
��������	
����������������	
��

���������	�
�


�����������		�
����������	�������	�����������	

�����������



 
 
Tampereen teknillinen yliopisto. Julkaisu 706  
Tampere University of Technology. Publication 706 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Jussi Jalkanen 
 
Tubular Truss Optimization Using Heuristic Algorithms 
 
Thesis for the degree of Doctor of Technology to be presented with due permission for 
public examination and criticism in Konetalo Building, Auditorium K1703, at Tampere 
University of Technology, on the 4th of December 2007, at 12 noon.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tampereen teknillinen yliopisto - Tampere University of Technology 
Tampere 2007 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISBN 978-952-15-1891-1 (printed) 
ISBN 978-952-15-1920-8 (PDF) 
ISSN 1459-2045 
 
 



 iii

Abstract 

The topic of this thesis is discrete tubular truss optimization using heuristic 

multipurpose algorithms. The multicriteria topology, shape and sizing 

optimization problem has been formulated based on practical real life needs. 

This means that in addition the material cost also the manufacturing cost has 

been taken into account, design constraints satisfy the demands of steel 

design rules (Eurocode 3) and the selection of available tubular profiles does 

not have to be in a special way limited. Mass, cost or displacement have been 

used as the objective function criteria in the example problems. The design 

constraints ensure that truss members and joints are strong enough, single 

members or the whole truss do not buckle, certain displacements are small 

and natural frequencies do not locate in forbidden intervals. 

The tubular truss optimization problem has been solved using four 

multipurpose heuristic algorithms. Two of them are local search algorithms 

simulated annealing (SA) and tabu search (TS) and two of them population 

based methods genetic algorithm (GA) and particle swarm optimization 

(PSO). The efficiency of heuristic algorithms has been studied empirically in 

several example problems. In the first academic ten-bar truss example 

problem heuristic algorithms have also been compared to a different type of 

branch&bound algorithm. The rest of the example problems deal with tubular 

plane and space trusses. Also the conflict of mass and cost and the effect of 

the number of different design variables to the final solution have been 

studied.   
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1. Introduction 

1.1 Background 

Welded tubular steel trusses have become common in the applications of 

structural and mechanical engineering (Fig. 1.1). There are several reasons 

which have led to this and one of the most significant is the excellent 

mechanical properties of tubular members. Structural hollow sections have 

high bending and torsional rigidity compared to their weight and they are 

suitable for compressed members. Another reason that can be mentioned is 

the large amount of research which has been done to ensure the safety of the 

design codes of tubular members and joints. Also the selection of 

commercially available tubular profiles is large which makes it possible to 

choose appropriate profiles in a truss.  

Figure 1.1 a) Welded tubular roof trusses and columns. b) Rectangular 

(RHS), circle (CHS) and square (SHS) hollow section. 

In the design of tubular trusses the next natural step is to move from analysis 

to optimization. Structural optimization offers a systematic way to go further 

than the traditional analysis of a few candidate structures that were selected 

based on designer’s experience and intuition. Modern optimization techniques 

with remarkably improved computer capacity help to find new better designs 

which would be otherwise left undiscovered.  

a) b) 
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The three basic approaches of structural optimization are sizing, shape and 

topology optimization (Fig. 1.2). In sizing optimization the idea is to change 

the cross-section dimensions or properties like plate thickness or cross-

section area. In shape optimization the target is to find the best shape of the 

structure. In topology optimization the designer seeks the optimum structure 

by changing the amount and the location of material or components in the 

structure. The combination of these approachies is also possible and it can be 

assumed to give the best final result. In the literature the fundamental 

concepts of structural optimization have been presented in the text books of 

Arora [4], Farkas & Jármai [17], Haftka & Gürdal [23], Kirsch [36] and 

Vanderplaats [66].  

 

 

Figure 1.2. a) The sizing optimization, b) shape optimization and c) topology 

optimization of tubular truss. 

The type of design variables affects strongly on chances to solve a structural 

optimization problem. If all design variables can have any value between 

certain lower and upper bounds the problem is said to be continuous. In a 

discrete or integer optimization problem there is only a certain set of possible 

values available for each design variables. Mixed-integer problem is a 

h

a) 

b) 

c) 
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combination of the previous ones containing both continuous and discrete 

design variables. Discrete or mixed-integer optimization problems are usually 

much harder to solve than the ones that contain only continuous design 

variables. In the optimization of tubular trusses at least some of the design 

variables are typically discrete. For example in the sizing optimization the 

task is to select suitable profiles for each truss member from the given finite 

selection of structural hollow sections and arbitrary sizes can not be selected. 

Nemhauser & Wolsey [48] and Floudas [20] deal with discrete optimization 

from mathematical point of view in their books. The articles of Arora, Huang 

& Hsieh [5], Arora [6], Bauer & Gutkowski [8], Huang & Arora [24] and 

Thaeder & Vanderplaats [64] offer reviews concerning discrete structural 

optimization. Gutkowski’s book [22] introduces to discrete structural 

optimization and also e.g. Aho [3] and Turkkila [65] treat discrete structural 

optimization problems in their dissertations.  

In structural optimization the ultimate target is usually the minimization of 

the cost of structure and the role of design constraints is to take care that the 

structure remains useful and it is possible to manufacture. Since the cost can 

be approximated up to certain point based on the material consumption the 

mass is traditionally chosen as the minimized objective function in metal 

structures. The manufacturing cost is not considered separately and it is 

assumed to be directly proportional to the mass of structure. However the 

amount of material cost from the total cost varies depending on the type of 

the welded steel structure and the minimum mass structure is not necessarily 

always the same as the minimum cost structure. Earlier the cost optimization 

of welded steel structures has been considered in the articles of Jármai & 

Farkas, [18], [30] and [31]. In all those papers the approach is basically the 

same and the form of cost function is modified depending on desired accuracy 

and application (welded box beam [30] and [31], stiffened welded plate [18] 

and [30]). Pavlovčič, Krajnc & Beg [54] have presented more detailed cost 

function than Jármai & Farkas and applied it to plane frames made of welded 

I-beams. Also Klanšek & Kravanja [37] and [38] use a rather detailed cost 

function for composite floor systems. Sarma & Adeli give a chronological 
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review of the journal articles [60] and concern the fuzzy cost optimization of 

steel structures [61]. In addition Adeli & Sarma deal with the cost 

optimization in their book [2].  

Although the designer is usually interested in the minimization of the cost of 

tubular truss it is worthwhile to formulate the optimization problem as a 

multicriteria problem. In multicriteria optimization two or more conflicting 

criteria can be considered at the same time. For example the designer may 

want to reach the minimum mass tubular truss which is also as stiff as 

possible. The solution for a multicriteria optimization problem is a set of 

Pareto optimal points which can be achieved by solving single criterion 

problems. Since the solution of multicriteria optimization problem is not 

unique the designer (or the so called decision-maker) can choose the final 

design from a set of mathematically equal optimal solutions based on some 

additional information (e.g. the pleasantness of appearance) which was not 

possible to be included to the original optimization problem. The set of 

Pareto optima also enables the trade-off between competing criteria in the 

final decision-making and thus brings more potential to the optimization. 

Miettinen gives a good mathematician’s view to multicriteria optimization in 

her book [46] and Koski [40], Marler & Arora [45] and Osyczka [51] 

introduce to multicriteria structural optimization. Previously Kere [33], Koski 

[39] and Turkkila [65] have applied multicriteria optimization in their 

dissertations.    

In tubular truss optimization the demands of appropriate steel design code 

such as Eurocode 3 [63] and other relevant recommendations [42], [53], [58], 

[69], [70] and [56] have to be taken into account so that the optimized 

structure would be usable. The use of design code and recommendations 

brings on several constraints and some of them are inconvenient from many 

optimization algorithms’ point of view due to e.g. their piecewise definition. 

Heuristic multipurpose optimization algorithms like simulated annealing 

(SA), tabu search (TS), genetic algorithm (GA) and particle swarm 

optimization (PSO) are simple methods for solving such problems with 

numerous awkward constraints and typically discrete design variables. For 
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these algorithms it is enough if the values of the objective function and 

constraints can be calculated in a given point in the design space. Heuristic 

methods can not guarantee the global optimum in reasonable time but it is 

possible to find solutions that are good enough in many applications. 

Heuristic algorithms are rather popular optimization methods in literature. 

Introductions to SA, TS and GA can be found from books [1] (Aarts & 

Lenstra) and [57] (Reeves). Balling [7] has used SA in the optimization of 

steel frames and also articles of Chen & Su [12], Leite & Topping [43] and 

Moh & Chiang [47] consider structural optimization using SA. Bennage & 

Dhingra [9] have used TS to the topology optimization of trusses, Bland [10] 

to discrete truss sizing optimization and Dhingra & Bennage [16] to the 

single and multicriteria optimization of trusses with continuous and discrete 

design variables. Ohsaki, Kinoshita & Pan [49] have used special 

multicriteria SA and TS techniques in seismic design of steel frames. GA is 

definitely the most popular heuristic method among the four above mentioned 

and there are hundreds of studies concerning structural optimization with GA. 

Pezeshk & Camp [55] offer an extensive summary concerning previous works 

in the optimization of steel structures with GA. Multicriteria genetic 

algorithms have been introduced e.g. in Deb’s and Osyczka’s books [14] and 

[52]. PSO is a rather new heuristic optimization algorithm which has gained 

increasing attention during last few years. Venter & Sobieszczanski-Sobieski 

have used it in a simple cantilever beam example [67] and also in a very large 

transport aircraft wing multidisciplinary optimization problem [68]. Fourie & 

Groenwold [21] and Schutte & Groenwold [62] in turn have used PSO in 

several truss sizing optimization problems and one shape optimization 

problem. A multicriteria particle swarm optimization algorithm has been 

introduced in Coello’s and Lechuga’s paper [13].   

For a designer it can be difficult to choose a proper heuristic algorithm in a 

new optimization problem. In the literature the number of different available 

methods is big and several versions and parameter values have been used. The 

common factor for the most of the papers seems to be that they focus on only 

one algorithm at a time without considering other rather similar methods. 
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Besides the development of individual algorithms also comparisons between 

different algorithms are needed to clarify the mutual efficiency and the 

applicability of rival heuristic methods. Previously Jalkanen & Koski [28] 

have compared the efficiency of SA, TS, GA and PSO in two space frame 

optimization examples. Manoharan & Shanmuganathan [44] have compared 

SA, TS and GA by using simple truss examples and Botello, Marroquin, 

Onate & van Horebeek [11] have studied the efficiency of SA, GA and their 

combination in truss problems. Also Degertekin [15] has compared SA and 

GA in nonlinear steel frame optimization.  

Trusses are typical applications in structural optimization literature. 

However, most of the existing studies are more academic than practical. They 

do not consider structural hollow sections and ignore design codes. 

Previously Jármai, Snyman & Farkas [32] have studied CHS truss mass 

minimization problem with the size and shape design variables. Saka [59] has 

minimized the mass of geometrically nonlinear latticed dome made of circle 

hollow sections by chancing topology, shape and size. Also Kilkki has dealt 

with tubular truss mass minimization in his dissertation [35]. Farkas & Jármai 

have discussed the cost minimization of tubular trusses in their book [17] and 

article [19] which deals with simple CHS truss supporting an oil pipe. 

Kripakaran, Gupta & Baugh [41] use two phase method to tubular truss sizing 

and shape optimization in which the minimum cost is the target but the cost 

per truss member is supposed to be known. Iqbal & Hansen [25] discuss the 

cost optimization and use CHS truss size and shape optimization problem as 

an example. Klansek & Kravanja [38] have minimized the cost of composite 

floor systems in which a concrete slab is reinforced using a tubular truss.   

1.2 Goal and outline of study 

The first goal of this thesis is to formulate an optimization problem for 

tubular trusses in such a way that it has not only academic value but it is also 

applicable to the real life purposes. This means that in addition to the 

material cost (mass) also the manufacturing cost is taken into account, design 

constraints are based on steel design rules and the selection of available 
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structural hollow sections is not limited to few selected sizes. The presented 

approach is meant to be general and it is not connected to any specific truss 

type or manufacturer.  

The second goal is to find a solution for the formulated tubular truss 

optimization problem soundly and efficiently. Multipurpose heuristic 

optimization algorithms simulated annealing, tabu search, genetic algorithm 

and particle swarm optimization are chosen as the solution methods due to 

their great flexibility and versatility. The aim is to compare their mutual 

efficiency and to find out practical guidelines to the use of heuristic methods 

in the current problem. The tubular truss example problems are fictitious. The 

comparison is also done using an academic benchmark problem.  

The content of this thesis is divided into six chapters. The first one provides a 

brief background and motivation for optimizing tubular trusses. It also 

reviews existing articles which are relevant in tubular truss optimization and 

presents the goals of study.  

The second chapter deals with the design of tubular trusses. The first half 

brings out the benefits of structural hollow sections, introduces typical truss 

and joint types and considers some design aspects. The second half 

concentrates on the design code requirements of tubular trusses and the 

demands due to strength, buckling strength and static joint strength are 

presented for square and rectangle hollow sections in cross-section classes 1 

and 2. In order to limit the amount of work circle hollow sections and cross-

section classes 3 and 4 are not considered.  

The third chapter discusses heuristic multipurpose algorithms simulated 

annealing, tabu search, genetic algorithm and particle swarm optimization. 

The common advantages and disadvantages are presented before local search 

algorithms (SA and TS) and population based methods (GA and PSO) are 

dealt in more detail.  

The tubular truss optimization problem is introduced in chapter four. The 

design variables are introduced and objective function criteria and constraints 
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are explained. In the end the optimization problem is presented in the 

standard form.  

Chapter five considers example problems. At first the mutual efficiency of 

heuristic methods is compared in an academic test problem which is taken 

from literature. Then the same comparison is repeated using plane tubular 

truss which is also used to study the conflict of mass and cost and the 

simultaneous minimization of cost and deflection. The last example truss is a 

multiplanar tower.  

The results of thesis are summarized in chapter six. It offers also some ideas 

for the future research.  
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2. Design of tubular trusses  

2.1 Structural hollow sections 

Structural hollow sections have several advantageous properties which have 

made them popular in the design of steel structures like roofing trusses and 

frameworks. In a closed thin walled cross-section material is distributed far 

away from centroid and bending rigidities and torsional rigidity are high 

compared to e.g. I-beam or angle section which has the same mass. Structural 

hollow sections are especially suitable for compression and torsion members. 

Lateral buckling and torsional buckling are not usually limiting phenomenon.  

The design rules and recommendations for tubular steel trusses have been 

developed based on extensive theoretical and experimental research which 

has taken place over the last decades. Designer can find direct guidelines for 

the designing of typical trusses with various different details from Eurocode 3 

[63] and CIDECT’s guides ([42] [53], [58], [69] and [70]). The large 

selection of commercially available structural hollow sections with exact 

design rules makes it possible to reach a safe and economical design in each 

particular case. Tubular trusses can be manufactured efficiently in machine 

workshop and transported in large parts to a construction site for the erection.  

The closed tubular shape of cross-section reduces the area of outer surface 

and thus the need of painting and fire protection compared to open cross-

sections. In the corners of hollow section the sufficient paint thickness is also 

easy to achieve due to big enough rounding. The void inside the tube can be 

exploited by filling it with concrete to increase the strength and the fire 

protection without changing tube dimensions. Other possibilities are to use it 

e.g. as a rain water pipe or as a part of water circulation for the fire 

protection. The air drag of tubular members is also smaller than the air drag 

of open cross-sections which reduces wind load. The last mentioned but in 

many cases not the least beneficial is the pleasant external appearance of 

structural hollow sections.  
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a) 

b) 

c) 

2.2 Some design aspects 

In the tubular truss design the number of joints should be kept as small as 

possible to reduce the needed labor in machine workshop and to reach a low 

final cost. On the other hand it is advantageous if all the loads act in the 

joints so that the bending moment stays small in chords. In the Warren truss 

with K-joints the number of bracing members is smaller than in the Pratt truss 

with N-joints but the buckling length of the compressed upper chord is long 

(Fig. 2.1). In the modified Warren truss with KT-joints the compressed upper 

chord is supported better but the design of joints is more difficult and it is 

necessary to use overlap joints. In Pratt truss compressed bracing members 

are shorter than in modified Warren truss.  

 

 

 

 

 

 

 

Figure 2.1. Typical tubular trusses: a) Warren truss with K-joints, b) 

modified Warren truss with KT-joints and c) Pratt truss with N-joints. 

The overlap joints (Fig. 2.2) of RHS or SHS sections are more expensive than 

corresponding gap joints because the end of the bracing member has to be cut 

in two directions while in a gap joint only one cut is enough. In overlap joint 

dimensions have to be precise and there is no possibility for small 

adjustments as there is in gap joints. The strength of a fully overlap joint is 

usually better than the strength of a gap joint. In the gap joint the gap g has to 

be big enough and in the overlap joint the overlap q has to be sufficient. 
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Figure 2.2. a) A gap joint with positive eccentricity e. g is the magnitude of 

gap. b) An overlap joint with negative eccentricity. q is the magnitude of 

overlap. 

The joints of a tubular truss should be designed so that there is no need to 

reinforce or to stiffen the joints afterwards. Strengthening causes extra work 

and thus more cost. In a tubular truss all the members are welded directly 

together and the dimensions of the members have to be chosen in such a way 

that the strength requirements for members and joints are considered at the 

same time.  

2.3 Structural analysis 

The members of steel structures are divided into four different cross-section 

classes (1, 2, 3 and 4) depending on section dimensions and loading. In this 

thesis only the classes 1 and 2 hollow sections are considered purely due to 

simplicity. It is assumed that the whole hollow section belongs to bigger class 

determined by flange and web in compression. For a truss that is made of 

classes 1 and 2 profiles the structural analysis can be done according to the 

elasticity theory. In cross-section class 1 also the plasticity theory would be 

applicable but this choice is ignored. 

In the structural analysis of tubular trusses a common practice is to assume 

that all connections are pinned joints and loads affect directly on joints. The 

only non-zero internal force is the normal force in the members. Since in real 

life chords are continuous bended structures and distributed loads may act 

along chords a more accurate way is to considerer chords as a beam and to 

assume that bracing members are connected using pinned joints. The real 

g a) b) q

0>e 0<e
h0 
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rotational stiffness between chords and bracing members can be neglected if 

the joints have sufficient rotation capacity. This capacity can be achieved by 

limiting the dimensions of members in the joint as it is done in the design 

codes.    

In tubular truss design the eccentricity of connections should be limited 

because it causes an additional bending moment to chord. A small 

eccentricity can be permitted to ease the manufacturing. If the eccentricity e 

fulfils demand 

 00 25,055,0 heh ≤≤−        (2.1) 

for RHS and SHS hollow sections (Fig. 2.2) it can be ignored in the design of 

a tension chord, bracing members and joints but it has to be taken into 

account in the case of a compressed chord.   

If the buckling in the plane of tubular truss is considered without taking into 

account the end restraint the buckling length of a compressed chord is the 

distance between joints. In the plane perpendicular to truss the buckling 

length is the distance between lateral support points. For bracing members the 

buckling length is the length of the member in both directions. Due to the 

rotational stiffness at the ends of members above chord buckling lengths can 

be multiplied by 0,9 and bracing member buckling length by 0,75 in lattice 

girders [53].   

In this thesis the structural analysis is done using finite element method and 

simple linear beam element which has 6 degrees of freedom in plane case and 

12 in space case (Appendix A). In bracing members the rotational degrees of 

freedom are ignored due to the pinned joints. The global stiffness matrix K, 

consistent mass matrix M and geometrical stiffness matrix Kg can be formed 

using corresponding element matrixes k, m and kg. Unknown global node 

displacements u can be solved using system of equations   

 fKu =          (2.2) 

where f includes known and equivalent nodal loads. The natural circular 

frequencies ω1, ω2, ω3, … can be calculated from eigenvalue problem  
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 MuKu 2ω=  .         (2.3) 

The natural frequencies f1, f2, f3, … are 

 
π
ω
2

i
if =  , df,,2,1 ni K=  .      (2.4) 

ndf is the number of unknown degrees of freedom in FEM-model. The critical 

load factor λcr according to linear stability theory is the smallest positive 

eigenvalue for problem 

 uKΚu gλ−=  .        (2.5) 

λcr is directly the safety factor against the global buckling of a structure.  

2.4 Design code requirements 

The safe and usable tubular truss has to fulfill the demands of appropriate 

steel design code. The individual members of the truss have to be strong 

enough and they can not buckle. Also welded joints have to carry loads 

without failure. Following design criteria are for RHS and SHS sections (Fig. 

2.3) in cross-section classes 1 and 2 and they are based on Eurocode 3 [63] 

and CIDECT design guide [53].  

 

a)  b

h
y

t
r

y

z

z

       b) 

b

h y
t r

y

z

z

h=b
 

Figure 2.3. a) Rectangle hollow section (RHS). b) Square hollow section 

(SHS). 
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The design values for normal force, shear force, bending moment and 

torsional moment are NSd, VSd (Vy.Sd and Vz.Sd), MSd, (My.Sd and Mz.Sd) and 

M t .Sd. 

2.4.1 Strength 

Presented design criteria should be effective in every cross-section for all the 

members of the truss. If loads are point forces in joints and there are no 

distributed forces present, the shear force distributions are constant and the 

bending moment distributions are linear. Thus the most critical cross-section 

is always in the beginning or at the end of each chord member. Normal force 

is the only internal force in bracing members. In the cross-section classes 1 

and 2 the design capacities are calculated based on plasticity theory.   

The design criteria for tension and for compression without buckling are  

 t.RdSd NN ≤    and      c.RdSd NN ≤  .      (2.6) 

The design capacities N t .Rd and Nc.Rd can be calculated using cross-section 

area A and yield limit fy  

 
0M

y
pl.Rdc.Rdt.Rd γ

f
ANNN ===  .      (2.7) 

1,10M =γ  is the partial safety factor.  

The design criteria for bending is  

 c.RdSd MM ≤          (2.8) 

or if the bending is about both principal axis 

 1
66,1

Rd.c.

Sd.

66,1

Rd..c

Sd. ≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

z

z

y

y

M
M

M
M

 .      (2.9) 

The bending moment capacities Mc .y .Rd and Mc .z .Rd depend on plastic section 

modulus Wpl .y and Wpl . z 

 
0M

y
.plRd..plRd.c. γ

f
WMM yyy ==     and    

0M

y
pl.Rd..plRd..c γ

f
WMM zzz ==  . (2.10) 
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The design criterion for shear is 

  RdSd VV ≤          (2.11) 

or if the shear affects in the both directions of principal axis 

 Rd.Sd. yy VV ≤   and  Rd.Sd. zz VV ≤ .       (2.12) 

The shear force capacities Vy .Rd and Vz .Rd depend on shear areas Avy and Avz  

 
0M

yv
Rd..plRd. 3 γ

fA
VV y

yy ==      and     
0M

yv
Rd..plRd. 3 γ

fA
VV z

zz ==   (2.13) 

Avy and Avz are connected to the cross-section areas of webs  

 
hb

hAA z +
=v     and    

hb
bAA y +

=v .     (2.14) 

The design criterion for torsion is  

 t.Rdt.Sd MM ≤          (2.15) 

where the torsional moment capacity M t .Rd is 

 tA
f

W
f

MM t
M0

y
t

M0

y
t.pl.Rdt.Rd 2

33 γγ
≈==  .    (2.16) 

W t is the section modulus in torsion, t is the wall thickness and A t is the area 

inside the center line of the wall.  

If normal force NSd, shear forces Vy.Sd and Vz.Sd, bending moments My.Sd and 

Mz.Sd and torsion moment M t .Sd act in the same cross-section following 

interaction formula can be used 

 1
t.Rd

t.Sd

Rd.N

Sd

Rd.N

Sd ≤+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

M
M

M
M

M
M α

z.

z.

α

y.

y.  .     (2.17) 

The last term in Eq. (2.17) is presented in [56]. 

The exponent α  can be calculated using equation 
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 6

1311

661
2

V.Rd

Sd

≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

N
N,

,α  .       (2.18) 

If the design values of shear forces Vy.Sd and Vz.Sd exceed 50% of the plastic 

shear capacities Vpl .y .Rd and Vpl . z .Rd, they have to be taken into account and 

reduced yield limits y)1( fyρ−  and y)1( fzρ−  have to be used for shear areas 

Avy and Avz. In that case the reduced normal force capacity is  

 ( )
0M

y
vvV.Rd γ

ρρ
f

AAAN zzyy −−= .      (2.19) 

Parameters ρy and ρz depend on the shear forces Vy.Sd and Vz.Sd in a following 

way 
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For RHS section MN.y.Rd and MN.z .Rd can be calculated using equations 

 Rd..V
Rd.V

Sd
Rd..VRd.N. 133,1 yyy M

N
NMM ≤⎟⎟
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and for SHS section using equations 

     ⎟⎟
⎠
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N
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N
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If Vy.Sd and Vz .Sd exceed 50% of the plastic shear capacities Vpl .y .Rd and Vpl .z .Rd 

yield limits for the shear areas are y)1( fyρ−  and y)1( fzρ− . The reduced 

bending capacities MV .y .Rd and MV .z .Rd are  

 Rd..pl
M0

y

2
v

pl.

Rd..V

8
y

zy
y

y M

f
t
A

W

M ≤
⎟
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⎛
−

=
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ρ

     (2.25) 

 Rd..pl
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y

2
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.pl

Rd.V.

8
z

yz
z
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f
t
A

W

M ≤
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

=
γ

ρ

 .     (2.26) 

For the tension or compression bracing members, without considering 

possible buckling, it is enough to check only the design criteria (2.6). In 

chord member the normal force, the bending moment(s) and the shear force(s) 

and in multiplanar case also the torsion moment are usually nonzero. Thus for 

chord members interaction formula (2.17) should be used. In addition to 

criterion (2.17) also (2.12) and 

 V.RdSd NN ≤           (2.27) 

should be checked in order to prevent the yielding due to normal force and 

shear forces alone. 

2.4.2 Buckling strength 

The design criterion (2.6) for compressed members is not usually active 

because buckling is a more restrictive phenomenon for such members than 

yielding. In tubular trusses the compressed members should fulfill not only 

design criterion (2.6) but also design criterion 

 b.RdSd NN ≤  .         (2.28) 

The buckling capacity Nb.Rd can be calculated using formula 

 
M1

y
b.Rd γ

χ
f

AN =  .        (2.29) 
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1,11M =γ  is the partial safety factor for buckling and the formula for the 

reduction factor χ is  

 11
22

≤
−+

=
λφφ

χ         (2.30) 

where  

 ( )[ ]22,015,0 λλαφ +−⋅+⋅=       (2.31) 

and α is the imperfection factor and λ  is the non-dimensional slenderness 

 
E
f

i
L y

r

b

π
λ =  .        (2.32) 

E is Young’s modulus, Lb is the buckling length and  AIi =r  is the 

corresponding radius of gyration. λ  can be calculated about both principal 

axis and the bigger one should be used in Eq. (2.31) and (2.32). According to 

[56] a simple and safe way is to use nominal yield strength fy and value 

49,0=α .   

In combined compression, bending and torsion a tubular truss member should 

fulfill the criterion 

 1
t.Rd

t.Sd

Rd.

Sd.

Rd.

Sd.

b.Rd

Sd ≤+++
M
M

M
Mk

M
Mk

N
N

z

zz

y

yy  .     (2.33) 

The last term in the above interaction equation is presented in [56]. 

The buckling capacity Nb.Rd is 

 
M1

y
minb.Rd γ

χ
f

AN =         (2.34) 

where χmin is the smaller one from reduction factors χy and χz. 

The bending moment capacities My.Rd and Mz.Rd are equal to the plastic 

moment capacities Mpl .y .Rd and Mpl . z .Rd Eq. (2.10) and torsional moment 

capacity M t .Rd is equal to plastic torsional moment capacity (2.16).   

Formulas for parameters ky and kz are 
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where 
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βλµ      (2.36) 

 ( ) 9,042
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WW
βλµ  .     (2.37) 

Wel .y and Wel .y are elastic section moduli and βMy and βMz are the equivalent 

uniform moment factors that depend on bending moment distributions. For 

the linear distribution they can be seem from Fig. 2.4. 

 

 

 

Figure 2.4. The equivalent uniform moment factor βM for linear bending 

moment distribution. 

The interaction formula (2.33) has to be checked at both ends of compressed 

chord member. In bracing members NSd is constant and it is enough to check 

Eq. (2.28). 

2.4.3 Static joint strength 

The most economical way to connect RHS or SHS members is to weld them 

together without any additional reinforcements. Depending on loads and the 

dimensions of connected members joints may be damaged in several different 

ways. Figure 2.5 represents the failure modes of N- and K-joints which are 

the only joints considered in this thesis.   

ψ M 
M 

11

7,08,1M

≤≤−

−=

ψ

ψβ
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a)   

          
 
 
 
 
 
 
 
 
 
b)      

 
 
 
 
 
c)    

 
 
 
 
 
d)       

Figure 2.5. Failure modes for N- and K-joints between RHS and SHS sections 

[53]. a) The chord face plastification. b) The brace failure (tension failure or 

local buckling failure). c) The chord shear failure. d) The chord punching 

shear failure. 

In the design of joints it is assumed that normal forces are the only internal 

forces in the bracing members and the normal force and the bending moment 

in the plane of truss are the only internal force and moment in the chord 

member. The shear forces, the bending moment out of the plane of the truss 

and the torsion moment are ignored. It is also assumed that the eccentricity e 

fulfills the demand (2.1), angles θ1 and θ2 (Fig. 2.6) and the angle between 

bracing members are at least 30°, the minimum wall thickness is 2,5 mm and 

yield limit is no more than 355 MPa.   

The magnitude of gap g can be calculated using equation 

 
2

2

1

1

21

21
02

1

sin2sin2sinsin
)sin()(

θθθθ
θθ hhheg −−

+
+=     (2.38) 

and the magnitude of overlap is gq −= . 
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Figure 2.6. The dimensions of the a) gap N- and K-joints and b) the overlap 

N- and K-joints. 

In the N- and K-type gap joints between a rectangular or square bracing 

member and a rectangular chord section (Fig. 2.6a)) the design criterion for 

the normal force of the bracing member is  

 Rd.Sd, ii NN ≤   ,  2,1=i        (2.39) 

The joint bracing member capacity is according to [53] and [56] 
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The dimensions b0, b1, b2, t0, t1, t2, h1, h2, θ  1 and θ  2 can be seen from Fig. 

2.6a), fy0 and fy i are chord and bracing members yield limits and 1,1Mj =γ  is 

the joint partial safety factor. Formulas for the parameters β and γ are  
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kn can be calculated using equation 
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where n depends on the normal stress in the chord face connected to bracing 

members 
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n is negative if the chord face is compressed, A0 is the cross-section area of 

the chord and W0 is the section modulus of the chord. The formula for shear 

area is  

 000v )~2( tbhA α+=         (2.48) 

where 

 

2
0

2

3
41

1~

t
g

+
=α  .        (2.49) 

The effective width of a bracing member 
i

be  and the effective punching shear 

width 
i

bep  can be calculated using equations 
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In order to prevent a chord shear failure, the normal force of the chord N0 .Sd 

in the gap between bracing members has to fulfill the criterion 

  Rd.0Sd.0 NN ≤  .        (2.52) 

According to [56] the joint chord member capacity is 
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where VSd is the shear force of the chord in the gap and Vpl .Rd is 
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pl.Rd 3 γ
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V =  .        (2.54) 

Formulas (2.40), …, (2.43) and (2.53) for joint bracing and chord member 

capacities are not valid unless certain dimensional terms hold. According to 

[53] these ranges of validity are 
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 21 ttg +≥          (2.61) 

 °≥ 30, 21 θθ          (2.62) 

Reference [56] represents also following ranges of validity 
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In addition it is demanded that bracing members can not be wider than chords 

 021 , bbb ≤  .         (2.66) 

If the cross-sections of a chord and a bracing member are square in the N- 

and K-type gap joint, according to [53], the only failure mode which has to be 

taken into account is the chord face plastification. However reference [56] 

uses similar formulas as with a rectangular chord section and this approach 

has been selected.  

In the overlap N- and K-joints between a rectangular or square bracing 

member and a rectangular or square chord section (Fig. 2.6b)) the only failure 

mode which has to be checked is the brace failure. The design criterion for 

the normal force of overlapping bracing member i is 

 Rd.Sd. ii NN ≤  .         (2.67) 

The overlapping bracing member should be the one with smaller wall 

thickness or yield limit. According to [53] the overlapping bracing member 

capacity is 
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λov can be calculated using overlap q and the height hi and angle θ i of 

overlapping bracing member i  
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The effective width of a bracing member 
i

be  can be calculated using equation 

(2.50). be(ov) is the effective width for overlapping bracing member i 

connected to overlapped bracing member j 
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In reference [53] the ranges of validity for overlapping N- and K-joints are 

(2.59) and (2.62) and  
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 0,1≤
j

i

t
t

     (i is overlapping and j overlapped)   (2.75) 
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j
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b
b

     (i is overlapping and j overlapped)   (2.76) 

Reference [56] represents also demands (2.64) and (2.65) and replaces (2.73) 

with  

 35,
0

0

0

0 ≤
t
h

t
b

         (2.77) 

which has been used in this study as well as (2.66). 

In tubular truss joint the welding should be done around the perimeter of a 

bracing member by using a butt weld, a fillet weld or a combination of these 

two. The size of the weld has to be chosen so that the weld is not weaker than 

the bracing member. This demand is fulfilled if the size of the weld 

is ta 95,0w ≥  ( 235y =f  MPa) or ta 07,1w ≥  ( 355y =f  MPa). In partially 

overlapped N- and K-joints the overlapped part under the overlapping 

member does not need to be welded unless 0,1ov =λ  or bracing member forces 

differ more than 20%. 

The design of multiplanar tubular truss joints can be done based on previous 

uniplanar static joint strength requirements, considering one plane truss 

separated from the whole structure at a time. However there are geometrical 

and loading effects in multiplanar joints which affect the joint capacity 

compared to uniplanar joints. The bracing members of other planes than the 

considered current plane of truss stiffen the joint depending on the 

dimensions of the connected members. Also the normal forces in these 

bracing members can increase or decrease the considered joint capacity 

depending on their directions. According to [53] the correction factor 9,0=η  

can be used for the member capacities in KK-connections (two Warren trusses 

together) if the angle between planes of Warren trusses is more than 60° and 

less than 90°. Also following criterion should be checked in the gap of a KK-

joint 
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where VSd is the total shear force. It is assumed that the same correction 

factor 9,0=η  can be used for all the multiplanar truss joint capacities.   
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3. Heuristic optimization algorithms 

Traditionally the solution methods of structural optimization problems are 

classified to direct and indirect methods. The idea of direct methods is to use 

directly the algorithms of mathematical optimization theory to solve a 

structural optimization problem. In indirect methods a structure that fulfills 

some kind of indirect demand based on strength of materials, is considered to 

be an optimal structure (e.g. a fully stressed design). The direct methods are 

more universal than the indirect methods that depend on the problem and the 

type of structure and do not necessarily lead to the optimum. On the other 

hand the indirect methods are usually more straightforward and efficient than 

the direct methods.  

Heuristic optimization algorithms are a different approach to solving a 

structural optimization problem (or any other optimization problem) than the 

above mentioned direct and indirect methods. Heuristic means a deduction 

which does not fulfill all strict logical requirements but still often leads to a 

correct or a good answer. This means a stochastic or deterministic 

optimization algorithm which usually works but does not necessarily produce 

the optimum and may sometimes fail badly. Also indirect methods could be 

considered heuristic algorithms but due to their limited applicability they are 

not taken into account at this point. The selection of heuristic optimization 

algorithms is large and there are also several different combinations. In many 

versions the idea is taken from nature like the evolution or the behavior of a 

swarm. The wide applicability and the ability to solve, at least approximately, 

computationally hard discrete and mixed-integer problems have made 

heuristic algorithms popular in structural optimization.  

This thesis considers tabu search (TS), simulated annealing (SA), genetic 

algorithm (GA) and particle swarm optimization (PSO) which belong to two 

different classes of heuristic algorithms: SA and TS are local search 

algorithms and GA and PSO are population based algorithms. TS, SA, GA 

and PSO are probably the four most widely used heuristic optimization 

algorithms in structural optimization.  
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There are several common features between heuristic optimization algorithms 

even thought their backgrounds are different (Table 3.1). Some of the 

characteristics can be though as clear benefits and some unfortunate 

drawbacks from practitioner's point of view. The main reason that makes 

heuristic algorithms tempting is that they are rather simple and very flexible 

and still suitable for a variety of hard discrete or combinatorial optimization 

problems. The major limitation is the big number of objective and constraint 

function evaluations which means that structural analysis has to be done 

typically several hundred or thousand times during the optimization.  

Table 3.1. The common advantages and disadvantages of heuristic 

optimization algorithms. 

Advantages: Disadvantages: 

- Simple idea and implementation. 
- Very flexible. 
- Suitable for computationally 

hard discrete problems. 
- No need for sensitivity analysis. 
- The ability to avoid weak local 

optima. 
- Easy to use parallel processing. 
- Rapid improvement at the early 

iteration rounds. 
- Analysis tools can be 

“blackbox”-type. 

- A lot of function evaluations 
(FEM-analysis) needed. 

- The quality of result unknown.  
- A lot of algorithms and many 

parameters connected to them. 
- No sensitivity information 

available. 
- How to deal with constraints? 
- Stochastic algorithms demand 

several optimization runs. 
- The similar way to solve easy and 

hard problems (e.g. linear-
nonlinear, convex-nonconvex). 

In examples calculated results are achieved by solving pure discrete single 

criterion optimization problem  

 ( ) XΩf ⊂∈xx ,min  ,       (3.1) 

where [ ]T
21 dv

,,, nxxx K=x  is a design variable vector, )(xf   is an objective 

function, { }ie,,2,1,0)( nigXΩ i K=∀≤∈= xx  is a feasible set and 

{ }{ }ie
21 ,,2,1,,, avdv nixxxxX in

iiii
n KK =∀∈ℜ∈= x  is a design space. ndv is the 
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number of design variables, )(xig  is the inequality constraint function, n ie is 

the number of constraints and 
i

nav  is the number of allowed values for xi. 

Since all the design variables are discrete there is the certain finite set of 

possible candidate solutions i.e. { }
cs

,,, 21 nxxxx K∈ . The number of candidate 

solutions ncs is assumed to be so big that it is not possible to check them all 

and to choose the best feasible one (direct enumeration).  

For the solution X∈x  the discrete neighborhood ( )xN  means all such 

solutions that are in some sense close to x (Fig. 3.1). A new solution y near x 

can be formed by making a move m  to x which is marked m⊕= xy . The 

discrete neighborhood ( )xN  contains all the points that are formed by making 

one move to x 

 ( ) { }MmmXN ∈⊕=∈= ,xyyx  .     (3.2) 

M  is the set of all moves and the size of the discrete neighborhood means the 

number of elements in M . The move m  is feasible if m⊕= xy  is feasible. 

 
Figure 3.1. The solution x, the discrete neighborhood ( )xN , the feasible set 

Ω and the design space X. 

In the discrete optimization problem (3.1) the local minimum is a point Ω∈*x  

that ( ) ( )xx ff ≤*  ( )*xx N∩Ω∈∀  i.e. there is no better feasible solution than 

*x  in the discrete neighborhood ( )*xN . In the global minimum point Ω∈*x  it 

xN ( x ) 

x1

x 2 

Ω X
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holds ( ) ( )xx ff ≤*  Ω∈∀ x  which means that *x  is the best solution in the 

feasible set Ω. 

Table 3.2 gives the summary of heuristic optimization algorithms. 

Table 3.2. The characteristic of heuristic optimization algorithms. 

 SA TS GA PSO 

Group/single 
solution single single group group 

Discrete 
neighborhood yes yes no no 

Stochastic/ 
deterministic stochastic deterministic stochastic stochastic 

Initial guess yes yes no no 

Design variables 
originally 

continuous 
/discrete discrete discrete continuous 

Direct 
parallelization no 1) yes yes yes 

Coding no no yes no 

Implementation easy easy longer simplest  

Popularity in 
structural 
optimization 

several 
articles least used very 

popular 
increasingly 

popular 

Original idea physics ? evolution swarm 

Introduced 1983 1986 1975 1995 
1) Leite & Topping [43]. 

3.1 Local search algorithms 

Simulated annealing and tabu search belong to the class of local search 

algorithms that improve the value of the objective function based on local 

information. The idea is to start from an initial guess x0 and during each 

iteration round k to look for a new better solution xk+1 from the discrete 

neighborhood of current solution ( )xN  (Fig. 3.2). In the basic version of local 

search the iteration process stops in the local minimum i.e. when the discrete 

neighborhood does not contain any better feasible points. The local search 
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algorithm can be considered as a discrete version of the deepest descent 

method.  

 

Figure 3.2. The iteration through the design space by using discrete 

neighborhoods in the local search. 

The weakness of the basic version of local search is that it gets stuck to the 

nearest local optimum. If the problem has several local optima the chosen 

initial guess and the definition of the discrete neighborhood determine which 

one the algorithm ends up. Usually the value of objective function is rather 

poor in the first local optimum. The main difference between advanced local 

search algorithms is how the weak local optima can be avoided. Algorithms 

contain different mechanisms to escape from the local minimum “uphill” 

toward better solutions and hopefully all the way to the global optimum. 

3.1.1 Discrete neighborhood 

The structure of the discrete neighborhood affects the possibilities to find a 

good solution to the current optimization problem. Unfortunately there are no 

general rules to specify an efficient discrete neighborhood because it depends 

on the problem. It is possible to give only some common guidelines.  

The discrete neighborhood should be connected or at least weakly connected. 

( )xN  is called connected if for each pair Ω∈21 , xx  a sequence of solutions 

2211 ,,, xsssx == jK  exists so that ( )1−∈ ii N ss , ji ,,3,2 K=  and it is called 

weakly connected if for each Ω∈x  a sequence of solutions 

*,,, 21 xsssx == jK  exists so that ( )1−∈ ii N ss , ji ,,3,2 K=  and x* is the global 

x0 

x* 

( )0xN
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optimum. For the connected discrete neighborhood each solution is reachable 

from all other solutions and for the weakly connected discrete neighborhood 

it is possible to reach the global optimum from the initial guess.  

The size of the discrete neighborhood should be suitably chosen compared to 

the current optimization problem. If the size is big it takes longer to evaluate 

the values of the objective and constraint functions in the points of discrete 

neighborhood and the number of iteration rounds remains modest. On the 

other hand too small discrete neighborhood weakens possibilities to find a 

good solution because the search is not so wide. Besides the correct size 

discrete neighborhood should also be simple to form and problem specific 

properties should be taken into account.  

In this study the discrete neighborhood is formed so that each discrete design 

variable may change in turn no more than dn step bigger and smaller (so 

called depth of the discrete neighborhood is dn) while the other variables 

remain the same. If the number of design variables is ndv, the size of the 

discrete neighborhood remains reasonable being 2dnndv (Fig. 3.3). The 

discrete neighborhood would be more detailed if the increasing and 

decreasing were allowed for several design variables at the same time but the 

size becomes rapidly too large as the number of variables increases.  

 

 

 

 

 

 

 

 

Figure 3.3. The discrete neighborhood ( )xN  in the case of three design 

variables and the depth of two. 
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3.1.2 Simulated annealing, SA 

Simulated annealing is a stochastic optimization algorithm the idea of which 

comes originally from statistical physics. It tries to imitate the annealing 

process in which a liquid metal is cooled slowly to a solid state. If the 

cooling is slow enough molecules are organized so that the energy function 

reaches the global minimum and if the cooling is too rapid the result is a local 

minimum for the energy function.   

The strategy of SA is to select randomly a new point y in the discrete 

neighborhood of the current solution ( )kN x . If the value of the objective 

function f(y) is better than f(xk), y is accepted automatically as the next 

iteration point xk+1. Otherwise y can be selected by probability 

   ( ) T
d

dTP
−

= e,          (3.3)  

where T is the so called temperature and ( ) ( )kffd xy −= . Only slightly poorer 

point y has a better chance to be selected than worse points. If point y is 

unfeasible it can be automatically rejected and a new one can be chosen. 

Another way is to penalize the objective function according to the 

unfeasibility  

 ⎥
⎦

⎤
⎢
⎣

⎡
+= ∑

>0)(

)(1)()(~
x

xx
ig

igRfxf  .      (3.4) 

)(~ xf  is the penalized objective function and R is penalty. The value of R 

should be able to be chosen suitably: If it is too small, unfeasible solutions 

become too good and if it is too big only slightly unfeasible but otherwise 

good solutions become too poor. If the penalty is the same for all constraint 

functions they have to be scaled so that function values are in the same order 

of magnitude.   

Temperature T is decreased during the optimization process according to the 

cooling schedule. As the optimization process proceeds and the temperature 

decreases the likelihood to accept worse solutions approaches zero and only 

the solutions that improve the objective function are accepted. The value of 
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objective function varies during optimization and that is why the best feasible 

solution that was found has to be kept in memory.  

In the beginning the initial temperature 0T  should be so high that almost 

every neighbor point y is selected. The idea is to try to prevent getting stuck 

to a poor local optimum point. A suitable initial temperature can be 

determined based on Eq. (3.3) by calculating the average difference of the 

values of the objective functions between the randomly selected pairs of 

points in the design space and using probability which is almost one.  

The suitable cooling schedule is important for the efficiency of SA. If the 

cooling is too fast the algorithm ends up most likely to a poor final solution. 

On the other hand slow cooling increases the calculation time. The decrease 

of temperature can be done in several ways but in the most common case the 

new temperature is the old one multiplied by a constant 99,080,0 K=ε . 

Usually the decrease of temperature does not happen every round and nT 

points are considered in the same temperature. Parameter nT can be increased 

as the optimization proceeds. 

The optimization can be terminated when the temperature has reached some 

selected level Tf inal. The final temperature should be so low that the 

probability to accept worse solution than the current one is almost zero. 

Temperature Tf inal can be calculated using the same kind of approach as in the 

initial temperature with a small chosen probability (∼0,01). The flowchart of 

the basic SA is presented in Appendix B.  

3.1.3 Tabu search, TS 

The idea of deterministic tabu search is to move from the current iteration 

point xk to the next best point xk+1 in the discrete neighborhood ( )kN x  as was 

case in the basic form of local search algorithm. However the best point in 

the discrete neighborhood of xk is not always allowed because there is a so 

called tabu list B which contains forbidden solutions. As soon as a new 

iteration point is found it will be added to the tabu list and usually the oldest 

forbidden solution is released. In the practical size of structural optimization 
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problems all previous points can be stored to the tabu list. The constraints can 

be taken into the account in the same way as in SA i.e. an unfeasible solution 

is automatically rejected or the value of objective function is penalized 

according to the unfeasibility (3.4). 

In the beginning tabu search works like the basic local search algorithm 

seeking its way to the nearest local optimum. In that point there are no better 

neighbor points left and the next one will be the best non-tabu point. In the 

minimization problem this means that the value of objective function 

increases and TS starts to climb "uphill". Thus the tabu list makes it possible 

to escape from a weak local optimum and to find later a better local or even 

the global optimum point. Usually the optimization continues until a certain 

number of iteration rounds is full. As it was in SA the value of the objective 

function gets worse occasionally during the optimization and the best feasible 

solution that was found has to be kept in memory.  

A bit different way to carry out the tabu list is to prohibit the feature of 

solution instead of the actual solution. This means that the group of same 

kind of solutions becomes forbidden during one iteration round. The purpose 

is to direct the search toward new regions in the design space which hopefully 

contain new better solutions. This kind of practice may lead to a situation in 

which a new better feasible solution is rejected even if the search has never 

been in that point.  

The type of the tabu list can be static or dynamic. The length of the static list 

remains constant but the length of the dynamic tabu list depends on the 

information received during the optimization process. For example if the best 

known objective function value improves the tabu list can be shorter and vice 

versa.  

The tabu list can be considered as a memory in TS. The next iteration point 

does not depend only on the current one and the discrete neighborhood around 

it but also the way the search has reached that point. If all previous iteration 

points are not included to the tabu list it is possible (at least in theory) that 
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TS falls into an endless loop. The flowchart of the basic TS is presented in 

Appendix B.   

3.2 Population based methods 

Genetic algorithm and particle swarm optimization differ from the local 

search algorithms in such a way that there is a group of solutions instead of a 

single solution in GA and PSO. In population based methods it is assumed 

that a group can offer some extra benefits compared to a single individual. 

Several solutions can spread out into the search space and it will be explored 

more widely than by using only one solution (explicit parallelism). On the 

other hand parallel solutions increase the amount of calculations per iteration 

round and thus the number of rounds will be smaller. In GA the efficiency of 

a group is based on competition and in PSO co-operation between individuals.  

The analyses of population members are independent from each other. This 

makes it easy to use parallel processing which reduces the calculation time 

efficiently and economically. The optimization algorithm is running in one 

computer and it divides analysis tasks to several other computers to be done 

simultaneously as it is represented e.g. in [34]. Also TS can be parallelized 

directly because the analyses of the discrete neighborhood members are not 

connected.  

In population based methods there is no need to choose an initial guess 

because the first group of solutions is usually selected randomly. In local 

search algorithms the efficiency of the selected method depends on the initial 

guess. If it is poor the result will also probably be poor and if the initial 

guess is close to the optimum the convergence may be fast. This gives a 

possibility to an experienced user to use his or her professional skills and 

intuition in such a way that is not possible in population based methods. In 

some cases it can be really difficult to find a feasible initial solution and 

population based methods with randomly selected initial population make 

starting easier. 
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3.2.1 Genetic algorithm, GA 

In genetic algorithm the population of individuals becomes to better and 

better during the optimization process by the basic operators selection, 

crossover and mutation. The idea is to follow the principle of nature that only 

the fittest individuals survive. The origin of GA is in mid seventies and it has 

been the most popular heuristic optimization method.  

The individuals of the population are the encoded solutions of the 

optimization problem. The most common way is to use binary coding in 

which a binary string corresponds to each solution. The other way to carry 

out encoding is to number the allowed discrete design variable values from 

one forward and use these integers in encoding. This method increases the 

number of different codes, decreases the length of individuals and prevents 

turning up such coded individuals that do not have a counterpart among 

possible candidate solutions.  

The fitness function is a mechanism that determines the quality of an 

individual. It is derived from the objective function and gets only positive 

values. In the minimization problem the simplest way to form fitness function 

is  

 )()( xx fCF −=  ,        (3.5) 

where C is a big positive constant. In constraint optimization problem the 

feasibility of a solution has to be considered also in the fitness function. This 

can be done again by penalizing the unfeasible solutions according to the 

unfeasibility (Eq. (3.4)).  

The purpose of the selection is to choose good individuals as the parents of 

the next generation (iteration round). The better fitness function value an 

individual has the bigger the probability of selection and the better chance to 

be a parent. For individual i the probability of selection pi depends on the 

values of the fitness function 

 
∑

=

j
j

i
i F

Fp  .         (3.6) 
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The above roulette-wheel selection is one of the so called proportional 

selection. Other possibilities are e.g. ranking selection and tournament 

selection. In ranking selection the proportions of the fitness function values 

are insignificant and the order of magnitude determines directly the 

probability of selection. In tournament selection the idea is to pick the group 

of individuals at random and select the best individual as a new parent. In 

binary tournament selection there are only two candidates. If one candidate is 

feasible and the other unfeasible the feasible one is selected. In such a case 

that both individuals are unfeasible it is not necessary to use penalty function 

approach because the less unfeasible can be selected otherwise. This means 

that there is no need to choose proper penalty parameters in binary 

tournament selection.   

The crossover produces new individuals or offspring to the next generation. 

The idea is to randomly cut two parents into pieces and join two offspring 

from these parts. The number of pieces can vary and there are e.g. one point 

and two point crossovers. The crossover happens by some probability pc and 

by probability c1 p−  parents are copied directly to the next generation. 

Usually the magnitude of crossover probability is 8,06,0c K=p . In most cases 

the size of the population is kept constant and each pair of parents produce 

two offspring.  

The selection and the crossover combine properties that already exist in an 

initial population. They do not bring any additional information to the system 

and cause more and more homogeneous population. The idea of the mutation 

is to randomly change individuals slightly different. This can be done by 

turning one bit opposite in binary encoding by mutation probability pm. The 

mutation brings diversity to the population that hopefully leads to a better 

final result. Usually the mutation probability is 05,0005,0m K=p .  

Since GA is a stochastic optimization algorithm it is possible that the best 

individual will not always survive. This can be prevented by using elitism in 

which the best individual is automatically copied to the next generation. For 
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example the worst individual in population can be replaced by the best one 

from the previous generation.  

The initial population is usually selected at random in GA. The usual 

stopping criterion is to wait that a certain number of generations is full and 

optimization can be terminated. Other possibilities are to observe fitness 

function values or the diversity of population and if the fitness function value 

does not improve anymore or all individuals are too similar the optimization 

can be stopped. The flowchart of the basic GA is presented in Appendix B.  

3.2.2 Particle swarm optimization, PSO 

The basic idea of stochastic PSO is to model the social behavior of a swarm 

(e.g. birds or fish) in nature. A swarm of particles tries to adapt to its 

environment by using previous knowledge based on the experience of 

individual particles and the collective experience of the swarm. It is useful 

for a single member, and at the same time for the whole swarm, to share 

information among other members to gain some advantage.  

In PSO for particle i the new position i
k 1+x  depends on the current position i

kx  

and so called velocity i
k 1+v   

 i
k

i
k

i
k 11 ++ += vxx          (3.7) 

where the velocity is calculated as follows 

 ( ) ( )i
kk

i
k

i
k

i
k

i
k rcrcw xpxpvv −+−+=+

g
22111  .    (3.8) 

i
kp  is the best position for particle i and g

kp  is the best feasible  position for 

the whole swarm. w is so called inertia, r1 and r2 are uniform random numbers 

[ ]1,0, 21 ∈rr  and c1 and c2 are the scaling parameters. The value of w controls 

how widely the search process is done in the search space. The value of c1 

indicates how much a particle trusts itself and c2 how much it trusts the 

swarm. The idea of the last two terms connected to c1 and c2 in the Eq. (3.8) 

is to direct the optimization process towards good potential areas in the 

search space (Fig. 3.4). Usually 4,18,0 << w  and 221 == cc  are selected. The 
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value of w can be changed dynamically so that it is bigger during early 

iteration rounds and becomes smaller later when there is time to focus on 

promising areas.  

Basically PSO is an algorithm for continuous unconstrained optimization 

problems. Discrete design variables can be taken into account by simply 

rounding each design variable to the closest allowed value in Eq. (3.7). 

Constraints can be handled again by penalizing unfeasible solutions according 

to the unfeasibility.  

 

 

Figure 3.4. a) Step from point i
kx  to i

k 1+x  and b) from point i
k 1+x  to i

k 2+x  in 
PSO. Inertia term (e.g. i

kw v ) widen the optimization process and terms 
connected to g

kp  and i
kp  direct the search towards known good solutions. 

The initial swarm and velocities can be selected randomly in PSO. As a 

terminating criterion the given number of iteration rounds can be used or the 

best known feasible objective function value can be observed and if there is 

no improvement during few last rounds the optimization is terminated. The 

flowchart of the basic PSO is presented in Appendix B.  
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4. Tubular truss optimization problem 

In the current tubular truss optimization problem topology, shape and the 

sizes of truss members can be changed during optimization. The topology of 

the truss should be chosen from the group of selected topologies and the sizes 

of profiles from the given selection of standard cold-formed RHS or SHS 

sections. The change in the dimensions of a truss affects its shape. The 

minimized objective function can be e.g. mass, cost or displacement or there 

can be conflicting criteria in a multicriteria problem at the same time. 

Constraints take care the demands of steel design rules (Eurocode 3). The 

truss can be plane or space truss and the problem can include several load 

cases. For the sake of simplicity only N- and K-joints and profiles in cross-

section classes 1 and 2 are considered. 

Figure 4.1. An example tubular truss problem: a) The lower chord, the upper 

chord and the bracing members form the three groups of members. In each 

group the size of the profile is constant. The height H is the only dimension 

which can be changed. b) The sets of allowed sections for the each group of 

members. c) Three possible truss topologies. 

In the optimization problem the number of different members or groups of 

members is ns in the truss (Fig. 4.1). A truss member means a web bar or a 

1 2 

3s =n

b) 

a) 

3,2,1=i

c) 

3t =n

1

2

3 H 
1sh =n

isecn1sec −
i

n
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piece of chord between two joints. The number of allowed sections for each 

member or group of members i is 
i

nsec . It is assumed that the number and the 

size distribution of hollow sections can be arbitrary. The numbers of 

convertible truss dimensions and available truss topologies are nsh and n t 

which means that the shape and the topology of truss can change only limited 

depending on designer’s choices.  

4.1 Discrete design variables 

There are usually several different ways to choose design variables in an 

optimization problem and this choice affects the nature of the problem and 

thus applicable algorithms. For example in the tubular truss sizing 

optimization problem one cross-section property (typically area A) can be 

taken as the only design variable per each member and all the other needed 

cross-section properties (Wel .y, Wpl .y, etc.) are expressed as the function of the 

selected variable. The number of design variables stays small but it is 

difficult to form needed expressions in arbitrary case. Other possibilities are 

to choose directly all cross-section properties (A, Wel .y, Wpl .y, etc.) or the 

dimensions of hollow section (h, b and t) as the design variable. In both cases 

design variables are connected: Fixing one value reduces the possible values 

of some other variables.   

In this study there are one topology design variable x t, nsh shape design 

variables sh
ix   and ns size design variables s

ix  in the tubular truss optimization 

problem. The form of the design variable vector is 

[ ]Tss
2

s
1

shsh
2

sh
1

t
ssh nn xxxxxxx KMKM=x . The set of available topologies is selected 

in advance and it is arranged into some kind of order. The discrete topology 

design variable { }tt ,,2,1 nx K∈  indicates directly the ordinal number of the 

chosen topology in this set. The discrete shape design variables sh
ix  

( sh,,2,1 ni K= ) are certain dimensions of the truss which determine the shape 

the of truss (e.g. height, width or joints locations). In many cases these 

variables could be continuous but they are assumed to be discrete. The 
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discrete size design variable { }
i

nxi sec
s ,,2,1 K∈  ( s,,2,1 ni K= ) is the ordinal 

number of the section of member (or the group of members) i in the set of 

allowed hollow sections. The set of allowed sections is arranged in some 

sense in the order of magnitude which is not unique in arbitrary case. The 

needed cross-section properties can be picked up from manufacturer's table.   

4.2 Objective function 

In the optimization of steel structures the ultimate target is mainly low cost. 

The cost of the welded steel structure like tubular truss consists of design, 

material, fabrication, transportation, erection and maintain costs. The mass of 

the structure is often used as a substitute for the real cost and it is chosen as 

the minimized objective function. The cost is not the only target and other 

possibilities are e.g. stiffness (deflections), the lowest natural frequency or 

the maximum stress in fatigue. In this thesis mass, cost and displacement are 

considered in the objective function.  

In many cases it is useful to consider several conflicting criteria at the same 

time and to use the methods of multicriteria optimization instead of 

traditional single criterion optimization. The solution of multicriteria 

optimization problem is not unique which leaves room for the final decision 

making.  

4.2.1 Mass 

The total mass of truss m depends on density ρ and the cross-section areas Ai 

and the lengths of all members Li  

 ∑
=

=
m

1

n

i
ii LAm ρ  .        (4.1) 

nm is the number of members in the truss. 

4.2.2 Cost  

In this thesis only the material and the manufacturing costs are considered 

and all the other costs are ignored. Since steel has a certain price per 

kilogram, the material cost can be calculated simply multiplying the mass of 
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the structure by the current material cost factor km. It is assumed that km is 

constant for different size hollow sections.   

In the calculation of the manufacturing cost the common approach is to divide 

the manufacturing process into several production stages and to consider the 

cost of each stage. Typical production stages of welded steel structures are 

the cutting and edge grinding, surface preparation, welding including 

preparation, assembly and tack welding and surface finishing. The 

manufacturing cost depends on the technical level of a machine workshop, the 

level of labor cost and the volume of production. Different production 

conditions make it difficult to obtain a single universal cost function and 

there will always be some case-specific factors in the cost function. 

Jármai and Farkas ([17] and [30]) have presented the following cost function 

for welded steel structures 

∑+=+=
i

iTkmkKKK fmfm       (4.2) 

where Km and Kf are the material and the manufacturing costs and km and kf 

are the corresponding cost factors. Ti is the time [min] for production stage i. 

Instead of Eq. (4.2) the minimized cost function can be also expressed in the 

form 

 ( )654321
m

f

m

TTTTTT
k
km

k
K

++++++=  .     (4.3) 

According to [30] the ratio kf/km varies between 0–2 kg/min and it is 2 kg/min 

in USA and Japan, 1-1,5 kg/min in Western Europe and 0,5 kg/min in 

developing countries. There is only one cost factor kf for all production stages 

which helps the application but it is also a simplification at the same time.  

T1 is the time for preparation, assembly and tack welding and it can be 

calculated using formula 

mCT κd11 Θ=  .        (4.4)  

C1 is a constant, Θd is a difficulty factor ( 4,,1d K=Θ ) and κ is the number of 

structural elements to be assembled.  
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T2 and T3 are the times for welding and additional fabrication costs like 

changing the electrode, deslagging and chipping. The formula for the sum of 

T2 and T3 is 

∑⋅=+
i

n
iii

LaC,TT w
~
w232 31        (4.5) 

where 
i

aw  is the size [mm] and 
i

Lw  the length [m] of the weld i. Constant 
i

C2  

and exponent n~  depend on the welding technology, the type of the weld and 

welding position as presented in [30].  

T4 is the time for surface preparation which means the surface cleaning, sand-

spraying, etc. The formula for T4 is   

sspds4 AaT Θ=  .        (4.6) 

Θds is a difficulty factor, 6
sp 103 −⋅=a  min/mm2 is a constant and As means the 

area of surface to be cleaned [mm2].  

T5 means the painting time of ground and topcoat. It can be calculated using 

the formula 

( ) stcgcdp5 AaaT +Θ=         (4.7) 

where Θdp is the difficulty factor for painting ( 3,2,1dp =Θ ), 6
gc 103 −⋅=a  

min/mm2 and 6
tc 1015,4 −⋅=a  min/mm2 are constants and As is the area of 

surface [mm2].  

The time for cutting and edge grinding T6 can be calculated using formula 

 ( )∑ +Θ=
i

itLT
i

2
cdc6 4,05,4   .      (4.8) 

It is a slightly modified version of the formula presented in [19]. Θdc is the 

difficulty factor, 
i

Lc  is the length of cut i and ti is the wall thickness.  

4.2.3 Displacement 

Since the structural analysis is done by using finite element method the value 

of displacement ui connected to a certain degree of freedom i can be selected 
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as the minimized displacement. The correct element can easily be picked up 

from global displacement vector u. If there are several load cases the biggest 

value of ui is chosen. The deflection is not a practical objective function in 

single criterion problem unless the maximum allowed mass or cost is limited.  

4.3 Constraints 

The purpose of constraints is to make sure that the optimized structure 

remains usable. Truss members and joints have to be strong enough, single 

members or the whole structure may not buckle, deflections should be small 

and natural frequencies can not be located in the forbidden intervals. There 

are also demands due to the dimensions of truss, manufacturing and possible 

appearance of truss, transportation etc.   

From the practical point of view the most important thing is to fulfill the 

demands of an appropriate steel design code. In this thesis Eurocode 3 is used 

and thus the strength constraint for each member i without considering 

buckling is  
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In bracing members bending moments, torsional moment and shear forces 

vanish and pl.RdV.Rd NN =  which leads to form  

 01
pl.Rd

Sds ≤−=
N
Ngi  .        (4.10) 

If loads are point forces in joints the constraint (4.9) should be checked at 

both ends of each chord member and the bigger value from these two chosen. 

Because in topology optimization the number of truss members varies and 

there can not be one strength constraint per each truss member the final 

strength constraint is  

 { } 0,,,max ss
2

s
1

s
m

≤= ngggg K   .      (4.11) 
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If one buckling constraint is taken per each truss member it is unnecessary to 

know in advance whether the normal force is tension or compression. Only 

compressed members can buckle and the buckling constraint which takes this 

into account is  

 0
tension,1-

ncompressio,1
t.Rd

t.Sd

Rd.
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= M
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g z

zz

y

yy

i  (4.12) 

Since bending and torsional moments vanish in bracing members, Eq. (4.12) 

takes the form 

 0
tension,1-

ncompressio,1
b.Rd

Sd
b ≤

⎪⎩

⎪
⎨
⎧ −

= N
N

gi  .     (4.13) 

It is assumed that the joints of a compressed chord are always laterally 

supported and thus a chord member means a piece of chord between 

sequential joints.  

nm buckling constraints (4.12) and (4.13) can be merged into a final single 

buckling constraint 

 { } 0,,,max bb
2

b
1

b
m

≤= ngggg K   .      (4.14) 

The static joint strength constraint for a N- and K-type joint k is 

 0
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where the joint bracing members capacities N1 .Rd and N2 .Rd are the smallest 

ones given by equations (2.40), (2.41), (2.42) and (2.43). The joint chord 

member capacity N0 .Rd can be calculated using equation (2.53) and the normal 

force capacity of overlapping bracing member i can be calculated using 

(2.68).  

Due to the ranges of validity (gap joint (2.55), …, (2.66) and overlap joint 

(2.59), (2.62), (2.64), (2.65), (2.66) and (2.71), …, (2.77)) constraint (4.15) is 
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not alone sufficient and in addition to it an extra joint validity constraint 

0jv ≤kg  is needed. The form of this constraint is such that in the case of gap 

joint demands (2.55), …, (2.66) are transformed into “less or equal to zero”-

type (≤0−type) inequalities and the maximum value of these new 22 single 

inequalities is chosen as the value of the constraint function jv
kg . In the case 

of overlapping joint corresponding demands are treated the same way and the 

form of jv
kg  is  
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           (4.16) 

The joint strength and validity constraints (4.15) and (4.16) can be merged 

into a single joint constraint 
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For a multiplanar gap KK-connection k should also use constraint 
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to prevent failure in the gap. The final KK-connection constraint is 

 { } 0,,,max kkgjkkgj
2

kkgj
1

kkgj
j

≤= ngggg K   .     (4.19) 

Eurocode 3 gives some demands for the deflections of a steel structure in 

vertical and horizontal directions depending on the span and the height of the 

structure (L/500 … L/200 and h/500 … h/150). These or some other proper 

values based on experience can be used as limits in the displacement 

constraint. In the constraint the value of displacement ui should be more than 

the minimum allowed value min
iu  or less than the maximum allowed value 

max
iu . This can be presented in the forms 
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 01 min
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u
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g  .    (4.20) 

The global buckling constraint makes sure that the whole truss will not lose it 

stability in the sense of linear stability theory. The form of global buckling 

constraint is 

 01
gb

crgb ≤−=
n

g
λ

 .        (4.21) 

λcr is the lowest positive eigenvalue of problem (2.5) and gbn  is the safety 

factor against global buckling. The linear stability theory gives only an 

approximation for the real critical load factor λcr which is usually clearly less 

than this approximation. Due to this reason safety factor has to be selected a 

big enough ( 3gb ≥n ) in order to prevent global buckling. 

In the frequency constraint it is demanded for each forbidden interval 

f,,2,1 nj K=  (Fig. 4.2) that  

 df
maxmin ,,2,1 niffff jiji K=∀≥∨≤   .    (4.22) 

ndf is the number of the degrees of freedom in FEM-model which is at the 

same time also the number of the natural frequencies.  
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Figure 4.2. The natural frequencies are not allowed to fall into forbidden 

intervals. 

Inequalities in Eq. (4.22) can be merged into a single constraint 
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f  is a suitable scale factor.  
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4.4 Optimization problem in standard form 

In the mathematical standard form the tubular truss optimization problem is 
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 { }
cs

,,, 21 nxxxx K∈  

)(1 xf , …, )(
c

xnf  are the minimized criteria which can be e.g. the mass or the 

cost of the truss or some suitable displacement and nc is the number of 

criteria. Also a single criterion objective function can be used. ( ) 0s ≤xjg  are 

the strength constraints and ( ) 0b ≤xjg  are the buckling strength constraints. 

( ) 0j ≤xjg  are the constraint for joints and 0)(kkgj ≤xjg  for multiplanar gap KK-

connections. n j is the number of joints. ( ) 0u
, ≤xjig  are the displacement 

constraints and nu the number of these constraints. ( ) 0bg ≤xjg  and ( ) 0f ≤xg  

are the global stability and the frequency constraints. There are nLc load cases 

and constraints have to hold in all of them. Because all design variables are 

discrete the number of possible candidate solutions ncs is finite. 
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5. Examples 

5.1 Ten-bar truss 

The first numerical example problem deals with the discrete optimization of a 

ten-bar plane truss presented in Fig. 5.1. The idea is to compare the mutual 

efficiency of simulated annealing, tabu search, genetic algorithm and particle 

swarm optimization in a simple academic optimization problem without 

taking into account the requirements of design rules. Due to the simplicity 

and small size the problem can be solved also using branch&bound algorithm 

and the performance of heuristic algorithms can be compared to this different 

type of method. Two alternative cases have been considered: A good initial 

guess is not known or it can be used in optimization. The example problem 

has been presented in Ref. [50].  

 

  

 

 

 

 

 

Figure 5.1. The ten-bar aluminium plane truss. 

 

The mass of the truss should be minimized so that the normal stress is more 

than -σmax  and less than σmax in all the bars and the deflection in nodes 1, 2, 

3 and 4 is less than the maximum allowed value maxv . The cross section areas 

Ai are the design variables and their values should be chosen from a set which 

includes 81 evenly distributed values. 

 

 

in ≈ 50,8 mm0 , 2 
psi ≈ 172, 4 MPa000 25 

psi ≈ 69,0 GPa10 1,0 
lb ≈ 444,8 kN000 00 1

in ≈ 9,1 m 360 

max

7 

= 
= 

⋅ =

=

=

E

F
L

σ

L 

L L   

F F   
x

1  2 
  

3

  

4 
  

5 

  

6
 

uj 

vj 
j 

lbm/in3 ≈ 2768,0 kg/m30,1 =ρ

y 

7 

8 

9 

10 

3 1

24 

5 

6 maxv



 54

In the mathematical form the ten-bar plane truss optimization problem is 
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The versions and the needed parameter values of SA, TS, GA and PSO have 

been chosen according to literature and test runs ([26] and [27]). In this thesis 

all heuristic algorithms including branch&bound are self implemented and 

they run in Matlab. The structural analysis is done using finite element 

method and a linear four degree of freedom bar element in example 5.1.  

In SA the initial temperature is 000100 =T  and the final temperature is 

01,0final =T . The depth of the discrete neighborhood is 12n =d . The coefficient 

for the decrease of temperature is 9,0=ε  and the number of iteration rounds 

is 40T =n  in the same temperature. An unfeasible point is always 

automatically rejected and a new one is selected.   

The tabu list has been implemented so that all the previous solutions and 

solutions which are similar to them are prohibited. The design variable that 

changed last will stay fixed 5fix =n  following iteration rounds. Also in TS an 

unfeasible point is always automatically rejected and the depth of the discrete 

neighborhood is 15n =d . The number of iteration rounds is 200iter =n  in TS.   

In GA binary encoding, binary tournament selection, two points crossover and 

elitism have been used. The size of the population is 80pop =n  individuals, the 

number of generations is 120gen =n  and the probabilities of crossover and 

mutation are 8,0c =p  and 05,0m =p .  



 55

In PSO the size of the swarm is 50swarm =n  particles but it will be increased by 

one randomly chosen particle every time the best known feasible objective 

function value has not improved during 5 previous iteration rounds. However, 

if the best known objective function value stays the same 20 iteration rounds 

the increase of the swarm stops. Initial velocities iv0  , 50,,1 K=i , are set to 

zero and velocities can not exceed value 12max =v  in2 during optimization. 

The initial inertia is 4,10 =w  and the new inertia for the next 5 iteration 

rounds is calculated from previous one by multiplying it with 8,0=δ . The 

values of scaling parameters are 221 == cc . The number of iteration rounds is 

200iter =n  and the penalty for unfeasible constraints is 2=R .   

The truss has to be analyzed thousands of times during the optimization. In a 

discrete optimization problem it is useful to keep in memory some time the 

values of the objective function and constraints after they have been 

calculated. Before a new analysis the memory is checked and if the solution 

is not there, the values of the objective function and the constraints are 

calculated. In this study the number of solutions in the memory is 500. In GA 

and PSO the memory shows its strength but it seems to be unnecessary in SA 

and TS. 

Heuristic methods TS, SA, GA and PSO have been compared to 

branch&bound algorithm (BB) which is based on implicit enumeration. In BB 

the original discrete problem is systematically replaced by a set of 

subproblems in which the design variables are relaxed to continuous ones 

with certain lower and upper bounds. Based on the solutions of subproblems 

it can be concluded what kind of discrete solutions can not be optimal. This 

reduces efficiently the set of potential candidate solutions. BB is guaranteed 

to find the global optimum for a discrete optimization problem if all the 

solutions of subproblems are global optima. The number of subproblems and 

the needed solution time increases rapidly as the size of discrete optimization 

problem increases and BB is suitable algorithm only for limited size 

problems. In this study subproblems are solved using Matlab Optimization 
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Toolbox’s SQP-algorithm (sequential quadratic programming) and needed 

derivatives are calculated using analytical expressions (Appendix C). The use 

of BB is discussed more detailed e.g. in Ref. [5].  

5.1.1 Comparison of algorithms without a good initial guess 

SA, TS and BB need an initial guess before the optimization can be started. 

At first a good initial guess is not assumed to be known even though it is easy 

to find a feasible solution just by selecting big enough members to the truss. 

The feasible initial guess is such that Ai = 20 in2 = 129,0 cm2 10,,1K=i  (m = 

8392,9 lbm = 3807,0 kg, max { }10,,1K=iiσ  = 10231,8 psi = 70,5 MPa and 

max { }4,,1K=− jv j  = 1,97 in = 50,2 mm) which corresponds an average 

randomly selected individual. In GA the initial population and in PSO the 

initial swarm are selected randomly in the beginning of each run.  

The optimization problem is solved once using TS and BB and 1000 times 

using SA, GA and PSO in several microcomputers. The duration of one FEM-

analysis is approximately 0,004 – 0,005 seconds and the total time for one 

optimization run is 35 – 190 seconds. Figure 5.2 represents the improvement 

of the objective function in individual optimization runs and the average 

improvement as the function of expended FEM-analysis. In this thesis FEM-

analysis includes the calculation of displacements, stresses, critical load 

factor and natural frequencies. If heuristic algorithms are used the most time 

consuming phase is the analysis of the structure and other calculations need 

less time unless the analysis model is small. Thus it is more useful to 

consider the number of needed FEM-analysis than the actual time in an 

academic test problem so that conclusions would be useful also with the 

bigger structures. Since stochastic methods can sometimes fail quite badly it 

is better to focus on the median of the objective function than the average 

value of the objective function. The median curves are drawn by calculating 

the median of the objective function and the median of the number of 

expended FEM-analysis up to each iteration step.  
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Table 5.1 represents the best found final results and Fig. 5.3 a) the mutual 

efficiency of TS, SA, GA, PSO and BB during optimization. Figure 5.3 b) 

shows the divergence of results using the upper and lower quartiles and Fig. 

5.4 the distribution of the optimization results compared to the best found 

solution. The system of units is the same as in the original paper [50].  

 

a)  
b)  

c)  d)  

Figure 5.2. The decrease of mass in individual optimization runs and the 

improvement of the median of mass: a) Tabu search and branch&bound, b) 

Simulated annealing, c) Genetic algorithm, d) Particle swarm optimization. 

 

An efficient heuristic optimization algorithm finds a good solution using as 

few FEM-analysis as possible. The comparison of the final results is not 

enough and the numbers of expended analysis have to be taken into account. 
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often more important than a good final solution which is laborious to achieve. 

If stochastic algorithm is used the reliability is also important. The number of 

optimization runs can be reduced by using reliable algorithm which gives 

uniform results in consecutive runs. 

 

Table 5.1. The best found final results in optimization. 

 cross section areas [in2] 
 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

mass 
[lbm] 

number 
of runs 

SA 28,5 0,1 27,5 16,5 0,1 1,0 8,0 20,0 21,0 0,1 5120,6 1 
TS 31,0 0,1 25,0 17,5 0,1 0,5 7,5 19,5 20,5 0,1 5094,6  
GA 31,5 0,1 24,5 15,5 0,1 0,5 7,5 20,0 21,0 0,1 5073,5 1 
PSO 29,5 0,1 23,0 16,0 0,1 0,5 7,5 21,5 21,5 0,1 5067,3 2 

 31,0 0,1 23,0 14,5 0,1 0,5 7,5 20,5 22,5 0,1 5067,3 3 
 30,0 0,1 23,0 15,5 0,1 0,5 7,5 21,0 22,0 0,1 5067,3 3 
 29,5 0,1 24,0 15,0 0,1 0,5 7,5 22,0 21,0 0,1 5067,3 1 

BB 29,5 0,1 24,0 16,0 0,1 0,5 7,5 20,0 22,5 0,1 5077,9  
[50] 1) 31,5 0,1 23,0 15,5 0,1 0,5 7,5 20,5 21,0 0,1 5045,8  

1) The solution is not feasible ( 0163,21 −=v  in). 
 
 
 

 
a) 

     
b)

Figure 5.3. a) The mutual efficiency of TS, SA, GA, PSO and BB in ten-bar 

plane truss optimization problem. SA, GA and PSO curves represent the 

median of mass based on 1000 independent optimization runs. b) The lower 

and the upper quartiles. 50 percent of runs are between the lower and the 

upper quartiles. 
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Figure 5.4. The distribution of the final results compared to the best found 

solution (5067,3 lbm, 2298,5 kg) in SA, GA and PSO runs. 

   

In ten-bar truss problem without a good initial guess the same best found 

objective function value 5067,3 lbm (2298,5 kg) was achieved nine times 

using PSO in four different points in design space. In all cases the most 

active constraints are the stress constraint of bar five and the deflection 

constraint of node one. The other algorithms found single good solutions in 

which the value of the objective function is close to the best found value. 

Since BB ended up worse solution than PSO and GA some of the solutions of 

subproblems are local optima in BB. According to Fig. 5.4 PSO seems to be a 

superior algorithm compared to other stochastic methods in the sense of the 

reliability of the final results. 58 percent of PSO runs gave the objective 

function value which differs one percent or less from the best found value.  

In the beginning BB improves the value of the objective function more 

efficiently than TS or on average SA, GA or PSO (Fig. 5.3). However after 

the good start BB becomes ineffective and the improvement of the objective 

function almost stops. According to Fig. 5.3 b) the lower quartile of PSO is 

quite close to the BB curve which means that several PSO runs improve the 

objective function basically as efficiently as BB. The drawback of stochastic 

PSO is that there might be many poor runs before a good one. Deterministic 

TS seems to improve the value of the objective function leisurely but at the 

end it found a better final solution than any of the 1000 SA runs.  
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Based on above results PSO can be considered as the most efficient algorithm 

among heuristic methods SA, TS, GA and PSO if good initial guess is not 

known. It found the best final result, the improvement of the objective 

function was the most rapid and its reliability was very high.  

5.1.2 Comparison of algorithms using a good initial guess 

In many applications a good initial design is already known or it can be easily 

sought. In ten-bar truss example a good initial solution is 3081 == AA  in2 = 

193,5 cm2, 20943 === AAA  in2 = 129,0 cm2 , 107 =A  in2 = 64,5 cm2 and 

1,010652 ==== AAAA  in2 = 0,6 cm2 (m = 5590,6 lbm = 2535,9 kg, max 

{ }10,,1K=iiσ  = 21194,1 psi = 146,1 MPa and max { }4,,1K=− jv j  = 1,89 in 

= 48,0 mm). The good initial solution is put to the initial population/swarm 

and the rest of members are selected randomly in GA and PSO. 

The optimization problem is solved again once using TS and BB and 1000 

times using SA, GA and PSO. The parameter values remain the same as in the 

previous optimization runs. Figure 5.5 represents the progress of optimization 

and Fig. 5.6 the distribution of final results. The best found solutions can be 

seen from Table 5.2.  

 

   
a) 

    
b) 

Figure 5.5 The decrease of mass using a good initial guess in ten-bar plane 

truss optimization problem. a) TS and BB. b) The mutual efficiency of TS, 

SA, GA, PSO and BB. SA, GA and PSO curves represent the median of mass 

based on 1000 independent optimization runs. 

0 0.5 1 1.5 2 2.5

x 10
4

5000 
5100 
5200 
5300 
5400 
5500 
5600 
5700 

number of FEM-analyses

TS
BB

0 1000 2000 3000 4000 5000 6000 7000
5000

5100

5200

5300

5400

5500

5600

5700

number of FEM-analyses

TS
SA
GA
PSO
BB

TS

BB

SA 

GA 

PSO 

m
as

s [
lb

m
] 

m
as

s [
lb

m
] 



 61

0

20

40

60

80

100

0% 1% 2% 3% 4% 5% 6% 7%
Difference from the best known solution.

pe
rc

en
ta

ge
 o

f r
un

s
SA
GA
PSO

 
Figure 5.6. The distribution of the final results compared to the best found 

solution (5067,1 lbm, 2298,5 kg) in SA, GA and PSO runs using a good initial 

guess. 

 

Table 5.2. The best found final results in optimization using a good initial 
guess. 

 cross section areas [in2] 
 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

mass 
[lbm] 

number 
of runs 

SA 29,0 0,1 24,5 14,0 0,1 1,0 7,5 22,5 21,5 0,1 5100,2 3 
TS 34,5 0,1 23,0 17,0 0,1 0,5 7,5 19,0 20,5 0,1 5105,1  
GA 32,0 0,1 21,5 15,5 0,1 0,5 8,0 22,5 20,0 0,1 5085,3 1 
PSO 30,0 0,1 23,5 15,0 0,1 0,5 7,5 21,5 21,5 0,1 5067,3 1 
BB 29,5 0,1 24,0 16,0 0,1 0,5 7,5 20,0 22,5 0,1 5077,9  

 

By comparing Tables 5.1 and 5.2 it can be noticed that the good initial guess 

worsens the best found final results in the cases of TS and GA. PSO found 

once a new solution which has the same best known objective function value 

5067,3 lbm (2298,5 kg) and SA found three times a new better solution than 

previously. BB ended up with the same solution as from average initial guess. 

According to Fig. 5.6 PSO is again superior stochastic algorithm in the sense 

of the reliability of final results.  

Figure 5.5 shows that the good initial guess improves the efficiency of TS 

clearly and it is almost as good as BB during early iteration rounds. PSO 

works still well and on average it found a better solution (5088,9 lbm, 2308,3 

kg) than TS using less FEM-analysis. It takes some time before the objective 
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function starts to improve in GA and SA and especially SA seems to be 

generally ineffective. To improve the performance of SA the initial 

temperature could be decreased.  

If a good initial guess is known PSO and TS are the two best heuristic 

methods in the light of above results. The final optimization results are not 

necessary as good as from an average initial guess but the improvement of the 

objective function is fast already in the beginning of optimization.  

5.2 Tubular plane truss 

5.2.1 Comparison of algorithms in sizing optimization 

In this example the mutual efficiency of TS, SA, GA and PSO has been 

studied using a sizing optimization problem connected to a simple plane truss 

(Fig. 5.7). The topology of the truss is fixed and the height is 5,1=H  m. The 

task is to select the values of the size design variables { }112,,2,1s K∈ix  

( 7,,2,1 K=i ) so that the cost of the truss is minimized and the strength and 

the buckling strength requirements for all members and the strength 

requirements for welded joints (except joints 1 and 11) are fulfilled and the 

maximum deflection is less than mm100200/max == Lv  ([63], roofs in 

general). The size design variable s
1x  is connected to the upper chord, s

2x  to 

the lower chord and s
7

s
3 ,, xx K  to the bracing members. The set of available 

profiles includes 112 RHS and SHS profiles given in the ascending order 

according to the cross-section area in Appendix D.  

The sizes of upper and lower flanges are constant and they both consist of 

three pieces welded consecutively. This means that the number of structural 

elements κ is 3+3+10=16. The compressed upper flange is supported in out of 

plane direction in joints 1, 3, 5, 7, 9 and 11. In all joints the eccentricity is 

zero. The alignment of profiles is such that the height of the profile cross 

section h is parallel to the xy-plane. There is only one load case and FEM-

model includes five beam elements in the upper chord, four in the lower 

chord and one bar element per each bracing member.  
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Figure 5.7. Symmetrical tubular plane K-truss made of SHS- or RHS-

profiles, cross-sections (1, …, 7), joints (1, …, 11) and displacements ui and 

vi connected to joint i. 

 

The material cost factor is assumed to be 6,0m =k  $/kg and value 9,0f =k  

$/min is used for the fabrication cost factor ( 5,1/ mf =kk  kg/min). In the 

manufacturing cost calculation the values of parameters (Table 5.3) have been 

chosen based on [30] and they are not connected to any certain manufacturer. 

According to [56] the gas-shielded arc welding is the most common welding 

technology in the manufacturing of tubular trusses in machine workshops. In 

the case of longitudinal fillet welds [30] gives for the gas metal arc welding 

with CO2 (GMAW-C) values 3394,02 =C  and 2~ =n  (downhand position) or 

Table 5.3. The values of parameters in the manufacturing cost calculation. 

Preparation, assembly and tacking 11 =C , 3d =Θ  and 16=κ  
Welding and additional fabrication 
costs 

4,02 =C  and 2~ =n  (GMAW-C ) 

Surface preparation 2ds =Θ  and 6
sp 103 −⋅=a  

Painting 2dp =Θ , 6
gc 103 −⋅=a  and 6

tc 1015,4 −⋅=a  
Cutting 2dc =Θ  or  3dc =Θ  (two cuts for 

overlapping bracing members) 
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4930,02 =C  and 2~ =n  (positional welding). Due to these values 4,02 =C  and 

2~ =n  have been chosen and it is assumed that they can be used for all welds.   

In the mathematical form the optimization problem is 
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    (5.2) 

The number of feasible or unfeasible candidate solutions is 
147

cs 1021,2112 ⋅≈=n . If 1000 FEM-analysis could be done in one second the 

total enumeration would take more than 7000 years.  

In optimization algorithms the values of parameters are basically the same as 

in the ten-bar truss example problem except that in TS the depth of discrete 

neighborhood is 16n =d  and the number of iteration rounds is 250iter =n , in 

SA the number of iteration rounds in the same temperature is 35T =n , in GA 

the size of the population is 70pop =n  and the number of generations is 

180gen =n  and in PSO the number of iteration rounds is 300iter =n  and a new 

inertia is multiplied using dynamic inertia reduction parameter 85,0=δ . 

These few modifications are done based on test runs to improve the 

efficiency. However the number of different parameters connected to 

algorithms is so big that all possible tuning opportunities have not been 

checked.  

In TS and SA the initial guess is such that for the upper and the lower chord 

profile number 94 and for all bracing members profile number 46 have been 

selected which corresponds to the minimum cost truss in the case of two 

independent size design variables ( 94s
2

s
1 == xx , 46s

7
s
3 === xx K , 8,4273=K  $ 
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and 8,2293=m  kg). This structure can be easily found using enumeration. The 

initial population and swarm have been chosen randomly so that they both 

include 15 feasible individuals. The idea is to make sure that initial 

population and swarm are good enough. If the initial population includes only 

poor unfeasible individuals in GA it is unlikely that the optimization result, 

which is formed mostly by combining existing individuals, would be good. It 

is also assumed that if there are some feasible solutions in the initial swarm it 

is advantageous for PSO. In this problem a randomly selected individual is 

usually unfeasible and it is laborious to find 15 feasible solutions in the 

beginning of each run. That is why feasible individuals are picked from the 

same set of 100 feasible solutions which are selected once randomly before 

all optimization runs. In the initial population and swarm one individual is 

forced to be the same as the initial guess in TS and SA runs.  

The optimization has been done once using TS and 100 times using SA, GA 

and PSO. The results are presented in Fig. 5.8, …, Fig. 5.11 and Table 5.4.  

 

 

a) 
       
b)

Figure 5.8. a) The efficiency of TS, SA, GA, PSO in the problem (5.2). SA, 

GA and PSO curves represent the median of mass based on 100 independent 

optimization runs. b) The lower and the upper quartiles in SA, GA and PSO 

runs. 
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Figure 5.9. The distribution of the final results compared to the best found 

solution (K=3727,8 $) in SA, GA and PSO runs in the problem (5.2). 

 

Table 5.4. The best found final results in the problem (5.2). 

 s
1x  s

2x  s
3x  s

4x  s
5x  s

6x  s
7x  cost [$] mass [kg] number 

of runs 
SA 94 87 40 46 36 38 23 3745,9 2087,6 1 
TS 94 87 40 46 46 32 23 3753,0 2090,8  
GA 94 84 40 46 46 40 23 3727,8 2057,4 1 
PSO 94 84 40 46 46 40 40 3817,4 2092,8 1 

 

According to Table 5.4 GA ended up once to the best found solution 

K=3727,8 $ while the best results of SA and TS were slightly poorer and PSO 

found the weakest final solution. PSO seems to be also the weakest stochastic 

algorithm if the distribution of final results (Fig. 5.9) is considered. Based on 

Fig. 5.8 TS can be considered overall the best algorithm in the tubular plane 

truss sizing optimization problem (5.2). If only one or few optimization runs 

can be done, deterministic TS guarantees a good result which is most likely 

better than what SA, GA and PSO will find. The most surprising thing in the 

results is that this time the success of PSO is clearly poorer than what it was 

in the ten-bar truss example problem.  

 

 



 67

 

Figure 5.10. a) The best found truss (K=3727,8 $) in the problem (5.2).       

b) The ratios of design values to design capacities in the best found solution. 

On the left side the upper values are connected to member strength and the 

lower values to member buckling strength. On the right side values are 

connected to joint strength. (The support points are not considered.) 

 

 
Figure 5.11. The distribution of costs for the best found truss (K=3727,8 $) 

in the problem (5.2). 

Figure 5.10 shows that in the best found truss the buckling strength is the 

most limiting phenomenon in the upper chord (Eq. (2.33) has value 0,999 in 

the middle member) and in the lower chord the strength demands are well 

fulfilled (the maximum value of Eq. (2.17) is 0,839). The most loaded bracing 

members are connected to design variables s
3x  and s

4x  and in these members 
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956,0/ . =RdtSd NN  and 989,0/ . =RdbSd NN . Joints three and nine are the critical 

connections because in these joints { } 983,0/max .. =RdiSdi NN . The displacement 

constraint is not close to active since the maximum deflection is 83,1 mm.  

5.2.2 Comparison of algorithms in topology, shape and sizing 
optimization   

This efficiency comparison concerns the simultaneous topology, shape and 

sizing optimization of a tubular plane truss. The problem is basically similar 

to the previous one except that there are (Fig. 5.12) four available topologies 

{ }4,3,2,1t ∈x , one discrete shape design variable { } m0,5,,1,1,0,1sh K∈x  

and four size design variables { }112,,2,1s K∈ix  ( s
1x  upper chord, s

2x  lower 

chord, s
3x   tension and s

4x   compression bracing members). The objective 

function, constraints and the set of available profiles have not been changed. 

Because there are only four preselected topologies available the topology of 

truss can change rather limited.  

 

 

 

 

 

 

 

 

Figure 5.12. The four available topologies a), b), c) and d) ( { }4,3,2,1t ∈x ), 

the shape design variable xsh and four different cross-sections in the tubular 

plane truss topology, shape and sizing optimization problem (5.3). The 

meaning of xsh and cross-sections are the same in cases a), b), c) and d). 
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The total load 720 kN is divided into equal point forces along the upper 

chord. The joints at both ends of truss are not considered in the joint 

constraint and FEM-models include one element from joint to joint in chords 

and one element per each web bar.  

In the mathematical form the optimization problem is 
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    (5.3) 

v means the vertical displacement in the middle and the number of candidate 

solutions is 10
cs 1058,2 ⋅≈n . In this case the total enumeration takes 298 days 

if 1000 FEM-analysis are done in one second.  

The initial guess ( 1t =x , 5,1sh =x  m, 94s
2

s
1 == xx  and 46s

4
s
3 == xx , 8,4273=K  

$ and 8,2293=m  kg) and the parameter values of algorithms are the same as 

earlier except that in TS the last changed design variable stays fixed only two 

following iteration rounds ( 2fix =n ). The initial swarm and population are 

also formed in a similar way to the sizing optimization problem. The 

optimization has been again done one time using TS and 100 times using SA, 

GA and PSO. Results are presented in Table 5.5 and Figures 5.13, …, 5.16. 

Table 5.5. The best found final results in the problem (5.3). 

 tx  shx  s
1x  s

2x  s
3x  s

4x  cost [$] mass [kg] number 
of runs 

SA 1 3,4 65 88 29 48 3131,2 1817,8 1 
TS 1 1,7 90 85 43 46 3802,5 2029,7  
GA 1 3,2 65 89 32 46 3114,2 1802,7 1 
PSO 1 3,8 57 38 29 56 2500,9 1318,3 2 
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a) 
    
b)

Figure 5.13. a) The mutual efficiency of TS, SA, GA, PSO in the problem 

(5.3). SA, GA and PSO curves represent the median of mass based on 100 

independent optimization runs. b) The lower and the upper quartiles in SA, 

GA and PSO runs. 
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Figure 5.14. The distribution of the final results compared to the best found 

solution (K=2500,9 $) in SA, GA and PSO runs in the problem (5.3). 

According to Table 5.5 and Figures 5.13 and 5.14 PSO is a superior algorithm 

compared to SA, TS and GA in the tubular plane truss topology, shape and 

sizing optimization problem (5.3). By adding the topology and the shape 

design variables x t and xsh the truss sizing optimization problem becomes 

some how much more suitable for PSO than it was. It is still unclear what 

specific feature is behind this dramatic improvement. SA, TS and GA work on 

average the same way as in the sizing optimization except that TS needs more 
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FEM-analysis and the divergence of SA results is wider. In fact many of the 

SA runs do not improve the value of the objective function at all which was 

not noticed in the sizing optimization. In SA and GA runs the best found 

solutions are clearly better than the final result of the TS run. Despite the 

superiority of PSO in the beginning of optimization TS improves most 

efficiently the value of the objective function as can be seen from Fig, 5.13. 

Thus deterministic TS is the best algorithm if only a few hundred FEM-

analysis can be done.  

 

Figure 5.15. a) The best found truss (K=2500,9 $) in the problem (5.3). b) The 

ratios of design values to design capacities in the best found solution. On the 

left side the upper values are connected to member strength and the lower 

values to member buckling strength. On the right side values are connected to 

joint strength. (The support points are not considered.) 

 

Based on Fig. 5.15 the buckling strength constraint is close to active in the 

upper chord (Eq. (2.33) gets value 0,998) and the strength constraint in the 

lower chord (Eq. (2.17) gets value 0,958). The most critical bracing members 
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are the two outermost ( 943,0/ . =RdtSd NN  and 892,0/ . =RdbSd NN ). The 

connections at ends of the lower chord are critical joints 

( { } 940,0/max .. =RdiSdi NN ) and the maximum deflection of the truss is 42,9 

mm. 

 

Figure 5.16. The distribution of costs for the best found truss (K=2500,9 $) in 

the problem (5.3). 

If Figures 5.11 and 5.16 are compared it can be noticed that the cost 

distributions of the best found solutions are similar in the problems (5.2) and 

(5.3).  

5.2.3 Conflict of mass and cost 

Traditionally it is assumed that the mass minimization and the cost 

minimization do not necessarily lead to the same final cost in steel structures. 

There are some results or estimates concerning the difference in the literature 

(Pavlovčič, Krajnc & Beg [54] 0,7% and Sarma & Adeli [60] 7%-26%)  but at 

least in the case of tubular trusses the difference between the minimum mass 

and the minimum cost structures is still more or less unknown. If the conflict 

is small enough or it does not exist there is no need to consider mass and cost 

as separate criteria or to find out the values of different parameters connected 

to the cost function.    

The conflict between mass and cost has been studied using the tubular plane 

truss topology, shape and sizing optimization problem (5.3) with two 
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independent size design variables. The same profile is forced for the upper 

and the lower chord ( s
2

s
1 xx = ) and all bracing members have the same size 

( s
4

s
3 xx = ). Due to the small number of design variables total enumeration can 

be used to calculate the following results.  

 

 
a) 

     
b)

Figure 5.17. a) The minimum cost and b) the minimum mass in the problem 

(5.3) using two independent size design variables ( s
2

s
1 xx =  and s

4
s
3 xx = ). 

 

a)     
b)

Figure 5.18. The minimum mass and the minimum cost trusses in the problem 

(5.3) using two independent size design variables ( s
2

s
1 xx =  and s

4
s
3 xx = ). a) 

Topologies 1t =x  and 2t =x  b) Topologies 3t =x  and 4t =x . Dotted lines 

present the mass minimization. 
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According to Fig. 5.17, which represents the minimum cost and the minimum 

mass as the function of height xsh for different topologies, truss topology 

clearly affects the optimum height of the truss. In the discussed problem the 

minimum cost and the minimum mass trusses are the same ( 1t =x , 8,3sh =x  

m, 57s
2

s
1 == xx , 46s

4
s
3 == xx , 2878,9=K  $ and 0,1555=m  kg). The values of 

the topology and the shape design variables are also the same as in the best 

found solution of the original problem (5.3) with four size design variables 

(Table 5.5). The decrease of two size design variables worsens the value of 

the best found objective function $ 378 in the problem (5.3).  

From Fig. 5.18 it can be seen that the mass minimization and the cost 

minimization lead to the same final cost unless m3,2m3,1 sh ≤≤ x . The 

biggest difference is $ 366,4 ( 3t =x  and 6,1sh =x  m: The minimum mass 

84s
2

s
1 == xx , 44s

4
s
3 == xx , 3,2154=m  kg and 5,4633=K  $ and the minimum 

cost 88s
2

s
1 == xx , 35s

4
s
3 == xx , 3,2212=m  kg and 9,4266=K  $) which means 

that the minimum mass truss is 8,6 % more expensive than the minimum cost 

truss. The average of difference is 2,4 % in range m3,2m3,1 sh ≤≤ x . 

5.2.4 Cost and displacement minimization 

This example deals with the simultaneous cost and deflection minimization 

using previous truss optimization problems. Criteria are clearly conflicting 

because the most economic and at the same time very light truss can not be 

also the stiffest. The design variables and FEM-models are the same as in 

problems (5.2) and (5.3) and also the constraints are almost the same except 

that there is no displacement constraint. The sizing optimization problem 

(5.2) is also solved using two independent size design variables ( s
2

s
1 xx =  and 

s
7

s
3 xx ==K ). v6 and v are the vertical displacements in the middle of truss in 

problems (5.2) and (5.3). 
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The mathematical forms of the discussed optimization problems are 
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The solution of a multicriteria optimization problem is the set of Pareto- 

optima. Design variable vector x* is Pareto-optimal if there exists no feasible 

vector x which would improve some criterion without causing a simultaneous 

worsening in at least one criterion. Correspondingly, vector x* is weakly 

Pareto-optimal if there exists no feasible vector x which would improve all 

the criteria simultaneously.  

The bi-criteria optimization problems (5.4a) and (5.4b) have been solved 

using the constraint method. One criterion is chosen as the minimized 

objective function and the other is converted into constraint. By varying the 

bound of constraint weakly Pareto-optimal solutions can be generated but not 

necessarily Pareto-optima. Some of the solutions have been calculated by 

minimizing the cost with varying the deflection upper limit maxv  and the rest 

by minimizing –v6 or –v with varying the cost upper limit Kmax as it is 

presented for the sizing optimization problem (5.4a) in (5.5a) and (5.5b).  
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Figure 5.19 represents the best found solutions for problems (5.4a) and (5.4b) 

in criterion space. Each single criterion problem has been solved 20 times 

using PSO with the same parameter values as previously and the best solution 

has been picked or results have been taken from previous study [29]. Table 

5.6 represents the minimum cost trusses and Table 5.7 the minimum 

deflection trusses. 

 

 

Figure 5.19. The best found solutions for the bi-criteria tubular plane truss 

sizing optimization problem (5.4a) (two or seven size design variables) and 

for the bi-criteria tubular plane truss topology, shape and sizing optimization 

problem (5.4b) in criterion space. In the case of two independent size design 

variables s
2

s
1 xx =  and s

7
s
3 xx ==K . 

Table 5.6. The best found trusses in the cost minimization: Sizing 

optimization a) two design variables and b) seven design variables. c) 

Topology, shape and sizing optimization. 

 tx  shx  s
1x  s

2x  s
3x  s

4x  s
5x  s

6x  s
7x  K [$] -v6, -v 

[mm] 
a) - - 94 94 46 46 46 46 46 4273,8 74,2 
b) - - 94 84 40 46 46 40 23 3727,8 83,1 
c) 1 3,8 57 38 29 56 - - - 2500,9 42,9 
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Table 5.7. The best found trusses in the deflection minimization: Sizing 

optimization a) two design variables and b) seven design variables. c) 

Topology, shape and sizing optimization 

 tx  shx  s
1x  s

2x  s
3x  s

4x  s
5x  s

6x  s
7x  K [$] -v6, -v 

[mm] 
a) - - 111 111 104 104 104 104 104 12797,8 31,7 
b) - - 111 111 112 108 112 108 112 15893,1 30,6 
c) 1 5,0 112 112 112 108 - - - 17294,7 5,1 

 

Figure 5.19 and Tables 5.6 and 5.7 show that the shape design variable 

affects more the optimized truss than the size design variables. In cost 

minimization the increase of five size design variables improves the value of 

the objective function by $ 546 (13%) but the increase of one topology, one 

shape and two size design variables by $ 1773 (41%). Topology design 

variables are probably also significant although in this case the topology 

remains the same as in the sizing optimization. It can be concluded that if the 

number of design variables has to be limited it is useful to allow changes in 

the topology and the shape of the truss at the expense of the number of sizing 

design variables.  

In the sizing optimization the best found trusses contain only SHS-profiles 

except a few very stiff in Fig. 5.19. RHS-profiles are more common in the 

best found trusses in the topology, shape and size optimization.  

5.3 Tubular space truss 

The last numerical test problem concerns the shape and sizing optimization of 

a 72 member space tubular truss presented in Fig. 5.20. The truss is built up 

from four 12 meters long N-trusses which are perpendicular to each other. 

The cost of the truss should be minimized so that the strength and the 

buckling requirements for all members and the strength requirements for all 

joints (except the four highest and the four lowest joints) are fulfilled, the 

horizontal displacements u1 and u2 are less than 24500/m12max ==u  mm 

([63], on the top of a multi-storey building), the safety factor against global 
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buckling is at least 3gb =n  and none of the natural frequencies fall into 

forbidden interval of 1 … 10 Hz. In addition the height of truss has to be 12 

meters.   

 

 

Figure 5.20. Six story 12 m high tubular space truss made of SHS-profiles. 
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The discrete shape design variables { }0,5,,1,1,0,1sh K∈ix  m ( 8,,2,1 K=i ) are 

connected to the width and the depth of the truss and the height of each floor 

(Fig. 5.20). The size design variables { }61,,2,1s K∈ix  ( 3,2,1=i ) are 

connected to columns ( s
1x ), diagonals ( s

2x ) and horizontal members ( s
3x ). The 

set of available profiles includes 61 SHS profiles given in Appendix D. 

Columns are welded from three pieces and the eccentricity is zero in all 

joints. There is only one load case and the FEM-model includes six elements 

in each column and one element per each diagonal and horizontal member. 

The weight of the truss is ignored as a load and support points are pinned 

joints.  

The material and manufacturing cost factors are the same as in previous 

tubular plane truss examples ( 6,0m =k  $/kg and 9,0f =k  $/min) and the 

values of the cost function parameters are given in Table 5.3.  

In the mathematical form the tubular space truss optimization problem is 
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The height of the truss is sh
6

sh
5

sh
4

sh
3

sh
2

sh
1)( xxxxxxH +++++=x  and 12=H  m. 

The number of feasible or unfeasible candidate solutions is 
1838

cs 1081,16141 ⋅≈⋅=n . 

The problem (5.6) is solved once using TS and 100 times using PSO. These 

two algorithms have been selected because they are the most promising in the 

light of previous examples. In TS run the parameter values are the same as in 

the ten-bar truss problem (5.1) except that the depth of discrete neighborhood 

is 8n =d . In PSO runs the parameters are the same as in the tubular plane 

truss sizing optimization problem (5.2). Duration of one FEM-analysis was 

approximately 0,7 – 0,8 seconds and the total time for TS run was 7,5 hours 

and for one PSO run 50 – 70 minutes. The initial guess is 4,3sh
2

sh
1 == xx  m, 

2,, sh
8

sh
3 === xx K  m, 48s

1 =x  and 18s
3

s
2 == xx  ( 68567,=K  $ and 5,4495=m  

kg). It corresponds to the minimum cost truss in such a case that the floor 

height is constant two meters and there is only one independent shape design 

variable ( sh
2

sh
1 xx = ) and two independent size design variables ( s

1x  and s
3

s
2 xx = ). 

This structure can be found using enumeration. The initial swarm is selected 

randomly so that it includes 15 feasible individuals which are picked from the 

same set of 100 feasible solutions. The initial guess is forced to be one of the 

15 feasible individuals in the initial swarm. The optimization results are 

presented in Table 5.8 and Fig. 5.21.  

 

Table 5.8. The best found final results in the problem (5.6). 

 sh
1x  sh

2x  sh
3x  sh

4x sh
5x sh

6x sh
7x sh

8x s
1x s

2x s
3x  cost [$] number 

of runs 
TS 3,9 2,0 2,0 2,0 2,0 2,0 2,0 2,0 42 23 17 7837,0  

PSO 4,0 2,1 2,0 2,0 2,0 2,0 2,0 2,0 43 21 18 7890,5 7 
 
 

 gs gb gj gkkgj u1 
[mm] 

u2 
[mm] λcr f1 [Hz] m  [kg]

TS -0,729 -0,595 -0,028 -0,930 23,94 23,95 68,10 10,04 3933,0 
PSO -0,737 -0.585 0,000 -0.933 23,97 23,95 43,08 10,20 3964,6 
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a) 

    
b)

Figure 5.21. a) The decrease of cost in individual PSO runs (total 100 runs) 

and the median of cost in the problem (5.6). b) The mutual efficiency of TS 

and PSO. 

According to Table 5.8 TS found the better final solution than any of the 100 

PSO runs but on the other hand the TS run was also much longer than the 

PSO runs (Fig. 5.21). However the longer duration of the single TS run is not 

that significant because in any case there have to be several runs if stochastic 

PSO is used. In addition TS improves the value of the objective function 

clearly more efficiently than PSO in the beginning of optimization. PSO 

needs on average 2000 FEM-analysis before the objective function improves. 

Based on these observations TS can be considered to work better than PSO in 

the tubular space truss shape and sizing optimization problem (5.6).   

In the best found TS and PSO solutions the value of sh
2x  is smaller than sh

1x  

which sounds natural if the directions of horizontal loads are considered. The 

heights of each floor sh
3x , …, sh

8x  remain the same as in the initial guess which 

was also forced to be one of the individuals in the initial swarm. This 

suggests that the shape design variables sh
3x , …, sh

8x  are unnecessary or at least 

they do not have a major role in optimization. Based on Table 5.8 the joint 

constraint, the displacement constraints and the frequency constraint are 

closest to active constraints. The global buckling constraint is far from active 

and the strength and the buckling strength constraints hold clearly.   
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6. Conclusions 

The first goal of this study was to formulate an optimization problem for 

tubular trusses in such a way that it is not just academic but also useful in 

real life applications. This means that the topology, shape and sizing 

optimization of plane or space truss is considered, the manufacturing cost is 

taken into account, design constraints are based on the steel design rules and 

the selection of RHS and SHS profiles is not limited to few preselected sizes. 

The second goal was to solve the formulated problem efficiently using four 

heuristic multipurpose optimization algorithms simulated annealing, tabu 

search, genetic algorithm and particle swarm optimization. The efficiency of 

algorithms has been compared empirically in several example problems, the 

conflict of mass and cost has been studied and multicriteria cost and 

deflection minimization has been presented.  

Numerical example problems show that heuristic algorithms are usable tools 

in tubular truss optimization problems. Discrete design variables and the 

demands of steel design rules which lead to rather awkward constraints are 

not obstacles for these algorithms. On the other hand heuristic algorithms 

from suffer high computational cost and uncertainty because they demand 

thousand of FEM-analysis per each run and there has to be several of these 

runs in the case of stochastic algorithm. In addition heuristic algorithms do 

not always work, they need tuning and offer no guarantee concerning the 

quality of the final solution.  

None of the discussed heuristic algorithms was the best one in all the studied 

example problems. In some cases PSO was superior compared to other 

methods (the ten-bar truss (5.1) and the plane truss topology, shape and 

sizing optimization problem (5.3)) but on the other hand it works clearly less 

efficiently in slightly different problems (the plane truss sizing optimization 

problem (5.2) and the space truss optimization problem (5.6)). TS improves 

rapidly the value of the objective function during early iteration rounds at 

least if the initial guess is good. Usually a good initial guess is known based 

on experience or it can be found using a few design variables, enumeration 
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and possibly the limited set of available profiles. TS is also a deterministic 

algorithm and thus only one optimization run is needed. In the studied 

example problems the efficiencies of SA and GA seem to be weaker than the 

efficiencies of PSO and TS. The implementation of PSO can be considered 

the simplest among the four heuristic algorithms and it can be used directly 

also in a mixed-integer problem.  

As assumed the simultaneous topology, shape and sizing optimization of a 

tubular truss leads to better final solution than the pure sizing optimization. 

Generally speaking the increase of the number of the sizing design variables 

does not improve the optimum solution as much as the increase of the number 

of other design variables. The mass minimization and the cost minimization 

often seem to lead to the same final solution. If the minimum mass truss and 

the minimum cost truss were not the same the average cost difference was 

2,4%.   

As a conclusion it can be said that it is worthwhile to include the topology 

and the size design variables in a tubular truss optimization problem. In the 

formulated problem the number of available topologies is rather small, which 

emphasizes the importance of a sensitive topology selection. The mass can 

well be used as the minimized criterion instead of the cost if the cost function 

is not known in detail. Beside mass/cost it is possible to consider also other 

conflicting criteria in a multicriteria problem at the same time. The 

optimization problem can be solved using both PSO and TS. TS is a better 

choice if only a few hundred FEM-analysis can be done. Designer has to 

make time for unavoidable test runs and make several actual PSO runs.  

In future studies the tubular truss optimization problem should be improved 

onwards by e.g. taking the eccentricities of joints and the steel grade as new 

design variables. The selection of criteria could be increased and new 

constraints added due to fatigue loading and fire safety. Different cost 

functions should be compared and also CHS sections studied, as well as other 

connections than K- and N-joints and tubular members in cross-section 

classes 3 and 4. The comparison of the mutual efficiency should be continued 
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and also other heuristic algorithms than SA, TS, GA and PSO should be 

considered. The comparison can be developed by giving an exact definition 

for the good performance of a heuristic algorithm. It should also pay attention 

to parallel computing. In multicriteria problems the use of the special 

versions of heuristic algorithms should be studied instead of the constraint 

method. Constraint method is after all better suitable for cases where the 

designer’s preference of criteria is already somehow fixed.  

 

 

 



 86

  



 87

Bibliography 

 

[1] Aarts E., Lenstra J. K. (ed.) 1997. Local Search in 

Combinatorial Optimization. John Wiley & Sons. 

[2] Adeli H., Sarma K. 2006. Cost Optimization of Structures. 

John Wiley & Sons. 

[3] Aho M. 2003. Discrete Optimization of Large Scale 

Laminated Composite Structures. Dissertation, Tampere 

University of Technology.  

[4] Arora J. S. 1989. Introduction to Optimum Design. 

McGraw-Hill. 

[5] Arora J. S., Huang M. W., Hsieh C. C. 1994. Methods for 

optimization of nonlinear problems with discrete variables: 

A review. Structural Optimization 8, 69-85. 

[6] Arora J. S. 2002. Methods for discrete variable structural 

optimization. In: Burns S. A. (ed.) Recent Advances in 

Optimal Structural Design. ASCE. 

[7] Balling R. J. 1991. Optimal steel frame design by simulated 

annealing. Journal of Structural Engineering 117, 1780-

1795. 

[8] Bauer J., Gutkowski W. 1995. Discrete structural 

optimization: A review. In: Olhoff N., Rozvany G. I. N. 

(ed.) Proceedings of the First World Congress of Structural 

and Multidisciplinary Optimization. Pergamon. 

[9] Bennage W. A., Dhingra A. K. 1995. Optimization of truss 

topology using tabu search. International Journal for 

Numerical Methods in Engineering 38, 4035-4052.  

 



 88

[10] Bland J. A. 1995. Discrete-variable optimal structural 

design using tabu search. Structural Optimization 10, 87-93. 

[11] Botello S., Marroquin J. L., Onate E., van Horebeek J. 1999. 

Solving structural optimization problems with genetic 

algorithms and simulated annealing. International Journal 

for Numerical Methods in Engineering 45, 1069-1084. 

[12] Chen T. Y., Su J. J. 2002. Efficiency improvement of 

simulated annealing in optimal structural designs. Advances 

in Engineering Software 33, 675-680. 

[13] Coello C. A. C., Lechuga M. S. 2002. MOPSO: A Proposal 

for Multiple Objective Particle Swarm Optimization. IEEE 

World Congress on Computational Intelligence, Hawaii, 

USA. 

[14] Deb K. 2001. Multi-Objective Optimization using 

Evolutionary Algorithms. John Wiley & Sons. 

[15] Degertekin S. 2007. A comparison of simulated annealing 

and genetic algorithm for optimum design of nonlinear steel 

space frames. Structural and Multidisciplinary Optimization 

34, 347-359.  

[16] Dhingra A. K., Bennage W. A. 1995. Discrete and 

continuous variable structural optimization using tabu 

search. Engineering Optimization 24, 177-196.  

[17] Farkas J., Jármai K. 1997. Analysis and Optimum Design of 

Metal Structures. A. A. Balkema. 

[18] Farkas J., Simões L. M. C., Jármai K. 2005. Minimum cost 

design of a welded stiffened square plate loaded by biaxial 

compression. Structural and Multidisciplinary Optimization 

29, 298-303. 

 



 89

[19] Farkas J., Jármai K. 2006. Optimum strengthening of a 

column-supported oil pipeline by a tubular truss, Journal of 

Constructional Steel Research 62, 116-120.  

[20] Floudas C. A. 1995. Nonlinear and Mixed-Integer 

Optimization. Oxford University Press. 

[21] Fourie P. C., Groenwold A. A. 2002. The particle swarm 

optimization algorithm in size and shape optimization. 

Structural and Multidisciplinary Optimization 23, 259-267. 

[22] Gutkowski W. (ed.) 1997. Discrete Structural Optimization. 

Springer-Verlag. 

[23] Haftka R., Gürdal Z. 1992. Elements of Structural 

Optimization. Kluwer. 

[24] Huang M. W., Arora J. S. 1996. Optimal design with 

discrete variables: Some numerical experiments. 

International Journal for Numerical Methods in 

Engineering 40, 165-188. 

[25] Iqbal A., Hansen J. 2006. Cost-based, integrated design 

optimization. Structural and Multidisciplinary Optimization 

32, 447-461. 

[26] Jalkanen J. 2004. Simulated Annealing and Tabu Search in 

Space Frame Optimization Problem (in Finnish). Research 

Report 2004:1, Tampere University of Technology, Institute 

of Applied Mechanics and Optimization.  

[27] Jalkanen J. 2004. Genetic Algorithm in Space Frame 

Optimization Problem (in Finnish). Research Report 2004:2, 

Tampere University of Technology, Institute of Applied 

Mechanics and Optimization. 

 

 



 90

[28] Jalkanen J., Koski J., 2005. Heuristic Methods in Space 

Frame Optimization. 1st AIAA Multidisciplinary Design 

Optimization Specialist Conference, Austin, USA. 

[29] Jalkanen J. 2007. Multi-Objective Sizing Optimization of 

Tubular Trusses. 7th World Congress on Structural and 

Multidisciplinary Optimization, Seoul, Korea. 

[30] Jármai K., Farkas J. 1999. Cost calculation and optimisation 

of welded steel structures. Journal of Constructional Steel 

Research 50, 115-135. 

[31] Jármai K., Farkas J. 2001. Optimum Cost Design of Welded 

Box Beams with Longitudinal Stiffeners Using Advanced 

Backtrack Method. Structural and Multidisciplinary 

Optimization 21, 52-59.  

[32] Jármai K., Snyman J. A., Farkas J. 2004. Application of 

novel constrained optimization algorithms to the minimum 

volume design of planar CHS trusses with parallel chords, 

Engineering Optimization 36, 457 – 471. 

[33] Kere P. 2002. Multi-Criteria Optimization of Composite 

Lamination for Maximum Failure Margins with an 

Interactive Descent Algorithm. Dissertation, Tampere 

University of Technology.  

[34] Kere P., Jalkanen J. 2007. Parallel Particle Swarm-Based 

Structural Optimization in a Distributed Grid Computing 

Environment. 3rd AIAA Multidisciplinary Design 

Optimization Specialist Conference, Honolulu, USA. 

[35] Kilkki J. 2002. Automated Formulation of Optimisation 

Models for Steel Beam Structures. Dissertation, 

Lappeenranta University of Technology. 

[36] Kirsch U. 1993. Structural Optimization. Spinger-Verlag. 



 91

[37] Klanšek U., Kravanja S. 2006. Cost estimation, optimization 

and competitiveness of different composite floor systems − 

Part 1: Self-manufacturing cost estimation of composite and 

steel structures. Journal of Constructional Steel Research 

62, 434-448.  

[38] Klanšek U., Kravanja S. 2006. Cost estimation, optimization 

and competitiveness of different composite floor systems − 

Part 2: Optimization based competitiveness between the 

composite I beams, channel-section and hollow-section 

trusses. Journal of Constructional Steel Research 62, 449-

462.  

[39] Koski J. 1984. Bicriterion Optimum Design Method for 

Elastic Trusses. Dissertation, Tampere University of 

Technology.  

[40] Koski J. 1994. Multicriterion structural optimization. In: 

Adeli H. (ed.) Advances in Design Optimization. 

[41] Kripakaran P., Gupta A., Baugh J. 2007. A novel 

optimization approach for minimum cost design of trusses. 

Computers & Structures 85, 1782-1794. 

[42] Kurobane Y., Packer J. A., Wardenier J., Yeomans N. 2004. 

Design guide for structural hollow section column 

connections. Verlag TÜV Rheinland.  

[43] Leite J. P. B., Topping B. H. V. 1999. Parallel simulated 

annealing for structural optimization. Computers & 

Structures 73, 545-564. 

[44] Manoharan S., Shanmuganathan S. 1999. A comparison of 

search mechanics for structural optimization. Computers & 

Structures 73, 363-372. 

 



 92

[45] Marler R. T., Arora J. S. 2004. Survey of multi-objective 

optimization methods for engineering. Structural and 

Multidisciplinary Optimization 26, 369-395. 

[46] Miettinen K. 1999. Nonlinear Multiobjective Optimization, 

Kluwer Academic Publishing, Boston. 

[47] Moh J. S., Chiang D. Y. 2000. Improved simulated 

annealing search for structural optimization. AIAA Journal 

38, 1965-1973. 

[48] Nemhauser G. L., Wolsey L. A. 1988. Integer and 

Combinatorial Optimization. John Wiley & Sons.  

[49] Ohsaki M., Kinoshita T., P. Pan. 2007. Multiobjective 

heuristic approaches to seismic design of steel frames with 

standard sections. Earthquake Engineering and Structural 

Dynamics 36, 1481-1495 

[50] Olsen G., Vanderplaats G. 1989. Method for Nonlinear 

Optimization with Discrete Design Variables. AIAA Journal 

27, 1584-1589. 

[51] Osyczka A. 1984. Multicriterion Optimization in 

Engineering with FORTRAN Program, Ellis Horwood, 

Chichester. 

[52] Osyczka A. 2002. Evolutionary Algorithms for Single and 

Multicriteria Design Optimization. Springer-Verlag. 

[53] Packer J. A., Wardenier J., Kurobane Y., Dutta D., Yeomans 

N. 1992. Design guide for rectangular hollow section (RHS) 

joints under predominantly static loading. Verlag TÜV 

Rheinland. 

[54] Pavlovčič L., Kranjc A., Beg D. 2004. Cost function 

analysis in the structural optimization of steel frames, 

Structural and Multidisciplinary Optimization 28, 286-295. 



 93

[55] Pezeshk S., Camp C. V. 2002. State of art on the use of 

genetic algorithms in design of steel structures. In: Burns S. 

A. (ed.) Recent Advances in Optimal Structural Design. 

ASCE. 

[56] Rautaruukki Metform 1997. Rautaruukki's structural hollow 

section manual (in finnish). Hämeenlinna. 

[57] Reeves C. R. (ed.) 1995. Modern Heuristic Techniques for 

Combinatorial Problems. McGraw-Hill. 

[58] Rondal J., Würker K. G., Dutta D., Wardenier J., Yeomans 

N. 1992. Structural stability of hollow sections. Verlag TÜV 

Rheinland.  

[59] Saka M. P. 2007. Optimum topological design of 

geometrically nonlinear single layer latticed domes using 

coupled genetic algorithm. Computers & Structures 85, 

1635-1646. 

[60] Sarma K., Adeli H. 2000. Cost optimization of steel 

structures. Engineering optimization 32, 777-802. 

[61] Sarma K., Adeli H. 2000. Fuzzy Discrete Multicriteria Cost 

optimization of Steel Structures. Journal of Structural 

Engineering 126, 1339-1347. 

[62] Schutte J. F., Groenwold A. A. 2003. Sizing design of truss 

structures using particle swarms. Structural and 

Multidisciplinary Optimization 25, 261-269. 

[63] SFS-ENV 1993-1-1 Eurocode3: Design of steel structures. 

Part 1-1: General rules for buildings 1993. 

[64] Thaneder P. B., Vanderplaats G. N. 1995. Survey of discrete 

variable optimization for structural design. Journal of 

Structural Engineering 121, 301-306. 

 



 94

[65] Turkkila T. 2003. Topology Optimization of Plane Frames 

with Stability Constraint. Dissertation, Tampere University 

of Technology.  

[66] Vanderplaats G. 1999. Numerical Optimization Techniques 

for Engineering Design. Vanderplaats Research & 

Development.  

[67] Venter G., Sobieszczanski-Sobieski J. 2003. Particle Swarm 

Optimization. AIAA Journal 41, 1583-1589. 

[68] Venter G., Sobieszczanski-Sobieski J. 2004. 

Multidisciplinary optimization of a transport aircraft wing 

using particle swarm optimization. Structural and 

Multidisciplinary Optimization 26, 121-131. 

[69] Wardenier J., Dutta D., Yeomans N., Packer J. A. Bucak Ö. 

1995. Design guide for structural hollow sections in 

mechanical applications. Verlag TÜV Rheinland.  

[70] Wardenier J. 2001. Hollow sections in structural 

applications. CIDECT.  



 95

Appendix A: 12 degrees of freedom space beam element 

 

The stiffness matrix k. 
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The consistent mass matrix m. 
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The geometric stiffness matrix kg. 
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Appendix B: Flowcharts for TS, SA, GA and PSO  

The flowcharts of heuristic optimization algorithms. If problem is constrained 

f means penalized objective function.  

 

Tabu search. The static tabu list B includes previous solutions and s is the 

length of the tabu list.  
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Simulated annealing. The decrease of temperature takes place every iteration 

round ( 1T =n ).  
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Genetic algorithm.  
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Particle swarm optimization. 
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Appendix C: Analytical derivatives for displacement and 

stress 

The derivative of displacement vec 

tor u with respect to cross-section area Ai can be calculated differentiating 

equation (2.2) ( fKu = ) 

 
iii AAA d

d
d
d

d
d fuKuK

=+  .       (C.1) 

From (C.1) it can be solved 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= − uKfKu

iii AAA d
d

d
d

d
d 1  .       (C.2) 

The derivative of the global stiffness matrix K with respect to Ai can be 

formed using the derivatives of element stiffness matrixes iAd/dk . iAd/d f  is 

zero unless loads depend cross-section areas Ai.   

In a truss the stresses of bars σ can be calculated multiplying the global node 

displacement u with a constant matrix S 

 Suσ =   .         (C.3) 

Thus the derivative of σ with respect to Ai is  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= − uKfKSσ

iii AAA d
d

d
d

d
d 1  .       (C.4) 
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Appendix D: RHS and SHS profiles 

The set of 51 RHS-profiles and 61 SHS-profiles in the ascending order 

according to the cross-section area [56]. 

SHS 

RHS 
h 

[mm] 
b 

[mm] 
t 

[mm] SHS
 SHS 

RHS
h 

[mm]
b 

[mm] 
t 

[mm] SHS 

1. 40 40 2,5 1.  57. 150 150 5 30. 
2. 60 40 2,5   58. 150 100 6,3  
3. 50 50 2,5 2.  59. 140 140 5,6 31. 
4. 50 50 3 3.  60. 160 160 5 32. 
5. 80 40 2,5   61. 180 100 6  
6. 60 60 2,5 4.  62. 200 80 6  
7. 70 50 2,5   63. 140 140 6 33. 
8. 80 60 2,5   64. 160 90 7,1  
9. 70 70 2,5 5.  65. 150 150 6 34. 
10. 60 60 3 6.  66. 200 100 6  
11. 70 50 3   67. 120 120 8 35. 
12. 80 80 2,5 7.  68. 150 100 8  
13. 80 60 3   69. 180 100 7,1  
14. 90 50 3   70. 140 140 7,1 36. 
15. 70 70 3 8.  71. 200 120 6  
16. 100 50 3   72. 160 160 6 37. 
17. 60 60 4 9.  73. 180 100 8  
18. 100 60 3   74. 140 140 8 38. 
19. 80 80 3 10.  75. 180 180 6 39. 
20. 80 60 4   76. 150 150 8 40. 
21. 70 70 4 11.  77. 200 100 8  
22. 100 80 3   78. 140 140 8,8 41. 
23. 90 90 3 12.  79. 200 200 6 42. 
24. 100 100 3 13.  80. 200 120 8  
25. 100 60 4   81. 160 160 8 43. 
26. 80 80 4 14.  82. 140 140 10 44. 
27. 100 80 4   83. 220 120 8  
28. 120 60 4   84. 150 150 10 45. 
29. 90 90 4 15.  85. 180 180 8 46. 
30. 80 80 5 16.  86. 200 120 10  
31. 120 80 4   87. 160 160 10 47. 
32. 100 100 4 17.  88. 250 150 8  
33. 100 80 5   89. 260 140 8  
34. 90 90 5 18.  90. 200 200 8 48. 
35. 110 110 4 19.  91. 220 120 10  

Table continues on next page. 
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Table continues from previous page. 

36. 120 120 4 20.  92. 180 180 10 49. 
37. 120 80 5   93. 260 180 8  
38. 100 100 5 21.  94. 220 220 8 50. 
39. 100 80 6   95. 250 150 10  
40. 90 90 6 22.  96. 260 140 10  
41. 140 70 5   97. 200 200 10 51. 
42. 140 80 5   98. 250 250 8 52. 
43. 110 110 5 23.  99. 180 180 12,5 53. 
44. 120 80 6   100. 260 180 10  
45. 160 80 5   101. 220 220 10 54. 
46. 120 120 5 24.  102. 260 260 8,8 55. 
47. 150 100 5   103. 250 150 12,5  
48. 110 110 6 25.  104. 200 200 12,5 56. 
49. 140 80 6   105. 300 200 10  
50. 140 80 6,3   106. 250 250 10 57. 
51. 120 120 5,6 26.  107. 260 260 11 58. 
52. 140 140 5 27.  108. 300 200 12,5  
53. 160 80 6   109. 250 250 12,5 59. 
54. 120 120 6 28.  110. 300 300 10 60. 
55. 100 100 8 29.  111. 300 300 12,5 61. 
56. 150 100 6   112. 400 200 12,5  

SHS 

RHS 
h 

[mm] 
b 

[mm] 
t 

[mm] SHS
 SHS 

RHS
h 

[mm]
b 

[mm] 
t 

[mm] SHS 
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