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ABSTRACT

An LCL filter provides excellent mitigation capability of the switching frequency harmon-

ics, and is, therefore, widely used in grid-connected inverter applications. The resonant

behavior induced by the filter must be attenuated with passive or active damping meth-

ods in order to preserve the stability of the grid-connected converter. Active damping

can be implemented with different control algorithms, and it is frequently used due to

its relatively simple and low-cost implementation. However, active damping may easily

impose stability problems if it is poorly designed.

This thesis presents a comprehensive small-signal model of a three-phase grid-connected

photovoltaic inverter with LCL filter. The analysis is focused on a capacitor-current-

feedback (i.e., a multi-current feedback) active damping and its effects on the system

dynamics. Furthermore, a single-current-feedback active damping technique, which is

based on reduced number of measurements, is also studied. The main objective of this

thesis is to present an accurate multi-variable small-signal model for assessing the control

performance as well as the grid interaction sensitivity of grid-connected converters in the

frequency domain.

The state-of-the-art literature studies regarding the active damping are mainly con-

centrated on stability evaluation of the output-current loop, and the effect on external

characteristics such as susceptibility to background harmonics and impedance-based in-

stability has been overlooked. As the active damping affects significantly the sensitivity

to grid interactions, accurate predictions of the system transfer functions, e.g. the out-

put impedance, must be utilized in order to assess the active-damping-induced properties.

Moreover, the single-current-feedback active damping method lacks the aforementioned

analysis in the literature and, therefore, the need for accurate full-order small-signal

models is evident.

This thesis presents design criteria for the active damping in a wide range of operating

conditions. Accordingly, peculiarities regarding the active damping are discussed for both

multi and single-current-feedback active damping schemes. In addition, the parametric

influence of the active damping on the output-impedance characteristics is explicitly

analyzed. It is shown that the active damping design has a significant effect on the output

impedance and, therefore, the impedance characteristics should be considered in the

converter design for improved robustness against background harmonics and impedance-

based interactions.
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û Column-vector containing input variables

U Input-variable vector in Laplace-domain

ua Voltage of phase A

〈ua〉 Average voltage of phase A

〈uAN〉 Average voltage between points A and N

ub Voltage of phase B

〈ub〉 Average voltage of phase B

〈uBN〉 Average voltage between points B and N

uc Voltage of phase C

〈uc〉 Average voltage of phase C

〈uCN〉 Average voltage between points C and N

xii



〈us
C〉 Filter capacitor voltage space-vector in synchronous frame

〈uC〉 Filter capacitor voltage space-vector in stationary frame
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1 INTRODUCTION

This chapter discusses the background of the thesis and introduces the reader to the topic.

Accordingly, an introduction for photovoltaic energy systems is given first and the details

regarding the behavior of photovoltaic generators as energy sources are elaborated. Small-

signal modeling is applied extensively in this thesis and, therefore, the background for

the modeling method as well as its usefulness are highlighted. Theory behind the active

damping and output impedance analysis are also discussed as they form the framework

for the thesis.

1.1 Renewable energy and introduction to photovoltaic systems

Evidence for global warming and the greenhouse effect is undeniable. Globally, approx-

imately 87% of the total energy produced is generated by fossil fuels from which the

majority (38%) comes from oil [1]. Excessive use of fossil fuels increases the emissions

of carbon dioxide (CO2) which, in turn, further accelerates the greenhouse effect. In

order to slow down the climate change, public attention has been drawn on the issue

and, correspondingly, European Union has launched the Roadmap 2050-project with an

objective to reduce greenhouse gas emissions at least 80% below the 1990 levels by 2050

[2]. Fossil fuel-dependency must be decreased in order to stop accumulating CO2 into

the atmosphere and, thus, these actions are highly necessary.

The aforementioned factors have led to growing interest in the field of grid-connected

renewable energy systems, and the utilization of these has been increasing continuously

for several years [1]. Solar energy is one of the most promising renewable energy resources

due to its environmentally friendly features and relatively low cost of harvesting. Fur-

thermore, it is practically inexhaustible within a realistic time frame. Energy from the

Sun is mainly harvested either by using it for heating or by converting to electrical en-

ergy. Usually, the electrical energy is harvested using silicon-based solar panels and their

price has been rapidly decreasing throughout the world, which makes the use of them in

energy production feasible in terms of invested money and payback time. Regarding the

usability of solar energy, it is expected to be the second most utilized energy source by

2020 excluding hydroelectric energy [3].

Considering the electrical characteristics, the photovoltaic generators produce direct

current (DC), which has to be transformed into alternating current (AC) in order to

1



Chapter 1. Introduction

Fig. 1.1: Simplified electrical equivalent single-diode model of a photovoltaic generator.

Fig. 1.2: Voltage-current (solid line) and voltage-power (dashed line) curves of a photovoltaic
generator as well as the behavior of the dynamic resistance rpv.

be transferred into the AC grid. The conversion from DC to AC is performed with

switched-mode power supplies. However, PV generators exhibit peculiar characteristics,

which have fundamental effect on the interfacing power electronic converters and their

design. Accordingly, the photovoltaic generator can be characterized as a power-limited

non-ideal current source with both constant-current and constant-voltage-like properties,

which are discussed explicitly in multiple publications [4–6]. This behavior imposes

persistent design constraints, which can easily cause stability problems if not considered

properly when designing the power-electronic-based devices for photovoltaic applications.

A simplified electrical equivalent model characterizing the inherent properties of a PV

cell is shown in Fig. 1.1, where rs and rsh represents the losses inside the cell, upv is the

terminal voltage of the cell, ipv is the output current of the cell, id is the current through

the diode and iph is the photocurrent.

Irradiation from the Sun, upon interacting with the semi-conductor surface of the

solar cell, creates the photovoltaic current iph, which is directly proportional to the

irradiance level. The actual output current of the generator is affected by the series and

shunt resistances (representing non-ideal properties) as well as the pn-junction of the cell

2



1.1. Renewable energy and introduction to photovoltaic systems

which can be presented as

ipv = iph − i0
(
e

upv+rsipv
NakT/q − 1

)
︸ ︷︷ ︸

id

−upv + rsipv

rsh
, (1.1)

where i0 is the diode reverse saturation current, T (Kelvin) is the cell temperature, k is

the Bolzmann constant, a the diode ideality factor, q the electron charge and N is the

number of series-connected photovoltaic cells.

As can be deduced from the exponential term in (1.1), the voltage-current characteris-

tics of the PV cell are highly non-linear and can be conveniently solved only by numerical

methods. Accordingly, the illustration of the voltage-current and voltage-power depen-

dency of a traditional PV cell can be given as shown in Fig. 1.2. Maximum power can be

extracted only at one point, which is called the maximum power point (MPP), although,

recent literature indicates that it is in practice a wider constant power region (CPR) [7].

The control system of the interfacing converter tries to keep the operating point near the

MPP for maximal power extraction.

Considering Eq. (1.1) as well as Figs. 1.3a and 1.3b, the electrical characteristics of

the PV cell will change in proportion to the irradiance level and the cell temperature.

Evidently, the short-circuit current produced by the PV cell is directly proportional to

the irradiance and, conversely, only minor changes in the open-circuit voltage of the PV

cell can be observed when the irradiation level changes. The temperature of the PV cell,

on the other hand, affects mainly the open-circuit voltage and has negligible effect on

the short-circuit current. Accordingly, higher open-circuit voltages are obtained when

the cell temperature is lower, thus an increase of the cell temperature decreases the

maximum power extractable from the cell. Consequently, based on the aforementioned

factors, the PV current has relatively fast dynamics, affected mainly by the irradiance

level, compared to the voltage, which has only slow temperature-dependent dynamics.

In addition to the MPP, two distinct operating regions can be observed in the PV-

cell current-voltage (IV) behavior according to Fig. 1.2. When the voltage of the PV

cell is below the MPP voltage, a constant current region (CCR) is found, where the

current remains relatively constant despite the changes in the PV cell voltage and the

PV cell exhibits higher dynamic resistance, thus resembling the characteristics of an

ideal current source. Conversely, when the cell voltage is above the MPP voltage, the

behavior of the PV cell resembles a constant voltage source as the dynamic resistance of

the converter is small and the voltage stays relatively constant regardless of the changes

in the current. Correspondingly, this is called the constant voltage region (CVR). Due to

the aforementioned constant-voltage and constant-current-like properties, the design and

control of the inverter have inherent constraints and, therefore, the effect of the source
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(a) (b)

Fig. 1.3: Effect of (a) irradiance and (b) temperature on the electrical characteristics of a PV cell.

has to be properly included in the dynamical modeling in order to analyze the system

behavior correctly. Analyzing the converter only as voltage or current-sourced may yield

sufficient results for one operating point but the transition between operating points in a

real system is inevitable, which may lead to a loss of stability because of faulty analysis.

1.2 Small-signal modeling principles

Small-signal modeling technique, first introduced by Middlebrook in the 70’s, is com-

monly used in the analysis of power-electronic-based systems due to their non-linear na-

ture [8]. That is, in a linear system, an input signal u = U+ û would yield a proportional

output signal as y = Y + ŷ, where the small-signal AC perturbation (denoted by accent

’x̂’) is of the same frequency between the input and output variables. However, due to the

varying switching states of power-electronic-based system, this requirement for linearity

does not hold as the system switches between two or more linear networks (depending

on the conduction mode). The system has to be, therefore, averaged and linearized at

a predefined operating point, where the system behaves as a linear circuit. Accordingly,

small-signal transfer functions can be developed for different input-to-output combina-

tions as G = ŷ/û, which are used to examine different dynamical properties such as

control-to-output and input-to-output responses as well as input or output impedances.

In order to obtain a small-signal model for an arbitrary system, first the correct state,

input and output variables are chosen, and then the average-valued model is formed ac-

cording to the Kirchhoff’s laws. Generally, inductor currents and capacitor voltages are

chosen as the state variables since their derivatives, used in the state-space modeling,

have a clear meaning. Note that any linearly independent set of variables can be chosen

as the state variables but their usefulness may be questionable. The averaging is done by

separately determining equations for different switching states, which are then weighted
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(averaged) over one switching cycle to remove the effect of the switching ripple. Accord-

ingly, the average-valued or the large-signal model is obtained and the corresponding

state-space equations can be given by

dx
dt = Ax+ Bu

y = Cx+ Du
(1.2)

where vectors x, u and y denote the state, input and output variable vectors, respectively.

This may not be sufficient for the formulation of the system transfer functions because

such model may be nonlinear after recognizing the duty ratio (or the control signal) d as a

modulated variable and, therefore, an input signal [8]. Correspondingly, a situation may

arise where the state or output variables are multiplied by the duty ratio, which yields a

nonlinear dependency between the variables. Therefore, in that case, the system has to be

linearized by taking partial derivatives of each variable, which removes the corresponding

nonlinearity. After linearizing the equations, the system model can be represented by a

linearized state-space in the Laplace-domain as shown in (1.3), from which the system

transfer functions can be derived as in (1.4). This small-signal modeling technique is

further elaborated in Chapter 2 for a specific application, i.e. for a three-phase grid-

connected PV inverter.

dx̂
dt = Ax̂+ Bû

ŷ = Cx̂+ Dû
→

sx̂ = Ax̂+ Bû

ŷ = Cx̂+ Dû
(1.3)

ŷ(s) =
[
C(sI−A)

−1
B + D

]
û = Gû(s) (1.4)

Depending on the terminal constraints, i.e., the inherent behavior of the source and

load as well as the selection of the feedback variables, an appropriate conversion scheme

must be chosen for the analysis. Accordingly, four different conversion schemes are shown

in Figs. 1.4a-1.4d.

As discussed earlier, the photovoltaic generator exhibits characteristics of a non-linear

current source, thus, a current source is a convenient selection as an input source, i.e.,

the cases shown in Figs. 1.4b or 1.4d. Furthermore, due to rather slow dynamics of the

PV voltage (affected mainly by the temperature), the input voltage can be conveniently

controlled for maximum power extraction, which complies with the selection of the input

source. Considering the output terminal, in grid-connected applications, the output

voltage is determined by the external system (i.e. the grid). A stiff grid is, therefore,
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(a) (b)

(c) (d)

Fig. 1.4: Depiction of a) voltage-to-voltage, b) current-to-current, c) voltage-to-current and d)
current-to-voltage conversion schemes.

assumed in this case, which leads to a conclusion that only the H-parameter (current-to-

current conversion scheme) model is applicable in the analysis. Accordingly, the input

source of the converter is a current source and the input voltage is the input-side feedback

variable in order to guarantee maximum power output by means of the MPP tracking

(MPPT). Furthermore, the converter output is loaded by a stiff voltage source and the

system controls its output current (current injection-mode), which is known as a grid-

parallel or grid-feeding mode.

Modeling of three-phase converters differs from the modeling of DC-DC converters,

since the space-vector theory has to be used to analyze the three-phase variables. This

means that the inverter is not analyzed per phase, but instead the three-phase variables

of the small-signal model are transformed into synchronous (dq-domain) or stationary

reference (αβ-domain) frames. Many publications analyze the inverter in a stationary

reference frame in order to decrease the complexity of the analysis and the computational

burden as discussed, for example, in [9–13]. However, some inconsistencies arise, since

in a stationary reference frame the steady-state operating point cannot be solved in a

consistent manner, which imposes restrictions for the small-signal modeling requiring a

steady-state operating point. In the rotating or synchronous reference frame, the AC-

quantities appear constant (i.e., DC) in the steady state, which allows the linearizing of

the system.
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(a) (b)

Fig. 1.5: Depictions of (a) L-filtered and (b) LCL-filtered grid-connected converters.

1.3 Passive and active damping of LCL-filter resonance

1.3.1 LCL-filter

In grid-connected applications, an inductive (L-type) filter may not sufficiently attenuate

the switching-ripple currents. High power applications produce larger currents, which

require high value for inductance in order to obtain sufficient attenuation of the switching

harmonics. This naturally increases the system costs and size. Therefore, inductive-

capacitive-inductive (LCL) filters have gained popularity as filtering elements due to their

excellent harmonic attenuation capability also at lower switching frequencies [14]. An

LCL-filter enables wide range of power levels with relatively small values for inductances

and capacitance to achieve the same filtering performance as with only an L-type filter

[10, 14–20]. For demonstrative purposes, the two filtering topologies are shown in Figs.

1.5a and 1.5b. Inherently, the LCL-filter creates several resonances in the dq-domain

control dynamics of the converter, which must be damped in order to ensure robust

performance and stability of the converter. The resonant frequencies are dependent on

the passive component values of the filter and can be generally given as

ωres =

√
L1 + L2

L1L2C
, (1.5)

ω0 =

√
1

L2C
. (1.6)

The resonance given in (1.5) is caused by the series-parallel interaction of inverter-side

inductance as well as the grid-side inductance and capacitance. Respectively, the other

resonance in (1.6) is caused by the series interaction between the grid-side inductance L2

and the filter capacitance C.
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(a)

(b)

Fig. 1.6: Simplified block diagram of a control system with (a) filter-based and (b) multi-loop
active damping methods.

1.3.2 Resonance damping

The resonant behavior induced by the LCL-filter can be attenuated with passive or active

damping methods [14, 15, 20]. The most elementary method to damp the resonance is to

add a resistor in series with the LCL-filter capacitor, which is commonly known as passive

damping. Note that the resistor can be placed in parallel or series with all the passive

filtering components in order to damp the resonances. The series damping resistor with

the filter capacitor can be still considered as the most popular technique in the literature.

Although, the resistor provides desired resonance damping, it also causes reduction in

the attenuation capability and ohmic losses reducing the converter efficiency by up to

1 %. [15]. Moreover, the system costs are increased due to additional components and

possible cooling elements (especially in high-power applications).

Active damping, on the other hand, is performed with different control algorithms,

which are used to attenuate the resonant behavior and, due to the absence of resistive

elements (excluding the ESRs of the components), power losses are negligible in the filter

[21, 22]. Moreover, the attenuation capability of the filter is unaffected. Generally, active

damping can be implemented either as a filter-based or multi-loop-based method, which

are depicted in Figs. 1.6a and 1.6b, respectively.

Considering the filter-based method illustrated in Fig. 1.6a, no additional feedback

loop is added due to the active damping. Basically, the active damping is performed by

modifying the inverter control signal (or duty ratio) by means of digital filters such as

low-pass, lead-lag or notch filters. Accordingly, the purpose of this method is to induce

counter-resonance at the corresponding LCL-filter resonant frequencies in order to guar-

antee stable operation [23, 24]. This makes the filter-based active damping extremely
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1.3. Passive and active damping of LCL-filter resonance

cost-efficient since no additional sensors are needed. As the filter-based methods usually

utilize parameters from the physical filter and their implementation may be fixed inside

the control system (excluding adaptive filters in special cases [25]), corresponding active

damping methods are prone to inaccuracy and may even exhibit inferior stability char-

acteristics due to parameter variation caused, e.g., by grid inductance and component

aging.

Multi-loop active damping methods include additional feedbacks from a system state

variable, which is used to modify the inverter control signal [20, 26, 27] or the inverter

output current reference [22] (cf. Fig. 1.6b). However, in the latter case, the bandwidth of

the current control limits the performance of the active damping. Considering convenient

feedback variables for active damping, the filter capacitor current is usually adopted as

a state feedback [27–33]. The filter capacitor voltage is also a common feedback variable

[21, 31], although, problems may occur due to the discrete realization of derivative-

operator (i.e., iC = CduC/dt) inside the control system [31]. If a current-feedback is

utilized, the aforementioned feedback signal is used to create a so-called virtual resistor,

which provides the resonance damping by emulating the effect of a passive resistor in

series with the filter capacitor inside the control system dynamics [22, 27, 28]. Regarding

the naming of the aforementioned concept, the virtual resistor is a convenient term for

industrial designers due to its correspondence to the physical entity. However, it is

inherently a control loop and should not be considered other than a multi-loop active

damping method during the control design. Due to the factors discussed above and the

popularity of the capacitor-current-feedback active damping technique, it is analyzed in

this thesis.

1.3.3 Effect of delay on active damping

Digital processing delay, present in modern digital control systems, deteriorates the per-

formance of active damping. That is, the active damping feedback signal may be modified

significantly by the delay causing insufficient damping or stability problems due to the

appearance of right-half-plane (RHP) poles in the output-current-control dynamics [28–

30, 34–38]. The delay nearly exclusively determines the performance and stability of

active damping as well as it imposes major design constraints. Accordingly, the condi-

tion where the resonant frequency (cf. Eq. (1.5)) of the LCL-filter equals one-sixth of the

sampling frequency (fs) has been observed to be critical for stability of a grid-connected

converter [28, 29, 31, 34, 35, 37, 39, 40]. Accordingly, the active damping feedback has

to be modified depending on the resonant frequency of the LCL-filter and the sampling

frequency of the control system in order to avoid delay-induced RHP-poles in the control

loop.

The system delay can either induce improved or inferior stability characteristics de-
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Fig. 1.7: Overview of single-current-feedback active damping schemes. Both inverter and grid-side
current controls are depicted.

pending on whether the control system uses inverter current feedback (ICF) or grid

current feedback (GCF) for control purposes. In fact, the delay is required for GCF

converters for stability to exist but, conversely, the system delay should be minimized for

ICF converters. Therefore, the ICF and GCF converters have nearly opposite stability

characteristics regarding the system delay [34, 39]. Consequently, active damping is not

necessary for ICF converter when fres < fs/6 but required for stability when fres > fs/6.

For the GCF converter, these conditions are reversed.

Considering the factors stated above, the relevancy of system delay on the overall

stability and, especially, on the active damping properties, should not be overlooked.

Accordingly, the delay imposes persistent design constraints as well as a risk for unstable

dynamics with both ICF and GCF converters. Aforementioned restrictions must be

taken into account when selecting the feedback method (ICF/GCF) as the delay affects

the active damping design profoundly.

1.3.4 Single-current-feedback active damping

Additional current sensing for active damping will most likely increase the overall system

costs. Therefore, in order to decrease the costs, single-loop control strategies have been

studied for LCL-filtered converters in the recent literature, which rely only on inverter-

current (ICF) or grid-current feedbacks (GCF) [26, 32, 34, 39–42]. Single-loop control

method denotes a system, where the current control is used to prevent the LCL-filter

resonance from destabilizing the system without additional active damping loops [34, 39,

40]. This can be done by utilizing delay compensation methods such as linear predictors

for ICF converters and delay-addition for GCF converters, i.e. the delay is minimized in

ICF applications and increased in GCF applications.

On the other hand, active damping can be implemented based on existing current
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1.4. Impedance-based analysis

measurements in the single-loop control scheme, i.e., an additional loop is formed from

the measured inverter or grid currents. For convenience, the single-current-feedback term

denotes here that the existing current measurements in the single-loop scheme are also

used for active damping. Corresponding methods have been successfully demonstrated

e.g. in [32, 36, 43, 44]. The additional loop distinguishes the conventional pure single-loop

methods from the modified single-current-feedback active damping methods. In order to

illustrate the topic further, Fig. 1.7 presents the simplified block diagram of the modified

single-loop control schemes.

Considering the stability and robustness, different conclusions have been made re-

garding, which of the single-current-feedback methods - ICF or GCF system - is the

best. Reference [32] concludes that the ICF method would be superior due to inherent

damping effect of the aforementioned control solution. However, the effect of system

delay is neglected in the analysis, which hides essential inherent properties of active

damping [34]. Single-current-feedback active damping was also proposed to be successful

for ICF converters in [43]. Conversely, the GCF system might be more convenient as

the system delay, persistent in digitally controlled systems, is beneficial for its stability

contrary to the ICF systems [34, 39]. Successful control system and active damping

implementations have been proposed for both ICF and GCF converters and no clear

consensus can be found whether one of the aforementioned method is superior over the

other [32, 36, 43, 44]. Therefore, the system dynamics of an ICF converter are further

elaborated in this thesis in order to widen the knowledge for corresponding converters.

The single-current-feedback scheme is inherently different from its capacitor-current-

feedback counterpart and, therefore, different dynamic properties are naturally imposed

in the converter dynamics. The differences between the aforementioned two schemes need

to be highlighted in order to further improve the knowledge on single-current-feedback

active damping methods.

1.4 Impedance-based analysis

Considering the output terminal properties of a power electronic converter, a small-signal

response between the voltage and current at the same terminal represents an admittance

or impedance depending on the system configuration. In a grid-feeding converter (i.e.,

the output terminal current is controlled), the relation between the voltage and cur-

rent is considered as admittance, which represents the frequency-domain response of the

output current against output voltage perturbations. Conversely, for a grid-forming con-

verter (i.e., the output terminal voltage is controlled), the output impedance represents

the response of output voltage against the grid-current perturbations. Accordingly, the

responses can be expressed as Yo = io/uo and Zo = uo/io for the grid-feeding and grid-

forming converters, respectively. However, regarding the topic of the thesis, only the
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former is considered.

Active damping affects the system dynamics (i.e., transfer functions) by modifying

the duty ratio of the converter and, thus, introducing an additional loop-structure inside

the output-current-control loop. As the output-current loop affects the deviations be-

tween the measured and reference currents only within its bandwidth, the effect of active

damping is visible at frequencies beyond the output-current loop. Thus, different output

impedance properties are obtained at the resonant frequency, which dictate the external

behavior of the converter, i.e., the susceptibility to the grid background harmonics and

harmonic instability.

The utility grid usually contains numerous power electronic devices as well as other

non-linear loads, which draw non-sinusoidal currents. Consequently, the current consists

of multiple harmonics, which interact with the grid impedance causing distortions in the

supply voltage waveform. The grid impedance is determined by the configuration of the

power delivery system including transmission cables, transformers and other power elec-

tronic devices. These affect the grid impedance seen by grid-connected electrical systems

as illustrated in Fig. 1.8. Accordingly, the grid impedance at the point-of-common-

coupling (PCC) may contain several resonances along with the inductive characteristics

at higher frequencies, which makes the grid impedance estimation a challenging task

[45, 46].

If the grid voltage contains harmonics at a certain frequency, the operation of grid-

connected power-electronic converters can be disturbed. Accordingly, the injected current

(in grid-feeding converters) at the output terminal is affected according to the Ohm’s

law as îo = ûo/Zo and, therefore, high output impedance prevents the grid-voltage

harmonics from affecting the grid current. Considering active damping and the high-

frequency impedance behavior, high output impedance is required especially in multi-

parallel inverter systems, where inverters can interact with each other and cause the

point-of-common coupling (PCC) voltage to oscillate [47, 48]. Low output impedance

allows such oscillations to be transferred into the grid current, which can further enhance

the PCC voltage distortions via the grid impedance.

Grid current oscillations may occur also without significant grid background har-

monics. This is caused by the finite grid impedance, which interacts with the output

impedance of the converter, i.e., impedance-based interactions occur. Harmonic insta-

bilities and resonances in solar power plants have revealed that such interactions may

cause severe damage to the system hardware and impair the power quality in the grid

[49]. These power quality problems, however, are not purely dependent on the internal

stability of interconnected converters, and their stable control systems do not necessar-

ily guarantee absence of harmonic resonances. Therefore, accurate output impedance

models are essential when predicting the possibility for impedance-based interactions in
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Fig. 1.8: Grid-interface of a three-phase grid-connected converter.

grid-connected applications. The frequency-domain behavior of output impedance can

be obtained either by frequency-domain measurements, which can be difficult and time-

consuming for high-power applications, or by analytical models. Analytical models (i.e.,

small-signal models), naturally, offer a very cost-efficient way to evaluate the stability of

the grid-interface and, thus, the possibility for impedance-based interactions is decreased

as the control system design can be carried out accordingly.

Considering aforementioned issues, impedance-based stability analysis has gained

increasing attention in recent publications regarding the stability of three-phase grid-

connected converters [50–62]. Output impedance has been observed to affect significantly

the instability sensitivity of the converter, and the risks for impedance-based instability

arise especially, for a grid-feeding converter, when the converter is connected to a weak

grid (i.e., high impedance grid) [50, 52, 56, 63, 64]. Both dq-domain [52, 59, 64–67] and

sequence-domain impedance models [51, 56–58] have been widely utilized in the analysis

of impedance-based stability.

The impedance-based stability is assessed by using the Nyquist stability criterion,

which analyses the ratio of grid impedance and converter output impedance as Zg/Zo

(for grid-feeding converter) [50]. Aforementioned impedance ratio is also known as the

inverse minor-loop gain in DC-DC systems. Risk for instability is present if the grid

impedance magnitude exceeds the converter output impedance as |Zg|/|Zo| ≥ 1 and the

phase difference of the two impedances exceeds or equals 180 degrees. In passive circuits,

this phase difference is not achievable as the phase of individual impedances is restricted

to −90◦...+90◦. However, the output impedance is affected by control structures, e.g.,

the phase-locked loop (PLL), which forces the converter output impedance to be −180◦

within its bandwidth inducing negative resistor-like behavior [52, 55, 58, 64, 66, 68].

Moreover, the output impedance can become also non-passive (active-type) under certain

conditions due to the delay in the control system [51, 61, 69]. Accordingly, the delay seems

to impose a major risk for the impedance-based instability by inducing active-type (i.e.,

negative real-part) impedance characteristics. Similar results are also presented in this

thesis regarding the active damping, thus complying with the observations of active-type

output impedance.
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Even though active damping affects the output impedance significantly, there is no

explicit analysis in the literature considering the issue, and some publications have only

briefly discussed the topic. For example, passivity-based stability and impedance analysis

for power electronic converters with active damping were discussed in [18, 63, 65, 70–

73], but the comprehensive parametric influence of the active damping on the output

impedance was not analyzed nor the actual impedances are experimentally verified in

[18, 65, 70, 71, 73]. Output impedance analysis with active damping was presented

briefly for GCF converters in [74], but the effect of the delay was neglected, which hides

important information regarding the ratio of LCL-filter resonant and sampling frequen-

cies. Furthermore, the impedances were not verified experimentally in the aforementioned

paper. Active damping of DC-DC converters and its impedance properties were analyzed

in [75], but the results are not directly applicable for DC-AC grid-connected converters

with LCL-filters.

Clearly, the effect of the traditional capacitor-current-feedback active damping on the

output impedance needs to be further clarified considering the lack of explicit analysis on

the topic. Furthermore, as the single-current-feedback active damping scheme provides

an attractive alternative due to its simple and inexpensive implementation, the single-

current-feedback scheme and its output impedance properties are analyzed and compared

to the multi-current counterpart. Due to the absence of proper research on the topic, this

thesis provides incremental knowledge on the multi and single-current-feedback schemes.

Severe impedance-based stability problems and harmonic resonances can be avoided if

proper impedance modification via active damping is performed as will be discussed in

this thesis.

1.5 Objectives and scientific contributions

This thesis presents a comprehensive small-signal model of a grid-connected PV inverter

with active damping using multi-variable small-signal modeling technique. Accurate pre-

dictions of inverter transfer functions are obtained, which are utilized to elaborate the

active-damping-induced properties on the output impedance and overall system dynam-

ics. Furthermore, the stability criteria for the active damping are studied for LCL-filter

resonant frequencies both lower and higher than the critical frequency of fs/6 with multi-

current as well as single-current-feedback schemes. Accordingly, active damping design

criteria are presented and clarified for ICF converters by using both root trajectory and

frequency-domain analysis. In addition, the parametric influence of the active damping

on the output impedance characteristics is explicitly analyzed. It is shown that the ac-

tive damping design has a significant effect on the output impedance and, therefore, the

impedance analysis should be utilized in the converter design for improved robustness

against background harmonics and impedance-based interactions.
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The scientific contribution of this thesis can be summarized as follows:

• An accurate small-signal model characterizing the open and closed-loop dynamics

of a three-phase grid-connected PV inverter with LCL-filter is formulated in this

thesis. So far, explicit small-signal models for the corresponding inverter topology

do not exist in the literature.

• Active damping and its effect on the system dynamics are analyzed by utilizing

multi-variable modeling method, which is a novel way to study active damping.

This allows explicit and accurate analysis of active damping on the system dy-

namics and it significantly simplifies the model derivation, which can be done with

comparable effort to simple DC-DC converters.

• Output impedance characteristics for the capacitor-current-feedback active damp-

ing are presented for the first time in literature. This introduces a useful method

to further improve the active damping design, which usually concentrates on the

stability evaluation of the output-current control. Accordingly, the external char-

acteristics of the inverter can be conveniently analyzed and, thus, the robustness

against harmonic instability can be improved.

• Single-current-feedback active damping and its impedance properties are presented

and, therefore, important information regarding the differences between the multi-

current and single-current-feedback schemes are obtained.

1.6 Related publications and author’s contribution

The following publications form the basis of this thesis.

[P1] Aapro, A., Messo, T., Roinila, T. and Suntio, T. (2017). “Effect of active damping on

output impedance of three-phase grid-connected converter”, in IEEE Transactions

on Industrial Electronics, (accepted for publication).

[P2] Aapro, A., Messo, T. and Suntio, T. (2016). “Output impedance of grid-connected

converter with active damping and feed-forward schemes”, in IEEE Annual Confer-

ence of the IEEE Industrial Electronics Society, IECON’16, pp. 2361 – 2366.

[P3] Aapro, A., Messo, T. and Suntio, T. (2016). “Effect of single-current-feedback active

damping on the output impedance of grid-connected inverter”, in IEEE European

Conference on Power Electronics and Applications, EPE’16 ECCE Europe, pp. 1 –

10.

[P4] Aapro, A., Messo, T. and Suntio, T. (2015). “Effect of active damping on the output

impedance of PV inverter”, in IEEE Workshop on Control and Modeling for Power

Electronics, COMPEL’15, pp. 1 – 8.
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[P5] Aapro, A., Messo, T. and Suntio, T. (2015). “An accurate small-signal model of a

three-phase VSI-based photovoltaic inverter with LCL-filter”, in IEEE International

Conference on Power Electronics and ECCE Asia, ICPE’15 ECCE Asia, pp. 2267

– 2274.

[P6] Messo, T., Aapro, A. and Suntio, T. (2016). “Design of grid-voltage feedforward

to increase impedance of grid-connected three-phase inverters with LCL-filter”, in

IEEE International Power Electronics and Motion Control Conference, IPEMC’16

ECCE Asia, pp. 1–6.

[P7] Messo, T., Aapro, A. and Suntio, T. (2015). “Generalized multi-variable small-signal

model of three-phase grid-connected inverter in DQ-domain”, in IEEE Workshop on

Control and Modeling for Power Electronics, COMPEL’15, pp. 1 – 8.

Publications [P1]-[P5] are written and the analysis is performed by the author. How-

ever, Assistant Professor Tuomas Messo helped with the writing process by providing

insightful comments regarding both the mathematical aspects and the writing itself. Fur-

thermore, he helped with the laboratory setup used in the experimental measurements.

Professor Teuvo Suntio, the supervisor of this thesis, gave valuable comments regarding

these publications.

In [P6] and [P7], the author of this thesis contributed to the publications by providing

comments on the theory of corresponding articles and helping to formulate the small-

signal models.

1.7 Structure of the thesis

The rest of the thesis is organized as follows. Chapter 2 discusses the small-signal mod-

eling for a three-phase grid-connected converter at open loop. Chapter 3 presents the

closed-loop formulation of the corresponding system with active damping, where both the

multi-current and single-current-feedback schemes are analyzed. Moreover, the stability

analysis regarding the active damping design is presented. Chapter 4 concentrates on

the output impedance analysis, and the active-damping-induced properties are explained.

Experimental evidence as well as the validation of the models and analyses are presented

in Chapter 5. The final conclusions are drawn and the future research topics discussed

in Chapter 6.
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2 SMALL-SIGNAL MODELING OF A THREE-PHASE

GRID-CONNECTED INVERTER

This chapter presents the small-signal model for a current-fed grid-connected three-phase

inverter with LCL-type grid-filter in s-domain. Modeling is performed according to the

well-known state-space averaging methods, and the open-loop system transfer functions

are derived, which are later used to formulate the closed-loop system.

Fig. 2.1: Three-phase grid-connected current-fed VSI-type inverter with LCL-type grid filter.

The converter topology, analyzed in this thesis, is depicted in Fig. 2.1. Considering the

terminal constraints discussed in Chapter 1, the system inputs are selected accordingly,

i.e., the input is supplied by a current source iin and the output is loaded by a fixed

grid voltage u(a,b,c)n. According to the control engineering principles, the inputs of a

system cannot be controlled, thus, they act as disturbance elements regarding the system

dynamics. The output variables are, therefore, the input voltage uin and the grid phase

currents iL2(a,b,c). Note that in the modeling, the inverter-side inductor currents iL1(a,b,c)

are considered as intermediate output variables, because they are the actual controlled
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Chapter 2. Small-signal modeling of a three-phase grid-connected inverter

variables in the corresponding inverter system.

2.1 Average model

Small-signal modeling begins by deriving the average-valued equations over one switching

cycle, which can be obtained from Fig. 2.1. By assuming continuous-conduction mode

(CCM), the currents of the inductors are either increasing or decreasing and do not re-

main zero, thus, the system switches between two linear networks. The average model is

derived per-phase, first by closing the upper switch in each phase and deriving expres-

sion for the inductor voltages and capacitor currents as well as for the output variables.

Correspondingly, similar procedure is performed, when the lower switch of each phase

is closed. The result is averaged over one switching cycle yielding the average-valued

equations shown in (2.1)-(2.6). In the corresponding equations, req denotes the combi-

nation of the switch on-time resistance rsw and the inductor ESR value rL and rC(a,b,c)

corresponds to the ESR of the filter capacitor. Average-valued variables are denoted with

brackets, which is customary in the field of power electronics.

〈uL1k〉 = dk〈uin〉 − (req + rCn)〈iL1k〉 − 〈uCk〉 − rCk〈iCk〉 − 〈uSN〉, k = a, b, c (2.1)

〈uL2k〉 = −(rL2k + rCk)〈iL2k〉+ rCk〈iL1k〉 − 〈ukn〉+ 〈uSn〉+ 〈uCk〉, k = a, b, c (2.2)

〈iCk〉 = 〈iL1k〉 − 〈iL2k〉, k = a, b, c (2.3)

〈uin〉 = 〈uCin〉, (2.4)

〈iCin〉 = 〈iin〉 − dA〈iL1a〉 − dB〈iL1b〉 − dC〈iL1c〉, (2.5)

〈iok〉 = 〈iL2k〉, k = a, b, c. (2.6)

As a steady-state is required for the linearized model and the average model is derived

for a three-phase system, Eqs. (2.1)-(2.6) have to be transformed into rotating vector

according to the space-vector theory. Correspondingly, a three-phase variable can be

expressed as a complex valued vector x(t) and real valued zero sequence component

xz(t). However, a symmetrical and ideal grid condition is assumed, thus the zero sequence

component is zero. Fig. 2.2 depicts a space vector u in both synchronous and stationary

reference frames.

The phase representation can be easily transformed into the stationary reference frame
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2.1. Average model

Fig. 2.2: Space vector in both stationary and synchronous reference frames.

requiring only a constant multiplication. Accordingly, the real and imaginary parts of

the space vector, i.e. the alpha and beta components can be expressed by

xαβz(t) =
2

3
(xa(t)ej0 + xb(t)ej2π/3 + xc(t)e−j2π/3) = xα(t) + jxβ(t), (2.7)

xαβz(t) =
2

3

 1 − 1
2 − 1

2

0
√

3
2 −

√
3

2
1
2

1
2

1
2


 xa(t)

xb(t)

xc(t)

 (2.8)

xz(t) =
1

3
(xa(t) + xb(t) + xc(t)) (2.9)

The coefficient 2/3 in aforementioned equations is a scalar, which scales the magnitude

of the space vector equal to the peak value of the phase variables for symmetrical phases.

Generally, the coefficient is chosen as 2/3 or
√

2/3 depending on if the amplitude or

power invariant form is used, respectively.

According to (2.7), the average-valued equations in (2.1)-(2.6) can be expressed first

in the stationary reference frame by transforming the three-phase representation into the

corresponding space-vector form. The voltage across the inverter-side inductor can be
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Chapter 2. Small-signal modeling of a three-phase grid-connected inverter

given as (denoting vectors as underlined letters)

〈uL1〉 = −(req + rCa)〈iL1〉+ d〈uin〉 − 〈uCa〉+ rCa〈iL2〉

−2

3
(ej0 + ej2π/3 + ej4π/3)〈uSN〉. (2.10)

The common-mode voltage uSN becomes zero as ej0 + ej2π/3 + ej4π/3 = 0, hence, Eq.

(2.10) can be presented by

〈uL1〉 = −(req + rC)〈iL1〉+ d〈uin〉 − 〈uC〉+ rC〈iL2〉. (2.11)

Furthermore, the grid-side inductor voltage can be given by

〈uL2 〉 = −(rL2 + rC)〈iL2〉+ rC〈iL1〉+ 〈uC〉 − 〈uo〉, (2.12)

and the filter capacitor current by

〈iC〉 = 〈iL1〉 − 〈iL2〉. (2.13)

As the stationary-reference-frame model cannot be linearized due to constantly vary-

ing operating point, the space-vector theory is applied to transform the aforementioned

equations into a synchronous reference frame by substituting xs(t) = x(t)e−jωst, where

the superscript ’s’ denotes the synchronous reference frame and ωs is the synchronous

frequency. According to the definition for the transformation, a grid angle is subtracted

from the rotating stationary reference frame counterpart and, thus, the vector in the

dq-domain appears to be constant. The synchronous reference frame representations for

(2.11)-(2.13) can be given according to transformation shown in (2.14).

〈iL1〉 = 〈isL1〉ejωst → d〈iL1〉
dt

=
d〈isL1〉

dt
ejωst + jωs〈isL1〉ejωst (2.14)

By substituting (2.14) into (2.11) and rearranging yields

d〈isL1〉
dt

=
1

L1

[
ds〈uin〉 − (req + rC + jωsL1)〈isL1〉+ rC〈isL2〉 − 〈us

C〉
]
. (2.15)

Similar procedures are performed for all stationary-reference-frame variables and, accord-
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2.1. Average model

ingly, the synchronous form for the grid-side inductor can be expressed by

d〈isL2〉
dt

=
1

L2

[
− (rL2 + rC + jωsL2)〈isL2〉+ rC〈isL1〉+ 〈us

C〉 − 〈us
o〉
]
, (2.16)

and for capacitor voltage by

d〈us
C〉

dt
=

1

C

[
〈isL1〉 − 〈isL2〉 − jωsCus

C〉
]
. (2.17)

The total current flowing into the inverter bridge, i.e., itot = iin− iCin, can be given with

the inverse Park’s transformation as itot = dA〈iL1a〉+dB〈iL1b〉+dC〈iL1c〉 = 3
2Re{ds〈isL1〉∗}

= 3
2 [dd〈iL1d〉+ dq〈iL1q〉] and, therefore, the input-capacitor current can be expressed as

〈iCin〉 = 〈iin〉 −
3

2

[
dd〈iL1d〉+ dq〈iL1q〉

]
. (2.18)

Consequently, the time derivative for the input capacitor voltage can be expressed by

d〈uCin〉
dt

=
1

Cin

[
− 3

2
(dd〈iL1d〉+ dq〈iL1q〉) + 〈iin〉

]
. (2.19)

Furthermore, the input voltage and the output current can be expressed by

〈uin〉 = 〈uCin〉, (2.20)

〈iso〉 = 〈isL2〉. (2.21)

Considering the final steady-state formulation, Eqs. (2.15) - (2.21) in the synchronous

reference frame are divided into direct and quadrature components as xs(t) = xd(t) +

jxq(t). Note that Eq. (2.15) contains a uin-term which has to be replaced by (2.20). By

substituting (2.20) into (2.15) and dividing the average-valued equations into direct and

quadrature components yields:

d〈iL1d〉
dt

=
1

L1

[
− (req + rC)〈iL1d〉+ ωsL1〈iL1q〉+ rC〈iL2d〉

−〈uCd〉+ dd〈uCin〉
]
, (2.22)
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Chapter 2. Small-signal modeling of a three-phase grid-connected inverter

d〈iL1q〉
dt

=
1

L1

[
− (req + rC)〈iL1q〉 − ωsL1〈iL1d〉+ rC〈iL2q〉

−〈uCq〉+ dq〈uCin〉
]
, (2.23)

d〈iL2d〉
dt

=
1

L2

[
− (rL2 + rC)〈iL2d〉+ ωsL2〈iL2q〉+ rC〈iL1d〉+ 〈uCd〉 − 〈uod〉

]
, (2.24)

d〈iL2q〉
dt

=
1

L2

[
− (rL2 + rC)〈iL2q〉 − ωsL2〈iL2d〉+ rC〈iL1q〉+ 〈uCq〉 − 〈uoq〉

]
, (2.25)

d〈uCin〉
dt

=
1

Cin

[
− 3

2

(
dd〈iL1d〉+ dq〈iL1q〉

)
+ 〈iin〉

]
, (2.26)

d〈uCd〉
dt

=
1

C

[
〈iL1d〉 − 〈iL2d〉+ ωsC〈uCq〉

]
, (2.27)

d〈uCq〉
dt

=
1

C

[
〈iL1q〉 − 〈iL2q〉 − ωsC〈uCd〉

]
, (2.28)

〈uin〉 = 〈uCin〉, (2.29)

〈iod〉 = 〈iL2d〉, (2.30)

〈ioq〉 = 〈iL2q〉. (2.31)

Eqs. (2.22) - (2.31) are known as the synchronous-reference-frame average-valued model

for a current-fed VSI.

2.2 Operating point

The steady-state operating point can be obtained from the average-valued model by set-

ting the derivatives to zero and all the variables are replaced with their average-valued

terms denoted by corresponding upper case letters. As the inverter-side-inductor cur-

rent is the controlled variable, which is synchronized with the point-of-common coupling

(PCC) voltage, then IL1q = 0 and Uoq = 0 in the steady state. The q-component of

the inverter-side-inductor current (IL1q) is set to zero since unity power factor is desired.

However, a small amount of reactive power is transferred into the grid (i.e., IL2q 6= 0),

which is usually limited by proper selection of the capacitor.

By considering the operating conditions stated above, the steady state can be derived
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2.2. Operating point

as

−ReqIL1d + rCIL2d − UCd +DdUin = 0, (2.32)

−k3IL1d + rCIL2q − UCq +DqUin = 0, (2.33)

Uin = UCin, (2.34)

−3

2
DdIL1d + Iin = 0, (2.35)

−k1IL2q − UCd = 0, (2.36)

k1IL2d − k1IL1d − UCq = 0, (2.37)

k2UCq − k2RIL2q − IL2d = 0, (2.38)

Rk2IL2d − k2rCIL1d − k2UCd + k2Uod − IL2q = 0, (2.39)

where k1 = 1
ωsC

, k2 = 1
ωsL2

, Req = req + rC and R = rL2 + rC. Now by substituting

(2.36) and (2.37) into (2.38) and (2.39) and solving for IL2d and IL2q yield

IL2d =
2IinKILd − 3DdRUod

3DdK
(2.40)

and

IL2q = −2IinKILq + 3DdRUodKUo

3DdK
, (2.41)

where KILd = k2
1 − k1k2 + RrC, KILq = k2rC + k1R − k1rC, KUo = k1 − k2 and K =

R2 + (k1 − k2)2. The steady-state for Dd and Dq can be calculated by substituting

(2.40) and (2.41) into (2.32) and (2.33), respectively. Appendix A provides a complete

MATLAB-code for calculating the steady state with parasitics. Simplified values for Dd

and Dq without the parasitic elements can be given by

Dd =
Uod

Uin (1− CL2ω2
s )
, (2.42)
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Chapter 2. Small-signal modeling of a three-phase grid-connected inverter

Dq =
2

3

Iinωs

(
L1 + L2 − L1L2Cω

2
s

)
Uod

. (2.43)

The linearization process is described in detail in the next section.

2.3 Linearized model

As can be seen from the average-valued model, some equations contain two input or

state variables multiplied with each other, e.g. d〈uCin〉. Therefore, the average model,

in this case, is actually nonlinear and does not suffice for a small-signal model due to

presence of nonlinear dependency between variables. Thus, the equations are linearized

by calculating partial derivatives for each state, input and output variables thus removing

the aforementioned nonlinearity. Accordingly, the obtained linearized equations can be

given by

dîL1d

dt
=

1

L1

[
− (req + rC)̂iL1d + ωsL1îL1q + rCîL2d − ûCd

+DdûCin + Uind̂d

]
, (2.44)

dîL1q

dt
=

1

L1

[
− (req + rC)̂iL1q − ωsL1îL1d + rCîL2q − ûCq

+DqûCin + Uind̂q

]
, (2.45)

dîL2d

dt
=

1

L2

[
− (rL2 + rC)̂iL2d + ωsL2îL2q + rCîL1d + ûCd − ûod

]
, (2.46)

dîL2q

dt
=

1

L2

[
− (rL2 + rC)̂iL2q − ωsL2îL2d + rCîL1q + ûCq − ûoq

]
, (2.47)

dûCin

dt
=

1

Cin

[
− 3

2
DdîL1d −

3

2
DqîL1q + îin −

Iin
Dd

d̂d

]
, (2.48)

dûCd

dt
=

1

C

[̂
iL1d − îL2d + ωsCûCq

]
, (2.49)

dûCq

dt
=

1

C

[̂
iL1q − îL2q − ωsCûCd

]
, (2.50)
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2.3. Linearized model

ûin = ûCin, (2.51)

îod = îL2d, (2.52)

îoq = îL2q. (2.53)

According to (2.44) - (2.53), a linearized state-space can be formulated as

dx̂(t)

dt
= Ax̂(t) + Bû(t)

ŷ(t) = Cx̂(t) + Dû(t)

(2.54)

where x̂ = [̂iL1d, îL1q, îL2d, îL2q, ûCd, ûCq, ûCin]
T

represents a vector of state variables,

û = [̂iin, ûod, ûoq, d̂d, d̂q]
T

represents a vector of input variables and ŷ=[ûin, îL1d, îL1q,

îod, îoq]
T

is the vector for output variables. The state matrices in (2.54) can be given

according to (2.44)-(2.53) by

A =



− reqL1
ωs

rC
L1

0 − 1
L1

0 Dd

L1

−ωs − reqL1
0 rC

L1
0 − 1

L1

Dq

L1

rC
L2

0 − rL2+rC
L2

ωs
1
L2

0 0

0 rC
L2

−ωs − rL2+rC
L2

0 1
L2

0
1
Cf

0 − 1
Cf

0 0 ωs 0

0 1
Cf

0 − 1
Cf

−ωs 0 0

− 3
2
Dd

Cin
− 3

2
Dq

Cin
0 0 0 0 0


(2.55)

B =



0 0 0 Uin

L1
0

0 0 0 0 Uin

L1

0 − 1
L2

0 0 0

0 0 − 1
L2

0 0

0 0 0 0 0

0 0 0 0 0
1
Cin

0 0 − Iin
DdCin

0


(2.56)
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C =


0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

 (2.57)

D = 0 (2.58)

The linearized state-space can be given in the Laplace domain by replacing the derivative

operator ’d/dt’ with the Laplace-operator ’s’.

sX (s) = AX (s) + BU (s)

Y (s) = CX (s) + DU (s)
. (2.59)

In order to finalize the small-signal modeling procedure, the transfer functions between

input and output variables can be solved according to (2.59) as

Y (s) =
[
C(sI−A)−1B + D

]
U (s) = GHU (s). (2.60)

The transfer function matrix GH is known as the H-parameter representation, i.e.,

when the inverter is analyzed as current-input-current-output system, which was dis-

cussed earlier considering the terminal constraints of the converter. Transfer functions

of the system can be given by


ûin

îL1d

îL1q

îod

îoq

 =

GH︷ ︸︸ ︷
ZH

in TH
oi-d TH

oi-q GH
ci-d GH

ci-q

GH
ioL-d GH

oL-d GH
oL-qd GH

cL-d GH
cL-qd

GH
ioL-q GH

oL-dq GH
oL-q GH

cL-dq GH
cL-q

GH
io-d −Y H

o-d −Y H
o-qd GH

co-d GH
co-qd

GH
io-q −Y H

o-dq −Y H
o-q GH

co-dq GH
co-q




îin

ûod

ûoq

d̂d

d̂q

 . (2.61)

Considering the second and third rows of the matrix, the subscript ’L’ denotes inverter-

side-current-related transfer functions, which are intermediate output variables. Note

that the topology of the converter dictates that the current should flow outwards into
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2.3. Linearized model

the grid, but the output admittance is determined by the current flowing in it, which

is the opposite regarding the originally selected direction in Fig. 2.1. Therefore, the

output voltage uo-(d,q) actually perturbs a current opposite in sign and the corresponding

admittances Y H
o-d, Y H

o-qd, Y H
o-dq and Y H

o-q have to multiplied by a coefficient ’-1’.

In multi-variable systems, e.g., in the dq-domain analysis, the inputs, states and

outputs can have n channels. Correspondingly, variables can be given as one vector

consisting of two or more channels as x = [x1, x2, · · · , xn]T. Naturally for the dq-domain,

xs = [xd, xq]T, i.e., n = 2. Consequently, transfer functions between input and output

variable vectors can be modeled as n× n matrices, that is [76, 77]

G(s) =


G11 · · · G1n

...
. . . G2n

Gn1 Gn2 Gnn

 . (2.62)

The transfer matrix GH in (2.61) can be, thus, simplified and presented by using transfer

matrices due to the inherent multi-variable nature of the inverter [52, 76–79]. By com-

bining the d and q-components and their cross-coupling terms into two-by-two matrices,

the transfer function matrix GH in (2.61) can be given as

GH =

 Zin Toi Gci

GioL GoL GcL

Gio −Yo Gco

 . (2.63)

Note that according to topological properties of the inverter in Fig. 2.1, the input voltage

ûin and the input current îin are scalar variables, hence, the input impedance Zin in (2.63)

is also a scalar.

Regarding the dynamical representation of the system, i.e. individual input-to-output

responses, corresponding transfer functions are presented for output variables with sep-

arate components as well as with the multi-variable representation in (2.64)-(2.71) ac-

cording to (2.61) and (2.63), respectively.

ûin = ZH
inîin + TH

oi-dûod + TH
oi-qûoq +GH

ci-dd̂d +GH
ci-qd̂q (2.64)

ûin = Zinîin + Toiûo + Gcid̂ (2.65)
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îL1d = GH
ioL-dîin +GH

oL-dûod +GH
oL-qdûoq +GH

cL-dd̂d +GH
cL-qdd̂q (2.66)

îL1q = GH
ioL-qîin +GH

oL-dqûod +GH
oL-qûoq +GH

cL-dqd̂d +GH
cL-qd̂q (2.67)

îL1 = GioLîin + GoLûo + GcLd̂ (2.68)

îod = GH
io-dîin − Y H

o-dûod − Y H
o-qdûoq +GH

co-dd̂d +GH
co-qdd̂q (2.69)

îoq = GH
io-qîin − Y H

o-dqûod − Y H
o-qûoq +GH

co-dqd̂d +GH
co-qd̂q (2.70)

îL2 = Gioîin −Yoûo + Gcod̂ (2.71)

In the aforementioned open-loop output dynamics, considering (2.64) and (2.65), Zin

is the input impedance of the system, Toi-(d,q) is known as the reverse transfer function

and Gci-(d,q) is the control-to-input-voltage transfer function. Output current dynam-

ics can be presented by (2.66)-(2.68) for the inverter-side current and by (2.69)-(2.71)

for the grid current. Accordingly, Gio,ioL-(d,q) represent the input-to-output transfer

function or the forward current gain, Yo-(d,q,qd,dq) is the output admittance with cross-

coupling elements, GoL-(d,q,qd,dq) is the output-to-inductor current transfer function with

cross-coupling elements, Gco,cL-(d,q,qd,dq) is known as the control-to-output-current trans-

fer function, which also includes cross-coupling terms between components as shown in

(2.66)-(2.71).

A linear network model, which characterizes the terminal and dynamical behavior of

the converter, depicted in Fig. 2.3, can be presented according to the transfer function

matrix (2.63). The effect of the non-ideal source and load is included as a parallel in-

put admittance Ys and a series grid impedance Zg, respectively. Moreover, the CL-part

of the filter is shown separately for demonstrative purposes in order to highlight the

intermediate-output-variable-like nature of the inverter-side inductor current. Accord-

ingly, the aforementioned linear network model needs to be further elaborated as the

CL-part and corresponding transfer functions are not yet determined.

The small-signal model of the CL-filter can be derived according to Fig. 2.4, where

the filter input variables are the inverter-side inductor currents iL1(a,b,c) and the grid

phase-voltages uo(a,b,c)n. Furthermore, the filter output variables are the voltages across

the capacitors uC(a,b,c) and the output currents iL2(a,b,c). Accordingly, by applying well-

known averaging methods shown earlier, state matrices for the CL-filter can be given

by

28



2.3. Linearized model

Fig. 2.3: Source-load-affected open-loop model of a three-phase grid-connected PV inverter.

Af =


− rL2+rC

L2
ωs

1
L2

0

−ωs − rL2+rC
L2

0 1
L2

1
C 0 0 0

0 1
C 0 0

 , (2.72)

Bf =


rC
L2

0 1
L2

0

0 rC
L2

0 − 1
L2

1 0 0 0

0 1 0 0

 , (2.73)

Cf =


−rC 0 1 0

0 −rC 0 1

1 0 0 0

0 1 0 0

 , (2.74)

Df =


rC 0 0 0

0 rC 0 0

0 0 0 0

0 0 0 0

 . (2.75)

Clearly, switches are absent from the filter model and, therefore, only one linear circuit

is present. The obtained average-valued model is, in fact, also the linear representation

of the filter. Accordingly, the transfer function matrix of the filter can be given by

29



Chapter 2. Small-signal modeling of a three-phase grid-connected inverter

L1ai

L1bi

L1ci

C(a,b,c)u

L2(a,b,c)u

fau

fbu

fcu

oau

obu

ocu

Fig. 2.4: Linear model of a CL-type filter.


ûfd

ûfq

îL2d

îL2q

 =


Zinf−d Zinf−qd Toif−d Toif−qd

Zinf−dq Zinf−q Toif−dq Toif−q

Giof−d Giof−qd −Yof−d −Yof−qd

Giof−dq Giof−q −Yof−dq −Yof−q



îL1d

îL1q

ûod

ûoq

 (2.76)

Similarly, it should be noted that Eq. (2.76) can be also presented by using the multi-

variable notation by

[
ûf

îL2

]
=

[
Zinf Toif

Giof −Yof

][
îL1

ûo

]
(2.77)

Matrices in (2.77) are used to represent the open-loop dynamics of a CL-filter shown in

Fig. 2.3.

2.4 Source-affected model

Photovoltaic generator induces varying dynamical resistance (rpv) connected across the

input terminal of the converter. This has to be considered in the dynamical model in

order to analyze the converter dynamics correctly [4]. As shown in Fig. 2.3, a non-ideal

source with finite admittance Ys is assumed here, which can be included in the open-loop

dynamics of the system. Accordingly, the real input current (̂iin) of the converter is

affected by the non-ideal source current îinS as well as the parallel admittance Ys and

can be expressed as
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2.4. Source-affected model

îin = îinS − Ysûin. (2.78)

Consequently, the input voltage dynamics can be presented by substituting (2.78) into

the nominal open-loop input voltage dynamics as

ûin = Zin

(
îinS − Ysûin

)
+ Toiûo + Gcid̂,

ûin =
Zin

1+ZinYs
îinS +

Toi

1+ZinYs
ûo +

Gci

1+ZinYs
d̂.

(2.79)

The source-affected input current can be expressed as in (2.80), which is then substituted

into the open-loop dynamics of the inverter and grid currents.

îin =

(
1− ZinYs

1 + ZinYs

)
îinS −

YsToi

1 + ZinYs
ûo −

YsGci

1 + ZinYs
d̂. (2.80)

Accordingly, the source-affected dynamics for input voltage, inductor current and grid

current can be given by

ûin =
Zin

1 + ZinYs
îinS +

Toi

1 + ZinYs
ûo +

Gci

1 + ZinYs
d̂, (2.81)

îL1 = GioL

(
1− ZinYs

1 + ZinYs

)
îinS +

(
GoL −GioL

YsToi

1 + ZinYs

)
ûo

+

(
GcL −GioL

YsGci

1 + ZinYs

)
d̂, (2.82)

îL2 = Gio

(
1− ZinYs

1 + ZinYs

)
îinS −

(
Yo + Gio

YsToi

1 + ZinYs

)
ûo

+

(
Gco −Gio

YsGci

1 + ZinYs

)
d̂. (2.83)

The source-affected transfer function matrix can be given according to (2.81)-(2.83) by
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 Zs
in Ts

oi Gs
ci

Gs
ioL Gs

oL Gs
cL

Gs
io Ys

o Gs
co



=


Zin

1+ZinYs

Toi

1+ZinYs

Gci

1+ZinYs

GioL

(
1− ZinYs

1+ZinYs

)
GoL −GioL

YsToi

1+ZinYs
GcL −GioL

YsGci

1+ZinYs

Gio

(
1− ZinYs

1+ZinYs

)
−Yo −Gio

YsToi

1+ZinYs
Gco −Gio

YsGci

1+ZinYs

 . (2.84)

The impedance-based stability analysis, elaborated in Chapter 4, can be carried out

for the input interface by investigating the impedance ratio (i.e., the minor loop gain)

Zin/Zs, Zs = 1/Ys. However, this is not in the scope of this thesis and is not discussed

further.

2.5 Load-affected model

So far, an ideal load (i.e., the utility grid) has been assumed in the analysis, which

translates to a zero series impedance with the stiff voltage load. However, a real grid

contains a finite input impedance, which can significantly affect the behavior of the

interconnected inverter and, therefore, the effect of the load should be considered as a

part of the converter dynamic model [50]. The procedure shown here yields the load-

affected model, which can be utilized to analyze the effect of the grid on an arbitrary

system transfer function.

The non-ideal load is shown in Fig. 2.3 as a series impedance Zg with the real grid

voltage ûoL. It is assumed that no parallel components in the load impedance are present

for simplicity. Interactions at the output terminal may occur as the output current of the

converter affects the voltage at the PCC (ûo) via the grid impedance. Correspondingly,

the grid voltage ûoL affects the output current via the output admittance Yo.

Regarding the derivation of the load-affected small-signal model, Fig. 2.5 is used

instead of Fig. 2.3 in order to express the load-affected transfer functions according to

their nominal open-loop counterparts shown in (2.63). The grid current can be expressed

according to Fig. 2.5 by

îo = Gioîin −Yoûo + Gcod̂. (2.85)

32



2.5. Load-affected model

Fig. 2.5: Load-affected model of a grid-connected inverter at open loop.

Moreover, the voltage at the PCC, i.e., ûo can be given by

ûo = Zgîo + ûoL, (2.86)

where the grid impedance matrix can be presented by

Zg =

[
Zg-d Zg-qd

Zg-dq Zg-q

]
. (2.87)

By substituting (2.86) into (2.85) yields

îo = Gioîin −Yo

(
Zgîo + ûoL

)
+ Gcod̂, (2.88)

which can be rearranged as follows

îo = (I + YoZg)−1Gioîin − (I + YoZg)−1YoûoL + (I + YoZg)−1Gcod̂, (2.89)

where I is the identity matrix with suitable dimensions. From (2.89) the load-affected

transfer functions for the output current can be presented by
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Chapter 2. Small-signal modeling of a three-phase grid-connected inverter

GL
io = (I + YoZg)−1Gio, (2.90)

YL
o = (I + YoZg)−1Yo, (2.91)

GL
co = (I + YoZg)−1Gco, (2.92)

where the superscript ’L’ denotes the load-affected transfer functions.

The effect of the grid impedance on the inverter-side inductor current îL1 can be

derived as follows. By substituting (2.89) into (2.86) and solving for ûo yields

ûo = ZG[(I + YoZg)−1Gioîin − (I + YoZg)−1YoûoL (2.93)

+(I + YoZg)−1Gcod̂] + ûoL. (2.94)

Furthermore, the open-loop representation for inverter-side inductor current can be given

by

îL1 = GioLîin + GoLûo + GcLd̂. (2.95)

By substituting ûo in (2.95) by (2.93) and solving for îL1 yields the load-affected inverter-

side inductor current, which can be now presented by

îL1 =[GioL + GoLZg(I + YoZg)−1Gio ]̂iin

+[GoL −GoLZg(I + YoZg)−1Yo]ûoL

+[GcL + GoLZg(I + YoZg)−1Gco]d̂.

(2.96)

Accordingly, the load-affected transfer functions for the inverter-side inductor current

can be given by

GL
ioL = GioL + GoLZg(I + YoZg)−1Gio, (2.97)

GL
oL = GoL −GoLZg(I + YoZg)−1Yo, (2.98)

GL
cL = GcL + GoLZg(I + YoZg)−1Gco. (2.99)
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3 ACTIVE-DAMPING-AFFECTED CLOSED-LOOP

MODEL

This chapter discusses on the inherent properties of active damping as well as presents

the closed-loop model of a grid-connected converter with both single and multi-current-

feedback active-damping schemes. First, the closed-loop model in case of the multi-

current-feedback scheme is derived, which is followed by the single-current-feedback coun-

terpart. Furthermore, control system design and stability evaluation are presented in case

of both multi and single-current schemes, which are supported by Bode-plot and root-

locus analyses. The operating point and the component values used in the following

analysis are given in Table 3.1. The controller parameters can be found in Appendix B.

For clarification, the power stage as well as the control system configuration are illus-

trated in Fig. 3.1.

Table 3.1: Operating point and component values.

Parameter Value Parameter Value

Uin 415 V Cin 1.9 mF
Iin 6.6 A L1 2.5 mH

Ugrid,rms 120 V rL1 65 mΩ
ωgrid, ωs 2π60 rad/s Cf 10 µF

fs 6–8–20 kHz rCf 10 mΩ
fres 2.29 kHz L2 0.6 mH

fs/fres 2.6–3.5–8.7 rL2 22 mΩ
rsw 10 mΩ

3.1 Active damping considerations

This section briefly discusses the relevant factors in the design of active damping. Ac-

cordingly, the derivation of the active-damping-feedback coefficient is performed, and its

physical meaning regarding the system dynamics is elaborated. Moreover, as the system

delay imposes significant design constraints for active damping, the effect of delay on

frequency-domain analysis is discussed.
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Chapter 3. Active-damping-affected closed-loop model

Fig. 3.1: Depiction of the power stage and control system configuration.

3.1.1 Active damping feedback coefficient

The active damping affects the open-loop dynamics via the capacitor-current feedback

by changing the linearized equations describing the state-space of the converter (cf. Eqs.

(2.44)-(2.53)). This effect can be realized by replacing the perturbed duty ratio in the

open-loop state space by the active-damping-affected form. Accordingly, the selection

of the active damping gain as Rd/Uin can be well justified. By considering the effect

of active damping feedback on the system state space, its physical meaning can be also

clearly understood.

Active damping affects directly the perturbed duty ratio as (by neglecting the delay

for simplicity)

d̂ = ĉ−GADîCf, (3.1)

where ĉ is the control-signal vector (i.e., the output of the current controller) and GAD

is the active damping transfer matrix. Different duty-ratio-affecting active damping

methods can be implemented by modifying the corresponding feedback matrix or the

feedback signal. However, only the capacitor-current-feedback method is discussed for

simplicity. Accordingly, the linearized state-space equations, directly affected by the duty

ratio perturbation, are the d and q-component of the inverter-side inductor current as

dîL1d

dt
=

1

L1

[
− (req + rC) îL1d + ωsL1îL1q + rCîL2d

−ûCfd +DdûCin + Uind̂d

]
, (3.2)
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3.1. Active damping considerations

dîL1q

dt
=

1

L1

[
− (req + rC) îL1q − ωsL1îL1d + rCîL2q

−ûCfq +DqûCin + Uind̂q

]
, (3.3)

where req = rL1 + rswitch.

In a passively damped system, the filter capacitor is connected in series with an

additional damping resistor. Thus, considering Eqs. (3.2) and (3.3), the parameter rC

would be relatively high. Resonance damping is, therefore, achieved when the virtual

resistor Rd is implemented in series with the filter capacitor, i.e. rC,new = rC,old + Rd,

by modifying the duty ratios d̂d and d̂q. This is obtained when the d and q-component

duty ratios are modified as given in (3.4) and (3.5), respectively.

d̂d = ĉd −
Rd

Uin
îCfd = ĉd −

Rd

Uin
( îL1d − îL2d) (3.4)

d̂q = ĉq −
Rd

Uin
îCfq = ĉq −

Rd

Uin
( îL1q − îL2q) (3.5)

In Eqs. (3.4) and (3.5), Rd is the virtual resistor value and Uin is the steady-state input

voltage. The active damping gain matrix shown, e.g., in (3.25) can be formed according

to (3.4) and (3.5) yielding

GAD =

[
Rd

Uin
0

0 Rd

Uin

]
. (3.6)

The effectiveness of the active damping can be adjusted by changing the value of the

virtual damping resistor Rd. It is worth noting that the use of virtual resistor incorporates

design constraints concerning the stability of the inverter. As discussed in [29, 80], the

effect of computation delay changes the behavior of the active damping feedback and

may introduce open-loop RHP poles into the control system. Accordingly, limitations

are imposed for the selection of the active damping gain. The effect of the delay can be

minimized by using modified feedback methods as discussed, e.g., in [33, 80–82]. The

active damping implementations, which mitigates the effect of the delay, are analyzed

further by means of the root locus analysis presented in Section 3.5.
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3.1.2 Properties of delay

In digital control systems, the system variables, i.e., voltages or currents, are sampled by

means of analog-to-digital converters (ADC), and the samples are processed with various

control algorithms. Accordingly, different types of delays affect the signal processing and

may effectively increase the risk of instability. Delay in the signal path originates, e.g.,

from computation, sample-and-hold, and PWM reference update actions.

Generally, a delay of one switching cycle is caused by the PWM transport delay

mechanism, i.e., a PWM reference calculated at a time instant t = t0 is loaded after one

switching period as t = t0 + Ts in order to avoid intermediate transitions of the PWM

reference value [83]. Moreover, the PWM is usually implemented either in single-update

or double-update mode, which affects the overall delay. By using the single-update

mode, the output of the PWM is updated either when the carrier wave (i.e., a digital

counter) is at its maximum or at zero, that is, once per switching cycle. Therefore, the

single-update PWM induces approximately half of the modulation period as delay in the

system dynamics, which is considered in the following analysis. In the double-update

mode, the output of the PWM is updated when the carrier signal is zero and again at

its maximum. Accordingly, the output is updated twice per modulation period, which

effectively decreases the delay compared to the single-update mode.

The delay causes time-shift between the system input and output as y(t) = u(t−Td),

which can be given in the frequency-domain as Y (s) = U(s)e−sTd , where Td is the

finite time-delay. However, in order to incorporate the delay into the frequency-domain

analysis, a rational transfer function is required as G(s) = N(s)/D(s), where the order

of D(s) ≥ N(s). Therefore, Padé-approximations are often used to approximate the

exponential function of the delay. These rational approximations do not represent exactly

the ideal delay and they may be inaccurate especially at high frequencies. However, the

delay needs to be approximated only within a finite frequency range, and different order

of (i.e., different accuracies) approximations can be utilized depending on the application.

The 1st, 2nd and 3rd-order Padé-approximations can be given in the frequency-domain

as

e−sTd
1st ≈

− 1
2Tds+ 1

1
2Tds+ 1

,

e−sTd

2nd ≈
1
12 (Tds)

2 − 1
2Tds+ 1

1
12 (Tds)

2
+ 1

2Tds+ 1
,

e−sTd

3rd ≈
− 1

120 (Tds)
3

+ 1
10 (Tds)

2 − 1
2Tds+ 1

1
120 (Tds)

3
+ 1

10 (Tds)
2

+ 1
2Tds+ 1

.

(3.7)
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3.1. Active damping considerations

Fig. 3.2 shows the frequency-domain behavior of different delay approximations and, for

comparison, the ideal delay (Td = 1.5Ts). The lowest sampling frequency used in the

analysis is 6 kHz and, therefore, Ts = 1/6 ms, where Ts denotes the sampling interval.

These represent the actual parameters used in the analysis.

Fig. 3.2: Depiction of an ideal delay with the 1st, 2nd and 3rd-order Padé approximations.

The magnitude of the signal remains unaffected regardless of the approximation

method. However, major phase differences may occur with low order approximations.

Regarding the small-signal modeling, the obtained model is accurate up to half the switch-

ing frequency and, therefore, the approximation of the delay should guarantee accuracy

for up to aforementioned frequency. According to Fig. 3.2, the first-order approximation

may not be sufficient for the delay as large deviations occur even around 2 kHz. However,

the second-order approximation is accurate up to half the minimum switching frequency

of 6 kHz, which can be considered appropriate in this case.

As discussed earlier, the active damping, along with the control system, is affected

by the system delay. Considering active damping, the condition, where the resonant

frequency of the LCL-filter (fres) equals one-sixth of the sampling frequency (fs) has been

noticed to be critical for stability of a grid-connected converter [28, 29, 31, 34, 36, 37, 84].

Similar critical frequency is found also for converters with L-filters as the phenomenon

is related to the delay and not necessarily to the filter topology [76].

The reason for aforementioned delay-dependent behavior may not be clear and, there-

fore, it is explained here further. Considering Figs. 3.3 and 3.7, the block-diagram can
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Chapter 3. Active-damping-affected closed-loop model

be slightly manipulated, and the active damping feedback can be given by

LAD = GADGdel =

[
Rd

Uin
0

0 Rd

Uin

][
e−kTss 0

0 e−kTss

]
, (3.8)

where e−kTss is the ideal system delay and k = 1.5 in order to represent a realistic system

delay [85]. The d and q-components can be expressed as GAD−(d,q) = Rd/Uin · e−kTss.

By substituting s = jω, the frequency-dependent behavior of the feedback term can be

given according to Euler’s formula by

GAD−(d,q) = Rd/Uin[cos (kTsω)− j sin (kTsω)] (3.9)

The real part in (3.9) damps the LCL-filter resonance and the imaginary part can be

considered to induce either phase-lag or phase-boost depending on its sign. According

to the active-damping-feedback derivation shown in Section 3.1.1, the capacitor current

has to be subtracted from the duty ratio in order to obtain a correct damping term in

the linearized converter currents in (3.2) and (3.3). However, the real part of the active

damping feedback (i.e., the cosine-term) changes its sign depending on the resonant

frequency. This sign change of the feedback term can be evaluated by analyzing the zero-

crossing frequency of the cosine-term. Accordingly, the corresponding critical frequency

for the real part in (3.9) can be derived as

Re
{
GAD−(d,q)

}
= 0

→ cos(kTsω) = 0

→ kTsω = nπ2 , ω = 2πf, n ∈ Z
→ kTs2πf = nπ2
→ f = n 1

2
1

kTs2
= n 1

4kTs
= n fs6 , |k = 1.5 ,

(3.10)

where n = 1 suffices for analysis. Eq. (3.10) indicates that depending on whether the

LCL-filter resonant frequency is fres < fs/6 or fres > fs/6, the sign of the active damping

gain has to be changed accordingly to guarantee stability. This behavior or constraint

has been noticed in various publications to be one of the major factors affecting the stable

operation of active damping [29, 34, 39].
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Similar analysis can be used for the imaginary part of the active damping gain as

Im
{
GAD−(d,q)

}
= 0

→ sin(kTsω) = 0

→ kTsω = nπ, ω = 2πf, n ∈ Z
→ kTs2πf = nπ

→ f = n 1
kTs2

= n fs3 , |k = 1.5,

(3.11)

which reveals that it changes sign from negative to positive and vice versa when fres =

fs/3. Correspondingly, the imaginary term induces either phase boost or phase lag to

the active damping feedback, which can cause decreased performance of active damping

if neglected. It has been observed, e.g., in [29, 80] that recognizing the effect of the

imaginary part is important for the robustness of the converter stability if a modified

active damping feedback, e.g., with a high-pass filter, is used.

3.2 Open-loop dynamics in case of multi-current-feedback scheme

Fig. 3.3 shows a complete closed-loop diagram of a grid-connected inverter with cascaded

control scheme. It is formed by adding the necessary control functions, i.e., controllers,

active damping feedback, delays and measurement gains to a system shown in Fig. 2.3.

As the DC-link voltage must be controlled, e.g., in PV applications, a cascaded-control

scheme is used as a control strategy. The outer loop, i.e., the input-voltage control-loop in

Fig. 3.3, provides the d-component-current reference to the inner output-current control-

loop. It should be noted that the q-component output-current reference is usually set to

zero in order to obtain unity power factor.

Active damping affects directly the duty ratio generation by forming an inner loop

inside the output-current control loop. The effect of the active damping can be added

into the model by replacing the control signal d̂ shown in Fig. 3.3 by (3.12), which

represents the active-damping-affected duty ratio.

d̂ = Gdel

ĉ−GAD

îc︷ ︸︸ ︷(
îL1 − îL2

) (3.12)

It is noteworthy that also the PLL affects the duty ratio generation, however, it is omitted

from the following derivation in order to simplify the analysis and to present the effect

of active damping more explicitly. The effect of the PLL will be considered later during

the derivation of output-current-controlled model.
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Chapter 3. Active-damping-affected closed-loop model

Fig. 3.3: Closed-loop control block diagram of a grid-connected converter with multi-current-
feedback active damping.

According to the matrix given in (2.63), Eq. (3.12) can be expressed as a function of

input and control variables as in (3.13).

d̂ = Gdelĉ−GdelGAD

(
GioLîin + GoLûo + GcLd̂

−Gioîin −Yoûo −Gcod̂
)
. (3.13)

Solving (3.13) for d̂ yields

d̂ = [I + GdelGAD (GcL −Gco)]
−1

Gdel

[
ĉ−GADGioLîin (3.14)

−GADGoLûo + GADGioîin + GADYoûo

]
.

By substituting (3.14) into the open-loop dynamics presented in Section 2.3, the active

damping-affected transfer functions can be solved. First, the input dynamics can be

given by
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3.2. Open-loop dynamics in case of multi-current-feedback scheme

ZAD
in = Zin + Gci[I + GdelGAD (GcL −Gco)]

−1

×GdelGAD [Gio −GioL] , (3.15)

TAD
oi = Toi + Gci[I + GdelGAD (GcL −Gco)]

−1

×GdelGAD [Yo −GoL] , (3.16)

GAD
ci = Gci[I + GdelGAD (GcL −Gco)]

−1
Gdel, (3.17)

where ZAD
in , TAD

oi and GAD
ci are the matrices for input impedance, transmittance and

control-to-input-voltage transfer functions, respectively.

Additionally, the input-current-to-inductor-current transfer function, output-voltage-

to-inductor-current transfer function and the control-to-inductor-current transfer func-

tions can be given as shown in (3.18)-(3.20), respectively.

GAD
ioL = GioL + GcL[I + GdelGAD (GcL −Gco)]

−1

×GdelGAD [Gio −GioL] (3.18)

GAD
oL = GoL + GcL[I + GdelGAD (GcL −Gco)]

−1

×GdelGAD [Yo −GoL] (3.19)

GAD
cL = GcL[I + GdelGAD (GcL −Gco)]

−1
Gdel (3.20)

Furthermore, the grid-current-related forward transfer function, output admittance and

control-to-grid-current transfer function can be given by

GAD
io = Gio + Gco[I + GdelGAD (GcL −Gco)]

−1

×GdelGAD [Gio −GioL] , (3.21)

YAD
o = Yo + Gco[I + GdelGAD (GcL −Gco)]

−1

×GdelGAD [Yo −GoL] , (3.22)
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Fig. 3.4: Active damping control loop for the d and q-components (solid and dashed lines).

GAD
co = Gco[I + Gdel(GADGcL −GADGco)]

−1
Gdel. (3.23)

The system delay matrix Gdel and active-damping-feedback-gain matrix GAD in Fig. 3.3

are as follows:

Gdel =

[
1−k1s+k2s2
1+k1s+k2s2

0

0 1−k1s+k2s2
1+k1s+k2s2

]
(3.24)

GAD =

 Rd

Uin
0

0
Rd

Uin

 (3.25)

In Eq. (3.24), a second order Padé approximation is used to represent the ideal delay

(e−Tds) with k1 = 1/2 · Td and k2 = 1/12 · T 2
d . The system delay is chosen as Td = 1.5Ts

according to [85], where Ts is the sampling interval. In practice, the delay consists of

PWM loading, analog-to-digital conversion and processing delays.

Considering the multi-current-feedback active damping implementation, the feedback

loop processes a signal from the capacitor current, which is a difference between the

inverter and grid currents (i.e., two output variables) as iC = iL1−iL2. Consequently, the

stability of the system may be affected, because the output variables are fed back into the

system. Conversely, if the processed variable would be an input variable, a feed-forward

loop is formed, which does not impose direct risk for instability. It is important to observe
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3.3. Open-loop dynamics in case of single-current-feedback scheme

the fundamental nature of the active damping, which imposes a control-loop-like structure

as shown in Fig. 3.3 as well as in (3.15)-(3.23). The active-damping loop can be extracted

from aforementioned equations and presented as LAD = GdelayGAD(GcL −Gco).

In order to further elaborate the issue, active damping control loops for the d and q-

components are shown in Fig. 3.4, where the virtual resistor value R
d

= 15 Ω. Evidently,

the active-damping loop is effective only in vicinity of the resonant frequency, where the

loop regulates the capacitor current to its steady-state value. The open-loop system

transfer functions are, therefore, only affected around the corresponding frequency. This

is logical since the capacitor acts as an open circuit for lower frequencies, and the current

flows mainly through the two filtering inductors, L1 and L2. Accordingly, the low-

frequency active-damping-loop gain is negligible.

Other important transfer functions in the forthcoming analysis are the active-damping-

affected open-loop control-to-inverter-current and output admittance transfer functions

GAD
cL and YAD

o , respectively. Accordingly, the current control loop is designed with

GAD
cL , and the effect of active damping on the shape of the current control loop can be

analyzed. Furthermore, the effect of the operation point on the corresponding transfer

function should be addressed since it affects the control design.

The open-loop active-damping-affected output admittance can be used to examine the

active-damping-induced behavior around the resonant frequency, which is not affected by

the output-current control. Furthermore, the effect of the varying operating point at open

loop can be analyzed. The source-affected control-to-inductor-current transfer function

GAD
cL and output admittance YAD

o are presented in Figs. 3.5 and 3.6, respectively.

As can be observed, the shape of the transfer functions at higher frequencies remains

practically identical between different operating points, and the operating point affects

mainly the low-frequency behavior of the GAD
cL due to the operating-point-dependent

zero [4]. The low-frequency zero is located either in the RHP, imaginary axis or LHP

depending on the operating point (i.e., CCR, MPP or CVR), which causes input-voltage-

control-design constraints. These are discussed in detail in Section 3.4. Note that minor

gain differences between operating points at higher frequencies, especially in GAD
cL , are

also evident, which should be taken into account in the active damping design.

3.3 Open-loop dynamics in case of single-current-feedback scheme

In single-current-feedback scheme, the capacitor-current measurement is omitted, which

reduces the number of sensors required for operation. Instead, either the converter or grid

current is measured and the former is used in this thesis. Correspondingly, the measured

inverter-side current is used for both active damping and control purposes. Hence, the

duty ratio generation (cf. Fig. 3.7) is dependent only on one current instead of two,

which changes the active-damping-affected transfer functions shown in previous section.
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Chapter 3. Active-damping-affected closed-loop model

Fig. 3.5: Open-loop control-to-inductor-current transfer functions for multi-current-feedback ac-
tive damping scheme in CCR (blue line), CVR (black dotted line) and at MPP (black dashed
line).

Fig. 3.6: Open-loop output admittance for multi-current-feedback active damping scheme in CCR
(blue line), CVR (black dotted line) and at MPP (black dashed line).

Similarly to the capacitor-current-based active damping, the duty ratio can be ex-

pressed as

d̂ = Gdel

(
ĉ−GADîL1

)
, (3.26)
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3.3. Open-loop dynamics in case of single-current-feedback scheme

Fig. 3.7: Closed-loop control block diagram of a grid-connected converter with single-current-
feedback active damping.

which is substituted into the open-loop dynamics presented in (2.63). Thus, the active-

damping-affected duty ratio can be given by following the same procedure as in previous

section yielding

d̂ = [I + GdelGADGcL]
−1

Gdel

(
ĉ−GADGioLîin −GADGoLûo

)
. (3.27)

The transfer function representing the input dynamics can be given as follows.

ZAD
in = Zin + Gci[I + GdelGADGcL]

−1
Gdel [−GADGioL] , (3.28)

TAD
oi = Toi + Gci [I + GdelGADGcL]

−1
Gdel [−GADGoL] , (3.29)

GAD
ci = Gci[I + GdelGADGcL]

−1
Gdel, (3.30)

where ZAD
in , TAD

oi and GAD
ci are the matrices for input impedance, transmittance and

control-to-input-voltage transfer functions, respectively.

Additionally, the input-current-to-inductor-current transfer function, output-voltage-

to-inductor-current transfer function and the control-to-inductor-current transfer func-
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Chapter 3. Active-damping-affected closed-loop model

tions can be given as in (3.31)-(3.33), respectively.

GAD
ioL = GioL + GcL[I + GdelGADGcL]

−1
Gdel [−GADGioL] (3.31)

GAD
oL = GoL + GcL[I + GdelGADGcL]

−1
Gdel [−GADGoL] (3.32)

GAD
cL = GcL[I + GdelGADGcL]

−1
Gdel (3.33)

Furthermore, the output dynamics can be given by

GAD
io = Gio + Gco[I + GdelGADGcL]

−1
Gdel [−GADGioL] , (3.34)

YAD
o = Yo + Gco[I + GdelGADGcL]

−1
Gdel [−GADGoL] , (3.35)

GAD
co = Gco[I + GdelGADGcL]

−1
Gdel. (3.36)

The system delay matrix Gdel and active damping feedback gain matrix GAD are as

given in Section 3.2 (cf. Eqs. 3.24 and 3.25).

According to the analogy presented to the multi-current-feedback active damping, a

feedback loop is formed by the single-current-feedback active damping as it feds back

the system output variable, which in this case is the inverter-side inductor current. The

active frequency ranges of the active damping loop are visible in Fig. 3.8 and its structure

in (3.28)-(3.36). The virtual resistor value was selected similarly to the multi-current-

feedback case as R
d

= 15 Ω. In case of the single-current-feedback scheme, the active-

damping loop gain can be given as LAD = GdelayGADGcL. Clearly, the loop gain lacks

the term Gco present in the multi-current-feedback counterpart, which naturally affects

the shape of the loop gain as shown in Fig. 3.8 for the d and q-components. It is

important to notice that the control gain is also active at the lower frequencies as well

as in vicinity of the filter resonant frequency. Consequently, the inverter-side inductor

acts as a short circuit at lower frequencies allowing the current to flow freely. This, in

turn, translates to substantial current signal in the active damping loop, and the active-

damping-affected transfer functions are modified for a wider frequency range than in case

of the multi-current-feedback scheme.

Similarly as in the previous section, active-damping-affected control-to-inverter-current

and output admittance transfer functions are shown here due to their importance in

the analysis later in this thesis. Figs. 3.9 and 3.10 show frequency responses of the
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3.3. Open-loop dynamics in case of single-current-feedback scheme

Fig. 3.8: Active damping control loop for the d and q-components (solid and dashed lines).

Fig. 3.9: Open-loop control-to-output transfer functions for single-current-feedback active damp-
ing scheme in CCR (blue line), CVR (black dotted line) and at MPP (black dashed line).

corresponding transfer functions, respectively. Comparing Figs. 3.9 and 3.10 to Figs.

3.5 and 3.6, it can be observed that the frequency responses are constant within the

active-damping loop gain. This behavior is caused by the direct control-loop-like struc-

ture of active damping, which induces a constant magnitude in the control-to-inductor-

current transfer function (̂iL1d/d̂d ≈ IL1d/Dd) within its bandwidth. Moreover, the

low-frequency behavior of GAD
cL exhibits similar phase shifting due to the operating-point-

dependent zero as was observed with multi-current-feedback scheme, although, its effect
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Chapter 3. Active-damping-affected closed-loop model

Fig. 3.10: Open-loop output admittance for single-current-feedback active damping scheme in
CCR (blue line), CVR (black dotted line) and at MPP (black dashed line).

is insignificant. The open-loop output admittance, on the other hand, does not change

along the changes in the operating point. However, significantly lower magnitude of the

admittance (or higher impedance) can be observed for single-current-feedback scheme,

which eventually affects the closed-loop characteristics. These observations are analyzed

more in detail in Section 4.2.

3.4 Closed-loop dynamics

Fig. 3.11 presents the active-damping-affected closed-loop block diagram of output-

current and input-voltage dynamics of a grid-connected converter. The models of both

multi and single-current-feedback active damping schemes, derived in previous sections,

act as ’open-loop’ systems for the outer control structures, i.e., for the output current

control and, subsequently, for the input-voltage control. The control loops are designed

according to the obtained active-damping-affected transfer functions in Sections 3.2 and

3.3. The open-loop transfer functions presented hereinafter are active-damping-affected

by default and the superscript ’AD’ is omitted, where applicable, for simplicity.

3.4.1 Output-current control

In a cascaded control scheme, the inner loop has to be designed first, and it should have

high control bandwidth in order to guarantee proper tracking performance. The closed-

loop transfer functions of an output-current-controlled inverter can be solved according

to Fig. 3.11 by considering the output current reference (obtained from the voltage
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3.4. Closed-loop dynamics

(a)

(b)

Fig. 3.11: Closed-loop block-diagram in a matrix form of a) output and b) input dynamics of a
cascade-controlled VSI-based inverter with active damping.

controller) as a new control variable, thus, neglecting the input-voltage loop. The input

voltage dynamics of an output-current-controlled inverter can be given by

ûin = Zout
in îin + Tout

oi ûo + Gout
ci î

ref

L1 (3.37)

where the superscript ‘out’ denotes that only the output-current loops are closed. Trans-

fer functions for the output-current-control-affected input impedance, transmittance and

control-to-input-voltage in (3.37) can be given by

Zout
in = Zin −Gci(I + Lout)

−1
LoutGcL

−1GioL, (3.38)
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Chapter 3. Active-damping-affected closed-loop model

Tout
oi = Toi −Gci(I + Lout)

−1 [
LoutGcL

−1GoL

−LoutGcL
−1IL1GPLL −DGPLL] , (3.39)

Gout
ci = Gci(I + Lout)

−1
LoutGcL

−1, (3.40)

where the output-current loop gain Lout = GccGcL. Matrices D and IL1 are gains for

the steady-state duty-ratio and inductor current as shown in (3.41). The matrix GPLL

contains the PLL transfer functions, which can be expressed as follows [66].

D =

[
0 Dq

0 Dd

]
, IL1 =

[
0 IL1q

0 IL1d

]
(3.41)

GPLL =

[
0 0

0 GPLL

]
, (3.42)

GPLL =
1

Uod

LPLL

1 + LPLL
, (3.43)

LPLL = −GPI−PLL
Uod

s
, (3.44)

GPI−PLL = Kp +
Ki

s
. (3.45)

The matrices of the PI-based current controller Gcc can be given by

Gcc =

[
Gcc−d 0

0 Gcc−q

]
=

[
Kp + Ki

s 0

0 Kp + Ki

s

]
(3.46)

Note that decoupling between the d and q-components in the current control is not uti-

lized and, therefore, the corresponding cross-coupling entries in (3.46) are null-elements.

Respectively, the inverter-side inductor current can be given by
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3.4. Closed-loop dynamics

îL1 = Gout
ioL îin + Gout

oL ûo + Gout
cL û

ref
iL1 (3.47)

where the transfer function matrices are

Gout
ioL = GioL −GcL(I + Lout)

−1
LoutGcL

−1GioL, (3.48)

Gout
oL = GoL −GcL(I + Lout)

−1 [
LoutGcL

−1GoL

−LoutGcL
−1IL1GPLL −DGPLL] , (3.49)

Gout
cL = GcL(I + Lout)

−1
LoutGcL

−1. (3.50)

Furthermore, the grid-current dynamics can be given as follows.

Gout
oL = GoL −Gco(I + Lout)

−1
LoutGcL

−1GioL (3.51)

Yout
o = Yo −Gco(I + Lout)

−1 [
LoutGcL

−1GoL

−LoutGcL
−1IL1GPLL −DGPLL] (3.52)

Gout
co = Gco(I + Lout)

−1
LoutGcL

−1 (3.53)

The output-current control for both d and q-components is designed by shaping the

loop gain Lout. Accordingly, the bandwidth of the loop should be relatively high in order

to obtain good current tracking response and fast dynamics, which are required in grid-

connected applications in order to achieve good power quality. As shown earlier, the loop

is designed according to the active-damping-affected control-to-output transfer function

GcL, which is operating-point dependent [4]. Fig. 3.12 presents the loop gain in CCR,

CVR and at MPP in case of the multi-current-feedback active damping scheme.

As can be seen, the operating-point-dependent RHP-zero is induced at low frequencies

and the corresponding 180 degree phase transition from CCR to CVR and vice versa is

visible. If only the output-current control is used, the low-frequency RHP-zero limits

the current control bandwidth in the CCR, which would yield highly insufficient current

tracking performance. Therefore, the high-bandwidth current control is designed in the

CVR, which is stabilized by the cascaded control structure in the CCR. The operating-

point-dependent zero is, thus, considered only in the input-voltage-control design.
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Fig. 3.12: Output current loop gains for multi-current-feedback active damping scheme in CCR
(blue line), CVR (black solid line) and at MPP (black dashed line).
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Fig. 3.13: Output current loop gains for single-current-feedback active damping scheme in CCR
(blue line), CVR (black solid line) and at MPP (black dashed line).

Regarding the single-current-feedback scheme, Fig. 3.13 shows the current-control

loop gain in case of the corresponding active damping scheme. As can be concluded from

the observations in Section 3.3, the resonant behavior near 100 Hz is absent. Moreover,

the inner active damping loop exhibits constant gain dynamics within its bandwidth

and, therefore, the shape of the output-current loop is determined by the current con-

troller. Accordingly, the characteristics of a pure I-controller (integral) are present since

the phase stays at -90 degrees with the gain decreasing by 20 dB/decade. Consequently,
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3.4. Closed-loop dynamics

higher phase margin can be easily obtained within a wide frequency range, which sim-

plifies the control loop design and reduces risk for oscillation in the current response. In

addition, the operating-point-dependent behavior, visible in the multi-current-feedback

implementation, does not exist.

3.4.2 Input-voltage control

The input-voltage controller regulates the power extracted from the photovoltaic gener-

ator by adjusting the input voltage of the converter (or the output voltage of the PV

generator) according to the MPPT algorithms. This is performed indirectly by control-

ling the d-component of the output current and, therefore, the current flow into the input

capacitor. However, the role of the d-component in the controlling of the maximum power

might be unclear, which is explained next.

The instantaneous power of the DC-link capacitor can be given as PCin = dWCin/dt =

Cin/2·du2
in/dt = Pin−Pout. As Pout = Re{Sout} ≈ uodiod according to the instantaneous

power theory, the inverter-side inductor current iL1d (active-power-producing component)

indirectly controls the power flow into the input capacitor and, therefore, its reference

is determined by the input-voltage controller. Furthermore, since reactive power is not

controlled, the q-component of the inverter-side inductor current does not require an

outer control loop.

Fig. 3.14 shows the closed-loop block diagram of an input-voltage-controlled grid-

connected inverter. Similarly with the output-current-controlled converter in the previous

section, the input-voltage reference is considered as the new control variable. Further-

more, the input-voltage control loop generates the d-component of the inverter-side induc-

tor current reference (i.e., îref
L1d). The output-current-control-affected transfer functions,

derived in the previous section, form the new ’open-loop’ system for the input-voltage

control.

The output-current reference can be presented according to Fig. 3.14b by

î
ref

L1 = GvcGseûin −Gvcû
ref
in , (3.54)

where the vector for input-voltage reference, the voltage sensing gain matrix and voltage

controller matrix can be given by

ûref
in =

[
ûref

in

îref
L1q

]
, (3.55)
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(a)

(b)

Fig. 3.14: Closed-loop block-diagram in a matrix form of a) input and b) output dynamics of a
cascade-controlled VSI-based inverter with active damping.

Gse =

[
Gse 0

0 0

]
=

[
1 0

0 0

]
, (3.56)

Gvc =

[
−Gvc 0

0 1

]
=

[
− (Kp +Ki/s) 0

0 1

]
, (3.57)

respectively. Thus, the input voltage of the output-current-controlled inverter can be

expressed according to Fig. 3.14b by

ûin = Zout
in îin + Tout

oi ûo + Gout
ci î

ref

L1 . (3.58)

By substituting (3.54) into (3.58), the complete closed-loop input voltage dynamics can

be solved as

ûin = (I + Lin)
−1
Zout

in îin + (I + Lin)
−1

Tout
oi ûo − (I + Lin)

−1
Gout

ci Gvcû
ref
in , (3.59)
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3.4. Closed-loop dynamics

where the input-voltage loop gain Lin = Gout
ci GvcGse. Hence, the closed-loop transfer

functions for input-voltage-controlled converter can be presented by

Ztot
in = (I + Lin)

−1
Zout

in , (3.60)

Ttot
oi = (I + Lin)

−1
Tout

oi , (3.61)

Gtot
ci = (I + Lin)

−1
Gout

ci Gvc, (3.62)

where the superscript ’tot’ denotes the complete closed-loop transfer functions. Respec-

tively, the closed-loop dynamics for the inverter-side inductor current can be given as

îL1 = Gtot
ioLîin + Gtot

oL ûo + Gtot
cL û

ref
in , (3.63)

where

Gtot
ioL = Gout

ioL −Gout
cL GvcGse(I + Lin)

−1
Zout

in , (3.64)

Gtot
oL = Gout

oL −Gout
cL GvcGse(I + Lin)

−1
Tout

oi , (3.65)

Gtot
cL = −Gout

cL

[
GvcGse(I + Lin)

−1
Gout

ci Gvc −Gvc

]
. (3.66)

Similarly, the closed-loop transfer functions for the grid current are given as follows.

Gtot
io = Gout

io −Gout
co GvcGse(I + Lin)

−1
Zout

in (3.67)

Ytot
o = Yout

o −Gout
co GvcGse(I + Lin)

−1
Tout

oi (3.68)

Gtot
co = −Gout

co

[
GvcGse(I + Lin)

−1
Gout

ci Gvc −Gvc

]
(3.69)

As discussed earlier, the d-component of the open-loop source-affected control-to-

inductor-current transfer function GcL−d incorporates an RHP-zero when the operating

point is in the CCR. This induces design constraints for the input-voltage control. Corre-

spondingly, analyzing the output-current-control-affected control-to-input transfer func-

57



Chapter 3. Active-damping-affected closed-loop model

tion Gout
ci−d, by neglecting the cross-couplings between the d and q-components, reveals

that

Gout
ci−d ≈

Gci−d

GcL−d

Lout−d

1 + Lout−d
. (3.70)

The input-voltage control loop gain can be, therefore, given as

Lin = GseGvcG
out
ci−d ≈ GseGvcGci−d

1

GcL−d

Lout−d

1 + Lout−d

≈ GseGvcGci−d
1

GcL−d
, (3.71)

when Lout−d/(1 + Lout−d) ≈ 1 inside the output-current-control bandwidth. As can

be seen from (3.71), the control-to-inverter-current transfer function GcL−d is in the

denominator of the input-voltage loop gain Lin. Therefore, the RHP zero, which appears

in the CCR, turns to an RHP pole in the input-voltage control loop. This imposes design

constraints for the input-voltage controller and has to be taken into account in the control

design (i.e., minimum control bandwidth).

Usually, the maximum angular frequency of the pole is in the range of 1-20 Hz, and

can be expressed as [4, 6]

ωpole =
Iin

CinUin
. (3.72)

According to the control engineering principles, the control-loop bandwidth has to exceed

the RHP-pole frequency in order to guarantee stability. Another constraint for the input-

voltage-controller bandwidth comes from the input voltage ripple at 100 Hz caused by

unbalanced grid voltages. The bandwidth of the voltage controller should be designed to

provide enough attenuation at the aforementioned frequency in order to avoid polluting

the output-current reference (i.e., maximum control bandwidth).

The input-voltage-control-loop gains in case of both multi and single-current-feedback

active damping schemes are shown in Figs. 3.15 and 3.16, respectively. As is evident, the

effect of the active damping implementation is negligible on the voltage control dynamics

as it is active at higher frequencies. In the CVR, the photovoltaic generator resembles

an ideal voltage source, unaffected by the changing input current, thus the input voltage

control has very slow dynamics. Conversely, as the operating point shifts to the MPP and

CCR, the ideal current-source-like characteristics appear and higher control bandwidth

is obtained similarly for both operating points.

58



3.5. Root locus analysis

10
0

10
1

10
2

10
3

10
4

−80
−60
−40
−20

0
20
40

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

10
2

10
3

10
4

−360
−270
−180
−90

0
90

180
270
360

P
ha

se
 (

de
g)

Frequency (Hz)

Fig. 3.15: Input voltage loop gains for multi-current-feedback active damping scheme in CCR
(blue line), CVR (black solid line) and at MPP (black dashed line).
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Fig. 3.16: Input voltage loop gains for single-current-feedback active damping scheme in CCR
(blue line), CVR (black solid line) and at MPP (black dashed line).

3.5 Root locus analysis

Optimized active damping feedback design is explicitly shown for GCF converters in [28,

38] with proportional capacitor-current feedback, where a symbolic form of the optimum

active damping feedback gain is proposed. Conversely, the root locus methods have

been popular in case of ICF converters for analyzing the stability with capacitor-current

or voltage-feedback active damping [31, 81, 82, 86], which are based on analysis of a
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particular case and are not generally applicable. Optimum active damping feedback

for ICF converter is proposed in [32], which does not address the effect of the system

delay on the overall performance. Therefore, its validity regarding a real system with a

’worst-case’ delay is questionable.

Accordingly, this section presents the stability analysis regarding the active damping

design. Root-locus methods are often utilized, when determining the system stability

with varying operational parameter, which usually is the controller gain K. The same

methodology can be used also for active damping, where the system roots are drawn

with respect to the varying active-damping gain and, thus, stable ranges for the gain

can be obtained. The root-locus method could be replaced with Bode-plot analysis, but

the former can be considered more convenient in this case as the time-domain behavior

can be predicted. Additionally, root-locus methods are widely used in the literature

regarding the design of active damping [26, 33, 36, 80–82, 86]. The location of the system

roots determines the closed-loop transient response, i.e., the frequency and magnitude of

oscillations as well as the rate of exponential decay. The transient performance of the

current control also correlate with the output impedance characteristics, which is shown

later in Chapter 4.

The stability of the current control is analyzed by investigating the closed-loop transfer

function from the current reference to the output current, which was given in Section 3.4

as

Gout
cL = GAD

cL (I + Lout)
−1

Lout

(
GAD

cL

)−1

. (3.73)

Analyzing Eq. (3.73) instead of only the active damping loop reveals the transient

behavior of the whole current loop. Practically, the performance of active damping

is, thus, simultaneously evaluated, which simplifies the stability analysis of the current

control. Note that only the d-component of (3.73) is analyzed in Sections 3.5.2 and 3.5.3,

because the resonant-frequency behavior between the d and q-components is similar.

3.5.1 Mitigation of delay in active damping feedback

The delay significantly changes the behavior of the active damping feedback, thus af-

fecting the converter stability. In order to improve the system stability characteristics,

high-pass-filtered (HPF) capacitor-current feedback method is proposed for GCF con-

verters in [80], where the HPF is used to mitigate the impact of the delay. Similar

filtered feedback implementations are also analyzed in Sections 3.5.2 and 3.5.3 in order

to improve the performance of active damping.

It was shown in Section 3.1.2 that also the imaginary part in (3.9) changes its sign
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3.5. Root locus analysis

Fig. 3.17: Frequency-dependent behavior of the active damping feedback gain.

depending on the filter resonant frequency. This may not necessarily cause instability but

it can still worsen the performance of the converter. Generally, the frequency-dependent

behavior of active damping gain can be depicted as shown in Fig. 3.17. The real part is

positive when fres < fs/6 whereas the imaginary part is negative. Therefore, the effect of

the imaginary part is reduced by inducing phase boost on the feedback signal. However,

the real and imaginary parts have same signs when fs/6 < fres < fs/3. This does not

necessarily cause instability since the sign of the virtual resistor Rd can be changed.

However, the HPF cannot improve the system performance when fres > fs/6 since it

induces phase boost. To eliminate the effect of the imaginary part, a low-pass filter

(LPF) must be implemented in order to induce phase lag around the resonant frequency.

Correspondingly, by further increasing the resonant frequency to fs/3 < fres < fs/2,

where fs/2 is the Nyquist frequency, the real and imaginary parts have again the op-

posite signs. As a positive real part is required for active damping, the imaginary part

becomes negative after the feedback inversion. Therefore, active damping characteristics

are similar as in the case of fres < fs/6 and the HPF should be used to induce phase

boost in order to negate the effect of the imaginary part.

Considering the high and low-pass filters, the HPF can be presented in the s-domain

as GHPF = s/(s + ωcutoff) where ωcutoff is the desired cutoff frequency. The active

damping gain in (3.25) is multiplied by the corresponding transfer function, thus, the

virtual resistor value is used to adjust the gain of the HPF. Similarly, a low-pass filter

can be presented in the s-domain as GLPF = ωcutoff/(s + ωcutoff), where ωcutoff is the

desired cutoff frequency. Due to the lack of explicit design rules regarding the HPF or

LPF for ICF converters, the root locus diagrams in Sections 3.5.2 and 3.5.3 represent

only the most optimized cases for corresponding filtered feedback implementations.
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(a) (b)

Fig. 3.18: Root locus of (a) proportional active damping and (b) high-pass-filtered active damping
when fres < fs/6.

3.5.2 Multi-current-feedback active damping scheme

Case: fres < fs/6

Inverter with ICF control is naturally stable, due to inherent damping characteristics

[32, 34], if the resonant frequency is less than fs/6. Therefore, guaranteeing stability is

quite straightforward and theoretically the active damping gain can be set to Rd = 0 Ω.

This can be seen from Fig. 3.18a, which shows the root locus of (3.73) for proportional

capacitor-current-feedback active damping. As evident, the poles lie in the LHP with

Rd = 0 Ω indicating inherent stability. By increasing the virtual resistor value, the poles

shift first deeper in to the LHP and, thus, the converter exhibits more damped response

with less oscillations. The maximum frequency for roots can be obtained with Rd = 14 Ω

yielding a frequency of ωMAX ≈ 2500rad/s. Eventually, the root trajectory circles back

to the RHP and crosses the imaginary-axis when Rd = 29 Ω, which is the maximum

allowed virtual resistor value in this case.

Considering the high-pass filter, similar design rules as in [80] are adopted here. First,

the converter cutoff-frequency must be set properly in order to provide necessary phase

boost required by the active damping feedback. Here, the HPF cutoff frequency is set

at the resonant frequency as ωcutoff = ωres. Clearly, the HPF in Fig. 3.18b improves

the system stability as the poles are first moved deep into the LHP and closer to the

x-axis, when compared to the case with proportional capacitor-current feedback and,

therefore, this decreases the oscillations and increases the speed of transient decay. The

maximum frequency of the poles is obtained with Rd = 13 Ω as ωMAX ≈ 5000rad/s.

However, instability may still occur with higher virtual resistor values as the roots move
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(a) (b)

Fig. 3.19: Root locus of (a) proportional active damping and (b) high-pass-filtered active damping
when fs/6 < fres < fs/3, ωHPF = ωres.

(a) (b)

Fig. 3.20: Root locus of (a) high-pass-filtered active damping and (b) low-pass-filtered active
damping when fs/6 < fres < fs/3, ωHPF = 0.2ωres, ωLPF = 2ωres.

back into the RHP at Rd = 51 Ω. Comparing Figs. 3.18a and 3.18b, it is evident that

the filtered feedback technique provides better current response (i.e., faster response with

less oscillations).

Case: fres > fs/6

Regarding the stability of the converter, decreasing the sampling frequency will sig-

nificantly affect the design of stable control system. When operating at frequencies

fres > fs/6, the converter is no longer inherently stable and active damping must be

used to ensure stable operation [34]. Similarly as for fres < fs/6, first the proportional
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(a) (b)

Fig. 3.21: Root locus of (a) proportional active damping and (b) high-pass-filtered active damping
when fs/3 < fres < fs/2, ωHPF = 0.5ωres.

active damping feedback is analyzed when fs/6 < fres < fs/3 in Fig. 3.19a. Evidently,

using Rd = 0 Ω causes unstable inverter dynamics, since the poles are located in the

RHP, conversely to the case when fres < fs/6. However, similar parabolic root locus

can be seen comparing to the case with fres < fs/6 (cf. Figs. 3.18a and 3.18b). Ac-

cordingly, first the roots move deeper into the LHP, which indicates improved stability

margins. The maximum frequency of the roots is obtained when Rd = −12 Ω yielding

ωMAX ≈ 2200rad/s. Similarly, the roots move back into the RHP, when the virtual

resistor value is increased to Rd = −28 Ω.

As discussed earlier, the high-pass filter provides improved stability characteristics

when fres < fs/6. However, when fs/6 < fres < fs/3, the HPF will worsen the stability

characteristics, which is demonstrated in Fig. 3.19b, where the cutoff frequency was

chosen similarly as in the case for fres < fs/6, i.e., ω = ωres. Evidently, the HPF

causes the roots to stay in the RHP at least with the used parameters, which indicates

highly impaired stability margins. By lowering the HPF cutoff frequency from ω = ωres

to ω = 0.2ωres the stability can be recovered as shown in Fig. 3.20a. However, the

root trajectory is inferior compared to its proportional feedback counterpart shown in

Fig. 3.19a as the optimum root location is obtained with Rd = −6 Ω yielding ωMAX ≈
200rad/s. Maximum virtual resistor value can be observed to be around Rd = −15 Ω.

To overcome the aforementioned stability problems, a low-pass filter must be imple-

mented to reduce the effect of the delay-imposed imaginary part of the active damping

feedback and to improve system stability. This case is shown in Fig. 3.20b, where the

LPF cutoff-frequency was chosen as ω = 2ωres. Clearly, the system poles move deeper

into the LHP compared to the case in Fig. 3.19a, which indicates fast and well-damped
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step response of the current control. Accordingly, the most optimal properties regarding

the stability are obtained when Rd = −15 Ω yielding ωMAX ≈ 3500rad/s. Thus, the

converter exhibits improved current-control response compared to the proportional ac-

tive damping feedback and, therefore, the utilization of the low-pass filter is justified for

fs/6 < fres < fs/3.

The last distinct resonant frequency region is restricted only by the Nyquist frequency

as fs/3 < fres < fs/2, where the converter is still naturally unstable without the active

damping, since the roots are located in the RHP when R
d

= 0 Ω. However, the imaginary

part changes its sign from the previous case in this region and active damping feedback

dynamics resemble the case of fres < fs/6. Fig. 3.21a shows the root trajectory in case

of proportional active damping feedback when fs/3 < fres < fs/2. The optimal value

for the virtual resistor is Rd = −12 Ω yielding ωMAX ≈ 1500rad/s. Maximum value

is limited to Rd = −21 Ω. Moreover, the effect of the HPF is shown in Fig. 3.21b

with the HPF cutoff-frequency of ω = 0.5ωres. Clearly, the roots are moved deeper into

the LHP and the optimum current-controller response is obtained with Rd = −12 Ω,

ωMAX ≈ 2300rad/s, which is significantly better than with the proportional feedback

and, therefore, its necessity can be justified.

As a conclusion, it is important to acknowledge the overall effect of the delay on

the system stability. Accordingly, active damping design must be performed carefully,

especially with higher fres/fs-ratios. Furthermore, in order to eliminate the effect of

the system delay on the active damping performance, the selection of capacitor current

filtering method is essential. That is, a HPF should be utilized when fres < fs/6 and

fs/3 < fres < fs/2. Moreover, a LPF is necessary for improved robustness when fs/6 <

fres < fs/3.

3.5.3 Single-current-feedback active damping scheme

Design constraints on single-current-feedback scheme

As discussed earlier, the frequency region fres > fs/6 can be divided into two distinct

parts, similar to the multi-current feedback system, as the frequency-dependent behavior

of the delay does not change. Accordingly, fs/6 < fres < fs/3 and fs/3 < fres < fs/2

can be identified. However, the active damping loop changes the single-current-feedback

scheme profoundly, and the same design rules do not apply as for the multi-current

counterpart.

Regarding the available literature on the design constraints, it has been observed in

case of GCF converters that the system stability is difficult to achieve when fs/3 < fres <

fs/2 due to unavoidable nonminimum-phase characteristics [36]. In fact, fres < 0.28fs

has been found to be practical upper limit to the resonant frequency as the HPF imple-

mentation inside the control system becomes inaccurate due to the noise amplification
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and sampling errors. This lowers the achievable operating range to fs/6 < fres < 0.28fs.

Similar restrictions can be found for ICF converter, which are analyzed through the

frequency-domain behavior of the active damping loop.

According to Figs. 3.3 and 3.7, the active damping loops for multi and single-current-

feedback schemes can be given by

Lmulti
AD−d = GdelayGAD(GcL−d −Gco−d)

Lmulti
AD−q = GdelayGAD(GcL−q −Gco−q)

, (3.74)

Lsingle
AD−d = GdelayGADGcL−d

Lsingle
AD−q = GdelayGADGcL−q

, (3.75)

respectively. Since the d and q-components in both open-loop GcL and Gco are practically

identical with each other at high frequencies, only the d-component is considered here

for simplicity. Fig. 3.22 shows the comparison of the active damping loop of multi and

single-current-feedback schemes. Additionally, for a single-current scheme, both negative

and positive damping gains (i.e., inverted and non-inverted) are presented. As discussed

in the previous section in case of multi-current-feedback scheme, the active damping

gain must be inverted to negative when the critical frequency (fres = fs/6) is exceeded.

However, in case of single-current-feedback scheme, this logic does not hold anymore.

The active damping loop under single-current-feedback system may pose instability

problems due to its phase behavior, and the instability is partially caused by the sign

of the active damping gain. Accordingly, it is evident from Fig. 3.22 that the phase

crosses over −180 degrees when |Lsingle
AD | ≥ 1 if a negative virtual resistor value is used.

This differs from the multi-current-feedback counterpart, where a negative value would

be used for active damping gain when fres > fs/6. Aforementioned phase crossing at

the middle frequencies can be overcome by using a positive active damping gain, but the

loop is still prone to instability due to the low phase margin in vicinity of the LCL-filter

resonant frequency.

In order to decrease the gain at the mid frequencies and increase the phase at the

higher frequencies, a high-pass filter is utilized. Ideally, a 90 degree phase boost could

be obtained with a pure derivative gain ‘s’. However, high-frequency noise would be

excessively amplified and, moreover, the realization of such ideal derivative element is

difficult. Instead, a high-pass filter, which can be implemented in digital controllers

quite easily, is used to produce the desired phase boost for a certain frequency range.

Accordingly, the filter cutoff frequency must be higher than the resonant frequency as

the phase boost is required for higher frequencies.
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3.5. Root locus analysis

Fig. 3.22: Active damping loop gains for capacitor-current feedback with Rd ≤ 0 Ω (solid black
line), inverter-current feedback with Rd ≥ 0 Ω (blue dashed line) and inverter-current feedback
with Rd ≤ 0 Ω (red dashed line). Note that the magnitude plots for inverter current feedback
active damping overlap each other. Phase crossing over −180o is denoted with a vertical dashed
line.

Fig. 3.23: Active damping loop gains for capacitor-current feedback (solid black line), inverter-
current feedback with Rd ≥ 0 Ω (blue dashed line) and high-pass-filtered inverter-current feedback
with Rd ≥ 0 Ω (black dash-dotted line).

Figs. 3.23 and 3.24 show the proportional and high-pass-filtered active damping

loop gains in case of single-current-feedback schemes as well as the proportional multi-

current-feedback counterpart. As evident in Fig. 3.24, if the HPF is not utilized, the

active damping loop exhibits two -180 degree crossings to the same direction (i.e., two
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Fig. 3.24: Enlarged depiction of the resonant frequency behavior in Fig. 3.23. Phase crossings
over −180 degrees are denoted with red vertical dashed lines, fres > fs/6.

Fig. 3.25: Active damping loop gains for single-current-feedback schemes: HPF AD fs/6 < fres <
fs/3 (solid blue line), HPF AD fs/3 < fres < fs/2 (solid red line) and proportional AD (dashed
black line). Note that the red line overlaps with the blue line in the upper figure.

Nyquist plot encirclements around (-1,0)) with |Lsingle
AD | ≥ 1 indicating unstable dynamics.

However, the high-pass filter increases the phase sufficiently and the stability can be,

therefore, guaranteed. Furthermore, the HPF prevents the low-frequency harmonics

from passing through the active damping loop and, therefore, the high-pass-filtered gain

exhibits highly attenuated low-frequency behavior and resembles the capacitor-current-

feedback active damping.

Considering the frequency region of fs/3 < fres < fs/2 in case of the single-current-

feedback scheme, stability is hardly achieved. Fig. 3.25 presents comparison between the
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active damping loops when fs/3 < fres < fs/2 and fs/6 < fres < fs/3. Accordingly, the

sampling frequency is set exactly at fres = fs/3→ fs = 3fres. Clearly, the phase crosses

−180 degrees when |Lsingle
AD | ≥ 1 even with the phase boost induced by the HPF. Thus,

the observation agrees with the results proposed in [36] for GCF converters.

In conclusion, a high-pass filter must be used for single-current-feedback active damp-

ing when operating under fres > fs/6. Moreover, the limit for the minimum sampling

frequency can be given as fs ≈ 3fres, which is the same result as obtained for GCF

converters. Therefore, the same active damping design logic seems to apply for both

single-current-feedback ICF and GCF converters with active damping.

Case: fres < fs/6

Fig. 3.26a presents the root locus for proportional active damping in single-current-

feedback scheme. Regarding the resonant frequency region, active damping is not neces-

sarily required for stability, and the converter can operate with Rd = 0 Ω, which would

still lead to highly oscillatory as well as long transient response due to minimal stability

margins. By increasing the virtual resistor value, the stability margins can be improved

and the optimal damping is obtained when Rd = 23 Ω yielding ωMAX ≈ 2200rad/s.

The root locus crosses the imaginary-axis into the RHP when Rd = 41 Ω, which is the

maximum value for virtual resistor in this case.

(a) (b)

Fig. 3.26: Root locus of (a) proportional active damping and (b) high-pass-filtered active damping
when fres < fs/6, ωHPF = ωres.

As the frequency region of fres < fs/6 is considered, a high-pass filter should improve

the stability characteristics of active damping. Root locus for the corresponding case is

shown in Fig. 3.26b. Inherent stability is obtained similarly to the proportional feedback

case, but the root locus is inferior. More accurately, the roots do not move far from the

69



Chapter 3. Active-damping-affected closed-loop model

(a) (b)

Fig. 3.27: Root locus of high-pass-filtered active damping when (a) high cutoff frequency and (b)
low cutoff-frequency is used, fs/6 < fres < 0.28fs, ωHPF-high = 3.5ωres, ωHPF-low = 1.5ωres.

imaginary axis, and the poles with the lowest frequency are at the maximum distance from

the imaginary axis when Rd = 27 Ω yielding ωMAX ≈ 2000rad/s. Clearly, the high-pass

filter does not improve the system response as it does in the multi-current scheme under

the same conditions. However, the gain can be adjusted for a wider range as the maximum

virtual resistor value is Rd = 66 Ω. This behavior can be explained by analyzing Figs.

3.24 and 3.25, which show that the high-pass filter slightly decreases the gain at the

resonant frequency compared to the proportional feedback counterpart. Furthermore,

the gain margin is quite low as the phase crosses −180 degrees immediately after the

resonant peaks. Therefore, the effect of the active damping feedback on the resonance

attenuation is decreased, which is observed as inferior root locus. Later in Section 4, it

is shown that this root locus behavior affects significantly the output impedance at the

resonant frequency.

Case: fres > fs/6

As discussed earlier, only filtered feedback methods for active damping suffice for analysis

when fres > fs/6 due to the persistent unstable characteristics. Moreover, the sampling

frequency is restricted as fs/6 < fres < fs/3. For comparison, two cases with different

high-pass filter cutoff frequencies are shown in Figs. 3.27a and 3.27b. In the former, high-

pass filter is designed to introduce sufficient phase boost at the resonant frequency and,

therefore, the converter is stable. Considering the root locus, slightly inferior dynamics

can be observed (cf. Figs. 3.26a and 3.26b) as the maximum distance of the system roots

from the imaginary axis are obtained with Rd = 56 Ω yielding ωMAX ≈ 200rad/s, which

indicates rather slow current response and the system being close to marginal stability.
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As evident from Fig. 3.27b, the high-pass filter with low cutoff-frequency yields

unstable converter dynamics due to insufficient phase boost by the HPF, which was shown

in Fig. 3.24. It can be, therefore, concluded that single-current-feedback ICF converter

should be operated in the resonant frequency region of fres < fs/6 for improved stability.

Furthermore, the active damping design when operating under fres > fs/6 should be

performed carefully since the converter is highly susceptible to instability. Especially,

optimizing the HPF design and the active damping gain is essential.
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4 OUTPUT IMPEDANCE WITH ACTIVE DAMPING

This chapter presents the output-impedance-properties of a three-phase grid-connected

inverter with active damping. The relation between the shape of the output impedance

and the active damping design is elaborated according to the observations regarding the

root-locus analysis in Sections 3.5.2 and 3.5.3. Furthermore, a comprehensive comparison

between the multi and single-current-feedback active damping schemes considering the

output impedance is presented.

4.1 Output impedance analysis

Regarding the output-impedance analysis, some practical matters are addressed next for

clarification. The output impedance (i.e., 1/Yo) is analyzed in this section as it is more

comprehensible regarding the impedance-based stability evaluation. However, the output

admittance is analyzed considering the active-damping-affected open-loop characteristics

in Section 4.2.

The effect of active damping on the output impedance is visible at frequencies higher

than the current-controller bandwidth due to lack of control gain in the current loop.

Accordingly, the most interesting properties of the impedance are concentrated in vicin-

ity of the resonant frequency and, therefore, the frequency-domain impedance plots are

presented only from 100 Hz upwards. It should be also noted that only the d-component

is analyzed, since the mid-to-high-frequency characteristics (>100 Hz) between the d and

q-components are nearly identical as shown later in Chapter 5.

4.1.1 Multi-current feedback scheme

Case: fres < fs/6

Fig. 4.1 shows the d-component of the output impedance with proportional capacitor-

current feedback. Accordingly, Rd values of [5, 15, 27] Ω are chosen for the analysis as

they represent the important points in the corresponding root locus in Fig. 3.18a, i.e.,

the minimum and maximum distances from the real and imaginary axes. Fig. 4.1 shows

that the shape of the impedance in vicinity of the resonant frequency varies as the virtual

resistor value is modified. First, by increasing the virtual resistor from Rd = 5 Ω (solid

line) to Rd = 15 Ω (dashed line) the magnitude of the impedance in vicinity of the
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Fig. 4.1: Predicted d-component of the output impedance with proportional AD, Rd= 5 Ω (solid
line), Rd= 15 Ω (dashed line) and Rd= 27 Ω (dash-dotted line).

resonant frequency increases from 4 dB to its highest value at 8 dB. Regarding the root

locus, when Rd = 5Ω → 15Ω, the system roots move farther from the imaginary axis

yielding faster current control response. The output impedance is impaired and decreases

below 0 dB if the active-damping-feedback gain is set to Rd = 27 Ω, which is close to

the maximum limit as shown in Fig. 3.18a. Moreover, the output impedance loses its

passive characteristics, i.e., the phase θ /∈ [−90o...90o].

To decrease the effect of the imaginary part of the active-damping feedback, a high-

pass filter is inserted in the active-damping loop in order to provide the necessary phase

boost. Fig. 4.2 shows an identical case to Fig. 4.1 regarding the virtual-resistor val-

ues. The HPF cutoff frequency was chosen as ωcutoff = ωres complying with the design

rules proposed in [80]. Clearly, the output-impedance magnitude in vicinity of the res-

onant frequency is significantly increased compared to the case with pure proportional

capacitor-current feedback. The highest magnitude of 15 dB is obtained with Rd= 15

Ω. Correspondingly, the root locus in Fig. 3.18b was also observed to exhibit improved

properties as the poles move farther from the imaginary axis (cf. Fig. 3.18a). As an

outcome of the higher impedance magnitude, grid-voltage harmonics are mitigated more

effectively and the grid-current response would be improved. In addition, the phase of

the output impedance is passive even with larger virtual resistor values, which decreases

the possibility for impedance-based instability.
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Fig. 4.2: Predicted d-component of the output impedance with HPF AD, Rd= 5 Ω (solid line),
Rd= 15 Ω (dashed line) and Rd= 27 Ω (dash-dotted line), ωcutoff = ωres.

Case: fres > fs/6

Fig. 4.3 shows the output impedance using proportional AD feedback with Rd =

[−5,−10,−20] Ω, where the resonant frequency is set as fs/6 < fres < fs/3. The

sign of the active-damping-feedback gain is changed as required by the operating condi-

tions. Considering Fig. 4.3, the magnitude of the impedance in vicinity of the resonant

frequency changes similarly as in Fig. 4.1 for fres < fs/6. That is, the magnitude is

first increased from 0 dB to its maximum value at 10 dB as the virtual resistor value is

decreased from Rd = −5 Ω to Rd = −10 Ω, respectively. Furthermore, the magnitude

decreases as the virtual resistor value is further decreased to Rd = −20 Ω. As can be

observed, the output impedance is not passive and, therefore, the possibility for high-

frequency impedance-based interactions is evident [50]. In fact, this active-type behavior

is an inherent property of the output impedance when fres > fs/6, which is explained in

detail in Section 4.2.

Considering the frequency region of fs/6 < fres < fs/3, a high-pass filter in the AD

feedback loop impairs the stability characteristics as predicted by the root locus in Fig.

3.19b. This also yields inferior output impedance characteristics as shown in Fig. 4.4,

where ωcutoff = 0.5ωres and Rd = [−5,−10,−20] Ω. Comparing Figs. 4.3 and 4.4, it is

evident that the HPF impairs the output impedance in vicinity of the resonant frequency

as the magnitude in Fig. 4.4 remains below 0 dB with all virtual resistor values and,

therefore, voltage harmonics can easily affect the grid current.

Conversely, low-pass filtering the capacitor current yields a considerable improvement

in the impedance characteristics, which is in agreement with the observations regarding
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Fig. 4.3: Predicted d-component of the output impedance with prop. AD, Rd= -5 Ω (solid line),
Rd= -10 Ω (dashed line) and Rd= -14 Ω (dash-dotted line), ωcutoff = ωres.

Fig. 4.4: Predicted d-component of the output impedance with HPF AD, Rd= -5 Ω (solid line),
Rd= -10 Ω (dashed line) and Rd= -14 Ω (dash-dotted line), ωcutoff = ωres.

the root-locus analysis in Fig. 3.20b. Fig. 4.5 shows the output impedance with Rd =

[−5,−10,−20] Ω and ωcutoff = 2ωres. Clearly, the impedance magnitude in vicinity of the

resonant frequency is considerably higher compared with the HPF AD case shown in Fig.

4.4 and slightly higher compared with the case of pure proportional AD feedback shown

in Fig. 4.3. The highest impedance magnitude with LPF AD can be obtained by selecting

Rd= -15 Ω as indicated by the corresponding root trajectory (cf. Fig. 3.20b). Moreover,

the output impedance is passive with small virtual-resistor values and, therefore, the risk
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Fig. 4.5: Predicted d-component of the output impedance with LPF AD, Rd= -5 Ω (solid line),
Rd= -10 Ω (dashed line) and Rd= -20 Ω (dash-dotted line), ωcutoff = ωres.

Fig. 4.6: Predicted d-component of the output impedance with prop. AD, Rd= -5 Ω (solid line),
Rd= -15 Ω (dashed line) and Rd= -25 Ω (dash-dotted line).

for impedance-based instability is negligible in that case. However, small virtual-resistor

value causes relatively low impedance magnitude in vicinity of the resonant frequency,

which indicates poor robustness against the grid-voltage harmonics.

By further changing the sampling frequency as fs/3 < fres < fs/2, the active damping

implementation must be again changed in order to achieve improved performance. Fig.

4.6 shows the output impedance with pure proportional active-damping feedback, where

Rd = [−5,−15,−25] Ω. The overall magnitude is low, which can be slightly improved

77



Chapter 4. Output impedance with active damping

Fig. 4.7: Predicted d-component of the output impedance with HPF AD, Rd= -5 Ω (solid line),
Rd= -15 Ω (dashed line) and Rd= -25 Ω (dash-dotted line), ωcutoff = ωres.

by selecting the active damping feedback gain properly. As discussed in Section 3.5, the

HPF with the present sampling frequency induces improved current-control properties

as is evident in the root locus in Fig. 3.21b. This yields higher impedance magnitude in

vicinity of the resonant frequency as is shown in Fig. 4.7 with Rd = [−5,−15,−25] Ω.

Accordingly, the magnitude of the output impedance can be increased from 1 dB to over

10 dB, which is a significant improvement, and has positive effect on robustness of the

converter against grid background voltage harmonics.

By considering the aforementioned impedance analysis in case of the multi-current-

feedback scheme, it can be concluded that the HPF is not needed when fs/6 < fres < fs/3,

and should it be omitted considering the output impedance magnitude as well as the

overall converter stability. Instead, a low-pass filter in the capacitor-current feedback

should be used to increase the magnitude of the output impedance near the resonant

frequency and to improve converter stability. Conversely, the HPF is recommended

regarding the overall stability and the output impedance characteristics when fres < fs/6

and fs/3 < fres < fs/2. Regarding the relation between the root locus analysis and the

shape of the output impedance, it is worth noting that the root locus may suffice in order

to design the output impedance with high magnitude in vicinity of the resonant frequency.

However, the phase behavior cannot be concluded from such loci and, therefore, pure root-

locus design does not guarantee stable operation as the impedance-based interactions are

based also on the phase behavior.
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4.1.2 Single-current-feedback scheme

As discussed in Section 3.5.3, the single-current-feedback scheme exhibits inherent con-

straints for the control system design, which, in turn, limits the analysis of the output

impedance for resonant frequency regions of fres < fs/6 and fs/6 < fres < fs/3. In the

naturally stable frequency region, both proportional and HPF active damping feedback

schemes are analyzed. Conversely, for fres > fs/6, only the HPF feedback scheme is

evaluated.

Case: fres < fs/6

Fig. 4.8 shows the output impedance with proportional active damping feedback using

virtual resistor values of Rd = [−10,−20,−30] Ω. As can be observed, the behavior

of the impedance magnitude is similar to the multi-current-feedback scheme due to the

parabolic root locus (cf. Fig. 3.26a), which induces corresponding behavior on the

output impedance. Accordingly, the magnitude is at highest, when the root trajectory is

farthest from the imaginary axis as shown in Fig. 3.26a with Rd = −21 Ω. However, the

magnitude from 100 Hz to 1 kHz is increased compared to its multi-current-feedback-

scheme counterpart shown in Fig. 4.1. The impedance exhibits also a phase flip over 180

degrees at lower frequencies, when a small active damping gain is used, which indicates

a positive real part and non-passivity of the impedance, i.e., Re{Zo} ≥ 0.

Regarding the magnitude increase when 100 < f < 1000 Hz, it is related to the

active-damping-affected open-loop dynamics, which are more elaborated in Section 4.2.

The low-frequency phase flip, in turn, was observed to be related to the design of the

input-voltage control. More precisely, the input-voltage-control loop should contain a

high phase margin in order to avoid the low-frequency phase flip. However, the input-

control optimization regarding the aforementioned phenomenon is not included in this

thesis, although it affects the impedance-based behavior of the converter and should be

addressed in the future research. A simple method to overcome the active-type impedance

in this case is by the filtering the active-damping feedback, which maintains the passive

output-impedance characteristics.

Fig. 4.9 shows the output impedance affected by the HPF active-damping method

with Rd = [−10,−20,−30] Ω and ωcutoff = ωres. It can be observed that the phase of

the impedance is passive, and the low-frequency phase flip shown in Fig. 4.8 is absent.

However, the output impedance magnitude in vicinity of the resonant frequency can be

considered slightly inferior or equivalent compared to the case with pure proportional

active-damping feedback, which is in accordance with the root-locus analysis shown in

Figs. 3.26a and 3.26b. Furthermore, the magnitude increase in the range of 100-1000 Hz

observed in the pure proportional active-damping scheme is absent, because the charac-
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Chapter 4. Output impedance with active damping

Fig. 4.8: Predicted d-component of the output impedance with proportional AD, Rd= -10 Ω (solid
line), Rd= -20 Ω (dashed line) and Rd= -30 Ω (dash-dotted line).

Fig. 4.9: Predicted d-component of the output impedance with HPF AD, Rd= -10 Ω (solid line),
Rd= -20 Ω (dashed line) and Rd= -30 Ω (dash-dotted line), ωcutoff = ωres.

teristics resemble the capacitor-current-feedback active damping as discussed in Section

3.5.3.

Case: fres > fs/6

Only the filtered active-damping-feedback implementation provides stable dynamics,

when fres > fs/6 in case of the single-current-feedback scheme. Accordingly, Fig. 4.10
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Fig. 4.10: Predicted d-component of the output impedance with HPF AD, Rd= 20 Ω (solid line),
Rd= 40 Ω (dashed line) and Rd= 60 Ω (dash-dotted line), ωcutoff = 3.5ωres.

shows the output impedance with incrementing virtual resistor value as Rd = [20, 40, 60]

Ω. The high-pass-filter cutoff frequency was set at relatively high frequency (ωcutoff =

3.5ωres) in order to provide the necessary phase boost at the resonant frequency. Evi-

dently, the shape of the impedance resembles the case shown in Fig. 4.9 for fres < fs/6.

Regarding the root locus shown in Fig. 3.27a, it is hard to obtain high output impedance

in this case as the roots stay in the vicinity of the imaginary axis. The highest magnitude

is obtained by setting the virtual resistor value between 50-60, which subsequently yields

an impedance magnitude of around 5 dB. Moreover, the output impedance is passive,

which is contrary to the multi-current-feedback scheme operating under fres > fs/6. The

explanation for the aforementioned behavior is given in the following section.

4.2 Comparison of single and multi-current-feedback schemes

Considering the analysis in the previous sections, the multi and single-current-feedback

active-damping schemes exhibit different output admittance properties, yet the causes

might not be clear. For example, the single-current-feedback scheme has lower admit-

tance below the resonant frequency. When the HPF is utilized, it resembles the behavior

of the multi-current-feedback active damping scheme. Moreover, the admittance remains

passive in case of the single-current-feedback implementation when fres > fs/6. Ac-

cordingly, this section discusses the matter by analyzing the detailed effect of the active

damping on specific system transfer functions in order to clarify the observed properties

such as:
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• The differences in the low-frequency (100-1000 Hz) magnitude of the output ad-

mittance between the single and multi-current-feedback schemes.

• The non-passivity of the output admittance in case of the multi-current-feedback

active damping implementation inside the frequency region of 500 < f < 2000 Hz.

4.2.1 Magnitude of output admittance

The active-damping feedback modifies the corresponding open-loop transfer functions

inside its control bandwidth as discussed in Sections 3.2 and 3.3. Therefore, in the multi-

current-feedback scheme, the transfer functions are modified in vicinity of the resonant

frequency, and the single-current-feedback scheme modifies the transfer functions also

at medium frequencies. Accordingly, Eqs. (4.1) and (4.2) present the active-damping-

affected output admittances (cf. Eqs. 3.22 and 3.35) as

Y AD−multi
o−d = Yo−d −

GdelayGADGco−d (GoL−d − Yo−d)

1 +GdelayGAD (GcL−d −Gco−d)

= Yo−d −
Lmulti

AD−d

1 + Lmulti
AD−d

Gco−d (GoL−d − Yo−d)

GcL−d −Gco−d

= Yo−d −Gmulti
mod−d,

(4.1)

for the multi-current scheme, and

Y AD−single
o−d = Yo−d −

GdelayGADGco−dGoL−d

1 +GdelayGADGcL−d

= Yo−d −
Lsingle

AD−d

1 + Lsingle
AD−d

Gco−dGoL−d

GcL−d

= Yo−d −Gsingle
mod−d,

(4.2)

for the single-current-feedback scheme. Note that L
multi/single
AD−d /(1 + L

multi/single
AD−d ) ≈ 1

within the active-damping-loop bandwidth, where the active-damping-affected multi and

single-current-feedback scheme output admittances are changed by the corresponding

modifier terms, i.e., Gco−d (GoL−d − Yo−d)/(GcL−d −Gco−d) and Gco−dGoL−d/GcL−d,

respectively.

Figs. 4.11 and 4.12 illustrate the frequency-domain behavior of different components

in (4.1) and (4.2), respectively. The open-loop output admittance is the same with both

multi and single-current-feedback active damping schemes. However, the modifier part

G
multi/single
mod−d changes significantly, which yields different active-damping-affected open-

loop characteristics of the output admittances.
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4.2. Comparison of single and multi-current-feedback schemes

Considering the multi-current-feedback active damping scheme, in order to prop-

erly damp the resonance and induce deviations to the nominal open-loop dynamics,

|Gmulti
mod−d| ≈ |Yo−d| and θ1 − θ2 ≈ 180o. In Fig. 4.11 the modifier magnitude is relatively

small compared to the open-loop output admittance (|Gmulti
mod−d| � |Yo−d|) when f < 1000

Hz and, therefore, the active-damping-affected output admittance exhibits similar char-

acteristics with the nominal open-loop output admittance. However, |Gmulti
mod−d| ≈ |Yo−d|

when 600 < f < 3000 Hz, which induces the damping effect seen in the active-damping-

affected output admittance

The single-current-feedback scheme, on the other hand, imposes quite different char-

acteristics on the output admittance. As evident from Fig. 4.12, the behavior of the mod-

ifier part is different from the multi-current-feedback counterpart. This can be explained

by considering the modifier term in (4.2) and the control-loop-like structure discussed in

Section 3.3. Accordingly, the active-damping loop has high gain also at lower frequen-

cies, which changes the modifier term in (4.2). The nominal open-loop output admittance

and the modifier have nearly the same gain, i.e., |Gsingle
mod−d| ≈ |Yo−d| with θ1 − θ2 ≈ 180o

for a wide frequency range (10 < f < 700 Hz). Therefore, the active-damping-affected

output admittance exhibits low and nearly constant gain in the corresponding frequency

range, and the magnitude maintains its steady-state value (̂iod/ûod ≈ Iod/Uod) inside

the active-damping loop.

The resonant-frequency gain difference in the output admittance between the multi

and single-current-feedback schemes can be explained by analyzing Fig. 4.13. The mag-

nitude of the modifier term |Gmulti
mod−d| equals to the magnitude of the open-loop output

admittance as |Gmulti
mod−d| ≈ |Yo−d| and θ1 − θ2 ≈ 180o in vicinity of the resonant fre-

quency. Thus, the resonant behavior is effectively damped. Moreover, the gain of the

modifier term in case of the multi-current-feedback scheme damps the LCL-filter reso-

nance for a wider frequency range compared to the single-current-feedback counterpart as

∆(|Gmulti
mod−d| − |G

single
mod−d|) ≈ 20 dB when f > fres. Therefore, the multi-current-feedback

scheme induces increased damping on the resonant-frequency magnitude of the output

admittance as can be observed from Fig. 4.14. Considering the single-current-feedback

counterpart, the phase difference between the open-loop admittance and the modifier

term deviates from 180 degrees causing decreased damping of the resonance.

For demonstrative purposes, Fig. 4.14 shows the active-damping-affected open-loop

output admittances in case of proportional multi-current-feedback, proportional single-

current-feedback and HPF single-current-feedback active damping schemes. As observ-

able, the proportional multi-current-feedback scheme resembles the HPF single-current-

feedback scheme due to similarities in the active damping loop gain. Conversely, the

single-current-feedback scheme induces significantly different admittance properties within

the corresponding active-damping-loop bandwidth. This yields to decreased admittance
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Chapter 4. Output impedance with active damping

Fig. 4.11: Active-damping-affected output admittance (solid black line), nominal open-loop out-
put admittance (solid green line) and modifier transfer function (dashed blue line) in case of multi-
current-feedback scheme.

Fig. 4.12: Active-damping-affected output admittance (solid black line), nominal open-loop out-
put admittance (solid green line) and modifier transfer function (dashed red line) in case of single-
current-feedback scheme.

magnitude (or increased impedance) for 10 < f < 800 Hz (see Fig. 4.15). Accordingly,

the current control bandwidth is limited to 400 − 500 Hz. Beyond the current-control

bandwidth, open-loop dynamics begin to determine the shape of the output admittance.
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4.2. Comparison of single and multi-current-feedback schemes

Fig. 4.13: Enlarged depiction of the modifier terms in case of multi-current-feedback scheme
(dashed blue line), single-current-feedback scheme (dashed red line) and nominal open-loop output
admittance (solid green line ). Note that the phase of the nominal transfer function (green line) is
shifted +360o.
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Fig. 4.14: Active-damping-affected output admittances in case of multi-current-feedback scheme
(solid blue line), single-current-feedback scheme with proportional AD feedback (solid red line) and
single-current-feedback scheme with HPF AD (dashed red line).

4.2.2 Passivity of output admittance

As shown in Section 4.1.2, the single-current-feedback active damping scheme induces

passive high-frequency characteristics in the output impedance even when fres > fs/6.

This imposes a major advantage compared with the multi-current-feedback scheme as

the sensitivity to impedance-based instability is decreased. The explanation for such
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Fig. 4.15: Closed-loop output impedances in case of multi-current-feedback scheme (solid line)
and single-current-feedback scheme with proportional AD (dashed line).

behavior lies in the active-damping-affected open-loop output admittance. Accordingly,

the active-damping-affected output admittances in (3.22) and (3.35) are sums of the

nominal open-loop output admittance and the active-damping-induced modifier part as

shown in (4.1) and (4.2), respectively. The nominal open-loop output admittance Yo−d

is inherently passive regardless of the sampling frequency as it is determined only by the

operating point and passive power-stage components, i.e., Re{Yo−d} ≥ 0. Therefore, it

can be assumed that the modifier parts Gmulti
mod−d or Gsingle

mod−d may induce the observed

non-passivity. Considering Section 3.1.2, the delay term changes its sign depending on

the operating conditions and, therefore, the modifier transfer functions may vary and

induce the non-passive behavior. Similar observations are shown in [51, 61], where the

behavior of the delay was noticed to induce the active-type impedance via the current

control loop.

Fig. 4.16a shows the behavior of the real part in the active-damping-affected output

admittance when the multi-current-feedback active damping scheme is used under fres <

fs/6 and fs/6 < fres < fs/3. The real parts are similar when f < 500 Hz, but a negative

real part is evident when 500 < f < 2000 Hz if fs/6 < fres < fs/3, which indicates

non-passive admittance characteristics in the active-damping-affected open-loop output

admittance. If the non-passive behavior cannot be eliminated by the current control

design, it also persists in the closed-loop output admittance characteristics.

The output admittance under single-current-feedback active damping scheme is shown

in Fig. 4.16b for both fres < fs/6 and fs/6 < fres < fs/3. Evidently, the real part

does not go below zero in the frequency range of 500−2000 Hz when fs/6 < fres <

fs/3, contrary to the multi-current-feedback counterpart. Thus, the phase of the output

86



4.3. Conclusions

(a) (b)

Fig. 4.16: Real part of the active-damping-affected output admittance when fres < fs/6 (solid
line) and fs/6 < fres < fs/3 (dashed line) in (a) multi-current-feedback active damping scheme
and (b) single-current-feedback active damping scheme.

admittance exhibits passive characteristics.

Considering both the multi and single-current-feedback schemes, the corresponding

admittance properties can be explained by analyzing the active-damping-modifier terms

in (4.1) and (4.2). The real parts of the modifiers are shown for both the aforementioned

active damping schemes in Figs. 4.18a and 4.18b, respectively. In Fig. 4.18a, as the

Re{Yod} ≥ 0 in the nominal open-loop output admittance (cf. Fig. 4.17), the modifier

term imposes the observed negative real part when 500 < f < 2000 Hz as Re{Gmulti
mod−d} ≤

0. On the contrary, the output admittance under single-current-feedback scheme exhibits

positive real part between when 500 < f < 2000 Hz. Accordingly, the real part in the

modifier term is different compared with the multi-current-feedback scheme since the sign

of the active damping gain is not changed. Thus, in both frequency regions of fres < fs/6

and fs/6 < fres < fs/3, the modifier has a positive real part, which affects the active-

damping-affected output admittance, because Re{Yod} ≥ 0 and Re{Gsingle
mod−d} ≥ 0 in

the aforementioned frequency range. Therefore, the active-type behavior of the output

admittance is absent.

4.3 Conclusions

The single-current-feedback active damping scheme may clearly yield higher impedance

below the resonant frequency compared with the multi-current scheme, which would at-

tenuate the most common grid voltage harmonics (i.e., the 3rd, 5th, and 7th harmonic)

more efficiently. However, according to the stability analysis of the single-current scheme,

the stability margins are inferior especially when fres > fs/6. Furthermore, the magni-

tude of the impedance in vicinity of the resonant frequency does not necessarily reach
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Fig. 4.17: Real part of the nominal open-loop output admittance.

(a) (b)

Fig. 4.18: Real part of the modifier term when fres < fs/6 (solid line) and fs/6 < fres < fs/3
(dashed line) in (a) multi-current-feedback active damping scheme and (b) single-current-feedback
active damping scheme.

the same level as with the multi-current-feedback scheme. Even though the low fre-

quency impedance might be higher, the voltage harmonics may be transferred into the

grid current via the resonant frequency impedance. Actually, as discussed in the previous

section, the main advantages of the single-current feedback scheme are reduced costs and

the passivity of the impedance, which is obtained even for fres > fs/6. This significantly

decreases the risk for the impedance-based instability in all operating conditions of the

converter. Hence, the single-current method may be used if the system costs are to be

reduced and robustness regarding the impedance-based stability is required. Considering

the low impedance at the resonant frequency, it would inevitably lead to operating con-

straints of the corresponding converter as the real grid may contain significant amount of
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voltage harmonics especially in multi-parallel inverter systems [47, 58]. Thus, the multi-

current scheme is better in terms of the mitigation capability of harmonic voltages as

well as internal system stability, which was shown in the root trajectory analysis in Sec-

tion 3.5. Furthermore, the real capacitor-current is measured, which allows more robust

operation, when fres > fs/6.
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5 EXPERIMENTAL RESULTS

This chapter provides the experimental measurements in order to verify the accuracy

of the derived small-signal models, the root locus analyses, and the output-impedance

properties. Accordingly, both the simulated and measured transfer functions are pre-

sented regarding the open and closed-loop models in Chapter 2 as well as the impedance

analysis in Chapter 4. The internal stability of the converter regarding the root trajec-

tories in Section 3.5 is verified with time-domain measurements. The impedance-based

interactions are demonstrated as well.

The measurement setup, shown in Fig. 5.1, was used in the experimental tests.

Photovoltaic (PV) simulator PVS7000 and three-phase grid-emulator PAS15000 manu-

factured by Spitzenberger & Spies are used as an input source and load, respectively.

The three-phase grid-connected inverter is implemented on the SiC-based inverter bridge

MWINV-1044-SIC manufactured by MyWay. Converter control was implemented by us-

ing a dSPACE DS1103 platform. Furthermore, the output impedance was measured with

the corresponding platform by using pseudo-random binary sequence (PRBS) method

[87]. Note that simulated frequency responses were also obtained by using the PRBS

technique implemented in MATLAB with Simscape Power Systems tools.

Fig. 5.1: Overview of the measurement setup.
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Fig. 5.2: Simulated (solid line) and modeled (dotted line) open-loop control-to-inductor-current
GcL-d response in case of multi-current-feedback active damping.

5.1 Open-loop verifications

The open-loop dynamics are verified by simulations with MATLAB, which is an efficient

way to verify the open-loop models. The validity of the open-loop transfer functions is

important since the analysis in this thesis is based on the active-damping-affected open-

loop dynamics. A PRBS method is utilized to extract the frequency responses from the

time-domain simulation model. These open-loop simulations verify the models derived

in Chapters 2 and 3. The parameters used in the simulations are found in Table 3.1,

which are used also for the experimental measurements of the prototype inverter.

As discussed earlier, the open-loop control-to-inductor-current transfer function and

the output admittance are analyzed here. The former is used in the closed-loop control

design and the latter in the specific active damping analysis. Fig. 5.2 shows the predicted

and simulated active-damping-affected control-to-inductor-current transfer function in

case of the multi-current-feedback active damping scheme. Furthermore, the correspond-

ing frequency responses in case of the single-current-feedback scheme are shown in Fig.

5.3. The simulated and predicted frequency responses match well in both cases, and the

differences between the two schemes are clearly visible.

As discussed in Chapter 3, the open-loop output admittance changes significantly de-

pending on the active damping implementation. Accordingly, the single-current-feedback

active damping scheme induces control-loop-like properties and, therefore, the output

admittance was observed to exhibit significantly lower magnitude below the resonant

frequency. This observation is visible also in the simulations, which are presented in case

of both the multi and single-current-feedback schemes in Figs. 5.4 and 5.5, respectively.
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Fig. 5.3: Simulated (solid line) and modeled (dotted line) open-loop control-to-inductor-current
GcL-d response in case of single-current-feedback active damping.

10
0

10
1

10
2

10
3

10
4

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

10
2

10
3

10
4

−180

−90

0

90

180

P
ha

se
 (

de
g)

Frequency (Hz)

Fig. 5.4: Simulated (solid line) and modeled (dotted line) open-loop output admittance Yo-d in
case of multi-current-feedback active damping.

Clearly, the simulated frequency responses match well with the analytical models.

5.2 Closed-loop verifications

Closed-loop verifications validate the obtained closed-loop impedance model as well as

the control and active damping designs. The DC-link voltage control loop is verified by

means of MATLAB simulation and the output impedance is measured with a prototype

inverter. As the closed-loop output impedance is affected by both the output-current and

DC-link voltage-control designs, the validity of the closed-loop model can be determined
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Fig. 5.5: Simulated (solid line) and modeled (dotted line) open-loop output admittance Yo-d in
case of single-current-feedback active damping.

by the impedance measurements.

5.2.1 Input-voltage control design

The input-voltage control should be designed properly due to inherent constraints caused

by the used topology, which introduces an RHP pole into the control dynamics, when

operating in the CCR. Regarding the control engineering principles, the crossover fre-

quency of the control loop shall be higher than the RHP-pole frequency, which is ωpole =

Iin/CinUin ≈ 12.3 rad/s. Furthermore, the maximum limit for the crossover frequency

is imposed by the 100 Hz DC-link voltage ripple caused by an unbalanced grid. Suffi-

cient attenuation should be provided in order to avoid the pollution of the grid current

reference.

The method to verify the DC-link control loop is shown in Fig. 5.6. A sinusoidal

injection is provided to the input voltage reference signal, and the error signal as well as

the input voltage are measured. Thus, the voltage control loop is determined according to

corresponding figure as Lin = Gout
ci Gvc. Fig. 5.7 shows the simulated input-voltage loop

gain, where the desired 20 dB attenuation at 100 Hz is nearly obtained. Furthermore,

the gain and phase margins are 60 dB and 89 degrees, respectively, indicating good

stability margins. Moreover, difference between the simulated and predicted loop gains

is negligible, thus, the control design can be assumed to be accurate.
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Fig. 5.6: Methodology for the input voltage loop gain measurement.
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Fig. 5.7: Simulated (solid line) and modeled (dotted line) input-voltage loop gain.

5.2.2 Output impedance verification

This section presents the output impedance measurements from the prototype inverter.

The corresponding measurement setup is shown in Fig. C.1 in Appendix B. Considering

both the multi and single-current-feedback schemes, different active damping feedback

implementations are verified according to the analyses shown in Sections 3.5 and 3.1.2

under operating conditions of fres < fs/6, fs/6 < fres < fs/3 and fs/3 < fres < fs/2.

Multi-current-feedback scheme

Fig. 5.8 shows the measured d and q-components of the output impedance, when fres <

fs/6 with proportional active damping feedback (Rd = 10 Ω). As can be seen, the active-

type impedance is visible in the q-component at low frequencies as the phase is close to

-180 degrees, which is caused by the PLL [66]. The impedance magnitude in vicinity of

the resonant frequency is around 5 dB, which might be insufficient since 5 dB ≈ 1.8 Ω.

That is, a voltage harmonic at the corresponding frequency with only 1.8 V amplitude
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Fig. 5.8: Modeled (dotted lines) and measured d and q-components (blue line and black dashed
line) of the output impedance in case of proportional active damping feedback, Rd = 10 Ω.

would yield a harmonic current response of 1 A. Regarding the operating point, the

corresponding grid current is around 10 A and, therefore, the harmonic current would be

10 % of the nominal current.

The robustness of the converter can be improved for fres < fs/6 by using a high-

pass-filtered active damping feedback according to the analysis in Section 3.5. As shown

earlier in both the root locus and impedance analyses, the HPF induces more damped

transient response and higher output impedance magnitude. Accordingly, Fig. 5.9 shows

the output impedance for the corresponding case with Rd = 10 Ω and ωcutoff = ωres.

Comparing Figs. 5.8 and 5.9, the magnitude at the resonant frequency is increased

from 5 dB to around 15 dB ≈ 5.6 Ω by using the HPF active damping and, therefore,

significantly larger voltage harmonic at the resonant frequency would be required to

induce the same 1 A harmonic current as in Fig. 5.8.

When the sampling frequency changes as fs/6 < fres < fs/3, significant changes occur

in the output impedance. The phase begins to resemble active-type impedance (i.e., non-

passive) around the resonant frequency, which is harmful for the overall system stability.

This can be seen in Fig. 5.10, which shows the output impedance for proportional active

damping feedback with Rd = −10 Ω.

Considering Section 3.5, a low-pass filter is recommended for improving the system

stability, when the converter is operating under fs/6 < fres < fs/3. Comparing the

root trajectories in Figs. 3.19a and 3.20b, it is evident that such filter induces beneficial

properties in the current-control dynamics. Correspondingly, the low-pass-filtered active

damping feedback improves the output impedance characteristics as shown in Fig. 5.11

with Rd = −15 Ω. Clearly, the resonant behavior is effectively reduced as the magnitude
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Fig. 5.9: Modeled (dotted lines) and measured d and q-components (blue line and black dashed
line) of the output impedance in case of HPF active damping feedback, Rd = 10 Ω, ωcutoff = ωres.
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Fig. 5.10: Modeled (dotted lines) and measured d and q-components (blue line and black dashed
line) of the output impedance in case of proportional active damping feedback, Rd = −10 Ω.

of the output impedance (≈ 15 dB) only slightly varies within the frequency range of

1− 3 kHz. Hence, the grid-voltage harmonics do not affect the grid current significantly

in the given frequency range compared to the case of proportional feedback in Fig. 5.10.

By further changing the sampling frequency as fs/3 < fres < fs/2, a high-pass filter is

recommended to improve the system stability as well as the output impedance properties.

Fig. 5.12 shows the output impedance with high-pass-filtered active damping (Rd =

−15, ωcutoff = 0.5ωres). As can be observed, the output impedance exhibits similar

characteristics as in case of Fig. 5.11, since the magnitude stays relatively constant in

97



Chapter 5. Experimental results

Fig. 5.11: Modeled (dotted lines) and measured d and q-components (blue line and black dashed
line) of the output impedance in case of LPF active damping feedback, Rd = −15 Ω, ωcutoff = ωres.

Fig. 5.12: Modeled (dotted lines) and measured d and q-components (blue line and black dashed
line) of the output impedance in case of HPF active damping feedback, Rd = −15 Ω, ωcutoff =
0.5ωres.

a wide frequency range. Clearly, the resonant behavior is effectively reduced, and the

magnitude of the output impedance is sufficiently high (≈ 10 dB).

Considering the measurements presented in this section, the derived model is accurate

and predicts the resonant-frequency-impedance behavior well. This is important as the

active damping affects only in vicinity of the resonant frequency, which can be accurately

analyzed using the derived model.
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Fig. 5.13: Modeled (dotted lines) and measured d and q-components (blue line and black dashed
line) of the output impedance in case of single-current-feedback active damping , Rd = 10 Ω.

Single-current-feedback scheme

Regarding the inherent operating constraints discussed in Section 3.5.3 in case of the

single-current-feedback active damping scheme, the output impedance is verified with

proportional and HPF active damping for fres < fs/6 and with HPF active damping for

fs/6 < fres < fs/3. Fig. 5.13 shows the output impedance in case of proportional active

damping with Rd = 10 Ω, when the converter operates under fres < fs/6. Evidently,

the magnitude of the output impedance in the frequency range of 100 − 1000 Hz is

higher compared to the multi-current-feedback counterpart in Fig. 5.8. This property

is beneficial as the common grid-voltage harmonics are the 3rd, 5th and 7th harmonics.

In case of the aforementioned frequencies, the output impedance in the demonstrated

case is always higher than 20 dB, which effectively prevents the voltage harmonics from

polluting the grid current.

Considering the filtered active damping feedback implementation, Fig. 5.14 shows

the output impedance in case of high-pass-filtered active damping with Rd = 15 Ω and

ωcutoff = 3ωres. Clearly, the shape of the output impedance is similar to Fig. 5.8,

since the HPF single-current-feedback active damping resembles the proportional multi-

current-feedback method. Accordingly, a decrease in the magnitude is observable in the

frequency range of 100−1000 Hz, which is peculiar in the multi-current-feedback schemes

due to the lower open-loop output admittance. Referring to the measured impedances

in Figs. 5.13 and 5.14, the analysis shown in Section 4.2 regarding the behavior of the

single-current-feedback active damping and its effect on the system transfer functions is

accurate.
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Fig. 5.14: Modeled (dotted lines) and measured d and q-components (blue line and black dashed
line) of the output impedance in case of single-current-feedback HPF active damping , Rd = 15 Ω,
ωcutoff = 3ωres.

Fig. 5.15: Modeled (dotted lines) and measured d and q-components (blue line and black dashed
line) of the output impedance in case of single-current-feedback HPF active damping , Rd = 55 Ω,
ωcutoff = 3.5ωres.

As discussed in Section 3.5, the measured inverter current must be high-pass filtered,

when operating under fs/6 < fres < fs/3 in order to eliminate the low frequency gain

and to induce phase boost in the active damping loop. Accordingly, Fig. 5.15 shows

the output impedance in case of HPF AD when Rd = 55 and ωcutoff = 3ωres. Signif-

icant distortions are visible in the measured impedance as the internal stability of the

converter is weak according to the root locus analysis of the corresponding case in Fig.
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Fig. 5.16: Measured phase voltage and current during normal operation (top left), marginal
stability (top right) and instability (bottom).

3.27a. Accordingly, the roots stay near the imaginary axis regardless of the feedback

gain indicating poor stability characteristics of the output-current control. Therefore,

the measured impedance is distorted. However, the measured impedances clearly follow

the predictions regardless of the distortions.

5.2.3 Stability of the active damping loop

The location of the roots in the current-control dynamics determines the system stability,

that is, whether the roots lie in the left-half plane or the right-half plane and how far

they are from the real and imaginary axes. Considering the root loci presented in Section

3.5, the validity of the results should be addressed in order to justify their utilization in

the active damping design. Accordingly, two different cases are shortly analyzed here in

order to present the accuracy of the root loci in determining the control-system stability.

In Fig. 5.16, the active-damping stability is analyzed in case of the proportional

capacitor-current feedback in the naturally stable resonant frequency region of fres <

fs/6. The system stability is determined by the corresponding root locus shown in Fig.

3.18a. Accordingly, the active damping gain is first set to Rd = 10 Ω, which yields

stable current-control dynamics. The virtual resistor value is then changed to Rd = 27
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Fig. 5.17: Measured phase voltage and current during unstable operation without HPF (top) and
under nominal operation with HPF (bottom).

Ω, where the system is marginally stable referring to the root trajectory in Fig. 3.18a.

Clearly, the output current becomes slightly distorted (cf. Fig. 5.16 top right figure).

By setting Rd = 29 Ω, the roots cross the imaginary axis to the RHP causing unstable

current dynamics as is evident in the bottom figure in Fig. 5.16.

The high-pass filter improves the system stability characteristics and allows selecting

the virtual resistor value for wider range compared to the pure proportional active-

damping-feedback implementation. This is demonstrated in Fig. 5.17 in case of the

single-current-feedback scheme when fres < fs/6. The root loci regarding the stability

analysis are shown in Figs. 3.26a and 3.26b. The pure proportional feedback is demon-

strated first, and the virtual resistor value is first set to Rd = 41 Ω, which places the

control-system poles to the RHP yielding unstable operation as visible in the top figure in
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Fig. 5.17. However, by activating the high-pass filter, the roots with the aforementioned

active damping gain move back into the LHP, which stabilizes the system. Considering

the root locus analysis, it can be concluded that the aforementioned root loci predict

accurately the overall control system stability and, thus, they can be used to determine

the suitable active-damping-feedback gain.

5.3 Impedance-based analysis

This section demonstrates the impedance-based interactions affecting the stable opera-

tion of grid-connected converters. Accordingly, both the effect of the grid background

harmonics and the impedance-based instability are presented. The Nyquist stability

criterion is an essential tool in the analyzing stability of interconnected systems and,

therefore, it is briefly discussed next in order to elaborate the matter. The stability

criterion is demonstrated later in order to validate its usefulness.

5.3.1 Nyquist stability criterion

In grid-connected applications, the utility grid regulates the voltage seen by the con-

verter, thus the grid voltage acts as a disturbance element from the system point-of-view.

Accordingly, the converter controls its output current with high bandwidth, and is con-

sidered, in the small-signal analysis, as a constant current source feeding the grid. The

interconnection can be represented as a small-signal impedance model as shown in Fig.

5.18a. The grid voltage should not affect the output current, which maintains its value

regardless of the voltage and, therefore, the current source should exhibit ideally infinite

parallel output impedance. In practical applications, this is not true as the converter has

a finite output impedance dictated by the control dynamics and the filter parameters. As

shown earlier, the output impedance can exhibit very low magnitude around the resonant

frequency, which impairs its ideal properties.

The ideal grid, on the other hand, should have a zero series impedance in order to

decouple the grid from the converter. However, the real grid contains a finite series

input impedance exhibiting mostly inductive properties with various resonances [45, 46].

Therefore, the voltage at the PCC (cf. Fig. 5.18a) is affected by the injected grid current

as ûPCC = Zg îL2 + ûo and, thus, the grid and the converter are considered to be coupled

and susceptible to interactions.

Based on the small-signal equivalent circuit shown in Fig. 5.18a, the output current

vector îL2 can be given as in (5.1).
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(a) (b)

Fig. 5.18: (a) Small-signal representation of the grid interface and (b) its equivalent control
block-diagram.

îL2 = îs −YoûPCC, ûPCC = ûo + Zg îL2

îL2 = îs −Yo

[
ûo + Zg îL2

]
îL2 = [I + YoZg]

−1
îs − [I + YoZg]

−1
Yoûo

(5.1)

It can be seen from (5.1) that the grid current is dependent on the source current (affected

by the control dynamics) and the grid voltage. The interconnection imposes a loop

structure, which affects the behavior and stability of the grid current as demonstrated in

Fig. 5.18b.

The stability can be evaluated by applying the generalized Nyquist stability criterion

to the return-ratio matrix YoZg [88]. If the cross-couplings are neglected as they usually

are small in magnitude, since no reactive power is produced, the direct and quadra-

ture components of the impedances suffice for the analysis separately and are considered

decoupled. That is, the stability of the d-component can be analyzed with the inverse mi-

nor loop gain Lminor-dd = Yo−ddZg−dd and the q-component by Lminor-qq = Yo−qqZg−qq.

Considering Fig. 5.18b and the basic control engineering principles, the stability of the

loop is guaranteed if the converter output impedance is higher than the grid impedance

as then |Zg|/|Zo| < 1, which would ensure the stability of the corresponding minor loop

gain. Moreover, an ideal grid with zero series impedance would guarantee the stability

of the minor loop gain as well.

The real grid often exhibits inductive characteristics especially at higher frequencies

[46] and, thus the grid impedance may exceed the converter output impedance yield-

ing |Zg|/|Zo| > 1. The aforementioned case would make the converter susceptible to

impedance-based instability if the converter output impedance loses its passive charac-

teristics and the phase difference of Zg-qq and Zo-qq exceeds 180 degrees. It has been

already observed that the PLL causes active-type-impedance behavior at the low fre-

quencies [52, 58, 64, 66, 68]. Such phase behavior can exist also at higher frequencies, in
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certain conditions, due to the current controller [51] and the active damping, which may

easily introduce high-frequency impedance-based instability.

5.3.2 Impedance-based instability and background harmonics

Regarding the factors affecting the stable operation of a grid-connected converter, active-

type output impedance increases significantly the impedance-based-instability sensitivity

of the grid-connected converter. Furthermore, in a grid-feeding converter, low output

impedance at the resonant frequency enables the grid voltage harmonics to interact with

the converter causing harmonic currents proportional to the impedance magnitude at

the corresponding frequency. These two factors may degrade the power quality, because

the grid current may get excessively polluted as observed, e.g., in [49]. Therefore, it

should be ensured that the output impedance of the converter exhibits passive properties

and the magnitude is as high as possible. Accordingly, it is important to address the

aforementioned risks as a part of the active damping design as its effect on the output

impedance is significant. In order to emphasize the importance of aforementioned factors,

this section will verify the power quality issues induced by the impedance-based instability

and the grid background harmonics.

Considering the impedance-based stability, active-type output impedance is analyzed

in this case, where the sampling frequency is restricted as fres > fs/6. As discussed in

Section 5.3.1, a finite series grid impedance is required for interactions. Thus, a high

impedance grid (i.e., a weak grid) is analyzed here, which is determined by the short-

circuit-ratio (SCR) or the X/R-ratio, where SCR< 3 or X/R < 5. The weak grid is

demonstrated with the resistive and inductive values of R = 0.5 Ω and L = 1 mH,

respectively, yielding X/R = 0.63.

Fig. 5.19 shows the Bode plots of the grid impedance Zg-dd and the active-type output

impedance Zodd with LPF AD, which refer to the case shown in Fig. 4.5. Moreover,

the Nyquist plot of the impedance ratio Zg-dd/Zo-dd is shown in the same figure. The

d and q-component impedances are assumed to be decoupled and, thus, the generalized

Nyquist stability criterion (GNC) is not required. In Fig. 5.19, the Nyquist plot encircles

the (−1, 0)-point when the virtual resistor value is decreased from Rd = −18 Ω to Rd =

−21 Ω indicating unstable behavior. The same phenomenon can be intuitively seen

from the Bode plots as the phase difference between Zg-dd and Zo-dd exceeds 180o when

|Zg-dd| > |Zo-dd| leading to instability. Regarding the impedance-based instability, Fig.

5.20 shows the measured output current under the violation of the Nyquist stability

criterion. Accordingly, the output current begins to oscillate at the frequency of the

violation, i.e., fharmonic ≈ 1500 Hz. As the high-frequency oscillations have been reported

from industrial photovoltaic generators [49], active damping design may have important

contribution regarding the mitigation of such harmonic oscillations and instability.
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Fig. 5.19: Bode plots (upper figure) for Zodd, Zg and Nyquist diagram (lower figure) for the ratio
of Zg/Zodd, fres > fs/6.

The solar panels in photovoltaic power stations are not necessarily connected to a

single high-power central inverter. In fact, medium-power inverters are usually connected

in parallel (string inverters) to address the situations caused, e.g., by partial shading

conditions. In these multi-parallel inverter systems, the voltage of the point-of-common-

coupling (PCC) can be distorted due to resonant interaction between converters [18].

Thus, the PCC voltage may contain elevated harmonics near the LCL-filter resonant

frequency. This can cause oscillations in the grid current if the output impedance of the

inverter is relatively low compared to the magnitude of the oscillation. Furthermore, the

harmonic oscillation in the grid current will eventually increase the harmonic pollution

in the grid voltage due to the coupling with the grid impedance, which, in turn, will

circulate and increase the overall harmonic currents. Active damping should be, therefore,

designed to achieve as high output impedance as possible in order to prevent the grid

voltage harmonics from exciting the resonances.

The harmonic rejection capability of the converter can be analyzed by imposing a

high-frequency component in the grid voltage. In this setup, a harmonic voltage with

5 V amplitude and fharmonic = 1378 Hz was produced by the grid emulator, which

represents a grid with elevated harmonic content. In the measurements, the output

impedance magnitude of the converter is modified by adjusting the active damping gain
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Fig. 5.20: Measured phase to phase voltage Vab and phase current Ia with high-frequency
impedance-based instability due to violation of Nyquist stability criterion in Fig. 5.19.

Fig. 5.21: Grid-current spectrum under influence of grid background harmonics with low
impedance (red line) and high impedance (black line).

in order to present two different cases. Accordingly, the lowest magnitude of the output

impedance is set to 10 dB ≈ 3.2 Ω and the highest to 18 dB ≈ 7.9 Ω, representing

a case with proportional active damping feedback when fres > fs/6 (cf. Fig. 4.3).

The grid-current spectrum was measured for both impedance levels, which are shown

in Fig. 5.21. Evidently, the grid-voltage harmonic causes a large harmonic current if

the impedance is low, which in practical applications may cause, e.g., shutdown of the

photovoltaic inverters due to high harmonic content. Moreover, the transformers may

get damaged by the high-frequency currents flowing through the capacitively coupled

parts. However, by increasing the output impedance, the amplitude of the harmonic
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Fig. 5.22: Grid-current waveform under influence of grid background harmonics with low
impedance (blue line) and high impedance (red line).

current can be effectively decreased to around half of the original current. Time-domain

measurements of the corresponding case are shown in Fig. 5.22. Clearly, active damping

can be designed to provide sufficient impedance level and, therefore, the susceptibility to

the grid background harmonics is decreased.
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This chapter presents the final conclusions regarding the thesis as well as the interesting

future research topics.

6.1 Final conclusions

Photovoltaic generator is a power-limited non-ideal current source and, thus, it imposes

peculiar design constraints on the interfacing power-electronic-based converters. Three

different operating regions, which characterize the internal dynamic of the PV cell, can

be identified as the constant-current region, constant-voltage region and the maximum

power point. These have to be considered in the analysis when deriving mathematical

models for switched-mode power converters as well as in the control system design. This

guarantees stable operation of the converter in varying operating conditions.

Multi-variable small-signal modeling was extensively applied in this thesis in order

to produce a comprehensible mathematical model for a three-phase grid-connected con-

verter. The modeling requires identification of the system input and output variables,

which subsequently affect the analysis profoundly. Therefore, it is important to assess

the dynamics of the interfaced source and load systems accurately as well. In case of

grid-connected photovoltaic inverter, the PV generator has to be considered as a current

source from the dynamic point-of-view due to its internal characteristics. Furthermore,

the load is the utility grid, which is considered as a rigid voltage source since it dictates

the voltage and frequency seen by the converter. These factors impose restrictions for

the possible controlled variables of the system. That is, the converter controls its own

input voltage in order to achieve maximum power delivery into the grid. Furthermore,

the converter controls its output current, which is synchronized with the grid by means

of the PLL. Therefore, the converter is analyzed as a current-fed-current-output system.

LCL-filter is an effective and cost-efficient way in attenuating the switching frequency

harmonics and is, therefore, widely used in practical applications. However, the inductors

and capacitance create resonant circuits causing ideally infinite or zero impedances at

certain frequencies. Accordingly, these resonances appear in the control dynamics, which

must be damped in order to achieve stable operation of the converter. Passive damping

method is a robust and simple way to damp the resonances, which is performed by

inserting a resistor usually in series with the filter capacitor. However, this will introduce
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additional power losses for up to 1 % and weaken the attenuation capability of the LCL-

filter. Therefore, different active damping techniques are used, which rely on modifying

the inverter control signal in order to produce the desired damping effect without any

physical components. It is shown in this thesis that both the multi and single-current-

feedback active damping schemes provide sufficient performance regarding the system

stability and impedance characteristics.

The stability of the control system regarding the active damping design was assessed

with root locus diagrams. Corresponding ICF converters lack the explicit active damping

design rules and, therefore, the aforementioned root locus plots were used to determine

the system stability. Furthermore, the root trajectories were subsequently used to analyze

their correspondence with the output impedance characteristics. Considering the active

damping design, the inherent properties of the delay were analyzed carefully as it imposes

major design constraints. Accordingly, it was observed that a low-pass filter is beneficial

when fs/6 < fres < fs/3 and, on the contrary, a high-pass filter is recommended when

fs/3 < fres < fs/2 and fres < fs/6 for improved stability characteristics. Generally, the

root locus analysis proposes that the roots should be placed as far from the imaginary-

axis as possible if high output impedance magnitude is desired. Moreover, in order to

improve the current control characteristics and stability, filtered active damping feedbacks

are recommended to be used.

As discussed in this thesis, active damping has a significant effect on the output

impedance of the converter. The output impedance determines the converter sensitivity

to external interactions and is, therefore, the key factor affecting the stability of the

grid interface. Active damping, when poorly designed, can easily compromise the stable

operation of the converter or impair the impedance characteristics. This is manifested as

extremely low magnitude in the impedance and active-type (i.e., negative real part) phase

behavior. However, by accurately considering the inherent properties of active damping,

such as delay dependency, the impedance characteristics as well as the converter stability

can be greatly improved. The stability of the grid interface can be intuitively assessed

by analyzing the frequency-domain output impedance predictions, which, on the other

hand, dictate the allowed grid impedance required for stable operation. With accurate

output impedance models, the risk for instability can be deterministically analyzed, thus

decreasing the risk for impedance-based interactions. Furthermore, the output impedance

can be used to assess the susceptibility for grid-voltage harmonics especially in vicinity

of the LCL-filter resonant frequencies.

To conclude, this thesis analyzed the effect of the active damping on system dynam-

ics and, especially, on the output impedance. Multi-variable small-signal modeling was

utilized in order to simplify the derivation of the model. This modeling technique allows

insertion of different control loops and their analysis easily. Moreover, the effect of dif-
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ferent active damping feedbacks was addressed and the design guidelines regarding the

selection of correct feedback technique were presented. Accordingly, improved output

impedance characteristics can be achieved by using correct active damping design.

6.2 Future research topics

This thesis presented an accurate small-signal model of three-phase grid-connected in-

verter and its impedance properties. The effect of active damping on the system dynamics

was analyzed. However, some aspects may not have been addressed thoroughly and some

topics may need further research. Below are listed observations regarding the possible

and interesting future research topics:

• As the HPF and LPF affect significantly the stability of the converter and the shape

of the output impedance, explicit parametric design rules should be presented for

these filters. Accordingly, design criteria could be used to guarantee optimized

impedance properties for all operating conditions, i.e. fres < fs/6 and fres > fs/6.

However, due to the complexity of the small-signal modeling, explicit design criteria

may be hard to realize.

• In case of the single-current-feedback converter operating under fres > fs/6, it

should be analyzed whether the HPF is the best solution in providing suitable

stability and output impedance properties. For example, band-pass filters have

been used for ICF converters successfully in some cases and, therefore, additional

design criteria would be appreciated.

• Considering significant delay-induced constraints and differences for ICF and GCF

converters, it would be interesting to analyze and compare the active damping on

both converter control topologies regarding the output impedance. Accordingly, it

would be interesting to analyze whether one topology would be superior to another.

• The low-frequency phase flip in the d-component of the output impedance over

180 degrees is caused by the input voltage control loop and should be studied.

This behavior may impose a risk for low-frequency impedance-based instability

and should be, therefore, analyzed. It was observed that the phase flip is related

to the phase margin of the input voltage control loop, but its detailed analysis was

omitted from this thesis.

• Active damping for a grid-feeding inverter was analyzed here. However, when

islanded, the converter operates in a grid-forming mode, which leads to a different

topology and modeling details as the grid-side inductor is ’omitted’ in the analysis.

Thus, resonances in the system dynamics will change. It would be interesting to

compare active damping and output impedance characteristics of both grid-feeding

and grid-forming converters as well.
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A MATLAB CODE FOR CF-VSI STEADY STATE

CALCULATION

%#######################################################################

% ### This MATLAB code solves the steady state for a grid-connected ###

% ### photovoltaic inverter ###

% ### Aapo Aapro, 15.5.2017 ###

%#######################################################################

% ########### Operating point ###########

% ### With parasitic elements ###

eq1=’-k1*IL2q=Ucd’

eq2=’k1*IL2d-k1*IL1d=Ucq’

eq3=’k2*IL2d+R*IL2q=Ucq’

eq4=’R*IL2d-rC*IL1d-k2*IL2q+Uod=Ucd’

eq5=’IL1d=2*Iin/(3*Dd)’

f=solve(eq1,eq2,eq3,eq4,eq5,’IL2d’,’IL2q’,’Ucd’,’Ucq’,’IL1d’)

% ### Simplified IL2d IL2q ###

eq10=’IL2d=(2*Iin*K_ild-3*Dd*R*Uod)/(3*Dd*K)’

eq11=’IL2q=-(2*Iin*K_ilq+3*Dd*Uod*Kuo)/(3*Dd*K)’

eq12=’Uin*Dd^2+rC*IL2d*Dd+IL2q*Dd*k1-2*Iin*Req/3=0’

eq13=’Dq*Uin-k1*(IL2d-2*Iin/(3*Dd))+rC*IL2q-2*Iin*k3/(3*Dd)=0’
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Appendix A. Matlab code for CF-VSI steady state calculation

g=solve(eq10,eq11,eq12,eq13,’Dd’,’Dq’,’IL2d’,’IL2q’)

%#######################################################################

%#######################################################################

% ### Without parasitic elements ###

eq1=’-k1*IL2q=Ucd’

eq2=’k1*IL2d-k1*IL1d=Ucq’

eq3=’k2*IL2d+0*IL2q=Ucq’

eq4=’0*IL2d-0*IL1d-k2*IL2q+Uod=Ucd’

eq5=’IL1d=2*Iin/(3*Dd)’

h=solve(eq1,eq2,eq3,eq4,eq5,’IL2d’,’IL2q’,’Ucd’,’Ucq’,’IL1d’)

% ### Simplified IL2d IL2q ###

eq10=’IL2d=(2*Iin*K_ild-3*Dd*0*Uod)/(3*Dd*K)’

eq11=’IL2q=-(2*Iin*0+3*Dd*Uod*Kuo)/(3*Dd*K)’

eq12=’Uin*Dd^2+0*IL2d*Dd+IL2q*Dd*k1-2*Iin*0/3=0’

eq13=’Dq*Uin-k1*(IL2d-2*Iin/(3*Dd))+0*IL2q-2*Iin*k3/(3*Dd)=0’

y=solve(eq10,eq11,eq12,eq13,’Dd’,’Dq’,’IL2d’,’IL2q’)

%#######################################################################

%#######################################################################

% ### Now the symbolic values for Dd and Dq can be given as: ###

Dd = ((K*Req*(K_ilq*((8*Iin*Req*Uin*K^2)/3 + (8*Iin*K_ilq*Uin*K*k1)/3 -

(8*Iin*K_ild*Uin*K*rC)/3 + Kuo^2*Uod^2*k1^2 + 2*Kuo*R*Uod^2*k1*rC

+ R^2*Uod^2*rC^2)^(1/2) + 2*K*Kuo*Req*Uod + K_ilq*Kuo*Uod*k1

- 2*K_ild*Kuo*Uod*rC - K_ilq*R*Uod*rC))/(2*(K_ilq*k1 - K_ild*rC + K*Req))

+ (K_ilq*k1*(K_ilq*((8*Iin*Req*Uin*K^2)/3 + (8*Iin*K_ilq*Uin*K*k1)/3

- (8*Iin*K_ild*Uin*K*rC)/3 + Kuo^2*Uod^2*k1^2 + 2*Kuo*R*Uod^2*k1*rC

+ R^2*Uod^2*rC^2)^(1/2) + 2*K*Kuo*Req*Uod + K_ilq*Kuo*Uod*k1
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- 2*K_ild*Kuo*Uod*rC - K_ilq*R*Uod*rC))/(2*(K_ilq*k1 - K_ild*rC + K*Req))

- (K_ild*rC*(K_ilq*((8*Iin*Req*Uin*K^2)/3 + (8*Iin*K_ilq*Uin*K*k1)/3

- (8*Iin*K_ild*Uin*K*rC)/3 + Kuo^2*Uod^2*k1^2 + 2*Kuo*R*Uod^2*k1*rC

+ R^2*Uod^2*rC^2)^(1/2) + 2*K*Kuo*Req*Uod + K_ilq*Kuo*Uod*k1

- 2*K_ild*Kuo*Uod*rC - K_ilq*R*Uod*rC))/(2*(K_ilq*k1 - K_ild*rC + K*Req))

- K*Kuo*Req*Uod + K_ild*Kuo*Uod*rC + K_ilq*R*Uod*rC)/(K*K_ilq*Uin)

Dq = -((K*k1*(K_ilq*((8*Iin*Req*Uin*K^2)/3 + (8*Iin*K_ilq*Uin*K*k1)/3 -

(8*Iin*K_ild*Uin*K*rC)/3 + Kuo^2*Uod^2*k1^2 + 2*Kuo*R*Uod^2*k1*rC +

R^2*Uod^2*rC^2)^(1/2) + 2*K*Kuo*Req*Uod + K_ilq*Kuo*Uod*k1

- 2*K_ild*Kuo*Uod*rC - K_ilq*R*Uod*rC))/(2*(K_ilq*k1 - K_ild*rC + K*Req))

- (K*k3*(K_ilq*((8*Iin*Req*Uin*K^2)/3 + (8*Iin*K_ilq*Uin*K*k1)/3 -

(8*Iin*K_ild*Uin*K*rC)/3 + Kuo^2*Uod^2*k1^2 + 2*Kuo*R*Uod^2*k1*rC +

R^2*Uod^2*rC^2)^(1/2) + 2*K*Kuo*Req*Uod + K_ilq*Kuo*Uod*k1

- 2*K_ild*Kuo*Uod*rC - K_ilq*R*Uod*rC))/(2*(K_ilq*k1 - K_ild*rC + K*Req))

- (K_ild*k1*(K_ilq*((8*Iin*Req*Uin*K^2)/3 + (8*Iin*K_ilq*Uin*K*k1)/3 -

(8*Iin*K_ild*Uin*K*rC)/3 + Kuo^2*Uod^2*k1^2 + 2*Kuo*R*Uod^2*k1*rC +

R^2*Uod^2*rC^2)^(1/2) + 2*K*Kuo*Req*Uod + K_ilq*Kuo*Uod*k1

- 2*K_ild*Kuo*Uod*rC - K_ilq*R*Uod*rC))/(2*(K_ilq*k1 - K_ild*rC + K*Req))

- (K_ilq*rC*(K_ilq*((8*Iin*Req*Uin*K^2)/3 + (8*Iin*K_ilq*Uin*K*k1)/3 -

(8*Iin*K_ild*Uin*K*rC)/3 + Kuo^2*Uod^2*k1^2 + 2*Kuo*R*Uod^2*k1*rC +

R^2*Uod^2*rC^2)^(1/2) + 2*K*Kuo*Req*Uod + K_ilq*Kuo*Uod*k1

- 2*K_ild*Kuo*Uod*rC - K_ilq*R*Uod*rC))/(2*(K_ilq*k1 - K_ild*rC + K*Req))

- K*Kuo*Uod*k1 + K*Kuo*Uod*k3 + K_ild*Kuo*Uod*k1

+ K_ilq*R*Uod*k1)/(K*K_ilq*Uin)

% ### where the steady state coefficents are as follows: ###

k1=1/(ws*C)

k2=ws*L2

k3=ws*L1

R=rL2+rC

Req=req+rC

K=R^2+(k1-k2)^2

K_ild=k1^2-k1*k2+R*rC

K_ilq=k2*rC+R*k1-k1*rC

Kuo=k1-k2
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B CURRENT CONTROLLER PARAMETERS

Parameters for the PI-based controllers, used in the analysis and experimental measure-

ments, are shown in Table B.1. The general representation for the PI-based controller is

given in (B.1).

GPI = Kp +
Ki

s
(B.1)

Table B.1: Controller parameters.

Controller Proportional gain, Kp Integral gain, Ki

Gcc-d 0.018 22.41
Gcc-q 0.018 22.41
Gvc 0.36 4.47
GPLL 0.67 38.02
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C EXPERIMENTAL SETUP

Fig. C.1: The measurement setup.
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