
Mona Aghababaeetafreshi
Software Defined Radio Solutions for Wireless
Communications Systems

Julkaisu 1595 • Publication 1595

Tampere 2018

Tampereen teknillinen yliopisto. Julkaisu 1595
Tampere University of Technology. Publication 1595

Mona Aghababaeetafreshi

Software Defined Radio Solutions for Wireless
Communications Systems

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Sähkötalo Building, Auditorium SA203,
at Tampere University of Technology, on the 23rd of November 2018, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2018

Doctoral candidate: Mona Aghababaeetafreshi

Laboratory of Electronics and Communications Engineering
Faculty of Computing and Electrical Engineering
Tampere University of Technology
Tampere, Finland

Supervisor: Mikko Valkama, Professor
Laboratory of Electronics and Communications Engineering
Faculty of Computing and Electrical Engineering
Tampere University of Technology
Tampere, Finland

Instructor: Jarmo Takala, Professor
Laboratory of Pervasive Computing
Faculty of Computing and Electrical Engineering
Tampere University of Technology
Tampere, Finland

Pre-examiner:

Pre-examiner and
opponent:

Fernando H. Gregorio, Professor
Electric and Computer Engineering
The National University of South
Bahía Blanca, Argentina

Luigi Carro, Professor
Institute of Informatics
Federal University of Rio Grande do Sul
Porto Alegre, Brazil

Opponent: Janne Janhunen, D.Sc.
Solmu Technologies
Oulu, Finland

ISBN 978-952-15-4254-1 (printed)
ISBN 978-952-15-4260-2 (PDF)
ISSN 1459-2045

ABSTRACT

Wireless technologies have been advancing rapidly, especially in the recent years. Design,
implementation, and manufacturing of devices supporting the continuously evolving technologies
require great efforts. Thus, building platforms compatible with different generations of standards
and technologies has gained a lot of interest. As a result, software defined radios (SDRs) are
investigated to offer more flexibility and scalability, and reduce the design efforts, compared to
the conventional fixed-function hardware-based solutions.

This thesis mainly addresses the challenges related to SDR-based implementation of today’s
wireless devices. One of the main targets of most of the wireless standards has been to improve the
achievable data rates, which imposes strict requirements on the processing platforms. Realizing
real-time processing of high throughput signal processing algorithms using SDR-based platforms
while maintaining energy consumption close to conventional approaches is a challenging topic
that is addressed in this thesis.

Firstly, this thesis concentrates on the challenges of a real-time software-based implementation
for the very high throughput (VHT) Institute of Electrical and Electronics Engineers (IEEE)
802.11ac amendment from the wireless local area networks (WLAN) family, where an SDR-based
solution is introduced for the frequency-domain baseband processing of a multiple-input multiple-
output (MIMO) transmitter and receiver. The feasibility of the implementation is evaluated with
respect to the number of clock cycles and the consumed power. Furthermore, a digital front-end
(DFE) concept is developed for the IEEE 802.11ac receiver, where the 80 MHz waveform is
divided to two 40 MHz signals. This is carried out through time-domain digital filtering and
decimation, which is challenging due to the latency and cyclic prefix (CP) budget of the receiver.
Different multi-rate channelization architectures are developed, and the software implementation
is presented and evaluated in terms of execution time, number of clock cycles, power, and energy
consumption on different multi-core platforms.

Secondly, this thesis addresses selected advanced techniques developed to realize inband full-
duplex (IBFD) systems, which aim at improving spectral efficiency in today’s congested radio
spectrum. IBFD refers to concurrent transmission and reception on the same frequency band,
where the main challenge to combat is the strong self-interference (SI). In this thesis, an SDR-
based solution is introduced, which is capable of real-time mitigation of the SI signal. The
implementation results show possibility of achieving real-time sufficient SI suppression under
time-varying environments using low-power, mobile-scale multi-core processing platforms.

To investigate the challenges associated with SDR implementations for mobile-scale devices with
limited processing and power resources, processing platforms suitable for hand-held devices are

i

ii Abstract

selected in this thesis work. On the baseband processing side, a very long instruction word (VLIW)
processor, optimized for wireless communication applications, is utilized. Furthermore, in the
solutions presented for the DFE processing and the digital SI canceller, commercial off-the-shelf
(COTS) multi-core central processing units (CPUs) and graphics processing units (GPUs) are
used with the aim of investigating the performance enhancement achieved by utilizing parallel
processing.

Overall, this thesis provides solutions to the challenges of low-power, and real-time software-based
implementation of computationally intensive signal processing algorithms for the current and
future communications systems.

PREFACE

This thesis is based on the research work carried out during the years 2014–2017 in the Laboratory
of Electronics and Communications Engineering, Tampere University of Technology, Tampere,
Finland. I would like to gratefully acknowledge the financial support I received from the Tampere
University of Technology Graduate School (during the years 2014–2017), Nokia Foundation,
and Tuula and Yrjö Neuvo Research Fund. The research work carried out for this thesis was
also partially supported by the Finnish Funding Agency for Technology and Innovation (TEKES)
under the Parallel Acceleration (ParallaX) project.

First and foremost, I would like to sincerely thank my supervisors Prof. Mikko Valkama and
Prof. Jarmo Takala for their invaluable help, guidance, and support during these years. It has been
a privilege to learn from their extensive knowledge and experience. I am also very grateful to
Prof. Luigi Carro and Prof. Fernando Gregorio for acting as the pre-examiners of this thesis, and
providing their valuable comments and insights. Furthermore, I wish to thank Prof. Luigi Carro
and D.Sc. Janne Janhunen for agreeing to act as the opponents in the public examination of this
thesis.

I am also very grateful to D.Sc. Toni Levanen, D.Sc. Pekka Jääskeläinen, and D.Sc. Dani Korpi
for sharing their deep knowledge in this field with me along the way. In addition, I wish to thank
my co-authors Lasse Lehtonen, Matias Koskela, D.Sc. Juha Yli-Kaakinen, and Maliheh Soleimani
for our fruitful collaborations.

I would also like to thank all my friends, especially Parinaz, Kamiar, Nader, Afsaneh, Saeed, and
Sajjad who have always lifted my spirits and made life much more fun from the very first days of
my studies in Tampere.

Finally, my deepest and most sincere thanks go to my parents, who have never stopped supporting
and encouraging me in life. None of this would have been possible without their endless love and
support. And last but not least, I would like to express my warmest thanks to Orod. There are no
words to describe how grateful I am to have him both in my personal and professional life.

Espoo, October 2018

Mona Aghababaeetafreshi

iii

Contents

Abstract i

Preface iii

Acronyms vii

List of Publications xi

1 Introduction 1
1.1 Objectives and Scope of the Work . 3
1.2 Main Results and Outline . 4
1.3 Author’s Contributions . 4

2 Wireless Technologies 7
2.1 WiFi and IEEE 802.11ac . 7

2.1.1 History of WiFi . 7
2.1.2 IEEE 802.11ac Features . 8
2.1.3 IEEE 802.11ac PHY Packet Structure 9
2.1.4 IEEE 802.11ac Baseband Processing 9

2.1.4.1 Transmitter Processing . 9
2.1.4.2 Receiver Processing . 11

2.1.5 IEEE 802.11ac Digital Front-End Processing 18
2.1.5.1 Polyphase Halfband Filters 18
2.1.5.2 Cyclic Polyphase Halfband Filters 19

2.2 Future Wireless Systems and Full-Duplex Communication 19
2.2.1 Full-Duplex Communication . 21

2.2.1.1 Digital Self-Interference Cancellation 22
2.2.1.2 Self-Interference Modelling 22
2.2.1.3 Orthogonalization . 23
2.2.1.4 LMS Parameter Learning . 24

3 SDR Solutions for WiFi 27
3.1 Related Work . 27
3.2 Baseband Processing . 29

3.2.1 Transmission Scenarios . 29
3.2.2 Accelerator for Matrix Inversion . 30
3.2.3 Results . 33

3.3 Digital Front-End Processing . 36
3.3.1 Channelization Filtering . 37

v

vi Contents

3.3.1.1 Halfband Filters . 37
3.3.1.2 Non-Halfband Filters . 38

3.3.2 Results . 39

4 SDR Solutions for Full-Duplex Communications 43
4.1 Related Work . 44
4.2 Digital Self-Interference Cancellation . 45
4.3 Results . 47

4.3.1 Digital Self-Interference Canceller Performance 47
4.3.2 Execution Time . 48
4.3.3 Delay . 51
4.3.4 Power Consumption . 52
4.3.5 Energy Consumption . 53

5 Conclusion 55
5.1 Summary and Main Results . 55
5.2 Future Work . 56

Bibliography 57

Publications 65

ACRONYMS

5G fifth generation

6G sixth generation

ALU arithmetic logic unit

ANPI average noise power indicator

AP access point

ASIC application specific integrated circuit

ASIP application specific instruction-set processor

BCC binary convolutional codes

BW bandwidth

COTS commercial off-the-shelf

CP cyclic prefix

CPU central processing unit

CS carrier sensing

CSD cyclic shift diversity

DFE digital front-end

DRAM dynamic random-access memory

DSP digital signal processing

FDD frequency-division duplexing

FEC forward error correction

FFT fast Fourier transform

FIR finite impulse response

vii

viii Acronyms

FPGA field-programmable gate array

GI guard interval

GPP general-purpose processor

GPU graphics processing unit

GSM global system for mobile communications

HARQ hybrid automatic repeat request

HSPA high speed packet access

HT high throughput

I/Q in-phase/quadrature

IBFD inband full-duplex

IEEE Institute of Electrical and Electronics Engineers

IFFT inverse fast Fourier transform

ISM industrial, scientific, and medical

L-LTF non-HT long training field

L-SIG non-HT SIGNAL field

L-STF non-HT short training field

LAN local area networking

LDPC low-density parity check

LMMSE linear minimum mean square error

LMS least mean squares

LNA low-noise amplifier

LS least square

LTE long-term evolution

LUT lookup table

MAC medium access control

MIMO multiple-input multiple-output

MU multi-user

NDP null data packet

NR new radio

OFDM orthogonal frequency-division multiplexing

ix

OpenCL open computing language

PA power amplifier

PE processing element

PHY physical

QAM quadrature amplitude modulation

RCPI received channel power indicator

RF radio frequency

RSNI received signal to noise indicator

SDR software defined radio

SI self-interference

SIMD single instruction multiple data

SoC system on chip

SPMD single program, multiple data

STBC space-time block codes

SVD singular value decomposition

TDD time-division duplexing

UE user equipment

UMTS universal mobile telecommunications system

VHDL VHSIC hardware description language

VHT very high throughput

VHT-LTF VHT long training field

VHT-SIG-A VHT signal A field

VHT-SIG-B VHT signal B field

VHT-STF VHT short training field

VLIW very long instruction word

WCDMA wideband code division multiple access

WLAN wireless local area networks

LIST OF PUBLICATIONS

[P1] M. Aghababaeetafreshi, L. Lehtonen, M. Soleimani, M. Valkama and J. Takala, "IEEE
802.11AC MIMO transmitter baseband processing on customized VLIW processor," in
IEEE International Conference on Acoustics, Speech and Signal Processing, Florence, Italy,
May 4-9, 2014, pp. 7500-7504, doi: 10.1109/ICASSP.2014.6855058.

[P2] M. Aghababaee Tafreshi, L. Lehtonen, T. Levanen, M. Valkama and J. Takala, "IEEE
802.11ac MIMO receiver baseband processing on customized VLIW processor," in IEEE
Workshop on Signal Processing Systems, Belfast, UK, Oct. 22-24, 2014, pp. 1-6, doi:
10.1109/SiPS.2014.6986092.

[P3] M. Aghababaeetafreshi, L. Lehtonen, T. Levanen, M. Valkama and J. Takala, "IEEE
802.11ac MIMO transceiver baseband processing on a VLIW Processor", Journal of Signal
Processing Systems, Oct 2016, 85(1), pp. 167–182, doi: 10.1007/s11265-015-1032-2.

[P4] M. Aghababaeetafreshi, J. Yli-Kaakinen, T. Levanen, V. Korhonen, P. Jääskeläinen, M.
Renfors, M. Valkama and J. Takala, "Parallel processing intensive digital front-end for IEEE
802.11ac receiver," in 49th Asilomar Conference on Signals, Systems and Computers, Pacific
Grove, CA, USA, 8-11 Nov, 2015, pp. 1619-1626, doi: 10.1109/ACSSC.2015.7421422.

[P5] M. AghababaeeTafreshi, M. Koskela, D. Korpi, P. Jääskeläinen, M. Valkama and J. Takala,
"Software defined radio implementation of adaptive nonlinear digital self-interference
cancellation for mobile inband full-duplex radio," in IEEE Global Conference on Signal
and Information Processing, Washington, DC, USA, 7-9 Dec, 2016, pp. 733-737, doi:
10.1109/GlobalSIP.2016.7905939.

[P6] M. Aghababaeetafreshi, D. Korpi, M. Koskela, P. Jääskeläinen, M. Valkama and J. Takala,
"Software defined radio implementation of a digital self-interference cancellation method
for inband full-duplex radio using mobile processors," Journal of Signal Processing Systems,
Oct 2018, 90(10), pp. 1297–1309, doi: 10.1007/s11265-017-1312-0.

xi

CHAPTER 1

INTRODUCTION

With the rapid evolution of wireless network standards, emerges the need for more flexible radios,
which can easily adapt to new technologies. For this reason, the concept of software defined
radios (SDRs) was introduced in the early 1990s [1], and is still being developed to this day. The
aim of SDRs is to liberate the radio implementation from the restrictions of a hard-wired system,
which, as a result, introduces a high degree of flexibility and programmability that cannot be
achieved with the traditional solutions using fixed-function hardware-based approaches.

In addition to offering higher flexibility, SDRs reduce the design efforts considerably, and thus
time-to-market cycles are shortened compared to application-specific solutions. Furthermore,
designing platforms that could support different existing, and even upcoming standards increases
significantly the costs and complexity of the implementation process. Consequently, SDR-based
approaches can, in general, minimize the efforts and costs of design, fabrication, testing, and
maintenance [2, 3].

With SDRs, the characteristics of the radio system, such as bandwidth (BW), air interface protocol,
and functionality would no longer be static. However, the behavior of the radio can be dynamically
modified through software. In other words, a new software upgrade can update the operation of
the radio, rather than having to replace the whole hardware. This facilitates the development of a
multi-standard, multi-band, and multi-functional systems, which, for example, can operate with
different carrier frequencies, BWs, modulation schemes, and coding rates [4]. As a result, a future
can be realized, in which the radio system can be re-configured in the field to operate in a different
frequency band or transmission scenario. Furthermore, SDRs promise to facilitate deployment of
new features and functionalities with the rapid development of technologies.

Some of the characteristics of an SDR architecture include re-programmability, scalability, and
flexibility. Additionally, SDRs are usually associated with commercially available and afford-
able platforms, which support low cost and fast market delivery goals. SDR platforms range
from general-purpose processors (GPPs) and graphics processing units (GPUs) to digital signal
processing (DSP) cores, each offering different degrees of flexibility and development cycles.
Fig. 1.1 provides a perspective into the trade-off between reconfigurability and development time
for some known platforms [4, 5]. One important advantage of GPPs is the very low programming
complexity, which allows for much faster prototyping compared to the other platforms. DSPs,
on the other hand, offer great processing performance, however, they are considered less general

1

2 Chapter 1. Introduction

GPP

DSP

FPGA

ASIC

g
en

e
ral-p

u
rp

o
se

A
p

p
lic

atio
n
-sp

ecific

Rapid prototypingSlow development

Figure 1.1: Trade-off between reconfigurability and development cycles in different platforms

purpose than field-programmable gate arrays (FPGAs) and GPPs, as they are optimized for digital
signal processing algorithms.

In today’s radio systems, programmable dedicated hardware is typically used for the main
processing tasks, particularly at physical layer, while control tasks are carried out using GPPs.
However, ideally, in an entirely software-defined system, all the radio functionality could be
implemented on general-purpose processing platforms, and only antennas, basic amplification and
coarse filtering stages, and digital-to-analogue and analogue-to-digital converters would be added.
Realizing such systems comes with many challenges which need to be studied and overcome.

Application specific hardware platforms are believed to provide better performance compared to
flexible software-based solutions as they are tailored to a dedicated functionality. Furthermore,
being customized for specific operations means less area on the silicon, and consequently lower
power consumption. Thus, the feasibility of the software-based solutions as a more flexible,
yet efficient, alternative to the application specific integrated circuits (ASICs) is an interesting
research area.

With the ever-growing amount of wireless data and its applications, wireless networks are con-
stantly evolving to meet the demands for higher capacity and more efficiency. One of the
most widely used wireless connectivity standards is the Institute of Electrical and Electronics
Engineers (IEEE) 802.11 wireless local area networks (WLAN) family, which is continuously
developing. Thus, utilization of software-based solutions in this area can considerably accelerate
the progress, improve service life-cycle, and portability to other platforms.

The state of the art technology in the WLAN family is the IEEE 802.11ac. The 802.11ac
amendment is designed to significantly improve the throughput to above gigabit ranges. This
is achieved by using wider bandwidth, up to 160 MHz, in the 5 GHz industrial, scientific, and
medical (ISM) band. Furthermore, higher order modulation, up to 256-quadrature amplitude
modulation (QAM), and multi-user (MU) multiple-input multiple-output (MIMO) with up to eight

1.1. Objectives and Scope of the Work 3

spatial streams are defined in the standard specification [6, 7]. A software-based implementation
of the IEEE 802.11ac transceiver can offer high degree of flexibility in terms of adjusting the
bandwidth, modulation order, coding rate, and MIMO configuration.

As available spectral resources for wireless communications are scarce, pursuing high spectral
efficiency is a common target for most of the wireless standards. As a result, different technologies
are being studied and developed which help to improve the efficiency of spectrum use, e.g., inband
full-duplex (IBFD) communications. Full-duplex communication systems can utilize the spectral
resources more efficiently by transmitting and receiving simultaneously on the same frequency
within the same device, while in more ordinary duplexing methods, transmission and reception are
based on sharing either the time-domain (time-division duplexing (TDD)) or frequency-domain
(frequency-division duplexing (FDD)) resources. Thus, IBFD systems can potentially double
spectral efficiency compared to traditional duplexing systems. However, deployment of these
systems comes with challenge, particularly the inherent self-interference (SI) [8–11].

The cancellation of the SI signal is, in theory, rather simple as the transmitted signal is known by
the transceiver. However, in practice, it is far more challenging since the overall effective coupling
channel is not accurately known [12]. Furthermore, the system should dynamically adapt to the
constantly changing environment, especially around a mobile device, which could benefit from
the flexibilities offered by SDRs.

1.1 Objectives and Scope of the Work

This thesis addresses current and future wireless technologies and the challenges related to their
implementation. The demanding requirements of these technologies, such as very high throughput,
has led to very strict timing constraints for the implementation platforms. These constraints are
even more challenging in case of mobile terminals with less processing and power resources. In
the work carried out in this thesis, we target processing platforms which are suitable for hand-held
devices.

This research work evaluates the implementation of different computationally intensive digital
signal processing algorithms from physical (PHY) layer baseband and digital front-end (DFE)
processing of the IEEE 802.11ac standard to full-duplex communications systems on different
mobile-scale platforms. The solutions are examined in terms of performance, power, and en-
ergy consumption to investigate, the extent to which these solutions can be utilized in today’s
communications systems.

In this thesis work, a very long instruction word (VLIW) processor, specifically designed for
wireless communication applications, is selected for the IEEE 802.11ac baseband processing. For
the DFE channelization concept and the SI canceller implementation, multi-core general-purpose
central processing units (CPUs) and GPUs are used to investigate the performance enhancement
achieved by utilizing parallel processing. This topic has gained a lot of interest since clock rate
scaling and aggressive uniprocessor performance scaling has reached its limits [13].

The main target of the research carried out during the work of this thesis is to develop and
analyze software-based solutions for the implementation of the aforementioned computationally
intensive algorithms on selected processors. Mainly, commercial off-the-shelf (COTS) platforms
are adopted, which highlight the benefits of SDR based implementations. Then, the feasibility of
the proposed solutions for achieving real-time operation is investigated. Furthermore, power and
energy consumption are measured to evaluate the viability of the implementations.

The feasibility of the proposed solutions is studied by measuring the performance of the implemen-
tations. The objective is to deliver reprogrammable solutions that can provide real-time processing,

4 Chapter 1. Introduction

while consuming relatively low power/energy suitable for mobile devices. The SDR-based im-
plementation is declared feasible when execution times and consumed power/energy are less or
comparable with the traditional fixed-function implementations. In case of mobile-scale devices,
where processing and energy resources are more limited, the requirements are even more strict.
This thesis proposes software-based solutions that can meet the tight timing and power/energy
consumption requirements of today’s wireless standards while offering high flexibility.

1.2 Main Results and Outline

The main contributions of the Thesis can be highlighted as follows:

• A software-based solution for the MIMO transmitter and receiver baseband processing
conforming to the IEEE 802.11ac standard is proposed, and the feasibility of achieving a
real-time operation using a customized VLIW processor is shown by manually optimizing
the implementation and exploiting the processor intrinsic instructions [P1][P2][P3].

• A DFE concept to divide the 80 MHz bandwidth of the IEEE 802.11ac is introduced, which
uses circular and linear filtering based multi-rate channelization architectures. Additionally,
an SDR implementation on mobile-scale COTS CPUs and GPUs is presented and analyzed,
which is optimized by exploiting the parallel resources of the processors [P4].

• A self-adaptive nonlinear digital self-interference cancellation method for full-duplex
transceivers is presented. Furthermore, an SDR based implementation is proposed for the
SI canceller, which optimally parallelizes the computing resources of multi-core CPUs and
GPUs for better performance [P5][P6].

• In all of the above cases, implementations are evaluated and the performance results are
reported.

This thesis is divided into five chapters. Chapter 2 provides an introduction to the wireless
technologies investigated in the scope of this thesis and presents the implemented algorithms.
Chapter 3 describes the proposed implementations for IEEE 802.11ac baseband and DFE pro-
cessing, where the main existing challenges are explained and solutions are provided. Then the
performance of the implementations is evaluated and the results are reported in terms of execution
time, and power/energy consumption. Chapter 4 gives a detailed description of the implementation
methods for an adaptive digital SI canceller method used in IBFD systems. The corresponding
challenges are pointed out and addressed, and finally the implementation results are discussed and
analyzed. Chapter 5 presents the conclusions and discusses open issues and future directions.

1.3 Author’s Contributions

The Author of the Thesis has been the main author in all the publications [P1]-[P6]. In [P1]-
[P3], the Author of this thesis has done mathematical algorithm modifications to reduce the
computational complexity of the algorithms for implementation purposes. The author has carried
out the software implementation for the algorithms and further manual optimizations for better
performance on the selected platforms using the processor’s intrinsic instructions. Additionally,
all the performance measurements have been done by the Author.

In [P4], the Author has designed and optimized the open computing language (OpenCL) kernels
implementing the channelization filters. The Author has also carried out the measurements related
to the implementation performance.

1.3. Author’s Contributions 5

In [P4]-[P6], the Author has done the software implementations and manual optimizations for
parallel processing on the selected multi-core platforms. The author has modified parts of the
original methods with the aim of reducing the computational complexity of the algorithms to fit
the available processing resources of the selected COTS platforms. Furthermore, the performance
evaluations for the implementations were carried out by the Author.

CHAPTER 2

WIRELESS TECHNOLOGIES

Wireless communication systems continue to evolve to provide faster, more reliable and more
energy efficient connectivity to Internet and other wireless applications. Based on the current
predictions, the overall amount of wireless data will increase exponentially in the coming years.
This, along with the numerous new wireless applications emerging everyday have resulted in the
need for great advances and improvements in the future generations of wireless standards. In this
chapter, first the IEEE 802.11ac, a leading WLAN technology is introduced. Then, addressing
one of the most important issues in wireless networks, i.e. limited spectral resources, IBFD
communication systems, and the corresponding challenges and solutions are described.

2.1 WiFi and IEEE 802.11ac

WiFi is a local area networking (LAN) technology for wireless connectivity, which provides
indoor broadband coverage for fixed, portable, and mobile stations. WiFi is developed by IEEE
standards association and promoted by the WiFi Alliance®. First IEEE 802.11™ standard was
published in 1999, and since then it has been growing through different amendments to meet the
high demands for more traffic, increasing number of devices, and new applications [14].

2.1.1 History of WiFi

Introduced in 1999, the IEEE 802.11b with maximum raw data rate of 11 Mbps using the 2.4
GHz band, established a basis for the WiFi industry. However, with the growing popularity, and
thus the big market for WiFi, grew the expectations for higher data rates, better quality, and more
security [15]. Thus, new amendments had to be developed to add support for higher data density
and new applications.

The next amendment, the IEEE 802.11a, operated in the 5 GHz band and increased the throughput
to 54 Mbps. However, due to lack of backward compatibility with the 2.4 GHz band used in
802.11b devices, it required two radios, and thus failed to gain a big market.

The amendment which followed 802.11a was the IEEE 802.11g. Similar to the 802.11b, this
amendment used the 2.4 GHz band, and was able to achieve data rates up to 54 Mbps using

7

8 Chapter 2. Wireless Technologies

20MHz

40MHz

80MHz

160MHz

Examples
of Non-

contiguous
VHT80+80
MHz Setup

5170
MHz

5330
MHz

5490
MHz

5730
MHz

5735
MHz

5835
MHz

These frequencies
are available in
Europe only for

short range device
(SRD) connectivity

Figure 2.1: The different channelization configurations for the IEEE 802.11ac at the 5 GHz band

orthogonal frequency-division multiplexing (OFDM). Unlike the 802.11a, the 802.11g was
backward compatible with 802.11b, and became a big success.

As WiFi Continued to develop, the IEEE 802.11n amendment was introduced with higher data
rates, bigger range, improved security, and more reliability. The 802.11n standardized the use
of MIMO and was able to yield a throughput of 150 Mbps. Both 2.4 and 5 GHz bands were
supported by this amendment and it took advantage of a 40 MHz bandwidth. The 802.11n was
also known as the high throughput (HT) amendment.

Next section describes the IEEE 802.11ac, also referred to as the very high throughput (VHT)
amendment, and its main improvements compared to the 802.11n. The higher performance
delivered by the 802.11ac opened the door to various new application areas. As an example,
high definition video streaming is made possible, which was a challenge for the existing 802.11n
devices.

2.1.2 IEEE 802.11ac Features

The IEEE 802.11ac amendment aims to provide extremely higher throughput and better user
experience quality compared to its predecessor. For this reason, the 802.11ac has adopted several
new techniques to improve its performance, some of which are briefly introduced in the following.

More Channel Bonding The IEEE 802.11ac supports channel bonding up to 160 MHz. Thus,
two non-overlapping adjacent 40 MHz channels can be used to form an 80 MHz channel. Further-
more, two 80 MHz channels can be used to form either a contiguous or non-contiguous 160 MHz
channel. The use of the 160 MHz channel is not mandatory in this amendment. The possibility of
a non-contiguous channel setup provides more flexibility for channel assignment in 802.11ac [16].
Examples of different channelization configurations for the 802.11ac at 5 GHz band can be seen
in Fig. 2.1.

Mandatory 5 GHz Operation The previous amendments mostly operated in the 2.4 GHz band,
and the 802.11n supported the optional use of 5 GHz band. However, as a result of the legacy WiFi
devices crowding the 2.4 GHz band, this band is susceptible to higher interference. Furthermore,
more non-overlapping channels are available in the 5 GHz band, which provides more flexibility
for channel assignment. Thus, the IEEE 802.11ac mandates operation in the 5 GHz band [17].

2.1. WiFi and IEEE 802.11ac 9

L-STF

8μs

L-LTF

8μs

L-SIG

4μs

VHT-SIG-A

8μs

VHT-

STF

4μs

VHT-

LTF 1

4μs

VHT-

LTF n

4μs

VHT-

SIG-B

4μs

DATA

 1

3.6μs

DATA

n

3.6μs

...

The Legacy Portion The VHT Portion

...

Figure 2.2: IEEE 802.11ac PHY layer packet structure assuming short GI for the data symbols.

Higher Order Modulation The IEEE 802.11ac allows use of denser modulation schemes
compared to its predecessors. Increasing from the 64-QAM used in the 802.11n, this amendment
supports constellation configurations up to 256-QAM, yielding up to 33% increase in data rates
[7].

Higher Order MIMO While the HT amendment, the first to introduce MIMO in WiFi specifi-
cations, allowed four spatial streams, the VHT adds support for up to eight spatial streams. This
improvement can double the total network throughput compared to the 802.11n [17].

Multi-User MIMO The IEEE 802.11ac is the first amendment to introduce MU-MIMO. This
feature allows multiple users to be scheduled in the same time-slot, which means that the access
point transmitter can simultaneously transmit multiple packets to multiple users by diving the
available streams among the stations.

2.1.3 IEEE 802.11ac PHY Packet Structure

The PHY layer packet defined in the IEEE 802.11ac consists of a header and a data part. The
header itself comprises of non-HT (legacy) and VHT fields. The legacy field includes non-
HT short training field (L-STF), non-HT long training field (L-LTF), and non-HT SIGNAL
field (L-SIG). VHT signal A field (VHT-SIG-A), VHT short training field (VHT-STF), VHT long
training field (VHT-LTF), and VHT signal B field (VHT-SIG-B) are the VHT specific portions.
The PHY layer packet structure defined in this specification can be seen in Fig. 2.2, where the
duration of each field, assuming a short guard interval (GI) for the data symbols, is shown.

2.1.4 IEEE 802.11ac Baseband Processing

This section describes the transceiver functional blocks of the IEEE 802.11ac baseband processing
which were included in the works carried out for this thesis.

2.1.4.1 Transmitter Processing

In this section, only the transmitter processing related to DATA symbols is covered, as the
processing of preamble symbols is rather straight-forward, and thus less computationally intensive.
Fig. 2.3 illustrates the building blocks related to the processing of a DATA symbol, where the grey
colored blocks are not included in the work of this thesis.

It is assumed that, first, the bits are scrambled, and then encoded in the forward error correction
(FEC) unit, using either binary convolutional codes (BCC) or low-density parity check (LDPC)
codes. The high complexity encoding is to be carried out on a separate hardware accelerator.
Then, the rest of the processing is performed using our proposed software-based solution. At the
final stage, inverse fast Fourier transform (IFFT) is executed on a dedicated hardware, after which
the time-domain processing starts.

10 Chapter 2. Wireless Technologies

Constellation

Mapper

CSD

CSD

.

.

.

.

.

.

S
tr

e
a

m
 P

a
r
se

r

Tone

Mapper

Tone

Mapper

S
T

B
C

S
p

a
ti

a
l

M
a

p
p

in
g

Constellation

Mapper

S
cr

a
m

b
le

r

F
E

C
 e

n
c
o
d

e
r

IF
F

T
 +

 C
P

Figure 2.3: Principal block diagram of the IEEE 802.11ac transmitter baseband processing. The blocks
marked with grey color are not included in the software-based implementation.

The functionality of the transmitter blocks, implemented in the work of this thesis, are briefly
explained in the following.

Stream Parsing To create the required number of spatial streams, the incoming bits from the
encoder are divided into the number of spatial streams (Nss). Each stream receives a group of s
bits in a round robin fashion, as defined in (2.1).

s = max

{
1,
NBPSCS

2

}
(2.1)

Here, NBPSCS is the number of coded bits per single subcarrier for each spatial stream and is
equivalent to the modulation order.

According to (2.1), having 256-QAM modulation, s would be equal to four. Thus, in case of
Nss = 2, each of the two streams receives a block of four bits in each round, thus dividing the
incoming bit stream [y0, y1, y2, . . . , yi] into streams of [y0, y1, y2, y3, y8, y9, . . .], and [y4, y5,
y6, y7, y12, y13, . . .].

Modulation Mapping Each group ofNBPSCS bits received from the stream parser are mapped
to constellation points. BPSK, 16-QAM, 64-QAM, or 256-QAM with Gray-coded mapping can
be used as the modulation scheme. The resulting complex numbers are normalized by a factor of
Kmod. Thus, output values are calculated as:

dmod = (I +Qj)×Kmod. (2.2)

With 256-QAM, the modulation scheme employed in this work, we have: Kmod = 1√
170

[7].

LDPC Tone Mapping Since LDPC coding is selected as the FEC method here, LDPC tone
mapping should be carried out after the modulation. The purpose of tone mapping is to achieve
full frequency diversity in 80 MHz and 160 MHz bands. The tone mapper places the received
consecutive constellations at tones with distance DTM from each other. The LDPC tone mapping
distance parameter DTM is constant for each bandwidth. Fig. 2.4 illustrates the tone mapping
process assuming 80 MHz bandwidth (DTM = 9).

2.1. WiFi and IEEE 802.11ac 11

0 1 2 3 4 5 6 7 . . .

0 1 2 3 4 5 6 7 . . .

Symbol stream to be tone mapped

Tone mapped symbol stream

Figure 2.4: The tone mapping process for 80 MHz bandwidth

STBC Coding A generalized version of the well-known Alamouti codes [18], space-time block
codes (STBC), is performed at this stage. Space-time coding exploits spatial and temporal
diversity by transmitting multiple copies of a data stream over different antenna streams. This
helps to compensate for multipath fading, and as a result, higher reliability and robustness of data
transmission is achieved. STBC codes are orthogonal and can achieve full diversity.

Having a two-antenna configuration with one spatial stream, STBC coding is performed as follows.
At time instance t1, antenna 1 and antenna 2 transmit symbols x1 and x2, respectively. Then, at
time instance t2 = t1 + T , symbols −x∗2 and x∗1 are transmitted from antenna 1 and antenna 2,
respectively. Here, T is the symbol duration, and x∗ represents the complex conjugate of symbol
x.

CSD Cyclic shifts, referred to as cyclic shift diversity (CSD), are performed on the signal in
order to decorrelate space-time streams. As a result, there will be a large phase shift between
the signals transmitted from different antennas, and unwanted beamforming is avoided. These
phase shifts are translated to delays in time-domain. Different shift values are used for VHT and
non-VHT fields.

Spatial Mapping This last step performs a mapping between the space-time streams and the
antennas. Thus, the final signals to be transmitted are produced at this stage. In the scope of
this work, space-time streams are mapped to the transmit antennas directly after getting scaled
by a normalization factor. Scaling factor is defined as

√
NSTS , where NSTS is the number of

space-time streams.

2.1.4.2 Receiver Processing

In the receiver side, it is assumed that, first, time-domain processing is carried out, and then fast
Fourier transform (FFT) is performed in a dedicated hardware unit. The samples then go through
the processing implemented in the work of this thesis, shown in Fig. 2.5 and Fig. 2.6. Finally, at
the last stage, LDPC decoding and descrambling are carried out in a separate hardware.

As the received preamble symbols are used to measure received signal quality and estimate the
channel, the processing carried out on these symbols in the receiver is much more complex than

LMMSE

Channel

Estimator

SINR

Estimation

Process & Detect

DATA Field
MAC

Figure 2.5: Overall logical block diagram of the receiver side processing

12 Chapter 2. Wireless Technologies

Frequency

Error

Tracking

.

.

.

Frequency

Error

Tracking

.

.

.

Decode

STBC

Decode

STBC

 Tone De-

mapping

Tone De-

mapping

Soft Bit

Detection

Soft Bit

Detection

.

.

.

.

.

.

S
tr

e
a

m
 D

e
-p

a
rs

e
r

F
E

C
 d

ec
o
d

e
r

D
e
sc

ra
m

b
le

r

Figure 2.6: Principal block diagram of the IEEE 802.11ac receiver baseband processing. The blocks marked
with grey color are not included in the software-based implementation.

the transmitter side. Thus, the receiver processing related to the preamble symbols is described in
this section in addition to the DATA processing.

The stream de-parser and LDPC tone de-mapper blocks in the receiver simply reverse the func-
tionality of their counter blocks in the transmitter. Thus, they are left out from the discussions of
this section.

The functionality of the receiver blocks, implemented in the work of this thesis, are briefly
explained in the following.

SINR Estimation SINR measurement is carried out in the receiver to evaluate the quality of
the received signal. This information then can be sent to the transmitter to adjust the transmit
power, or the modulation and coding scheme. The calculated indicators are received channel
power indicator (RCPI), average noise power indicator (ANPI), and the received signal to noise
indicator (RSNI).

RCPI RCPI measures the received radio frequency (RF) power in the channel, which includes the
signal, noise, and interference. It is measured over the DATA portion of the received frame.
However, if a null data packet (NDP) is received, VHT-SIG-B or VHT-LTF symbols can
be used. The power is measured over all active non-pilot subcarriers and is then averaged
over all antennas. Thus, RCPI can be calculated as:

RCPI =
1

NRx
NscNd

∑

Rx

∑

d

∑

i∈I
|yRx,d,i|2 , (2.3)

where Rx = 1, 2, . . . , NRx
is the receiver antenna index, d = 1, 2, . . . , Nd is the DATA

symbol index, and Nsc = |Iactive, non−pilot subcarriers|, where |I| is the cardinality of the
set I .

In this implementation, calculation is carried out after reception of each DATA symbol, and
the average is updated with every symbol until reception of the whole frame is completed.

ANPI ANPI is a medium access control (MAC) layer indicator, which calculates average noise
plus interference power, and is used for symbol detection. ANPI can be measured when
the channel is idle as defined by three simultaneous conditions: 1) the virtual carrier

2.1. WiFi and IEEE 802.11ac 13

sensing (CS) mechanism indicates idle channel, 2) the station (STA) is not transmitting a
frame, and 3) the STA is not receiving a frame [14].

ANPI can be calculated over any received frame during any period. In this work, it is
calculated over non-DC null subcarriers. L-STF and VHT-STF are selected for ANPI
measurement, as these symbols include many zero-valued subcarriers, in addition to the
non-active carriers. This means that any change in their values can be considered as noise.
Thus, ANPI can be written as:

ANPI =
1

NRxNz

∑

NRx

∑

Ni∈I

|yRx,i|2 , (2.4)

where Nz = |Iactive, zero−valued pilot subcarriers|.
For the purpose of this measurement, we assume that the accuracy of time and frequency
synchronization is enough, in a way that zero-valued subcarriers would be only carrying
noise.

RNSI RSNI is the signal to noise plus interference ratio of a received frame as defined in [14].
Having calculated RCPI and ANPI, RNSI can be written as:

RSNI = 10 log10

RCPI −ANPI
ANPI

, (2.5)

where ANPI and RCPI are in linear scale. Averaging RCPI, ANPI, and RSNI can help to
improve stability. It should be noted that averaging must be done closely in time for high
correlation.

Channel Estimation The preamble symbols used for channel estimation are L-LTF and VHT-LTF
symbols. Two channel estimates are required in the receiver, one for the precoded and one for
the non-precoded symbols. For this reason, VHT-LTF symbols are precoded as defined in [7],
whereas L-LTF symbols are not.

Channel estimator for the legacy part Having transmitted the training symbols xL−LTF,k, the
received L-LTF symbols per symbol index t, t = [1, 2], per subcarrier index k, k ∈
Iactive, non−pilot, L−LTF subcarriers, can be written as:

yk,t = HkxL−LTF,k + nk,t

= xL−LTF,k




1
NTx

∑NTx
j=1 h1,j
.
.
.

1
NTx

∑NTx
j=1 hNRx ,j




+ nk,t

= xL−LTF,kheff,k + nk,t,

(2.6)

where Hk is a (NRx ×NTx) complex channel matrix, xL−LTF,k is a (NTx × 1) real vector
containing xL−LTF,k symbols, nk,t is a (NRx

× 1) complex Gaussian noise vector, and
heff,k, expanded in (2.6), is the legacy (NRx

× 1) effective channel vector.

Having transmitted only one and minus one symbols in the two L-LTF symbols t = [1, 2],
the effective least square (LS) channel estimate per subcarrier k can be written as:

ĥLS,k =
xL−LTF,k

2

2∑

t=1

yk,t. (2.7)

14 Chapter 2. Wireless Technologies

The calculated LS channel estimate is used for linear minimum mean square error (LMMSE)
channel estimation, FFT smoothing and wiener filtering.

Now, the LMMSE channel estimate per subcarrier k can be calculated using the LS channel
estimate from (2.7) as:

ĥLMMSE,k = ĥLS,kĥ
H
LS,k

× (ĥLS,kĥ
H
LS,k +

σ2
n

2
INRx

)−1ĥLS,k
. (2.8)

Here hH is the Hermitian transpose of vector h, and σ2 is the noise variance.

Channel estimator for the VHT part Using the above calculated legacy channel estimates,
the L-SIG and VHT-SIG-A symbols can be detected. Thus, the number of transmitted
VHT-LTF symbols (NV HT−LTF) will be known for the VHT channel estimation.

As defined by [7], these symbols are precoded with precoding matrix P. Furthermore,
precoder matrix Qj j ∈ Iactive, V HT−LTF subcarriers may also be applied to VHT-LTF
symbols. Having transmitted the training symbols xV HT−LTF,k, the received VHT-LTF
symbols per symbol index t, t = [1, . . . , NV HT−LTF], per subcarrier index k, k ∈
Iactive, non−pilot, V HT−LTF subcarriers, can be written as:

yk,t = HkQkP(:, t)xV HT−LTF,k + nk,t

= Heff,kP(:, t)xV HT−LTF,k + nk,t.
(2.9)

The VHT-LTF symbols are precoded by matrix P and averaged over NV HT−LTF symbols
to achieve effective channel estimates per space time stream. For clearer presentation,
received samples on subcarrier k from all Rx antennas, and VHT-LTF symbols are put into
a column vector. Thus, the received VHT-LTF symbols can be shown as:

yk =




yk,1
.
.
.

yk,NV Ht−LTF




= (P⊗ INRx
)T




heff,k,1
.
.
.

heff,k,NV HT−LTF




× xV HT−LTF,k + nk.

. (2.10)

Here P ⊗ INRx
represents Kronecker tensor product of Matrices P and INRx

. Now the

2.1. WiFi and IEEE 802.11ac 15

received VHT-LTF training symbols after decoding diversity coding can be written as:

ỹk =
1

NV HT−LTF
(P⊗ INRx

)




yk,1
.
.
.

yk,NV HT−LTF




(2.11)

= xV HT−LTF,k




heff,k,1
.
.
.

heff,k,NV HT−LTF




+ zk,

where zk ∈ CN (0,
σ2
n

NV HT−LTF
). Thus, the effective LS channel estimate per subcarrier k

can be given as:
Ĥeff,LS,k = xV HT−LTF,k

ˆ̃Yk, (2.12)

where ˆ̃Yk contains weighted received symbols ỹk from all NRx antennas.

Using the effective LS channel estimate from (2.12) and (2.8), the LMMSE channel estimate
for the VHT part can be expressed as:

Ĥeff,LMMSE,k = Ĥeff,LS,kĤ
H
eff,LS,k (2.13)

× (Ĥeff,LS,kĤ
H
eff,LS,k + σ2

nINRx
)−1Ĥeff,LS,k.

Equation (2.13) should be simplified to avoid the complicated computations involved in
the matrix inversion required for LMMSE channel estimation. We stack the columns of the
effective (NRx

×NTx
) LS channel estimate for NRx

= NTx
= 2 on top of each other in a

way that ĥLS = [h1, h2, h3, h4]T . Thus, LMMSE channel estimate can be re-written as:

ˆ̃
hLMMSE =




h1
h2
h3
h4



[
h∗1h

∗
2h
∗
3h
∗
4

]

×







h1
h2
h3
h4



[
h∗1 h∗2 h∗3 h∗4

]
+ N




−1 


h1
h2
h3
h4


 ,

(2.14)

where h∗ is the complex conjugate of h, and N = σ2
nINRx

. Using the Shannon-Morrison
law [19], (2.14) can be simplified to:

ˆ̃
hLMMSE =

h1h
∗
1 + h2h

∗
2 + h3h

∗
3 + h4h

∗
4

σ2
n + h1h∗1 + h2h∗2 + h3h∗3 + h4h∗4




h1
h2
h3
h4




=
ĥLSĥTLS × conj(ĥLS)

σ2
n + ĥTLS × conj(ĥLS)

. (2.15)

16 Chapter 2. Wireless Technologies

Same solution can be applied to reduce the computational complexity associated with
matrix inversion of a NRx

= NTx
= 4 MIMO antenna configuration.

Frequency Domain Pilot Based Residual Frequency Error Tracking This procedure is car-
ried out to estimate and correct the frequency error of the received symbols. The frequency error
on the received pilot subcarriers is estimated by calculating the mean of phase angle differences
between the current pilots and the ones from the preceding symbol.

As the received pilots can have low power due to the frequency selective channel fading, we define
a weighting vector for the pilots to reduce the degradation of phase rotation estimates. Denoting
the power of each received subcarrier as σ2

IP (Np)
, the weighting vector w can be written as:

w =
1

∑Np

i=1 σ
2
IP (i)

[
σ2
IP (1)σ

2
IP (2) · · ·σ2

IP (Np)

]T
, (2.16)

where Np is the number of pilot subcarriers in IP set (Np = |IP |).
The phase rotation estimate between pilot subcarriers of two consecutive symbols at time instances
t and t− 1, produced as a result of frequency error Ferror, can be written as:

Θ̂t = wT (arg (Pt−1)− arg (Pt)) , (2.17)

where arg (x) returns the argument of the complex number x, and t, t = [1, . . . Nt] is the data
symbol index. Here, data symbol zero (t = 0) is the VHT-SIG-B symbol.

Now frequency error at symbol index t can be written as:

F̂error,t =
1

2πt (Ns +NGI)

t∑

i=1

Θ̂i, (2.18)

where Ns denotes the number of subcarriers, and NGI is the number of GI samples. The phase
rotation estimates are averaged over the symbols, and the accuracy of the estimate is improved by
the end of the DATA field.

Thus, the frequency error of received symbols per subcarrier k can be corrected by:

ŷk = exp

(
j

t∑

i=1

Θ̂i

)
yk. (2.19)

Symbol Detection Symbol detection is carried out using the LMMSE channel estimates ob-
tained by (2.13). First the symbol detection matrix per subcarrier k is calculated as:

Dcoeff,k = (ĤH
k Ĥk + σ2

nINSTS
)−1ĤH

k , (2.20)

where Ĥk is the LMMSE channel estimate and NSTS is the number of space time streams.

Now the received symbols per subcarrier k can be detected as:

x̂ = Dcoeff,kyk. (2.21)

In case of STBC coding, channel estimates and received symbols should be defined accordingly.
For instance, in case of NTx

= NRx
= 2, and STBC coding, Ĥk is written as:

2.1. WiFi and IEEE 802.11ac 17

Re

Im

xx0

xx1

Received subcarrier

Constellation point

Distance to nearest

0 or 1

Figure 2.7: Soft bit detection

Ĥk =




h11 h12
h21 h22
h∗12 −h∗11
h∗22 −h∗21


 , (2.22)

where matrix elements hij denote the channel from ith receiver antenna to jth transmitter antenna.

Furthermore, the received symbols vector yk, having NTx
= NRx

= 2 antenna setting and STBC
coding, is written as:

yk =




y11
y12
y∗21
y∗22


 , (2.23)

where yij is the received symbol at time slot i on receiver antenna j.

Channel estimate matrix and received symbols vector from (2.22) and (2.23) can be similarly
extended for a NTx

= NRx
= 4 antenna configuration with STBC coding.

Similar to LMMSE channel estimation, calculation ofDcoeff,k involves a matrix inversion, which
cannot be simplified in a similar manner. More details on reducing the complexity of symbol
detection can be found in Chapter 3.

Soft Bit Detection The detected symbols go through tone de-mapping and arrive at soft bit
detection block. In this step demodulation is carried out, and symbols are converted to bits. First,
the corresponding constellation point is found for each symbol. Then, for each bit position, the
difference between the distances to the nearest zero and one bit for the constellation point is
calculated. This process is illustrated in Fig. 2.7. This method helps to reduce the complexity of
soft bit detection by only calculating the distance to the nearest one and zero bits.

LDPC Decoding Similar to LDPC coding in the transmitter side, LDPC decoding is assumed
to be carried out in a coarse-grain accelerator in the design. This accelerator can function in

18 Chapter 2. Wireless Technologies

RF LNA

AGC

LPF

LPF

AGC

I/Q LO

A/D

A/D

0

0

-40 MHz 0 40 MHz

Figure 2.8: The overall receiver principle with digital channelization filtering yielding two 40 MHz sub-
signals.

parallel with the rest of the frequency domain processing. The existing literature provides many
implementations of LDPC architecture [20–22].

2.1.5 IEEE 802.11ac Digital Front-End Processing

This section describes a digital front-end concept developed for the IEEE 802.11ac receiver. The
IEEE 802.11ac allows usage of both 80 MHz or 160 MHz bandwidths. The 80 MHz waveform is
primarily comprised of two 40 MHz sub-signals, with three null subcarriers in between. Thus,
with precise time-domain filtering, the 80 MHz band can be divided into two 40 MHz signals.

Then, having divided the waveform, the rest of the processing can be done with less complexity
and in parallel for the two sub-bands. Furthermore, existing hardware for the IEEE 802.11n, which
primarily used a 40 MHz band, can be employed. Including the chain from RF to baseband, the
receiver principle incorporating this channelization concept is depicted in Fig 2.8. This concept
can also be extended to the 160 MHz channel setup, introduced in the IEEE 802.11ac.

In this work, we focus on the 80 MHz bandwidth with 256 subcarriers, of which 234 are data and
eight are pilot subcarriers. Thus, the positive and negative frequency components will each have
121 active subcarriers, resulting in k = ±[2, 3, . . . , 122], and the three subcarriers around DC,
k = [−1, 0, 1] are zero.

The symbol duration in IEEE 802.11ac is defined as 4 µs, from which 800 ns is reserved for the
GI. Having FFT size of 256, this translates to a cyclic prefix (CP) of 64 samples. Linear filtering
is used to divide the signal into two 40 MHz waveforms, so that they can be further processed in
parallel using two 128 point FFTs.

This channelization concept can be realized using a finite impulse response (FIR) filter. Further-
more, to reduce the computational complexity of the design, and minimize the required number
of multiplications, halfband filters are selected.

2.1.5.1 Polyphase Halfband Filters

Halfband filters are commonly used in many digital communication systems, due to their efficiency
in multi-rate applications. The transfer function for a halfband FIR filter is of the form [23]:

2.2. Future Wireless Systems and Full-Duplex Communication 19

H(z) =

2M∑

n=0

h[n]z−n,

h[2M − n] = h[n].

(2.24)

In these filters,
h[M] = 1/2,

h[M + 2r] = 0, for r = ±1,±2, . . . ,±(M − 1)/2,
(2.25)

where M is an odd integer.

A highpass/lowpass filter pair satisfying these conditions can be realized using a type II (M is
odd) FIR transfer function G(z2) with a delay of M as [23]:

H(z) = G(z2)± 1

2
z−M , (2.26)

where the order of the overall transfer function is 2M and the lowpass/highpass filter is realized
by the plus/minus sign.

The magnitude response of the halfband and analytical filters are shown in Fig 2.9a and Fig 2.9b,
respectively.

To decimate the signal by two, half of input samples go through G(z) and half through 1
2z
−M

filter. Thus, each filter branch works at the same rate as the output, which is half of the input
sample rate. This structure is illustrated in Fig 2.10.

2.1.5.2 Cyclic Polyphase Halfband Filters

The linear halfband filter designed for channelization, described in the previous section, increases
the time dispersion of the received signal, which invades the CP. To avoid the increase in length
of the impulse response, cyclic convolution can be adopted instead of linear convolution. This is
an effective solution, since cyclic convolution is carried out after CP removal, and thus CP would
not be compromised. Cyclic filtering is performed block-wise in a way that the last 2M produced
samples are added to the beginning of the block. An illustration of cyclic convolution using linear
halfband filtering can be found in Fig. 2.11 [24].

2.2 Future Wireless Systems and Full-Duplex Communication

One common target being pursued in the new generations of wireless networks is providing
very high capacity to meet the expected dramatic growth in mobile traffic. One example is the
upcoming generation of the 3GPP cellular networks, i.e. fifth generation (5G), which is currently
being standardized and developed, and aims for a 1000-fold increase in capacity compared to its
preceding generations [25, 26].

Such big growth in capacity can be achieved by combining different mechanisms, namely increas-
ing spectral efficiency, base-station densification, and using more spectrum (available in higher
bands). In this section, IBFD communications is introduced, which enables more efficient use of
the available spectrum. Full-duplex communications exploit the less efficient use of spectral and
temporal resources in current available communication systems. For clarity, we state that 5G new
radio (NR) still builds on FDD and TDD duplexing principles, while the IBFD technology may
be adopted in future releases or in sixth generation (6G) era.

20 Chapter 2. Wireless Technologies

Lowpass/highpass halfband filter pair

M
a

g
n

it
u

d
e

 i
n

 d
B

Normalized frequency ω

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0

Lowpass/highpass analytical filter pair

M
a

g
n

it
u

d
e

 i
n

 d
B

Normalized frequency ω

(b)

Positive active carriersNegative active carriers

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−60

−50

−40

−30

−20

−10

0

Figure 2.9: Magnitude response of (a) halfband and (b) analytical filters, grey areas in (a) indicate the
transition bands, and in (b) the active subcarriers.

0.5

yhp (m)

x(n)

z–M/2

h0
z–1z–1

z–1

z–1

z–1 h2

hM–1 fs/2

fs

Analytical Hilbert transformer H(z)

ylp(m)

fs/2

filter G(z)

j

Figure 2.10: Structure of decimating analytical filter producing both the lowpass and highpass outputs
ylp(m) and yhp(m), respectively

2.2. Future Wireless Systems and Full-Duplex Communication 21

0 16 32 48

−1

0

1

M
a
g

n
it
u
d
e

n in samples

Input data

0 10 20 30 40

0

0.2

0.4

M
a
g

n
it
u
d
e

n in samples

Filter impulse response

0 50 100

−1

0

1

Linear convolution

M
a
g
n

it
u

d
e

n in samples

0 15 30 45 60

−1

0

1

M
a
g
n

it
u

d
e

n in samples

Wrapping the tail

0 16 32 48

−1

−0.5

0

0.5

1

M
a

g
n

it
u

d
e

n in samples

Resulting cyclic convolution

Figure 2.11: Cyclic convolution using linear halfband filtering

In the existing wireless networks, including 5G NR Release 15, the spectral and temporal resources
are typically divided between downlink and uplink in two ways: FDD, and TDD. In FDD, which
is used in most commercial cellular systems, transmission and reception are separated in frequency.
TDD, on the other hand, divides downlink and uplink transmission in time [27].

In this section, we briefly introduce full-duplex radios and the challenges affiliated with realizing
such systems. Then, a solution is described which can help to combat these challenges.

2.2.1 Full-Duplex Communication

All two-way wireless devices and systems existing today, such as global system for mobile
communications (GSM), universal mobile telecommunications system (UMTS)/high speed packet
access (HSPA), and WLAN/WiFi, are based on separating the transmission and reception either
in time or frequency, i.e., systems operate in either TDD or FDD mode. This has the inevitable
downside, however, that the spectral efficiency of using the radio frequencies is only half of
its potential in theory. In contrast, full-duplex transmission is based on the challenging idea of
simultaneously transmitting and receiving on a single frequency, and hence, in theory, doubling
the efficiency of radio spectrum use compared to any existing system. However, as the strong
transmit signal now directly couples to the sensitive receiver circuitry, substantial SI is generated,
which needs to be tackled in the transceiver [28].

22 Chapter 2. Wireless Technologies

DACLPF

V
G

A

P
A

L
N

A ADCLPF

V
G

A

R
F

 c
an

c
e
ll

a
ti

o
n

 c
ir

c
u

it
~
LO

IQ Mixer

IQ Mixer

Ʃ

Nonlinear

DSP
control

-

+

T
o
 d

et
ec

to
r

T
ra

n
sm

it
 d

at
a

control

Receiver chain

Transmitter chain

Figure 2.12: Principal illustration of full-duplex radio transceiver.

2.2.1.1 Digital Self-Interference Cancellation

Both RF and digital domain cancellations are required to reduce the SI signal to a level not
interfering with the detection of the desired signal. SI cancellation in RF domain prevents the
saturation of analogue-to-digital converter and receiver low-noise amplifier (LNA). However, the
SI signal needs to be further suppressed in the digital domain to improve system performance.

The overall structure of a full-duplex transceiver, illustrating both the RF and digital cancellers is
shown in Fig. 2.12. In this section, we discuss digital SI cancellation by first introducing a model
for the SI signal.

2.2.1.2 Self-Interference Modelling

Numerous non-ideal components exist in the transmitter and receiver paths which cause both
linear and non-linear distortion in the transmitted signal coupling at the receiver. These distortions
originate from different sources such as, power amplifier non-linearities, local oscillator phase
noise, transmitter and receiver in-phase/quadrature (I/Q) imbalance, and analogue-to-digital
converter quantization noise.

In this work, the parallel Hammerstein model, commonly used for highly nonlinear power
amplifiers (PAs), is adopted for modelling the signal. This is due to the fact that the PA is known
as the most significant contributor to the non-linear distortion of the signal.

Denoting the PA input by xPA,in, and using the aforementioned parallel Hammerstein model, the
signal at the PA output can be written as [29]:

xPA,out =

P∑

p=1
p odd

K−1∑

k=0

hPAp (k)up(xPA,in(n− k)), (2.27)

where P is the highest non-linearity order of the PA model, K is the memory length of the
PA, hPAp represents the pth-order model for the PA memory, and up(xPA,in(n)) produces the
pth-order basis function, and is computed using |xPA,in(n)|p−1xPA,in(n).

With the assumption of the PA as the most prominent source of non-linearity, the effective SI
channel can be modelled using (2.27). Hence, denoting the original transmitted signal with x(n),
the received signal at the digital canceller input can be expressed as:

rx(n) =

P∑

p=1
p odd

L−1∑

l=0

hp(l)up(x(n− l)) + z(n), (2.28)

2.2. Future Wireless Systems and Full-Duplex Communication 23

where L denotes length of the modelled SI channel memory, hp(l) contains the pth-order SI
channel coefficients, and z(n) represents noise and potential modelling mismatch. Having an
estimation of the unknown SI channel coefficients, the signal after the digital canceller can be
written as:

e(n) = rx(n)−
P∑

p=1
p odd

L−1∑

l=0

ĥp(l)up(x(n− l)), (2.29)

where the estimated SI channel coefficients are denoted by ĥp(l). According to (2.28) and
(2.29), a precise estimation of the SI channel coefficients will result in only noise remaining after
cancellation, which consequently means that e(n) ≈ z(n).

It is important to update the SI channel estimates frequently, as the environment surrounding a
moving device varies in time. However, the estimation method should be also of low computational
complexity to be compatible with the limited processing power available in mobile devices. Thus, a
least mean squares (LMS) based solution, proposed in [29], is selected to meet the aforementioned
requirements.

Furthermore, a novel basis function orthogonalization method, also proposed in [29], is adopted
to help further improve the SI suppression. The following sections describe the two methods in
more details.

2.2.1.3 Orthogonalization

Being produced from the same transmitted signal, the generated basis functions are expected to
be correlated. As a result, the SI channel coefficient estimation process, using the LMS algorithm,
would suffer from slow convergence and excess mean squared error. Thus, it is beneficial to
orthogonalize the basis functions for more efficient LMS parameter learning. This is carried out
using a method proposed in [29], which will be described briefly in the following.

This method uses a whitening transformation matrix for basis functions orthogonalization. The
transformation matrix can be obtained from the eigen-decomposition of covariance matrix Σ. Let
us define the instantaneous basis function vector as:

u(n) =
[
u1(x(n)) u3(x(n)) . . . up(x(n))

]T
, (2.30)

where up(x(n)) = |x(n)|p−1x(n) is the pth-order non-linear basis function.

Now, the covariance matrix of the basis functions across different non-linearity orders can be
defined as:

Σ = E[u(n)u(n)H]. (2.31)

The eigen-decomposition of covariance matrix Σ can be written as:

Σ = VDVH , (2.32)

where eigenvalues of Σ comprise the diagonal matrix D, and the corresponding eigenvectors build
matrix V. Having (2.32), the whitening transformation matrix T is defined as:

T = D−
1
2 VH . (2.33)

Here, D−
1
2 denotes element-wise square root and inversion of the diagonal elements of matrix D.

Now, the basis functions can be orthogonalized using transformation matrix T by:

ũ(n) = Tu(n). (2.34)

24 Chapter 2. Wireless Technologies

Having the orthogonalized basis functions from (2.34), (2.29) can be re-written as:

e(n) = rx(n)−
P∑

p=1
p odd

L−1∑

l=0

ĥp,ort(l)ũp(x(n− l)), (2.35)

where the orthogonalized pth-order basis functions are represented by ũp(x(n)), and the SI
channel estimates are denoted by ĥp,ort(l). Now, (2.35) can be expressed using vector notations
as:

e(n) = rx(n)− hHuort(n), (2.36)

where
h =

[
ĥ1,ort(0), ĥ3,ort(0), . . . , ĥP,ort(0), . . .

ĥ1,ort(L− 1), ĥ3,ort(L− 1), . . . , ĥP,ort(L− 1)
]T
,

(2.37)

and

uort(n) =
[
ũ(n)T , ũ(n− 1)T , . . . , ũ(n− L+ 1)T

]T
. (2.38)

It should be noted that the covariance matrix Σ is only dependent on the statistical properties of
the transmitted signal, and as a result, is time-invariant. Hence, we can assume that matrix T is
pre-computed when used in the processing.

2.2.1.4 LMS Parameter Learning

This section describes the LMS-based method used to adaptively estimate the effective SI channel
coefficients in a time-varying channel. The orthogonalized basis functions calculated in (2.34)
are used to prevent high excess mean-squared error and slow convergence of the algorithm.
Furthermore, different step sizes are used for different non-linear terms. The memory model of
the channel includes both pre-cursor and post-cursor taps for more precision.

In this work, the proposed algorithm in [29] is adopted and modified to be more computationally
friendly for our implementation purposes. Thus, as described in Algorithm 1, the SI channel
estimates are not updated with every sample but only when a pre-defined number of samples
are processed. The impact of this adjustment on the system performance is investigated and the
results are presented in the following Chapters.

Algorithm 1 LMS-based adaptive nonlinear digital cancellation.

1: Initialize:
2: h← [0 . . . 0]
3: n← Lpost
4: while transmitting do
5: uort(n) =

[
ũ(n+ Lpre)

T
. . . ũ(n− Lpost)T

]T
6: e(n) = rx(n)− h(n)Huort(n)
7: if (n mod N == 0) then
8: h(n+ 1)← h(n) + µe∗(n)uort(n)
9: end if

10: n← n+ 1
11: end while

2.2. Future Wireless Systems and Full-Duplex Communication 25

Algorithm 1 presents the adopted LMS-based approach, where ũ is a vector of the orthogonalized
basis functions, h contains the SI channel coefficient estimates, rx(n) denotes the received signal,
e(n) is the cancelled signal, and Lpre and Lpost are the number of pre-cursor and post-cursor
taps, respectively. Furthermore, µ contains the step sizes for different non-linearity orders, and N
defines how often the estimated h is updated.

CHAPTER 3

SDR SOLUTIONS FOR WIFI

In this chapter, the proposed SDR solutions for both the baseband and DFE processing of the IEEE
802.11ac are described. For each solution, first the employed processing platform is introduced.
Then, the implementation is presented and evaluated in terms of execution time, number of clock
cycles, power, and energy consumption. The achieved results are then analyzed to investigate the
feasibility of a real-time software-based solution for the processing. The contents of this chapter
are based on publications [P1]–[P4].

3.1 Related Work

Many works related to the implementation of the WLAN standard family have been reported in
the literature. However, only a limited number of implementations with a software-based approach
exists, particularly when it comes to the physical layer. As an example, [30] reports an ASIC
implementation of an IEEE 802.11a transceiver PHY, with OFDM and up to 64-QAM. Similarly,
in [31], an ASIC implementation of the HT IEEE 802.11n transceiver using a 40 MHz bandwidth,
with two transmit and three receive antennas is described. An IEEE 802.11ac implementation can
be found in [32], where the transceiver is tailored to operate with 80 MHz bandwidth and 4× 4
MIMO.

The above-mentioned studies target to a fixed scenario, and thus lack the flexibility to operate
in different modes. However, programmable approaches are gaining more interest due to the
advances in processor technologies. The work carried out in [33] only focuses on the FFT/IFFT
processing for the VHT amendment, where larger FFT sizes are required due to the wider
bandwidths supported. The authors of [33] propose a software defined FFT/IFFT architecture that
meets the point size, throughput and multiple data streams requirements of the IEEE 802.11ac.
The implementation uses a customized soft stream processor on FPGA, and is then compared to a
dedicated Xilinx FFT core. The comparison shows better resource efficiency using the flexible
software defined architecture. This work, however, does not provide a solution for the rest of the
transceiver processing.

Some research works found in the literature use application specific instruction-set processors
(ASIPs) as a solution for a flexible, yet high performance transceiver design. With an ASIP core,
the instruction-set can be optimized for specific tasks, which results in better performance for some

27

28 Chapter 3. SDR Solutions for WiFi

applications, but less flexibility in other areas. As an example, [34] presents an 802.11ac/ax design
using an ASIP processor. The design includes channel singular value decomposition (SVD),
channel compression/decompression, and beamforming weight computations to support the MU-
MIMO features of the IEEE 802.11ac. The article reports the synthesis results, which show
that while the ASIP core requires less lookup tables (LUTs) and DSP resources, it uses more
registers and memories compared to the implementation with a dual ARM processor system and
programmable logic. Furthermore, the measured latency was shown to fit the timing requirements
of the standard. Another baseband ASIP design for SDR is presented in [35], where algorithms
from 3G, 4G, and WiFi are analyzed and selected for implementation. The article reports execution
costs for different algorithms and introduces heterogeneous ASIPs for different processing tasks.

Both [36] and [37] address SDR based baseband processing of the IEEE 802.11ac. The work
presented in [36] covers most of the baseband functionality assuming 4×4 MIMO, 64-QAM, and
80MHz bandwidth. The radio processor used in this work, named RP-32 [38], has 256-bit data
buses, 32-way single instruction multiple data (SIMD) operations, and 512-bit vector processing.
The assumed clock frequency for this DSP core is 1 GHz. Similarly, [37] focuses on the inner
part of the receiver (for synchronization and data detection) for IEEE 802.11ac with up to 80
MHz bandwidth, 4×4 MIMO, and 64-QAM, as well as long-term evolution (LTE) Cat-4/5/7 user
equipment (UE). This work is based on an instance of the custom baseband processor template
ADRES [39]. This instance, called BOARDES, has four vector processing units supporting
256-bit SIMD. The assumed clock frequency for achieving real-time processing is 800 MHz in
this work.

On the DFE processing side, [40] reports a FPGA implementation of a DFE block for multi-
carrier multi-antenna systems. The design includes decimation/interpolation filters implemented
as polyphase filters, as well as a frame synchronization block and an automatic gain controller.
The article reports the area of the implemented design, but lacks information about the timing and
power consumption.

Another FPGA-based implementation for polyphase FIR filters can be found in [41], where
emphasis has been put on an efficient pipelined implementation in VHSIC hardware description
language (VHDL). The results in terms of area on FPGA are reported, and the design is shown
suitable for synthesis on low-cost SDR hardware.

The work presented in [42] describes a similar concept to the one reported in this thesis, imple-
menting polyphase filters using general-purpose GPUs. In this work, two GPU-based systems
are employed, and CUDA is used as the software programming language [43]. The implemented
polyphase filter bank channelizers on the two GPUs are compared to a CPU-based implementation,
and results show that the parallelization on the GPUs can provide a speedup up to 9-16 times.

In the work presented in [44], a configurable architecture on transmitter side which is optimized for
maximal hardware sharing between different modes is presented. This work, however, lacks actual
hardware or software implementation. Another DFE design is discussed in [45], which uses Xilinx
Virtex-5 XC5VSX50T FPGA for the implementation, and the maximum supported bandwidth is
2.9 MHz. While [45] is targeted solely for wideband code division multiple access (WCDMA)
systems, [46] investigates the challenges of a multi-mode receiver DFE design suitable for cellular
wireless standards from GSM to LTE, but does not cover an actual implementation.

Based on the presented state-of-the-art, a trend towards more flexible and software-based baseband
and DFE implementations can be observed. However, the work of this thesis takes this trend
further by covering more computationally aggressive physical layer processing scenarios, and
including majority of the baseband processing, as well as an intensive DFE channelization concept.
Furthermore, by adopting completely programmable processing units and COTS platforms, as

3.2. Baseband Processing 29

Data

Memory

Interface

Local

Memory

Instruction

Memory

Interface

Local

Memory or

Cache

16×16 bits Wide

96 bits

Data Load / Store Unit 0

(16N bits)

Data Load / Store Unit 1

(16N bits)

Load/

Store
Load

ALU/

MAC
ALU

Vector Register File

Aligning

Register

General

Register

File

4-Way VLIW Instruction Decoder
32-Way

MAC

16-Way

SIMD ALU
32b ALU

Computation Unit

Figure 3.1: Connx BBE32 principal block diagram.

opposed to FPGAs, the feasibility of using SDRs for real time processing while maintaining
the power consumption at reasonable levels is shown, which is currently rarely covered in the
literature.

3.2 Baseband Processing

Targeting to very high throughputs, the IEEE 802.11ac imposes very challenging requirements on
the processing platform. With the extensive amount of data to be processed, data level parallelism
could be exploited using a SIMD processor architecture. Furthermore, employing a VLIW core
helps to also take advantage of the instruction level parallelism.

For the above-mentioned reasons, we have chosen the Cadence Tensilica ConnX BBE32 [47] core
for this work, which is a VLIW processor with vector processing capabilities. The BBE32 is a
small, high performance, low power DSP core, which makes it specifically suitable for UE side
processing [47].

The principal block diagram of the ConnX BBE32 can be found in Fig. 3.1. As shown in the
figure, a 16-way SIMD arithmetic logic unit (ALU) and a four issue VLIW processing pipeline
are included in the BBE32 architecture. These features make the BBE32 a proper fit for this
application. Furthermore, there are 32 multiply-accumulate (MAC) units, and data can be accessed
in blocks of 256 bits.

3.2.1 Transmission Scenarios

This work considers four transmission scenarios for the IEEE 802.11ac. For all cases, a common 80
MHz channel bandwidth is assumed, which means 256 OFDM subcarriers. The 256 subcarriers
comprise of 234 data, 14 null and eight pilot carriers. All cases use 256-QAM constellation
mapping. Table 3.1 presents the four transmission cases and the differences between them.

Table 3.1: The implemented transmission scenarios. For all cases 80 MHz BW, 256-QAM, LDPC coding,
3/4 coding rate and short GI are assumed.

Cases Number of antennas Number of spatial streams STBC coding

Case A 2 2 NO
Case B 4 4 NO
Case C 2 1 YES
Case D 4 2 YES

30 Chapter 3. SDR Solutions for WiFi

From the scenarios introduced above, cases with four antenna configurations require the heaviest
computations, specifically for matrix inversion. To reduce the complexity, and thus number of
clock cycles required for the processing of these cases, an accelerator for matrix inversion is
developed. As it will be demonstrated in Results section, without the accelerator, the MIMO
cases would require very high clock frequency from the processing platform. The accelerator is
described in the following section.

3.2.2 Accelerator for Matrix Inversion

Matrix inversion is the most computationally intensive process in the transceiver chain. This issue
has gained a lot of interest, especially with higher orders of MIMO emerging in both WLAN and
cellular networks [48, 49].

We have designed an accelerator for the BBE32 core to lower the complexity of 4 × 4 matrix
inversion. This solution is tailored for case B, the most complex scenario from Table 3.1. The
results demonstrating the speedup achieved with the help of this accelerator can be found in
section 3.2.3. The solution we have proposed for accelerating matrix inversion is described in the
following.

Timing Requirements for Matrix Inversion As the matrix inversion accelerator is targeted
for speeding up the calculation of detector coefficients in receiver using VHT-LTF symbols,
the timing constraints stem from the VHT-LTF symbol duration. According to IEEE 802.11ac
amendment, the duration of one VHT-LTF symbol is 4µs [7]. Thus, assuming a 500 MHz clock
frequency for the platform, the VHT-LTF processing should be carried out in 2000 clock cycles.

Upon reception of a VHT-LTF symbol, LS and LMMSE channel estimations should be carried
out, in addition to the calculation of detector coefficients. The accelerator is specifically designed
for case B, which has a 4×4 antenna configuration without STBC coding. As the results presented
in section 3.2.3, Table 3.4 show, the two channel estimations take 1200 clock cycles to complete.
This leaves 600 cycles for detection of the coefficients.

For processing the 234 data, non-pilot subcarriers, 234 complex 4 × 4 matrix inversions are
required. As shown in Fig. 3.1, BBE32 has two 16× 16 bits wide interfaces to local memories.
Complex numbers are seen as two 16-bit fixed point numbers. Thus, for each 4 × 4 complex
matrix inversion, two clock cycles are consumed: one for reading, and one for writing to memory
(2 × 16 × 4 × 4 = 2 × 256). This means that reading and writing data for all 234 subcarriers
takes 2 × 234 = 468 clock cycles. Thus, only 600 − 468 = 132 clock cycles are left for the
computations, with one matrix read/write in every other cycle.

Modified Gram-Schmidt Algorithm The modified Gram-Schmidt algorithm is a more stable
version of the classical Gram-Schmidt process for orthogonalization [50]. We perform QR decom-
position using modified Gram-Schmidt to simplify the matrix inversion process. The accelerator
implements the method proposed in [51], and uses log2 and x2 domains for computations. Thus,
the more time consuming arithmetic computations, such as multiplication and division turn into
simple additions and subtractions, respectively.

The domain conversions are implemented as LUTs. However, realization of log2 conversions
LUTs is rather inconvenient for complex numbers. For this reason, the 4× 4 complex matrix is
first decomposed to an 8× 8 real matrix. Having the complex channel matrix H, the real matrix
can be written as:

3.2. Baseband Processing 31

A =

[
real(H) −image(H)
image(H) real(H)

]
, (3.1)

where real(H) and image(H) are the real and imaginary parts of complex channel matrix H,
respectively.

Now, inversion of matrix A is carried out with following three steps:

1. QR decomposition of matrix A, such that:

A = QR, (3.2)

where Q is an orthogonal matrix, and R is an upper triangular matrix. For orthogonal
matrix Q, we have:

QTQ = 1. (3.3)

2. Calculating R−1, having QT = Q−1. Thus, A−1 can be calculated by:

A−1 = R−1QT . (3.4)

3. multiplication of R−1 and QT

A column-wise implementation of QR decomposition using modified Gram-Schmidt is shown
in Algorithm 2, where vi is a temporary vector, ai is a vector containing elements from the ith

column of matrix A, rji is the element from row j and column i of matrix R, and qi is the ith

column of matrix Q. Furthermore, v.q represents the inner product of v and q, and ‖x‖2 is the
L2 norm of x.

Algorithm 2 QR decomposition with modified Gram-Schmidt

1: for i = 1 : n do
2: vi = ai
3: for j = 1 : i− 1 do
4: rji = vi.qj
5: vi = vi − rjiqi
6: end for
7: qi = vi

‖vi‖2
8: rii = ‖vi‖2
9: end for

Now that we have the Q and R matrices, R−1 can be calculated using Algorithm 3, where rinvji

represents the element in row j and column i of matrix R−1.

Fig 3.2 depicts how the dot product is calculated in step four of Algorithm 2, using LUTs and
simple additions and subtractions. In this figure, inputs and outputs are in linear domain.

Fig. 3.3 illustrates calculation of vi = vi − rjiqi in step five of algorithm 2, using LUTs. In this
figure, all inputs are in linear domain from which rji and qi have to be first converted to log2
domain.

Using designs similar to the ones shown in Fig. 3.2 and 3.3, the matrix inversion can be completely
carried out using solely additions and subtractions. As a result, the generally very complex matrix
inversion process can be speeded up to a great extent using the accelerator for BBE32. Detailed
results on the achieved performance enhancement can be found in section 3.2.3.

32 Chapter 3. SDR Solutions for WiFi

Algorithm 3 Calculation of inverse matrix for upper triangular matrix R−1

1: for i = 1 : n do
2: for j = 1 : i− 1 do
3: rinvji = rinv(j, (1 : i− 1))× r((1 : i− 1), j)
4: end for
5: rinv1:i−1,i =

−rinv
(1:i−1),i

rji

6: rinvii = 1
rii

7: end for

Implementation Fig. 3.4 shows the pipeline schedule for the matrix inversion accelerator for a
4× 4 complex matrix. If we assume a register after each LUT for pipelining, the pipeline will
have an overall 64 clock cycles delay plus a few cycles to buffer the data coming and going to
BBE32.

The logic elements required for the overall implementation include: 1622 adders (mostly 16 bit),
877 x2 LUTs (256× 15 bits), 281 log2 LUTs (64× 14 bits). Having in mind that BBE32 can
only read and write half a 4× 4 complex matrix in each clock cycle, half of the adders and LUTs
can be reused to process one complex 4× 4 matrix in every two clock cycles.

As presented in Table 3.4 of section 3.2.3, the calculation of the detector coefficients, with the
help of the matrix inversion accelerator, consumes 548 clock cycles overall. This is below the 600
clock cycles budget for this operation.

+

+
Log2 LUT

Log2 LUT
x

2
 LUT

x
2
 LUT+

Log2 LUT

Log2 LUT

+

+
Log2 LUT

Log2 LUT
x

2
 LUT

x
2
 LUT+

Log2 LUT

Log2 LUT

+

+

+
Log2 LUT

Log2 LUT
x

2
 LUT

x
2
 LUT+

Log2 LUT

Log2 LUT

+

+
Log2 LUT

Log2 LUT
x

2
 LUT

x
2
 LUT+

Log2 LUT

Log2 LUT

+

+

Figure 3.2: Calculating vi.qj using LUTs

3.2. Baseband Processing 33

+
-

Log2 LUT

Log2 LUT
x

2
 LUT

+
-

Log2 LUT

Log2 LUT
x

2
 LUT

+
-

Log2 LUT

Log2 LUT
x

2
 LUT

+
-

Log2 LUT

Log2 LUT
x

2
 LUT

+
-

Log2 LUT

Log2 LUT
x

2
 LUT

+
-

Log2 LUT

Log2 LUT
x

2
 LUT

+
-

Log2 LUT

Log2 LUT
x

2
 LUT

+
-

Log2 LUT

Log2 LUT
x

2
 LUT

Figure 3.3: Calculating vi = vi − rjiqi using LUTs

Furthermore, looking at Fig. 3.4 reveals that it is possible to reuse half of resources in slots
where they are inactive. Thus, a quarter of the elements mentioned earlier are sufficient for this
implementation (417 adders, 220 x2 LUTs, and 71 log2 LUTs).

As it will be demonstrated with the results in the following section, this matrix inversion accelerator
greatly helps to speedup the computations. As a result, real-time implementation of the transceiver
becomes feasible having lower clock frequencies for the processing core.

3.2.3 Results

To investigate the possibility of a real-time implementation, we have measured the number of
clock cycles each implemented block consumes. The results from the transmitter side processing
are presented in Table 3.2.

The preparation block, mentioned in Table 3.2, does not carry out a functionality specified by the
IEEE 802.1ac, but merely re-arranges the bits in the stream. This simplifies the computations
performed in the upcoming blocks.

Furthermore, to facilitate the operation, the ordering of the transmitter blocks is modified. As an

34 Chapter 3. SDR Solutions for WiFi

C D

A B C D

A

A

A B C D

A

A B

C D

A

A B C D

A

A B C D

A

A B C D

A

A B C D

A

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B B

B B

C

C

C C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

B

C

D

A

B

C

QR decomposition R inverse

rii = ǁviǁ2

v1

v2

v3

v4

v5

v6

v7

v8

rji = vi . qj

qi = vi/rii

vi = vi – rjiqi

rii
inv

 = 1 / rii

rji
inv = rji

inv rii

rii
inv = - rii

inv / rji

Notes

B B

B

B

B B B

2 64 10 20 30 40 50 60

F rj
inv* qi

T

F

F

F

F

F

F

F

F

62 t0

2 64 10 20 30 40 50 60 620
t

q5

q6

q4

q3

q2

q1

q7

QR decomposition

R inverse

Column 1

Column 2

Column 3

Column 4

Column 5

Column 6

Column 7

Column 8r11
inv

r22
inv

r33
inv

r44
inv

r55
inv

r66
inv

r77
inv

 1 diagonal element of R inverse ready

1 non-diagonal element of R inverse ready

 Inverse result

Figure 3.4: Pipeline schedule for modified Gram-Schmidt QR matrix inversion for 4× 4 complex-valued
matrices, where the light gray boxes show the computations from Algorithm 2, dark gray boxes show the
computations from Algorithm 3, and boxes marked with "F" show the calculation of the final inverted results.

example, the STBC coding is now performed on the data on bit level, before they are mapped to
complex numbers in the constellation mapping block. Additionally, the functionality of some
operations are merged together in order to decrease the consumed number of clock cycles.

In Table 3.2, "Pilots" refers to the insertion of pilot subcarriers, and phase rotation is the rotation
of tone, which in case of an 80 MHz bandwidth is basically a multiplication by one or minus one
for some subcarriers.

Fig. 2.2 indicates that the duration of a DATA symbol with short GI is 3.6 µs. For a real-time
implementation, the overall transmitter processing for one OFDM symbol should be carried
out in this time. According to Table 3.2, the most complicated case takes less than 800 clock

Table 3.2: The number of clock cycles needed for the processing of a DATA symbol in the transmitter (cases
described in Table 3.1):

Functional Blocks Case A Case B Case C Case D

Preparation + STBC 53 - 111 68
Tone Mapper 159 159 159 159
Stream Parser + Constellation Mapper 153 197 153 300
Pilots + CSD + Phase Rotation + Spatial Mapping 130 210 136 256

Total Number of Cycles 495 616 559 783

3.2. Baseband Processing 35

Table 3.3: The number of clock cycles needed for the processing of a DATA symbol in the receiver.

Functional Blocks Case A Case B Case C Case D

Pilot Removal 140 336 140 336
Symbol Detection 468 652 208 919
Tone De-mapper 324 672 324 672
Stream Deparser 74 254 - 148
Soft Bit Detection 3193 6504 3193 6504
Frequency Error Tracking 255 331 255 331

Total Number of Cycles 4639 9087 4305 9275

cycles overall. If we assume a 500 MHz clock frequency for the processing platform, it takes
approximately 1.56 µs (783

500 MHz = 1.56µs) for a DATA symbol to go through the implemented
processing in the transmitter. Thus, a real-time processing of DATA symbols can be assumed
feasible in all considered transmission scenarios in the transmitter. The same conclusion can
be drawn for the preamble symbols, as they require less complex computations than the DATA
symbols.

Table 3.3 presents the number of clock cycles required for the processing of a received DATA
symbol. RCPI measurement is carried out using the active non-pilot subcarriers in a DATA
symbols, so it is included in the "Pilot removal" block. Pilot removal separates the pilot subcarriers
from the tones carrying data.

Looking at the total number of clock cycles in Table 3.3 for cases A and C, which only take
advantage of a two-antenna configuration, we can see that clock frequencies just above 1 GHz are
required for real-time processing. However, cases with four antennas require approximately twice
more time than cases A and C, meaning that the processing platform for cases B and D require
higher than 2 GHz clock frequency.

In addition to the DATA field, the VHT-LTF requires some high complexity processing on the
receiver side. The number of clock cycles consumed in the different operations for the VHT-LTF
symbol are represented in Table 3.4.

Table 3.4 contains two sets of numbers for case B, where "case B/ACC" is the scenario which
utilizes the matrix inversion accelerator, described in section 3.2.2. The complex matrix inversion
process is speeded up with the help of this accelerator and the number of clock cycles has
dramatically decreased to 1944 from the original 33109 cycles.

The 4 µs, defined as the duration of the VHT-LTF, sets the constraints for the required clock
frequency. Taking the matrix inversion accelerator into use, the processing platforms should have
a clock frequency of 500 MHz to process the VHT-LTF symbol in real-time.

Another important criterion in studying the feasibility of this SDR implementation is the power

Table 3.4: The number of clock cycles needed for the processing of a VHT-LTF symbol in the receiver.

Functional Blocks Case A Case B Case B/ACC Case C Case D

LS Channel Estimation 281 289 289 281 2873
LMMSE Channel Estimation 1078 1107 1107 1078 1643
Detector Coefficients 2630 31713 548 851 34005

Total Number of Cycles 3989 33109 1944 2210 38521

36 Chapter 3. SDR Solutions for WiFi

consumption of the design. The BBE32 comes with an energy analyzer tool, which provides
estimates of the consumed energy. Dividing the energy consumption estimates by each block’s
execution time gives an approximation of the consumed power.

To calculate the execution times, a 500 MHz clock frequency is assumed. The measurements
depend on the applied memory capacity, for which we have assumed the maximum 128kB. The
energy analysis is carried out in 3.6 µs time for the DATA symbol. The power consumption of
the transmitter and receiver when processing a DATA symbol can be found in Tables 3.5 and 3.6,
respectively.

Comparing to some reported WiFi power consumption values in mobile devices [52], the total
consumed power in the transmitter and receiver show that it is allowed to employ such software-
based designs in the UE side.

3.3 Digital Front-End Processing

For implementation of this digital front-end channelization concept, three different processing
platforms were adopted. These are COTS products that are currently employed in some of the
available devices in the market. These platforms are briefly introduced in the following.

Odroid XU3 We use the Odroid XU3 development platform, which is based on the Sam-
sung Exynos5422 Cortex™-A15 and Cortex™-A7 CPUs [53]. This board employs the ARM®

big.LITTLE™ technology [54–56]. The idea behind this technology is to couple a relatively
lower performance battery-saving CPU, i.e. A7, with a more powerful core with higher power
consumption, i.e. A15. This board is also equipped with the MaliTM-T628 MP6 GPU. For the
channelization processing, both the A7 CPU and Mali GPU are utilized.

ARM® MaliTM-T628 MP6 Mali is a mobile-scale GPU and runs at a 600 MHz clock frequency
[57]. This GPU can scale from one to eight cores, each of which can handle up to eight
floating point operations per cycle [58]. Furthermore, Mali supports half-precision floating-
point arithmetic, defined by IEEE 754 standard [59].

ARM® Cortex®-A7TM The A7 is the so called LITTLE CPU in ARM’s big.LITTLE architecture
technology. Thus, A7 is slower but less power-hungry compared to A15. A7 is a multi-
core processor, which has between one to four cores, and can run at up to 1.5 GHz clock
frequency.

Intel® CoreTM i7-4800MQ Unlike the processing platforms mentioned above, the Intel Core
i7 is a desktop CPU. This processor has four cores and can run at up to 3.7 GHz [60].

Table 3.5: Power consumption in mW in the transmitter for processing of a DATA symbol.

Functional Blocks Case A Case B Case C Case D

Preparation + STBC 1,8 - 3,7 2,3
Tone Mapper 5,2 5,2 5,2 5,2
Stream Parser + Constellation Mapper 5,1 6,6 5,1 9,4
Pilots + CSD + Phase Rotation + Spatial Mapping 4,8 9,6 4,8 9,6

Total Power Consumption 16,9 21,4 18,8 26,5

3.3. Digital Front-End Processing 37

Table 3.6: Power consumption in mW in the receiver for processing of a DATA symbol.

Functional Blocks Case A Case B Case C Case D

RCPI Variance 3,60 6,67 3,35 6,16
Pilot Removal 4,76 10,39 4,76 9,52
Symbol Detection 13,00 23,51 6,82 34,65
Tone De-mapper 10,02 20,07 10,02 20,03
Stream Deparser 3,06 8,59 - 6,11
Soft Bit Detection 106,95 213,92 105,43 213,19
Frequency Error Tracking 4,46 7,55 4,44 7,55

Total Power Consumption 145,61 290,70 134,82 297,21

The aim is to exploit the parallelism offered by these platforms along with the offered flexibility
of the OpenCL. OpenCL is a standard for general-purpose, parallel programming across different
platforms, which helps to improve the speed of a wide range of applications [61].

In this work, first, both OpenCL and C implementations are carried out on the Intel CPU. The aim
of this step is to determine the amount of speedup achieved with OpenCL compared to simply
using C. Then, to investigate actual mobile scale, and highly parallel processing platforms, the
ARM Mali GPU and A7 CPU are employed.

3.3.1 Channelization Filtering

To achieve the best performance for the IEEE 802.11ac channelization, different approaches are
considered. Each OpenCL implementation is carefully designed to most optimally take advantage
of the available parallelism.

Two different designs are introduced in the following. The first solution uses a halfband filter with
lower number of computations and higher order. On the other hand, the second design is based on
a non-halfband filter with a shorter filter length, which utilizes vectorization. Implementations are
carried out for both linear and cyclic filters.

3.3.1.1 Halfband Filters

The advantage of halfband filters is that they require less computations, as every other coefficient
is zero. This decreases the number of computations by a factor of two. Additionally, having
symmetric coefficients helps to reduce the complexity further. This is due to the fact that, the
samples with symmetric coefficients can be first subtracted and then multiplied with the coefficient.
Furthermore, the highpass and lowpass outputs of the filter can be realized at the same time.

In this implementation, it is assumed that both a block of input samples corresponding to one
OFDM symbol, and the coefficients are loaded to the input buffers of the kernel. With L and N
denoting the number of samples in an OFDM symbol and the filter length, respectively, the work
distribution among the OpenCL work groups and elements is depicted in Fig. 3.5.

We assume that N + L− 1 samples are stored and fed to the kernel. As shown in Fig. 3.5, the
input samples are padded with N − 1 zeros for filtering purposes. With the above workload
distribution in the kernel, L/2 work groups are active simultaneously to multiply the samples and
coefficients, and sum the results. Thus, all work groups produce one lowpass and one highpass
output sample at the same time.

38 Chapter 3. SDR Solutions for WiFi

Work Group
L/2-1

Work Group
L/2

Work Group
1

Work Group
0

hN-1 hN...h1h0

x0 xL-N-1 xL-Nx1 ... xL-1 xL0...00

Figure 3.5: The workload distribution of implemented halfband filter in OpenCL, x denotes input samples,
h is the filter coefficients, L represents the number of input samples, and N is the filter order.

3.3.1.2 Non-Halfband Filters

Although the halfband filter requires less computation, the erratic memory accesses due to the
fact that only every other coefficient is used, might slow down the processing. For this reason,
a non-halfband filter is also considered for channelization. In this implementation, we used the
OpenCL vector operations to exploit the processing cores’ support for SIMD operations. OpenCL
provides support for up to 16 element vector operations. Thus, for an optimal design, filter lengths
that are multiple of 16 are chosen. To avoid increasing the complexity by a factor of four using
odd-order (even length) filters, we create a filter of length 16n-1, and pad it with a zero to have a
length of 16n.

For the non-halfband filter, the computations are assigned to work elements as shown in Fig. 3.6.
Here both the filter coefficients and the input samples are processed as vectors of 16 elements.
The input buffer’s length is S, which includes the total number of samples in one OFDM symbol,
and the N padded zeros in the beginning. In this illustration, x0,x1, . . . ,xS/16 are the vectors
containing the total S input samples.

Here, each work item carries out the processing of some of the input vectors depending on the
work item number. This means that each work item performs the multiplications and summation
related to one output sample. Thus, one lowpass and one highpass output sample is created in
each work item.

x0 x1 x((N+1)/16)+1 xS/16x((S-N-1)/16)-1

Work Group 0
Work Item 0 Work Item 1 Work Item 15

x0_c = x0>> work_item

x1_c = x1>> work_item

x(N+1)/16_c = x(N+1)/16>>
work_item

..
.

ylocal_addr=x0_c*h[N+1/16] +
… + x(N+1)/16_c*h[0]

Work Group ((S-N-1)/16)-1
Work Item 0 Work Item 1 Work Item 15
x0_c = x((S-N-1)/16)-1>>
work_item

x1_c = x((S-N-1)/16)>>
work_item

x(N+1)/16_c = x(s/16)-1>>
work_item

..
.

h[0] h[(N+1)/16]

... ...

ylocal_addr=x0_c*h[(N+1)/16]+
 … + x(N+1)/16_c*h[0]

x((S-N-1)/16)
Work Group 1

out[global_addr] =
sum(ylocal_addr)

...
...

... ...

x0_c = (x0>> work_item) | x1

>> mask

x1_c = (x1>> work_item) | x2

>> mask

..
.

x(N+1)/16_c = (x(N+1)/16>>
work_item) | x((N+1)/16)+1 >>
mask

ylocal_addr=x0_c*h[L/16]+ … +
x(N+1)/16_c*h[0]

x0_c = (x0>> work_item) |x1

>> mask

x1_c = (x1>> work_item) | x2

>> mask

..
.

x(N+1)/16_c = (x(N+1)/16>>
work_item) | x((N+1)/16)+1 >>
mask

ylocal_addr=x0_c*h[L/16]+ … +
x(N+1)/16_c*h[0]

out[global_addr] =
sum(ylocal_addr)

out[global_addr] =
sum(ylocal_addr)

out[global_addr] =
sum(ylocal_addr)

x0_c = (x0((S-N-1)/16)-1>>
work_item) | x(S-N-1)/16 >> mask

x1_c = (x(S-N-1)/16>> work_item)
| x((S-N-1)/16)+1 >> mask

..
.

x(N+1)/16_c = (x(s/16)-1>>
work_item) | x(S/16) >> mask

ylocal_addr=x0_c*h[L/16]+
 … + x(N+1)/16_c*h[0]

out[global_addr] =
sum(ylocal_addr)

x0_c = (x0((S-N-1)/16)-1>>
work_item) | x(S-N-1)/16 >> mask

x1_c = (x(S-N-1)/16>> work_item)
| x((S-N-1)/16)+1 >> mask

..
.

x(N+1)/16_c = (x(s/16)-1>>
work_item) | x(S/16) >> mask

ylocal_addr=x0_c*h[L/16]+
 … + x(N+1)/16_c*h[0]

out[global_addr] =
sum(ylocal_addr)

...

Figure 3.6: The workload distribution of implemented non-halfband filter in OpenCL, x denotes the input
sample vectors, h are the vectors containing filter coefficients, N is the filter order, and S is the number of
input samples plus N padded zeros.

3.3. Digital Front-End Processing 39

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Halfband
Full Float

Linear

Halfband
Full Float
Circular

Non-halfband
Full Float

Linear

Non-halfband
Full Float
Circular

Non-halfband
Half Float

Linear

Non-halfband
Half Float
Circular

Mali

A7

Intel/OpenCL

Intel/C

Figure 3.7: The execution times of the implemented halfband, and non-halfband, and linear, cyclic filters
with half precision and full precision floating points in milliseconds on all three platforms.

3.3.2 Results

The implementations, introduced in section 3.3, are evaluated in terms of execution time, number
of clock cycles, power, and energy consumption, and the results are presented in this section.
Furthermore, as Mali supports half-precision floating point arithmetics, the performance results
when using half and full precision are compared and analyzed. According to IEEE 754 standard
[59], half-precision floating numbers are defined to have 16 bits consisting of five bits for the
exponent, 10 bits for the fraction, and one bit for the sign. In all the measurements presented
below, the input length is FFT length, CP length, and filter length together.

Execution Time The execution time of the linear and cyclic channelization filters with both
halfand and non-halfband filters implemented on different platforms are compared in the chart
in Fig. 3.7. Comparing the C and OpenCL implementations shows that managing the available
parallelism using OpenCL has resulted in an approximately 80% faster execution.

Aside from the Intel desktop scale CPU, the highest performance is achieved by the Mali GPU.
The Intel CPU outperforms all the other platforms due to its much higher clock frequency, i.e.
up to 3.7 GHz. Although Mali has a slower clock than the A7, it carries out the channelization
processing faster because of the higher number of available parallel processing elements (PEs).

Comparing the results from the single and half precision floating points shows that the execution
time is approximately decreased by 55%, which surpasses the expected 50%. The reason behind
this could be the lower amount of memory occupied by data, which means more cache hits, and
as a result, faster execution.

The designed non-halfband circular and linear filters are of the same length. Thus, as expected,
there is little difference in execution times of the two implementations. However, as the circular
halfband filter has a longer length than the linear halfband filter, the execution is somewhat slower,
as it can be seen from Fig. 3.7.

These implementations should fit in the timing constraints of the IEEE 802.11ac standard to be
suitable for real-time applications. The requirements stem from the short inter-frame space length
defined in the IEEE 802.11ac amendment [7]. The short inter-frame space time in the 5 GHz

40 Chapter 3. SDR Solutions for WiFi

0

100

200

300

400

500

600

700

800

900

1000

Halfband
Full Float

Linear

Halfband
Full Float
Circular

Non-halfband
Full Float

Linear

Non-halfband
Full Float
Circular

Non-halfband
Half Float

Linear

Non-halfband
Half Float
Circular

Mali

A7

Intel/OpenCL

Intel/C

Figure 3.8: The number of clock cycles of the implemented halfband, and non-halfband, and linear, cyclic
filters with half precision and full precision floating points in milliseconds on all three platforms.

band, in which the 80 and 160 MHz BWs are used, is 16 µs [7]. This time should also include
the other related processing, such as MAC processing. The lowest achieved execution time on
the employed platforms is 6.02 µs, which fits in the 16 µs short inter-frame space timing. To
have more relaxed timing requirement for the rest of the processing, the channelization should
be accelerated. This can be achieved using bigger or higher frequency GPUs, which can also be
applied in an access point (AP) setup.

Number of Clock Cycles Using the measured execution times and the clock frequency of
the platforms, the number of clock cycles required for the different channelization filters are
calculated. Fig. 3.8 presents the number of clock cycles for different cases on all platforms.

Power Consumption The Odroid board is equipped with four sensors which measure the
current going through the dynamic random-access memory (DRAM), Mali GPU, the A7, and
15 CPU. With the help of these sensors, we have measured the power consumption of our
designs. The sensors are read in intervals of 100 ms, and 200 samples are taken each time. These
measurements are averaged over 20 s time period.

As the kernels consume very little time, we run them in high number of iterations with the aim of
keeping the cores active during the whole 20 s measurement time. However, any program running
in the background, such as the operating system could partly account for the CPU/GPU power
consumption. Thus, the processors’ idle power, i.e., power consumption while not running any
kernels, are computed and subtracted from the measured results. Only the results for Mali and
A7 are presented in Fig. 3.9, as no power measurement tools were available for the Core i7 CPU.
However, as reported by Intel, the thermal design power, which represents the average power, in
watts, dissipated by the processor when operating at base frequency with all cores active under
an Intel-defined, high-complexity workload, is approximately 47 watts [62]. This approximation
shows the higher power consumption of the Core i7, compared to the reported results from Mali
and A7.

The low performance, and low power A7 CPU consumes less power than the Mali GPU. However
Mali’s support for the half precision floating point has resulted in 33% lower power consumption,

3.3. Digital Front-End Processing 41

0

0,1

0,2

0,3

0,4

0,5

0,6

Halfband
Full Float

Linear

Halfband
Full Float
Circular

Non-halfband
Full Float

Linear

Non-halfband
Full Float
Circular

Non-halfband
Half Float

Linear

Non-halfband
Half Float
Circular

Mali

A7

Figure 3.9: The power consumption of the implemented halfband, and non-halfband, linear, and cyclic
filters with half precision and full precision floating points in watts.

which is still somewhat higher than the A7 with full precision floating points.

Energy Consumption In addition to the power consumption, it is important to evaluate the
consumed energy. The energy consumption directly influences the battery life of the device.
Furthermore, energy consumption comparison leads to fairer analysis compared to power, as we
normalize the execution time. Thus, using the kernel execution times and power consumption, we
have calculated the energy consumption of the channelization filter implemented on Mali and A7.
The results are presented in Fig. 3.10

With almost twice smaller execution time, and twice less power consumption, application of
half precision floating point numbers has resulted in 60 % less energy consumption compared

0

20

40

60

80

100

120

Halfband
Full Float

Linear

Halfband
Full Float
Circular

Non-halfband
Full Float

Linear

Non-halfband
Full Float
Circular

Non-halfband
Half Float

Linear

Non-halfband
Half Float
Circular

Mali

A7

Figure 3.10: The energy consumption of the implemented halfband, and non-halfband, linear, and cyclic
filters with half precision and full precision floating points in µJ.

42 Chapter 3. SDR Solutions for WiFi

to single precision floating points. Furthermore, the graphs in Fig. 3.10 show that even though
A7 consumes less power, the energy consumption is lower in Mali. This is due to the fact that
execution of the kernels takes much less time in Mali.

CHAPTER 4

SDR SOLUTIONS FOR FULL-DUPLEX

COMMUNICATIONS

Similar to the DFE processing, the digital SI canceller implementations, presented in this thesis,
employs COTS processing platforms, which are used in devices available in the market. Using
the Odroid XU3 development board, introduced in the previous section, we take advantage of
the ARM® MaliTM-T628 MP6 GPU and the Cortex™-A15 CPU. Additionally, in this work,
the Adreno 430, which is a powerful mobile-scale GPU is utilized as an alternative processing
platform. The contents of this chapter are based on publications [P5] and [P6].

An introduction of the reference processing platform, the Intel Core-i7, as well as the Mali GPU
is provided in section 3.3. Thus, only the Adreno GPU, and the A15 CPU are presented in the
following.

Qualcomm® AdrenoTM 430 Adreno 430 is a GPU by Qualcomm, available in the Snapdragon
810 system on chip (SoC), which is designed for mobile-scale devices. This GPU can run at
500 MHz, 600 MHz, or 650 MHz clock frequency [63]. Details about Adreno’s architecture
are scarcely available for public use, however it seems that it can roughly support 200 floating
point operations per cycle. We used a commercial android mobile phone to run the OpenCL
implementation of the digital SI canceller.

ARM® Cortex®-A15TM The A15 CPU is a part of the ARM big.LITTLE technology introduced
in the previous section, where A15 is the big and A7 is the LITTLE CPU. This technology is used
in the Samsung Exynos 5422 SoC found on the Odroid development board. Although compared
to the LITTLE processor, A15 is more power-hungry, it is still considered a low-power processor.
The high performance A15 processor has one to four cores, each equipped with NEON advanced
SIMD instruction set and vector floating point units. A15 can run at up to 2.1 GHz clock frequency
[55].

43

44 Chapter 4. SDR Solutions for Full-Duplex Communications

DACLPF
V

G
A

P
A

xn LPF ↓D

|xn|
p-1xn

|xn|
2xn LPF

LPF

↓D

↓D hp

LPF ↓q

Ʃ

L
M

S
 f

il
te

r

w
ei

g
h
t
u
p
d
at

e
L

N
A ADCLPF

V
G

A

R
F

 c
an

c
e
ll

a
ti

o
n

 c
ir

c
u

it

transmit signal

~
LO

IQ Mixer

IQ Mixer

Fs

cancelled

signal

h3

h1

Ʃ

(D/r)Fs

↑r

Ʃ
Fs

O
rt

h
o

go
n

al
iz

at
io

n

Figure 4.1: The overall structure of a full-duplex transceiver, where the grey part is implemented in software
in this work.

4.1 Related Work

SI cancellation methods have been extensively researched, as it is the main challenge in realizing
full-duplex communications systems. The work presented in [64] describes an RF canceller
architecture, while [65] proposes an all-digital SI cancellation technique. In some works, such
as [66], both analogue and digital cancellation methods are used for sufficient SI suppression.
Moreover, taking advantage of several stages of cancellation such as, propagation, analogue, and
digital domain cancellation, is also reported in some works available in the literature [67, 68].

Furthermore, some actual prototypes capable of full-duplex communication have been built
and presented in [67, 69–71]. However, very few reports of actual hardware or software-based
implementation of full-duplex systems can be found in the literature. In [72], parts of the
SI cancellation methods presented in [29] are implemented on FPGA. This work reports the
achieved performance in terms of SI cancellation and lacks the numerical result related to the
implementation such as execution time, power, and energy consumption.

Some implementations of LMS-based adaptive filtering, which is one of the main implemented
functional blocks in this work, can be found in literature. The authors of [73] have proposed an
FPGA implementation for a 12-tap LMS-based adaptive filter on Xilinx DSP48. The proposed
design can run at maximum 500 MHz clock frequency, and consumes approximately 158 mW
static power.

Furthermore, a GPU based implementation of adaptive filtering can be found in [74], where
the authors present a multichannel adaptive equalization system based on the filtered-x LMS
algorithm in the context of audio processing applications. In this work, CUDA has been used as
the programming language. The processing time for different input sample sizes are presented
and suitability of GPUs for such applications has been demonstrated.

There are also some works reporting implementation of polyphase filters, another block in the
digital SI canceller, using FPGAs and GPUs [40–42]. These works were already introduced in
more details in the previous chapter.

Some of the existing works in the literature which investigate digital pre-distortion techniques
use arithmetic operations similar to SI cancellation methods adopted in the work of this thesis
[75–77]. In these works, parallel processing on GPUs and CPUs is utilized for better performance.
The achieved performance is evaluated and presented, however, power or energy consumption of
the designs are not reported.

The work in this thesis goes further in this topic by demonstrating the feasibility of real-time
complete digital SI cancellation using COTS platforms while staying within the limits of power
consumption of mobile devices.

4.2. Digital Self-Interference Cancellation 45

Polyphase filtering

x(n)

h3

LMS filtering

B
a
si

s
fu

n
c
ti

o
n

s

O
rt

h
o

g
o
n

a
li

z
a
ti

o
n

10LPF|xn|
2xn

h1 SI channel

coefficients

update

rx(n)

Pre-calculated matrix T

10LPF

Basis functions

calculation
y(n)

3rd order basis functions

Figure 4.2: The structure of the implemented third-order digital SI canceller

4.2 Digital Self-Interference Cancellation

This section introduces the digital canceller blocks implemented in the scope of this research. The
overall structure of a full-duplex transmitter is shown in Fig. 4.1, in which the nonlinear digital
SI canceller is highlighted in the grey part. Furthermore, the actual third-order digital canceller
implemented for this work is illustrated in Fig. 4.2.

The building blocks, depicted in Fig. 4.2, are briefly described in the following.

Basis Functions Calculation First, basis functions are generated from the nonlinear transfor-
mations of the known transmit signal. For each transmitted sample x(n), the pth-order basis
function is calculated using up(n) = |x(n)|p−1x(n). The highest nonlinearity order used in this
work is P = 3.

Polyphase Filtering Looking at Fig. 4.1, it can be seen that the transmitted signal is oversampled
before going through the digital canceller. Thus, the generated basis functions should be resampled
to the final cancellation signal’s sample rate. With a decimation factor of D, every D-th sample
of the lowpass filter output is kept.

However, with this approach, many signal samples are processed which would eventually be
discarded. As processing efficiency is critical in our software-based implementation, we eliminate
the unnecessary computations by using polyphase filtering.

Fig. 4.3 depicts the structure of a polyphase filter with downsampling factorD. Here, F0, . . . , FD−1
denote sub-filters of length G, comprising the overall polyphase filter. Thus, the total length of
the filter is G×D. The implemented polyphase for the digital canceller has an overall length of
20, stemming from D = 10 sub-filters of length G = 2.

...

F0

F1

FD-1

x(n)

n = 0, D, ..

n = 1, D+1, ..

n = D-1, 2D-1, ..

...

∑

y(n)

Figure 4.3: Functional structure of a polyphase filter with decimation factor D, where y(n) represents the
signal samples after downsampling and filtering x(n).

46 Chapter 4. SDR Solutions for Full-Duplex Communications

Various approaches are used for the OpenCL implementation with the aim of achieving the highest
possible performance. Implementations based on both scalar and vector data types are carried out.
Filter coefficients are re-organized to allow more efficient data loads.

One example of OpenCL kernel implementation and workload distribution for polyphase filtering
is shown in Fig. 4.4. Here, the re-arranged coefficients and data samples are loaded as vectors of
length four into vectors p and x, respectively. Each work-item generates one output sample y[n]
after multiplication and summation. In Fig. 4.4, k is the polyphase filter length, where k = G×D.
Number of work groups is denoted by n, and local size is assumed to be equal to 16 for a clearer
presentation.

Computing orthogonalization matrix The transformation matrix is calculated using equations
(2.30) - (2.33). This matrix only depends on the statistical properties of the transmit signal, and
does not vary over time. Hence, in this work, we assume that it is precomputed to reduce the
computational complexity of the design. Having nonlinearity order P = 3, the orthogonalization
matrix T is a 2× 2 matrix.

Basis function orthogonalization Using the precomputed transformation matrix T, the ba-
sis functions are orthogonalized according to (2.34). This step is carried out to speed up the
convergence of the learning process.

LMS filtering At this stage, the orthogonalized basis functions are filtered using the SI channel
coefficients. To create a more accurate model of the SI channel memory, both pre-cursor and
post-cursor taps are assumed. Thus, the overall channel memory, i.e., the filter length can be
shown as L = (Lpre + Lpost + 1)× (P+1

2). The error signal e(n) is calculated by subtracting
the filtered basis functions from the received signal rx(n). This describes step six of the LMS
learning method defined in Algorithm 1.

work group n (wg = n)

work item 0 (wi = 0)

x0 = vload4(data[wg*16D+wi*D])

x1 = vload4(data[wg*16D+wi*D+4])

xk/4 -1 = data[wg*16D+wi*D+k-4]

z = x0*p[0] + .. + xk/4 -1*p[k/4-1]

y[16*(wg-1)+wi] = sum(z)

work item 1 (wi = 1)

x0 = vload4(data[wg*16D+wi*D])

x1 = vload4(data[wg*16D+wi*D+4])

xk/4 -1 = data[wg*16D+wi*D+k-4]

z = x0*p[0] + .. + xk/4 -1*p[k/4-1]

y[16*(wg-1)+wi] = sum(z)

work item 15 (wi = 15)

x0 = vload4(data[wg*16D+wi*D])

x1 = vload4(data[wg*16D+wi*D+4])

xk/4 -1 = data[wg*16D+wi*D+k-4]

z = x0*p[0] + .. + xk/4 -1*p[k/4-1]

y[16*(wg-1)+wi] = sum(z)

work group 0 (wg = 0)

work item 0 (wi = 0)

x0 = vload4(data[wg*16D+wi*D])

x1 = vload4(data[wg*16D+wi*D+4])

xk/4 -1 = data[wg*16D+wi*D+k-4]

z = x0*p[0] + .. + xk/4 -1*p[k/4-1]

y[16*(wg-1)+wi] = sum(z)

work item 1 (wi = 1)

x0 = vload4(data[wg*16D+wi*D])

x1 = vload4(data[wg*16D+wi*D+4])

xk/4 -1 = data[wg*16D+wi*D+k-4]

z = x0*p[0] + .. + xk/4 -1*p[k/4-1]

y[16*(wg-1)+wi] = sum(z)

work item 15 (wi = 15)

x0 = vload4(data[wg*16D+wi*D])

x1 = vload4(data[wg*16D+wi*D+4])

xk/4 -1 = data[wg*16D+wi*D+k-4]

z = x0*p[0] + .. + xk/4 -1*p[k/4-1]

y[16*(wg-1)+wi] = sum(z)

Figure 4.4: OpenCL kernel structure and workload distribution for the polyphase filter.

4.3. Results 47

SI channel coefficients update The SI channel coefficients should be updated as described in
steps 7-10 of Algorithm 1. To address the difference of strength between the nonlinear terms in
the received signal, different step sizes should be considered for different nonlinear terms. We
have selected µ = 0.01 and µ = 0.001 for the linear and third order terms, respectively.

In order to add more parallelism to the computations and reduce complexity, the SI channel
coefficients are only updated after a set of N samples are processed. With this approach, the LMS
filter kernel would stall less frequently while waiting for the updated coefficients. Thus, the LMS
filter and SI channel coefficients update kernels will have less dependency, which increases the
parallelism by processing larger sets of data in the LMS filter kernel.

4.3 Results

This section provides implementation results and analysis for the proposed digital canceller. To
demonstrate the performance of our implemented canceller, we first present the effectiveness and
efficiency of our solution in SI suppression. For this purpose, we use the data from an actual
full-duplex prototype system, built in Laboratory of Electronics and Communications Engineering
of Tampere University of Technology. More details on this full-duplex system prototype can be
found in [29] and [78].

Secondly, the software-based digital canceller implementation is evaluated in terms of execution
time, power, and energy consumption. The results are used to investigate the feasibility of the
selected COTS platforms for this software-based implementation.

Software Development The digital canceller OpenCL kernels are optimized for each platform.
Selecting a suitable workload distribution among the OpenCL work-items, using scalar or vector
based implementation, and employing different vector lengths can affect the performance of the
processors in each task.

With the Mali GPU, employing different kernel designs showed that the best results can be
achieved when vectors of four elements are used. On the A15 CPU, using different vector lengths
and even scalar data types yielded similar results. However, organizing the workload in two work
groups resulted in the lowest execution time. The Core i7 CPU has the best performance when
using vectors of length 16, and in most cases dividing the processing among eight work groups
provides better results. Similar to Mali, the Adreno GPU performs best when having vectors of
length four. Moreover, using four work groups has shown to result in faster execution on Adreno.

The performance results of the different processing platforms, presented in the following sections,
are achieved when running the most efficient kernel design setups.

4.3.1 Digital Self-Interference Canceller Performance

The software-based implementation uses the sample data, i.e., transmit signal and received signal,
from the real full-duplex prototype system and runs the digital canceller kernels. The resulting
cancelled signal on the Adreno GPU is plotted in Fig. 4.5, which shows the instantaneous power
of the cancelled signal over time, when input buffers of 10, 1280, and 2560 samples are used.
This means that after decimation by a factor of 10 and orthogonalization, the input samples are
processed as a single sample, or in blocks of 128, and 256, before the SI channel coefficients are
updated.

48 Chapter 4. SDR Solutions for Full-Duplex Communications

0 1 2 3 4 5 6 7 8

−90

−85

−80

−75

−70

−65

−60

−55

−50

−45

Time (ms)

P
o
w

er
(d

B
m

)

Linear digital canceller (N=256, P=1)

Linear digital canceller (N=128, P=1)

Linear digital canceller (N=1, P=1)

Third order digital canceller (N=256, P=3)

Third order digital canceller (N=128, P=3)

Third order digital canceller (N=1, P =3)

Figure 4.5: The instantaneous power of the SI signal, averaged over 1000 samples, of linear (P = 1) and
third order (P = 3) digital canceller output signal, implemented on the Adreno 430, with respect to time, for
N = 1, N = 128 and N = 256.

In this implementation, Lpre = 7 and Lpost = 8. Thus, the overall SI channel memory L,
L = (Lpre + Lpost + 1)× (P+1

2), is considered to be 16 for the linear canceller, and 32 for the
third order canceller.

It can be seen from Fig. 4.5 that the SI signal is sufficiently suppressed, reaching the receiver noise
floor (-90 dBm). When the learning algorithm is given more time to converge, almost perfect SI
cancellation can be achieved. For every N , the performance of the third order canceller is shown
to be superior to the linear canceller.

Fig. 4.5 also shows that higher N , i.e. less frequent updating of the SI channel coefficients, results
in slower convergence of the LMS learning algorithm. However, this can be neglected as there
is relatively small difference, especially after the initial learning phase. Thus, we can consider
using higher N as a feasible approach for reducing the computational complexity of the digital
canceller.

4.3.2 Execution Time

This section presents the measured execution times for different building blocks of the digital SI
canceller. The results include the measured times on all four processing platforms, introduced in
section 3.3 and in the beginning of this chapter.

The main advantage of using OpenCL on multicore platforms with SIMD or single program,
multiple data (SPMD) optimized hardware is being able to better utilize the available parallel
resources in order to exploit the existing data-level parallelism. When PEs of the processor are

4.3. Results 49

Table 4.1: Execution times of one signal sample for different kernels with respect to buffer lengths when
implemented on Adreno 430 for both the linear and third order canceller.

Buffer size 2560 5120 10240 20480

Nonlinearity order P = 1 P = 3 P = 1 P = 3 P = 1 P = 3 P = 1 P = 3

Basis functions - 1,89 - 1,50 - 1,37 - 1,21
Polyphase 23,00 44,10 16,00 30,50 13,75 26,50 12,21 22,75
Orthogonalization 11,00 18,00 5,50 11,50 2,75 5,75 2,25 4,75
LMS filter 23,00 32,76 17,00 23,28 14,25 20,05 12,75 18,32
Weight update 11,00 11,00 5,50 5,50 2,75 2,85 1,38 1,27

Total [ns] 68,00 107,75 44,00 72,28 33,50 56,52 28,59 48,30
Rate [MHz] 14,71 9,29 22,73 13,84 29,85 17,69 34,98 20,70

used efficiently and workload is distributed properly among the resources, high performance can
be achieved.

We increase the amount of data processed in each kernel call to further add to the inherent
parallelism of the algorithm. Thus, processing time for each signal sample is reduced. Furthermore,
the implementation of each block is tailored on each platform for better execution efficiency.

Tables 4.1 - 4.4 present the execution times of each digital canceller block on the four platforms.
It should be noted that the data transfer times are not included in the reported times, as the SoC
can be designed so that the processor sees the same memory as the radio hardware. In each table,
the execution times for both the linear and third order cancellers in case of buffer lengths of 2560,
5120, 10240, 20480 are presented. The input buffer sizes are powers of two numbers multiplied
by the decimation factor, which is equal to 10.

It can be seen that the processing time for a single signal sample decreases as the buffer sizes
increase. In most scenarios, the execution time is halved when the buffer size is doubled. This
can be clearly observed in the “orthogonalization” and “weight update” kernels. However the
achieved speedup is smaller for the two kernels which perform filtering, i.e. “polyphase” and
“LMS filter”. This is due to the inherent lack of parallelism stemming from the summation step of
the convolution operation.

The achieved speedup for the “basis functions” kernel is not increasing linearly as the buffer sizes
grow. The reason behind this could be the 10 times bigger input buffers of this kernel compared to
the other kernels, executed after downsampling. The bigger input buffers could result in saturation

Table 4.2: Execution times of one signal sample for different kernels with respect to buffer lengths when
implemented on Cortex A15 for both the linear and third order canceller.

Buffer size 2560 5120 10240 20480

Nonlinearity order P = 1 P = 3 P = 1 P = 3 P = 1 P = 3 P = 1 P = 3

Basis functions - 34,76 - 17,96 - 10,25 - 5,85
Polyphase 312,50 622,50 207,03 411,52 122,07 242,49 77,63 152,94
Orthogonalization 320,31 328,12 164,02 164,06 82,03 84,96 44,92 45,41
LMS filter 398,43 476,56 222,65 306,64 134,76 214,84 92,77 167,96
Weight update 265,62 242,18 142,57 125,00 83,00 81,05 42,96 40,52

Total [ns] 1296,80 1704,10 736,27 1025,20 421,86 633,59 258,28 412,68
Rate [MHz] 0,77 0,59 1,36 0,97 2,37 1,57 3,87 2,41

50 Chapter 4. SDR Solutions for Full-Duplex Communications

Table 4.3: Execution times of one signal sample for different kernels with respect to buffer lengths when
implemented on Core i7 for both the linear and third order canceller.

Buffer size 2560 5120 10240 20480

Nonlinearity order P = 1 P = 3 P = 1 P = 3 P = 1 P = 3 P = 1 P = 3

Basis functions - 1,92 - 0,66 - 0,55 - 0,48
Polyphase 20,78 39,86 12,02 22,34 9,64 17,97 6,12 11,38
Orthogonalization 5,93 7,42 3,71 4,45 2,22 2,59 1,29 2,22
LMS filter 23,75 22,26 12,00 12,90 9,64 10,02 6,30 6,49
Weight update 5,93 7,42 3,71 3,71 1,85 1,85 0,92 0,92

Total [ns] 56,39 78,88 31,44 44,06 23,35 32,98 14,63 21,49
Rate [MHz] 17,73 12,67 31,80 22,69 42,82 30,32 68,35 46,53

of the available PEs on the processing platforms, and thus lowering the speedup.

The achieved sample production rates with respect to the input buffer lengths is depicted in
Fig. 4.6. It can be seen that the growth seems to slow down with very long buffers as a result of
the saturation of the PEs.

The presented results reveal that the implemented digital canceller on Mali and A15 cannot reach
production rates close to 20 MHz, even when using big input buffers. However, having input
buffers of 5120 samples, both the Adreno 430 GPU and the Core-i7 CPU can perform linear
digital SI cancellation at rates over 20 MHz. When it comes to third order cancellation, input
buffers of 5120, and 20480 samples are required for the Core-i7 and the Adreno 430, respectively,
to carry out the related processing for above 20 MHz sample rates.

For a third order digital canceller, two polyphase filters are employed, one for the linear terms,
and one for the third order basis functions. Consequently, as it can be observed from Tables 4.1 -
4.4, this processing stage takes twice more time for the nonlinear canceller compared to the linear
one. Furthermore, the linear canceller is not using the “basis functions” kernel, which calculates
the third order basis functions. The execution time for the rest of the third order canceller blocks
is either equal or slightly different than the linear one. This is due to the fact that there are only
minor differences in required number of arithmetic computations.

Table 4.4: Execution times of one signal sample for different kernels with respect to buffer lengths when
implemented on Mali-T628 for both the linear and third order canceller.

Buffer size 2560 5120 10240 20480
Nonlinearity order P = 1 P = 3 P = 1 P = 3 P = 1 P = 3 P = 1 P = 3

Basis functions - 3,41 - 2,49 - 2,21 - 2,02
Polyphase 46,14 90,11 39,66 77,68 36,08 71,09 33,20 64,85
Orthogonalization 19,33 40,97 10,36 21,62 5,43 12,31 2,46 6,70
LMS filter 65,79 87,16 44,52 72,32 37,83 55,51 28,48 50,41
Weight update 30,51 25,19 16,08 16,84 6,15 8,44 3,43 4,54

Total [ns] 161,77 246,84 110,62 190,95 85,49 149,56 67,57 128,52
Rate [MHz] 6,18 4,05 9,04 5,23 11,70 6,68 14,80 7,78

4.3. Results 51

0

20

40

60

80

100

120

2560 5120 10240 20480 40960

S
am

p
le

 P
ro

d
u

ct
io

n
 r

at
e

[M
H

z]

Data buffer size

Mali (P=3) A15 (P=3) i7 (P=3) Adreno (P=3)

Mali (P=1) A15 (P=1) i7 (P=1) Adreno (P=1)

Figure 4.6: Sample production rate increase with regards to buffer size on the four platforms for both linear
and third order cancellers.

4.3.3 Delay

As extensively discussed before, we increase the number of samples processed in each kernel call
to add to the existing parallelism, which would be utilized by the available PEs. However, there
is a downside to this approach, as having bigger input buffers translates to longer delays for the
system. Thus, a balance should be achieved in the delay and sample production rate trade-off in a
real application. The overall delay for the implemented canceller is calculated as:

overall delay = Tbasisfunctions × buffer size

+ Tpolyphase ×
buffer size

D

+ Torthogonalization ×
buffer size

D

+ TLMS filter ×
buffer size

D

+ Tweight update ×
buffer size

D
,

(4.1)

where Tkernel is the execution time of one sample for “kernel”, and D is the decimation factor.
Table 4.5 lists the produced overall delays using different buffer sizes on the selected platforms.

Having input buffer sizes of 5120 and 10240 for the third order canceller implemented on Core
i7 and Adreno 430, respectively, results in delays of 25, 6 µs and 70, 5 µs. The inherent receiver
processing latency of LTE UE is, at least, 1 ms due to the downlink reference symbol structure,
the adopted codeword mapping, and interleaving processing. Furthermore, according to 3GPP
specification [79], an additional processing time of 3 ms is allowed for sending downlink hybrid

52 Chapter 4. SDR Solutions for Full-Duplex Communications

Table 4.5: Overall delay in microseconds for different buffer lengths on all four platforms.

Buffer length 2560 5120 10240 20480
Nonlinearity order P=1 P=3 P=1 P=3 P=1 P=3 P=1 P=3

Mali 41,41 71,04 56,63 109,24 87,54 173,51 42,08 300,44
A15 331,99 516,34 376,97 607,65 431,98 743,26 42,08 952,07
i7 14,43 24,61 16,09 25,60 23,91 38,83 42,08 52,85
Adreno 17,40 31,93 22,52 43,91 34,30 70,50 59,38 121,22

automatic repeat request (HARQ) acknowledgement within uplink control signaling. Thus, the
aforementioned delays can be considered more than reasonable.

4.3.4 Power Consumption

The same tools and approaches, described in section 3.3 for measuring the consumed power on the
Odroid board, were used in this work to estimate the power consumed by the Mali GPU and A15
CPU. However, similar to the Core-i7, power measurement on the Adreno GPU is not possible
due to unavailability of relative tools.

The average consumed power, presented in Fig. 4.7 is measured when the input buffer size is
set to 5120 signal samples for the kernels, since the average power varies with buffer size only
slightly, if any. Furthermore, the figure shows that there is insignificant or no difference between
the power consumption of the implemented linear and third order SI cancellers.

The basis function calculation is not performed in the linear case, thus it is not included here.
The overall average power consumption is also measured when the whole digital canceller is run
on the cores, which is shown in the chart labelled as “total”. The total power consumption is
somewhat higher than the average power of all implemented blocks.

Now comparing the power consumption of the two platforms reveals that the A15 CPU uses

0,001

0,010

0,100

1,000

10,000

A
v
er

ag
e

p
o

w
er

 i
n
 w

at
ts

Mali (P=1) Mali (P=3) A15 (P=1) A15 (P=3)

Figure 4.7: Consumed power by Mali and A15 running the linear and third order digital canceller kernels
with input buffer length of 5120.

4.3. Results 53

0,01

0,1

1

10

100

1000

E
n
er

g
y
 c

o
n
su

m
p

ti
o

n
 µ

J

Mali (P=1) Mali (P=3) A15 (P=1) A15 (P=3)

Figure 4.8: Consumed energy by Mali and A15 running the linear and third order digital canceller kernels
with input buffer length of 5120.

approximately 20 times more power than the Mali GPU while running the same kernels. This
could stem from the higher clock frequency of the CPU, which is 2.1 GHz, compared to 600
MHz 0f the Mali GPU. Another reason is that the CPU is equipped with extra hardware for more
general-purpose computing, which results in higher power consumption.

Power consumption can be reduced by increasing parallelism to reduce the required clock fre-
quency for achieving the same throughput. In other words, reducing switching activity, and more
importantly, the voltage which has quadratic effect on power, reduces the consumed power [80].

Having input buffer size of 5120 samples, the power consumption of Mali is roughly 104 mW when
running the third order digital canceller kernels. According to [81], the overall power consumption
of an LTE UE receiver is close to few watts. Thus, with regards to power consumption, Mali can
be considered an eligible candidate for hand-held devices.

4.3.5 Energy Consumption

While power consumption is important for heating matters of the device, evaluating the consumed
energy is essential, as it translates to the battery life of the device. Thus, energy consumption is a
key criterion, especially in hand-held devices.

Using the measured average power consumption and the delays corresponding to processing of
5120 samples, we calculated the consumed energy for each kernel. The results can be found in
Fig 4.8.

As power consumption remains relatively constant with bigger input buffer size, and the execution
time increases, it can be concluded that the energy consumption also rises with longer buffers.

It can be seen from Fig 4.8 that A15 has a higher energy consumption compared to Mali. This
could be explained by higher power consumption and execution time of the kernels in A15. The
total energy consumed when running the complete canceller is shown in the chart labelled as
“total”. The third order digital canceller consumes approximately 9 µJ when processing 5120
signal samples on the Mali GPU.

CHAPTER 5

CONCLUSION

This chapter summarizes the main results and findings of the Thesis. Furthermore, some open
issues to be considered as the continuation of this work are laid out.

5.1 Summary and Main Results

SDR solutions for the IEEE 802.11ac transceiver baseband processing were proposed in publica-
tions [P1], [P2], and [P3]. Targeting very high throughputs, the 802.11ac amendment imposes very
strict requirements for the processing platform, making a software-based implementation more
challenging. A Tensilica DSP core was used to implement four MIMO transmission scenarios.
Then, to investigate the feasibility of real-time processing for the DATA and VHT-LTF symbols,
the solution was evaluated in terms of number of clock cycles and power consumption. To have
real time processing of the symbols, the processing should take less than the symbol duration,
which is 4µs for the header part and 3.6µs for the data part when short Guard Interval (GI) is used.
The obtained results suggest that a real-time processing of the transmitter baseband operations
can be achieved with clock frequencies as low as 500 MHz on the Tensilica BBE32 core. On
the receiver side, however, clock frequencies higher than 1 GHz and 2 GHz are required for
the two and four antenna MIMO configurations, respectively. Furthermore, the estimated power
consumption indicates the feasibility of deploying the developed SDR solution in hand-held
devices, as it is much lower than the reported power consumption of WiFi in mobile devices.

Following the findings on the IEEE 802.11ac baseband processing, [P4] presented the results from
the implemented DFE channelization concept for the same standard. Different approaches were
used to divide the IEEE 802.11ac 80 MHz bandwidth, into two 40 MHz waveforms to enable
parallel processing of the two signals. The proposed solutions for channelization filtering and
decimation were implemented using COTS multi-core CPUs and GPUs. The execution time,
power, and energy consumption were measured on selected platforms. The results demonstrated
the performance enhancement achieved by optimally utilizing the available parallel resources.
Furthermore, a comparison among the employed platforms was carried out, and it showed that
some of the solutions could fulfill the strict timing requirements of the IEEE 802.11ac standard.

Publications [P5] and [P6] presented the software-based implementation of an adaptive nonlin-
ear digital SI canceller for future IBFD systems. General-purpose low-cost COTS processing

55

56 Chapter 5. Conclusion

platforms, suitable for hand-held devices were selected to demonstrate the feasibility of a true
SDR solution. The software was tailored to efficiently take advantage of the existing parallel
resources of the multi-core processors. Delay, execution time, power and energy consumption
were measured on the platforms. The proposed solution was shown to be capable of cancelling
the SI at the required sample rate for a 20 MHz LTE carrier bandwidth. Furthermore, the results
from power and energy consumption indicated the feasibility of a mobile-scale deployment, when
compared to the estimated power consumption of an LTE UE receiver reported in the literature.

5.2 Future Work

While the results obtained in this thesis work show the feasibility of SDR based implementations
of different computationally intensive algorithms, many steps still need to be taken towards
achieving fully software defined radios. Extending the implementations to cover all the baseband
and DFE functionalities, and also including the MAC layer processing is one issue that should be
considered in the continuation of this work.

Furthermore, to realize the vision of multi-standard SDR systems, the possibility of employing a
single platform to operate different standards, e.g., 5G from the 3GPP and IEEE 802.11ac from
the WLAN family should be investigated. The different application areas within one standard
could also raise some issues when adopting a single SDR platform. As an example, 5G targets
three main dimensions for performance improvement, namely enhanced mobile broadband, ultra-
reliable low-latency communications, and massive machine type communications. These impose
different constraints on the processing platform, which add to the complexity of providing a single
SDR solution. These issues need to be addressed as part of the future SDR research.

Although great advances in performance of processing units have been made, the processing power
of these platforms is still somewhat limited. Therefore, the issue of scaling the proposed solutions,
e.g., for processing of massive MIMO communication systems, remains an open research topic.

From the implementation point of view, other SDR platforms with different capabilities need to be
studied. As an example, in this thesis the parallelization was only carried out by optimally dividing
the available work among the parallel units of a CPU or GPU. To achieve higher performance,
platforms should be employed which allow the distribution of the workload between the CPU,
and one or more GPUs.

Further reduction in energy consumption has also been identified as an important topic for future
work. To be able to draw more precise conclusions from the energy consumption point of view,
a model of how the energy is spent can be developed to help proposing changes in the correct
direction for the implementation.

BIBLIOGRAPHY

[1] J. Mitola, “The software radio architecture,” IEEE Communications Magazine, vol. 33, no. 5,
pp. 26–38, May 1995.

[2] E. Grayver, Implementing Software Defined Radio. New York, NY, USA: Springer-Verlag,
2013.

[3] W. H. Tuttlebee, Ed., Software Defined Radio: Baseband Technologies for 3G Handsets and
Basestations. Chichester, England: Wiley, 2003.

[4] G. Sklivanitis, A. Gannon, S. N. Batalama, and D. A. Pados, “Addressing next-generation
wireless challenges with commercial software-defined radio platforms,” IEEE Communica-
tions Magazine, vol. 54, no. 1, pp. 59–67, January 2016.

[5] H. Ishikawa, “Software defined radio technology for highly reliable wireless communica-
tions,” Wireless Personal Communications, vol. 64, no. 3, pp. 461–472, Jun 2012.

[6] M. Gast, 802.11ac: A Survival Guide Wi-Fi at Gigabit and Beyonds. O’Reilly Media,
2013.

[7] I. P802.11ac/D5.0 2013, “IEEE standard for information technology– telecommunications
and information exchange between systemslocal and metropolitan area networks– specific
requirements–part 11: Wireless LAN medium access control (MAC) and physical layer
(PHY) specifications–amendment 4: Enhancements for very high throughput for operation
in bands below 6 GHz,” IEEE, Piscataway, NJ, Standard, January 2013.

[8] A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band
full-duplex wireless: Challenges and opportunities,” IEEE Journal on Selected Areas in
Communications, vol. 32, no. 9, pp. 1637–1652, Sept 2014.

[9] D. W. Bliss, P. A. Parker, and A. R. Margetts, “Simultaneous transmission and reception
for improved wireless network performance,” in IEEE/SP Workshop on Statistical Signal
Processing, Madison, WI, USA, USA, Aug 2007, pp. 478–482.

[10] J. I. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti, “Achieving single channel, full
duplex wireless communication,” in Proceedings of the Annual International Conference on
Mobile Computing and Networking, ser. MobiCom ’10, Chicago, IL, 2010, pp. 1–12.

57

58 Bibliography

[11] Z. Zhang, K. Long, A. V. Vasilakos, and L. Hanzo, “Full-duplex wireless communications:
Challenges, solutions, and future research directions,” Proceedings of the IEEE, vol. 104,
no. 7, pp. 1369–1409, July 2016.

[12] D. Korpi, “Full-duplex wireless: Self-interference modeling, digital cancellation, and system
studies,” Ph.D. dissertation, Tampere University of Technology, Finland, 2017.

[13] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “GPUs and the future
of parallel computing,” IEEE Micro, vol. 31, no. 5, pp. 7–17, Sept 2011.

[14] I. S. 802.11-2012, “IEEE standard for information technology–telecommunications and
information exchange between systems local and metropolitan area networks–specific re-
quirements part 11: Wireless LAN medium access control (MAC) and physical layer (PHY)
specifications,” IEEE, Piscataway, NJ, Standard, 2012.

[15] E. Perahia and R. Stacey, Next Generation Wireless LANs Throughput, Robustness, and
Reliability in 802.11n. New York, NY, USA: Cambridge University Press, 2013.

[16] “802.11ac: The fifth generation of Wi-Fi,” Cisco, White paper, May 2017, last accessed
18.06.2017. [Online]. Available: http://www.cisco.com/c/en/us/products/collateral/wireless
/aironet-3600-series/white_paper_c11-713103.html

[17] “IEEE 802.11ac: The next evolution of Wi-Fi™ standards,” May 2012, last accessed
18.06.2017. [Online]. Available: https://www.qualcomm.com/media/documents/files/iee
e802-11ac-the-next-evolution-of-wi-fi.pdf

[18] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE
Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451–1458, Oct 1998.

[19] M. S. Bartlett, “An inverse matrix adjustment arising in discriminant analysis,” Ann. Math.
Statist., vol. 22, no. 1, pp. 107–111, 03 1951.

[20] S. Kumawat, R. Shrestha, N. Daga, and R. Paily, “High-throughput LDPC-decoder archi-
tecture using efficient comparison techniques & dynamic multi-frame processing schedule,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 5, pp. 1421–1430,
May 2015.

[21] Q. Xie, Q. He, X. Peng, Y. Cui, Z. Chen, D. Zhou, and S. Goto, “A high parallel macro block
level layered LDPC decoding architecture based on dedicated matrix reordering,” in 2011
IEEE Workshop on Signal Processing Systems, Beirut, Lebanon, Oct 2011, pp. 122–127.

[22] S. Huang, D. Bao, B. Xiang, Y. Chen, and X. Zeng, “A flexible LDPC decoder architecture
supporting two decoding algorithms,” in Proceedings of 2010 IEEE International Symposium
on Circuits and Systems, Paris, France, May 2010, pp. 3929–3932.

[23] S. K. Mitra and J. F. Kaiser, Eds., Handbook for Digital Signal Processing, 1st ed. New
York, NY, USA: John Wiley & Sons, Inc., 1993.

[24] J. Yli-Kaakinen, T. Levanen, M. Aghababaeetafreshi, M. Renfors, and M. Valkama, “Opti-
mization of parallel processing intensive digital front-end for IEEE 802.11ac receiver,” in
European Signal Processing Conference, Budapest, Hungary, Aug 2016, pp. 637–641.

[25] Fundamentals of 5G Mobile Networks, 1st ed. Wiley Publishing, 2015.

http://www.cisco.com/c/en/us/products/collateral/wireless/aironet-3600-series/white_paper_c11-713103.html
http://www.cisco.com/c/en/us/products/collateral/wireless/aironet-3600-series/white_paper_c11-713103.html
https://www.qualcomm.com/media/documents/files/ieee802-11ac-the-next-evolution-of-wi-fi.pdf
https://www.qualcomm.com/media/documents/files/ieee802-11ac-the-next-evolution-of-wi-fi.pdf

Bibliography 59

[26] Q. C. Li, H. Niu, A. T. Papathanassiou, and G. Wu, “5G network capacity: Key elements and
technologies,” IEEE Vehicular Technology Magazine, vol. 9, no. 1, pp. 71–78, March 2014.

[27] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. New York, NY, USA:
Cambridge University Press, 2005.

[28] T. Riihonen, S. Werner, and R. Wichman, “Mitigation of loopback self-interference in
full-duplex MIMO relays,” IEEE Transactions on Signal Processing, vol. 59, no. 12, pp.
5983–5993, Dec 2011.

[29] D. Korpi, Y. S. Choi, T. Huusari, L. Anttila, S. Talwar, and M. Valkama, “Adaptive nonlinear
digital self-interference cancellation for mobile inband full-duplex radio: Algorithms and
RF measurements,” in IEEE Global Communications Conference, San Diego, CA, USA,
6-10 Dec 2015, pp. 1–7.

[30] M. Nagaraju and M. Rakesh, “High-speed and low-power ASIC implementation of OFDM
transceiver based on WLAN (IEEE 802.11a),” in International Conference on Devices,
Circuits and Systems, Coimbatore, India, March 2012, pp. 436–439.

[31] J. Son, I. G. Lee, and S. K. Lee, “ASIC implementation and verification of MIMO-OFDM
transceiver for wireless LAN,” in IEEE International Symposium on Personal, Indoor and
Mobile Radio Communications, Athens, Greece, Sept 2007, pp. 1–5.

[32] S. Yoshizawa and Y. Miyanaga, “VLSI implementation of a 4x4 MIMO-OFDM transceiver
with an 80-MHz channel bandwidth,” in IEEE International Symposium on Circuits and
Systems, Taipei, Taiwan, May 2009, pp. 1743–1746.

[33] P. Wang, J. McAllister, and Y. Wu, “Software defined FFT architecture for IEEE 802.11ac,”
in 2013 IEEE Global Conference on Signal and Information Processing, Austin, TX, USA,
Dec 2013, pp. 1246–1249.

[34] N. Yoshida, L. Lanante, Y. Nagao, M. Kurosaki, and H. Ochi, “A hybrid HW/SW 802.11ac/ax
system design platform with ASIP implementation,” in 2017 International Symposium on
Intelligent Signal Processing and Communication Systems (ISPACS), Xiamen, China, Nov
2017, pp. 827–831.

[35] D. Liu, “Baseband ASIP design for SDR,” China Communications, vol. 12, no. 7, pp. 60–72,
July 2015.

[36] H. Yang, J. Shim, J. Bang, and Y. Lee, “Software-based giga-bit WLAN platform,” in IEEE
International Conference on Consumer Electronics, Las Vegas, NV, USA, Jan 2014, pp.
478–479.

[37] M. Li, A. Amin, R. Appeltans, A. Folens, U. Ahmad, H. Cappelle, P. Debacker, L. Hollevoet,
A. Bourdoux, P. Raghavan, A. Dejonghe, and L. V. D. Perre, “A C-programmable baseband
processor with inner modem implementations for LTE Cat-4/5/7 and Gbps 80mhz 4x4
802.11ac (invited),” in IEEE Global Conference on Signal and Information Processing,
Austin, TX, Dec 2013, pp. 1222–1225.

[38] Y. H. Park, K. Prasad, Y. Lee, K. Bae, and H. Yang, “Scalable radio processor architecture
for modern wireless communications,” in International Conference on Field-Programmable
Technology, Shanghai, China, Dec 2014, pp. 310–313.

60 Bibliography

[39] B. Mei, A. Lambrechts, J. Y. Mignolet, D. Verkest, and R. Lauwereins, “Architecture
exploration for a reconfigurable architecture template,” IEEE Design Test of Computers,
vol. 22, no. 2, pp. 90–101, March 2005.

[40] V. Mocanu, C. Anghel, and A. A. Enescu, “FPGA implementation of a digital front end block
for a multi-carrier multi-antenna system,” in 2009 International Semiconductor Conference,
vol. 2, Sinaia, Romania, Oct 2009, pp. 431–434.

[41] P. Fiala and R. Linhart, “High performance polyphase FIR filter structures in VHDL language
for software defined radio based on FPGA,” in 2014 International Conference on Applied
Electronics, Pilsen, Czech Republic, Sept 2014, pp. 83–86.

[42] A. Al-safi and B. Bazuin, “GPU based implementation of a 64-channel polyphase channal-
izer,” in 2015 IEEE Dallas Circuits and Systems Conference (DCAS), Dallas, TX, USA, Oct
2015, pp. 1–4.

[43] “CUDA C programming guide version 9.2,” NVIDIA Corporation, Tech. Rep., August 2018.

[44] F. T. Gebreyohannes, A. Frappé, and A. Kaiser, “A configurable transmitter architecture for
IEEE 802.11ac and 802.11ad standards,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 63, no. 1, pp. 9–13, Jan 2016.

[45] L. Fei-yu, Q. Wei-ming, Z. Jian-chuan, N. Gang-yang, L. Wei-bin, and M. Wei-yu, “Pro-
grammable digital front-end design for software defined radio,” in International Conference
on Networks Security, Wireless Communications and Trusted Computing, vol. 1, Wuhan,
Hubei, China, April 2010, pp. 321–324.

[46] G. Hueber, R. Stuhlberger, A. Holm, and A. Springer, “Multi-mode receiver design for
wireless terminals,” in European Conference on Wireless Technologies, Munich, Germany,
Oct 2007, pp. 126–129.

[47] “Connx BBE32 DSP, user’s guide,” Tensilica Incorporated, 2012.

[48] C. Tang, C. Liu, L. Yuan, and Z. Xing, “High precision low complexity matrix inversion
based on newton iteration for data detection in the massive MIMO,” IEEE Communications
Letters, vol. 20, no. 3, pp. 490–493, March 2016.

[49] J. A. Zhang, X. Huang, H. Suzuki, and Z. Chen, “Gaussian approximation based interpolation
for channel matrix inversion in MIMO-OFDM systems,” IEEE Transactions on Wireless
Communications, vol. 12, no. 3, pp. 1407–1417, March 2013.

[50] J. E. Gentle, Numerical Linear Algebra for Applications in Statistics. New York, NY:
Springer, 1998.

[51] C. K. Singh, S. H. Prasad, and P. T. Balsara, “VLSI architecture for matrix inversion
using modified gram-schmidt based QR decomposition,” in Proceedings of International
Conference on VLSI Design, ser. VLSID ’07, Bangalore, India, 2007, pp. 836–841.

[52] R. Friedman, A. Kogan, and Y. Krivolapov, “On power and throughput tradeoffs of WiFi
and Bluetooth in smartphones,” IEEE Transactions on Mobile Computing, vol. 12, no. 7, pp.
1363–1376, July 2013.

[53] ODROID-XU3., Hardkernel co., Ltd., 2013, last accessed 08.04.2017. [Online]. Available:
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127

Bibliography 61

[54] “big.LITTLE technology: The future of mobile,” ARM, Tech. Rep., 2013, last accessed
30.07.2017. [Online]. Available: https://www.arm.com/files/pdf/big_LITTLE_Technology_t
he_Futue_of_Mobile.pdf

[55] ARM® Cortex® -A15 MPCoreTM Processor, ARM Ltd., 2013, last accessed 30.07.2017.
[Online]. Available: https://static.docs.arm.com/ddi0438/i/DDI0438.pdf

[56] Cortex®-A7 MPCoreTM, ARM Ltd., 2013, last accessed 30.07.2017. [Online]. Available:
https://static.docs.arm.com/ddi0464/f/DDI0464.pdf

[57] The ARM® MaliTM Family of Graphics Processors, ARM Ltd., February 2013, last accessed
08.04.2017. [Online]. Available: http://malideveloper.arm.com/downloads/events/2013/GD
C/0319-11%20Mali%20Minibook_TB.pdf

[58] P. Harris, “The Mali GPU: An abstract machine,” 2014, last accessed 08.04.2017. [Online].
Available: https://community.arm.com/groups/arm-mali-graphics/blog/2014/03/12/the-m
ali-gpu-an-abstract-machine-part-3--the-shader-core

[59] I. S. 754-2008, “IEEE standard for floating-point arithmetic,” IEEE, Piscataway, NJ, Stan-
dard, Aug 2008.

[60] Intel® CoreTM i7 Processor Family for LGA2011 Socket, Intel Corporation, May 2014, last
accessed 08.04.2017. [Online]. Available: http://www.intel.com/content/www/us/en/proces
sors/core/4th-gen-core-i7-lga2011-datasheet-vol-1.html

[61] “The OpenCL specification version 2.0,” Khronos Group, Tech. Rep., July 2015.

[62] Intel® CoreTM i7-4800MQ Processor, Intel Corporation, 2018, last accessed 15.08.2018.
[Online]. Available: https://ark.intel.com/products/75128/Intel-Core-i7-4800MQ-Process
or-6M-Cache-up-to-3_70-GHz

[63] Snapdragon 810 processor product brief, Qualcomm Technologies, February 2015, last
accessed 08.04.2017. [Online]. Available: https://www.qualcomm.com/media/documents/fil
es/snapdragon-810-processor-product-brief.pdf

[64] K. E. Kolodziej, J. G. McMichael, and B. T. Perry, “Multitap RF canceller for in-band
full-duplex wireless communications,” IEEE Transactions on Wireless Communications,
vol. 15, no. 6, pp. 4321–4334, June 2016.

[65] E. Ahmed and A. M. Eltawil, “All-digital self-interference cancellation technique for full-
duplex systems,” IEEE Transactions on Wireless Communications, vol. 14, no. 7, pp. 3519–
3532, July 2015.

[66] M. Duarte and A. Sabharwal, “Full-duplex wireless communications using off-the-shelf
radios: Feasibility and first results,” in 2010 Conference Record of the Forty Fourth Asilomar
Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, Nov 2010, pp.
1558–1562.

[67] M. Heino, D. Korpi, T. Huusari, E. Antonio-Rodriguez, S. Venkatasubramanian, T. Riihonen,
L. Anttila, C. Icheln, K. Haneda, R. Wichman, and M. Valkama, “Recent advances in
antenna design and interference cancellation algorithms for in-band full duplex relays,”
IEEE Communications Magazine, vol. 53, no. 5, pp. 91–101, May 2015.

https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf
https://static.docs.arm.com/ddi0438/i/DDI0438.pdf
https://static.docs.arm.com/ddi0464/f/DDI0464.pdf
http://malideveloper.arm.com/downloads/events/2013/GDC/0319-11%20Mali%20Minibook_TB.pdf
http://malideveloper.arm.com/downloads/events/2013/GDC/0319-11%20Mali%20Minibook_TB.pdf
https://community.arm.com/groups/arm-mali-graphics/blog/2014/03/12/the-mali-gpu-an-abstract-machine-part-3--the-shader-core
https://community.arm.com/groups/arm-mali-graphics/blog/2014/03/12/the-mali-gpu-an-abstract-machine-part-3--the-shader-core
http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-i7-lga2011-datasheet-vol-1.html
http://www.intel.com/content/www/us/en/processors/core/4th-gen-core-i7-lga2011-datasheet-vol-1.html
https://ark.intel.com/products/75128/Intel-Core-i7-4800MQ-Processor-6M-Cache-up-to-3_70-GHz
https://ark.intel.com/products/75128/Intel-Core-i7-4800MQ-Processor-6M-Cache-up-to-3_70-GHz
https://www.qualcomm.com/media/documents/files/snapdragon-810-processor-product-brief.pdf
https://www.qualcomm.com/media/documents/files/snapdragon-810-processor-product-brief.pdf

62 Bibliography

[68] A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band
full-duplex wireless: Challenges and opportunities,” IEEE Journal on Selected Areas in
Communications, vol. 32, no. 9, pp. 1637–1652, Sept 2014.

[69] M. Duarte, A. Sabharwal, V. Aggarwal, R. Jana, K. K. Ramakrishnan, C. W. Rice, and N. K.
Shankaranarayanan, “Design and characterization of a full-duplex multiantenna system for
WiFi networks,” IEEE Transactions on Vehicular Technology, vol. 63, no. 3, pp. 1160–1177,
March 2014.

[70] M. Duarte, C. Dick, and A. Sabharwal, “Experiment-driven characterization of full-duplex
wireless systems,” IEEE Transactions on Wireless Communications, vol. 11, no. 12, pp.
4296–4307, December 2012.

[71] M. Mikhael, B. van Liempd, J. Craninckx, R. Guindi, and B. Debaillie, “An in-band full-
duplex transceiver prototype with an in-system automated tuning for RF self-interference
cancellation,” in International Conference on 5G for Ubiquitous Connectivity, Levi, Finland,
Nov 2014, pp. 110–115.

[72] D. Korpi, M. AghababaeeTafreshi, M. Piilila, L. Anttila, and M. Valkama, “Advanced
architectures for self-interference cancellation in full-duplex radios: Algorithms and mea-
surements,” in Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA,
Nov 2016, pp. 1553–1557.

[73] C. Safarian, T. Ogunfunmi, W. J. Kozacky, and B. K. Mohanty, “FPGA implementation of
LMS-based FIR adaptive filter for real time digital signal processing applications,” in 2015
IEEE International Conference on Digital Signal Processing (DSP), Singapore, Singapore,
July 2015, pp. 1251–1255.

[74] J. Lorente, M. Ferrer, M. de Diego, and A. Gonzalez, “GPU based implementation of
multichannel adaptive room equalization,” in 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, May 2014, pp. 7535–
7539.

[75] A. Ghazi, J. Boutellier, L. Anttila, M. Juntti, and M. Valkama, “Data-parallel implementation
of reconfigurable digital predistortion on a mobile GPU,” in Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, Nov 2015, pp. 186–191.

[76] K. Li, A. Ghazi, J. Boutellier, M. Abdelaziz, L. Anttila, M. Juntti, M. Valkama, and J. R.
Cavallaro, “Mobile GPU accelerated digital predistortion on a software-defined mobile
transmitter,” in IEEE Global Conference on Signal and Information Processing, Orlando,
FL, Dec 2015, pp. 756–760.

[77] K. Li, A. Ghazi, C. Tarver, J. Boutellier, M. Abdelaziz, L. Anttila, M. Juntti, M. Valkama,
and J. R. Cavallaro, “Parallel digital predistortion design on mobile GPU and embedded
multicore CPU for mobile transmitters,” Journal of Signal Processing Systems, vol. 89, no. 3,
pp. 417–430, Dec 2017.

[78] D. Korpi, J. Tamminen, M. Turunen, T. Huusari, Y. S. Choi, L. Anttila, S. Talwar, and
M. Valkama, “Full-duplex mobile device: pushing the limits,” IEEE Communications
Magazine, vol. 54, no. 9, pp. 80–87, September 2016.

[79] 3rd Generation Partnership Project, Technical Specification Group Radio Access Network;
Requirements for further advancements for Evolved Universal Terrestrial Radio Access
(E-UTRA) (LTE-Advanced) (Release 14), March 2017, last accessed 19.08.2017. [Online].
Available: http://www.3gpp.org/ftp//Specs/archive/36_series/36.913/36913-e00.zip

http://www.3gpp.org/ftp//Specs/archive/36_series/36.913/36913-e00.zip

Bibliography 63

[80] “CMOS power consumption and Cpd calculation,” Texas Instruments, 1997, last accessed
08.04.2017. [Online]. Available: http://www.ti.com/lit/an/scaa035b/scaa035b.pdf

[81] A. R. Jensen, M. Lauridsen, P. Mogensen, T. B. Sørensen, and P. Jensen, “LTE UE power
consumption model: For system level energy and performance optimization,” in IEEE
Vehicular Technology Conference (VTC Fall), Quebec City, QC, Canada, Sept 2012, pp. 1–5.

http://www.ti.com/lit/an/scaa035b/scaa035b.pdf

Publications

PUBLICATION 1

M. Aghababaeetafreshi, L. Lehtonen, M. Soleimani, M. Valkama and J. Takala, "IEEE 802.11AC
MIMO transmitter baseband processing on customized VLIW processor," in IEEE International
Conference on Acoustics, Speech and Signal Processing, Florence, Italy, May 4-9, 2014, pp.
7500-7504, DOI: 10.1109/ICASSP.2014.6855058

© 2014 IEEE. Reprinted, with permission, from M. Aghababaeetafreshi, L. Lehtonen, M.
Soleimani, M. Valkama and J. Takala, "IEEE 802.11AC MIMO transmitter baseband processing
on customized VLIW processor," IEEE International Conference on Acoustics, Speech and Signal
Processing, May 2014.

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE
does not endorse any of [university/educational entity’s name goes here]’s products or services.
Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE
copyrighted material for advertising or promotional purposes or for creating new collective works
for resale or redistribution, please go to http://www.ieee.org/publications_stan
dards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

IEEE 802.11AC MIMO TRANSMITTER BASEBAND PROCESSING
ON CUSTOMIZED VLIW PROCESSOR

Mona Aghababaeetafreshi1, Lasse Lehtonen2, Maliheh Soleimani1, Mikko Valkama1, and Jarmo Takala2

1Department of Electronics and Communications Engineering
2Department of Pervasive Computing

Tampere University of Technology, Korkeakoulunkatu 1, FI-33720 Tampere, Finland

Email: mona.aghababaeetafreshi@tut.fi

ABSTRACT

This paper presents a software-based implementation for the
MIMO transmitter baseband processing conforming to the
IEEE802.11ac standard on a DSP core with vector extensions. The
transmitter is implemented in four different transmission scenarios,
which include 2×2 and 4×4 MIMO configurations, yielding
beyond 1Gbps transmit bit rate. The implementation is done for the
frequency-domain processing and real-time operation has been
achieved when running at a clock frequency of 500MHz. The
proposed software solution is evaluated in terms of power
consumption, number of clock cycles and memory usage. This
SDR based implementation provides improved flexibility and
reduced design effort compared to conventional approaches while
maintaining energy consumption close to fixed-function hardware
solutions.

Index Terms— OFDM, MIMO, WLAN, Software Defined
Radio, Parallel Processing

1. INTRODUCTION

Due to the rapid growth and popularity of wireless handheld
devices with efficient support for rich multimedia functionalities
and broadband Internet access, both mobile cellular radio networks
and Wireless Local Area Networks (WLAN) are evolving rapidly.
While broadband wireless access is typically the driving priority,
security, low power, low cost and reliability are also seen as very
important aspects. Considering in particular the wireless
connectivity in indoor environments, WLAN/WiFi solutions with
optimized local area access for physical (PHY) and medium access
control (MAC) layers are of increasing interest. This is also the
main focus area of this article.

Currently, the clear majority of wireless local area
connectivity is provided by IEEE WLAN/WiFi solutions whose
flag-ship technology is IEEE 802.11ac [1]. In this standard, the
throughput enhancements compared to legacy systems are obtained
mainly through the deployment of advanced PHY layer
innovations such as considerably wider transmission bandwidth
through carrier aggregation, improved modulation and coding

This work was supported by the Finnish Funding Agency for
Technology and Innovation (Tekes) under the Parallel Acceleration
(ParallaX) project, and Tampere University of Technology
graduate school.

schemes and advanced deployment of multiantenna/MIMO
transmission schemes. The standard utilizes transmission
bandwidths up to 80MHz (mandatory) and 160MHz (optional),
which is substantial improvement compared to 802.11n legacy
system. Moreover, the flexibility of RF spectrum use is improved
through allowing non-contiguous carrier aggregation where the
total RF bandwidth can be composed of non-contiguous channels.
Furthermore, multiantenna support up to 8×8 MIMO with eight
spatial streams is specified, including also multiuser MIMO. The
IEEE 802.11ac amendment also allows modulation orders up to
256QAM to further increase the highest achievable throughput.
Overall, the instantaneous peak throughputs can reach 1Gbps [2].

In the existing literature, a clear majority of local area
connectivity device implementations, in particular 802.11ac
related, are fixed-function hardware based solutions. In [3], a VLSI
implementation of a 4×4 MIMO-OFDM transceiver with 80MHz
transmission bandwidth is described, and tailored to a single
transmission scenario. In recent reports, some contributions have
also been made towards the software defined radio concept. Design
and implementation of the IEEE802.11 MAC layer processing on
general-purpose DSP and additional accelerator systems is reported
in [4]. In [5], a software defined radio implementation of 802.11
MAC with emphasis on cross-layer communications and
networking is proposed and evaluated. However, as it can be seen
also in [6]-[9], only selected parts of PHY or MAC layer are
typically targeted while other processing still relies on dedicated
hardware.

In this paper, we address the feasibility of software based
implementation using VLIW processor for the real-time operation
of IEEE802.11ac transmitter full PHY layer baseband processing
in four different transmission scenarios which include 2×2 and 4×4
MIMO configurations. As the processing platform, stemming from
the requirements for very fast processing of huge amounts of data
with transmission bit rates in the order of 1Gbps, the customized
VLIW processor with vector processing capabilities is used. Such a
software based implementation, if found feasible, can offer more
flexibility, much faster time-to-market, and highly improved
possibilities to bringing in new transmission features and
enhancements.

The rest of the article is organized as follows. In Section II, a
detailed description of the selected transmission scenarios of
802.11ac standard is given. Then, in Section III, the employed
processor and some of its main features are described.
Furthermore, the software development environment and some of

the employed optimization approaches are introduced. The
implementation results and analysis are then provided in Section
IV. Finally, the conclusions are drawn in Section V.

2. TRANSMISSION SCENARIOS

In this work, we mainly focus on the PHY layer implementation of
the IEEE802.11ac standard compatible multi antenna transmitter
with selected transmission modes. According to the 802.11ac
standard draft version, the VHT PHY comprises of two functional
entities: the PHY function and the physical layer management
functions. The PHY is consisting of PHY header part and data part;
the header part itself is further divided into multiple fields where
L-STF, L-LTF and L-SIG are the legacy portions and VHT-SIG-A,
VHT-SIG-B, VHT-STF and VHT-LTF are the very high
throughput fields. For more details, refer to [1].

In order to obtain very high throughput, IEEE 802.11ac
defines various core functionalities and parameters, which increase
the data rate considerably. Modulation and Coding Scheme (MCS)
improvements and spatial multiplexing based MIMO transmission
allow VHT performance achievement. Furthermore, other
solutions such as wider bandwidth, shorter GI, and higher number
of spatial streams are also introduced in the amendment.
Additionally, the PHY implementation plays an important role in
the VHT scenario, for instance the optional usage of Low-Density
Parity-Check (LDPC) encoder and Space Time Block Coding
(STBC) enhance the error protection and diversity characteristics.
As a result, the performance characteristics are improved compared
to legacy systems; thus helping to achieve VHT targets.

Fig. 1 depicts the main structure of the implemented data part
processing at the transmitter side where depending on the
transmission scenario some blocks may be obsolete. The minimum
time for IFFT and frequency domain processing for a single
OFDM symbol is 4µs for the header part and 3.6µs for the data
part when short Guard Interval (GI) is used.

In our work, we cover the implementation of four operation
points (transmission modes) of the IEEE 802.11ac standard. These
four operation points have some of the implementation parameters
in common such as channel bandwidth and modulation scheme.
The channel bandwidth is set to 80MHz, which implies 256
subcarriers (234data+14null+8pilot subcarriers). Also in all cases,
256-QAM modulation scheme is employed to map a block of eight
bits into one constellation point. In this work, the operational
blocks from the stream parser to IFFT are implemented in all four
scenarios. It should be noted that we have assumed all the
incoming bits from the LDPC encoder are already stored in the
local memory, hence the required time for data transfer to the local
memory is not considered. The implementation procedure of the
transmitter blocks in each four scenarios will be shortly discussed
in the following.

2.1. Case A: 80MHz TX/RX bandwidth, 256QAM with 3/4
coding, Short GI, 2×2 SU-MIMO

This case uses a 2×2 antenna configuration and two spatial
streams, which are directly mapped to the space time streams
hence removing the need for STBC coding. As defined in the IEEE
802.11ac standard, the bits received from the LDPC encoder
should be directly fed to the stream parser block to be rearranged
and parsed [1]. However, as tone mapping can be done more
efficiently at bit-level rather than with complex numbers, in this
work, this operation is placed before the stream parser and
modulation blocks. Furthermore, the bits from the channel encoder

are first fed to a preparation block to be rearranged for faster tone
mapping and modulation. Preparation block combines the real and
imaginary parts of each subcarrier, in such a way that the first
outcoming 16-bit block has the real parts of the two streams, and
the second 16-bit block has the imaginary parts (8 bits in each 16-
bit parts are zeros). Then, the prepared streams are fed to the
LDPC tone mapper, which shuffles the data subcarriers of both
streams simultaneously. Next is the stream parser block after
which each stream will have 234×8 bits in the following form;
from left to right, the first and second 4-bit blocks present the real
part of the first and second streams (first subcarrier). Respectively
the third and fourth 4-bit blocks show the imaginary parts (first
subcarrier) of the first and second streams and so on.

In order to obtain the most efficient performance, the stream
parser and constellation mapper are merged into one function; thus
the LDPC tone mapped complex numbers are parsed and mapped
into the constellation points in the same function. Basically, the
stream parser parses 234×8×2 coded bits per symbol into two
spatial streams, i.e., each stream has 234×8 coded bits per symbol.
Afterwards, a block of eight bits is mapped into one 256-QAM
constellation point.

As rest of the operations, namely pilot insertion, cyclic shift
diversity, spatial mapping and phase rotation are based on
multiplication between the data subcarriers and coefficients, all
these operations can be done at the same time. All of the possible
combinations of the mentioned operations are pre-calculated and
stored in a look-up table so that the operations can be executed
with a single multiplication per subcarrier.

2.2. Case B: 80MHz TX/RX bandwidth, 256QAM with 3/4
coding, Short GI, 4×4 SU-MIMO

This transmission mode has four spatial streams to be mapped into
a 4×4 antenna configuration and thus due to the equal number of
space time and spatial streams, STBC is obsolete. As mentioned in
the previous subsection, the incoming bit streams should be
rearranged for faster implementation. But in this case, as four
spatial streams are used, the first incoming 16 bits already feature
the real part of the first subcarrier of each stream, and the second
16 bits are the imaginary part. Therefore, the bits are arranged in
the desired 16-bit format. Thus, no preparation is needed and the
bit streams can be directly fed into the LDPC tone mapper.

After shuffling the data bits, the stream parser rearranges the
bits and allocates them to the four streams and then every 8 bit
block is mapped into one constellation point in the same function.
Pilot insertion, cyclic shift diversity, spatial mapping, and phase
rotation, similar to the previous case, are performed by
multiplication using the look up table values as coefficients.

2.3. Case C: 80MHz TX/RX bandwidth, 256QAM with 3/4
coding and STBC, Short GI, 2×2 antenna configuration with
1×1 SU-SISO transmission

As the title indicates, in this case, the number of the spatial streams
is less than the number of space time streams which means STBC
implementation is needed in addition to the other blocks employed
in the previous cases. As defined in the IEEE 802.11ac standard,
producing the even numbered space time streams includes
conjugation and negation of the symbols in the odd numbered
space time streams. Since conjugation is basically negating the
imaginary part of a complex number, this operation can be easily
done at bit level by simply inverting the sign bit. Therefore, STBC
block is also moved to the preparation block in this work.

In the next phase, the STBC encoded bits are fed to the LDPC tone
mapper to be shuffled. Then the stream parsing and constellation
mapping are applied to both space time streams, and finally in the
last stage, pilot insertion, cyclic shift, spatial mapping and phase
rotation are done at once.

2.4. Case D: 80MHz TX/RX bandwidth, 256QAM with 3/4
coding and STBC, Short GI, 4×4 antenna configuration with
2×2 SU-MIMO transmission

In the last transmission mode, there are two spatial streams and a
4×4 antenna configuration, which means STBC shall be applied.
Similar to the previous scenario, the STBC creates four space time
streams from two spatial streams in the preparation block.
Afterwards, the bit streams will be LDPC tone mapped in the next
block and then go through stream parser/constellation mapper
block simultaneously. As described in the previous scenarios, the
final block performs pilot insertion, cyclic shift, spatial mapping
and phase rotation.

Fig. 1. Principal block diagram of transmitter baseband processing.

3. VLIW ARCHITECTURE AND
IMPLEMENTATION

Due to huge amount of information processed, a customized VLIW
processor with vector extensions is used as the platform to
implement the transmitter baseband processing functions in this
work. The adopted DSP core, Tensilica ConnX BBE32 [10], is a
high performance, very small size and ultra-low power
consumption DSP core that has been specifically designed for use
in the cost and power sensitive baseband modem systems [10].
This DSP core is a 4-issue VLIW processor and has support for
vector operations with the aid of a 16-way SIMD ALU engine and
32-way MAC SIMD engine. In addition, the processors can access
wide data chunks from memory in blocks of 256 bits. Fig. 2
illustrates the general architecture of the ConnX BBE32 core.

Fig. 2. ConnX BBE32 architecture.

Additionally, this DSP engine is equipped with dedicated
hardware accelerator blocks to off-load computationally intensive
operations such as FFT/IFFT [11]. The processor is configurable

and special function units can be added to speed up the
computations. We used two different processor configurations of
the ones provided by the vendor: Low-Power (LP) and
Performance-Maximize (PM) configurations. The LP is the
baseline configuration and the PM configuration provides
instruction extensions for accelerating various functions, e.g., FFT,
FIR filtering, bit mapping etc. The processor has Harvard
architecture with one instruction memory and two data memories.

Tensilica uses an Eclipse-based software development
environment (Xtensa Xplorer), which provides a comprehensive
collection of code generation and analysis tools. This tool enables
software development to be carried out using C programming.
However, for optimization purposes, nearly all of the software
implementation in this work is done by heavily using the provided
processor intrinsics. In spite of the automatic vectorization
capability of the compiler, the code was vectorized manually for
better performance.

As mentioned earlier, correct configuration and programming
play an important role in the efficiency of the implementation, thus
some optimization approaches have been applied in this work to
fasten the processing. One very effective optimization approach
was merging and combining the functions as much as possible.
Specifically the operation blocks whose functionality involves
multiplication with a constant (such as phase rotation, spatial
mapping, pilot insertion and cyclic shift diversity) can be easily
merged. Moreover, since it is easier to deal with bits rather than
complex numbers, as many operations as possible have been
implemented before the constellation mapping. For instance,
although in the standard and as shown in Fig. 1, the STBC and
LDPC tone mapper blocks are defined to be employed after the
constellation mapping, it has been observed that such operations
can be implemented more efficiently when the data is still in bits
and not yet modulated to symbols.

4. RESULTS AND ANALYSIS

The described software based implementation was profiled and
analyzed with the aid of the tools provided by the vendor. The
results related to number of clock cycles, power, and memory
usage are presented in this section.

The numbers of clock cycles were obtained with the
instruction set simulator and profiling tools. In Fig. 3, the numbers
of clock cycles needed to process one OFDM symbol in LP
configuration are presented. PM configuration requires larger
number of cycles in comparison with the LP model but the
difference is only 1-2 %.

Fig. 3. LP model clock cycles results for all the cases.

0
100
200
300
400
500
600
700
800
900

Case A Case B Case C Case D

Pilot insertion + CSD
+ Phase Rotation +
Spatial Mapping

Stream Parser +
Constellation Mapper

LDPC Tone Mapper

Preparation

As mentioned earlier, in different transmission scenarios,
different blocks may operate; therefore the results are given for
each block in each transmission scenario. It should be noted that
for the Cases C) and D), the preparation block also includes the
STBC coding operation.

As previously mentioned, the duration of an OFDM symbol is
4µs for the header part and 3.6µs for the data part when short
Guard Interval (GI) is used. Thus to achieve real-time operation in
the transmitter, all the processing needed to create one OFDM
symbol should not take more than 3.6µs. Assuming a 500 MHz
operating frequency, 3.6µs can accommodate 1800 clock cycles.
Looking at the total number of clock cycles for each transmission
scenario from Fig. 3, it can be concluded that the system operations
can be computed in real-time in this implementation.

One of the most important evaluation criteria for the
implementation is the power consumption, which is directly
dependent on the memory configuration/capacity. As the vendor
provides Energy Xplorer for energy consumption estimation, first
energy usage is profiled and then power consumption is calculated
by dividing the energy values by time. The time for each block is
defined by the number of clock cycles. We have considered two
common cases, which are the maximum (128k) and half (64k) of
the memory capacity. The energy consumption was estimated by
exploiting technology libraries for a 40nm low-power IC
technology provided by the tool vendor. We also assume clock
frequency of 500MHz. The monitoring time for the energy analysis
is 3.6µs, and it includes both leakage and dynamic parts. Fig. 4
reveals the results related to the power consumption for the LP
model, in case of full and half memory usage. The power
consumption results for the PM model are not presented as there is
no significant difference with the LP model. In general, the power
consumption estimates are found feasible to mobile terminal scale
devices.

Fig. 4. Power consumption in mW for 128k and 64k memory

capacities.

In order to avoid stalls and keep the pipeline full, loop
unrolling was heavily exploited in some of the functional blocks
such as LDPC tone mapper and the block including pilot insertion,
spatial mapping, CSD and phase rotation to exploit parallelism
among the instruction. As loop unrolling increases the program
code size, to evaluate how much memory is needed for the
developed software, instruction memory usage for each operation
in each transmission scenario was measured and is presented in
Table 1. Since there is no difference between PM and LP model
from the memory usage point of view, only the results when using
the PM model are presented. In order to get more informative

realization on the effect of loop unrolling on the program code
size, the code density was also calculated for all the functional
blocks. The average code density over all blocks is 52.95%.

In addition to the instruction memory usage, data memory
usage was evaluated and is presented in Table 1. It should be noted
that the amount of used data memory does not depend on the
transmission scenario except for the input buffer usage.

Table 1. Memory usage in bytes

 Case A Case B Case C Case D
Instruction memory

Preparation 184 --- 376 240
LDPC Tone Mapper 1808 1808 1808 1808

Stream Parser +
Constellation Mapper 432 200 428 528

Pilot insertion + CSD +
Phase Rotation +
Spatial Mapping

720 720 720 720

Total 3612 3664 3800 4232
Data Memory

Local Data RAM #1 4.8 K
Local Data RAM #2 5.128 K

Input Buffer 468 936 468 936
Total 10.396K 10.864K 10.396K 10.864K

To achieve higher performance and faster processing, the

numerical values of the cyclic shift diversity for different streams,
spatial mapping and phase rotation operations were calculated and
stored in a look-up table. This look-up table takes 128 and 800
bytes from the local data RAM #1 and local data RAM #2
memories, respectively.

4. CONCLUSIONS

In this paper, we developed software-based implementation of the
IEEE 802.11ac transmitter full frequency-domain PHY layer
baseband processing for four different multi-antenna transmission
scenarios. We have evaluated the solution by profiling and
analyzing the implementation using the tools provided by the
vendor. We have presented the results with regards to number of
clock cycles, power consumption, and memory usage. The analysis
of the performance numbers clearly shows that the developed
software based implementation on a DSP core can achieve real-
time operation for the transmitter baseband processing assuming
500 MHz clock frequency. Furthermore, the implementation
resulted in realistic power consumption and memory usage, despite
of massive amount of data processing yielding beyond 1Gbps
transmission bit rate in the most ambitious transmission scenario.
The future work will focus on implementing the corresponding
receiver chain PHY processing, which includes more complex
functions such as channel state estimation and detection.

5. REFERENCES

[1] IEEE P802.11acTM Draft Standard, version 5, January 2013.
[2] E. Perahia and R. Stacey, Next Generation Wireless LANs,

Cambridge, NY, 2013.
[3] S. Yoshizawa and Y. Miyanaga, "VLSI Implementation of a

4×4 MIMO-OFDM transceiver with an 80-MHz channel
bandwidth," in Proc. IEEE ISCAS, Taipei, Taiwan, 24-27
May 2009, pp. 1743-1746.

[4] S. Samadi, A. Golomohammadi, A. Jannesari, M.R.
Movahedi, B. Khalaj, and S. Ghammanghami, "A Novel

0
5

10
15
20
25
30

C
as

e
A

/1
28

k
C

as
e

A
/6

4k
C

as
e

B
/1

28
k

C
as

e
B

/6
4k

C
as

e
C

/1
28

k
C

as
e

C
/6

4k
C

as
e

D
/1

28
k

C
as

e
D

/6
4k

Pilot insertion + CSD
+ Phase Rotation +
Spatial Mapping

Stream Parser +
Constellation Mapper

LDPC Tone Mapper

Preparation

Implementation of the IEEE802.11 Medium Access
Control," in Proc. Int. Symp. Intelligent Signal Process.
Commun., Yonago, Japan, 12-15 Dec. 2006, pp.489-492.

[5] J.R. Gutierrez-Agullo, B. Coll-Perales, and J. Gozalvez, "An
IEEE 802.11 MAC Software Defined Radio implementation
for experimental wireless communications and networking
research," in Proc. IFIP Wireless Days, Venice, Italy, 20-22
Oct. 2010, pp.1-5.

[6] K. Rounioja, and K. Puusaari, "Implementation of an
HSDPA Receiver with a Customized Vector Processor," in
Proc. Int. Symp. System-on-Chip, Tampere, Finland, 13-16
Nov. 2006, pp.1-4.

[7] W. Xu, M. Richter, M. Sauermann, F. Capar, and C.
Grassmann,, "Efficient baseband implementation on an SDR
platform," in Proc. Int. Conf. ITS Telecommunications, St.
Petersburg , Russia, 23-25 Aug. 2011, pp.794,799.

[8] J. Janhunen, T. Pitkänen, M. Juntti, and O. Silvén, “Energy-
efficient programmable processor implementation of LTE
compliant MIMO-OFDM detector,” in Proc. IEEE ICASSP,
Kyoto, Japan, 25-30 March 2012, 3276 – 3279.

[9] S. Eberli, A. Burg, and W. Fichtner, “Implementation of a
2×2 MIMO-OFDM receiver on an application specific
processor,” Microelectronics Journal, vol. 40, no. 11, pp.
1642-1649, November 2009.

[10] Tensilica Inc., ConnX BBE32 DSP User Guide, USA, 2012.
[11] Tensilica Inc., ConnX BBE32 DSP Core for Baseband

Processing, USA, 2013.

PUBLICATION 2

M. Aghababaee Tafreshi, L. Lehtonen, T. Levanen, M. Valkama and J. Takala, "IEEE 802.11ac
MIMO receiver baseband processing on customized VLIW processor," in IEEE Workshop on Sig-
nal Processing Systems, Belfast, UK, Oct. 22-24, 2014, pp. 1-6, DOI: 10.1109/SiPS.2014.6986092

© 2014 IEEE. Reprinted, with permission, from M. Aghababaee Tafreshi, L. Lehtonen, T. Levanen,
M. Valkama and J. Takala, "IEEE 802.11ac MIMO receiver baseband processing on customized
VLIW processor," IEEE Workshop on Signal Processing Systems, October 2014.

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE
does not endorse any of [university/educational entity’s name goes here]’s products or services.
Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE
copyrighted material for advertising or promotional purposes or for creating new collective works
for resale or redistribution, please go to http://www.ieee.org/publications_stan
dards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

IEEE 802.11ac MIMO Receiver Baseband Processing
on Customized VLIW Processor

Mona AghababaeeTafreshi, Lasse Lehtonen, Toni Levanen, Mikko Valkama, and Jarmo Takala
Tampere University of Technology, Tampere, Finland

mona.aghababaeetafreshi@tut.fi

Abstract— In this paper, a software-based implementation for
the Multiple Input and Multiple Output (MIMO) receiver
baseband processing conforming to the IEEE 802.11ac standard
on a DSP core with vector extensions is presented. The
implementation is carried out for different operation points
including 2×2 and 4×4 MIMO configurations, yielding beyond
1Gbps transmission bit rate. This implementation mainly focuses
on the frequency domain processing of the receiver. The
presented solution is evaluated in terms of number of clock cycles
and power consumption and the feasibility of a real-time
operation is then addressed and analyzed. If found feasible, such
Software Defined Radio based solutions offer more flexibility and
reduced time-to-market-cycles compared to the conventional
solutions using fixed-function hardware platforms.

Keywords—OFDM; MIMO; WLAN; Software Defined Radio;
parallel processing

I. INTRODUCTION
As wireless standards continue to evolve rapidly, the need for
adaptable devices supporting different air interfaces grows.
Currently, most wireless devices are implemented based on
application specific fixed-function hardware platforms where
most of the physical (PHY) and Medium Access Control
(MAC) layer processing is still done using dedicated hardware,
most notably Application-Specific Integrated Circuits (ASIC)
[1]. Being implemented in silicon, such devices can offer only
limited programmability and flexibility. Furthermore, adding
more support for different specifications in these devices
requires a larger die size and will consequently result in more
power hungry devices. On the contrary, a software-based
solution can offer high flexibility by employing programmable
and reconfigurable platforms. In addition to the lack of
flexibility of ASIC implementations, the complexity and
parameterization of future systems is so high that HW
optimization is extremely difficult and error-prone. Using a
software defined radio platform, on the other hand, the
functionality can be changed by modifying the software while
still maintaining good energy-efficiency compared to fixed-
function hardware implementations. Such software-based
implementations will enable fast scalability at the radio layer,
to improve the efficiency and flexibility of RF spectrum use.
Having less costs and design efforts during development,
testing, and maintenance, such solutions will also clearly
reduce the time-to-market cycle [1].

The extraordinary growth in number of applications with
high bandwidth requirements such as video streaming along
with the increasing number of users has created an
evolutionary demand to enhance the capacity of wireless
networks. As a result, both mobile cellular radio networks and
Wireless Local Area Networks (WLAN) are evolving rapidly

to meet the high demands. Considering in particular the
wireless connectivity in indoor environments, the IEEE WLAN
family provides one important technology component, in
parallel to cellular mobile radio evolution. The emerging flag-
ship amendment to IEEE 802.11TM WLAN standard with
beyond 1Gbps bit rates is the IEEE 802.11ac [2].

This new amendment to IEEE 802.11™ WLAN standard is
intended to meet the evolving needs for higher transmission
data rates in range of gigabits per second and to help enable
new generations of data-intensive wireless applications. The
IEEE 802.11ac enables multi-gigabit data throughput at 5 GHz
band [2]. The IEEE 802.11ac specification adds support for
80MHz and 160MHz channel bandwidths. The 160MHz
channel may be contiguous or non-contiguous, where the non-
contiguous allocation provides more flexible channel
assignment. Additionally, it adds higher order modulation in
the form of 256 Quadrature Amplitude Modulation (QAM)
which results in improved peak data rate [2]. Furthermore, by
advanced deployment of multi-antenna techniques, a further
increase in data rates is achieved. The Very High Throughput
(VHT) physical (PHY) layer defined in [2] allows increasing
the number of spatial streams up to eight streams [2]. This
amendment also introduces a new technique to allow multiple
users to be served simultaneously on downlink. This technique
is referred to as Multi-User (MU) MIMO. MU-MIMO enables
higher system capacity, more efficient spectrum use, and
reduced latency [2].

The IEEE 802.11ac physical layer packet consists of PHY
header part and data part. The PHY header part is divided into
multiple fields where Non-HT Short Training Field (L-STF),
Non-HT Long Training Field (L-LTF), Non-HT SIGNAL
Field (L-SIG) are legacy portion and VHT Signal A field
(VHT-SIG-A), VHT Short Training Field (VHT-STF), VHT
Long Training Field (VHT-LTF) and VHT Signal B field
(VHT-SIG-B) are the VHT specific fields. Fig. 1 illustrates the
VHT physical layer data packet structure and the challenging
timing requirements, assuming that the short guard interval
(GI) is used for data symbols.

The majority of the previous works carried out regarding
the implementation of wireless connectivity devices have
focused on fixed function hardware based implementations. An
example can be found in [3], where a VLSI implementation for
a 4x4 MIMO-OFDM transceiver is described which is fixed to
a single operating point using 80MHz transmission bandwidth.
In [4], implementation of the complete baseband processing of

This work was supported by the Finnish Funding Agency for Technology
and Innovation (TEKES) under the Parallel Acceleration (ParallaX) project,
and Tampere University of Technology graduate school.

L-STF
8μs

L-LTF
8μs

L-SIG
4μs

VHT-
SIG-A

8μs

VHT-
STF
4μs

VHT-
LTF
4μs

VHT-
LTF
4μs

VHT-
SIG-B

4μs

DATA
1

3.6μs

DATA
n

3.6μs
...

Fig. 1. Structure of VHT physical layer data packet

an IEEE 802.11a receiver on an application specific processor
is described. Some contributions have been also made towards
software-based solutions. However, in these works typically
only parts of the PHY or MAC layer processing have been
addressed. In [5], a software-defined FFT/IFFT architecture for
IEEE 802.11ac is proposed based on customized soft stream
processor on Field-Programmable Gate Array (FPGA). In [6], a
fully programmable Software Defined Radio implementation
of the IEEE 802.11 MAC that can be fully modified to develop
advanced cross-layer communications and networking
techniques, is presented.

In this paper, we address the feasibility of achieving a real-
time operation for the IEEE 802.11ac receiver PHY layer
baseband processing using a software-based implementation on
a customized Very Long Instruction Word (VLIW) processor.
The implementation is carried out for different transmission
scenarios including 2×2 and 4×4 MIMO antenna
configurations. The implemented scenarios can reach data bit
rates in the order of 1Gbps. Originating from the requirements
for fast processing of large amounts of data for such high data
rates, a customized VLIW processor with vector processing
capabilities is selected as the implementation platform. The
work presented in this paper is the continuation of the
transmitter implementation of the IEEE 802.11ac PHY layer
baseband processing using the same platform presented in [7].

The rest of the article is organized as follows. In Section II,
the implemented receiver functionalities and employed
algorithms are introduced. Then, in Section III, a short
description of the different implemented scenarios of the IEEE
802.11ac standard is given. In Section IV, the implementation
platform and the used architecture are described. In Section V,
the implementation results are presented in terms of number of
clock cycles and power consumption. Finally, in Section VI,
the conclusions are drawn.

II. RECEIVER PROCESSING
In this section, a brief overview of the implemented
algorithms for the different functional blocks in the receiver is
given.

A. SINR Estimation
To improve the link quality and performance, the SINR
estimation needs to be done in the receiver. SINR estimation
can be used to optimize the transmit power level and
dynamically adapting the data rate. In the current
implementation, we calculate the Received Channel Power
Indicator (RCPI), Average Noise Power Indicator (ANPI), and
the Received Signal to Noise Indicator (RSNI). The RSNI
value is reported for the transmitting entity for Modulation and
Coding Scheme (MCS) adaptation. The averaging of measured
values is done for better stability of the system. The averaged
measurements should be obtained closely in time for high
correlation.

1) RCPI measurement: RCPI is calculated as the average
power over all received Rx, x=1,2, .., NRX, receiver antennas.
When receiving a Null Data Packet (NDP) for RSNI update,
we calculate the RCPI over VHT-LTF symbols and VHT-
SIG-B symbol. If RCPI is updated over a data packet, we
calculate the RCPI over DATA symbols. The RCPI is
evaluated as the average power over all non-pilot active

subcarriers. RCPI updated over a DATA packet can be written
as:

 , ,

1
()

x

xx

DATA t R
R t is R D

RCPI Y i
N N N

= ×
× ×

∑∑∑ (1)

where Ns is the number of non-pilot active subcarriers, ND is
the number of data symbols, i∈ Inon-pilot, active subcarriers , and t,
t=1,2,.., Nt, is the symbol index. RCPI can be also averaged
over several data packets inside a desired time window to
further improve the reliability.

2) ANPI measurement: In the standard [8], the ANPI
measurement is defined to be done during idle periods.
However, as we use this value for the symbol detection, we
estimate ANPI in the receiver based on the average power in
the null carriers, except DC, in the STF symbols. L-STF and
VHT-STF symbols are suitable for noise estimation, because
they contain several zeros in the frequency domain
presentation in addition to non-active carriers. Thus any
changes in the subcarriers containing zeros can be considered
noise. We assume that the time and frequency synchronization
accuracy while detecting STF symbols is sufficient for us to
measure only noise power in the zero-valued carriers. This can
be done also as a post processing step, after properly
synchronizing to the received signal. ANPI can be written as:

 / ,

1
()

Rx x

xx

N L STF VHT STF R
R is R

ANPI Y i
N N − −= ×

× ∑∑ (2)

where Ns is the number of active zero-valued pilot subcarriers
and i∈ Iactive,zero-valued pilots.

3) RSNI Measurement: Having calculated the values for
RCPI and ANPI, the RSNI can be calculated according to the
following:

 ()()1010 log /RSNI RCPI ANPI ANPI= × − (3)

In the above formula, the RCPI and ANPI are the power
values in linear scale.

B. Channel Estimation
For detecting a WLAN 802.11ac packet, the receiver has to
calculate two different channel estimates, one for the non-
precoded (non-VHT) part and one for the possibly precoded
part (VHT-part). First channel estimate is obtained from L-LTF
symbols for detecting L-SIG and VHT-SIG-A fields. Second
channel estimate is obtained, after detecting VHT-SIG-A, from
VHT-LTF fields.

1) Channel estimator for the legacy part: After time and
frequency synchronization, Cyclic Prefix (CP) removal and
FFT operation, the received signal for L-LTF symbol per
symbol index t, t = [1, 2], per subcarrier index k, k ∈ Iactive,non-

pilot L-LTF subcarriers, can be written as (4) where Hk is a (NRx× NTx)
complex channel matrix, Heff,k is the (NRx× 1) effective sum
channel for legacy part, XL-LTF,k is an (NTx×1) real vector
containing only the training symbol xL-LTF,k (ones and minus
ones) and Nt,k is an (NRx× 1) complex Gaussian noise vector.

, , ,

1,
1

, , , ,

,
1

1

1

Tx

Tx

Rx

k t k L LTF K t k

N

j
jTx

L LTF k k L LTF k eff k t k

N

N j
jTx

N

N

−

=

− −

=

= ⋅ + =

⋅ + = +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑

Y H X N

h

x N x H N

h

 (4)

Now, given that we receive two L-LTF symbols in the
preamble, the Least Squares (LS) channel estimator is given
as:

2

,
, , ,

12
L LTF k

eff k LS k t
t

−

=

= ∑
x

H Y (5)

where index t, t = [1, 2], indicates L-LTF symbol index over
which the received signal is averaged before channel
estimation. The channel estimate is obtained by directly
multiplying with xL-LTF,k because it can only have values [-1,
+1]. With HH representing the Hermitian transpose of Matrix
H, the Linear Minimum Mean Square Error (LMMSE)
estimator based on LS estimate can be written as:

, , , , , ,

12

, , , , , ,

ˆ ˆ ˆ

ˆ ˆ ˆ
2 Rx

H
eff k LMMSE eff k LS eff k LS

H n
eff k LS eff k LS N eff k LS

σ
−

=

⋅ +
⎛ ⎞
⎜ ⎟
⎝ ⎠

H H H

H H I H
 (6)

2) Channel estimator for VHT part: After detecting VHT-
SIG-A, the receiver knows how many VHT-LTF symbols it
should collect for VHT channel estimation. The VHT-LTF
preamble differs from the legacy part in two main ways. First,
the VHT-LTF subcarriers k, k ∈ Iactive,non-pilot VHT-LTF subcarriers, are
precoded by VHT-LTF mapping matrix P (defined in [2]) of
size (NSTS×NVHT-LTF). Secondly, the VHT-LTF symbols may be
precoded by the precoder matrix Qj, j ∈ Iactive,VHT-LTF subcarriers.
After synchronization, CP removal and FFT operation, the
received signal for VHT-LTF symbol per symbol index t, t =
[1,…,NVHT-LTF], per subcarrier index k, k ∈ Iactive, non-pilot VHT-LTF

subcarriers, can be written as:

()

()
, , ,

, , ,

:,

:,
k t VHT LTF k k t

eff k VHT LTF k k t

t

t
−

−

= + =

+
k kY H Q P x N

H P x N
 (7)

Now, in the receiver, to get effective channel estimates per
Space Time Stream (STS), the received VHT-LTF symbols are
weighted with the rows of P matrix and averaged over all
VHT-LTF symbols. For presentation clarity, let us stack the
received samples per subcarrier k, over all Rx antennas and
VHT-LTF symbols into single column vector, given as (8)
where � represents Kronecker tensor product.

()

,1

,

,

,

,

(:,1)

(:,)

VHT LTF

Rx

k

k

k N

eff k
T

N VHT LTF k k

eff k VHT LTFN

−

−

−

= =

⊗ +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Y
Y

Y

h
P I x N

h

 (8)

Now, the received training VHT-LTF training signal after
decoding diversity coding is given as:

()
,1

,

,

,

,

1

(:,1)

(:,)

Rx

VHT LTF

k

k N
VHT LTF

k N

eff k

VHT LTF k k

eff k STS

N

N

−

−

−

= ⊗ =

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Y
Y P I

Y

h
x W

h

 (9)

where Wk∈CN ቆ0, σn
2

NVHT-LTF
ቇ. Then, the LS channel estimate

can be written as:

, , _ ,

ˆ
eff k LS VHT LTF k k=H x Y (10)

Note that now the columns of the original channel matrix
are stacked on top of each other. After obtaining the LS
channel estimate, it is used to calculate the LMMSE channel

estimation using (6) by replacing
2

2 Rx

n
N

σ
× I with 2

Rx VHT LTFn N Nσ
−

I .

During the receiver implementation, LMMSE channel
estimation proved to be one of the very time consuming
operations as it involves the inversion of a 4×4 matrix
according to (6). If (6) is written assuming a two antenna
configuration, (11) is derived as:

* * * *
, ,

1

* * * *

2

2

2

2

ˆ

0 0 0

0 0 0

0 0 0

0 0 0

Rx VHT LTF

Rx VHT LTF

Rx VHT LTF

Rx VHT LTF

eff k LMMSE

n

n

n

n

N N

N N

N N

N N

a
b

a b c d
c
d

a
b

a b c d
c a
d b

c
d

I

I

I

I

σ

σ

σ

σ

−

−

−

−

−

= ×

+

×

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤⎣ ⎦⎢ ⎥
⎢ ⎥
⎣ ⎦

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎡ ⎤⎣ ⎦⎜ ⎟⎢ ⎥ ⎡⎜ ⎟⎢ ⎥ ⎢⎣ ⎦⎜ ⎟

⎢⎜ ⎟⎡ ⎤ ⎢⎜ ⎟⎢ ⎥ ⎢⎜ ⎟⎢ ⎥ ⎣⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

H

⎤
⎥
⎥
⎥
⎥
⎦

 (11)

where a, b, c, d are calculated according to (10),
[], ,eff k LS a b c d=H , and the superscript * represents

the complex conjugate of the corresponding element.
Now, using the Sherman-Morrison law [9], (11) can be

simplified to:

* * * *

2 * * * *

* * * *

2 * * * *

, , * * * *

2 * * * *

* * * *

2 * * * *

()
()

()
()

()
()

()
()

n

n
eff k LM M SE

n

n

LS

a aa bb cc dd
aa bb cc dd

b aa bb cc dd
aa bb cc dd

c aa bb cc dd
aa bb cc dd

d aa bb cc dd
aa bb cc dd

σ

σ

σ

σ

+ + +
+ + + +

+ + +
+ + + +

= =
+ + +

+ + + +

+ + +
+ + + +

×

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

H

H
2

()
()

T
LS LS

T
n LS LS

conj
conjσ

×
+ ×

H H
H H

 (12)

where conj(H) represents the element wise complex conjugate
of matrix H.

Using this approach, we can avoid the complexity due to
the matrix inversion in the channel estimation process. The
same approach can be used in the 4×4 antenna configuration.
Simplifying the computation of the matrix inversion reduced
the complexity and the number of clock cycles to a great
extent.

C. Pilot Based Fine Frequency Error Estimation and
Correction

In order to compensate the effects of the frequency error on the
received symbols, first the frequency error should be estimated.
The frequency error is measured using the phase angle
difference per symbol index t can be given as:

1 , 1 ,

1ˆ
t i t i t

i Pp

P P
N+ +

∈Ω

Θ = ∠ − ∠∑ (13)

where i ∈ Ipilot, DATA subcarriers. Having the phase angle
differences, the frequency error can be calculated as:

 , 1 , 1
ˆ ˆs

error t error t t
s GI

F
F F

N N+ += + Θ
+

 (14)

where Fs is the sampling frequency, Ns is the number of
subcarriers, and NGI is the number of samples in the Guard
Interval (GI). Once the frequency error is calculated, the
received DATA symbols can be corrected using:

 ,êrror tj F
received e π−= ×y y (15)

D. LDPC Tone Demapping
When Low Density Parity Check (LDPC) encoder is used as
the Forward Error Correction (FEC) method, LDPC tone
mapping should be employed in the transmitter, whereas in
case of Binary Convolutional Codes (BCC), BCC interleaver
shall be employed. LDPC tone mapper was introduced in
802.11ac to achieve full frequency diversity from 80MHz and

160MHz bandwidths. The LDPC tone mapper maps
consecutive symbols to non-consecutive subcarriers inside one
OFDM symbol. In other words, the LDPC tone mapper
shuffles the data subcarriers in each OFDM symbol in each
spatial stream. Thus in the receiver, the LDPC tone demapper
rearranges the shuffled subcarriers into their original places.
E. Stream De-parser
Stream parsing is the operation done in the transmitter to re-
arrange and divide the coded bits into Nss spatial streams. The
left-hand side in Fig. 3 illustrates how stream parsing is done
for an unknown number of streams. In the receiver the Nss
streams are then de-parsed to form one bit stream as shown in
the right-hand side of Fig. 2.

Fig. 2. Stream parsing and de-parsing process

F. Symbol Detection
To detect the symbols at the receiver, LMMSE detection is
employed. The detector coefficients can be calculated using
the LMMSE channel estimation derived in (6). The detector
coefficients can be calculated as:

 () 12

STS

H H
coeff LMMSE LMMSE n N LMMSEσ

−
= +D H H I H (16)

where the H
LMMSEH is a (NRx ×NSTS) matrix. Once the

coefficients are calculated, the received symbols can be
detected using:

 ,
ˆ

coeff fixed=X D Y (17)

where Y is a (NRx×1) matrix containing the received symbols.
G. Soft Bit Detection
In soft bit detection, for each bit position, the difference of
distances to the nearest zero and one bit on the constellation is
calculated. This operation is illustrated in Fig. 3. This is a sub-
optimal method for reducing the complexity of the soft bit
detection implementation where instead of calculating the
distance to all constellations, only the nearest ones are
considered.

Fig. 3. Soft bit detection process

III. TRANSMISSION SCENARIOS
In this work, we have covered four different operation points
(transmission scenarios) of the IEEE 802.11ac. The transmitter
implementation for these cases was discussed in [7]. In all
cases the channel bandwidth is set to 80MHz, which implies
that each OFDM symbol contains 256 subcarriers including
234 data, 14 null, and 8 pilot subcarriers. Furthermore, in all
cases 256QAM is selected as the modulation scheme mapping
a block of 8 coded bits into one constellation point. In this
implementation short GI is used implying that the duration of
each OFDM DATA symbol is equal to 3.6μs.

Fig. 4 and Fig. 5 depict main structure of the implemented
processing at the receiver. Some blocks may be obsolete in
some cases depending on the scenario. It is also assumed that
the incoming symbols are stored in a local memory and
consequently the time required for the transfer of the data to the
local memory is not considered.

Fig. 4. Overall block diagram of frequency domain receiver processing

Fig. 5. Block diagram of the receiver DATA field baseband processing

Table I briefly describes the different transmission
scenarios implemented in this work and highlights the
common parameters and differences in these four operation
points.

TABLE I. THE SPECIFICATIONS FOR THE IMPLEMENTED TRANSMISSION
SCENARIOS

 Common
Parameters

Number of
antennas

Number
of spatial
streams

STBC coding

CASE A 80MHz TX/RX
bandwidth,

256QAM, ¾
coding rate,

Short GI

2 2 No

CASE B 4 4 No

CASE C 2 1 Yes

CASE D 4 2 Yes

IV. ARCHITECTURE AND IMPLEMENTATION
The implementation platform used in this work was selected by
taking into consideration the requirement for fast processing of
huge amounts of data, imposed by the IEEE 802.11ac support
for very high data rates in the order of gigabits per second. As a
result a VLIW processor with vector processing capabilities is
chosen. More specifically, we have selected the Tensilica
ConnX BBE32 DSP core as our processing platform in this
work. This DSP core, which is specifically designed to be used
in the next generation communication systems, is based on a
high performance, ultra-low power, and very small size
architecture [10]. The ConnX BBE32 meets the high

computational requirements by supporting vector operations
using a 16-way SIMD ALU and a 4-issue VLIW processing
pipeline. Additionally, this core is equipped with 32 multiply-
accumulate units and can access wide data chunks in blocks of
256 bits from the memory. The ConnX BBE32 block diagram
can be found in Fig. 6. This DSP core uses a Harvard
architecture having two data memories and one instruction
memory. Moreover, to help offload the computationally
intensive operations such as FFT/IFFT, the dedicated hardware
accelerator blocks can be used, which are then controlled with
custom instruction extensions. Tensilica uses an Eclipse based
software development environment named Xtensa Xplorer,
which provides a complete set of tools for code generation and
profiling. Programming in C language is possible in this
environment. However, we have manually optimized our code
with the aid of the compiler intrinsics.

Fig. 6. Principal block diagram of ConnX BBE32

V. RESULTS AND ANALYSIS
In order to study the feasibility of the introduced solution on
this platform, we have profiled and then analyzed the solution
in terms of number of clock cycles and power consumption.
This has been done using the profiling tools provided by the
vendor. Two of the most challenging symbols to process in the
IEEE 802.11ac packet structure are the VHT-LTF symbol and
the DATA symbol. The reason for this is that the VHT-LTF
symbol is used for channel estimation and calculating the
detector coefficients which are the two most computationally
intensive operations. The DATA symbol also involves heavy
operations such as the soft bit detection. As a result, we have
presented the power consumption and clock cycle results
related to these two symbols in this section.

Table II shows the number of clock cycles needed for the
different operations on one DATA symbol in the receiver. The
results for the four different operation points are presented in
the same table. As it can be seen from Fig. 1, the duration of
one DATA symbol is 3.6μs when short GI is used. To achieve
real-time operation in the receiver, all the processing should
not exceed 3.6μs. Looking at the total number of cycles
presented in Table II, in the first and third scenarios (scenarios
using only two antennas), an operating frequency of 1GHz is
required for achieving a real-time operation. However, in the
second and fourth cases (where four antennas are used) the
clock frequency should be doubled.

The duration of one VHT-LTF symbol is 4μs. According to
the total number of clock cycles presented in Table III, to
achieve a real-time operation, frequencies less than 1GHz are
required for the cases using two space-time streams, whereas
very high frequencies may be needed for the cases with four
space-time streams due to the high number of cycles consumed
by the detector co-efficient calculation function.

St
re

am
 D

e-
pa

rs
er

TABLE II. THE NUMBER OF CLOCK CYCLES NEEDED FOR THE
PROCESSING OF A DATA SYMBOL

Case A Case B Case C Case D

RCPI Variance 185 365 185 365

RCPI, ANPI, RSNI 146 150 146 150

Remove Pilots 140 336 140 336

Symbol Detection 468 625 208 652

LDPC Tone De-Mapper 324 672 324 672

Stream Deparser 74 254 - 148

Soft Bit Detection 3193 6504 3193 6504

Frequency Error Correction 255 331 255 331

Total 4785 9237 4451 9158

TABLE III. THE NUMBER OF CLOCK CYCLES NEEDED FOR THE
PROCESSING OF A VHT-LTF SYMBOL

 Case A Case B Case C Case D

LS Channel Estimation 281 2873 281 2873
LMMSE Channel

Estimation 1078 1643 1078 1643

Detector Coefficients 2630 31713 851 34005

Total 3989 36229 2210 38521

The matrix to be inversion for calculating the detector
coefficients does not benefit from the special structure
available for the LMMSE channel estimation. Therefore, it
could not be simplified using the same methods. We continue
our work to reduce the frequencies required to achieve a real-
time operation by introducing instruction extensions for the
bottleneck operations such as 4×4 unstructured matrix
inversion in the symbol detector coefficient calculations. This
is done by adding a customized inversion accelerator to the
core. One important criterion, which needs to be taken into
consideration during the implementation, is the power
consumed by the design. As the Xtensa Xplorer tools provide
the energy consumption estimation, we have calculated the
power consumption using the energy numbers and dividing
those by time. The time needed for each block is defined by the
number of clock cycles and we have considered maximum
memory capacity (128k). We have assumed a clock frequency
of 500MHz and the monitoring time for the energy analysis is
3.6μs for the DATA part and 4μs for the VHT-LTF. Table IV
and V present the power consumption results for different
operations in all transmission cases for DATA and VHT-LTF
symbols, respectively. In general the power consumption
results are mostly found feasible to mobile terminal scale
devices. It should be noted that the VHT-LTF operations are
done only once per packet, but the data symbol operations are
repeated multiple times per packet. Therefore, minimizing the
power consumption per data symbol is more critical. In other
words, for a VHT-LTF symbol the detector coefficient
evaluation is a time critical operation and processing a data
symbol is a power critical operation.

VI. CONCLUSIONS
In this paper, we have proposed a software-based
implementation for the IEEE 802.11ac receiver frequency
domain PHY layer frequency domain baseband processing.
This implementation was carried out using a customized DSP
core with vector processing capabilities. The solution was
developed for four different multi-antenna transmission

scenarios. The implementation has been evaluated in terms of
number of clock cycles and power consumption. We presented
the results for two of the symbols that require more
computations, namely the DATA and VHT-LTF symbols. The
analysis of the performance numbers showed that achieving a
real-time operation for the IEEE 802.11ac receiver on this
customized DSP platform requires very high operating
frequencies. In the continuation of this work, we customize the
core by adding instruction extensions for the computationally
intensive operations such as matrix inversion to lower the
operating frequency needed for achieving a real-time operation.

TABLE IV. POWER CONSUMPTION IN MW FOR THE PROCESSING OF A
DATA SYMBOL

Case A Case B Case C Case D

RCPI Variance 3,36 6,67 3,35 6,16

RCPI,ANPI,RSNI 2,76 2,68 2,59 2,78

Remove Pilots 4,76 10,39 4,76 9,52

Symbol Detection 13 23,51 6,82 34,65

LDPC Tone De-Mapper 10,02 20,07 10,02 20,03

Stream Deparser 3,06 8,59 3,09 6,11

Soft Bit Detection 106,95 213,92 105,43 213,19

Frequency Error Correction 4,46 7,55 4,44 7,55

Total 148,37 293,38 140,5 299,99

TABLE V. POWER CONSUMPTION IN MW FOR TH EPROCESSING OF A
VHT-LTF SYMBOL

Case A Case B Case C Case D

LS Channel Estimation 8,49 96,45 8,51 85,64
LMMSE Channel

Estimation 31,27 51,22 31,27 51,22

Detector Coefficients 66,39 38,4 21,55 94,03

Total 106,15 186,07 61,33 230,89

REFERENCES
[1] NVIDIA, NVIDIA SDR (Software Defined Radio) Technology, USA,

2013.
[2] IEEE P802.11acTM Draft Standard, version 5, January 2013.
[3] S. Yoshizawa and Y. Miyanaga, "VLSI Implementation of a 4×4

MIMO-OFDM transceiver with an 80-MHz channel bandwidth," in
Proc. IEEE ISCAS, Taipei, Taiwan, 24-27 May 2009, pp. 1743-1746.

[4] S. Eberli, A. Burg, T. Bosch, and W. Fichtner, "An IEEE 802.11a
baseband receiver implementation on an application specific processor,"
in Proc. 50th Midwest Symposium on Circuits and Systems, Montreal,
Canada, 5-8 Aug. 2007, pp.1324,1327.

[5] P. Wang, J. McAllister, and Y. Wu, "Software defined FFT architecture
for IEEE 802.11ac," in Proc. Global Conference on Signal and
Information Processing (GlobalSIP), Austin, USA, 3-5 Dec. 2013,
pp.1246-1249.

[6] J.R. Gutierrez-Agullo, B. Coll-Perales, and J. Gozalvez, "An IEEE
802.11 MAC Software Defined Radio implementation for experimental
wireless communications and networking research," in Proc. IFIP
Wireless Days, Venice, Italy, 20-22 Oct. 2010, pp.1-5.

[7] M. Aghababaeetafreshi, L. Lehtonen, M. Soleimani, M. Valkama, and J.
Takala, ”IEEE 802.11ac MIMO transmitter baseband processing on
customized VLIW processor,” in Proc. IEEE ICASSP, Florence, Italy,
4-9 May 2014, pp. 7550-7554.

[8] IEEE Std 802.11TM Part 11: Wireless LAN Medium Acess Control
(MAC) and Physical Layer (PHY) Specifications, March 2012.

[9] M. S. Bartlett, “An inverse Matrix Adjustment Arising in Discriminant
Analysis,” The Annals of Mathematical Statistics 22, no. 1, pp. 107-111.

[10] Tensilica Inc., ConnX BBE32 DSP User Guide, USA, 2012.

PUBLICATION 3

M. Aghababaeetafreshi, L. Lehtonen, T. Levanen, M. Valkama and J. Takala, "IEEE 802.11ac
MIMO transceiver baseband processing on a VLIW Processor", Journal of Signal Processing
Systems, Oct 2016, 85(1), pp. 167–182, DOI: 10.1007/s11265-015-1032-2

© 2016 Springer

The original publication is available at https://link.springer.com/article/10.
1007/s11265-015-1032-2.

https://link.springer.com/article/10.1007/s11265-015-1032-2
https://link.springer.com/article/10.1007/s11265-015-1032-2

IEEE 802.11ac MIMO Transceiver Baseband Processing on a
VLIW Processor

Mona Aghababaeetafreshi · Lasse Lehtonen · Toni Levanen ·
Mikko Valkama · Jarmo Takala

Abstract Wireless standards are evolving rapidly due

to the exponential growth in the number of portable de-
vices along with the applications with high data rate re-
quirements. Adaptable software based signal processing

implementations for these devices can make the deploy-
ment of the constantly evolving standards faster and
less expensive. The flagship technology from the IEEE
WLAN family, the IEEE 802.11ac, aims at achieving

very high throughputs in local area connectivity sce-
narios. This article presents a software based imple-
mentation for the Multiple Input and Multiple Output

(MIMO) transmitter and receiver baseband process-
ing conforming to the IEEE 802.11ac standard which
can achieve transmission bit rates beyond 1Gbps. This

work focuses on the Physical layer frequency domain
processing. Various configurations, including 2× 2 and
4× 4 MIMO are considered for the implementation. To
utilize the available data and instruction level paral-

lelism, a DSP core with vector extensions is selected
as the implementation platform. Then, the feasibility
of the presented software-based solution is assessed by

studying the number of clock cycles and power con-
sumption of the different scenarios implemented on this
core. Such Software Defined Radio based approaches
can potentially offer more flexibility, high energy effi-

ciency, reduced design efforts and thus shorter time-
to-market cycles in comparison with the conventional
fixed-function hardware methods.

Keywords OFDM · MIMO · WLAN · VLIW ·
Software Defined Radio · Parallel Processing

M. Aghababaeetafreshi (B) · L. Lehtonen · T. Levanen ·
M. Valkama · J. Takala
Tampere University of Technology, Korkeakoulunkatu 1,
33720, Tampere, Finland
Tel.: +358-44-9761447
E-mail: mona.aghababaeetafreshi@tut.fi

1 Introduction

Wireless standards and protocols are evolving rapidly
to meet the high demands by the growing number of
users and various applications. Consequently, the idea

of more flexible devices adapting to different radio in-
terfaces is gaining more interest. This is due to the fact
that such devices would considerably reduce the costs

and design efforts as they would eliminate the need for a
dedicated hardware for each new technology or new re-
lease of an existing standard. However, majority of the
available devices still exploit application-specific fixed-

function hardware platforms. In these devices, most of
the processing is carried out using Application-Specific
Integrated Circuits (ASIC), hard-wired to communi-

cate in one specific protocol, thus offering very limited
flexibility. These application-specific structures require
smaller area and as a result have very low power con-

sumption. However, designing structures to support all
the possible standards and even the forthcoming ones
in such devices significantly increases the complexity
during the design and implementation processes. [1]

In order to compensate the inflexibility of ASIC
designs, Software Defined Radio (SDR) solutions have
been introduced. SDR solutions provide support for a

wide variety of capabilities which would otherwise only
be available by integrating multiple radio components.
These solutions allow the modification of the function-
ality by modifying the software using the same hard-

ware resources. Generally, standard programmable so-
lutions have higher power consumption in comparison
with the ASIC based implementations. However, with

the use of domain-specific processors, which have been
tailored to a specific application area such as communi-
cation applications, the application-specific features are

expected to reduce the power consumption to a reason-
able level. Moreover, with the reduced design efforts

2 Mona Aghababaeetafreshi et al.

20MHZ

40MHZ

80MHZ

160MHZ

Examples
of Non-

contiguous
VHT80+80
MHz Setup

5170
MHz

5330
MHz

5490
MHz

5730
MHz

5735
MHz

5835
MHz

These frequencies
are not available in
Europe, Japan and

other regions

Fig. 1 IEEE 802.11ac channelization at 5 GHz

due to the elimination of silicon re-design and testing,
SDR can help shorten the time-to-market cycle. [2][3]

With the increasing number of wireless devices along
with the rising popularity of bandwidth intensive appli-
cations, the amount of wireless traffic is tremendously

growing. As a result, the demand for enhancing the ca-
pacity of wireless networks is rising. The IEEE 802.11
WLAN family [4], currently providing the majority of
wireless local area connectivity, is constantly develop-

ing to meet these high demands particularly in indoor
environments. The current flagship amendment to the
IEEE 802.11 WLAN standard is the IEEE 802.11ac [5].

The IEEE 802.11ac is introduced to provide im-
provements to reach maximum throughputs well above
one Gigabit per second. Therefore, it is also referred to

as the Very High Throughput (VHT) amendment. In
comparison with its preceding amendment, the IEEE
802.11n (also referred to as the High Throughput (HT)
amendment), this specification employs several tech-

niques to improve the Physical (PHY) layer through-
put, including the main components listed below [6].

Mandatory 5 GHz Operation: As the 2.4 GHz band
is already crowded by WiFi and other unlicensed band
devices and thus is more prone to interference, the VHT
specification mandates operations at 5 GHz band.

Wider Bandwidth: The IEEE 802.11ac takes advan-
tage of wider channel bandwidths, such as 80 MHz and
160 MHz. The 160 MHz channel can be formed using

a 80+80 MHz non-contiguous setup which allows more
flexible channel assignment [7]. The channelization for
the IEEE 802.11ac at 5 GHz is shown in Fig. 1.

Denser Modulation: The VHT amendment adds sup-
port for higher modulation orders compared to the HT
amendment. The highest supported order in this amend-

ment is 256-QAM delivering an increase in data rates
by 33% over 802.11n [8].

Higher order and Multi-User MIMO (MU-MIMO):

The IEEE 802.11ac has increased the number of spatial
streams from four streams allowed in 802.11n to eight.
It is also the first amendment to introduce support for

serving multiple users in the same time slot in the form
of MU-MIMO.

In this paper, a software-defined radio implemen-

tation of PHY layer frequency domain baseband pro-
cessing of IEEE 802.11ac transceiver is described. A
vector processor code is used as the target platform

where we assume that the high complexity processing,
e.g., Low Density Parity Check (LDPC) coding, is car-
ried out in a separate accelerator. The employed proces-
sor which utilizes a customized Very Long Instruction

Word (VLIW) architecture with vector extensions is the
Tensilica ConnX BBE32 [9]. This implementation in-
cludes some of the possible transmission scenarios from

the IEEE 802.11ac specifications, including 2 × 2 and
4× 4 MIMO. This work is a continuation of the trans-
mitter and receiver implementation presented in [10]

and [11], respectively.
The rest of the paper is organized as follows. Section

2 introduces the previous contributions related to this
work. In Section 3, the physical layer packet structure

and the implemented transmission scenarios are shortly
described. Section 4 discusses the technical details of
the transmitter and receiver processing. Section 5 de-

scribes the implementation and the architecture of the
employed platform. The performance results in terms
of number of clock cycles and power consumption es-
timates and their comparison with the existing imple-

mentations can be found in Section 6. Finally, Section
7 concludes the paper.

2 Related Work

Many studies addressing the implementation of WLAN
standards exist in the literature. However, there are

only a limited number of works which describe the im-
plementation of the IEEE 802.11ac either exploiting
hardware based solutions or a software based approach.

As an example, [12] presents the ASIC implemen-
tation of an OFDM transceiver based on the IEEE
802.11a which describes an OFDM design using a fixed
64-QAM modulation. Similarly, [13] describes the de-

sign and validation of the IEEE 802.11n PHY layer
transceiver processing on an ASIC platform. This im-
plementation is carried out using a fixed 40MHz band-

width and two spatial streams and is defined to use two
transmit antennas and three receive antennas.

Looking at the IEEE 802.11ac based implementa-

tions, in [14], a 4 × 4 MIMO-OFDM transceiver is im-
plemented using a VLSI architecture. This study is car-
ried out for a transceiver tailored to a 80-MHz channel
bandwidth and a 4× 4 MIMO.

All the above mentioned cases analyze and imple-
ment a fixed transmission scenario. However, as the pro-
cessing and computing power of Digital Signal Proces-

sors (DSP) are increasing, the more programmable and

IEEE 802.11ac MIMO Transceiver Baseband Processing on a VLIW Processor 3

L-STF

8μs

L-LTF

8μs

L-SIG

4μs

VHT-SIG-A

8μs

VHT-

STF

4μs

VHT-

LTF 1

4μs

VHT-

LTF n

4μs

VHT-

SIG-B

4μs

DATA

 1

3.6μs

DATA

n

3.6μs

...

The Legacy Portion The VHT Portion

...

Fig. 2 The IEEE 802.11ac physical layer data packet structure assuming short GI for the data symbols

flexible approaches are gaining interest. Both [15] and
[16], explore the feasibility of a SDR baseband processor
for the IEEE 802.11ac.

In [15], Ho Yang et al. have covered most functions
of baseband with DSP software having an 80MHz band-
width, 4×4 MIMO, and 64-QAM modulation. The main

processor used in this work is the RP-32 radio proces-
sor. This DSP features 512-bit vector processing, 256-
bit data buses, and 32-lanes. Front-end filters and outer
modem (LDPC, etc.) are implemented as separate units

from the processor. This implementation assumes 1GHz
clock frequency.

The same configuration as [15] is exploited in [16]

for the inner receiver processing. However, the base-
band processor is based on the ADRES template [17].
An instance of the ADRES template called BOADRES

has been derived for this implementation. BOARDES
has four memories with 256-bit data buses. Four vec-
tor units which support 16-lane operations allow 64
operations in parallel for 16-bit wide data. It is also

equipped with 6-unit VLIW for scalar operations. This
implementation excludes LDPC as well, but includes
the FFT operation which consumes 25-34% of total cy-

cles. A clock frequency of 800 MHz is assumed.

Some other contributions have also been made in
software based implementations which only include parts

of the PHY or MAC layer processing [18][19].

The solution presented in this paper considers very
aggressive scenarios with 4 × 4 MIMO, 80 MHz band-

width, 256-QAM, and STBC coding which impose strict
timing constraints for a real-time operation in com-
parison with other existing SDR solutions. The clock
frequency is assumed to be 500 MHz. In this paper,

we propose a software based SDR solution in a similar
fashion and similar frequency domain processing sce-
nario as in [15] and [16]. However, in our proposal we

assume lower clock frequency and exploit a dedicated
matrix inversion unit.

3 Packet Structure and Considered

Transmission Scenarios

3.1 Physical Layer Data Packet Structure

This paper addresses the physical layer processing re-
lated to an IEEE 802.11ac data packet. The VHT data

packet is divided into a PHY header part and a data

part. The header part consist of a legacy portion which
ensures the backward compatibility of the IEEE 802.11ac
packet format and the VHT part which is specific to

this amendment. The former is intended to be received
by the non-VHT stations and consists of Non-HT Short
Training field (L-STF), Non-HT Long Training field (L-

LTF), and Non-HT SIGNAL field (L-SIG). The VHT
part is composed of VHT Signal A field (VHT-SIG-A),
VHT Short Traing field (VHT-STF), VHT Log Train-
ing field (VHT-LTF), VHT Signal B field (VHT-SIG-

B), and the DATA field carrying a number of data sym-
bols [5]. Fig. 2 presents the PHY layer packet structure
and the duration for different symbols.

3.2 Transmission Scenarios

Four different operation points for the IEEE 802.11ac
transmitter and receiver are covered in this work. In

all the transmission scenarios, the channel bandwidth
is set to 80MHz which indicates 256 OFDM subcarri-
ers including 234 data, 14 null, and 8 pilot subcarri-

ers. Additionally, all the cases employ 256-QAM as the
data modulation scheme. Table 1 shows the different
implemented transmission scenarios and highlights dif-

ferences in these scenarios.

Table 1 The implemented transmission scenarios. For all
cases 80 MHz Tx/Rx BW, 256-QAM, LDPC coding, 3/4 cod-
ing rate and short GI are assumed.

Cases
Number
of
Tx/Rx

antennas

Number
of
spatial
streams

STBC
coding

Case A 2 2 NO
Case B 4 4 NO
Case C 2 1 YES
Case D 4 2 YES

Fig. 3 illustrates the transmitter chain block dia-

gram, considered in this article, for the processing of a
DATA symbol. Multiple dots in the figure indicate the
possibility of more spatial streams. Space-Time Block

Coding (STBC) is presented with dashed lines showing
that it is not implemented in all the scenarios.

4 Mona Aghababaeetafreshi et al.

Constellation

Mapper

CSD

CSD

.

.

.

.

.

. .

.

.S
tr

ea
m

 P
a
rs

er

Tone

Mapper

Tone

Mapper
S

T
B

C

S
p

a
ti

a
l

M
a
p

p
in

g

Constellation

Mapper

Fig. 3 Principal block diagram of the transmitter baseband
processing

LMMSE

Channel

Estimator

SINR

Estimation

Detect

DATA Field
MAC

Fig. 4 Overall logical block diagram of the receiver process-
ing

Frequency

Error

Tracking

.

.

.

Frequency

Error

Tracking

.

.

.

Decode

STBC

Decode

STBC

 Tone De-

mapping

Tone De-

mapping

Soft Bit

Detection

Soft Bit

Detection

.

.

.

.

.

.

S
tr

ea
m

 D
e-

p
a
rs

er

Fig. 5 Principal block diagram of the receiver baseband pro-
cessing

In the receiver, processing of the DATA field relies

on the processing of the preamble parts. The overall
receiver logical block diagram can be seen in Fig. 4,
where some of the preamble processing is also included.

Fig. 5 shows the functional blocks implemented for
the processing of a DATA symbol at the receiver.

4 IEEE 802.11ac Functional Blocks

In this section an overview of the IEEE 802.11ac func-
tional blocks considered both in the transmitter and the
receiver is given.

4.1 Transmitter Processing

This section describes some of the functionalities of the
transmitter implemented in this work. Since these func-
tionalities are either redundant or less complex for the

preamble symbols (shown in Fig. 2), only the processing
of the DATA field is presented in this section.

It is assumed that after scrambling, the Forward
Error Correction (FEC) unit encodes the bits. Binary
Convolutional Codes (BCC) or LDPC codes can be
used as the FEC method. Then, the encoded bits go

through the blocks implemented in this work (shown in
Fig. 3). Finally, the symbols are fed to a separate hard-
ware entity to perform IFFT and then have the relevant

time domain processing.

4.1.1 Stream Parsing

The incoming bits from the LDPC encoder have to be
re-arranged into a new set of bit strings equal to the

number of spatial streams (Nss). A block of bits of
size s, defined in (1), are assigned to different spatial
streams in a round robin fashion [6].

s = max

{
1,
NBPSCS

2

}
(1)

where NBPSCS is the number of coded bits per single
subcarrier for each spatial stream and is equivalent to
the modulation order.

As an example, the stream parsing process in case

of a 256-QAM modulation (s = 4) and Nss = 4 divides
the stream [y0, y1, y2, ..., yi] into four streams of [y0,
y1, y2, y3, y16, y17, ..], [y4, y5, y6, y7, y20, y21, ..], [y8, y9,

y10, y11, y24, y25, ..] and [y12, y13, y14, y15, y28, y29, ..].

4.1.2 Modulation Mapping

The bit streams from the stream parser are divided
into blocks of NBPSCS bits and converted into com-

plex numbers representing BPSK, 16-QAM, 64-QAM,
or 256-QAM constellation points. This conversion is
performed according to Gray-coded constellation map-

pings. Then, the output values are formed by multi-
plying the resulting (I + jQ) value by a normalization
factor Kmod. The normalization factor, Kmod, for 256-
QAM, the employed modulation order in this work, is

1√
170

.[4][5]

4.1.3 LDPC Tone Mapping

LDPC tone mapping is performed when the bits are

LDPC encoded. It is introduced in IEEE 802.11ac to
achieve full frequency diversity from 80 and 160MHz
bandwidths. LDPC tone mapping makes each two con-
secutively generated complex constellation numbers in

an OFDM symbol to be transmitted on two data tones
that are separated by a known distance from other
data tones [5]. This distance is selected according to

the channel bandwidth. Fig. 6 shows the tone mapping
process having an 80MHz channel bandwidth.

IEEE 802.11ac MIMO Transceiver Baseband Processing on a VLIW Processor 5

0 1 2 3 4 5 6 7 . . .

0 1 2 3 4 5 6 7 . . .

Fig. 6 Tone mapping in 80MHz wide channel

4.1.4 STBC Coding

STBC is used for transmitter diversity. The STBC coder
maps a single constellation symbol into multiple radio
chains. As a result, the spatial streams transform into

space-time streams. This is used for improving the re-
liability and robustness of the data transfer.

As an example, let us assume a two antenna con-

figuration with one spatial stream. According to Alam-
outi’s scheme [20], at the time t, symbols x1 and x2
are transmitted from antenna 1 and antenna 2, respec-

tively. Assuming that the symbols have a duration of
T , at the time T + t, the symbols −x∗2 and x∗1 are trans-
mitted from antenna 1 and antenna 2, respectively. x∗

represents the complex conjugate of symbol x.

4.1.5 Cyclic Shift Diversity

Cyclic shifts are applied to prevent unintended beam-
forming when correlated signals are transmitted in mul-

tiple space-time streams [5]. This is avoided by giving
the signal transmitted from an antenna a large phase
shift relative to the others. In the time domain, this is
perceived as a delay in the signal. Different phase shift

values are applied to the non-VHT and VHT fields.

4.1.6 Spatial Mapping

Spatial mapping creates the final antenna signals from
the parallel streams. This may be carried out in the

transmitter using different techniques such as direct
mapping or spatial expansion. Here, the spatial map-
per is applied to only map the space-time streams into

the transmit chains, thus each stream is only scaled
with a normalization factor. The normalization factor
is equal to the square root of the number of space-time

streams.

4.2 Receiver Processing

After the relevant time domain processing at the re-
ceiver, the symbols are fed to a dedicated hardware en-

tity to perform FFT. Then, the symbols go through the
blocks implemented in this work (shown in Fig. 4 and

5). Finally, they are fed to the LDPC decoder and then

the descrambler.

In contrast with the transmitter operations, in the
receiver, the preamble fields also require some high com-

plexity processing. Hence, some of the operations for
the preamble parts are also addressed in this section.

Some of the functional blocks in the receiver chain

are simply just reversing the processing carried out in
the transmitter. Thus, it is rather straight forward to
derive their functionality based on the discussions in
Section 4.1. As a result, stream de-parsing and LDPC

tone de-mapping are not included in this section.

4.2.1 SINR Estimation

The receiver measures the SINR with the aim of im-
proving the link quality. These measurements can be

used for adjusting the transmit power level or dynam-
ically adapting the modulation and coding schemes or
the data rate. In this implementation, the Received
Channel Power Indicator (RCPI), Average Noise Power

Indicator (ANPI), and the Received Signal to Noise In-
dicator (RSNI) are calculated.

RCPI: RCPI is a measure of the total channel power,
including signal, noise, and interference of a received

frame [4]. To calculate RCPI, the average power re-
ceived over all receiver antennas should be calculated.
It can be measured using the VHT-LTF and VHT-

SIG-B symbols in case of receiving a Null Data Packet
(NDP), otherwise, the DATA symbols are considered.
RCPI measured as the average power over all active
non-pilot subcarriers in a DATA symbol can be written

as:

RCPI =
1

NRxNsNt

∑

Rx

∑

t

∑

i∈I
|yRx,t,i|2

where Rx, Rx = 1, 2, .., NRx, is the receiver antenna in-
dex, t, t = 1, 2, .., Nt, is the DATA symbol index, and

Ns = |Iactive,non−pilot subcarriers|, in which |I| repre-
sents the cardinality of the set I.

In this work, we measure RCPI for each DATA sym-

bol, and update the average after the reception of the
following symbol until the whole packet is received.

ANPI: In [4], ANPI is defined as a MAC indication
of the average noise plus interference power measured
during idle periods of the channel. It is also mentioned

that ANPI may be calculated over any period and for
any received frame and any equivalent method may be
used to measure ANPI. In this work, the ANPI value is

used for symbol detection. Consequently, the alterna-
tive approach used is to calculate ANPI based on the

6 Mona Aghababaeetafreshi et al.

average power over the null subcarriers except DC. As
the L-STF and VHT-STF contain many zeros in the fre-
quency domain in addition to non-active carriers, they
are suitable for ANPI measurement. This is due to the

fact that any change in these subcarriers can be con-
sidered as noise. The ANPI value using the received
L-STF or VHT-STF symbols can be calculated as:

ANPI =
1

NRxNz

∑

Rx

∑

i∈I
|yRx,i|2 (2)

where Nz = |Iactive,zero−valued pilot subcarriers|.
It is assumed that the time and frequency synchro-

nization accuracy is sufficient so that only the noise
power is measured in zero-valued subcarriers. After prop-

erly synchronizing, this can be done as a post processing
step.

RSNI: According to the IEEE 802.11 standard, RSNI
is an indication of the signal to noise plus interference
ratio of a received frame. RSNI is measured using the

calculated RCPI and ANPI and it can be obtained as:

RSNI = 10 log10

RCPI −ANPI
ANPI

(3)

The RCPI and ANPI represent the power values in lin-
ear scale.

The measured values for RCPI, ANPI, and RSNI
can be averaged for achieving better stability in the
system. These averaging measurements should be ob-
tained closely in time for high correlation.

4.2.2 Channel Estimation

To estimate the channel, the LTF symbols are used. As
defined in [5], the data tones of each VHT-LTF sym-

bol are precoded to enable channel estimation at the
receiver, whereas the L-LTF symbols are not precoded.
This means that two channel estimates have to be cal-
culated to detect a packet at the receiver, one for the

non-precoded parts and one for the precoded ones. First
the L-SIG and VHT-SIG-A symbols are detected using
the channel estimate obtained from the L-LTF symbol,

then the second channel estimation is done based on
the VHT-LTF symbols.

Channel estimation for the legacy part : After time
and frequency synchronization, Cyclic Prefix (CP) re-

moval, and FFT, the received L-LTF symbols per sub-
carrier k, k ∈ Iactive, non−pilot L−LTFsubcarriers, and sym-

bol index t, t = [1, 2] can be written as:

yk,t = HkxL−LTF,k + nk,t

= xL−LTF,k




1
NTx

∑NTx

j=1 h1,j
.

.

.
1

NTx

∑NTx

j=1 hNRx,j




+ nk,t

= xL−LTF,kheff,k + nk,t

(4)

where NTx is the number of transmit antennas, Hk is
a (NRx ×NTx) complex channel matrix, xL−LTF,k is a
(NTx × 1) real vector containing the training symbols

xL−LTF,k (containing only ones or minus ones), nk,t is
a (NRx× 1) complex Gaussian noise vector, and heff,k
is the (NRx × 1) effective sum channel vector for the

legacy part.

Taking into consideration that xL−LTF,k can only
have one or minus one values, and that two L-LTF (t =
[1, 2]) symbols are received, the effective Least Square

(LS) channel estimate per subcarrier k can be calcu-
lated by averaging the received symbols yk,t over time
and multiplying them with the known symbol value

xL−LTF,k as shown in (5).

ĥLS,k =
xL−LTF,k

2

2∑

t=1

yk,t (5)

The LS channel estimate can be used for FFT smooth-

ing or wiener filtering before LMMSE estimate calcula-
tion.

Now having the LS channel estimate, the effective
Linear Minimum Mean Square Error (LMMSE) channel

estimate per subcarrier k can be given as:

ĥLMMSE,k = ĥLS,kĥ
H

LS,k

× (ĥLS,kĥ
H

LS,k +
σ2
n

2
INRx

)−1ĥLS,k
(6)

where hH represents the Hermitian transpose of vector
h and σ2

n is the noise variance.

Channel estimator for the VHT part : Having the

legacy channel estimate, the VHT-SIG-A symbol can
be detected. Thus, the receiver knows the number of
VHT-LTF symbols (NV HT−LTF) to be collected for

the VHT channel estimation. As stated before and de-
fined in [5], the VHT-LTF symbols are precoded by
matrix P and may also be precoded by precoder ma-
trix Qj , j ∈ Iactive, V HT−LTF subcarriers. Thus, after

time and frequency synchronization, CP removal and
FFT, the received VHT-LTF symbols per subcarrier

IEEE 802.11ac MIMO Transceiver Baseband Processing on a VLIW Processor 7

k, k ∈ Iactive, non−pilot V HT−LTF subcarriers and symbol
index t, t = [1, .., NV HT−LTF] can be written as:

yk,t = HkQkP(:, t)xV HT−LTF,k + nk,t

= Heff,kP(:, t)xV HT−LTF,k + nk,t
(7)

For presentation clarity, the received symbols and

the effective channel matrix per subcarrier k over all
Rx antennas andNV HT−LTF symbols are stacked into a
single column vector. Now the received training symbols
can be given as:

yk =




yk,1
.
.
.

yk,NTx




= (P⊗ INRx
)T




heff,k,1
.

.

.
heff,k,NTx




× xV HT−LTF,k + nk

(8)

where ⊗ is the Kronecker tensor product.

The received VHT-LTF symbols should be weighted

with rows of the P matrix and averaged over all VHT-
LTF symbols to get an effective channel estimate per
Space Time Streams (STS) in the receiver. Now, the re-

ceived VHT-LTF symbols after decoding diversity cod-
ing can be given as:

ỹk =
1

NV HT−LTF
(P⊗ INRx

)




yk,1
.
.

.
yk,NTx




(9)

= xV HT−LTF,k




heff,k,1
.
.
.

heff,k,NTx




+ wk

where wk ∈ n(0,
σ2
n

NV HT−LTF
). Thus, the effective LS

channel estimate per subcarrier k can be given as:

Ĥeff,LS,k = xV HT−LTF,k
ˆ̃Yk (10)

where ˆ̃Yk =
[
ỹk,1, .., ỹk,NTx

]
, in which ỹk,NTx

is a col-
umn vector derived from ỹk in (9) containing the weighted
received symbols from all NRx antennas.

Then, the LMMSE channel estimate for the VHT
part, using the obtained LS channel estimate in (10),

can be derived by extending (6) as

Ĥeff,LMMSE,k = Ĥeff,LS,kĤ
H

eff,LS,k (11)

× (Ĥeff,LS,kĤ
H

eff,LS,k + σ2
nINRx

)−1Ĥeff,LS,k

Calculating the LMMSE channel estimate matrix
includes a matrix inversion, as it can be seen in (11).

This inversion results in quite complex and time con-
suming operations. To simplify this, let us rewrite (11)
using the (NRx×NTx) effective channel estimation ma-
trix ĤLS calculated according to (10), having NRx =

NTx = 2 and ĤLS written as ĥLS = [h1, h2, h3, h4]T :

ˆ̃
hLMMSE =




h1
h2
h3
h4



[
h∗1h

∗
2h
∗
3h
∗
4

]

×







h1
h2
h3
h4



[
h∗1 h

∗
2 h
∗
3 h
∗
4

]
+ N




−1 


h1
h2
h3
h4




(12)

where N = σ2
nINRx

, and the superscript h∗ represents
the complex conjugate of element h. As previously men-
tioned, here the columns of the original channel esti-

mate matrix are stacked on top of each other in ĥLS .

Now, using the Shannon-Morrison law [21], (12) can

be written as:

ˆ̃
hLMMSE =

h1h
∗
1 + h2h

∗
2 + h3h

∗
3 + h4h

∗
4

σ2
n + h1h∗1 + h2h∗2 + h3h∗3 + h4h∗4




h1
h2
h3
h4




=
ĥLSĥ

T

LS × conj(ĥLS)

σ2
n + ĥ

T

LS × conj(ĥLS)
(13)

The same approach can be employed in the case of

a 4 × 4 antenna configuration. This helps reduce the
complexity of matrix inversion and thus the channel
estimation process to a great extent.

4.2.3 Frequency Domain Pilot Symbol Based Residual
Frequency Error Tracking

Moving to the operations needed for the processing of
a DATA symbol, first the frequency error should be

estimated. The method employed in this process uses
the pilot subcarriers in two consecutive DATA symbols.
Let us define a weighting vector based on the received

power per pilot symbol as:

w =
1

∑Np

i=1 σ
2
IP (i)

[
σ2
IP (1)σ

2
IP (2)...σ

2
IP (Np)

]T
(14)

8 Mona Aghababaeetafreshi et al.

where index i runs through available pilot indices from
the pilot index set IP and Np = |IP | is the number of
elements in the pilot index set. The weighting vector
is used to limit the degradation of the phase rotation

estimate due to the low power pilot symbols caused by
frequency selective channel fading.

Now the phase rotation estimate, Θ̂t, between two
consecutive symbols at time instant t due to the fre-

quency error Ferror is defined as:

Θ̂t = wT (arg (Pt−1)− arg (Pt)) (15)

where arg
(
ejx
)

= x gives the argument of the complex
number and t = [1, ..., Nt] indicates the DATA symbol
index. In this notation, t = 0 points to the VHT-SIG-B

symbol and its pilot symbols.

Now, from the phase rotation estimates we can ob-
tain the frequency error estimate at DATA symbol in-
dex t defined as:

F̂error,t =
1

2πt (Ns +NGI)

t∑

i=1

Θ̂i (16)

where Fs is the sampling frequency, Ns is the number
of subcarriers, and NGI corresponds to the number of

samples in the guard interval (GI) used for the DATA
symbols. Due to the averaging of the phase rotation es-
timates we obtain improved frequency error estimate in
the end of the DATA field. By using the phase rotation

estimate Θ̂t, the corrected received symbol estimates
for subcarrier k at time instant t is obtained, given as:

ŷk = exp

(
j

t∑

i=1

Θ̂i

)
yk (17)

4.2.4 Symbol Detection

The received symbols can be detected using the effec-

tive LMMSE channel estimation matrix. The method
used in this implementation is LMMSE symbol detec-
tion where the detector coefficients per subcarrier k are

calculated as:

Dcoeff,k = (Ĥ
H

k Ĥk + σ2
nINSTS

)−1Ĥ
H

k (18)

where Ĥk is the LMMSE channel estimate calculated
in (11), and NSTS is the number of space-time streams.

Once the coefficients are calculated, the symbols can

be detected using:

x̂ = Dcoeff,kyk (19)

where yk is a (NRx × 1) vector containing the received
symbols of subcarrier index k.

For cases C and D, the LMMSE channel estimate
is defined with regards to the STBC coding. Thus, for
the 2× 2 case, Ĥk is written as:

Ĥk =




h11 h12
h21 h22
h∗12 −h∗11
h∗22 −h∗21


 (20)

where hij is the channel from ith receiver antenna to

jth transmit antenna. This can be extended to the 4×4
STBC case, as well.

Additionally the received symbols per subcarrier k

should be defined taking into consideration the adop-
tion of the STBC coding. Thus, for the STBC case C,
yk is defined as:

yk =




y11
y12
y∗21
y∗22


 (21)

where yxy is the the received symbol at time slot x on
receive antenna y. This is easily extended for the 4× 4
configuration for case D.

Calculating Dcoeff includes a matrix inversion which
does not benefit from the same structure as the LMMSE
channel estimation. A solution for reducing the imple-
mentation complexities of this operation is presented in

Section 5.2.

4.2.5 Soft Bit Detection

After tone de-mapping, the symbols arrive at the soft
bit detection unit to get demodulated. First, the nearest
constellation point corresponding to the received sym-

bol is found. Then, for the soft bit detection, for each bit
position, the difference of the distances to the nearest
zero and one bit on the constellation point is calculated.

Fig. 7 illustrates this process.
This is a sub-optimal approach to reduce the com-

plexity of the soft detection. In this method, instead
of calculating the distances to all constellation points,

only the distances to the nearest ones are calculated.

4.2.6 LDPC Decoder

As already mentioned earlier, it is assumed that this
high complexity operation can be implemented as a
coarse-grain accelerator in the system. Such an accel-

erator is not tightly coupled as the matrix inversion
accelerator, thus allowing the frequency domain pro-
cessing to be done in parallel with the LDPC decoding.
Hence, using the existing architectures in the literature,

the LDPC decoder can be added to the receiver chain.

IEEE 802.11ac MIMO Transceiver Baseband Processing on a VLIW Processor 9

Re

Im

xx0

xx1

Received subcarrier

Constellation point

Distance to nearest
0 or 1

Fig. 7 Soft bit detection process

An example architecture can be found in [22], where a
high-throughput LDPC decoder architecture that sup-
ports multiple code rates like 1/2, 2/3, 3/4, and 5/6 is
described. Moreover, some other possible architectures

are presented in [23] [24].

5 SDR Implementation

5.1 Processor Architecture

As explained in the introduction section, the 802.11ac
standard focuses on achieving very high throughputs
which consequently imposes very high requirements for

the processing platform. The huge amount of data to
be processed exposes a lot of data level parallelism
which can be exploited with Single Instruction Mul-
tiple Data (SIMD) operations. Additionally, employing

a Very Long Instruction Word (VLIW) processor can
help to further utilize the instruction level parallelism.

The Tensilica ConnX BBE32, a VLIW processor
with vector capabilities, is selected for this work. The

BBE32 DSP core is specifically designed for the next
generation wireless communication systems [9]. This
very high performance DSP core has ultra low power

consumption and a small size architecture. A 16-way
SIMD ALU and a 4-issue VLIW processing pipeline
makes this core a proper choice for this application.
Moreover, it is equipped with 32 multiply-accumulate

units and can access wide data in blocks of 256 bits from
the memory. As it can be seen from Fig. 8, the BBE32
core has a Harvard architecture with one instruction

memory and two data memories.

This core is configurable and special functional units
can be added to the architecture for further speedup.
Some computationally intensive operations such as FFT/

IFFT are also available as dedicated hardware parts
which help reduce the load on the processor [26]. These

accelerator blocks can be controlled using custom in-

struction extensions.
Tensilica provides an eclipse based software develop-

ment environment, namely Xtensa Xplorer. This envi-

ronment is equipped with a comprehensive collection of
code generation, profiling, and analysis tools. In Xtensa
Xplorer, software development can be carried out in

C programming language. However, the results of this
work which are discussed in detail in Section 6.1 are
achieved by manually optimizing the code by relying
on the provided processor intrinsics.

5.2 Accelerator for Matrix Inversion

The most computationally intensive and time consum-
ing function in the transceiver is matrix inversion in the

4 × 4 cases. In this section, we address the accelerator
implemented for the BBE32 core to reduce the number
of clock cycles required for matrix inversion. This dis-

cussion focuses on the computations needed in case B
from Table 1 which are the most intensive ones.

5.2.1 Modified Gram-Schmidt Algorithm

Modified Gram-Schmidt (MGS) algorithm is one of the
numerically stable algorithms for matrix inversion. To
reduce the implementation complexity we used the ap-
proach from [25] and implemented the computations in

log2 and x2 domains where the multiplication, square,
square root, and division of complex numbers turn into
additions and subtractions. This approach requires a

number of domain conversions and here these are real-
ized with the aid of Lookup Tables (LUT). LUTs for
log2 calculation of complex numbers are rather incon-
venient to implement, thus requiring the decomposition

of the complex matrix to a real matrix, which results in
an 8× 8 real matrix in case of a 4× 4 complex matrix
using:

A =

[
R(H) −I(H)
I(H) R(H)

]
(22)

where R(H) and I(H) are the real and imaginary parts
of the complex channel matrix H, respectively.

The inversion of matrix A comprises of three major
steps:

– QR decomposition of the matrix into the upper tri-
angular matrix R and orthogonal matrix Q

– Calculating R−1 since A−1 = R−1QH (knowing
that Q is an orthogonal matrix, QH = Q−1)

– multiplication of R−1 with QH

The column-wise algorithm implementing the MGS can

be given as follows [25]:

10 Mona Aghababaeetafreshi et al.

Data

Memory

Interface

Local

Memory

Instruction

Memory

Interface

Local

Memory or

Cache

16×16 bits Wide

16×16 bits Wide

96 bits

Data Load / Store Unit 0

(16N bits)

Data Load / Store Unit 1

(16N bits)

Load/

Store
Load

ALU/

MAC
ALU

Vector Register File

Aligning

Register

General

Register

File

4-Way VLIW Instruction Decoder
32-Way

MAC

16-Way

SIMD ALU
32b ALU

Computation Unit

Fig. 8 Principal block diagram of Connx BBE32

for j = 1 : n do
wj = aj
for i = 1 : (j − 1) do

rij =< wj ,qi >
wj = wj − rijqj
end for

qj = wj/‖wj‖2
rjj = ‖wj‖2

end for

where aj is the jth column of matrix A, wj is a tempo-
rary vector, rij is the element from row i and column
j of the R matrix, qj is the jth column of the Q ma-

trix, < wj ,qi > is the inner product of wj and qj , and
‖wj‖2 is the Euclidean norm of vector wj .

Next, to calculate R−1:

for j = 1 : n do
for i = 1 : (j − 1) do

irij = ir(i, (1 : j − 1)) ∗ r((1 : j − 1), j)
end for
ir(1:j−1),j = −ir(1:j−1),j/rij
irjj = 1/rjj

end for

where irij is the element from row i and column j of

the inverse of the R matrix.

With the use of LUTs, the above mentioned algo-
rithms result in operations similar to Fig. 9 and Fig.

10. Fig. 9 illustrates the calculations for updating w in
wj = wj − rijqi where wj is in linear domain, and rij
and qi are in log2 domain.

The operations regarding the calculation of the in-

ner product rij =< wj ,qi > using LUTs can be seen
in Fig. 10 in which the inputs are in log2 domain.

Operations similar to Fig. 9 and Fig. 10 can be
carried out for the other computations needed for the

MGS-QR algorithm, such as ‖w‖2 calculation using the
log2 and x2 LUTs. As a result, the complete matrix in-
version process can be implemented as an accelerator

for the BBE32 core using only additions, subtractions,
and LUTs.

+

+

+

+

+

+

+

+

x
2

LUT

x2

LUT

x2

LUT

x2

LUT

x
2

LUT

x
2

LUT

x
2

LUT

x
2

LUT

+

+

+

+
Log2

 LUT

+

+

+

Fig. 9 Calculating wj = wj − rijqi using LUTs

+

+

+

+

+

+

+

+

x2

LUT

x2

LUT

x
2

LUT

x2

LUT

x2

LUT

x2

LUT

x2

LUT

x
2

LUT

-

-

-

-

Log2

LUT

Log2

LUT

-

-

-

-

Log2

LUT

Log2

LUT

Log2

LUT

Log2

LUT

Log2

LUT

Log2

LUT

Fig. 10 Inner product calculation for rij =< wj ,qi > using
LUTs

IEEE 802.11ac MIMO Transceiver Baseband Processing on a VLIW Processor 11

5.2.2 Requirements for the Matrix Inversion

In order to find the cycle budget for the matrix inver-
sion task, the timing constraints in the non-STBC 4×4

case should be analyzed. Knowing that each VHT-LTF
symbol has 4µs time duration and assuming a 500MHz
operating frequency, there will be 2000 cycles available
in total for all the processing carried out for the VHT-

LTF symbol in the receiver. The fourth VHT-LTF sym-
bol is used for calculating the detector coefficients. Af-
ter the reception of the fourth VHT-LTF symbol, the

LS and LMMSE channel estimations, which are used to
determine the detector coefficients, can be carried out
in 1400 clock cycles (presented in Section 6.1). This

leaves approximately 600 cycles, out of the total 2000
available cycles, for the channel matrix inversion.

As described in Section 3.2, each spatial stream car-
ries 234 data subcarriers and thus for the inversion

of the channel matrices, 234 complex 4 × 4 matrices
should be inverted. BBE32 has two 256-bit interfaces to
two local memories and implements the complex num-

bers as 16+16-bit fixed-point numbers meaning that it
takes two clock cycles to read and write each 4 × 4
complex matrix to/from memory simultaneously. This

means that just the reading/writing of the data from/to
the memory takes 2× 234 = 468 clock cycles. As a re-
sult only about 100 clock cycles of the total 600 will be
left for matrix inversion with throughput of one matrix

every other cycle.

5.2.3 Implementation

Fig. 11 presents the pipeline schedule of the developed
unit for inverting complex-valued 4×4 matrices. Assum-
ing these operations would have a register for pipelining

after each LUT, the pipeline would cause approximately
64 clock cycle latency plus few clock cycles to buffer
the data coming from the BBE32 and going back to it.

Overall, to process all of the computations, the imple-
mentation needs 1622 adders (mostly 16-bit), 877 x2

LUTs (256 × 15 bits), 281 log2 LUTS (64 × 14 bits).

Moreover, considering the fact that the BBE32 cannot
write out or read in more than half a 4 × 4 complex
matrix per clock cycles, half of the adders and LUTs
could be reused to achieve the throughput of one matrix

per two clock cycles. This means a total of 468 cycles
(234×2) for the inversions in each symbol. As presented
in Section 6.1, for calculating the Dcoeff a total of 548

cycles are consumed which is below the available 600
cycles. The empty slots shown in Fig. 11 allow reusing
half of the resources so that, in total, about a quarter
hardware resources are needed to calculate the opera-

tions (417 adders, 220 x2 LUTs, 71 log2 LUTs).

The developed matrix inversion accelerator provides

significant speedup for the IEEE 802.11ac processing
and allows real-time operation for the frequency domain
processing in the transceiver.

6 Results and Analysis

In this section, the results from the implementation of
the discussed scenarios in Section 3.2 for the transmit-

ter and receiver functional blocks are presented and
analyzed. These implemented blocks are evaluated in
terms of number of clock cycles and power consumption
with the instruction set simulator and profiling tools.

As mentioned in the previous sections, the most time
consuming and complex field to process is the DATA
field. Additionally, in the receiver, the VHT-LTF field

includes some heavy processing due to the detector co-
efficient calculations and channel estimation. Thus, the
results related to the DATA symbol in the transmitter

and both DATA and VHT-LTF symbols in the receiver
are presented.

6.1 Obtained Results

The main focus of this paper is studying the feasi-
bility of achieving a real-time implementation on this
platform. To address that, the number of clock cycles

for different operations should be considered. Table 2
shows the results for the transmitter side processing of
a DATA symbol.

Table 2 The number of clock cycles needed for the process-
ing of a DATA symbol in the transmitter

Functional
Blocks

Case
A

Case
B

Case
C

Case
D

Preparation +
STBC

53 - 111 68

Tone Mapper 159 159 159 159

Stream Parser +
Constellation
Mapper

153 197 153 300

Pilots + CSD +
Phase Rotation
+ Spatial Map-
ping

130 210 136 256

Total Number
of Cycles

495 616 559 783

12 Mona Aghababaeetafreshi et al.

C D

A B C D

A

A

A B C D

A

A B

C D

A

A B C D

A

A B C D

A

A B C D

A

A B C D

A

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

A B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B B

B B

C

C

C C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

B

C

D

A

B

C

QR decomposition

R inverse

Rjj = norm(Wj)

W1

W2

W3

W4

W5

W6

W7

W8

Rij = Dot_product(Wj,
Qi)

Qi = Wj / Rjj ; 1 Q column
ready

Wj = Wj – Rij*Qi

Irjj = 1 / Rjj ; 1 diagonal element of R
inverse ready

Irij = Irij * Rji

Irij = - Irij / Rjj ; 1 non-diagonal element of R
inverse ready

B B

B

B

B B B

2 64 10 20 30 40 50 60

F Iri * Q’j ; Inverse result

F

F

F

F

F

F

F

F

62 t0

2 64 10 20 30 40 50 60 620 t

Q5

Q6

Q4

Q3

Q2

Q1

Q7

QR decomposition

Column 1

Column 2

Column 3

Column 4

Column 5

Column 6

Column 7

Column 8IR11

IR22

IR33

IR44

IR55

IR66

IR77

Fig. 11 Pipeline schedule for MGS-QR matrix inversion for 4x4 complex-valued matrices

The ”preparation” function in Table 2 is not one
of the principal blocks of the IEEE 802.11ac transmit-
ter. However, this block was added to the chain for re-

arranging the bits in a way that it would accelerate the
following operations. ”Pilots” refers to the addition of
the pilot subcarriers, and ”phase rotation” indicates the

rotation in tones, which for the 80 MHz bandwidth is
only a multiplication with minus one for some of the
subcarriers in each transmit chain. Furthermore, the

original order of operations depicted in Fig. 3 is mod-
ified to speed up some functions such as STBC which
is executed faster when done before modulation and
at bit level. As it can be seen in Table 2, some of the

blocks were merged together during the implementation
to achieve a better performance.

According to Fig. 2, the duration of a DATA symbol
with short GI is 3.6µs. This means that all the related
processing for a DATA symbol should take less than

3.6µs for the implementation to be considered real-
time. Table 2 shows that the total number of cycles
needed for the most complex case is less than 800 cy-

cles. Assuming an operating frequency of 500 MHz, the
last case would take 1.6µs. It can be concluded that for
all of these scenarios in transmitter a real-time oper-

ation is feasible at 500 MHz when using the Tensilica
BBE32 core.

Table 3 presents the number of clock cycles needed
for the processing of a DATA symbol at the receiver.
As the RCPI measurement should be carried out during

the DATA field processing, it is included in the same ta-
ble here. ”Pilot removal” refers to the operation where
the pilot subcarriers are separated from the tones car-
rying data.

The total number of cycles presented in Table 3

shows that frequencies higher than 1 GHz may be needed
for cases A and C for achieving a real-time operation.

Table 3 The number of clock cycles needed for the process-
ing of a DATA symbol in the receiver

Functional
Blocks

Case
A

Case
B

Case
C

Case
D

RCPI Variance 185 365 185 365

Pilot Removal 140 336 140 336

Symbol
Detection

468 652 208 919

Tone De-mapper 324 672 324 672

Stream
Deparser

74 254 - 148

Soft Bit
Detection

3193 6504 3193 6504

Frequency Error
Tracking

255 331 255 331

Total Number
of Cycles

4639 9087 4305 9275

In these cases, as mentioned in Table 1, only two trans-

mit antennas are present. However, with four antennas
in cases B and D, the number of cycles consumed is ap-
proximately twice more than cases A and C. As a result,

higher frequencies, in order of 2 GHz, are needed.

The block responsible for the high number of cycles
is the soft bit detection. In the continuation of this work

the soft bit detection implementation will be modified
to accomplish better results in terms of the number
clock cycles. This will be carried out by introducing in-

struction extensions for this bottleneck operation. This
is one key topic for our future work.

IEEE 802.11ac MIMO Transceiver Baseband Processing on a VLIW Processor 13

The other complex field for processing in the re-
ceiver is the VHT-LTF field. The corresponding func-
tions with the relating number of clock cycles for this
field are presented in Table 4.

Table 4 The number of clock cycles needed for the process-
ing of a VHT-LTF symbol in the receiver

Functional
Blocks

Case
A

Case
B

Case
B/ACC

Case
C

Case
D

LS
Channel
Estimation

281 289 289 281 2873

LMMSE
Channel
Estimation

1078 1107 1107 1078 1643

Detector
Coefficients

2630 31713 548 851 34005

Total
Number
of Cycles

3989 33109 1944 2210 38521

The matrix inversion accelerator implemented for
BBE32 presented in Section 5.2 is utilized for the in-
versions needed in calculating detector coefficients for
case B. The results achieved when using the acceler-

ator are presented in the column with the title Case
B/ACC in Table 4. As it can be seen from this table,
this accelerator has dramatically decreased the number

of clock cycles in comparison with the case where the
usual approach is used.

Based on Fig. 2, the duration of each VHT-LTF
symbol defined in the VHT standard is 4µs. Thus, with
the accelerator using LUTs for the matrix inversion,

a real-time operation for the VHT-LTF symbol can
be achieved with frequencies near 500 MHz, whereas,
higher frequencies are required without the application

of this method in the implementation.

Another important aspect for evaluating the intro-

duced software solution is the power consumed by the
design. The profiling tools provided by the Xtensa Xplorer
include an energy analyzer tool. This tool can be used

for measuring the power consumption by dividing the
energy numbers by time. The required time for each
block is defined by its respective number of clock cycles.
The amount of power consumed is directly dependent

on the used memory capacity. For these measurements,
maximum memory capacity (128k) is assumed, and the
operating frequency is set to 500 MHz. The time for

the energy analysis is 3.6µs and 4µs for the DATA and
VHT-LTF symbols, respectively. Tables 5 and 6 repre-

sent the power consumed for a DATA symbol in the

transmitter and receiver, respectively.

Table 5 Power consumption in mW for the processing of a
DATA symbol in the transmitter

Functional
Blocks

Case
A

Case
B

Case
C

Case
D

Preparation +
STBC

1.8 - 3.7 2.3

Tone Mapper 5.2 5.2 5.2 5.2

Stream Parser +
Constellation
Mapper

5.1 6.6 5.1 9.4

Pilots + CSD +
Phase Rotation
+ Spatial Map-
ping

4.8 9.6 4.8 9.6

Total Power
Consumption

16.9 21.4 18.8 26.5

Table 6 Power consumption in mW for the processing of a
DATA symbol in the receiver

Functional
Blocks

Case
A

Case
B

Case
C

Case
D

RCPI Variance 3.6 6.67 3.35 6.16

Pilot Removal 4.76 10.39 4.76 9.52

Symbol
Detection

13 23.51 6.82 34.65

Tone De-mapper 10.02 20.07 10.02 20.03

Stream
Deparser

3.06 8.59 - 6.11

Soft Bit
Detection

106.95 213.92 105.43 213.19

Frequency Error
Tracking

4.46 7.55 4.44 7.55

Total Power
Consumption

145.61 290.7 134.82 297.21

The total amount of power consumption presented

in Tables 5 and 6 indicates, potentially, the feasibility of
this software solution for mobile terminal scale devices.

14 Mona Aghababaeetafreshi et al.

6.2 Performance Comparison

As mentioned earlier, very few contributions have been
made toward software based implementation of the IEEE

802.11ac. Thus, in this section, the performance results
from some of the reported fixed-function solutions are
presented. These numbers cannot be directly compared
with the results presented in this paper, as there could

be different functional blocks implemented using differ-
ent algorithms. Moreover, the work presented in this
article covers the frequency domain processing and not

the complete transceiver.
In [12], an OFDM transceiver for the IEEE 802.11a

is implemented which supports a 20 MHz bandwidth,

up to 64-QAM modulation, and 3/4 coding rate. This
specification does not require support for MIMO and
requires less intensive computations compared to our
work. The design is targeted for 180 nm TSMC technol-

ogy and consumes 72 mW power in the whole transceiver.
An implementation of a MIMO-OFDM transceiver

with 40 MHz bandwidth, two transmit and three re-

ceive antennas, up to 64-QAM modulation, and 3/4
coding rate is described in [13]. The ASIC employed
in this work is fabricated in a TSMC 130nm CMOS
process. This implementation consumes a total power

of 362 mW in the transmitter and 502 mW in the re-
ceiver.

Similarly, in [14], an architecture for a MIMO-OFDM

transceiver conforming to the VHT amendment is pro-
posed. This work shares some of the specifications used
in our work such as, 80 MHz bandwidth, 4× 4 MIMO,

and 256 OFDM subcarriers. However, it employs a 64-
QAM modulation scheme rather than the 256-QAM
scheme we have adopted. Synthesized on a 90 nm CMOS,
this design consumes 117.7 and 496 mW power in trans-

mitter and receiver, respectively.

7 Conclusion

This paper proposed a software based implementation
for the IEEE 8802.11ac transmitter and receiver base-

band processing on a DSP core. The frequency domain
processing of the VHT PHY layer was implemented
for four different MIMO scenarios. Then, to address
the feasibility of a real-time operation on the Tensilica

BBE32 core, the proposed software solution was evalu-
ated in terms of number of clock cycles needed for the
processing of a DATA and VHT-LTF symbol. The re-

sults showed the possibility of a real-time implementa-
tion with an operating frequency less than 500 MHz in
the transmitter. In the receiver, by exploiting an accel-

erator for matrix inversion, the VHT-LTF symbol pro-
cessing can be carried out in real-time with an operating

frequency slightly above 500MHz. However, frequencies

higher than 1 GHz for the 2 antenna configurations and
higher than 2 GHz for the four antenna configurations
are required to achieve a real-time processing of the

DATA symbol on this platform. Moreover, the power
consumption of the design was measured and the re-
sults showed the feasibility of exploiting the developed
software on hand-held devices. The described solution

will be improved in the future works with the aim of re-
ducing the operating frequency required for a real-time
implementation by introducing instruction extensions

for the operations consuming high number of clock cy-
cles, particularly the soft bit detection.

Acknowledgements This work was supported by the Finnish
Funding Agency for Technology and Innovation (TEKES) un-
der the Parallel Acceleration (ParallaX) project, the Grad-
uate School of the Tampere University of Technology, and
Nokia Foundation.

References

1. Tuttlebee W. (Ed.) (2004). Software Defined Radio:
Baseband Technologies for 3G Handsets and Basesta-
tions. 1sted. West Sussex: Wiley.

2. Grayver, E. (2013). Implementing Software Defined Ra-
dio. New York: Springer.

3. NVIDIA, NVIDIA SDR (Software Defined Radio) Tech-
nology, USA. (2013)

4. IEEE Std 802.11TM Part 11: Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY) Specifi-
cation. (2012).

5. IEEE P802.11acTM Draft standard, version 5. (2013).
6. Perahia, E., & Stacey, R. (2013). Next Generation Wire-

less LANs. 2nded. Cambridge: Cambridge University
Press.

7. Netgear Inc. (2012). Next Generation Gigabit WiFi -
802.11ac, USA.

8. QUALCOMM Inc. (2012). IEEE 802.11ac: The Next
Evolution of WiFiTM Standards, USA.

9. Tensilica Inc. (2012). Connx BBE32 DSP User Guide,
USA.

10. Aghababaeetafreshi, M., Lehtonen, L., Soleimani, M.,
Valkama, M., Takala, J. (2014). IEEE 802.11ac MIMO
transmitter baseband processing on customized VLIW
processor. In Proc. IEEE ICASSP, Florence, Italy, 4-9
May (pp. 7550-7554).

11. Aghababaeetafreshi, M., Lehtonen, L., Levanen, T.,
Valkama, M., Takala, J. (2014). IEEE 802.11ac MIMO
Receiver Baseband Processing on Customized VLIW
Processor. In IEEE Workshop on Signal Processing Sys-
tems (SiPS), Belfast, UK, 20-22 October (pp. 232-237).

12. Nagaraju, M., & Rakesh, M. (2012). High-speed and low-
power ASIC implementation of OFDM transceiver based
on WLAN (IEEE 802.11a). In Proc. International Con-
ference on Devices, Circuits and Systems, Coimbatore,
India, 15-16 March (pp. 436-439).

13. Son, J., Lee, I., & Lee, S. (2007). ASIC Implementa-
tion and Verification of MIMO-OFDM Transceiver for
Wireless LAN. In porc. IEEE International Symposium
on Personal, Indoor and Mobile Radio Communication,
Athens, Greece, 3-7 September (pp. 1-5).

IEEE 802.11ac MIMO Transceiver Baseband Processing on a VLIW Processor 15

14. Yoshizawa, S., & Miyanaga, Y. (2009). VLSI Implemen-
tation of a 4x4 MIMO-OFDM Transceiver with an 80-
MHz Channel Bandwidth. In proc. IEEE ISCAS, Taipei,
Taiwan, 24-27 May (pp. 1743-1746).

15. Yang, H., Shim, J., Bang, J., & Lee Y. (2014). Software-
based giga-bit WLAN platform. In proc. IEEE Inter-
national Conference Consumer Electronics (ICCE), Las
Vegas, USA, 10-13 January (pp. 478-479).

16. Li M., Amin A., Appeitans, R., Folens, A., Ahmad, U.,
Cappelle, H., Debacker, P., Hollevoet, L., Bourdoux, A.,
Raghavan, P., Antoine, D., & Van Der Perre, L. (2013). A
C-programmable baseband processor with inner modem
implementations for LTE Cat-4/5/7 and Gbps 80MHz
4x4 802.11ac. In IEEE Global Conference on Signal and
Information Processing (GlobalSIP), Austin, USA, 3-5
December (pp. 1222-1225).

17. Mei, B., Lambrechts, A., Verkest, D., Mignolet, J.Y. &
Lauwereins, R. (2005). Architecture exploration for a re-
configurable architecture template. In IEEE Design &
Test of Computers 22(2), 90-101.

18. Samadi, S., Golomohammi, A., Jannesari, A., Movahedi,
M.R., Khalaj, B., & Ghammanghami, S. (2006). A Novel
Implementation of the IEEE802.11 Medium Access Con-
trol. In Proc. International Symposium on Intelligent
Signal Processing and Communications (ISPACS), Yon-
ago, Japan, 12-15 December (pp. 489-492).

19. Gutierrez-Agullo, J.R., Coll-Perales, B., & Gozalvez, J.
(2010). An IEEE 802.11 MAC Software Defined Ra-
dio implementation for experimental wireless communi-
cations and networking research. In Proc. IFIP Wireless
Days, Venice, Italy, 20-22 October (pp. 1-5).

20. Alamouti, S. M. (1998). A Simple Transmit Diversity
Technique for Wireless Communications. IEEE Journal
on selected areas in Communication, 16(8), 1451-1458.

21. Bartlett, M. S. (1951). An Inverse Matrix Adjustment
Arising in Discriminant Analysis. The Annals of Mathe-
matical Statistics, 22(1), 107-111.

22. Kumawat, S., Shrestha, R., Daga, N., Paily, R. (2015).
High-Throughput LDPC-Decoder Architecture Using Ef-
ficient Comparison Techniques & Dynamic Multi-Frame
Processing Schedule. In IEEE Transactions on Circuits
and Systems I: Regular Papers, 62(5), 1421-1430.

23. Xie, Q., He, Q., Peng, X., Cui, Y., Chen, Z., Zhou D.,
Goto, S. (2011). A high parallel macro block level layered
LDPC decoding architecture based on dedicated matrix
reordering. In IEEE Workshop on Signal Processing Sys-
tems (SiPS), Beirut, Lebanon, 4-7 October (pp.122-127).

24. Huang, S., Bao, D., Xiang, B., Yun, C., Zeng, X. (2010).
A flexible LDPC decoder architecture supporting two de-
coding algorithms. In IEEE International Symposium on
Circuits and Systems (ISCAS), Paris, France, 30 May -
2 June (pp.3929-3932).

25. Singh, C. K., Prasad, S. H., & Balsara, P. T. (2007).
VLSI Architecture for MAtrix Inversion using Modified
Gram-Schmidt based QR Decomposition. In Proc. Inter-
national Conference on VLSI Design, Bangalore, India,
January (836-841).

26. Tensilica Inc. (2013). Connx BBE32 DSP Core for Base-
band Processing, USA.

PUBLICATION 4

M. Aghababaeetafreshi, J. Yli-Kaakinen, T. Levanen, V. Korhonen, P. Jääskeläinen, M. Renfors,
M. Valkama and J. Takala, "Parallel processing intensive digital front-end for IEEE 802.11ac
receiver," in 49th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA,
USA, 8-11 Nov, 2015, pp. 1619-1626, DOI: 10.1109/ACSSC.2015.7421422

© 2015 IEEE. Reprinted, with permission, from M. Aghababaeetafreshi, J. Yli-Kaakinen, T.
Levanen, V. Korhonen, P. Jääskeläinen, M. Renfors, M. Valkama and J. Takala, "Parallel processing
intensive digital front-end for IEEE 802.11ac receiver," Asilomar Conference on Signals, Systems
and Computers, November 2015.

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE
does not endorse any of [university/educational entity’s name goes here]’s products or services.
Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE
copyrighted material for advertising or promotional purposes or for creating new collective works
for resale or redistribution, please go to http://www.ieee.org/publications_stan
dards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Parallel Processing Intensive Digital Front-End
for IEEE 802.11ac Receiver

Mona AghababaeeTafreshi, Juha Yli-Kaakinen, Toni Levanen, Ville Korhonen, Pekka Jääskeläinen,
Markku Renfors, Mikko Valkama, and Jarmo Takala

Tampere University of Technology, P.O. Box 553, FI-33720 Tampere, Finland
email: mona.aghababaeetafreshi@tut.fi

Abstract—Modern computing platforms offer increasing levels
of parallelism for fast execution of different signal processing
tasks. In this paper, we develop and elaborate on a digital
front-end concept for an IEEE 802.11ac receiver with 80 MHz
bandwidth where parallel processing is adopted in multiple ways.
First, the inherent structure of the 802.11ac waveform is utilized
such that it is divided, through time-domain digital filtering
and decimation, to two parallel 40 MHz signals that can be
processed further in parallel using smaller-size FFTs and, e.g,
legacy 802.11n digital receiver chains. This filtering task is very
challenging, as the latency and the cyclic prefix budget of the
receiver cannot be compromised, and because the number of
unused subcarriers in the middle of the 80 MHz signal is only
three, thus necessitating very narrow transition bandwidth in the
deployed filters. Both linear and circular filtering based multirate
channelization architectures are developed and reported, together
with the corresponding filter coefficient optimization. Also, full
radio link performance simulations with commonly adopted
indoor WiFi channel profiles are provided, verifying that the
channelization does not degrade the overall link performance.
Then, both C and OpenCL software implementations of the
processing are developed and simulated for comparison purposes
on an Intel CPU, to demonstrate that the parallelism provided
by the OpenCL will result in substantially faster realization. Fur-
thermore, we provide complete software implementation results
in terms of time, number of clock cycles, power, and energy
consumption on the ARM Mali GPU with half precision floating-
point arithmetic along with the ARM Cortex A7 CPU.

Keywords—WLAN, IEEE 802.11ac, Multirate Filtering, Digital
Front-End, Graphics Processing Units, Open Computing Language,
Parallel Processing.

I. INTRODUCTION

Software-based implementations of radio transceiver digital
front-end (DFE) and baseband (BB) processing stages are
receiving increasing interest, due to substantially enhanced
re-configurability and reduced time-to-market cycles, when
compared to classical fixed-function digital hardware imple-
mentations [1][2]. Modern platforms have increased paral-
lel computation capabilities due to the limits of improving
performance by means of increasing the clock frequency.
Multi-core processors and graphics processing units (GPU)
along with programming standards such as OpenCL enable
software developers to explicitly utilize the parallelism for
faster processing [3].

In this paper, we address the DFE processing of the flag-
ship WLAN/WiFi technology, namely IEEE 802.11ac [4],
where the basic radio access is based on 80 MHz instanta-
neous bandwidth. Interestingly, this 80 MHz access waveform

is composed by essentially aggregating two 40 MHz sub-
signals [4], stemming from the legacy IEEE 802.11n access
bandwidth, with three null subcarriers (approximately 1 MHz)
inbetween. In the digital front-end concept proposed in this
paper, this overall 80 MHz signal is divided to two 40 MHz
sub-signals, through carefully optimized time-domain filtering,
which in turn can then be processed forward in parallel,
with two smaller-size FFTs and corresponding frequency-
domain processing. This overall receiver principle, assuming
also wideband I/Q downconversion from RF to baseband,
is depicted at conceptual level in Fig. 1. This can be also
extended to a 160 MHz signal being divided into four 40
MHz sub-signals from which each can be received by a
modified 40 MHz 802.11n receiver. However, this filtering
task is far from trivial, as the cyclic prefix (CP) budget of
the overall wireless link, including filtering in the devices,
should not be compromised, since the latency requirements
of the 802.11ac receiver are very tight [4], and because the
small spectral gap of around 1 MHz calls for very narrow
transition bandwidth in the filter optimization. Hence, in this
paper, we first address this channelization filter optimization
task, and report both linear digital filtering and circular digital
filtering based multirate solutions with different characteristics
and tradeoffs related to latency, filtering performance, and CP
budget. Essentially, the circular filtering based solution slightly
increases the latency but does not compromise the CP budget
at all, being implemented after the CP removal, just prior to the
parallel FFT units. We also provide full radio link simulation
results, with commonly adopted WiFi indoor channel models,
to verify that the overall channelization filtering does not
degrade the link performance.

Then, related to the actual software-based processing im-
plementations, we have developed both C and OpenCL-based
solutions on the Intel R© CoreTM i7-4800MQ CPU [5] to demon-
strate that the explicit parallelism provided by the OpenCL
framework will result in substantially faster execution. We
also provide complete software implementation results using
the Odroid XU3 [6]. The Odroid XU3 is based on the Sam-
sung Exynos 5 Octa, powered by ARM CortexTM-A15 quad
core and CortexTM-A7 quad core CPUs, which employs the
ARM R© big.LITTLETM technology [7][8][9]. This technology
creates a multicore processor which couples relatively slower
processor cores with more powerful ones. The XU3 also
features the ARM R© MaliTM-T628 MP6 GPU [10] with half
precision floating-point arithmetic. Different filter designs are
implemented and assessed in terms of execution time, number
of clock cycles, power, and energy consumption.

RF LNA

AGC

LPF

LPF

AGC

I/Q LO

I

Q

D
IG

IT
A

L
C

H
A

N
N

E
L

IZ
A

T
IO

N

A/D

A/D

1
2
8

F
F

T
1
2
8

F
F

T

f
0 40 MHz-40 MHz

f
0

f
0

Fig. 1. The overall receiver principle with digital channelization filtering yielding two 40 MHz sub-signals.

The rest of the paper is structured as follows. First, in Sec-
tion II, the channelization filtering architectures based on linear
and cyclic half-band multirate filters, together with correspond-
ing filter optimization, are described. Then, in Section III, we
provide comprehensive link performance evaluations, with and
without channelization filtering, to verify and demonstrate that
the optimized filtering solutions reported in Section II do not
essentially degrade the link performance in any way. In Section
IV, the software implementation and OpenCL kernel designs
are described. Finally, the results from the GPU and the two
CPUs are reported in Section V, and Section VI concludes the
work.

II. CHANNELIZATION FILTER ARCHITECTURES FOR IEEE
802.11AC

In this work, 80 MHz access bandwidth in IEEE 802.11ac
system consisting of 256 subcarriers is considered. 242 sub-
carriers out of the total 256 are active (234 for data and 8
for pilots). Three subcarriers around DC (subcarriers −1, 0, 1)
are zero and both the negative and positive frequency com-
ponents contain 121 transmission subcarriers (subcarriers ±k
for k = 2, 3, . . . , 122) [4]. In the IEEE 802.11 standards
[11], the total multicarrier symbol duration is defined as 4
µs; 20 percent of this duration (800 ns) is the guard interval
which carries the cyclic prefix of the signal. For FFT size of
L = 256 this corresponds to the cyclic prefix of 64 samples. As
described already in the Introduction, the goal is to divide the
80 MHz IEEE 802.11ac signal sampled at the Nyquist rate into
two 40 MHz-wide signals using linear filtering such that the
positive frequency components are separated into one signal
and negative frequency components into a second. These are
then processed further, in parallel, with two 128 point FFTs
and subsequent subcarrier level processing.

A. Polyphase Halfband Filters

The problem stated above can be solved either using finite-
impulse response (FIR) or infinite-impulse response (IIR)
analytical filters [12], [13]. For FIR case, the analytical filter
requiring minimum number of multiplier values can be derived
with the aid of halfband filters. The transfer function of
the halfband lowpass-highpass FIR filter pair can be realized
efficiently as a parallel connection of Type II (odd-order
symmetric) FIR transfer function H(z2) and a delay of M

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−80

−60

−40

−20

0

Lowpass/highpass halfband filter pair

M
a

g
n

it
u

d
e

 in
 d

B

Normalized frequency ω

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−80

−60

−40

−20

0

Lowpass/highpass analytical filter pair

M
a

g
n

it
u

d
e

 in
 d

B

Normalized frequency ω

(b)

Fig. 2. Magnitude responses of the (a) halfband and (b) analytical filter
pairs. In (a), the gray areas indicate the transition bands of the prototype filter
pair. In (b), the gray areas indicate the 40 MHz sub-bands containing active
subcarriers.

as expressed in [14].

G(z) = H(z2)± 1/2z−M . (1)

Here, M is an odd integer such that the order of the overall
transfer function G(z) is N = 2M . The lowpass (highpass)
filter is realized using the above transfer function with the plus
(minus) sign.

The analytical filter is obtained from H(z) by multiplying
the impulse response values h(n) by j−n. This corresponds
to shifting the frequency response of the filter by π/2. The
parallel connection of the resulting Hilbert transformer (more
precisely, the approximation of it) and a delay can be used for
forming analytical signals, that is, for separating the positive
and negative frequency components as desired. Fig. 2(a) and
Fig. 2(b) show the magnitude response of the lowpass-highpass
halfband and analytical filter pairs, respectively. The active
subcarriers in Fig. 2(b) are denoted by the gray area. The
resulting output signals can be decimated by two, if desired,
by sharing the input samples into these two branch filters such
that odd samples go to one branch and even samples to another.
In this case, the branch filters [H(z) and 1/2z−M/2] work at
the output sample rate, that is, at the half of the input rate.

0.5

yhp(m)

x(n)

z–M/2

h0

z–1z–1

z–1

z–1

z–1 h2

hM–1 fs/2

fs

Analytical Hilbert transformer H(z)

ylp(m)

fs/2

filter G(z)

j

Fig. 3. Efficient processing structure of the decimating analytical filter real-
izing both the lowpass and highpass outputs ylp(m) and yhp(m), respectively.

A more detailed structure of this analytical filter is shown in
Fig. 3. A pair of these filters is required for filtering both the
real and imaginary parts of the input signal.

When decimating the resulting lowpass and highpass fil-
tered signals, the residue of the active negative (positive)
subcarriers alias above positive (negative) subcarriers, i.e.,
subcarriers −k for k = 2, 3, . . . , 122 alias above subcarriers
128 − k for k = 2, 3, . . . , 122. Consequently, the stopband
edge of the lowpass analytical filter has to be ωs = (128 −
122)/128π = 0.046875π to prevent aliasing into positive
active subcarriers. Correspondingly, the passband and stopband
edges of the prototype halfband filter are ωp = 1/2π− (128−
122)/128π = 0.453125π and ωp = π − 0.53125π as the
passband and stopband edges of the prototype halfband filter
are located symmetrically around π/2 as ωs = π − ωp for
ωp < π/2 [12]. The gray areas in Fig. 2(a) denote the transition
bands of the prototype filter pair.

The magnitude of the aliasing components is defined by
the stopband attenuation of the prototype filter. Due to the
properties of the prototype halfband filters, the order of the
transfer function is restricted to be N = 2+4k, where k is an
integer [12]. The performance of the analytical filter (parallel
connection of Hilbert transformer and delay) is evaluated by
measuring the root-mean-square (RMS) error of the received
channelized signals as a function of the passband edge and
filter length. In this simulation, the frequency response of the
channelization filter is equalized per channel and 16-QAM
subcarrier modulation with 1000 symbols are used. As can be
seen from Fig. 4, the best RMS error performance is obtained
using the filter of order N = 70 for which the passband edge is
located at ωp = 0.4505π. The difference between the derived
passband edge (ωp = 0.453125π) and the value obtained by
simulation can be explained by the distribution of the zeros
at the stopband. By optimizing the locations of the zeros in
z-domain, their contribution to the attenuation at the exact
carrier frequencies can maximized if desired. However, in real
environment the difference would be negligible due to, e.g.,
the possible carrier-frequency offset.

B. Cyclic Polyphase Halfband Filters

The previous linear digital filtering based channelization
increases the effective time dispersion of the received signal,
and thus partially compromises the CP budget of the receiver.
A straightforward way to tackle the increase in the overall

0.42 0.425 0.43 0.435 0.44 0.445 0.45 0.455 0.46
10

−3

10
−2

10
−1

Normalized passband edge of the prototype filter

R
M

S
 e

rr
o

r

 N = 42 (A
s
 = 40 dB)

 N = 58 (A
s
 = 50 dB)

 N = 70 (A
s
 = 60 dB)

 N = 86 (A
s
 = 70 dB)

Fig. 4. RMS error between the received and the transmitted symbols as a
function of passband edge for halfband FIR filters of order 42, 58, 70, and
86.

impulse response length is to perform the channelization pro-
cessing using cyclic convolution instead of linear convolution
(conventional FIR filter). The basic idea is to carry out the
linear convolution block-wise for the received data and then
cyclically add the last N samples from the resulting N+L
samples long sequence to the beginning of the block as
depicted in Fig. 5. As a consequence, due to duality of cyclic
convolution in time-domain and multiplication in frequency-
domain, the effect of the channelization filter can be exactly
equalized. Furthermore, as the cyclic convolution processing
can be carried out after removing the CP, this solution does
not contribute in any way to the effective time dispersion in
the signal.

In this case, only the FFT size and the computational
complexity restrict the length of the channelization filter. The
computational complexity of cyclic realization is approxi-
mately 25 percent lower for the same filter order since the
CP can excluded before channelization. It should be pointed
out that the same polyphase filter channelization architecture
can be used for both the linear and cyclic convolution.

III. 802.11AC LINK PERFORMANCE EVALUATIONS

In order to verify that the overall channelization filtering
does not degrade the 802.11ac link performance, extensive link
simulations are carried out. Standardized WLAN/WiFi channel
models D and F [15], [16], are used to simulate the link
performance of the two proposed channelization architectures
in the case of frequency selective fading channel. Table I
shows the delay spread and cluster parameter values of these
channel models. These two channel models can be considered
to represent the environments with little-to-moderate frequency
selectivity, as it is typically the case in indoor offices and
houses (channel model D), and moderate-to-large frequency
selectivity, common in large indoor spaces such as airport
and conference centers (channel model F). The symbol error
rate (SER) and error vector magnitude (EVM) performance
of the channelization architectures are evaluated in two cases.
In the first case, the performance is evaluated as a function
of signal-to-noise ratio (SNR) whereas in the second case
as a function of co-channel signal-to-interference ratio (SIR).
For SNR simulation, the SER and EVM evaluation is carried
out with both the perfect timing synchronization as well

0 15 30 45 60

−1

−0.5

0

0.5

1

M
a

g
n

it
u

d
e

n in samples

Wrapping the tail

0 20 40 60 80 100

−1

−0.5

0

0.5

1

Linear convolution

M
a

g
n

it
u

d
e

n in samples

0 10 20 30 40

0

0.2

0.4

M
a

g
n

it
u

d
e

n in samples

Filter impulse response

0 16 32 48

−1

−0.5

0

0.5

1

M
a

g
n

it
u

d
e

n in samples

Input data

0 16 32 48

−1

−0.5

0

0.5

1

M
a

g
n

it
u

d
e

n in samples

Resulting cyclic convolution

Fig. 5. Illustration of cyclic convolution using linear halfband filter.

as an example timing synchronization error of 8 samples.
Three different prototype filters are used for the linear filter
channelization case. The stopband attenuations of these filters
are 40 dB, 50 dB, and 60 dB. For circular filter case, only
one prototype filter is used with the stopband attenuation of
40 dB. In addition, SER and EVM performance is evaluated
in the case with no channelization for reference purposes.

In the case of SIR simulations, the co-channel interference
is a complex exponential having a random frequency inside the
negative frequency band and the error functions are evaluated
over the positive active subcarriers. In this case, only the per-
fect time-synchronization case is simulated. In all simulations,
the number of random channel instances is 1000 whereas the
number of 16-QAM modulated OFDM symbols is equal to
100.

The simulated SER and EVM as a function of SNR are
shown in Fig. 6 whereas the corresponding SIR results are
shown in 7. As can be seen from these figures, in the case of
SNR simulation, the performance of the circular filter architec-
ture is approximately the same as with no channelization. In
the case of SIR simulation, the linear filter architecture slightly
outperforms the circular filter with Channel model D, whereas
in the case of Channel F, the circular architecture results in
considerably better SER and EVM values. This is because
the circular filtering based channelization architecture does not
reduce the CP budget of the receiver in any way. However, as
the adjacent channel rejection in IEEE 802.11 RF front-ends
should be at least 40 dB, the SIR performance of the circular
filter also with little-to-moderate frequency selectivity of the
Channel D can be considered to clearly meet the requirements.

TABLE I. DELAY SPREADS AND CLUSTER PARAMETERS OF INDOOR
TGN AND TGAC SPATIAL CHANNEL MODELS [15], [16]

Model Scenario RMS delay
spread

Number of
clusters

Taps/cluster

D Indoor typical office 50 ns 3 16,7,4
F Large indoor space 150 ns 6 15,12,7,3,2,2

IV. SOFTWARE IMPLEMENTATION

Three different platforms were employed for the implemen-
tation of the channelization task described in the previous sec-
tions. Firstly, C and OpenCL implementations were carried out
on the Intel R© CoreTM i7-4800MQ CPU which has 4 cores and
runs at base frequency of 2.7GHz and turbo frequency up to
3.7GHz. This step was done with the purpose of demonstrating
the speedup achieved as a result of using OpenCL compared
to C. Then, to take advantage of the parallel computing ability
of GPUs, the implementation was additionally carried out on
the ARM R© MaliTM-T628 MP6 GPU [10]. Mali-T628 is a
part of the Samsung Exynos 5 Octa (Exynos 5422) mobile
System on Chip (SoC). Mali-T628 offers scalability from one
to eight cores and runs at a frequency of 600 MHz. This
GPU also provides support for half precision floating point
arithmetic. Half-precision floating numbers are defined by the
IEEE 754 standard to have 16 bits consisting of five bits
for the exponent, 10 bits for the fraction and one bit for
the sign [17]. The usage of half floats could possibly reduce
the execution time, power, and energy consumption to some
extent. Exynos 5422 is also equipped with two CPUs using
the big.LITTLE heterogeneous computing architecture [9]. The
two CPUs are ARM R© Cortex R©- A15TM and A7TM [7][8]. A15
and A7 are quad core CPUs and can run at up to 2.1GHz
and 1.5GHz, respectively. The ARM big.LITTLE architecture
aims at achieving high performance while improving the power
efficiency by coupling a performance driven ”big” core with
a power efficiency driven ”LITTLE” core. Thus, these CPUs
were also taken into consideration for the implementation.
In this work, we have used ODROID-XU3 [6] to utilize the
Samsung Exynos 5422 SoC for the implementation.

Various approaches were considered to implement the
channelization filter in OpenCL, designed carefully to utilize
the available parallelism. Two of the approaches which proved
to be most efficient are described in the following. Different
filter designs and software implementations are considered
in each solution. The first solution focuses on a halfband
filter design with higher length and lower number of required
arithmetic operations, due to the zero coefficients, compared
to the second solution. The second one, however, uses a non-
halfband filter design with shorter length and utilizes vector
operations. These implementations are carried out for both
linear and cyclic filter designs.

A. Halfband Filter Without Vectorization

First approach implements the linear and cyclic halfband
filters described in Section II. This implementation takes
advantage of the fact that every other coefficient in the filter de-
sign is zero (as illustrated in Fig. 5), thus reducing the number
of required multiplications by a factor of two. Moreover, hav-
ing symmetric coefficients helps simplify the implementation
further by first subtracting the pair of samples having the same
coefficient values and then multiplying the resulting difference

6 9 12 15 18 21 24 27 30 33 36 39 42
10

−3

10
−2

10
−1

10
0

CPLen=800ns, Nsym=100, Nchan=1000, channel=D

SNR [dB]

S
E
R

No filtering, sync error : 0 samples

No filtering, sync error : 8 samples

Circular FIR, 40 dB, sync error : 0 samples

Circular FIR, 40 dB, sync error : 8 samples

Halfband, 40 dB, sync error : 0 samples

Halfband, 40 dB, sync error : 8 samples

Halfband, 50 dB, sync error : 0 samples

Halfband, 50 dB, sync error : 8 samples

Halfband, 60 dB, sync error : 0 samples

Halfband, 60 dB, sync error : 8 samples

6 9 12 15 18 21 24 27 30 33 36 39 42
10

−3

10
−2

10
−1

10
0

10
1

CPLen=800ns, Nsym=100, Nchan=1000, channel=D

SNR [dB]

E
V

M

No filtering, sync error : 0 samples

No filtering, sync error : 8 samples

Circular FIR, 40 dB, sync error : 0 samples

Circular FIR, 40 dB, sync error : 8 samples

Halfband, 40 dB, sync error : 0 samples

Halfband, 40 dB, sync error : 8 samples

Halfband, 50 dB, sync error : 0 samples

Halfband, 50 dB, sync error : 8 samples

Halfband, 60 dB, sync error : 0 samples

Halfband, 60 dB, sync error : 8 samples

6 9 12 15 18 21 24 27 30 33 36 39 42
10

−3

10
−2

10
−1

10
0

CPLen=800ns, Nsym=100, Nchan=1000, channel=F

SNR [dB]

S
E
R

No filtering, sync error : 0 samples

No filtering, sync error : 8 samples

Circular FIR, 40 dB, sync error : 0 samples

Circular FIR, 40 dB, sync error : 8 samples

Halfband, 40 dB, sync error : 0 samples

Halfband, 40 dB, sync error : 8 samples

Halfband, 50 dB, sync error : 0 samples

Halfband, 50 dB, sync error : 8 samples

Halfband, 60 dB, sync error : 0 samples

Halfband, 60 dB, sync error : 8 samples

6 9 12 15 18 21 24 27 30 33 36 39 42
10

−3

10
−2

10
−1

10
0

10
1

CPLen=800ns, Nsym=100, Nchan=1000, channel=F

SNR [dB]

E
V

M

No filtering, sync error : 0 samples

No filtering, sync error : 8 samples

Circular FIR, 40 dB, sync error : 0 samples

Circular FIR, 40 dB, sync error : 8 samples

Halfband, 40 dB, sync error : 0 samples

Halfband, 40 dB, sync error : 8 samples

Halfband, 50 dB, sync error : 0 samples

Halfband, 50 dB, sync error : 8 samples

Halfband, 60 dB, sync error : 0 samples

Halfband, 60 dB, sync error : 8 samples

Fig. 6. SER and EVM as a function of SNR for conventional and circular halfband filters with channel models D and F.

6 9 12 15 18 21 24 27 30 33 36 39 42
10

−4

10
−3

10
−2

10
−1

Interf CPLen=800ns, Nsym=100, Nchan=1000, channel=D

SIR [dB]

S
E
R

Circular FIR, 40 dB

Halfband FIR, 40 dB

Halfband FIR, 50 dB

Halfband FIR, 60 dB

6 9 12 15 18 21 24 27 30 33 36 39 42
10

−3

10
−2

10
−1

10
0

Interf CPLen=800ns, Nsym=100, Nchan=1000, channel=D

SIR [dB]

E
V

M

Circular FIR, 40 dB

Halfband FIR, 40 dB

Halfband FIR, 50 dB

Halfband FIR, 60 dB

6 9 12 15 18 21 24 27 30 33 36 39 42
10

−3

10
−2

10
−1

10
0

Interf CPLen=800ns, Nsym=100, Nchan=1000, channel=F

SIR [dB]

S
E
R

Circular FIR, 40 dB

Halfband FIR, 40 dB

Halfband FIR, 50 dB

Halfband FIR, 60 dB

6 9 12 15 18 21 24 27 30 33 36 39 42
10

−2

10
−1

10
0

Interf CPLen=800ns, Nsym=100, Nchan=1000, channel=F

SIR [dB]

E
V

M

Circular FIR, 40 dB

Halfband FIR, 40 dB

Halfband FIR, 50 dB

Halfband FIR, 60 dB

Fig. 7. SER and EVM as a function of SIR for conventional and circular halfband filters with channel models D and F.

Work Group
L/2-1

Work Group
L/2

Work Group
1

Work Group
0

hN-1 hN...h1h0

x0 xL-N-1 xL-Nx1 ... xL-1 xL0...00

Fig. 8. The structure for the implemented halfband kernel, x denotes input
samples, h denotes filter coeficients, L is the number of input samples, and
N is filter order.

only once. Also both the lowpass and highpass filters can be
realized at the same cost. In this implementation, it is assumed
that all the input samples of one OFDM symbol and the
filter coefficients are fed to the kernels input buffers. Fig. 8
illustrates the distribution of the computations among work
groups, having L and N representing the number of subcarriers
in one OFDM symbol and the filter order, respectively. To start
the parallel computations, it is assumed that N+L−1 samples
are stored in the input buffer, N −1 of which are zeros, added
at the beginning of the input stream. As shown in Fig. 8, in
this implementation, L/2 work groups work simultaneously to
multiply the vector coefficients with the input samples and do
the summations. Consequently, each work group produces one
lowpass and one highpass output at the same time with other
work groups.

B. Non-halfband Filter with Vectorization

In software based solutions, an important aspect to consider
aside from the number of arithmetic operations is the memory
accesses. In case of a halfband filter implementation, having
zero coefficients, every other sample is skipped, which reduces
the number of required multiplications. However, having these
erratic memory accesses in the halfband filter could be less ef-
ficient than executing all multiplications instead of half. Thus,
in the second approach, a non-halfband filter is considered
for the channelization. As the cores support Single Instruction
Multiple Data (SIMD) operations, an efficient implementation
for the filter could be carried out using the OpenCL vector
operations. The highest number of allowed vector components
in OpenCL is 16. For this reason, the optimum designed filter
should have a length that is multiple of 16. In general, the
realization of odd-order (even length) two-channel FIR filter
bank is not desirable. This is due to the reason that the resulting
polyphase branch filters are non-symmetric filters, resulting in
a quadruple complexity compared with the original half-band
design. Therefore, the filter length is chosen to be 16n − 1.
Then the length has been increased to 16n by padding one
zero at the end of the impulse response.

In this kernel design, input samples and filter coefficients
should be in the form of vectors of length 16. Fig. 9 depicts
the arrangement of work groups and work items in this
implementation. S is the number of subcarriers in one OFDM
symbol plus N zeros added for filtering. x0, x1, . . . , xS/16 are
vectors of length 16 containing S samples altogether. As it is
illustrated in Fig. 9, each work group operates on a number
of vectors. Then inside each work group, each work item,
according to its work item number, carries out the processing
related to a part of the vectors corresponding to that work
group. This processing includes the multiplication of the data
samples by coefficient values and the final summation.

V. RESULTS AND ANALYSIS

To evaluate the performance enhancement achieved by
exploiting parallelism using OpenCL, we have measured the
execution time and number of clock cycles consumed when ex-
ecuting the filters both using C and OpenCL. This preliminary
step was carried out on the Intel R© CoreTM i7. Then to study the
advantages and disadvantages of different multicore platforms,
the channelization filter was additionally implemented on the
ARM R© MaliTM-T628 and the ARM R© Cortex R©- A7TM CPU.
In addition to time and number of clock cycles, power and en-
ergy consumption were measured on the ARM platforms using
the sensors available on the Odroid XU3. Most importantly, the
performance improvements obtained by the application of half
precision floating point arithmetic on Mali was investigated
and is presented in this section. In all the measurements, the
number of input samples is equal to the FFT size plus the
CP length and the filter order, all multiplied by two as all the
samples are in complex form.

A. Execution Time

Fig. 10 shows the execution times in milliseconds for
running linear and circular filters using halfband and non-
halfband implementations on the different platforms introduced
in Section IV. Firstly, Fig. 10 shows that the halfband filter
is executed approximately 80% faster when using OpenCL
rather than C. Furthermore, it can be seen that among the
OpenCL implementations, the Intel Core i7 consumes the least
time. The second fastest platform is the Mali GPU, and the
slowest is the ARM A7 CPU. This can be explained by the
Intel CPU having the highest clock frequency, up to 3.7GHz
which is six times higher than Mali’s and two times higher than
A7’s. Another important observation from the implementation
results is the amount of speedup gained by using half precision
floats on the Mali GPU. The results show that the application
of half precision floats has lowered the execution time by
at least 55% which exceeds the expected linear speedup of
two. This could be explained by the fact that taking up less
space for the data results in more cache hits and less memory
transfers, thus causing the faster execution. As it can be seen
from Fig. 10, there is less difference between the linear and
circular filtering solutions in non-halfband implementations as
the designed non-halfband linear and circular filters have the
same filter length. However, with the halfband implementation,
the circular design requires a higher filter length, thus resulting
in relatively slower execution.

The latency restrictions for this channelization process
originate from the duration of the defined short interframe
space (SIFS) in the IEEE 802.11ac amendment. As this chan-
nelization task is carried out for 80 and 160 MHz bandwidths
which are only available in 5GHz carrier, the available SIFS
time is equal to 16µs. The lowest possible execution time
realized on the platforms used in this work is 6.02µs. Taking
into consideration the other related required processing, such
as MAC processing, the filtering can fit in the time frame.
However, to have better margins for the rest of the required
processing, it is beneficial to still reduce the execution time
further. Mali is a small mobile GPU and employing a faster,
larger GPU can result in lower execution times for the filtering
that can, more easily, meet the real time requirements. Thus,

x0 x1 x((N+1)/16)+1 xS/16x((S-N-1)/16)-1

Work Group 0

Work Item 0 Work Item 1 Work Item 15

x0_c = x0>> work_item

x1_c = x1>> work_item

x(N+1)/16_c = x(N+1)/16>>
work_item

..
.

ylocal_addr=x0_c*h[N+1/16] +
… + x(N+1)/16_c*h[0]

Work Group ((S-N-1)/16)-1

Work Item 0 Work Item 1 Work Item 15
x0_c = x((S-N-1)/16)-1>>
work_item

x1_c = x((S-N-1)/16)>>
work_item

x(N+1)/16_c = x(s/16)-1>>
work_item

..
.

h[0] h[(N+1)/16]

... ...

ylocal_addr=x0_c*h[(N+1)/16]+
 … + x(N+1)/16_c*h[0]

x((S-N-1)/16)
Work Group 1

out[global_addr] =
sum(ylocal_addr)

...
...

... ...

x0_c = (x0>> work_item) | x1

>> mask

x1_c = (x1>> work_item) | x2

>> mask

..
.

x(N+1)/16_c = (x(N+1)/16>>
work_item) | x((N+1)/16)+1 >>
mask

ylocal_addr=x0_c*h[L/16]+ … +
x(N+1)/16_c*h[0]

x0_c = (x0>> work_item) |x1

>> mask

x1_c = (x1>> work_item) | x2

>> mask

..
.

x(N+1)/16_c = (x(N+1)/16>>
work_item) | x((N+1)/16)+1 >>
mask

ylocal_addr=x0_c*h[L/16]+ … +
x(N+1)/16_c*h[0]

out[global_addr] =
sum(ylocal_addr)

out[global_addr] =
sum(ylocal_addr)

out[global_addr] =
sum(ylocal_addr)

x0_c = (x0((S-N-1)/16)-1>>
work_item) | x(S-N-1)/16 >> mask

x1_c = (x(S-N-1)/16>> work_item)
| x((S-N-1)/16)+1 >> mask

..
.

x(N+1)/16_c = (x(s/16)-1>>
work_item) | x(S/16) >> mask

ylocal_addr=x0_c*h[L/16]+
 … + x(N+1)/16_c*h[0]

out[global_addr] =
sum(ylocal_addr)

x0_c = (x0((S-N-1)/16)-1>>
work_item) | x(S-N-1)/16 >> mask

x1_c = (x(S-N-1)/16>> work_item)
| x((S-N-1)/16)+1 >> mask

..
.

x(N+1)/16_c = (x(s/16)-1>>
work_item) | x(S/16) >> mask

ylocal_addr=x0_c*h[L/16]+
 … + x(N+1)/16_c*h[0]

out[global_addr] =
sum(ylocal_addr)

Fig. 9. The structure for the implemented non-halfband kernel, x denotes input sample vectors, h are the vectors containing filter coefficients, N is the filter
order, and S is the number of input samples plus N zeros.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Halfband/ Full
Float/ Linear

Halfband/ Full
Float/ Circular

Non-halfband/
Full Float/ Linear

Non-halfband/
Full Float/

Circular

Non-halfband/
Half Float/

Linear

Non-halfband/
Half Float/

Circular

Mali

A7

Intel/OpenCL

Intel/C

Fig. 10. Execution time in miliseconds consumed by linear and circular digital
filtering using halfband and non-halfband designs on different platfroms.

this could be also considered as a suitable implementation
candidate e.g. in an access point setting using larger GPUs.

B. Number of Clock Cycles

To calculate the number of clock cycles required for each
filter implementation, the nominal frequency of the platforms
was assumed. The clock frequencies considered for the Intel
CPU, ARM CPU, and the Mali GPU were 2.7GHz, 1.4GHz,
and 600 MHz, respectively. The calculated number of clock
cycles are presented in Fig. 11. Similar to the execution
times presented in the previous section, these numbers, most
importantly, verify the great advantage of using half precision
floats over the full precision floats.

C. Power

The Odroid is equipped with four separated current sensors
to measure the power consumption of Big CPU (A15), Little
CPU (A7), GPU and DRAM in real time. In this work, the
measurements are carried out in a way that 200 samples
are taken from the sensors in intervals of 100ms and then
averaged over a 20s time period to assess the average power
consumption. To achieve more precise measurements, the

0

100

200

300

400

500

600

700

800

900

1000

Halfband/ Full
Float/ Linear

Halfband/ Full
Float/ Circular

Non-halfband/
Full Float/ Linear

Non-halfband/
Full Float/

Circular

Non-halfband/
Half Float/

Linear

Non-halfband/
Half Float/

Circular

Mali

A7

Intel/OpenCL

Intel/C

Fig. 11. Number of clock cycles consumed by linear and circular digital
filtering using halfband and non-halfband designs on different platfroms.

kernels were run in high number of iterations to keep the
cores active with kernel executions during the whole 20s.
We did not have any tools available to measure the power
consumption of the Intel CPU. The power consumed by Mali
and A7 in different scenarios are presented in Fig. 12. It can be
seen that the relatively lower power, lower performance Little
CPU, A7, consumes less power than the GPU. Moreover, the
application of half precision floating points has reduced the
power consumption by approximately 33%.

D. Energy

While it is important to evaluate power consumption for
heating matters, energy consumption, specifically in mobile
applications, plays a very important role, as it translates to bat-
tery life. Fig. 13 illustrates the calculated energy consumption
in different implementations by both the GPU and the CPU.
As it is shown in this figure, employing half precision floating
points has resulted in almost 60% reduced energy consumption
in comparison with the case with full precision floating points.
This is due to the reason that kernel execution with half floats
is carried out in more than half of the time and with almost
half power as the full floats. Although A7 is a low power CPU,
the much lower kernel execution times on Mali has resulted

0

0.1

0.2

0.3

0.4

0.5

0.6

Halfband/ Full
Float/ Linear

Halfband/ Full
Float/ Circular

Non-halfband/
Full Float/

Linear

Non-halfband/
Full Float/

Circular

Non-halfband/
Half Float/

Linear

Non-halfband/
Half Float/

Circular

Mali

A7

Fig. 12. Power in watts consumed by linear and circular digital filtering
using halfband and non-halfband designs on different platfroms.

0

20

40

60

80

100

120

Halfband/ Full
Float/ Linear

Halfband/ Full
Float/ Circular

Non-halfband/
Full Float/

Linear

Non-halfband/
Full Float/

Circular

Non-halfband/
Half Float/

Linear

Non-halfband/
Half Float/

Circular

Mali

A7

Fig. 13. Energy in μJ consumed by linear and circular digital filtering using
halfband and non-halfband designs on different platfroms.

in overall lower energy consumption by the GPU.

VI. CONCLUSION

In this paper, we addressed the digital front-end process-
ing of the IEEE 802.11ac receiver, targeting software-based
processing implementation with substantially increased level
of parallelism for fast execution. First, the overall 80 MHz
received waveform is divided to two 40 MHz-wide signals
through time-domain digital filtering so that the two 40 MHz
signals can be then processed in parallel. We have optimized
the channelization filter realizations and reported the results
for both the linear and circular digital filtering. Then, the
overall 802.11ac radio link was simulated, incorporating the
developed channelization filter architectures, with two different
WLAN/WiFi channel models. The SER and EVM performance
of the channelization architectures were evaluated, showing
that the link performance is not degraded by these filtering so-
lutions. Finally, actual software implementations were carried
out for linear and circular digital filtering using both halfband
and non-halfband designs on different platforms, namely the
Intel R© CoreTM i7-4800MQ CPU, ARM R© Cortex R©- A7TM, and
ARM R© MaliTM-T628 MP6 GPU. All filter designs were eval-
uated in terms of execution time and number of clock cycles
on all three platforms, and power and energy consumption
on the Mali GPU and A7 CPU. Comparing the OpenCL and
C implementations revealed that exploiting parallelism using
OpenCL yields a five times faster execution. The results also
demonstrated that the high performance Intel CPU and the

Mali GPU executed the filtering tasks much faster. Moreover,
while the power efficient ARM A7 consumes less power
than Mali, having very short execution times resulted in
Mali consuming much lower energy. Taking advantage of half
precision floating points on Mali reduces the execution time,
number of clock cycles, power, and energy to a great extent.
The measured execution times also showed that the designs
can marginally meet the latency requirements for the IEEE
802.11ac. However, the filtering can more easily satisfy the
restrictions by employing higher performance GPUs or CPUs.

ACKNOWLEDGMENT

This work was supported by the Finnish Funding Agency
for Technology and Innovation (Tekes) under the Parallel
Acceleration (ParallaX) project, Tampere University of Tech-
nology graduate school, and Nokia Foundation.

REFERENCES

[1] W. Tuttlebee (Ed.), Software Defined Radio: Baseband Technologies for
3G Handsets and Basestations. 1sted. West Sussex: Wiley, 2004.

[2] E. Grayver, Implementing Software Defined Radio. New York: Springer,
2013.

[3] The OpenCL specification, The Khronos Group Inc., 2011. [Online].
Available: https://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

[4] IEEE Standard for Information Technology Telecommunications and
Information Exchange Between Systems Local and Metropolitan Area
Networks Specific Requirements – Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications –
Amendment 4: Enhancements for Very High Throughput for Operation
in Bands below 6 GHz, IEEE Standard 802.11ac-2013, Dec. 2013.

[5] Intel R© CoreTM i7 Processor Family for LGA2011 Socket, Intel Corpo-
ration, 2014.

[6] Hardkernel co., Ltd. ODROID-XU3. Available: http://www.hardkernel.
com/main/products/prdt info.php?g code=G140448267127&tab idx=1

[7] Cortex-A15 Technical Reference Manual, ARM, 2011. [Online].
Available: http://infocenter.arm.com/help/topic/com.arm.doc.ddi0438c/
DDI0438C cortex a15 r2p0 trm.pdf

[8] Cortex-A7 MPCore Technical Reference Manual, ARM, 2011, 2012.
[Online]. Available: http://infocenter.arm.com/help/topic/com.arm.doc.
ddi0464d/DDI0464D cortex a7 mpcore r0p3 trm.pdf

[9] big.LITTLE Technology: The Future of Mobile, Making very high
performance available in a mobile envelope without sacrificing energy
efficiency, ARM, 2013.

[10] The ARM R© MaliTM Family of Graphics Processors, ARM, 2013.
[11] IEEE Standard for Information Technology Telecommunications and

Information Exchange Between Systems Local and Metropolitan Area
Networks Specific Requirements – Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE
Standard 802.11-2012, 2012.

[12] H. W. Schüßler and P. Steffen, “Halfband filters and Hilbert transform-
ers,” Circuits, Syst., Signal Process., vol. 17, no. 2, pp. 137–164, 1998.

[13] R. Ansari, “IIR discrete-time Hilbert transformers,” IEEE Trans.
Acoust., Speech, Signal Processing, vol. ASSP-35, pp. 1116–1119, Aug.
1987.

[14] T. Saramäki, “Finite impulse response filter design,” in Handbook for
Digital Signal Processing, S. K. Mitra and J. F. Kaiser, Eds. New
York: John Wiley and Sons, 1993, ch. 4, pp. 155–277.

[15] TGn Channel Models, IEEE Standard 802.11-03/940r4, 2004. [On-
line]. Available at: https://mentor.ieee.org/802.11/dcn/03/11-03-0940-
04-000n-tgn-channel-models.doc

[16] TGac Channel Model Addendum, IEEE Standard
802.11-09/0308r12, Dec. 2010. [Online]. Available at:
https://mentor.ieee.org/802.11/dcn/09/11-09-0308-12-00ac-tgac-
channel-model-addendum-document.doc

[17] IEEE standard for floating-point arithmetic, IEEE standard 754-2008,
Aug.29, 2008.

PUBLICATION 5

M. AghababaeeTafreshi, M. Koskela, D. Korpi, P. Jääskeläinen, M. Valkama and J. Takala, "Soft-
ware defined radio implementation of adaptive nonlinear digital self-interference cancellation for
mobile inband full-duplex radio," in IEEE Global Conference on Signal and Information Process-
ing, Washington, DC, USA, 7-9 Dec, 2016, pp. 733-737, doi: 10.1109/GlobalSIP.2016.7905939

© 2016 IEEE. Reprinted, with permission, from M. AghababaeeTafreshi, M. Koskela, D. Korpi,
P. Jääskeläinen, M. Valkama and J. Takala, "Software defined radio implementation of adaptive
nonlinear digital self-interference cancellation for mobile inband full-duplex radio," IEEE Global
Conference on Signal and Information Processing, December 2016.

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE
does not endorse any of [university/educational entity’s name goes here]’s products or services.
Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE
copyrighted material for advertising or promotional purposes or for creating new collective works
for resale or redistribution, please go to http://www.ieee.org/publications_stan
dards/publications/rights/rights_link.html to learn how to obtain a License
from RightsLink.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

SOFTWARE DEFINED RADIO IMPLEMENTATION OF ADAPTIVE NONLINEAR DIGITAL
SELF-INTERFERENCE CANCELLATION FOR MOBILE INBAND FULL-DUPLEX RADIO

Mona AghababaeeTafreshi, Matias Koskela, Dani Korpi, Pekka Jääskeläinen,
Mikko Valkama, and Jarmo Takala

Tampere University of Technology, P.O. Box 553, FI-33720 Tampere, Finland

ABSTRACT
Inband full-duplex radio transceivers offer enhanced spectral effi-
ciency by transmitting and receiving simultaneously at the same fre-
quency. However, deployment of such systems is challenging due to
the inherent self-interference stemming from coupling of the trans-
mit signal to the receiver. Furthermore, to track changes in the
time-varying self-interference channel, the process needs to be self-
adaptive. Thus, advanced solutions are required to efficiently miti-
gate the self-interference. With the current rise in parallel architec-
tures due to limitations of performance enhancement by higher clock
frequencies, multi-core platforms are considered as viable solutions
for implementing such advanced techniques. This paper describes a
programmable implementation of an adaptive nonlinear digital self-
interference cancellation method for full-duplex transceivers on two
mobile GPUs and a multi-core CPU. The results demonstrate the
feasibility of realizing a real-time software-based implementation of
digital self-interference cancellation on a mobile GPU, in case of a
20 MHz cancellation bandwidth.

Index Terms— 5G, Full-duplex, self-interference cancellation,
graphics processing units, open computing language

1. INTRODUCTION

Inband full-duplex communications provide a novel solution toward
more spectral efficient networks. Systems utilizing such communi-
cations fully exploit the spectral and temporal resources by trans-
mitting and receiving concurrently at the same frequency. With the
expected increase in the throughput of future wireless systems, espe-
cially in the upcoming 5G networks, inband full-duplex communi-
cations can play a crucial role by improving spectral efficiency [1].
Employing such systems, throughput can be possibly increased by a
factor of two, as the bandwidth can be used simultaneously for both
transmission and reception [1]. However, deployment of full-duplex
networks is far from trivial. This is due to the fact that simultaneous
transmission and reception at the same frequency results in overlap-
ping of the powerful transmit signal with the received signal of inter-
est, thus producing strong self-interference (SI). This SI signal can
be theoretically removed by subtracting the originally known trans-
mitted signal from the received waveform. However, in practice, the
signal will be both linearly and nonlinearly distorted while propa-
gating to the receiver. This is a result of the nonlinear amplifiers,
in-phase/quadrature (I/Q) imbalance of the transmitter and receiver,
phase noise of the local oscillator, and analog-to-digital converter
(ADC) quantization noise [2]. Consequently, effective cancellation
of the SI signal becomes a challenging task. Aside from the afore-
mentioned generic SI cancellation challenges, the task is even more

This work was supported by Tampere University of Technology graduate
school, and the industrial research fund of Tampere University of Technology
by Tuula and Yrjö Neuvo.

challenging in the mobile device side compared to the base station
side. Firstly, as low-cost components are more commonly used in
mobile devices, nonlinear distortion becomes an especially critical
issue. Secondly, due to limitations in power consumption, area, and
processing complexity in mobile devices, less sophisticated and less
computationally intensive methods are required on the mobile side.
For this reason, in some of the earlier works, it was assumed that
only the base station would be full-duplex compatible and the mobile
device would work in half-duplex mode [3]. However, this would
result in lower throughput compared to a system where full-duplex
operation is also employed on the mobile side. Thus, in this paper we
focus on the implementation of a method suitable for mobile devices
using commercial off-the-shelf (COTS) low-cost components, while
maintaining the required suppression of the SI signal. If proved fea-
sible, real-time implementation on COTS components will eliminate
the risky and costly custom hardware design efforts.

The proposed SI canceller implementation is based on software
defined radio (SDR) solutions, which introduce flexibility compared
to traditional fixed-function platforms. Although such implementa-
tions may not result in as low power and area as the conventional
implementations, e.g. fixed-function hardware accelerators, they
require less design efforts, and offer shorter time-to-market cycles.
In addition, as increasing clock frequency for better performance is
reaching its limits, parallel processing especially on graphics pro-
cessing units (GPU) has gained a lot of interest. Furthermore, Open
Computing Language (OpenCL) provides a framework for parallel
computing on heterogeneous platforms. Thus, utilizing OpenCL and
the available parallel resources in multi-core processors and GPUs,
this work proposes a software implementation for SI cancellation
in full-duplex systems, applicable on both the network side and the
mobile station side. Here, three multicore platforms have been used
and compared, namely, Intel® CoreTM i7-4800MQ, Qualcomm®

AdrenoTM 430, and ARM® MaliTM-T628 MP6 GPU [4] [5] [6].
Furthermore, the implemented algorithm is evaluated with measured
signals from a true full-duplex RF test-bench, to demonstrate that
it can attenuate the SI signal and fulfill the real-time constraints.
There have been several contributions towards solving the SI issue
in full-duplex systems in the recent years, such as the works re-
ported in [3], [7], [8]. Additionally, several prototypes have been
built to demonstrate the advances made in this regard as presented
in [2], [9], and[10]. However, to the best of the authors’ knowledge,
no real-time hardware or software implementation for digital SI
cancellation has been reported in the literature.

The rest of the paper is organized as follows. Section 2 shortly
introduces the overall full-duplex transceiver model and the adap-
tive nonlinear digital SI cancellation algorithm. Section 3 provides a
brief introduction to the selected platforms in addition to a descrip-
tion of the algorithm’s OpenCL implementation. Then, in Section 4,
real-time implementation results are presented. Finally, in Section 5,
conclusions are drawn.

DACLPF

V
G

A

P
A

xn LPF ↓k ↑m

|xn|
p-1xn

|xn|
2xn LPF

LPF

↓k

↓k

w1

w3

w(P+1)/2

LPF ↓q

Ʃ

Ʃ

L
M

S
 f

il
te

r

w
ei

g
h
t
u
p

d
at

e

Ʃ

L
N

A ADCLPF

V
G

A

R
F

 c
an

c
e
ll

a
ti

o
n

 c
ir

c
u

it

Transmit data~
LO

IQ Mixer

IQ Mixer

(k/m)Fs

kFs Fs

Fs To

Detector

qFs

O
rt

h
o

g
o

n
al

iz
a
ti

o
n

Fig. 1: Overall structure of the full-duplex transceiver, where the grey part is implemented in software

Algorithm 1 LMS-based adaptive nonlinear digital cancellation

1: Initialize w to 0, and n to Lpost

2: while transmitting do
3: u(n) =

[
ũ(n+ Lpre)

T . . . ũ(n− Lpost)
T]T

4: e(n) = rx(n)−w(n)Hu(n)
5: if (n mod N == 0) then
6: w(n+ 1)← w(n) + µe∗(n)u(n)
7: end if
8: n← n+ 1
9: end while

2. SELF-INTERFERENCE CANCELLATION IN
FULL-DUPLEX SYSTEMS

To effectively mitigate the SI signal, the cancellation process is car-
ried out in two stages, namely, RF and digital cancellation [9]. Fig-
ure 1 illustrates the overall structure of the full-duplex transceiver
with the digital cancellation block, which is the focus of this pa-
per, shown in more detail. As previously mentioned, the transmitter
and receiver paths contain many non-ideal components, especially
in mobile devices. However, as the transmitter power amplifier (PA)
most significantly contributes to the nonlinear distortion, the SI sig-
nal can be modelled under the assumption that it is solely distorted
by the PA [9]. Thus, using the well-known parallel Hammerstein
model for highly nonlinear PAs, the observed SI signal, with respect
to the original transmit signal, can be written as [9]:

rx(n) =

P∑

p=1
p odd

L−1∑

l=0

hp(l)up(x(n− l)) + z(n), (1)

where P is the highest nonlinearity order of the modelled PA, L is
the memory length of the model, hp(l) represents the overall pth or-
der effective SI channel coefficients, x(n) is the baseband transmit
signal, up(x(n)) = |x(n)|p−1x(n) is the pth order basis function,
and z(n) represents noise and possible model mismatch. The accu-
racy of this model depends on accurate estimation of the effective
SI channel coefficients. Furthermore, as a result of the continuously
changing environment around a mobile device, the channel coeffi-
cients need to be adaptively estimated. On the other hand, due to
limited computational resources on a hand-held mobile device, a
low complexity parameter learning and tracking algorithm is pre-
ferred. In [9], such an algorithm based on least mean squares (LMS)
learning [11] is proposed. This algorithm ensures the accuracy of SI
channel coefficients using a novel basis function orthogonalization
procedure which is described in detail in [9]. This procedure should

be performed prior to the actual LMS algorithm. The orthogonal-
ized basis functions result in more accurate SI suppression. Now,
the signal after the digital canceller can be written as:

e(n) = rx(n)−
P∑

p=1
p odd

L−1∑

l=0

ĥp,ort(l)ũp(x(n− l)) ≈ z(n), (2)

where ũp(x(n)) contains the transformed orthogonalized basis func-
tions, and ĥp,ort(l) represents the corresponding SI cancellation co-
efficients. With a precise estimation of the coefficients, the cancel-
lation signal should be sufficiently accurate for only z(n) to remain
after digital cancellation.

The low complexity LMS-based method used in [9], which
adaptively estimates the SI channel coefficients, is described in Al-
gorithm 1. This algorithm is modified to adjust the frequency of
filter weight updates. Here, L = Lpre + Lpost is the length of the
channel filter, where Lpre and Lpost represent the pre-cursor and
post-cursor taps, respectively. N defines how often the filter weights
are updated and vector µ contains the step sizes which are selected
differently for each nonlinear term in the received signal [9]. Fur-
thermore, ũ(n) represents the orthogonalized basis functions, rx(n)
is the observed signal, e(n) represents the cancelled signal, and w
is defined as:

w =
[
ĥ1,ort(0) . . . ĥP,ort(0) ĥ1,ort(1) . . . ĥP,ort(L−1)

]
.T (3)

3. ALGORITHM IMPLEMENTATION

3.1. Platforms

Three multi-core platforms have been chosen for implementing the
SI cancellation algorithm. The first one is a desktop CPU, the Intel®

CoreTM i7-4800MQ, which has four cores [4]. This processor runs at
a base frequency of 2.7 GHz and can run at up to 3.7 GHz [4]. The
second platform is a mobile GPU, the Qualcomm® AdrenoTM 430,
which comes built in the Qualcomm® SnapdragonTM 810 system on
chip (SoC) and can have a maximum clock speed of 500, 600, or
650 MHz [6]. The Snapdragon 810 is currently used in many of
the hand-held devices in the market, and thus it can be a realistic
candidate for GPU processing on mobile devices and provide actual,
reliable results. The third one is the ARM® MaliTM-T628 MP6 GPU,
which is available on the Odroid XU3 board [12]. This GPU has four
cores and can run at up to 600 MHz clock frequency [5]. Mali-T628
is a part of the Samsung Exynos 5 Octa (Exynos 5422) mobile SoC,
which is a commercial product. Thus, Mali can also be considered
as a practical candidate for mobile processing.

rx = [rx,0,..,rx,N-1]

ecancelled signal = [e0,..,eN-1]

GPU/CPU
 w1-3 = [w1,0,..,w1,L-1,

 w3,0,..,w3,L-1,]

u1=[u1,0,..,u1,L,..,u1,L+N-1]

u3=[u3,0,..,u3,L,..,u3,L+N-1]

e
=

 r
x

-

 [
fi

lt
er

(w
1
,u

1
)

+

fi
lt

er
(w

3
,u

3
)]

eN-1

Filtering kernel Weight update kernel

u=[u1,0,..,u1,L,

 u3,0,..,u3,L]

w
n
ew

 =
 w

 +
 µ

 .
*

u
*

e*
N

-1

Fig. 2: Implemented kernel structure and data flow, where P = 3 is
the highest nonlinearity order, L = Lpre +Lpost +1 is the channel
filter length, N is number of samples processed in parallel before
updating the SI channel coefficients, wp contains the filter coeffi-
cients corresponding to the pth nonlinearity order, rx is the vector
comprised of the received signal samples, up represents the pth or-
der orthogonalized basis function samples, e is a vector of produced
cancelled signal samples, and µ contains the step sizes.

3.2. Digital canceller implementation

The implementation developed in this work carries out the adaptive
digital self-interference cancellation in two steps using two OpenCL
kernels. The structure and the data flow of the implemented kernels
are illustrated in Fig. 2, where the highest nonlinearity order P is as-
sumed to be three, L = Lpre+Lpost+1 is the channel filter length,
N is the number of samples processed in parallel before updating
the SI channel coefficients, wp contains the filter coefficients corre-
sponding to the pth nonlinearity order, rx is the vector comprised of
the received signal samples, up represents the pth order orthogonal-
ized basis function vector, e is a vector of produced cancelled signal
samples, and µ contains the step sizes selected differently for each
specific nonlinear term. The OpenCL kernels are highly flexible and
the parameters can be adjusted on top level.

In the first step, the filtering kernel computes the cancelled sig-
nal. This is carried out by filtering the basis functions and then sub-
tracting the filtered signal from the received signal to produce the
cancelled output. To improve efficiency, we assume that the orthog-
onalized basis functions are already computed from the known trans-
mit data. This requires simple processing and can be carried out,
e.g., in separate hardware. Having filter length of L, and to filter N
samples, an L+N vector of each basis function is fed to the kernel.
The OpenCL kernel is designed in a way that each work item (WI) in
each work group (WG) produces one output sample by multiplying
and accumulating the corresponding vector of basis functions with
the filter coefficients vector. As a result, a vector of length N of the
cancelled signal samples is produced. We have used 16-component
floating point vectors which is the longest vector length allowed by
OpenCL. In total, N WIs are required, and the number of WIs per
WG are adjusted depending on each platform to achieve the best per-
formance. As an example, for N = 256, the kernel local size, i.e.
number of WIs per WGs, for the Core i7, Adreno 430, and Mali-
T628 is selected as 256, 64, and 2, respectively.

As explained in Section 2, we aim to adaptively track the time-
varying SI channel to use more accurate estimates of the SI channel
coefficients. Thus, in the second step, one sample from the produced
cancelled signal, along with L basis function samples are fed to the
second kernel to update the filter weights. In this kernel, each WI
is responsible for processing a 16-element vector. Thus, a total of
L/16 WIs are required, which are distributed among WGs.

0 1 2 3 4 5 6 7
−80

−70

−60

−50

−40

Time (ms)

P
o
w

er
 (

d
B

m
)

Linear digital canceller (P = 1)

Third order digital canceller (P = 3)

(a) N = 16

0 1 2 3 4 5 6 7
−80

−70

−60

−50

−40

Time (ms)

P
o
w

er
 (

d
B

m
)

Linear digital canceller (P = 1)

Third order digital canceller (P = 3)

(b) N = 32

Fig. 3: The average power of digital canceller output signal, im-
plemeneted on the Adreno 430, with respect to time, when L = 16
for both P = 1 and P = 3

Both kernels process multiple samples in parallel. However, the
two kernels should run sequentially, as a result of the filtering kernel
being dependent on the production of updated coefficients. Thus,
with the aim of introducing more parallelism to the algorithm, the
weight update is done in a way that the weights are only adjusted
after a block of N samples are processed. As the value of N rises,
more samples are processed simultaneously using the available com-
puting units on the CPU or the GPU. Consequently, the more sam-
ples processed in parallel, the more utilized the parallel resources of
the cores will be.

4. RESULTS AND ANALYSIS

To evaluate the implemented algorithm for SI cancellation, it is cru-
cial to firstly verify its ability in mitigating the SI signal. After run-
ning the algorithm for a set of sample data obtained from an actual
full-scale full-duplex radio prototype system, described in [9] and
[13], the generated cancelled signal by the software implementation
was written to a file. Then, these results were used to create the plots
in Fig. 3, using Matlab, which show the average power of the digital
canceller output signal in case of both linear (P = 1) and third order
nonlinear (P = 3) digital cancellers. While measuring the reported
results, parameters were selected as Lpre = 8, and Lpost = 7. Fig-
ure 3(a) is using the data in the case where N = 16 samples are pro-
cessed simultaneously, while Fig. 3(b) corresponds to the case with
N = 32. It can be seen that, when using the implemented LMS-
based canceller, the power of the cancelled signal is decreasing, and
that the nonlinear (P=3) canceller is clearly outperforming the plain
linear (P=1) canceller due to its ability to cancel also the third-order
nonlinear SI stemming from the nonlinear PA. It can also be ob-
served that the LMS algorithm converges somewhat slower when the
SI channel coefficients are updated less often. However, the differ-

Table 1: Execution time when L = 16 and N = 256 for both the
linear (P = 1) and third order nonlinear (P = 3) digital cancellers

Clock frequency
Core i7 Adreno Mali

Parallel PEs
2700 MHz 600 MHz 600 MHz

Nonlinearity order
64 ∼200 32

P=1 P=3 P=1 P=3 P=1 P=3
Filtering time for
N samples [µs] 3.04 3.42 5.88 8.70 59.61 59.88

Time for updating
filter weights [µs] 1.52 1.52 3.5 3.58 23.67 24.02

Total time for N
samples [µs] 4.56 4.94 9.4 12.28 83.28 83.9

Total time for one
sample [ns] 17.81 19.29 36.64 48 325.3 327.7

ence in the convergence speeds is still rather small, and thus higher
N , such as N = 256, can be used without extensively slowing down
the convergence.

It is also essential to evaluate the feasibility of the OpenCL im-
plementation to carry out the SI cancellation process in a real-time
fashion. To be able to process a 20 MHz wide LTE or WiFi carrier,
we assume a sample rate of Fs = 24 MHz. Thus to achieve real-time
processing, the output signal should be produced at a 24 MHz rate,
meaning that production of each output sample should take equal to
or less than 41.66 ns (1/24 MHz= 41.66 ns).

Table 1 shows kernel execution times for both stages of the algo-
rithm and the total time, using both the linear and nonlinear digital
cancellers, on all three platforms. It should be noted that data trans-
fer times are not included in the reported execution times. Table
1 also lists the clock frequency and number of parallel processing
elements (PE) of the corresponding platforms for efficiency compar-
ison. These results correspond to the case where in the LMS filter-
ing phase, N = 256 samples are filtered simultaneously, and then
the filter coefficients are updated by the second kernel. Comparing
the execution times of the linear (P = 1) and nonlinear (P = 3)
cancellers shows that the added complexity from the nonlinear can-
celler has resulted in slightly slower execution of the kernels. It can
be seen that using a linear canceller and having the filter weights up-
dated after processing 256 samples, both the Intel Core i7 CPU and
the Qualcomm Adreno 430 meet the timing constraints. In case of
a third order nonlinear canceller, while the Core i7 easily fits in the
real-time processing limits, the Adreno GPU takes approximately 6
ns longer. However, by increasing N as shown in Fig. 4, and utiliz-
ing the parallel resources of the GPU, real-time nonlinear SI cancel-
lation can also be realized using the Adreno 430.

Although Mali-T628 runs at a clock frequency close to Adreno’s,
results achieved by Mali show much slower performance. This can
be explained by number of parallel computing units. Each of Mali-
T628’s four cores are capable of computing eight parallel floating
point operations each cycle in their vector pipelines [14]. In contrast,
Adreno 430 architecture is kept more in secret but it seems to be
capable of supporting approximately 200 floating point operations
per cycle. This is also supported by the presented results in Table 1
which shows Mali to be approximately six times (200/32 = 6.25)
slower than Adreno. However there can be other details in the
hardware architecture which this hypothesis overlooks.

The graph in Fig. 4 demonstrates how introducing more paral-
lelism, by increasing the number of samples processed in parallel,
affects sample production rate. In most cases, doubling the number
of the input samples of the filtering kernel results in approximately

0

10

20

30

40

50

60

70

80

32 64 128 256 512

S
am

p
le

 P
ro

d
u
ct

io
n
 r

at
e

[M
H

z]

N (Number of samples)

Core i7 (P=1)

Core i7 (P=3)

Adreno (P=1)

Adreno (P=3)

Mali (P=1)

Mali (P=3)

Fig. 4: Sample production rate of both the linear (P = 1) and third
order (P = 3) digital cancellers, for different N , where L = 16 and
N is the number of samples processed in parallel before updating
the SI channel coefficients

the same execution time, while the time for updating filter coeffi-
cients does not increase at all. As a result, sample production rate
nearly increases by a factor of two. It can be seen that, already at
N = 128, it is possible to achieve a real-time implementation us-
ing the Intel Core i7, while the Adreno 430 is capable of real-time
nonlinear cancellation with N = 512. In both platforms, the real-
time implementation is realized without requring all the available
processing resources. Although larger N is required to achieve real-
time implementation, it will result in higher latency for the system.
Thus, there is a trade-off between latency and sample production
rate. As the signal is filtered in blocks of N samples, a latency equal
to the filtering time of the first set of N samples should be consid-
ered only in the beginning of the process. For N = 256, this latency
is equal to the filtering time reported in Table 1. The latency, us-
ing the Adreno 430 and in case of nonlinearity order P = 3, for
N = 512, N = 128, N = 64, and N = 32 is equal to 13.82 µs,
6.91 µs, 5.89 µs, and 4.60 µs, respectively, which should be taken
into consideration according to the application requirements.

5. CONCLUSIONS

In this paper, an SDR implementation of an adaptive nonlinear digi-
tal self-interference cancellation method for full-duplex transceivers,
especially on the mobile side, was presented. The implemented so-
lution was evaluated and analysed to demonstrate the performance
achieved by the proposed method in addition to the feasibility of
a real-time software-based implementation on multi-core platforms,
especially on mobile GPUs. The results showed that using the imple-
mented advanced digital SI canceller, the SI signal can be attenuated
to a great extent. Furthermore, utilizing the Qualcomm Adreno 430
GPU on the mobile side, and the Intel Core i7 CPU on the base sta-
tion side, the cancelled signal can be produced at the required rates
for real-time processing, in case of, e.g., 20 MHz cancellation band-
width. Hence, it can be concluded that, using off-the-shelf mobile
GPUs, a real-time implementation of the proposed LMS-based so-
lution for adaptive nonlinear digital SI cancellation is feasible also
for mobile scale full-duplex devices. This can help in realizing the
theoretical potential throughput gains provided by full-duplex com-
munications. Moreover, taking advantage of the programmability of
GPUs and CPUs, this solution provides high flexibility for possible
required algorithmic reconfigurations and extensions. In the contin-
uation of this work, we will aim at increasing the sample production
rate using more advanced GPUs, while employing higher nonlinear-
ity orders, which adds to the complexity of the implementation.

6. REFERENCES

[1] S. Hong, J. Brand, J. I. Choi, M. Jain, J. Mehlman, S. Katti,
and P. Levis, “Applications of self-interference cancellation in
5G and beyond,” IEEE Communications Magazine, vol. 52,
no. 2, pp. 114–121, February 2014.

[2] M. Heino, D. Korpi, T. Huusari, E. Antonio-Rodriguez,
S. Venkatasubramanian, T. Riihonen, L. Anttila, C. Icheln,
K. Haneda, R. Wichman, and M. Valkama, “Recent advances
in antenna design and interference cancellation algorithms for
in-band full duplex relays,” IEEE Communications Magazine,
vol. 53, no. 5, pp. 91–101, May 2015.

[3] E. Everett, M. Duarte, C. Dick, and A. Sabharwal, “Empow-
ering full-duplex wireless communication by exploiting direc-
tional diversity,” in Proc. of Conference Record of the Forty
Fifth Asilomar Conference on Signals, Systems and Computers
(ASILOMAR), 6-9 Nov 2011, pp. 2002–2006.

[4] Intel Corporation, Intel® CoreTM i7 Processor Family for
LGA2011 Socket, May 2014.

[5] ARM Ltd., The ARM® MaliTM Family of Graphics Processors,
February 2013.

[6] Qualcomm Technologies, Snapdragon 810 processor product
brief, February 2015.

[7] A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan,
and R. Wichman, “In-band full-duplex wireless: Challenges
and opportunities,” IEEE Journal on Selected Areas in Com-
munications, vol. 32, no. 9, pp. 1637–1652, Sept 2014.

[8] D. Korpi, L. Anttila, V. Syrjälä, and M. Valkama, “Widely
linear digital self-interference cancellation in direct-conversion
full-duplex transceiver,” IEEE Journal on Selected Areas in
Communications, vol. 32, no. 9, pp. 1674–1687, Sept 2014.

[9] D. Korpi, Y. S. Choi, T. Huusari, L. Anttila, S. Talwar, and
M. Valkama, “Adaptive nonlinear digital self-interference can-
cellation for mobile inband full-duplex radio: Algorithms and
rf measurements,” in Proc. IEEE Global Communications
Conference (GLOBECOM), 6-10 Dec 2015, pp. 1–7.

[10] M. Duarte, C. Dick, and A. Sabharwal, “Experiment-driven
characterization of full-duplex wireless systems,” IEEE Trans-
actions on Wireless Communications, vol. 11, no. 12, pp.
4296–4307, December 2012.

[11] B. Widrow, J. M. McCool, M. G. Larimore, and C. R. John-
son, “Stationary and nonstationary learning characteristics of
the lms adaptive filter,” Proceedings of the IEEE, vol. 64, no.
8, pp. 1151–1162, Aug 1976.

[12] Ltd. Hardkernel co., “Odroid-xu3.,” 2013, Available at http:
//www.hardkernel.com/main/products/prdt info.php?g code=
G140448267127.

[13] D. Korpi, T. Huusari, Y. S. Choi, L. Anttila, S. Talwar, and
M. Valkama, “Full-duplex mobile device - pushing the limits,”
IEEE Communications Magazine, accepted. Available at http:
//arxiv.org/abs/1410.3191.

[14] Peter Harris, “The mali GPU: An abstract ma-
chine,” 2014, Available at https : / / community . arm .
com / groups / arm-mali-graphics / blog / 2014 / 03 / 12 /
the-mali-gpu-an-abstract-machine-part-3--the-shader-core.

PUBLICATION 6

M. Aghababaeetafreshi, D. Korpi, M. Koskela, P. Jääskeläinen, M. Valkama and J. Takala, "Soft-
ware defined radio implementation of a digital self-interference cancellation method for inband
full-duplex radio using mobile processors," Journal of Signal Processing Systems, Oct 2018,
90(10), pp. 1297–1309, doi: 10.1007/s11265-017-1312-0

© 2018 Springer

The original publication is available at https://link.springer.com/article/10.
1007/s11265-017-1312-0.

https://link.springer.com/article/10.1007/s11265-017-1312-0
https://link.springer.com/article/10.1007/s11265-017-1312-0

Software Defined Radio Implementation of a Digital
Self-interference Cancellation Method for Inband Full-Duplex
Radio Using Mobile Processors

Mona Aghababaeetafreshi · Dani Korpi · Matias Koskela ·
Pekka Jääskeläinen · Mikko Valkama · Jarmo Takala

Abstract New means to improve spectral efficiency

and flexibility in radio spectrum use are in high demand
due to congestion of the available spectral resources.
Systems deploying inband full-duplex transmission aim

at providing higher spectral efficiency by concurrent
transmission and reception at the same frequency. Po-
tentially doubling system throughput, full-duplex com-
munications is considered as an enabler technology for

the upcoming 5G networks. However, system perfor-
mance is degraded due to the strong self-interference
(SI) caused by overlapping of high power transmit sig-

nal with the received signal of interest. Furthermore,
due to commonly existing radio frequency imperfec-
tions, advanced techniques capable of mitigating non-

linear SI are required. This article presents a real-time
software-defined implementation of a digital SI can-
celler for full-duplex transceivers, potentially applicable
even in mobile-scale devices. Recently, software-defined

radio has gained a lot of interest due to its higher
flexibility, scalability, and shorter time-to-market cy-
cles compared to traditional fixed-function hardware

designs. Moreover, as the performance enhancements
achieved by increasing the clock frequency is reach-
ing its limits, the current trend is towards multi-core
processors. Since contemporary mobile phones already

contain powerful massively parallel GPUs and CPUs,
feasibility of a real-time implementation on mobile pro-
cessors is studied. The reported results show that by

adopting the presented solution, it is possible to achieve
sufficient SI cancellation under time varying coupling
channel conditions. Additionally, the possibility of car-

rying out such advanced processing in a real-time fash-

M. Aghababaeetafreshi
Tampere University of Technology, Korkeakoulunkatu 1,
33720 Tampere, Finland
E-mail: mona.aghababaeetafreshi@tut.fi

ion on the selected platforms is investigated, and the

implementation is evaluated in terms of execution time,
power, and energy consumption.

Keywords 5G · full-duplex · self-interference cancel-
lation · GPU · OpenCL

1 Introduction

In full-duplex communications, transmission and recep-
tion are carried out using the same spectral and tempo-
ral resources. Since this simultaneous use of bandwidth

for both transmission and reception can theoretically
increase the throughput by a factor of two, inband full-
duplex communication is considered a promising en-

abler for the future 5G networks [17]. However, deploy-
ment of such systems is extremely challenging due to
the strong self-interference (SI) produced as a result
of the transmit signal coupling to the receiver. Thus,

a crucial step toward achieving the promised gain in
throughput by full-duplex transmission is to effectively
attenuate the SI signal [3]. This is a complicated task, as

it is not possible to simply subtract the known trans-
mit signal from the received waveform to obtain the
signal of interest. The reason behind this is the linear

and nonlinear distortion of the signal while propagating
from transmitter to the receiver due to transceiver ana-
logue imperfections [24][16]. This makes efficient sup-
pression of the SI signal the main obstacle in realizing

full-duplex systems.
The analogue imperfections make SI cancellation

even more challenging on the mobile side compared

to the base station side, since typically low cost com-
ponents are employed in mobile devices. Furthermore,
processing resources and power consumption are limit-

ing factors in hand-held devices. Thus, effective yet less
complex solutions are required for the user equipment

2 Mona Aghababaeetafreshi et al.

side in order to exploit the full potential of full-duplex
systems. An SI cancellation method designed for a mo-
bile station should also take the continuously chang-
ing environment around the device into consideration.

Thus, an adaptive solution should be developed to keep
track of the time-varying SI channel.

Currently, advanced processor architectures take ad-
vantage of parallel processing to achieve higher per-
formance, since performance enhancement through in-
creasing the processors’ operating frequency in a fixed

power envelope has reached technical challenges [20][9].
Thus, we take advantage of the parallel processing ca-
pabilities of multi-core GPUs and CPUs. Moreover, to

better utilize the parallel resources of the processors,
Open Computing Language (OpenCL) is used. OpenCL
is a programming standard for heterogeneous platforms,

enabling efficient access to the available parallel re-
sources [20].

In this work, a software based implementation for

the entire digital canceller, which includes an orthogo-
nalization procedure, together with a parameter learn-
ing algorithm is introduced. Such software defined radio

(SDR) implementation provides more programmabil-
ity, lower expenses, less design efforts, and thus shorter
time-to-market cycles compared to traditional fixed-
function approaches [30][13]. To demonstrate the fea-

sibility of an SDR implementation of the digital can-
celler, we worked with commercial off-the-shelf (COTS)
low-cost components, which highlight the true advan-

tages of a software-based solution. The implementation
is carried out on four multicore platforms, which are
suitable for both the network and user equipment side.
The employed platforms are Qualcomm R© AdrenoTM

430, ARM R© MaliTM-T628 MP6, ARM R© Cortex R©-A15,
and Intel R© CoreTM i7-4800MQ. The core i7 desktop
CPU was mainly used for comparison purposes, while

the rest of the processors are the main target of the
study.

Using the measured signals from an actual full-duplex

prototype, we demonstrate that sufficient real-time sup-
pression of the SI signal is feasible using the proposed
implementation. Furthermore, the implemented canceller

is evaluated in terms of execution time, delay, power,
and energy consumption. This article is a continuation
of the work presented in [2].

The rest of the paper is organized as follows. Sec-
tion 2 introduces some of the related work, existing in
the literature. Section 3 describes the digital SI can-

cellation method adopted in this work. Section 4 ex-
plains the implementation of digital canceller blocks,
and presents the selected platforms. Then, in Section
5, the implementation results are shown and analyzed.

Finally, conclusions are drawn in Section 6.

2 Related work

As mentioned in the previous section, sufficient cancel-
lation of the SI signal is the main challenge in achieving
a system operating effectively in full-duplex mode. This

topic has been researched extensively and various tech-
niques have been introduced in the literature.

In [21], a novel RF canceller architecture is described
which cancels both the direct antenna coupling and

multipath effects, while [3] proposes an all digital can-
cellation method. [7] uses three different methods for
SI suppression with both analogue and digital cancella-

tion. Like [7], the proposed methods in literature typ-
ically include different stages of cancellation such as,
propagation, analogue, and digital domain cancellation

[29][16]. Some studies assume that only the base station
functions in full-duplex mode, while the mobile equip-
ment remains operating in half-duplex mode. An ex-
ample of which can be found in the work presented in

[10].
Some contributions toward actual prototypes capa-

ble of full duplex communications can be found in the

literature, such as the ones described in [6], [8], [16], and
[27]. However, there are very few existing articles on
real-time implementation of digital SI cancellation.The

work in [22] implements parts of the digital cancella-
tion method proposed in [23] on an FPGA. However,
no contributions regarding a software based implemen-
tation of digital SI cancellation targeted for a mobile-

scale device, as the one reported here, can be found
in the literature. Especially this work uses COTS el-
ements and eliminates the need for custom hardware

design and additional hardware components.
Some contributions with similar arithmetic compu-

tations and implementation techniques, used for dig-
ital predistortion design, can be found in the litera-

ture. These works, found in [12,25,26], also study par-
allel processing on mobile-scale multicore processors,
in which evaluations of the achieved performance are

also reported. However, experimental measurements of
power, or energy consumption are not carried out.

3 Digital self-interference cancellation

In order to reduce the SI signal to a level not inter-
fering with the desired received signal decoding, both

radio freqncy (RF) and digital domain cancellation are
required. The former prevents the analogue-to-digital
converter and the receiver low-noise amplifier (LNA)

from saturating. However, further suppression of the SI
signal should be carried out in the digital domain to
improve system performance. The overall structure of

the full-duplex transceiver, including both the RF and

Title Suppressed Due to Excessive Length 3

DACLPF

V
G

A

P
A

xn LPF ↓D

|xn|
p-1

xn

|xn|
2xn LPF

LPF

↓D

↓D wp

LPF ↓q

Ʃ

L
M

S
 f

il
te

r

w
ei

g
h
t

u
p

d
at

e

L
N

A ADCLPF

V
G

A

R
F

 c
an

c
e
ll

a
ti

o
n

 c
ir

c
u

it

transmit signal

~
LO

IQ Mixer

IQ Mixer

Fs

cancelled

signal

w3

w1

Ʃ

(D/r)Fs

↑r

Ʃ
Fs

O
rt

h
o

go
n

al
iz

at
io

n

Fig. 1 Overall structure of a full-duplex transceiver, where the grey part is implemented in software.

digital cancellation is shown in Fig. 1. In this section,
we address the latter by first introducing a model for
the SI signal.

3.1 Self-interference Modeling

The transmitter and receiver paths contain numerous
non-ideal components which distort the transmitted sig-

nal in linear and nonlinear ways. The transceiver im-
pairments include nonlinear distortion by power am-
plifiers, phase-noise of the local oscillator, quantiza-
tion noise from the analogue-to-digital converter, and

in-phase/quadrature (I/Q) imbalance of the transmit-
ter and receiver. Since the transmitter power amplifier
(PA) is usually the most significant source of nonlinear-

ity, we model the transmit signal by adopting the par-
allel Hammerstein (PH) model, commonly used for a
highly nonlinear PA. Denoting the PA input by xPA,in,
the PA output, using the PH model, can be written as

[23]:

xPA,out =
P∑

p=1
p odd

K−1∑

k=0

hPA
p (k)up(xPA,in(n− k)), (1)

where P represents the highest nonlinearity order of the
PA model,K is the memory length of the PA, hPA

p is the

pth-order model for the PA memory, and up(xPA,in(n))
is computed as |xPA,in(n)|p−1xPA,in(n) and produces
the pth-order basis function.

Now with the transmitter PA as the most prominent
cause of nonlinear distortion, the whole SI channel can
be effectively modelled using (1). Thus, the received

signal at the digital canceller input, with respect to the
original transmitted signal x(n), can be expressed as:

rx(n) =
P∑

p=1
p odd

L−1∑

l=0

hp(l)up(x(n− l)) + z(n), (2)

where L is the memory length of the effective SI chan-

nel, hp(l) contains the coefficients for the effective pth-
order SI channel, and z(n) represents the noise and

possible modeling mismatch. After estimating the un-
known SI channel coefficients, denoted here by ĥp(l),
the signal at the output of the digital canceler can be

written as:

e(n) = rx(n)−
P∑

p=1
p odd

L−1∑

l=0

ĥp(l)up(x(n− l)). (3)

Looking at equations (2) and (3), with accurate esti-

mation of the SI channel coefficients, only noise should
remain after digital cancellation, meaning that e(n) ≈
z(n). Furthermore, the estimated coefficients need to be

updated, as the surrounding environment of a mobile
device changes over time. The method used for the esti-
mation should also have low computational complexity
in order to be suitable for mobile-scale processing re-

sources. Taking the aforementioned requirements into
account, we have adopted the LMS based solution pro-
posed in [23].

3.2 Orthogonalization

Since the different basis functions, mentioned in the

previous section, are functions of the same transmit
signal, they tend to be somewhat correlated. This will
result in slow convergence of the LMS-based coefficient

estimation. To alleviate this problem, the basis func-
tions are orthogonalized using the method proposed in
[23], which is briefly described here.

The basis functions are orthogonalized using a whiten-
ing transformation matrix. This matrix can be gener-
ated by eigendecomposition of the covariance matrix Σ.

Defining the instantaneous basis function vector as:

u(n) =
[
u1(x(n)) u3(x(n)) . . . up(x(n))

]T
, (4)

with up(x(n)) = |x(n)|p−1x(n), the covariance matrix
of basis functions across different nonlinearity orders

can be defined as:

Σ = E[u(n)u(n)H]. (5)

4 Mona Aghababaeetafreshi et al.

Having Σ = VDVH, where diagonal matrix D con-
tains the eigenvalues of Σ, and matrix V consists of
the eigenvectors, the transformation matrix T can be
written as:

T = D− 1
2 VH . (6)

Using the transformation matrix T, the orthogonalized

basis functions can be calculated by:

ũ(n) = Tu(n). (7)

Now (3) can be re-written using the orthogonalized ba-

sis functions as follows:

e(n) = rx(n)−
P∑

p=1
p odd

L−1∑

l=0

ĥp,ort(l)ũp(x(n− l)), (8)

where ũp(x(n)) are the orthogonalized basis functions
using matrix T, and ĥp,ort(l) represents the correspond-

ing SI channel estimates. Adopting vector notations, (8)
can be expressed as:

e(n) = rx(n)−wHuort(n), (9)

where

w =
[
ĥ1,ort(0), ĥ3,ort(0), . . . , ĥP,ort(0), . . .

ĥ1,ort(L− 1), ĥ3,ort(L− 1), . . . , ĥP,ort(L− 1)
]T
,

(10)

and

uort(n) =
[
ũ(n)T , ũ(n−1)T , . . . , ũ(n−L+1)T

]T
. (11)

It is worth mentioning that the covariance matrix Σ de-

pends only on the statistical properties of the original
transmit signal, and consequently it is not time vary-
ing. Therefore, we can assume that the transformation

matrix T is computed and known beforehand.

3.3 LMS parameter learning

In this step, the effective SI channel coefficients are es-

timated using the decorrelated basis functions. This is
carried out using an LMS-based algorithm with spe-
cific step-sizes for the different nonlinear terms [31].
Both pre-cursor and post-cursor taps are considered for

a precise memory model of the SI channel. The origi-
nal learning algorithm proposed in [23] is modified so
that the estimated weights are not updated with every

sample but only after a block of N samples are pro-
cessed. This computing-friendly LMS-based approach

is described in Algorithm 1, where ũ is a vector con-
taining the orthogonalized basis functions calculated
in (7), w contains the corresponding SI channel coeffi-
cients, rx(n) is the received signal, e(n) represents the

cancelled signal, and Lpre and Lpost are the amounts of
pre-cursor and post-cursor taps, respectively. Further-
more, µ contains the step sizes, and N controls how

often w is updated.

Algorithm 1 LMS-based adaptive nonlinear digital
cancellation.
1: Initialize:
2: w← [0 . . . 0]
3: n← Lpost

4: while transmitting do

5: uort(n) =
[
ũ(n + Lpre)T . . . ũ(n− Lpost)

T
]T

6: e(n) = rx(n)−w(n)Huort(n)
7: if (n mod N == 0) then
8: w(n + 1)← w(n) + µe∗(n)uort(n)
9: end if

10: n← n + 1
11: end while

4 Implementation

4.1 Implemented blocks

In this section, the blocks, implemented in software, for

the digital SI canceller, shown in Fig. 2 are described
in short.

Basis functions calculation The first step is to cal-
culate the nonlinear transformations of the original trans-
mit signal. The pth-order basis function is computed

for each sample as up(n) = |x(n)|p−1x(n). In this im-
plementation, highest considered nonlinearity order is
P = 3.

Polyphase filtering As shown in Fig. 1, the trans-
mit signal is oversampled before generating the basis

functions. Thus the calculated basis functions can be
resampled to the final cancellation signal sample rate.
Assuming a decimation factor equal to D, only every

D-th sample is kept after appropriate lowpass filtering.

To eliminate the unnecessary computations, we have
designed a polyphase filter to perform the resampling
task. This results in a more efficient implementation

as the filtering is not performed on all original signal
samples. An illustration of the adopted polyphase fil-
ter with downsampling factor D can be seen in Fig. 3,

where F0, . . . , FD−1 are sub-filters of length M . The
total length for the polyphase filter is equal to M ×D.

Title Suppressed Due to Excessive Length 5

Polyphase filtering

x(n)

w3

LMS filtering

B
a
si

s
fu

n
c
ti

o
n

s

O
rt

h
o

g
o
n

a
li

z
a
ti

o
n

10LPF|xn|
2xn

w1 SI channel

coefficients

update

rx(n)

Pre-calculated matrix T

10LPF

Basis functions

calculation
y(n)

Fig. 2 Implemented blocks for a third-order digital SI canceller, shown also in the grey part in Fig. 1.

This work employs a polyphase filter with total length

of 20, having downsampling factor D = 10, and sub-
filter length M = 2.

The OpenCL implementation for the polyphase fil-
ter was carried out with both vector and scalar data

types. With careful re-arrangement of the filter coef-
ficients, the data loads can be carried out in a more
efficient way. Fig. 4 illustrates an example implementa-

tion and work-load distribution for the polyphase filter.
In this figure, the data and the coefficients are loaded
as vectors of length four into vectors x and p, respec-
tively. After multiplication and summation, each work-

item produces one output sample y[n]. In Fig. 4, k de-
notes the polyphase filter length, k = M ×D, number
of work groups is represented by n, and a local size of

16 is assumed for a clearer presentation.

Computing orthogonalization matrix This step is

done according to equations (4) to (6). However, as
mentioned in the previous section the transformation
matrix depends only on the statistical properties of the

transmit signal, and does not change over time. Thus,
we have assumed that the transformation matrix T
is precomputed to reduce complexity and unnecessary
computations. Having nonlinearity order P = 3, T is a

2× 2 matrix.

Basis function orthogonalization After going through

the polyphase filter, the basis functions are orthogo-
nalized using the precomputed matrix T, according to

...

F0

F1

FD-1

x(n)

n = 0, D, ..

n = 1, D+1, ..

n = D-1, 2D-1, ..

...

∑

y(n)

Fig. 3 Functional structure of a polyphase filter with dec-
imation factor D, where y(n) represents the signal samples
after downsampling and filtering x(n).

equation (7). This helps the LMS learning process to

converge faster.

LMS filtering The orthogonalized basis functions are
filtered with the SI channel coefficient estimates. The
filter length, i.e., the SI channel memory, is defined as
L = (Lpre+Lpost+1)×(P+1

2). Then the filtered results

are subtracted from the received signal to produce the
cancelled signal. This corresponds to the computations
from line 6 in Algorithm 1. The SI channel coefficients

are updated after a block of N samples are processed
using the SI channel coefficients update kernel.

SI channel coefficients update Having the cancelled
signal samples and step sizes µ, the SI channel esti-
mates are updated as described in lines 7-10 in Algo-

rithm 1. The selected step size is equal to 0.01 and 0.001
for the linear and third order terms, respectively. To re-
duce the computations, this step is also modified such

that the coefficients are only updated after processing
every N sample. This is done so that the LMS filter
kernel would not have to wait for updated coefficients

after processing every single sample. Less frequent up-
dating of the coefficients reduces the dependency of the
two kernels, the LMS filter and SI channel coefficients
update kernels, and helps to increase parallelism, hav-

ing larger blocks of input samples for the LMS filter
kernel.

4.2 Platforms

In this work, three mobile scale multi-core processors

and one desktop CPU are selected as the processing
platforms. These are commercial off-the-shelf products
that are currently employed in some of the available

devices in the market. These platforms are briefly in-
troduced in the following.

6 Mona Aghababaeetafreshi et al.

work group n (wg = n)

work item 0 (wi = 0)

x0 = vload4(data[wg*16D+wi*D])

x1 = vload4(data[wg*16D+wi*D+4])

xk/4 -1 = data[wg*16D+wi*D+k-4]

z = x0*p[0] + .. + xk/4 -1*p[k/4-1]

y[16*(wg-1)+wi] = sum(z)

work item 1 (wi = 1)

x0 = vload4(data[wg*16D+wi*D])

x1 = vload4(data[wg*16D+wi*D+4])

xk/4 -1 = data[wg*16D+wi*D+k-4]

z = x0*p[0] + .. + xk/4 -1*p[k/4-1]

y[16*(wg-1)+wi] = sum(z)

work item 15 (wi = 15)

x0 = vload4(data[wg*16D+wi*D])

x1 = vload4(data[wg*16D+wi*D+4])

xk/4 -1 = data[wg*16D+wi*D+k-4]

z = x0*p[0] + .. + xk/4 -1*p[k/4-1]

y[16*(wg-1)+wi] = sum(z)

work group 0 (wg = 0)

work item 0 (wi = 0)

x0 = vload4(data[wg*16D+wi*D])

x1 = vload4(data[wg*16D+wi*D+4])

xk/4 -1 = data[wg*16D+wi*D+k-4]

z = x0*p[0] + .. + xk/4 -1*p[k/4-1]

y[16*(wg-1)+wi] = sum(z)

work item 1 (wi = 1)

x0 = vload4(data[wg*16D+wi*D])

x1 = vload4(data[wg*16D+wi*D+4])

xk/4 -1 = data[wg*16D+wi*D+k-4]

z = x0*p[0] + .. + xk/4 -1*p[k/4-1]

y[16*(wg-1)+wi] = sum(z)

work item 15 (wi = 15)

x0 = vload4(data[wg*16D+wi*D])

x1 = vload4(data[wg*16D+wi*D+4])

xk/4 -1 = data[wg*16D+wi*D+k-4]

z = x0*p[0] + .. + xk/4 -1*p[k/4-1]

y[16*(wg-1)+wi] = sum(z)

Fig. 4 OpenCL kernel structure and workload distribution for the polyphase filter.

Qualcomm R© AdrenoTM 430 Adreno 430 is a mobile

GPU by Qualcomm, and is available in the Snapdragon
810 System on Chip (SoC). This GPU is designed for
mobile-scale devices and can run at 500 MHz, 600 MHz,

or 650 MHz clock frequency [28]. Very little information
about Adreno’s architecture is publicly available, but
it seems that it can approximately support 200 floating
point operations in one clock cycle. To run the digital

canceller blocks on Adreno 430, a commercial Android
phone was used.

ARM R© MaliTM-T628 MP6 Similar to Adreno, Mali is

a mobile-scale GPU and runs at a 600 MHz clock fre-
quency [5]. Mali-T628 is a part of the Samsung Exynos
5 Octa (Exynos 5422) SoC. This GPU can scale from
one to eight cores. Each core can handle up to eight

floating point operations per cycle [15]. In this work,
Odroid XU3 board [14] was used to access Mali.

ARM R© Cortex R©-A15 The Cortex-A15 MPCore is a

low power multicore processor that can have one to four
cores [4]. This multicore processor can be found, for ex-
ample in the Exynos 5 Octa (Exynos 5422) SoC. It
runs at 1.4 GHz clock frequency. Each of the four cores

has one NEON (advanced Single Instruction Multiple
Data instruction set) and vector floating point unit. The
same Odroid XU3 board was used for implementing the

digital canceller on A15 CPU.

Intel R© CoreTM i7-4800MQ Unlike the other three pro-
cessing units mentioned above, the Intel Core i7 is a

desktop CPU. This processor has four cores and can
run at up to 3.7 GHz [18].

5 Evaluation and analysis

In this section, the implementation results of the digi-
tal canceller blocks introduced in the previous section
are presented. First, using the data from an actual full-

duplex prototype system, described in [23] and [24], we
demonstrate that the presented digital cancellation im-
plementation can efficiently suppress the self-interference
signal. Then, we evaluate this solution in terms of ex-

ecution time, power, and energy consumption to study
the feasibility of such software-based implementation
using the four aforementioned COTS processors.

Software tailoring: To optimize the implementation,
the kernels are tailored for each platform. Having a

scalar or vector based implementation, the different pos-
sible vector lengths, and workload distribution between
the OpenCL work-items are the factors that greatly af-

fect the execution time of each processing task.

Different kernel designs on Mali showed that em-
ploying floating point vectors of length four yields the
best results. Running the kernels on A15, different vec-

tor lengths and in some cases the scalar based imple-
mentation show similar results. However, execution of
the kernels is fastest when the workload is distributed

such that there are two work groups. The kernels de-
signed for the Core i7 use vectors of length 16, and in
most cases perform more efficiently when the process-

ing is divided among eight work groups. Similar to Mali,
Adreno achieves higher performance when using vectors
of length four. Furthermore, workload should be spread
among four work groups. The implementation results

presented in the following section are obtained having

Title Suppressed Due to Excessive Length 7

0 1 2 3 4 5 6 7 8

−90

−85

−80

−75

−70

−65

−60

−55

−50

−45

Time (ms)

P
o
w

er
(d

B
m

)

Linear digital canceller (N=256, P=1)

Linear digital canceller (N=128, P=1)

Linear digital canceller (N=1, P=1)

Third order digital canceller (N=256, P=3)

Third order digital canceller (N=128, P=3)

Third order digital canceller (N=1, P =3)

Fig. 5 The instantaneous power of the SI signal, averaged
over 1000 samples, of linear (P = 1) and third order (P = 3)
digital canceller output signal, implemented on the Adreno
430, with respect to time, for N = 1, N = 128, and N = 256.

designed the most efficient kernel implementation for
each platform.

5.1 Digital SI canceller performance

After the sampled data, collected from the real full-

duplex prototype system, was processed on the plat-
forms, the cancelled signal was used to plot Fig. 5. In-
put buffers of 10, 1280 and 2560 samples are considered,

which means that after downsampling by a factor of 10
and orthogonalization, one sample or blocks of 128 and
256 samples are processed before updating the canceller

coefficients. When creating the plots in Fig. 5, Lpre and
Lpost are set to 8 and 7, respectively. Having total chan-
nel length L = (Lpre + Lpost + 1) × (P+1

2), L is equal
to 16 for the linear canceller and 32 for the third order

canceller.

This figure shows that the implemented canceller is
capable of sufficient suppression of the SI signal, close to

the receiver noise floor (-90 dBm). Allowing more time
to converge will result in almost perfect SI cancellation.
Being able to cancel the third order nonlinear SI, the

third order canceller shows superior performance com-
pared to the linear one. Comparing the curves in Fig. 5,
it can be seen that less frequent updating of the SI chan-
nel coefficients has resulted in slower convergence of the

LMS-learning algorithm. However,the difference is rel-
atively small, especially after the initial learning phase,
indicating that less frequent updating of the channel

coefficients is a feasible option for controlling the com-
putational complexity of the digital canceller.

5.2 Execution time analysis

In this section, the execution times related to the dif-

ferent building blocks of the SI digital canceller running
on four different platforms, introduced in Section 4.2,
are reported. A key factor in using OpenCL and mul-

ticore platforms with single instruction, multiple data
(SIMD) or single program, multiple data (SPMD) op-
timized hardware is being able to take advantage of

the available data parallelism. High performance can
be achieved when parallel elements of the processor
are utilized efficiently and the work load is distributed
properly between these elements. We add to the in-

herent parallelism of the algorithms by increasing the
amount of data processed in each kernel call. As a re-
sult, the processing time for each signal sample is de-

creased. Furthermore, vector lengths and workload dis-
tribution are adjusted for each implemented block on
each platform so that kernel executions are carried out
more efficiently.

The execution times for each digital canceller block

implemented on the four platforms are presented in Ta-
bles 1 - 4. It should be noted that the reported times do
not include data transfer, as SoC design can be easily

made so that the processing unit sees the same memory
as the radio hardware. The tables show the result us-
ing different buffer sizes for both linear and third order
cancellers.

As the buffer lengths increase, the processing time

related to one data sample decreases. In many cases,
the processing time is approximately reduced by a fac-
tor of two, when the buffer size is doubled. This is the

case for the “orthogonalization” and “weight update”
kernels. However, the two filtering kernels, “polyphase”
and “LMS”, achieve lower speed-up due to their inher-
ent lack of parallelism, stemming from the summation

step of convolution in the filters. The size of the buffers
fed to the first block are chosen as powers-of-two mul-
tiplied by D = 10, which is the downsampling factor.

Moreover, the “basis functions” kernel’s execution
speed does not scale linearly with the buffer size. This

can be explained by the input buffer size of this ker-
nel which is ten times bigger than that of the “or-
thogonalization” and “weight update” kernels, which

are executed after downsampling. This larger amount
of data could saturate the available parallel resources
of the cores, resulting in a slower speed-up. The effect

of increasing the buffer size on the overall achieved per-
formance is illustrated in Fig. 6. With longer buffers,
the production rate improves less as the processing re-
sources reach saturation.

The presented results show that Mali and A15 are

only capable of processing the signal at rates lower than

8 Mona Aghababaeetafreshi et al.

Table 1 Execution times of one signal sample for different kernels with respect to buffer lengths when implemented on Adreno
430 for both the linear and third order canceller.

Buffer size 2560 5120 10240 20480

Nonlinearity order P = 1 P = 3 P = 1 P = 3 P = 1 P = 3 P = 1 P = 3

Basis functions - 1,89 - 1,50 - 1,37 - 1,21
Polyphase 23 44,10 16 30,5 13,75 26,50 12,21 22,75
Orthogonalization 11 18 5,50 11,50 2,75 5,75 2,25 4,75
LMS filter 23 32,76 17 23,28 14,25 20,05 12,75 18,32
Weight update 11 11 5,50 5,50 2,75 2,85 1,38 1,27

Total [ns] 68 107,75 44 72,28 33,50 56,52 28,59 48,30
Rate [MHz] 14,71 9,29 22,73 13,84 29,85 17,69 34,98 20,70

Table 2 Execution times of one signal sample for different kernels with respect to buffer lengths when implemented on Cortex
A15 for both the linear and third order canceller.

Buffer size 2560 5120 10240 20480

Nonlinearity order P = 1 P = 3 P = 1 P = 3 P = 1 P = 3 P = 1 P = 3

Basis functions - 34,76 - 17,96 - 10,25 - 5,85
Polyphase 312,50 622,50 207,03 411,52 122,07 242,49 77,63 152,94
Orthogonalization 320,31 328,12 164,02 164,06 82,03 84,96 44,92 45,41
LMS filter 398,43 476,56 222,65 306,64 134,76 214,84 92,77 167,96
Weight update 265,62 242,18 142,57 125 83 81,05 42,96 40,52

Total [ns] 1296,8 1704,1 736,27 1025,2 421,86 633,59 258,28 412,68
Rate [MHz] 0,77 0,59 1,36 0,97 2,37 1,57 3,87 2,41

0

20

40

60

80

100

120

2560 5120 10240 20480 40960

S
am

p
le

 P
ro

d
u

ct
io

n
 r

at
e

[M
H

z]

Data buffer size

Mali (P=3) A15 (P=3) i7 (P=3) Adreno (P=3)

Mali (P=1) A15 (P=1) i7 (P=1) Adreno (P=1)

Fig. 6 Sample production rate increase with regards to
buffer size on the four platforms for both linear and third
order cancellers.

15 MHz, even with large input data buffers. However,
linear digital cancellation can be carried out on the

Adreno 430 GPU and the Core-i7 CPU at rates over
20 MHz, having buffer sizes of 5120 samples. Further-
more, the Core-i7 and the Adreno 430 can perform third

order digital cancellation for a 20 MHz waveform with
buffer size of 5120, and 20480 samples, respectively.

Comparing the linear and third order cancellers in

Tables 1 - 4, it can be seen that the polyphase filtering
in the third order canceller takes approximately twice

as much time as in the linear one. This is due to the

fact that in case of a third order canceller, two filtering
kernels are employed for both the linear and third or-
der basis functions. The calculation of third order basis
functions, carried out by the “basis functions” kernel is

redundant in the linear canceller. The rest of the imple-
mented blocks require equal or slightly more time for
the third order canceller, as they only differ in a few

multiplications and/or additions.

5.3 Delay analysis

As discussed previously, to add to the available par-
allelism of the algorithm and utilize the parallel re-
sources of the processors more efficiently, we increase

the amount of data processed in each kernel, having
longer input buffers. The disadvantage of this approach
are longer delays for the system as larger blocks of data

must be processed in each kernel call. The overall de-
lays related to different buffer sizes for each platform

Title Suppressed Due to Excessive Length 9

Table 3 Execution times of one signal sample for different kernels with respect to buffer lengths when implemented on
Mali-T628 for both the linear and third order canceller.

Buffer size 2560 5120 10240 20480

Nonlinearity order P = 1 P = 3 P = 1 P = 3 P = 1 P = 3 P = 1 P = 3

Basis functions - 3,41 - 2,49 - 2,21 - 2,02
Polyphase 46,14 90,11 39,66 77,68 36,08 71,09 33,2 64,85
Orthogonalization 19,33 40,97 10,36 21,62 5,43 12,31 2,46 6,7
LMS filter 65,79 87,16 44,52 72,32 37,83 55,51 28,48 50,41
Weight update 30,51 25,19 16,08 16,84 6,15 8,44 3,43 4,54

Total [ns] 161,77 246,84 110,62 190,95 85,49 149,56 67,57 128,52
Rate [MHz] 6,18 4,05 9,04 5,23 11,70 6,68 14,80 7,78

Table 4 Execution times of one signal sample for different kernels with respect to buffer lengths when implemented on Core
i7 for both the linear and third order canceller.

Buffer size 2560 5120 10240 20480

Nonlinearity order P = 1 P = 3 P = 1 P = 3 P = 1 P = 3 P = 1 P = 3

Basis functions - 1,92 - 0,66 - 0,55 - 0,48
Polyphase 20,78 39,86 12,02 22,34 9,64 17,97 6,12 11,38
Orthogonalization 5,93 7,42 3,71 4,45 2,22 2,59 1,29 2,22
LMS filter 23,75 22,26 12 12,90 9,64 10,02 6,30 6,49
Weight update 5,93 7,42 3,71 3,71 1,85 1,85 0,92 0,92

Total [ns] 56,39 78,88 31,44 44,06 23,35 32,98 14,63 21,49
Rate [MHz] 17,73 12,67 31,80 22,69 42,82 30,32 68,35 46,53

are listed in Table 5. This delay is calculated as:

overall delay = Tbasisfunctions × buffer size

+ Tpolyphase ×
buffer size

D

+ Torthogonalization ×
buffer size

D

+ TLMS filter ×
buffer size

D

+ Tweight update ×
buffer size

D
,

(12)

where Tkernel is the processing time for one signal sam-
ple of “kernel”, and D is the downsampling factor.

The calculated overall delay is equal to 25, 6 µs for
a third order SI canceller implemented on Core i7 and
70, 5 µs on Adreno 430 with input buffer sizes of 5120

and 10240, respectively. These delays can be consid-
ered more than reasonable, when compared, e.g., to
the inherent receiver processing latency of LTE user

equipment (UE) which is, in minimum, 1 ms due to
the downlink reference symbol structure as well as the
adopted codeword mapping and interleaving process-
ing. Furthermore, the specifications [11] allow an ad-

ditional processing time of 3 ms for sending downlink
hybrid ARQ (HARQ) acknowledgement within uplink
L1/L2 control signaling. Thus, a balance can be achieved

in the delay and sample production rate trade-off for a
real application.

5.4 Power consumption analysis

Power measurement is not possible on Adreno 430 and
Core i7, as no tools are provided for this purpose on the
employed platforms. However, the Odroid XU3 board is

equipped with sensors which allow measuring the power
consumed by the Mali GPU, the DRAM, and both A7
and A15 CPUs. It is possible to probe the sensor data
at discrete time instances. Thus, to provide a more reli-

able power consumption estimate, we take 200 samples
of the sensor data in intervals of 100 ms. As the kernels
are very small, they should be repeatedly run during

this 20s interval. This keeps the processor cores occu-
pied by the intended kernel. Then, the data from the
sensors is averaged over the 20s period. However, any

program running in the background, such as the oper-
ating system could partly account for the CPU/GPU
power consumption. Thus, the processors idle power,
i.e., power consumption while not running any kernels,

are computed and subtracted from the measured re-
sults.

Fig. 7 shows the average power measured when run-

ning the kernels for processing 5120 signal samples,
as the consumed power by the GPU and CPU does
not change significantly with different buffer lengths.

It can be seen that there is very little or no difference
in power consumption between the linear and third or-

10 Mona Aghababaeetafreshi et al.

Table 5 Overall delay in microseconds for different buffer lengths on all four platforms.

Buffer length 2560 5120 10240 20480

Nonlinearity order P=1 P=3 P=1 P=3 P=1 P=3 P=1 P=3

Mali 41,41 71,04 56,63 109,24 87,54176 173,51 42,08 300,44
A15 331,99 516,34 376,97 607,65 431,9846 743,26 42,08 952,07
i7 14,43 24,61 16,09 25,6 23,9104 38,83 42,08 52,85
Adreno 17,40 31,93 22,52 43,91 34,304 70,50 59,38 121,22

0,001

0,010

0,100

1,000

10,000

A
v
er

ag
e

p
o

w
er

 i
n
 w

at
ts

Mali (P=1) Mali (P=3) A15 (P=1) A15 (P=3)

Fig. 7 Consumed power by Mali and A15 running the lin-
ear and third order digital canceller kernels with input buffer
length of 5120.

der canceller. As basis functions calculation is not re-
quired in the linear cases, only the measurements from

the third order canceller are visible in the figure. The
bars labelled as “total” correspond to the average power
measured when running the complete digital canceller

chain, which is slightly higher than the average power
of all implemented blocks.

Comparing the results from the two processing plat-

forms, it can be seen that A15 uses approximately 20
times more power compared to Mali when executing
the same kernels. This can be explained by the higher
clock frequency of the CPU (1.4 GHz compared to 600

MHZ), as well as the extra hardware on the CPU chip
dedicated to the more general purpose computing. In-
creasing parallelism saves power by reducing the clock

frequency for the same throughput. This reduces the
switching activity, and more importantly the voltage
which has quadratic effects to the power[1].

Mali consumes roughly an average of 104 mW run-

ning the third order digital canceller blocks with input
buffer of 5120 samples. This can be considered negligi-
ble compared to the power consumption of e.g., an LTE

receiver, which according to [19] is close to a couple of
watts.

5.5 Energy consumption analysis

To better evaluate the feasibility of the proposed so-
lution, it is also important to investigate the energy

0,01

0,1

1

10

100

1000

E
n
er

g
y
 c

o
n
su

m
p

ti
o

n
 µ

J

Mali (P=1) Mali (P=3) A15 (P=1) A15 (P=3)

Fig. 8 Consumed energy by Mali and A15 running the lin-
ear and third order digital canceller kernels with input buffer
length of 5120.

consumption of the implemented canceller. Since bat-
tery life depends on energy consumption, it is especially
critical in hand-held devices. Furthermore, energy con-

sumption comparison leads to fairer analysis compared
to power, as we normalize the execution time.

We have used the measured average powers and the

delays when processing 5120 samples for each kernel,
and calculated the energy consumption. The results are
shown in Fig 8, in which the missing bars correspond
to linear cases, where basis function calculation is re-

dundant. As delay increases with longer buffers and
power consumption remains the same, it can be con-
cluded that energy consumption increases with longer

buffers.
Using higher power and slower execution of tasks

has resulted in higher energy consumption by A15 com-

pared to Mali. Total energy used by the third order can-
celler, implemented on Mali, and processing 5120 signal
samples is approximately 9 µJ.

6 Conclusion

In this paper, we proposed a software-based implemen-
tation of a nonlinear digital SI canceller for full-duplex

transceivers, using an adaptive cancellation algorithm,
suitable for mobile-scale devices. To demonstrate the
feasibility of a real-time SDR implementation, general-

purpose low cost COTS processing platforms were se-
lected, reducing the design time and costs compared

Title Suppressed Due to Excessive Length 11

to custom hardware design. The implementation was
carried out on multicore processors and software tai-
loring was done using OpenCL to achieve high perfor-
mance. The ability of the designed canceller to suffi-

ciently suppress the SI signal was shown using the data
from a real full-duplex RF test-bench. Then the imple-
mentation was evaluated in terms of execution time, de-

lay, power, and energy consumption to investigate the
feasibility of a real-time digital canceller suitable for
hand-held devices. The results showed that the Qual-

comm Adreno 430, a mobile-scale GPU, and the Intel
Core i7, a desktop CPU, can run the proposed digi-
tal canceller with the required sample rate for, e.g., a
20 MHz LTE band. However, there is a trade-off be-

tween the achievable SI cancellation rate and the sys-
tem delay, as longer data buffers are required for high
sample production rates. The results also showed that,

although the delay is shorter with a real-time linear SI
canceller, it converges much slower and may not reach
sufficient SI cancellation levels. As a proof of suitability
to mobile platforms, also power and energy consump-

tion of the implemented digital canceller were measured
on Exynos 5422 SoC, and the Mali-T628 GPU showed
more promising results compared to the Cortex-A15 for

a mobile-scale device. It can be concluded that a real-
time programmable implementation of a nonlinear dig-
ital canceller can be realized using the Adreno GPU,

on the user equipment side, and the Core i7 CPU on
the base station side. In the continuation of this work,
we aim at adopting a platform which would allow di-
viding the workload between the CPU and one or more

GPUs, and as a result achieving higher sample produc-
tion rates with shorter delays. Furthermore, another in-
teresting topic for future work is to use OpenCL to pro-

gram an FPGA for digital SI cancellation and compare
performance results of GPU and multicore processors
in terms of time, power, and energy consumption.

Acknowledgements This work was supported by Tampere
University of Technology graduate school, and the Academy
of Finland via projects ”In-Band Full-Duplex Radio Tech-
nology: Realizing Next Generation Wireless Transmission”
(304147) and ”Making Programmable Logic Feasible in the
Cloud.” (297548).

References

1. CMOS power consumption and Cpd calculation (1997).
URL http://www.ti.com/lit/an/scaa035b/scaa035b.

pdf. Last accessed 08.04.2017

2. AghababaeeTafreshi, M., Koskela, M., Korpi, D.,
Jääskeläinen, P., Valkama, M., Takala, J.: Software de-
fined radio implementation of adaptive nonlinear digi-
tal self-interference cancellation for mobile inband full-

duplex radio. In: IEEE Global Conference on Signal and
Information Processing (2016)

3. Ahmed, E., Eltawil, A.M.: All-digital self-interference
cancellation technique for full-duplex systems. IEEE
Transactions on Wireless Communications 14(7), 3519–
3532 (2015). DOI 10.1109/TWC.2015.2407876

4. ARM Ltd.: ARM R© Cortex R© -A15 MPCoreTM Processor
(2011). URL https://static.docs.arm.com/ddi0438/

i/DDI0438.pdf. Last accessed 08.04.2017

5. ARM Ltd.: The ARM R© MaliTM Family of Graphics
Processors (2013). URL http://malideveloper.arm.

com/downloads/events/2013/GDC/0319-11%20Mali%

20Minibook_TB.pdf. Last accessed 08.04.2017

6. Duarte, M., Dick, C., Sabharwal, A.: Experiment-driven
characterization of full-duplex wireless systems. IEEE
Transactions on Wireless Communications 11(12), 4296–
4307 (2012). DOI 10.1109/TWC.2012.102612.111278

7. Duarte, M., Sabharwal, A.: Full-duplex wireless commu-
nications using off-the-shelf radios: Feasibility and first
results. In: Conference Record of the Forty Fourth Asilo-
mar Conference on Signals, Systems and Computers, pp.
1558–1562 (2010). DOI 10.1109/ACSSC.2010.5757799

8. Duarte, M., Sabharwal, A., Aggarwal, V., Jana, R.,
Ramakrishnan, K.K., Rice, C.W., Shankaranarayanan,
N.K.: Design and characterization of a full-duplex mul-
tiantenna system for WiFi networks. IEEE Transactions
on Vehicular Technology 63(3), 1160–1177 (2014). DOI
10.1109/TVT.2013.2284712

9. El-Rewini, H., Abd-El-Barr, M.: Advanced Computer Ar-
chitecture and Parallel Processing. Wiley (2005)

10. Everett, E., Duarte, M., Dick, C., Sabharwal, A.: Em-
powering full-duplex wireless communication by exploit-
ing directional diversity. In: Conference Record of the
Forty Fifth Asilomar Conference on Signals, Systems and
Computers, pp. 2002–2006 (2011). DOI 10.1109/ACSSC.
2011.6190376

11. 3rd Generation Partnership Project: Technical Speci-
fication Group Radio Access Network; Requirements
for further advancements for Evolved Universal Terres-
trial Radio Access (E-UTRA) (LTE-Advanced) (Release
14) (2017). URL http://www.3gpp.org/ftp//Specs/

archive/36_series/36.913/36913-e00.zip. Last ac-
cessed 19.08.2017

12. Ghazi, A., Boutellier, J., Anttila, L., Juntti, M., Valkama,
M.: Data-parallel implementation of reconfigurable digi-
tal predistortion on a mobile GPU. In: 2015 49th Asilo-
mar Conference on Signals, Systems and Computers, pp.
186–191 (2015). DOI 10.1109/ACSSC.2015.7421110

13. Grayver, E.: Implementing Software Defined Radio, 1
edn. Springer (2013)

14. Hardkernel co., Ltd.: ODROID-XU3. (2013). URL
http://www.hardkernel.com/main/products/prdt_

info.php?g_code=G140448267127. Last accessed
08.04.2017

15. Harris, P.: The mali GPU: An abstract ma-
chine (2014). URL https://community.arm.

com/groups/arm-mali-graphics/blog/2014/03/12/

the-mali-gpu-an-abstract-machine-part-3--the-shader-core.
Last accessed 08.04.2017

16. Heino, M., Korpi, D., Huusari, T., Antonio-Rodriguez,
E., Venkatasubramanian, S., Riihonen, T., Anttila, L.,
Icheln, C., Haneda, K., Wichman, R., Valkama, M.: Re-
cent advances in antenna design and interference cancel-
lation algorithms for in-band full duplex relays. IEEE
Communications Magazine 53(5), 91–101 (2015)

12 Mona Aghababaeetafreshi et al.

17. Hong, S., Brand, J., Choi, J.I., Jain, M., Mehlman, J.,
Katti, S., Levis, P.: Applications of self-interference can-
cellation in 5G and beyond. IEEE Communications Mag-
azine 52(2), 114–121 (2014)

18. Intel Corporation: Intel R© CoreTM i7 Processor Fam-
ily for LGA2011 Socket (2014). URL http://www.

intel.com/content/www/us/en/processors/core/

4th-gen-core-i7-lga2011-datasheet-vol-1.html.
Last accessed 08.04.2017

19. Jensen, A.R., Lauridsen, M., Mogensen, P., Srensen,
T.B., Jensen, P.: LTE UE power consumption model:
For system level energy and performance optimization.
In: IEEE Vehicular Technology Conference (VTC Fall),
pp. 1–5 (2012). DOI 10.1109/VTCFall.2012.6399281

20. Khronos OpenCL Working Group: The OpenCL Specifi-
cation, version 2.0 (2015). URL https://www.khronos.

org/registry/cl/specs/opencl-2.0.pdf. Last accessed
08.04.2017

21. Kolodziej, K.E., McMichael, J.G., Perry, B.T.: Multi-
tap rf canceller for in-band full-duplex wireless commu-
nications. IEEE Transactions on Wireless Communica-
tions 15(6), 4321–4334 (2016). DOI 10.1109/TWC.2016.
2539169

22. Korpi, D., AghababaeeTafreshi, M., Piilila, M., Anttila,
L., Valkama, M.: Advanced architectures for self-
interference cancellation in full-duplex radios: Algorithms
and measurements. In: 2016 50th Asilomar Conference on
Signals, Systems and Computers, pp. 1553–1557 (2016).
DOI 10.1109/ACSSC.2016.7869639

23. Korpi, D., Choi, Y.S., Huusari, T., Anttila, L., Tal-
war, S., Valkama, M.: Adaptive nonlinear digital self-
interference cancellation for mobile inband full-duplex ra-
dio: Algorithms and rf measurements. In: IEEE Global
Communications Conference, pp. 1–7 (2015). DOI
10.1109/GLOCOM.2015.7417188

24. Korpi, D., Tamminen, J., Turunen, M., Huusari, T., Choi,
Y.S., Anttila, L., Talwar, S., Valkama, M.: Full-duplex
mobile device: pushing the limits. IEEE Communications
Magazine 54(9), 80–87 (2016). DOI 10.1109/MCOM.
2016.7565192

25. Li, K., Ghazi, A., Boutellier, J., Abdelaziz, M., Anttila,
L., Juntti, M., Valkama, M., Cavallaro, J.R.: Mobile GPU
accelerated digital predistortion on a software-defined
mobile transmitter. In: 2015 IEEE Global Conference
on Signal and Information Processing (GlobalSIP), pp.
756–760 (2015). DOI 10.1109/GlobalSIP.2015.7418298

26. Li, K., Ghazi, A., Tarver, C., Boutellier, J., Abdelaziz,
M., Anttila, L., Juntti, M., Valkama, M., Cavallaro,
J.R.: Parallel digital predistortion design on mobile GPU
and embedded multicore CPU for mobile transmitters.
Journal of Signal Processing Systems (2017). DOI
10.1007/s11265-017-1233-y. URL https://doi.org/10.

1007/s11265-017-1233-y
27. Mikhael, M., van Liempd, B., Craninckx, J., Guindi, R.,

Debaillie, B.: An in-band full-duplex transceiver proto-
type with an in-system automated tuning for rf self-
interference cancellation. In: 1st International Conference
on 5G for Ubiquitous Connectivity, pp. 110–115 (2014).
DOI 10.4108/icst.5gu.2014.258118

28. Qualcomm Technologies: Snapdragon 810 pro-
cessor product brief (2015). URL https:

//www.qualcomm.com/media/documents/files/

snapdragon-810-processor-product-brief.pdf. Last
accessed 08.04.2017

29. Sabharwal, A., Schniter, P., Guo, D., Bliss, D.W., Ran-
garajan, S., Wichman, R.: In-band full-duplex wireless:
Challenges and opportunities. IEEE Journal on Selected

Areas in Communications 32(9), 1637–1652 (2014). DOI
10.1109/JSAC.2014.2330193

30. Tuttlebee, W. (ed.): Software Defined Radio: Baseband
Technologies for 3G Handsets and Basestations, 1 edn.
Wiley (2004)

31. Widrow, B., McCool, J.M., Larimore, M.G., Johnson,
C.R.: Stationary and nonstationary learning character-
istics of the lms adaptive filter. Proceedings of the
IEEE 64(8), 1151–1162 (1976). DOI 10.1109/PROC.
1976.10286

ISBN 978-952-15-4254-1

ISSN 1459-2045

Tampereen teknillinen yliopisto
PL 527
33101 Tampere

Tampere University of Technology
P.O.B. 527
FI-33101 Tampere, Finland

	Abstract
	Preface
	Acronyms
	List of Publications
	Introduction
	Objectives and Scope of the Work
	Main Results and Outline
	Author's Contributions

	Wireless Technologies
	WiFi and IEEE 802.11ac
	History of WiFi
	IEEE 802.11ac Features
	IEEE 802.11ac PHY Packet Structure
	IEEE 802.11ac Baseband Processing
	Transmitter Processing
	Receiver Processing

	IEEE 802.11ac Digital Front-End Processing
	Polyphase Halfband Filters
	Cyclic Polyphase Halfband Filters

	Future Wireless Systems and Full-Duplex Communication
	Full-Duplex Communication
	Digital Self-Interference Cancellation
	Self-Interference Modelling
	Orthogonalization
	LMS Parameter Learning

	SDR Solutions for WiFi
	Related Work
	Baseband Processing
	Transmission Scenarios
	Accelerator for Matrix Inversion
	Results

	Digital Front-End Processing
	Channelization Filtering
	Halfband Filters
	Non-Halfband Filters

	Results

	SDR Solutions for Full-Duplex Communications
	Related Work
	Digital Self-Interference Cancellation
	Results
	Digital Self-Interference Canceller Performance
	Execution Time
	Delay
	Power Consumption
	Energy Consumption

	Conclusion
	Summary and Main Results
	Future Work

	Bibliography
	Publications

