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Abstract

Understanding the regulatory mechanisms of gene regulatory networks (GRN)
is an important topic in the field of Systems Biology. It has been widely
accepted that holistic approaches are needed to explore biological systems
given, for example, the noisy dynamics of gene expression and the com-
plex interactions between genes and between gene expression products and
other cellular components. As new advanced high throughput technologies
emerge, i.e., as more information sources become available, thorough inves-
tigation of this problem is becoming feasible to be addressed from multiple
perspectives.

The main objective of this thesis is to provide solutions to problems
related to gene regulatory mechanisms with data fusion methods, aiming at
a more precise understanding of a GRN’s structure and its dynamics. This
thesis can be divided into two parts: the presentation of the new data fusion
methods here proposed to explore GRNs’ topologies and, subsequently, the
application of one method to investigate the dynamics of such networks.

In the ‘Methods’ chapter, two methods are proposed: one for transcrip-
tion factor binding sites (TFBS) prediction and the other for gene cluster-
ing. The results from TFBS prediction can be used as an input for the
gene clustering algorithm. Particularly, a new data fusion method is devel-
oped and novel information sources are explored to improve TFBS predic-
tion accuracy in comparison with previous methods. Three finite joint mix-
ture models are developed to cluster genes from multiple data sources: the
beta-Gaussian mixture model (BGMM), the stratified beta-Gaussian mix-
ture model (sBGMM) and the Gaussian-Bernoulli mixture model (GBMM).
These methods are shown to significantly improve the accuracy of TFBS
predictions and clustering results.

In the ‘Application’ chapter, one of the developed methods is applied to
detect noisy attractors in delayed stochastic models of GRNs. The detection
of noisy attractors is carried out for a model of a genetic toggle switch (TS)
and for a model of an excitable genetic circuit of Bacillus subtilis responsible
for phenotypic changes, by fusing multiple data sources extracted from the
dynamics of the corresponding GRN. The results suggest that resorting to
a single data source alone is, in general, insufficient to reveal the underlying
structure of the GRN or to capture the changes in the dynamics of a GRN
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modeled according to the delayed stochastic framework.

In summary, this thesis focuses on developing and applying data fu-
sion methods to explore the topology and dynamics of a GRN, including
TFBS prediction, gene clustering and noisy attractor detection. The devel-
oped algorithms and strategies are applicable to investigate real biological
phenomena, and the findings can be used to guide future wet- or dry-lab
experiments.
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Chapter 1

Introduction

A gene, typically composed of the regulatory and information coding DNA
sequence regions [1], is not an independent inheritance unit in the genome.
Instead, genes are organized in a network, called the ‘gene regulatory net-
work’” (GRN) [2], to regulate one another’s expression. In other words, it is
the process of converting genotypes encoded by genes into phenotypes ex-
hibited by their products such as various types of RNAs, proteins and pro-
tein complexes. Further, besides genes and their products, other molecules
such as some metabolites may also contribute to gene expression and be in-
volved in a GRN [3]. These multiple components collaborate in concordance
to orchestrate numerous cellular events, such as transcription, translation,
post-transcriptional or post-translational modifications, and signal trans-
duction cascades. Thus, a GRN can be viewed as an intertangled regula-
tory circuit governing processes such as gene expression, signal transduction
and metabolism [3]. Each step of any cellular event in a GRN is stochas-
tic [4], which may cause non-neglectable consequences. For example, for
genes which can only express one of their two copies such as olfactory recep-
tor genes and antigen-specific receptors, the stochastic choice of the allele
to be expressed may result in cells’ phenotypic difference [5]. Also, despite
the possible mutations, the genomes of certain types of cells may undertake
random remodeling during the development such as the stochastic genetic
recombination that forms different immunoglobulin molecules to fight with
diverse antigens [6], which adds even more noises to the genome and the

GRN.

Understanding the gene regulatory mechanisms of a GRN is one of the
long-term goals of Systems Biology, to which enormous efforts have been
devoted [7-10]. However, given the complex regulatory relationships among
the multiple components of a GRN, and the stochasticity of the cellular
events that contribute to the phenotypic variations of the cells, studying the
gene regulatory mechanisms of GRNs with single data sources may not be
sufficient to fully capture the characteristics of a GRN and reveal its true
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regulatory nature. Thus, the author targets on understanding the topology
and the dynamics of a GRN via integrating information from multiple data
sources, i.e., exploring such problems from a higher dimensional space with
multiple coordinates.

To do so, this thesis focuses on both the development of novel data fusion
methods and their applications. In particular, the data fusion methods of
two interconnected problems are developed, which are transcription factor
binding site (TFBS) prediction, i.e., predicting the binding sites of a TF on a
DNA sequence, and gene clustering, i.e., grouping genes with similar features
together. TFBS prediction explores the gene regulatory mechanisms at the
sequence and physical protein-DNA binding levels, which offers us detailed
information on how TF's bind to the genes and the links between the TFs and
their targets. Gene clustering, on the other hand, investigates the regulatory
relationships among genes at the gene level, which provides us a global view
on how genes interact with each other and work in a concert to regulate gene
expression. TFBS prediction and gene clustering, although from different
perspectives and at different levels, both reveal the regulatory relationships
among genes and contribute to the understanding of a GRN’s topology.
Further, the output of TFBS prediction, which contains the probabilities of
the genes being bound by a set of TFs, can be used as the input of gene
clustering to study the genes’ relationships regarding their given potential
regulators. This is particularly important here since obtaining protein-DNA
binding data from experimental techniques are limited in measuring TFBSs
of all TFs, largely due to the difficulties in finding specific antibodies for
TFs which are needed in chromatin immunoprecipitation (ChIP) related
experiments. Thus, these two problems interwind with each other, and work
together in a complementary fashion on the exploration of a GRN’s topology.
Besides the application of each data integration method in what they are
originally developed for, the data fusion framework for gene clustering is also
applied to study the dynamics of GRNs at a single cell and cell population
levels. To be specific, the background and motivation of each of the three
studied problems are described, separately, below.

Transcriptional processes are largely controlled by TF's that bind to gene
regulatory elements in a sequence specific manner [11; 12]. Thus, correctly
predicting the binding sites of a TF to its target genes can provide us the de-
tailed information of how genes regulate one another at the sequence level.
While novel experimental techniques for measuring protein-DNA binding
specificities keep emerging [13-16], computational predictions are proven to
be a good facilitation in unveiling TFBSs genome-wide [17-19]. However,
relying on the sequence specificities alone, the fundamental basis of current
computational methods, is insufficient to accurately predict TFBSs due to
the high level of noises within the genome [19]. Lahdesmiki et al. developed
an algorithm called ProbTF [19], which can predict TFBSs via integrat-



ing multiple data sources. In particular, they have explored evolutionary
conservations, regulatory potentials and nucleosome positioning predictions
from [20] using their algorithm, where no performance improvement is re-
ported with the nucleosome positioning data they employed. This negative
result may be associated with the integration method used and the quality
of the data under study. Thus, it is necessary to see how much further the
performance can be improved if a new data fusion principle is developed,
the data of better quality is employed, and novel information sources are
explored.

Functionally related genes may be regulated or regulate the other genes’
expression in a similar fashion [21], and thus can be viewed as a block when
studying the topology of a GRN. Therefore, gene clustering can facilitate as
the first step towards understanding the regulatory relations among genes
within a GRN. Among many genomic data, gene expression data has been
widely used for this purpose, with the assumption that genes that share
similar expression patterns have similar cellular functions and are likely to
be involved in the same process [21]. This assumption has been challenged
by many evidences, e.g., genes participating in different processes may share
similar profiles, and patterns of functionally related genes may not be well
correlated [22; 23]. This, however, can be compensated by, e.g., observing
physical interactions such as protein-protein interactions [24; 25]. Thus,
in order to gain a holistical view of genes’ functional relationships, it is
necessary to develop methods that can cluster genes from multiple data
sources.

Another important goal of this thesis is to study the dynamics of a GRN.
The number of a GRN’s possible states is immense, far more than that of
cell types. For example, even assuming that genes are either on or off, given
a human has 30000 — 35000 genes, the human genome may encode 239000 to
235000 states [26]; while, only around 411 distinct cell types exist in an adult
human body [27]. Thus, cell types are most likely to be constrained patterns
of genes’ activities, i.e., the attractors of GRNs’ dynamics [2]. However,
due to high level of genome noise, real cells, strictly speaking, do not have
attractors [28]. Thus, the concept of noisy attractor is proposed [29] to study
the dynamics of a GRN. While techniques for finding noisy attractors are
well-established in noisy Boolean networks [29], it is not a simple task under
a delayed stochastic framework. In [29], noisy attractors were detected by
binarizing (using K-means [30] clustering algorithm) protein time series of
a delayed stochastic GRN, which may not capture the full richness of the
GRN’s dynamics due to the information loss caused by binarization. Also,
given the regulatory role of some cellular components at other levels, e.g.,
miRNA can cause sooner degradation of mRNA in eukaryotes [31], observing
a single data source alone may be insufficient to capture the behavior of a
GRN. Thereby, jointly utilizing multiple data sources is critical in noisy
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attractor detection, which is a novel and apropos problem to apply the data
fusion method that is originally developed for gene clustering.

Taken together, with the goal of understanding the gene regulatory mech-
anisms of a GRN, the author investigates GRNs’ topologies and dynamics
by developing and applying data fusion methods. Specifically, the objectives
of this thesis are summarized below.

e Developing efficient multiple data fusion method for TFBS prediction,
and exploring novel information sources to improve the prediction ac-
curacy.

e Developing suitable data fusion clustering framework to group genes
from different data sources.

e Applying the developed data fusion clustering framework to detect
noisy attractors of delayed stochastic GRNs and explore such networks’
dynamics.

The three problems studied in this thesis are presented in two chapters,
i.e., ‘Methods’ and ‘Application’. TFBS prediction and gene clustering,
which focus on the method development, are introduced in the ‘Methods’
chapter, and noisy attractor detection, which is a novel application of one
of the data fusion methods developed, is put in the ‘Application’ chapter.
Specifically, this thesis is organized as following.

e Chapter 1: introduces the motivation, objectives and outline of this
thesis.

e Chapter 2: introduces the basis of the central topics covered by this
thesis, i.e., the biological background of gene regulation and GRN.

e Chapter 3: presents the key concepts, data sources, algorithms and
models that are encountered, explored, used and developed when de-
veloping the methods. In particular, ProbTF, the TFBS prediction al-
gorithm used in [Publication I| and the data fusion method developed
are introduced. Also, the data fusion framework and all the joint finite
mixture models built (including models presented in [Publication II]
to [Publication IV] and [Publication VIJ]) are summarized in a sys-
tematic way. This chapter concentrates on the methods employed and
developed in TFBS prediction and gene clustering. The exploration
of novel information sources ([Publication I}) in TFBS prediction, and
the simulation test ([Publication ITI] to [Publication IV]) and real case
application ([Publication II] and [Publication III]) of each clustering
model are summarized in Chapter 5, whose details can be found in
each publication.



e Chapter 4: presents the key concepts, data sources, algorithm and
GRNSs that are used or investigated in an application of the gene clus-
tering framework introduced in Chapter 3, i.e., detecting noisy attrac-
tors of delayed stochastic GRNs. Specifically, the modeling strategies
and delayed stochastic simulation algorithms which are used to build
models and generate data are introduced. Further, the GRNs explored
for noisy attractor detection are described. This chapter focuses on
introducing the background of this application. The results and con-
clusions of each publication are summarized in Chapter 5, with details
available in [Publication V] to [Publication VII].

e Chapter 5: summarizes the main results of the listed publications,
draws conclusions and proposes the future directions.






Chapter 2

Biological Background

This chapter gives a brief overview of the background of gene regulation
and gene regulatory networks (GRN), which are the focused problems of
this thesis.

2.1 Central Dogma
The backbone of molecular biology is the central dogma (as shown in Fig. 2.1),

which was first proposed by Francis Crick in 1958 [32], and restated in
1970 [33].
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Figure 2.1: The central dogma of molecular biology. Figure is drawn using
Cytoscape [34] based on [33].

There are three key information transfer stages according to the central
dogma [33]:
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e Replication: a double stranded DNA replicates itself, perpetuating the
genetic information.

e Transcription: the genetic information is transferred from one DNA
strand to a complementary RNA strand, called messenger RNA (mRNA).

e Translation: the genetic information is read by the ribosome as triplet
codons, and transferred from mRNA to protein. In prokaryotic cells
where there is no nucleolus, translation occurs simultaneously with
transcription. In eukaryotic cells, mRNA must be transported into
the cytoplasm to find the ribosome for translation to occur.

While, generally, information is transferred from DNA via mRNA to protein,
some exceptions also exist, including reverse transcription (transferring in-
formation from RNA to DNA), RNA replication (RNA copying itself), and
direct translation from DNA to protein [33]. Specifically, reverse transcrip-
tion is reported to occur in retroviruses [35]. RNA replication and the direct
translation from DNA to protein, which are known by hypothesis at the time
the central dogma was enunciated [33], are found to exist in RNA viruses,
such as Ebola virus [36], and are experimentally verified in vitro, e.g., using
the extract from E. coli that contains ribosomes [37; 38], respectively.

Note that RNA includes many other types besides mRNA, such as ribo-
some RNA (rRNA) and transfer RNA (tRNA) [11; 12], but, in this thesis,
it only refers to mRNA if no special claim is made.

2.2 Gene regulation

Definition 1 (Gene). Gene is a locatable region of genomic sequence, corre-
sponding to a unit of inheritance, which is associated with requlatory regions,
transcribed regions and/or other functional sequence regions [1].

Gene expression is the process that converts genotypes encoded by genes
into phenotypes exhibited by gene products, where a gene product often
refers to a protein and in some cases, such as for non-protein coding genes,
can be an RNA (any type of RNA) [11]. Any step involved in gene expression
may be regulated, and the regulation process can be stratified into at least
four layers, i.e., transcriptional regulation, post-transcriptional regulation,
translational regulation and post-translational regulation [11].

2.2.1 Transcriptional regulation

Transcriptional regulation refers to the process that regulates gene expres-
sion levels by altering the time for a transcription to occur and the amount
of RNA that is produced [39]. This is the main regulatory mechanism in
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prokaryotes, where promoter, operator and the protein encoding genes, orga-
nized as an operon, work in a concert to regulate themselves [40]. Transcrip-
tional regulation is much more complex in eukaryotic cells, which typically
involves one more level of regulation, i.e., chromosome packaging [41] via for
example post-translationally modifying histones and regulating molecules
involved in chromatin organization such as Polycomb and Trithorax pro-
teins [42], two cis-acting elements other than the operator, i.e., enhancer
and silencer, which may locate at varying points along the chromosome [40],
and more number of trans-acting factors [40]. Further, the promoter of
prokaryotes is bounded by the RNA polymerase (the enzyme for transcrip-
tion) and initiates transcription; however, in eukaryotes, the transcription
start site is separated from the promoter, and the promoter is recognized by
transcription factors (TF) [40].

Among many trans-acting regulatory factors (such as TFs and coacti-
vators), TFs are of the most interest, both in prokaryotes and eukaryotes,
due to their universal existence and important regulatory roles [11; 12]. A
TF is defined as a protein that controls the transcription of genetic in-
formation from DNA to RNA via binding to specific part(s) of DNA se-
quence(s) [43; 44]. One distinguishable feature of TFs compared with other
trans-acting factors is that they contain one or more DNA binding domains
(DBDs), which can attach them to specific DNA sequences such as the pro-
moter [45; 46]. Correspondingly, the bounded DNA sequences are called
transcription factor binding sites (TFBS) [47]. TFs perform their functions
by promoting (as an activator) or blocking (as a repressor) the recruitment
of RNA polymerase to specific genes, either alone or together with other
proteins in the form of a protein complex [48-50]. In eukaryotes, another
class of TFs, general TFs (GTFs), also exit, which do not activate or repress
gene transcription but are necessary for the transcription to occur [50].

2.2.2 Post-transcriptional regulation

Post-transcriptional regulation is the process that controls gene expres-
sion by manipulating the RNA transcripts after RNA synthesis has be-
gun [12; 51]. While it has long been accepted to exert important regula-
tory roles in eukaryotes [41], it is also found to exist in prokaryotes, ba-
sically by affecting mRNAs’ stabilities [52]. Generally, regulation at this
layer refers to the mechanisms occurring in eukaryotes, such as transcrip-
tion attenuation, alternative splicing, RNA editing, nuclear transport and
degradation [11; 12], thus the following text focuses on eukaryotes only.
It is reported that differences at mRNA level only contribute to 20% to
40% proteins’ concentration differences, indicating the importance of gene
regulation after transcription [53; 54]. Further, studies on transcription,
translation and protein turnover in yeast also suggest the significant role of
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post-transcriptional regulation in controlling protein levels [7].

RNA binding protein (RBP) is the controlling factor that regulates the
stability and distribution of different transcripts via controlling the steps
and rates of various events involved in post-transcriptional regulation [51].
Similar with TFs, a RBP contains RNA recognition motif (RRM) that binds
to a specific sequence or secondary structure, typically at the 5’ and 3’ un-
translated region (UTR), of a transcript [51; 55]. Small RNAs can also
post-transcriptionally regulate gene expression in many eukaryotes. The
most well studied example would be RNA interference (RNAi), where siR-
NAs (short interfering RNA) induce the degradation of mRNAs [56].

2.2.3 Translational regulation

Translational regulation refers to the control of translation efficiency and is
featured by the differential usage of mRNAs [11; 12]. This level of control
exists in both prokaryotes and eukaryotes [57]. In prokaryotes, the known
mechanisms include, e.g., controlling the initiation rate and programmed
frame-shifting, and are shown to be important in many special cases [58],
e.g., the differential choice of the translational initiation codon in the RNA of
foot-and-mouth disease virus results in two different proteins with identical
carboxy termini [59]. In eukaryotes, translational regulation can occur via,
e.g., altering translation initiation rate and schemes [60], alternating trans-
lation elongation [60; 61] and modulating the length of poly(A) tail [60; 62],
which is critical in controlling a variety of physiological processes in eukary-
otic cells, such as cell differentiation, proliferation and self-protection [63].

Similar with transcription initiation, trans-acting factors are also im-
portant in translational regulation, e.g., translational repressors can stop
translation via binding to the ribosome binding site in prokaryotes [58], and
mRNA-specific initiation factors need to recognize and interact with the 5’
and/or 3° UTR of a particular mRNA before the start of its translation in
eukaryotes [60].

2.2.4 Post-translational regulation

Post-translational regulation refers to any process that affects the amount or
activities of proteins after translation in eukaryotic cells [11; 12]. Regulation
at this level is realized via either reversible events, i.e., post-translational
modification (PTM), or irreversible events, such as proteolysis [11; 12].

PTM is the most common way for post-translational regulation, during
which a protein undergoes specific chemical modifications [64]. Generally,
PTMs can be viewed as three alternatives, which are attaching or removing
other biochemical functional groups (such as phosphorylation, acylation [65],
formylation [66], and glycation [67]), changing the chemical property of an
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amino acid (e.g., citrullination [68], deamidation [69; 70], and eliminyla-
tion [71]), and making structural or length changes (such as forming disulfide
bridges [69] and proteolytic cleavage [72]).

2.3 Gene regulatory network

Definition 2 (Gene Regulatory Network). A gene regulatory network is a
set of highly interconnected processes that govern the rate at which different
genes in a cell are expressed in time, space, and amplitude [3].

A typical scheme of a GRN is shown in Fig. 2.2 (a) [73], where TFs,
responsive to the signal cascade caused by the external inputs, are the main
players. Through the activated or inactivated responses of TFs, gene ex-
pression is up- or down- regulated, with the output signals affecting cell
functions. A network can be modeled as static or dynamic, and its com-
plexity and content may vary with time and space [3]. The whole control
process is depicted in Fig. 2.2 (b) [73]. The consequences of a GRN can be
viewed as primary outputs, i.e., RNAs and proteins, and terminal outputs,
i.e., changes in the cell’s phenotype and function, both of which in return
act as the network’s inputs (besides external signals) through the feedback
circuitry. Hautaniemi et al. proposed a decision tree analysis approach
to study the relationship between cell functional responses and extracellu-
lar signals, and found a joint role of multiple inputs in controlling cellular
outputs by studying cell migration process [8].

Models of GRNs describe various aspects of the complex relationships
among genes, their products and other cellular components, which can be
considered over a wide range of systems, e.g., gene interaction networks,
protein interaction networks, and signal transduction networks [3]. A sim-
plified scheme of intracellular regulation circuits is illustrated by a bipartite
graph in Fig. 2.3 [3]. It is shown that gene regulation largely intertwines
with signal transduction (notice the significant overlap between Box I and
Box IT), and the process not only involves genes and their products but also
requires metabolites.

The collective information of a GRN is often extracted and represented
as the network structure [74]. In such a structure, genes or gene products
(e.g., proteins, RNAs, and protein complexes) are represented as nodes, and
molecular interactions (i.e., one gene affects the other via its products) are
symbolized as edges [74]. In directed graphs, an arrow is used to indicate
the causal relationship between two nodes, and the shape of an arrow head
is used to represent the regulatory effect, i.e., inductive or inhibitory, if
such information is available [74]. Finally, the dependencies within a GRN
are shown as a series of edges, with cycles illustrating feedback loops [74].
In practice, such a structure is often inferred from biological literature or
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experimental evidence by certain modeling methods, whose results can be
used, e.g., to make predictions or suggest new exploratory approaches.

Many modeling approaches have been used to model GRNs, such as
Boolean networks [75], ordinary differential equations [76], Bayesian net-
works [77] and stochastic models [78].
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Figure 2.2: (a) The structure and (b) the control process of a gene regulatory
network. Dashed lines in (b) shows signaling responses which do not involve
gene expression regulation but act directly on proteins or protein machine
assemblies. Figures are retrieved from [73] with permission.
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Figure 2.3: Simplified scheme of intracellular regulation circuits with gene
expression (Box I), signal transduction (Box II), and metabolic processes
(shown outside of the boxes on the righthand side). Yellow hexagons
represent molecular entities, and blue diamonds stand for regulatory
events. Molecular entities are genes (‘Genes’), proteins (‘Proteins’), mod-
ified proteins (‘mod.proteins’), protein complexes (‘complexes’), peptides
(‘short peptides’), extracellular metabolites (‘extra.metabolites’), metabo-
lites (‘Metabolites’), and extracellular ligands (‘extra.ligands’). Regulatory
events are gene expression (‘GE’), protein modification and complex for-
mation (‘PM, CF’), protein degradation (‘PD’), and metabolic reactions
(‘MR’). Blue solid arrows represent the mass flow, red dashed arrows show
the catalytic action of molecular entities on the corresponding regulatory
event, and red solid arrows stand for both the mass flow and the catalytic
event. Note that catalysts are themselves not consumed during the catalytic
processes. This graph is drawn using Cytoscape [34] based on [3].



Chapter 3

Methods

A gene regulatory network’s (GRN) structure reveals the regulatory rela-
tionships among genes, which is an important aspect in understanding a
GRN’s regulatory mechanisms.

This chapter focuses on exploring the topology of a GRN and, specif-
ically, introduces the key concepts, data sources, algorithms, and models
that are used or developed in [Publication I] to [Publication IV]. Studies
discussed in this chapter involve two interconnected problems, transcription
factor binding site (TFBS) prediction ([Publication I]) and gene clustering
([Publication II] to [Publication IV]), which investigate GRNs’ topologies
at sequence and gene levels, respectively, and the result of the first problem
is used as one input of the second one.

3.1 TFBS prediction

Transcription factors (TF) recognize and bind to the promoters of their
target genes, exerting roles such as activation or repression. Analyzing the
binding sites of the TFs at their target genes reveals the links between TFs
and their targets and offers us a detailed map of a GRN’s topology at the
sequence and protein-DNA physical binding level. TFBS analysis comprises
of TFBS discovery and TFBS prediction, and this thesis puts its emphasis
on TFBS prediction.

[Publication I] improves TFBS prediction accuracy by developing a new
data fusion strategy and exploring two novel information sources. Besides
the data fusion principle proposed, this section also introduces the key con-
cepts, data sources, and the algorithm that the work is built on. The content
for novel data source exploration and the prediction results after implement-
ing the new data fusion method and using novel information sources are
summarized in Chapter 5.

15
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3.1.1 Key concepts
In [Publication I], the following key concepts are encountered.

Definition 3 (Transcription Factor Binding Site Discovery). Transcription
factor binding site discovery, also called motif discovery, is a computational
approach of transcription factor binding site analysis, which searches for
novel binding motifs from a collection of short sequences that are assumed
to contain a common regulatory motif [79].

Definition 4 (Transcription Factor Binding Site Prediction). Transcription
factor binding site prediction is a computational approach of transcription
factor binding site analysis, which makes use of given transcription fac-
tors’ DNA-binding specificities to predict putative transcription factor bind-
ing sites. Transcription factors’” DNA-binding specificities can be either the
output of a transcription factor discovery algorithm or experimentally mea-
sured [19].

Definition 5 (Transcription Factor Binding Preference). Transcription fac-
tor binding preference is the preference of a transcription factor towards
binding to single- or double-stranded DNA [Publication I].

3.1.2 Data sources

TFBS prediction methods rely on specific sequence patterns which, although
highly specific, may have both poor sensitivity and high false positive rate
(FPR) when the patterns are degenerate [18; 19]. One way for improving
TFBS prediction accuracy is to guide the algorithm via incorporating ad-
ditional information [19]. In this thesis, additional data sources explored
include evolutionary conservation, regulatory potential, nucleosome posi-
tioning and DNA duplex stability.

Evolutionary conservation data

Evolutionary conservation data stores information of conserved sequences
across species [80]. It has been widely applied to find functional sequence
motifs [81-84], with the rational that essential genes evolve more slowly
than nonessential ones. Thereby, orthologous sequences that are significantly
more similar than what is expected are likely to be functionally critical if
they evolve under neutral evolution [85]. Many tools have been developed for
multiple sequence alignment [86-88], making conservation study practically
more feasible. Sequences that are predicted to be functional can either
encode gene products or exert regulatory roles such as TFBSs [11]. Thus,
besides stimulating new hypotheses and driving experimentation on gene
function discovery [81; 82; 89; 90|, conservation data also facilitates TFBS
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analysis [19; 83; 84]. Although only ~ 50% human regulatory sites are
reported to be conserved in mouse [91; 92], evolutionary conservations are
proven to be informative in discovering or predicting TFBSs [19; 83; 84].

Numerous computational algorithms are developed to compute conserva-
tion scores, via pair-wise [93] or multiple sequences [94-97] alignment. The
evolutionary conservation data used in this thesis is obtained from phast-
Cons [80], which predicts the conserved elements using the Viterbi algorithm
and computes the conservation scores by the forward/backward algorithm,
based on a two-state phylogenetic hidden Markov model.

Regulatory potential data

It is reported that many functional genomic elements are not conserved,
and lots of constrained regions do not overlap with known functional ele-
ments [80; 98]. Thus, further improvement of TFBS prediction accuracy
calls for information other than interspecies sequence conservation. Regu-
latory potentials, defined as the data that discriminate regulatory regions
from neutral sites [99], can be used to assess whether a conserved sequence
is functional or not.

ESPERR [99] is used to provide the regulatory potentials analyzed in this
thesis. ESPERR first retrieves information from multiple genome alignments
via appropriate dimension reduction and alphabet selection. Then it applies
two variable-order Markov models (VOMM), trained from known regulatory
and neutral sites, respectively, to estimate the likelihoods of a site being
regulatory and neutral. Finally, the regulatory potential scores are computed
as the log-odds based on the two VOMMSs. Given the ability of measuring
variable-length position dependencies and the usage of multiple sequence
alignment, ESPERR is believed to be able to capture evolutionary patterns
that span multiple sequences [99].

Nucleosome positioning data

Eukaryotic genomic DNA exists in a highly compact form, namely chro-
matin [100]. The chromatin is composed of nucleosomes, which are 147 base
pairs (bps) DNA tightly wrapped around a histone protein octamer and
linked by 10 — 50 bps long unwrapped short DNA sequences (namely ‘linker
DNASs’) [100]. Facilitated by specific dinucleotides, DNA sharply bends at
every DNA helical repeat (~ 10 bps) when DNA’s major groove faces to-
wards the octamer, and ~ 5 bps away to the opposite direction when the
major groove faces reversely [20; 101]. It is reported that polymerase and
complexes, e.g., used for regulatory, repair and recombination, are occluded
from accessing wrapped DNAs buried in nucleosomes [20]. Thus, nucleosome
locations may play important regulatory roles in gene expression, whose in-
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trinsic genomic organization is hypothesized to guide the recognition process
of TF's to their binding sites, i.e., TF's bind more easily to sites that are free
of nucleosomes [20].

Genome-wide nucleosome positions have been experimentally identified
with high resolution in yeast [102-104], Caenorhabditis elegans [105], Drosop-
hila [106], and human [107; 108]. Also, four computational methods to
compute the nucleosome occupancy probabilities for each sequence have
been developed [20; 109-111]. The algorithms of [20] and [110] recognize
the nucleosome sequences’ patterns by counting the dinucleotide frequen-
cies, against which matches are scanned across the genomic sequences. The
method presented in [111] searches sequence patterns using k-mer enumer-
ation (k from 1 to 6) from a training data set, and applies a support vector
machine (SVM) to distinguish the nucleosome forming sequences from the
background. While the methods of [20], [110] and [111] use direct informa-
tion from nucleosome, the algorithm of [109] focuses on long-range sequence
information. It uses wavelet transformation to extract periodic features of
genomic sequences, among which those that are associated with nucleosome
positioning are selected with a statistical model. It is reported that the
methods presented in [109] and [111] perform similar, and are superior to
the other two algorithms [109]. Thus, in order to see whether more accu-
rate nucleosome positioning data could improve TFBS prediction, the data
computed from [20] and [109] are compared in this thesis.

DNA duplex stability data

DNA is confined into the form of either a circular molecule or closed loops
within chromosomes in vivo [11; 112; 113]. Constraints in both forms are
precisely equivalent, with the loops formed by periodic attachments of the
chromatin fiber to the nuclear matrix [11; 112; 113]. The number of times one
strand winds around the other, namely the linking number, may be changed
by transient strand breakage and religation, resulting in a linking difference
which imposes DNA superhelicity on the domain [113]. It is reported that
DNA superhelicity, a force driving the formation of locally unpaired regions
at specific genomic sites (such as regulatory regions [114]) [115], is closely reg-
ulated by enzymatic and other processes in vivo [113]. The destabilization
energy of DNA double helices induced by DNA superhelicity, namely stress
induced duplex destabilization (SIDD), is shown to be involved in transcrip-
tional regulation [113]. Many molecular binding sites, including TFBSs,
are susceptible to SIDD. For example, the ilupg promoter of Escherichia
coli is activated by an IHF (integration host factor)-mediated translocation
of destabilization from the binding site to the -10 downstream region of the
promoter [116]. Also, evidences show that regulatory proteins require locally
denatured DNA for binding [117]. Further, SIDD sites are reported to oc-
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cur at chromosomal attachment regions [118], which are known to augment
transcription and separate independent regulatory domains [113].

While measuring DNA duplex stability in vivo is not currently possi-
ble, the computational method, WebSIDD [113], is developed to address
this problem. It calculates the transition probability and destabilization
energy of a given sequence based on a statistical mechanical SIDD analy-
sis procedure [113]. Data computed from WebSIDD, although not directly
measured from experiments, are considered quantitatively accurate, since all
the thermodynamic parameter values used in WebSIDD are taken from ex-
perimental measurements [113]. In this thesis, WebSIDD is used to compute
the destabilization energies for TFBS prediction.

3.1.3 TFBS prediction algorithm

In this thesis, multiple data sources are integrated to improve the prediction
accuracy of ProbTF [19], which is a TFBS prediction algorithm under prob-
abilistic framework. The basis of most TFBS prediction algorithms (includ-
ing ProbTF), i.e., the probability models for binding sites and background
sequences, and the ProbTF algorithm are described below.

Probability models for TFBSs and background sequences

In the probabilistic methods, the motif, represented as a position proba-
bility matrix, is assumed to be buried in the noisy background [119]. The
most widely used probabilistic models for binding sites and background se-
quences are the position specific frequency matrix (PSFM) model [17; 120]
and the Markovian model [119], respectively, based on which ProbTF is
developed [19].

e Markovian background model [119]: The d*® order Markovian model
means that, the probability of finding a nucleotide s; (s; € {4, C, G, T})
at position 7 (i € {1,...,N}) depends on the d previous nucleotides
in the sequence. Assuming that the d previous nucleotides before the
start of the actual sequence S is accessible, the probability of the se-
quence of length N being generated by this background model ¢4 is
given by Equation 3.1.

N

P(S|¢a) = P(s1,...,sq) [[ P(silsi-1, .., 5i-a) (3.1)

i=1

e PSFM model [17]: The motif of length [ is represented by a position
probability matrix 6 as shown in Equation 3.2, where entry 6(s;,7) is
the probability of finding nucleotide s; (s; € {4, C, G, T}) at position
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i (i €{1,...,1}) in the motif.

0(A,1) 6(A,2) 0(A,1)
6(C,1) 6(C,2) 6(C, 1)

=1 %6c1) 6G.2) 0(G,1) (3.2)
(T, 1) 6(T,2) o(T, 1)

Probabilistic framework for TFBS prediction

ProbTF, a TFBS prediction algorithm, is used as the platform for data
fusion method testing and novel information source exploration. This sub-
subsection is dedicated to introduce ProbTF’s basic principles, where [19] is
the key reference material.

In ProbTF, the non-binding site (i.e. background) sequence locations are
modeled by the d™ order Markovian background model ¢4, and TFBSs are
modeled with the standard PSFM model which is a product of independent
multinomial distributions. Let @ denote the number of (unknown) binding
sites and A be the (hidden) start positions of non-overlapping binding sites
in sequence S, i.e., if Q@ = ¢ then A = {ay,...,a.}. Assume a TF is char-
acterized by M PSFMs, © = (0, ... 6M) and define 7 € {1,...,M}°
as the configuration of motif models from © in A, i.e., m; specifies the motif
model 0(™) which starts from location a; and is of length I ,.

ProbTF The probability that a TF binds to a promoter sequence S that
is of length N, P(© — S|S, 0, ¢4), is defined as the probability that at least
one of the motif models in © has a binding site in .S, which is computed by

P(© — S15,0,¢04) = P(Q>0]5,0,¢q) (3.3)

> P(Q=c]S,0,64)
c=1

1-P(Q =050, ¢a). (3.4)

P(Q = ¢|S,0,¢4) is the probability that a sequence S has ¢ binding
sites, which can be obtained with the Bayes’ rule

P(S|Q =¢,0,¢0q)P(Q = C|@,¢d).

P(Q =¢|S,0,¢q) = P(5]0, ¢q)

(3.5)

Solving Equation 3.5 depends on the normalization factor P(S|©, ¢g4),
the prior of the number of motif instances P(Q = ¢|O, ¢4), and the prob-
ability P(S|Q = ¢,0,¢4). Computations of each of these components (in
Equation 3.5) are shown, separately, below.

N

First, P(S|0,dq) = Zil;ng P(S|Q = ¢,0,¢4)P(Q = ¢|0,¢q), where
L%J is the maximum number of non-overlapping motifs in an N-length
sequence.
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Second, P(Q = ¢|©, ¢4), which is assumed to be independent of © and
¢4, has an exponential form, as represented by

1 1 2 I.TA{M_H
AR — (3.6)

where C' = 2 Z L = k'. This formula shows that, for a fixed value of Q,

the prior over blndlng site positions A and configurations 7 is uniform and
inversely proportional to the number of different binding site positions and
configurations.

Finally, the probability P(S|Q = ¢, ©, ¢4) is obtained by summing over
all possible positions and configurations, as shown in Equation 3.7.

P(SlQ:Ca®7¢d): Z Z SlA F,Q—C@(bd) (A5W|Q267@7¢d)
me{l,...,M}¢ A:|A|=c
(3.7)

The following text shows how P(S|Q = ¢, ©,¢4) is obtained based on
Equation 3.7.

P(S|A,m,Q = ¢,0,¢,) is the probability of sequence S, given non-
overlapping motif positions, and the motif and background models. It is
computed by Equation 3.8, where |A| = @ = ¢, and W;rf is shown in Equa-
tion 3.9. Recall that the notation of 6 is defined in Equation 3.2.

|A] =

6( 7) Sa +/€,k’+1)
PSA7 ’ = 767 = 1
|A|
= P(S|¢a) [[ Wi, (3.8)
J=1

$a(Sa;+k)

=1 0 (sq yi,k+1) .
W;;:‘—{Hko ot if 1<a; <N -l +1 (3.9)

otherwise.

Equation 3.7 becomes Equation 3.10 after plugging in Equation 3.8,
where Sq, 4, is a subsequence of S covering the locations from a; + Ir,
to N. Equation 3.10 is a recursive formula apart from P(A, 7|Q = ¢, ©, ¢4),
where P(A,7|Q = ¢,0,¢4) is a constant prior for a fixed @ and can be
computed numerically in a similar recursive fashion (derivation details can

be found in [19]).

N—clpmin+1
P(S|Q=¢,0,60) = Y S WIP(Su4.,1Q = c—1,0,64)
71'16{1 ..... M} a1=1
xP(A,7|Q = ¢,0,¢a4) (3.10)

In this thesis, 0" order Markovian model (d = 0) is used, and & in
Equation 3.6 is set to 0.5, according to [19].
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ProbTF with additional data sources ProbTF allows integrating mul-
tiple data sources in TFBS prediction. Assume that the data sources are in
the form of D = (Py,..., Py) where P; is the probability that the i*® base
pair location is a binding site. D can be derived from a single or multiple
data source(s).

Similarly, the probability of a TF binding to a promoter sequence S
with additional knowledge of data source D is computed by Equation 3.11,

where P(Q = ¢|S, D, 0, ¢4) can be obtained from the Bayes’ rule as shown
in Equation 3.12.

P(© — 515,D,0,¢q) P(Q>0|S,D, 0, ¢q)

L]

Y. P(@Q@=¢lS,D,0,¢4)
c=1

P(S,D|Q = ¢,0,¢4) P(Q = ¢[O, ¢a)

P(Q=c|S,D,0,¢4) = P(S, D6, ¢a)

(3.12)

The normalization factor P(S, D|©, ¢4) is calculated in a similar way as
the case where no additional data source is used.

The prior P(Q = ¢|O, ¢4) is defined using Formula 3.6.

P(S,D|A, 7,0, ¢g) is needed to obtain P(S, D|Q = ¢, O, ¢4), which can
be factorized by Equation 3.13. Note the assumption used here is that S and

D are conditionally independent and the probability of D does not depend
on the background and PSFM models.

P(S7 D|Aa T, @7 ¢d) = P(S‘A7 T, ®a ¢d)P(D|A7 7T). (313)

In Equation 3.13, P(S|A,7,0,¢,) is obtained by Equation 3.8, and
P(DJA,m) can be further factorized as Equation 3.14, where P(D|pg4) =

N (m) le, =1 Py .4k .
[L2(1=P), Doy’ =112, l—ng’ I ={1,...,N} denotes the base pair
indices of a promoter, and Ia, = {a1,...,a1 + lx, — 1, ag,...,a2 + Iz, —

1,...,CLM,...,CLM—|-Z7TM—1}.

polam = [ a-p) [[ P

i€\la x i€la,x

= Tlo-» 11 175

i€l 1€la,

N |A| 1"171 P &
— _p _Caitk
= Ho-mII =5
i=1 Jj=1 k=0 J
[A]
= P(D|¢a) [[ Di (3.14)
j=1
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Thus, the joint probability P(S, D|A, 7, ©, ¢4) can be written compactly
as

[A]
P(S,D|A,7,0,¢4) = P(S|¢a)P(D|¢q) | [(W,™) - D{m)). (3.15)

j=1

Finally, a similar efficient recursive formula as Equation 3.10 for P(S, D|Q =
¢, 0, ¢q) is obtained.

3.1.4 Data fusion methods for TFBS prediction

A general approach to fuse multiple data sources is shown in Formula 3.16 [19],
assuming that there are n data sources, the m*™ data source is denoted as

D™ (Dm) = (Pl(m) ,77](\, )) 1 <m <mn, N is the length of the promoter
sequence), and the probablhty of the pOSlthH 1 contributing to a binding site

is Pi(m)

Poc [T (PI™)En (3.16)

Notice from this formula that a weight, L,,, is assigned to the prior
probability provided by each data source, and the final prior for a particular
position is computed as the multiplication of these weighted probabilities.
This method (as shown by Equation 3.16), although is proven capable of
improving the TFBS prediction accuracy when data such as evolutionary
conservation is used, does not perform well when other information, e.g.,
nucleosome positioning, is employed [19]. Thus, [Publication I] studies how
TFBS prediction could be further improved by exploring a new way to inte-
grate additional data (whose principle is illustrated in Fig. 3.1), and utilizing
novel information sources (see [Publication IJ).

In particular, the proposed data fusion method first filters out the po-
sitions whose probabilities of being TFBSs are below a certain threshold
(T'™), which is data specific) for each data source using Equation 3.17.
Then, the probability of a position ¢ being a TFBS is computed by fusing its

thresholded probabilities from multiple data sources (P; = (771-(1) e ,P}n)),
1 <4 < N) with Equation 3.18. In this equation, j; is the number of data
sources whose thresholded probabilities at location ¢ are above zero as de-
fined in Equation 3.19, and the weight L;, (1 < m < n) increases with the
value of its subindex. In short, the new data fusion method assigns higher

probabilities to positions that are indicated to be the binding sites by more
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Figure 3.1: An illustration of the new prior integration method. A
case of two additional information sources is illustrated. x and y
axes each corresponds to one data source. z-axis shows the inte-
grated prior. Ly = 0.5, Ly = 0.7, Ly = 1 and T = 7@ =
0.9 percentile of the distribution of each data source. This figure is re-
trieved from [Publication I] with permission.

evidence sources.

~ (m) . (m) (m)
(m) P, if P >T
3 e 3 3 317
Pi { 0 otherwise, (8:17)
= max(P) x Ly, if ji>1
b= { min(P;) x Ly otherwise (3.18)
i = ’{755”” 1P > 0,1<m< n}‘ (3.19)
In practice, each raw data source for the i position, P g scaled

,raw’
by a multiplicative factor f; and an additive factor fo before being used (as

shown in Equation 3.20), and the integrated prior E for location ¢ is scaled
by fs3 before TFBS prediction (as shown by Equation 3.21). These scaling
parameters, i.e., f; (i € {1,2,3}), are data specific and chosen by a grid
search method via optimizing the receiver operating characteristic (ROC)
curves of the TFBS prediction results.

P =[x P+ o (3.20)
P, = 2x f3x P +0.5— f3 (3.21)

The results show that the new data fusion principle outweighs the one
illustrated in Equation 3.16, and is characterized by lower FPR. This is
because a non-binding site may still satisfy one or several criteria of being
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a binding site, and the previous method, assigning all the positions with
the same weight for each data source, is highly subject to the adverse ef-
fects caused by such positions. The proposed method, on the other hand,
distinguishes positions by assigning them different weights according to the
number of data sources that indicate them to be binding sites. Thus, the
proposed method can significantly reduce the risk of choosing a position that
is not a binding site in TFBS prediction. To do so, thresholding is needed to
binarize each data source, based on which each position is labeled as being
a binding site or not; the number of positive labels (being a binding site)
for each position is then counted to assign a corresponding weight to each
site’s statistic.

3.2 Gene clustering

Closely related genes are likely to collaborate in orchestrating a particular
pathway and can be viewed as a block when constructing and analyzing
a GRN. Thus, the precision of gene clustering is of great importance in
further data analysis. One way to improve the clustering accuracy is to
observe genes’ relationships from multiple perspectives, motivated by which
this thesis presents a model based method to jointly utilize multiple data
sources in gene clustering.

In [Publication II] to [Publication I'V], different joint finite mixture mod-
els are developed for gene clustering, whose performances are tested by simu-
lations ([Publication II] to [Publication I'V]), and real data ([Publication IT]
and [Publication III]). [Publication VI] extends this clustering framework
and builds a new model to solve problems in another research domain, i.e.,
noisy attractor detection.

This section presents the key concept, the data sources and some back-
ground information of [Publication IT] to [Publication I'V], and summarizes
all the developed models (including [Publication IT] to [Publication I'V] and
[Publication VI]) in a holistic way. The simulation tests and biological ap-
plications of [Publication II] to [Publication IV] are not discussed here but
summarized in Chapter 4, whose details can be found in each corresponding
publication.

The background of the problem studied in [Publication VI is excluded
in this chapter but explained explicitly in Chapter 5.

3.2.1 Key concept

The key concept encountered in [Publication IT] to [Publication IV] is gene
clustering, which is defined below.

Definition 6 (Gene Clustering). Gene clustering is the process of grouping
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or segmenting a collection of genes into subsets or clusters, such that genes
within each cluster have more common features or are more closely related
to each other than genes assigned to different clusters [121].

3.2.2 Data sources

In this thesis, data fusion methods are developed to cluster genes from mul-
tiple data sources, with the aim of more accurately identifying functionally
related genes or genes that are co-regulated. Information sources involved in-
clude gene expression data, protein-DNA binding data, and protein-protein
interaction (PPI) data.

Gene expression data

Gene expression data is obtained from DNA microarrays or DNA chips which
measure the messenger RNA (mRNA) levels in particular cells or tissues
in a high throughput manner [122]. There are two widely used DNA mi-
croarray platforms, i.e., spotted microarrays and oligonucleotide microar-
rays [122; 123]. In spotted DNA chips, complementary DNAs (cDNA),
oligonucleotide chains or short PCR products of the interested genes are
immobilized on the chip [123]. In oligonucleotide chips, oligonucleotides are
built or produced in situ on an array by, e.g., photolithographic manufac-
turing (Affymetrix chips) or ink-jet synthesizer (Agilent chips) [123]. DNA
microarray experiments can be carried out in a double-channel or single-
channel manner [122; 123], depending on the chip type (e.g., Affymetrix
and ¢cDNA chips are single- and double-channel microarrays, respectively)
and the experimental purpose (e.g., intensity ratios are measured by double-
channel experiments, and raw intensities are obtained from single-channel
experiments) [123]. Various microarray experimental designs are developed
to serve different purposes. Time series, a series of samples following each
other in time, is typically used to study a development over time [124].
Conditions, generally referred to as time points or states and accompanied
by several replicate hybridizations to ensure adequate information for the
results’ significance assessment, are commonly used to, e.g., infer gene func-
tions or genes’ relationships [124].

The quality of raw DNA microarray data is subject to errors induced dur-
ing the experiment, both systematic errors (e.g., asynchronous cells are hy-
bridized together, cross-hybridization, microarray’s surface characteristics)
and random mistakes (e.g., human errors) [123]. Thus, proper data pre-
processing and normalization are needed before further data analysis [125].
Besides, microarray quality control in image analysis is also shown to be
important in obtaining good quality data [126]. In practice, filtered log-
transformed DNA microarray data is often assumed to be of Gaussian dis-
tribution [127]. One common application of gene expression data is to group



3.2. GENE CLUSTERING 27

genes with similar expression magnitudes and/or dynamics shapes together,
assuming that they share similar functions or occur simultaneously [128].
Extensive research has been devoted to this area [129-133], involving many
clustering techniques such as hierarchical methods [134; 135], partitioning
methods [30; 135], and model based methods [136].

The gene expression data used in the real case application of this thesis
contains 1960 genes measured from 95 conditions in mouse. These conditions
consist of 23 treatments, each is a time series with an average of four time
points, and the treatments are the combinations of six Toll-like receptor
(TLR) agonists and four gene knock-out mutants. Different conditions and
genes are used in [Publication II] and [Publication III], depending on each
particular problem.

Protein-DNA binding data

Protein-DNA interactions play a central role in many biological processes, in-
cluding transcriptional regulation [11; 12]. Thus, many experimental [13; 14]
and computational [19; 79; 137-140] efforts are devoted to investigating
protein-DNA physical interactions and their binding mechanisms and affini-
ties.

Experimentally, ChIP (chromatin immunoprecipitation) related tech-
niques, ChIP-chip [13] or ChIP-Seq [14], are normally used to obtain protein-
DNA binding data. Specifically, ChIP requires cross-linking of living cells
with formaldehyde, shearing of chromatin into short fragments via sonica-
tion, immunoprecipitating protein-bound DNA fragments by an antibody
specific to the interested protein(s), reversing the protein-DNA cross-links,
purifying and determining the DNA sequence(s) [141]. ChIP-chip is the
technique that combines ChIP with DNA microarrays [13], which is cur-
rently the most widely applied method to map the protein binding sites on
DNA sequences genome-wide. ChIP-seq, the technique that combines ChIP
with the next generation massively parallel sequencing [14], is taking over
the dominance of ChIP-chip by its high resolution [14].

Computationally, many methods are developed to discover protein-DNA
binding sites and/or predict their binding affinities [19; 79; 137-140]. This
can be achieved by analyzing protein-DNA complexes or studying DNA se-
quences alone. From the first aspect, the identities of amino acids at protein-
DNA interface were first used to reveal TFBSs [137]. Later, the protein
structural information is also taken into account [138]. Alternatively, bind-
ing affinities are also predictable via modeling protein-DNA complexes at an
all-atom level, where the protein-DNA binding energies are evaluated and
used [139]. From the second perspective, the patterns or motifs of protein-
DNA binding sites can be discovered by analyzing DNA sequences that con-
tain the binding sites (TFBS discovery algorithm) [79], which can be used to
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further predict the binding sites of the unknown sequences (TFBS prediction
algorithm) [19]. With enormous efforts being devoted to analyzing protein-
DNA binding sites, finding functional binding sites has been acknowledged
and explored, e.g., Beyer et al. jointly assess multiple evidences to predict
the regulatory TFBSs [140].

In this thesis, the protein-DNA binding data used for real case anal-
ysis is computed from a probabilistic TFBS prediction algorithm, namely
ProbTF [19]. The data is composed of the probabilities (within the closed
region [0, 1]) of 266 TFs binding to 20397 sequences in mouse, which is as-
sumed to be of beta distribution. The TF's and genes selected from this data
set differ in each application (see each clustering event in [Publication II]
and [Publication IIT]), depending on the purpose of the analysis and the
genes available in the other data sets, e.g., the conditions and the genes in
the gene expression data.

PPI data

Most proteins need to form polymers (either homo- or hetero-polymers) to
exert their functions, rendering PPIs a fundamental regulatory mechanism
of GRNs [11; 12]. There are two widely applied techniques to experimen-
tally detect PPIs, i.e., the yeast two-hybrid (Y2H) system [142; 143], and
affinity purification followed by mass spectrometry (AP-MS) [143; 144]. In
Y2H system, if a pair of proteins (namely ‘bait’ and ‘prey’) interact, the re-
porter gene expresses [142; 143]. In an AP-MS experiment, a tagged protein
(‘bait’), which is expressed in the cell of interest, is first extracted together
with the associated proteins (‘prey’) from the cell by co-immunoprecipitation
or tandem affinity purification; and then the extracted proteins are identi-
fied by MS [143; 144]. Y2H and AP-MS mainly differ in two aspects. First,
Y2H detects binary interactions, while AP-MS finds one-to-many relation-
ships [143]. Second, the interactions found by Y2H may not exist in vivo
due to the non-physiological conditions under which it is conducted, while
those detected by AP-MS are not restricted to hypothesis [143]. Also, there
are several complementary features between these two techniques [143]. For
example, Y2H can not detect weak interactions such as those that are stabi-
lized by other subunits of a complex which AP-MS is capable of, AP-MS is
not able to find transient interactions while Y2H can, and AP-MS is biased
towards abundant proteins whereas Y2H is not [143]. Both of these two
techniques can be conducted in a high throughput manner. For example,
large-scale Y2H can be carried out in a colony-array format [145-147], and
AP-MS has been systematically applied to large sets of yeast proteins [148—
150].

There are many databases to store PPIs, such as MINT [151], IntAct [152],
DIP [153; 154], BioGRID [155], HPRD [156] and MIPS/MPact [157]. These



3.2. GENE CLUSTERING 29

databases differ in their scope, type and coverage of data [143]. To re-
trieve a more complete data set, one can integrate information from multiple
databases. Platforms such as PINA [158] can be used for this purpose.

3.2.3 Gene clustering methods

Gene clustering is a typical unsupervised machine learning problem, for
which many methods are developed [30; 134; 136]. The most commonly used
approaches can be roughly classified into three categories, the hierarchical
methods, the partitioning methods, and the model-based methods [159].

Hierarchical clustering can be either agglomerative or divisive, which
proceeds by recursively fusing or separating the objects into greater or finer
groups to optimize a certain criterion [134]. Different criteria are developed
to serve this purpose, among which single linkage, complete linkage, aver-
age linkage and group average linkage are widely applied [135]. Distances
such as Euclidean distance [160], Mahalanobis distance [161], Manhattan
distance [122], and Hamming distance [162] are generally adopted in these
criteria to measure the cluster dissimilarity. Thus, the accuracy of hierarchi-
cal clustering highly depends on the distance measurement, which requires
expert domain knowledge especially for complex data types. For example,
Euclidean distance, which is commonly used when data is representable in
vector space, is not appropriate for high-dimensional text clustering [163];
and semantic similarity measurements, such as graph-structure based dis-
tances and information content based methods, are especially applicable to
gene ontology (GO) based clustering [10]. Further, hierarchical clustering
is computationally inefficient, given that computing distances among all ob-
servation pairs requires a complexity of O(n?), where n is the number of
observations [164]. Also, at what granularity should the algorithm stop is
an important issue and could not be naturally determined without prior
knowledge or estimation of the number of clusters [159].

Partitioning, also called iterative partitioning or iterative relocation, is
another class of commonly used clustering methods, where data points are
moved across groups until no further improvement could be obtained based
on a certain criterion [30]. Many well-known algorithms belong to this cate-
gory, such as K-means clustering [30], fuzzy C-means (FCM) [165] and par-
titioning around medoids (PAM) [166], among which K-means is the most
representative. In particular, it partitions the objects into K clusters such
that each object belongs to its closest group that is represented by the group
mean, where K needs to be pre-specified.

Hierarchical methods and partitioning methods are also called ‘heuristic
methods’, since both of them rely on some heuristics and follow intuitively
reasonable procedures [159]. Although considerable research has been done
on these methods, still little associated systematic guidance is available for
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solving some practical issues [159], including how to specify the number of
clusters, how to handle the outliers, and how to choose or define a good
distance for a particular clustering problem.

Clustering algorithms of the third category are called model based meth-
ods, which try to fit the given data to certain mathematical models, as-
suming that data are generated by a mixture of the underlying probability
distributions [136]. Model based methods can naturally solve the problems
generically inherited by heuristic methods [159] which, e.g., often determine
the number of clusters by casting it as the model selection problem (some
commonly used model selection criteria are discussed later in this chapter)
and group the outliers as separate clusters [136; 159]. Further, model based
methods outweigh heuristic methods in their statistical nature [136; 159].
There are different types of methods within this category, such as finite
mixture models [136], infinite mixture models [167], model based hierar-
chical clustering [168], and specialized model-based partitioning clustering
algorithm [164] (e.g., Self Organizing Map (SOM) [169]). Among these al-
ternatives, finite model based clustering is the main focus of this thesis,
base on which all the joint mixture models presented in [Publication II] to
[Publication IV] and [Publication VI] are built.

In finite mixture model gene clustering, each observationx; ( =1,...,n
and n is the number of genes) is assumed to be drawn from finite mixture
distributions with the prior probability 75, component-specific distribution
fs and its parameters 65 [136]. The formula is shown in Equation 3.22 [136],
where 0 = {(n5,05) : d = 1,..., g} represents all the unknown parameters,
0 <ms <1 foranyd,and Y J_,m5=1.

F(x;10) = w5 fs(x;105) (3.22)
5=1

3.2.4 Joint finite mixture models

In [Publication II] to [Publication IV] and [Publication VIJ, four joint fi-
nite mixture models, i.e., beta-Gaussian mixture model (BGMM), stratified
beta-Gaussian mixture model (sSBGMM), Gaussian-Bernoulli mixture model
(GBMM) and gamma-Bernoulli mixture model ('BMM), are constructed to
improve the clustering accuracy via data fusion. To explain the modeling
framework, assume the model has g components, there are n genes and
N data types, and the second dimension and the parameters of data type
i (i €{l,...,N}) are p; and 0;, respectively. Also, define m = [my,... ,7Tg]T
and 0 = [m,01,..., GN]T. If the distribution of data type 7 has p parameters,
then

0i = [91.115 -, O1.gpi> D211, - D2gpis- - 0p11, 0 gpil - (3.23)
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where ¥, g, represents the p'™ parameter of the data (in the ! data set)
belonging to the ¢'" group in the pgh dimension. Further, denote X; (i €
{1,...,N}) as the observations of data type i, and function f; of x; as
the density function of the corresponding distribution (f; # f; if i # j).
Specifically, in [Publication II] to [Publication IV] and [Publication VI],
four types of data are used, which are assumed to be of beta, Gaussian,
gamma and Bernoulli distributions, and denoted as X; to X4, respectively.

A joint finite mixture model is built from multiple mixture models that
are of different distributions, assuming that data of different distributions
are independent. In this thesis, four component models are developed or
used to build joint models, which are beta mixture model (BMM), Gaus-
sian mixture model (GMM), gamma mixture model ('MM), and Bernoulli
mixture model (BerMM). Each component model is assumed to be the prod-
uct of p; (i € {1,2,3,4}) independent distributions of data type X;, whose
probability density functions are defined in Equations 3.24 to 3.27, respec-
tively. Note that o and 3 denote the two shape parameters in Equation 3.24,
and the shape and scale parameters, respectively, in Equation 3.26. |V| in
Equation 3.25 is the determinant of the diagonal covariance matrix of the

Gaussian distribution in the mixture model, i.e., |[V| = [[*2, 02, where
V = diag(o?,03,... ,012)2) and o is the standard deviation. Also, p and ¢

represent the mean in Equations 3.25 and 3.27, respectively.
a1 o)

frstalons) = ] B(su, Bsu)

u=1
1 1
o E R o (e — i)V e — ) (3.29)

(3.24)

fa,5(x2]02,5) =

p3 asy—1 —1
x5 exp(—x3,u0s, )
f35(x3l055) = : = (3.26)
1| S O
P4
Fro(aldas) = [ (1—gs) (3.27)
u=1

EM algorithm

Expectation maximization (EM) algorithm [170], a general technique to ob-
tain the maximum likelihood estimates (MLE) from incomplete data, is
widely used for parameter estimation in model based methods [136]. EM
is an iterative method alternating between performing an expectation (E)
step and a maximization (M) step [170]. In the E step, an expectation of the
data log-likelihood with respect to the current estimate of the distribution
for the latent variables is computed [170]. In the M step, the parameters
that maximize the expected data log-likelihood calculated in the E step are
found, which are then used as the inputs of the next E step [170].

Specifically, for a specific data typei (i € {1,2,..., N}), MLEs are deter-
mined by the marginal likelihood of the observed data [136] (as represented
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by Equation 3.28), which, however, is often intractable.

log L(0 Z log( [Z 75 fi.5 (i 510; 5)] ) (3.28)

In practice, this problem is generally casted in the framework of incom-
plete data (L. is used to represent the complete data likelihood), and the
EM algorithm iteratively applies the following two steps [170].

e E step: calculate the expectation of the complete data log-likelihood

function, Q(Hi\ﬁgm)), with respect to the conditional distribution of the
latent variables given the observations under the current estimate of

the parameters Hgm), as shown below, where ¢ = {c1,c2,...,¢,} and
¢; (7 €{1,2,...,n}) is an indicator function of gene j.

Q(91|9fm)) = EC|X7‘,79£m) [log(LC|X“91)]

e M step: find the parameters that maximize Q(8|6(™), i.e.,

6"t = argmaxQ(6;]6\™).
0;

In the joint finite mixture model for clustering genes from data sources

of N distinct distributions, L. can be factorized as L.(f) = H f(Xile,0),

and Q(6|6(™)) is obtained from Equation 3.29, where 7'](5 ™) i computed from
Equation 3.30 and is the estimated posterior probability of a gene belonging
to a group, ie., ;5 = f(¢; = 5’X17j,...,XN7j,9§m)) denotes the posterior
probability of gene j belonging to group 9.

nog
Qeele™) = 3D mi log( mstz (xi,5101.6)) (3.29)

j=16=1 i=1

Tj(gn) = f(Cj :(5|X17j,...,XN,j,9((5m))
N
™ H fi,a(xi,j|9§f§>)
= = (3.30)
5/2:1 F‘S’ H fie (Xw|92 5 )

If the stratified mixture modeling strategy is used ([Publication III]),
i.e., genes are partitioned into K groups based on the priors, then Equa-
tions 3.29 and 3.30 become Equations 3.31 and 3.32, where 7 ;) is the
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estimated posterior probability of a gene belonging to group J while being
in the k" (k € {1,2,..., K}) layer according to the prior.

n g N
Qo10"™) = S5 og(ms e [ Fis(xi10:5) (3.31)
j=16=1 i=1
N
mylon I fis(xis 165
o i=1 (3.32)

0.

L m) T
5;:1 Tor (k) '1:[1 fior (X

Estimation of the parameters in the M step depends highly on the prob-
ability density function of the data distribution and varies greatly among
models [136]. Since Equation 3.29 can be reformulated as Equation 3.33,
parameter estimation of the joint finite mixture model can be reduced to
estimating the parameters of each component mixture model and the pa-
rameter .

N
Q(O16'™) = 3 (Q(6:160™) + Q() (3.33)

=1
For the four component models, i.e., BMM, GMM, I'MM, and BerMM

which are developed or employed in this thesis, the methods used to update
their parameters are listed below.

e Parameters of beta distribution: two versions, i.e, the standard ver-
sion and the approximated version.

— Standard version: the parameters are estimated by maximizing

Q(91|0§m)) using Newton-Raphson method. Let 6,5 = (as, 5s),
then the parameters are updated by Equation 3.34 with the con-

uated at 0%) and Vg, ,L(00™) is the partial derivatives of the
Lagrangian function with respect to 9%). This version is used in

[Publication II] and [Publication III], with the derivations pre-
sented in the appendix of [Publication IIJ.

straint 65 > 1, where H _1(9%)) is the Hessian matrix eval-

B = o) — HY(6)V, ,L(60) (3.34)

— Approximated version: the parameters are estimated by maxi-
mizing log(L.| X1, 61) instead of its expectation using a numerical
optimization method, i.e., the ‘betafit’ function in Matlab. This
version is presented in [Publication IT].

e Parameters of Gaussian distribution: two versions, i.e., the standard
version and the approximated version. Both versions employ the di-
agonal covariance matrix in the probability density function of the
Gaussian distribution.
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— Standard version: the parameters are estimated by maximizing

Q(92|9§m)), with the update formulas shown in Equations 3.35
and 3.36. This version is used in [Publication II] to [Publica-
tion IV]. The derivations are referenced from [136] and can be
found in the appendix of [Publication II].

n

g = Y el Zz(;”) (3.35)

j=1

3

g

520 = SN gy - ()2 (3.36)

j=16=1

— Approximated version: the parameters are estimated to maximize
log(L.| X2, 62). The update formulas are shown in Equations 3.37

and 3.38, where I (m) s composed of all the genes in cluster ¢

estimated from the E step, and n5 |I |, n((;m) is the

number of genes in cluster § estimated at the m' 1teration. This
version is presented and implemented in [Publication IT].

~(m—+1
agty = 3wl e (3.37)
jelg’")
g
5200 = N N g — i) n (3.38)
jertm =1

e Parameters of gamma distribution: the parameters are estimated

to maximize Q(Gg\@ém)) using Newton-Raphson method. Let 635 =
(as, Bs), then the parameters are updated by Equation 3.39, with the

constraint ¢35 > 1, where H *1(0:(,)";)) is the Hessian matrix evalu-

ated at Ggg), and Vg, ,L£(00™) is the partial derivatives of Lagrangian

function with respect to 3 5. The derivations are presented in [Publi-
cation VIJ.

D = 05 — HY(052 ) Vg, , L(0™) (3.39)

Parameters of Bernoulli distribution: the parameters are estimated

to maximize Q(94|0£1m)). The update formula, as shown in Equa-
tion 3.40, is used in [Publication IV] and [Publication VI], whose
derivations are presented in [Publication VIJ.

n i ™xy
q((;erl) _ ijl 7o 4,5 (340)

Z;‘l:1 T;an)

: two versions, i.e., the non-stratified version and the stratified ver-
sion.
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— Non-stratified version: 7’s are updated according to Equation 3.41.
This version is used in non-stratified models such as BGMM,
GBMM and I'BMM, whose derivations are available in the ap-
pendix of [Publication IT].

A{mry) Z 5 n (3.41)

— Stratified version: 7’s are updated according to Equation 3.42,
where ny, is the number of genes in the k"' layer according to
the prior. This version is used in sSBGMM, whose derivations are
shown in [Publication III].

A =3 7 g (3.42)

JEGK

Model selection criteria

There are two kinds of commonly used model selection criteria, i.e., likelihood-
based methods [171-173] and approximation-based methods [174-176].

Likelihood-based methods include bootstrap [171; 172] and cross-vali-
dation [173], where cross-validation methods can be further divided into
many different alternatives depending on how the partitions are chosen [173].
Bootstrap method, although reported to be able to solve problems such as
those with small data size and simple underlying structure [171; 172], i
shown to slightly bias the number of clusters towards the null hypothe-
sis [172]. Cross-validation method can solve the model selection problem
in finite mixture model clustering by utilizing any scoring function that
measures the fitness between the data and the model [173]. However, it
is inefficient in data usage in the sense that the log-likelihood is estimated
based on models that are trained from partial instead of the whole data
set [173]. Further, likelihood-based methods are generally computationally
expensive [173] which, thus, although applaudable in some clustering appli-
cations [171-173], are not widely used in this field.

Approximation-based methods, computationally efficient and simple, are
preferred by most people, although the qualities of the results are subject to
the underlying approximations, theoretically [173]. These methods include
closed-form approximations to the Bayesian solution, Monte Carlo sampling
of the Bayesian solution, and penalized likelihood methods [173]. The first
two classes both adopt Bayesian approach which treats the number of com-
ponents, g, as a parameter and obtains its posterior distribution based on
the data and the model [173]. Since this posterior is often difficult to be
obtained in the closed form, it either has to be approximated analytically
(closed-form approximations to the Bayesian solution) or estimated via sam-
pling techniques such as Markov chain Monte Carlo (MCMC) method [173].
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Both of these two methods have been successfully applied in solving model
selection problems [177; 178]. Penalized likelihood methods are typically de-
rived from approximations based on asymptotic arguments as the data size
goes to infinity which, strictly speaking, also approximate to the Bayesian
solution [173; 179]. As stated by their names, penalized likelihood methods
simply penalize the log-likelihood by an additive factor, which makes them
much easier to be implemented compared with other methods [173]. There
are many different penalization methods, such as Bayesian information crite-
rion (BIC) [131; 175], integrated classification likelihood-BIC (ICL-BIC, sim-
plified as ICL in this thesis) [174], Akaike information criterion (AIC) [180],
and modified AIC (such as AIC3 [181]), all of which are reported to work
well in certain applications.

In [Publication II] to [Publication I'V] and [Publication VI, four well-
known approximation-based model selection criteria, i.e., BIC [131; 175],
ICL [174], AIC [176; 180], and AIC3 [176; 181] are compared in each finite
mixture model. The formulas are given in Equations 3.43 to 3.46, where
=230 1 223 Tjslog(7js) is the estimated entropy of the fuzzy classification

matrix C = ((7j5)) [174], d is the number of free parameters, and M (in
equations 3.43 and 3.44) is the total amount of the data. Recall that M =

Zﬁil M;, where M; is the size of data set ¢ and N is the number of input
data sets.

BIC = —2logL(0) + dlog(nM) (3.43)
n )

ICL = —2logL(f) + dlog(nM) — 2> > 7;5log(7js) (3.44)
j=16=1

AIC = —2logL(f)+2d (3.45)

AIC3 = —2logL(d) + 3d (3.46)

The number of free parameters, d, is distinct in different models, with the
ones used in this thesis listed in Equations 3.47 to 3.54. Recall that p; to py
each represents the second dimension of beta, Gaussian, gamma, Bernoulli
distributed data, respectively, g is the number of clusters, and K stands for
the number of stratified layers in sSBGMM. Specifically, Equation 3.47 is used
in [Publication II], Equation 3.48 is adopted in [Publication II] to [Publi-
cation IV], Equation 3.49 is employed in [Publication VI], Equation 3.50 is
utilized in [Publication IV] and [Publication VI], Equation 3.51 is imple-
mented in [Publication IT] and [Publication III], Equation 3.52 is applied

n [Publication IIT|, Equation 3.53 is employed in [Publication IV], and
Equation 3.54 is used in [Publication VT].
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Chapter 4
Application

A gene regulatory network (GRN) is a dynamical ensemble of multiple cel-
lular components. Thus, monitoring a GRN’s dynamics allows us observing
subtle intracellular variations during gene expression, facilitating our under-
standing of the GRN and its regulatory mechanisms.

[Publication VI] extends and applies the clustering framework intro-
duced in Chapter 3 to study the dynamics of delayed stochastic GRN via
detecting their noisy attractors. [Publication V| and [Publication VII] are
the supportive materials to [Publication VI], where [Publication V] provides
the biological and validation basis of [Publication V1], and [Publication VII]
points out one future direction in this research.

This chapter presents the background of the problem studied in [Publica-
tion V] to [Publication VII] by introducing the key concepts appeared, data
sources explored, the algorithm used to drive the simulation, and the GRNs
that are investigated. The validation results and biological findings of these
publications are summarized in Chapter 5 and available in the publications.

4.1 Key concepts

The joint clustering framework is applied for noisy attractor detection from
multiple data sources in [Publication VI]. [Publication V] provides the bi-
ological and validation bases for this study by exploring the stochasticity
of a GRN and the variability of the distribution of cell differentiation path-
way choices affected by parameter tuning. By investigating the important
regulatory roles played by proteins’ functionalities in gene regulation, [Pub-
lication VII] points out one future direction of studies in [Publication VIJ,
i.e., applying the current noisy attractor detection technique to GRNs where
proteins with various degrees of functionalities are involved.

The key concept used in all the three publications is ‘cell differentiation’,
and the ones only appeared in [Publication VI| are ‘ergodic set” and ‘noisy
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attractor’, which are defined below.

Definition 7 (Cell differentiation). Cell differentiation can be viewed from
cell level and population level. The cell level involves progressive morpholog-
ical and biochemical changes such that a cell becomes functionally specialized
with the passage of time. The population level refers to specialization of two
or more cells in a multicellular organism which may trend different paths.
In the population level, cells undergo nuclear, cytoplasmic and biochemical
changes to establish different developmental patterns [182].

Definition 8 (Ergodic Set). Ergodic set is a closed set of state cycles such
that each state cycle can be reached by a single or more gene(s)’ mistakes
caused by internal noise from any other state cycle of the same ergodic
set [29].

Definition 9 (Noisy Attractor). Noisy attractor is the set of states where
a gene regulatory network spends most of the time when on that ergodic

set [29].

4.2 Data sources

Three types of data sources are used when applying the data fusion method
to noisy attractor detection, which are the time series of RNA, protein and
promoter states (the ‘state’ here is defined as being or not bound to a tran-
scription factor). The data are generated from SGN Sim [183], whose dy-
namics is driven by the delayed Stochastic Simulation Algorithm (‘delayed
SSA’) [184].

4.2.1 RNA time series

Transcriptional regulation is one of the most important steps in gene regu-
lation [40; 185]. Since RNAs can be translated into proteins, it is assumed
that the RNA abundance of a gene is predictive of the corresponding pro-
tein’s activity. Thus, the RNAs of the genes encoding transcriptional reg-
ulatory proteins can be used to model the regulatory mechanisms within
a GRN [185]. With this assumption, gene expression data is widely used
for this purpose [129; 186; 187] and computational models at different gran-
ularity levels are developed, ranging from coarse-grained clusterings of co-
regulated genes [129-133], to Boolean networks’ binary representation of
gene relationships [188; 189], and further to fully parameterized stochastic
models of biochemical kinetics [186; 187].
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4.2.2 Protein time series

More and more evidence suggest that it is inefficient to analyze regula-
tory molecules’ activities within a GRN using RNA time series. For ex-
ample, only around 20% transcription factor (TF) RNAs’ profiles corre-
late with the expression levels of their targets in Escherichia coli and Sac-
charomyces cerevisiae [190]. Thus, protein time series has been used as
the default data source in many explorations on GRNs’ regulatory mecha-
nism [4; 29; 191; 192], with the rational that proteins are the final products
of genetic information and control the cellular matter and energy flows [3].
Experimentally, protein time series can be obtained from, e.g., protein mi-
croarrays [193].

It is reported that proteins may not be functional even after matu-
ration [194]. Alternatively, depending on how ‘function’ is defined, non-
functional proteins can be viewed as proteins with lower degrees of func-
tionalities. According to [194], functions of a matured protein, i.e., after
post-translational modification, can be classified as ‘specific’, ‘conditional’
and ‘general’. In particular, specific functions are those that a protein is
specifically adapted to, conditional functions require certain conditions to
induce their activities, and general functions are characteristic of their gen-
eral features which can be ascribed to all proteins, e.g., maintaining the
Donnan equilibrium [194]. Thereby, it may be important to distinguish
proteins with different degrees of functionalities, especially when cells de-
liberately regulate gene expression via tuning proteins’ functionalities (see
studies in [Publication VII]). Further, the emergence of functional protein
microarrays [193] makes the detection of functional proteins experimentally
feasible, facilitating studies at this granularity level.

4.2.3 Promoter states

Although RNA and protein time series cover information from the key cellu-
lar regulatory steps, i.e., transcription and translation, neither of them offers
the explicit evidence whether or not two genes (interact via their products)
directly interact. This can be achieved by complementing RNA and/or pro-
tein time series with information of promoter states, i.e., data containing
binary values that indicate whether a gene’s promoter is bounded by its
TF(s) or not (‘1’ represents ‘bind’, ‘0’ stands for ‘non-bind’). This infor-
mation source, although rarely available, can be obtained indirectly in vivo
via, e.g., cloning a reporter gene (such as fluorescent protein encoding gene)
into the expression vector of the target gene [195; 196].
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4.3 Algorithms, strategies and GRN modules

In [Publication V] to [Publication VII], a modified version of the stochastic
simulation algorithm (SSA) [197], i.e., the delayed SSA [184], is used to
drive the dynamics of GRNs that are studied, where the translations and
transcriptions are all modeled as time delayed reactions. In the following
subsections, the SSA, the delayed SSA, the modeling strategies, and the
delayed stochastic GRNs explored in [Publication V] to [Publication VII]
are described in detail, respectively.

4.3.1 Stochastic simulation algorithm

The SSA [78; 197], a dynamic Monte Carlo simulation of the chemical master
equations, is a computational algorithm that numerically simulates chemical
reactions. It attains temporal stochastic dynamics by calculating the prob-
ability of each possible chemical reaction event and the resulting changes
in the number of each molecular species at a certain moment [78; 197].
The mathematical derivation and formulation of the SSA are described be-
low [198; 199].

Define 7 (7 € [0,00)) and i as the ‘time to the next reaction’ and the
‘index of the next reaction’, respectively, and let x be the current system
state. Then, the probability that the next reaction in the system will occur
in the infinitesimal time interval [t+7,¢+7+d7) and will be an R; reaction
is p(7,1|x,t)d7r. It can be factorized as Equation 4.1,

p(r,i|x,t)dr = Py(7]x,t)a;(x)dT, (4.1)

where Py(7|x,t) is the probability that no reactions occur during [¢,t +
7), and a;(x)d7 represents the probability that reaction R; occurs in the
infinitesimal time interval [t+7,t+7+d7). Note that a;(x) is the propensity
function of reaction R; when the system state is x, which is usually expressed
as the product of the probability reaction constant and a certain combination
of the available reactants of R;.

Now the problem is how to solve Py(7|x,t). Following the above defi-
nitions and logic, the probability that no reaction occurs in [t,t + 7 + d7),
Py(T + dr|x,t), can be factorized as Equation 4.2, where the two terms
on the righthand side represent that no reaction occurs in [t,t 4+ 7) and
[t + 7,t + 7 4 d7), respectively, and n is the number of reactions.

n

Py(t + dr|x,t) = Py(7]x,t)(1 — Z a;(x)dr) (4.2)

i=1

After simple algebraic rearrangements, Equation 4.2 becomes Equation 4.3,
which can be further reformulated as Equation 4.4 by taking the limit dr —
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0. Note that ag(x) = >_1" | ai(x).

Py(1 + dr|x,t) — Py(1]x,1)

- = —ao(x)Po(r]x, 1) (4.3)
lim 2T+ t) = R t) o py e, )
dr—0 dr

dPy(7]x,1)

= = —ap(x)Py(7|x,t) (4.4)

Thus, Py(7|x,t) = exp(—ao(x)7), given the initial condition Py(7 = 0|x,t) =
1. Finally, the probability defined in Equation 4.1 becomes

p(7,i|x,t) = a;(x) exp(—ap(x)7). (4.5)

Equation 4.5, on the other hand, can be written in the form of Equa-
tion 4.7, where p1(7|x,t) and pa2(i|7,x,t) are the probabilities that the next
reaction occurs in [t47, t+7+4d7) regardless of which reaction it is, and that
the next reaction occurring during this time interval is R;, respectively.

p(rii[x,t) = ao(x)exp(—ao(X)7) X (4.6)

p1(7|x, t)p2(il7, %, t) (4.7)

Also, it is seen from Equation 4.6 that 7 is an exponential random variable

with mean and standard deviation ﬁ(x), and ¢ is a statistically independent

integer random variable with point probabilities @i (x)

ao(x) "
Gillespie developed two different but equivalent formulations to imple-

ment the exact SSA, i.e., the direct method and the first reaction method [78].
Also, many other methods are developed to implement the exact SSA, in-
cluding, e.g., the next reaction method [200], the optimized direct method [201]
and the sorting direct method [202]. Among others, the direct method is
found to be effective in most cases [201], whose derivations and implemen-
tation procedures are described below [198].

From Equations 4.6 and 4.7, the probability distribution functions of 7
and ¢ are derived as Equations 4.8 and 4.9, respectively.

F(r]x,t) = / (7 |x, t)dr’
0
= 1—exp(—ap(x)7) (4.8)
F(i|r,x,t) = Zpg(i’|r,x,t)
—~

_ GO}X) > an(x) (4.9)
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Equation 4.8 becomes Equation 4.10 after reformulation, and from Equa-
tion 4.9, there exists a largest ro that satisfies Formula 4.11,

1 1
Tz CL()(X) 1n(17F1>
1 1
R (4.10)
ZZ':N%"(X)
ro < W, (4.11)

where r; € [0,1] (i € {1,2}). Equation 4.11 can be further written as
Equation 4.12.

i = the smallest integer satisfying Z ay (x) > raao(x) (4.12)

i'=1

Thus, the time interval [¢,¢ + 7) and the reaction R; can be determined ac-
cording to Equations 4.10 and 4.12, respectively, by drawing random num-
bers r1 and 7 from the uniform distribution in the unit-interval.

The procedure for constructing a numerical realization of the SSA pro-
cess with the direct method is shown below [198].

e Initialization Step:

— Set t = to (tstop can also be specified);
— Set x = x¢ (includes, e.g., the number of each molecule in the
system and the reaction constants).
e Monte Carlo Step:
— With the system at time ¢ and in state x, evaluate all the a;(x)’s
and their sum ag(x);

— Generate values for 7 and ¢ using Equations 4.10 and 4.12.
e Update Step:

— Set t — t+T;
— Set x «+ x+v; (update the number of molecules according to v;,
which is the state-change vector of reaction R;).

e Iteration Step:

— If the number of reactants is not zero or the time has not been
exceeded when g0y is set, record (x,t) and iterate from ‘Monte
Carlo Step’;
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— Otherwise, end the simulation.

Note that different implementation methods share similar simulation steps,
but differ in the ‘Monte Carlo Step’.

Although the Gillespie exact SSA can simulate the reactions of chemical
or biochemical systems efficiently, it is computationally expensive since only
one reaction is allowed in each step which can be very small for large-scale
systems [199]. Many adapted techniques are developed to overcome this
problem, which generally obtain implementations at large timescales via
compromising the exactitude of the theorem behind the algorithm. These
adapted techniques can be roughly classified into two categories based on
the strategy each method adopts [199]. Methods of the first category usu-
ally use larger step size to allow several reactions take place, such as Poisson
7-leap method [203] and the binomial leap methods [204]. In the second
category, chemical reaction systems are partitioned into different subsys-
tems (e.g., slow, intermediate, and fast subsystems); while using SSA in the
slow subsystem, different approximations and techniques such as various
leap methods, chemical Langevin equations, and reaction rate equations are
applied to the other subsystem(s) [199].

4.3.2 Delayed SSA

While the SSA is proven to be reasonable for modeling discrete molecular
events, the delayed SSA [184], which introduces time delays in these reac-
tions, is developed to model multi-step reactions [184]. The delayed SSA
uses a waiting list, i.e., a list of elements and the time intervals needed for
them to be released, to account for the time delay, whose procedure is shown
below [192].

e Initialization Step:

— Set t =t (tstop can also be specified);

— Set x = x¢ (x includes, e.g., the number of each molecule in the
system and the reaction constants);

— Form a group of input events and a separate group of output
events from the list of reactions;

— Create an empty waiting list L for delayed output events.
e Monte Carlo Step:

— Do a ‘Monte Carlo Step’ of SSA for the input events to get the
next reacting event R; and the corresponding occurrence time ¢;.

e Update Step:
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— Compare t; with the least time, 75, in L.
x If t; < Tin:
- Generate the delay 7; for R; (note that several delayed
output events may exist for one input event, and how 7;
is generated depends on R; and G;);
- Set t —t+1t;;
- Set x < x + v; (v; is formed by performing R;);
- If 7, = 0: perform the output event G;;
- Decrement the delays in L by t;;
- If 7, # 0: add {G;, 7;} into L.
x If t; > Topin:
- Set t «— t + Tin;
- Set X «— X + Umin (Vmin is formed by performing the
output event Gy, which is associated with 7,1, );
- Delete {Gmin, Tmin} from L;
- Decrement the delays in L by Tyin.

e Iteration Step:

— If the number of reactants is not zero or the time has not been
exceeded when g is set, record (x,t) and iterate from ‘Monte
Carlo Step’;

— Otherwise, end the simulation.

The validity of modeling GRNs with delayed SSA has been verified by
matching the model with the measurements at the single molecule (such as
RNA, protein) level [192; 205]. It is a better modeling approach compared
with the delayed differential equations (DDE) due to its stochasticity [206],
and can more precisely model a GRN’s noise than stochastic differential
equations (SDE) where the distribution of the noise term has never been
fixed and validated (e.g., the noise term of protein time series does not
necessarily follow Gaussian distribution [205]). Further, the parameters used
in delayed SSA can be measured directly or indirectly from the real biological
systems, while most parameters of methods such as DDE and SDE are
obtained by model fitting and could not be physically measured. This makes
delayed SSA currently a more realistic modeling approach compared with
its alternatives.

4.3.3 Modeling strategies for delayed stochastic GRNs

GRNs are complex dynamical systems. Besides comprising many complex
cellular processes such as transcription and translation, various regulatory
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events and molecular interactions occur in a GRN [4; 12]. Given this com-
plexity, appropriate approximation methods are required to allow studying
GRNs’ dynamics within a single system [4]. In [Publication V] to [Publica-
tion VII], the GRNs are all modeled with the modeling strategies proposed
in [4] which, while keeping the model as realistic as possible, can diminish
the model complexity dramatically.

Specifically, these strategies [4] are summarized below:

e Consider reactions’ delays and GRNs’ noise:

— Using the delayed SSA to drive a system’s dynamics, which takes
into account the time delays and large fluctuations caused by high
molecular noise.

e Reduce GRNs’ complexity:

— Skipping the whole cascade of events, and assuming the gene
products are fed back into the GRN.

— Skipping the multiple steps in transcription and translation, and
modeling them as single delayed reactions.

e Construct genes’ relationships:

— Each gene product is bound to another gene’s promoter, playing
either an active or inhibitive role. A regulatory function is then
assigned to each of such connections, determining the gene’s next
state based on its inputs’ states.

*x Allowing reactions among gene products, assigning the cre-
ated complex molecules to a random gene promoter binding
site, and choosing what regulatory effect this complex has on
the expression level of its binding gene.

* Allowing each gene to have multiple binding sites, and ran-
domly assigning the regulatory effects to all the possible com-
binations of the binding events.

* Allowing different gene products to bind to a single binding
site, each with its own regulatory effect.

4.3.4 Delayed stochastic models of GRNs

In this thesis, three gene regulatory modules, the toggle switch (TS), the
MeKS module from Bacillus subtilis [76], and a modified TS model are
used or developed under the delayed stochastic framework using strategies
presented in [4]. Specifically, TSs are used in [Publication V] and [Publica-
tion VIJ, the MeKS module is employed in [Publication VI], and the modi-
fied TS model is presented and utilized in [Publication VII]. The structures
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of the TS (or the modified TS model) and the MeKS module are shown in
Fig. 4.1.

Figure 4.1: The structures of (a) TS (or modified TS) and (b) MeKS module.
The round nodes are proteins (or dimers), and the round rectangle node
represents protein complex. An arrow head represents activation and a ‘T’
shape head stands for repression. The solid and dotted lines represent the
direct and indirect reactions, respectively. Both GRNs are drawn using
Cytoscape [34]. The MeKS module is drawn based on [76].

The reactants and reaction rates that are used in most or all the studied
GRNs are listed in Table 4.1. Specifically, each TS or modified TS is as-
sumed to have n nodes. P;, R; and Pro; each represents the protein, RNA
and promoter of gene i, where ¢ € {1,2,...,n} in the (modified) TSs and
is a string representing a gene/protein name in the MeKS module. Pro;P;
is the binding complex of protein j (short for ‘being encoded by gene j’)
and the promoter of gene i (i # j). Also, the basal transcription rate and
protein decay rate are symbolized as k; and kg, respectively, with k¢ genename
and kq proteinname employed if they differ in their values for different genes
or gene products in a GRN. The translation rate is denoted as k.. rbsd is
used to represent the RNA decay rate. kyep and kyprep are defined as the
binding and unbinding rates of a repressor to a gene, respectively. In the
differentiation models, X denotes the essential molecule required for differ-
entiation, and is the parameter controlling differentiation time. k; mmodeiname
and Kg;f fmodelname are used to model the rate for a differentiation event to
occur and the rate of the differentiation process, respectively. RNA poly-
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merase and ribosome, represented as RN Ap and Rib, respectively, are ex-
plicitly modeled in (modified) TSs. This is because according to [184; 192],
variations of the copy numbers of key molecules, such as genes, RNA poly-
merase and ribosome, can cause stochastic fluctuations and consequently the
change of a GRN’s dynamics if the amount of the molecules is limited. Also,
it is pointed out that, e.g., in FEscherichia coli, the free RNA polymerase con-
centration is found to be 28 molecules per cell at any given moment under
normal conditions [207]. Thus, small deviations from the normal conditions,
such as increased transcription due to stress, in systems as small as such
could cause non-negligible variations in the networks’ dynamics. For the
sake of simplicity and accuracy, RNA polymerase and ribosome are both
modeled in (modified) T'Ss where only two genes are involved.

Symbol Meaning
P; Protein of gene i
R; RNA of gene i
Pro; Promoter of gene i
Pro;P; Binding complex of gene j’s protein with gene i’s promoter
RN Ap RNA polymerase
Rib Ribosome
kt Transcription rate
kq Protein decay rate
kt,genename Transcription rate of gene ‘genename’
kd proteinname Protein decay rate of protein ‘proteinname’
kir Translation rate
rbsd RNA decay rate
krep Binding rate of a repressor to a gene
Eunrep Unbinding rate of a repressor to a gene
Celly Stem cell or undifferentiated cell
Cell; Differentiated cell types (i # 0)
X Essential molecule for cell differentiation to occur
k. modelname Rate for a differentiation event to occur in model ‘modelname’
Kdiffmodeiname | Rate of a differentiation process in model ‘modelname’

Table 4.1: Reactants and reaction rates that are present in all the studied
GRNs or differentiation models. Each GRN is assumed to have n nodes. i €
{1,2,...,n} in the (modified) TSs and is a string representing a gene/protein
name in the MeKS module. The symbols listed in the upper and lower boxes
are present in the GRNs and differentiation models, respectively.

The reactants and reaction rates that only appear in the MeKS module
or the modified TS are shown in Table 4.2. In the MeKS module, due to the
involvement of the protein complex MecA, Prox MecA is used to represent
the binding complex of MecA and gene comK’s promoter, kqeg 1eca is used
to symbolize the degradation rate of MecA induced by protein ComS’s com-
petitive binding, and kg i is adopted to stand for the degradation rate of
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protein ComK caused by MecA. In the modified T'S, due to the discrimina-
tion of various degrees of gene products’ functionalities, one more subscript
indicating functional or not is added to proteins and dimers. In particu-
lar, Py;, Pnys, Dy; and Dy, represent the functional and non-functional
proteins and dimers of gene i (‘non-functional dimers’ here refer to dimers
that can not repress gene expression, but may or may not preserve the other
functions). Unlike in the regular T'Ss, P; represents pre-mature proteins in
the modified TSs, which can become functional or non-functional proteins
after processes such as post-translational modification. Also, kirens 1S used
to denote the transformation rate for a nascent protein to become mature,
either functional or non-functional, and kg;er and kyndimer are used to rep-
resent the dimerization and dedimerization rates. Further, Pro;Dy ; and
Pro;Dyy ; each stands for the binding complex of the ith gene’s promoter
with the j*" gene’s functional and non-functional dimer.

Symbol Meaning

MecA Protein complex MecA

Coml Protein Coml, Ie {K, S, C, E, F, G}

coml Gene comlI, I € {K,S}

Kdeg, K Degradation rate of ComK caused by MecA

ProxMecA | Binding complex of MecA with the promoter of gene comK
Kdeg,Meca Degradation rate of MecA caused by competitive binding of

ComS

Kdeg, i Degradation rate of ComK caused by MecA

P; Pre-mature protein of gene ¢

Py Functional protein of gene ¢

P Non-functional protein of gene i

Dy, Functional protein dimer of gene 4

Dy Non-functional protein dimer of gene 4

Pro;Dy ; Binding complex of gene j’s functional dimer with

gene i’s promoter
Pro;D,y; | Binding complex of gene j’s non-functional dimer with
gene ¢’s promoter

Kirans Transformation rate for a pre-mature protein to become
(non-)functional
kdimenr Dimerization rate
Kundimer Dedimerization rate

Table 4.2: Reactants and reaction rates that appear only in the MeKS mod-
ule or the modified T'Ss or have different meanings with those in the regular
TSs. The modified TS is assumed to have n nodes, and i € {1,2,...,n}
with ¢ # j if both subindexes are present. The symbols listed in the upper
and lower boxes are present in the MeKS module and the modified T'Ss,
respectively.

The reaction rates, if present in more than one models, differ among
different models, which are set together with the system initiation state
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(i.e., the amount of each molecule in the system when the simulation starts)
to reproduce the dynamics of each GRN in vivo. The concentrations of the
substrates are assumed to be invariable, whose effects are taken into account
in the corresponding reaction rates. The parameter setting of each model is
available in each publication.

The time delays for the molecules to be present after the corresponding
reactions have occurred are represented by 7;s (j € {1,2,...,5,5std}) in
the modeled GRNs, as shown in Table 4.3. The delay parameters are set
to match the experimental measurements in Escherichia coli [205], and are
fixed in this thesis due to their low variability between transcriptions of single
genes [208]. Specifically, 7 accounts for the time needed for a promoter to
turn on its open state, and is set to 40s according to [208]. 72 is the time for
the RNA polymerase to be detached from the gene, which is considered as
71 plus the transcriptional elongation time [192]. Since gene tsr-venus has
2500 nucleic acids [205] and the average elongation rate of transcription in
Escherichia coli is approximately 50nt/s [192], 72 = 71 + 2500/50 = 90s.
Similarly, 73, the time for the clearance of ribosome binding site in mRNA
during translation initiation, is set to 2s according to [209]; and 74, the time
for the ribosome to be released into the cytosol and become free, is set to 74 =
73 + 2500/45 = 58s, given 15nt/s as the average translation rate [192]. The
time of a protein’s assembly process after its translation follows a Gaussian
process [192], whose mean and standard deviation are set to 75 = 420s and
Tssta = 140s, respectively, according to the experiments [205].

Symbol Meaning
Ty Time delay for the closed promoter complex to become open
Ty Time delay for the RNA polymerase to be detached from the gene
T3 Time delay for ribosome binding site clearance during
translation initiation
T4 Time delay for ribosome to be released into the cytosol
Ts The mean time of a protein to be assembled after its production
Tsstd The standard deviation of the time for a protein to be
assembled after its production

Table 4.3: Time delays in delayed stochastic GRNs.

Each model is composed of a set of chemical reactions, which are shown,
separately, below for each module.

TS model

Cell differentiation has long been hypothesized to be regulated by bistable
genetic sub-circuits controlling many downstream genes [210]. During this
process, a stem cell turns into a stable cell type which, by hypothesis, cor-
responds to stable states of the GRN [2]. Such genetic differentiation deci-
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sion sub-circuits must be at least coinstantaneously bistable to allow cells
branching into distinct cell types and make them reliably acting as cellular
memory units [191]. It is shown that the TS, a GRN of two genes mutually
repressing each other (Fig. 4.1 (a)), can be used by cells to adopt different
phenotypes [186; 191; 211] and as decision circuits of differentiation path-
ways [212].

In the delayed stochastic framework, TSs are modeled by Reactions 4.13
to 4.18 [192], where ¢ € {1,2} when only the sub-index i is present, or
i,7 € {1,2} (i # j) when both sub-indices are present.

k¢
Pro; + RNAp — Pro;(m1) + RN Ap(t2) + Ri(11) (4.13)
Kir
Ri+ Rib  —=  Ri(73) + Rib(14) + P;(7s, Tssta) (4.14)
kre
Pro; + P; ké Pro; P; (4.15)
unrep
ka
P?”inj —  Pro; (416)
rbsd
R, — 0 (4.17)
k
P == 0 (4.18)

In a TS, each promoter Pro; controls the expression of an RNA (R;),
which can then be translated by a ribosome (Rib) into a protein (FP;) as
shown by Reactions 4.13 and 4.14. The binding and unbinding of the re-
pressor to its target gene’s promoter, which defines the TS, is shown by
Reaction 4.15. The degradation of the protein-promoter complexes, RNAs,
and proteins are modeled via Reactions 4.16 to 4.18, respectively. Note that
in this model, a protein decays both in its free form and when it binds to a
promoter, with the same rate.

The differentiation model used to study a GRN’s response to its internal
dynamic change ([Publication V] to [Publication VII]) or to validate the
noisy attractor detection results ([Publication VIJ) is given as Reactions 4.19
to 4.23, where * means no consumption of the reactant [183].

kw T
p = X, (4.19)
kaif,Ts
X +*P; + Celly I Celly (420)
kdiy,
X +#Py+Celly, 25 Cell, (4.21)
0.5Xkaif Ts
X ++P; + %P5 + Cell — Cells (4.22)
0.5xkg;
X+ Celly ST Geny (4.23)

The scheme of the differentiation model is illustrated by Fig. 4.2, where
the cell can choose among four pathways depending on the expression levels
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of both genes. The rational here is that the destiny of a stem cell after dif-
ferentiation is governed by the proteins that determine the noisy attractor
the cell arrives at. This is supported, e.g., by the evidence that two pro-
tein families, Polycomb and Trithorax, work antagonistically to control the
genome programming during differentiation [42]. In the context of neuroge-
nesis and astrogenesis by which neurons and glias are generated, separately,
the presence of the Trithorax group member, MIl1, and the shutting down of
Polycomb group members are required for neurogenesis [213; 214], and the
dominance of Polycomb group members over Trithorax proteins is needed
for cells to differentiate into glias [214].

TN

? »

cell type 0

Ll 1
0|00 ||00||0®

cell type 1 cell type 2 cell type 3 cell type 4

Figure 4.2: Schematic figure of the stochastic TS with four possible differen-
tiation pathways (differentiate into cell type 1 to cell type 4), depending on
the expression levels of the proteins during differentiation. Gray and white
balls each represent genes with high and low expression levels, respectively.
The half-white and half-gray balls show the toggling behavior of the genes’
expression levels in the stem or mother cell (cell type 0). This figure is
reproduced from [Publication V| with permission.

MeKS module

In Bacillus subtilis, while most cells sporulate, a minority becomes compe-
tent for gene uptake from the environment under nutrient limitation [76].
With extensive research and effort devoted to the exploration of this phe-
nomenon, a detailed picture of the regulatory mechanism of this GRN is
unveiled. It is found that a TF, namely ComK, plays a major role in this
GRN. Specifically, it activates the expression of a series of genes that con-
trol competence, such as comC, comE, comF and comG [215-217], among
which comG is of the most importance [218]. The gene comK maintains
a basal expression level once entering its stationary phase [219], and can
activate itself when sufficient amount of ComK is accumulated [220; 221].
MecA is a protein complex that degrades ComK, which prevents cells from
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being competent [219]. Protein ComS can competitively bind to MecA, re-
ducing the amount of MecA that can degrade ComK [219; 222]. Further,
over-expression of comK suppresses the expression of comS [215], indicating
a negative feedback loop and an attempt to escape from the competence
state [76]. Thus, this GRN is mainly governed by three components, i.e.,
MecA, comK, and comS, which is, thereby, called the ‘MeKS’ module [76].
The structure of this MeKS module is depicted in Fig. 4.1 (b).

The MeKS module is modeled under the delayed stochastic framework
by Reactions 4.24 to 4.36 in [Publication VI|. Specifically, Reactions 4.24
to 4.26 model the binding of the protein complex MecA to the promoter
of gene comK, and the disassociation and decay of their binding complex,
respectively.

kre
Prog + MecA  —>  ProgMecA (4.24)
kunrep
ProxgMecA  —  Prog + MecA (4.25)
k ec
ProxMecA 5" Prog (4.26)

Reaction 4.27 models the competitive binding of protein ComS to MecA,
which is simplified as the degradation of MecA by ComS. Reaction 4.28
shows the degradation of protein ComK by MecA.

Kdeg,MecA

Ps + MecA — Pg (4.27)
Kdeg, K
Py + MecA — MecA (4.28)

Reaction 4.29 models the indirect repression of protein ComK to gene comS,

where ‘(invhill : 1,2)’ represents the inverse of the hill function %}b (X
is Pk in this case) with a = 1 and b = 2 [183].
ke,
Prog + =Pk (invhill : 1,2) —> Prog(r) + Rs(m1) (4.29)

Reaction 4.30 shows the transcription of comK, which maintains a basal
expression level at the stationary state and whose auto-activation is inversely
correlated with MecA. Note that ‘(maz : 1,1)’ stands for the function b x
max(a, X) with parameters a = b = 1 [183], where X is Pk in this context.

ke,
Prog + *Pg(mazx : 1,1) + *MecA(invhill : 1,5) -5 Prog(m) + Rk (m1) (4.30)

The translation of proteins ComS, ComK and ComG are modeled by Re-
actions 4.31 and 4.32, where the translation of proteins ComK and ComG
are simplified by a single reaction since they share similar expression profiles
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and differ only in delay.

Eer

Rs = Rg(ms) + Ps(7s, Tssta) (4.31)
kir

Rk — Rk(73) + P (75, T5sta) + P (475, T5sta) (4.32)

Reactions 4.33 and 4.34 each models the production and decay of the pro-
tein complex MecA. The decays of RNAs and proteins are modeled by Re-
actions 4.35 and 4.36, respectively, where ‘i’ represents ‘S’ and ‘K’ in Reac-
tion 4.35, and stands for ‘S’, ‘K’ and ‘G’ in Reaction 4.36.

0 M Meca (4.33)
MecA 25t g (4.34)
RS (4.35)
p My (4.36)

Cell differentiation is modeled by Reactions 4.37 to 4.39, with a similar
scheme as illustrated for the TS model (Fig. 4.2 can be referenced). Specif-
ically, Reaction 4.38 represents the competent pathway since the activity of
com@G is reported to increase when cells become competent [76], and Reac-
tion 4.39 is used to represent the sporulation pathway because, according
to [76], as sporulation begins the expression of comS starts to increase.

ko Me

g T x (4.37)
kdif,Me

«Pg + Celly ™57 Cellg (4.38)
kdif Me

«Ps + Celly 5" Cellg (4.39)

Modified TS model

The modified T'S model presented in [Publication VII] distinguishes from
the regular TS by two important features. First, proteins need to dimerize,
i.e., to form D, before any of their functionalities to be activated. Second,
there exist non-functional dimers, referring to dimers that have lost their
specific functions (i.e., gene repression) but may preserve several or all the
other functions in this context, whose preserved functions are regulatable.
Specifically, the modified TS model consists of Reactions 4.40 to 4.53.
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Pro;(m1) + RN Ap(t2) + Ri(11)
R;(73) + Rib(14) + P;(75, Tsstad)

P?”OZ'vaj

Pro;

Dy,
2Py
Dyy,;

Py j + Puy,;

Further, to analyze how proteins’ functionalities affect cell differentiation
at cell population level, Reactions 4.54 to 4.58 are added to control the
differentiation process (scheme references Fig. 4.2).

ke, Ts

0 — X

kaif, TS

X +*Dygq + Celly — Celly

kaif,Ts

X + *Df72 + Celly — Celly

0-5><k7dif,TS

X+ *Df,1 + *Dfﬁz + Celly I Cells

0.5xkqaif Ts

X + Celly — Celly

4.54

I
(@31

5

N
ot

W
ot

(4.54)
(4.55)
(4.56)
(4.57)
(4.58)

4.58

Notice the two differences in the basic modified TS model compared
with the regular TS, i.e., Reactions 4.46 to 4.53 are added and proteins
are replaced with functional protein dimers. In particular, Reactions 4.46
and 4.47 model the conversion of the protein P; into its functional (Py;) and
non-functional (P, ;) forms, respectively, where f; controls the fraction of
non-functional proteins produced by gene i. Reactions 4.48 and 4.49 model
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the degradation of both forms of proteins. Reactions 4.50 to 4.53 model
the composing and decomposing processes of functional and non-functional
protein dimers.

Functional protein dimers are assumed to comprise three functions, i.e.,
‘recognizing and binding to the regulatory element’, ‘repressing gene ex-
pression’, and ‘being involved in the differentiation process’. Non-functional
dimers here refer to dimers that can not repress gene expression, but may or
may not preserve the other functions. Thus, the tuning of the degrees of pro-
tein dimers’ functionalities is done by allowing non-functional dimers to have
zero to two of the rest of the functions, which are ‘recognizing sequence’ and
‘being involved in cell differentiation’. Let Reactions 4.59 to 4.61 be ‘func-
tion set 1’ and Reactions 4.62 to 4.66 be ‘function set 2’ each modeling the
function of ‘recognizing sequence’ and ‘being involved in cell differentiation’
of non-functional dimers, respectively. Also, consider Reactions 4.40 to 4.58
as the basic reaction set. Then, four cases are analyzed, which are modeled
by adding none, either or both of the two function sets to the basic reac-
tion set, according to the preserved functions of the non-functional dimers
in each case.

Function set 1:

kre

Pro;+ Dyy ; = Pro;Dyy (4.59)
kit

PTOianJ‘ +RNAp — P’I’Oianvj(Tl) +RNAp(TQ> +Ri(7’1) (460)
kaq

Pro;Dyy,; —  Pro; (4.61)
Function set 2:
kaif,
X +Dps1+Celly 5 Celly (4.62)
kaif,Ts
X+ *an,z + Celly — Celly (4.63)
0~5><kdif,TS
X +*Dysq +*Dpyo+ Celly — Cells (464)
O~5><kd1‘,f,TS
X +%Dypg1 + +Dy o+ Celly — Cells (4.65)
0~5><kdif,TS
X + *an’z + *an}g + Celly . Cells (466)






Chapter 5

Discussion

5.1 Summary

With the aim of understanding the regulatory mechanisms of a gene regu-
latory network (GRN), this thesis explores its topology by developing data
fusion methods to improve the accuracy of TFBS prediction and gene clus-
tering, and investigates its dynamics via applying the developed clustering
framework to detect such networks’ noisy attractors. The structure of this
thesis is illustrated by Table 5.1, with the details of each publication sum-
marized, organized by chapters, below.

[Publication I] TFBS prediction
Method [Publication II] Gene clustering: BGMM
[Publication IIT] Gene clustering: sSBGMM
[Publication IV] Gene clustering: GBMM
[Publication V] Theoretical and validation bases of
[Publication VT]
Application | [Publication VI] Noisy attractor detection
[Publication VII] | Future direction of [Publication VI]

Table 5.1: Summary of the results. The backbone articles are shown in italic
face.

5.1.1 Methods

[Publication I] to [Publication IV] explore the structure of a GRN at the
DNA sequence level and gene level. In particular, [Publication I] develops
a new data fusion method and, at the meanwhile, explores two novel infor-
mation sources to improve TFBS prediction accuracy (TFBS prediction is
defined in Definition 4 in Section 3.1.1). [Publication II] to [Publication I'V]
build unified joint model based clustering framework to group genes from
multiple data sources. The results of [Publication I], i.e., protein-DNA bind-

99
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ing probabilities, can be used as one input of the gene clustering problems
shown in [Publication II] and [Publication III].

TFBS prediction

Publication I This publication presents a new data fusion method for
combining multiple genome-level data sources, aiming at improving the ac-
curacy of TFBS prediction. Also, it explores the extent to which two novel
information sources, i.e., DNA duplex stability and nucleosome positioning
data, can improve TFBS predictions, either alone or in combination with
other data sources. By testing on a carefully constructed data set of veri-
fied binding sites from the mouse genome, three key conclusions are drawn.
First, the new data fusion method outweighs its traditional data integration
alternative in significantly reduced false positive rates. Second, DNA du-
plex stability and nucleosome occupation data are informative on improving
TFBS prediction accuracy, especially when combined with other genome-
level data sources, such as evolutionary conservation. Third, integrating
non-redundant informative data sources can provide the most efficient data
fusion.

Gene clustering

[Publication II] to [Publication IV] present methods of model based gene
clustering (gene clustering is defined in Definition 6 in Section 3.2.1) from
multiple data sources. This series of methods together show a flexible uni-
fied probabilistic modeling framework, which can be extended to integrate
data of any parametric distribution in principle. One advantage of model
based clustering algorithms is their automatic selection of the number of
clusters, which is achieved, generally, by casting it as the model selection
problem [136]. Comparison of four well-known model selection criteria, i.e.,
Akaike information criterion (AIC) [180], a modified AIC (AIC3) [176],
Bayesian information criterion (BIC) [131; 175] and the integrated classi-
fication likelihood-BIC (ICL-BIC) [174], is done for each model, based on
which the best criterion is selected for each clustering algorithm. All the
results demonstrate the superiority of incorporating multiple data sources
in gene clustering.

Besides the aforementioned ‘points-of-parity’, the ‘points-of-difference’
among the presented models are described below.

Publication IT This publication presents a beta-Gaussian mixture model,
namely BGMM, for clustering genes from beta and Gaussian distributed
data. One typical application of this model is to cluster gene expression
data and protein-DNA binding probabilities, assuming that genes clustered
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together share similar expression profiles and their regulatory regions are
bounded by the same or similar set of TFs. As the backbone article of
the work done on gene clustering, [Publication II] presents the joint mod-
eling framework systematically. Particularly, it introduces three versions of
BGMM, i.e., standard, approximated and hybrid, based on their expectation
maximization (EM) algorithm. In the E step of the EM algorithm, the stan-
dard method maximizes the expectation of the complete data log-likelihood,
and the approximated method maximizes the complete data log-likelihood
directly. In the standard and the approximated versions, all the param-
eters are estimated using the standard or the approximated EM method,
and in the hybrid method, the parameters of the beta distribution are es-
timated approximately and those of the Gaussian distribution are updated
following the standard procedure. All the models use the diagonal covari-
ance matrix in the probability density function of the Gaussian distribution
to reduce the number of estimated parameters, rendering the models much
more efficient in dealing with large dimensional data. No significant perfor-
mance difference is found among the three versions based on the simulation
test. However, their best model selection criteria are different, i.e., ICL is
selected for the standard version and AIC is chosen for the approximated
and the hybrid versions. In [Publication II], the performance of BGMM is
tested using the standard version via simulations and a real case applica-
tion. Both of the results demonstrate the superiority of this joint clustering
framework compared with its component models (i.e., beta mixture model
and Gaussian mixture model). The real data comes from mouse, where
gene expression data and protein-DNA binding data (obtained from TFBS
prediction) are assumed to be Gaussian and beta distributed, respectively.
The results not only show the performance improvement of BGMM but
also identify three groups of synchronously regulated genes involved in the
Myd88-dependent Toll-like receptor (TLR)-3/4 signaling cascade. Also, the
mathematical derivations of the standard BGMM are presented in the ap-
pendix of [Publication IT].

Publication III This publication presents a stratified beta-Gaussian mix-
ture model, i.e., S BGMM. Besides integrating beta and Gaussian distributed
data, this model also utilizes a third information source. This third infor-
mation is used as the prior of the model, which can come from any sources
such as protein-protein interaction (PPI) data. The parameters of SBGMM
are estimated using the standard EM algorithm, and the covariance matrix
employed in the probability density function of the Gaussian distribution is
diagonal. Based on the simulation results, ICL is recommended as the safer
choice in model selection. Besides presenting the algorithm itself, much effort
of [Publication III] has been devoted to the performance test and real case
application. Specifically, the algorithm is first tested by simulations, with
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the results demonstrating the advantage of using the prior to guide the clus-
tering procedure. Then, it is applied to a set of mouse data, assuming that
gene expression data and protein-DNA binding probabilities are of Gaus-
sian and beta distributions, respectively. Two real case studies are carried
out, with one for performance test and the other for biological information
finding. Two sets of priors are compared when testing the performance with
the real data, i.e., the priors obtained from the network structures stored
in the database TRED [223] and those from the online classification tool
DAVID [224]. Besides showing the performance improvement of sSBGMM
compared with BGMM, the results also indicate that the best performance
of sSBGMM is achieved when the information used for prior construction is
consistent with those stored in the other data sources. The prior used for
biological information finding is derived from a cancer related network, i.e.,
NFKB network, from TRED. The results reveal two sets of genes that are
oppositely regulated by eight TFs, i.e., the genes within each group are ei-
ther activated by TFs ‘E2f6’, ‘E2f7’, ‘Foxm1’, ‘Nfatcl’ and repressed by TFs
‘Rest’, ‘Rfxb’, ‘Mxd1’, ‘Statl’, or goes the other way around. Further, all
the genes and TFs are found to be responsive to Myd88-dependent TLR-3/4
signaling. The mathematical derivations of the standard sSBGMM are shown
in the ‘Methods’ section of [Publication III].

Publication IV This publication presents a model for clustering Gaus-
sian and Bernoulli distributed data, i.e., GBMM. One typical application
of this model is to cluster genes with gene expression data and PPI data,
assuming that genes within the same cluster share similar expression profiles
and have on average more PPIs with a set of genes than genes from different
clusters. The standard EM is used to update all the parameters, and the
diagonal covariance matrix is employed in the probability density function
of the Gaussian distribution. Simulation tests show that the clustering per-
formance is highly improved after jointly utilizing two data sources, and the
more known PPIs the better the results are. Moreover, AIC and AIC3 are
shown to perform similarly and are both recommended for GBMM.

5.1.2 Application

[Publication V] applies the multiple data fusion clustering framework to a
biological problem in another research domain, i.e., noisy attractor detec-
tion, to study the dynamics of delayed stochastic GRNs. [Publication V]
provides the theoretical and validation bases for this application. [Publica-
tion VII] investigates further the complex dynamic nature of a GRN, point-
ing out one future direction of [Publication VI|. In all these publications,
SGNSim [183] is used to simulate the GRN models, where the dynamics is
driven by the ‘delayed SSA’ [184].
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Publication V  This publication studies the plasticity of a delayed stochas-
tic model of a toggle switch (TS) as a multipotent differentiation pathway
switch, at the single cell and cell population levels. This study is done by
varying the mean, noise, and bias of proteins’ expression levels (via tuning
the proteins’ expression level and degradation rates) and observing distri-
butions of differentiation pathways choices of genetically homogeneous cell
populations. The results show that small changes in each of these dynami-
cal features significantly and distinctively affect the dynamics of a single cell
and the differentiation pattern of cell population.

[Publication V] shows that the stochastic TS has high plasticity regard-
ing differentiation pathway choice regulation, providing the theoretical and
validation bases for [Publication VI].

Publication VI This publication develops a model, called T'BMM, under
the joint clustering framework presented in [Publication II] to [Publica-
tion IV] to integrate gamma and Bernoulli distributed random variables,
and applies it to a problem in a different research domain, i.e., determining
the noisy attractors (noisy attractor is defined in Definition 9 in Section 4.1)
of the delayed stochastic GRNs. Specifically, 'BMM novels in its immunity
to any empirical pre-assumptions of the number of state regimes and the
consideration of multiple perspectives of a GRN when determining its noisy
attractors which, compared with the conventional method (K-means) used
in [29], can provide a much richer spectrum of the possible noisy attractors
and capture the real dynamic variations of a GRN under a delayed stochas-
tic setting. The parameters of the gamma distribution and the Bernoulli
distribution in 'BMM are both estimated by the standard EM algorithms.
After computationally testing its performance, 'BMM is applied to detect
the noisy attractors of a T'S and an excitable circuit from Bacillus subtilis,
i.e., MeKS module [76]. The results are validated by cells’ differentiation
pattern(s) obtained from each corresponding differentiation model. Besides
showing the accuracy of applying I'BMM in noisy attractor detection, the
results also reveal three transition states in the TS, i.e., bistable, tristable
and monostable, toggling the long cherished belief that the TS has only two
noisy attractors [191].

Publication VII This publication investigates how the regulation of pro-
teins’ functionalities affect the dynamics of a delayed stochastic GRN, i.e.,
a modified T'S model, and the cell differentiation pattern it regulates at the
level of cell population. This study is carried out by tuning the degrees
of protein dimers’ functionalities. Each protein that forms a dimer can be
either functional or non-functional, leading to zero to two possible functions
of a protein dimer, i.e., ‘promoter binding’, ‘gene repression’ and ‘cell dif-
ferentiation involvement’. Further, three factors are investigated to study
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the effect of proteins’ differential functionalities on cells’ dynamics and their
phenotypical variations after differentiation, which are ‘the rate at which a
protein becomes functional or non-functional’, ‘the fraction of non-functional
proteins’, and ‘the bias towards producing more non-functional proteins in
one sub-system of the TS’ (a sub-system is defined as a gene and its prod-
ucts). Among others, the results show that altering the degree of proteins’
functionalities is an important regulator of GRNs.

[Publication VII], exploring the dynamical consequences of the variation
of the degree of proteins’ functionalities in delayed stochastic GRNs, shows
the necessity of discriminating the same kind of proteins based on their active
function(s). It points out one possible future direction of [Publication VI,
i.e., applying the joint clustering framework to detect noisy attractors of
GRNs where the amount of proteins with low degrees of functionalities is
not neglectable.

5.2 Conclusions

The topology of a GRN is studied at both the sequence and the gene lev-
els, as represented by the studies in TFBS prediction and gene clustering
in Chapter 3, respectively. Besides the proposed data fusion principle for
TFBS prediction, which is characteristic of low false positive rate, the uti-
lization of DNA duplex stabilities in facilitating TFBS prediction forms a
valuable contribution to this field. In the area of gene clustering, despite
the huge body of existing clustering methods, the proposed approach novels
in its ability of jointly utilizing multiple information sources to solve the
clustering problem. Thus, the objects can be grouped in a more reason-
able way regarding the specific problem studied, and the results are more
robust to the high level of genomic noise compared with using single data
sources alone. For example, genes share similar expression profiles, being
regulated by the same TFs and whose products interact with each other,
are more likely to be involved in the same pathways than those that only
share similar expression patterns due to, e.g., the coincidence of simultane-
ously expressed genes. Another example would be its application in noisy
attractor detection as discussed in Chapter 4. With the proposed method,
multiple aspects of the cellular system are simultaneously monitored to de-
tect the noisy attractors of a GRN, via which the third noisy attractor is
observed in T'Ss under certain noise level, toggling the long cherished belief
that T'Ss have only two noisy attractors.

The purpose of the work presented in Chapter 4 is to study the dy-
namics of a GRN, with the approach of detecting its noisy attractors. The
key paper is [Publication VIJ, which proposes a method to detect the noisy
attractors of a GRN. The method itself is an application of the clustering
method developed in Chapter 3. The results demonstrate the applicability
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of the proposed method in studying GRNs’ dynamics, and the biological
finding that TSs have three noisy attractors other than two indicates that
cells governed by real genetic TSs may differentiate into three distinct cell
types under certain conditions. [Publication V] demonstrates that the dif-
ferentiation pattern of cells governed by a genetic circuit can be viewed as
a function of its noise level which can be controlled by its biological param-
eters. Based on [Publication V], it is possible to verify how well the noisy
attractors are detected in [Publication VI, i.e., via observing cells’ differen-
tiation patterns. [Publication VII] further studies how changes in proteins’
functionalities affect the dynamics of delayed stochastic GRNs, indicating
an important regulatory role of proteins’ functionalities in gene expression
and pointing out a possible future direction for [Publication VI].

Through the current studies, it is found that fusing multiple informa-
tion sources can facilitate or solve many problems regarding gene regulatory
mechanisms. Given the complexity and stochasticity of a GRN, observ-
ing information from one source renders the results subject to its inherent
noise (e.g., [Publication I] to [Publication IV]) and, in some applications,
insufficient to reveal the underlying ground truth (e.g., [Publication VTJ).
Moreover, as explored in [Publication I| which may be extendable to other
applications, the most efficient data fusion requires the data sources to be
informative but not redundant.

5.3 Future directions

In the study of improving TFBS prediction via fusing genomic data sources
([Publication I]), two novel information sources, i.e., nucleosome positioning
and DNA duplex stability, are investigated besides evolutionary conservation
and regulatory potential. However, the two new data sources are obtained
from computational predictions, limiting the prediction accuracy. Further
study in this area may involve, on one hand, utilizing experimental data
when available and, on the other hand, exploring other information sources,
such as ChIP-chip data, to further improve TFBS prediction accuracy.

In gene clustering ([Publication II] to [Publication IV]), one basic as-
sumption of the developed models is that the ground truth clusterings for
data of different distributions are the same. The model sBGMM, which
employs three data sources, is tested by the case where heterogeneous infor-
mation sources do not accord in their underlying structures (see [Publica-
tion ITI]). The results show that the joint finite mixture modeling framework
is tolerant to this inconsistency when priors are used to guide the clustering
process. An alternative to solve this problem is to employ other modeling
strategies, such as hierarchical Bayes modeling [225] which models the true
clustering structure while allowing the existence of the individual structure
for each data type.
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As shown in [Publication VII], the degree of proteins’ functionalities
significantly affects the dynamics of delayed stochastic GRNs and their cell
differentiation patterns at cell population level. Further, noisy attractors
have so far been only detected in genetic switches, i.e., T'S and an excitable
genetic circuit in Bacillus subtilis ([Publication VI]), due to their straight
connections to cell differentiation for the validation purpose. Thus, given
its validated performance, it is feasible and promising to apply the noisy
attractor detection method to GRNs where proteins with low degrees of
functionalities are non-neglectable, and/or explore more complicated GRNs
in the future.

Finally, data fusion is applicable to many biological problems other than
those concerned here, which needs further investigation. It is also believed
that with more data sources becoming experimentally and/or computation-
ally available and more advanced analysis techniques being developed, peo-
ple will get a more and more precise view of GRNs’ regulatory mechanisms.
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