automation will be followed by practical outcomes of the
application of such standards in manufacturing systems.
Firstly, the most important features of the OKD-MES
architecture developed in the EU project eScop will be
outlined. In fact, some of the features related to the
representation of manufacturing equipment and services for
OKD-MES have recently been presented in [43]. Some
smaller cases of use will be described below.

A. An overview of the OKD-MES architecture
EU Project eScop endeavors to create a framework for

OKD-MES. In OKD-MES, web standards are employed at
all system levels. The main goal of the project is to develop a
system for providing a set of core components that facilitate
the basic manufacturing functions. The core components
must be able to accommodate new services, equipment, or
processes that are introduced into the system. Due to its
distributed nature, interoperability and community driven
development are among the core features that OKD-MES
provides by employing web standards. Figure 2 presents the
OKD-MES architecture.

Figure 2. The OKD-MES architecture

The integration of different layers of industrial
automation systems can be implemented as shown in the
OKD-MES architecture. Each of the OKD-MES modules
has been described separately in the preceding sections,
which also present which web standards are employed. It
should be noted that the orchestration module is referred to
in Section IV as the system composition, which is required
for orchestrating service executions. Then, following the
order in which each layer appears in this article, the OKD-
MES is formed by four core modules: Devices, Models,
Orchestration and Visualization.

Firstly, the Devices module represents the equipment that
is mostly located on factory shop floors. Devices are
interconnected with any other module of the architecture.
The connection with the Models and Visualization modules
is needed for representing and accessing the status of the
equipment during runtime. On the other hand, the connection
with the Orchestration module is required for the execution
of services, which are located in the industrial controllers.

Secondly, the Models module is formed by (1) the system
descriptions and (2) the interfaces that permit access, update
and retrieval of any model information. Similarly to the
connections of the Device module, the Models module is
interconnected with any other module in the architecture.
The connection to the Devices module is needed for
representation. In addition, the Models module is connected
to the Visualization module because it must be capable of
answering requests in the form of data that it will be needed
for web UI management. On the other hand, as the hosted
models also contain service descriptions of devices, the
Modules module must also be interconnected with the
Orchestration module.

Thirdly, the Orchestration module is connected within
the Models and Devices modules. As explained before, the
reason for this connection is the need for the system
composition to have access to all service descriptions. These
descriptions include information about operations that will
be invoked for executing processes in the system.

Finally, the Visualization module is connected to the
Models and Devices modules. As explained previously, the
reason for this connection is the need for access to system
status information. This information permits the
Visualization module to create and display web UIs.

BORJA RAMIS FERRER et al: EXEMPLIFYING THE POTENTIALS OF WEB STANDARDS FOR AUTOMATION …

DOI 10.5013/IJSSST.a.17.33.03 3.7 ISSN: 1473-804x online, 1473-8031 print

As illustrated in Figure 2 above, the system also
contemplates outside interaction with (a) external services
and (b) users. External services are supposed to be
interconnected all the architecture components so they can be
consumed by any module, which requests any service which
is not provided inside the system. On the other hand, users
are only interconnected with the Visualization module
because they interact within the system through the displayed
web UI.

B. Exploitation of web standards: FASTory as the use case
This section will discuss the exploitation of the

approaches and standards proposed before in an integrated
industrial automation system. The general discussion of the
possible benefits and risks of web standards exploitation in
automation will be followed by practical outcomes of the
application of such standards in a specific manufacturing
system called FASTory (shown in Figure 3).

The FASTory is an automated mobile phone assembly
line which has been used as a testbed in many EU research
projects. This line is composed of a set of independent
workstations. Each workstation is provided with safety
equipment, a segment of the central transport system and a
Selective Compliance Assembly Robot Arm (SCARA)
robot. The FASTory line was retrofitted [44] within the
addition of S1000 for controlling each component, which
enabled the implementation of WSs.

Figure 3. The FASTory line in Tampere University of Technology

The transportation of the work pieces in the line is
performed by a closed loop modular conveyor system.
Among the robotic cells, there is a pallet buffer station,
which loads and unloads the pallets to the conveyor line.
Another robotic cell provides material deployment on the
pallet. The remaining robotic cells provide the production
operations. To reduce the line operating costs, the real
assembly process is simulated by drawing the mobile
components. Nevertheless, the complexity of the drawing
process is similar to that of the assembly operations.

During the development of OKD-MES, FASTory is
employed as a solution demonstrator. The FASTory line is
controlled by WSs enabled devices, combining real-time
PLC like control with the exposure of the RESTful WSs.
Among the services presented, the control devices provide

subscription functionality for enabling event driven behavior
of the solution. The configuration and status of the system
are represented in the ontology. Then the access to the
ontology is provided in the form of the RESTful services by
the ontology management component. The information about
available services from the devices is automatically
discovered by the ontology management component and
presented to the consumers. The system status and
configuration are used by the orchestration component. The
orchestration component executes the manufacturing process
in the line according on the process description based on
BPMN. Finally, the user interactions for the system in
general are provided by the visualization component.
Besides the four basic modules presented in Figure 2, the
additional MES functions are provided by external services.
Specifically, the important functions provided by the external
services are dispatching and scheduling. The scheduling
service provides the high level decision to which order to
assign an incoming pallet. The dispatching function handles
lower level decisions on which if any operations are to be
performed in the station when the pallet reaches a
workstation.

By applying the web standards on all levels, the system
developed enables seamless integration of all of its
components and other web based solutions, including ERP.
Dynamically updating the representation of the system
status, based on the availability and configuration of the
shop-floor devices, enables easy re-configurability of the
system hardware as well as the introduction of new products
in manufacturing systems. The orchestration with decision
support from MES functions is able to handle repetitive
preconfigured modules in various configurations.
Additionally, the managers, operators, customers, and other
manufacturing stakeholders have direct controlled browser
access to the data generated in the manufacturing process.
Furthermore, the dynamic generation of screens makes it
possible to visualize such basic system data. In conclusion,
the FASTory demonstrator provides a significant level of
adaptability to configuration changes on all levels of the
system (representation, control, monitoring) in case of
exploitation of predefined modules or their variations, within
implementing web standards.

VII. EXEMPLIFYING DIFFERENT IMPLEMENTATIONS OF
WEB STANDARDS IN THE FASTORY LINE

Many web standards can be used for a cross-layer
implementation that integrates all levels from high web-
based UIs to the industrial controllers located on the factory
shop floor. The last section discussed how all levels are
integrated within the implementation of the OKD-MES
architecture. The FASTory line is one of the EU eScop
project demonstrators used for testing the OKD-MES
features. The objective of this section is to present how to
implement some of the web standards described for
automation control within real developments in the FASTory
line. Such developments demonstrate the use of web
standards at different layers of the architecture presented. It
should be noted that due to the extension of the entire
architecture, some examples are simplified versions of the

BORJA RAMIS FERRER et al: EXEMPLIFYING THE POTENTIALS OF WEB STANDARDS FOR AUTOMATION …

DOI 10.5013/IJSSST.a.17.33.03 3.8 ISSN: 1473-804x online, 1473-8031 print

real development and that this section does not cover
everything needed for implementing the OKD-MES
architecture in the mobile phone assembly line described.

A. Service descriptions at device level
As described in Section II, Web Service enabled devices are
connected to factory shop floor equipment for controlling the
operations that are physically performed for assembly
products, for example. Then operations can be invoked
within web services, which are represented by web standards
(e.g. REST) descriptions.

{
 "id": "services",
 "links": {
 "self": "http://192.168.1.1:3000/RTU/CNV1/services",
 "info": "http://192.168.1.1:3000/RTU/CNV1/services/info"
 },
 "class": "services",
 "children": {
 "TransZone12": {
 "id": "TransZone12",
 "links": {
 "self": "http://192.168.1.1:3000/RTU/CNV1/services/TransZone12",
 "info": "http://192.168.1.1:3000/RTU/CNV1/services/TransZone12/info",
 "notifs": "http://192.168.1.1:3000/RTU/CNV1/services/TransZone12/notifs"
 },
 "class": "process",
 "children": {}
 },
 "TransZone23": {
 "id": "TransZone23",
 "links": {
 "self": "http://192.168.1.1:3000/RTU/CNV1/services/TransZone23",
 "info": "http://192.168.1.1:3000/RTU/CNV1/services/TransZone23/info",
 "notifs": "http://192.168.1.1:3000/RTU/CNV1/services/TransZone23/notifs"
 },
 "class": "process",
 "children": {}
 },
 "TransZone35": {
 "id": "TransZone35",
 "links": {
 "self": "http://192.168.1.1:3000/RTU/CNV1/services/TransZone35",
 "info": "http://192.168.1.1:3000/RTU/CNV1/services/TransZone35/info",
 "notifs": "http://192.168.1.1:3000/RTU/CNV1/services/TransZone35/notifs"
 },
 "class": "process",
 "children": {}
 },
 "Z1": {
 "id": "Z1",
 "links": {
 "self": "http://192.168.1.1:3000/RTU/CNV1/services/Z1",
 "info": "http://192.168.1.1:3000/RTU/CNV1/services/Z1/info",
 "notifs": "http://192.168.1.1:3000/RTU/CNV1/services/Z1/notifs"
 },
 "class": "query",
 "children": {}
 },
 "Z2": {
 "id": "Z2",
 "links": {
 "self": "http://192.168.1.1:3000/RTU/CNV1/services/Z2",
 "info": "http://192.168.1.1:3000/RTU/CNV1/services/Z2/info",
 "notifs": "http://192.168.1.1:3000/RTU/CNV1/services/Z2/notifs"
 },
 "class": "query",
 "children": {}
 },
 "Z3": {
 "id": "Z3",
 "links": {
 "self": "http://192.168.1.1:3000/RTU/CNV1/services/Z3",
 "info": "http://192.168.1.1:3000/RTU/CNV1/services/Z3/info",
 "notifs": "http://192.168.1.1:3000/RTU/CNV1/services/Z3/notifs"
 },
 "class": "query",
 "children": {}
 },
 "Z5": {
 "id": "Z5",
 "links": {
 "self": "http://192.168.1.1:3000/RTU/CNV1/services/Z5",
 "info": "http://192.168.1.1:3000/RTU/CNV1/services/Z5/info",
 "notifs": "http://192.168.1.1:3000/RTU/CNV1/services/Z5/notifs"
 },
 "class": "query",
 "children": {}
 }
 }}

Figure 4. Sample hypermedia description of conveyor services

As an example, Figure 4 shows hypermedia describing
the services available for a conveyor in the FASTory line.
The hypermedia presented is a sample of a response

returned by the services on invocation. The hypermedia
includes the links to other services which can be used in the
system. This example presents the services related to the
manufacturing operations in one of the conveyors of the
previously presented FASTory line.

The service description provided includes the
information that the client needs to start operating the
conveyor. Firstly, it lists all services available in Conveyor 1
of the production line. Each service has an ID (id fields)
which uniquely identifies the service in the device. The
services are categorized into process and query groups (value
of attribute class in the description). The process group
represents the RESTful resources for a technological process,
while the query group resources are related to the programs
in the controller making available information on system
status. Finally, the links define the particular resources
related to a service. The notifs link defines the notification
endpoint, to which the clients may subscribe to in order to
receive updates on service executions. The semantic
description of the service can be obtained on info link.
Finally, the self is an identifier of the service resource that
can be invoked. Invocation of any among TransZone
processes will trigger the logic in the controller required to
transmit the container between predefined zones in the
conveyor. Request in the form of a Z query will return the
container ID if one is available in the particular zone of the
conveyor. Using the description defined and sharing minimal
taxonomy the client should be able to operate the web
service enabled component of the production line.
B. Ontology model interaction at model level

As described in Section III, the knowledge of the system
is described in a centralized ontology called the MSO, which
includes different domain descriptions i.e., physical,
technological, control, and visualization domains. The
principal domain classes of the MSO are presented in Figure
5. It should be noted that a detailed description of the
structure of the MSO and its role in the eScop project is
presented in [49].

Figure 5. The four domain classes of the MSO

The MSO is implemented within standardized OWL. As
OWL is an RDF-based language, it can be queried within
SPARQL and SPARUL. Therefore, any level of the system
wishing to extract or update information to the MSO located
at the model level must send SPARQL or SPARUL queries.

As the MSO describes by default around a 1.5 thousand
triples (ignoring the instances populated during system
runtime) the RDF-based model cannot be presented in this
article. Nevertheless, Figure 6 depicts a few classes and
instances of the MSO with the objective of presenting
product related information that can be monitored and
manipulated within queries.

BORJA RAMIS FERRER et al: EXEMPLIFYING THE POTENTIALS OF WEB STANDARDS FOR AUTOMATION …

DOI 10.5013/IJSSST.a.17.33.03 3.9 ISSN: 1473-804x online, 1473-8031 print

Figure 6. Container to recipe model snapshot

The diagram above is an ontology graph extracted from
Olingvo, which is an ontology editor developed in Tampere
University of Technology. Olingvo is a Graphical User
Interface (GUI) application that permits, among other
features, the design and navigation of ontologies, which are
implemented in RDF-based languages.

 Figure 6 illustrates how the MSO describes the relation
between the container, product, the order it belongs to and
the related recipe. Following this model, it is possible to
obtain the list of descriptions for the required operations
from the pallet ID. Pallet ID makes it possible to find a
relation to the product hosted on the pallet. The product in
turn belongs to the order. The order has a recipe, which
consists of several recipe rows. These rows include a
description of the operations to be executed. One or more
SPARQL queries need to be executed to follow the defined
linked data chain. The query collecting the information about
a particular order and its relations to products and the recipe
is defined in the first part (Query 1) of Figure 7.

Another example of ontology model information
manipulation is the case of new order introduction. When the
order is inserted through the visualization layer, related
information should be added to the ontology. The SPARUL
query defining the order properties and its relation to the
recipe of products is required. An example of such a query is
also found in the second part (Query 2) of Figure 7.

It should be noted that the queries shown in Figure 7 are
proper executable queries written in compliance with the
SPARQL query language specification.

#Query 1
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX mso:<http://www.escop‐project.eu/MSO.owl#>
SELECT ?id ?quantity ?done
WHERE {
 ?o mso:ID "order_1"^^xsd:string.
 ?o mso:ID ?id.
 ?o mso:isComposedOfRow ?r.
 ?r mso:quantity ?quantity.
 ?r mso:done ?done.
}

#Query 2
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX rdf: <http://www.w3.org/1999/02/22‐rdf‐syntax‐ns#>
PREFIX mso:<http://www.escop‐project.eu/MSO.owl#>
INSERT {
 ?o rdf:type mso:Order.
 ?o mso:ID "order_1"^^xsd:string.
 ?o mso:hasRecipe ?res.

?o mso:isComposedOfRow ?r.
 ?r rdf:type mso:Order_Row.
 ?r mso:quantity 3.
 ?r mso:done 1.
 ?prd_0 rdf:type mso:Product.
 ?prd_0 mso:belongsToOrder ?o.
 ?prd_1 rdf:type mso:Product.
 ?prd_1 mso:belongsToOrder ?o.
}
WHERE {
 ?res mso:ID "r1"^^xsd:string.
 BIND(IRI("mso:order_1") AS ?o)
 BIND(IRI("mso:order_row_1") AS ?r)
 BIND(IRI("mso:product_1") AS ?prd_0)
 BIND(IRI("mso:product_2") AS ?prd_1)
 }

Figure 7. Executable SPARQL queries for order management

C. Service composition at orchestration level
As described in Section IV, a system composition tool is

used for interacting with the model, which describes the
sequence of operations to be performed on the factory shop
floor. Then the orchestration level is capable of invoking the
services encapsulated in the industrial controllers with a
specific order. The sequence of service invocations will be
determined by both the process to be performed and the
status of all resources linked to any process operation.

The FASTory production line is dynamic and
reconfigurable. The introduction and modifications of the
orders may take place at any stage of production. As a result,
the effective orchestration solution should be capable of
adapting to the changes in the system in runtime.

The one of the most complex challenges in such a
dynamic orchestration is to make a decision if a particular
workstation can and should execute some production
operations on the product. Firstly, from the description of the
device description, it is known that it is possible to obtain the
ID of a pallet present in a certain zone of the conveyor.
Secondly, as described in the previous subsection, it is
possible to get a list of descriptions of production operations
which have to be executed on the product based on the
knowledge of pallet ID. Thirdly, using /info service from the
PHL, the client can get a description of the service provided
by a shop-floor device.

All the functionalities described above are available in
the form of RESTful web services. The orchestrator, as a
tool, should be able to execute the RESTful services and
obtain data on the services available and required for a
certain pallet in a certain workstation. Assuming the
capability of the orchestrator to compare the sets of services
it should be able to find an intersection between them. As in
turn the intersection will be a set of RESTful services, which
the orchestration module is able to execute, the whole cycle
of detection-decision-action can be performed by the
orchestrator tool.

If the comparison of the requirements and capabilities is
not a trivial task, a dedicated service may be developed and
used by the orchestrator to make a decision. This makes it
possible to isolate and reuse certain blocks of logic, and as
result to significantly reduce the complexity of the service
composition. A possible composition for such approach is
illustrated in Figure 8.

BORJA RAMIS FERRER et al: EXEMPLIFYING THE POTENTIALS OF WEB STANDARDS FOR AUTOMATION …

DOI 10.5013/IJSSST.a.17.33.03 3.10 ISSN: 1473-804x online, 1473-8031 print

Figure 8. Orchestration diagram

D. Web UIs at visualization level
As described in Section V, a web UI can be displayed in

the interaction of the visualization and model layers. Briefly,
the interface retrieves the visualization domain descriptions
that are included in the MSO via SPARQL queries. Such an
interface may be used not only as a monitoring tool but also
as a UI for low-level interaction with the production line.
Thanks to the use of standards, the interface is accessible
through any web browser, which means that the assembly
line can be controlled from remote locations. Figure 9 shows
an implemented web UI in the eScop project.

Figure 9. FASTory simulator visualization

The layout of the FASTory line is visualized in the web
UI presented. Basic physical operations can be monitored in
the interface because it displays e.g. the pallet movement
when it is transferred between different pallet locations or
the movement of the SCARA robots when operations on
parts being transported in pallets are performed.

This web UI was implemented utilizing basic SVG and
HTML for the representation of the components and
JavaScript for their animation. The connection to the data
sources and data sinks was developed using RESTful
services. This set of technologies enables usability of the
visualization provided across platforms and devices.

BORJA RAMIS FERRER et al: EXEMPLIFYING THE POTENTIALS OF WEB STANDARDS FOR AUTOMATION …

DOI 10.5013/IJSSST.a.17.33.03 3.11 ISSN: 1473-804x online, 1473-8031 print

VIII. CONCLUSION
This paper first presented an overview of different web

standards currently used in ongoing research work in the
industrial automation domain. It then described the potential
of web standards for automation control in manufacturing
systems with results achieved on the ongoing EU project
eScop.

One of the general benefits of exploiting open web
standards is the availability of an existing ecosystem around
it. The ecosystem was built in recent decades during
expansion of the consumer internet. The communities of
developers and users of the solutions based on the open web
standards make it possible to reduce the cost of introducing
the technology used, as gaining public acceptance is one of
the most complex challenges in technology dissemination
and exploitation. Beyond public acceptance the ecosystem
drives the creation of support tools, frameworks, approaches,
and other concepts accelerating the utilization of the
technology. The extensive application of the open web
standards in recent years has facilitated the development of
networking hardware, user interfaces, programming
languages, development, testing and deployment
environments, as well as the approaches and techniques for
their efficient exploitation.

The promising benefits of the solution proposed are
discussed within a presented framework, namely OKD-MES.
This particular application for the industrial domain
demonstrates how the integration of different automation
levels is possible using web standards and the synergy
between cyber and physical systems, realizing the
implementation of CPS in manufacturing systems.

The authors argue that the use of web standards,
especially those presented here, which are directly supported
in the web browsers, gives greater chances for applications
developed following these standards to be compatible with
future technologies. This may in turn reduce the effort
needed to update or integrate the application into its evolving
environment in the future. The potentials of web standards
come from the scale and spread of web-based applications
resulting in the development of mature proven standards that
are used daily by billions of people. There are web standards
for different aspects including the organization of basic
communication (HTTP), service orientation (REST), the
presentation of information (OWL) or even visualization
(SVG). The examples presented show that all modules of the
OKD-MES described can be interrelated within the
implementation of web standards. In fact, it was discussed
and demonstrated that having a centralized ontology model,
to which different modules of the system can retrieve or
manipulate information, the OKD-MES architecture is
capable of effectively processing, controlling, and executing
demands for assembling products in assembly lines, for
example. The authors claim that such control and execution
are complex because the production lines in dynamic
systems constantly change their status. Nevertheless, the
implementation of web standards at all levels of the OKD-
MES architecture permits web-based control of systems,

which is possible by means of a cross-domain exchange of
information.

ACKNOWLEDGMENT
The research leading to these results has received funding

from the ARTEMIS Joint Undertaking under grant
agreement n° 332946 and from the Finnish Funding Agency
for Technology and Innovation (TEKES), corresponding to
the project shortly entitled eScop3, Embedded systems for
service-based control of open manufacturing and process
automation.

REFERENCES
[1] E. COMPUTING, ‘Cyber-physical systems’, 2009.
[2] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, ‘Cyber-physical

systems: the next computing revolution’, in Proceedings of the 47th
Design Automation Conference, 2010, pp. 731–736.

[3] J. M. Mendes, A. Rodrigues, P. Leitao, A. W. Colombo, and F.
Restivo, ‘Distributed Control Patterns using Device Profile for Web
Services’, in Enterprise Distributed Object Computing Conference
Workshops, 2008 12th, 2008, pp. 353–360.

[4] A. Cannata, M. Gerosa, and M. Taisch, ‘SOCRADES: A framework
for developing intelligent systems in manufacturing’, in IEEE
International Conference on Industrial Engineering and Engineering
Management, 2008. IEEM 2008, 2008, pp. 1904–1908.

[5] H. Bohn, A. Bobek, and F. Golatowski, ‘SIRENA - Service
Infrastructure for Real-time Embedded Networked Devices: A service
oriented framework for different domains’, in International
Conference on Networking, International Conference on Systems and
International Conference on Mobile Communications and Learning
Technologies, 2006. ICN/ICONS/MCL 2006, 2006, pp. 43–43.

[6] A. L. Juha Puttonen, ‘A Semantic Web Services-based approach for
production systems control’, Adv. Eng. Inform., no. 3, pp. 285–299,
2010.

[7] A. Lobov, F. U. Lopez, V. V. Herrera, J. Puttonen, and J. L. M.
Lastra, ‘Semantic Web Services framework for manufacturing
industries’, in IEEE International Conference on Robotics and
Biomimetics, 2008. ROBIO 2008, 2009, pp. 2104–2108.

[8] J. Puttonen, A. Lobov, and J. L. Martinez Lastra, ‘Semantics-Based
Composition of Factory Automation Processes Encapsulated by Web
Services’, IEEE Trans. Ind. Inform., vol. 9, no. 4, pp. 2349–2359,
Nov. 2013.

[9] B. Ramis, L. Gonzalez, S. Iarovyi, A. Lobov, J. L. Martinez Lastra,
V. Vyatkin, and W. Dai, ‘Knowledge-based web service integration
for industrial automation’, in 2014 12th IEEE International
Conference on Industrial Informatics (INDIN), 2014, pp. 733–739.

[10] N. A. N. Lee, L. E. G. Moctezuma, and J. L. M. Lastra, ‘Visualization
of Information in a Service-Oriented Production Control System’, in
IECON 2013 - 39th Annual Conference of the IEEE Industrial
Electronics Society, 2013, pp. 4422–4428.

[11] S. Iarovyi, J. Garcia, and J. L. M. Lastra, ‘An approach for OSGi and
DPWS interoperability: Bridging enterprise application with shop-
floor’, in 2013 11th IEEE International Conference on Industrial
Informatics (INDIN), 2013, pp. 200–205.

[12] S. Sucic, B. Bony, and L. Guise, ‘Standards-compliant event-driven
SOA for semantic-enabled smart grid automation: Evaluating IEC
61850 and DPWS integration’, in 2012 IEEE International
Conference on Industrial Technology (ICIT), 2012, pp. 403–408.

[13] J. Imtiaz and J. Jasperneite, ‘Scalability of OPC-UA down to the chip
level enables ";Internet of Things ";, in 2013 11th IEEE International
Conference on Industrial Informatics (INDIN), 2013, pp. 500–505.

3 http://www.escop-project.eu/

BORJA RAMIS FERRER et al: EXEMPLIFYING THE POTENTIALS OF WEB STANDARDS FOR AUTOMATION …

DOI 10.5013/IJSSST.a.17.33.03 3.12 ISSN: 1473-804x online, 1473-8031 print

[14] ‘OASIS Devices Profile for Web Services (DPWS)’. [Online].
Available: http://docs.oasis-open.org/ws-dd/ns/dpws/2009/01
[Accessed: 16-Jul-2015]

[15] G. Marco, L. Fumagalli, A. Lobov, and J. L. Martinez Lastra, “Open
Automation of Manufacturing Systems through Integration of
Ontology and Web Services,” 2013, pp. 198–203.

[16] S. Karnouskos and V. Somlev, ‘Performance assessment of
integration in the cloud of things via web services’, in 2013 IEEE
International Conference on Industrial Technology (ICIT), 2013, pp.
1988–1993.

[17] V. Gilart-Iglesias, F. Maciá-Pérez, D. Marcos-Jorquera, and F. J.
Mora-Gimeno, ‘Industrial Machines as a Service: Modelling
industrial machinery processes’, in 2007 5th IEEE International
Conference on Industrial Informatics, 2007, vol. 2, pp. 737–742.

[18] M. Lanthaler and C. Gütl, ‘Hydra: A Vocabulary for Hypermedia-
Driven Web APIs.’, in LDOW, 2013.

[19] ‘Hydra Core Vocabulary’. [Online]. Available:
http://www.w3.org/ns/hydra/spec/latest/core/. [Accessed: 16-Jul-
2015].

[20] T. R. Gruber, ‘A translation approach to portable ontology
specifications’, Knowl. Acquis., vol. 5, no. 2, pp. 199–220, 1993.

[21] ‘OWL Web Ontology Language Semantics and Abstract Syntax’.
[Online]. Available: http://www.w3.org/TR/owl-semantics/.
[Accessed: 16-Jul-2015]

[22] ‘RDF 1.1 Concepts and Abstract Syntax’. [Online]. Available:
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/.
[Accessed: 16-Jul-2015].

[23] ‘RDF Schema 1.1’. [Online]. Available: http://www.w3.org/TR/rdf-
schema/. [Accessed: 03-Jul-2015].

[24] ‘SPARQL Query Language for RDF’. [Online]. Available:
http://www.w3.org/TR/rdf-sparql-query/. [Accessed: 05-Jul-2015].

[25] I. Kollia, B. Glimm, and I. Horrocks, ‘SPARQL query answering
over OWL ontologies’, in The Semantic Web: Research and
Applications, Springer, 2011, pp. 382–396.

[26] ‘OASIS Web Services Business Process Execution Language
(WSBPEL) TC | OASIS’. [Online]. Available: https://www.oasis-
open.org/committees/ tc_home.php?wg_abbrev=wsbpel. [Accessed:
16-Mar-2015].

[27] J. Puttonen, A. Lobov, and J. L. M. Lastra, ‘An application of BPEL
for service orchestration in an industrial environment’, in IEEE
International Conference on Emerging Technologies and Factory
Automation, 2008. ETFA 2008, 2008, pp. 530–537.

[28] ‘BPMN 2.0’. [Online]. Available:
http://www.omg.org/spec/BPMN/2.0/. [Accessed: 10-May-2015].

[29] ‘OWL-S: Semantic Markup for Web Services’. [Online]. Available:
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/#6.
[Accessed: 25-May-2015].

[30] D. Redavid, L. Iannone, T. Payne, and G. Semeraro, ‘OWL-S Atomic
Services Composition with SWRL Rules’, in Foundations of
Intelligent Systems, A. An, S. Matwin, Z. W. Raś, and D. Ślęzak, Eds.
Springer Berlin Heidelberg, 2008, pp. 605–611.

[31] H. Li, L. Zhang, and R. Jiang, ‘Study of manufacturing cloud service
matching algorithm based on OWL-S’, in Control and Decision
Conference (2014 CCDC), The 26th Chinese, 2014, pp. 4155–4160.

[32] L. Fumagalli, S. Pala, M. Garetti, and E. Negri, ‘Ontology-Based
Modeling of Manufacturing and Logistics Systems for a New MES
Architecture’, in Advances in Production Management Systems.
Innovative and Knowledge-Based Production Management in a
Global-Local World, B. Grabot, B. Vallespir, S. Gomes, A. Bouras,
and D. Kiritsis, Eds. Springer Berlin Heidelberg, 2014, pp. 192–200.

[33] ‘Scalable Vector Graphics (SVG) 1.1 (Second Edition)’. [Online].
Available: http://www.w3.org/TR/SVG11/. [Accessed: 16-Mar-
2015].

[34] “SPARQL 1.1 Update.” [Online]. Available:
http://www.w3.org/TR/sparql11-update/. [Accessed: 11-July-2015].

[35] “Semantic Web Architecture - Introduction to ontologies and
semantic web - tutorial.” [Online]. Available:
http://obitko.com/tutorials/ontologies-semantic-web/semantic-web-
architecture.html. [Accessed: 26-Jul-2015].

[36] “Sesame.” [Online]. Available: http://rdf4j.org/. [Accessed: 26-Jul-
2015].

[37] “Apache Jena - Home.” [Online]. Available: https://jena.apache.org/.
[Accessed: 26-Jul-2015].

[38] A. W. Colombo, S. Karnouskos, and T. Bangemann, “Towards the
Next Generation of Industrial Cyber-Physical Systems,” in Industrial
Cloud-Based Cyber-Physical Systems, A. W. Colombo, T.
Bangemann, S. Karnouskos, J. Delsing, P. Stluka, R. Harrison, F.
Jammes, and J. L. Lastra, Eds. Cham: Springer International
Publishing, 2014, pp. 1–22.

[39] B. B. Jay Lee, “A Cyber-Physical Systems architecture for Industry
4.0-based manufacturing systems,” SME Manuf. Lett., 2014.

[40] S. Iarovyi, José L. Martinez Lastra, Rodolfo Haber, and Raúl del
Toro, “From artificial cognitive systems and open architectures to
cognitive manufacturing systems”, in 2015 13th IEEE International
Conference on Industrial Informatics (INDIN), 2015, pp. 1225–1232.

[41] “SWRL: A Semantic Web Rule Language Combining OWL and
RuleML” [Online]. Available:
http://www.w3.org/Submission/SWRL/. [Accessed: 28-July-2015].

[42] B. Ramis Ferrer, B. Ahmad, A. Lobov, D. Vera, José L. Martinez
Lastra, R. Harrison, “A knowledge-based solution for automatic
mapping in component based automation systems”, in 2015 13th
IEEE International Conference on Industrial Informatics (INDIN),
2015, pp. 262–268.

[43] S. Iarovyi, B. Ramis Ferrer, X. Xiangbin, A. Sampath, A. Lobov, José
L. Martinez Lastra, “Representation of manufacturing equipment and
services for OKD-MES: from service descriptions to ontology”, in
2015 13th IEEE International Conference on Industrial Informatics
(INDIN), 2015, pp. 1069–1074.

[44] L. Gonzalez, J. Jokinen, C. Postelnicu, J. M. Lastra, “Retrofitting a
factory automation system to address market needs and societal
changes,” Industrial Informatics (INDIN), 2012 10th IEEE
International Conference, pp.413- 418, 2012.

[45] B. Ramis Ferrer, B. Ahmad, A. Lobov, D. Vera, José L. Martinez
Lastra, R. Harrison, "An approach for knowledge-driven product,
process and resource mappings for assembly automation", in 2015
IEEE International Conference on Automation Science and
Engineering (CASE), 2015, pp. 1104-1109.

[46] S. Iarovyi and X. Xiangbin, Developing Open Knowledge-Driven
Manufacturing Execution System (2015). In: Strzelczak S., Balda P.,
Garetti M., Lobov A. (Eds.), Open Knowledge Driven Manufacturing
and Logistics - the eScop Approach, Warsaw University of
Technology Publishing House, pp. 295-310, 2015. ISBN 978-83-
7814-440-3.

[47] Strzelczak S., Ontology-Aided Manufacturing and Logistics (2015).
In: Strzelczak S., Balda P., Garetti M., Lobov A. (Eds.), Open
Knowledge Driven Manufacturing and Logistics - the eScop
Approach, Warsaw University of Technology Publishing House, pp.
23-50, 2015. ISBN 978-83-7814-440-3.

[48] B. Ramis Ferrer, S. Iarovyi, A. Lobov, José L. Martinez Lastra,
“Potentials of web standards for automation control in manufacturing
systems”, in 2015 UKSim-AMSS 9th IEEE European Modelling
Symposium on Mathematical Modelling and Computer Simulation.
EMS 2015, 2015, pp. 359–366.

[49] M. Garetti, E. Negri, L. Fumagalli, Ontology-Based Modeling of
Production and Logistics Systems (2015). In: Strzelczak S., Balda P.,
Garetti M., Lobov A. (Eds.), Open Knowledge Driven Manufacturing
and Logistics - the eScop Approach, Warsaw University of
Technology Publishing House, pp. 215-234, 2015. ISBN 978-83-
7814-440-3.

V

PRODUCT, PROCESS AND RESOURCE MODEL COUPLING
FOR KNOWLEDGE-DRIVEN ASSEMBLY AUTOMATION

by

Borja Ramis Ferrer, Bilal Ahmad, Daniel Vera, Andrei Lobov, Robert Harrison,
José Luis Martínez Lastra, May 2016

at-Automatisierungstechnik, vol. 64, no. 3, pp. 231-243

Reproduced with permission.

DE GRUYTER OLDENBOURG at – Automatisierungstechnik 2016; 64(3): 231–243

Anwendungen

Borja Ramis Ferrer*, Bilal Ahmad, Daniel Vera, Andrei Lobov, Robert Harrison, and
José Luis Martínez Lastra

Product, process and resource model coupling for
knowledge-driven assembly automation
Kopplung von Produkt-, Prozess- und Ressourcenmodell für die wissensgetriebene
Montageautomation

DOI 10.1515/auto-2015-0073
Received October 15, 2015; accepted December 30, 2015

Abstract: Accommodating frequent product changes in
a short period of time is a challenging task due to limita-
tionsof the contemporary engineeringapproach todesign,
build and reconfigure automation systems. In particular,
the growing quantity and diversity of manufacturing in-
formation, and the increasing need to exchange and reuse
this information in an efficient way has become a bottle-
neck. To improve the engineering process, digital manu-
facturing and Product, Process and Resource (PPR) mod-
elling are considered very promising to compress devel-
opment time and engineering cost by enabling efficient
design and reconfiguration of manufacturing resources.
However, due to ineffective coupling of PPR data, design
and reconfiguration of assembly systems are still challeng-
ing tasks due to the dependency on the knowledge and
experience of engineers. This paper presents an approach
for data models integration that can be employed for cou-
pling the PPR domain models for matching the require-
ments of products for assembly automation. The approach
presented in this paper can be used effectively to link data
models from various engineering domains and engineer-
ing tools. For proof of concept, an example implementa-
tion of the approach for modelling and integration of PPR
for a Festo test rig is presented as a case study.

Keywords: Knowledge driven systems, model coupling,
ontology matching, assembly automation.

*Corresponding author: Borja Ramis Ferrer, Tampere University
of Technology – FAST-Lab. P.O. 600, FI-33101, Tampere, Finland,
e-mail: borja.ramisferrer@tut.fi
Andrei Lobov, José Luis Martínez Lastra: Tampere University of
Technology – FAST-Lab. P.O. 600, FI-33101, Tampere, Finland
Bilal Ahmad, Daniel Vera, Robert Harrison:WMG, University of
Warwick, Coventry, CV4 7AL, United Kingdom

Zusammenfassung: Die Berücksichtigung häufiger Pro-
duktänderungen innerhalb kurzer Zeiträume ist eine Her-
ausforderung für Ingenieure aufgrund der Limitierungen
aktueller Ansätze zum Entwurf, Aufbau und Rekonfigu-
ration von Automatisierungssystemen. Insbesondere die
steigende Menge und Vielfalt an Informationen aus der
Produktion, die auf effiziente Art und Weise ausgetauscht
und wiederverwendet werden sollen, führt zu einem Eng-
pass. Zwei vielversprechende Ansätze um Entwicklungs-
kosten und Entwicklungszeit zu reduzieren und gleichzei-
tig eine effiziente Entwicklung sowie die Rekonfiguration
des Montagesystems zu ermöglichen, sind die digitale Fa-
brik und kombinierte Produkt-, Prozess- und Ressourcen-
modelle (PPR). Aufgrundder bisher ineffizientenVerknüp-
fung der PPR-Daten ist die Entwicklung und die Rekonfi-
guration von Montageanlagen noch immer eine sehr an-
spruchsvolle Aufgabe aufgrund der starken Abhängigkeit
vom Fachwissen und der Erfahrung der Ingenieure. Dieser
Artikel präsentiert einen Ansatz zur Integration von Da-
tenmodellen, der zur Kopplung der PPR-Domänenmodelle
eingesetzt werden kann, um die Anforderungen der Pro-
dukte andieMontageautomatisierung zu erfüllen. Die hier
vorgestellte Methode dient dazu, Datenmodelle und ih-
reWerkzeuge aus verschiedenen Ingenieursdisziplinen zu
koppeln. Zur Evaluation wird eine beispielhafte Imple-
mentierung des Modell und Integrationsansatzes die Fall-
studie eines FESTO-Prüfstandes präsentiert.

Schlüsselwörter: wissensbasierte Systeme, Koppel-
modell, ontologische Übereinstimmung, Montageauto-
matisierung, Produktionsautomatisierung.

1 Introduction
The increasing market turbulence and the rise of new
product technologies represent challenges and force in-
dustry to manufacture new product variants and adjust

Authenticated | borja.ramisferrer@tut.fi author's copy
Download Date | 3/12/16 7:19 AM

232 | B. Ramis Ferrer et al., PPR model coupling for knowledge-driven assembly automation DE GRUYTER OLDENBOURG

production volume constantly. For example, the automo-
tive industry is expected to accommodate changes fre-
quently due to increased environmental concerns, tech-
nological advancements, changes in the market require-
ments etc. As a result, product assembly is becom-
ing a challenging task. Industries have to frequently
change manufacturing process plans and subsequently
reconfigure/build assembly lines to manufacture new
products [1].

Assembly systems within the automotive manufactur-
ing sector are typically based on commonality approaches.
Around 80% of existing off-the-shelf manufacturing re-
sources remain unchanged or slightly modified to accom-
modate a new version of a product. However, due to the
use of ad hoc engineering methods the knowledge utilised
fromprevious similar projects is only a small percentage of
theavailable knowledge [2]. It is reported in [3] that compa-
nies are oftenunawareof the extent of in-house knowledge
and therefore spend significant time searching for relevant
information from previous similar projects.

To accommodate product changes, the required man-
ufacturingprocess and associated resource constraints are
typically checkedmanually due to the lackof tools that can
support analysis of how the product changes will affect
manufacturing operations. As a result, feasibility studies
associated with the manufacturing of new products on ex-
isting assembly lines, design of new process plans and re-
quired reconfiguration ofmanufacturing resources remain
subjective. Such ad hoc approaches rely heavily on the
knowledge and experience of engineers that result in pro-
longed lead-times and increased engineering costs [4].

To assist in the design, planning and reconfiguration
of assembly systems, a number of digital modelling and
simulation tools have been developed. These tools pro-
vide a number of benefits such as visualisation, verifica-
tionandoptimisationof themanufacturing systemsbefore
the physical build [5, 6]. However, manufacturing process
and resource modelling is still a challenging and complex
task. This is mainly due to the gaps that exist in the engi-
neering process due to the reliance on ad hoc mechanisms
for knowledge sharing, integration and reusability. Typi-
cally, product, process, and resource information anddata
sets exist within a given organisation, but they are not ef-
fectively coupled [7], which represents a big challenge in
this field.

One promising approach to address this issue is the
effective linking of the digital descriptions of the product
attributes and requirements, to the characteristics of the
manufacturing resources. The resulting knowledge-base
derived from such integrated digital description can po-
tentially increase the efficiency of the engineering pro-

cess. The focus of this paper is to improve PPR mod-
elling of assembly automation systems by integrating vir-
tual engineering tools with an ontology-based knowledge
modelling system. To realise such modelling approach,
a generic concept is presented that couples data mod-
els of PPR. The matching of different ontology domain
models in a knowledge-driven system can potentially pro-
vide reusable knowledge-based PPR description to inter-
connect product attributes with related manufacturing re-
sources.

In this article, the authors present a method for cou-
pling PPR data models that can be achieved within the
implementation of the rule-based approaches described
in [4, 8] for mapping data of different concepts. In other
words, this research work presents an application of pre-
vious work for multiple domain ontologies matching. It
should be noted that previous work focused directly on
mapping data in a unique and artificial model. In fact in
a real scenario, these models can be generated from the
domain specific engineering tools by corresponding do-
main experts. For this, the use of standard terminology
and taxonomies is a promising approach,where standard-
isation can be driven by relevant communities holding
the expert knowledge on a particular domain. Based on
query rules, the presented methodology allows mapping
between product, process and resource ontology models
that will becomemodules of the PPRmodel. The ontology-
based representation of engineering knowledge permits
the dynamic modelling and mapping of products to re-
quired assembly processes and resources. Moreover, the
use of standard languages for designing ontological mod-
els means that data can be accessed by third party appli-
cations, allowing retrieval and updating of the data model
and thus makes the proposed approach extensible and
scalable.

The remainder of this paper is organised as follows.
Section 2 presents the background of the research work.
Section 3 describes the approach for PPR model coupling
within semantic descriptions. Section 4 presents an im-
plementation of the approach with a case study based on
a Festo test rig. Finally, Section 5 concludes the research
work and discusses further tasks.

2 Background
The recent developments in manufacturing system engi-
neering methods and software tools have focused on ex-
tending the data set based on which the design of pro-
duction system is conducted; PLM (Product Lifecycle Man-
agement) and PDM (ProductDataManagement) have been

Authenticated | borja.ramisferrer@tut.fi author's copy
Download Date | 3/12/16 7:19 AM

DE GRUYTER OLDENBOURG B. Ramis Ferrer et al., PPR model coupling for knowledge-driven assembly automation | 233

integrated with MPM (Manufacturing Processes Manage-
ment) tools in order to achieve better integration between
product design and manufacturing system design pro-
cesses [9]. Paradigms such as design for assembly, fabri-
cation, manufacture, etc. focus on integrating critical de-
sign parameters and constraints, early in the product de-
sign phase, in order to achieve higher level of concurrency
and avoid deviations betweenproduct andproduction sys-
tem design processes [10].

Within PLM systems, the concept of PPR extends
the above mentioned concepts by integrating the notion
of standardised manufacturing processes and resources,
and the relation that exists between processes and re-
sources [11]. In the domain of manufacturing, resources
typically represent standardised modular machine units
defined at various level of granularity (e.g. component,
station, cell, zone, etc.). Each resource supports a spe-
cific process and may consist of sub-processes and sub-
resources (e.g. a station-level transport system consisting
of sub process and resources such as pre-stop, machine-
stop and clamping operations).

A typical PPR-based engineering workflow consists
of initiating the product design while the manufacturing
process and resources required to manufacture this prod-
uct are concurrently derived from the PPR information
mapping. Existing PPR-based systems (e.g. Dassault En-
ovia, Siemens TeamCenter) typically implement PPR ca-
pabilities through the storage and integration (i.e. cross-
referencing) of PPR data models. The increasing availabil-
ity and usage of 3D based virtual modelling and simula-
tion tools within PPR tool chain have significantly con-
tributed to i) extending the data set integrated into PPR
systems (mechanical/3D data, station/line layout, PLC
control data in the form of re-usable Function Blocks, etc.)
and ii) improving design support and validation functions
through the use of dynamic 3D-based simulation environ-
ment that provide an intuitive view of the complete data
set and therefore of the final systems design.

PPR systems rely heavily on the use of relational
database systems to store information and to define rela-
tions between PPR data sets; relationships between data
sets are based on physical or logical constraints and re-
lations (e.g. processing time, product size/resource ca-
pacity, etc.), or on specific relations derived from experi-
ence collected during past projects (e.g. specific product
variant/resource mapping). However, today’s deployment
of advanced ICT systems and the exponentially increasing
quantity of digital data generated, represents a real chal-
lenge in not only managing the data (i.e. storage, categori-
sation, storage), but also in defining and maintaining the

relation between various engineering data sets and mod-
els.

The emergence of cyber-physical systems (CPS) in-
tegration and the expected industry evolution (Industry
4.0), Knowledge Representation (KR) is a promising solu-
tion tomanage the referencingand integrationof large and
expending data sets. This permits the reduction of data
processing overload and, at the same time, the support of
advanced reasoning and design capabilities provided by
knowledge-based systems.

KR is thefield of study concernedwith describing facts
in a human and machine-readable format, which makes
machines capable of automating processes with the usage
of semantic descriptions. Aside from formally defining KR,
[12] presents several formalisms that can be used for im-
plementing KR. During the last decade, the industrial au-
tomation research community has tended to implement
ontologies for formal description of manufacturing sys-
tems [13]. However, it shouldbenoted that LinkedData [14]
is considered as a simple method for managing interre-
lated data in knowledge-based systems but with several
challenges for reasoning [15]. On the other hand, other KR
formalisms such as semantic rules or frames can be used
for representing knowledge.

Ontologies contain formal descriptions, which can be
queried and even reasoned. An ontological model is em-
ployed as a data storage that contains the actual status
of systems, which are semantically described through ax-
iomsand relationshipsbetween instances of realworld ob-
jects. In addition, the design ofmodels based on standards
permits different designers to convey and describe knowl-
edge with same terminologies and taxonomies. Although
there are numerous semantic languages that can be used
formodellingmanufacturing systems, ResourceDefinition
Framework (RDF)¹based languages are the dominant ones
for model implementation in factory automation [16]. RDF
is an XML-based language that belongs to the W3C stan-
dard recommendations.

RDF-based models, or RDF graphs, are sets of RDF
triples that permit the semantic descriptionof anydomain.
Syntactically, triples are structured within a relation of
three terms: subject, predicate and object. Furthermore,
the Ontology Web Language (OWL) [17] is an RDF-based
language that extends RDF within the declaration of class
descriptions (e.g. enumeration, property restriction, cardi-
nality constraints) and axioms allowing the enrichment of
model descriptions. Hence, ontologies not only link data
but also add semantics (or meaning) to model resources.

1 http://www.w3.org/RDF/

Authenticated | borja.ramisferrer@tut.fi author's copy
Download Date | 3/12/16 7:19 AM

http://www.w3.org/RDF/

234 | B. Ramis Ferrer et al., PPR model coupling for knowledge-driven assembly automation DE GRUYTER OLDENBOURG

The information can be retrieved from models and
modified with the use of standard query languages. This
feature allows the data of graph accessible by other ap-
plications. In fact, any RDF-based graph datasets can be
queried within SPARQL [18] and updated via its extension
SPARQLUpdate (SPARUL). SPARQL permits the extraction
of model data in the form of result sets or RDF graphs.
SPARUL is an extension of SPARQL that includes a set of
operations for updating, creating and removing data from
RDF-based models.

The utilisation of semantic descriptions in factory au-
tomation domain permits the development of knowledge-
driven solutions that are capable of managing and even
orchestrating the execution of operations in contempo-
rary production lines. For instance, [19] present useful ap-
plications of KR in the factory automation domain that
allows scalability and reconfigurability of intelligent in-
dustrial automation systems. Implicit data of ontologies
can be inferred by semantic reasoning engines to evalu-
ate model descriptions and define new facts, which are
not beforehand explicitly described [12]. This is a powerful
characteristic of ontologies since the evaluation of mod-
els, inclusion at runtime, can result in new classifications
or assertions of data. Furthermore, reasoning allows re-
structuring of models with statements which are not visi-
ble or deducible in the design phase. In addition, descrip-
tion of semantic rules using SemanticWebRules Language
(SWRL) [20] canbe employed formapping data fromdiffer-
ent domains [4, 8] to achieve model coupling.

Due to the number of domains involved in the engi-
neeringofmanufacturing systems, thedata generateddur-
ing thedesignphase is heterogeneous and is defined indif-
ferent domainmodels. Therefore, effectivemodel coupling
and ontology matchingbecomes an important research fo-
cus. [21] describes a conceptual methodology for merging
heterogeneous data from upper levels. On the other hand,
an example for lower level data coupling is shown in [22],
which shows an implementation of algorithms for gener-
ating unique models as aggregation of sub-models. The
evaluation of mentioned studies and previous work done
in [4, 8] motivated and inspired the presented approach in
this article.

3 Approach
The extensive use of virtual engineering tools in assem-
bly automation for manufacturing process planning, opti-
misation and validation is promising. Virtual engineering
tools have shifted work activity from serial to parallel and
advanced information and communication infrastructure

has replaced paper-based processes. Despite this, launch-
ing a new product variant in the automotive industry re-
mains a challenge. The selection of required manufactur-
ing resources heavily rely on knowledge and experience of
engineers. Although the PPR information exist separately,
the lack of mappings between those data sets makes it dif-
ficult to identify whether themanufacturing process could
be executed using available resources. To address this, an
approach for automating the mappings of products, pro-
cesses and resources using semantic descriptions for as-
sembly automation systems is presented in this section.

The use of modular ontologies (each module belongs
to a different domain) and standard terminology and tax-
onomies is a promising approach to achieving such PPR
ontology coupling for assembly systems. Integration of
modules in a unique representation creates a common
source from which system information can be accessed.
However, the main problem with using modular ontology
is to define a manner of mapping data to be carried out by
designers or with automatic approaches. In fact, the use of
common terminology and taxonomies already presented
in standards that are being implemented in the industry
might avoid data naming convention issues. This requires
employment of several standards for covering data man-
aged in all levels of automation systems. For instance, the
ISA 88 (used for defining the control batch processes) and
the ISA 95 (used for describing the interface between en-
terprise) can be integrated [23] and used for describing re-
lated taxonomy in the PPR domain ontologies.

On the other hand, one of the problems that exits
nowadays is the lack of a large infrastructure for sharing
ontologies that could be reused for describing different in-
dustry domains. In fact, the commonpractice is to develop
in-housemodels that are frequently described in other for-
mats than ontologies e.g. XML, UML models, MS Office
documents etc. Nevertheless, models can be transformed
to ontologies automatically using existing approaches [24,
25] besides creating them manually and from the scratch.
Moreover, APIs as e.g. Apache POI² permits the manipula-
tionofMSdocumentswith Java so they canbe transformed
e.g. to XML objects.

The focus of this paper is working with different do-
main ontologies and demonstrate how they can be cou-
pled by mapping ontology elements, achieved by import-
ing ontologies and combining them through a rule-based
approach. The implementation of this approach allows
mergingmodular ontologies and therefore create a link be-

2 https://poi.apache.org/

Authenticated | borja.ramisferrer@tut.fi author's copy
Download Date | 3/12/16 7:19 AM

https://poi.apache.org/

DE GRUYTER OLDENBOURG B. Ramis Ferrer et al., PPR model coupling for knowledge-driven assembly automation | 235

Product domain ontology Process domain ontology Resource domain ontology

PPR domain ontology

Rule1, Rule2, Rule3, Rule4, Rule5, Rule6

Figure 1: Representation of the resulting PPR domain ontology through different domain model coupling.

tweenconcepts anddata coveredbydifferentdomains that
are frequently described with non-connected standards.

As this approach is intended for the case of having
data in different ontologies, the mapping of data is in
fact an interconnection between different domain mod-
els to address the model coupling of Product, Process and
Resource domain ontologies. Figure 1 depicts that how
instances belonging to different domain ontologies are
matched with rules.

Taking into account the design of modular ontolo-
gies [26], different models can be merged to form a unique
higher level ontology. This is achieved by using existing
ontology editors (e.g. Protégé³ editor) that form a graph
dataset containing all graphs of imported ontologies.

Nevertheless, merging ontologies does not result in
automatic creation of link between data belonging to dif-
ferent domains because tools (or an import action) only
create a model containing all instances of imported mod-
els. Thus, data coupling requires an extra process step. As
shown in Figure 1, themodel coupling is achieved through
the definition of rules that link different data domains.
A semantic reasoner that evaluates the model and stated
rules infers the interrelation between different data mod-
els. It should be noted that creating the PPR ontology and
data mapping semantic rules does not remove existing
links of the individual domain ontologies, provided they
do not create conflict with new rules. The important char-
acteristic of achievingmodel couplingwith the use of rules

3 http://protege.stanford.edu/

and a reasoning engine is that the reasoner automatically
validates the consistency of the model.

The approach for domainmodel coupling of PPR data
used in this research consist of following four main steps:
1. Importing domain models in a unique ontology
2. Define a set of object properties that relate different

domain concepts
3. Define a set of rules that can be understood by reason-

ing engines to infer model coupling
4. Automatically infer links between instances and vali-

date model consistency

In thefirst step, afirst graphdata set, knownas thePPRon-
tology, is created as an aggregation of all importedmodels.
This new model contains all the elements of each ontol-
ogy, andhave its own InternationalisedResource Identifier
(IRI). In the second step, additional object properties that
interrelate different domain concepts are defined. These
new properties are added in the PPR ontology IRI. Once
object properties are added, a set of rules are defined in
the next step. Finally, the semantic reasoning engines in-
fer implicit data based on the rules defined in the previous
step. The implementation of each step is further described
in the case study.

The proposed approach presents a method for model
coupling that can be used for e.g. mapping the required
data needed for manufacturing products in assembly
lines. The data mapping is achieved with an ontological
model that allows not only the description of assembly
lines, but also the representation of the processes that
components can perform. The ontology that is formed by
the three PPR domains and main classes used for the im-

Authenticated | borja.ramisferrer@tut.fi author's copy
Download Date | 3/12/16 7:19 AM

http://protege.stanford.edu/

236 | B. Ramis Ferrer et al., PPR model coupling for knowledge-driven assembly automation DE GRUYTER OLDENBOURG

Figure 2: Processing Station ontology model.

plementation of the four step approach are shown in Fig-
ure 2 with a UML class diagram. The diagram depicts the
hierarchical distribution of packages (ontologies) and in-
cluded classes, which permit the description of processes
and resources of assembly lines for manufacturing prod-
ucts.

Figure 2 depicts the resultant model. This diagram is
used as a reference for required descriptions of the re-
search work implementation. Although domain models
are usually larger than the ones presented, the described
classes are sufficient for demonstrating how the approach
can be implemented. It should be noted that the model is
reused from the research work presented in [4]. However,
different concepts are now separated in different ontolo-
gieswhich are treated asmodules (or higher classes) of the
PPR ontology model.

4 Case study
This section describes the implementation details of the
approach presented in previous section with the help of
a case study. The case study is based on a station of a Festo
Modular Production System, which presents a small-scale
realistic industrial test benchwidely used for teaching and
research purpose. Figure 3 shows the Festo test rig, com-
posed of four stations: Distributing, Buffering, Processing

and Handling stations. The Processing Station is selected
for this use case.

4.1 Creating the PPR ontology model

The first step of the approach is accomplished by import-
ing all the ontology models in a unique model. This is car-
ried out using an ontology editor that permits importing
models and saving the resulting ontology in a file. Protégé
is an ontology editor that is used to implement the pre-
sented approach. Figure 4 shows the Active Ontology tab
from the Protégé interface, in which the imported ontolo-
gies information is shown.

As it can be seen in Figure 4, imported ontologies re-
tain the IRI which allow the differentiation between ele-
ments that belong to different domain models (even if the
name of the instances is same). Therefore, the difference
in IRI forms a basis for querying and defining rules in the
model.

After the importation of the process ontology, the on-
tology contains three classes that allow the process related
descriptions:Operation, Process and Task. Operation class
is composed of operations that are performed in system
stations. Process class is composed of processes linked to
operations and Task is composed of tasks of processes.

Authenticated | borja.ramisferrer@tut.fi author's copy
Download Date | 3/12/16 7:19 AM

DE GRUYTER OLDENBOURG B. Ramis Ferrer et al., PPR model coupling for knowledge-driven assembly automation | 237

Figure 3: Festo test rig.

Figure 4: Imported ontologies in the PPR ontology.

A process is defined as a set of tasks performed in a cer-
tain sequence.

With the import of product ontology, Product class is
imported and included in the PPR ontology which is used
for collecting types of products that are manufactured in
the assembly line. All required relations for PPRmappings

are shown in the class diagram of Figure 2, which is de-
scribed in section 4.2. These relations are implemented as
ontology object properties because they are used as a rela-
tionship between class instances.

Finally, after importing the resource ontology, three
classes are included in the PPR ontology that allow the

Authenticated | borja.ramisferrer@tut.fi author's copy
Download Date | 3/12/16 7:19 AM

238 | B. Ramis Ferrer et al., PPR model coupling for knowledge-driven assembly automation DE GRUYTER OLDENBOURG

Table 1: Instances Property Assertions included in the PPR ontology model.

Instance (type) Object property Instance (type)

product_1 (Product) needsAssemblyOperation op_01 (Operation)
product_2 (Product) op_02 (Operation)
festoSystem (System) hasStation processingStation (Station)
processingStation (Station) hasComponent rotaryInTableModule (Component)

drillingModule (Component)
testingModule (Component)
clampingModule (Component)
sortingGateModule (Component)

rotaryInTableModule (Component) performsTask advance_position (Task)
drillingModule (Component) drill (Task)
testingModule (Component) move_up (Task)

move_down (Task)
clampingModule (Component) push_clamp (Task)

release_clamp (Task)
sortingGateModule (Component) push_sort (Task)

release_sort (Task)
op_01 (Operation) hasProcess process_1 (Process)
op_02 (Operation) process_2 (Process)
process_1 (Process) includesTask advance_position (Task)

drill (Task)
push_clamp (Task)
move_down (Task)
move_up (Task)
release_clamp (Task)
push_sort (Task)
release_sort (Task)

process_2 (Process) advance_position (Task)
push_sort (Task)
release_sort (Task)

physical concept description of the assembly line: System,
Station and Component. System class is used for assembly
line instances, representing an entire production line. Sta-
tion contains different stations of a systemwhich represent
an assembly operation (such as piston stuffing). Compo-
nent includes elements that are used for performing sta-
tion operations (such as clamping).

4.2 Adding required object properties in the
ontology model

As described previously, some object properties are al-
ready asserted when models are imported. This is because
relationships described in models are not modified during
the import process, which is just an aggregation of graphs

into the generated graph dataset. Hence, graphs that are
linking instances with properties are not affected.

However, the new links that relate elements of differ-
ent domain models are inserted once the unique ontol-
ogy is being created. In this case study, the properties per-
formsOperation and performsTask are added and linked
between corresponding PPR ontology instances. The IRI
of these properties is same as of the PPR ontology. These
added properties in the second step of the approach are
represented as UML direct association. Table 1 presents
the relationships between instances of the model after
the definition of the PPR ontology object properties. The
names of instances are based on the information available
in [27].

The two products which are added to the model (i.e.
product_1 and product_2) are shown in Table 1. These
products aremanufactured through slightly differentman-

Authenticated | borja.ramisferrer@tut.fi author's copy
Download Date | 3/12/16 7:19 AM

DE GRUYTER OLDENBOURG B. Ramis Ferrer et al., PPR model coupling for knowledge-driven assembly automation | 239

Figure 5: Class hierarchy and object property
hierarchy (a) before and (b) after enriching the PPR
ontology.

ufacturing processes. Thus, they are related to op_01 and
op_02 that, in turn, are related to process_1 and process_2.
In this use case scenario, product_1 is executed using pro-
cess_1. The main steps constitute: advancing through the
station, position testing, drilling and sorting. On the other
hand, product_2 does not require the manufacturing oper-
ations of processing station and is transported to the next
station through the positions of the station, which are the
steps of the process_2.

It should be noted that in addition to the shown object
properties in Table 1, there are two more object properties
represented in the UML ontology model: requiresCompo-
nent and requiresTask. These properties are used for deter-
mining which components and tasks are required to man-
ufacture a product. However, they are represented within
an UML derived association notation because such prop-
erties are derived from information included in the model.
Basically, requiresComponent and requiresTask are not ex-
plicitly described because this approach implements such
relation within semantic rules, as described in following
sub-sections. Figure 5 shows the hierarchy of classes and
object properties (a) before and (b) after the enrichment of
object properties in the PPR ontology.

As it can be seen in Protégé views, the class hierarchy
remains same in (a) and (b); the object property hierarchy
changes because (b) contains the object properties shown
in Figure 2 that are used for interrelating different domain
models.

Figure 6 depicts that processingStation resource do-
main instance is linked to two domain instances. First, it

is still linked with hasComponent object property to other
resource domain instances (from the imported resource
ontology model) and, afterwards, it is linked with differ-
ent process domain instances (op_01 and op_02) with per-
formsOperation object property.

4.3 Adding required SWRL rules and
coupling data in the ontology model

In addition to presented classes and object properties that
are imported from different domain models and object
properties that are defined in the PPR ontology, the auto-
matic coupling of data is achieved with SWRL rules. This
section presents two rules that allow themappingbetween
product, component and tasks of assembly lines. As the
rules are expressed though SWRL they are suitable for any
RDF-based ontology model. Table 2 shows the two SWRL
rules that are defined for this use case.

The first SWRL rule maps products with components
by taking into account performsOperation, includesTask,
hasProcess, needsAssemblyOperation, hasComponent and
performsTask object properties and the classes that are
linked to several model properties (i.e. Component, Task,
Operation, Station and Product). The second SWRL rule
maps products with tasks by taking into account includ-
esTask, hasProcess and needsAssemblyOperation object
properties and the classes that are linked to such proper-
ties (i.e. Task, Process, Operation and Product).

Authenticated | borja.ramisferrer@tut.fi author's copy
Download Date | 3/12/16 7:19 AM

240 | B. Ramis Ferrer et al., PPR model coupling for knowledge-driven assembly automation DE GRUYTER OLDENBOURG

Figure 6: Object property assertions of
processingStation in the PPR ontology.

Table 2: SWRL rules for automatic data coupling.

Rule 1: Linking products with required components Rule 2: Linking products with required tasks

Component(?c) ∧ Task(?t) ∧ Operation(?o) ∧ Station(?s) ∧ Task(?t) ∧ Process(?p) ∧ Operation(?o) ∧
Product(?pr) ∧ performsOperation(?s, ?o) ∧ Product(?pr) ∧ includesTask(?p, ?t) ∧
includesTask(?p, ?t) ∧ hasProcess(?o, ?p) ∧ hasProcess(?o, ?p) ∧ needsAssemblyOperation(?pr, ?o)
needsAssemblyOperation(?pr, ?o) ∧ hasComponent(?s, ?c) ∧ → requiresTask(?pr, ?t)
performsTask(?c, ?t)→ requiresComponent(?pr, ?c)

4.4 Automatic data mapping within
semantic reasoning engines

Using the presented SWRL rules, products can be inter-
related with tasks and components. Thus, through SWRL
rules and reasoning engines, the relation between prod-
ucts, tasks and components are inferred. It should be
noted that these rules could be merged in one rule, which
would give the same mappings. However, the implemen-
tation of two independent rules allows identifying which
classes and properties are required for each type of map-
ping. It should be noted that for this approach implemen-
tation, Pellet reasoner [28] has been used as the reason-
ing engine for obtaining themappings. Thus, before SWRL
rules are executed, Pellet must be started.

Once the reasoning engine runs the final graph,
dataset is generated because it includes the inferred data.
Figure 7 shows the inferred data mappings of product_1
(visible in property assertions tab) created with the help
of SWRL rules and the evaluation done by the semantic

reasoner. The mappings demonstrate that the data of all
models is successfully coupled because product_1 (prod-
uct domain) is linked to op_01 and to a set of tasks (process
domain) and, at the same time, to a set of components (re-
source domain).

The presented implementation demonstrates success-
ful coupling of models by (1) merging different domain
models, (2) assertion of object properties between class
instances and (3) automatic mappings through semantic
reasoning, achieved through SWRL rules and model eval-
uation. If desired, the mappings of products and their
requirements can be extracted from the model. As the
model has been implemented in OWL (RDF-based) syntax
SPARQL queries can be used for monitoring any informa-
tion related to the model.

Authenticated | borja.ramisferrer@tut.fi author's copy
Download Date | 3/12/16 7:19 AM

DE GRUYTER OLDENBOURG B. Ramis Ferrer et al., PPR model coupling for knowledge-driven assembly automation | 241

Figure 7: Inferred mappings in the PPR ontology.

5 Conclusion
This paper presents the application of a knowledge-based
PPR mapping approach that can support dynamic config-
uration of assembly systems because the model interrela-
tions may change when populating the ontology with new
instances. Such approach relies on capturing and formal-
ising in house engineering knowledge that link Product,
Process and Resource in order to reduce system develop-
ment and reconfiguration time. To illustrate the concept,
generic models of products, processes and manufactur-
ing resource components are created for a Festo test rig
with two product variants scenario. The authors believe
that such approach can be extended to allow reconfigura-
tion of existing manufacturing systems in order to include
more complex products (e.g. product structure and com-
plexity, product variants) querying the available facilities
to manufacture a new product variant. From the results of
the case study, it can be concluded that ontological map-
ping of product, process and resource data and their rep-
resentation within virtual modelling and simulation envi-
ronment can, to a certain extent, allow the automation of
the process that consists in instantiating a specific system
from a library of PPR components and therefore to accel-
erate the configuration of manufacturing system for a spe-
cific production requirement.

The approach is implemented for a table-size test rig
with a small number of components. Preliminary results
are the automatic generation of a list of resource compo-
nents based on Process and Product requirement input.
Such results suggest that further development of ontology
based system can potentially be used to achieve automatic
configuration of manufacturing resources and contribute
to the self-configuration paradigm introduced by Industry
4.0. An important aspect of the presented approach is the
mapping between models based on query rules. The use
of best practices to create these rules and serve as a ref-
erence to develop and advance the expertise is an impor-
tant research area which needs to be addressed to enable
wide application of such approach. A wider application of
the proposed approach is required in order to assess the
robustness, practicality and efficiency in terms of timesav-
ing of this approach. Further research will focus on using
semantics to characterise data collect from IoT devices de-
ployed on the real system (e.g. PLC, energy monitors, sen-
sors, production data) in order to further extend the data
set based onwhich ontology and case based reasoning can
be conducted.

Acknowledgement: The authors gratefully acknowledge
the support of the UK EPSRC through the Knowledge-
Driven Configurable Manufacturing (KDCM) research

Authenticated | borja.ramisferrer@tut.fi author's copy
Download Date | 3/12/16 7:19 AM

242 | B. Ramis Ferrer et al., PPR model coupling for knowledge-driven assembly automation DE GRUYTER OLDENBOURG

project under the Flexible and Reconfigurable Manu-
facturing Initiative and the graduate school funding of
Tampere University of Technology in carrying out this
work.

References
1. Kong, X., B. Ahmad, R. Harrison, Y. Park, and L.J. Lee. Direct de-

ployment of component-based automation systems. In Emerg-
ing Technologies & Factory Automation (ETFA), 2012 IEEE 17th
Conference on. 2012.

2. Raza, M.B., A knowledge based appraoch to integration of
products, processes and reconfigurable automation resources.
2012, Loughborough University.

3. Murray, S., Knowledge management in manufacturing, in The
Economist. 2007.

4. Ferrer, B.R., B. Ahmad, A. Lobov, D.A. Vera, J.L.M. Lastra, and
R. Harrison. An approach for knowledge-driven product, pro-
cess and resource mappings for assembly automation. In
Automation Science and Engineering (CASE), 2015 IEEE Inter-
national Conference on. 2015. IEEE.

5. Kong, X., An approach to open virtual commissioning for
component-based automation, Doctoral Thesis, inWolfson
School of Mechanical and Manufacturing Engineering. 2013,
Loughborough University: Loughborough, Leicestershire.

6. Falkman, P., F. Westman, and C. Modig. Verification of oper-
ation sequences in process simulate by connecting a formal
verification tool. In Control and Automation, 2009. ICCA 2009.
IEEE International Conference on. 2009.

7. Raza, M., B. and R. Harrison, Design, development & imple-
mentation of ontological knowledge based system for auto-
motive assembly lines. International Journal of Data Mining &
Knowledge Management Process, 2011. 1(5): p. 21–40.

8. Ferrer, B.R., B. Ahmad, A. Lobov, D. Vera, J.L.M. Lastra, and
R. Harrison. A knowledge-based solution for automatic map-
ping in component based automation systems. In Industrial
Informatics (INDIN), 2015 IEEE 13th International Conference on.
2015. IEEE.

9. Haq, I., T. Masood, B. Ahmad, R. Harrison, B. Raza, and R. Mon-
fared. Product to process lifecycle management in assembly
automation systems. In 7th CIRP international conference on
digital enterprise technology. 2011. Athens, Greece.

10. Urrutia, U.A., P. Webb, and M. Summers. Analysis of Design for
X Methodologies for Complex Assembly Processes: A Literature
Review. In ASME 2014 International Design Engineering Techni-
cal Conferences and Computers and Information in Engineering
Conference. 2014. American Society of Mechanical Engineers.

11. Choi, S.S., T.H. Yoon, and S.D. Noh, XML-based neutral file
and PLM integrator for PPR information exchange between
heterogeneous PLM systems. International Journal of Computer
Integrated Manufacturing, 2010. 23(3): p. 216–228.

12. Brachman, R. and H. Levesque, Knowledge representation and
reasoning. 2004: Elsevier.

13. Lastra, J.L.M., I.M. Delamer, and F. Ubis, Domain ontologies for
reasoning machines in factory automation. 2010: ISA.

14. Bizer, C., T. Heath, and T. Berners-Lee, Linked data-the story so
far. Semantic Services, Interoperability and Web Applications:
Emerging Concepts, 2009: p. 205–227.

15. Polleres, A., A. Hogan, R. Delbru, and J. Umbrich, RDFS and
OWL reasoning for linked data, in Reasoning Web. Semantic
Technologies for Intelligent Data Access. 2013, Springer. p. 91–
149.

16. Kalibatiene, D. and O. Vasilecas, Survey on ontology lan-
guages, in Perspectives in Business Informatics Research.
2011, Springer. p. 124–141.

17. OWL Web Ontology Language Semantics and Abstract Syntax.
2015 [cited 2015 01 March]; Available from: http://www.w3.
org/TR/owl-semantics.

18. SPARQL Query Language for RDF. 2015 [cited 2015 01 March];
Available from: http://www.w3.org/TR/rdf-sparql-query.

19. Ramis, B., L. Gonzalez, S. Iarovyi, A. Lobov, J.L. Martinez Las-
tra, V. Vyatkin, and W. Dai. Knowledge-based web service in-
tegration for industrial automation. In Industrial Informatics
(INDIN), 2014 12th IEEE International Conference on. 2014. IEEE.

20. SWRL: A Semantic Web Rule Language Combining OWL and
RuleML. [cited 2015 12 January]; Available from: http://www.
w3.org/Submission/SWRL/.

21. Yap, C.E. and M.H. Kim. Instance-based ontology matching with
rough set features selection. In IT Convergence and Security
(ICITCS), 2013 International Conference on. 2013. IEEE.

22. Nath, R.P.D., H. Seddiqui, and M. Aono. Resolving scalabil-
ity issue to ontology instance matching in semantic web. In
Computer and Information Technology (ICCIT), 2012 15th Inter-
national Conference on. 2012. IEEE.

23. Vegetti, M. and G. Henning, ISA-88 Formalization. A Step To-
wards its Integration with the ISA-95 Standard. FOMI’2014
Formal Ontologies meet Industry: p. 17.

24. Bosch, T. and B. Mathiak. XSLT transformation generating OWL
ontologies automatically based on XML Schemas. In Internet
Technology and Secured Transactions (ICITST), 2011 Interna-
tional Conference for. 2011. IEEE.

25. Belghiat, A. and M. Bourahla. Transformation of UML models
towards OWL ontologies. In Sciences of Electronics, Technolo-
gies of Information and Telecommunications (SETIT), 2012 6th
International Conference on. 2012. IEEE.

26. Ensan, F. and W. Du, A knowledge encapsulation approach to
ontology modularization. Knowledge and information systems,
2011. 26(2): p. 249–283.

27. Festo Didactic. Processing station: Purely electricalProcess-
ing station: Purely electrical. 2015 [cited 2015 12 May]; Avail-
able from: http://www.festo-didactic.com/int-en/learning-
systems/mps-the-modular-production-system/stations/
processing-station-purely-electrical.htm.

28. Sirin, E., B. Parsia, B.C. Grau, A. Kalyanpur, and Y. Katz, Pellet:
A practical owl-dl reasoner.Web Semantics: science, services
and agents on the World Wide Web, 2007. 5(2): p. 51–53.

Authenticated | borja.ramisferrer@tut.fi author's copy
Download Date | 3/12/16 7:19 AM

http://www.w3.org/TR/owl-semantics
http://www.w3.org/TR/owl-semantics
http://www.w3.org/TR/rdf-sparql-query
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
http://www.festo-didactic.com/int-en/learning-systems/mps-the-modular-production-system/stations/processing-station-purely-electrical.htm
http://www.festo-didactic.com/int-en/learning-systems/mps-the-modular-production-system/stations/processing-station-purely-electrical.htm
http://www.festo-didactic.com/int-en/learning-systems/mps-the-modular-production-system/stations/processing-station-purely-electrical.htm

DE GRUYTER OLDENBOURG B. Ramis Ferrer et al., PPR model coupling for knowledge-driven assembly automation | 243

Bionotes
M. Sc. Borja Ramis Ferrer
Tampere University of Technology – FAST-Lab. P.O. 600, FI-33101,
Tampere, Finland
borja.ramisferrer@tut.fi

Borja Ramis Ferrer received the Ingeniero Técnico Industrial degree
in electrical engineering from the Universidad de las Islas Baleares,
Islas Baleares, Spain, in 2011 and the M.Sc. degree (with Distinc-
tion) in Factory Automation from Tampere University of Technology,
Tampere, Finland, in 2013. He is currently working towards his Dr.
Tech degree at Tampere University of Technology and is President’s
Doctoral School fellow. His research interests include the deploy-
ment of knowledge-based and cyber-physical systems in factory
automation.

Dr. Bilal Ahmad
WMG, University of Warwick, Coventry, CV4 7AL, United Kingdom
b.ahmad@warwick.ac.uk

Bilal Ahmad is a Research Fellow at WMG, University of Warwick.
He received his MSc in Mechatronics and PhD in Automation Sys-
tems from Loughborough University. He specialises in the area of
industrial automation. He has worked on a number of UK and EU
engineering research projects in collaboration with automotive
manufacturers, machine builders and control vendors to develop
tools and methods to support lifecycle of automation systems.

Dr. Daniel Vera
WMG, University of Warwick, Coventry, CV4 7AL, United Kingdom
d.a.vera@warwick.ac.uk

Daniel Vera has been working in the domain of manufacturing en-
gineering for over ten years. His research interests are focused on
various aspects of manufacturing from the modelling, analysis and
optimisation of engineering processes to the design and devel-
opment of 3D-based virtual engineering tools for supporting the
manufacturing system lifecycle, which formed the focus of his PhD
thesis. Dr Vera has been involved in numerous UK and European
projects as a Research Associate at Loughborough University and
now a Research Fellow at the University of Warwick. He is currently
taking a leading role in the commercialisation of new automation
systems and methods.

Dr. Andrei Lobov
Tampere University of Technology – FAST-Lab. P.O. 600, FI-33101,
Tampere, Finland
andrei.lobov@tut.fi

Andrei Lobov is lecturing at the Tampere University of Technology.
He received his PhD in Formal Methods of Factory Automation, in
2008. He holds BSc in Computer and System Engineering from the
Tallinn University of Technology (2001). Then, he continued his ed-
ucation at the Tampere University of Technology and received MSc
in Automation Engineering (2004). His research interests include
development of architectures, methodologies and technologies for
manufacturing systems. He is a technical coordinator of the eScop
project.

Prof. Dr. Robert Harrison
WMG, University of Warwick, Coventry, CV4 7AL, United Kingdom
robert.harrison@warwick.ac.uk

Robert Harrison is Professor of Automation Systems at WMG, Uni-
versity of Warwick and has been principal investigator on more than
35 EU, UK government, and commercial R&D projects related to
manufacturing automation with current projects focusing on lifecy-
cle engineering and virtual commissioning, control deployment and
augmented reality. He led the UK research related to Ford’s Tech-
nology Cycle Plan for powertrain manufacturing automation and
was recipient of a RAEng Global Research Award to study “Lifecycle
Engineering of Modular Reconfigurable Manufacturing Automation”.

Prof. Dr. José L. Martínez Lastra
Tampere University of Technology – FAST-Lab. P.O. 600, FI-33101,
Tampere, Finland
jose.lastra@tut.fi

José L. Martínez Lastra joined Tampere University of Technology in
1997, and became University Full Professor in 2006. His research
interest is on applying Information and Communication Technolo-
gies to the fields of Factory Automation an Industrial Systems. Prof.
Lastra leads the Factory Automation Systems and Technologies
Laboratory with the ultimate goal of seamlessly integrating the
knowledge of humans and machines. Prof. Lastra has co/authored
over 250 scientific papers and holds a number of patents in the field
of Industrial Informatics and Automation. He serves as Associate
Editor of the IEEE Transactions on Industrial Informatics, and he is
a Technical Editor of the IEEE/ASME Transactions on Mechatronics.

Authenticated | borja.ramisferrer@tut.fi author's copy
Download Date | 3/12/16 7:19 AM

VI

PRIVATE LOCAL AUTOMATION CLOUDS BUILT BY CPS: PO-
TENTIAL AND CHALLENGES FOR DISTRIBUTED REASONING

by

Borja Ramis Ferrer, Jose Luis Martinez Lastra, April 2017

Advanced Engineering Informatics vol. 32, pp. 113-125

Reproduced with permission.

Private local automation clouds built by CPS: Potential and challenges
for distributed reasoning

Borja Ramis Ferrer ⇑, Jose Luis Martinez Lastra
Tampere University of Technology, Fast-Lab., P.O. Box 600, FIN-33101 Tampere, Finland

a r t i c l e i n f o

Article history:
Received 19 March 2016
Received in revised form 23 January 2017
Accepted 25 January 2017

Keywords:
Industrial automation
Cyber-physical systems
Local cloud
Ontology
Distributed reasoning

a b s t r a c t

The employment of cyber-physical systems allows the control of processes in modern production lines.
On the other hand, several research works have recently presented how ontology-based knowledge rep-
resentation can be a suitable method for modelling industrial systems. However, system models are
located far away from where the data is generated which adds complexity for cross-domain communi-
cations and resource management. Current embedded devices can encapsulate ontological models that
can be accessed as local resources. This article presents the integration of interconnected devices as
the computational nodes of a cloud which is private and local. In this way, functionalities, such as knowl-
edge management and process control can be performed closer to the industrial equipment. Moreover,
this research work discusses the potential and challenges for performing distributed reasoning in the pri-
vate local automation cloud. In addition, the article describes main aspects of the system architecture and
the behaviour of the networked embedded devices in the cloud. The research work results will be used as
a high-level roadmap for further system implementation.

! 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The industrial automation has evolved passing through several
generations of embedded devices, which are used for process con-
trol at the factory floor. This evolution has resulted in the develop-
ment of modern Web Service (WS) enabled controllers, such as the
S1000 from Inico Technologies,1 which allows the implementation
of the Service Oriented Architecture (SOA) paradigm [1] in modern
production lines, as described in [2].

During last decades, industrial control systems have employed
different standards for implementing multiple solutions. For exam-
ple, the IEC-61131-3 [3] and the IEC-61499 [4] can be used for
modelling and information exchange in distributed control sys-
tems. Actually, one of the main challenges in modern industrial
control systems is the management of a large amount of data that
is exchanged between system components. One solution is the
employment of IEC-61499 for modelling automation systems
within Function Blocks (FB) networks [5].

In addition to standards, the industrial domain has included the
use of Knowledge Representation (KR) for implementing

knowledge-based systems. These systems are beneficial in the
industrial field for:

! overcoming the interoperability issues between system mod-
ules within data mappings [6,7]

! monitoring system status at runtime [8], and
! implementing knowledge-driven approaches, in which
ontology-based KR enables the modelling and decision-
making support in systems [9,10]

Recent research in the industrial automation domain present
system architectures in which the management and location of
the knowledge is performed away from the shop floor physical
machines. As an example, the eScop project2 (Embedded systems
Service-based Control for Open manufacturing Project) proposes a
possible architecture in [11]. The implementation of the project
architecture and principles is described in [12]. Similar to the ISA-
95 standard automation pyramid,3 the eScop architecture presents
that machines reside at the lowest level (i.e. device or shop floor
level) of a hierarchical multi-layer structure. Then, the Industrial
machinery is isolated from the process of information, which is
performed by production management level systems; e.g., the

http://dx.doi.org/10.1016/j.aei.2017.01.007
1474-0346/! 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: borja.ramisferrer@tut.fi (B. Ramis Ferrer), jose.lastra@tut.fi (J.L.

Martinez Lastra).
1 http://www.inicotech.com/.

2 http://www.escop-project.eu/.
3 http://isa-95.com/.

Advanced Engineering Informatics 32 (2017) 113–125

Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier .com/ locate/ae i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2017.01.007&domain=pdf
http://dx.doi.org/10.1016/j.aei.2017.01.007
mailto:borja.ramisferrer@tut.fi
mailto:jose.lastra@tut.fi
http://www.inicotech.com/
http://www.escop-project.eu/
http://isa-95.com/
http://dx.doi.org/10.1016/j.aei.2017.01.007
http://www.sciencedirect.com/science/journal/14740346
http://www.elsevier.com/locate/aei

Manufacturing Execution System (MES). Once the information is
processed, the upper layers orchestrate the invocation of operations
that are described in Remote Terminal Units (RTUs), which are
embedded devices physically connected to the machinery. Therefore,
RTUs facilitate the implementation of the Cyber-Physical Systems
(CPS) concept, which is defined as the integration of computation
(cyber systems) and controlled equipment (physical systems) [13].
Basically, RTUs act as a gateway for allowing cross-layer communi-
cation between higher level systems and the industrial equipment
which is located at the device level. A representation of the pyrami-
dal structure is illustrated in Fig. 1.

As depicted in the above diagram, industrial enterprise systems
are distributed in different levels; i.e. factory shop floor, supervi-
sory control, production management and business management.
RTUs (and also PLCs) are the interface between the device level
and control level. The flow of information can be (i) horizontal,
i.e. exchange of information between systems residing on same
level or vertical (ii) cross-layer communication between systems
located at different levels.

This research is motivated by the fact that the computational
resources of the embedded devices used in the industrial domain
have increased. Therefore, now it is possible to add more function-
ality that currently reside in higher levels of the automation pyra-
mid into the devices which are located at the factory shop floor
level. Moreover, this research work is motivated for the reduction
of the high cost of integration in the industrial automation field.
The interconnection of autonomous, flexible and configurable
devices should result in a decrement of integration efforts because
systems that currently reside on higher levels of the automation
pyramid will be replaced by functionalities hosted in the embed-
ded devices located at the factory shop floor.

This research proposes a new architecture for the hierarchical
structure implemented in industrial automation enterprises, in
which embedded devices will be computational nodes that cooper-
ate for making decisions, controlling industrial processes and other
functionalities that are currently managed and coordinated away
from the device level. In fact, the proposed distributed system net-
work that is composed by embedded devices creates a private local
automation cloud, which is capable of receiving and solving exter-
nal requests about services and computation resources. On the
other hand, the presented approach describes the potential and
challenges of using embedded devices that integrate their local
resources in order to accomplish distributed reasoning. Therefore,
the contribution of this research is not only to propose of an alter-
native for the conventional architecture in industrial enterprises,

but also to provide the design of the private automation cloud,
ontological model and behaviour between devices for exchanging
information.

The rest of the paper is structured as follows: Section 2 presents
literature and industrial practices of aspects and areas of interest
for the presented architecture to be developed and implemented
in the field of factory automation. Section 3 introduces the princi-
ples of the private automation cloud and describes the encapsu-
lated knowledge and behaviour of devices for solving incoming
requests. Then, Section 4 discusses the potential and challenges
of the presented approach. Finally, Section 5 presents the conclu-
sion and further work of the research.

2. Literature and industrial practices

2.1. Cloud computing definitions and some concepts

Cloud computing (CC) is a promising paradigm that is currently
applied in several domains, such as industrial automation domain.
In a nutshell, CC allows abstracting and storing computational
resources, as well as providing on-demand access to those
resources. CC is related to other research areas as high-
performance, utility and grid computing. As an example [14], offers
a detailed comparison between grid and CC. Fundamentally, CC can
be defined as a computing model composed by networked ele-
ments, which control their own resources. The computing
resources are hosted locally by each element, i.e. a server. Never-
theless, the cloud can be understood from the outside as a unique
element that contains a large amount of cloud services that are
used for responding to incoming service requests. In addition,
cloud services are a type of WS [15].

There are three different service models (or categories) of CC:
Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS)
and Software-as-a-Service (SaaS). Usually, IaaS, e.g. Google Com-
pute Engine (GCE),4 utilizes virtual computer resources that are out-
sourced by an organization [16]. IaaS users can remotely access and
manage the data. Thus, IaaS is also known as HaaS (Hardware-as-a-
Service). Secondly, PaaS is a service category that permits developers
to implement their applications on a cloud. For example, Microsoft
Azure5 provides both IaaS and PaaS. Finally, the SaaS, e.g. Google
Gmail,6 service model allows users to access vendors’ applications
within the web. It should be noted that way of accessing to PaaS
and SaaS is similar [17].

On the other hand, CC can be deployed mainly as a private, pub-
lic or hybrid clouds, which are compared in [18]. A private cloud is
a cloud that can be hosted internally or externally but operated
only for a unique organization. Then, private cloud services are
accessible solely for users and third-party applications, which
belong to the organization that owns the cloud. On the other hand,
cloud services of a public cloud are accessible by any user. This is
possible because service access is provided through a public net-
work. Finally, hybrid clouds are composed by more than one cloud.
This fact does not exclude the composition of private and public
clouds in the same hybrid cloud. For example, hybrid cloud is ben-
eficial when an organization requires more computing resources
that the ones offered by its private cloud. Then, the creation of a
hybrid cloud, by incorporating e.g. a public cloud with accessible
computing resources, is a possible approach for meeting the
requirements. The deployment of hybrid clouds implies developing
federated capabilities, which is needed for linking distributed
resources.

Fig. 1. A representation of the ISA-95 automation pyramid, including WS enabled
RTUs.

4 https://cloud.google.com/compute/.
5 http://azure.microsoft.com/en-us/.
6 https://mail.google.com/.

114 B. Ramis Ferrer, J.L. Martinez Lastra / Advanced Engineering Informatics 32 (2017) 113–125

https://cloud.google.com/compute/
http://azure.microsoft.com/en-us/
https://mail.google.com/

2.2. Integration of cyber and physical systems

The integration of cyber and physical systems is known as CPS
[13]. Recent advances on CPS permit cross-domain integration and
Machine-to-Machine (M2M) communication in the industrial
automation field. Moreover, according to [19], the emergence of
CC in the industry, and its combination with CPS, will make it pos-
sible to achieve some advantages as scalability and flexibility of
resources, among other features in future manufacturing systems.
This is possible due to the success of SOA implementation in fac-
tory automation. For example [2,20], demonstrated that function-
alities of shop floor equipment can be exposed outside through
WS. Then, by the deployment of a cloud with access to the shop
floor services, integration of equipment and the cloud will permit
accessing to physical resources through cloud services.

The relevance of CPS is discussed e.g., in [21]. Aforementioned
research work introduces the next generation of manufacturing
industry, referred as the Industry 4.0, which is to be built by CPS.
Fundamentally, any physical ‘‘thing” related to industrial processes
will be connected to the Internet, realizing the principles of the
Internet of Things (IoT), so it will be also integrated to cyber-
systems. A formal overview of the standards and patents for the
IoT, presented as a key enabler for the Industry 4.0 can be found
in [22]. Furthermore, an example of architecture for implementing
CPS on Industry 4.0-based manufacturing systems is presented in
[23].

2.3. Knowledge representation in factory automation

Knowledge Representation (KR) is a part of the artificial intelli-
gence concerned on describing the world and allowing computer
systems to make decisions by using such descriptions [24]. More-
over, a Knowledge Base (KB) can be defined as an engineering arte-
fact used to keep the knowledge representation. There is a large
amount of KR formalisms e.g., ontologies, production rules or
frames. A large amount of factory automation developments has
used ontology-based KR for both system and product knowledge
modelling as e.g., the research works presented in [25–29]. T. Gru-
ber defined ontology as ‘‘an explicit specification of a conceptualiza-
tion” [30]. Then, ontologies contain formal description about
certain domain [31].

Although there are many semantic languages for modelling
manufacturing systems [32], the Ontology Web Language (OWL)7

is preferred for such descriptions due to its high degree of expressiv-
ity. Truly, OWL is a vocabulary extension of the Resource Description
Framework (RDF)8. Then, it is possible to use RDF-based query lan-
guages such as the SPARQL Protocol and RDF Query Language
(SPARQL)9 and the SPARQL Update10 for retrieving and updating
ontological model data, respectively. This is an important fact for
integration of computer systems because whenever a system needs
some data described in the model, it can access it by querying the
model. For example, the research work described in [33] presents
a set of queries used for retrieving data from a production line onto-
logical model. As it can be seen in aforementioned research work,
OWL-S is an OWL-based model for service description.

On the other hand, reasoning is defined in [24] as ‘‘the formal
manipulation of the symbols representing a collection of believed
propositions to produce representation of new ones”. This process
is performed by semantic reasoners or reasoning engines operating
on OWL models. A comparison between existing reasoning engines
can be found in [34]. This is beneficial for systems implementing

ontology-based KR because reasoners can deduce dynamically data
sets that are not defined as a fact when the model is created. For
instance, data mappings and classification of system instances in
the model are tasks easily performable by semantic reasoning
engines [35]. It should be noted that for supporting reasoner infer-
ences, the use of the Semantic Web Rule Language (SWRL) allows
the definition of rules on top of OWL models [8]. Moreover, the uti-
lization of reasoning engines allows checking the inconsistency of
ontological models, resolving conflicts and reducing redundancy of
data. In this scope, a recent research work presented an ontological
framework that supports decision making in industrial scenarios
within the use of semantic rules created for domain-specific
ontologies [10].

Several research works in the factory automation domain pre-
sent solutions that implement KR in different kinds of architec-
tures. For instance, one of the previous cited research works [33],
combines SOA and KR. In fact, the same research team describe
how to dynamically retrieve OWL-S descriptions of services in
order to find the ones required to perform industrial process
actions [36]. Besides its integration with SOA, KR is also imple-
mented in different kind of architectures, such as event driven
architecture as recently presented in [37].

2.4. Distributed reasoning

In distributed systems, networked computer systems coordi-
nate their actions within the exchange of messages. In fact, the
coordination of actions is done for solving incoming requests to
the system. It should be noted that, in this case, resources are
understood as the KB data of a computer system. Then, distributed
reasoning is defined as a process performed by several computer
systems, which exchange messages for integrating their resources.

The principal objective of distributed reasoning is to reason
integrated KB data of different computer systems. Fundamentally,
taking into account that each computer system owns a different
local KB, the integration of several computer systems data is
required for responding to requests that cannot be responded
using only the resources of a single computer system.

Therefore, it can be stated that the implementation of this beha-
viour is a requirement for future private and local automation
clouds allowing embedded devices to cooperate for solving prob-
lems jointly. An employable mechanism for such need has been
already described in [38]. Aforementioned work presents an
approach for managing distributed knowledge, which is encapsu-
lated in embedded devices, aiming the integration of resources
for solving incoming requests.

3. A private automation cloud built by CPS

This research work proposes the creation of a private automa-
tion cloud composed by embedded devices, which encapsulate
knowledge and functionalities that nowadays are nested and man-
aged above the device level. This cloud is private because is only
accessible by allowed elements of a unique organization and
resides locally in the same organization. The proposed approach
is motivated by the evolution of devices currently available and
used at shop floors for process control.

Nowadays, embedded devices have much more computational
resources than previously. Hence, the performance of additional
tasks beyond direct process control is now feasible. Some of these
tasks, as the encapsulation of system knowledge, are directly down-
graded from, in this case, production management to shop floor
level. Nevertheless, the inclusion of new duties also implies the
development of non-existing ones, as e.g., the implementation of
algorithms that devices must be capable to execute for managing

7 https://www.w3.org/TR/owl-ref/.
8 https://www.w3.org/RDF/.
9 https://www.w3.org/TR/rdf-sparql-query/.

10 https://www.w3.org/TR/sparql11-update/.

B. Ramis Ferrer, J.L. Martinez Lastra / Advanced Engineering Informatics 32 (2017) 113–125 115

https://www.w3.org/TR/owl-ref/
https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/sparql11-update/

knowledge encapsulation and knowledge integration, which is
needed for distributed reasoning [38].

3.1. Private cloud architecture

The private automation cloud includes interconnected embed-
ded devices which control production line processes. This means
that the private cloud is directly connected to the physical equip-
ment, integrating physical resources with cyber systems. A basic
architecture representation of the system built by CPS is shown
in following Fig. 2.

As it is explained in [2], the SOA paradigm can be implemented
in actual production lines by the use of certain RTUs, e.g. S1000
from Inico Technologies shown in Fig. 2. This is possible using
the Device Profile for Web Services (DPWS) stack that allows
implementing WS in resource-constrained devices. Through this
technology, embedded devices can be discovered and it is also pos-
sible to invoke described services [39], among other functionalities.

Then, the architecture shown in Fig. 2 represents how the shop
floor equipment is connected to embedded devices, which control
the machine processes. It should be noted that the connection
machine-device depends on the machine that is controlled e.g., a
conveyor can be connected within digital I/Os and robots via
RS232. Aiming the illustration of how this is implemented in a real
scenario, Fig. 3 shows RTUs employed by the FASTory line, which is
an assembly line located at Tampere University of Technology
facilities, for controlling processes. Fig. 3 shows two different views
of FASTory line cells, which are capable to draw 729 different vari-
ants of mobile phones (FASTory line detailed description is
included in [12]).

The objective of showing two different perspectives of FASTory
cells is to show i) the major components of each cell (i.e. conveyor
and SCARA robot) and ii) the connected RTUs. As it can be seen at
the bottom right side of Fig. 3, the three S1000 controllers (that are
identifiable by their blue led lights) are connected to the conveyor
segment and robot of the corresponding cell. Moreover, one extra
RTU is used as an energy meter to manage and monitor the energy

Shop floor
equipment

Private
cloud

Fig. 2. The private automation cloud basic architecture.

Fig. 3. Three industrial controllers are used for controlling processes of a FASTory line cell.

116 B. Ramis Ferrer, J.L. Martinez Lastra / Advanced Engineering Informatics 32 (2017) 113–125

consumption of the equipment. It should be noted that this
research work is not restricted to the use of certain RTUs. For
example, some experiments for controlling processes within Rasp-
berry Pi11 have been already tested [38].

On the other hand, the devices that inhabit in the private cloud
need to encapsulate knowledge of the system, which will permit
devices to decide and control the production line. In fact, [9,11]
describe the use of ontology-based knowledge representation in
knowledge-driven approaches in actual production lines.

However, aforementioned researchworks implement the knowl-
edge localizationandmanipulation far away fromwheredata is gen-
erated (i.e. physical equipment). This research work proposes
lowering the knowledge representation to the device level. Actually,
an approach for decentralising the knowledge used for knowledge-
driven systemswithin the eScopproject solution is described in [40].

The approach discussed in this article goes one step forward
because proposes not only the decentralisation and lowering the
knowledge to the device level; but also the implementation and
control of higher-level functions on devices. In order to benchmark
the proposed approach, Table 1 shows different aspects of the orig-
inal FASTory line configuration that will be improved within fur-
ther implementation. Some of the aspects have been contrasted
with the ones of the research work presented in [2].

As shown in Table 1, the first direct benefit for the FASTory line
is the re-configurability of production type. Meanwhile the original
line configuration permits the production of one product, the
deployment of embedded devices that are capable of controlling
and linking different FASTory line resources will permit customiz-
ing and ordering remotely products at run time.

On the other hand, the implementation of the cloud brings new
features as remotemonitoring, addressability of resources, and hor-
izontal and vertical integration. However, the message overhead
will be increased due to the fact that themessages being exchanged
contain additional information than the signal data created at differ-
ent locations of the production line. Despite on this, and thanks to
the representation of knowledge, the data becomes more readable
and understandable for humans. Moreover, as the data format is
homogenized the configuration will demand less effort.

Finally, the fact of adding decentralized computational nodes
that are linked to physical resources, causes changes to the opera-
tion and architecture of the system:

! The control architecture becomes distributed because the nodes
will exchange messages in order to solve requests

! Data will be processed at device level, instead of having a cen-
tral unit for data processing

! The control logic will be event based because nodes will react to
notifications related to changes on machine status

! The amount of computational nodes increases and will be scal-
able. In fact, the implemented SW and HW will be highly reusa-
ble and new devices will be deployable at run time

! In contrast to recent approaches in the same production line
[12] the knowledge of the system will be decentralized

3.2. Main concepts to be included in device knowledge models

The KB encapsulated in embedded devices is one of the most
important element of the proposed architecture because contains
the information used by each cloud device to interact and make
decisions with the rest of peers. In this research work, such knowl-
edge container is to be implemented within ontologies. More pre-
cisely, OWL is the selected language to describe the KB, which will
be inspected and updated within SPARQL-based language queries.

Obviously, each KB has different type of information that is
based on each device role in the cloud. Nevertheless, there are a
set of concepts that must be similarly described in each KB i.e. Net-
work, Service and Device. In this way, the only different data type
contained in KBs is the one e.g., used for controlling specific equip-
ment to which the embedded device is connected.

Following Fig. 4, presents the main concepts that each device
hosts as local resources in an ontological-based model.

As explained, Fig. 4 illustrates the principal concepts to be
described in the ontological model, which is hosted in the embed-
ded devices forming the private cloud. Such kind of information is
required to be included in each device because this research work
proposes to handle requests and decision-making fully in the pri-
vate automation cloud itself. Therefore, devices must know the sta-
tus, location and type of peers that inhabit in the same network.
The specific reason for each concept to be included in the ontology
is described below:

! Network: It contains information about the network or, in this
case, the private cloud. It includes the addresses of other
devices in the network. In this manner, a device knows other
peers’ endpoints to send any type of request.

! Service: It includes information about the services described in
the device as, for example, service and message types and oper-
ations. To design such description, OWL-S specification12 can be
used. Through this concept, device capabilities are exposed to
other peers, which is a requirement because the functionality
description of each device must be accessible in the private cloud.
Basically, anything that a device is capable to perform, or knows,
must be shared with other devices residing in the same network.

! Device: It contains general information of the device as e.g., its
type, address, operation system and firmware version. This data
is important because a Device X can access to Device Y basic
information. For instance, a Device X may employ this informa-
tion to update its Network concept information with the Device
Y address. Therefore, this supports devices to decide in which
situation and how to access other peers.

11 http://www.raspberrypi.org/.

Table 1
Benchmarking the implementation of the approach in the FASTory line.

Original Private local cloud

Production type Mass Reconfigurable
Communication

protocols
Open and Proprietary Open

IT infrastructure Poorly reusable Highly reusable
Control architecture Centralized Distributed
Control logic Scan based Event based
Modularity At manufacturing cell

level
At device level

Addressability Hierarchical Direct (query)
Processing layer Fixed Customizable
Processing of data At central unit At device level
Number of

computational nodes
1 (centralized
architecture)

Many (decentralized
architecture)

Plug and play No Yes
Output Signal data Information
Data format Heterogeneous Homogeneous
Message overhead No Yes
Message readability by

humans
No Yes

Horizontal and vertical
integration

No Yes

Remote monitoring Additional middleware
is required

From cloud and/or from
device

Cyber security Obscurity (i.e. system
isolation)

Defence-in-depth

12 https://www.w3.org/Submission/OWL-S/.

B. Ramis Ferrer, J.L. Martinez Lastra / Advanced Engineering Informatics 32 (2017) 113–125 117

http://www.raspberrypi.org/
https://www.w3.org/Submission/OWL-S/

! Others: It includes data instances related to the specific role, pur-
pose, operations, etc. that thedevice is responsible of. Then,Others
will be a conjunct of classes related to the device type. It should be
noted that the Others concept of Fig. 4 is a mere representation so
that in reality a device can includemore than one concept needed
for such description in the ontology. For example, if a Device Z is
controlling an entire cell of an assembly line, the Others concept
might be implemented as a set of concepts for describing compo-
nents and processes of that specific cell. On the other hand, if a

Device T is used for calculating Key Performance Indicators (KPIs),
theOthers conceptmight consist in a set of concepts for describing
the type of data and equations to be calculated.

Basically, the ‘‘other” concepts included in devices describe
information of the specific tasks that each device performs in any
controlled system that uses this approach.

Aiming an exemplification of the above described device’s
ontology main concepts, Fig. 5 shows a possible class hierarchy

Fig. 5. Class diagram example of a device ontology used for describing and controlling a FASTory line cell.

Private
cloud

Shop floor
equipment

Fig. 4. Main concepts of the ontological-based knowledge representation.

118 B. Ramis Ferrer, J.L. Martinez Lastra / Advanced Engineering Informatics 32 (2017) 113–125

of a device, which is used to control a manufacturing cell of
the FASTory line. Then, the presented class diagram demon-
strates how the concepts can be implemented in a real-case
scenario.

First, the presented class diagram shows that the instance of the
Network class will handle an array, labelled as deviceAddress. This
attribute is an array which contains all the addresses of the devices
of the network. As described in next Section 3.3, once a device is
added to the cloud it shares its address so it can be accessed by
other devices. Then, each time that a new device enters in the net-
work, the deviceAddress array of each device is updated.

On the other hand, the Device class is the one to include the
device instance. Besides having data type properties, or attributes
(as e.g. address, operationSystem and firmware), Device is a super-
class of ControlDevice and MonitorDevice, which define the device
type. Meanwhile ControlDevice type indicates that the device is
used for controlling processes with physical consequences in the
environment; MonitorDevice types includes the device instance if
is just used for operations that does not change directly the phys-
ical world (e.g., calculations, checking values of sensors and data
manipulation). In fact, a device can be classified in both types if
it is used for both types of tasks. This classification depends
directly on the types of services that the device supports to the pri-
vate cloud.

Any device’s KB of the private cloud includes a description of
the services that can be of two types i.e., CyberService and Physi-
calService. Services belonging to CyberService are those that does
not perform any change in the physical environment as e.g. data
request services. On the other hand, services belonging to Physi-
calService are those which imply physical changes as e.g., move,
clamp or draw operations.

Finally, to show how Others concept is really implemented in a
real-case scenario, Fig. 5 shows a set of classes that are needed for
describing the physical equipment and process to execute in FAS-
Tory cells. Then, as the device of which the KB’s class diagram is
presented is responsible of the control of FASTory cell operations
must include the description of (i) physical equipment, (ii) opera-
tions to execute and (iii) processes to perform. Such information,
by order, is included in the ontology within Equipment superclass
and other subclasses (i.e. Cell, Robot, Pallet, Conveyor and Con-
veyorSegment), Operation and Process classes. Then, certain pro-
cesses that can be performed in the cell are divided into
operations (linked within the includesOperation object property)
that can be invoked by services described in Service class (linked
within the invokedBy object property). It should be noted that

Fig. 5 shows just an example of a device that is controlling opera-
tions of a manufacturing cell. Therefore, for a different type of
device, the Others set of classes will be different. However, Network,
Device and Service concepts will have the same structure, following
the described approach.

Furthermore, as the presented diagram is just the KB of one
device of the private cloud, the KB of the whole cloud would be
the integration of all devices’ KBs. Then, devices are capable of
accessing and sharing these kind of information for accomplishing
any distributed reasoning task, which is required for controlling
processes. One of the benefits of decentralizing the system knowl-
edge description in the cloud is that the knowledge does not have
to reside only in one critical device, which (i) if it fails, the system
will fail and (ii) most probably, it will not have enough resources
for hosting and managing the model of a large production line.
Basically, the entire model is decentralized and hosted by several
devices, which cooperate, finding, integrating and reasoning the
required information, for solving requests. It should be noted that
this knowledge is accessible by other devices using the SPARQL 1.1.
Graph Store HTTP Protocol13.

3.3. Behaviour of embedded devices

Besides the ontological model encapsulation in embedded
devices, the behaviour of such devices in the cloud must be also
designed and implemented. The exchange of messages between
embedded devices will be performed within a set of algorithms
that allow devices to cooperate in the cloud. It is absolutely essen-
tial that cloud devices include device initialization and reasoning
process performance algorithms, presented in [38]. In order to clar-
ify how these algorithms are to be executed, this section includes a
description of each one.

Firstly, the device initialization algorithm permits that a new
device makes itself discoverable by other peers as shown in the
UML diagram of Fig. 6.

Any cloud device will be capable to access to the resources of
the new device because the address of new devices is broadcasted
to all peers in the cloud in the first step of the device initialization
algorithm within the ‘‘Hello Message”. Hence, this algorithm must
be executed when a device enters in the private cloud. Succes-
sively, the new device will receive a response including the address
of the corresponding devices that are answering to the ‘‘Hello Mes-
sage”. In this way, the new device will populate the Network class

Fig. 6. Sequence diagram for registering a new device [38].

13 https://www.w3.org/TR/sparql11-http-rdf-update/.

B. Ramis Ferrer, J.L. Martinez Lastra / Advanced Engineering Informatics 32 (2017) 113–125 119

https://www.w3.org/TR/sparql11-http-rdf-update/

of its own KB with the addresses of peers that inhabit in the same
cloud.

On the other hand, the reasoning process performance algorithm
defines the sequence of messages required for exchanging infor-
mation in a reasoning process as shown in Fig. 7. The reasoning
process is required for reasoning the entire system model, which
is formed by all resources hosted and managed by the embedded
devices.

As it can be seen in Fig. 7, the reasoning process performance
algorithm permits cloud devices requesting data that is needed
for responding to an incoming query. The request is sent by a client
to the system through the cloud interface. In fact, one of the devices
of the cloud will take the lead of the reasoning process. As shown
in Fig. 7, this device is known as the requester device. The requester
device will be selected by the interface according to the available
resources that devices have to compute the incoming queries.
The task of the requester device is to handle the reasoning process,
which implies (i) receiving the request from the interface, (ii) dis-
tributing the request to all devices, (iii) collecting the results from
devices, (iv) integrating all knowledge, (v) executing the query and
(v) sending a response to the interface. Moreover, as it can be seen
in the last step of the sequence diagram, the requester device will
restore its own KB after handling a reasoning process. This last
action is executed in order to remove redundant knowledge that
is already hosted by other devices but needed in the knowledge
integration.

The reasoning process performance algorithm is a process that
requires the cooperation of all devices for integrating all the
knowledge related to the request and creating a valid response that
must satisfy the client. The incoming queries will request (i) infor-
mation for monitoring resources, (ii) computation of cloud
resources or (iii) order a product that can be performed by the
manufacturing system being controlled by the private cloud.

Therefore, solving requests will frequently imply the execution of
services hosted by different embedded devices.

3.4. Implementing ontologies for embedded devices and exemplifying
distributed reasoning in the FASTory line

The objective of this section is to show an example of executing
distributed reasoning in a concrete manufacturing scenario, i.e. the
FASTory line.

Firstly, an ontological model that follows the class hierarchy
shown in Fig. 5 is created within an ontology editor. For this exper-
iment, Protégé14 has been used as the tool for editing the model.
Once the ontology is created, it is populated with the instances being
controlled by corresponding embedded devices. Thereby, if the
device 1 is hosting model 1, the instances of model 1 will represent
the industrial components being controlled by device 1. Fig. 8 shows
the ontology of the device that is connected and controls the compo-
nents of the FASTory cell 1.

As it can be seen in Fig. 8, the ontology includes all the classes
shown in the ontology model presented in Fig. 5. In addition, Fig. 8
shows, as an example, that the Robot 1 (controlled by the device 1)
has a set of operations that can be performed: DrawFrameA, Draw-
FrameB, DrawKeyboardA and DrawKeyboardB. These operations will
be executed when the linked services through the hasService object
property are invoked.

After the design and implementation of each device ontology,
the models are deployed into corresponding devices. The deploy-
ment of device models will differ according to the type of embed-
ded devices, which will employ different platforms. Nevertheless,
this task will imply always two major steps: (i) to place the

Fig. 7. Sequence diagram of a reasoning process performance [38].

14 http://protege.stanford.edu/.

120 B. Ramis Ferrer, J.L. Martinez Lastra / Advanced Engineering Informatics 32 (2017) 113–125

http://protege.stanford.edu/

ontology file into the device and (ii) to implement an interface that
permits the interaction with the model. For example, the ontology
model can be placed into the SD card of a Raspberry Pi and the
interface can be implemented within Apache Jena,15 which is a
framework that permits the management of RDF models. In fact,
the Apache Jena Fuseki is a server that can run as an operating system
service providing the SPARQL 1.1. and the SPARQL 1.1. Graph Store
HTTP protocols to query, store and update RDF-based models.

For the FASTory line, incoming queries to the system can be
simple monitoring requests, such as asking the status of a robot
or complex requests, e.g., order the production of a mobile phone.
In any case, the system will react in the same way to requests, i.e.
executing the distributed reasoning process. Fundamentally, the
execution of the aforementioned algorithm permits the integration
of knowledge that is located at different computational nodes to
ensure that the validation of the query is done according to the
whole model information.

As the research proposes the use of RDF-based models, the
ontology has been implemented in OWL syntax, which can be
queried within SPARQL queries. In order to present an example
of distributed reasoning in the FASTory line, Fig. 9 shows a moni-

toring query to be sent and executed by the private automation
cloud.

The query shown in Fig. 9 can be used for requesting a list of
robots including their status, location and operations that can per-
form. As previously said, each embedded device of the FASTory line
hosts an ontology with similar class hierarchy but populated with
the specific industrial equipment that each peer controls. As each
device is used for controlling a different cell, a unique device is
not capable of answering the incoming query shown in Fig. 9
including the status of all assembly line robots. Basically, as an
example, device 1 will be capable of answering with the status,
location and operations of Robot 1 but not with the ones of, e.g.,
Robot 2, as shown in Fig. 10.

Nevertheless, the execution of the distributed reasoning process
will permit the cloud to achieve a valid answer to be returned to
the cloud client. As it can be seen in the sequence diagram of
Fig. 7, the incoming query will be broadcasted from the requester
device to all cloud devices. Then, each device having any knowl-
edge instance of the type of any query element will be returned
to the requester device. Afterwards, the requester device will exe-
cute the query with all collected knowledge and conclude the
answer, which will be redirected to the cloud interface. Assuming
that (i) the integration model is created after the execution of the15 https://jena.apache.org.

Fig. 9. Example of SPARQL query to be solved by the private cloud within the distributed reasoning process.

Fig. 8. OWL model hosted by device 1.

B. Ramis Ferrer, J.L. Martinez Lastra / Advanced Engineering Informatics 32 (2017) 113–125 121

https://jena.apache.org

distributed reasoning process and that (ii) this is tested in a
reduced version of the FASTory line with 4 cells: the requester
device for the query shown in Fig. 9 obtain the result depicted in
Fig. 11.

As it can be seen in the result depicted by Fig. 11, the requester
device will be capable of answering the incoming query including
all robot status, location and operations of the line. The result is
achieved due to previous integration of each device knowledge
related to the incoming query.

Another example to discuss the execution of the distributed
reasoning process can be a request for routing a pallet through
the assembly line. In order to control the transport of pallets in
the FASTory line, services describing conveyor operations must

be executed in certain order. For example, assuming that the client
requests for a valid path to route the pallet from point A to point B,
the cloud needs first to conclude the layout of the line. Then,
assuming that those points are manufacturing cells and that the
query asks about locations, all devices will share the knowledge
instances related to location type; i.e., robots, conveyors and man-
ufacturing cells. Then, the requester device will be capable of shap-
ing the line because the integrated model will contain all cell
physical connections.

In fact, when an incoming query requests the production of a
mobile phone, the locations of each robot that can perform
required operations for the order must be located. As shown in
Fig. 11, the current FASTory line configuration has no single cell

Fig. 10. Result of query execution in device 1.

Fig. 11. Query result after distributed reasoning process performance.

122 B. Ramis Ferrer, J.L. Martinez Lastra / Advanced Engineering Informatics 32 (2017) 113–125

capable of assembling all possible component types of a mobile
phone (i.e. same type of keyboard, screen and frame). Then, the
execution of required operations implies to conclude first the loca-
tion and status of the equipment capable of performing such
operations.

4. Discussion

Once the principles of the private cloud architecture and
requirements of embedded devices have been described, potential
and challenges of the approach are presented in this section.

4.1. Potential of the approach

The proposed research looks forward the creation of a private
automation cloud formed by embedded devices that handle func-
tionality and knowledge management, nowadays done centrally
and away from where the data is generated (e.g., industrial equip-
ment, machines, sensors, actuators). Moreover, the presented
approach proposes to create a solution within resource-
constrained devices, which are capable to cooperate for performing
distributed reasoning. The main potential of the presented
approach is:

! Network: The implementation of such approach will be useful
for evaluating the limits of using embedded devices not only
for data collection and shop floor process control, but also i)
to process the data and transform it into usable information
and ii) to cooperate with other peers in the cloud for performing
the required distributed reasoning, based on demand of private
cloud resources. Hence, the development of the proposed dis-
tributed system will be useful to test that the new generation
of embedded devices are ready to operate and fulfil the require-
ments of industrial systems, which are complex and dynamic
environments. In addition, this research work has a direct
impact on future awareness, flexibility and re-configurability
of manufacturing systems [41] in the monitoring and supervi-
sory control area.

! Reduction of high integration cost: One of the motivations of this
research is the high-cost of integration in the industrial automa-
tion field, which can be reduced by the use of distributed intel-
ligence [42]. Then, this research can support such reduction by
the automation of the embedded systems configurability in fac-
tory floors through reasoning, using the whole range of compu-
tational resources available in the proposed cloud.

! Decentralisation of knowledge-driven management solutions: This
approach follows some principles described in novel
knowledge-driven approaches, which are presented in [40] as
an alternative for conventional architecture and operation of
MES [11]. The CPS integration permits the development of the
proposed cloud that control system processes. Potentially, this
fact directly contributes to improvement of efficiency and pro-
ductivity of industrial automation processes.

! Integration with external systems: The industry is already
employing internet technologies and web-based standards for
semantic modelling, linking data and requesting resources. This
allows entities to describe, request and manipulate system’s KB
for decision-making and execution of operations. As such tech-
nologies and standards are the ones to be used in presented
approach, the interoperability of the cloud with actual external
systems (e.g. legacy systems) is achievable. Then, if a third party
is interested in demanding computational resources to the
cloud, it can do it remotely and without communication issues
but, obviously, with prior agreement between the cloud owner
and interested organisations.

! Multi-cloud or interconnection of clouds: A multi-cloud collabora-
tion between similar clouds owned by the same organization at
different geolocations is possible. This connection can be used
for sharing and, hence, increasing computational resources of
a unique cloud. In this way, different clouds can be specialized
in different computation of data, besides controlling the pro-
cesses of connected equipment. Actually, clouds that are smal-
ler in terms of computation power can consume e.g. data
processed with complex and expensive algorithms. Then,
scheduling plans, datasets, KPI calculations, among other sort
of data can be requested and used between different clouds that
manages similar processes in a same organization.

4.2. Challenges of the approach

For making possible the realization of the presented approach,
some challenges become, at the end, requirements that must be
addressed. Karnouskos et al. describes in [43] their vision for
cloud-based industrial CPS, presenting trends and challenges on
this fairly new research topic. In fact, some of the already pre-
sented challenges in [43] are also applicable in this research. The
main challenges of the presented approach are:

! Implementation of device behaviour: Explained algorithms in Sec-
tion 3.3 and others e.g., dynamic discovery of devices must be
implemented and evaluated. The importance of these algo-
rithms relies on the need of developing robust and efficient
device intercommunication in the cloud.

! Development of messages: Previous challenge implies the need of
designing message types and structures for information
exchange. This point is important so that devices can interact
between themselves or/and external users of the cloud. These
messages can be understood as queries or request that are dif-
ferent depending on the situation in which devices will be
involved. Then, besides the technology or standard within mes-
sages are written, different types of messages and correspond-
ing content must be defined. In fact, a possible outcome of
this challenge is the creation of a communication protocol for
devices.

! Horizontal scalability: One of the features of CC the horizontal
scalability i.e. increasing cloud capacity by connecting multiple
entities so that all entities work as a single one. Although this
research work contemplates the incorporation of similar
devices with different roles in the system, the main idea of
the private automation cloud is the cooperation of devices to
work as a unique system. Simply, when a device is added to
the cloud, it includes additional resources to be employed by
the rest of devices. Therefore, from this perspective, the hori-
zontal scalability is a challenge of the approach.

! Fault tolerance: Communications are vulnerable to faults. Thus,
in cloud-based systems, fault tolerance is an aspect to take into
consideration for ensuring that services are available and acces-
sible. In order to guarantee a correct execution of cloud services,
specific mechanisms must be provided to solve or, in best case
scenario, anticipate to faults in the system. Conceptually, this
challenge is about addressing robustness and reliability of dis-
tributed system communications.

! Orchestration and/or choreography service execution: Indepen-
dently on device behaviour, cloud devices might need the incor-
poration of software that will allow the orchestration or
choreography for setting the order of service operation execu-
tion. In addition, this challenge implies the development of a
goal-oriented mechanism for integration of computational
resources because service operations of a same process can be
encapsulated in different embedded devices.

B. Ramis Ferrer, J.L. Martinez Lastra / Advanced Engineering Informatics 32 (2017) 113–125 123

! Cloud security: The private cloud to be implemented will require
an investment on data security. Fundamentally, the cloud is
meant to be private. Then, it must be accessible only by the
allowed organization, users and/or third party applications.

! Others: Some challenges addressed in [43] that must be consid-
ered as: cross-layer collaboration by CPS, migration and impact
of CPS to existing industrial automation approaches, and
semantic-driven interaction.

5. Conclusion

Recent developments in CPS permit the integration of semantic
technologies and embedded devices, which propound a new sce-
nario with many potential and challenges. Thus, this article pre-
sents the principles, challenges and potential of a private local
automation cloud that is built by CPS. This research considers
and rethinks the automation pyramid shown in ISA-95 and other
central knowledge management solutions because the process of
system information is done at the device level. Thus, one possible
outcome of the presented approach is the redefinition of the busi-
ness model for actual industrial systems.

Advances on CPS in recent research works and its impact on
recent industrial system are presented in [11,44]. First, the
employment of ontological-based knowledge representation as
e.g. presented in early approach description of the eScop project
in [11], permits the knowledge-driven solutions as a promising
solution in the field. On the other hand [44], presents directly
recent advances and trends of CPS in industrial informatics. Never-
theless, aforementioned research works do not consider that
embedded devices can take the role of processing information
and making decisions for production lines process control, which
is the main objective of the presented approach.

Then, this article presents an alternative approach for the use of
CPS for building a cloud that can implement other research works
solutions but in the location where data is generated. Possibly, this
approach will decrease industrial system integration time and
costs because it will reduce cross-layer communication. In addi-
tion, the article presents an opportunity for evaluating the limita-
tions of using a private cloud composed by embedded devices in
the industrial automation domain.

Further work will include the development of models, algo-
rithms and experimental cases for evaluating the cloud perfor-
mance. Indeed, the challenges that are described in Section 4.2
must be taken into account when developing the proposed cloud.
Then, this article can be used as a high-level roadmap for described
development.

Acknowledgements

The authors gratefully acknowledge the support of the graduate
school funding of Tampere University of Technology in carrying
out this work.

References

[1] M. Qusay H., ‘‘SOA and Web Services”, 2005. [Online]. Available: <http://www.
oracle.com/technetwork/articles/javase/soa-142870.html> (accessed: 02-
March-2016).

[2] L.E.G. Moctezuma, J. Jokinen, C. Postelnicu, J.L.M. Lastra, Retrofitting a factory
automation system to address market needs and societal changes, in: 2012
10th IEEE International Conference on Industrial Informatics (INDIN), 2012, pp.
413–418.

[3] I. International Electrotechnical Commission, ‘‘IEC 61131-3:2013 | IEC
Webstore,” 2013. [Online]. Available: <https://webstore.iec.ch/publication/
4552> (accessed: 02-March-2016).

[4] I. International Electrotechnical Commission, ‘‘IEC 61499-1:2012 | IEC
Webstore”, 2012. [Online]. Available: <https://webstore.iec.ch/publication/
5506> (accessed: 02-March-2016).

[5] V. Vyatkin, IEC 61499 as enabler of distributed and intelligent automation:
state-of-the-art review, IEEE Trans. Ind. Inform. 7 (4) (2011) 768–781.

[6] C. Popescu, J.L.M. Lastra, On ontology mapping in factory automation domain,
in: IEEE Conference on Emerging Technologies and Factory Automation, 2007,
ETFA, 2007, pp. 288–292.

[7] P. Novák, E. Serral, R. Mordinyi, R. Šindelář, Integrating heterogeneous
engineering knowledge and tools for efficient industrial simulation model
support, Adv. Eng. Inform. 29 (3) (2015) 575–590.

[8] J. Puttonen, A. Lobov, J.L.M. Lastra, Maintaining a dynamic view of semantic
web services representing factory automation systems, in: 2013 IEEE 20th
International Conference on Web Services (ICWS), 2013, pp. 419–426.

[9] B. Ramis et al., Knowledge-based web service integration for industrial
automation, in: 2014 12th IEEE International Conference on Industrial
Informatics (INDIN), 2014, pp. 733–739.

[10] L. Petnga, M. Austin, An ontological framework for knowledge modeling and
decision support in cyber-physical systems, Adv. Eng. Inform. 30 (1) (2016)
77–94.

[11] G. Marco, Open Automation of Manufacturing Systems through Integration of
Ontology and Web Services, 2013, pp. 198–203.

[12] S. Iarovyi, W.M. Mohammed, A. Lobov, B.R. Ferrer, J.L.M. Lastra, Cyber-physical
systems for open-knowledge-driven manufacturing execution systems, Proc.
IEEE PP (99) (2016) 1–13.

[13] E.A. Lee, Cyber physical systems: design challenges, in: 2008 11th IEEE
International Symposium on Object Oriented Real-Time Distributed
Computing (ISORC), 2008, pp. 363–369.

[14] S.M. Hashemi, A.K. Bardsiri, Cloud computing vs. grid computing, ARPN J. Syst.
Softw. 2 (5) (2012) 188–194.

[15] D.K. Barry, Web Services, Service-Oriented Architectures, and Cloud
Computing: The Savvy Manager’s Guide, Newnes, 2012.

[16] K. Keahey, M. Tsugawa, A. Matsunaga, J. Fortes, Sky computing, IEEE Internet
Comput. 13 (5) (2009) 43–51.

[17] G. Lawton, Developing software online with platform-as-a-service technology,
Computer 41 (6) (2008) 13–15.

[18] S. Goyal, Public vs private vs hybrid vs community – cloud computing: a
critical review, Int. J. Comput. Netw. Inf. Secur. 6 (3) (2014) 20–29.

[19] A.W. Colombo et al. (Eds.), Industrial Cloud-Based Cyber-Physical Systems,
Springer International Publishing, Cham, 2014.

[20] I.M. Delamer, J.L.M. Lastra, Loosely-coupled automation systems using device-
level SOA, 2007 5th IEEE International Conference on Industrial Informatics,
vol. 2, 2007, pp. 743–748.

[21] A.W. Colombo, S. Karnouskos, T. Bangemann, Towards the next generation of
industrial cyber-physical systems, in: A.W. Colombo, T. Bangemann, S.
Karnouskos, J. Delsing, P. Stluka, R. Harrison, F. Jammes, J.L. Lastra (Eds.),
Industrial Cloud-Based Cyber-Physical Systems, Springer International
Publishing, Cham, 2014, pp. 1–22.

[22] A.J.C. Trappey, C.V. Trappey, U. Hareesh Govindarajan, A.C. Chuang, J.J. Sun, A
Review of Essential Standards and Patent Landscapes for the Internet of
Things: A Key Enabler for Industry 4.0, Adv. Eng. Inform.

[23] J. Lee, B. Bagheri, H.-A. Kao, A Cyber-Physical Systems architecture for Industry
4.0-based manufacturing systems, Manuf. Lett. 3 (2015) 18–23.

[24] R.J. Brachman, H.J. Levesque, Knowledge Representation and Reasoning,
Morgan Kaufmann, 2004.

[25] V. Premkumar, S. Krishnamurty, J.C. Wileden, I.R. Grosse, A semantic
knowledge management system for laminated composites, Adv. Eng. Inform.
28 (1) (2014) 91–101.

[26] F. Song, G. Zacharewicz, D. Chen, An ontology-driven framework towards
building enterprise semantic information layer, Adv. Eng. Inform. 27 (1) (2013)
38–50.

[27] A. Lobov, F.U. Lopez, V.V. Herrera, J. Puttonen, J.L.M. Lastra, Semantic Web
Services framework for manufacturing industries, in: IEEE International
Conference on Robotics and Biomimetics, 2008, ROBIO 2008, 2009, pp.
2104–2108.

[28] W. Lu et al., Selecting a semantic similarity measure for concepts in two
different CAD model data ontologies, Adv. Eng. Inform. 30 (3) (2016) 449–466.

[29] H. Liu, M. Lu, M. Al-Hussein, Ontology-based semantic approach for
construction-oriented quantity take-off from BIM models in the light-frame
building industry, Adv. Eng. Inform. 30 (2) (2016) 190–207.

[30] T.R. Gruber, A translation approach to portable ontology specifications, Knowl.
Acquis. 5 (2) (1993) 199–220.

[31] J.L.M. Lastra, I.M. Delamer, F. Ubis, Domain Ontologies for Reasoning Machines
in Factory Automation, ISA, 2010.

[32] E. Negri, L. Fumagalli, M. Garetti, L. Tanca, A review of semantic languages for
the conceptual modelling of the manufacturing domain, in: Proceedings of the
XIX Summer School Francesco Turco, 2014, Senigallia, Ancona, 2014, pp. 1–8.

[33] J. Puttonen, A. Lobov, M.A. Cavia Soto, J.L. Martinez Lastra, Planning-based
semantic web service composition in factory automation, Adv. Eng. Inform. 29
(4) (2015) 1041–1054.

[34] S. Abburu, A survey on ontology reasoners and comparison, Int. J. Comput.
Appl. 57 (17) (2012).

[35] B. Ramis Ferrer, B. Ahmad, D. Vera, A. Lobov, R. Harrison, J.L. Martínez Lastra,
Product, process and resource model coupling for knowledge-driven assembly
automation, Autom. 64 (3) (2016).

[36] J. Puttonen, A. Lobov, M.A.C. Soto, J.L.M. Lastra, A Semantic Web Services-based
approach for production systems control, Adv. Eng. Inform. 24 (3) (2010) 285–
299.

124 B. Ramis Ferrer, J.L. Martinez Lastra / Advanced Engineering Informatics 32 (2017) 113–125

http://www.oracle.com/technetwork/articles/javase/soa-142870.html
http://www.oracle.com/technetwork/articles/javase/soa-142870.html
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0010
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0010
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0010
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0010
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0010
https://webstore.iec.ch/publication/4552
https://webstore.iec.ch/publication/4552
https://webstore.iec.ch/publication/5506
https://webstore.iec.ch/publication/5506
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0025
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0025
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0030
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0030
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0030
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0030
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0035
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0035
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0035
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0040
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0040
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0040
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0040
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0045
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0045
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0045
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0045
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0050
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0050
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0050
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0060
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0060
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0060
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0065
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0065
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0065
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0065
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0070
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0070
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0075
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0075
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0075
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0080
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0080
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0085
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0085
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0090
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0090
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0095
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0095
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0095
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0100
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0100
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0100
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0100
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0105
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0105
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0105
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0105
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0105
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0105
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0105
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0105
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0105
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0105
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0105
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0105
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0105
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0105
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0115
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0115
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0120
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0120
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0120
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0125
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0125
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0125
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0130
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0130
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0130
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0135
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0135
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0135
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0135
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0135
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0140
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0140
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0145
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0145
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0145
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0150
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0150
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0155
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0155
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0155
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0160
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0160
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0160
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0160
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0165
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0165
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0165
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0170
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0170
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0175
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0175
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0175
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0180
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0180
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0180

[37] Y. Evchina, J.L. Martinez Lastra, Hybrid approach for selective delivery of
information streams in data-intensive monitoring systems, Adv. Eng. Inform.
30 (3) (2016) 537–552.

[38] B.R. Ferrer, S. Iarovyi, L. Gonzalez, A. Lobov, J.L.M. Lastra, Management of
distributed knowledge encapsulated in embedded devices, Int. J. Prod. Res.
(2015) 1–18.

[39] M.J.A.G. Izaguirre, A. Lobov, J.L.M. Lastra, OPC-UA and DPWS interoperability
for factory floor monitoring using complex event processing, in: 2011 9th IEEE
International Conference on Industrial Informatics (INDIN), 2011, pp. 205–211.

[40] Borja Ramis Ferrer, A proposal of decentralized architecture for OKD-MES, in:
S. Strzelczak, P. Balda, M. Garetti, A. Lobov (Eds.), Open Knowledge-Driven
Manufacturing & Logistics, the ESCOP Approach, Warsaw University of
Technology Publishing House, Warsaw, 2015, pp. 331–340.

[41] V.V. Vyatkin, J.H. Christensen, J.L.M. Lastra, OOONEIDA: an open, object-
oriented knowledge economy for intelligent industrial automation, IEEE Trans.
Ind. Inform. 1 (1) (2005) 4–17.

[42] I.M. Delamer, J.L.M. Lastra, Service-oriented architecture for distributed
publish/subscribe middleware in electronics production, IEEE Trans. Ind.
Inform. 2 (4) (2006) 281–294.

[43] S. Karnouskos, A.W. Colombo, T. Bangemann, Trends and challenges for cloud-
based industrial cyber-physical systems, in: A.W. Colombo, T. Bangemann, S.
Karnouskos, J. Delsing, P. Stluka, R. Harrison, F. Jammes, J.L. Lastra (Eds.),
Industrial Cloud-Based Cyber-Physical Systems, Springer International
Publishing, Cham, 2014, pp. 231–240.

[44] B.B. Jay Lee, A cyber-physical systems architecture for industry 40-based
manufacturing systems, SME Manuf. Lett. (2014).

B. Ramis Ferrer, J.L. Martinez Lastra / Advanced Engineering Informatics 32 (2017) 113–125 125

http://refhub.elsevier.com/S1474-0346(16)30032-5/h0185
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0185
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0185
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0190
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0190
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0190
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0195
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0195
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0195
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0195
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0200
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0200
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0200
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0200
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0200
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0200
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0200
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0200
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0205
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0205
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0205
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0210
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0210
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0210
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0215
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0215
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0215
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0215
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0215
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0215
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0215
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0215
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0215
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0215
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0215
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0215
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0215
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0215
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0220
http://refhub.elsevier.com/S1474-0346(16)30032-5/h0220

VII

MANAGEMENT OF DISTRIBUTED KNOWLEDGE ENCAPSU-
LATED IN EMBEDDED DEVICES

by

Borja Ramis Ferrer, Sergii Iarovyi, Luis Gonzalez, Andrei Lobov, Jose L Mar-
tinez Lastra, September 2016

International Journal of Production Research. Volume: 54, Number: 18, pp

5434-5451

Reproduced with permission: ‘Management of distributed knowledge encapsulated in
embedded devices’ by Borja Ramis Ferrer, Sergii Iarovyi, Luis Gonzalez, Andrei Lobov
& Jose L. Martinez Lastra International Journal of Production Research Vol 54:18 pp.
5434-5451 (2016). This is the authors accepted manuscript of an article published as
the version of record in International Journal of Production Research on 17th Decem-
ber 2015. www.tandfonline.com/ http://dx.doi.org/10.1080/00207543.2015.1120902

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tprs20

Download by: [Borja Ramis Ferrer] Date: 17 December 2015, At: 12:50

International Journal of Production Research

ISSN: 0020-7543 (Print) 1366-588X (Online) Journal homepage: http://www.tandfonline.com/loi/tprs20

Management of distributed knowledge
encapsulated in embedded devices

Borja Ramis Ferrer, Sergii Iarovyi, Luis Gonzalez, Andrei Lobov & Jose L.
Martinez Lastra

To cite this article: Borja Ramis Ferrer, Sergii Iarovyi, Luis Gonzalez, Andrei Lobov & Jose L.
Martinez Lastra (2015): Management of distributed knowledge encapsulated in embedded
devices, International Journal of Production Research

To link to this article: http://dx.doi.org/10.1080/00207543.2015.1120902

Published online: 17 Dec 2015.

Submit your article to this journal

View related articles

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tprs20
http://www.tandfonline.com/loi/tprs20
http://dx.doi.org/10.1080/00207543.2015.1120902
http://www.tandfonline.com/action/authorSubmission?journalCode=tprs20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tprs20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00207543.2015.1120902
http://www.tandfonline.com/doi/mlt/10.1080/00207543.2015.1120902
http://crossmark.crossref.org/dialog/?doi=10.1080/00207543.2015.1120902&domain=pdf&date_stamp=2015-12-17
http://crossmark.crossref.org/dialog/?doi=10.1080/00207543.2015.1120902&domain=pdf&date_stamp=2015-12-17

Management of distributed knowledge encapsulated in embedded devices

Borja Ramis Ferrer*, Sergii Iarovyi, Luis Gonzalez, Andrei Lobov and Jose L. Martinez Lastra

Factory Automation Systems and Technologies Laboratory (FAST-Lab.), Tampere University of Technology, Tampere, Finland

(Received 10 April 2015; accepted 9 November 2015)

Embedded electronic devices are now to be found everywhere. In general, they can be used to collect different sorts of
data (e.g. on temperature, humidity, illumination and locations). In some specific domains, such as industrial automation,
embedded devices are used for process control. The devices may have a programme that can respond immediately to
environmental changes perceived through sensors. In the control of large sites, where there are many devices, higher
level decisions are made or processed in dedicated computers far away from the sources (devices) where the initial data
are collected. This article shows how it is possible to manage portions of distributed knowledge, hosted in embedded
devices, making it possible for each embedded device to hold and manage its piece of knowledge. In addition, presented
approach allows keeping locus of control at the embedded device level, where the embedded device can make decisions
knowing the status of the rest of the world, device contributions and their effects in the overall distributed system
knowledge base.

Keywords: knowledge-based systems; ontologies; distributed knowledge bases; distributed query processing; industrial
automation

1. Introduction

Embedded devices used as controllers on the factory floor are beginning to have sufficient computational resources to
perform additional tasks besides their direct control functionality. This includes, for example, the handling of communi-
cations. Traditional industrial communication technology, such as Profibus,1 has a data rate of about 500 kbps. With the
advent of Internet technologies, the data rates went up to 100 Mbps and more. As the Internet-based technologies
become widespread, the cost of implementing them in devices has also dropped, making it possible to adapt Internet-
inspired protocols for use in industrial communication. The problem of communication overheads, which generally have
to be minimised, particularly for industrial communications, has become less important since the data rate has grown
more than 200 times (if we compare data rates of 500 kbps with 100 Mbps), thus in principle allowing larger overheads
for the same or even greater communication performance. At the same time, the adoption of the Internet-based protocols
has reduced the effort needed to create distributed networked applications, making it possible to deliver a message sent
by an industrial controller connected to the equipment at the factory floor to any place in the global network (Alexander
et al. 2013; Puttonen, Lobov, and Lastra 2013b).

In addition to the growing communication and networking capabilities, the processing power of CPUs at industrial
controllers has also grown. This has made it possible to build an affordable device with sufficient resources to perform
deterministic control and networking functions. First such commercial devices are already available on the market.2

In parallel with the growth of computational and networking performance, new standards for knowledge representa-
tion and reasoning have been developed (Brachman and Levesque 2004). World wide web consortium (W3C)3 pub-
lished, among others, a specification for a knowledge representation language called web ontology language (OWL).
The introduction of a knowledge representation language allows rising of abstraction for application development. It
becomes possible for the developer not to think in terms of concrete hardware, where the application should be running,
but to focus on what the application should do. In principle, any programming language appearing above the machine
code contributes to the same goal. The difference from knowledge representation language such as OWL is that OWL
makes it possible to extend the system concepts with time and adapt to the changes in the controlled environment dur-
ing runtime. OWL realises Open World Assumption where things outside of the knowledge base (KB) are treated as
unknown and not as false as in the case of Closed World Assumption (Yang and Lee-Kwang 2000). Furthermore, the
new concepts can be derived through the reasoning process (RP).

*Corresponding author. Email: borja.ramisferrer@tut.fi

© 2015 Taylor & Francis

International Journal of Production Research, 2015
http://dx.doi.org/10.1080/00207543.2015.1120902

D
ow

nl
oa

de
d

by
 [B

or
ja

 R
am

is
 F

er
re

r]
 a

t 1
2:

50
 1

7
D

ec
em

be
r 2

01
5

mailto:borja.ramisferrer@tut.fi
http://www.tandfonline.com
http://www.tandfonline.com
http://www.tandfonline.com
http://dx.doi.org/10.1080/00207543.2015.1120902

The idea of extendibility allows the reorganisation of manufacturing systems during runtime. The knowledge of a
machine added to the production line is encapsulated with the controller device in charge of the machine. Thus, once
the new equipment is introduced, the overall system KB is extended. In order to reduce system integration effort, the
knowledge models and reasoning capabilities are best kept at the device level or as close as possible to the represented
and controlled object (e.g. machine).

This article proposes a knowledge distribution and reasoning approach that can be implemented within the synergy
of cyber-physical systems (CPS) which, in combination with service-oriented architectures, the industrial internet and
cloud computing among other concepts, will establish the complex ground of the fourth generation of the industry
(Colombo, Karnouskos and Bangemann 2014). One of the major benefits of approaches like that presented in this article
is to make possible the dynamic integration and configuration of devices inhabiting the same networks. Therefore, the
solution proposed may be applied to dynamically integrate and change the configuration of manufacturing systems. The
rest of the article is structured as follows: Section 2 outlines in detail the research background. Then Section 3 describes
the approach for distributed reasoning. The results are described in Section 4. The discussion in Section 5 compares the
approach proposed and the results obtained with other works in the field to highlight the achievements of the research
work in question. Finally, Section 6 concludes.

2. Research background

Functional classification of the components of factory systems is often represented within a hierarchical structure that
forms an automation pyramid, shown in (Harjunkoski, Nyström, and Horch 2009). This structure is described in the
international standard ISO 62264 (based on ANSI/ISA-95), which defines the concepts required for the integration of
dissimilar factory systems. At the top of the hierarchy is the enterprise resource planning (ERP) systems level or the
fourth level according to the standardised classification. The systems which provide factory wide planning and other
high-level business functions form an ERP system level. Then, Level 3, usually called the manufacturing execution sys-
tem (MES) level, is located below the ERP level of the automation pyramid. On the MES level the systems provide
advanced control over factory, including inventory, resource and energy management, shop floor scheduling, document
control, performance analysis and others. The most detailed specification of the MES functions is provided by MESA4

in (Kletti 2007). At the bottom of the pyramid are the remaining levels from 0 to 2. These levels correspond to supervi-
sory control and data acquisition (SCADA) and control systems functionalities. Named functionalities of levels 0–2 are
tightly bound to shop floor hardware and usually presented within the same layer in the automation pyramid, also
described in (Harjunkoski, Nyström, and Horch 2009). While in ANSI/ISA-95 the function hierarchy of factory systems
is dedicated to support such systems integration, the task remains non-trivial due to the ambiguity of the standards and
concepts employed on different factory levels (Alexander et al. 2013; Harjunkoski, Nyström, and Horch 2009; Iarovyi,
Garcia, and Martinez Lastra 2013; Power and Bahri 2005; Ramis, Garcia, and Martinez Lastra 2013).

The capabilities and availability of computing hardware have in general been constantly increasing following
Moore’s law. In particular, computer embedded systems are now used in shop floor hardware for controlling production
line processes. These embedded devices are also referenced as CPS because they integrate computational and physical
resources. Hence, recent advances in CPS allow cross-domain integration and machine-to-machine communication. In
fact, the combination of CPS, service-oriented architecture (SOA) and the emergence of cloud computing will bring
valuable benefits to the next generation of the Industry, known as Industry 4.0 (Colombo, Karnouskos, and Bangemann
2014).

In the last decade, the computation power of embedded devices has dramatically increased (Wolf 2007), whereas
their monetary cost has been contained. This enhancement together with the quantitative improvement of the perfor-
mance of shop floor-related operations may also make feasible the introduction of additional functionalities, enhancing
the connectivity of the systems at the bottom of the automation pyramid and moving the locus of control to embedded
systems. More abstract information may be processed and hence more complex decisions may be made in closer prox-
imity to industrial hardware, making the factory system less centralised and as a result more robust and flexible
(Colombo et al. 2014; Lastra and Delamer 2006; Zuehlke 2010). Even more benefits of robustness and flexibility may
be provided, as ‘smart’ devices are able to communicate among themselves in order to solve problems. This may be
achieved by following the concept of distributed systems (Coulouris, Dollimore, and Kindberg 2005).

As the device functions become more complicated the question of knowledge management gains importance. There
are several knowledge representation formalisms such as ontologies, semantic nets, frames and production rules, all
introduced in (Brachman and Levesque 2004). Semantic nets are widely employed in the form of linked data to describe
semantic web. Ontology-based knowledge representation provides the most diverse toolset for knowledge modelling,
combining some properties of other formalisms.

2 B.R. Ferrer et al.

D
ow

nl
oa

de
d

by
 [B

or
ja

 R
am

is
 F

er
re

r]
 a

t 1
2:

50
 1

7
D

ec
em

be
r 2

01
5

Several languages have been developed to represent ontologies. In fact, (Agyapong-Kodua et al. 2013; Islam,
Abbasi, and Shaikh 2010; Kiritsis 2013; Vrba et al. 2011) are studies presenting a review of semantic languages,
methodologies and ontology-based technologies for modelling industrial automation systems. These languages are gener-
ally grouped as traditional and web standard-based ontology languages. According to several recent research works
(Chungoora et al. 2013; Lin et al. 2011; Shen, Wang, and Sun 2012; Zhang et al. 2009), it can be stated that web stan-
dard-based ontology languages are dominant for ontology representation in general and in the field of semantic web in
particular. Web standard-based ontology languages follow a sublanguages model where the basic language is resource
description framework (RDF), which provides a foundation for others. The building block of RDF is a triple, depicting
the relation between two concepts. RDF Schema (RDFS) and OWL provide more expressivity for the knowledge model
and in the case of some OWL sublanguages even support reasoning (Grau et al. 2008). In order to manipulate the RDF-
based ontology querying languages may be employed. SPARQL Protocol and RDF Query Language (SPARQL) is used
to extract data from RDF, while SPARQL Update language provides the capability to modify the RDF ontology. Taking
into account that RDFS and OWL are based on RDF, RDFS and OWL ontologies may also be queried employing
named query languages. Using named standards, it is possible to represent knowledge and access it within different
application domains. RDF, OWL, SPARQL and their extensions are standards developed by the W3C.

Based on the knowledge representation concepts and standards described above the research on applicability of this
framework for industrial automation was done in (Ramis et al. 2014). The article presents a service-oriented production
line. Ontology-based representation of this line is stored and updated in a KB, and service orchestration flow is con-
trolled by the status of the production line model. SPARQL is employed for KB management. The authors claim that
the approach may provide benefits of runtime configurability and may be applied to dissimilar industrial systems.

As the functionality of centralised industrial automation systems may be distributed and encapsulated in embedded
devices, in some cases it may be reasonable to distribute knowledge together with functions. For low-level processes
this may allow closing of the execution loop within the embedded device, as all the required data are placed within the
device together with algorithms using the data. This may be also beneficial in dynamically changed systems, which in
centralised architecture may need changes at all levels of hierarchy to adapt the changes on one of the levels. Neverthe-
less, such systems will require a generic approach to access data in the devices. This leads to a need for distributed
query processing. The research in querying of distributed sources is performed in related fields such as semantic web
(Kumar, Singh, and Verma 2010; Paret et al. 2011; Kurita et al. 2007). Moreover, concepts of Federated queries were
provided in SPARQL 1.1 (Buil-Aranda et al. 2013).

The present work contributes to the production research with an approach that illustrates how the encapsulated
knowledge in embedded devices can be managed, reasoned and distributed throughout a network, which is implemented
as a private cloud of such devices that control the equipment of manufacturing systems. All this is achieved by the
utilisation of semantic technologies, which are now employed in production lines for service and system descriptions.

3. Approach

This research presents an approach to managing distributed knowledge encapsulated in embedded devices located in the
lowest layer of the ANSI/ISA-95 automation pyramid. The approach is based on a goal-oriented mechanism for the inte-
gration of computational resources. The proposal describes how to utilise and merge the overall system knowledge that
is distributed among different devices. Thus, this solution is beneficial in some specific domains, such as industrial
automation where the devices use system knowledge representation for control processing. This section describes the
approach, including diagrams on communication, architecture and the behaviour of devices which can be used to
reproduce the results of the work.

3.1 Description of a distributed system

In order to design a generic approach and provide more robustness in the solution, it is considered that the distributed
system by default has no hierarchy. This means that initially there is no master device working as an entry point of the
system. In other words, no device works as a system gateway. Moreover, all the devices have the same type of commu-
nication channels. Thus every device can communicate with any other networked device. Conceptually the way net-
worked elements are interconnected is defined as topology. There are many network topologies as described in
(Sosinsky 2009).

From a logical topology perspective, this approach follows a mesh architecture because each device can communi-
cate with other devices, permitting the distribution of data. In fact, such a topology provides robustness for the system,
because if any of the devices fails, the communication between others remains unaffected. Nevertheless, this approach is

International Journal of Production Research 3

D
ow

nl
oa

de
d

by
 [B

or
ja

 R
am

is
 F

er
re

r]
 a

t 1
2:

50
 1

7
D

ec
em

be
r 2

01
5

also achievable using bus topology in which all devices communicate through a common backbone. The same
advantage of failure robustness is experimented within this topology. Therefore, the decision on working with mesh or
bus topologies will mostly be determined by the technology utilised in the communicating devices.

In some specific domains, such as industrial automation, it is necessary to know the current state of the system for
controlling and monitoring processes. In distributed systems, the state data are spread among networked devices. In
knowledge-based driven implementations, knowledge is retrieved by querying system KBs. Therefore, the applications
in charge of controlling and monitoring tasks must issue, e.g. SPARQL queries in order to retrieve relevant data from
the devices (Ramis et al. 2014).

In this approach, an external actor, which can be a person or a third party application, can interact with the dis-
tributed system to control or monitor the data of the system. This interaction is achieved through an element called the
operator interface (OI). The OI can be hosted in any server, or even nested in an embedded device. Moreover, the OI is
able to communicate with every networked device of the distributed system. The main task of the OI is to allow the
insertion of SPARQL queries that will be executed by distributed system devices. The algorithm implemented on the
devices which allows the teamwork for executing queries is described Section 3.3.

3.2 Device architecture

Devices are capable of interacting with the external world by means of sensors and actuators. Using sensors, relevant
data are acquired and stored. On the other hand, actuators allow the device to alter the system, performing physical
actions. It is important to note that the concept of embedded devices implies that these units are constrained in computa-
tional resources. Therefore, this approach focuses on designing and implementing lightweight components and internal
interactions to avoid overloading the computational resources of the device.

Internally, three modules compose the embedded device: Sensor & Actuator Processor, Ontology Service and the
Device & Operator Interface Processor. The device architecture is shown in Figure 1.

The Sensor & Actuator (SA) processor is in charge of collecting the device sensors’ information. In addition, it
requests the ontology service to store data in the device KB. To achieve this, the SA processor reads the sensors’ values
and transforms them into SPARQL Update queries. These queries are sent to the Ontology Service. Moreover, the SA
processor can also be used for the device to send an action to activate actuators.

The Ontology Service is responsible for two main tasks: (1) holding and managing the device KB and (2) exposing
the KB to other device modules. The Request Processor, which is an endpoint of the Ontology Service, has the task of
handling SPARQL queries over HTTP (“SPARQL 1.1 Graph Store HTTP Protocol” 2013), so that they can be executed
using the device KB. Therefore, using this endpoint, the SA processor is capable of mapping the world state perceived
by the sensors and described in the device KB. The present approach proposes the use of KBs, which are described in
RDF-based languages.

Other networked devices, third party applications or individuals can request the device knowledge through a module
called Device & Operation Interface Processor. This module works as another network endpoint, which also handles
SPARQL queries over HTTP. Incoming queries arriving at this endpoint may come from other devices or from the OI,
as explained in the preceding section.

3.3 Management of distributed knowledge

In order to control and monitor system processes, pieces of system knowledge are represented in separate KBs, which
are hosted in embedded devices. This article shows how it is possible to manage distributed knowledge, making it
possible for each embedded device to manipulate its respective piece of knowledge. The management of local
information must allow devices to support processes performed by all available devices as a unique system.

Device &
Operator Interface
processor

Sensor & Actuator
processor

Ontology Service

KB
Request
processor

Device

Sensors &
Actuators

Device

Operator Interface

Figure 1. Architecture of the device.

4 B.R. Ferrer et al.

D
ow

nl
oa

de
d

by
 [B

or
ja

 R
am

is
 F

er
re

r]
 a

t 1
2:

50
 1

7
D

ec
em

be
r 2

01
5

To achieve this purpose, the essential behaviour of devices for facing client requests must be determined. This
conduct is presented in this article through three UML5 sequence diagrams.

3.3.1 Device initialization

Devices must be able to introduce themselves to other devices in the network. In fact, devices include, as part of local
resources, information on all system devices. The reason for this is that addresses and identifiers of networked devices
are required for query distribution. The inclusion of device information is done when a new device is connected to the
distributed system. Figure 2 presents a sequence diagram showing the conduct of a new device when it joins the net-
work.

Fundamentally, when a new device enters in the system, it sends its address and identifier. Therefore, new devices
can be reachable by other peers. Once any device is initialized in the network and reachable by the OI, it can participate
in client requests.

3.3.2 RP performance

In the approach proposed, a RP is defined as a series of actions to produce representation of new statements by manipu-
lating symbols of believed propositions. In other words, RP is a process whereby a system uses its KB to respond to
queries. Since the approach deals with pieces of all the knowledge encapsulated (or hosted) in devices, a single RP is
divided into subprocesses, which are performed by different devices. A subprocess of a RP is known as a reasoning pro-
cess portion (RPP). In RPPs, devices execute incoming queries using their own KBs. Hence, this approach can also be
defined also as a teamwork-based mechanism, by which an incoming query is distributed and then solved as a set of
RPPs.

Any RP execution needs one device to assume a leadership role. The requester device role designs a device that
takes responsibility for managing a single RP. The sequence diagram shown in Figure 3 presents how any available
device can assume this role.

Whenever a client submits a request in the OI, a demand to take the requester device role is sent to all known sys-
tem devices. Then those devices that are available to take the leadership role will send a response to the OI. A candidate
for this role will take it if it receives a query from the OI, namely the query sent by a client. It should be noted that the
requester device is not excluded from participating in the RP, but is the one that will lead the execution of the RP.
Devices will respond to a requester device role demand when:

(1) The device has no requester device role in any ongoing RP execution.
(2) The device has enough resources (i.e. memory) to handle a RP execution.
(3) The device responds to the demand before it knows that some other device has been designated as a requester

device.

Figure 2. Sequence diagram of adding a new device.

International Journal of Production Research 5

D
ow

nl
oa

de
d

by
 [B

or
ja

 R
am

is
 F

er
re

r]
 a

t 1
2:

50
 1

7
D

ec
em

be
r 2

01
5

Once there is a requester device in the network, an RP can be solved. This means that if a device has correctly
assumed the requester device role for a queryx, the RPx can be started. The sequence for any RP performance is
depicted in Figure 4.

Although the beginning of the sequence is the OI query sending to the requester device, it can be considered that
the RP is started and finished by the requester device. However, the diagram shows the request emission from OI for a
task that is an immediate continuation of the OI behaviour, presented in Figure 3.

Figure 3. Sequence diagram of demanding a requester device.

Figure 4. Sequence diagram of an RP performance.

6 B.R. Ferrer et al.

D
ow

nl
oa

de
d

by
 [B

or
ja

 R
am

is
 F

er
re

r]
 a

t 1
2:

50
 1

7
D

ec
em

be
r 2

01
5

Firstly, the incoming client query is sent to the requester device. Then, the requester device takes the lead in the RP
and sends the query to other devices, which will perform an RPP using their own resources. Once RPPs have been per-
formed, each participating device returns its corresponding reasoning process portion conclusion (RPPC) to the requester
device. Thus, RPPC is defined as a response that contains the result of a distributed query execution, which is sent from
devices to the requester device. Then the requester device updates its own KB with each RPPC that it receives. Once
the requester device KB has been updated with all the RPPCs, the last RPP is performed. The result of the last RPP is
the final result of the incoming query. Then the requester device sends this result to the OI. Afterwards the requester
device will delete the updates done after RPPC collection to restore its KB to the initial state and be ready to participate
in the next RP.

One benefit of this approach is that if the requester device does not have the knowledge to solve a certain incoming
query it will be able to give a result because the RP finalises by executing the query using a KB, which is updated with
RPPCs sent by other network devices. Thus, although system knowledge is encapsulated and only accessible to owners,
other devices always receive the information that is required to perform RPs.

3.3.3 Device situations for query execution

The preceding sequence diagram execution ensures that any device which distributes a query to be executed receives
useful information in response. For this reason, the correct behaviour of devices permits them to send the maximum
amount of information to be used by requesters.

In the approach described devices can be involved in three different situations when executing queries: total support
situation (TSS), partial support situation (PSS) and no support situation (NSS). These situations depend on the
resources, or local KB, available by each embedded device. Then the manner in which devices act in RPPs execution
will determine the type of RPPC returned to the requester device. Each situation is described below:

• Total support situation:
o Resources in the device are sufficient
o The device is able to execute the query using its own knowledge
o The generated RRPC is an update query with statements on the RPP result

• Partial support situation:
o Resources in the device are insufficient
o The device has some knowledge but not sufficient to execute the query
o The generated RRPC is an update query with useful statements from the local KB

• No support situation:
o Resources in the device are non-existent
o The device has no knowledge about the query
o The generated RRPC is a ‘no support message’

Each situation name described above reflects the type of support that a device can offer. The three reactions are
implemented on devices because different requests may involve the same device in different situations. Then embedded
devices must be able to send the RPPC type that corresponds to the device situation.

A TSS situation occurs when a device is able to execute the incoming query, obtaining a complete result using its
own KB. A TSS does not imply that the result provided by one device is the final result of an entire RP. A device may
achieve a result when it executes a query with local resources that is different for the overall system KB. This is
because when the requester device receives all RPPCs, it executes the distributed query, but with all the system
information.

PSS and NSS occur when the device is not able to produce a result for the distributed query. It should be noted that
devices do not identify beforehand in which situation they are involved. First, when a query arrives at a device inter-
face, the query is processed and executed. Then TSS will be determined if a result is obtained, and RPPC will be per-
formed from the result. Otherwise, devices will analyse the query looking for data that match any term of the query. If
the device finds information to be sent, it will determine that is involved in a PSS and will create a RPPC containing
useful data for the requester device. On the other hand, if there is nothing to be sent, the device will conclude that is in
an NSS and will just send a message communicating its inability to support in the ongoing RP.

International Journal of Production Research 7

D
ow

nl
oa

de
d

by
 [B

or
ja

 R
am

is
 F

er
re

r]
 a

t 1
2:

50
 1

7
D

ec
em

be
r 2

01
5

3.3.4 From queries to updates: the RPPC execution

According to previous explanations, RPPC formation is important in RP execution because it is the manner of devices
to respond to requests. Thus, embedded devices analyse queries and reuse the query syntax to produce RPPCs, which in
reality are another type of query. More specifically, devices transform SPARQL queries into SPARQL Update queries.
This process requires processing the queries and is performed differently in each situation. The steps to be performed in
TSS are:

(1) Variables or queries are substituted by their value obtained after query execution
(2) Prefixes of statements are substituted by their value and the required prefixes for datatypes are also added
(3) If a variable is a class type, an extra statement is created to also insert its type
(4) The SELECT clause is changed to the INSERT clause
(5) Functions not allowed by the SPARQL 1.1 Update standard are removed, for instance, FILTER.

As a representative example, Figure 5 shows the transformation of a SELECT query into an INSERT query. It
should be noted that the query transformation could be performed after executing the incoming query since the value of
the variable is required. The reason is that INSERT query statements do not include unknown variables because they
contain only valuable data to be inserted.

On the other hand, the steps to be performed in PSS are:

(1) Different SELECT queries are created and executed, one per statement
(2) Steps i to iv of the TSS case are performed for each executed SELECT query that gives any result.

It should be noted that the devices would conclude that they are in NSS when the first step of PSS in query transfor-
mation is performed. This is because the device will not find any result when created SELECT queries are executed,
meaning that the device KB does not contain any useful information to be included in the RPPC. Hence, in the absence
of results, the device will create a non-support message and send it in response to the requester.

Summing up the above steps, accomplishing the steps that correspond to a device situation, RPPCs are created from
incoming SPARQL queries. It should be noted that the approach proposed is limited to transforming SPARQL SELECT
queries into SPARQL Update INSERT queries.

4. Results

4.1 Test case set-up

For testing purposes, the system presented in Figure 6 was implemented. This small-scale system implementation makes
it possible to prove the concept of the approach proposed. The implementation presented shows a restriction with
respect to the approach proposed: the OI is connected to only one device. This means that the decision on the requester

Figure 5. Transformation of queries.

8 B.R. Ferrer et al.

D
ow

nl
oa

de
d

by
 [B

or
ja

 R
am

is
 F

er
re

r]
 a

t 1
2:

50
 1

7
D

ec
em

be
r 2

01
5

device is pre-defined. Hence, the sequence shown on Figure 3 is not illustrated, but rather focuses on other aspects of
the approach. This limitation does not affect the main objective of the approach, which is the management of distributed
KBs encapsulated in embedded devices. Thus, the sequence for RP performance shown in Figure 4 has been
successfully implemented.

The testing implementation shows how a client is connected to the OI. This link permits queries sent by a user to
be executed by the distributed system. Then the interconnection between the OI and Device1 is used for redirecting the
incoming query from client to devices. It should be observed that for the implemented case, Device1 will be always the
requester device.

Devices follow the architecture presented in Figure 1. Thus, they are capable of handling device-to-device connec-
tions (implemented via SPARQL over HTTP) and device-to-sensor or device-to-actuator connections (through digital/
analogue I/Os). Moreover, each device contains its own KB, which can be updated when there are changes in the
statuses of connected components. The sensors are connected to devices.

Raspberry Pi6 has been selected as the embedded device for testing the approach. This was chosen mainly because
it offers a fast prototyping stage. More precisely, the selected model is Raspberry PI B, which includes a 512 MB of
RAM memory and a 700 MHz processor. Moreover, the devices have been loaded with Raspbian,7 which is a light-
weight instance of Linux. Note that the sensors are connected to the devices using the general-purpose I/O (GPIO) of
Raspberry PI and using resistor components to limit the current drain.

4.2 Proving the concept

With the objective of showing representative cases of use, the following subsections describe two different experiments.
Each test is situated in a different scenario, in which several sensors are used for obtaining measurements. In each test
case, the devices host a different ontological model (implemented within protégé8 ontology editor), describing the
domain in which the system devices reside.

Each test case is described separately. Furthermore, models are presented and important aspects of each experiment
are detailed so that the tests can be reproduced. Moreover, besides the final result of the query execution process, the
inner process steps, i.e. the queries and transformations used, are also shown for each case. All the queries used in the
following research experiments are shown in Figure 7, in which each query is preceded by a commented line containing
its corresponding title.

4.2.1 First experiment: measuring the overall room temperature

The first experiment is a simple situation in which a large room is equipped with three temperature sensors. Moreover,
the room has a display showing the temperature of the room. Most probably the temperature given by each sensor does

KB1

Device1

KB2

Device2

KB3

Device3

Sensor1

Sensor2

Sensor3

Operator Interface

Client

SPARQL
over HTTP

Digital input

Figure 6. Testing case implementation.

International Journal of Production Research 9

D
ow

nl
oa

de
d

by
 [B

or
ja

 R
am

is
 F

er
re

r]
 a

t 1
2:

50
 1

7
D

ec
em

be
r 2

01
5

not match. Thus, to display the room temperature, the system must use the values of each device and conclude an over-
all result. It should be noted that for mapping the components of Figure 6 to this example, the display is the system
client and each temperature sensor is controlled by one device.

In the first scenario, each KB hosted by a device contains an ontology model with the class and instance distribution
shown in Figure 8. An instance (or individual) is understood as a specific realisation of a class (or object). The ontology
model includes a class named Sensor. Each model contains a defined Sensor class instance named Temperature_sensor,
which is the sensor connected to the device. Finally, the model has defined a datatype property named hasValue. This
datatype property is the one that is updated by the devices when the sensor temperature changes. In fact, each device is
connected to a different temperature sensor, which means that ontology models will be updated with different sources of
data. Table 1 shows the sensor values at the moment of doing the experiment and indicates the resources on devices for
executing a query to retrieve a temperature value (shown in Query 1 of Figure 7). For such a query and situation, all
the devices have sufficient knowledge resources. Thus, each device will be involved in a TSS, meaning that they can
support the RP with RPPCs created from a complete result after the query execution. Note that the performance of this
test follows the sequence diagram presented on Figure 4.

The process starts when the system client sends the first SPARQL query (Query 1) shown in Figure 7 to the OI.
The query is used to request an average of temperature values. Once the query arrives at the OI, it is redirected to
Device1, which is the requester device for the RP to be performed.

Then the RP begins when Device1 forwards the query to the other devices. Each device will be requested to partici-
pate in the RP. Because each device executes the query for different KBs, each device will create different RPPCs. Note
that the RPPC performance depends on the device situation. As an example, the second query of Figure 7 (Query 2) is
the RPPC created in Device2.

Query 1 - Client request for the first experiment:
PREFIX tp: <http://www.tut.fi/fast/Temp#>
SELECT ?Sensor (AVG (?value) AS ?Temperature_average)
WHERE {
?Sensor tp:hasValue ?value.}
GROUP BY ?Sensor

Query 2 - Generated RPPC query by Device2 in the first experiment:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX tp: <http://www.tut.fi/fast/Temp#>
INSERT {
<http://www.tut.fi/fast/Temp#Temperature_sensor> tp:hasValue "18.0"^^<http://www.w3.org/2001/XMLSchema#decimal>.
<http://www.tut.fi/fast/Temp#Temperature_sensor> rdf:type <http://www.tut.fi/fast/Temp#Sensor>. }
WHERE {}

Query 3 - Client request for the second experiment:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX winery: <http://www.tut.fi/fast/Storage#>
SELECT ?Temperature ?Light ?Humidity
WHERE {
?MeasTemp rdf:type winery:Temperature.
?MeasTemp winery:hasValue ?Temperature.
?MeasLight rdf:type winery:Light.
?MeasLight winery:hasValue ?Light.
?MeasHumidity rdf:type winery:Humidity.
?MeasHumidity winery:hasValue ?Humidity}

Query 4 - Generated RPPC query by Device2 in the second experiment:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX winery: <http://www.tut.fi/fast/Storage#>
INSERT {
<http://www.tut.fi/fast/Storage#Value2> rdf:type <http://www.tut.fi/fast/Storage#Humidity>.
<http://www.tut.fi/fast/Storage#Sensor2> winery:hasValue "60.0"^^<http://www.w3.org/2001/XMLSchema#decimal>.}
WHERE {}

Figure 7. Queries used and generated in the experiments.

10 B.R. Ferrer et al.

D
ow

nl
oa

de
d

by
 [B

or
ja

 R
am

is
 F

er
re

r]
 a

t 1
2:

50
 1

7
D

ec
em

be
r 2

01
5

Afterwards, Device2 and Device3 send the created RPPCs to Device1. Then the requester device performs the last
RPP and achieves the final result, which is shown in Table 2. The values presented compose the result obtained in the
requester device when the RP is complete. The final result of the temperature is equal to 18.5. The result is correct
because (19.1 + 18.0 + 18.4) / 3 = 18.5. Hence, it is concluded that the process has ended successfully.

4.2.2 Second experiment: monitoring the conditions in a wine cellar

The second experiment is conducted in a more specific environment, a wine cellar. Fine wines need long-term storage,
allowing them to improve. However, for a wine to acquire certain properties that enhance its quality, it requires special
storage conditions. Efficient storage of wine demands controlling at least three factors of the space: temperature, humid-
ity and light. Hence, the approach proposed can be useful for monitoring the measurements of different sensors which
detect changes in storage conditions. This experiment proposes having several sensors that update corresponding
instances of KBs, encapsulated in devices each time that there is a change in the value being measured.

Figure 8. Ontology model implementation in the first experiment.

Table 1. Resources available and sensor values of devices in the first experiment.

Device Resource in device hasValue data type property value

Device1 Sufficient “19.1”^^<http://www.w3.org/2001/XMLSchema#decimal>
Device2 Sufficient “18.0”^^<http://www.w3.org/2001/XMLSchema#decimal>
Device3 Sufficient “18.4”^^<http://www.w3.org/2001/XMLSchema#decimal>

Table 2. Final query result of the first experiment.

Sensor Temperature_average

tp:Temperature_sensor “18.5” <http://www.w3.org/2001/XMLSchema#decimal>

International Journal of Production Research 11

D
ow

nl
oa

de
d

by
 [B

or
ja

 R
am

is
 F

er
re

r]
 a

t 1
2:

50
 1

7
D

ec
em

be
r 2

01
5

To describe this scenario using the approach proposed, each device hosts an ontological model with the hierarchical
distribution of classes, which is illustrated in Figures 9 and 10. In addition, both figures show that the model defines
two different properties. First, an object property called hasMeasurement links Sensor with Measurement object
instances. Second, a data property named hasValue is used to describe the value of any Measurement class instance.

Just as shown in Figure 8, each sensor is represented by an instance. In this experiment, each sensor individual is
defined in the Sensor subclass that corresponds to its sensor type. For instance, a temperature sensor will be represented
in the model as an instance called Sensor1 defined as an individual of the TemperatureSensor class. On the other hand,
this model has a different distribution of properties from the first experiment case. In this test there is another individual
in the Measurement class, which represents a measurement performed by a sensor. In the example, the ontological
model hosted in the device that controls the temperature includes an individual under the Measurement class named
Value1. The complete list of individuals described in all system devices is presented in Table 3. It should be noted that
the table also presents the hasMeasurement datatype values and their type at the moment of conducting the second
experiment.

It is important to consider that the model proposed could be reduced on each device. Fundamentally, each device
could delete the concepts that are not in use. Nevertheless, Figure 9 presents the complete domain model including all
the modules. For example, the model hosted by a device which controls the light sensor can reduce the model by delet-
ing the TemperatureSensor, HumiditySensor, Temperature and Humidity classes. This model reduction does not affect
the RP performance because the devices only update instances of their own KB.

The reason why the classes’ distribution, instances definition and properties relations have been designed as
described is also to test the research with a reasoner. Hence, to ensure that the approach proposed works correctly with
inferred data, an axiom has been defined (shown in Description of TemperatureSensor class in Figure 9). This axiom is
included in each Sensor subclass in the following form:

Figure 9. Ontology model implementation on the second experiment showing the Sensor1 instance.

12 B.R. Ferrer et al.

D
ow

nl
oa

de
d

by
 [B

or
ja

 R
am

is
 F

er
re

r]
 a

t 1
2:

50
 1

7
D

ec
em

be
r 2

01
5

ObjectA hasMeasurement only ObjectB, where ObjectA determines a subclass of Sensor and ObjectB is a subclass
of Measurement. For example, LightSensor hasMeasurement only Light states that a light sensor can only measure light
values. Hence, a reasoner will infer that if e.g. Sensor1 instance of TemperatureSensor object hasMeasurement Value1
instance of Measurement object, the measurement Value1 is a Temperature instance type. This example is depicted in
Value1 Description in Figure 10. The reasoning engine used for this experiment was Pellet (Sirin et al. 2007).

Table 4 presents the knowledge that devices have for certain query execution (shown in Query 4 of Figure 7), which
retrieves at one time the measurement values of temperature, humidity and light. Therefore, each device is involved in a
PSS, meaning that RPPCs are not created from a complete result after query execution. In turn, RPPCs are created after col-
lecting useful statements and putting them together in the corresponding INSERT query, as explained in Section 3.3.4. It
should be noted that the performance of the second experiment also follows the sequence diagram presented on Figure 4.

The experimental RP process starts when a client sends the third SPARQL query shown in Figure 7 (Query 3). The
query, which is inserted in the OI, is used to request temperature, humidity and light measurement values. Once the
query arrives at the OI, it is redirected to Device1, which is the requester device for the RP that is performed.

Figure 10. Ontology model implementation in the second experiment showing the Value1 instance.

Table 3. List of ontology instances hosted by each device and their associated measurement value in the second experiment.

Device

Classes hasMeasurement datatype value and its type

Sensor Measurement Temperature (type) Light (type) Humidity (type)

Device1 Sensor1 Value1 12.8 (decimal) – –
Device2 Sensor2 Value2 – 60.0 (decimal) –
Device3 Sensor3 Value3 – – 76.2 (decimal)

International Journal of Production Research 13

D
ow

nl
oa

de
d

by
 [B

or
ja

 R
am

is
 F

er
re

r]
 a

t 1
2:

50
 1

7
D

ec
em

be
r 2

01
5

The RP begins when Device1 sends the query to the other devices. Afterwards, each device performs an RPP to
support an RPPC. As the RPPC performance depends on the device situation, the fourth query of Figure 7 (Query 4)
exemplifies the RPPC created in Device2. Any INSERT query created by a device involved in a PSS must follow the
corresponding steps presented in Section 3.3.4.

In the same way, other devices contribute to the RP with RPPCs containing the value and type of the corresponding
controlled sensor. The final RPP done by the Device1 is performed within a model that includes all the useful informa-
tion hosted in Device2 and Device3. Hence, in the second experiment the result for the incoming query is achieved,
thanks to the contribution of all devices involved in PSS. Finally, the values that compose the result given by the
requester device (or Device1) once the query has been executed are presented in Table 5. Afterwards, this result is
delivered to the OI so the client can receive the response to its request.

5. Discussion

The approach demonstrates how to manage and process distributed knowledge that is encapsulated among devices
inhabiting the same system. Although the research background positions the work and potential benefits in the field of
automation, the approach might also fit other domains requiring distributed information management. Once the
experiments have been presented, it can be concluded that the paper describes a method for managing knowledge that is
distributed among networked devices for solving SPARQL requests.

Note that the approach does not require any computational infrastructure apart from the CPUs of the embedded
devices. The alternative could be to use cloud computing infrastructure (Camp and Lobov 2014), where the computa-
tional resources that may not be available on the factory floor could be outsourced to the cloud. However, this approach
still necessitates maintaining the infrastructure. The novelty of the approach proposed is that the whole computational
infrastructure is just the embedded devices with knowledge processing capabilities in addition to the ability to perform
the deterministic control for the equipment.

A review of the network topology could determine which configuration is more efficient for implementing the mech-
anism presented. In principle, the research work proposes implementing mesh or bus topologies because of the robust-
ness of these network shapes. Moreover, distributed systems could afford losing a device because the remaining ones
might be able to execute the requested task. However, is debatable if this feature justifies the high cost of these configu-
ration types. As an alternative, a ring topology could be beneficial for reducing the data traffic in the network. In fact,
the network knowledge representation hosted by each device would be minor because less description is required,
thereby decreasing the use of memory in resource-constrained embedded devices. Nevertheless, ring configuration could
be problematic if a connection device-to-device fails so that RPs, for example, would immediately stop working.

On the other hand, although the experiment does not exploit other features and capabilities of ontologies, this
research work targets new trends in the field of industrial automation. As described, e.g. in (Puttonen et al. 2010) and in
(Puttonen, Lobov and Lastra 2013a), the area tends to develop knowledge-driven solutions which manage large data-set
models for monitoring and controlling system status. These models are being developed as ontologies. Hence, the
approach presented here also offers an alternative to on-going research work in the field of industrial automation (Ramis

Table 4. Resources available and sensor values of devices in the second experiment.

Device Resource in device hasValue datatype property value

Device1 Insufficient “12.8”^^<http://www.w3.org/2001/XMLSchema#decimal>
Device2 Insufficient “60.0”^^<http://www.w3.org/2001/XMLSchema#decimal>
Device3 Insufficient “76.2”^^<http://www.w3.org/2001/XMLSchema#decimal>

Table 5. Final query result of the second experiment.

Temperature Light Humidity

“12.8”^^<http://www.w3.org/2001/
XMLSchema#decimal>

“60.0”^^<http://www.w3.org/2001/
XMLSchema#decimal>

“76.2”^^<http://www.w3.org/2001/
XMLSchema#decimal>

14 B.R. Ferrer et al.

D
ow

nl
oa

de
d

by
 [B

or
ja

 R
am

is
 F

er
re

r]
 a

t 1
2:

50
 1

7
D

ec
em

be
r 2

01
5

Ferrer 2015), which proposes the decentralisation of the knowledge representation that in most of the current MES
implementations is kept as a central component.

Further, there are several approaches to distributed knowledge management already available in the literature.
Unfortunately, such approaches do not satisfy the needs of the dynamic, heterogeneous and resource constrained
environments. The other approaches often provide a different but complementary perspective on knowledge-driven
manufacturing systems.

There is an interesting study presenting a distributed query processing method that proposes the partition and distri-
bution of data to several computation nodes (Kurita et al. 2007). It claims that distributed query processing can be opti-
mised by evenly partitioning the data to which the query is applied. Even though the research works with Extensible
Markup Language (XML), it can be linked to our research because the ontology models represented in OWL or RDF
are, in fact, XML-based. The study by (Kurita et al. 2007) shows interesting results on the partition of data. However,
the method is restricted to the industrial automation domain for several reasons. Firstly, in case of manufacturing sys-
tems, the data kept in devices is attached to controlled mechanisms. This means that the data used for controlling, e.g.
an actuator, is located in the device that is connected to it. Secondly, uniform distribution can be problematic using
resource-constrained distributed devices because not all devices will have same amount of resources available. Finally,
the dynamic and heterogeneous nature of manufacturing system devices significantly limits the possibility of predefining
knowledge distribution efficiently. Hence, the approach proposed by Kurita et al. is in general complementary to that
proposed here, but requires further study to address the named issues. Thus, the distributed approach presented in this
article can be proposed as an option for dealing with distributed knowledge residing in embedded devices.

Another study that could be compared to the work presented here is that described in (Paret et al. 2011). There the
researchers propose using metadata indexing for optimising the query distribution. The main problem is that metadata
indexing is described to be one-time performed. The dynamism in industrial automation systems would have tangible
problems with this feature since models are frequently updated. We therefore take the view that our proposal is the way
to go for dynamic environments in which embedded devices are used for managing distributed KBs.

Finally, the research presented in (Kumar, Singh, and Verma 2010) investigates distributed query processing from
the perspective of reducing communication in the system. The authors suggest applying genetic algorithms in order to
analyse data available in the system and to optimise the query-processing strategy. The approach is feasible for powerful
devices, in which communication is indeed a most scare resource, generally arranged in stable and static systems.
Instead, this research addresses the distributed and dynamic system of resource-constrained embedded devices. Thus, it
could be concluded from our approach that the efficiency of distributed query processing is secondary to the robustness
of the query result. Moreover, as the study deals with a distributed system using resource-constrained devices, it can be
stated that the approach is restricted by the nature of the type of system devices.

6. Conclusions

The research work described an approach in which the locus of control is maintained at embedded device level. One of
the direct benefits that this feature brings to the system is the reduction of time in controlling processes. At present
many devices managing control processes compose industrial automation systems. Usually, the decisions are managed
by higher level components. The problem is that cross-layer communication, e.g. between different layers of the ANSI/
ISA-95 automation pyramid, consumes more time than the exchange of data among same-level components. This means
that this approach enables systems to make decisions and solve problems by accomplishing horizontal communication.
Thus, the readiness of higher level components is increased because the number of information transactions pushed from
the bottom to the top layers is reduced.

The work presented here describes a mechanism for reasoning in distributed devices. However, an analysis of the
limitation of resources for RP performance should be performed to avoid data overflow. Moreover, a scalability
approach should be tested for providing a mechanism that would in principle allow using large networks of distributed
devices.

According to the approach described in (Buil-Aranda et al. 2013), the use of SPARQL SERVICE operator
(“SPARQL 1.1 Federated Query.” 2013) makes it possible to directly define the ports to which queries are sent and later
executed. This characteristic would reduce the complexity of the implementation at device level because the endpoint
definition is nested in the query.

A further task for the research presented is to optimise the communications between the devices in a reasoning net-
work, following existing technologies. Moreover, an iteration of the RP will be tested. This experiment will be useful to
test and evaluate more complex situations not explored by this research.

International Journal of Production Research 15

D
ow

nl
oa

de
d

by
 [B

or
ja

 R
am

is
 F

er
re

r]
 a

t 1
2:

50
 1

7
D

ec
em

be
r 2

01
5

Acknowledgement
The research leading to these results has received funding from the ARTEMIS Joint Undertaking under grant agreement n°332946
and from the Finnish Funding Agency for Technology and Innovation (TEKES), correspondent to the project shortly entitled eScop,9

Embedded systems for service-based control of open manufacturing and process automation.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
ARTEMIS Joint Undertaking [Grant Number 332946]; Tekes.

Notes
1. http://www.profibus.com/
2. http://www.inicotech.com/
3. http://www.w3.org/
4. http://www.mesa.org/en/index.asp
5. http://www.uml.org/
6. http://www.raspberrypi.org/
7. http://www.raspbian.org/
8. http://protege.stanford.edu/

References

Agyapong-Kodua, K., Niels Lohse, Robert Darlington, and Svetan Ratchev. 2013. “Review of Semantic Modelling Technologies in
Support of Virtual Factory Design.” International Journal of Production Research 51 (14): 4388–4404. doi:10.1080/
00207543.2013.778433.

Alexander, Dennert, Jakob Krause, Jorge Garcia, Andres Jorge, Stefan Hesse, Jose Luis Martinez Lastra, and Martin Wollschlaeger.
2013. “Advanced Concepts for Flexible Data Integration in Heterogeneous Production Environments.” In 11th IFAC Workshop
on Intelligent Manufacturing Systems, edited by Tsuzuki Marcos, 348–353. doi:10.3182/20130522-3-BR-4036.00047.

Brachman, Ronald J., and Hector J. Levesque. 2004. Knowledge Representation and Reasoning. San Francisco, CA: Morgan
Kaufmann.

Buil-Aranda, Carlos, Marcelo Arenas, Oscar Corcho, and Axel Polleres. 2013. “Federating Queries in SPARQL 1.1: Syntax, Seman-
tics and Evaluation.” Web Semantics: Science, Services and Agents on the World Wide Web 18 (1): 1–17. doi:10.1016/j.web-
sem.2012.10.001.

Camp, Roberto, and Andrei Lobov. 2014. “Implementing Circulating Oil Lubrication Systems Based on the IMC-AESOP
Architecture.” In Industrial Cloud-based Cyber-physical Systems, edited by Armando W. Colombo, Thomas Bangemann,
Stamatis Karnouskos, Jerker Delsing, Petr Stluka, Robert Harrison, Francois Jammes, and Jose L. Lastra, 183–202. Cham:
Springer International Publishing. http://link.springer.com/10.1007/978-3-319-05624-1_8.

Chungoora, N., A.-F. Cutting-Decelle, R. I. M. Young, G. Gunendran, Z. Usman, J. A. Harding, and K. Case. 2013. “Towards the
Ontology-based Consolidation of Production-centric Standards.” International Journal of Production Research 51 (2): 327–345.
doi:10.1080/00207543.2011.627885.

Colombo, Armando W., Thomas Bangemann, Stamatis Karnouskos, Jerker Delsing, Petr Stluka, Robert Harrison, Francois Jammes,
and Jose L. Lastra, eds. 2014. Industrial Cloud-based Cyber-physical Systems. Cham: Springer International Publishing.
http://link.springer.com/10.1007/978-3-319-05624-1.

Colombo, Armando W., Stamatis Karnouskos, and Thomas Bangemann. 2014. “Towards the Next Generation of Industrial Cyber-
physical Systems.” In Industrial Cloud-based Cyber-physical Systems, edited by Armando W. Colombo, Thomas Bangemann,
Stamatis Karnouskos, Jerker Delsing, Petr Stluka, Robert Harrison, Francois Jammes, and Jose L. Lastra, 1–22. Cham: Springer
International Publishing. http://link.springer.com/10.1007/978-3-319-05624-1_1.

Coulouris, G. F., J. Dollimore, and T. Kindberg. 2005. Distributed Systems: Concepts and Design. Addison-Wesley. http://books.goo
gle.fi/books?id=d63sQPvBezgC.

Elien, Paret, and William Van Woensel. 2011. “Efficient Mobile Querying of Distributed RDF Sources.”
Grau, Bernardo Cuenca, Ian Horrocks, Boris Motik, Bijan Parsia, Peter Patel-Schneider, and Ulrike Sattler. 2008. “OWL 2: The Next

Step for OWL.” Web Semantics: Science, Services and Agents on the World Wide Web 6 (4): 309–322.
Harjunkoski, Iiro, Rasmus Nyström, and Alexander Horch. 2009. “Integration of Scheduling and Control – Theory or Practice?”

Computers & Chemical Engineering, FOCAPO 2008 – Selected Papers from the Fifth International Conference on
Foundations of Computer-aided Process Operations 33 (12): 1909–1918. doi:10.1016/j.compchemeng.2009.06.016.

16 B.R. Ferrer et al.

D
ow

nl
oa

de
d

by
 [B

or
ja

 R
am

is
 F

er
re

r]
 a

t 1
2:

50
 1

7
D

ec
em

be
r 2

01
5

http://www.profibus.com/
http://www.inicotech.com/
http://www.w3.org/
http://www.mesa.org/en/index.asp
http://www.uml.org/
http://www.raspberrypi.org/
http://www.raspbian.org/
http://protege.stanford.edu/
http://dx.doi.org/10.1080/00207543.2013.778433
http://dx.doi.org/10.1080/00207543.2013.778433
http://dx.doi.org/10.3182/20130522-3-BR-4036.00047
http://dx.doi.org/10.1016/j.websem.2012.10.001
http://dx.doi.org/10.1016/j.websem.2012.10.001
http://link.springer.com/10.1007/978-3-319-05624-1_8
http://dx.doi.org/10.1080/00207543.2011.627885
http://link.springer.com/10.1007/978-3-319-05624-1
http://link.springer.com/10.1007/978-3-319-05624-1_1
http://books.google.fi/books?id=d63sQPvBezgC
http://books.google.fi/books?id=d63sQPvBezgC
http://dx.doi.org/10.1016/j.compchemeng.2009.06.016

Iarovyi, Sergii, Jorge Garcia, and Jose L. Martinez Lastra. 2013. “An Approach for OSGi and DPWS Interoperability: Bridging
Enterprise Application with Shop-floor.” In 11th IEEE International Conference on Industrial Informatics (INDIN), 2013,
200–205. IEEE. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6622882.

Islam, N., A. Z. Abbasi, and Z. A. Shaikh. 2010. “Semantic Web: Choosing the Right Methodologies, Tools and Standards.” In 2010 Inter-
national Conference on Information and Emerging Technologies (ICIET), Karachi, Pakistan. 1–5. doi:10.1109/ICIET.2010.5625736.

Kiritsis, Dimitris. 2013. “Semantic Technologies for Engineering Asset Life Cycle Management.” International Journal of Production
Research 51 (23–24): 7345–7371. doi:10.1080/00207543.2012.761364.

Kletti, Jürgen, ed. 2007. Manufacturing Execution Systems – MES. Berlin, Heidelberg: Springer Berlin Heidelberg. http://www.spring
er.com/gp/book/9783540497431.

Kumar, T. V. V., V. Singh, and A. K. Verma. 2010. “Generating Distributed Query Processing Plans Using Genetic Algorithm.” In
2010 International Conference on Data Storage and Data Engineering (DSDE), 173–177. doi:10.1109/DSDE.2010.56.

Kurita, H., K. Hatano, J. Miyazaki, and S. Uemura. 2007. “Efficient Query Processing for Large XML Data in Distributed Environ-
ments.” In 21st International Conference on Advanced Information Networking and Applications, Ontario, Canada. AINA ‘07,
317–322. doi:10.1109/AINA.2007.64.

Lastra, J. L. M., and I. M. Delamer. 2006. “Semantic Web Services in Factory Automation: Fundamental Insights and Research
Roadmap.” IEEE Transactions on Industrial Informatics 2 (1): 1–11. doi:10.1109/TII.2005.862144.

Lin, L. F., W. Y. Zhang, Y. C. Lou, C. Y. Chu, and M. Cai. 2011. “Developing Manufacturing Ontologies for Knowledge Reuse in
Distributed Manufacturing Environment.” International Journal of Production Research 49 (2): 343–359. doi:10.1080/
00207540903349021.

Paret, E., W. Van Woensel, S. Casteleyn, B. Signer, and O. De Troyer. 2011. “Efficient Querying of Distributed RDF Sources in Mobile
Settings based on a Source Index Model.” Procedia Computer Science 5: 554–561. doi:10.1016/j.procs.2011.07.072.

Power, Yvonne, and Parisa A. Bahri. 2005. “Integration Techniques in Intelligent Operational Management: A Review.” Knowledge-
based Systems. 18 (2–3): 89–97. doi:10.1016/j.knosys.2004.04.009.

Power, Yvonne, and Parisa A. Bahri. 2005. “Integration Techniques in Intelligent Operational Management: A Review.” Knowledge-
based Systems. 18 (2–3): 89–97. doi:10.1016/j.knosys.2004.04.009.

Puttonen, Juha, Andrei Lobov, Maria A. Cavia Soto, and Jose L. Martinez Lastra. 2010. “A Semantic Web Services-based Approach
for Production Systems Control.” Advanced Engineering Informatics 24: 285–299. doi:10.1016/j.aei.2010.05.012.

Puttonen, J., A. Lobov, and J. L. M. Lastra. 2013a. “Maintaining a Dynamic View of Semantic Web Services Representing Factory
Automation Systems.” In 2013 IEEE 20th International Conference on Web Services (ICWS), 419–426. doi:10.1109/ICWS.
2013.63.

Puttonen, J., A. Lobov, and J. L. M. Lastra. 2013b. “Semantics-based Composition of Factory Automation Processes Encapsulated by
Web Services.” IEEE Transactions on Industrial Informatics 9 (4): 2349–2359. doi:10.1109/TII.2012.2220554.

Ramis Ferrer, Borja. 2015. “A Proposal of Decentralized Architecture for OKD-MES.” In Open Knowledge Driven Manufacturing
and Logistics – the EScop Approach, edited by Stanislaw Strzelczak, Pavel Balda, Marco Garetti, and Andrei Lobov, 331–340.
Warsaw: Warsaw University of Technology Publishing House.

Ramis, B., J. Garcia, and J. L. Martinez Lastra. 2013. “Assessment of IEC-61499 and CDL for Function Block Composition in
Factory-wide System Integration.” In 2013 11th IEEE International Conference on Industrial Informatics (INDIN), 212–217.
doi:10.1109/INDIN.2013.6622884.

Ramis, Borja, Luis Gonzalez, Sergii Iarovyi, Andrei Lobov, Jose L. Martinez Lastra, Valeriy Vyatkin, and William Dai. 2014.
“Knowledge-based Web Service Integration for Industrial Automation.” In 2014 12th IEEE International Conference on
Industrial Informatics (INDIN), 733–739. doi:10.1109/INDIN.2014.6945604.

Shen, Jin, Liya Wang, and Yiwen Sun. 2012. “Configuration of Product Extension Services in Servitisation Using an Ontology-based
Approach.” International Journal of Production Research 50 (22): 6469–6488. doi:10.1080/00207543.2011.652744.

Sirin, Evren, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz. 2007. “Pellet: A Practical OWL-DL Rea-
soner.” Web Semantics: Science, Services and Agents on the World Wide Web 5 (2): 51–53. doi:10.1016/j.websem.2007.03.004.

Sosinsky, B. 2009. Networking Bible. Wiley. http://books.google.fi/books?id=3DOREqRZejcC.
“SPARQL 1.1 Federated Query.” 2013. http://www.w3.org/TR/sparql11-federated-query/.
“SPARQL 1.1 Graph Store HTTP Protocol”. 2013. http://www.w3.org/TR/sparql11-http-rdf-update/.
Vrba, Pavel, Miloslav Radakovič, Marek Obitko, and Vladimír Mařík. 2011. “Semantic Technologies: Latest Advances in Agent-

based Manufacturing Control Systems.” International Journal of Production Research 49 (5): 1483–1496. doi:10.1080/
00207543.2010.518746.

Wolf, Wayne. 2007. “Chapter 1 – Embedded Computing.” In High-performance Embedded Computing, edited by Wayne Wolf, 1–63.
San Francisco, CA: Morgan Kaufmann. http://www.sciencedirect.com/science/article/pii/B9780123694850500026.

Yang, Jae Dong, and H. Lee-Kwang. 2000. “11 – Treating Uncertain Knowledge-based Databases.” In Knowledge-Based Systems,
edited by Cornelius T. Leondes, 327–351. San Diego, CA: Academic Press. http://www.sciencedirect.com/science/article/pii/
B9780124438750500124.

International Journal of Production Research 17

D
ow

nl
oa

de
d

by
 [B

or
ja

 R
am

is
 F

er
re

r]
 a

t 1
2:

50
 1

7
D

ec
em

be
r 2

01
5

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6622882
http://dx.doi.org/10.1109/ICIET.2010.5625736
http://dx.doi.org/10.1080/00207543.2012.761364
http://www.springer.com/gp/book/9783540497431
http://www.springer.com/gp/book/9783540497431
http://dx.doi.org/10.1109/DSDE.2010.56
http://dx.doi.org/10.1109/AINA.2007.64
http://dx.doi.org/10.1109/TII.2005.862144
http://dx.doi.org/10.1080/00207540903349021
http://dx.doi.org/10.1080/00207540903349021
http://dx.doi.org/10.1016/j.procs.2011.07.072
http://dx.doi.org/10.1016/j.knosys.2004.04.009
http://dx.doi.org/10.1016/j.knosys.2004.04.009
http://dx.doi.org/10.1016/j.aei.2010.05.012
http://10.1109/ICWS.2013.63
http://10.1109/ICWS.2013.63
http://dx.doi.org/10.1109/TII.2012.2220554
http://dx.doi.org/10.1109/INDIN.2013.6622884
http://dx.doi.org/10.1109/INDIN.2014.6945604
http://dx.doi.org/10.1080/00207543.2011.652744
http://dx.doi.org/10.1016/j.websem.2007.03.004
http://books.google.fi/books?id=3DOREqRZejcC
http://www.w3.org/TR/sparql11-federated-query/
http://www.w3.org/TR/sparql11-http-rdf-update/
http://dx.doi.org/10.1080/00207543.2010.518746
http://dx.doi.org/10.1080/00207543.2010.518746
http://www.sciencedirect.com/science/article/pii/B9780123694850500026
http://www.sciencedirect.com/science/article/pii/B9780124438750500124
http://www.sciencedirect.com/science/article/pii/B9780124438750500124

Zhang, W. Y., M. Cai, J. Qiu, and J. W. Yin. 2009. “Managing Distributed Manufacturing Knowledge through Multi-perspective
Modelling for Semantic Web Applications.” International Journal of Production Research 47 (23): 6525–6542. doi:10.1080/
00207540802311114.

Zuehlke, Detlef. 2010. “SmartFactory – Towards a Factory-of-Things.” Annual Reviews in Control 34 (1): 129–138. doi:10.1016/j.ar-
control.2010.02.008.

18 B.R. Ferrer et al.

D
ow

nl
oa

de
d

by
 [B

or
ja

 R
am

is
 F

er
re

r]
 a

t 1
2:

50
 1

7
D

ec
em

be
r 2

01
5

http://dx.doi.org/10.1080/00207540802311114
http://dx.doi.org/10.1080/00207540802311114
http://dx.doi.org/10.1016/j.arcontrol.2010.02.008
http://dx.doi.org/10.1016/j.arcontrol.2010.02.008

VIII

AN ARCHITECTURE FOR IMPLEMENTING PRIVATE LOCAL
AUTOMATION CLOUDS BUILT BY CPS

by

Borja Ramis Ferrer, Jose Luis Martinez Lastra, October 2017

43rd Annual Conference on IEEE Industrial Electronics Society (IECON)

2017 IEEE. Reprinted, with permission, from Borja Ramis Ferrer, José L Martinez
Lastra, An Architecture for Implementing Private Local Automation Clouds Built by CPS,

43rd Annual Conference on IEEE Industrial Electronics Society (IECON), November
2017.

An Architecture for Implementing Private Local
Automation Clouds Built by CPS

Borja Ramis Ferrer, José Luis Martínez Lastra
Tampere University of Technology, Laboratory of Automation and Hydraulics

Tampere, Finland
{borja.ramisferrer, jose.lastra}@tut.fi

Abstract—The connectivity of industrial automation domain
systems has been enhanced by the employment of information
and communication technologies. This permits the
implementation of systems that are aligned with the vision of the
fourth industrial revolution, or Industry 4.0. In this scope,
Cyber-Physical Systems (CPS), i.e., integration of cyber and
physical systems, enables the control and monitoring of modern
production lines. Previous research work has proposed the
implementation of a Private Local Automation Cloud (PLAC)
that is composed by a set of networked embedded devices that
are connected to industrial equipment. Such devices implement
the service oriented architecture paradigm within the
encapsulation of a knowledge model that describe the industrial
system and the web service operations to be physically executed
at the factory shop floor level. Aspects of such approach as the
collaborative behavior of devices, decentralization of system
knowledge or the interface between industrial equipment and
devices have been already proved. However, a common
architecture for implementing similar solutions is still missing.
This paper aims to present an architecture for implementing
PLACs which are built by CPS. In order to provide a formal
design, the architecture is shown and discussed through a set of
different and concurrent views following the known “4+1” view
model. In addition, the manuscript reviews relevant qualitative
attributes of several CPS-based architectures, research works
and solutions that have been published during the last years.

Keywords—cyber-physical systems; distributed reasoning;
architecture; industrial automation

I. INTRODUCTION
Advances on Information and Communication

Technologies (ICT) permit the exchange of information
remotely and without large delays. Thus, industrial domain
engineers are constantly employing ICT-based solutions in
order to enhance the connectivity of factories and integrate
them in smart ecosystems [1]. In this context, the
implementation of the Internet of Things (IoT) [2], [3], and the
Cyber-Physical Systems (CPS) [4] emerge in the industrial
domain to realize the envisioned requirements of the so-called
Industry 4.0 (I4.0) [5].

Besides the adoption of ICT-based solutions, I4.0-inspired
factories employ new generation of physical systems, such as
industrial controllers, machines and industrial IoT devices.
One of the focus of this research is the enhancement of the

industrial IoT devices’ capabilities, such as storage and
computation of data.

There are recent research works that propose the
deployment of web service (WS) enabled devices to act as a
gateway between different layers of manufacturing systems
[6]–[8]. In addition, previous works claim that the
collaboration of devices for achieving smart solutions to
control and monitor industrial systems can be now handled at
device level [9]–[11]. For example, the work presented in [12]
proposes the encapsulation of available services and system
descriptions in decentralized repositories that are managed by
industrial IoT devices. Although aforementioned works have
already shown early-stage proofs, there is a need of a
reference architecture that can be followed for implementing
clouds built by CPS for controlling and monitoring industrial
processes.

This article aims to present an architecture that might be
useful for i) permitting the implementation of a private local
automation cloud (PLAC) built by CPS [12] and ii) enabling
the distributed reasoning of semantic resources that are hosted
in collaborative embedded devices [13]. In addition, this
article also aims the comparison of the presented architecture
with existing CPS-based solutions and architectures. To
present a formal design, different and concurrent views of the
architecture are presented following the known “4+1” view
model of software architecture, which is shown in following
Fig. 1 and described in [14]. The employment of such view
model allows to address independent concerns of different
stakeholders of the solution to be implemented.

Fig. 1: The 4+1 View Model [14]

The rest of the article is structured as follows: Section II
includes previous and related work performed in the scope of
this research. Afterwards, Section III presents the proposed
architecture throughout five subsections i.e., one per each view
of the “4+1” view model. Then, Section IV compares the
presented approach and other architectures in order to discuss
their alignment with the principal characteristics of CPS.
Finally, Section V concludes the article.

II. PREVIOUS AND RELATED WORK
The I4.0 seeks for smart, reliable and autonomous solutions

that meet the requirements for implementing CPS [4], [15].
Conceptually, the implementation of CPS and its deployment
in the industrial domain is the main aspect of the fourth
industrial revolution that will enable the interconnection of
heterogeneous and remote systems [1]. This can be achievable
within the implementation of the service-oriented architecture
paradigm [16], the employment of new ICT-based solutions
and the realization of IoT-based concepts for industrial
systems. In this context, previous research to the presented
work has been performed in order to proof some of the
concepts that are required for implementing such kind of
systems.

The combination of knowledge-based systems and the WS
integration permitted the development of a solution that
permits the orchestration of semantically described WS
operations to be executed in modern production lines [17]. The
research performed in [17] demonstrated how industrial
domain ontologies can be used as the system Knowledge Base
(KB) for other components, such as orchestrator engines, to
check or update the actual status of industrial machines. One of
the advantages of similar approaches is the encapsulation of
functionality in WS that may reside locally or even remotely
i.e., in the cloud. In this scope, recent projects, such as the
Cloud Collaborative Manufacturing Networks (C2NET)
project1 proposes the implementation of a cloud-based platform
and its deployment in the supply chain. This will permit i) the
interaction of remote systems involved in the same value chain
and ii) the provision of cloud services that may support the
supply network optimization of manufacturing and logistic
resources.

On the other hand, the Embedded systems for Service-
based control of Embedded systems for Service-based Control
of Open manufacturing and Process automation (eScop)
project2 presented a framework, i.e., the Open Knowledge
Driven Manufacturing Execution System (OKD-MES)
framework, that proposes the combination of the MES
modularity [18] with the knowledge-driven approach [19]. In
fact, [11] recently proposed the decentralization of the storage
and retrieval of OKD-MES semantic knowledge due to the
advances on the capabilities of the embedded devices which
are used for controlling and monitoring manufacturing
processes. In this context, the research work presented in [12],
discusses the potentials and challenges of distributed reasoning
in a PLAC. In fact, first implementations on the behavior of
devices following a PLAC-based approach has been presented

1 http://c2net-project.eu/
2 http://www.tut.fi/escop/

in [13]. However, there is a need for a formal architecture that
might be used for building PLACs within CPS.

III. THE PROPOSED ARCHITECTURE
This section presents the proposed architecture for

implementing PLACs built by CPS. As previously mentioned,
the architecture is designed within the “4+1” view model [14].
Then, each subsection presents a different view of such model.

A. Logical architectural view
The first architectural view is used for presenting

mechanisms and design elements across the various parts of
the system to be implemented [14]. This architectural view is
represented in Fig. 2 through a UML class diagram that shows
the principal objects related to the PLAC.

As it can be seen, Fig. 2 depicts that the different types of
users of the system (i.e., managers and clients) are capable to
interact with the PLAC through a web interface. As the
technologies to be used in the implementation of the system
are web-based, the PLAC web interface is accessible remotely
through the internet by using a web browser. User credentials
are requested and verified before any possibility of interaction
between managers and clients with the PLAC. This is
important for security reasons [20].

Fig. 2: Logical architectural view within an UML class diagram

The system executes incoming requests within a process
known as Reasoning Process (RP) that i) is discussed in
following subsection as a part of the process view and ii) has
been previously described in [13]. In addition, requests are
transformed into queries, as the principal message type that
the PLAC devices will exchange in order to execute
operations and share information. Thus, both managers and
clients are connected to the request object, which, in turn, is
connected to the query class. Moreover, as described in [13],
each query is firstly handled by a device having the role of
Requester Device, in a separated RP. Put briefly, whenever a
query is sent to the PLAC, the devices that have sufficient
resources for handling a RP will be eligible to be a Requester
Device and, thus, lead such process.

The instances belonging to the Device class are the devices
that are deployed in the PLAC. These devices host a KB
which is implemented within ontologies as described in [12].
Basically, such semantic repositories permit the devices to
encapsulate knowledge descriptions that will be queried and
managed whenever any RP is executed. Depending on the

resources of devices, the size of semantic models will be
different. Nevertheless, as the devices are connected to
specific industrial equipment in order to control operations,
each device will host and manage, at least, the information
required for controlling and monitoring interconnected
equipment. The content of devices’ KB is detailed in [12].

B. Process architectural view
The second architectural view is used for presenting how

the main objects from the logical view fit within the process
architecture. Then, through a set of UML activity diagrams,
this view shows the main aspects of the interaction between
system components. Presented diagrams are revised ones from
the sequence diagrams shown in [13].

The Fig. 3 shows the process of registering a new device
that is deployed in the PLAC. To increase the scalability of the
system to be implemented, the PLAC should permit plug-and-
play for new devices. In fact, devices only need the addresses
of other peers in order to establish communication and start
requesting information. The first action to be carried out when
a device is incorporated to the PLAC is to allow networked
peers to discover new devices and vice versa. Thus, whenever a
device is connected to the PLAC, it creates a hello message
that is broadcasted to reach all the cloud devices, which will
include its address into their KB. In addition, once the new
device is registered, each device will create and sent a response
to the new device for allowing it to update its KB with all peers
in the PLAC.

Fig. 3: Process for registering a new device represented within an UML
activity diagram

Once the devices are interconnected and can send and
receive requests from peers, any RP can be performed.
However, as advanced in previous subsection and described in
[13], for a RP to start, a Requester Device must be elected. The
activity diagram depicted in Fig. 4 presents the process of
finding such kind of device. First, a user creates and sends a
request to the PLAC through the web interface. Then, the
interface processes the request and sends it in a query format
expecting any available device to respond for leading the RP
that will correspond to the incoming request. Whenever a
response is received, the interface will add the emitting device
as the Requester Device and the RP will be started.

The described selection method of Requester Device is
simple because it considers the first response to a demand for
leading a RP. However, more complex methods can be
implemented and be compatible with the system designed in

this research work. The addition of complexity in the selection
process might bring to this operation the benefit of selecting
the most suitable device for leading a specific RP. To support
such smart selection, the interface should include more
capabilities than the ones presented at this moment of the
research. For example, it should be capable of buffering
different responses for some time about the same Requester
Device. Then, a more complex method, that is indeed
contemplated in the component diagram of next subsection,
could be employed for selecting the best device according to
configurable parameters, such as the one with more resources
available or the one that is handling less processes.

Fig. 4: Process for finding a requester device within an UML activity diagram

Once the leader, i.e., Requester Device, is selected, the RP
can start in order to conclude the solution for a query and
advance in the decision-making of any operation to be
executed. Then, the Fig. 5 shows the process of performing a
RP for an incoming query.

Fig. 5: Process for performing a RP within an UML activity diagram

The RP process starts with the delivery of the processed
user’s request in form of a query to the Requester Device.
Afterwards, as shown in Fig. 5, the RP leader will broadcast
such query to all devices that are included in its own KB. Then,
each device will execute such query and will redirect the result
to the Requester Device. Each time that the leader collects a
new result, it integrates such information with its own KB.

Then, when all conclusions are received, the broadcasted query
is executed for the last time on the Requester Device KB. The
result of such execution will be sent to the user and the
Requester Device will remove the integrated information
incoming from other devices in order to keep only its own
knowledge after the RP is finished.

C. Development architectural view
The third architectural view is used for presenting the

implementation of system components. Then, the UML
component diagram depicted in Fig. 6 shows the interaction of
different software components to be implemented in order to
realize the needs of the PLAC.

Fig. 6: Development architectural view within an UML component diagram

As it can be seen in previous diagram, each PLAC device
encapsulates a set of software components that will permit i)
the exchange of information between other peers, ii) the web
server and execution of incoming requests in form of queries,
iii) the description of services and iv) the capability of
orchestrating service operations.

The main components for solving the reasoning process in
the PLAC device-side are the Knowledge Base (KB) and the
Distributed Reasoning Manager (DRM). Firstly, the KB
component is concerned about the semantic description of any
resource that the device might need not only to respond queries
but also to perform other functions, such as orchestration of
services, registering of PLAC information or service
management. Secondly, the DRM is the component that
controls the RP process. The device will employ the DRM
according to its role for a specific RP. In other words, if the
device is leading a RP, the DRM must allow it to handle the RP
management. Otherwise, if the RP is processed by another
peer, the DRM will exclusively be in charge of retrieving the
requested information from the KB. Meanwhile DR stands for
the Distributed Reasoning service that is requested from the
server in order to lead a RP; the DR’ is a similar service but

requested from another device that is managing a RP. Besides,
Fig. 6 represents an interface that is present at each device for
connecting industrial equipment or other software components.
The physical architectural view presented in the next
subsection describes some of the procedures that are needed
when connecting devices to industrial equipment. Although the
focus of this research work is to describe how to implement a
CPS for distributed reasoning within a formal architecture, Fig.
6 includes a component for managing the orchestration of
services, i.e., the Orchestrator. In the context of having WS-
enabled devices that are in charge of controlling and executing
industrial operations, the Orchestrator is in charge of
sequencing such operations and controlling its execution in
order to meet a concrete process. Relevant previous work on
this matter has been already presented in [21], [22].

Moreover, the PLAC Subnet Broadcast (SB) component is
in charge of managing the emission of messages that must be
reached by all PLAC devices. Then, this component has a
critical task in any of the processes depicted in Fig. 3, Fig. 4
and Fig. 5.

Finally, Fig. 6 shows that the web server includes an
Auction Manager (AM) component. In principle, this
component is in charge of routing an incoming query to its
corresponding Requester Device. However, as mentioned in
the process architectural view description, more complex
methods could be implemented than just send que query to the
first device which answers to the demand of a RP leader. For
example, the AM might be configured with a set of parameters
that would be required in order to earn the leadership of a RP.
Then, each device would provide required information within
the Bidding Manager (BM) component, which is included in
the devices. Then, the BM is an optional component for
making a more complex decision on which device should lead
a RP. For this method to be implemented, the requested
parameters would be also handled by the SB.

D. Physical architectural view
The fourth architectural view is used for representing the

PLAC and interconnected entities from a system engineer’s
point of view. Then, the UML deployment diagram depicted in
Fig. 7 shows the main physical and software components that
to be interconnected.

Fig. 7: Physical architectural view within an UML deployment diagram

As it can be seen in previous diagram, the PLAC is
composed by a set of devices which, in turn, are connected to
the industrial equipment. To interact with the PLAC, users (i.e.,
people or software) may use a web interface throughout any
kind of system with internet connection. Then, users can send
requests and receive corresponding solutions through such
communication channel.

The physical connections between devices and the
industrial equipment will depend on the specific interfaces of

machines. For example, the research work presented in [23]
describes the an approach to retrofit an assembly line within
WS-enabled devices that describes operations to be executed.
In aforementioned work, different types of connections, such as
DeviceNet, Modbus/TCP, RS232 and Ethernet networks are
connected to Inico Technologies Ltd.3 S1000 industrial
controllers. In the case of selecting non-industrial IoT devices
for the implementation of the presented architecture, it is
possible to attach commercial shields, add-ons, extension
boards and/or adapters. This permits the upgrade of such
devices for adding extra interfaces, such as Ethernet ports or
analog and digital I/Os. For example, the research works [24]–
[26] show some industrial applications with Raspberry Pi4 and
Arduino5 that requires the utilization of additional ports.

E. Scenario
The last part of the “4+1” view model, which can be

understood as the fifth view, is concerned on the representation
of one or a set of scenarios that allow the identification of the
required interactions between objects and processes. Then, this
subsection describes representative activities to be performed
by the PLAC that link the different views and components
described along previous subsections. The selected activities
are depicted within the UML use case diagram shown in Fig. 8.

Fig. 8: Scenario represented within an UML use case diagram

Fig. 8 contemplates four main activities: Place Request,
Check Response, Reasoning Process and Manage Devices. The
first two activities can be performed by both type of users that
are also represented in the logical architectural view shown in
Fig. 2. In fact, it should be noted that “Client” might refer to
both humans or cyber systems, such as third-party application
or even a PLAC device willing to request information from
another peer. Then, the Place Request activity consists on the
placement of an order that will be translated in form of query
and sent to the web interface, which, in turn, will start the
process shown in Fig. 4. On the other hand, the Check
Response activity is performed by any user to consult the
answer of a specific request. Furthermore, as shown in Fig. 8,
the Reasoning Process activity will use the request sent by any
user for performing the PLAC distributed reasoning process.
This will be accomplished within the process shown in Fig. 5.
Finally, the activity Manage Devices can be only performed by
the manager of the PLAC. Basically, the manager will be
authorized to check and, if needed, modify the configuration of
PLAC devices.

IV. DISCUSSION ABOUT CPS ARCHITECTURES
The research and implementation of CPS is highly

important for the industrial domain. This will permit the

3 http://www.inicotech.com/
4 https://www.raspberrypi.org/
5 https://www.arduino.cc/

creation and design of robust, flexible and reliable systems that
permit the control, monitoring and connectivity of industrial
resources. In fact, the number of research works that have been
published from 2006 has been growing dramatically. This is
depicted in the Fig. 9, which is a result of searching
publications within the keyword “cyber physical systems” in
the IEEE Xplore Digital Library6. As it can be seen, the
column chart shows that the amount of publications targeting
the publication of works on CPS has never stopped increasing
from 2006, excepting a light drop in 2014.

Fig. 9: IEEE Xplore Digital Library published articles found by the keyword
"cyber physical systems"

This research work considers official documents that have
been published for presenting technical options and challenges
for new European Commission projects’ calls (e.g., H20207) in
the scope of CPS and the digitalization of industrial systems.
More precisely, this research work categorizes different works
throughout the descriptions that are included in the ARTEMIS8
Strategic Research Agenda (SRA) [27] and in the ECSEL9
Multi-Annual Strategic Research and Innovation Agenda
(MASRIA) [28], both documents published in 2017 [29].

The objective of this section is twofold. Firstly, an
identification of CPS key applications and the classification of
different and recent works in the scope of the implementation
of CPS is provided in TABLE. I. Secondly, a classification of
different CPS architectures and research works depending on
the consideration of specific qualitative attributes are presented
in TABLE. II.

TABLE. I. MAPPING OF RESEARCH WORKS WITH CPS KEY APPLICATIONS
CPS Key
applications

Description according to SRA and
MASRIA [27], [28] Research work

Smart Production Electronic components and systems
and ICT for digitalizing the industry

[30], [31], [32], [33],
[34], [35], [36], [37],
[38], [39], [40], [41],
[42], [43], [44], [45]

Smart Health and
Wellbeing

Medical technology supporting
patients throughout the phases of the
care cycle

[15], [46], [47], [48],
[49]

Smart Energy

Efficient, reliable and secure
management of power generation,
transmission, storage and
consumption

[50], [51], [52], [53],
[54], [55]

Smart Mobility
Digitalization of mobility within
sensor technologies, embedded
software and CPS

[56], [57], [58], [59]

Smart Society
Include information collection,
exchange and processing for livable
environments

[60], [61], [62], [63],
[64], [65], [66], [67]

6 http://ieeexplore.ieee.org/Xplore/home.jsp
7 https://ec.europa.eu/programmes/horizon2020/
8 https://artemis-ia.eu/
9 http://www.ecsel-ju.eu/web/index.php

Commonly, integration is included in the definition of CPS
to declare that such systems bring together cyber and physical
domains. Nevertheless, the integration of such type of systems
imply non-trivial challenges and requirements which are
discussed in several research works [15], [34], [40], [55], [65].
Therefore, there are many features that any architecture must
guarantee for implementing CPS. This research work claims
four qualitative attributes that any reference architecture should
consider for the design and implementation of CPS:
interoperability, reusability, scalability and reconfigurability.
Interoperability is concerned about understandable interfaces
between system components that will facilitate their
interconnectivity and exchange of data. Reusability is a feature
of systems’ components to be used without modifications in a
new configuration of the system. Scalability means that the
provided solution is capable of meeting the requirements even
though the system is scaled up or down. Reconfigurability
refers to the ability of the system to be configured with other
behaviors without affecting the system performance.

TABLE. II. A CLASSIFICATION OF DIFFERENT CPS ARCHITECTURES
 Qualitative attributes

Ref Interoperability Reusability Scalability Reconfigurability
[30] • • • •
[31] • • •
[32] • • •
[33] • •
[34] • • •
[35] • • • •
[36] • •
[37] • • • •
[38] • •
[39] •
[40] • • • •
[44] • • • •
[41] • • •
[42] • •
[43] • •
[45] • •
[15] • • •
[46] • • •
[47] • • •
[48] • • •
[49] • •
[50] •
[51] • •
[52] • •
[53] • •
[54] • • •
[55] • •
[56] • •
[57] •
[58] • •
[59] • •
[60] • • •
[61] • •
[62] •
[63] • •
[64] • • •
[65] • •
[66] • • •
[67] • •

The TABLE. II presents a classification of different CPS-
based architectures and solutions depending on the
consideration of the aforementioned qualitative attributes. The

symbol “•” is used to denote the research works that provide
sufficient means to demonstrate such characteristics. Although
most of the research works included in TABLE. II claim that
such attributes are required for building CPS, some of them fail
in demonstrating that their approaches implement each feature.
Therefore, TABLE. II may be used for identifying already
published research works that fulfill specific CPS architecture
qualitative attributes.

As it can be seen, TABLE. II shows that mostly all
considered works provides sufficient description and
demonstrates interoperability on their CPS-based architectures
and solutions. Conceptually, the main reason for this is the fact
that the integration between cyber and physical domains
implies the performance of interfaces that permits the
interoperation between different type of systems. In fact, in
medium and large-scale systems the manipulation of
heterogeneous systems and data types is frequent. Thus, means
for interoperability must be implemented for ensuring any
interaction between components. In fact, interoperability is a
key feature in the CPS architecture that is presented in this
article because devices are interoperable not only between
them but also with the controlled industrial equipment. This
permits the collection of data from machines and the exchange
of information between peers.

Similarly, the scalability is frequently taken into account
due to the need of incrementing the scale of CPS. In other
words, most of the works consider the possibility of increasing
the number of devices, machines or even virtual models to be
handled within the same CPS-based architecture. The
architecture presented in this article provides scalability to
implemented CPS because the PLAC can be scaled up or down
and the solution will meet the requirements. Still, it must be
noticed that solutions implemented following the presented
architecture tend to perform better with large-scale systems
[11].

On the other hand, reusability is a characteristic that is often
missing in CPS-inspired research works. This might be
justified by the tendency on developing ad hoc solutions. In
other words, some approaches present e.g., models that cannot
be expanded neither adapted to other scenarios. This research
work proposes the design and implementation of ontologies for
describing the CPS and their services. These models can be
extended and modified, even on runtime. For example, RDF10
based models can be updated within SPARQL Update11
queries. Furthermore, the reusability is not only considered for
the semantic models but also for the software components that
are deployed in embedded devices. In fact, each embedded
device to be implemented within the presented CPS
architecture, is a replica in terms of functionalities and
capabilities. Thus, all software modules can be reused,
replicated and deployed in any peer of the PLAC.

Finally, reconfiguration is another qualitative attribute that
tends to be absent in many considered research works. One of
the reasons is because engineers present solutions that need
specific configuration before systems are turned on.
Nevertheless, as defined, any CPS should have, at some
degree, the possibility of reconfigurability. This feature reduces
the effort and time consumption on system configuration and

10 https://www.w3.org/RDF/
11 https://www.w3.org/TR/sparql11-update/

adds autonomy to the implemented CPS. The characteristic of
reconfigurability can be appreciated in the approach presented
in this article at the device level. Each device that enters in the
PLAC is capable of configure and expand its own KB within
the algorithm described in Fig. 3. This configuration can be
different depending on the controlled equipment of each
device. Then, embedded devices will interact by themselves
with no need of manual configuration when they are plugged in
the PLAC. Furthermore, each device is capable of act as
requester device, which implies a different behavior than the
one followed by other peers.

V. CONCLUSIONS
This article presents the architecture that has been

designed following the “4+1” model view, described in [14].
This research work will be used as a reference guide for
implementing a solution that allows distributed reasoning in
PLACs which are built by CPS. One of the main advantages
of designing the proposed architecture with the selected view
model is that different stakeholders of the solution may
understand several functionalities of the solution from
different perspectives. Then, the presented architecture will
not be only useful for developers but also for end-users, and
other interested parties.

The proposed architecture presents a possibility to
implement a system that will enable the integration of
semantic data that is decentralized through a cloud of specific
embedded devices. These devices are capable of solving
incoming requests and making decision within concrete
behavior diagrams described in the process architectural view.

ACKNOWLEDGMENT
The authors gratefully acknowledge the support of the

graduate school funding of Tampere University of Technology
in carrying out this work.

REFERENCES

[1] B. Sniderman, M. Mahto, and M. Cotteleer, “Industry 4.0 and
manufacturing ecosystems,” DU Press, Feb-2016. [Online].
Available: https://dupress.deloitte.com/dup-us-en/focus/industry-4-
0/manufacturing-ecosystems-exploring-world-connected-
enterprises.html. [Accessed: 07-Jun-2017].

[2] R. H. Weber and E. Studer, “Cybersecurity in the Internet of Things:
Legal aspects,” Comput. Law Secur. Rev., vol. 32, no. 5, pp. 715–728,
Oct. 2016.

[3] I. T. S. Sector and O. ITU, “Quality of experience requirements for
IPTV services,” ITU-T Recomm. G, vol. 1080, 2008.

[4] E. A. Lee, “Cyber physical systems: Design challenges,” in Object
Oriented Real-Time Distributed Computing (ISORC), 2008 11th IEEE
International Symposium on, 2008, pp. 363–369.

[5] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The Future of
Industrial Communication: Automation Networks in the Era of the
Internet of Things and Industry 4.0,” IEEE Ind. Electron. Mag., vol.
11, no. 1, pp. 17–27, Mar. 2017.

[6] I. M. Delamer and J. L. M. Lastra, “Loosely-coupled Automation
Systems using Device-level SOA,” in 2007 5th IEEE International
Conference on Industrial Informatics, 2007, vol. 2, pp. 743–748.

[7] R. Harrison et al., “Next Generation of Engineering Methods and
Tools for SOA-Based Large-Scale and Distributed Process
Applications,” in Industrial Cloud-Based Cyber-Physical Systems, A.
W. Colombo, T. Bangemann, S. Karnouskos, J. Delsing, P. Stluka, R.

Harrison, F. Jammes, and J. L. Lastra, Eds. Cham: Springer
International Publishing, 2014, pp. 137–165.

[8] “Shop-Floor Decentralization: Shop Floor Marketplace Emerges.” .
[9] L. D. Xu, W. He, and S. Li, “Internet of Things in Industries: A

Survey,” IEEE Trans. Ind. Inform., vol. 10, no. 4, pp. 2233–2243,
Nov. 2014.

[10] J. Wan et al., “Software-Defined Industrial Internet of Things in the
Context of Industry 4.0,” IEEE Sens. J., vol. 16, no. 20, pp. 7373–
7380, Oct. 2016.

[11] B. R. Ferrer and J. L. M. Lastra, “Towards the encapsulation and
decentralisation of OKD-MES services within embedded devices,”
Int. J. Prod. Res., vol. 0, no. 0, pp. 1–13, May 2017.

[12] B. Ramis Ferrer and J. L. Martinez Lastra, “Private local automation
clouds built by CPS: Potential and challenges for distributed
reasoning,” Adv. Eng. Inform., vol. 32, pp. 113–125, Apr. 2017.

[13] B. Ramis Ferrer, S. Iarovyi, L. Gonzalez, A. Lobov, and J. L.
Martinez Lastra, “Management of distributed knowledge encapsulated
in embedded devices,” Int. J. Prod. Res., pp. 1–18, Dec. 2015.

[14] P. B. Kruchten, “The 4+1 View Model of architecture,” IEEE Softw.,
vol. 12, no. 6, pp. 42–50, Nov. 1995.

[15] S. A. Haque, S. M. Aziz, and M. Rahman, “Review of Cyber-Physical
System in Healthcare,” Int. J. Distrib. Sens. Netw., vol. 10, no. 4, p.
217415, Apr. 2014.

[16] I. M. Delamer and J. L. M. Lastra, “Service-Oriented Architecture for
Distributed Publish/Subscribe Middleware in Electronics Production,”
IEEE Trans. Ind. Inform., vol. 2, no. 4, pp. 281–294, Nov. 2006.

[17] B. Ramis et al., “Knowledge-based web service integration for
industrial automation,” in 2014 12th IEEE International Conference
on Industrial Informatics (INDIN), 2014, pp. 733–739.

[18] F. K. Johnson, “Future of Manufacturing Execution Systems: The
Brave New Modular World of Manufacturing Intelligence,” Rev.
Manag., vol. 1, no. 1, p. 4, Jan. 2011.

[19] S. Iarovyi, W. M. Mohammed, A. Lobov, B. R. Ferrer, and J. L. M.
Lastra, “Cyber–Physical Systems for Open-Knowledge-Driven
Manufacturing Execution Systems,” Proc. IEEE, vol. 104, no. 5, pp.
1142–1154, May 2016.

[20] S. O. Afolaranmi, L. E. G. Moctezuma, M. Rak, V. Casola, E. Rios,
and J. L. M. Lastra, “Methodology to Obtain the Security Controls in
Multi-Cloud Applications,” in Proceedings of the 6th International
Conference on Cloud Computing and Services Science, 2016, pp.
327–332.

[21] B. R. Ferrer, B. Ahmad, A. Lobov, D. Vera, J. L. Martinez Lastra, and
R. Harrison, “A knowledge-based solution for automatic mapping in
component based automation systems,” in Industrial Informatics
(INDIN), 2015 IEEE 13th International Conference on, 2015, pp.
262–268.

[22] J. Puttonen, A. Lobov, M. A. Cavia Soto, and J. L. Martinez Lastra,
“Planning-based semantic web service composition in factory
automation,” Adv. Eng. Inform., vol. 29, no. 4, pp. 1041–1054, Oct.
2015.

[23] L. E. G. Moctezuma, J. Jokinen, C. Postelnicu, and J. L. M. Lastra,
“Retrofitting a factory automation system to address market needs and
societal changes,” in 2012 10th IEEE International Conference on
Industrial Informatics (INDIN), 2012, pp. 413–418.

[24] M. V. García, F. Pérez, I. Calvo, and G. Morán, “Building industrial
CPS with the IEC 61499 standard on low-cost hardware platforms,” in
Proceedings of the 2014 IEEE Emerging Technology and Factory
Automation (ETFA), 2014, pp. 1–4.

[25] A. D. Deshmukh and U. B. Shinde, “A low cost environment
monitoring system using raspberry Pi and arduino with Zigbee,” in
2016 International Conference on Inventive Computation
Technologies (ICICT), 2016, vol. 3, pp. 1–6.

[26] A. Imteaj, T. Rahman, M. K. Hossain, M. S. Alam, and S. A. Rahat,
“An IoT based fire alarming and authentication system for workhouse
using Raspberry Pi 3,” in 2017 International Conference on
Electrical, Computer and Communication Engineering (ECCE), 2017,
pp. 899–904.

[27] European Comission, “The ARTEMIS Strategic Research Agenda
2016- the pathway to digital transformation,” Digital Single Market.
[Online]. Available: https://ec.europa.eu/digital-single-
market/en/news/artemis-strategic-research-agenda-2016-pathway-
digital-transformation. [Accessed: 05-Jun-2017].

[28] ECSEL JU, “2017 Multi Annual Strategic Research and Innovation
Agenda for ECSEL Joint Undertaking.” 2017.

[29] ARTEMIS, “ARTEMIS - Documents,” artemis-ia-eu. [Online].
Available: https://artemis-ia.eu/article/documents-1.html. [Accessed:
05-Jun-2017].

[30] R. Harrison, D. Vera, and B. Ahmad, “Engineering Methods and
Tools for Cyber-Physical Automation Systems,” Proc. IEEE, vol. 104,
no. 5, pp. 973–985, May 2016.

[31] P. Leitao, S. Karnouskos, L. Ribeiro, J. Lee, T. Strasser, and A. W.
Colombo, “Smart Agents in Industrial Cyber–Physical Systems,”
Proc. IEEE, vol. 104, no. 5, pp. 1086–1101, May 2016.

[32] B. B. � Jay Lee, “A Cyber-Physical Systems architecture for Industry
4.0-based manufacturing systems,” SME Manuf. Lett., 2014.

[33] C. Liu and P. Jiang, “A Cyber-Physical System Architecture in Shop
Floor for Intelligent Manufacturing,” Procedia CIRP, vol. 56, pp.
372–377, 2016.

[34] S. Iarovyi, W. M. Mohammed, A. Lobov, B. R. Ferrer, and J. L. M.
Lastra, “Cyber-Physical Systems for Open-Knowledge-Driven
Manufacturing Execution Systems,” Proc. IEEE, vol. PP, no. 99, pp.
1–13, 2016.

[35] P. Leitão, A. W. Colombo, and S. Karnouskos, “Industrial automation
based on cyber-physical systems technologies: Prototype
implementations and challenges,” Comput. Ind., vol. 81, pp. 11–25,
Sep. 2016.

[36] M. Garetti, L. Fumagalli, and E. Negri, “Role of Ontologies for CPS
Implementation in Manufacturing,” Manag. Prod. Eng. Rev., vol. 6,
no. 4, Jan. 2015.

[37] O. Penas, R. Plateaux, S. Patalano, and M. Hammadi, “Multi-scale
approach from mechatronic to Cyber-Physical Systems for the design
of manufacturing systems,” Comput. Ind., vol. 86, pp. 52–69, Apr.
2017.

[38] J. Lee, B. Bagheri, and H.-A. Kao, “Recent advances and trends of
cyber-physical systems and big data analytics in industrial
informatics,” in International Conference on Industrial Informatics
(INDIN), 2014.

[39] B. Bordel Sánchez, R. Alcarria, D. Martín, and T. Robles, “TF4SM: A
Framework for Developing Traceability Solutions in Small
Manufacturing Companies,” Sensors, vol. 15, no. 12, pp. 29478–
29510, Nov. 2015.

[40] A. W. Colombo, S. Karnouskos, and T. Bangemann, “Towards the
Next Generation of Industrial Cyber-Physical Systems,” in Industrial
Cloud-Based Cyber-Physical Systems, A. W. Colombo, T.
Bangemann, S. Karnouskos, J. Delsing, P. Stluka, R. Harrison, F.
Jammes, and J. L. Lastra, Eds. Cham: Springer International
Publishing, 2014, pp. 1–22.

[41] T. Lu et al., “Cyberphysical Security for Industrial Control Systems
Based on Wireless Sensor Networks,” Int. J. Distrib. Sens. Netw., vol.
10, no. 6, p. 438350, Jun. 2014.

[42] M. A. Pisching, F. Junqueira, D. J. dos Santos Filho, and P. E. Miyagi,
“An architecture based on IoT and CPS to organize and locate
services,” in Emerging Technologies and Factory Automation
(ETFA), 2016 IEEE 21st International Conference on, 2016, pp. 1–4.

[43] R. Langmann and L. Rojas-Peña, “PLCs as Industry 4.0 Components
in Laboratory Applications,” Int. J. Online Eng. IJOE, vol. 12, no. 07,
p. 37, Jul. 2016.

[44] A. W. Colombo, S. Karnouskos, O. Kaynak, Y. Shi, and S. Yin,
“Industrial Cyberphysical Systems: A Backbone of the Fourth
Industrial Revolution,” IEEE Ind. Electron. Mag., vol. 11, no. 1, pp.
6–16, Mar. 2017.

[45] B. Ramis et al., “Knowledge-based web service integration for
industrial automation,” in 2014 12th IEEE International Conference
on Industrial Informatics (INDIN), 2014, pp. 733–739.

[46] J. Wang, H. Abid, S. Lee, L. Shu, and F. Xia, “A secured health care
application architecture for cyber-physical systems,” ArXiv Prepr.
ArXiv12010213, 2011.

[47] Y. Zhang, M. Qiu, C. W. Tsai, M. M. Hassan, and A. Alamri, “Health-
CPS: Healthcare Cyber-Physical System Assisted by Cloud and Big
Data,” IEEE Syst. J., vol. 11, no. 1, pp. 88–95, Mar. 2017.

[48] I. Lee et al., “Challenges and Research Directions in Medical Cyber-
Physical Systems,” Proc. IEEE, vol. 100, no. 1, pp. 75–90, Jan. 2012.

[49] E. Sultanovs and A. Romānovs, “Centralized healthcare cyber-
physical system’s data analysis module development,” in 2016 IEEE
4th Workshop on Advances in Information, Electronic and Electrical
Engineering (AIEEE), 2016, pp. 1–4.

[50] A. Florea, C. Postelnicu, B. Zhang, and J. L. M. Lastra, “Ecosystem
oriented energy management: An implementation,” in 2012 IEEE
International Conference on Systems, Man, and Cybernetics (SMC),
2012, pp. 912–918.

[51] S. K. Khaitan and J. D. McCalley, “Cyber physical system approach
for design of power grids: A survey,” in 2013 IEEE Power Energy
Society General Meeting, 2013, pp. 1–5.

[52] A. Farahat, A. Florea, J.L. Martinez Lastra, C. Branas Reyes, and F. J.
Azcondo, “Energy efficient outdoor lighting: An implementation,” in
2014 IEEE 15th Workshop on Control and Modeling for Power
Electronics (COMPEL), 2014, pp. 1–5.

[53] L. T. T. Phuong, N. T. Hieu, J. Wang, S. Lee, and Y. K. Lee, “Energy
Efficiency Based on Quality of Data for Cyber Physical Systems,” in
2011 International Conference on Internet of Things and 4th
International Conference on Cyber, Physical and Social Computing,
2011, pp. 232–241.

[54] C. S. Shih, J. J. Chou, N. Reijers, and T. W. Kuo, “Designing CPS/IoT
applications for smart buildings and cities,” IET Cyber-Phys. Syst.
Theory Appl., vol. 1, no. 1, pp. 3–12, 2016.

[55] Z. x Chen, Y. j Zhang, Z. x Cai, L. c Li, and P. Liu, “Characteristics
and technical challenges in energy Internet cyber-physical system,” in
2016 IEEE PES Innovative Smart Grid Technologies Conference
Europe (ISGT-Europe), 2016, pp. 1–5.

[56] F.-J. Wu, Y.-F. Kao, and Y.-C. Tseng, “From wireless sensor
networks towards cyber physical systems,” Pervasive Mob. Comput.,
vol. 7, no. 4, pp. 397–413, Aug. 2011.

[57] P. González-Nalda, I. Etxeberria-Agiriano, and I. Calvo, “Towards a
Generic Architecture for Building Modular CPS as Applied to Mobile
Robotics,” Int. J. Online Eng. IJOE, vol. 12, no. 1, p. 4, Jan. 2016.

[58] S. Schulte, P. Hoenisch, K. Kipp, D. Burgstahler, S. Abels, and G.
Liguori, “A Service Framework for Smart Mobility Scenarios,” in
2016 IEEE International Conference on Mobile Services (MS), 2016,
pp. 17–24.

[59] G. Fabbri, C. M. Medaglia, A. Pecora, L. Maiolo, and M. Santello,
“Cyber Physical Systems and Body Area Sensor Networks in Smart
Cities,” in 2016 IEEE 25th International Symposium on Industrial
Electronics (ISIE), 2016, pp. 980–985.

[60] K. M. Alam and A. El Saddik, “C2PS: A Digital Twin Architecture
Reference Model for the Cloud-Based Cyber-Physical Systems,”
IEEE Access, vol. 5, pp. 2050–2062, 2017.

[61] C.-Y. Lin, S. Zeadally, T.-S. Chen, and C.-Y. Chang, “Enabling Cyber
Physical Systems with Wireless Sensor Networking Technologies,”
Int. J. Distrib. Sens. Netw., vol. 8, no. 5, p. 489794, May 2012.

[62] A. Banerjee, K. K. Venkatasubramanian, T. Mukherjee, and S. K. S.
Gupta, “Ensuring Safety, Security, and Sustainability of Mission-
Critical Cyber-Physical Systems,” Proc. IEEE, vol. 100, no. 1, pp.
283–299, Jan. 2012.

[63] S. Wang, Y. Zhang, Z. Yang, and Y. Chen, “A Graphical Hierarchical
CPS Architecture,” in System and Software Reliability (ISSSR),
International Symposium on, 2016, pp. 97–105.

[64] E. Simmon, S. K. Sowe, and K. Zettsu, “Designing a Cyber-Physical
Cloud Computing Architecture,” IT Prof., vol. 17, no. 3, pp. 40–45,
May 2015.

[65] X. Yuan, C. J. Anumba, and K. M. Parfitt, “Review of the potential
for a cyber-physical system approach to temporary structures
monitoring,” Int. J. Archit. Res. ArchNet-IJAR, vol. 9, no. 3, pp. 26–
44, 2015.

[66] L. Petnga and M. Austin, “An ontological framework for knowledge
modeling and decision support in cyber-physical systems,” Adv. Eng.
Inform., vol. 30, no. 1, pp. 77–94, Jan. 2016.

[67] T. Sanislav, G. Mois, and L. Miclea, “An approach to model
dependability of cyber-physical systems,” Microprocess. Microsyst.,
vol. 41, pp. 67–76, Mar. 2016.

IX

PRINCIPLES AND RISK ASSESSMENT OF MANAGING DIS-
TRIBUTED ONTOLOGIES HOSTED BY EMBEDDED DEVICES

FOR CONTROLLING INDUSTRIAL SYSTEMS

by

Borja Ramis Ferrer, Samuel Olaiya Afolaranmi, Jose Luis Martinez Lastra, Oc-
tober 2017

43rd Annual Conference on IEEE Industrial Electronics Society (IECON)

2017 IEEE. Reprinted, with permission, from Borja Ramis Ferrer, Samuel Olaiya
Afolaranmi, José L Martinez Lastra, Principles and Risk Assessment of Managing Dis-
tributed Ontologies Hosted By Embedded Devices for Controlling Industrial Systems,
43rd Annual Conference on IEEE Industrial Electronics Society (IECON), November

2017.

Principles and risk assessment of managing
distributed ontologies hosted by embedded devices

for controlling industrial systems
Borja ramis Ferrer, Samuel Olaiya Afolaranmi, Jose Luis Martinez Lastra

FAST Laboratory, Tampere University of Technology
Tampere, Finland

{borja.ramisferrer, samuel.afolaranmi, jose.lastra}@tut.fi

Abstract—Industry is continuously moving towards the
employment and exploitation of semantic technologies due to
diverse enterprise needs, such as cross-domain interoperability,
system modeling, categorization of information, model validation
and data reasoning. Therefore, the research community presents
new semantic-based approaches for implementing industrial
systems that are more flexible, self-descriptive, dynamic and
interoperable with other systems that are already deployed in the
field. For example, the World Wide Web Consortium standards
may be employed for linking remote resources. Currently,
researchers claim that there is already a great success on
implementing cyber-physical systems and efficient machine-to-
machine and machine-to-human interactions through semantics.
However, presented solutions are not always validated in terms of
security. This article suggests two techniques: threat modeling
and risk assessment for protecting solutions from attacks and
malicious access. In addition, these techniques permit
reconsidering the architecture of common semantic-based
solutions by finding requirements not predicted during design
phase. Moreover, this research illustrates the application of
aforementioned techniques within a case of study. The study case
is focused on a semantic-based solution which handles
manufacturing processes through cyber-physical systems.

Keywords— Knowledge representation; distributed ontologies;
risk assessment; threat modelling; factory automation.

I. INTRODUCTION
The research and implementation of semantic technologies

for industry has reached its maximum level and it will
probably remain alike further. One of the main reason for the
high acceptance of semantic technologies in the industrial
automation field is the need of interoperability between
different industrial systems that generate and/or consume
heterogeneous data. Presently, it is not enough to improve the
efficiency of production just by improving the efficiency on
factory shop floors. This is due to the large number of
parameters and factors in the entire product supply chain that
affects the overall production process. Therefore, enterprises
seek valid solutions that allow cross-domain integration of
information. In this way, all data generated and required for
systems working in the production process can be distributed
and analyzed.

Semantic technologies permit the integration, interpretation,
categorization, modeling and extraction of the system

knowledge information. In fact, such data can be represented
within diverse languages, which are nowadays standardized
and understood by both machines and humans [1].
Furthermore, through automated reasoning, it is possible to
inference implicit knowledge of systems for instance, assess
unexpected resource relationships or categorization in the
design phase or even validate the consistency of data models.

From the first decade of the 2000s until now, many research
groups have paid special attention to the implementation of
ontologies in the industrial automation field [2]–[4].
Ontologies permit to formally represent specific knowledge of
a specific domain [5]. Moreover, ontology models can be
queried and updated at runtime, which makes them a powerful
asset for any system that needs a model to be dynamically
actualized. For example, models can be updated with actual
status of the industrial equipment [6].

Nevertheless, the openness and connectivity of recent
semantic-based proposed solutions increases the vulnerability
of platform resources to different kinds of attacks, which
could modify, delete and steal critical data, among other
undesired actions. The security of solutions containing
semantic knowledge accessed and manipulated only by
allowed users (i.e. humans and machines) can be enhanced by
performing threat modelling and risk assessment in the design
phase of the solution.

The objective of this article is twofold. Firstly, this paper
aims to present a semantic-based approach for managing
distributed ontologies that form a private automation cloud
built by Cyber-Physical Systems (CPS) [7]. This approach is
motivated by the fact that current embedded devices have
more resources than ever before so that more functionalities
(e.g., decision-making and manipulating semantic
descriptions) can be handled at the low level: the factory shop
floor. On the other hand, the second objective of this research
work is to suggest that the application of threat modelling and
risk assessment should be a common practice for improving
security of semantic-based approaches. This is shown within
the application of such techniques in the proposed approach.

The rest of the article is structured as follows: Section II
describes related work in the field of industrial automation
regarding the implementation of semantic technologies and

security in distributed systems. Section III describes general
architectural components in knowledge-based solutions and
presents two main techniques to enhance the security of such
solutions. As a case of study, Section IV describes a solution
to be implemented for handling processes in factory shop
floors within embedded devices which are connected to and
encapsulate semantic descriptions of industrial equipment. In
addition, Section IV describes the application of the
techniques for protecting semantic descriptions of a
knowledge-based solution. Then, Section V discusses the
research work and exemplifies some threats. Finally, Section
VI concludes the article.

II. LITERATURE REVIEW AND INDUSTRIAL PRACTICES

A. Distributed systems and semantics in the industry
Distributed systems are those ones in which actions are

performed according to exchanged messages among
networked systems [8]. In the industrial automation field, one
of the next steps after the use of relay controllers was the
employment of Programmable Logic Controllers (PLCs) for
providing control functions. Then, distributed control systems
were deployed in manufacturing systems through a
hierarchical network of industrial devices as e.g., PLCs for
controlling processes of factories.

Nowadays, Information and Communication Technologies
(ICT) implementation permit the accessibility and creation of
collaborative networks in the product supply chain [9]. This
goes beyond the coordination of PLCs in a factory shop floor
because it enables the exchange of information between
different systems that work under same or even different
organizations in a product life cycle. This implies that
information is now to be consumed not only by industrial
equipment, but also by other systems at different parts of the
enterprise or even by humans as e.g. operators or clients. The
distribution of data on service request is doable e.g.,
implementing Service-Oriented Architectures (SOA) [10]
within embedded devices that act as gateways between device
level and superior levels of enterprises [11]. In this context,
the meaning of data becomes important because stakeholders
of different data produced in the same process must be capable
of understanding the information being received.

Semantic technologies are currently exploited in the
industry because they permit deriving meaning from
information. There is a vast amount of employable semantic
technologies e.g., Natural-Language Processing, Artificial
intelligence (AI) or Data Mining technologies. These
technologies permit representing, expressing and/or
processing information based on specific domains.

The use of semantics is not limited to the description of
models but also the text structuration and data type entailment
of messages being sent. Therefore, the use of semantics in the
industry becomes a requirement in enterprises because
designers of systems must convey a common data format for
describing the information to be distributed.

B. Ontologies and the Semantic Web for industrial systems
Knowledge Representation and Reasoning (KR&R) is an

AI discipline that permits describing the world in a way that
can be understood by humans and machines [1]. The container
of semantic descriptions can be referred to as a Knowledge
Base (KB). Moreover, the knowledge stored in a KB can be
extended and updated according to semantic reasoning, which
asserts implicit statements concluded from the represented
explicit descriptions [12]. For industrial automation
developments that use a KB as a source of system’s
knowledge, this is a powerful aspect of KR&R because it
permits e.g., deriving unexpected facts at system design or
operation phases, validation of the consistency of the KB, data
mappings or the automatic categorization of incoming data.

Although there are many KR formalisms and semantic
languages to implement KB [13], ontologies are prominent in
recent developments for the industry [14]–[16]. Conceptually,
ontologies contain formal description about certain domain
[17]. Probably, the ease to design, query, extend, merge, reuse
and reason ontologies, among other features, are the ones that
make them an excellent choice for describing domain
knowledge. In fact, ontologies abstract users from syntax,
logic and programing languages through ontology editors. In
addition, ontologies can be integrated with semantic rules,
which add to KB new facts about certain domain concepts.

The Semantic Web was defined in 2001 as an extension of
the Web wherein the meaning of the information is well-
defined to enable the cooperation between people and
computers [18]. The Semantic Web technologies are usually
presented as a set of stacked technology standards from the
World Wide Web Consortium (W3C) that link data on the
Web. In fact, the different standards and levels of the
Semantic Web Stack [19] have diverse objectives. First, at the
bottom of the stack, the Uniform Resource Identifier (URI) is
employed to define the identifiers, which are unambiguous
names for resources. Then, the eXtensible Markup Language
(XML) is used as a surface syntax for the written documents
while the Resource Description Framework (RDF) and RDF
Schema (RDFS) standards add vocabulary for the data
interchange and taxonomy definition respectively. Afterwards,
the Ontology Web Language (OWL) is used to add more
vocabulary for describing richer ontologies in terms of
expressivity. Furthermore, Rule Interchange Format (RIF) or
the Semantic Web Rule Language (SWRL) is used for
defining rules also on the top of RDFS. Finally, ontologies can
be queried within the SPARQL Protocol and RDF Query
Language (SPARQL). Actually, the SPARQL Update
(SPARUL) is an extension of SPARQL that permits updating
the ontology with new statements. It should be noted that the
aforementioned standards are recommendations from the
W3C, which provides updated specifications and drafts for
each one in [20]. Moreover, a well-described manuscript about
Semantic Web and its principle can be found in [21].

The concept of the Semantic Web is nowadays adopted in
the industry to create a web of linked resources, which can be

implemented within ontologies. The designed map of semantic
resources is useful, among other functionalities, e.g., checking
dependencies of processes, service discovery or system and
service description. There are many research works in the
industrial automation community that show how RDF-based
models can be used as the KB of systems to use system’s
knowledge [2], [6], [22].

C. On security of distributed automation systems
The recent advances in communication, networking and

internet-based technologies have greatly improved the
computational power of embedded systems as they are now
better equipped to handle, process and store large datasets of
information. This extends to the storage and processing of
semantic descriptions as seen in [23] where knowledge bases
(KBs) and the algorithms using the KBs were encapsulated
within embedded devices located at the factory floor. This
attribute has further enhanced the utilization and deployment
of embedded systems (i.e. devices) in Distributed Automation
Systems (DAS) particularly in Industrial Internet of Things
(IIoT) [24] networks because they are easily connected to
communicate with one another within the network.

In DAS, embedded devices exist as dispersed independent
components, which collaborate in an integrated manner to
achieve a common goal. The decentralized model of DAS
promotes efficient tasks’ management between the embedded
devices and also offers excellent advantages such as
scalability/extendibility: as devices can be easily added to the
network, reliability, availability, accessibility and improved
performance [25]. However, decentralization also brings about
decentralized control, as there are multiple points of entry to
the system. This increases the surface area of the attacks in the
devices. In addition, the use of internet-based technologies
further widens the attack base. This is due to the open nature
of the internet, which makes it easily accessible to everyone
including users with malicious intentions. The combination of
these two factors make embedded devices vulnerable and
exposed to threats that are capable of hampering their
performance as well as that of the overall DAS.

In view of the foregoing, the security management of DAS
is a key issue. It becomes even more complex as multiple
points of entry means multiple points of failures and attacks
and therefore multiple points of security protection. It is
therefore required that the security management of DAS has to
be approached in a holistic manner, which takes into
consideration all the points through which the system may be
accessed. In essence, security has to be provided in DAS at the
following levels: device level, device-to-device
communication and overall distributed system. Security has to
be taken into consideration throughout the entire lifecycle of
the system i.e. from the design phase up to execution phase.

Some concerns such as the security of the communication
link and the administering of proper control in the network
often come up in distributed systems and as such requires
proper management. Therefore, as it relates to this research

work, enforcement of control and communication channel
security are vital in order to protect and prevent device KBs
from theft, interception and unauthorized modification.

A classification on distributed systems as cluster
computing, grid computing, distributed storage system,
distributed databases is found in [25]. DAS may be classified
as distributed databases. In this study, the authors highlighted
Denial of Service (DoS) attacks, snooping, and unauthorized
access as some of the main security threats, and lists
authentication, integrity check, confidentiality, authorization,
access control and multi-level security as security mechanisms
to mitigate the threats.

The research work described in [26] conducts a review on
the security issues in distributed systems. The authors
highlighted eavesdropping, masquerading, message tampering,
replaying and denial of service as the general security attacks
on distributed systems. The research work also identifies the
authentication, access control, cryptographic techniques,
quorum based system, trust based model as different security
approaches in distributed systems.

In view of the aforementioned, an efficient security
management has to be defined and implemented in DAS
particularly using technologies that promote and support
effective control of accessibility and interactions with/within
the system. This begins with performing security assessment,
which involves the identification of threat targets as well as
possible attacks; the result of which will help in the realization
of countermeasures needed to mitigate the threats. This will
ensure that semantic descriptions stored in the knowledge
bases of the devices are safeguarded as well as secure transfer
and exchange of information between devices.

III. MAIN ASSETS AND POSSIBLE THREATS WHEN
IMPLEMENTING ACTUAL KNOWLEDGE-DRIVEN SOLUTIONS

A. Knowledge-driven solutions
Knowledge-driven solutions are those ones wherein

operations are executed according to the decisions made when
computing the knowledge of the system. The industry is
moving towards the exploitation of semantic technologies due
to their potential for supporting systems in processes of the
supply chain. In fact, the implementation and synergy between
ICT, SOA and CPS creates a solid basement to transform,
host, integrate, transport, monitor and manipulate data. CPS
permits the integration between the physical and cyber domain
[27]–[29].

 The principal component of knowledge-driven solutions is
the KB because it contains all the semantic descriptions of the
system. In fact, such semantic information not only represent
the knowledge of physical constraints of equipment; but also
contains data related to service descriptions, data format for
messaging, actual status of industrial equipment and much
more. Thus, the KB is known also as the model of the system.
Examples of models used in knowledge-driven approaches can
be found in [2], [6], [29].

Moreover, other important and common components in
knowledge-driven solutions are User Interfaces (UIs), service
composers, industrial equipment and third-party applications.
First, UIs permit the access of users for configuring or
monitoring purposes. Then, service composers (i.e.
orchestrators) are engines implemented in SOA developments
to manage the execution of services [30]. Third, the physical
equipment is obviously a required component in the industry
for performing the operations at factory shop floors. Finally,
third party applications are those that interact remotely with
the system from the outside. It should be noted that, with the
employment of web standards and emergence of the
connectivity to realize the IIoT, knowledge-driven solutions
also include web-based user interfaces so that remote users or
clients can be connected to the solution. The monitoring of
physical equipment can be done within service-enabled
embedded devices that can expose functionality and status of
machines to the Internet [31].

B. Threat Modelling (TM) and Risk Assessment (RA)
Owing to the complex nature of DAS, it becomes

imperative to carry out security assessment and analysis of the
DAS right from the design phase. This will involve the
security evaluation of all the components making up the DAS
in order to identify security issues (risk or threat), specify
security requirements, specify (or identify) security controls
and countermeasures. To achieve this, the approach of threat
modelling and risk assessment is utilized in this research
work. Threat modelling is a process which enables effective
security analysis of an application [32]. It allows for the
recognition, rating and mitigation of threats in an application
or system. It brings about systematic addressing of security
issues. The result of the threat modelling process is a threat
model, which presents the security information of the
application or system and enhances the performance of risk
analysis of the application.

At the state of the art, there are basically 3 approaches to
threat modelling: asset-based, attack-based and system-based
[33]. In these approaches, threat modelling is carried out based
on vital entities (components) to be protected, attacker’s
intention and individual system components respectively. In
this research, the system based approached shall be utilized.
The threat modelling process consists of the following steps:
1. System component identification: This step involves
splitting up the DAS in order to identify its components or
building blocks. This provides information about the system
functionalities as well as its mode of interaction with external
entities. It involves identification of components, entry points
(connection interfaces) and trust levels (access levels).
2. Component threat identification and ranking: This
step involves the identification of the threats associated with
each component of the DAS. This is done using a threat
categorization methodology such as STRIDE (Spoofing,
Tampering with data, Repudiation, Information disclosure,
Denial of service and Elevation of privileges) [34], which

helps to identify threats based on the possible actions of an
attacker. It is then followed by a risk assessment process
which involves determining the risk associated with each
identified threat using a qualitative risk model or other
models such as DREAD (Damage, Reproducibility,
Exploitability, Affected Users, Discoverability) [34].
3. Security requirements specification: This step
involves specifying the security requirements that have been
particularly identified as basic requirements for Industrial
Automation and Control Systems (IACS). These
requirements help to provide a security view uniquely from
the perspective of industrial automation and control systems.
4. Selection of Security Controls: This is the final step
and it involves the identification and selection of the security
mechanisms needed to mitigate the identified threats and
fulfill or satisfy the security requirement [35] specified in the
previous step. This helps to clearly address cybersecurity
threats and IACS security requirements. The set of relevant
controls are derived from the threat mapping lists in [32]
where several mitigation techniques are provided to tackle
STRIDE threats, as well as from other relevant standards
which fulfills the IACS security requirements.

The result of this process is a threat model document,
which provides information about the identified threats per
component together with the risks associated with each of the
threats. With these, adequate security controls are selected to
mitigate the identified threats.

IV. CASE OF STUDY
Once the principles and main assets of knowledge-driven

solutions have been described in Section III, this case of study
presents a recent approach based of the employment of
distributed ontologies encapsulated in embedded devices that
control industrial processes. Moreover, this section shows how
TM and RA techniques are applied to guide the design of the
solution to make it more secure against diverse attack types.

A. Distributed reasoning within embedded devices
Aiming a representation of the described components in this

subsection, Fig. 1 shows a simplified High-Level Architecture
(HLA) of the solution. This was similarly represented in [36].

Fig. 1: High level architecture of the proposed solution

The research work to be used as a case of study in this
article presents an approach that performs distributed
reasoning in a private automation cloud built by embedded
devices that aims to solve incoming requests and manage

processes of industrial systems. Embedded devices are used as
a gateway that interfaces the factory shop floor equipment and
cyber systems from the enterprise business layers, which are
currently used for monitoring and managing service operations
that are executed at the device layer.

One of the particularities of presented HLA is that some of
the functionalities that are commonly done in higher level of
enterprises can be lowered to the device level. The embedded
devices (seen as circles in Fig. 1) implement functions
normally executed by manufacturing execution systems [29].

In the proposed semantic-based approach, as it can be seen
in Fig. 1, each device hosts a KB (shown as a can in Fig. 1),
which describes certain knowledge from the system being
controlled. Each device KB is implemented as an OWL
model, which can be accessed by sending SPARQL over
HTTP [20] requests to an ontology service. The union of all
portions of knowledge hosted by different devices form the
whole knowledge model of the system. The principal concepts
included in each device KB and their relationship through
object properties are shown in Fig. 2.

Fig.2: Main class diagram of each device KB

As it can be seen in Fig. 2, the Device concept is linked to
Network and Service classes. Meanwhile the Network object
includes a list of addresses for devices to know where to
access other peers in the private cloud, the Service contains the
services that the device holds and can be invoked. The right
side of the class diagram represents objects directly related to
operations performed by industrial equipment. Operation class
includes all the operations that machines as e.g., robots or
conveyors can execute. The Process object includes processes
that can be performed through the manufacturing system.
Finally, the Equipment class is populated with instances of the
real industrial machines located at the factory floor.

Then, when a request comes from higher layers that implies
the execution of an operation by certain industrial machine,
the request is received by the cloud of devices that will
conclude how to proceed through a distributed reasoning
process. It should be noted that such process involves
exchanging messages between computer systems to integrate
their semantic resources. The algorithm to solve incoming
requests for this knowledge-driven approach was previously
presented in [23] and is illustrated in Fig. 3.

Fundamentally, the distributed reasoning process is started
and led by one of the devices that broadcasts an incoming
SPARQL query as a request that will be firstly executed
locally (i.e., in each device). Once each device obtains the
results of the query, they are returned in a form of a SPARUL
query that will update the KB of the leading device. Finally,
the leading device for the corresponding query will execute
the incoming SPARQL query for all integrated knowledge

(within previously executed SPARUL queries) to finally find
the solution, which is sent to a dedicated interface.

Fig. 3: Representation of a distributed reasoning process

One of the principal objectives of encapsulating semantic
descriptions in embedded devices is to utilize the available
resources of embedded devices, which are nowadays larger
than before. Therefore, the proposed knowledge-driven
solution uses devices not only to make the integration of
physical and cyber systems and permit cross domain
communication, but also to implement functionality that, in
the industry, is handled by systems residing in upper layers of
the enterprise as e.g., encapsulation and management of
semantic descriptions, orchestration of services, scheduling,
dispatching and decision making about process execution.

Presented solution includes also two interfaces: admin and
user web-based interfaces. These interfaces permit remote
access to authorized users to configure or send regular
requests. It should be noted that OWL models could be
updated within SPARUL queries or by replacing the entire
ontology using the interface provided by the graph store. In
this case study, a Fuseki server is used for such purpose [37].

B. TM and RA performance
The TM and RA steps outlined in the previous section are

applied in the use case to identify the threats and determine the
appropriate security controls. The application of each step in
the use case are described below.

System component identification: The distributed
automation system is composed of mainly HMI and field
components. The identified components, entry points and trust
levels are listed below, and, linked and described in Table 1.
i. Components: User-Interface, Admin-Interface, devices

(hosting the KBs), equipment (e.g., robots, conveyors and
sensors) and controllers (PLCs).

ii. Entry points: HTTP, MODBUS TCP, RS232, IP
iii. Trust Levels: Operator, Administrator, DAS components

TABLE 1. DAS COMPONENT, ENTRY POINTS AND TRUST LEVEL
Components Description Trust Level Entry Points
Operator
Interface

WebUI for Operator
interaction with DAS Operator HTTP Port, IP

Admin Interface WebUI for Administrator
interaction with DAS Administrator HTTP Port, IP

Devices Stores, processes and
encapsulates KBs)

Administrator,
Operator, DAS
components

HTTP Port, IP

Controllers
(PLCs)

Processes logic for
performing operations Operator, Devices MODBUS, IP

TCP, RS232
Equipment Performs operations Operator, Devices RS232

Component threat identification and ranking: The STRIDE
categorization methodology was applied in the use case on all
the DAS components to identify the threats likely to affect the
system. For each of the identified threats, the likelihood and
impact on each component was estimated in order to calculate
the risk. A qualitative risk model was used and the likelihood
and impact values were specified on a scale of (0-10). The
Risk being the product of likelihood and impact (i.e.
Likelihood x Impact) was specified on a scale of (0-100) with
0 as low risk and 100 as high risk. The result of this step is
summarized in Fig. 4. For each threat, the top left value
represents the likelihood, the right value is the impact and the
highlighted value below them is the risk. It can be seen that all
the categories of threats pose different risks to different DAS
components. However, the major components which requires
high-level protection are the operator interface, admin
interface and the devices. A detailed discussion on the results
obtained in TM and RA can be found in following Section V.

Fig 4: DAS Threat Identification and Risk Assessment

Security requirements specification: In such specification, a
relevant standard, which clearly states security requirements
for IACS was utilized. ISA-99 (Security for Industrial
Automation and Control Systems) standards was used to
identify these requirements. ISA-62443-1-1 [38] specifies the
foundational requirements for IACS, which are Identification
& Authorization control, Use control, System Integrity, Data
Confidentiality, Restricted Data Flow, Timely response to
events and Resource availability. ISA-62443-4-2 [39] further
provides component requirements and guidelines needed to
fulfill the foundational requirements in IACS components.

Selection of Security Controls: For the category of threats
and the security requirements identified from the previous
steps, the following security controls have been selected to
mitigate these threats and to fulfill the security requirements.
Mitigation techniques like those presented by OWASP [32]
can be applied to tackle STRIDE related threats. Security
controls are also selected according to ISA-62443-4-2 [39] to
fulfill the security requirements. Table 2 and Table 3 show the
selected security controls.

TABLE 2. SELECTION OF SECURITY CONTROLS FROM OWASP [32]
Threats Security Control
Spoofing Strong Authentication, Secret data protection

Tampering Integrity, Strong Authorization, Use of digital signatures, Use of
Tamper-resistant protocols

Repudiation Use of digital signatures, Audit and Logging
Information
disclosure

Confidentiality, Authorization, Use of privacy-enhanced protocols,
Strong Encryption, Non-storage of passwords in plain texts

Denial of
Service

Availability, Authorization, Authentication, Validate and filter
input

Elevation of
Privilege

Authorization (Use of Access Control Lists), Use of least privilege
service to run processes and access resources

TABLE 3. SELECTION OF SECURITY CONTROLS FROM ISA-62443-4-2 [39]
Security Requirements Security Control

Identification and
authentication control

Multifactor authentication (for Humans and devices),
Use of Strong passwords, PKI certificates and tokens,
System use notification

User Control Authorization enforcement, Session control, Session
lock, Audit records, digital signatures and timestamps

System Integrity Cryptographic integrity protection, communication
link protection, input validation, session integrity

Data Confidentiality Information confidentiality, use of cryptography
Restricted Data Flow Network segmentation, Boundary protection
Timely Response to events Audit log accessibility and continuous monitoring
Resource Availability Denial of Service protection, System Backup

V. DISCUSSION
The presented solution for controlling industrial processes

(at device level) is an opportunity to move down functionality,
which is nowadays performed at supervisory, management
and business levels. This can minimize the amount of vertical
communication and, hence, it might reduce the saturation of
the network due to the amount of cross-domain message
exchange. Thus the common architecture might be reshaped in
production systems that implement hierarchical architectures,
such as the ones presented by [2] and [40].

This research work suggests the decentralization of the
systems’ knowledge by its distribution and encapsulation in
embedded devices. Because of the management of semantic
descriptions can be done within multiple embedded devices
[23], [29], this research work presents a solution with no
single access point and location of the KB. Then, there is no
single point of failure and the system might operate with some
devices down. Nevertheless, a mechanism of backing up
semantic descriptions when a device fails should be further
considered in order to consider all pieces of information.
Moreover, the KB implementation within ontology languages
such as OWL presents a rich and efficient technology to
handle and query semantic descriptions on system demand.
Owing to the possibility of monitoring and updating OWL
models at runtime, dynamic environments like industrial
automation systems can exploit the features and potential of
such knowledge representation formalisms.

On the other hand, this research work also presents a
methodology for evaluating certain risks at the design phase of
any knowledge-based solutions that are accessible remotely
via the Internet. In fact, the threat modeling and risk
assessment revealed that spoofing, tampering and DoS attacks
pose a high-level risk on the devices and, hence, the hosted
KBs. Spoofing attacks on the devices may occur if a user
interacts with the DAS using another user’s credentials,

thereby claiming to be that user. An example of spoofing
attack is man-in-the-middle attack. Security controls like
authentication and strong encryption are recommended to
mitigate this attack. However, it is very important that users
also protect their credentials to prevent them from being stolen
and used maliciously. Moreover, tampering attacks are aimed
at maliciously modifying data at rest or in transit. In the DAS,
this may occur if semantic descriptions stored in KBs or
semantics in queries being exchanged between devices are
modified. Tampering attacks may occur through SPARQL or
SPARUL injections. Tampering attack is illustrated in Fig. 5.

Fig 5: Representation of “Tampering with data” in proposed solution

When tampering with data happens, a wrong (modified)
request is sent and which causes the generation of a wrong
response. The consequence of this is that the KB gets wrongly
updated with this wrong response and thus makes the semantic
descriptions in the KBs to be inconsistent.

In order to exemplify a tampering threat, the query shown in
Fig. 6 is used by the presented solution for checking the status
of the components that must be assembled for specific
product. Thus, the response of such query must be a list with
the specified product (i.e. product_1 for query as shown in
Fig. 6) and its relation with assembled or not assembled
components within different object properties i.e.,
hasComponentAssembled or hasNotComponentAssembled.

Fig 6: Checking the status components to be assembled for a specific product

Then, if product_1 is composed of component_A and
component_B and both have been assembled, the resulting
SPARUL query to be sent to the requester device (after the
execution of the SPARQL query shown in Fig. 6) would be
the one shown in Fig. 7.

The query shown in Fig. 7 is the one to be sent by a device
that can answer totally to the query. However, such knowledge
could be distributed among different devices due to the
decentralization of knowledge in the solution. In this case, the
statements of assembly status for product_1 would be sent in
different SPARUL queries from different devices hosting
required semantic statements.

Fig 7: Example of SPARUL query to update the component status

Therefore, a tampering attack could (1) change any element
of the SPARQL query request making the response wrong
since it would answer to a different query (e.g., product_1 is
replaced by product_2 in request), or (2) modify the SPARUL
query with wrong statements to be updated in the KB of
requester device (e.g., hasComponentAssembled is replaced by
hasNotComponentAssembled). In fact, the tampering attack to
SPARUL query can be even more severe for example, if the
patterns are changed to erase the entire KB of the device.

This attack is easily carried out because SPARQL queries
are transferred over HTTP protocol, which transmits the
queries in plain text and thus can easily be seen, read and
modified by an attacker. An effective control mechanism
would be to send SPARQL queries over HTTPS, which
encrypts the queries from adversaries and thus prevents
modification. Although, the handling of keys and certificates
by industrial embedded devices remains a challenge.

Finally, DoS attacks also pose a high risk on the devices
and may occur if there is a congestion of the network as a
result of high amounts of requests (or queries) sent to the
devices. The actual impact of this attack depends on the
number of devices because it grows with smaller number of
devices in the network. An effective way to guard against this
attack is through authentication and authorization (which
promotes authorized interaction with the system), through
adequate backups and replication (availability), and by
validating and filtering all requests in order to ensure that only
appropriate, well-formed and valid requests are forwarded to
the devices. This may be achieved by deploying a gateway or
firewall, which checks, filters and validates all requests before
they are passed to the devices.

VI. CONCLUSION
This article presents a solution that implements distributed

reasoning of semantic descriptions for controlling processes in
industrial systems. An HLA of the solution is shown and main
principles of it are described. The approach decentralizes the
represented knowledge of the system in distributed KBs,
which are encapsulated in embedded devices that realize the
CPS concept since it allows integrating both cyber and
physical domains. KBs are implemented within OWL, which
are queried within SPARQL and SPARUL queries over
HTTP.

Moreover, the presented approach is employed as a case of
study to argue that security for developments that manage
semantic descriptions should be considered at design phase.
Fundamentally, the article claims that different type of attacks
to assets that are common in semantic-based solutions can be
analyzed within TM and RA techniques. In order to achieve an
optimal result in TM and RA technique performance, an
expert on security should assess the probability of different
attacks and the designer of the solution should value the
impact.

Further, it will be researched how such techniques could be
included in ontologies so that designers would use ontological
models to assess automatically the probability, impact and

possible threats to the system. This would reduce time and
efforts in performing TM and RA assessments.

ACKNOWLEDGMENT
The project leading to this paper has received funding from

the European Union’s Horizon 2020 research and innovation
programme under grant agreement n° 644429 correspondent to
the project shortly entitled MUSA, Multi-cloud Secure
Applications.

REFERENCES
[1] R. J. Brachman and H. J. Levesque, Knowledge Representation
and Reasoning. Morgan Kaufmann, 2004.
[2] L. Fumagalli, S. Pala, M. Garetti, and E. Negri, “Ontology-Based
Modeling of Manufacturing and Logistics Systems for a New MES
Architecture,” in Advances in Production Management Systems. Innovative
and Knowledge-Based Production Management in a Global-Local World,
Springer, 2014, pp. 192–200.
[3] A. Giovannini, A. Aubry, H. Panetto, M. Dassisti, and H. El
Haouzi, “Ontology-Based System for supporting Manufacturing
Sustainability,” Annu. Rev. Control, vol. 36, no. 2, pp. 309–317, Dec. 2012.
[4] J. L. M. Lastra and I. M. Delamer, “Ontologies for Production
Automation,” in Advances in Web Semantics I, T. S. Dillon, E. Chang, R.
Meersman, and K. Sycara, Eds. Springer Berlin Heidelberg, 2009, pp. 276–
289.
[5] T. R. Gruber, “A translation approach to portable ontology
specifications,” Knowl. Acquis., vol. 5, no. 2, pp. 199–220, 1993.
[6] J. Puttonen, A. Lobov, and J. L. M. Lastra, “On the Updating of
Domain OWL Models at Runtime in Factory Automation Systems:,” Int. J.
Web Serv. Res., vol. 11, no. 2, pp. 46–66, 32 2014.
[7] E. A. Lee, “Cyber Physical Systems: Design Challenges,” in 2008
11th IEEE International Symposium on Object Oriented Real-Time
Distributed Computing (ISORC), 2008, pp. 363–369.
[8] G. F. Coulouris, J. Dollimore, and T. Kindberg, Distributed
Systems: Concepts and Design. Addison-Wesley, 2005.
[9] B. Andres, R. Sanchis, and R. Poler, “A Cloud Platform to support
Collaboration in Supply Networks,” Int. J. Prod. Manag. Eng., vol. 4, no. 1,
pp. 5–13, Jan. 2016.
[10] D. K. Barry, Web Services, Service-Oriented Architectures, and
Cloud Computing: The Savvy Manager’s Guide. Newnes, 2012.
[11] I. M. Delamer and J. L. M. Lastra, “Service-Oriented Architecture
for Distributed Publish/Subscribe Middleware in Electronics Production,”
IEEE Trans. Ind. Inform., vol. 2, no. 4, pp. 281–294, Nov. 2006.
[12] B. Ramis Ferrer, B. Ahmad, D. Vera, A. Lobov, R. Harrison, and
J. L. Martínez Lastra, “Product, process and resource model coupling for
knowledge-driven assembly automation,” - Autom., vol. 64, no. 3, Jan. 2016.
[13] E. Negri, L. Fumagalli, M. Garetti, and L. Tanca, “A review of
semantic languages for the conceptual modelling of the manufacturing
domain,” in Proceedings of the XIX Summer School Francesco Turco, 2014,
Senigallia, Ancona, 2014, pp. 1–8.
[14] B. Ramis et al., “Knowledge-based web service integration for
industrial automation,” in Industrial Informatics (INDIN), 2014 12th IEEE
International Conference on, 2014, pp. 733–739.
[15] M. Baqar Raza and R. Harrison, “Design, Development &
Implementation Of Ontological Knowledge Based System For Automotive
Assembly Lines,” Int. J. Data Min. Knowl. Manag. Process, vol. 1, no. 5, pp.
21–40, Sep. 2011.
[16] G. H. Lim, I. H. Suh, and H. Suh, “Ontology-Based Unified Robot
Knowledge for Service Robots in Indoor Environments,” IEEE Trans. Syst.
Man Cybern. - Part Syst. Hum., vol. 41, no. 3, pp. 492–509, May 2011.
[17] J. L. M. Lastra, I. M. Delamer, and F. Ubis, Domain Ontologies for
Reasoning Machines in Factory Automation. ISA, 2010.
[18] T. Berners-Lee, J. Hendler, O. Lassila, and others, “The semantic
web,” Sci. Am., vol. 284, no. 5, pp. 28–37, 2001.
[19] The World Wide Web Consortium, “October 2006: Semantic Web
and Other W3C Technologies to Watch (19).” [Online]. Available:
https://www.w3.org/2006/Talks/1023-sb-W3CTechSemWeb/#(19).
[Accessed: 11-Jul-2016].

[20] W3C, “All Standards and Drafts - W3C,” 2017. [Online].
Available: https://www.w3.org/TR/. [Accessed: 11-Jul-2017].
[21] E. Friedman-Hill, JESS in Action, vol. 46. Manning Greenwich,
CT, 2003.
[22] L. Ramos, “Semantic Web for manufacturing, trends and open
issues: Toward a state of the art,” Comput. Ind. Eng., vol. 90, pp. 444–460,
Dec. 2015.
[23] B. Ramis Ferrer, S. Iarovyi, L. Gonzalez, A. Lobov, and J. L.
Martinez Lastra, “Management of distributed knowledge encapsulated in
embedded devices,” Int. J. Prod. Res., pp. 1–18, Dec. 2015.
[24] L. D. Xu, W. He, and S. Li, “Internet of Things in Industries: A
Survey,” IEEE Trans. Ind. Inform., vol. 10, no. 4, pp. 2233–2243, Nov. 2014.
[25] M. Firdhous, “Implementation of Security in Distributed Systems -
A Comparative Study,” Int. J. Comput. Inf. Syst., vol. 2, no. 2, Feb. 2011.
[26] V. Prakash and M. Darbari, “A Review on Security Issues in
Distributed Systems,” Int. J. Sci. Eng. Res., vol. 3, no. 9, 2012.
[27] J. Lee, B. Bagheri, and H.-A. Kao, “A Cyber-Physical Systems
architecture for Industry 4.0-based manufacturing systems,” Manuf. Lett., vol.
3, pp. 18–23, Jan. 2015.
[28] A. W. Colombo, S. Karnouskos, and T. Bangemann, “Towards the
Next Generation of Industrial Cyber-Physical Systems,” in Industrial Cloud-
Based Cyber-Physical Systems, A. W. Colombo, T. Bangemann, S.
Karnouskos, J. Delsing, P. Stluka, R. Harrison, F. Jammes, and J. L. Lastra,
Eds. Cham: Springer International Publishing, 2014, pp. 1–22.
[29] S. Iarovyi, W. M. Mohammed, A. Lobov, B. R. Ferrer, and J. L.
M. Lastra, “Cyber-Physical Systems for Open-Knowledge-Driven
Manufacturing Execution Systems,” Proc. IEEE, vol. PP, no. 99, pp. 1–13,
2016.
[30] J. Puttonen, A. Lobov, and J. L. Martinez Lastra, “Semantics-
Based Composition of Factory Automation Processes Encapsulated by Web
Services,” IEEE Trans. Ind. Inform., vol. 9, no. 4, pp. 2349–2359, Nov. 2013.
[31] L. E. G. Moctezuma, J. Jokinen, C. Postelnicu, and J. L. M. Lastra,
“Retrofitting a factory automation system to address market needs and societal
changes,” in 2012 10th IEEE International Conference on Industrial
Informatics (INDIN), 2012, pp. 413–418.
[32] The Open Web Application Security Project, “Application Threat
Modeling - OWASP.” [Online]. Available:
https://www.owasp.org/index.php/Application_Threat_Modeling. [Accessed:
14-Jul-2016].
[33] R. Schlegel, S. Obermeier, and J. Schneider, “Structured system
threat modeling and mitigation analysis for industrial automation systems,” in
2015 IEEE 13th International Conference on Industrial Informatics (INDIN),
2015, pp. 197–203.
[34] The Open Web Application Security Project, “Threat Risk
Modeling - OWASP.” [Online]. Available:
https://www.owasp.org/index.php/Threat_Risk_Modeling. [Accessed: 14-Jul-
2016].
[35] S. O. Afolaranmi, L. E. G. Moctezuma, M. Rak, V. Casola, E.
Rios, and J. L. M. Lastra, “Methodology to Obtain the Security Controls in
Multi-cloud Applications,” in Proceedings of the 6th International
Conference on Cloud Computing and Services Science, 2016, pp. 327–332.
[36] B. Ramis Ferrer and J. L. Martinez Lastra, “Private local
automation clouds built by CPS: Potential and challenges for distributed
reasoning,” Adv. Eng. Inform., vol. 32, pp. 113–125, Apr. 2017.
[37] The Apache Software Foundation, “Apache Jena - Fuseki: serving
RDF data over HTTP.” [Online]. Available:
https://jena.apache.org/documentation/serving_data/. [Accessed: 13-Jul-2016].
[38] The International Society of Automation, “ISA99 Committee -
WP-1-1.” [Online]. Available: http://isa99.isa.org/ISA99%20Wiki/WP-1-
1.aspx. [Accessed: 14-Jul-2016].
[39] The International Society of Automation, “ISA99 Committee -
WP-4-2.” [Online]. Available: http://isa99.isa.org/ISA99%20Wiki/WP-4-
2.aspx. [Accessed: 14-Jul-2016].
[40] The International Society of Automation, “ANSI/ISA-95.00.03-
2013 Enterprise-Control System Integration - Part 3: Activity Models of
Manufacturing Operations Management.” [Online]. Available:
https://www.isa.org/store/products/product-detail/?productId=116782.
[Accessed: 15-Jul-2016].

ISBN 978-952-15-4083-7

ISSN 1459-2045

Tampereen teknillinen yliopisto
PL 527
33101 Tampere

Tampere University of Technology
P.O.B. 527
FI-33101 Tampere, Finland

