TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

Julkaisu 842 Publication 842

Stanislav Stankovi¢

XML-Based Framework for Representation of Decision
Diagrams

Tampere 2009

Tampereen teknillinen yliopisto. Julkaisu 842
Tampere University of Technology. Publication 842

Stanislav Stankovi¢

XML-Based Framework for Representation of Decision
Diagrams

Thesis for the degree of Doctor of Technology to be presented with due permission for
public examination and criticism in Tietotalo Building, Auditorium TB109, at Tampere
University of Technology, on the 3™ of November 2009, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2009

ISBN 978-952-15-2248-2 (printed)
ISBN 978-952-15-2258-1 (PDF)
ISSN 1459-2045

Preface

Graph-like structures are often used as a means of organizing data with com-
plex internal structure. In recent decades, decision diagrams, a special class
of directed acyclic graphs, have found numerous applications in a wide range
of fields, from circuit design and testing to information theory and image pro-
cessing. A variety of types of decision diagrams have proven to be an efficient
method of representation of discrete functions, both in terms of memory size
and processing time requirements. Over time a variety of decision diagram
types have been introduced to represent different classes of discrete functions
and to address different application needs.

At the moment, a plethora of software packages employing decision dia-
grams in some way is present either in industrial environment, or in academic
circles. However, most of these software packages make use of proprietary
formats for the internal representation and storage of decision diagrams. This
makes data exchange between different software packages difficult. As far as
we are aware, no attempt has been made to establish a standard format for
the representation of such structures.

Our primary aim is to attempt to amend this situation by proposing a uni-
form framework for the representation of various classes of decision diagrams.
Such a platform needs to satisfy several important criteria. Above all it needs
to achieve a high degree of generality, i.e. it should to be able to describe as
many as possible of the decision diagram classes introduced so far. It should
also be easily extensible in order to accommodate possible new types of deci-
sion diagrams that may be introduced in the future. This abstract platform

vi PREFACE

needs to be flexible enough to be transformed into various application spe-
cific formats. Finally, one cannot reasonably expect a wide adoption of a new
standard which would require radical changes in the present software systems.
Thus, this framework needs to be based on a technology that can be easily
implemented on most operating systems, and programming environments.

In order to satisfy these criteria, we have chosen to build our framework
using XML, an already established data description language created espe-
cially for the task of representing complex data structures. In our work we
demonstrate that properties of XML make it well suited for the problem of
representing decision diagrams. Furthermore, XML is in a wider sense a fam-
ily of closely related languages dedicated to a particular data manipulation
task.

In order to demonstrate the applicability of the proposed framework we
exploit the features of XML to convert the abstract representation of decision
diagrams into formats suitable for a range of distinct applications, such as
hardware register transfer level (RTL) models in VHDL, EDIF based netlists,
SVG vector images containing graphical representation of diagrams or branch-
ing programs in C++.

The author hopes that the discussion and examples presented in this thesis
prove the validity of the chosen approach.

Acknowledgements

The material presented in this thesis represents the result of research con-
ducted by the author between January 2005 and January 2009, at the De-
partment of Signal processing of Tampere University of Technology (TUT),
Finland.

This work was accomplished under the supervision of Professor Jaakko
Astola. T wish to express my sincere gratitude for his scientific expertise as
well as his support and guidance throughout this years. Without his help
none of this work would have been possible.

I am also very grateful to Professor Jarmo Takala of Tampere University of
Technology, the co-author of my publications for their contribution, advices
and encouragement.

I wish to thank to Professor Michael Miller from University of Victoria and
Professor Raimund Ubar of Tallinn Technical University, the reviewers of this
thesis, for their valuable comments and recommendations.

I owe thanks to Professor Claudio Moraga for his valuable advices and
support.

My thanks to Ms Pirkko Ruotsalainen, Ms Virve Larmila and Ms Ulla
Siltaloppi for their assistance in practical arrangements.

I am tankful to my friends and colleagues from TUT, especially to Anna-
maria, Atanas, Vladislav, Michail, Kostadin, Aram, Robert, and may others
for making working hours at university as pleasant as my free time. I also
wish to thank my constant online companions Joannis, Valentin and Uro$ for
providing the much needed breaks from the daily routine.

vii

viii

My deepest gratitude and love goes to my family. Above all, to my father
Radomir, for his love, support and help not only personal but professional,
as well. Then, also, to my mother Milena from whom I acquired both my
interest in computer science and first lessons in programming. Also, to my
sister Smiljana.

Finally, my warmest thanks to my dear Jugoslava for her unconditional
love, support and patience, and for giving me the happiest moments of my
life.

Tampere, October 2009
Stanislav Stankovié

Contents

Preface

Acknowledgements
Introduction

Mathematical Background of Decision Diagrams
2.1 Discrete Functions

2.1.1 Switching Functions
2.2 Representation of Discrete Functions

2.2.1 Tabular Forms

2.2.2 Algebraic Fxpressions

2.2.8 Spectral Techniques

2.2.4 Decision Diagrams
2.8 Topological properties of Decision Diagram
2.4 Classification of Decision Diagrams

XML Framework for Decision Diagrams

3.1 eXtensible Markup Language

3.2 XML Documents

3.3 XPath

3.4 Software for processing XML documents

X

CONTENTS

3.5
3.0
3.7
3.8

3.9
3.10
3.11

Data structures for Decision Diagrams
XML Schema
Decision Diagrams as XML Documents

Ezxamples of XML Representations of Various
Classes of Decision Diagrams

Memory Requirements

Time Considerations
XSLT

Applications of Decision Diagrams

™
S

e R R RS
S B S S

Logic Circuit Minimization

Sensitivity Analysis and Test Pattern Generation
Probabilistic Analysis of Digital Clircuits
Cross-correlation of Functions

Power Consumption Analysis Using Decision
Diagrams

Information Measures on BDD and Switching
Activity

Formal Verification

Verification of Sequential Clircuits

Application of Decision Diagrams in Digital
Image Processing

Position of the XML-based Framework in the
Application Context

Applications of the XML Framework in Logic Design

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

5.11
5.12

5.13

Related Work

Netlists

EDIF Netlist Description Language

EDIF Historical Development

EDIF Netlists in Comparison to VHDL Models
Basics of EDIF Syntax

VHDL

VHDL Historical Notes

VHDL Basic Concepts

Implementation of Switching Functions Using
FPGA Devices

Decision Diagrams and the XSLT Conversion
Mechanism

Application to FBDDs
5.12.1 Efficiency of Implementation of FDDs
Comparison of Efficiency of QDDs and BDDs

44
48
51

94
04
04
65

71
72
73
75
76

77

79
79
80

81
82

85
86
89
90
90
91
92
94
94
95

100

1038
10/
109
112

CONTENTS

5.13.1 XSLT Implementation of the Conversion
Algorithm

5.13.2 A complexity Comparison of QDD and
BDD Based Implementation

5.14 Comparison of Efficiency of SBDDs and
MTBDDs

5.14.1 Hardware Implementation of Multi-output
Switching Functions Using MTBDD

5.14.2 Comparison with SBDDs

6 Entropy Estimation Using Decision Diagrams
6.1 Calculation of Entropy Estimates using BDDs
6.2 FExperimental Results

7 Visualization of Decision Diagrams using SVG
7.1 SVG Graphics Description Language
7.2 Vizualisation of Decision Diagrams
7.3 Ezramples

Xi

117
125
128

150
133

135
136
141

148
148
144
147

8 Automatic Code Generation Using the XML Framework 149

8.1 Branching Programs and Decision Diagrams
8.2 The XSLT Conversion Mechanism
8.3 FExample
8.4 Generalizations
9 Conclusions
References
Appendix A
Appendiz B

Appendiz C

149
150
151
152
153
157
173
175

179

2.1
2.2
2.3
2.4
2.5
2.0
2.7

2.8

2.9

List of Figures

A tree-like representation of the Shannon
expansion for n = 3.

The Binary Decision Tree and the Binary
Decision Diagram for the function f(xy,zs,v3) =
ToX3 D ToTsy D Tr1T2T3.

Binary decision diagram reduction rules.

The Binary Decision Diagram of the function
f(z1,22,23) = 2223 © ToZ3 D T17273.

A Quaternary Decision Diagram for a three-
variable discrete function.

A Shared Decision Diagram for a multi-output
three-variable function f(fi, f2).

A Multi-terminal Binary Decision Diagram.

A Functional Decision Diagram for a Positive
Polarity Reed-Muller expansion of the three-
variable switching function in Example 2.20.

A Kronecker Decision Diagram for a three-
variable switching function, derived using the
BDD reduction rules.

23

25

29

30

31

31
32

35

Xiii

Xiv

LIST OF FIGURES

2.10

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10
3.11
3.12
3.18

3.1/
3.15

3.16

3.17

4.1

5.1

5.2

A Pseudo Kronecker Decision Diagram for a
three-variable switching function, derived using
the BDD reduction rules.

Diagram of Node data structure.

BDD and the corresponding data structure.

An example of a weighted edge.

Binary decision diagram in Example 1.

Data structure for a non-terminal node.

Data structure for the terminal node.

Data structure for the root node.

An example of a shared binary decision diagram.

Data structures representing a shared decision
diagram.

A Kronecker decision diagram.
A Pseudo-Kronecker decision diagram.
Ezxample of a ternary decision diagram.

A Non-terminal node for a ternary decision
diagram.

A Heterogeneous decision diagram.

A non-terminal node in a heterogeneous decision
diagram.

The position of the XSLT mechanism in the
process of conversion of data between two
XML-based formats.

Hierarchy of XML elements.

Position of the XML-based framework in a larger
context.

Logic circuits corresponding to three types of
expansions, f2 = fo® fi.

BDD and a logic network corresponding to the
function f($1, To, .133) =T1T2 V ToT3.

35
46
47
53
54
55
55
56
58

58
59
59
61

61
63

63

66

67

83

105

105

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

0.1

6.2

6.3

6.4

7.1
7.2

8.1

LIST OF FIGURES

Decision diagram created using a Shannon
decomposition rule and RTL schematic for the
fifth output of the misexl benchmark function.

Decision diagram created using a positive Davio
decomposition rule and RTL schematic for the
fifth output of the misexl benchmark function.

Relationships among nodes of binary and
quaternary decision diagrams.

Replacement of an odd level binary node with a
quaternary node.

Replacement of an odd level binary node with
children on a level immediately below.

Replacement of an odd level binary node with
children deeper in the hierarchy.

Hardware implementation of a given function
using a quaternary decision tree.

A multi-output binary function represented by
MTBDD.

A multi-output binary function represented by

shared BDD.

Circuit implementation of the integer Shannon
expansion rule.

Ezxzample of a calculation of entropy estimate via
binary decision diagrams.

Subvectors of order k =2 over nodes of a decision
tree.

Subvectors of the order k = 2 over nodes of a
reduced ordered decision diagram.

The order of reading of the subvectors for k =2,
presented on a decision tree.

Binary Decision Diagram.

A graphic representation of a binary decision
diagram of a 9sym benchmark function.

BDD and a branching program corresponding to
the function f(xl, Za, 1'3) =21ZT2 V T2I3.

XV

118

11

116

117

118

119

120

129

129

131

138

139

139

140
144

148

151

2.1
2.2
2.3

2.4
2.5
2.6
5.1

5.2

5.8

List of Tables

Classes of discrete functions.
An example of a binary switching function.

An example of a binary multi-output switching
function.

An example of a ternary function.

The truth-table of the function f in Example 2.5.

Boolean and Arithmetic operations.

Selected benchmark functions implemented using
a Shannon binary decision diagram and Xilinx
Spartan 3 FPGA technology.

Selected benchmark functions implemented using
a binary decision diagram with a positive Davio
decomposition and Xilinz Spartan 3 FPGA
technology.

Selected benchmark functions implemented using
a Kronecker binary decision diagram and Xilinx
Spartan 8 FPGA technology.

10
10
12
18

110

110

111

Xvii

Xviii

CONTENTS

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11
5.12

5.13

5.1/

5.15

5.16

Selected benchmark functions implemented
using a Kronecker binary decision diagram with
different choice of decomposition rules and Xilinz
Spartan 3 FPGA technology.

Selected benchmark functions implemented using
a Shannon binary decision diagram and Altera
Stratix 111 FPGA technology.

Selected benchmark functions implemented using
a positive Davio binary decision diagram and

Altera Stratiz III FPGA technology.

Selected benchmark functions implemented using
a Kronecker binary decision diagram and Altera
Stratix 111 FPGA technology.

Selected benchmark functions implemented using
a Kronecker binary decision diagram with a
different choice of decomposition rules and Altera
Stratix 111 FPGA technology.

An example of the encoding of a binary and into
an equivalent quaternary function.

Comparison of the size and complezity of binary
and quaternary decision diagrams for the selected
benchmark functions.

Standard synthesis method results.

Results for synthesis using Quaternary decision
diagrams.

Size comparison of MTBDDs and Shared BDDs
of some benchmark functions.

The selected benchmark functions implemented
using MTBDDs and Altera Cyclon II FPGA
technology.

The selected benchmark functions implemented
using SBDDs and Altera Cyclon Il FPGA
technology.

The selected benchmark functions implemented
using MTBDDs and Xilinx Virtex Il FPGA
technology.

111

111

111

112

112

116

125
127

128

150

133

154

134

CONTENTS XiX

5.17 The selected benchmark functions implemented

6.1
6.2

using SBDDs and Xilinz Spartan Il FPGA
technology.

LUT of indices for k= 2. 138

Number of steps needed to calculate the
occurrence rate of subvectors using BDDs,
and the standard approach. 141

13/

XX

List of Abbreviations

*BMD

API

ASIC
BDD
BDT
BMD
CLB

CPU

DOM
DSP

DTL
EDIF
ESOP
EVBDD
FDD
FEVBDD
FPRM
FPGA
GRM

Multiplicative Binary Momentum Diagram
Two Dimensional

Application Programming Interface
Application Specific Integrated Circuit
Binary Decision Diagram

Binary Decision Tree

Binary Momentum Diagram
Configurable Logic Block

Central Processing Unit

Decision Diagram

Document Object Model

Digital Signal Processor

Decision Tree

Decision Type List

Electronic Design Interchange Format
Exclusive-OR, Sum-Of-Products
Edge Valued Binary Decision Diagram
Functional Decision Diagram
Factorized Edge Valued Binary Decision Diagram
Fixed Polarity Reed-Muller
Field-Programmable Gate Array
Generalized Reed-Muller

HDD
HTML
KDD
LUT
MCNC
MTBDD

OBDD
pD
PKDD
POS
PPRM
QDD
ROBDD
RTL

SAX
SBDD
SGML
SOP
SVG
TDD
VHDL
VHSIC
VLSI
WDD
XML
XSLT
ZBDD

XXi

Hybrid Decision Diagram

Hypertext Markup Language

Kronecker Decision Diagram

Look Up Table

Microelectronics Center of North Carolina
Multi Terminal Binary Decision Diagram
Negative Davio

Ordered Binary Decision Diagram
Positive Davio

Pseudo Kronecker Decision Diagram
Product of Sums

Positive Polarity Reed-Muller

Quaternary Decision Diagram

Reduced Ordered Binary Decision Diagram
Register Transfer Level

Shannon Decomposition

Simple APT for XML

Shared Binary Decision Diagram
Standard Generalized Markup Language
Sum of Products

Scalable Vector Graphics

Ternary Decision Diagrams

VHSIC Hardware Description Language
Very-High-Speed Integrated Circuits
Very-large-scale Integration

Walsh Decision Diagram

Extensible Markup Language

Extensible Stylesheet Language Transformations
Zero-Suppressed Binary Decision Diagram

Introduction

The basic idea that motivated the research presented in this thesis is to estab-
lish a standardized method for the representation of various classes of decision
diagrams. Our main aim is to provide a means for efficient data exchange be-
tween various existing and potential, future software systems that deal with
decision diagrams in some way.

Although decision diagrams have already been employed as a valuable tool
in several important applications for a significant period of time, to our best
knowledge no attempts at standardization have been made so far.

Such a platform has to satisfy several important criteria. Above all it needs
to achieve generality, in the sense that it needs to be able to record all the
significant structural features of as many distinct classes of decision diagrams
already present in practice and the literature as possible. The platform needs
to be easily extensible, in order to accommodate possible new types of decision
diagrams that might be introduced in the future. In order to do so, the format
specification must be focused on the common structural features shared by
most classes of decision diagrams.

Furthermore, the proposed solution needs to be flexible enough to be appli-
cable in various application scenarios. An abstract decision diagram represen-
tation should be easily convertible to particular application specific formats.

Finally, the whole solution needs to be easy to implement on various operat-
ing systems and programming environments. It would be unrealistic to expect
a wide acceptance of a standard which would require significant changes in
existing and established software packages.

In order to fulfill these requirements we have selected the XML data mod-
eling language as a basis for our solution. The Extensible Markup Language

1

2 INTRODUCTION

(XML) is a versatile data description language designed specially for the task
of representing data with a complex and variable internal structure. The XML
does not proscribe a strict data structure to which a certain class of documents
needs to conform. Rather, it specifies a set of general rules that these docu-
ments need to adhere to. In a wider sense, XML is also a family of languages,
XML proper and various derivatives, which offers a set of tools for efficient
data manipulation, such as conversion of data between different formats. Re-
cursive properties inherent in XML match the recursive properties exhibited
by decision diagrams very well. XML parsers, software modules dedicated to
processing XML documents, exist for all major software platforms as libraries
for all common programming languages.

The work presented in this thesis is interdisciplinary. It is a software engi-
neering task, related to the field of data structures, with applications in such
areas as logic design and information theory and touching on topics such as
group theory, graph theory and spectral techniques.

In order to make this thesis as simple to understand as possible, we decided
to organize it in the following way.

The first part of this document is introductory in nature. We begin by
examining the mathematical background of decision diagrams as a canoni-
cal representation of discrete functions. We start with the formal definition
of discrete functions, discuss their classification and present several methods
for their representation gradually introducing the more complex methods,
culminating with decision diagrams. Next we turn our attention to spectral
transforms which provide a uniform interpretation of various types of decision
diagrams. Formal definitions of decision diagrams are given next. Further,
decision diagrams are examined from the graph theory point of view, with spe-
cial attention given to their topological properties, as these properties in large
part determine the organization of the proposed XML based framework. The
topological properties of decision diagrams, such as the size, i.e. number of
nodes, maximal path length, etc., are of great importance to the applications
of decision diagrams, especially the minimization of logic circuits.

In the second part of this thesis, we introduce the basic notions of the
XML, its syntax and data description principles. Here we also present, the
other members of the XML family which are of interest for our work. The
XML Schema language is used to specify the file format of particular types of
XML documents, and also to validate individual XML documents. Internal
data addressing in XML based solutions is performed via the XPath language.
Most importantly, a mechanism for the conversion of XML documents to
other XML or non-XML based formats is provided by XSLT. We pay special
attention to the XSLT language as it is employed by all of the application
examples for the presented framework.

We focus next on the core of the proposed solution itself, the structure of
XML documents for the representation of decision diagrams. We first discuss
the data structures commonly employed for representation of acyclic directed
graphs from the theoretical point of view. The details of XML Schema spec-

ification for decision diagrams are presented next. Since the primary task of
the proposed framework is representation of various classes of decision dia-
grams, we give several examples of XML documents for a range of decision
diagram types, starting with reduced ordered binary decision diagrams (ROB-
DDs) and functional decision diagrams (FDDs), through multi-output binary
decision diagrams (MTBDDs) and shared binary decision diagrams (SBDDs)
to multivalued ternary (TDDs) and quaternary (QDDs) decision diagrams.

In order to prove the validity of the proposed framework, we also present
several examples of its potential application. However, before we are able to
do so, we first need to examine the possible applications of decision diagrams
in general, especially in the field of logic design. This discussion is presented
in Chapter 4.

The majority of these examples deal with the application of decision di-
agrams in logic design, especially the implementation of switching functions
using FPGA devices. The application of high-level programing languages in
hardware design is known as High Level Synthesis. A quick overview of the re-
lated software solutions is given. We also examine the standard way in which
switching functions expressed in decision diagram form are implemented in
hardware. Therefore, a brief introduction to the concept of netlists is given in
Section 5.2. Several high-level hardware description languages are currently
in wide use. In our examples, we make use of two of them, VHDL as a gen-
eral purpose hardware modeling language and EDIF for the specific task of
netlist specification. An introduction to the basic concepts of both of them
is given in Section 5.9 and Section 5.6 respectively. Their mutual similarities
and differences are discussed in Section 5.5.

The first example we present deals with the implementation of switching
functions using various families of FPGA devices. We have developed a set
of two XSLT stylesheets capable of converting an XML document contain-
ing a ROBDD of a given function into a RTL hardware model expressed in
VHDL syntax. In the next example, we compare the efficiency of MTBDD
implementations of multi-output switching functions versus the more common
SBDD implementation. In recent years, six input LUT based FPGA devices
have been introduced as an optimal solution to the problem of granularity of
logic blocks. QDDs have been proposed as a tool for logic design for such
devices. We introduce an algorithm for generating a QDD function repre-
sentation from its ROBDD. The XSLT implementation of this algorithm is
presented in Section 5.13.

Information theory is one of the possible fields for application of decision
diagrams. In the example, given in Chapter 6, we introduce a ROBDD based
method for the calculation of the entropy estimate of a given binary string.

We further demonstrate the flexibility of the proposed framework in Chap-
ter 7. A set of XSLT stylesheets is employed to automatically generate graphic
representations of decision diagrams. The final product of this process is a
vector image in SVG format.

4 INTRODUCTION

Finally, in the last example we discuss the behavioral and structural aspects
of system modeling with regards to decision diagrams in Chapter 8.

Concluding remarks are given in Chapter 9.

This thesis consists, in the greatest part, of the material originaly presented
in the following publications by the author:

P 1 S. Stankovié, J. Astola, “XML framework for various types of decision
diagrams for discrete functions”, IEICE Trans. Inf. and Syst., Vol. E90-D,
No. 11, 2007, 1731-1740.

P 2 S. Stankovié., J. Takala, J. Astola, “Method for Automatic Generation
of RTL in VHDL Using Decision Diagrams”, Proc. The 2006 Int. TICSP
Workshop on Spectral Methods and Multirate Signal processing, SMMSP, Flo-
rence, Italy, 2006.

P 3 S. Stankovié, J. Astola, “QDD Based Method of Automatic Circuit De-
sign for Xilinx Virtex-5 FPGA Devices”, Journal of Multiple-Valued Logic
and Soft Computing, accepted for publicaiuton.

P 4 S. Stankovié, J. Astola, “Calculating Entropy Estimate Using Binary
Decision Diagrams”, Proc. XI International Symposium on Problems of Re-
dundancy in Information and Control Systems, 02 - 06 July, 2007, Saint
Petersburg, Russia, 32-36.

P 5 S. Stankovié, J. Astola, “XSLT Based Method for Automatic Genera-
tion of a Graphical Representation of a Decision Diagram Represented using
XML?, 7th International Workshop on Boolean Problems, Freiberg, Germany,
21-22 Sept. 2006.

P 6 S. Stankovié, J. Astola, “Method for automatic generation of branching
programs using decision diagrams”, Proc. The 2007 Int. TICSP Workshop
on Spectral Methods and Multirate Signal processing, SMMSP 2007, Moscow,
Russia, September 3-4, 2007, paper cr1023.

The general concept of XML-based framework for representation of Deci-
sion Diagrams was introduced in P 1. The applications of this framework
in logic design have been discussed in P 2 and later in P 3. Other publica-
tions by the author discuss the application of the framework in other fields.
Decision Diagram based method for entropy estimation was presented in P
4. An XML-based method for authomatic visualization of Decision Diagrams
was proposed in P 5 and the method of authomatic generation of branching
programs was presented in P 6.

The whole thesis and the publications cited above represent original work,
of which the author was the main contributor. In particular, the XML-based
methodology for representation of Decision Diagrams, the presented frame-
work, conversion algorithms and related software implementations were pro-
posed and developed by the author. Furthermore, all experimental results
represent original work by the author.

Mathematical
Background of Decision

Diagrams

In this chapter we present the mathematical background of decision diagrams.
These underlying concepts to a great extent determine the conditions which
the XML-based framework for the representation of decision diagrams needs
to satisfy. We begin our discussion by restating the definition of discrete
functions. Special interest is devoted to switching functions, a special class
of discrete functions which forms the foundation of digital circuit technology
based on two stable state circuits. We continue by examining several forms of
the representation of discrete functions, from the most simple tabular forms
to graphics representation, ending with a formal definition of decision trees
and decision diagrams. Further, we list the topological properties of decision
diagrams that are of interest from an application point of view. We end this
chapter with an overview of several important classes of decision diagrams,
especially those which will be used in examples of applications of the proposed
framework.

2.1 DISCRETE FUNCTIONS

In this section, we discuss some basic properties of discrete functions, and give
an overview of certain classes of discrete functions that are of special interest
in this work. We devote special attention to switching functions, since these
functions are most important in practice. In the reminder of this thesis, we
make use of switching functions to introduce many important concepts and
give generalizations to other classes of discrete functions as appropriate.

6 MATHEMATICAL BACKGROUND OF DECISION DIAGRAMS

Table 2.1 Classes of discrete functions.
Integer foxi= 1{0,1,. ,ml—l}—>{0,1,. T — 1}
Multivalued I {07 1,..,m—1}" —{0,1,. -1
Switching, Boolean f:B" — B’
!
e
I

Pseudo-logic s x=ot, L, m — 1) — {0,1}
Pseudo-Boolean 0,1}" — R, R - field of real numbers
Galois GF(p)}" — {GF(p)}

A general definition of discrete functions can be stated in the following
form:

Definition 2.1 Let A and B be sets. A relation is a subset r of A x B. A
relation [is a function if, and only if, for every a € A there exists exactly
one b € B such that (a,b) € f. A relation f is called an incompletely specified
function if for each a € A there is at most one b € B such that (a,b) € f, and
there is at least one a for which there is no (a,b) € f. The sets A and B are
usually called the domain and the range of f, and written f: A — B.

Depending on the choice of domain and range there are different classes of
discrete functions. We list the most important classes in Table 2.1.

The number of discrete functions is exponential in the cardinality of the
domain. Consider discrete functions f : X — Y, where each function is
specified by a vector of its values with length |X|, where |X| denotes the
cardinality of the set X. Y X is the set of all functions from X to Y. The
total number of functions is |Y|‘X|.

The set of all subsets of a set A is called the power set of A and denoted
by P(A). Often, the power set of A is denoted by 24 due to the following
considerations. The set of all functions from a set A to the set 2 = {0,1}
is 24. Each function in 24 can be viewed as the characteristic function of
a subset in A and can be identified with that subset. Therefore, there is a
bijection between 24 and P(A), and the power set of A can be denoted by
24,

From an application point of view, another very important concept is the
concept of multi-output discrete functions.

Definition 2.2 A multi-output discrete function is a function defined as:

f : X?:lDi — X;‘lei (21)
where D;, R; are finite, non-empty sets.

The multi-output function f is clearly equivalent to a system (fi, ..., fim)
of single output functions f; : D; — R;,i=1,...,n

DISCRETE FUNCTIONS 7

Multi-output discrete functions can be used to describe the behavior of a
system with multiple inputs and outputs. Especially, multi-output switching
functions are used to describe the behavior of logic circuits.

2.1.1 Switching Functions

As shown in Table 2.1, switching functions represent a special class of discrete
functions. We review some of their properties.

Definition 2.3 A Boolean algebra (B;V,\;7;0,1) is defined as a set B, two
elements of B, 0 and 1, two binary operations V, A, and a unary operation
~. These operations are known as logic OR, AND and NOT, respectively, and
satisfy the following postulates:

1. Idempotencity xtVr=x, z ANz =z,

2. Commutativity xNy=yAzx, xVy=yAz,

3. Associativity x V (yVz)=(xVy)Vz, zAyNAz)=(xAy) Az,

4. Absorption xV (x ANy) =z, x A (zVy) =z,

5. Distributivity x A (yV z) = (x Ay)V(xAz), 2V (yAz) = (xVy)A(zVz),
6. ComplementxVz =1,z AT =0,

forx,y,z € B.

Boolean functions are defined in terms of expressions over a Boolean alge-
bra.

In the case of a two-valued Boolean algebra B = {0,1} and the operations
can be expressed as:

The logic OR operation

V10 1
00 T
1 1
the logic AND operation
A0 1
070 0O
110 1

and the unary logic NOT operation

T

Logic AND, OR and NOT operations are extended to B™ component wise.

8 MATHEMATICAL BACKGROUND OF DECISION DIAGRAMS

Example 2.1 For all z = (a1,...,a,), y = (b1,...,by), where a;,b; € B,
t=1,..,n, zVy= (a1 Vbi,..,a, Vby,).

Definition 2.4 Let (B;V;A; —;0;1) be a Boolean algebra. A wvariable that
takes values in the set B is a Boolean variable. The expression that is obtained
from the Boolean variables and constants by combining with the operations V,
A, and — and parentheses is a Boolean expression. A Boolean mapping is a
Boolean function if and only if every element in B™ has exactly one element
in B associated with it. If a mapping f : B™ — B is represented by a Boolean
expression, then f is a Boolean function. However, not all the mappings
f: B™ — B are Boolean functions.

Switching functions possess certain properties which make them suitable
for the theoretical foundation of circuit design.

1. There exist exactly four distinct functions of a single variable x: fo(x) =
0, fi(z) =1, fa(x) =z and f3(z) = Z.

2. There are 16 two variable switching functions. They are used to describe
the elementary logic gates (AND, OR, EXOR, etc.)

3. The number of n-variable switching functions with one output is equal
to 22",

4. The number of m-output, n-variable switching functions is equal to
2m2",

5. A logic circuit with n inputs and one output can be described by an
n-variable switching function f = (x1,x2,...,z,).

6. A logic circuit with n inputs and m outputs can be described in terms
of m_tuple f = (fla f27 a3 fm)

Switching functions, and discrete functions in general, can be represented
in a variety of forms. The central subject of this work, decision diagrams, are
one of the several forms of representation encountered in practice. In order
to give a better view of the position of decision diagrams in relation to other
forms of representation, we discus some of these forms in the following section.
These forms will also be used for initial specification of functions in certain
examples.

2.2 REPRESENTATION OF DISCRETE FUNCTIONS

Depending on the intended application, a variety of methods have been pro-
posed for the representation of discrete functions. These methods can be
divided into three large groups:

REPRESENTATION OF DISCRETE FUNCTIONS 9

Table 2.2 An example of a binary switching function.

x1 X2 T3

‘HHOH»—AOOJ*‘J

—m_OOO
[EEVE o Yo Py)
—O—ROROR

1. Decision tables and tabular forms in general,
2. Algebraic expressions,

3. Graphic methods, graphs, hypercubes, etc.

We present an overview of these methods with a special focus on switching
functions.

2.2.1 Tabular Forms

Discrete functions can always be represented in tabular form, due to the fact
that their domain is finite.

Example 2.2 Table 2.2 presents a three-variable switching function f by list-
ing function values for all possible inputs.

The left side of the table represents the elements of the domain. The right
part displays the corresponding function values.

In the case of binary functions this form of representation is known as the
truth-table. The vector of function values is known as the truth-vector. The
same concept is readily extended to multi-output functions.

Example 2.3 Consider a three-variable two-output binary function f =
(f1, f2). We present the tabular representation of this function in Table 2.5.

The tabular display is also convenient for other classes of discrete functions,
as illustrated in Example 2.4 and Example 2.5 below.

Example 2.4 Table 2.4 shows an example of a ternary three-valued discrete
function in tabular form, with ternary variables on the left and the function
values on the right.

In the tabular form all the values of the variables are shown explicitly. Any
interdependence of the function values is ignored. However, this manner of
displaying causes a serious problem. The size of the table is exponential in

10 MATHEMATICAL BACKGROUND OF DECISION DIAGRAMS

Table 2.3 An example of a binary multi-output switching function.

1 2 3 f1 f2
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 1
1 0 0 1 1
1 0 1 0 1
1 1 0 1 0
1 1 1 1 1

Table 2.4 An example of a ternary function.

8
A,
1&,

NN —OO
N—=ON—FON -

the number of variables. Tabular representations quickly become unwieldy for
even a relatively small number of discrete variables. Other methods of rep-
resentation of discrete functions aim to achieve better economy by exploiting
internal dependencies between function values.

2.2.2 Algebraic Expressions

An algebraic expression is a formal description of a discrete function in terms
of algebraic relations between variables.

Definition 2.5 If a discrete k-valued variable x; takes its values in a set
Qi =1{0,1,...,k — 1}, then 7, S C Q;, is a literal of x;, where

S 1, Z'fl'iES,
i —{ 0, ifa; ¢S.

{i

When S contains only one element, x; Vs denoted by xz

Definition 2.6 Let x; take values in Q;,i = 1,...,n and :I:Zil,...,a:-,j, 1<

i1 < iy < ... < 4; < n be literals. The logic AND of literals xi” A A

x,d (: xill...xij’) is called a product term.

REPRESENTATION OF DISCRETE FUNCTIONS 11

A product term of the form xfl...x;f" is called a minterm. We emphasize

that all the variables appear in a minterm and there can be at most one literal
for a variable.

Definition 2.7 Let p C 2%t x 292 x ... x 2¢n = x7_,29:. Then,

\/ N (2.2)

(Sl ;*~~7Sn)€p

is a Sum-of-Products expression (SOP), where \/ g o, g |, denotes the
logic OR (inclusive OR) of product terms. If OR is replaced by the exclusive
OR (EXOR) then the resulting expression

S1,.52 S
@ 1'1 x2 ...xnn

(S1,S2,...,8,)€p
is an Exclusive-Sum-Of-Froduct expression (ESOP).

Example 2.5 [1/1] Table 2.5 is an example of a multiple-valued input two-
valued output function f : Q1 X Q2 X Q3 — Q1, where Q1 = {0,1}, Q2 =
{0,1,2}, and Q3 = {0,1,2,3}. Thus, the variables x1 € Q1, 2 € Qa, x3 € Q3
take two, three, and four values, respectively.

The minterm expression for f is

f = xio}méo}xgo} V m?}xgl}xél} V xi”mé”x?}
\/xio}xéﬂx?} vV xF}méO}xgo} \ xil}xgo}xég}

\/x‘l{l}xél}xgl} \Y xil}xél}xgg} V xil}xf}x?}.

The SOP derived by extracting common terms in products, is

f _ m{o,l}xgo}fcgo} Vi xio,l}xél}xgl,?)} v xio,l}xéﬂxi{f} v xil}xéo,l}xgiﬁ}.

After removing redundant literals, it is

f= xéo}xé{,o} V mgl}xém} Vv xéz}xgz} V x{l}xéog}xé?’}.

The concept of SOP and ESOP expressions can be extended and general-
ized to derive other algebraic expressions. The product terms in these two
expressions can be viewed as particular examples of basis function in the
spaces of m-variable discrete functions with the domain and the range spec-
ified over some finite sets. It is assumed that the domain and the range are
enriched with the necessary operations to express the algebraic structure of a
finite group for the domain and a field for the range that can be a finite field
or the field of complex numbers C.

Values for variables and function values can be interpreted as either logic
(binary or multiple-valued) values or in general case as elements of the field

12 MATHEMATICAL BACKGROUND OF DECISION DIAGRAMS

Table 2.5 The truth-table of the function f in Example 2.5.

X1X2T3 f T1X2X3 f T1X2T3 f
000 1 020 0 110 0
001 0 021 0 111 1
002 0 022 1 112 0
003 0 023 0 113 1
010 0 100 1 120 0
011 1 101 0 121 0
012 0 102 0 122 1
013 1 103 1 123 0

assumed for the range of the functions considered. The minterms can be
replaced with various other complete sets of linearly independent functions.
Recall that here the term complete means that the number of basis functions
is equal to the cardinality of the domain for the functions. Further, instead
of OR and EXOR, other operations over the field assumed for the range can
be used as the addition to define series-like expressions for discrete functions
f:D—=R,D=x}_,D;as

| D]

f(if/l,xzv--wfn):Zci¢¢($17I2,---a$n)a (2.3)

i=1

where the coefficients ¢; and the basis functions ¢; take values in the range
R, and the addition is defined as the addition in the field imposed on R that
is viewed as the support set of a field.

Expressions where the coefficients ¢; and the basis functions ¢; take values
in a finite field are called bit-level expressions, where bits are understood as
either binary or multiple-valued. If ¢; and ¢;(z1,2,...,2,) take values in
the field of complex numbers C, the expressions are called word-level expres-
sions. The expressions with integer-valued coefficients and basis functions are
viewed as particular cases of expressions over C. These expression are most
often used in dealing with switching (binary-valued) and multiple-valued logic
functions due to simple encoding of n-tuples of logic values by the correspond-
ing integers.

The properties of particular kinds of algebraic expressions are discussed in
detail in what follows.

In particular, SOP expressions are defined by using minterms as basis func-
tions ¢;, i = 0,1,...2" — 1, where n is the number of variables. SOPs are
widely used to describe behavior of switching functions and, therefore, will be
discussed in more details in what follows. Another reason is that various other
expressions can be derived from SOP expressions by converting minterms into
different sets of basis functions.

We can compare the basic notion of the Sum-Of-Product expression to the
tabular representation examined in the previous section. The assignment of
variable values is, in this setting, expressed in terms of minterms multiplied

REPRESENTATION OF DISCRETE FUNCTIONS 13

by the corresponding function values. Minterms that are multiplied by 0 have
no effect on the function output and are discarded. The remaining minterms,
those that are multiplied by 1, make up the final function representation.

Example 2.6 The binary function presented in tabular form in Example 2.2
can be represented by the following SOP expression: f = xox3VToZ3Vr1ToTs3.

Sum-of-Products can be seen as series-like expressions, where minterms
play the role of basis functions, and again, the corresponding function values
the role of coefficients.

In matrix notation minterms can be generated through the Kronecker prod-
uct of the basic matrices X (1) = [Z;, z;], for ¢ = 1, ..., n. This Kronecker prod-
uct produces an identity matrix. Therefore, the set of minterms (columns of
the identity matrix) is know as the trivial basis.

Definition 2.8 The Shannon (S) Expression [149] of a switching function f
with respect to the variable x; is:

f=%ifoVaifi (2.4)
where
fo=flx1, s @i—1,0, 241, .oy) and f1 = f(x1, ., Tic1, L, Tig1, ey Tn)
are the co-factors of f with respect to x;.

Remark 2.1 Since product terms in 2.4 has no comon minters, V can be
repalced by ®. In this case the Shannon expression has the form:

f=2Zifo®xif1. (2.5)

In matrix notation, the Shannon expansion can be expressed in terms of
basic matrices X (1) and B(1),

petna[d 8114) =

f=X(1)B(1)F, (2.7)

where X(1) = [#; a5 |, B(1) = [59 } and, F(1) = [f{; }

The Shannon expansion rule can be applied recursively to a switching func-
tion f(z1,...,x,), with respect to the variable z;, i = 1,...,n, which leads to
the complete SOP for the considered function.

Example 2.7 Recursive application of the Shannon expansion to a two-
variable switching function f(x1,xs):

14 MATHEMATICAL BACKGROUND OF DECISION DIAGRAMS

flzi,22) = Z1f(0,22) 21 f(1,22)
= 21(22f(0,0) ® 22 f(0,1))
®r1(22f(1,0) ® 22 f(1,1))
= T122f(0,0) 2122 f(0,1)
Px1Z2f(1,0) ® 120 f(1,1)

In the general case for an n-variable switching function, this can be ex-
pressed in the following form:

f=X(n)B(n)F = <® X(l)) <® B(1)> F (2.8)

which is the matrix notation for the complete Sum-of-Products.

In the complete disjunctive form there are no common terms, thus is it
possible to formally replace EXOR by OR in the Shannon expansion rule and
it will remain true. This is, however, not the case for the reduced Sum-of-
Products derived from the complete Sum-of-Products by exploiting properties
of the Boolean algebra.

The binary Shannon expansion can be generalized to the p-valued case. The
following example illustrates the generalization of the Shannon decomposition
for four-valued discrete functions.

Example 2.8 The Shannon expansion of an arbitrary r-variable four-
valued function f(x1,xa,...,2,.), with respect to xy is: f(x1,z2,...,2.) =
2Vf(0, 29, .y zr) Vi f(1, 20y ey) V 23 f(2, 20, omy) V 23 f(3, 22, ...y 21), OT
in short form f = V(a, as,...an)f(01,02, ..., an)2T 25> 28", where where ok

are literals of four-valued variables as defined in Definition 2.5.

A different choice of matrix X(1) and the corresponding B(1) in (2.8)
produces a different expansion. We present some examples of such expansions.

Remark 2.2 Recalling one of the basic properties of Boolean logic, T; = 1 &
x;, the Shannon expansion can be rewritten as:

[= Zifo@xifi=10x)fo®xf1 (2.9)
= 1-fo@zifo@xifi =1 foDxi(fo® f1)

This expansion is called the positive Davio (pD) expansion. Every switching
function f can be written, using this expansion, in the following form:

f=co® (210)

REPRESENTATION OF DISCRETE FUNCTIONS 15

where co = fo and c1 = fo B fi1.

Remark 2.3 The expansion that is obtained by iterative application of the
positive Davio expansion is called the Positive Polarity Reed-Muller expansion
(PPRM).

Example 2.9 The positive Polarity Reed-Muller expansion of a two variable
switching function f(x1,x2):

~5
Il

L f(0,22) ® 21 (f(0,22) ® f(1,72))
1-(1-£(0,0) ® 22(f(0,0) & f(0,1)))
®z1(1- £(0,0) @ 22(f(0,0) ® £(0,1))
@1 f(1,0) ® 22(f(1,0) ® £(1,1)))
= 1-£(0,0) ®x2(f(0,0) ® f(0,1)) &1 - (£(0,0) & f(1,0))
©r2(f(0,0) & f(0,1) & f(1,0) & f(1,1))

= Cp D crxo D coxry P C3T1X2

where,

co = fo

a = [f(0,0)s f(0,1)

o = f(L,0)& f(1,1)

cs = f(0,0)& f(0,1)® f(1,0)® f(1,1)

These are the Reed-Muller coefficients.

The matrix notation of the Reed-Muller expansion has the following form:

=i w[19][4] o

[=Xm(1)R(DF. (2.12)

The extension to functions of an arbitrary number of variables is done by the
Kronecker product

f=X(n)Bn)F = (@ xrm(1>> (@ R(1)> F. (2.13)

Remark 2.4 Similarly to the case of the positive Davio expansion, the neg-
ative Davio (nD) expansion is derived from the Shannon expansion by the
relation x; = 1 ® T;.

16 MATHEMATICAL BACKGROUND OF DECISION DIAGRAMS

In matrixz notation:

r=rv w1y][] (2.14)

The positive and negative Davio rules can be combined in an expansion of
a single switching function.

Remark 2.5 Fized Polarity Reed-Muller (FPRM) expansions are a general-
ization of the Positive Polarity Reed-Muller (PPRM) expansions, in which we
can choose between either the positive or negative Davio expansion for each
variable x;.

A Reed-Muller expansion is usually specified by a binary polarity vector
H = (ho,...,hy), where h; € 0,1 specifies the polarity for variable z;. By
convention h; = 0 implies a negative literal z;, and h; = 1 a positive literal z;.
Expansions for different polarities differ in the number of non-zero coefficients.

Example 2.10 Consider a binary polarity vector H = (1,0,1). A Fized
Polarity Reed-Muller matriz defined by this vector has the form:

= 1 0 0 1 1 0
ryekMern) = [{ V]e) {]e[] §]

001 00 0 00O

00 1 1 0 0 0 O

1 01 0 00 0 O

_ 111 1 0 0 0 O

- 00 1 0 0 0 10

0 0 1 1 0 0 1 1

1 01 01 0 1 O

1111 1111

Remark 2.6 A Fized Polarity Reed-Muller expansion with the minimal num-
ber of non-zero coefficients is known as a minimal expansion.

For an mn-variable function there are 2" possible choices of polarities for vari-
ables and, therefore, 2" different Fixed-polarity Reed-Muller expressions.
Finding the minimal expansion is an NP-complete problem. There can be
more than one minimal Fixed Polarity Reed-Muller expansion for a given
function, [9].

We can further extend the concept of a Fixed Polarity Reed-Muller expan-
sion by including the possibility to also choose the Shannon expansion rule for
an individual variable z;. Since we now have three possible choices, Shannon,
positive and negative Davio, the total number of expansions for an n-valued
function is 3".

Coeflicients in these expansions can be calculated using the Kronecker
transform matrix defined as:

REPRESENTATION OF DISCRETE FUNCTIONS 17

K(n) = ®KZ-(1) (2.15)

where K;(1) can be any of the matrices for S, pD, and nD expansion rules.
The choice of the decomposition rule for the variables of a function is
specified using a Decision Type List (DTL).
In a Fixed Polarity Reed-Muller expression, the polarity of a variable is
fixed throughout each individual minterm. Each variable can appear as either
a positive or negative literal, but never both in a single expression.

Remark 2.7 A Generalized Reed-Muller expression (GRM) is a Reed-
Muller-like expression where the polarity of each individual variable can be
different in different product terms.

Example 2.11 Consider a three-variable switching function f(x1,x2,x3).
The generalized Reed-Muller expression for this function will have the fol-
lowing form

f=co® 1Ty D colo ® c3T1To D caT3 D c5T1T3 D c6T3T3 D C7T1X2T3,
where ¢; € {0,1} and %; € {x;, T;}.

There are 272" possible generalized Reed-Muller expressions for an n
variable function, since each input can be 0, 1, Z; or ;.

Generalized Reed-Muller expressions retain one important constraint. No
two product terms may have an identical set of variables. These product
terms are called primary products. However, this constraint is not present in
EXOR Sum-of-Products expressions (ESOPs), an even more general class of
algebraic expressions.

Definition 2.9 An EXOR Sum-of-Products expression is a sum of arbitrary
product terms of the form:

f =P, (2.16)
I

where I is a set of all the possible products, and T; € {1, 2;,Z;}.

Example 2.12 For a two-variable switching function f there exists total of
9 EXOR Sum-of-Products expressions:

i’l.’iQ, fll'g, Xy - 1, l’lfQ,.’El .]., 1- i’g, 1- o, 1. (217)

We are not limited strictly to Boolean operations and Boolean values when
dealing with discrete function expansions. For instance, the so-called arith-
metic expressions are defined as expressions where the coefficients and the

18 MATHEMATICAL BACKGROUND OF DECISION DIAGRAMS

Table 2.6 Boolean and Arithmetic operations.

Boolean Arithmetic

T1 N\ T2 T1X2

x1 V xa X1+ T2 — X122
T1 D x2 T1 + T2 — 2x132

basis functions take values over the field of rational numbers. These expres-
sions are effectively used in the representation of multi-output functions, since
it permits their representations by a single expression with integer-valued co-
efficients polynomial, while bit-level expressions require a separate expression
for each output. Further, arithmetic expressions are useful in compact rep-
resentation of arithmetic circuits as adders, multipliers, and various control
circuits.

Remark 2.8 Arithmetic expansions can be derived if operations in GF(2)
are replaced with operations in the field of rational numbers Q). Table 2.6
gives a list of Boolean and the corresponding arithmetic operations.

The values 0 and 1 are treated as rational numbers, 0,1 €), where @ is the
field of rational numbers. These expansions belong to the class of word-level
expansions.

For an n-variable function f the arithmetic expansion is defined as:

f= (@Xa(l)> <®A1(1)> F (2.18)

where, A=1(1) = [7% (1) }
Walsh expansions are another example of word-level expressions.
Walsh expansions for discrete functions are defined in terms of discrete

version of Walsh functions, which were introduced in 1923 by J. L. Walsh,
[175].

Definition 2.10 Walsh functions of order n, denoted as wal(w,z), x,k €
0,1,...,2", are defined as columns of the Walsh matrix:

W(n) =) W(1) (2.19)
i=1

where W (1) = [% _%]

The expansion of a function f using the Walsh matrix can be expressed in
the following form:

REPRESENTATION OF DISCRETE FUNCTIONS 19

p=dt sl 4][4) o

Increasing the freedom of choice of the form of product terms increases
the expressive power of the arithmetic expressions. The number of possible
expressions for each function grows, increasing the probability of finding an
optimal expression. However, this is also reflected in the computational com-
plexity of the problem. A heuristic approach is necessary as exact algorithms
for finding all possible expressions of a given function of a certain class quickly
become inefficient for even a relatively small number of variables.

2.2.3 Spectral Techniques

The notion of arithmetic expressions is closely associated with the concept of
spectral techniques. The idea behind spectral techniques is to isomorphically
transform a problem from one space into another space where some of the
properties of the problem would be exposed better, thus making a problem
easier to solve. The same idea can be directly applied to discrete functions.
Discrete functions transformed into some other space might, hopefully, be eas-
ier to handle. Namely, this new space could provide us with the opportunities
for a more compact representation of functions.

The Fourier transform first introduced by J. B. Fourier in the 18th cen-
tury [65] represents the foundation of spectral techniques. A Discrete Fourier
Transform represents a special case of the Fourier transform.

In general terms, we can define discrete spectral transforms in the following
manner.

Definition 2.11 Let P(G) be the vector space of functions f : G — P, where
g is a finite group of order g = |G| and P is a field. Let ® = {¢;},1 =0, ...,g—1
be a set of g linearly independent functions in P(G). Each function f € P(G)
can be expressed as a linear combination of the functions ¢;.

f=) sidi(x), si€P. (2.21)

i€G

If G is the direct product of n groups G}, it can represent the domain for an
n-variable function f(z1,...,z,), where z; € G;. In the case of switching func-
tions G; = Cy, where Cy is the cyclic group of order 2, i.e., Co = ({0,1},®),
and @ is the addition modulo 2, logic XOR.

We can write the expression (2.21) in matrix form

F = RSy, (2.22)

20 MATHEMATICAL BACKGROUND OF DECISION DIAGRAMS

where F' is a function f in vector form, R is the matrix representation of a set
of linearly independent functions, and Sy is the vector of the corresponding
spectral coefficients.

From (2.22) it follows that

S;=R'F. (2.23)

If G = x}_,G, the matrix R can be represented via the corresponding
matrices R; on G;. In this case we write

R(n) = (X R;(1). (2.24)
i=1

We can observe the similarity between (2.21) and (2.3) from the previous
section, and also (2.22) and the matrix notation of the Shannon expansion
(2.6). Indeed every arithmetic expression presented in the previous section
corresponds to one spectral transform.

Therefore, we can define the Reed-Muller transform in terms of

R(n) = Q) Ri(1), Ri(l):[% (H. (2.25)

Since R(n) is a self inverse matrix, R(n)~! = R(n) over GF(2), the Reed-
Muller spectral coefficients are calculated in the following way

S; = R(n)F. (2.26)

This transform is known as the Positive Polarity Reed-Muller transform,
since spectral coefficients are the coefficients in the PPRM expression. By
choosing different R(1) matrices in the Kronecker product, we can create
the Fixed Polarity Reed-Muller transform, which is equivalent to the Fixed
Polarity Reed Muller expressions.

In the same way as the case of arithmetic expressions, we can make a
transition from GF(2) to C, in effect treating the 0 and 1 as integer values
and replacing binary operations with arithmetic ones.

Therefore,

0 } . (2.27)

However, over C' the matrix

REPRESENTATION OF DISCRETE FUNCTIONS 21

A(l) = [% (1) } ; (2.28)

is not self inverse.
The Arithmetic transform is, therefore, defined in terms of

S, =A"'F (2.29)

where,

AT -@Aar A= 1 7] (2.30)

i=1

This represents the most well-known form of the arithmetic transform. For-
mally, other spectral transforms can be constructed in the same manner, by
choosing a different linearly independent basis in C'. The arithmetic trans-
form is frequently used to represent stochastic and probabilistic properties of
discrete systems [2], [98], [155].

Discrete Walsh functions form a basis in C(G). Using this basis we can
define the Walsh transform. Its matrix representation is

W = @ Wi(1). Wi(1) = [o } (2.31)

The Walsh transform is equivalent to the Fourier transforms on the dyadic
groups C¥ [63]. It expresses the properties corresponding to the properties of
the classical Fourier transform on R. Therefore, it is often called the Walsh-
Fourier transform.

We have presented only a brief overview of a narrow selection of spectral
techniques topics. These techniques represent a large area of research with
numerous applications in various fields from signal processing, through system
theory to logic design. For further information on spectral techniques please
refer, for example, to [90], [95], [155], [164].

2.2.4 Decision Diagrams

Discrete functions can be represented using various types of graphical meth-
ods, see for instance [141]. In this section we focus primarily on decision
diagrams and their general properties.

Decision diagrams as a means of representing discrete functions attracted
considerable attention after the publication of the paper [17] by Bryant.

In order to better illustrate the concept of decision diagrams, we need to
first examine some related concepts.

22 MATHEMATICAL BACKGROUND OF DECISION DIAGRAMS

Definition 2.12 A graph G is a pair (V, E) where V is a set of nodes and E
is a set of two-element subsets of V', so called edges.

Definition 2.13 A graph G(V, E) is directed if, and only if, each element
e € E is an ordered pair e = (a,b) such thata € V and b e V.

Remark 2.9 Let E be a set of edges of a directed graph G(V,E). The first
element of an pair e = (a,b), e € E is called the parent node and element b
is known as the child or the descendant node.

Definition 2.14 Let G(V, E) be a graph. Nodes x,y € V are adjacent if and
only if (z,y) € E, otherwise they are non-adjacent. A graph H(Vy, Ey) is a
subgraph of G, if and only if V1 CV and E; C E, where the sign C indicates
a proper subset. A walk in a graph is a sequence

(v07 €0,V1,€2,0V2, ..., En, Un)

where e; = {v;_1,v;}, fori =1,...,n. The length of the walk is the number
of edges n in the sequence.

Remark 2.10 A path is a walk in the graph whose nodes are distinct, except
possibly for the first and the last. A circuit is a path where the first and last
node are identical.

Remark 2.11 A tree is a graph that contains no cycles. If there is a special
element vg € V' called the root, then the tree is a rooted tree.

We have introduced the concept of the decomposition of a function
f(x1,...,x,) using different expansion rules in the previous section. As shown
in Example 2.8, the recursive application of a decomposition rule to each
variable x; results in a series-like expression. In the case of the Shannon de-
composition rule for binary functions can be displayed using a tree-like graphic
form as seen in Figure 2.1.

This graphic representation is known as the Decision Tree (DT).

In this example, the Shannon decomposition is used and such decision tree
is often referred as the Shannon decision tree.

A generalization of the concept of decision trees can be obtained by us-
ing other decomposition rules, such as those considered in Subsection 2.2.2,
the examples of which are the positive Davio and the negative Davio rules.
Examples of these generalizations will be considered in Section 2.4.

A formal description of decision trees for the representation of discrete
functions can be given by viewing trees as a particular case of directed acyclic
graphs.

Definition 2.15 Let f(x1,...,x,) be an n-variable discrete function, where
each x; =0,...,m;, i = 1,...,n is an m;-valued variable, m; € N.

REPRESENTATION OF DISCRETE FUNCTIONS 23

Sx1,x2,x3) = X1f(0,x2,x3) ® x 1/ (1, x2,x3)

T1%2/(0,0,x3) @ X1x2/ (0, 1, x3) 0152/ (1,0,x3) @ x1x2f (1, 1, x3)

/N /N

*17273/(0,0,0) X%/ (0, 1,0) x %,%3/(1,0,0) xixa%3f (1, 1,0)
@ x¥1¥2x3/(0,0, 1) @xxox3/(0,1,1) @x1%2x3/(1,0,1) @xxaxzf (1,1, 1)

3}\

X

X,

Y3 X3 X3 X3 X3

[£0.00)] [£0.0.] [A0.L0)] [£0.1,D] [£A10,0)] [ALOD] [ALLO)] [ALLD]

Fig. 2.1 A tree-like representation of the Shannon expansion for n = 3.

A decision tree is a tree-like graphic representation of the function
f(x1,...,xy,), obtained by the recursive application of one or more expansion
rules from a specified set of expansion rules, for each variable x;, i =1,....n.

A decision tree consists of a set of non-terminal nodes, V, a set of terminal
nodes T and a set of connecting edges E.

Each non-terminal node in V' represents a decomposition of the function
f(x1,..cymy), for a variable x;, i = 0,...,n. In the case of m-valued discrete
variables, a non-terminal node associated with the decomposition of the func-
tion for x; has exactly m outgoing edges pointing to sub-graphs representing
co-factors of the function for particular values of the variable x;.

Terminal nodes in T represent elements of the range of the function taken
by the function f(x1,...,x,) for particular values of discrete variables.

Remark 2.12 The non-terminal node vg corresponds to the first step in the
recursive decomposition of the function f(x1,...,x,). This element is the root
of the decision tree. The root node corresponds to the first variable and rep-
resents the function f.

Definition 2.16 Let f(x1,...,x,) be an n-variable discrete function, and
D(V,T,E) a decision tree associated with it. A path in D is a sequence of el-
ements P = (U, €1, U1, €2, ooy Ui—1, €4y Ugy ooy Up—1, En, Up). Such that ug = vy,
u; €V, e; ={ui—1,u;} € E andu, €T.

24 MATHEMATICAL BACKGROUND OF DECISION DIAGRAMS

Each path in a decision tree starts at the root node of the tree ug = vy,
and ends in one of the terminal nodes (u, € T). A path in a decision tree
assumes a particular assignment of values to the variables associated with the
nodes traversed by the path.

The choice of expansion rule determines the labels associated with non-
terminal nodes and edges.

Different types of decision trees correspond to different classes of discrete
functions and expansion rules. Each node of a decision tree has exactly one
incoming edge. The number of outgoing edges is determined by the decom-
position rule associated with the node.

The function is determined from its decision tree by the application of the
rules inverse to the expansion rules used to generate the tree. The appropriate
inverse rules are applied first to the values in the terminal nodes, and then,
following the structure of the tree ,to cofactors in non-terminal nodes.

In Figure 2.2, we can observe that several paths, starting from the root of
the diagram, may lead to identical sub-trees. By removing these redundancies
we obtain a simpler representation of the original function. If no further
reduction is possible, this new, much more compact representation, is known
as the decision diagram. The exact set of rules by which the reduction of a
decision tree is performed depends on the class of the decision tree, as will
be discussed in Section 2.4, where different types of decision diagrams are
described.

In order to discuss reduction of decision trees into decision diagrams, the
following definition is needed.

Definition 2.17 Let G(Vg, E¢), and H(Vy, Ex) be two directed graphs con-
sisting of sets of nodes Vg and Vg respectively and sets of edges Eg and Eg
respectively. G and H are isomorphic if, and only if, there exists a bijection
q: Vo — Vi such that (a,b) € Eg if, and only if, (¢(a),q(b)) € Ex.

As in the case of decision trees, the simplest and most widely used decision
diagrams are derived by the reduction of binary decision trees, i.e., trees
defined in terms of the Shannon decomposition rule. These decision diagrams
can formally be defined as follows, [9].

Definition 2.18 An (ordered) binary decision diagram is a rooted directed
acyclic graph with a set of non-terminal nodes V' and a set of terminal nodes
T. A non-terminal node has a label index(v) € {1,2,...,n} and two children
low(v) and high(v) € V. A terminal node has a label value(v) € {0,1}.
Further, for any non-terminal node v, if low(v) (high(v)) is a non-terminal,
then index(low(v)) > index(v), (index(high(v)) > index(v)).

The function f represented by the decision diagram is defined as follows in
a recursive manner.

Let (x1,...,2n) € {0,1}™ and v € V. The value of f(x1,....,2y) at v,
fo(z1, .oy zp) is

1. fo(z1,...;xn) = value(v) if v is a terminal node,

REPRESENTATION OF DISCRETE FUNCTIONS 25

2. f'u(-T'h () xn) = findew(v)flow(v) (131, () SL'n) + J:indea:(v)fhigh(v) (xla [x3) zn)
and f(Z1, s Tn) = froot(XT1y .oy Tn)-

Due to the recursion 2, these diagrams can be derived by the recursive
application of the binary Shannon decomposition rule with respect to all the
variables in a given function f.

Example 2.13 Figure 2.2 shows the binary decision tree and the binary de-
cision diagram for a three-variable switching function f(x1,xa,x3) = Toxs
ToTz @ x122T3. As stated in 2.6, in the case of the Shannon decomposition,
the coefficients correspond to the function values. Therefore, in the binary
case, edges will have two possible labels, 0 and 1, or alternatively the literals
Z; and x; respectively. Values of terminal nodes are function values and can
be either 0 or 1.

X

1 0,

oo 00 o 0 M@

Fig. 2.2 The Binary Decision Tree and the Binary Decision Diagram for the function
f(x1,x2,23) = X273 B T2Tg B T122T3.

In a decision tree, the edges are all of length 1 and, therefore, all the paths
have the same length that is equal to the number of levels in the decision
tree, equivalently, the number of variables in the represented function. Since
a decision diagram is obtained from a decision tree by deleting nodes where no
decision is made, and by sharing isomorphic subtrees, in a decision diagram
there can be edges connecting nodes at level ¢ with nodes at level 7 + k. The
length of such edges is obviously k. In this case, the length of a path from
the root node to a terminal node is equal to the sum of the lengths of all the
edges the path consists of.

For a representation of functions with multiple-valued variables and also
functions taking values in different fields such as finite fields of certain orders
or the complex field, more general types of decision diagrams has been de-
fined, see for instance [9]. A possible generalization of the definition of binary
decision diagrams can be given by referring to the domain of the function to
be represented as a finite group and the range as a field.

26 MATHEMATICAL BACKGROUND OF DECISION DIAGRAMS

Consider functions on a finite group G which is a direct product of n finite
groups G, ..., Gy, where the order of G;, |G;| = g;, i = 1,...,n, into a field
P. Because

G=G1XG2X--~XGH,

the function f on G can be viewed as a function of n variables f(z) =
f(z1,...xy,), where z; € G;. For each i = 1,...,n, define (§ function)
0:G; — Pby

_ [1 if x =0, the zero of Gj,
d(x) = { 0 otherwise.

To simplify the notation, we denote each function just by § and the domain
specifies which function is in question. We can define the more general concept
of a decision diagram in an analogous way.

Definition 2.19 Let G, P, f, and d be as above. An ordered decision diagram
over G is a rooted directed graph with two types of nodes. A mon-terminal node
has a label index(v), and gindes(v)y children, child(j,v), j = 1,..., Gindex(v)-
Each edge (v,child(j,v)) has a distinct label element(j,v) € Gipdes(v)- A
terminal node has a label value(v) € P. Further, for any non-terminal node
v, if child(i,v) is non-terminal, then index(child(i,v)) > index(v).

Again, the function f is represented by the decision diagram in a recursive
manner as follows.
Let (z1,...,2,) € G and v € V. The value of f at v, f,(21,...,2,) is

1. If v is a terminal node, f,(x1,...,2,) = value(v)

2. If v is a non-terminal node,

Gindex(v)
fv(ivh ce ,{I?n) = Z 6(xindem(v) - element(j, v))fchild(j,v) (xla ce 7$n),
j=1
and f(21,...,%n) = froot(T1, ..., ZTn).

The recursion 2. is an exact generalization of the binary case, but be-
cause the variables take values in the domain groups G;, the concept (label)
element(j,v) provides the correspondence between the elements of g; and out-
going edges of a node having the index i. This correspondence allows us to
consider such diagrams as being derived by the recursive application of the
generalized Shannon decomposition rule, an example of which is discussed in
Example 2.8.

Notice that in a decision diagram over a group G = G; X Gg X -+ X Gy,
the nodes on the level i (root being the level 1) correspond to the factor G; in
the sense that the elements of g; correspond to the outgoing edges (decisions)
of the nodes on the level i.

TOPOLOGICAL PROPERTIES OF DECISION DIAGRAM 27

In a decision tree the decomposition rule applied to variables in f need
not necessarily be the same for all the variables. Moreover, there are decision
trees where a different decomposition rule may be selected for each node in
the decision tree. Examples of such trees will be discussed in Section 2.4.
Such decomposition rules are usually selected that, for the given function, the
number of isomorphic subtrees is the largest, leading after reduction to the
most compact decision diagram.

Different types of decision trees correspond to different classes of discrete
functions and expansion rules [9], examples of which will be discussed in Sec-
tion 2.4.

Similarly as for algebraic expressions for discrete functions, depending on
the decomposition rules and the range of functions to be represented, bit-level
and word-level decision diagrams can be distinguished.

In bit-level decision diagrams, terminal nodes represent logic values 0 and 1
or elements of finite fields. In word-level decision diagrams, values of terminal
nodes can be integers, real numbers, complex numbers or vectors and matrices
with these numbers as entries.

Remark 2.13 If the order of discrete variables is identical in each path from
the root node to a constant node, this diagram is an ordered decision diagram,
otherwise, it is a Free Decision Diagram [9].

An ordered decision diagram is a canonic representation of a discrete func-
tion, [17]. Notice that Free decision diagrams also provide canonic represen-
tations under certain conditions. A canonic representation is a unique rep-
resentation of the function, thus, once the order of variables is specified the
decision diagram becomes a unique representation of a given function. Func-
tion values can be read by following each path from the root of the diagram,
observing the operations determined by the decomposition rule as specified
by traversed node and edge labels.

2.3 TOPOLOGICAL PROPERTIES OF DECISION DIAGRAM

As for any directed acyclic graph, a decision diagram is distinguished by its
topology. Certain properties of individual diagrams are of great importance
at the application level, especially for the task of hardware implementation of
switching functions. We list the most important of these properties here.

Definition 2.20 Let D(V,T,E) be a decision diagram, where V is a set of
non-terminal nodes, T is a set of terminal nodes and E is aset of edges. The
size of the decision diagram is the number of elements in V.

Of special interest, at the implementation level, is the number of non-
terminal nodes of the diagram, since it is equivalent to the number of func-
tional hardware units. Edges in a decision diagram represent interconnections

28 MATHEMATICAL BACKGROUND OF DECISION DIAGRAMS
in the corresponding network and terminal nodes are inputs in the networks
derived from decision trees.

Definition 2.21 The number of paths in the decision diagram is the total
number of different sequences py.

Definition 2.22 The path length L(py) is the number of non-terminal nodes
v; € V traversed on an individual path pg.

Definition 2.23 The mazimal path length is the length of the longest path in
the diagram, max(L(py))-

Definition 2.24 The average path length is calculated by averaging over dif-
ferent paths in the diagram

avg =30 1P,
k

On the hardware level, the lengths of paths in the diagram are related to
the propagation delay of the circuit. The reduction of the path length can
be of special importance when dealing with certain hardware platforms. This
is also an important feature for the application of decision diagrams in the
verification of logic circuits. A further discussion on this and related topics
will be presented in Section 5.13.

Definition 2.25 The set of non-terminal nodes associated with the variable
x; in an ordered decision diagram constitute the i-th level of the diagram.

Definition 2.26 In ordered decision diagrams the width of the diagram is the
largest number of nodes at an individual level of the diagram.

Example 2.14 The decision diagram in Fig. 2.2 has the following:
Size 5
Width 2
Max. path length 3
Avg. path length 2.5

2.4 CLASSIFICATION OF DECISION DIAGRAMS

Decision diagrams can be classified according to the underlying function and
the decomposition rule. In this section we define several classes of decision
diagrams, which will be addressed in the remainder of this thesis.

The most common class of decision diagrams is the class of binary decision
diagrams associated with Shannon decomposition of switching functions.

Remark 2.14 A Ordered Binary Decision Diagram (OBDD) of a switching
function f(x1,....,xn), t = 1,..,n, is a decision diagram with a set of non-
terminal nodes V, the set of terminal nodes T = {0,1}, and a set of edges E,

CLASSIFICATION OF DECISION DIAGRAMS 29

corresponding to the recursive application of Shannon decomposition to each
binary variable x;.

Let ay,..a;—1 € {0,1} and v € V corrspond to the function
folaly oo, @i1, Tiy Tig1...,y) of the wariables g, ..., 2T,. Then the de-
scendants of v corrspond to the function fy(a1,...,Qi—1,%5 .00y Ty) =
Zifo(ar, oy i—1,0, i1y Ty) V i f1(a1, ooy Gi—1, L, i1y ooy Ty

A reduced ordered binary decision diagram is obtained by applaying the
following two reduction rules to a binary decision tree:

1. If both outgoing edges of a given node n point to the same descendant
node, the node n is removed. This rule is derived from the basic property
of Boolean algebra, @z = 1.

2. If two sub-graphs represent the same function, delete one, and recon-
nect its incoming edges to the remaining sub-graph. This rule can be
formalized as x V = = x.

We show an illustration of these two rules in Fig. 2.3.

Fig. 2.3 Binary decision diagram reduction rules.

Definition 2.27 An OBDD is a Reduced Ordered Binary Decision Diagram
(ROBDD) if it satisfies the following two conditions:

1. It does not contain a non-terminal node v with descendants v1 and vs,
v,v1,v2 € V such that v1 = vsy.

2. It does not contain two non-terminal nodes v1 # va, v1,v3 € V, such
that the sub-graphs rooted at v1 and vo are isomorphic.

Each assignment of values € {0,1} to all variables of f(z1,...,z,) corre-
sponds to a unique from root to a terminal node in ROBDD. The value of
the terminal node is the value of f with this assignment. A key factor in use-
fulness of ROBDDs is the fact that while each assignment corresponds to a
unique path, a single path may correspond to a large number of assignments.

Example 2.15 Consider f(x1,22,23) = Taxs B ToTs O x122T3 a three vari-
able switching function. Fig. 2.4 represents its ROBDD. The path p =
{(0,1),(1,5),(5,3)} corresponds to the function value f(000) = 0.

30 MATHEMATICAL BACKGROUND OF DECISION DIAGRAMS

Fig. 2.4 The Binary Decision Diagram of the function f(x1,z2,x3) = T2x3 ® T2Z3 D
XT1T2T3.

In a similar manner we can define decision diagrams for multi-valued dis-
crete functions.

Quaternary Decision Diagrams are a graphic representation of a generalized
Shannon decomposition of four-valued discrete functions, as demonstrated in
Example 2.8.

Remark 2.15 An Ordered Quaternary Decision Diagram, (OQDD), of a

function f : {0,1,2,3} — T arises in the same way from 4-valued
Shannon decomposition fu(T1,...; Tiy oy Tn) = 20 fo(z1,.00yti = 0,.,2) V
rifi(ze, e my = 1onxy) V a2fo(zy, . m = 2,002,) V 23 fa(zy, .1 =
3,y).

Example 2.16 Fig. 2.5 shows a Quaternary Decision Diagram for the four-
valued, three—vagigble functéogz f(xy, 22, 23) = 2923 v 22922 v 32023 v 32023 v
rivairdvoatey adv3aiey e vatavadaliel vardaiadv3ataiad v 2z v

3z3x3, in Figure 2.5.

The concept of decision diagrams is readily extended to multi-output func-
tions.

Shared Decision Diagrams are graphic representations of multi-output dis-
crete functions, where each sub-function is represented with a decision dia-
gram with a separate root node. These diagrams are usually partially over-
lapping. Identical sub-diagrams of individual diagrams are represented only
once.

Definition 2.28 Let f(f1,...,fm) be an m-output discrete function, and
let D1(V1,Th,E1), ..., Dy (Vin, Ty Ery) be reduced ordered decision diagrams
associated with individual outputs fi,..., fm. A Shared Decision Diagram

CLASSIFICATION OF DECISION DIAGRAMS 31

Fig. 2.5 A Quaternary Decision Diagram for a three-variable discrete function.

(SDD), D(V,T,E) is defined as D = D1 U...U D,,, where V=V, U...UV,,,
T=T1U..UT,, and E = FE1 U ...UE,,, and there are no two non-terminal
nodes v, # vg, v1,v2 € V, such that sub-graphs rooted at v and vy are iso-
morphic.

Example 2.17 Figure 2.6 shows a Shared binary decision diagram for a two-
output three-variable function f(f1, f2).

1
% @
xZ
x3

Fig. 2.6 A Shared Decision Diagram for a multi-output three-variable function

f(f1, f2).

Shared binary decision diagrams were introduced in [121] and their prop-
erties were further studied in [46], [119].

A decision diagram with a set of terminal nodes T with more then two
elements is called Multi-Terminal Binary Decision Diagram.These diagrams
can be used to represent multi-output switching functions, [30], [118].

32 MATHEMATICAL BACKGROUND OF DECISION DIAGRAMS

Example 2.18 Consider a multi-output binary function f = (fo, f1, f3) de-
fined by the following table,

—
DO
)
—

HE=_OOOOR
OO~ OOR
OO OROR
OHO»—‘OHOOE&
ORRROO R O
n—\HO»—lH»—*OO;h
O O 1 Sy

We can represent this multi-output function in integer form, by summing
each individual output f;, multiplied by 2'. Thus, we obtain f. =Y. 2"f;.

Thus, multi-terminal biary decision diagrams give a natural way of repre-
senting multi-output switching function. Each node corresponds to Shannon
decompsition f = Z; fo + x; f1, where variable z; is interpreted to take integer
values 0 and 1, and f integer values {0, 1,...,2" — 1}. Note that the Boolean
V changes to integer addition.

Example 2.19 We present the Multi-terminal binary decision diagram for
the function from Example 2.18 in Figure 2.7.

Fig. 2.7 A Multi-terminal Binary Decision Diagram.

More information about the representation of multi-output switching func-
tions using multi-terminal binary decision diagrams can be found in [30].

The main objective of decision diagram minimization is to produce the
most compact representation of a given function in terms of one or more of
the topological features mentioned in the previous section. Usually it is the
size of the diagram, the number of paths, or the maximal path length. We have
defined decision diagrams so far with respect to the Shannon expansion rule.

CLASSIFICATION OF DECISION DIAGRAMS 33

However, the choice of different expansion rules may lead to more compact
function representation.

Functional Decision Diagrams are a graphic representation of the Positive-
Polarity Reed-Muller expression defined by (2.10).

They are, thus, a representation of the recursive application of pD-
expansion to a switching function f. The values of the terminal nodes give
the Reed-Muller coefficients for f. The edges of Functional decision diagrams
are labeled with 1 and x;, since 1 and z; are assigned to fy and fo & fi to
which the outgoing edges point.

Remark 2.16 A Functional Decision Diagram, (FDD), of a switching func-
tion f(x1,...,x,) is obtained by recursive application of the positive Davio
decomposition to the variables x1,...,x,. Thus, a non-terminal node v as-
sociated with the wvariable x;, x1,...,x;_1 fized, corresponds to the func-
tion tion fu(X1, .o, Tiy s @n) = fo(x1, ., 0,00 20) B 2 (folxr, .ty 0,y) B
fl(l’l, ceey 1, ceey xn))

Because the Reed-Muller transform is selfinverse we obtain the values of
its Reed-Muller spectrum by traversing all the paths in the FDD of a given
function f. The values of the truth vector of f are derived by traversing all
the paths in the FDD and applying positive Davio rule at each node.

Example 2.20 Figure 2.8 is the functional decision diagram for the Positive
Polarity Reed-Muller expression of the function of Example 2.2. The Reed-
Muller coefficients of this function are specified by the following vector ¢ =
[11100011]7 determined by (2.25).

1 3
0

Fig. 2.8 A Functional Decision Diagram for a Positive Polarity Reed-Muller expansion
of the three-variable switching function in Example 2.20.

The reduction rules used in the construction of the diagram in Fig. 2.20 are
identical to the BDD reduction rules. However, due to the specific properties

34 MATHEMATICAL BACKGROUND OF DECISION DIAGRAMS

of pD expansion, some additional reduction rules have been defined in [145]
for FDTs. A positive Davio node can be eliminated if one of its outgoing
edges points to the zero-terminal node. This rule is derived from relations
z-0=0and z-0 = 0. This reduction rule is known as the Zero-suppression
rule and the decision diagrams obtained using this rule are known as the
Zero-suppressed decision diagrams (ZBDDs), [120].

The main idea behind the Functional decision diagrams, that a suitable
expansion rule can reduce the complexity of the function representation, is
further extended in Kronecker Decision Diagrams. In the case of the Kro-
necker decision diagrams, any of the three expansion rules, S, pD, nD, can be
chosen at each step of the recursion, where S denotes the Shannon expansion
and pD and nD, the positive and the negative Davio expansions respectively.

Thus, in each level, non-terminal nodes correspond to either Shannon, pos-
itive or negative Davio expansion rule. The outgoing edges of nodes at each
level are labeled accordingly, with Z;, x; for Shannon, 1, x; for positive Davio,
and 1 and Z; for negative Davio expansion. The type of decomposition asso-
ciated with each particular level is specified in the Decision Type List.

Definition 2.29 A Decision Type List, (DTL) for f(x;,...xn), i = 1,...,n,
is a set of labels D = {d;, ...,d,}, where d; = {S,pD,nD}, where S indicates
the Shannon, pD the positive and nD the negative Davio expansion.

Example 2.21 Fig. 2.9 is a Kronecker Decision Diagram for the function
in Example 2.2. The decomposition of the function is defined by the decision
type list {pD,S,nD}. The coefficients are specified by the following vector
¢ = [01110001)7. This vector is also formed by the multiplication of the
matriz K(3) with the truth of vector of f, where

k@=[o {]eli V]eli o]

since the inverse over GF(2) of the matriz [(1) %] corresponding to the

. . o101
negatwe Davio expansion is | 1 ¢ |-

Note that the order in which the expansion rules occur is identical along
each path of the diagram. Pseudo Kronecker Decision Diagrams add one more
degree of freedom by eliminating this constraint.

Pseudo Kronecker Decision Diagrams (PKDDs) are the class of decision
diagrams where a different expansion rule from the set S, pD,nD can be freely
chosen for each individual node. The outgoing edges of each node are labeled
according to the selected decomposition rule.

Example 2.22 A pseudo Kronecker binary decision diagram for the binary
function in Example 2.2 is shown in Figure 2.10.

A detailed classification of decision diagrams can be found in [9] and [182].

CLASSIFICATION OF DECISION DIAGRAMS 35

Fig. 2.9 A Kronecker Decision Diagram for a three-variable switching function, de-
rived using the BDD reduction rules.

Fig. 2.10 A Pseudo Kronecker Decision Diagram for a three-variable switching func-
tion, derived using the BDD reduction rules.

36 MATHEMATICAL BACKGROUND OF DECISION DIAGRAMS

The system proposed in this work is capable of representing all types of
decision diagrams introduced in this chapter. We present the appropriate ex-
amples in the following chapter. Since the proposed framework is focused on
the most general properties of a decision diagram, a directed acyclic graph
structure, the system can be extended to other, possibly new, classes of deci-
sion diagrams.

XML Framework for
Decision Diagrams

Many software packages use decision diagrams in some form. A large num-
ber of programs has been developed to enable different kinds of experiments
with various decision diagrams, as reported in numerous publications on this
subject, see, for example, [47], [119], [154] and references therein. The CUDD
library is used in many applications as a standard in this area [150], [151].
An extension of these methods to the programming of decision diagrams for
multiple-valued functions was done in [118]. Some other packages, for exam-
ple, PUMA [47] and BEMITA [119] support work with particular classes of
decision diagrams.

However, most of these software solutions use a proprietary, application
specific format for storing decision diagrams. In general, they offer only lim-
ited possibilities of data exchange with other similar software.

Different applications of existing diagrams, as well as newly defined decision
diagrams often require modifications of existing programming packages to
appreciate their peculiar features [85], [123]. To our best knowledge there is
no commonly accepted standard for these specific tasks.

With this motivation we propose a robust and flexible standard based on
the XML for storage and exchange of various types of decision diagrams.

The inherent properties of XML permit us to develop a framework flexible
enough to encapsulate the existing types of decision diagrams [17], [48], [85].
It also provides us with the possibility of extending this standard in the future
to accommodate new forms of decision diagrams.

The proposed XML framework consists of several separate components.
We list and briefly describe the purpose of each of them. The structure and
functionality of these components is discussed in detail in later sections.

37

38 XML FRAMEWORK FOR DECISION DIAGRAMS

The main components of the XML framework are:

1. An XML Schema, a description of the structure of XML documents
containing a decision diagram.

2. An XML document, a file representing the decision diagram created
based on the XML Schema.

3. An XML parser, a software component capable of reading and writing
decision diagrams according to the specifications of the proposed XML
Schema.

We begin our discussion by first presenting some basic notions regarding
XML data description language in Section 3.1. The general structure of XML
documents is presented in Section 3.2. In Section 3.3 we give a brief intro-
duction to XPath, one of the langages from the wider XML family, which is
necessary for the understanding of the following sections.

We describe in detail the first and most important component of the pro-
posed XML framework, the XML Schema in Section 3.7.

The second component is in fact a simple XML document that conforms
to specifications of the given XML Schema. We present and discuss in detail
examples of XML documents for various kinds of decision diagrams in Section
3.8.

The third component represents the implementation of the described stan-
dard. The idea behind the whole XML framework for decision diagrams is
that a developer of a software that uses and generates decision diagrams would
make a module capable of importing and exporting its internal data structures
in XML form according to the specification provided by the framework. This
component is built on the basis of an existing XML parser but its structure
depends on the software platform and application of which it is a part.

XML parsers exist for all major platforms and programming environments
[60]. We present an overview of general XML processing software in Section
3.4.

3.1 EXTENSIBLE MARKUP LANGUAGE

The developments of modern information technologies impose demands for
handling large amounts of ever more complex information in an efficient man-
ner. The Extensible Markup Language (XML) represents an attempt at ad-
dressing these needs.

Historically, the rise of XML as a data description standard has been in-
fluenced by the success of HTML. The basic idea behind the introduction
of XML was to provide the means of separation of the contents of web doc-
uments from the formating and display instructions, the whose inconsistent
treatment has been a serious issue of HTML. However, XML has since greatly

XML DOCUMENTS 39

outgrown its initial intended purpose and is now applied in numerous other
fields, whenever the transfer of a large amount of data is required. Some of
its inherent properties make it well suited for the task of representation of
decision diagrams. We will discuss these properties of XML in the following
text.

The W3 Consortium [60] is an international body responsible for the de-
velopment and maintenance of XML specification and related standards.

XML is a general purpose data description language. It was designed espe-
cially for the task of representing data with complex internal structure. XML
is based on an earlier Standard Generalized Markup Language (SGML) from
which it inherits its basic syntax, a feature which it shares with HTML. More
information on SGML can be found in [73] and [80].

XML does not try to specify the exact structure of documents containing
data. It is not a single file format trying to encompass all possible varieties
of data structures. Rather, XML specifies a set of rules that each document
containing a particular type of data needs to conform to. This structure can
then be easily recognized and interpreted by software applications.

Pecisely this property makes XML suitable for the purpose of this project.
We can specify a set of rules that capture only the common features of the
structures of various types of decision diagrams and thus, describe the dia-
grams in a uniform manner.

Another important feature of XML is human readability. XML represents
data in textual form that is, in theory, understandable to humans.

Extensibility is yet another important property of XML. It is classified as
an extensible markup language, since users can introduce their own syntax
elements. A large variety of special purpose languages has been derived from
XML. The list of these languages include RSS, XSLT, MathML, SVG, etc.
Some of these languages add functionalities to XML-based systems in general,
while others are designed with a specific application in mind. We discuss some
of these languages in the following sections.

3.2 XML DOCUMENTS

As mentioned earlier, XML represents data in the form of structured text.

Definition 3.1 An XML Element is a basic unit of data in XML. It is a
certain amount of data presented in textual form and surrounded by textual
markup.

Definition 3.2 A markup syntax used to indicate the beginning and the end
of a portion of data in XML is known as an XML tag. Tags have the following
form, <tag_name> for the tag indicating the beginning of the data sequence,
and </tag_name> for the end tag.

40 XML FRAMEWORK FOR DECISION DIAGRAMS

The list of XML tags is application specific and defined by the user. Each
XML document is a hierarchy of different elements as seen in Example 3.1.

Example 3.1 The hierarchy of XML elements within a document.

<book>

<title>Hocus Pocus</title>
<author>K. Vonnegut</author>
</book>

These elements can be organized in a recursive manner. As shown in Ex-
ample 3.2, each element can contain one or more elements of the same type.
Decision diagrams also demonstrate strong recursiveness, and we exploit this
property of XML documents to a great extent in our proposed system.

Example 3.2 Nested XML elements.

<node>
<node>
<node>A</node>
<node>B</node>
</node>
<node>
</node>
</node>

Additional information can be attached to each XML element using a sys-
tem of attributes.

Definition 3.3 An XML attribute is a name-value pair of the following form
name="value’, attached to the start tag of an XML element.

For example, we could attach an attribute indicating the genre of the book
from Example 3.1:

Example 3.3 XML element with an attribute:

<book genre=’fiction’>
<title>Hocus Pocus</title>
<author>K. Vonnegut</author>
</book>

XPATH 41

XML tags and attributes defined in this way represent the core of XML
syntax. Each XML document must conform to the following set of XML
syntax rules:

1. Every start-tag must have a matching end-tag.
2. Elements may nest, but may not overlap.

There must be exactly one root element.

L

Attribute values must be quoted.
5. An element may not have two attributes with the same name.
6. Comments and processing instructions may not appear inside tags.

7. No unescaped <, > or & signs may occur in the character data of an
element or attribute.

Definition 3.4 If an XML document follows all of the XML syntax rules this
document is said to be well-formed.

These requirements must be ensured by the an XML parser which produces
a particular XML document.

3.3 XPATH

Manipulation of XML documents can, and usually does, include a set of spe-
cific operations performed over a certain subset of elements of the document.
This ability to access specific XML elements is essential. Individual XML
elements can be accessed using a special syntax specified by the XML Path
Language (XPath).

XPath is an extension of XML syntax designed specifically for this task
and introduced by The W3 Consortium [185].

The mechanism of addressing specific XML elements by XPath relies on
three concepts:

1. Axis specifiers,
2. Node tests,
3. Predicate.

XPath syntax can be expressed in either expanded or abbreviated form.

Remark 3.1 The Axis Specifier indicates the navigation direction within the
tree representation of the XML document.

42 XML FRAMEWORK FOR DECISION DIAGRAMS

The axes available in XPath are:

Extended Abbreviated
child default
attribute @
descendant //
descendant-or-self n/a

parent ..

ancestor n/a
ancestor-or-self n/a
following n/a
preceding n/a

following-sibling n/a
preceding-sibling n/a
self .

namespace n/a

Example 3.4 Consider the XML code from Example 3.2.

<book genre=’fiction’>
<title>Hocus Pocus</title>
<author>K. Vonnegut</author>
</book>

XPath expression //title would select the <title> element of the element
<book>

Remark 3.2 XPath Node tests are logic expressions that need to be satisfied
in order for a particular XML element to be selected.

Example 3.5 Consider the following XML code.

<library>

<book genre=’fiction’>
<title>Hocus Pocus</title>
<author>K. Vonnegut</author>
</book>

<book genre=’economy’>
<title>Freakonomics</title>
<author>S. Levitt</author>
</book>

<book genre=’fiction’>
<title>Londonistani</title>
<author>G. Malkani</author>
</book>

</library>

The XPath expression //book/@genre=’fiction’ would select all the genre
attributes of the descendant <book> elements with the value ‘fiction’. In
this way individual attributes can be selected and modified directly.

Definition 3.5 XPath predicates are logic expressions used to select particu-
lar XML elements according to the value of some of their subelements. Pred-
icates are expressed using the following syntaz | log. expression |.

SOFTWARE FOR PROCESSING XML DOCUMENTS 43

Example 3.6 Consider again the XML code from the previous example.

<library>

<book genre=’fiction’>
<title>Hocus Pocus</title>
<author>K. Vonnegut</author>
</book>

<book genre=’economy’>
<title>Freakonomics</title>
<author>S. Levitt</author>
</book>

<book genre=’fiction’>
<title>Londonistani</title>
<author>G. Malkani</author>
</book>

</library>

The XPath expression //book[@genre=’fiction’] would select all the de-
scendant <book> elements with the attribute genre set to the value ‘fiction’,
Londonistani by G. Malkani and Hocus Pocus by K. Vonnegut.

To accommodate this the XPath possesses a full set of functions and operators
including:

A union operator

Boolean operators and, or, not ()
Arithmetic operators +, -, *, div, mod
Comparison operators =, !=, <, > <= >=

The XPath syntax is an essential part of the transformation mechanism
employed by the proposed framework.
Further information about XPath can be found, for example, in [69].

3.4 SOFTWARE FOR PROCESSING XML DOCUMENTS

Function libraries dedicated to processing XML documents exist for all current
operating systems, and programming environments.

Remark 3.3 A software component designed for reading and writing an XML
document is called an XML parser.

Although the functionality of an individual parser implementation may
vary from system to system, there are two general parser architectures speci-
fied by the W3 Consortium:

1. Simple API for XML (SAX), where API stands for Application Pro-
gramming Interface.

2. Document Object Model (DOM).

44 XML FRAMEWORK FOR DECISION DIAGRAMS

Document Object Model is a standard introduced and developed by the W3
Consortium. Its specification is given in the form of an official W3 Consortium
Recommendation [43], in the manner similar to the XML family of languages.

SAX started off as a Java based XML API. There exists no formal definition
of SAX. The Java implementation of a SAX parser is considered normative and
implementations for other languages and programming environments try to
replicate its structure and functionality. A detailed specification of the current
Java implementation of SAX can be found in [115]. Additional information
about SAX can be found in [15].

The difference between these two architectures is fundamental. While DOM
is designed for the ease of manipulation of XML elements, SAX is streamlined
toward speed and minimal memory requirements. In general, DOM architec-
ture requires that the whole XML tree is present in system memory during
manipulation. This organization permits relatively easy addition and removal
of individual elements. It is, thus, efficient in terms of processing time. SAX
architecture processes XML documents sequentially. Only a small portion of
the document needs to be present in the system at any given time. Memory re-
quirements are usually many times smaller than in the case of DOM. However,
the tradeoff is in the difficult manipulation of elements. SAX architecture is
therefore, usually chosen for applications where additional processing of XML
documents is not required, for read and write only applications, or in cases of
severely limited system resources.

We have used a DOM based XML parser provided as a part of the Microsoft
NET framework [58] to generate the examples presented in this document.

There exsists a wide range of books discussing programming methods re-
garding SAX and DOM, for example, [81] and [113].

3.5 DATA STRUCTURES FOR DECISION DIAGRAMS

Different software packages use different methods for the representing decision
diagrams in computer memory. As stated earlier, most of these packages were
focused on the particular application of specific classes of decision diagrams
and, therefore, focused on particular aspects of these classes. Nonetheless,
some general principles do apply. We follow the same basic principles in the
design of data structures which form the basis of the proposed framework.

The data structures used for representing decision diagrams are derived
from the graph theory interpretation of decision diagrams. A decision diagram
is treated as any other acyclic directed graph.

In order to achieve generality of representation, we focus on the common
structural features shared by different types of decision diagrams. A data
structure model suitable for representing decision diagrams must provide the
facilities for the representation of basic diagram elements, i.e., nodes and their
interconnections. Node elements must be represented in a uniform way. A
place for storage of additional data associated with each node needs to be

DATA STRUCTURES FOR DECISION DIAGRAMS 45

provided. It is desirable to provide the means for explicit representation of
diagram edges, as the explicit representation of edges is necessary for efficient
manipulation of decision diagrams.

Furthermore, we must not impose a strict and rigid structure. Instead,
we seek a flexible data structure which can be freely extended as needed,
and adopted for possible new applications. As the exact structure of each
individual decision diagram is determined by the underlying discrete function,
the number of parents of each node is not known in advance. Thus, we must
not impose an upper limit for the number of incoming edges.

As we are aiming to represent a wide variety of decision diagram classes, we
cannot limit the number of children of each node. The total number of nodes
in the diagram, number of levels, or the number of nodes per level, must not
be limited either.

To accommodate these demands, we propose the following data structure
architecture, based on the so-called linked lists of elements.

A linked lists is a well established concept in computer science. It is a
dynamic data structure, that can be altered at run time. This type of data
structures do not require static allocation of a block of memory of a fixed
size, and is, thus, well suited for applications where an upper limit on size
cannot be set in advance. Furthermore, they provide the means for efficient
data manipulation.

A linked list consists of a set of elements. Each element in the linked list
contains one or more slots for storing individual pieces of information, such
as numerical or textual values, and a pointer to the memory address of the
following element in the list. The last element in the list, the tail of the list,
contains a null pointer, thus marking the end of the structure.

New elements can be added to the list, either by appending the tail of the
list, by setting the previous null pointer to the address of the new element,
or they can be inserted at the beginning of the list. In the second case the
pointer of the new element is set to the address of the previous head of the
list.

Removal of elements is performed by rearranging the pointers in the list.
The pointer of the preceding element is set to the address of the following
element. The memory space occupied by the deleted element is marked as
unused by a separate junk collector routine. The number of elements in the
linked list is limited only by the size of the available memory.

Each node is represented as one entity storing the identifier of the node,
optionally the level in the diagram to which this node belongs and other type
specific data i.e., the decomposition rule.

Out of these additional properties, only the node identifier is strictly nec-
essary. It serves as an anchor for the edge elements of the diagrams, and
unambiguously declares each separate node to manipulation algorithms. It
must, therefore, have a unique value throughout the particular diagram.

The information about the level of the decision diagram can be omitted
in the case of free decision diagrams, as the notion of diagram levels has

46 XML FRAMEWORK FOR DECISION DIAGRAMS

no meaning in their context. However, in the case of this class of decision
diagrams, we must always explicitly state the logic variable for which the
decomposition is performed at each node. The same data slot will be used for
this purpose.

Terminal and non-terminal nodes are stored in the same way. The type of
node, thus, must be specified. Terminal nodes include the information about
the value of the logic constant which they represent. In the general case
of multi-terminal decision diagrams, this value is an integer numeric value.
Indeed this value can, if necessary, even be symbolic.

The root node is also clearly indicated by the value of its type property.

Information about the descendants of each node is stored in the form of a
linked list. Each element in the linked list consists of two fields:

1. A pointer to the child node of the node in question, which represents a
real link existing in the decision diagram.

2. A pointer to another field in the linked list which serves the function of
internal navigation through the list.

Optionally, information about parents of each node can be stored explic-
itly. Strictly speaking this is not necessary, as all the needed information to
reconstruct the full decision diagram can be derived from the list of nodes
and their children. However, the inclusion of this data can prove beneficial,
as it greatly simplifies some of the processing algorithms, thus justifying the
overhead. This information can always be safely omitted in cases where the
memory size of the data structures is a concern. For the sake of generality we
continue our discussion assuming that this information is included explicitly.

Thus, two linked lists of the described structure are created and attached
to each node in a decision diagram. The lists represent its parents and de-
scendants.

We present an example of a node element in Fig. 3.1.

pointer to the first pointer to the second pointer to the last
parent node parent node parent node
parents T ? \|
PN NN
N
° T ! descendants
\|
—— N S N —{; N
1 I N\
pointer to the i ¢
next node pointer to the first pointer to the second pointer to the last
descendant node descendant node descendant node

A . . .
Information associated with the node:

N
ID - identificator \ Edee label
Level to wihich the node belongs k dge labels

Fig. 3.1 Diagram of Node data structure.

DATA STRUCTURES FOR DECISION DIAGRAMS 47

The terminal nodes do not contain a list of children. The root node of the
diagram does not contain the list of parent nodes.

Each edge element in either of these lists can have additional blocks of
information associated with it.

The nodes themselves are also stored in the form of linked lists. It is
important to point out that the links between the elements of these lists do
not have a semantic meaning in the context of the decision diagram itself.
Rather, they represent the means of accessing elements in the data structure
in the computer memory. Furthermore, the order in which nodes are arranged
in this list is not important. It is convenient to arrange the nodes according
to one of the recursive tree traversal orders if possible, for example, in the
leftmost first traversal order.

The head of the main data structure, the list of nodes, is usually the root
node of the diagram. However, this again is a matter of convenience, as the
root node is explicitly marked. This is especially important for the represen-
tation of shared decision diagrams with multiple root nodes. The head of the
list will be set at one of the root nodes, i.e., the first. The remaining root
nodes will be stored further down in the list and explicitly marked. They can
be processed accordingly by external algorithms.

As an example, we present the data structures for a binary decision diagram
of the function f = %1 + x1x2 + 1T2T3 in Fig. 3.2. Note that the red lines
in the diagram represent the actual decision diagram edges, while the black
ones represent internal memory pointers.

e
=
|
[>]

- |

]

-

]

:
4

i :
it
T R
| o
LI

oo
DERHD

Fig. 3.2 BDD and the corresponding data structure.

This architecture is identical to the standard way that graphs are described
in the theory of data structures. This permits us to use the standard, well

48 XML FRAMEWORK FOR DECISION DIAGRAMS

adapted, and efficient algorithms for the addition and removal of nodes, ac-
cessing elements of the graph, etc. It is also consistent with the usual way
decision diagrams have been represented in various previous applications [123],
[150], [151].

3.6 XML SCHEMA

As stated earlier, XML models data by specifying a set of rules that describe
the internal structure of a specific kind of data. Each individual application
specific XML document needs to conform to these rules in order to be correctly
recognized and processed by the intended software applications.

XML Schema language is a syntax used for the specification of such rules.
It is an extension of the basic XML syntax introduced by the W3 Consortium
in 2001. Specification of the XML Schema language can be found in [174] and
[186].

XML Schema is one of the several languages that can be used for this task.
Historically, this language has been introduced to correct the shortcomings of a
previous XML specification standard, the Document Type Definition (DTD)
language. The most important feature of the XML Schema language from
the point of view of this work, is that it permits recursion in the specification
of XML elements, essential for modeling decision diagrams. Furthermore,
the application of XML Schema language ensures the compatibility of the
XML documents with the data types native to object oriented, high-level
programing languages, such as C++4. This is very important from the point
of view of integration of the proposed framework with the existing software
packages.

In this section, we present only the details necessary for understanding the
implementation of decision diagram data structures. A detailed description
of XML Schema language and related programming methods can be found,
for example, in [12].

Definition 3.6 An XML document that conforms to a specific set of rules
specified by an XML Schema is said to be a valid XML document. An XML
document described by an XML Schema is called an instance document.

The XML Schema document is associated with an instance document
through the xsi:schemalocation attribute attached to the header of the
document. The XML parser uses the url associated with that attribute to
locate the schema and validate the document.

The data model employed by the XML Schema to specify the structure of
XML documents consists of:

1. The vocabulary - the XML element and associated attribute names,

2. The content model - relationships between these elements and their
internal structure,

XML SCHEMA 49

3. The data types - defining the content of each individual element and
attribute.

There are 19 basic data types supported by the XML Schema languages:
1. string,

2. boolean,

3. decimal,

4. float,

5. double,

6. duration,

7. dateTime, time, date, gYearMonth, gYear, gMonthDay, gDay, gMonth,
8. hexBinary,

9. base64Binary,

10. anyURI,

11. QName,

12. NOTATION,

These datatypes serve as the basic building blocks of XML elements.

An XML element is specified by an <xs:element name=’fullName’
type=’xs:string’> schema element. The attribute name specifies the XML
tag used for the particular XML element. XML elements can have either a
simple content specified by the attribute type, as seen in Example 3.7, or a
complex content specified separately.

Example 3.7 The schema element stated as:
<xs:element name=’title’ type=’xs:string’>
specifies an XML tag of the following structure:

<title>Hocus Pocus</title>

The XML elements with complex content can include nested elements.
Complex element data types are defined using an <xs:complexType> schema
element. A set of sophisticated tools for the specification of contents of XML
elements is provided by the schema language. The designer can specify the
minimal and maximal numbers of occurrences of individual nested elements
as well as the order in which they must occur in a particular parent element.

50 XML FRAMEWORK FOR DECISION DIAGRAMS

The application of these methods ensures error resilience of the final XML
documents.

Example 3.8 The following schema specification:

<xs:element name=’book’>

<xs:complexType>
<xs:sequence>
<xs:element name=’title’ type=’xs:string’/>
<xs:element name=’author’ type=’xs:string’/>
</xs:sequence>

</xs:complexType>

</xs:element>

defines an XML element with two nested elements which must appear in exact
order,

<book>

<title>Hocus Pocus</title>
<author>K. Vonnegut</author>
</book>

The minimal number of occurrences of a subelement can be specified using
the minOccurs attribute, as in Example 3.9.

Example 3.9 The XML Schema from Example 3.8 can be extended to specify
that the title and the author name must occur at least once in the <book>
element.

<xs:element name=’book’>
<xs:complexType>
<xs:sequence>
<xs:element name=’title’ type=’xs:string’ minOccurs=’1’/>
<xs:element name=’author’ type=’xs:string’ minOccurs=’1’/>
</xs:sequence>
</xs:complexType>
</xs:element>

The XML attributes can have only simple contents, and are specified by
an

<xs:attribute name=’language’ type=’xs:string’/> schema
element, as shown in Example 3.10.

Example 3.10 7o associate the genre attribute with the <book> element we
extend the XML Schema from Example 3.9:

<xs:element name=’book’>

<xs:complexType>
<xs:sequence>
<xs:element name=’title’ type=’xs:string’ minOccurs=’1’/>
<xs:element name=’author’ type=’xs:string’ minOccurs=’1’/>

DECISION DIAGRAMS AS XML DOCUMENTS 51

</xs:sequence>

</xs:complexType>

<xs:attribute name=’genre’ type=’xs:string’/>
</xs:element>

The XML element in the instance document has the form:

<book genre=’fiction’>
<title>Hocus Pocus</title>
<author>K. Vonnegut</author>
</book>

We employ these basic methods to model the decision diagram data struc-
tures, as presented in Section 3.5. We discuss the rules specified this way in
detail in the next section.

3.7 DECISION DIAGRAMS AS XML DOCUMENTS

This section deals with the specific XML implementation of the decision dia-
gram data structures described in the previous section. This implementation
was originally presented in [159]. We use the mechanisms of the XML Schema
system to specify the custom XML data types that correspond to the elements
of our architecture.

The core element of the described architecture is a singular node of the
decision diagram. In our XML Schema specification we define a basic complex
element type NodeType in the following manner.

<xsd:complexType name=’NodeType’>
<xsd:sequence>
<xsd:element name=’next’ type=’dd:NodeType’ minOccurs=’0’
maxOccurs=’1’ nillable=’true’/>
<xsd:element name=’parents’ type=’dd:PointType’ minOccurs=’0’
maxOccurs=’1’ nillable=’true’/>
<xsd:element name=’children’ type=’dd:PointType’ minOccurs=’0’
maxOccurs=’1’ nillable=’true’/>
</xsd:sequence>
<xsd:attribute name=’terminal’ type=’xsd:integer’/>
<xsd:attribute name=’id’ type=’xsd:integer’/>
<xsd:attribute name=’level’ type=’xsd:integer’/>
<xsd:attribute name=’constant’ type=’xsd:integer’/>
<xsd:attribute name=’rule’ type=’xsd:string’/>
</xsd:complexType>

The linked list of nodes is implemented through the use of a recursive dec-
laration in this element type where each NodeType element has one nested
element of the same type in its structure, i.e., the following element in the
list of nodes. Each node element also contains two nested objects of the type
PointType which represent links to the roots of the linked lists of the parents
and the linked lists of the descendants.

52 XML FRAMEWORK FOR DECISION DIAGRAMS

The additional information about the node, i.e., the ID and the level to
which the node belongs are stored in appropriate attribute elements.

PointType elements are defined in much the same way. We use the same
mechanism of nested elements to represent links in the linked lists as each
PointType element of a linked list has one element of the same type as a
nested object.

<xsd:complexType name=’PointType’>
<xsd:choice>
<xsd:element name=’next_child’ type=’dd:PointType’
minOccurs=’0’ maxOccurs=’1’ nillable=’true’/>
<xsd:element name=’next_parent’ type=’dd:PointType’
minOccurs="0’ maxOccurs=’1’ nillable=’true’/>
</xsd:choice>
<xsd:attribute name=’point’ type=’xsd:integer’/>
<xsd:attribute name=’variables’ type=’xsd:string’/>
</xsd:complexType>

This way of representing the element links and the hierarchy is native to XML
and it is understood and supported by all XML parsers, thus allowing us to use
this mechanism to automatically generate the corresponding data structures
based on an XML document.

However, these links represent only the links that are a part of the struc-
ture we designed to represent a decision diagram and are not inherent to the
decision diagram itself. The possible complexity of node connections in the
decision diagram forces us to use another method. Each PointType element
contains a field carrying the ID of the actual node to which the actual decision
diagram link points to.

These connections cannot be automatically stored or generated in XML
and need to be reestablished after an XML document has been parsed. The
main reason for this is the possibility of establishing a cycle in the graph
which would pose an impassable obstacle for any XML parser. Although
closed cycles are not permitted in acyclic directed graphs, there is no simple
way to impose this constraint in terms of the XML syntax.

The control of this must be implemented separately while creating the
decision diagram. The functions for reestablishing the real node connections
in the graph must also be implemented separately based on the XML parser.

The TreeType element represents a wrapper element whose task is to en-
capsulate the decision diagram structure itself and store the additional in-
formation regarding the nature of the decision diagram, i.e., the type of the
decision diagram, number of variables, nodes, levels, edges, decomposition
rules applied, etc. This element stores the additional information either in
the form of XML attributes or as additional elements.

<xsd:complexType name=’TreeType’>

<xsd:all>
<xsd:element name=’root’ type=’dd:NodeType’
minOccurs=’1’ maxOccurs=’1’/>

DECISION DIAGRAMS AS XML DOCUMENTS 53

</xsd:all>

<xsd:attribute name=’type’ type=’xsd:string’/>
<xsd:attribute name=’num_levels’ type=’xsd:integer’/>
</xsd:complexType>

Furthermore, not all of these features need to be specified in advance. Addi-
tional storage attributes or entire elements can be declared and included in
each separate XML file. This feature can be used to adapt the basic system
to work with special classes of decision diagrams. These additional attributes
and elements can store any kind of data, scalar numerical values, vectors and
matrices or string expressions.

For example, since the edges of a diagram are stored explicitly in the form
of dedicated XML elements, additional attributes can be associated with each
edge. This feature permits us to represent Binary decision diagrams with
negated edges, and various other types with attributed edges. In this way
we can indicate complemented and weighted edges as encountered in Edge
Valued Decision Diagrams (EVBDD) [100], or Multiplicative Binary Moment
Diagrams («*BMD) [19], [20], and various related generalizations [50]. The
software system will determine the way these edges are interpreted according
to the value of the attribute 'type’ specified in the top level element of the
XML hierarchy.

An example of an edge element with an aditional 'weight’ attribute, is
shown in Fig. 3.3:

<next_child point=’2’ weight=’4’ variables=’9’/>

Fig. 3.3 An example of a weighted edge.

This ensures flexibility of the framework by making it open for further
extensions and generalizations.

Extensions to the decision diagram XML Schema can also be included. In
this way, the XML framework can be specifically tailored for every application.

The XML Schema document specifying the described XML Decision Dia-
gram structure is available publicly for the purpose of validation of individual
decision diagram documents. It can be accessed at:

http://www.cs.tut.fi/ stankovs/XML/xmldd.xsd

Furthermore, we provide the complete source code of this document in
Appendix A.

54 XML FRAMEWORK FOR DECISION DIAGRAMS

3.8 EXAMPLES OF XML REPRESENTATIONS OF VARIOUS
CLASSES OF DECISION DIAGRAMS

In this section, we examine examples of various types of decision diagrams
represented using the XML-based framework presented in earlier sections.
The general principle of the application of the XML framework is explained
first on a simple example of a Binary Decision Diagram (BDD). We then
extend this discussion to the choice of decomposition rules used to generate a
decision tree by examining the use of the XML framework on the Kronecker
(KDD) and Pseudo-Kronecker Decision Diagrams (Pseudo-KDDs). We then
turn our focus to non-binary types of decision diagrams, especially to Ternary
Decision Diagrams (TDDs), and finally to Heterogeneous Decision Diagrams
(HDDs) which represent the most general type of decision diagrams in terms
of the data structures [123].

Example 3.11 Consider the function f(x1,x9,x3) = £1ZT2 V xox3 with three
logic variables. The corresponding decision diagram is shown in Fig. 8.4.
Since the variables are binary-valued, the non-terminal nodes have two out-
going edges. The function also takes two values and, therefore, there are two
constant nodes.

Fig. 3.4 Binary decision diagram in Example 1.

We can observe some of the important structural features of this diagram.

The number of variables in the function determines the number of levels of
the resulting BDD. The level attribute associated with each node object in an
XML document stores this information as it is very important for many tasks
regarding BDDs. The same decomposition rule is applied at every node of the
diagram, so there is no need to store this information explicitly.

EXAMPLES OF XML REPRESENTATIONS OF VARIOUS CLASSES OF DECISION DIAGRAMS 55

The total number of nodes in the BDD cannot be determined a priory only
by examining the function. By definition, the number of outgoing edges for
each node is always two for every non-terminal node. However, the number of
incoming edges cannot be predicted based on the form of the function only. The
flexibility of the framework we propose permits us to easily describe this kind of
structure. The linked list associated with each non-terminal node representing
its descendants has exactly two elements. The number of elements of the
linked list that stores the information about the incoming edges of the node is
not limited. One such list will be associated with each node either terminal or
non-terminal.

pointer to the first pointer to the second pointer to the last
parent node parent node parent node
parents
------- {1
. l
3 T T descendants
l ! »l] N { A
pointer to the
next node pointer to the first pointer to the second
descendant node descendant node

A) . .
Information associated with the node:
ID - identificator
Level to wihich the node belongs

Fig. 3.5 Data structure for a non-terminal node.

Fig. 3.5 represents the structure of a non-terminal node and two linked
lists associated with that node. The structure of a terminal node with a linked
list that stores the information about its parents is shown in Fig. 3.6.

Terminal nodes of the diagram have one additional attribute field named
‘constant’ which holds the value of the logic constant associated with them.

pointer to the first pointer to the second pointer to the last
parent node parent node parent node

s

pointer to the
next node

AInfon‘nation associated with the node:
1D - identificator
Level to wihich the node belongs
Variable value

Fig. 3.6 Data structure for the terminal node.

56 XML FRAMEWORK FOR DECISION DIAGRAMS

The root node of the decision diagram does not have parents and, therefore,
will have only one linked list associated with it as can be seen in Fig. 3.7.

b T T | descendants
; l A
pointer to the

next node pointer to the first pointer to the second
descendant node descendant node

‘Information associated with the node:
ID - identificator
Level to wihich the node belongs,
value of level attribute fixed to 0

Fig. 3.7 Data structure for the root node.

To better illustrate this example, we present the complete XML code repre-
senting this particular binary decision diagram:

<tree Type=’BDD’ num_levels=’4’>
<root id=’0’ level=’0’>
<next id=’1’ level="1’>
<next id=’2’ level=’3’ constant=’0’>
<next id=’3’ level=’2’>
<next id=’4’ level=’3’ constant=’1’>
<next id=’5’ level=’1’>
<parents point=’0’/>
<children point=’3’>
<next_child point=’4’/>
</children>
</next>
<parents point=’3’>
<next_parent point=’5’/>
</parents>
</next>
<parents point=’1’>
<next_parent point=’5’/>
</parents>
<children point=’2’>
<next_child point=’4’/>
</children>
</next>
<parents point=’1’>
<next_parent point=’3’/>
</parents>
</next>
<parents point=’0’/>
<children point=’2’>
<next_child point=’3’/>
</children>

EXAMPLES OF XML REPRESENTATIONS OF VARIOUS CLASSES OF DECISION DIAGRAMS 57

</next>
<children point=’1’>
<next_child point=’5’/>
</children>
</root>
</tree>

Note the absence of the <parents> sub-element in the root node (ID=0) and
the <children> sub-elements in terminal nodes (ID=3, ID=4).

In Section 2.4 we have discussed the representation of multi-output discrete
functions using shared decision diagrams.

We can imagine a single shared decision diagram as a set of mutually
overlapping single output decision diagrams sharing the same inputs and parts
of their structure. The main difference would be the existence of several
root nodes, each corresponding to one output. From the point of view of
data structures, the only difference between shared and single output decision
diagrams is that shared decision diagrams have more than one root node, that
is more than one node at the level 0.

The internal structure of XML documents is determined by the organiza-
tion of linked lists used to represent a BDD. One single node represents the
head of the main linked list. It does not necessarily follow that this particu-
lar node is the only root of the underlying decision diagram. The number of
nodes on each level of the diagram is not limited and the same applies to the
level 0. Edges, the connections between nodes, are stored explicitly, and the
number of descendants and parents of the node is not limited. This number
can be 0 for any node in the main linked list. Therefore the representation
of Shared decision diagrams fits naturally into the proposed framework. The
root node of the linked list, the topmost node in the XML hierarchy, is simply
the first node from which processing of the diagram begins.

Example 3.12 Consider the following functions, fi = x¢Z1, fo = o ® 21,
fs =x9 VT1. These functions can be represented by a Shared binary decision
diagram shown in Fig. 3.8. The data structures that represent this diagram
are presented in Fig. 3.9. Notice that the nodes 1, 5, 7 are root nodes of the
decision diagrams corresponding to functions f1, fa, fz. The starting point of
the data structure is the node 1. The other two root nodes appear deeper in
the linked list of the nodes of the decision diagrams.

In the previous examples, we have examined a decision diagram which
was obtained by the recursive application of the Shannon decomposition rule.
However, in Section 2.4 we already stated that this class of diagrams can be
seen as a particular case of a wider class of Functional Decision Diagrams.

We now turn our attention to two additional classes of Functional Decision
Diagrams.

58

XML FRAMEWORK FOR DECISION DIAGRAMS

Fig. 3.8 An example of a shared binary decision diagram.

root | 1 A children
SN A
parents

A

terminal
terminal

A

root W

v (1 [eF—{s[F—{7]"]

children

3]

parents

\1|"0—>12H—>\6|A\
A

parents
\2|"‘—>¢6\°“—’\7\A\
A

4

e children
NI Ny

parents

LT e

6 * children
>4 3] A

v

A,

2

Fig. 3.9 Data structures representing a shared decision diagram.

EXAMPLES OF XML REPRESENTATIONS OF VARIOUS CLASSES OF DECISION DIAGRAMS 59

1. Kronecker decision diagrams (KDDs) where one of the three possible
decomposition rules is chosen freely for each variable (level) of the
decision diagram.

2. Pseudo-Kronecker decision diagrams (Pseudo-KDDs) where the decom-
position rule is chosen freely for each node of the decision diagram irre-
spective of other nodes at the same level of the diagram.

Example 3.13 In Fig. 3.10 and Fig. 3.11, we give examples of one KDD
and one Pseudo-KDD respectively.

Fig. 3.11 A Pseudo-Kronecker decision diagram.

Notice that the basic structure of these diagrams is similar to that of the
BDD we have presented. This fact is reflected in the identical data struc-

60 XML FRAMEWORK FOR DECISION DIAGRAMS

tures that are used to describe these diagrams in the XML form. QOur point
of interest here is that the information about the applied decomposition rule
cannot be transferred implicitly but needs to be specified explicitly in the XML
file. We achieve this by associating the additional ‘rule’ attribute with each
node element in our XML structure. This attribute can take any of the fol-
lowing string expressions as valid values: ‘Shannon’, ‘pDavio’, ‘nDavio’.
Furthermore, additional expressions can be defined by the user when needed,
provided that there is implemented functionality to appropriately treat the el-
ements with these values in the software system that integrates a version of
our framework.

Each element of the <parents> and <children> linked lists contains the
attribute ‘variables’ which is used to explicitly state the name of the vari-
able associated with each outgoing edge of a particular node. This feature is
available for any type of DDs. However, it is explicitly used in the case of
KDDs and Pseudo-KDDs since the nature of the variables of outgoing edges
depends on the decomposition rule applied at any given node. This attribute
can take any wvalid string expression as its value, which can be useful when
working with various types of multi-valued logic DDs where one edge can be
associated with multiple values of a particular logic variable.

We present a partial XML code with one typical non-terminal node from
the previous two examples to illustrate the described properties:

<tree Type=’Kronecker BDD’ num_levels=’4’>
<root id=’0’ level=’0’ rule=’pDavio’>

<next id=’8’ level=’2’ rule=’Shannon’>
<parents point=’6’ variables=’x2’/>
<children point=’3’ variables=’x3_comp’>
<next_child point=’4’ variables=’x3’/>

</children>
</next>

</root>

</tree>

All the above examples share the same basic structure of binary decision
diagrams. We used the KDD and the Pseudo-KDD just to illustrate the
way additional information about the nature of the decision diagram can
be attached to the basic structure. In the next example we demonstrate
the ability of our framework to describe decision diagrams with non-binary
structure, i.e., decision diagrams for multiple-valued functions.

We examine Multiple-valued Decision Diagrams (MDDs) for three-valued
logic functions. As proposed in [142], these diagrams will be called the Ternary
Decision Diagrams (TDDs), and should not be mixed with the ternary de-
cision diagrams for functions of binary-valued variables, which can also be
represented by the proposed XML structures.

EXAMPLES OF XML REPRESENTATIONS OF VARIOUS CLASSES OF DECISION DIAGRAMS 61

Example 3.14 Fig. 3.12 shows a ternary decision diagram. Since it rep-
resents a function with ternary-valued variables, the nodes in this diagram
have three outgoing edges. The function may take three different values and,
therefore, there are three constant nodes.

Fig. 3.12 Example of a ternary decision diagram.

The main constraint imposed on the structure of the TDD is the number
of outgoing edges of which there can be at most three for each non-terminal
node of the diagram. The main difference with the BDD in the first Example
is that here the linked list which stores the information about the descendants
of this node will have three elements. The number of incoming edges to each
node is unlimited as was the case with all previous types of decision diagrams,
thus, we can use the identical data structure for this task.

Fig. 3.18 shows the structure of a non-terminal node in the TDD with
associated data structures.

pointer to the first pointer to the second pointer to the last
parent node parent node parent node

parents
CE 3 —{]

|
S T ‘ ! ‘ descendants
| L4301
pointer to the i L L .
next node pointer to the first pointer to the second pointer to the third
descendant node descendant node descendant node

a
Information associated with the node:
ID - identificator
Level to wihich the node belongs

Fig. 3.13 A Non-terminal node for a ternary decision diagram.

62 XML FRAMEWORK FOR DECISION DIAGRAMS

We present a partial XML code representing node number 1 in the previous
example to illustrate the complex structure of the children list associated with
this particular node:

<tree type=’bdd’ num_levels=’4’>
<root id=’0’ level=’0’>

<next id=’1’ level=’1’>

<parents point=’0’ variables=’0’/>
<children point=’2’ variables=’2’>
<next_child point=’4’ variables=’5’>
<next_child point=’5’ variables=’3’/>
</next_child >
</children>
</next>
</root>
</tree>
We can note that here the set of valid values that the attribute ‘constant’,
associated with each terminal node, can take consists of three numerical values
(0, 1, 2), which is consistent with the definition of TDD.

Another interesting point with this example is that the edge connecting the
sizth node (ID=6) with the non-terminal node number 5 (ID=5) is associated
with two values of the logic constant r1. The ‘variables’ atiribute of the
corresponding element in the XML document is associated with a vector con-
taining all these values (1, 2) and it is given in the form of a string expression.
This feature permits us to avoid unnecessary declaration of two separate edge
elements for two different values of a logic variable.

In this case we have used the TDD generated by the application of the gen-
eralized Shannon decomposition rule at all the nodes of the decision diagram.
However, this is just one class of bit-level ternary decision diagrams. All mat-
ters related to the freedom of choice of the decomposition rule discussed in
the examples with KDDs and Pseudo-KDDs apply here. These issues are ad-
dressed in an identical way through the use of the ‘rule’ attribute attached
to each node in the diagram.

Finally, we present the most general example, Heterogeneous decision dia-
grams [85], where there is no constraint on the number of outgoing edges per
each node.

Example 3.15 Fig. 3.14, is a heterogeneous decision diagram. In this dia-
gram the node for the variable x1 has 8 outgoing edges, four of them pointing
to the constant node 0, three to the constant node 1, and an edge points to the
node for the variable xo. This node has two outgoing edges.

The proposed XML framework is flexible enough to encapsulate even this
type of decision diagrams. The information about outgoing edges of each node

EXAMPLES OF XML REPRESENTATIONS OF VARIOUS CLASSES OF DECISION DIAGRAMS 63

0,1,2,4/ 53,56

Fig. 3.14 A Heterogeneous decision diagram.

will be stored in the same kind of linked list with an unlimited number of
elements as is the case of incoming edges whose number is not limited.

The structure of a non-terminal node in a heterogeneous decision diagram
with the attached linked lists is shown in Fig. 3.15.

pointer to the first pointer to the second pointer to the last
parent node parent node parent node
parents T T ‘ ‘
CN A— N NK
| \ | N\
;. T T descendants

l %INMIN% ------- —{1N4]

pointer to the
next node pointer to the first pointer to the second pointer to the last
descendant node descendant node descendant node
A . . .
Information associated with the node:

maton N
ID - identificator & Edge labels

Level to wihich the node belongs

Fig. 3.15 A non-terminal node in a heterogeneous decision diagram.

The structure of the terminal nodes in heterogeneous decision diagrams is
almost identical to the structure in the previous examples with the only differ-
ence that now the ‘constant’ attribute can take any valid string expression
as its value. The user can also exploit the ‘rule’ attribute attached to each
of the nodes to specify the decomposition rule as needed, in the same way as
in the previous cases.

64 XML FRAMEWORK FOR DECISION DIAGRAMS

Again we present the XML code of one of the nodes in the heterogeneous
decision diagram from the previous example:

<tree type=’hmdd’>
<root id=’0’ level=’0’>
<next id=’1’ level=’2’ constant=’0’>

<parents point=’0’ variables=’0 1 2 4’>
<next_child point=’2’ variables=’7’/>
</parents>

</root>

</tree>

3.9 MEMORY REQUIREMENTS

Although the exact memory requirements for an XML-based representation
of decision diagrams depends on the class of the represented decision diagram
and the amount and type of additional information that needs to be explicitly
included, some general remarks can be made. Primary concerns driving the
development of XML and all the systems derived from it are flexibility and
human readability.

XML documents are textual documents. Compactness of representation is
not a strong point of any XML-based file format, because this representation is
not intended for such purposes. They might posses some memory overhead in
comparison to any application-specific binary format for the representation of
decision diagrams. There are two ways to somewhat reduce this problem. The
first approach would be through the use of some general lossless compression
algorithm on final XML documents. The compressibility of XML documents
is discussed in, [55]. The other, perhaps more desirable method would be the
use of Binary XML, a newly proposed XML based standard. However, at the
moment, this standard is still at the development stage. We expect to exploit
its promissing features as soon as it matures. For further reference, please,
see [184].

3.10 TIME CONSIDERATIONS

Another important issue regarding the manipulation of decision diagrams is
the required processing time. In the case of the framework proposed in this
thesis, this question is related to a more general discussion of the required
processing time for large XML documents. As mentioned earlier, the third
component of the proposed framework, the XML parser, is charged with the
task of processing actual XML documents. There are a number of factors

XSLT 65

influencing its time efficiency. Those are the choice of software platform, i.e.
the combination of the operating system and the programming language.

The second important factor is the architecture of the XML parser it-
self. XML as a standard was designed with the representation of very large
amounts of data in mind. Two distinct XML processing architectures have
been proposed by the W3 Consortium, DOM and SAX. DOM represents a
more robust platform permitting an arbitrary modification of the structure
of the XML document. It does, however, require that the whole document is
at the same time present in the memory of the system. On the other hand,
SAX provides a mechanism for reading and processing XML documents in
a sequential manner. It requires only a part of the document to be present
in the system buffer at a time. Hence, the SAX model is likely to be faster
and to require less memory. Furthermore, a very large decision diagram could
be continuously streamed from the source application to the destination ap-
plication and processed in real time. The processing time is determined by
the choice of the processing architecture. A potential user is presented with
a choice of two architectures and can select the one which better suits his
particular application.

3.11 XSLT

From its conception, XML was intended to be a meta language, a basis upon
which other specific syntaxes can be built. Different data formats are defined
following the basic rules of the XML syntax. Data exchange is one of the
priorities and the key aspects behind the introduction of XML. The ability to
easily convert data from one XML-based syntax to another is an important
feature of XML.

The aim of the XML-based framework is to provide an uniform way of rep-
resenting various types of decision diagrams. In order to attain this universal-
ity, the XML based framework focuses on common elements of the structure
shared by all types of decision diagrams. This form of representation is there-
fore abstract by nature. It does not exploit particular properties of individual
classes of decision diagrams. In order to make the practical use of decision
diagrams represented in such a manner, these abstract XML documents need
to be converted into some application-specific format.

We discuss the relationship between the XML-based framework and appli-
cation software in detail in Chapter 5.

Extensible Stylesheet Language Transformations (XSLT) is a member of
the XML family of languages especially dedicated for the task of convert-
ing one XML-based format into other data description formats. Primarily,
the target formats of the conversion process are intended to be XML-based,
however XSLT is capable of converting XML data into any hierarchical text
form.

66 XML FRAMEWORK FOR DECISION DIAGRAMS

XSLT was introduced in 1999 in the form of the W3 Consortium recommen-
dation [180]. Although its primary aim is conversion between different forms
of XML, XSLT is capable of converting XML documents even to non-XML
file formats such as, for example, VHDL, a hardware description language
widely used in logic design.

In this section we give a short introduction to basic XSLT concepts and
the programming tool set.

Figure 3.16 demonstrates the position of the XSLT mechanism in the pro-
cess of converting data between two XML-based formats. The first step in
this process is to establish the relationship between elements of the original
XML hierarchy and equivalent elements of destination hierarchy. Notice that
this relationship need not one to one. One element from the original hierarchy
can be represented by several elements in the destination hierarchy and vice

Eg\@ |

Original XML XSLT Destination
hierarchy templates XML herarchy

Fig. 3.16 'The position of the XSLT mechanism in the process of conversion of data
between two XML-based formats.

XSLT provides a mechanism for efficient modeling of these relationships.
It is a declarative language. It does not state a program consisting of a delib-
erate sequence of instructions. Rather, XSLT defines a set of template rules
which define the relationships between the entities of two XML based formats.
A collection of XSLT templates that completely specifies the relationship be-
tween two XML syntaxes represents an XSLT stylesheet. The order in which
template rules are applied is not important and can be either sequential or
recursive depending on the nature of the source XML document and the way
it is parsed.

The XSLT processor analyzes the source XML document. It identifies the
token elements and transforms them according to the template rules specified
in the XSLT stylesheet. A new XML document is generated as an output.

XSLT

Example 3.16 Consider for ezample the following XML document.

<book>

<title>

Londonistani
</title>
<author>

G. Malkani
</author>
</book>
<book>

<title>

Hocus Pocus
</title>
<author>

K. Vonnegut
</author>
</book>
<book>

<title>

The Curse of Lono
</title>
<author>

H. S. Thompson
</author>
</book>

67

This document consists of a series of <book> elements. Fach <book> in
turn consist of <title> and <author> elements. These elements form a hi-

erarchy as shown in Figure 3.17.

— Book —[
— Book —[
L— Book —[

Hierarchy of XML elements.

We can convert this sample XML document into a new document using the

following set of XSLT templates.

68 XML FRAMEWORK FOR DECISION DIAGRAMS

The conversion process will proceed as follows. The XSLT processor starts
to analyze the document from the top of the hierarchy. For each <book>
element the XSLT processor applies, for example, the following template:

<item><xsl:value-of select=’title’/> by <xsl:value-of select=’author’/></item>

producing an <ttem> element in the output document. Values of the
<author> and <title> elements are copied.
Finally, the output XML document will have the following structure:

<item>Londonistani by G. Malkani</item>
<item>Hocus Pocus by K. Vonnegut</item>
<item>The Curse of Lono by H. S. Thompson</item>

Although XSLT as a language does not adhere to the principle of the so-
called structural programming, it does offer a set of instructions for the full
control of the execution flow of a style sheet. Depending on the value of an
attribute of an element, the execution flow and the final output of the XSLT
transformation process can be altered. These instructions include <xsl:if>
and <xsl:choose> instructions.

Example 3.17 The following XML document represents a list of products.

<product price=’160’>
<type>

Portable Game System
</type>

<name>

Nintendo DS

</name>
</product>
<product price=’270’>
<type>

Game System

</type>

<name>

Nintendo Wii

</name>
</product>
<product price=’216’>
<type>

Portable Game System
</type>

<name>

Play Station Portable
</name>
</product>

XSLT 69

We can generate a list of possible shopping items taking the price as the cri-
terion, using the following XSLT template:

<xsl:template name=’cheap_stuff’ match=’products’>
<xsl:if test=’Qprice < 250°>
<item>
<type>
<xsl:value-of select=’type’/>
</type>
<name>
<xsl:value-of select=’name’/>
</name>
</item>
</xsl:if>
</xsl:template>

This template checks the value of the price attribute of every <product>
element. If this value is smaller then 250, the template will copy the element
to the list of shopping items. The new output XML document will have the
following form:

<item price=’160’>
<type>
Portable Game System
</type>
<name>
Nintendo DS
</name>
</item>
<item price=’216">
<type>
Portable Game System
</type>
<name>
Play Station Portable
</name>
</item>

Furthermore, the value of any attribute can be evaluated using complex
logic expressions. For logic evaluation, the XSLT relies on the XQuery lan-
guage, another member of the XML family. All of the standard logic operators
are supported by XSLT and XQuery.

eq =
ne !=
1t <
%t >

e <=
ge >=

The XSLT language also includes a set of basic arithmetic operators for
addition, multiplication, subtraction, and division of numerical data.

70 XML FRAMEWORK FOR DECISION DIAGRAMS

Example 3.18 Consider a list of geometric objects given in XML form.

<rectangle>
<width>
3
</width>
<height>
4
</height>
</rectangle>
<circle>
<radius>
7
</radius>
</circle>
</rectangle>

By the application of the following XSLT template we can calculate the surface
areas of these objects.

<xsl:template name=’surf’ match=’rectangle|circle’>
<xsl:choose>
<xsl:when test=’rectangle’>
<object type=’rectangle’>
<area><xsl:value-of select=’width * height’/></area>
</object>
</xsl:when>
<xsl:when test=’circle’>
<object type=’rectangle’>
<area><xsl:value-of select=’radius * radius * 3.14’/></area>
</object>
</xsl:when>
</xsl:choose>
</xsl:template>

For details on the development of XSLT stylesheets we refer to [86] and
[106].

In our work we make extensive use of XSLT mechanism. We present sev-
eral examples of the application of the XML-based framework in Chapter
5. Each of these examples relies on a different set of XSLT style sheets to
convert the decision diagrams represented in the abstract form to a specific
output format. These formats range from hardware descriptions using VHLD
and EDIF syntax to SVG-based graphic representations of decision diagrams,
demonstrating the versatility and flexibility of the XML approach.

Applications of Decision
Diagrams

In this chapter, we briefly review these applications of decision diagrams that
have been the motivation for the development of the XML framework. In the
latter part of the chapter we discus the role of the proposed framework in
such applications.

Tree-like structures, such as acyclic directed graphs, are widely applied in
computer science. The inherent flexibility of such data structures offers, in
some cases, significant advantages over other ways of organizing data. To
properly understand these advantages we examine the relationships between
graphs and other common data structures.

A certain hierarchy of data structures can be established, regarding their
complexity and expressive power.

The basic building block of this hierarchy is a singular piece of data which
possesses a certain semantic value, for example, an isolated number or a single
word. Such individual pieces of data rarely have any significance if not placed
in the proper context i.e., other pieces of data. A one dimensional vector is a
more complex data structure. The elements of the vector can be completely
independent. However, if the value of a certain element depends on one or
more neighboring elements, such a structure is known as the Markov chain
[74], [84]. By adding more dimensions, we derive the next in this hierarchy of
data structures, a matrix notation. Again, elements can be either statistically
independent or dependent on the neighboring elements. In this case we are
dealing with Markov fields [70]. However, in many cases, the value of a certain
piece of data is not determined by its immediate neighborhood, but rather by
groups of distant elements. One such example would be the dependence of
the semantic value of words in a complex sentence in human speech. In such

71

72 APPLICATIONS OF DECISION DIAGRAMS

cases, the previously described matrix forms do not suffice. Such complex
interdependences of data are best expressed in terms of graph-like structures.

However, the flexibility of graph-like structures carries an inherent prob-
lem. Many tasks, such as data retrieval or insertion, that can be achieved
with algorithms of linear complexity in matrix structures, become practically
intractable in most general graph-like forms. For example, finding an optimal
path through a graph is a NP complete problem. To overcome some of these
problems, we impose certain restrictions on the structure of graphs. This
leads us to acyclic directed graphs.

Tree-like structures are an optimal, in terms of memory and processing
time, data structures for many problems.

In this work, we devote most of our attention to the application of decision
diagrams in logic design and signal processing.

Decision diagramsform a widely used tool in logic design. Their main
advantage is the flexible way of representing logic circuits that permits efficient
optimization of the final design. This optimization can be performed with
respect to several factors:

1. The number of gates,
2. Chip area,

3. Energy consumption,
4. Delay,

5. Clock period, etc.

Most of these criteria can be expressed in terms of the he properties of
decision diagram properties. For example, the number of gates is directly
related to the number of nodes in the corresponding decision diagram, and
the delay of the circuit is related to the path length.

4.1 LOGIC CIRCUIT MINIMIZATION

A great part of our work is related to the application of decision diagrams to
the minimization of circuit designs.

The idea of applying biary decision diagrams for logic circuit minimization
can be traced back to work by Lee in 1959 [102]. Concept was futher explored
in papers by Ubar [170] and [13] in 1976, and Akers [4], [5].

Reduced Ordered Binary Decision Diagrams as a method of representation
of switching circuits were formalized by Bryant in [17]. Various other classes
of decision diagrams have been introduced to represent different classes of
switching functions more efficiently.

The idea behind the application of decision diagrams as a minimization
tool stems from the fact that a reduced ordered decision diagram is a canonic

SENSITIVITY ANALYSIS AND TEST PATTERN GENERATION 73

representation of a given discrete function. Therefore, a completely reduced
decision diagram is a minimal representation of a function.

The topological properties of decision diagrams map relatively well into the
features of logic circuits. ROBDDs have been a logical choice for the represen-
tation of switching function due to the properties of the underlying algebraic
structure. The choice of the algebraic structure has a direct influence on the
number and complexity of the non-terminal nodes in a decision diagram, as
well as the complexity of the interconnections. The number and the complex-
ity of the nodes is reflected on the number of gates and the surface area of
the final design. The complexity and the lengths of the paths in a diagram
determines the complexity of the interconnections and the delay of the final
design.

The choice of a proper underlying structure is, therefore, crucial for the
efficient implementation of a circuit design. This choice is determined by the
type of the implemented discrete function and the properties of the technology
onto which the final design is going to be mapped. For example, Quaternary
Decision Diagrams have been proposed in [144] as the optimal method for
representing switching functions implemented using 6-input LUT FPGA ar-
chitectures. We discuss this particular problem in detail in the Section 5.13.

Furthermore, the choice of the decomposition rules determines the number
of non-terminal nodes in the decision diagram. The application of Functional
Decision Diagrams is justified by this assumption. Use of Kronecker and
Pseudo Kronecker Decision Diagrams can significantly reduce the complexity
of the circuit design in some cases, see [48], and [10]. We must keep in mind,
however, that each new degree of freedom that leads to more flexibility in the
design and, therefore, to the greater expressive power of a particular class of
decision diagrams, leads also to more complex processing. It has been shown
that the selection of optimal decomposition rule for each level in the case of
Kronecker or each node in the case of Pseudo Kronecker Decision Diagrams
is a NP-complete problem.

Various heuristic algorithms have been proposed as a solution to this prob-
lem, [40], [79].

4.2 SENSITIVITY ANALYSIS AND TEST PATTERN GENERATION

Another important step in hardware design is the verification of the gate
level designs. A variety of errors may occur in digital circuits due to different
reasons, such as short circuits, broken lines, wrong voltage levels. These errors
can be divided into two groups.

Soft errors are results of transient effects like electric noise from power sup-
ply or other electronic devices present in the immediate environment. These
errors may or may not reoccur on a regular basis. Therefore, this kind of er-
rors are hard to test and detect. However, a soft error implies non-permanent
fault in the operation of the circuit.

74 APPLICATIONS OF DECISION DIAGRAMS

Hard errors are errors which imply a permanent damage to the structure
and behavior of the device, and will reoccur every time for the same input
pattern. They may be caused by various mechanical effects, such as vibration,
corrosion, metal migration, etc.

Even though various models of errors exist, the most commonly used model
is a single stuck-at 0/1 fault. In short, this model assumes that a single input
of the logic circuit is stuck at a constant value. Depending on the nature
of the switching function implemented by a particular circuit, some errors
covered by this model cannot be detected. For example, for a stuck at 0 fault
we cannot detect at which of the inputs of an AND circuit it appears. The
same holds for the stuck at 0 fault at the output of the AND circuit. These
faults are called equivalent since they produce the same effect although they
appear at different positions within the circuit.

The so-called multiple faults, can be seen as a set of individual single errors
occurring simultaneously at different inputs of the device. The detection of
such errors is all the more difficult as the number of different possible errors
grows exponentially.

A test for an error requires an assignment of a set of values at the inputs
of the device, that produces an output different from the desired output.
In order to detect an error when access to the system is restricted to its
inputs and outputs, it is also necessary to provide the conditions that the
error propagates from the place of appearance to the output of the system.
Since the enumeration of all possible input patterns is impractical for most
of the devices, test pattern generation methods have an important place in
the field of circuit verification [79]. These methods are based on two distinct
approaches:

1. the algebraic, which deals with the Boolean expression representation
of the switching function,

2. the topological, which is related to the topology of the particular gate
level implementation.

One of the frequently used approaches for test pattern generation is based
on the Boolean difference. This approach was first suggested in [147] by
Sellers et al. Marinos et al. developed this method in [109]. This work has
been further extended in multiple papers by various authors, in particular, by
Larrabee [101]. For further details about the Boolean difference, please, refer
to [9].

The theoretical work on the problem of testing digital circuits gave rise to
the notion of easily testable devices.

PROBABILISTIC ANALYSIS OF DIGITAL CIRCUITS 75

To be easily testable, a device needs to satisfy certain criteria:

1. the set of test sequences should be as short as possible,

2. the gate network cannot be statically redundant, that is, it should not
contain repeated parts of circuitry,

3. test sequences should be easily generated,

4. tests should also detect the location of the error, if possible.

It has been shown by Reddy [135] that such circuits can be generated
using Positive Polarity Reed-Muller expansions, therefore, Functional Decision
Diagrams can be used as a tool for the development of easily testable devices.

However, PPRM-based devices have certain problems. For example, certain
functions can have a large number of products, and therefore, require a large
number of AND gates. Furthermore, multiple errors cannot be detected. As
a solution for this problems Generalized Reed Muller expressions have been
proposed in [140].

More information about digital circuit testing can be found in [1], [66], [67],
[79].

In Section 5.12 we present several examples of XML representation of
FDDs.

These examples illustrate the possibilities of applications of the proposed
XML framework and a concrete way of how it can be exploited in this context.

4.3 PROBABILISTIC ANALYSIS OF DIGITAL CIRCUITS

Given a switching function that models conditions under which some event
will occur, the probability of this event is equal to the probability that the
output of the function will take the value of 1.

This probability depends on the probability of individual logic variables.
For example, assume that the probability z; = 1 is p(x;) = 0.5:

1. the probability of a two-input AND circuit is equal to 1/4,
2. the probability of a three-input OR circuit is 7/8,

3. the probability of a two-input XOR circuit, 2/4 etc.

Assume that all input variables are independent and have values 0 and 1
with probability 1/2. Then the probability of the event that f = 1 is also
known as the function density. It can be easily shown that the density of a
switching function can be computed using the Shannon expansion.

Therefore, the density can be calculated by traversing the ROBDD of the
given function. As with many other methods involving the traversal of a

76 APPLICATIONS OF DECISION DIAGRAMS

decision diagram, there are two possible approaches, top-down and bottom-
up.

In [165], Thornton and Nair have presented a top-down approach to com-
pute the density of a function represented by a ROBDD. Although very intu-
itive, this approach has certain shortcomings:

1. The Binary Decision Diagram must be constructed beforehand, and a
separate traversal routine is used to calculate the output probability.

2. The partial probability assigned to a non-terminal node in the diagram,
does not represent the output probability of the subfunction rooted in
that node.

3. As a consequence of the property 2, the algorithm is not applicable
to the Shared Binary Decision Diagrams. A separate traversal of the
diagram is necessary for each function.

Most of these problems can be overcome by applying the bottom-up ap-
proach [116]. This method is based on the following observations. Assume
again that the probability of each input p(0) = p(1) = 0.5, and that they are
independent. Since each non-terminal node implements the Shannon expan-
sion, the probability assigned to that node is 1/2 of the sum of the probabilities
assigned to its two children nodes. Therefore, the probability assigned to each
node will remain constant for every function represented in a Shared BDD.
These probabilities can be calculated and assigned at the moment when a node
is created. Construction of a ROBDD and the calculation of probabilities can
be done simultaneously.

Either of the above methods can be adapted to take into account comple-
mented edges in a diagram. A complemented edge points to the complement
of the particular subfunction and clearly has output probability 1 — p(f(x;)).
Both of these approaches can easily be modified for cases where p(0) # p(1).

The density was initially used by Parker and McCluskey in [128] to evaluate
the effectiveness of the random testing of combinational circuits. In recent
years, the calculation of output probabilities has found a new application as
a method for estimating the power dissipation in circuits. We discuss this
application of decision diagrams in greater detail in Section 6.

Another direction of decision diagram driven probabilistic circuit verifica-
tion is focused on the probabilities of sets of states of transition systems. The
probabilistic model checker PRISM, developed by Kwiatkowska et al. [99],
makes use of this approach.

4.4 CROSS-CORRELATION OF FUNCTIONS

Cross-correlation is an important concept in signal processing. In essence, it
is a measure of similarity of two signals. The cross-correlation has a special

POWER CONSUMPTION ANALYSIS USING DECISION DIAGRAMS 77

role in spectral techniques as it can be used as a tool for calculating spectral
coefficients.

Consider the cross-correlation of the truth vectors of two functions f and
fe, [95]). By properly choosing the f. we are able to compute the spectral
coefficients of various functions [90], [164]. A generalized formula for spectral
coefficients has the following form [165]:

St(fe) =2" — 2Ny = 2N, - 2", (4.1)

where n is the number of logic variables, Ny stands for the number of input
patterns for which functions f and f. have the same value, and Ny is the
number of patterns where their values are different.

The calculation of cross-correlation can be performed using methods de-
scribed in the previous section. Namely, Ny and Ny can be expressed in terms
of the output probabilities of the functions f and f.. Let P(f- f.) be the prob-
ability that the values of both functions are 1, and P(f- f.) be the probability
that the outputs are 0. N, can be computed as follows:

and Ny, avoiding the P(f - f.) as follows:

Na =2"(P(f) + P(fc) = 2P(f - f.)). (4.3)

The output probabilities of the functions P(f) and P(f.) can be computed
using the ROBDD based method described in the previous section. Further-
more, probability P(f - f.) can be computed by manipulating the edges of the
ROBDDs for f and f., enabling us to use the already established algorithm
for probability computation to calculate spectral coefficients.

From 4.1 and 4.3 it follows:

Sy =2"(1—2P(f) = 2P(fc) +4P(f - fc)). (4.4)

This method has been employed by Thornton, Miller and Drechsler, in
[164] for calculation of Rademacher-Walsh, Haar, and Reed-Muller spectral
coefficients.

4.5 POWER CONSUMPTION ANALYSIS USING DECISION
DIAGRAMS

The power consumption in digital CMOS circuits is closely associated with
their switching activity. The main source of power dissipation with this tech-
nology comes from charging and discharging the node capacitances. Let V3,

78 APPLICATIONS OF DECISION DIAGRAMS

be the supply voltage, and f.x clock frequency of a circuit. The following for-
mula was proposed in [182] as a good approximation of the power consumption
of the circuit:

P=1/2Vipfar Y CiEi, (4.5)

where C; is the sum of all the input capacitances of the transistors that are
driven by the signal ¢ and E; is the transition probability at signal i. This
probability is the switching activity, that is, the probability that either 0 — 1
or 1 — 0 transition will occur, E; = p(0 — 1) + p(1 — 0). It can be
calculated using Binary Decision Diagrams.

Switching activity at the output of a gate depends on the logic function
of the gate. Transition probabilities of a gate can be calculated from output
probabilities.

Parker and McCluskey [129] have introduced a method to generate poly-
nomial representations of the output probabilities of basic logic gates:

p(z1 A x2) = p(w1)p(21), (4.6)
p(x1 V 22) = p(z1) + p(z1) — p(x1)p(21), (4.7)
p(@) =1—p(x). (4.8)

Transition probabilities on a signal F; can be computed in two ways. The
first method, proposed by Cirit in [29] is based on a general delay model and
makes use of global Binary Decision Diagrams.

As already stated, F; = p(0 — 1) 4+ p(1 — 0). The probability that the
transition 0 — 1 occures at node i can be approximated as p(0 — 1) =
p(i = 0)p(i = 1), where p(i = 1), p(i = 0) are the probabilities that the signal
at node 7, will take the value 0 and 1 respectively. Likewise p(1 — 0) = p(i =
1)p(i = 0). These probabilities can be calculated using BDDs as described in
the previous section.

Binary Decision Diagrams were first proposed for this application by
Chakravarti et al in [27]. This method did not take into account the gate
delay. It also ignored the power dissipation due to hazards and glitches. This
problem was addressed by application of a general delay model by Ghosh et al.
in [71]. The method uses symbolic simulation to generate a set of switching
functions that represent the condition for switching activity at distinct time
points for each gate. However, the symbolic simulations are also the main
disadvantage of this method, because symbolic formula become impractically
large even for medium sized circuits.

INFORMATION MEASURES ON BDD AND SWITCHING ACTIVITY 79

A local OBDD construction has been used to ameliorate this problem by
Marculescu in [108], and further extended to handle highly correlated input
streams in [107].

Buch et al. [21] computed the power dissipation of each node without
considering the temporal signal correlation. This method has been used in
conjunction with BDDs by Drechsler, Lindgren et al. [51], [52] and Popel
[132].

The second approach to calculating transition probabilities is based on
polynomial propagation by means of Arithmetic Decision Diagrams, or alter-
natively, Binary Momentum Diagrams. Ferreira et al. proposed a ZBDD-
based method for power consumption [61]. This method has been extended
to include BMDs by Ferreira and Trullemanns [62].

4.6 INFORMATION MEASURES ON BDD AND SWITCHING
ACTIVITY

The switching probabilities of nodes in a circuit are closely associated with
the concept of entropy. It can be demonstrated that the upper bound of a
switching probability of a node is half of its entropy. We discuss the calculation
of the information measures using decision diagrams in greater detail in later
sections. For now, it will suffice to say that the entropy of a function f(z)
can be calculated using the following formula:

1

H(f)==>_p(f =a)logp(f = a) (4.9)

a=0

The entropy H(f) can be computed in a recursive manner using the con-
ditional entropy H (f|z;) for each variable z; where

H(flx;) = p(x; = 0)H(f|x; = 0) + p(x; = 1)H(f|z; = 1) (4.10)

This calculation can be efficiently performed using binary decision dia-
grams.

We propose an additional ROBDD-based method for calculation of the
entropy in Section 6.

4.7 FORMAL VERIFICATION

Another important step in the process of logic design is the verification of
the circuit implementation. A number of methods have been developed to
determine if the actual gate-level design matches the behavior of the desired

80 APPLICATIONS OF DECISION DIAGRAMS

logic function. The simplest method is to determine if the circuit produces the
desired output for each combination of input values. However, this method
quickly becomes impractical as the number of possible inputs grows.

Formal circuit verification is based on the notion that a mathematical proof
of correctness of the design implicitly covers all of the possible input patterns.
An explicit enumeration of the input patterns is thus avoided. This task can be
accomplished by means of equivalence checking. Two circuits are equivalent
if and only if the canonical representations of their output functions are the
same.

A Reduced Order Binary Decision Diagram is a canonical representation of
a switching function. Thus, two logic circuits are equivalent if their ROBDDs
are equivalent. In practice this can be achieved by first constructing the
ROBDDs for the functions, and then checking if they are isomorphic

This checking can be computationally complex. It can be avoided in the fol-
lowing manner. Let f and g be two switching functions. These two functions
can be considered equivalent if and only if the ROBDD for f g = f®g = f®g
consists only of a terminal node 1.

As mentioned earlier, ROBDDs are used to represent switching functions in
order to avoid complexity explosion during the evaluation of circuits. However,
the size of ROBDDs can also grow exponentially for many classes of switching
functions.

Other classes of canonical decision diagrams can be used to address this
problem. This includes Reduced Order Functional Decision Diagrams and
various classes of Word Level Decision Diagrams. For example, Edge Valued
Decision Diagrams have been introduced in [100] and [173] especially for the
task of verifying arithmetic circuits. Closely related, the Binary Momentum
Diagrams (BMDs), proposed in [20], are used for verification of multipliers.
This work was further extended by the introduction of Kronecker Multiplica-
tive Binary Momentum Diagrams (K*BMDs), in [47], [563]. Of special interest
is the class of Boolean Expression Diagrams, since they permit the represen-
tation of any combinational circuit in linear space. These diagrams can be
constructed directly from the circuit graph.

The XML framework works with all these diagrams, or can be extended
to accommodate them. Thus, it can be efficiently exploited for the formal
verification of circuits.

4.8 VERIFICATION OF SEQUENTIAL CIRCUITS

The verification methods that we have discussed so far have been focused on
combinational circuits, which can be efficiently represented using graph-like
structures. The output of a sequential circuits depends not only on the cur-
rent input of the circuit, but also on the values of its memory elements, i.e.,
outputs, from the previous time intervals, and so they cannot be well repre-
sented with the same structures as combinational circuits. The operation of

APPLICATION OF DECISION DIAGRAMS IN DIGITAL IMAGE PROCESSING 81

a sequential circuits is described by another graph-like structure, the Finite
State Automaton. The equivalence of Finite State Automatons can be eval-
uated by explicit representation of state sets. However, this is not applicable
to larger systems.

Approaches that try to address this problem are based on an implicit set
representation. Each sequential circuit contains a combinational component
and a register of length n. The contents of the register represents an input
sequence of a length k. Therefore, the operation of the register component of
the circuit can be described by a n-input, k-output function. Thus, ROBDD
based methods can be applied.

The verification of sequential circuits using ROBDDs was first explored by
Bryant [18]. Touati et al. [166] and Burch et al. [23] developed symbolic BDD
based techniques for storing and representing state sets of sequential circuits.
Related work, with a somewhat different approach has been done by Coudert
et al. [35].

BDDs have been used to determine synchronizing sequences for sequential
circuits by Pixley et al. [131].

Binary decision diagrams, as a tool for the verification of sequential circuits,
suffer from potential size explosion for large state sets. This problem has been
addressed by Hu [89] by the application of implicitly conjoined BDDs. Fur-
thermore, Hu and Dill developed a technique of to eliminate of state variables
in [88]. These methods have been implemented in EVER and Mury software
packages by Hu [87] and Dill [42] respectively. A similar package called SMV
was developed by McMillan [114].

Hybrid Decision Diagrams have been exploited by Clarke et al. [31] to
support word-level model checking.

Ravi and Somenzi in [134] suggested to reduce the size of intermediate
BDDs by replacing them with smaller BDDs of dense subsets.

VIS is a software developed by Brayton [14] which integrates model check-
ing with other verification techniques, and VERITY developed by Kuehlmann
et al. [97].

The XML-based framework can be exploited in these applications, when-
ever decision diagrams are the underlying data structures.

4.9 APPLICATION OF DECISION DIAGRAMS IN DIGITAL IMAGE
PROCESSING

Digital image processing is another area in which decision diagrams have been
applied. Originally Binary Decision Diagrams were proposed as a method for
encoding of bitmap images by Starkey and Bryant in [153]. In this approach,
a ROBDD is constructed using pixel coordinates as function variables. For
an image block of the size 2" x 2™ an alternated sequence of pixel coordinates

82 APPLICATIONS OF DECISION DIAGRAMS

defines the variable ordering as z,_1,Yn—1,---, Zo,Yo. Each individual path
from the root node to the terminal nodes represents a group of pixels.

A different approach was proposed by Lursnisap et al. in [105]. A binary
image block can be seen as a Karnaugh map. Classical Boolean minimization
is applied to obtain a SOP representation of the function. The ROBDD can
then be constructed directly.

These methods were originally developed for bitmap images with binary
valued pixels. However, the same methodology can easily be extended to
grayscale images, either through the use of MTBDDs as suggested by Starkey
and Bryant or through the use of SBDDs by separating the image in a set of
multiple bitplanes. The second approach has been employed by Lurnisap et
al in [105].

Another approach to the BDD image encoding was introduced by Wu and
Chung [179]. In this method an image segment is recursively subdivided
into two halves in the xz and y direction alternatively. In this way, a SOP
representation of image is obtained and a ROBDD is constructed.

Furthermore, in [103] and [104] Leelapatra et al. demonstrate how a stan-
dard geometric image transforms such as image translation and orthogonal
rotation can be implemented directly on ROBDD image representations.

Decision diagram based image encoding has been employed specially for
image processing tasks which involve a sliding window. In these algorithms
the resulting value of each individual pixel is determined by the value of the
pixels in its neighborhood. The values of neighboring pixels define a discrete
function which determines the pixel value. This function can be efficiently
implemented using decision diagrams. An example of this approach can be
found in a research report by Robert and Malandain [136].

Therefore, due to the use of decision diagrams for the representation of
images and for performing various operations over them, the proposed frame-
work can be employed in particular tasks of signal processing.

Another important application of decision diagrams in image processing is
in various lossless compression schemes. One such example can be seen in the
paper by Mateu-Villarroya and Prades-Nebot [110].

4.10 POSITION OF THE XML-BASED FRAMEWORK IN THE
APPLICATION CONTEXT

In the introductory part of this Thesis we have stated that the intended pur-
posed of the proposed XML-based framework is the efficient representation
of various types of decision diagrams in a uniform way. This stated purpose
comes into the proper light only if we take into account the possible applica-
tions of decision diagrams.

Namely, as the extent of the applications of decision diagrams has grown
wider, a great variety of software packages aimed at dealing with these struc-

POSITION OF THE XML-BASED FRAMEWORK IN THE APPLICATION CONTEXT 83

tures were developed. These software solutions differ significantly in their
scope and architecture. On the one hand we have software packages aimed
at specific industry related tasks, such as the optimization or testing of the
specific kinds of logic circuits, focused on a few classes of decision diagrams.
Usually, these software systems treat decision diagrams as a valuable tool for
achieving their primary task and employing them as a part of a longer process.

Most of such packages use decision diagrams only as an internal data struc-
ture, generating them at exploitation time. Import, export, and storage facil-
ities of such software packages are generally dedicated to the final product of
the process, i.e., an optimized netlist representing a circuit.

In the other end of the spectrum are the packages focused on the decision
diagrams themselves, for example, various heuristic algorithms aimed at op-
timization of some property of a decision diagrams, e.g., minimization of the
size or the path length, finding the optimal variable ordering or the optimal
Kronecker diagram, etc. These software packages are sometimes capable of
dealing with several classes of decision diagrams, as the same optimization
strategies can be employed across different decision diagram classes.

The proposed framework is intended to take the position of an intermediary
between various software packages aimed at working with decision diagrams.
Fig. 4.1 illustrates the position of the XML framework in a wider application
focused scope.

XML Framework Application Domain
,-"'-----.--------."',:- --------- ~\

[(] L)

f : ' VHDL !

Decision | hardware model
Diagram . | 5 N XSLT /: s " 5 !
' < '

software = g ____» —>»' SVG gt ! !
1 o oo oo L e)

. \ 1C++)

‘. '

1 L]

-

Fig. 4.1 Position of the XML-based framework in a larger context.

The proposed framework offers a neutral, abstract format of representa-
tion of decision diagrams, and facilitates the seamless data exchange between
different software packages.

The existing software packages can be easily extended with modules capable
of storing decision diagrams in the form of XML documents. Software modules
for the import and export of data in an XML format are known as XML
parsers. XML is an established standard for data interchange and such XML
parsers exist for all the relevant computer platforms and software development
environments. The application of XML Schema and the validity of XML

84 APPLICATIONS OF DECISION DIAGRAMS

documents which it ensures, guarantees that any such parser can be used to
handle XML documents described by our framework.

Importing data from XML decision diagram documents into existing pack-
ages can be facilitated in two ways. One solution is to extend an existing
package with the same kind of XML parsing module. However, another pos-
sibility exists purely within the XML family.

An XML-based framework for decision diagrams is capable of converting
its own XML documents into any other textual, i.e., ASCII-based, file for-
mat. This conversion process relies on the XSLT data transform language
introduced in Section 3.11.

In what follows we will present several examples of the applicatin of the
proposed framework in different fields.

The first set of examples presented in Chapter 5 is focused on the appli-
cation of decision diagrams in logic design. We present a method of FPGA
implementation of switching functions represented using several types of func-
tional decision diagrams, primarily reduced ordered binary decision diagrams,
Kronecker and Pseudo-Kronecker decision diagrams. In these examples, the
final hardware design is expressed in terms of the VHDL hardware description
syntax.

Furthermore, we compare the efficiency of the implementation of multi-
output switching functions using Multi-terminal binary decision diagrams ver-
sus the more common Shared binary decision diagrams.

To conclude this series of examples, we present an example of implemen-
tation of switching functions on 6 input LUT based FPGA devices using
Quaternary decision diagrams. The EDIF language for netlist specification is
used in this example.

In order to properly estimate the possibility of exploiting the proposed
XML framework in these areas, we first provide a brief review of the related
work.

Applications of the XML

Framework in Logic
Design

In this chapter we present applications of the XML framework in logic design.
To make this presentation self-contained and understandable, we first briefly
introduce the necessary definitions and notations.

Since the initial interest in binary decision diagrams in the logic design
community was sparked by Bryant [17], a variety of classes of decision dia-
grams have been introduced to address specific circuit design and verification
problems.

For example, Ternary Decision Diagrams (TDDs) have been proposed in
[93] to represent incompletely specified switching functions. In the work of
Sasao and others a total of seven distinct classes of TDDs have been intro-
duced, depending on the value associated with the third outgoing edge of each
non-terminal node. In EXOR-TDDs and AND-TDDs introduced in [142] and
[143] the third outgoing edge points to fo ® f1 and fy V f1 values respectively.
SOP-TDDs represent products in SOP functional representation. Likewise,
ESOP-TDDs deal with ESOP representation. Kleene-TDDs [92] are useful
for the verification of functions in the presence of unknown inputs.

Zero suppressed BDDs can be used, in the same manner, to represent sets
of cubes [120].

Quaternary decision diagrams have been proposed by Sasao in [144] as an
optimal method for the implementing switching functions on 6-input LUT
FPGA devices.

MTBDDs mentioned in Section 2.4 have been originally introduced by
Clarke et al. [33] to represent Walsh coefficients employed to reduce the
number of possible component matches that need to be checked during the
technology mapping stage of circuit design.

85

86 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

As mentioned in Section 2.4, MTBDDs represent the most basic type of
word-level decision diagrams. The wide class of world-level decision diagrams
received special attention as a tool for the verification of arithmetic circuits.
Various edge valued diagrams have been proposed as the extension of the basic
concept.

Specifically, EVBDDs have been employed by Lai and Sastry in [100] as a
tool for multi-level hierarchical circuit verification. Factored EVBDDs have
been introduced as a further extension of this concept [173].

Multiplicative binary momentum diagrams (*BMD) are used by Bryiant
in [20] for verification of carry save adders. They have been used as a tool for
verifiying of other arithmetic circuits, such as multipliers. However, this class
of decision diagrams is not well suited for bit-level verification tasks. In order
to devise a unified tool for both bit and word-level verification, Clarke and Fu-
jita have proposed a class of diagrams known as Hybrid (HDDs) or Kronecker
Binary Momentum Diagrams (KBMDs). They have used these diagrams in
[31] for testing the STR divider as implemented in Pentium processors. This
idea was further explored by Drechsler and Becker in [47] with an introduction
of Kronecker *BMDs.

We begin our discussion from the most basic application of decision dia-
grams in logic design, the implementation of switching functions using ROB-
DDs, and gradually move to other classes of decision diagrams. The results
related to the implementation of switching functions using ROBDDs presented
in later sections of this chapter were originally published in [161].

In the following sections we examine basic concepts of hardware design
and function implementation, using decision diagrams that are needed for
understanding the presentation related to the applications of the XML based
framework.

In order to better estimate the usability of the proposed framework, we
begin our discussion by giving a quick overview of other software solutions
intended for similar purpos.

5.1 RELATED WORK

As the complexity of hardware grows, it quickly becomes impossible to man-
ually handle even individual designs. To address this problem, automated
systems for logic design and circuit verification and testing have been devel-
oped. The idea behind these systems is to let the designer work on a higher
level of abstraction and let the system perform the mapping at the most basic
technological level. This can be achieved by applying some high level formal
language. This approach is known as High Level Synthesis. A large body
of theoretical work exists on this matter, for example, [163], as well as a
significant number of commercially available products.

One way of addressing this problem is by using a special dedicated syntax.
VHDL and Verilog are most well known examples of special purpose hardware

RELATED WORK 87

description languages. The advantage of this approach is that the language
and syntax are specially tuned for particularities of hardware modeling. How-
ever, many hardware devices represent an implementation of algorithms pre-
viously developed in software. It is sometimes beneficial to let the developers
use the syntax that they are already familiar with.

A number of systems based on syntactic rules of languages such as C/C++
or Matlab exist. These system ether produce VHDL/Verilog models as an
output or perform direct mapping onto technology. In what follows we present
a list of some of these systems.

We begin our overview with one of the best known of such languages, Sys-
tem C. System C can best be viewed as a system behavior modeling language.

The main difference between hardware design and software implementation
of an algorithm is that the software instructions are most often executed in a
sequential manner, while processes that happen in hardware exhibit a certain
degree of parallelism. In order to use a syntax of a standard programing
language, one needs to provide the means for handling concurrent processes.

System C is a library of C routines and macros designed with this exact
purpose in mind. It is dedicated especially to transaction level and behavioral
modeling. Processes described using System C framework can communicate
in a simulated real-time environment. Furthermore, System C is a simulation
kernel. A System C code can be compiled together with the simulation kernel
library into an executable code that behaves like the described system.

Since it is based on C/C++, System C provides some interesting features
not present in standard hardware description languages, such as on object
oriented approach to modeling and template classes. However, this potentially
greater expressive power is contrasted by noticeable syntactic overhead. Code
written in System C tends to be longer than the equivalent VHDL code.
Furthermore, at the current level of development, the performance of the
simulation kernel is still behind the commercial simulation tools.

System C is currently being developed as an open source effort by a group
known as the Open System C Initiative, [124]. System C started originally
as a project of Synopsys Inc., an EDA company. The project gained a wider
acceptance when the cooperation with several large electronic companies, such
as ARM and CoWare, was established.

Companies that offer System C based solutions include:

1. Synopsys Inc.

2. Cadence

3. CoWare

4. Mentor Graphics

For example, Catapult C is a System C based solution by Mentor Graph-
ics intended for both ASIC and FPGA design of wireless, video and image
processors, [25].

88 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

Estrel-C is a similar product by Cadence and CoWare offers SystemC Mod-
eling Library as a part of its product palette, [59].

Cynlib developed by Cynapps, now Forte EDS was at one time the main
competitor to System C, [37]. This is a C++ class library for high-level
hardware design. It is an extension of C++ that implements many of the
Verilog semantic features.

Handel C by Celoxica is another C based product, [26]. It steams from work
done at the Oxford University Computing Laboratory in the early nineties
[125]. It is a non-standard extension of C language that permits hardware
instantiation and parallelism. As all C/C++ based hardware description lan-
guages, it is behavior oriented. It includes most of the common C language
features. However, floating point arithmetic is not a standard part of Handel
C, but it can be implemented using external libraries. Parallel behavior is
described using some of the CSP (communicating sequential processes) key-
words, while general file structure is borrowed from Occam.

FpgaC, is another subset of C language. It has its origin in Transmogrifier
C developed at the University of Toronto by D. Karchmer under the supervi-
sion of J. Rose, P. Chow, D. Lewis, and D. Galloway, [68]. It is one of the first
efforts of this kind which predates even Handel-C. FpgaC has a slightly dif-
ferent intended scope. It was designed to be an efficient High Level Language
for reconfigurable computing, rather than a hardware description language for
efficient custom circuits.

Transmogrifier C has been available as a BSD licensed Open Source plat-
form since 1996. Originally it had more nonstandard HDL specific extensions.
Gradually, they were phased out and replaced by more standard C features,
under the influence of StreamC.

StreamsC was developed by Los Alamos National Lab., by M. Gokhale, J.
Stone, J. Arnold, and M. Kalinowski, [72]. It is now available as Impulse C,
and contains a compiler and a set of libraries intended for the development of
FPGA-based applications.

Impulse C includes simulation tools as well as C-to-RTL scheduling and
optimization technology. It supports the CSP programming model, while
remaining compatible with ANSI C. It is data-flow oriented.

Intended applications include image processing, DSP algorithms and other
high-performance computing applications.

Impulse C permits development of mixed hardware/software algorithms.
The core concepts of Impulse C are processes and signals. Processes are inde-
pendently synchronized, concurrently executed segments of code. Hardware
and software components communicate through buffered data streams that
are implemented directly in the hardware. Impulse C thus makes possible the
development of parallel applications on a high level of abstraction, without
the need for cycle-by-cycle synchronization.

Other high-level programming languages have been used as a basis for sim-
ilar hardware modeling solutions, as well. The MATCH compiler, represents
one such effort. It permits conversion of Matlab code into a VHDL syntax.

NETLISTS 89

MATCH is a Matlab compilation environment for Distributed heteroge-
neous Computing Systems developed by D. Banjee, A. Chanderay, S. Hauck
and N. Sheray, [11], [83] and founded by DARPA from 1998 to 2001. It is
now available commercially from the Accel Chip company.

Pure FPGA-based systems are usually unsuitable for a complete algorithm
implementation. Often, large sections of code are executed only rarely. Map-
ping these into FPGA would produce unnecessary overhead. The solution
can be found in a combination of embedded systems general purpose CPUs
and dedicated FPGA hardware. MATCH is designed to facilitate efficient
mapping of given algorithms to such a heterogeneous architecture.

Most of these solutions focus primarily on the behavioral approach to hard-
ware modeling. In our work, we take a somewhat different approach focusing
on structural descriptions of decision diagrams in the XML data description
language. By taking this approach, we are able to avoid most of the prob-
lems regarding the conversion of a behavioral model to a structural model of
an RTL, since there is a well defined mapping of decision diagram structural
entities onto hardware elements. We are able to take this approach because
most of the software tools dealing with decision diagrams, which are to serve
as a front end to the proposed system, focus on the problems of structural
optimization of decision diagrams.

5.2 NETLISTS

A Netlist represents a description of connectivity of an electronic device. In
the most general terms, a netlist consists of a set of basic functional elements
and a set of their mutual connections. Thus, a netlist is a graph-like structure
with a strong resemblance to decision diagrams.

A netlist represents a structural hardware description. No additional syn-
thesis and optimization is required by the software system that performs the
mapping of a netlist to a specific technology.

These basic functional elements can be any kind of physical devices from
resistors and capacitors to integrated circuits. A one-to-one correspondence
between functional elements of a netlist and nodes of the decision diagram
can be established. Netlists are usually a technology dependent description of
hardware design. The type of functional blocks is, therefore, determined by
the underlying technology. In the case of FPGA technology, these functional
elements are logic blocks of the FPGA device, usually LUTs.

It is possible to describe netlists in a variety of methods. However, most
of these methods follow some common principles. A netlist usually contains
one explicit definition for each type of functional element used. An instance
of an element defined in this way is used whenever such an element occurs in
the design.

Each functional element has a set of points of connection, know as ’pins’ or
'ports’. These ports can have input or output direction, or be bidirectional. In

90 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

netlist terminology, physical and logical connections between these elements
are called 'nets’. The connections can be expressed in the form of ordered
pairs, consisting of the identifier of an output port of one device and the
input port of the other.

A set of properties further describing its functionality is associated with
each instance of an element. A logic function implemented by a particular
LUT is an example of one such property into the case of FPGA technology.

For more complex designs, netlists can be organized in hierarchical struc-
tures, where functional elements of one level in the hierarchy are the whole
netlists themselves.

A number of description languages are used in practice to describe netlists.
SPICE and EDIF are one of the best known examples. In our work we have
made the use of the EDIF description language. Therefore, we present an
overview of this language in Section 5.6.

5.3 EDIF NETLIST DESCRIPTION LANGUAGE

Electronic Design Interchange Format, (EDIF), is a description language and
a file format for the representation of electronic netlists and schematics. It was
designed as a neutral format to facilitate data interchange between software
platforms produced by various industrial companies.

There are three versions of the EDIF language still in use, each with its
advantages and shortcomings, EDIF 2 0 0, EDIF 3 0 0 and EDIF 4 0 0. Stan-
dards of the EDIF language and format have been established and maintained
by the EDIF Steering Committee and EIA, Electronic Industry Association.
EDIF specification is considered complete and no additional development of
the standard is expected in the future.

5.4 EDIF HISTORICAL DEVELOPMENT

The EDIF language originated as an attempt to solve the problems of data
exchange between various Electronic Design Automation (EDA) companies in
the beginning of the eighties. As the complexity of circuit designs grew and the
market for EDA products evolved a need for efficient means of data exchange
emerged. Most companies involved with this segment of the market owned
their proprietary software solutions and large electronic design databases. The
problem of data translation from one proprietary format to another increased
exponentially with each additional data format.

Under pressure from customers, a number of these companies reluctantly
agreed to start work on a neutral data exchange format. Preliminary work on
this standard was formalized in November 1983 by an EDIF Steering Com-
mittee. This committee included representatives of Daisy Systems, Mentor

EDIF NETLISTS IN COMPARISON TO VHDL MODELS 91

Graphics, Motorola, National Semiconductor, Tektronix, Texas Instruments,
and the University of California, Berkeley.

EDIF 1 0 0, introduced in 1985, was the first version of the data format
presented to the public. This rudimentary version was later suppressed by a
new EDIF 2 0 0 specification published in 1988.

EDIF 2 0 0 is a result of a series of compromises made to permit com-
patibility with earlier legacy software systems. Due to this fact, EDIF 2 0 0
specification has a number of fundamental ambiguities, which make the pro-
cess of writing EDIF interpreters especially difficult. Some of these problems
were addressed by the EDIF 3 0 0 specification which was introduced in 1993.
However, EDIF 3 0 0 is not compatible with previous versions of the standard.
Therefore, the development of a completely new set of software tools was re-
quired. This fact contributed greatly to the continued use of the previous
EDIF 2 0 0 version.

EDIF 3 0 0 was further extended to EDIF 4 0 0 in 1996.

In our work we have made use of EDIF 2 0 0, mainly due to practical
reasons. It is the only ASCII-based netlist file format which is used by Xilinx
ISE system, the software package that we have used in our experiments. The
ASCII output is one of the requirements of the XSLT-based conversion system.

However, only minor changes in the proposed system would be necessary to
make it possible to produce output compatible with other versions of EDIF.

More information about the EDIF language in general and historical trends
in its development can be found, for example, in [28], [54], and [94].

5.5 EDIF NETLISTS IN COMPARISON TO VHDL MODELS

Since in our work we make use of both EDIF and VHDL, two different hard-
ware description languages, it is good to compare the properties of these two
languages. Such a comparison will justify the choice of one over the other for
certain applications or groups of experiments. The differences between these
two description languages are profound and stem from the original goals be-
hind their introduction.

From the beginning VHDL was envisioned as a language much larger in
scope. It was intended as a language capable of describing hardware de-
signs independently from any particular platform, with a focus on hardware
functionality [130]. It is a much more versatile platform which permits both
structural and behavioral hardware models.

EDIF netlists are usually targeted at specific families of devices, relying on
extensive device libraries provided by hardware manufacturers. Netlists are
strictly structural hardware descriptions.

However, the process of implementing a VHDL hardware design involves
several complex steps, including the interpreting of the VHDL code, logic syn-
thesis, optimization of design, usually by some heuristic method, and finally
mapping onto a particular technology.

92 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

The process of implementing EDIF netlist is somewhat simpler, mainly
because the EDIF netlists can be directly mapped to a lattice of specified
logic devices. The synthesis and optimization steps are not required from the
interpreting software system, since it is assumed that this part of the process
was already done by the software system which generated a netlist.

In our own work, the process of generation and optimization of a decision
diagram performs this role. Additional heuristic optimization by a software
system can be even counter-productive and may introduce the ambiguity in
the final experimental results.

On the other hand, VHDL remains in much wider use in practice, and the
output in this format is crucial for the usability of the proposed system.

A description of an interface between VHDL and EDIF languages is pre-
sented in [148].

5.6 BASICS OF EDIF SYNTAX

The syntax of EDIF language follows the syntactical conventions of Lisp. Each
instruction both the reserved word and parameters (operands) are enclosed
by a pair of parenthesis. Instructions can contain other, recursively nested
instructions. The set of basic tokens of the EDIF language contains keywords
defining instructions, i.e. library, cell, instance, strings, integer numbers,
symbolic constants and identifiers.

The first part of an EDIF document represents a series of definitions of
components that the device consists of. The instances of these components
are used to describe the structure of the device. These definitions are de-
clared using a cell instruction. The contents of the cell can be described in
several ways. In EDIF language syntax this is achieved using one of multi-
ple defined viewTypes. These view types include, BEHAVIQOR, description of
the behavior of a cell, DOCUMENT, documentation associated with the cell, and
many others. In our work we particularly focus on the NETLIST view type.
This view type requires a declaration of input and output ports of the device
using interface, port and direction instructions. Additional component
specific properties can be associated with the component definition using the
property instruction.

Example 5.1 The following EDIF code represents a declaration of a six-
input LUT component in a Xilinz Virtex5 FPGA family of devices.

(cell LUT6
(cellType GENERIC)
(view view_1
(viewType NETLIST)
(interface
(port IO
(direction INPUT)
)

BASICS OF EDIF SYNTAX 93

(port I1
(direction INPUT)
)
(port I2
(direction INPUT)
)
(port I3
(direction INPUT)
)
(port I4
(direction INPUT)
)
(port 15
(direction INPUT)
)
(port O
(direction OUTPUT)
)
(property TYPE (string "LUT6") (owner "Xilinx"))
(property XSTLIB (boolean (true)) (owner "Xilinx"))
(property INIT
(string "FFOOFOFOCCCCAAAA") (owner "Xilinx"))

The second segment of a typical EDIF description represents a series
of instances of declared components. Components are instantiated using
instance, viewRef and cellRef instructions. FEach instance must have a
unique identifier associated with it.

Example 5.2 The declaration of an instance XLXI_612 of the LUT6 compo-
nent from Example 5.1 has the following form:

(instance XLXI_612

(viewRef view_1 (cellRef LUT6 (libraryRef UNISIMS)))
(property XSTLIB (boolean (true)) (owner "Xilinx"))
(property INIT (string "FFOOFOFOCCCCAAAA") (owner "Xilinx"))
)

In this example, the additional property INIT associated with this instance
specifies the switching function implemented by this LUT. In this case LUT6
behaves as a 4X1 multiplexer controlled by a two-bit variable.

The structure of the device is completed by specifying a set of connections
between the instances of components. These connections are defined using a
net instruction and a list of references to connected ports.

Example 5.3 A connection between two instances of LUT6 in a device is
defined using the following piece of code:

94 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

(net XLXN_751_0

(joined

(portRef I2 (instanceRef XLXI_751))
(portRef 0 (instanceRef XLXI_3))

)

)

In this example the output port of XLXI_3 is connected to the second input
port of XLXI_751 LUT.

This is just a short overview of some of the basic features of the EDIF
language. The EDIF standard is much more extensive and permits program-
ming techniques not covered in this section. However, the EDIF documents
created by the proposed system, which are used in the experiments in follow-
ing sections, have the same basic form as the one demonstrated here. More
information on EDIF syntax can be found in [152]. We discuss the relationship
between these hardware descriptions and various types of decision diagrams
in the sections to follow.

5.7 VHDL

With the increasing complexity of logic circuits, a need for higher levels of
abstraction during the electronic design process soon becomes evident. While
it is feasible to manually design at gate level the circuit consisting of tens or
hundreds of components, the design of a circuit with millions or even billions
of logic gates far exceeds human capabilities.

High Level hardware description languages represent a solution for this
problem. The VHDL, along with Verilog and SystemC, is one of most com-
monly used languages designed for this task.

The current version of VHDL 1076-1987 is an IEEE standard.

In the following sections we examine some of the basic aspects of the VHDL
and discuss how VHDL can be used to implement the discrete functions rep-
resented in decision diagram form.

5.8 VHDL HISTORICAL NOTES

The origins of the VHDL can be traced to the Very High Speed Integrated
Circuit program by the Department of Defense of the United States started
in the late 1970s. Indeed the acronym VHDL stands for VHSIC (Very High
Speed Integrated Circuits) Hardware Description Language. The goal of the
VHSIC program was to produce the next generation of integrated circuits for
application in military projects. One of the basic requirements of this project
was to design circuits of very high complexity at the same time shortening
the design time, practically pushing the technology limits. It became evident

VHDL BASIC CONCEPTS 95

during the early stages that these requirements exceeded the capabilities of
the design tools available at that time.

As a solution for this problem a new hardware description language was
proposed in 1981. From its conception VHDL had to fulfill a double role. On
the one hand it had to be flexible and robust enough to be able to describe
the circuits of increasing complexity, not only circuits on the standards of the
moment, but also anticipated future circuits. On the other, it needs to do so
in a standardized manner to permit easy exchange of data between various
designer teams.

Basic VHDL syntax and concepts were derived from Ada, a classic example
of an object oriented programming language, and also a product of a United
States Department of Defense project.

The use of VHDL spread to the larger public. In 1986 it was proposed as
an IEEE 1076 standard. A year later this standard was adopted.

However, this first official edition of the language standard did not address
all of the important issues. Above all, it did not specify the methods for
handling multi-valued logic. This problem was corrected when the IEEE 1164
standard was introduced.

The syntax of language has been made more consistent with the second
issue of IEEE 1076, in 1993. In 2000 and 2002 minor additions have been
made to the standard, by introducing of the protected types, a concept taken
from C++ language.

Several standards have been developed on the basis of VHDL IEEE 1076 to
extend its functionality to other fields. For example, the IEEE standard 1076.1
provided analog and mixed-signal circuit design extensions. IEEE 1076.2
added better handling of real and complex data types. IEEE standard 1076.3
introduced signed and unsigned types to facilitate arithmetical operations on
vectors.

5.9 VHDL BASIC CONCEPTS

As stated earlier, VHDL borrows many of the concepts from the Ada language.
However, significant differences were made in order to adapt the language to
hardware description requirements.

VHDL is a structured, strongly typed description language with many con-
cepts adopted from object oriented programming languages. VHDL was de-
signed to provide platform independent hardware descriptions. It supports
several methods of hardware description, in effect supporting both structural
and behavioral hardware models.

In order to respond to the complexity of modern logic circuits, VHDL
contains levels of representation that can be used to represent all the levels of
description from the bidirectional switch level to the system level.

In this section we will go through some of the basic concepts of VHDL,
necessary for understanding of sections that follow.

96 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

Entity is the basic building block of VHDL hardware description. All
designs are expressed in terms of entities. Entities can be organized into
hierarchical structures, a feature borrowed from object oriented programming.
The uppermost level of the design is the top-level entity.

Example 5.4 The following VHDL code is a declaration of an entity for a
device which implements the Shannon decomposition of a function for variable
x:

ENTITY my_shannon IS
PORT (f0, f1, x : IN std_logic; z : OUT std_logic);
END ENTITY my_shannon;

This device has three input and one output port.

Each entity has a port list defining input and output ports of the device
associated with it.

Architecture in VHDL terms, is a formal description of the structure or
behavior of an entity. Each entity must have at least one architecture as-
sociated with it in order to be valid. Multiple, usually technology-specific
architectures can be associated with one entity. For example, one architec-
ture might be behavioral in nature, while the other might be a structural
description of the entity.

Example 5.5 An architecture associated with o VHDL entity is declared us-
ing the following set of instructions:

ARCHITECTURE my_shannon_arch OF my_shannon IS
SIGNAL ... ;
BEGIN

END my_shannon_arch;

Entities may contain instances of other entities in their own architectures.
The hierarchy of entities is achieved in this way.

A Configuration statement is used to bind a component instance to an
entity and its architecture.

One method of specifying a hardware design in VHDL is to specify a set
of component instances and their mutual interconnections in the architecture
of an entity. This is known as a structural method of hardware design.

VHDL BASIC CONCEPTS 97

Example 5.6 Consider, for example, an RS flip-flop circuit. This circuit
can be implemented in VHDL using the following code.

ARCHITECTURE netlist OF rsff IS
COMPONENT nand2

PORT (a, b : IN BIT;

c, : OUT BIT);

END COMPONENT
BEGIN

Ul: nand2

PORT MAP (set, qd, q);
U2: nand2

PORT MAP (reset, q, qb);
END netlist

Architecture presented in this example is structural in nature. Entities Ul
and U2 are instances of the NAND component specified in the first section of
the architecture declaration. Architecture is a met list consisting of these two
component instances and their interconnections, given using port associations.

Note that port associations of components in the previous design were
stated in an implicit way. These associations can be specified in much more
strict explicit form using named associations. A named association is an
ordered pair of the input and the output port of two connected components
separated by a ‘=>’ sign.

Example 5.7 Connections between devices Ul and U2 from the previous ex-
ample can be stated using named associations.

Ul: nand2 port map (a => set, b => gb, ¢ => q);

Another way of specifying a hardware design is by using a behavioral ar-
chitecture. Behavioral architectures use concurrent signal assignment state-
ments. The way these statements are treated highlights an important differ-
ence between hardware description languages, such as VHDL, and structured
programming languages. In a typical structured programming language, these
statements would be executed in a sequence. Hardware description languages
are designed to model physical process in electronic devices. Therefore, these
statements will be executed in parallel, i.e. concurrently. A specific ordering
of these statements inside an architecture is irrelevant in VHDL. The order
of the execution is determined by events that occur on the signals involved.

98 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

Example 5.8 We have used behavior hardware description to implement the
architecture of the binary Shannon decomposition node as follows.

ARCHITECTURE my_shannon_arch OF my_shannon IS
SIGNAL a, b : std_logic;
BEGIN
a <= f0O AND NOT(x);
b <= f1 AND x;
z <= a XOR b;
END my_shannon_arch;

VHDL explicitly supports the sequential execution of statements. This is
achieved using the PROCESS instruction.

Example 5.9 RS flip-flop from Example 5.6 can be implemented in a sequen-
tial manner using the following VHDL code:

ARCHITECTURE sequential OF rsff IS
BEGIN
PROCESS (set, reset)
BEGIN
IF set = ’1’ AND reset = ’0’ THEN
q <= ’0’ AFTER 2 ns;
gb <= ’1’ AFTER 4 ns;
ELSEIF set = 0’ AND reset = ’1’ THEN
q <= ’1’ AFTER 2 ns;
gb <= ’0’ AFTER 4 ns;
ELSEIF set = 0’ AND reset
q <= ’1’ AFTER 4 ns;
gb <= ’1’ AFTER 4 ns;
END IF;
END PROCESS
END sequential;

>0’ THEN

As seen in the previous example, a VHDL process statement consists of
several segments. The first part is called the sensitivity list, and contains a
list of signals that initiate the execution of the process.

The second part of the statement is used for declarations of potential local
variables, and is known as the declarative region. This part of the process
statement is located between the end of the sensitivity list and the BEGIN
instruction.

The main body of the process is contained in the process statement part.
The process statement starts with BEGIN and ends with END PROCESS

In our own work, we have combined structural and behavioral models of
hardware. However, we did not make use of sequential processes.

VHDL BASIC CONCEPTS 99

VHDL object types include:

1. Signals - representations of physical connections between hardware com-
ponents.

2. Variables - local storage of temporary data, valid only inside a single
process.

3. Constants - specifically named values.
Signals are the means of communication of dynamic data between entities.

Example 5.10 The following statement is a declaration of a system clock
signal in VHDL:

SIGNAL clk : std_logic := ’17;

Signals can be global to entities or architecture local signals.
Variables are intended to be local storage of data specific to an individual
process.

Example 5.11 In terms of VHDL, syntax variables are declared using state-
ments similar to the following code:

VARIABLE a : INTEGER;

The difference between signals and variables is fundamental. Signals are
intended to model physical processes in electronic circuits. Therefore, they
must emulate the delays of the circuits. Signals are scheduled. No signal
assignment is instantaneous. In contrast, variables are abstract data repre-
sentations. Variable assignments happen immediately. However, they cannot
be used to model real operation of hardware. One consequence of this is
that variables require less memory, while signals need more information for
scheduling and signal attributes.

Constants are introduced in order to achieve better code readability.

VHDL supports scalar and composite data types.

Scalar types represent singular data, in exactly the same way as in other
formal languages. Scalar data types supported by VHDL encompass four
general classes:

1. Integer types,

2. Real types,

3. Enumerated types,
4. Physical types.

We do not go into details of Integer, Real and Enumerated data types,
as they are similar to data types in other programming languages. Physical

100 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

data types are of special interest because they represent the main difference in
comparison to other programing languages. This difference is again dictated
by the demands of the hardware design modeling. Physical data types are used
to represent physical quantities. The only predefined physical type present in
the VHDL standard is the TIME type.

Example 5.12 In this example the variable current is declared as a TIME
type variable with a fixed range of values.

TIME current IS RANGE O to 100000000
Complex data types include two classes:

1. Arrays,

2. Records.
Arrays represent groups of individual data of the same type.

Example 5.13 A 32-bit bus of a device, can be declared using an array of 1
bit elements.

TYPE data_bus IS ARRAY (0 TO 31) OF BIT;

The VHDL standard supports multi-dimensional and unconstrained array
types. However, signals specified using such arrays may not always be simu-
lated by software systems or implemented in hardware.

Finally, VHDL supports records, as the most complex data type. Records
are groups of data of different types handled as a single object.

Example 5.14 The following fragment of a code represents and example of
a record consisting of one integer and one real variable:

RECORD

a : INTEGER;
b : REAL;
END RECORD;

5.10 IMPLEMENTATION OF SWITCHING FUNCTIONS USING
FPGA DEVICES

Field programmable gate arrays (FPGAs) are a useful tool for rapid prototyp-
ing as well as for small volume production of logic circuits. In general terms,
these devices belong to a wider family of Universal Circuit Array devices. In
recent years with the improvement in their performance, FPGA devices have
made significant inroads into traditional ASIC areas.

IMPLEMENTATION OF SWITCHING FUNCTIONS USING FPGA DEVICES 101

A great part of our work is devoted to experiments with multiple FPGA
families, so we devote special attention to these devices in what follows.

These FPGA devices consist of logic blocks capable of realizing a set of basic
functions, programmable interconnections and switches between blocks. The
logic blocks vary in nature from simple pairs of transistors, more complex basic
logic gates (AND, OR, NAND, NOR) and multiplexers to Look-up Tables and
more complex multi input AND-OR structures.

The complexity of logic blocks determines the complexity of a FPGA de-
vice. In general FPGA devices form a whole spectrum with fine-grain devices
on one end and the so-called coarse-grain devices on the other end. The
complexity of logic blocks is determined according to one of several criteria:

1. the number of NAND circuits,
2. number of transistors,
3. number of inputs and outputs,

4. normalized area of logic blocks vs. the total area of the FPGA device.

The implementation of a function using an FPGA device involves a multi
level decomposition of the function.

The granularity of the FPGA device determines its performance and influ-
ences the design method to a large extent. Larger logic blocks are capable of
implementation of larger subfunctions and, therefore, require a smaller num-
ber of decomposition levels, and consequently fewer routing resources and
smaller propagation delay. However, larger blocks are generally slower and
less efficiently manipulated.

The question of optimal granularity of FPGA devices has been discussed
in literature, for example, in [3], [96] and [137].

Routing in FPGA devices is established by connecting segments of hard-
wired lines with programmable switches. The number of these segments de-
termines the density of elements on an FPGA device [168]. A large number
of available logic blocks implies a large number of segments. However, the
increase in the number of segments increases the number of necessary pro-
grammable switches. In modern VLSI technology, the interconnections and
switches represent the part of the circuit which introduces the biggest amount
of delay.

The topic of optimal number and length of interconnections of switches has
also been discussed in literature [138]. However, this problem is closely linked
with the particular architecture employed by the particular FPGA device.

The manner in which the logical blocks are programmed also varies in
different families of FPGA devices. In general, FPGA devices can be hard or
soft programmable.

Hard programmable FPGA devices are programmed by setting of pro-
grammable switches between segments of interconnections. These switches

102 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

are open circuits that can be converted into short circuits by applying a cur-
rent pulse, thus establishing contact between logic blocks. Antifuse-based
FPGA devices represent this group.

An antifuse can exist in three separate states, ON, OFF, and a transition
ON-OFF state. Programming of antifuse is performed with a mixed sequence
of digital control and high voltage analog waveform. The programming of an-
tifuse involves the change in its electro-chemical properties and is irreversible.

Soft programmable FPGA devices are usually LUT-based. The program-
ming methods for LUT-based FPGAs are equivalent to the programming of
other ROM-based devices.

The most common type of devices found in commercially available product
families are 4-input LUT-based devices, with theoretically more optimal, 6-
input LUT devices recently gaining prominence.

FPGA is a relatively new technology. In recent years, methods for FPGA
synthesis have been proposed at a rapid pace. Most of these methods have
been especially tailored for particular FPGA architectures. Therefore, it is
hard to present all of them in a systematic manner.

In broad terms, it can be said that all of these methods consist of two main
design phases:

1. Technology-independent optimization, during which the particular prop-
erties of logic elements are disregarded. This phase focuses on general
minimization of the given function, following methods that apply to
logic design in general.

2. Technology mapping, which is a realization of the desired function by
modification of parameters of programmable blocks of an actual FPGA
device.

In an FPGA device, the term module function indicates a single-output
switching function implemented by an individual module. Depending on the
type of device, the module function can be fixed as a choice of functions
is offered to the designer. Cluster function is a function that describes the
functionality of a whole section of the network, i.e., a group of interconnected
modules.

Implementation of a switching function using an FPGA device represents a
process of personalizing the given device by adapting some of its parameters.
The main goal is to obtain a network of programmable modules which is
equivalent to the given function, with a minimal number of nodes and critical
path delay.

In the case of antifuse-based FPGAs, individual modules implement the
single identical fixed function. New larger functions are implemented by ma-
nipulating interconnections between modules. On the other hand, LUT-based
programmable modules with n inputs are capable of implementing any of
switching function of n variables, by storing its truth vector in the memory
matrix. They can implement certain functions of more than n variables un-

DECISION DIAGRAMS AND THE XSLT CONVERSION MECHANISM 103

der some restrictions. The implementation of a function is achieved both by
manipulating the interconnections of modules and the contents of LUTs.
Decision diagrams have served as a basis for many implementation algo-
rithms for FPGA platforms.
Some design methods related to antifuse FPGA devices can be found in
[75], [76], [126], and [127]. Methods for LUT-based devices are presented in
[16], [64], [111], [122], [167], [178], and [183].

5.11 DECISION DIAGRAMS AND THE XSLT CONVERSION
MECHANISM

In the following sections, we present examples of application of the proposed
XML-based framework to several different tasks in logic design. The methods
described in this section were originally proposed in [161].

In all of these examples we encounter abstract XML documents describing
decision diagrams which are converted into some application specific format
during the process. This conversion is always achieved by means of the XSLT
transform mechanism.

The XML-based framework is intended to provide a universal method of
representing a nuber of decision diagram classes. Application specific formats
are designed with other intended purposes. They are most often much more
specific in scope.

The transition from a universal abstract representation to a more focused
application specific format is the task with which the XSLT transform mecha-
nism is charged. This change in focus is manifested in two ways, the discarding
of the redundant information that might be present in an explicit form in XML
documents, and extracting information present in an implicit form from the
diagram.

The discarding of explicit lists of parent nodes in some tasks is an example
of the first aspect, calculating relative geometric positions of diagram nodes
in 2D planes for the visualization purpose is illustration of the other.

Both these kind of problems are handled by the XSLT transform mecha-
nism.

In general, we design a separate set of XSLT style sheets for each specific
application. However, all of the employed XSLT style sheets share some basic
features.

Each XSLT style sheet consists of a set of templates. A separate XSLT
template is designed for processing each of the decision diagram structural
features, such as nodes, edges, etc. An application-specific XSLT style sheet
focuses only on elements of the structure of interest for the particular appli-
cation, ignoring the others. In this way the same XML documents can be
safely used for different applications. A system will not reject a document
containing the additional data not anticipated by the system.

104 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

Furthermore, on several places XSLT templates are employed to perform
some needed calculations. Once again, the calculation of relative geometric
coordinates of structural elements for visualization purposes is a good exam-
ple.

Due to the nature of the required conversions, on several places the trans-
form process is divided into multiple steps. In this case an intermediary, usu-
ally somewhat simplified, XML document is employed by the system. Each
step of such a process is performed by a separate dedicated XSLT style sheet.
Where this is the case, this organization was chosen for the sake of the algo-
rithm efficiency.

5.12 APPLICATION TO FUNCTIONAL BINARY DECISION
DIAGRAMS

In the following sections we present examples of the application of the pro-
posed XML based framework for hardware implementation of discrete func-
tions.

We focus first on binary functions, represented by Reduced Ordered Binary
Decision Diagrams, Kronecker, and Pseudo-Kronecker Decision Diagrams,
and implementation using FPGA devices. The devices considered in the first
set of examples belong to Xilinx Spartan 3 and Altera Stratix III FPGA
families.

Final hardware designs are represented using VHDL syntax.

Possible expansion rules in functional binary decision diagrams include the
following:

1. Shannon, f = Z1fo ® x1 f1,
2. Positive Davio, f = fo ® x1 fo,

3. Negative Davio, f = f1 & 1 fo.

Fig. 5.1 represents logic circuits realizing each of these three expansions.
Each node in the decision diagram thus corresponds to a hardware unit re-
alizing the given expansion. Hardware realizing a switching function using a
decision diagram is a network of interconnected units performing the given
expansion.

Since the basic functionality is repeated for every node in the decision
diagram, we can reuse the same basic logic circuits in the hardware imple-
mentation. Corresponding hardware architecture consists of a library of basic
components realizing three different expansions and the network of intercon-
nected instances of these components.

Example 5.15 Hardware realization of a logic function, f(x1,x2,23) =
T1T2 V Toxs, using the corresponding BDD can be seen in Fig 5.2.

APPLICATION TO FBDDS 105

Jo
Jo Jo

S 5 5

a) Shannon b) positive Davio c) negative Davio

Fig. 5.1 Logic circuits corresponding to three types of expansions, fo = fo & f1.

b) hardware implementation

¢) Shannon module

Fig. 5.2 BDD and a logic network corresponding to the function f(z1,xz2,z3) =
122 V T2x3.

106 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

All VHDL hardware designs produced by the proposed system share a
common form, due to the fact that all binary decision diagrams have the
same well-defined basic structure.

The design consists of one top-level entity and its associated structural
architecture. Since we deal with binary decision diagrams, the number of
incoming ports is determined by the number of logic variables of the imple-
mented switching function. Two additional input ports are provided for the
logical constants. Since we have limited ourselves to dealing only with single
output decision diagrams, the top-level entity has only one output port.

Separate entities representing hardware implementations of each of the
three standard decomposition rules are provided. References to these enti-
ties will be created appropriately for each node of a decision diagram in the
architecture section of the design. The first part of the architecture contains
declarations of all the external entities used in the architecture description.
In our case, the internal signals of the hardware architecture correspond to
the edges of the decision diagram. Since we are dealing with binary decision
diagrams, the std_logic type is used for ports of entities and internal signals
of the design.

Therefore, the basic outline of a VHDL design looks as follows:

ENTITY entity_name IS
PORT (list_of_input_ports :
IN std_logic; output_port :
OUT std_logic);
END ENTITY entity_name;
ARCHITECTURE arch_name OF entity_name IS

...declarations of components as needed...

COMPONENT my_shannon

PORT (£f0, f1, x : IN std_logic; z :
OUT std_logic);
END COMPONENT;
COMPONENT my_pdavio

PORT (f0, f1, x : IN std_logic; z :
OUT std_logic);
END COMPONENT;

COMPONENT my_ndavio

PORT (£f0, f1, x : IN std_logic; z :
OUT std_logic);
END COMPONENT;

SIGNAL internal_signals : std_logic;
BEGIN

...actual structure of the decision diagram...

END arch_nam;

APPLICATION TO FBDDS 107

The key step in developing an XSLT style sheet for any particular transfor-
mation is to identify the correspondence between entities of the source and the
target XML document formats. The process of producing a VHDL hardware
description from XML documents consists of two distinct steps:

1. Preprocessing,

2. High-level synthesis.

This two-stage organization of conversion process is convenient for several
reasons. In Section 3.2 we have stated that the structure of XML documents
is designed to follow the recursive properties of decision diagrams. This is
a logical choice as recursion is an inherent property of both XML and deci-
sion diagrams. However, the concept of recursion does not exist in hardware
design. It is incompatible with VHDL. Therefore, a preprocessing step is nec-
essary to remove the recursive aspects of the original XML document and
produce a more suitable version of the XML representation of the decision
diagram. A separate XSLT stylesheet is used for this purpose.

The system takes the original XML document as input, applies the prepro-
cessing script, and produces an intermediary XML document which is used
as a starting point for the second stage of the conversion process.

The original XML wrapper element <dd:tree> is copied to the interme-
diary document and its attributes are retained. Nodes of the diagram are
represented with <node> elements in an intermediary document. This new
<node> does not have any additional nested elements of the same type. In
this way a complex recursive structure of the original document is converted
into a simple net list. The attributes of the non-terminal nodes are preserved.

For example, a set of non-terminal nodes is represented in the original XML
document with the following fragment of code:

<dd:next terminal="0" id="928"
constant="-1" level="2" rule="Shannon">
<dd:next terminal="0" id="472"
constant="-1" level="3" rule="Shannon">
<dd:next terminal="0" id="203"
constant="-1" level="4" rule="Shannon">

</dd:next>
</dd:next>
</dd:next>

is converted to the list of the form:

<node terminal="0" id="928"
constant="-1" level="2" rule="Shannon">

108 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

</node>

<node terminal="0" id="472"
constant="-1" level="3" rule="Shannon">
</node>

<node terminal="0" id="203"
constant="-1" level="4" rule="Shannon'">

</node>

There is no logical operation performed in terminal nodes of decision dia-
grams. Terminal nodes simply indicate values of the logical constants. There-
fore, terminal and non-terminal nodes will assume different roles in the RTL
model. This difference is clearly indicated in the intermediary XML document
by the storing of the terminal nodes in a separate list.

The complex structure of nested <dd:children>/<dd:next_child> ele-
ments, representing the linked list of descendants of the node, is replaced with
a simple list of <child> elements, each containing a pointer to a descendant

node as an attribute. Again, we illustrate this by an example.
A list representing a pair of nodes from the original document:

<dd:children point="1596" variables="0">
<dd:next_child point="387" variables="1" />
</dd:children>

is represented in the intermediate document as:

<child point="1596" variables="0"/>
<child point="387" variables="1" />

Parent lists are discarded totally, as they are not needed for this particular
application.

In this way all recursive aspects of the original XML document are dis-
carded.

The second step of the process represents the final conversion of an inter-
mediate XML form to VHDL by using a separate XML style sheet.

The XSLT style sheet first identifies <tree>, the root element of our XML
hierarchy. This is a wrapper element and it corresponds to the general tem-
plate of a VHDL document. A skeleton of a VHDL document is created at
this stage including the header with the declaration of a new entity. The name
my DD is given to this entity by default.

The XSLT style sheet generates a port list of my_BDD entity automatically.
Ports with names con* (where '*’ denotes a numeral) represent inputs for
logical constants. Since we are dealing exclusively with binary logic in this
example, there is only two of them, conl and con0. Logical variables of the
discrete functions are mapped to ports with names of the form x*. Their
number is determined by the number of levels in the decision diagram. One

APPLICATION TO FBDDS 109

output port is assigned, with the default name ’'o’. All declared ports are of
the type ‘std_logic’.

Next, the XSTL style sheet generates a declaration of architecture and as-
sociates it with the declared entity. Name my_dd_arch is assigned by default
to this architecture. Depending on the value of the ‘type’ attribute in the
tree element declarations for the appropriate components will be included in
the VHDL document. Either a single my_shannon, my_pdavio or my_ndavio
component or the combination of components will be included in the decla-
ration.

Edges of the decision diagram correspond to internal signals of the VHDL
architecture. These signals are declared in the header of the architecture
declaration. The number of the internal signals is equivalent to the number
of non-terminal nodes excluding the root node. The names assigned to these
signals are of the form o*, where *’ denotes a numeral.

What follows is the body of the hardware architecture with the list of
component instances representing the nodes. The component type is selected
according to the value of the ‘rule’ attribute of the node element. The
port map is generated for each component instance by analyzing the list of
its children. Each component has two inputs and one output of the type
‘std_logic’.

Appropriate register entities are added to the design to facilitate the con-
nections of the described unit with other modules. The register entities can be
a part of a pre-generated module library or generated when needed by using
XSLT. The XSLT can be used to automatically produce a test bench for the
RTL model generated in this way.

An example of the complete code of VHDL implementation of the func-
tion 9sym from the MCNC benchmark set [181], generated using this XML
document is available in Apendix B.

5.12.1 Efficiency of Implementation of FDDs

To test the validity of the proposed concept, we have used the system to auto-
matically produce RTL descriptions in VHDL of hardware implementations of
a number of binary functions. We have focused on functions from the MCNC
(Microelectronics Center of North Carolina) set of logic design benchmark
functions [181]. We produced a number of different binary decision diagrams
for each function. The binary decision diagrams were converted to valid XML
documents. For this task, we have used a software created by Suzana Sto-
jiljkovi¢ at the Faculty of Electronics at the University of Nis, Nis, Serbia,
[162], in conjunction with an export module capable of producing the XML
documents. We have used these XML documents as an input to the proposed
system, to produce hardware descriptions in VHDL. We have made the final
RTL synthesis of the produced VHDL code for various FPGA technologies,
using the Mentor Graphic Leonardo Spectrum synthesis tool.

110 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

Table 5.1 Selected benchmark functions implemented using a Shannon binary decision
diagram and Xilinx Spartan 3 FPGA technology.

function [num. of inputs max. freq. slack acc. inst.
misex1_5 8 163.6 0.1 24
alud_0 14 163.6 0.1 38
cordic_0 23 83.1 0.5 93
apex2_0 39 40.2 0.2 3006
apex1.0 45 122.9 0.2 56

Table 5.2 Selected benchmark functions implemented using a binary decision diagram
with a positive Davio decomposition and Xilinx Spartan 3 FPGA technology.

function [num. of inputs max. freq. slack acc. inst.
misex1_5 8 163.6 0.1 27
alud 0 14 143.0 0.2 66
cordic_0 23 163.6 0.1 71
apex2_0 39 1304 0.14 54
apex1_0 45 146.6 0.3 39

In this section, we present the results obtained for five representative func-
tions selected from the benchmark library. For each function, we have gener-
ated four different binary decision diagrams:

1. a binary decision diagram with the Shannon decomposition at each level,

2. a binary decision diagram with the positive Davio decomposition at each
level,

3. a Kronecker binary decision diagram with the positive Davio applied at
the topmost level and the Shannon derivative on all other levels,

4. a Kronecker binary decision diagram with the positive Davio applied
at the topmost and lowest level and the Shannon decomposition in all
other levels.

We have tested the examples for two FPGA families from two different
companies, the Stratix III family from Altera, and the Spartan 3 from Xilinx.
The first set of tables represents the results of implementation of selected
functions by using the Spartan 3 product family.

The second set of tables corresponds to the results obtained for the Stratix
IIT FPGA technology from Altera.

To better illustrate these results, we present in Fig. 5.3 a binary deci-
sion diagram for the function misex1_5 from the benchmark set generated by
recursive application of the Shannon expansion and a RTL schematic of its
hardware implementation in VHDL. Please notice that logic variables x4 and
7 do not have any influence on the function of the circuit. This is due to the

APPLICATION TO FBDDS 111

Table 5.3 Selected benchmark functions implemented using a Kronecker binary deci-
sion diagram and Xilinx Spartan 3 FPGA technology.

function | num. of inputs max. freq. slack acc. inst.
misex1_5 8 163.6 0.1 31
alud 0 14 129.5 0.3 7
cordic0 23 83.1 0.5 93
apex2_0 39 40.2 0.2 3006
apex1.0 45 122.9 0.2 56

Table 5.4 Selected benchmark functions implemented using a Kronecker binary deci-
sion diagram with different choice of decomposition rules and Xilinx Spartan 3 FPGA
technology.

function | num. of inputs max. freq. slack acc. inst.
misex1_5 8 163.6 0.1 26
alud 0 14 129.5 0.3 7
cordic0 23 83.0 0.4 93
apex2_0 39 40.2 0.2 3006
apex1.0 45 120.7 0.1 53

Table 5.5 Selected benchmark functions implemented using a Shannon binary decision
diagram and Altera Stratix III FPGA technology.

function [num. of inputs max. freq. slack acc. inst.
misex1 0 8 392.2 0.0 17
alud_0 14 175.0 0.2 50
cordic_0 23 116.3 0.1 65
apex2.0 39 46.2 0.6 1625
apex1.0 45 43.8 0.4 39

Table 5.6 Selected benchmark functions implemented using a positive Davio binary
decision diagram and Altera Stratix III FPGA technology.

function [num. of inputs max. freq. slack acc. inst.
misex1_0 8 392.2 0.0 17
alud4_0 14 151.4 0.1 48
cordic_0 23 149.7 0.2 60
apex2_0 39 166.6 0.1 43
apex1.0 45 210.8 0.0 33

112 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

Table 5.7 Selected benchmark functions implemented using a Kronecker binary deci-
sion diagram and Altera Stratix III FPGA technology.

function [num. of inputs max. freq. slack acc. inst.
misexI_0 8 392.2 0.0 17
alud_0 14 167.0 0.1 53
cordic_0 23 114.6 0.0 65
apex2_0 39 43.5 0.3 39
apex1.0 45 173.5 0.0 44

Table 5.8 Selected benchmark functions implemented using a Kronecker binary de-
cision diagram with a different choice of decomposition rules and Altera Stratix III
FPGA technology.

function [num. of inputs max. freq. slack acc. inst.
misex]_0 8 392.2 0.0 17
alud_0 14 167.0 0.1 53
cordic_0 23 106.0 0.1 65
apex2_0 39 43.5 0.3 39
apex1.0 45 215.1 0.0 38

fact that misex1.5 is the fifth output of the multi-output musex1 function. In
Fig. 5.4 we show a binary decision diagram created using the positive Davio
decomposition for the same switching function and the corresponding RTL
schematic. The evident simpler structure of this circuit clearly indicates the
advantage of the choice of a different decomposition rule.

5.13 COMPARISON OF EFFICIENCY OF QUATERNARY AND
BINARY DECISION DIAGRAMS

In the following example we turn our attention to the implementation switch-
ing functions using Quaternary Decision Diagrams and LUT-based FPGA
devices. The following discussion was originally published in [158].

One of important properties of modern LUT-based FPGA devices is that
the delay time for interconnections will often be larger than that for the
LUTs. The complexity of interconnections is inversely proportional to the
size of logic functions implemented by LUTs. In commercially available LUT-
based FPGA devices, interconnections are much slower than in other masked
type gate-arrays. The size and the complexity of an individual programmable
block versus the complexity of interconnections in a particular FPGA device
family represents a trade-off that must be balanced. It can be shown [144],
that a six-input LUT represents an optimal solution for this problem.

COMPARISON OF EFFICIENCY OF QDDS AND BDDS

T

.

STl

M

e T T aTeaes

il
i
neaheal

final_out

mi_reg_cm

113

Fig. 5.3 Decision diagram created using a Shannon decomposition rule and RTL

schematic for the fifth output of the misex1 benchmark function.

114 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

B xR
oo
m
\

=
§4
i
i
;
i
i

S
7
I

|
B, m pdaio MMR’
h ‘ -2 L

5,
7
I

g
7
|

T T e e

T

2
4?‘?
2

final_out

Fig. 5.4 Decision diagram created using a positive Davio decomposition rule and RTL
schematic for the fifth output of the misex1 benchmark function.

COMPARISON OF EFFICIENCY OF QDDS AND BDDS 115

Virtex-5, introduced by Xilinx, Inc., is a family of FPGA devices based
on six-input LUT devices. A detailed technical specification of this family of
devices can be found in [172].

A six-input LUT can natively realize an arbitrary & = 6 switching function.
A 4-to-1 multiplexer controlled by two-bit control inputs is one such function.
Let fo, f1, f2, f3 be inputs, and Sy, S1 be the control signals of a multiplexer.
The combination of values of Sy and S; determines the output of the signal.
The function is of the form:

SoS1fo+ SoS1f1 + SoS1f2 + 5051 fs. (5.1)

When expressed using hexadecimal values with four bits per symbol, the
truth vector of this function of length 64 is FFOOFOFOCCCCAAAA. There-
fore, in order to implement the functionality of a 4-to-1 multiplexer, using a
six-input LUT we need to store this vector in the LUT.

The same 4-to-1 multiplexer circuit represents a hardware implementation
of the Shannon decomposition for a four-valued case, the basic element of
the Quaternary Decision Diagram. Quaternary decision diagrams (QDDs)
have been proposed in [144], by Sasao and Butler, as a natural choice to
efficiently represent logical circuits for implementation with six-input LUT
FPGA technology. However, to our knowledge, no commercially available
logic design software tools exploit these properties of QDDs.

Therefore, we implemented several functions represented in terms of QDDs
using the Virtex-5 family by Xilinx, and did an analysis of the complexity of
these implementations.

The final output of the system is a netlist in EDIF format, suitable for use
with standard place and route tools.

A quaternary decision diagram of a function can be generated from its
truth vector by a direct application of the Shannon decomposition and related
reduction rules. In many cases, however, it is more convenient to use a BDD
of a function as a source, and to produce a reduced QDD based on it. There is
a wide variety of software tools for the minimization of BDDs, and the XML
framework which we use as a basis of the proposed system is already well
adapted to handling BDDs. By taking this approach, no separate mechanism
for optimization of QDDs is necessary.

Quaternary decision diagrams are a special case of more general multi-
valued decision diagrams. Software methods for dealing with multi-valued
decision diagrams have been discussed in several publications, for example, in
[117] and [118].

Assume that a function to be realized has n = 2r variables. Let
X = (z1,22,...,2,) be the set of input variables of this function. Let
Q = {0,1,2,3} and B = {0,1}. A mapping f'Q" — B is a four-valued
input two-valued output function. An arbitrary switching function of n vari-
ables f(X) can be converted into a four-valued two output function as follows:
fo(X1,Xa, ..., X,) = fe(X), where X; = (x2;_1,%2;) takes the value 0, 1, 2,
or 3 if and only if (x2;—1,2;) € {(0,0),(0,1),(1,0), (1,1)}, respectively.

116 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

Table 5.9 An example of the encoding of a binary and into an equivalent quaternary
function.

1 x2 wx3 x4 [[X1 Xo

0 0 0 0 1 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 2 0
0 0 1 1 1 0 3 1
0 1 0 0 1 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 1 1 2 1
0 1 1 1 0 1 3 0
1 0 0 0 0 2 0 0
1 0 0 1 1 2 1 1
1 0 1 0 0 2 2 0
1 0 1 1 1 2 3 1
1 1 0 0 1 3 0 1
1 1 0 1 1 3 1 1
1 1 1 0 0 3 2 0
1 1 1 1 0 3 3 0

Example 5.16 In Table 5.9 we present a four-variable binary function and
its equivalent two quaternary input one binary output function.

It is evident from Example 5.16, that four-valued logical variables X of the
function fg are obtained by pairing binary variables x of the original function,
B, Xi = (x2;-1,x9;). It follows that each node in the QDDs corresponds to a
grouping of 3 nodes in a BDD, a node at the 2i —1 level and its two immediate
descendants from the 2i-th level. Fig. 5.5 shows the correspondence between
nodes of a binary decision tree and a quaternary decision tree.

paths:
00=0
01=1
10=2
11=3

Fig. 5.5 Relationships among nodes of binary and quaternary decision diagrams.

Notice that pairing variables in different ways may reduce the size of qua-
ternary decision diagrams [144].

Diagram conversion proceeds as follows. Since the total number of levels in
a quaternary decision diagram is n/2, half of the number of levels in equivalent
BDDs, the main processing will be done on nodes on even levels, assuming
that the root node of the diagram belongs to the level 0.

COMPARISON OF EFFICIENCY OF QDDS AND BDDS 117

Each binary node on an even level will be replaced by a four output node.
The edges of the new node point to the grandchildren of the original node.
These edges will be labeled by values read from paths that connect the orig-
inal node to its grandchildren. If one of the outgoing edges of the original
node points directly to a terminal node, it will be replaced by two respective
branches pointing to the same terminal node. Notice, that since we have as-
sumed that the original switching function has n = 2r variables, the terminal
nodes will belong to the odd level, n + 1 = 2r + 1. Odd level non-terminal
nodes are discarded.

However, this simple transformation is not sufficient in the case of ROB-
DDs. An even non-terminal node might point to a child node which is not
on the level immediately below. An odd level non-terminal node, that has
a direct parent two or more levels higher in the diagram must not be re-
moved. Instead, it needs to be moved to the even level immediately above.
Fig. 5.6 illustrates this situation. Finally we are free to discard other odd
level non-terminal nodes.

Fig. 5.6 Replacement of an odd level binary node with a quaternary node.

We can formally state the algorithm for the conversion of a BDD into a
QDD as follows:

1. Start from the root node at level 0.

2. If a node is at an even level [= 27, replace the node with a four-output
node with pointers to the original grandchildren.

3. Else check levels of all parents of the current node.

4. If the current node has a parent two or more nodes higher in the hier-
archy, move it to the first even level immediately above.

5. Discard all other odd level nodes.

5.13.1 XSLT Implementation of the Conversion Algorithm

This particular transformation algorithm can be efficiently implemented using
a set of XSLT templates grouped into three separate style sheets which are

118 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

applied in a consecutive order to the source XML document representing a
BDD. The first two style sheets correspond to the preprocessing stages of the
conversion process. These two stages represent the actual implementation of
the algorithm described in Section 5.13.

In general, XSLT establishes the correspondence between objects of the
source and destination XML hierarchies. In this particular case, groups of
nodes of BDDs will be replaced with four output nodes of a quaternary deci-
sion diagram.

The system scans the source XML document, looking for elements of the
type <dd:node>. Whenever an element of this type is encountered, a template
node_temp is evoked. This template examines the level attribute of the node
element. If a node belongs to an even level, it is replaced with a four-valued
node in the new intermediary XML document.

A non-recursive list of child nodes will be created for each four-valued node.
This list is created by scanning the list of

<dd:children>, <dd:next_child>

subelements of the <dd:node> element of the source document. For each of
these elements an appropriate XSLT template is evoked.

If an edge of the original node points to a non-terminal node on the level
immediately below, pointers to the two grand-child nodes will be placed in
the list in the intermediate XML document, as shown in Fig. 5.7. We also
provide examples of XML code for binary and corresponding four-valued node
for comparison.

paths:
00=0
01=1
10=2
11=3

Fig. 5.7 Replacement of an odd level binary node with children on a level immediately
below.

<node id="2877" level="0" terminal="0" rule="NA">
<child id="1141" variables="0" />

<child id="1815" variables="0" />

<child id="2314" variables="1" />

<child id="2875" variables="1" />

</node>

COMPARISON OF EFFICIENCY OF QDDS AND BDDS 119

If an edge points to a terminal node or a non-terminal node two or more
levels down in the hierarchy, two pointers to the same child node will be added
to the list. This situation can be better understood by observing Fig. 5.8 and
the following code sample.

paths:
00=0
01=1
10=2
11=3

Fig. 5.8 Replacement of an odd level binary node with children deeper in the hierar-
chy.

<node id="12" level="8" terminal="0" rule="NA">
<child id="0" variables="0" />

<child id="0" variables="0" />

<child id="1" variables="1" />

<child id="0" variables="1" />

</node>

Non-terminal nodes belonging to odd levels will undergo a somewhat dif-
ferent treatment. As stated before, these nodes should be removed unless
they have a parent which is located two or more levels higher in the deci-
sion diagram. The information about parents of the node will be extracted
from the original XML document and transferred to the intermediary XML
file. The system associates a non-recursive list of parent nodes with each
of these elements. Information about corresponding levels is associated with
each <parent> element. The following code example represents a node ele-
ment in the intermediate XML document with the associated parent list. A
list of children of these nodes will be created by repeating twice the pointers
to the children of this node, as indicated previously in Fig. 5.6. The following
code is an example of the node with a parents list.

<node id="199" level="5" terminal="0" rule="NA">
<parent id="374" papa_level="4" />

<parent id="2173" papa_level="4" />

<child id="96" variables="0" />

<child id="2" variables="1" />

<child id="96" variables="0" />

<child id="2" variables="1" />

</node>

120 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

The second XSLT style sheet discards all non-terminal nodes which do
not have parents two or more levels higher in the hierarchy. It will scan the
intermediary XML product of the previous style sheet, looking for the nodes
with parent lists. Nodes that do satisfy this criterion will be transferred to
the next even level immediately above.

As evident from the previous discussion, there exists a direct 1:1 correspon-
dence between quaternary decision diagrams and LUT-based FPGA devices.
Each node of a quaternary decision diagrams will be represented by a six-input
LUT. Two inputs are used for each four-valued control variable X;.

Example 5.17 Fig 5.9 is a FPGA implementation of the function in Table

5.9.
X[0,1] | X[0,1]
1]
07
0 LUT
1
\
1
0— |
| LT
5— L
\ LUT —
0| |
I 7 rur
0—
1
\
1
|
0— LUT
0

Fig. 5.9 Hardware implementation of a given function using a quaternary decision
tree.

In particular, four-valued Shannon decomposition nodes are functionally
equivalent to 4-to-1 multiplexers. The netlist implementing a logic circuit
described via quaternary decision diagrams will consist of a series of six-input
LUT devices corresponding to the nodes of the diagram, connected with nets
which are equivalent to the edges of the decision diagram. These netlists can
be expressed in EDIF syntax.

Once again we employ a set of XSLT templates to produce the final EDIF
documents.

COMPARISON OF EFFICIENCY OF QDDS AND BDDS 121

The conversion process begins by establishing the correspondence between
elements of XML documents and entities in the EDIF netlist. A series of
XSLT templates is applied to convert XML elements to the EDIF syntax.

The XSLT style sheet first identifies the <tree> element in the input XML
document, and based on the information associated with this element, create
the header in the output EDIF document. This template also declares the
hardware components that are used in the remainder of the net list, namely,
LUT6, standard VCC, GND, and IO buffers.

The QDD device has two input pins for each variable X; and two additional
input pins for logical constants 0 and 1, as well as input pins for clock, power,
and ground. There is only one output pin.

Example 5.18 The following EDIF code is a declaration of a device imple-
menting a three-variable logic function f(Xo, X1, X2), where each four-valued
logic variable X is represented by two bits.

(cell QDD
(cellType GENERIC)
(view view_1
(viewType NETLIST)
(interface
(port XLXN_O
(direction INPUT)
)
(port XLXN_1
(direction INPUT)
)
(port XLXN_2
(direction INPUT)
)
(port XLXN_3
(direction INPUT)
)
(port XLXN_4
(direction INPUT)
)
(port XLXN_5
(direction INPUT)
)
(port XLXN_6
(direction INPUT)
)
(port XLXN_7
(direction INPUT)
)
(port XLXN_8
(direction INPUT)
)

122 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

(designator "xcb5vlx30-3-f£324")

(property TYPE (string "QDD") (owner "Xilinx"))
(property NLW_UNIQUE_ID (integer 0) (owner "Xilinx"))
(property NLW_MACRO_TAG (integer 0) (owner "Xilinx"))
(property NLW_MACRO_ALIAS

(string "QDD_QDD") (owner "Xilinx"))

The input ports XLXN_O and XLXN_1 represent the logical constants 0 and
1. The pairs of remaining siz input ports represent 2-bit logic variables

{XOaXlaXQ}'

The string “xcbvlx30-3-ff324” is a designator code of the particular device
in the Virtex-5 FPGA family.

XML <node> elements representing quaternary nodes will be replaced by
instances of a LUT6 component implementing the 4-to-1 multiplexer. The
first two input pins I0 and I1 of each component instance are used for the
2-bit control variable X;. The remaining four inputs are used for f(X; = 0),
f(Xi=1), f(X; =2), and f(X; = 3).

Example 5.19 The following EDIF code represents the declaration of a LUT6
component implementing a 4-to-1 multiplexer:

(cell LUT6
(cellType GENERIC)
(view view_1
(viewType NETLIST)
(interface
(port IO
(direction INPUT)
)
(port I1
(direction INPUT)
)
(port I2
(direction INPUT)
)
(port I3
(direction INPUT)
)
(port I4
(direction INPUT)
)
(port I5
(direction INPUT)
)
(port O
(direction OUTPUT)
)

COMPARISON OF EFFICIENCY OF QDDS AND BDDS 123

(property TYPE (string "LUT6") (owner "Xilinx"))
(property XSTLIB (boolean (true)) (owner "Xilinx"))
(property INIT
(string "FFOOFOFOCCCCAAAA") (owner "Xilinx"))
)
)
)

An instance of this component is evoked for every non-terminal node using
the code:

(instance XLXI_<id of the node>

(viewRef view_1 (cellRef LUT6 (libraryRef UNISIMS)))
(property XSTLIB (boolean (true)) (owner "Xilinx"))
(property INIT
(string "FFOOFOFOCCCCAAAA") (owner "Xilinx"))

)

where, <id of the node> is the actual value of the id attribute of the
<node> element.

The vector FFOOFOFOCCCCAAAA represents the content of the LUT, in
this case the truth vector of a 4-to-1 multiplexer.

The XSLT style sheet also creates the instances of 10 buffers and VCC and
GND components declared in the header.

Next, a series of Nets describing the interconnections of hardware compo-
nents is created. The system evokes the x_nets template, which connects the
input pins I0 and I1 with the pins representing logic variables X, ..., X;.

Example 5.20 For example, the two pins of the logic variable X5 are con-
nected to each node at level 2 of the quaternary decision diagram.

(net XLXN_x2

(joined
(portRef XLXI_4)
(portRef IO (instanceRef XLXI_<node 1 id>))
(portRef IO (instanceRef XLXI_<node 2 id>))

)

)

(net XLXN_x3

(joined
(portRef XLXI_5)
(portRef I1 (instanceRef XLXI_<node 1 id>))
(portRef I1 (instanceRef XLXI_<node 2 id>))

124 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

where XLXI_4 and XLXI_5 are the pins representing variable Xo, and <node 1
1d>, <node2 1id>, etc., are identifiers of the nodes at level 2.

The const_nets template creates Nets which connects logical constant in-
put pins to the input pins of n level non-terminal nodes. For constant 0, for
each <child> element containing the const = 0 attribute, another connection
portRef IO (instanceRef XLXI_node id)) is added to the Net declaration.

Example 5.21 The following code is a net that connects the pin XLXI_1 rep-
resenting the logical constant 1 to the inputs of nodes id = 2, id = 3 and id
= 12:

(net XLXN_ci

(joined
(portRef XLXI_1)
(portRef I2 (instanceRef XLXI_2))
(portRef I4 (instanceRef XLXI_2))
(portRef I4 (instanceRef XLXI_12))
(portRef I2 (instanceRef XLXI_3))
)

Finally, the nets connecting non-terminal nodes are created, using the tem-
plate nets_template.

This template creates a net for each child element. The XML attribute
pid, attached to the child element, specifies the identifier of the destination
LUT6 component and cid specifies the origin of the connection. The input port
of the destination LUT6 component is specified by the variables attribute of
a child element.

Example 5.22 The following code is an example of the net connecting the
output of the node id = 2736 to the second input port I2 of the node id =
2875:

(net XLXN_2875_2

(joined
(portRef I2 (instanceRef XLXI_2875))
(portRef 0 (instanceRef XLXI_2736))))

The final EDIF netlist is compatible with standard place-and-route tools,
such as the ones provided by Xilinx, Ltd. as a part of Xilinx ISE software
package.

COMPARISON OF EFFICIENCY OF QDDS AND BDDS 125

Table 5.10 Comparison of the size and complexity of binary and quaternary decision
diagrams for the selected benchmark functions.

Depth Nodes Size (KB)
Name BDD QDD | BDD QDD | BDD QDD
EXT0I0.0 10 5 467 85 124.0 224
EX1010-5 10 5 485 84 131.0 22.6
EX1010-9 10 5 509 91 142.0 24.5
MISEX1.0 8 4 35 6 3.9 1.89
MISEX1_3 8 4 35 7 3.9 2.14
MISEX1_6 8 4 20 3 2.8 1.09
MISEX3.0 14 7 950 169 435.0 45.1
MISEX3_4 14 7 524 93 160.0 25.1
MISEX3_8 14 7 365 73 86.6 19.7
MISEX3.12 | 14 7 455 79 124.0 21.3
RD84.0 8 4 71 12 8.81 3.41
RD84_1 8 4 25 4 6.07 3.04
RD84.2 8 4 44 7 5.07 2.05
RD84_3 8 4 71 12 8.81 3.37
SA02.0 10 5 134 25 19.8 6.79
SAO2_1 10 5 128 24 18.9 6.41
SAO22 10 5 143 24 21.7 6.62
SAO2_3 10 5 137 25 20.6 6.91
SQRTS8_0 8 4 7 1 0.888 0.5
SQRTS8_1 8 4 14 2 1.6 0.8
SQRTS8_2 8 4 35 6 4.0 1.8
SQRTS8_3 8 4 71 10 8.87 2.93

5.13.2 A complexity Comparison of QDD and BDD Based
Implementation

In this section we present a comparison of the complexities and the efficiencies
of the FPGA implementations of selected benchmark functions using quater-
nary decision diagrams and other methods of logic design. We have used
functions from the MCNC set of benchmarks, [181], for both sets of experi-
ments.

All of the experiments were conducted on an Intel Pentium4 3.20Ghz with
1.99GB of RAM reference machine.

In the first set of experiments we compare QDD to BDD-based implementa-
tions of switching functions. In these experiments, the outputs of multi-output
functions are treated as separate binary functions, i.e. EX1010.5 indicates the
fifth output of the benchmark function EX1010.

For each function a reduced ordered BDD was created by the proposed
algorithm in XSLT. We have used the software proposed in [162] for the
optimization of BDDs. Next, a quaternary decision diagram was created from
the original BDD, using the proposed system.

In the first two columns of the table we compare the sizes of binary and
quaternary decision diagrams of each benchmark function. In the next two
columns we compare the numbers of levels. As evident from the theoretical
comparison of binary and quaternary decision diagrams, the number of non-

126 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

terminal nodes as well as the depth of the QDD are always significantly smaller
than for the equivalent BDD. This fact is reflected in the size and complexity
of final designs. Last two columns of this table represent the size of the
produced XML files. The XML representation of QDDs is always (in some
cases considerably) smaller due to the reduced number of non-terminal nodes
and interconnections.

In the second set of experiments, we compared the proposed FPGA design
method to a standard industrial approach. We compared the quality of the
synthesis obtained by creating quaternary decision diagrams and synthesis by
Xilinx ISE software system. Multi-output switching functions from the MCNC
set of benchmarks [181] were originally represented as lists of cubes. In the
first phase of the experiments, the benchmark functions represented in this
way are converted into VHDL representations. Circuit synthesis, technology
mapping, placing and routing have been performed by the Xilinx ISE version
9.2i software system.

The time required by the Xilinx ISE 9.2i is proportional to the number of
cubes in the function representation. This proved to be the limiting factor
determining the choice of presented benchmark functions. For example, this
Xilinx ISE 9.2i was capable to implement the 65 input function e64, specified
with a set of 65 cubes. It was unable to implement Mul8, a 16-input multiplier
specified with 28466 cubes. The cube representation of the Mul8 function was
obtained using Espresso software. After more then two hours of processing the
Xilinx ISE ran out of available memory. However, the system proposed in this
thesis had no such limitations and successfully implemented both functions.

In both cases we have implemented the final design using the XC5VLX30
device from the Virtex-5 FPGA family. This particular device consists of 4800
slices with 30720 logic cells and 19200 CLB flip-flops. A single Virtex-5 CLB
comprises two slices, with four 6-input LUTs and four flip-flops each, with
total of eight LUTs and eight flip-flops per CLB.

Benchmark functions with an odd number of inputs were extended to an
even number of levels by adding another input set to the constant zero, in
order to permit the conversion to the quaternary decision diagram form. This
is indicated in the tables with experimental results. Certain of the benchmark
functions in the MCNC set have some of the cube outputs set as don’t-care
symbols. For each such function two new functions are generated, one where
the don’t-care symbol ”-” is replaced with constant 0 and another where it
is replaced with the constant 1. These functions are labeled with ”_0” and
7 1”7 suffixes added to their corresponding names. The obtained results are
presented in Table 5.11.

COMPARISON OF EFFICIENCY OF QDDS AND BDDS 127

Table 5.11 Standard synthesis method results.

Name In Out Slices LUTs Av. Delay (s) Max. Delay Proc. Time (s)
5xpI10 7+1 10 8 15 1.14 1.333 68.00
9sym 9+1 1 6 11 1.032 1.387 62.00
bw_0 5+1 28 9 11 1.098 1.436 74.00
conl 7+1 5 0.938 1.142 63.00
eb4 65+1 65 101 134 2.686 3.320 73.00
inc_0 7+1 9 9 19 1.253 1.474 68.00
inc_1 7+1 9 9 20 1.232 1.562 63.00
rd53.0 5+1 3 3 3 0.937 1.159 60.00
rd73.0 7+1 3 7 10 1.01 1.184 57.00
vg2 0 25+1 8 6 9 1.049 1.286 65.00
vg2_1 25+1 8 2 4 0.951 1.426 60.00
xorb 7+1 1 1 1 0.845 1.010 59.00
misex1 8 7 7 14 1.108 1.459 15.11
rd84 8 4 8 12 1.234 1.429 13.23
sa02.0 10 4 9 28 1.093 1.437 29.09
sao2_1 10 4 5 4 0.994 1.453 4.99
sqrt8 8 4 5 7 1.012 1.439 8.01
duke2_1 22 1 4 8 0.988 1.578 87.00

The columns in this table represent the following values:
1. the number of inputs of the function,
2. the number of outputs of the function,

the number of slices on the FPGA device,

- W

the number of LUTs used in final implementation,
5. average delay on 10 most critical paths,

6. total time needed for synthesis, mapping and routing.

In the second phase of the experiments, a quaternary decision diagram is
created for each benchmark function. Again the Xilinx ISE software is used
for technology mapping. In contrast to the previous phase of the experiments,
Xilinx ISE software did not perform any synthesis or optimization. Synthesis
and optimization of the logic circuit was performed during the process of
generating the quaternary decision diagram.

The results of this phase of the experiments are presented in Table 5.12.

By examining the results from both phases of experiments we arrive at the
following conclusions. In general, a standard industrial approach to synthesis,
produces more compact implementations of benchmark functions. However,
in some case, for example for E64, conl, inc_0, rd53_0 and 5xp1_0 functions
the quaternary decision diagram methods produces better results. Processing
times required by both methods are comparable.

It must be noted that Xilinx ISE is a highly optimized software package,
which has been gradually improved through several versions over time. On
the other hand, the method based on a quaternary decision diagram is not
meant to be a separate, standalone solution for all logic design needs. Rather

128 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

Table 5.12 Results for synthesis using Quaternary decision diagrams.

Name In Out Slices LUTs Av. Delay (s) Max. Delay Proc. Time (s)
5xpI10 7+1 10 16 36 1.283 1.584 60.22
9sym 9+1 1 6 12 1.054 1.284 57.74
bw_0 5+1 28 20 41 1.375 1.994 60.07
conl 7+1 2 2 3 0.866 1.135 57.66
eb4 6541 65 70 114 2.313 4.093 117.45
inc_0 7+1 9 9 16 1.066 1.343 59.85
inc_1 7+1 9 10 17 1.176 1.396 58.99
rd53.0 5+1 3 5 8 1.023 1.238 57.66
rd73.0 7+1 3 8 17 1.132 1.277 57.93
vg2 0 25+1 8 175 405 2.63 3.449 105.56
vg2_1 25+1 8 9 19 1.234 1.376 69.48
XOord 7+1 1 1 2 0.817 1.163 59.86
misex1 8 7 12 22 1.196 1.434 41.00
rd84 8 4 8 27 1.11 1.320 39.00
sa02.0 10 4 29 64 1.505 1.321 97.00
sao2_1 10 4 2 4 0.961 1.203 10.00
sqrt8 8 4 8 18 1.091 1.402 30.00
duke2_1 22 1 17 41 1.086 1.377 59.00

it is intended to be a part of some large tool set similar to, for example, the
Xilinx ISE. In that sense, the system proposed in this thesis represents a proof
of concept, based on which more optimized design tools could be developed.

5.14 COMPARISON OF EFFICIENCY OF SHARED BINARY
DECISION DIAGRAMS AND MULTI-TERMINAL BINARY
DECISION DIAGRAMS

Multi-output switching functions are used to efficiently describe functional-
ity of a large variety of circuit systems. Therefore, they are one of the most
common types of discrete functions encountered in practice. In Section 2.4
we have already introduced two types of decision diagrams of special interest
when dealing with those functions, Shared Binary Decision Diagrams (SB-
DDs) and Multi-Terminal Binary Decision Diagrams (MTBDDs). In general,
the advantages of one model over the other depend on the properties of a
particular function. However, there are examples in which the application
of multi-terminal binary decision diagrams leads to more compact represen-
tation. This fact was the motivation for the introduction of multi-terminal
decision diagrams, [30].

In this section we present a system capable of generating hardware models
in VHDL of Boolean functions represented using MTBDDs. Using the pro-
posed method we have produced a set of hardware designs of selected standard
benchmark functions. We compare the complexity of these hardware designs
with implementations of the same functions produced using shared decision
diagrams.

We begin our discussion with a quick reminder of methods for representing
multi-output functions using decision diagrams. Although both the MTBDDs

COMPARISON OF EFFICIENCY OF SBDDS AND MTBDDS 129

and SBDDs, like all reduced ordered decision diagrams, are canonic repre-
sentations of a given switching function, in some cases there is a significant
difference in size and complexity between diagrams obtained in this way.

Example 5.23 Consider a multi-output binary function f = (fo, f1, f3),

2o fo i 31 [
0 O I 0

1

——OogR
—OoRgOR

oo
O =
——o
— =300

We can represent this multi-output function in integer form, by summing
each individual output fi, multiplied by 2°. Thus, we obtain f, = >, 2'fi.
By doing so we have changed the underlying algebraic structure, and switched
from a finite field of order 2 to the field of rational numbers. The Shannon
expansion rule in the field of rational numbers has the following form: f =
Tifo + zifi1. Note that, in this field, the Boolean operation XOR is replaced
with arithmetic addition.

Fig. 5.10 shows a Multi-terminal binary decision diagram obtained by re-
cursively applying the Shannon expansion to integer function f,.

Fig. 5.10 A multi-output binary function represented by MTBDD.

This multi-terminal decision diagram consists of three mnon-terminal and
three terminal nodes, producing the total size equal to siz. An equivalent
Shared binary decision diagram has five non-terminal and two terminal nodes,
giving seven nodes of total size, as evident from Fig. 5.11.

Fig. 5.11 A multi-output binary function represented by shared BDD.

130 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

Table 5.13 Size comparison of MTBDDs and Shared BDDs of some benchmark func-
tions.

Function n ut ubes T

NTN TN size NTN size
5xpl
Add2 4 3 11 13 6 29 17 15
Apex4 9 19 438 442 319 761 1024 1026
Ex1010 10 10 1024 894 176 1070 1079 1081
Misex1 8 7 32 17 11 28 47 49
Rd53 5 3 32 15 6 21 23 25
RdA73 7 3 141 28 8 36 43 45
Rd84 8 4 256 36 8 44 59 61
Sao2 10 4 58 95 10 105 162 164

In Table 5.13 we present the comparison of sizes of multi-terminal binary
decision diagrams and Shared binary decision diagrams for some functions
taken from MCNC [181]. The columns in this table represent the following,
In - number of input variables, Out - number of outputs, Cubes - number of
cubes, NTN - number of non-terminal nodes in the corresponding decision di-
agram, TN - number of terminal nodes in the corresponding decision diagram,
Size - total number of nodes (sum of the numbers of terminal and nonterminal
nodes).

These results clearly demonstrate the benefit of using MTBDDs in some
cases.

We focus on the integer equivalent of the Shannon expansion rule. Since
the basic functionality of each node is the same, we can reuse one standard
component. The final implementation will, thus, be a hierarchical structure of
interconnected instances of this component. Interconnections will correspond
to the edges in the binary decision diagram. The structure of the diagram,
nodes, and edges that connect them, is directly mapped into the hardware
level. This organization is intuitive and corresponds well to the native XML
logic and the VHDL syntax.

5.14.1 Hardware Implementation of Multi-output Switching Functions
Using MTBDD

The hardware structure presented in this section is similar to the one already
described in Section 5.12 for binary decision diagrams. The main difference
here lies in the structure of the node component. Since we now deal with
integer-valued functions, some modifications of the original design are needed.
These changes are reflected in the higher complexity of individual components.

In Fig. 5.12, we present a circuit implementing the Shannon expansion
rule in integer form. Each component will still have two inputs and one out-
put. The width of these inputs and outputs is determined by the particular

COMPARISON OF EFFICIENCY OF SBDDS AND MTBDDS 131

platform-specific integer representation. This value can be specified as a pa-
rameter in the software system we propose.

U > 2[7:0]

Fig. 5.12 Circuit implementation of the integer Shannon expansion rule.

The greater complexity of individual components is counterbalanced by a
smaller total number of components needed to realize a multi-output switching
function using MTBDDs.

As in the previous examples, we employ a set of XSLT templates to produce
MTBDD hardware models based of XML decision diagram documents.

The first style sheet is responsible for the preprocessing of the original XML
documents, removing redundant elements of the XML structure. This part
of the conversion process is similar to the one described in previous sections.
Therefore, we will not reiterate these details. In further discussions we focus
only on the differences in the proposed methodology.

The second XSLT styles sheet produces the final output, VHDL hardware
model, of the structure described in the previous sections.

Establishing a correspondence between the elements of the source XML hi-
erarchy and VHDL hardware description is the crucial moment of the XSLT
conversion process. The top level <dd:tree> element corresponds to the ba-
sic skeleton of the VHDL description, the VHDL hardware entity, and the
associated architecture.

The port list of the VHDL entity is generated automatically based on the
number of inputs and outputs of the original multi-output discrete function.

132 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

Input ports that correspond to logical variables of the functions are of the type
std_logic. The outputs and inputs that correspond to integer constants are
implemented as a SIGNED type, as specified in the ieee.numeric_std library.
The width of these ports can be specified by the user. In our experiments we
have used 32bit representations of integer numbers.

Each non-terminal <dd:node> represents one instance of the component
presented in Fig. 5.12. As stated earlier, terminal nodes are equivalent to
integer inputs of the hardware entity. Edges of the diagram are represented
by the internal signals of the VHDL architecture.

Example 5.24 We give an example of the VHDL code for the MISEX1
benchmark function:

LIBRARY ieee;

USE jeee.std_logic_1164.all;
USE jeee.std_logic_arith.all;
USE ieee.numeric_std.all;

ENTITY DD_proba IS PORT (con20, ... , con79 : IN SIGNED (31 downto
0); clk, x0, ... , x7 : 1IN stdlogic; final out : OUT SIGNED (31
downto 0));

END ENTITY DD_proba;

ARCHITECTURE DD_arch OF DD_proba IS
COMPONENT my_reg_arith_9

PORT (con.reg.in 20, ... , conreg-in 79 : IN SIGNED (31 downto 0);
clk, reg.in O, ... , reg_in7: IN std_logic; con_regout_20, ... |,
con.regout_79 : OUT SIGNED (31 downto 0); regout O, ... , regout.7:

OUT std_logic);
END COMPONENT;
COMPONENT my_reg_out_arith PORT (clk : IN std-logic; my_in.out : 1IN
SIGNED (31 downto 0); my-out_out : OUT SIGNED (31 downto 0));
END COMPONENT;
COMPONENT my_arith
PORT (f0, f1: 1IN SIGNED (31 downto 0); x : IN std.logic; z : O0UT
SIGNED (31 downto 0));
END COMPONENT;

SIGNAL x_tmp O, ... , x_tmp_7: std_logic;
SIGNAL con_tmp 20, ..., 014015 : SIGNED (31 downto 0);
BEGIN
inreg : my._reg-arith 9
PORT MAP (con20, ... , x_tmp.7);

al4048 : my.arith
PORT MAP (010777, 014037, x_tmp_0O, 014048);

COMPARISON OF EFFICIENCY OF SBDDS AND MTBDDS 133

Table 5.14 The selected benchmark functions implemented using MTBDDs and Al-
tera Cyclon II FPGA technology.

function [nets inst. max. freq. (Mhz)
5XPI 2304 1226 7
MISEX1 | 4627 2396 128.0
RD53 1452 860 195.5
RD73 1782 1184 139.3
RD84 2177 1480 124.7
SQRTS8 6303 4166 119.6
out_reg : my.regout_arith

PORT MAP(clk, 014048, final_out);

END DD_arch;

The selected benchmark MISEX1 is an 8 input function. This can be ob-
served in the number of input ports declared in the main entity of the VHDL
design. Signals in this device are treated as 32bit integer values.

5.14.2 Comparison with SBDDs

To provide some idea about the size and performance of actual hardware
implementations of Multi-terminal decision diagrams, we present the results
of the series of experiments. We have used multi-output switching functions
from the MCNC benchmark set [181]. For each selected function a multi-
terminal decision diagram was created. These diagrams were converted into
valid XML documents. For this task, we used the software package presented
in [162], in conjunction with an export module capable of producing the XML
documents. We have used these XML documents as an input to the proposed
system to produce a hardware descriptions in VHDL.

We made the final RTL synthesis of the produced VHDL code for Altera
Cyclon II and Xilinx Spartan FPGA technology using the Mentor Graphic
LeonardoSpectrum synthesis tool. We show the results of Multi-terminal de-
cision diagrams based implementation for Altera Cyclon II device family in
the Table 5.14.

Table 5.14 presents the number of inputs and outputs of each function, the
maximal working frequency obtained by simulation, slack at the critical path
and the number of accumulated instances, for a given FPGA architecture.

We compare these results to SBDD-based implementations of switching
functions from the same dataset. Table 5.15 shows results for implementation
on Altera Cyclon II platform.

The results of experiments regarding the MTBDD-based implementations
using Xilinx Spartan FPGA technology are shown in Table 5.16.

134 APPLICATIONS OF THE XML FRAMEWORK IN LOGIC DESIGN

Table 5.15 The selected benchmark functions implemented using SBDDs and Altera
Cyclon IT FPGA technology.

function [nets inst. max. freq. (Mhz)
5XP1 129 119 165.
MISEX1 80 69 254.7
RD53 52 44 235.9
RD73 76 66 167.5
RD84 98 87 144.8
SQRTS 85 74 179.4

Table 5.16 The selected benchmark functions implemented using MTBDDs and Xil-
inx Virtex IT FPGA technology.

function [nets inst. max. freq. (Mhz)
5XPI 2348 1270 108.2
MISEX1 | 4697 2464 81.2
RD53 1633 1041 120.3
RD73 2003 1405 93.3
RD84 2428 1731 85.6
SQRTS 7679 5542 80.0

Table 5.17 The selected benchmark functions implemented using SBDDs and Xilinx
Spartan II FPGA technology.

function [nets inst. max. freq. (Mhz)
5XP1 166 159 .

MISEX1 97 87 157.1
RD53 56 48 169.8
RD73 89 79 105.8
RD84 117 107 100.2
SQRTS 92 83 115.4

In Table 5.17 we present the results for SBDD-based implementation using
Xilinx Spartan FPGA technology.

From the data presented in Table 5.13 it is expected that MTBDD-based
implementation would have an advantage over SBDD-based approach, at least
for certain functions, due to significantly smaller number of non-terminal
nodes. However, the results of these experiments reveal that this advantage
is annulled by the greater complexity of individual nodes and their intercon-
nections.

Entropy Estimation
Using Decision Diagrams

The notion of entropy as introduced by Shannon in [6], [36], [149], represents
one of the fundamental concepts in modern information theory and signal
processing. In essence, entropy describes the amount of information carried
by a signal. The applicability of this concept greatly transcends the field of
information theory in a narrow sense. Although the mathematical definition
of information entropy is well known, the task of calculating the entropy of a
particular signal is by no means trivial.

If the signal is expressed in the form of a vector of characters taken from
a specific alphabet, a good measure of the information entropy should satisfy
the following criteria:

1. The Measure should be continuous.

2. If probabilities of occurrence for all the characters of the alphabet are
equal, the entropy should be 1.

3. If the probability of a certain character is one, the entropy should be 0.

4. The amount of entropy should be equal, independently of how the pro-
cess is divided.

According to the formula, —>""" | p (x;) log, p (x;), introduced by Shannon
n [149], an entropy is calculated based on the probability distribution of the
characters in the vector. A reliable estimate of this probability distribution
often represents the most difficult part of the entropy calculation. Over the
years, a variety of methods has been proposed for the estimation of either the
probability distribution or the information entropy directly.

135

136 ENTROPY ESTIMATION USING DECISION DIAGRAMS

The formula introduced by Astola and Ryabko in [8] provides a good esti-
mate of the entropy of a given signal. The calculation required for this method
can be time consuming. Furthermore, the complexity of this calculation de-
pends strongly on the length of the given sequence. In this thesis we will
present a method for improving the speed and reducing the complexity of this
calculation by exploiting the properties of binary decision diagrams.

If characters of the alphabet are represented as discrete numerical values,
the signal output of the source can be seen as a discrete function.

We introduce a method for the estimation of the entropy of binary streams
based on binary decision diagrams. By exploiting the useful properties of
binary decision diagrams we may be able, in some cases, to significantly reduce
the time and complexity of calculation of entropy estimates. This method was
originally presented in [156].

6.1 CALCULATION OF ENTROPY ESTIMATES USING BDDS

In [8], Astola and Ryabko introduced the following method for calculating the
estimate of the entropy of a given vector.

Consider an alphabet A and let A* = [J;2, be the set of all finite words
over A. Let f = f1fo... f: be a given vector of length ¢, and v = vy ...vg be a
possible subvector of f, f,v € A*. Denote the rate of a subvector v occurring
in the vector = as vy (v). For example, if f = 000100 and v = 00, then
vy (00) = 3, since, we calculate as follows (00)0100 — 0(00)100 — 00(01)00
— 000(10)0 — 0001(00), and the sequence v = 00 appears three times.

For any 0 < k <t the empirical Shannon entropy of the order k is defined
as follows:

=-Y (Df(v) Z vy(va)) o vs(ve) 6.1)

S E k) L o) 7 pp(v)

In order to calculate the entropy estimate by means of (6.1) we need to
determine the number of occurrences of all the possible subvectors v of the
length £ in the given vector. This is the most computationally intensive part
of the process. It can be implemented using a straightforward method, by
moving a window of length k over a given vector and increasing the appropriate
counter for each encountered subvector. In a way this is a brute force method.
It does not take into account the individual properties of a particular vector.
Assume, for example, that the second half of a vector is equal to the first half
of the vector. If we take into account this information, we could reduce the
amount of needed calculation by half. The application of decision diagrams
permits us to do this.

In this thesis we focus only on the calculation of the entropy estimate
for binary vectors. For the sake of simplicity, we demonstrate the proposed

CALCULATION OF ENTROPY ESTIMATES USING BDDS 137

method first for the simplest case of k = 2. We also assume that given vectors
are of the length ¢t = 2", so that binary decision diagrams can be constructed.

We begin with the following observation. Let fs1 = fi f2...f% and fso =
f% f% +1.--f¢ be the first and second half of the given vector. It naturally follows
that

vi(v) = vy, (v) + vy, (v) + ¢ (6.2)

which is the number of occurrences of a certain subvector of length £ =2 in a
given binary vector, is equal to the number of occurrences of this subvector in
the first half of the vector, plus the number of occurrences of this subvector
in the second half of the given vector. Minor corrections of plus one should
be made if the given subvector occurs exactly at the split of two halves of the
given vector so that its first character remains in the first half of the vector
while the last ends up in the second half

c=1suv = fr,v2=fti, (6.3)

¢ = 0, otherwise. (6.4)

We can recursively apply this observation to each half of the vector, split-
ting them further into shorter and shorter segments, until we reach the seg-
ments of the length 2. At this point, it is trivial to calculate of occurrence
of a subvector. If the given subvector v is identical to a particular segment
fsn, then v¢(v) needs to be incremented by one. We must keep in mind that
the modifications of the calculated number every time the considered subvec-
tor occurs at the split between the examined segments of the original vector,
potentially at every step of the recursion.

This recursive procedure resembles the structure of a binary decision tree.
If we mark the levels of a binary decision diagram from 0 for the topmost level
containing the root node to n+1 for the level of terminal nodes, then the nodes
of the second lowest level n in the diagram correspond to subvectors of length
2 in the underlying binary vector. From the properties of decision diagrams,
it follows that the exact of number of times a certain subvector v occurs in
a given vector f is equivalent to the number of paths that point to the node
which is the root of the subdiagram representing the subvector v. It can be
shown that this number is equal to the weighted sum of incoming edges to
the node. The weight associated with a particular edge equals w; = 2!, where
l is the difference of the level between the parent and the node in question.

Let F = [0110101010101111] be a given binary vector of the order n = 4.
In Fig. 6.1 we present this vector by a binary decision diagram and the results
of the calculation of the number of occurrences of individual subvectors.

To calculate the number of occurrences of all the possible subvectors of
length £ = 2 in a binary vector, we need to iterate through all the nodes at the
n-th level of a decision diagram and calculate the number of the corresponding
paths as a described weighted sum. Before we can perform any calculations,

138 ENTROPY ESTIMATION USING DECISION DIAGRAMS

V=01
V=10
V=11

wy |=20=l
wy=2"=1
Wwy=2'=2
Wo3=2 =
v(v)=wy =1

V(Vy)=wa twaptws=5

V(vy)=w31=2

Fig. 6.1 FExample of a calculation of entropy estimate via binary decision diagrams.

Table 6.1 LUT of indices for k = 2.
00 0I 10 11
00 |

01110 10 11 11
10 | 00 00 01 01
11 |10 10 11 11

we need to extend the diagram with virtual nodes at each place where an
edge intersects with the n-th level. These virtual nodes will correspond to
subvectors representing pairs of identical binary values v = 00,v = 11, which
possibly exist in the original vector f.

However, this represents only a partial estimate of entropy, since it does
not take into account the subvectors that occur on the splits between the
segments of the vector. In total there are 2” — 1 of these subvectors, for a
vector of the length 2™.

We can show that a binary decision diagram contains all the information
necessary to completely calculate the occurrence rate of subvectors of the
order k = 2. For a given binary vector, a subvector of the length k£ = 2
starting at the position ¢ is determined by the last character of the preceding
vector at the ¢ — 1 position, and the first character of the following vector
at the 7 + 1 position. Consider an example ...1100..., and let v;_; = 11 and
vi+1 = 00. It clearly follows that v; = 10. The complete set of these relations
can be expressed in tabular form, see Table 6.1. This lookup table is identical
for all binary decision diagrams and needs to be generated only once at the
beginning of the process.

Entries of this table can be replaced by the integers using encoding 00 = 0,
01 =1, 10 =2, and 11 = 3. Thus, Table 1 can be concisely expressed by the
function f = Toxg + 2x2T3 + 3wox3, where x5, and x3 are Boolean variables
0 and 1 interpreted as integers 0 and 1. By choosing between this analytical

CALCULATION OF ENTROPY ESTIMATES USING BDDS 139

expression and the tabular representation we are permitted to trade between
temporal complexity and memory requirements.

If the subvectors v;_1 and v;11 are represented by adjacent nodes at the
(n — 1) level in the decision diagram, subvector v; will correspond to their
common parent node. In Fig. 6.2 we demonstrate the correspondence between
subvectors of the previous example and the nodes of the decision tree. This
decision tree can be reduced to the decision diagram in Fig. 6.1 as shown in
Fig. 6.3.

: @

| 1 /01\

3 01 10 10 10 10 10 11 11
o] [@ B [@ B [B [D] ol] (@] 3] [5

0
0]
Fig. 6.2 Subvectors of order k = 2 over nodes of a decision tree.

Fig. 6.3 Subvectors of the order k = 2 over nodes of a reduced ordered decision
diagram.

Fig. 6.4 shows the order in which subvectors for the & = 2 case are read
during the traversal through the decision diagram. For the sake of clarity we
present this over a decision tree.

It is evident that in order to completely determine the occurrence rates of
all of the subvectors of a given vector we need to visit all the nodes in the
diagram. The complete algorithm, therefore, represents an inorder traversal

140 ENTROPY ESTIMATION USING DECISION DIAGRAMS

Order of reading

01, 11, 10,01, 10, 01, 10, 01, 10, 01, 10, 01, 11, 11, 11

Fig. 6.4 The order of reading of the subvectors for k = 2, presented on a decision
tree.

of the decision diagram, with the following additional steps performed at each
node:
If the level of the current node is < n + 1,

1. Determine to which subvector the node corresponds,

2. Increase the value of appropriate counter by the weight of the corre-
sponding incoming edge,

3. Store the index of the counter.
If the level of the current node is > n + 1,

1. Based on indices stored in children nodes, determine the preceding and
following subvector,

2. Increase the appropriate counter.

After the complete traversal of the tree we obtain the final results, v(vq) =
v(01) =5+1=06, v(v2) =v(10) =0+5=05, v(vy) =v(1l) =2+ 2 =4,

Finally, we can compare these values with values obtained by applying of
the original method. For the original vector F' = [0110101010101111] after we
apply the sliding window we obtain 01, 11, 10, 01, 10, 01, 10, 01, 10, 01, 10, 01,
11, 11, 11, that is, v(v1) = v(01) = 6, v(vs) = v(10) = 5, v(vy) = v(11) = 4.
It is evident that both methods have produced identical results. The rates of
occurrence of subvectors can then directly be used in (6) to calculate the final
entropy estimate.

The complexity of this algorithm is proportional to the number of nodes
in the decision diagram, versus the length of the given vector which was the
complexity of the standard approach. The same argument about efficiency
of decision diagrams in general can be applied to this algorithm. For further
details, please refer to [17], [32], [119], [182].

EXPERIMENTAL RESULTS 141

Table 6.2 Number of steps needed to calculate the occurrence rate of subvectors using
BDDs, and the standard approach.

function BDD Standard Approach
BW O 10 31
BW 23 16 31
5XP 10 12 127
MISEX1 0 66 255
RD84 0 4 255
9SYM 0 6 511
APEX4 0 258 511
APEX4 10 6 511
APEX4 17 34 511
CLIP 0 10 511
EX1010 0 10 1023
MISEX3 0 | 8194 16383
MISEX3 3 514 16383
MISEX3 4 4 16383
MISEX3 7 130 16383

The described method can easily be generalized for an arbitrary length of
subvectors of the form k = 27.

Similar as in the previous example, for the case k = 4, j = 2, consider
a subvector v; = 1101, and its neighboring subvector v;y4 = 1001. After a
simple observation we determine that there are additional subvectors spanning
a split between v; and v;44, namely v;41 = 1011, v;4; = 0110, v;4; = 1100.
This fact will be reflected in the structure and size of the lookup table of
indices needed for the process.

For the general case k = 27, LUT will have 27227 cells where we need to
store k — 1 index values, thus adding to the memory complexity of the overall
algorithm. As this table needs to be stored only once for all the calculations
of entropy estimates for the same k, in real application for a reasonable length
of subvectors this overhead will not be significant.

6.2 EXPERIMENTAL RESULTS

To demonstrate the validity of the proposed method, we have conducted a set
of experiments. We have counted the number of steps needed to calculate the
rate of occurrence of subvectors in a given vector using both the standard and
the BDD based approach. In these experiments the (MCNC) set of benchmark
functions was used [181]. Table 6.2 presents the selected results. The first
column in the table represents the number of steps needed for the BDD based
method, and the second represents the results for the standard approach.
The number of steps in the standard approach is determined by the length
of the original vector, while in the BDD-based approach it is determined by
the number of nodes. The example of function misex3, and its particular
outputs 0, 3, 4, and 7, illustrates that the approach using BDD, depends on

142 ENTROPY ESTIMATION USING DECISION DIAGRAMS

the number of nodes, unlike the standard approach, where the complexity
remains the same for all the outputs. The same conclusions can be made for
the function APEX and other entries in this table.

We did not take into account the number of steps needed to construct
the decision diagram, since the basic assumption was that the functions were
already represented in decision diagram form.

Visualization of Decision

Diagrams Using SVG

In this chapter we demonstrate how an abstract data structure can be con-
verted into a human understandable form. We demonstrate the flexibility of
the proposed system by showing how it can be used to automaticaly generate
a graphic representation for a given decision diagram. The final result of this
process is a vector image in SVG format. In order to achieve this, we make use
of XSLT scripts similar to ones used in previous sections. We have chosen the
SVG formate because it represents a pure XML derivate. The implementation
of XSLT conversion scripts is, therefore, relatively simple and straightforward.
The method presented in this chapter was originally proposed in [160].

7.1 SVG GRAPHICS DESCRIPTION LANGUAGE

SVG language is an XML derivate for description of 2D vector graphics both
static and animated. It is, thus, both descriptive and scripted in nature. It
is an open standard introduced and sponsored by the W3 Consortium [146].
SVG confirms to the specification of the general XML standard producing
well-formed and valid XML documents, as specified in [60]. SVG documents
can easily be processed with standard XML parsing tools or easily transformed
by means of XSLT. In this work, we focus on the descriptive aspect of SVG
since we are dealing only with static graphics.

SVG is an emerging standard and aimed primarily at displaying vector
graphics on the Web. Its wider acceptance is still expected in the future. It is,
however, at the moment supported on all of the relevant computer platforms

143

144 VISUALIZATION OF DECISION DIAGRAMS USING SVG

and by all web browsers either natively (Firefox 1.5 and newer) or in the form
of a plug-in (Microsoft Internet Explorer). Most of the standard software
packages for processing 2D vector graphics available on the market, including
Adobe Illustrator and Corel DRAW, support data exchange through SVG as
well. Illustrations produced using SVG can easily be displayed on the web or
embedded in to TeX documents with minimal additional processing.

Furthermore, since SVG complies totaly with the XML specification, data
stored in this format can be combined with data stored in other XML derived
formats in a single document. A user could produce a single file containing
an XML decision diagram and its graphical representation in SVG format.

Further information about SVG graphics format can be found in [57] and
[176]. Principles of development of software systems that make use of SVG
are explained in [24].

7.2 VIZUALISATION OF DECISION DIAGRAMS

Although the actual visualization of the topology of decision diagrams may
vary, there exists one commonly accepted way of representation accepted by
most researchers working in this field. In Fig. 7.1, we show an example of a
BDD [17], for the function f(z1,22,23) = 21Z2 V zax3.

X)

0 1 0, 1

5 (g @ xz @

Shd b dhd b

Fig. 7.1 Binary Decision Diagram.

By convention, non-terminal nodes are represented by circles either empty
or carrying the textual label that signifies the applied decomposition rule.
Terminal nodes are represented by squares or rectangles containing a logical
constant. Edges are naturally represented by lines connecting the nodes. As
an option, levels of decision diagrams can be also represented. These general
principles of vizualisation can easily be expressed in SVG terms.

All valid SVG documents share the same basic structure. The proposed
system will need to repeat this structure in every SVG document it produces.
As is the case with all XML based data description languages, an SVG docu-
ment is a structured text with a hierarchy of elements. The topmost element
in this hierarchy is the <svg:svg> element, which represents a container of

VIZUALISATION OF DECISION DIAGRAMS 145

actual graphical elements in the document. This element can have various
attributes describing the properties of the document associated with it. For
the purpose of this demonstration, we specify only the width and height of the
document page. Actual implementation can have more precise control over
the document, i.e., display and printing properties.

The list of graphic elements supported by SVG includes the usual primitive
elements found in other vector graphic software packages. We make use of a
very reduced set of these elements using only <svg:rect> elements represent-
ing rectangles for terminal nodes, <svg:ellipse> to represent non-terminal
nodes and <svg:line> elements for the edges in the diagram. Graphical el-
ements in one document can be grouped using <svg:g> container elements.
Groups can contain other groups, thus creating a convenient hierarchy of
elements. Labels on the graphical representation are implemented using ap-
propriate <svg:text> elements. This SVG element permits us to specify the
size and font of its inscription. By convention, we use TimesRoman font,
widely available on all platforms.

These elements represent basic building blocks out of which the proposed
system builds final documents. We present the example of the code of an SVG
document containing some of these basic elements:

...header of the document...
<svg:svg width=’21cm’ height=’15cm’ version=’1.1’ ...>

...graphic elements...
<svg:g id=’node0’ text-align=’center’>

...Ellipse representing a non-terminal node...
<svg:ellipse cx=’10.5cm’ cy=’1.75cm’ rx=’0.5cm’ ry=’0.5cm’
stroke=’rgb(0,0,0)’ fill=’rgb(240,240,240)° stroke-width=’1’ />

...Line element representing an edge...
<svg:line x1=’10.5cm’ y1=’2.26cm’ x2=’5.256cm’ y2=’4.75cm’
style=’fill:none;stroke:rgb(128,128,128) ;stroke-width:1’ />

...Label as a text element...

<svg:text x=’7.975cm’ y=’3.4cm’ font-family=’Times Roman’
font-size="12’ fill=’black’>0</svg:text>

</svg:g>

</svg:svg>

We begin the transformation process by applying a preprocessing XSLT
script to produce a more suitable version of the XML document. The prepro-
cessing script will remove all the recursive aspects of the XML document. It
will also calculate the relative coordinates of graphic elements that will form
the graph representation.

146 VISUALIZATION OF DECISION DIAGRAMS USING SVG

As the first step, the preprocessing diagram creates a wrapper element
named <diagram> and assigns some arbitrary values for the width and height
of future SVG document.

This script produces a list of decision diagram nodes, <node> elements
without any nested elements. The position of a graphic representation for
each node is recalculated based on the number of nodes at each level and on
the total number of levels in the diagram. The script assumes some abstract
dimensions for the final plot and arranges nodes equidistantly from the central
vertical axis of the diagram recalculating relative horizontal distance for each
level. These coordinates are stored in the attributes of node elements on the
list.

Each node contains a simple list of its descendants, <edge> elements. The
attributes indicating the ID, level and expansion rules are preserved. The
information about the parents of the node that might be present in the original
XML document is discarded as it is not needed for graphical representation.
Edges connecting the nodes will be drawn based on the information from
the lists of children of each node. The distinction between terminal and non-
terminal nodes is marked by the value of the ‘type’ attribute associated with
each node element.

The preprocessing script produces a list of <line> elements that will form
the grid of level markers in the final graphical representation. Their vertical
positions are calculated according to the number of levels in the diagram.

Final conversion from the intermediary XML document to the SVG doc-
ument is done by a separate XSLT style sheet. This style sheet performs
simple template matching, replacing the elements of the XML document with
the appropriate geometric representation using the precompiled coordinates
stored in the intermediary XML document.

This XSLT style sheet consists of a series of templates describing the cor-
respondence between elements of the intermediary XML document and the
SVG graphic elements.

At the beginning of the conversion process, XSLT will evoke the first
template that will identify the <diagram> element and based on the in-
formation on the width and the height produce <svg:svg width=’21cm’
height="15cm’> element of the SVG document, thus creating a container
for the rest of the graphic elements that will be produced.

The grid of the diagram is generated by a separate template in the XSLT
style sheet based on the vertical coordinates stored in the <line> elements of
the intermediary XML document. A dashed line is added to the SVG docu-
ment for each level with non-terminal nodes of the original decision diagram.
An appropriate label, marking the level, is attached to every line in the form
of an <svg:text> element.

The XSLT script proceeds then to process the nodes of the decision dia-
gram starting from the root node. A separate template in the XSLT style
sheet will be activated for every <node> element in the intermediary XML
code. Depending on the value of the ‘type’ attribute, this template will

EXAMPLES 147

create either a <svg:ellipse> representing a circle for a non-terminal node
or a <svg:rectangle> representing a rectangle for a terminal node. It also
produces the text element <svg:text> with an appropriate label for the given
node. These graphic elements will be placed on the coordinates calculated by
the preprocessing XSLT script.

For each <edge> element, a member of the list of children of the given
node, another template is activated. This template draws a line representing
the edge or the diagram by producing a <svg:line> element in the SVG
document. Start coordinates of the line are read from the attributes of the
node element. Based on the value of the ‘point’ attribute of the <edge>
element, the template identifies the target node and reads the end coordinates
of the line from its attributes.

Graphical elements representing the node, its label and the outgoing edges,
will be grouped together using a <svg:g> element for easier manual manipu-
lation with other 2D vector graphics software.

We present the full code of the generated SVG document for a binary
decision diagram from the previous example in Appendix C.

This set of XSLT style sheets produces the basic form of decision diagrams
that can be modified in order to represent various classes of diagrams includ-
ing, binary, multiple valued, Kronceker or pseudo Kronecker diagrams. These
scripts can easily be customized both in terms of graphic properties or by the
functionality for different applications.

7.3 EXAMPLES

This set of XSLT style sheets produces the basic forms of decision diagrams
suitable for representation of various classes of diagrams. These scripts can
easily be customized both in terms of graphic properties or functionality for
different applications.

In Fig. 7.2 we give a graphic representation of a binary decision diagram for
the 9sym function taken from the MCNC set of benchmarks for logic design
[181], produced using the XML framework.

148 VISUALIZATION OF DECISION DIAGRAMS USING SVG

Fig. 7.2 A graphic representation of a binary decision diagram of a 9sym benchmark
function.

Automatic Code
Generation Using the

XML Framework

In most of the examples presented in the previous sections we have focused
on structural hardware models. However, in section 5.9, while discussing
the basic properties of a VHDL data description language we have briefly
mentioned the possibility of other approaches to hardware design. Namely,
the essential difference between structural versus behavioral models is one
of the fundamental topics in current hardware design. The same discussion
applies not only to hardware design, but also to system modeling in a wider
sense.

In this chapter, we examine the position of decision diagrams, as a form
of representation of discrete functions, in relation to behavioral and struc-
tural system modeling approaches. We discuss this problem by examining the
relations of Shannon binary decision diagrams and branching programs.

We introduce an extension to the basic XML based framework capable
of converting a decision diagram represented in XML form into a branching
program in some high-level programming language such as C/C++. For this
task, we use a mechanism, based on XSLT, similar in structure to the ones
from previous sections. The results presented in this chapter were originally
published in [157].

8.1 BRANCHING PROGRAMS AND DECISION DIAGRAMS

We begin our discussion by focusing again on the so-called reduced order
binary decision diagrams. There is clear and intuitive correspondence between

149

150 AUTOMATIC CODE GENERATION USING THE XML FRAMEWORK

the Shannon decomposition, as defined by (2.5), and a well known If-Then-
Else programming structure. The first term of the resulting decomposition,
the one obtained for value x; = 1, corresponds to the Then branch of the
If-Then-Else structure. The Else branch is equivalent to the second term of
the decomposition, z; = 0. By applying this decomposition rule recursively
we obtain a decomposition tree.

A decomposition diagram obtained by the complete reduction of this tree
corresponds to the optimal branching program that implements the given logic
function f(x1,z2,...,z,).

Therefore, we can say that a binary decomposition diagram is a graph-
like data structure which describes the behavior of a certain system, not by
data stored in its constituent components, since all of the nodes represent an
identical operation, but by its topology. By extension, the same statement
holds for any other type of decision diagram.

The fact that we are able to make a smooth transition between a structural
and behavioral model, highlights an important duality inherent to decision
diagrams with significant implications on hardware design.

The correspondence between decision diagrams and branching programs
has been discussed in great detail in [7] and [91].

Decision diagrams as a starting point for code generation have been used
in several applications. One interesting example of such an application in the
field of signal processing can be found in [136]. In this example, the value
of each individual image pixel is determined by the value of its immediate
neighborhood. The values of surrounding pixels define the function for the
calculation of its value. ROBDDs are used to efficiently in terms of time
produce a C++ code that performs this calculation in each individual case.

8.2 THE XSLT CONVERSION MECHANISM

The process of generatiing a branching programs in C/C++ syntax, based
on the given decision diagrams, has several stages. Our system performs
this operation by applying a series of XSLT templates to the elements of the
original XML document. The final output is a new document containing the
code in C/C++. In order to achieve the optimal organization of the operation,
these XSLT templates are grouped into three separate style sheets. The first
two of them perform preprocessing, modifying the structure of the original
document. During this process a series of intermediary XML documents is
produced. Only the last XSLT style sheet performs the actual mapping of
XML elements onto C/C++ syntax.

The recursive organization of XML documents corresponds very well with
the structure of a code dictated by properties of common high-level program-
ming languages. XML documents are, as stated earlier, hierarchically struc-
tured. Each <dd:node> element contains in itself, other nested elements of the
same type, and nodes that belong are situated in its descending subdiagrams.

EXAMPLE 151

Every such element corresponds with one basic If-Then-Else structure. In the
final output, the <dd:node> element is replaced with the following C/C++
code segment:

if(x1) then

This replacement process is repeated recursively for the descendants of the
given node. The resulting C/C++ code will be nested in the appropriate
branches of the If-Then-Else structure.

8.3 EXAMPLE

In Fig 8.1, we present the example of the entire branching code corresponding
to the Boolean function f(z1,zs,...,z,). We can note that the structure of
the code follows closely the structure of the binary decision diagram generated
for the same function.

X ;}\ bool examplel (x1, x2, x3, x4)({
1 S if (x1==1){
if (x3==1) {return true;}
0 1 else{
if (x4==1) {return true;}
Xé else{return false;}
}
}
elsef
X if (x2==1) {
3 if (x3==1) {return true;)}
else{
if (x4==1) {return true;}
X else{return false;}
4 }
}
else({
1f (x3==1) {

if (x4==1) {return true;}
else{return true}

}
else{return false;}

P}

Fig. 8.1 BDD and a branching program corresponding to the function f(x1,x2,x3) =
T1To V T2x3.

152 AUTOMATIC CODE GENERATION USING THE XML FRAMEWORK

8.4 GENERALIZATIONS

The generalization that can be made to the method we presented in this
Thesis is threefold.

So far we have limited ourselves to examining just the binary decision
diagrams. The binary case is the most simple example of a larger theory
and, thus, easiest to follow. However, the proposed system is capable of
generating a C/C++ code even for non-binary, e.g., ternary or quaternary
decision diagrams. There are no significant methodological differences in the
way an XSLT mechanism works in a non-binary case. The main difference is
that the <dd:node> XML element corresponds to the Switch-Case instead of
the If-Then-Else structure.

The second generalization direction is aimed at classes of decision diagrams
derived using decision rules other than the Shannon decomposition. In this
case the standard If-Then-Else branching structures must be replaced with
procedures performing operations equivalent to each particular decomposition
rule.

Both of these modifications can easily be combined as in, for example, the
case of Pseudo-Kronecker decision diagrams. The resulting program would be
a semi-recursive hierarchy of Boolean or arithmetic operations.

Finally, since all of the needed programming structures, If-Then-Else,
Switch-Case, recursiveness, etc., are present in the great majority of pro-
gramming languages, and since the underlying algorithm remains unchanged,
the proposed system can be adapted to produce its output in the syntax of
any formal language that satisfies these basic criteria.

Conclusions

Graph-like structures are an efficient method of organizing data, especially
data with complex interdependences. Decision diagrams, formally acyclic
directed graphs, have risen to prominence as a tool for the representation of
various classes of discrete functions. Different types of decision diagrams have
been introduced over time for the representation of different specific function
classes. They have found numerous applications in different fields, such as
logic design and signal processing. Consequently a variety of software packages
which employ decision diagrams in some way have been developed. However,
most of these packages use proprietary file formats for data storage. To our
knowledge there has been no comprehensive attempt to create a standardized
format of the representation of decision diagrams.

Our primary aim has been to establish a uniform way to represent various
classes of decision diagrams to facilitate easy data exchange between various
existing software platforms. The proposed solution had to be general enough
to be able to describe as many classes of decision diagrams already in use as
possible. It also had to be flexible enough to be easily adapted for different
applications. Ease of implementation was also a goal.

As a basis for our framework we have chosen XML, a general purpose data
description language designed especially for the task of representing data with
complex internal structures. The XML family, XML in narrow sense and its
derivatives, offers a set of tools for easy and efficient, in terms of computational
complexity, data manipulation.

Using an XML Schema mechanism we have developed a format specification
for XML documents representing decision diagrams. This format specification
focuses on common structural features which all classes of decision diagrams

153

154 CONCLUSIONS

share. It also provides facilities for the storage of additional data. It is,
therefore, capable of representing a wide variety of decision diagram classes.

The proposed schema is published online and XML documents that contain
decision diagrams can be validated against it to ensure that they conform to
the proposed specifications.

Using this XML schema, we have produced and presented the examples
of XML documents for several common classes of decision diagrams, such as
ROBDDs, FDDs, KDDs, PKDDs, TDDs, QDDs, MTBDDs, SBDDs, etc.

Parsers, software libraries for XML processing, are present on all platforms
and development environments. They represent a very efficient software ar-
chitectures, in terms of memory usage and processing time. Certain overhead
in size is present in conjunction with the textual nature of an XML represen-
tation but is, in our opinion, counterbalanced by other good properties of the
proposed system.

A platform built on the XML basis is highly extensible. New data can be
easily included in the documents. If confronted with an extended document
which they are not designed to process, software modules will process the
data that is recognizable to them and ignore the additional data. The whole
document will not be rejected. Communication between disparate software
solutions can be established in this way. A scenario in which several software
agents interact and each makes use of only a part of the data present in the
same document is, thus, possible.

In the second part of the thesis, we have turned our attention to possible
applications of the proposed XML-based framework. We have focused first
on the application of decision diagrams in logic design.

The XML documents represent an abstract form of representation which
needs to be converted into some application specific format. This conversion
is achieved using XSLT data transformation language. We have developed a
special set of XSLT templates for each example presented in this Thesis.

The first example we presented focuses on implementing switching func-
tions on FPGA devices. In this example, the functions are represented us-
ing ROBDDs with Shannon decomposition, Kronecker and Pseudo Kronecker
DDs. We have demonstrated how XML documents containing these deci-
sion diagrams can be converted into a hardware description expressed using
a VHDL hardware modeling language.

We explored the efficiency of implementing multi output switching func-
tions using MTBDDs vs. the more common approach based on SBDDs. Using
the similar XML based mechanism we have demonstrated that for certain ex-
amples MTBDDs offer more compact functional representations. The higher
complexity of nodes and interconnections is counterweighted by the smaller
size of the diagram.

Implementation of switching functions using FPGA devices was also ex-
amined. The question of optimal granularity of logic blocks in FPGA devices
was explored earlier in the literature. Six-input LUT-based FPGA devices
have been shown to be an optimal solution in the trade-off between the size of

155

the logic blocks and the complexity of the interconnections. QDDs have been
proposed earlier as a tool for logic design regarding these devices. We have
demonstrated how the proposed XML-based framework can be used to auto-
matically generate LUT-6 implementation of switching functions using QDDs.
The proposed method generates a QDD representation of the function from
an already existing ROBDD. It then generates a hardware description in the
form of a netlist using EDIF syntax, ready for direct technology mapping.

In the following part of the thesis we demonstrated how decision diagrams
and the proposed framework can be used for applications in information the-
ory. We presented a BDD-based method for calculating the entropy estimate
of a given binary vector. The method is divide and conquer in nature and
its complexity is proportional to the number of nodes in the corresponding
ROBDD.

The flexibility of the proposed XML framework is demonstrated again with
the example of the automatic generation of graphic representation of decision
diagrams. We provided a set of XSLT style sheets that convert XML deci-
sion diagram documents into vector images in SVG file format. The images
produced in this way can easily be edited by any established vector graphics
software package. They can also be imported into various textual documents.

Finally, we discussed the behavioral and structural modeling dichotomy
inherent in decision diagrams. A decision diagram is essentially a data struc-
ture. However, a decision diagram is a canonic representation of a function,
and a function can be seen as the model of the behavior of a certain sys-
tem. This duality associated with decision diagrams is best seen in the one
to one relationship between decision diagrams and the flow control program-
ming structures. We introduced a set of XSLT scripts which convert a given
ROBDD into a branching program in C++ syntax. Those XSLT scripts can
easily be adapted for other high-level programming languages, and several
other types of decision diagrams.

We believe that these examples demonstrate that the proposed XML frame-
work represents a useful addition to the tool set available for people working
with decision diagrams. We hope that others will decide to use it and continue
to build upon it and extend it further.

As for our future work, we intend to continue to seek out new application
possibilities for decision diagrams and the XML-based framework alike.

References

. M. M. Abramovici, A. Breuer, A. Friedman, Digital Systems Testing and
Testable Design, Wiley-IEEE, Press, New York, USA, 1994.

. S. Agaian, J. Astola, K. Egiazerian, Binary Polynomial Transforms and
Nonlinear Digital Filters, Marcel Dekker, New York, United States, 1995.

. E. Ahmed, J. Rose, "The effect of LUT and cluster size on deep sub-
micron FPGA performance and density”, IEEE Trans. Very Large Signal
Integration (VLSI) Systems, Vol. 12, No. 3, 2004, 288-298.

. S. B. Akers, “Binary decision diagrams” IEEE Trans. Comput. vol. C-27,
509-516, June 1978.

. S. B. Akers, “Functional testing with binary decision diagrams”, in Proc.
8th Ann. IEEE Conf. Fault-Tolerant Comput., 75-82, 1978.

. R. B. Ash, Information Theory, John Wiley & Sons, 1967.

. P. Ashar and S. Malik, “Fast functional simulation using branching pro-
grams”, IEEFE Int. Conf. on Computer-Aided Design, ICCAD 1995, San
Jose, Califormia, USA, November 5-9, 1995, 408-412.

. J. Astola, B. Ryabko, " Universal codes as a basis for time series testing”,
Statistical Methodology, Elsevier, Vo. 3, No. 4, 2006, 375-397.

. J. Astola, R. S. Stankovi¢, Fundamentals of Switching Theory and Logic
Design, A Hands on Approach, Springer, 2006.

157

158

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

REFERENCES

H. M. Babu, T. Sasao, “Representations of multiple-output switching
functions using multiple-valued pseudo-Kronecker decision diagrams”,
Proc. 30th Int. Symp. on Multiple-Valued Logic, Portland, Oregon, USA,
May 23-25, 2000, 147-152.

P. Banerjee, “An overview of a compiler for mapping MATLAB programs
onto FPGA”, Proc. Asia and South Pacific Design Automation Conf.,
ASP-DAC 2003, Kitakyushu, Japan, January 21-24, 2003, 477-482.

C. Binstock, D. Peterson, M. Smith, M. Wooding, C. Dix, C. Galtenberg,
XML Schema Complete Reference, Addison Wesley, 2002.

R. T. Boute, “The Binary Decision Machine as a programmable con-
troller”. EUROMICRO Newsletter, Vol. 1(2):1622, January 1976.

R. K. Brayton, G. D. Hatchel, A. Sangiovanni-Vichentelli, F. Somenzi,
A. Aziz, S. T. Cheng, S. A. Edwards, S. P. Khatri, Y. Kukimoto, A.
Pardo, S. Qadeer, R. K. Ranjan, S. Sarwary, T. R. Shiple, G. Swamy, T.
Villa, “VIS”, Proc. 1st Int. Conf. on Formal Methods in Computer-Aided
Design, in Lecture Notes in Computer Science, Vol. 1166, Springer, 1996,
248-256.

D. Brownell, SAX2, O'Reilly, 2002.

S. D. Brown, R. J. Francis, J. Rose, Z. G. Vranesic, Field Programmable
Gate Arrays, Kluwer Academic Publishers, 1992.

R. E. Bryant, “Graph-based algorithms for Boolean functions manipula-
tion”, IEEE Trans. Computers, Vol. C-35, No. 8, 1986, 667-691.

R. E. Bryant, “Symbolic Boolean manipulation with ordered Binary De-
cision Diagrams”, ACM Computing Surveys, Vol. 24, 1992, 293-318.

R. E. Bryant, Y. A. Chen, “An efficient graph representation for arith-
metic circuit verification”, IEEE Trans. Computer-Aided Design of Int-
gerated Circuits and Systems, Vol. 20, No. 12, 2001, 1443-1454.

R. E. Bryant, Y. A. Chen, Verifcation of Arithmetic Functions with Binary
Moment Diagrams, Tech Rept. CMU-CS-94-160, May 31, 1994.

P. Buch, A. Narayan, A. R. Newton, A. L. Sangiovanni-Vincentelli, “Logic
Synthesis for Large Pass-Transistor Circuits”, Proc. Int. Conf. on Com-
puter Aided Design, ICCAD 1993, San Jose, California, USA, November
9-13, 1993, 663-670.

BuildGates User guide Release 2.0, Ambit Design Systems, Santa Clara,
CA, USA, December 1997.

23

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

REFERENCES 159

. J. Burch, E. Clarke, D. Long, K. McMillan, D. Dill, “Symbolic model
checking for sequential circuit verification”, IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, Vol. 13, No. 4, 1994, 401-424.

K. Cagle, SVG Programming: The Graphical Web, Apress, 8 July 2002.

Catapult Synthesis, Mentor Graphics Corp,

http://www.mentor.com/products/esl/high_level_synthesis/catapult_synthesis.

Celoxica Corp, Handle C' Design Language,
http://www.celoxica.com.

S. Chakravarti, “On the complexity of using BDDs for synthesis and anal-
ysis of Boolean circuits”, Proc. 27th Annual Conference on Communica-
tion, Control and Computing, Allerton, Illinois, September 1989, 730-739.

D. L. Chalmers, “History of EDIF and experiences of CAD 031”, Proc.
IEE Colloquium on Electronic Interchange Format - EDIF, London, UK,
November 16, 1988, 1/1 - 1/4.

M. Cirit, “Estimating dynamic power consumption of cMOS Circuits”,
Proc. 5th Int. Conf. on Computer-Aided Design, ICCAD 1987, Santa
Clara, CA, USA, November 1987, 534-537.

E. M. Clarke, M. Fujita, X. Zhao, “Multi-terminal decision diagrams and
hybrid decision diagrams”, in T. Sasao, M. fujita, (Eds.), Representation
of Discrete Functions, Kluwer Academic Publishers, 1995, 91-108.

E. M. Clarke, M. Khaira, X. Zhao, “Word-level model checking: Avoiding
Pentium FDIV error”, Proc. 338rd Design Automation Conference, DAC-
1996, Las Vegas, Nevada, USA, June 3-7, 1996, 645-648.

E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, “Spectral transforms
for extremely large Boolean functions”, in: Kebschull, U., Schubert, E.,
Rosenstiel, W., (Eds.=, Proc. IFIP WG 10.5 Workshop on Applications
of the Reed-Muller Ezxpansion in Circuit Design, 16-17.9.1993, Hamburg,
Germany, 86-90.

E. M. Clarke, K.L.. McMillan. X. Zhao, M. Fujita, and J. Yang “Spectral
Transforms for Large Boolean Functions with Application to Technology
Mapping”, Proc. 30th Design Automation Conference, DAC-1993, Dallas,
Texas, USA, June 14-18, 1993, 54-60.

0. Coudet and J. Madre, “Implicit and incremental computation of primes
and essential primes of Boolean functions”, Proc. 29th Design Automation
Conference, DAC-1992, Anaheim, California, USA, June 8-12, 1992, 36-
39.

160 REFERENCES

35

36.

37.

38.

39.

40.

41.

42.

43.

44.
45.
46.

47.

48.

49

. O. Coudert, Ch. Berthet, J. Ch. Madre, “Verification of sequential ma-
chines using Boolean functional vectors”, Proc. IMEC-IFIP Int. Work-
shop on Applied Formal Methods for Correct VLSI Design, November
1990, 111-128.

T. M. Cover, J. A. Thomas, Elements of Information Theory, John Wiley
& Sons, 1991.

CynApps Suite, Cynthesis Application for Higher Level Design,
http://www.cynapps.com.

M. Dagenais, V. Agarwal and N. Rumin, “McBOOLE: A new procdure
of exact logic minimization”, IEEE Trans. Computer Aided Design of
Integrated Circuits and Systems, Vol. CAD-5, No. 1, 1986, 229-233.

M. Davio, J. P. Deschamps, A. Thayse, Digital Systems with Algorithm
Implementation, Wiley & Sons, 1983.

G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw
Hill, 1994.

DesigWare Components, Quick Reference Guide, Version 1998.02, Syn-
opsys, Mountain View, CA, USA, February 1998.

D. L. Dill, “The Mur¢p verification System”, Proc. 8th Int. Conf. on
Computer-Aided Verification,in Lecture Notes in Computer Science, Vol.

1102, Springer, 1996, 390-393.

Document Object Model (DOM) Level 1 Specification, W3C' Recommen-
dation,
http://www.w3.org/TR/REC-DOM-Level-1/, October 1, 1998.

R. Drechsler, Advanced Formal Verification, Springer, 2004.
R. Drechsler, Formal Verification of Circuits, Springer, 2000.

R. Drechsler, B. Becker, Binary Decision Diagrams - Theory and Imple-
mentations, Kluwer Academic Publishers, 1998.

R. Drechsler, B. Becker, “OKFDDs-algorithms, applications and exten-
sions”, in [145], 163-190.

R. Drechsler, B. Becker, “Ordered Kronecker functional decision diagrams
- a data structure for representation and manipulation of Boolean func-
tions”, IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems, Vol. CAD-17, No. 10, 1998, 965-973.

. R. Drechsler and B. Becker, “Overview of decision diagrams”, IFFE Proc.
Comput. Digit. Tech., Vol. 144, No. 3, May 1997, 187-193.

50

51.

52.

53.

54.

95.

56.

o7.

o8.

59.

60.

61.

62.

REFERENCES 161

. R. Drechler, B. Becker, S. Ruppertz, “The K«BMD: A verification data
structure”, IEEE Design & Test of Computers, April - June, 1996, 51-59.

R. Drechsler, M. Kerttu, P. Lindgren, M. Thornton, “Low power optimiza-
tion techniques for BDD mapped circuits”, Proc. Asia and South Pacific
Design Automation Conference, ASP-DAC 2001, Yokohama, Japan, Jan-
uary 30-February 2, 2001, 615-621.

R. Drechsler, M. Kerttu, P. Lindgren, M. Thornton, “Low power optimiza-
tion techniques for BDD mapped circuits using temporal correlation”,
Proc. Int. Workshop on System-on-Chip for Real Time Applications,
Banff, Alberta, Canada, July 6-7, 2002, 400-409.

R. Drechsler, R. S. Stankovié, T. Sasao, “Spectral transforms and word-
level decision diagrams”, Proc. Workshop on Synthesis and System Inte-
gration of Mized Technologiues, SASIMI-97, December 1-2, 1997, Osaka,
Japan, 39-44.

Edif Electronic Design Interchange Format Version 2 0 0, Electronic In-
dustries Assn, June 1989.

Efficient XML Interchange Working Group, W3 Consortium Recommen-
dation,
http://www.w3.org/XML/EXI/

J. R. Egan, C. L. Liu, “Bipartite Folding and partitioning of a PLA”,
IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems,
Vol. CAD-3, No. 3, 1982, 191-199.

J. Eisenberg, SVG FEssentials (O’Reilly XML), O’'Reilly Media Inc., 5
February 2002.

D. Esposito, Applied XML Programming for Microsoft .NET, Microsoft
Press, October 9, 2002.

Esterel-C Language (ECL), Cadence website,
http://www.cadence.com.

Eztensible Markup Language (XML) 1.0 (Third Edition), W3C Recom-
mendation,
http://www.w3.org/TR/2004/REC-xml-20040204/, 4 February 2004.

R. Ferreira, A. M. Trullemans, “BDD variants for probability polynomi-
als”, Proc. Int. Conf. MALOPD 99, Moscow, Russia, September 13-14,
1999, 12-19.

R. Ferreira, A. M. Trullemans, J. Costa, J. Monteiro, “Probabilistic
bottom-up RTL power estimation”, Proc. First Int. Symp. on Qual-
ity of Electronic Design, ISQED-2000, San Jose, California, USA, March
20-22, 2000, 439-443.

162 REFERENCES

63

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

4.

75.

. N. J. Fine, “On the Walsh functions”, Trans. Amer. Math. Soc., No. 3,
1949, 372-414.

R. J. Francis, J. Rose, Z. Vranesic, “Technology mapping of Look-up
Table based FPGAs for performance”, Proc. Int. Conf. Computer Aided
Design, Santa Clara, CA, USA, March 11-14, 1991, 568-571.

J. B. Fourier, “Theorie analytique de la chaleur”, Euvres I, see also the
Fourier’s paper from 1811 published 1824 in Mem. de I’Acad. des Sci.,
Paris, (2), 4, 1819/20, 135-55, published 1824.

H. Fujiwara, Design and Test for Digital Systems, Kogakutsho, Tokyo,
Japan, 2004.

H. Fujiwara, Logic Logic Testing and Design for Testability, MIT Press,
Boston, USA, 1985.

D. Galloway, “The transmogrifier C hardware description language and
compiler for FPGAs”, Proc. IEEE Symp. on FPGAs for Custom Com-
puting Machines (FCCM 95), Napa, California, USA, April 19-21, 1995,
136-144.

J. R. Gardner, Z. L. Rendon, XSLT and XPATH: A Guide to XML Trans-
formations, Prentice Hall PTR, 2001.

S. Geman, D. Geman, “Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images”, IEEE Trans. Pattern Anal. Machine
Intelligence, Vol. 6, No. 6, 1984, 721-741.

A. Ghosh, S. Devedas, K. Keutzer, J. White, “Estimation of average
switching activity in combinational and sequential circuits”, Proc. 29th
Design Automation Conference, DAC-1992, Anaheim, Callifornia, USA,
June 8-12, 1992, 253-259.

M. Gokhale, J. Stone, J. Arnold, M. Kalinowski, “Stream-oriented FPGA
computing in the Streams-C high level language”, Proc. IEEE Symposium
on Field-Programmable Custom Computing Machines (FCCM’00), Napa,
California, April 17-19, 2000, 49-56.

C. F. Goldfarb, Y. Rubinsky, The SGML Handbook, Oxford University
Press, 1991.

G. Grimmett, D. Stirzaker, Probability and Random Processes, 2nd ed.,
Oxford University Press, 1992.

W. Gunther, R. Drechsler, “Action: Combining logic synthesis and tech-
nology mapping for MUX based FPGAs”, Proc. 26th Euromicro Conf.,
Maastricht, Netherlands, September 5-7, 2000, Vol. 1, 130-137.

76

7.

78.

79.

80.

81.

82.

83.

84.
85.

86.
87.

88.

89.

REFERENCES 163

. W. Gunther, R. Drechsler, “Performance driven optimization for MUX
based FPGASs”, Proc. 14th Int. Conf. on VLSI Design, Bangalore, India,
January 3-7, 2001, 311-316.

G. D. Hachtel, A. R. Newton, A. L. Sangiovanni-Vincentelli, “Some results
in optimal PLA folding”, Proc. Int. Conf. on Circuits and Computers,
I1CCC-80, Rye, New York, USA, October 1-3, 1980, 1023-1028.

G. D. Hachtel, A. R. Newton, A. L. Sangiovanni-Vincentelli, “An algo-
rithm for optimal PLA folding”, IEEE Trans. Computer Aided Design of
Integrated Circuits and Systems, Vol. CAD-1, No. 2, 1982, 63-77.

G. D. Hachtel, F. Somenzi, Logic Synthesis and Verification, Kluwer Aca-
demic Publishers, 2000.

B. V. Hagen, SGML for Dummies, John Wiley & Sons, 1997.

E. R. Harold, Processing XML with Java: A Guide to SAX, DOM, JDOM,
JAXP, and TrAX, Addison-Wesley, 2002.

E. R. Harold, W. S. Means, XML in a Nutshell, 2nd Edition, O’Reilly,
2002.

M. Haldar, A. Nayak, A. Choudhary, and P. Banerjee, “A system for
synthesizing optimized FPGA hardware from Matlab”, Proc. Int. Conf.
on Computer Aided Design, San Jose, CA, USA, November 4-8, 2001,
314-319.

F. Harary, Graph Theory, Reading, MA: Addison-Wesley, p. 6, 1994.

H. M. Hasan Babu, T. Sasao, “Representations of multiple-output switch-
ing functions using multiple-valued pseudo-Kronecker decision diagrams”,
Proc. 30th Int. Symp. on Multiple-Valued Logic, Portland, Oregon, USA,
May 23-25, 2000, 147-152.

S. Holzner, Inside XSLT, New Riders Publishing, 10 July 2001.

A. J. Hu, D. L. Dill, A. J. Drexler, C. H. Yang, “High-level Specification
and Verification with BDDs”, Proc. 4th Int. Conf. on Computer-Aided
Verification, in Lecture Notes in Computer Science, Vol. 663, Springer,
1992, 82-95.

A. J. Hu, D. L. Dill, “Reducing BDD size by exploiting functional depen-
dencies”, Proc. 30st Design Automation Conference, DAC-1993, Dallas,
USA, Juner 14-18, 1993, 266-271.

A. J. Hu, G. York, D. L. Dill, “New techniques for efficient verification
with implicitly conjoined BDDs”, Proc. 31st Design Automation Confer-
ence, DAC-1994, San Diego, California, USA, June 6-10, 1994, 276-281.

164

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

REFERENCES

S. L. Hurst, D. M. Miller, J. C. Muzio, Spectral Techniques in Digital
Logic, Academic Press, 1985.

Y. Iguchi, T. Sasao, M. Matsura, “Evaluation of multiple-output logic
functions using decision diagrams”, Proc. Asia and South Pacific Design
Automation Conference, ASP-DAC 2003, January 21-24, 2003, 312-315.

Y. Iguchi, T. Sasao, and M. Matsura, “On properties of Kleene TDDs”,
Proc. Asia and South Pacific Design Automation Conference, ASP-DAC
1997, Yokohama, Japan, January 28-31, 1997, 473-476.

G. Jennings, “Symbolic incompletely specified functions for correct eval-
uation in the presence of indeterminate input variables”, Proc. Twenty-
FEight Annual Hawaii Int. Conf. on System Sciences, HICSS-28, Vol. 1,
Architecture, January 3-6, 1995, 23-31.

H. J. Kahn, R. F. Goldman, “The eElectronic Design Interchange Format
EDIF: present and future”, Proc. 29th Design Automation Conference,
DAC-1992, June 8-12, 1992, 666-671.

M. G. Karpovsky, Finite Orthogonal Series in the Design of Digital De-
vices, Wiley & Sons, 1976.

J. L. Kouloheris, A. Gamal, “FPGA performance versus cell granularity”,
Proc. IEEE Custom Integration Circuit Conf., San Diego, CA, USA, May
12-15, 1991, 6.2/1-6.2/4.

A. Kuhlmann, A. Srinivasan, D. P. Lapotin, “Verty - A formal verifica-
tion program for custom CMOS circuits”, IBM Journal for Research and
Development, Vol. 39, No. 1/2, January/March 1995, 149-165.

G. A. Kukharev, V.P. Shmerko, and E.N. Zaitseva, Multiple- Valued Data
Processing Algorithms and Systolic Processors, Minsk: Science and Engi-
neering, 1990.

M. Kwiatkowska, G. Norman, D. Parker, “PRISM: Probabilistic Symbolic
Model Checker”, Proc. TOOLS 2002, Lecture Notes in Computer Science,
No. 2324, 2002, 200-204.

Y. T. Lai, S. Sastry, “Edge-valued Binary Decision Diagrams for Mul-
tilevel Hierarchical Verification”, Proc. Design Automation Conference,
DAC-1992, Anaheim, California, USA, June 8-12, 1992, 668-613.

T. Larrabee, “Test pattern generation using Boolean satisfiability”, IEEE
Trans. Computer-Aided Design of Integrated Clircuits and Systems, Vol.
CAD-11, No. 1, 1992, 4-15.

C. Y. Lee, “Representation of switching circuits by binary-decision pro-
grams” Bell. Syst. Tech. J., vol. 38, 985-999, July 1959.

REFERENCES 165

103. W. Leelapatra, K. Kanchanasut, C. Lurnisap, “Displacement BDD and
geometric transformations of binary decision diagram encoded images”,
Pattern Recognition Letters, No. 29, Elsevier, 2008, 438-456.

104. W. Leelapatra, K. Kanchanasut, C. Lurnisap, “Geometric transforma-
tions of BDD encoded image”, Int. J. Appl. Math., Vol. 1, No. 36, 2008,
438-456.

105. C. Lurnisap, K. Kanchanasut, T. Siriboon, “Basic binary decision dia-
gram operations for image processing”, Proc. Third Asian Computing
Science Conf., Lecture Notes in Computer Science, Springer, 1997, 368-
370.

106. S. Mangano, XSLT Cookbook, O’Reilly Media Inc., December 2002.

107. R. Marculescu, D. Marculescu, M. Pedram, “Efficient power estimation
for highly correlated input streams”, Proc. 32th Design Automation Con-
ference, DAC-1995, San Francisco, California, USA, June 12-16, 1995,
628-634.

108. R. Marculescu, D. Marculescu, M. Pedram, “Information theoretic ma-
sures for power analysis”, IEEE Trans. Computer Aided Design of Inte-
grated Circuits and Systems, Vol. CAD-15, No. 6, 1996, 599-610.

109. P. Marinos, “Derivation of minimal complete sets of test-input sequences
using Boolean differences”, IEEE Trans. Computers, Vol. 20, No. 1,
1981, 25-32.

110. P. Mateu-Villarroya, J. Prades-Nebot, “Lossless image compression using
ordered binary-decision diagrams”, IEEE Electronics Letters, Vol. 37, No.
3, 2001, 162-163.

111. C. Maxfield, The Design Warrior’s Guide to FPGAs, Elsevier, Amster-
dam, Netherlands, 2004.

112. E. McCluskey, “Minimization of Boolean functions”, The Bell Systems
Technical Journal, Vol. 35, November 1956, 1417-1444.

113. B. McLaughlin., J. Edelson, Java and XML, O'Reilly Media, December
8, 2006.

114. K. L. McMillan, Symbolic Model Checking: an Approach to the State Fzx-
plosion Problem, PhD Dissertation, School of Computer Science, Carnegie
Mellon University, Pittsburgh, United States, 1992.

115. D. Megginson, Java SAX, Features and Properties,
http://www.saxproject.org/get-set.html

166 REFERENCES

116. D. M. Miller, “An improved method for computing a generalized spec-
tral coefficient,” IEEE Trans. on Computer-Aided Design of Integrated
Clircuits and Systems, Vol. 17, No. 3, pp. 233-238, March, 1998.

117. D. Miller, R. Drechsler, “Implementing a multiple-valued decision di-
agram package”, Proc. 28th Int. Symp. on Multiple-Valued Logic,
Fukuoka, Japan, 27-29 May, 1998, 52-57.

118. D. Miller, R. Drechsler, “On the construction of multiple-valued decision
diagrams”, Proc. 32nd Int. Symp. on Multiple- Valued Logic, Boston,
Massachusetts, USA, May 15-18, 2002, 245-253.

119. S. Minato, Binary Decision Diagrams and Applictions for VLSI Synthe-
sis, Kluwer Academic Publishers, 1996.

120. S. Minato, “Zero-suppressed BDDs for set manipulation in combinato-
rial problems”, Proc. Design Automation Conference, DAC-1995, San
Francisco, California, USA, June 12-16, 1993, 272-277.

121. S. Minato, N. Ishiura, S. Yajima, “Shared binary decision diagram with
attributed edges for efficient Boolean function manipulation”, Proc. 27th
Design Automation Conference, DAC-1990, Orlando, Florida, USA, June
24-28, 1990, 52-57.

122. S. Muroga, Logic Design and Switching Theory, Jon Wiley & Sons, 1979,
Reprinted edition Krieger Publishing Company, Malaber, FL, USA, 1990.

123. S. Nagayama, T. Sasao, “Compact representations of logic functions using
heterogeneous MDDs”, Proc. 33rd Int. Symp. on Multiple- Valued Logic,
Tokyo, Japan, May 15-18, 2003, 247-252.

124. Overview of the Open SystemC' Initiative, SystemC website,
http://www.systemc.org.

125. 1. Page, “Hardware-software co-synthesis research at Oxford”, Proc. IEE
Vacation School on Hardware/Software Co-design, Manchester, UK, July
13-16, 1997.

126. A. Pal, “An algorithm for optimal logic design using multiplexers”, IEEE
Trans. Computers, Vol. C-35, No. 8, 1986, 755-757.

127. A. Pal, R. K. Gorai, V. V. Raju, “Synthesis of multiplexer networks using
ratio parameters and mapping onto FPGAs”, Proc. 8th Int. Conf. on
VLSI Design, New Delhi, India, January 4-7, 1995, 63-68.

128. K. P. Parker, E. J. McCluskey, “Analysis of logic circuits with faults
using input probabilities”, IEEE Trans. Computers, Vol. 24, No. 5, 1975,
573-578.

REFERENCES 167

129. K. P. Parker, E. J. McCluskey, “Probabilistic Treatment of General Com-
binational Networks”, IEEE Trans. Computers, Vol. 24, No. 6, 1996,
588-598.

130. D. L. Perry, VHDL: Programming by Ezamples, McGraw-Hill Profes-
sional, 2002.

131. C. Pixley, S. W. Jeong, G. D. Hatchel, “Exact calculation of synchro-
nizing sequences on based on Binary decision diagrams”, IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, Vol. CAD-
13, No. 8, 1994, 1024-1034.

132. D. V. Popel, “Synthesis of low-power digital circuits derived from Binary
decision diagrms, Proc. IEFEE FEuropean Conference on Clircuit Theory
and Design, ECCTD’01, Espoo, Finland, August 28-31, Vol. 3, 2001,
317-320.

133. W. Quine, “The problem of simplifying truth functions”, Amer. Math.
Monthly, Vol. 59, 1952, 521-531.

134. K. Ravi, F. Somenzi, “High-density reachability ananlysis”, Proc.
IEEE/ACM Int. Conf. on Computer-Aided Design, San Jose, Califor-
nia, USA, November 5-9, 1995, 154-158.

135. S. M. Reddy, Fasily Testable Realization for Logic Functions, Technical
Report No. 54, Univ. of lowa, USA, May 1972.

136. L. Robert, G. Malandain, “Fast binary image processing using Binary de-
cision diagrams”, Proc. IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’97), San Juan, Puerto Rico, June
17-19, 1997, 97-102.

137. J. Rose, R. J. Francis, D. Lewis, P. Chow, “Architecture of Field Pro-
grammable Gate Arrays, the effect of logic block functionality on area
efficiency”, IEFE Journal on Solid-State Circuits, Vol. 25, No. 5, 1990,
1217-1225.

138. J. Rose, A. Gamal, A. Sangiovanni-Vincentelli, “Architecture of Field
Programmable Gate Arrays”, Proc. IEEFE, Vol. 81, No. 7, 1993, 1013-
1029.

139. R. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued minimization
for PLA optimization”, IEEE Trans. Computer Aided Design of Inte-
grated Circutis and Systems, Vol. CAD-6, No. 5, 1987, 727-750.

140. T. Sasao, “Easily testable realizations for Generalized Reed-Muller ex-
pressions”, IEEE Trans. Computers, Vol. 46, No. 6, 1997, 709-716.

141. T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic Pub-
lishers, 1999.

168 REFERENCES

142. T. Sasao, “Ternary decision diagrams and their applications”, Proc. Int.
Symp. on Multiple- Valued Logic, ISMVL-97, Antigonish, Nova Scotia,
Canada, May 28-30, 1997, 241-250.

143. T. Sasao. “Ternary decision diagrams and their applications” in: [145],
269-292.

144. T. Sasao, J. T. Butler, “A design method for Look-up Table type FPGA
by Pseudo-Kronecker expansion”, Proc. 24th Int. Symp. on Multiple-
Valued Logic, May 25-27, 1994, 97-106.

145. T. Sasao, M. Fujita, (ed.), Representations of Discrete Functions, Kluwer
Academic Publishers, 1996.

146. Scalable Vector Graphics (SVG) 1.1 Specification, W3C Recommenda-
tion,
http://www.w3.org/TR/SVG11, 14 January 2003.

147. F. F. Sellers, M. Y. Hsiao, L. W. Bearnson, “Analyzing errors with the
Boolean difference”, IEEE Trans. Computers, Vol. 17, No. 7, 1968,
676-683.

148. M. Shahdad, “An interface between VHDL and EDIF”, Digest of Papers
of Thirty-Third IEEE Computer Society Int. Conf. Compcon Spring 88,
February 29-March 3, 1988, 316 - 317.

149. C. E. Shannon, “A mathematical theory of communications”, Bell Sys.
Tech. J., Vol. 27, 1848.

150. F. Somenzi, “Efficient manipulation of decision diagrams”, Int. Journal
on Software Tools for Technology Transfer, 3, 2001, 171-181.

151. F. Somenzi, “CUDD Decision Diagram Package”,
http://bessie.colorado.edu”™/fabio/CUDD

152. M. A. Spink, “An introduction to EDIF views, structures and syntax”,
Proc. IEE Colloguium on Electronic Interchange Format - EDIF, London,
UK, November 16, 1988, 2/1-2/4.

153. M. Starkey, R. E. Bryant, Using Ordered Binary Decision Diagrams for
Compressing Images and Image Sequences, Technical Report, CMU-CS,
1995, 95-105.

154. R. S. Stankovié¢, J. T. Astola, Spectral Interpretation of Decision Dia-
grams, Springer, 2003.

155. R. S. Stankovi¢, M. S. Stankovié¢, D. Jankovié¢, Spectral Transforms in

Switching Theory, Definitions and Calculations, Nauka, Belgrade, Serbia,
1998.

REFERENCES 169

156. S. Stankovié, J. Astola, “Calculating Entropy Estimate Using Binary
Decision Diagrams”, Proc. XI International Symposium on Problems of
Redundancy in Information and Control Systems, 02 - 06 July, 2007, Saint
Petersburg, Russia, 32-36.

157. S. Stankovié, J. Astola, “Method for automatic generation of branching
programs using decision diagrams”, Proc. The 2007 Int. TICSP Work-
shop on Spectral Methods and Multirate Signal processing, SMMSP 2007,
Moscow, Russia, September 3-4, 2007, paper cr1023.

158. S. Stankovié, J. Astola, “QDD Based Method of Automatic Circuit De-
sign for Xilinx Virtex-5 FPGA Devices”, Journal of Multiple- Valued Logic
and Soft Computing, accepted for publicaiuton.

159. S. Stankovié¢, J. Astola, “XML framework for various types of decision
diagrams for discrete functions”, IEICE Trans. Inf. and Syst., Vol. E90-
D, No. 11, 2007, 1731-1740.

160. S. Stankovié, J. Astola, “XSLT Based Method for Automatic Genera-
tion of a Graphical Representation of a Decision Diagram Represented
using XML”, 7th International Workshop on Boolean Problems, Freiberg,
Germany, 21-22 Sept. 2006.

161. S. Stankovié¢., J. Takala, J. Astola, “Method for Automatic Generation
of RTL in VHDL Using Decision Diagrams”, Proc. The 2006 Int. TICSP
Workshop on Spectral Methods and Multirate Signal processing, SMMSP,
Florence, Italy, 2006.

162. S. Stojkovié¢, “UDDP Universal Decision Diagram Package”, Acta FElec-
trotechnica et Informatica, Vol. 5, No. 1, 2005, Kosice, Slovakia.

163. System Compiler: Compiling ANSI C/C++ to Synthesis-ready HDL.
Whitepaper. C' level Design Incorporated,
http://www.cleveldesign.com.

164. M. A. Thornton, D. M. Miller, R. Drechsler, Spectral Techniques in VLSI
CAD, Kluwer Academic Publishers, 2001.

165. M. A. Thornton, V. S. S. Nair, “Efficient calculation of spectral coeffi-
cients and their applications”, IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, Vol. CAD-14, No. 11, 1995, 1328-1341.

166. H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, A. Sangiovanni-Vincentelli,
“Implicit state enumeration for finite state machines using BDDs”, Digest
of Technical Papers of IEEE Int. Conf. on Computer-Aided Design,
ICCAD’90, Santa Clara, California, USA, November 11-15, 1990, 130-
133.

170 REFERENCES

167. S. Trimberger, (ed.), Field-Programmable Gate Arrays, Kluwer Academic
Publisher, Boston, MA, USA, 1994.

168. S. Trimberger, “Effect of FPGA architecture to FPGA routing”, Proc.
82nd Design Automation Conference, DAC-1995, San Francisco, CA,
USA, June 12-16, 1995, 574-578.

169. K. Tsuchiya, Y. Tekefuji, “A neural network approach to PLA folding
problems”, IEEE Trans. Computer-Aided Design of Integral Circuits, Vol.
CAD-15, No. 10, 1996, 1299-1305.

170. R. Ubar, “Test Generation for Digital Circuits Using Alternative Graphs
(in Russian)”, in Proc. Tallinn Technical University, No.409, 7581,
Tallinn, Estonia, 1976.

171. S. H. Unger, Asynchronous Sequential Switching Circuits, John Wiley &
Sons, 1969.

172. Virtex-5 SXT Platform Technical Background, Xilinx, inc., 5 February
2007.

173. S. B. K. Vrudhula, M. Pedram, Y. T. Lai, “Edge-valued Binary decision
diagrams”, in [145], 109-132.

174. W8C XML Schema Definition Language (XSDL) 1.1 Part 1: Structures,
W3C Working Draft,
http://www.w3.org/TR/xmlschemall-1/, 30 August 2007.

175. J. L. Walsh, “A closed set of orthogonal functions”, American Journal of
Mathematics, Vol. 55, 1923, 5-24.

176. A. H. Watt, C Lilley, SVG Unleashed, Sams, 20 September 2002.

177. R. A. Wod, “A high density programmable logic array chip”, IEEE Trans.
Computers, Vol. C-28, No. 9, 1979, 602-608.

178. W. Wolf, FPGA-Based System Design, Prentice-Hall, Englewood Clifs,
NJ, USA, 2004.

179. J. Wu, K. Chung, “A new binary image representation: Logicodes”, J.
Vis. Commu. Image Represent., Vol. 8, No. 3, 1997, 291-298.

180. XSL Transformations (XSLT) Version 1.0, W3C Recommendation,
http://www.w3.org/TR/xslt, 16 November 1999.

181. S. Yang, “Logic Synthesis and Optimization Benchmarks, Version 3.0,”
Tech. Report, Microelectronics Center of North Carolina, 1991.

182. S. N. Yanushkevich, D.M. Miller, V.D. Shmerko, R.S. Stankovié, Decision
Diagram Techniques for Micro- and Nanoelectronics Design Handbook,
CRC Press/Taylor & Frencis, 2006.

REFERENCES 171
183. B. Zeidman, Design with FPGAs and CPLDs, CMP Books, Manharst,
NY, USA, 2002.

184. XML Binary Characterization, W3 Consortium Recommendation,
http://www.w3.org/TR/xbc-characterization/, 31 March 2005.

185. XML Path Language (XPath) Version 1.0, W3C Recommendation,
http://www.w3.org/TR/1999/REC-xpath-19991116, 16 November 1999.

186. XML Schema 1.1 Part 2: Datatypes, W3C Working Draft,
http://www.w3.org/TR/xmlschemall-2/, 17 February 2006.

Appendiz A

XML Schema for XML representation of decision diagrams.

<?7xml version="1.0" 7>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.stane-island.net/theLab/XML"

elementFormDefault="qualified"
attributeFormDefault="unqualified"
xmlns:dd="http://www.stane-island.net/theLab/XML">

<xsd:complexType name="PointType">
<xsd:choice>
<xsd:element name="next_child" type="dd:PointType"
minOccurs="0" maxOccurs="1" nillable="true" />
<xsd:element name="next_parent" type="dd:PointType"
minOccurs="0" maxOccurs="1" nillable="true" />
</xsd:choice>
<xsd:attribute name="point" type="xsd:integer" />
<xsd:attribute name="variables" type="xsd:string" />
</xsd:complexType>

<xsd:complexType name="NodeType">

<xsd:sequence>
<xsd:element name="next" type="dd:NodeType"
minOccurs="0" maxOccurs="1" nillable="true" />
<xsd:element name="parents" type="dd:PointType"
minOccurs="0" maxOccurs="1" nillable="true" />

173

174 APPENDIX A

<xsd:element name="children" type="dd:PointType"

minOccurs="0" maxOccurs="1" nillable="true" />
</xsd:sequence>

<xsd:attribute name="terminal" type="xsd:integer"
<xsd:attribute name="id" type="xsd:integer" />
<xsd:attribute name="level" type="xsd:integer" />
<xsd:attribute name="constant" type="xsd:integer"
<xsd:attribute name="rule" type="xsd:string" />
</xsd:complexType>

<xsd:complexType name="TreeType">
<xsd:all>
<xsd:element name="root" type="dd:NodeType"
minOccurs="1" maxOccurs="1" />
</xsd:all>
<xsd:attribute name="type" type="xsd:string" />
<xsd:attribute name="num_levels"
type="xsd:integer" />
</xsd:complexType>

<xsd:element name="tree" type="dd:TreeType"/>

</xsd:schema>

/>

/>

Appendiz B

Function 9sym from MCNC set of benchmarks implemented using BDD.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY DD_proba IS
PORT (conO, conl, x0, x1, x2, x3, x4, x5, x6, x7, x8
: IN std_logic; o : OUT std_logic);

END ENTITY DD_proba;

ARCHITECTURE DD_arch OF DD_proba IS

COMPONENT my_shannon
PORT (£f0, f1, x : IN std_logic; z : OUT std_logic);
END COMPONENT;

SIGNAL 02416, 01601, 0928, 0472, 0203, o064, o4, o3,

02, 063, 062, 0202, 0201, 0471, 0470, 0927, 0926, 0925,
0459, 0188, 039, 01600, 01599, 01598, 01597, 01596, 0155,
02415, 02414, 02413, 02412, 02411, 0387 : std_logic;
BEGIN

52416 : my_shannon
PORT MAP (01601, 02415, x0, o);

175

176 APPENDIX B

51601 : my_shannon
PORT MAP (0928, 01600, x1, 01601);

5928 : my_shannon
PORT MAP (0472, 0927, x2, 0928);

s472 : my_shannon
PORT MAP (0203, 0471, x3, 0472);

5203 : my_shannon
PORT MAP (064, 0202, x4, 0203);

s64 : my_shannon
PORT MAP (o4, 063, x5, 064);

s4 : my_shannon
PORT MAP (conO, 03, x6, 04);

s3 : my_shannon
PORT MAP (con0O, 02, x7, 03);

s2 : my_shannon
PORT MAP (conO, conil, x8, 02);

s63 : my_shannon
PORT MAP (03, 062, x6, 063);

s62 : my_shannon
PORT MAP (02, conl, x7, 062);

5202 : my_shannon
PORT MAP (063, 0201, x5, 0202);

5201 : my_shannon
PORT MAP (062, conl, x6, 0201);

s471 : my_shannon
PORT MAP (0202, 0470, x4, 0471);

s470 : my_shannon
PORT MAP (0201, conl, x5, 0470);

5927 : my_shannon
PORT MAP (0471, 0926, x3, 0927);

5926 : my_shannon
PORT MAP (0470, 0925, x4, 0926);

5925 : my_shannon

PORT MAP (conl, 0459, x5, 0925);

s459 : my_shannon

PORT MAP (conl, 0188, x6, 0459);

5188 : my_shannon

PORT MAP (conl, 039, x7, 0188);

s39 : my_shannon

PORT MAP (conl, con0O, x8, 039);

51600 : my_shannon
PORT MAP (0927, 01599,

51599 : my_shannon
PORT MAP (0926, 01598,

51598 : my_shannon
PORT MAP (0925, 01597,

s1597 : my_shannon
PORT MAP (0459, 01596,

51596 : my_shannon

x2,

x3,

x4,

x5,

01600) ;

01599) ;

01598) ;

01597) ;

PORT MAP (0188, 0155, x6, 01596);

s155 : my_shannon

PORT MAP (039, con0O, x7, 0155);

52415 : my_shannon
PORT MAP (01600, 02414,

52414 : my_shannon
PORT MAP (01599, 02413,

52413 : my_shannon
PORT MAP (01598, 02412,

52412 : my_shannon
PORT MAP (01597, 02411,

52411 : my_shannon

x1,

x2,

x3,

x4,

02415) ;

02414);

02413);

02412);

PORT MAP (01596, 0387, x5, 02411);

s387 : my_shannon

PORT MAP (0155, con0O, x6, 0387);

END DD_arch;

177

Appendix C

Code of the SVG document with graphical representation of a ROBDD of the
function f(x1,z2,23) = 21T V T223.

<svg:svg width="21lcm" height="156cm" version="1.1"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.o0rg/2000/svg">
<svg:title>BDD</svg:title>
<svg:g id="node0" text-align="center">
<svg:ellipse cx="10.5cm" cy="1.75cm" rx="0.5cm"
ry="0.5cm" stroke="rgb(0,0,0)" fill="rgb(240,240,240)"
stroke-width="1" />
<svg:line x1="10.5cm" y1="2.25cm"
x2="5.26cm" y2="4.75cm"
style="fill:none;stroke:rgb(128,128,128);
stroke-width:1" />
<svg:text x="7.975cm" y="3.4cm"
font-family="Times Roman"
font-size="12" fill="black">x1_comp</svg:text>
<svg:line x1="10.5cm" y1="2.25cm"
x2="15.75cm" y2="4.75cm"
style="fill:none;stroke:rgb(128,128,128);
stroke-width:1" />
<svg:text x="13.226cm" y="3.4cm"
font-family="Times Roman"
font-size="12" fill="black">x1</svg:text>
<svg:text x="10.5cm" y="1.95cm"

179

180 APPENDIX C

style="font-family:TimesRoman;
font-size:24;fill:black;">S</svg:text>
</svg:g>
<svg:g id="nodel" text-align="center">
<svg:ellipse cx="5.25cm" cy="5.25cm"
rx="0.5cm" ry="0.5cm" stroke="rgb(0,0,0)"
fill="rgb(240,240,240)"
stroke-width="1" />
<svg:line x1="5.25cm" y1="5.75cm"
x2="5.26cm" y2="11.75cm"
style="fill:none;stroke:rgb(128,128,128);
stroke-width:1" />
<svg:text x="5.35cm" y="8.65cm"
font-family="Times Roman"
font-size="12" fill="black">x2_comp</svg:text>
<svg:line x1="5.25cm" y1="5.75cm"
x2="10.5cm" y2="8.25cm"
style="fill:none;stroke:rgb(128,128,128);
stroke-width:1" />
<svg:text x="7.975cm" y="6.9cm"
font-family="Times Roman"
font-size="12" fill="black">x2</svg:text>
<svg:text x="5.26cm" y="5.45cm"
style="font-family:TimesRoman;
font-size:24;fill:black;">S</svg:text>
</svg:g>
<svg:g id="node2" text-align="center">
<svg:rect x="4.875cm" y="11.75cm"
width="0.75cm" height="1cm"
stroke="rgb(0,0,0)" fill="rgb(240,240,240)"
stroke-width="1" />
<svg:text x="5.26cm" y="12.45cm"
style="font-family:TimesRoman;
font-size:24;fill:black;">0</svg:text>
</svg:g>
<svg:g id="node3" text-align="center">
<svg:ellipse cx="10.5cm" cy="8.75cm"
rx="0.5cm" ry="0.5cm"
stroke="rgb(0,0,0)" fill="rgb(240,240,240)"
stroke-width="1" />
<svg:line x1="10.5cm" y1="9.25cm"
x2="5.26cm" y2="11.75cm"
style="fill:none;stroke:rgb(128,128,128);
stroke-width:1" />
<svg:text x="7.975cm" y="10.4cm"
font-family="Times Roman"
font-size="12" fill="black">x3_comp</svg:text>
<svg:line x1="10.5cm" y1="9.25cm"
x2="15.75cm" y2="11.75cm"

181

style="fill:none;stroke:rgb(128,128,128);
stroke-width:1" />
<svg:text x="13.225cm" y="10.4cm"
font-family="Times Roman"
font-size="12" fill="black">x3</svg:text>
<svg:text x="10.5cm" y="8.95cm"
style="font-family:TimesRoman;
font-size:24;fill:black;">S</svg:text>

</svg:g>

<svg:g id="node4" text-align="center">
<svg:rect x="15.375cm" y="11.75cm"
width="0.75cm" height="1cm"
stroke="rgb(0,0,0)" fill="rgb(240,240,240)"
stroke-width="1" />
<svg:text x="15.75cm" y="12.45cm"
style="font-family:TimesRoman;
font-size:24;fill:black;">1</svg:text>

</svg:g>

<svg:g id="nodeb5" text-align="center">
<svg:ellipse cx="15.75cm" cy="5.25cm"
rx="0.5cm" ry="0.5cm"
stroke="rgb(0,0,0)" fill="rgb(240,240,240)"
stroke-width="1" />
<svg:line x1="15.75cm" y1="5.75cm"
x2="10.5cm" y2="8.25cm"
style="fill:none;stroke:rghb(128,128,128);
stroke-width:1" />
<svg:text x="13.225cm" y="6.9cm"
font-family="Times Roman"
font-size="12" fill="black">x2</svg:text>
<svg:line x1="15.75cm" y1="5.75cm"
x2="15.75cm" y2="11.75cm"
style="fill:none;stroke:rgb(128,128,128);
stroke-width:1" />
<svg:text x="15.85cm" y="8.65cm"
font-family="Times Roman"
font-size="12" fill="black">x2_comp</svg:text>
<svg:text x="15.75cm" y="5.45cm"
style="font-family:TimesRoman;
font-size:24;fill:black;">S</svg:text>

</svg:g>

</svg:svg>

