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Abstract

In many digital-filtering applications, it is crucial that the shape of the waveform to be fil-

tered is preserved. This desirable property is owned by a class of digital filters, collectively

referred to as linear-phase digital filters.

In very large scale integration (VLSI) applications, the designs requiring the smallest

number of multipliers are of particular interest, since depending on the application, less

multipliers is tantamount to a smaller or a less power consuming VLSI chip. To this end,

there has been a constant effort to come up with designs requiring minimum possible num-

ber of multipliers to meet a predefined specification.

Two important classes of digital filters, decimators and interpolators, have been a focus

of the above-mentioned effort. Decimators and interpolators are integral parts of a multirate

digital signal processing (DSP) system, and because of vast applications of such systems,

decimators and interpolators are found virtually in every DSP-utilizing scheme. It should

therefore come as no surprise that a lot of designs have been directed to the design of these

two important classes of digital filters.

Digital filters with narrow transition band form another important class of digital filters.

As the transition band becomes narrower, the required number of multipliers for meeting

the specifications increases, and with conventional methods, the required number of multi-

pliers becomes extremely large and the design becomes impractical. That is why efficient

implementation of narrow transition-band digital filters have been a focus of intense re-

search.

iii
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This work introduces techniques for efficient design of a class of decimators, interpola-

tors and narrow transition-band linear-phase finite impulse response (FIR) filters. Linear-

phase one-stage decimators and interpolators are the focus of the first part of the work. The

design of this class of digital filters has been addressed as an optimization problem, and

an algorithm to solve the problem has been proposed. Next, multiple branch linear-phase

decimators have been introduced, and the ideas of a multiple branch design and a one-stage

design have been combined to give rise to a hybrid structure. An algorithm leading to an

optimum such structure has been proposed, and further constraints have been imposed to

yield a structure with the least possible number of multipliers.

The focus of the second part of this work is on the design of narrow transition-band

linear-phase FIR filters. The efficiency of the design stems from the fact that infinite im-

pulse response (IIR) filters have been exploited. In essence, the design is a cascade of a

stable IIR and an unstable IIR filter. To overcome the adverse effects of roundoff noise,

the principle of switching and resetting has been employed. To curb the noise further and

to reduce the number of required components, two decomposition schemes has been pro-

posed. The noise generated by the structure has been analyzed in detail, and closed form

formulae to measure the noise have been put forward. Finally, the design of this class of

filters is addressed as an optimization problem, and a method to find the initial point of the

optimizing algorithm is proposed.

The third part of the thesis takes an alternative approach for the design of narrow

transition-band linear-phase FIR filters. In this approach, partial fraction expansion is ap-

plied to the cascade of a stable IIR filter and its unstable counterpart, but now the transfer

function is expressed in terms of z + z−1. By factorizing the proposed structure and using

the principle of switching and resetting, the filter implementation is discussed. The noise

generated by the structure is analyzed in detail, and it is proved that the performance of

the proposed structure is not impaired by the generated noise. The efficiency of all the

proposed structure have been supported by numerical simulations. When compared with

alternative methods, the results of the simulations clearly indicate the attractiveness and

potentials of the proposed structures.
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Djordje Babić, Dmitriy Paliy, Francisco Lopez, Jussi Vesma, Markku Ekonen, Pilar Martı́n

Martı́n, Samuli Harju-Jeanty, Tuomo Kuusisto and Professor Vladimir Katkovnik. I would

like to thank all of them for providing an enjoyable and relaxed workroom atmosphere.

I would like to thank all my colleagues at Tampere University of Technology for their

contribution to the pleasant environment. In particular, I am thankful to Alessandro Foi,

Atanas Boev, Daniel Nicorici, Gergely Korodi, Juha Yli-Kaakinen, Professor Karen Egiazar-

ian, Pekka Uotila and Robert Bregović for their company and friendship.
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Chapter 1

Introduction

1.1 Background

Digital filters, based on the length of their impulse response, are divided into finite-impulse

response (FIR) and infinite-impulse response (IIR) classes (For a comparison between FIR

and IIR filters, the reader is encouraged to consult [80]). Since the birth of digital filtering

(arguably by Kaiser [52, 101]), different schemes have been employed to design FIR and

IIR filters.

In almost all digital signal processing (DSP) applications, it is desired that the delay

imposed on every single sinusoidal component of the input signal is constant. Filters hav-

ing such property are called linear-phase filters, and can be designed by many different

approaches [5, 6, 21, 22, 64, 73, 75, 83, 95, 100].

The landmark work of Parks and Mcclellan [66, 74] introduced a technique based on

Remez multiple exchange algorithm [82] to optimally (in the minimax sense) design four

types of linear-phase FIR filters, which were originally introduced by Nowak [70]. The

major drawback of linear-phase FIR filters is that they require, especially in applications

demanding narrow transition bands, considerably more arithmetic operations and hardware

1
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components than their IIR equivalents. The minimum order of an optimum linear-phase

FIR filter H(z) meeting the low-pass filter specifications

1 − δp ≤ |H(ejω)| ≤ 1 + δp for ω ∈ [0, ωp] (1.1a)

|H(ejω)| ≤ δs for ω ∈ [ωs, π] (1.1b)

is approximately [53]

N =
−20log10

√
δpδs − 13

14.6(ωs − ωp)/(2π)
+ 1. (1.1c)

For a more accurate estimate, see [46]. From the above estimate, it is seen that as the

transition bandwidth ωs − ωp is made smaller, the required filter length increases inversely

proportionally to it. Since the direct-form implementation exploiting the coefficient sym-

metry requires approximately N/2 multipliers, this kind of implementation becomes very

costly in narrow transition-band applications.

For a narrow transition-band case, the order N of an IIR digital filters to meet the spec-

ifications of (1.1a) and (1.1b) is considerably lower than that given by (1.1c). However, IIR

digital filers always introduce some phase distortion [43, 57], and therefore causal linear-

phase IIR digital filters cannot be designed.

The most straightforward approach to exploit the efficiency of IIR filters to yield linear

phase is to use an allpass IIR equalizer in cascade with an IIR filter, which satisfies the

amplitude response requirements but distorts the phase [79]. It turns out that in such cases,

the phase response of the amplitude response satisfying IIR is quite nonlinear, and therefore

a very high-order IIR equalizer is required [96].1 In fact when constant group delay is

1It has been shown that an approximately linear-phase single IIR filter is more beneficial than using an

extra, phase-equalizing IIR filter [40, 50, 51, 59, 60].
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required in the passband, a direct optimum linear-phase FIR filter is more efficient than the

aforementioned two-IIR cascade scheme [80, 97].

Another approach to use IIR filters to yield efficient linear-phase digital filters is based

on data-reversal schemes [19, 42, 57]. In a data-reversal scheme, the input is filtered by an

IIR filter and the output is stored. The stored output is subsequently reversed in time and

fed to the same IIR filter to yield the final output. In order to implement the aforemen-

tioned scheme in real time, different techniques based on sectioning of the input signal are

proposed [33–35,44,48,57,58,77,79,103]. In a sectioning scheme, the input is parsed into

shorter blocks, and every second block is fed to a different copy of the same IIR filter. De-

spite their efficiency, digital filters based on data-reversal schemes suffer from large group

delays, resulting from their inherent time reverse circuitry.

In addition to using IIR filters, several authors have observed that by increasing the FIR

filter length slightly from the minimum, significant savings in the number of multipliers

and, with some methods, also in the number of adders can be achieved [1–3, 20, 23, 25, 26,

36, 37, 49, 54–56, 62, 67–69, 84, 88, 91, 98, 99].

This is due to the fact that optimal direct-form FIR filters are in a way too general struc-

tures to implement typical frequency selective filters. In the direct-form implementation,

each multiplier determines the value of one impulse response sample independently of the

other samples. In the linear-phase implementation, the same is true for approximately half

of the impulse response values. However, in practical frequency selective filters there is

a relatively strong correlation among neighboring impulse response values. By develop-

ing filter structures that exploit this correlation, the number of multipliers required in the

implementation can be drastically reduced.
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OUT

fs/D
D2H2(z)

IN

fs
(a)

D1H1(z) HM+1(z)DMHM(z)

HM+1(z) HM(z)DM D1H2(z)D2 H1(z)
IN

fs/D

OUT

fs
(b)

Figure 1.1: (a) A general realization of a D-to-1 decimator using K decimation stages and

one stage for baseband signal shaping. D = D1D2 . . . DM . (b) An equivalent realization

of a 1-to-D interpolator.

Decimators and interpolators2 are one of the first solutions proposed to improve the

computational efficiency of a digital filtering designing scheme through the above-mentioned

principle [18, 32, 41, 78]. Soon after their introduction, a number of different digital filter

transfer functions and certain special filter structures for decimation and interpolation pur-

poses emerged [17, 18, 24, 27, 30–32, 65, 81, 85–87, 93, 94]. These designs include both

single-stage and multistage finite-impulse response (FIR) filters and infinite-impulse re-

sponse (IIR) filters.

FIR decimators3 and interpolators provide several advantages such as guaranteed stabil-

ity, absence of limit cycles, and linear phase, if desired, compared to their IIR equivalents.

A linear-phase response, for instance, is very important in applications where the envelopes

of the time waveforms being decimated or interpolated are desired to be preserved. The

major advantage of IIR filters over their FIR counterparts is a lower number of multipliers,

adders and delay elements required.

2For a review of basic concepts of interpolation, see, for instance, [93].
3In this contribution, the main focus is laid on designing of decimators. In the sequel, a decimator is

defined to be a lowpass filter followed by down-sampling by a given factor. The results can be applied

directly to interpolators with very slight modifications, since decimators and interpolators are dual structures.
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Decimators and interpolators with the sampling rate alteration factor of D can be im-

plemented using K + 1 stages, provided that D can be factored into the product

D =
M∏

k=1

Dk, (1.2)

where each Dk, k = 1, 2, . . . ,M , is an integer. The implementations for such decimators

and interpolators are shown in Figs. 1(a) and 1(b), respectively. In the case of conventional

multistage FIR decimators [29, 30], the last stage is absent. In the structure proposed in

[24, 86, 87], the last stage is present and all filter stages are linear-phase FIR filters. The

comparisons given in [87] have shown that the best FIR designs in terms of the minimized

number of multiplications per input sample rate are obtained by designing the filter stages

Hk(z) for k = 1, 2, . . . ,M such that all their zeros lie on the unit circle and avoid aliasing

into the passband and into a part of the transition band. The last stage HM+1(z) then shapes

the overall passband response and takes care of the aliasing into the remaining part of the

transition band.

A decimator can alternatively be realized as a polyphase structure. The polyphase de-

composition of the FIR filter with transfer function

H(z) =
N∑

n=0

h(n)z−n

is expressible as [4]

H(z) =
D∑

k=1

Ak(z)Bk(z
D), (1.3a)

where

Ak(z) = z−(k−1), (1.3b)

and

Bk(z) =

�(N−k+1)/D�∑
l=0

h(k − 1 + lD)z−l, (1.3c)
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B3(z)
OUT

fs/D
DA3(z)

B2(z)DA2(z)

B1(z)DA1(z)

BK(z)DAK(z)

IN

fs

Figure 1.2: Multiple branch FIR filter structure for a D-to-1 decimator.

where �x� stands for the integer part of x. The polyphase decomposition of H(z) according

to (1.3) consists of D parallel branches. Moreover, as seen from (1.3c), the FIR filters Bk(z)

are not guaranteed to be linear-phase.

Based on polyphase decomposition of FIR filters, a class of linear-phase FIR decimators

has been introduced [90]. To reduce the arithmetic complexity compared to the polyphase

structure, both Ak(z)’s and Bk(z
D)’s have been designed to be linear-phase FIR filters.

Bk(z
D)’s are implemented at the output sampling rate as Bk(z)’s. Moreover, the number

of branches have been reduced from D to K, with K = 2 or 3. Throughout this work,

the proposed structure, presented in Fig. 1.2, is referred to as a multiple branch decimator

(MBD). In an MBD, the number of delay elements and the number of multipliers can

be minimized using the direct-form structure exploiting the coefficient symmetry for the

Ak(z)’s and the Bk(z)’s, and the fact that Ak(z)’s, equally well as Bk(z)’s, can share the

same delay elements. Efficient implementation of single-stage (M = 1 in (1.2)) structures

presented in Figs. 1.1 and 1.2 is the subject of the first part of this work. In particular, the

case M = 1 and K = 1 is referred to as single-stage two-filter decimator (1S2F) and has

been considered in Section 2.2.
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Most techniques developed so far for exploiting the correlation between the impulse

response values mentioned earlier are based on the use of nonrecursive FIR subfilters, but

techniques for building filters using recursive FIR structures also exist [38, 89, 102]. The

subject of the second part of this work is introducing a new technique for exploiting even

further the aforementioned correlation, using recursive FIR structures. These FIR filters

mimic the performance of the cascade of a causal G(z) and the corresponding anti-causal

G(z−1) IIR filters. Their impulse response is a shifted and truncated version of that of

G(z)G(z−1). Efficient structures are developed for implementing the resulting FIR filters.

These structures are parallel connections of several branches. Each branch generates a

response corresponding to a complex conjugate pole pair and its mirror-image pair. The

truncated version is obtained by using a feedforward term which provides pole-zero cancel-

lations. The key to the implementation is the use of the principle of switching and resetting

between two identical copies of the same IIR filter [38]. This stabilizes the pole-zero can-

cellation and avoids the quantization noise from growing excessively.

1.2 Author’s Contributions

The thesis is based on 10 publications, for which the contribution of the author has been

essential; he was the first author in all the publications and all the simulations have been

carried out by the author.

The contribution of the author can be summarized as follows:

1. The author formulated the design of an MBD as an optimization problem, and devel-

oped a systematic optimization technique for their design [15].
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2. The author formulated the design of an 1S2F as an optimization problem, and devel-

oped a systematic method for the design of this class of filters [7].

3. The author proposed a method for the design of narrow transition-band linear-phase

(NBLP) FIR filters [8]. The method is based on an optimization scheme for approx-

imating a linear-phase IIR filter.

4. The author considered the implementational aspects of the design proposed in [8].

Additionally, methods to minimize the required number of elements to implement

the filter structure was put forward [10].

5. The author has demonstrated that through the decomposition of the transfer function,

the class of filters introduced in [89] turns out to be a special case of a broader class

of linear-phase FIR filters. This decomposibility was shown to imply reduction both

in terms of the number of components required to implement the filter structure, and

in term of roundoff noise [9].

6. The author developed a new transfer function, corresponding to a new class of NBLP

FIR filters [11]. In this work, this class of filters will be referred to as Cascade

Structure I.

7. The author proved that any linear-phase FIR filter of length nK, with n a positive

integer, can be decomposed into a multiple branch structure. He also proposed new

constraints to the original optimization problem introduced in [15], through which

more efficient filters emerged [16].

8. The author proposed an alternative class of NBLP FIR filters, as a result of a new

truncation scheme applied to a zero-phase IIR filter. The approach was proven to
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excel that earlier presented in [8], at least for certain specifications [12].

9. The author introduced a technique for realization of the structure proposed in [8]

as a cascade of subfilters. The cascaded structure proved to be more flexible, more

efficient, and less noisy than the original one [13].

10. The noise of the structures introduced in Chapter 3 has been analyzed in detail, and

the noise tolerance of the structures has been established [14].

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 considers efficient design of 1S2F’s. First,

alternative decimator designs in the literature are briefly introduced, and their pros and cons

are reviewed. Next, a novel optimization algorithm for designing an 1S2F is put forward,

and a theorem, providing the theoretical background for the algorithm is established. Next,

MBD’s are introduced, and the ideas of 1S2F and MBD are combined to yield an efficient

decimator design. The design is improved by imposing further optimization constraints.

Chapter 3 concentrates on an efficient design of NBLP FIR filters. The principle of

switching and resetting, which is of central importance to implementability of the design,

is briefly reviewed. Next, the rationale behind the design has been established, the roundoff

noise generated by the structure is analyzed, and various decomposition schemes applicable

to the design have been derived.

The focus of Chapter 4 is on an alternative design for NBLP FIR filters. The transfer

functions of the implementable FIR filters exploiting this approach have been derived, the

roundoff noise effects have been investigated, and the decomposibility of the aforemen-

tioned transfer functions is established. The efficiency of the proposed designs in Chapters
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2–4 is supported by simulation results.

The proofs for most of equations appearing in Chapters 3 and 4 are provided in Appen-

dices A and B.



Chapter 2

Computationally Efficient Decimators

This chapter addresses the problem of 1S2F’s from a multiple branch realization perspec-

tive. First, the optimum MBD is treated in detail. Next the case of 1S2F (Fig. 1.1(a),

with M = 1) is addressed, and an optimization technique to solve the design problem is

proposed. Finally, the two results converge through a hybrid decimator, i.e., a single-stage

decimators, where the first constituent filter is realized as a multiple branch structure. This

amounts to a multiple branch structure as given by Fig. 1.2, where an additional filter stage

C(z) has been used at the decimator output. Comparisons included in [90] have revealed

that the multiplication rate for this design is approximately equal to that of a design with

only one branch with a significantly reduced number of delay elements.

2.1 Multiple Branch Decimators

This section introduces a systematic design technique applicable to MBD’s. The justifica-

tion of the design procedure is presented through two fundamental results. Next the multi-

ple branch filter design problem is addressed as an optimization problem, and an algorithm

to solve this task is worked out. By adding new constraints to the original optimization

11
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problem, the proposed approach is later refined to lead to more efficient structures.

2.1.1 The Transfer Function

In this section, the generic transfer function of an MBD is introduced, and some properties

of this class of transfer functions are derived.

Consider the transfer function of an MBD (Fig. 1.2), which is given by

B(z) =
K∑

k=1

Ak(z)Bk

(
zD
)
. (2.1)

In (2.1), Ak(z)’s for k = 1, 2, . . . , K are of the form

Ak(z) =

NA∑
n=0

ak[n]z−n, (2.2)

where ak[NA − n] = ak[n] for n = 0, 1, . . . , NA and ak[NA − n] = −ak[n] for n =

0, 1, . . . , NA for k odd and k even, respectively. Correspondingly, Bk(z)’s for k = 1, 2, . . . , K

are of the form

Bk(z) =

NB∑
n=0

bk[n]z−n, (2.3)

where bk[NB − n] = bk[n] for n = 0, 1, . . . , NB and bk[NB − n] = −bk[n] for n =

0, 1, . . . , NB for k odd and k even, respectively. Moreover, K is the number of branches,

that is, K = 2 and K = 3 refer to two-branch and three-branch decimators, respectively.

It has been shown in [24, 87] that if the length of B(z) is a multiple of D, it is always

possible to design B(z) in the form of (2.1) such that all the Ak(z)’s are of length D,

K = D, and the Ak(z)’s with k odd are linearly independent mirror-image symmetric

polynomials and the Ak(z)’s for k even are anti-mirror-image symmetric polynomials in z.

To clarify this idea, consider a linear-phase FIR filter of odd order NB, in other words,
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NB is assume to be either a type II or a type IV linear-phase FIR filter1. The transfer

function of this filter, denoted by B(z), can be expressed as

B(z) =

NB∑
n=0

b[n]z−n (2.4)

where for n = 0, 1, . . . , NB

b[n] =

{
b[NB − n], for type II B(z) , (2.5a)

−b[NB − n], for type IV B(z). (2.5b)

B(z) can now be expressed as [90]

B(z) = Be

(
z2
)

+ z−1Bo

(
z2
)

(2.6a)

where

Be

(
z2
)

=b[0] + b[2]z−2 + b[4]z−4 + · · · + b[NB − 1]z−(NB−1) (2.6b)

and

Bo

(
z2
)

= b[1] + b[3]z−2 + b[5]z−4 + · · · + b[NB]z−(NB−1). (2.6c)

Using the above Bo(z
2) and Be(z

2), the following transfer functions can be defined:

B1

(
z2
)

=
1

2

[
Be

(
z2
)

+ Bo

(
z2
)]

(2.6d)

and

B2

(
z2
)

=
1

2

[
Be

(
z2
)− Bo

(
z2
)]

. (2.6e)

From (2.6d) and (2.6e), it is seen that the orders of both B1(z) and B2(z) is (NB−1)/2.

The impulse responses of B1(z) and B2(z) can be expressed as

1In brief, the transfer function of a type I (II) linear-phase FIR filter is a mirror-image polynomial in z−1

of even (odd) order, while the transfer function of a type III (IV) linear-phase FIR filter is an antimirror-image

polynomial in z−1 of even (odd) order. For a more detailed discussion on different types of linear-phase FIR

filters, the reader may consult [47, 70, 71].
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b1[n] =
b[2n] + b[2n + 1]

2
, n = 0, 1, . . . , (NB − 1)/2, (2.7a)

and

b2[n] =
b[2n] − b[2n + 1]

2
, n = 0, 1, . . . , (NB − 1)/2, (2.7b)

respectively.

If B(z) is a type II linear-phase FIR filter, then according to (2.5a) we have:

b[2n] + b[2n + 1]

2
=

b[NB − 2n] + b[NB − 2n − 1]

2
(2.8a)

and
b[2n] − b[2n + 1]

2
=

b[NB − 2n] − b[NB − 2n − 1]

2
(2.8b)

But according to (2.7a)

(
with n → NB − 1

2
− n

)
,

b[NB − 2n] + b[NB − 2n − 1]

2
= b1

[
NB − 1

2
− n

]
(2.9a)

and
b[NB − 2n] − b[NB − 2n − 1]

2
= b2

[
NB − 1

2
− n

]
. (2.9b)

Therefore according to (2.7a), (2.8a) and (2.9a) we have:

b1[n] = b1

[
NB − 1

2
− n

]
n = 0, 1, . . . , (NB − 1)/2, (2.10a)

and according to (2.7b), (2.8b) and (2.9b) we have:

b2[n] = −b2

[
NB − 1

2
− n

]
n = 0, 1, . . . , (NB − 1)/2. (2.10b)

Equation (2.10a) implies that B1(z) is a linear-phase type I or type II FIR filter, while

(2.10b) implies that B2(z) is a linear-phase type III or type IV FIR filter. Using a similar

approach, it can be shown that if B(z) is a type IV linear-phase FIR filter, then B1(z) will



15

be a linear-phase type III or type IV and B2(z) will be a linear-phase type I or type II FIR

filter.

Using (2.6a)–(2.6e) enables one to define B(z) in terms of B1(z) and B2(z) as follows:

B(z) = (1 + z−1)B1

(
z2
)

+ (1 − z−1)B2

(
z2
)

= Be

(
z2
)

+ z−1Bo

(
z2
)
. (2.11)

Comparing (2.1) and (2.11) gives

B(z) =
2∑

k=1

Ak(z)Bk

(
z2
)
, (2.12)

where A1(z) = 1 + z−1 is a mirror-image symmetric polynomial and A2(z) = 1 − z−1 is

an anti-mirror-image symmetric polynomial. It can be shown in a similar manner that if

the length of B(z) is a multiple of 3, then B(z) can be expressed as

B(z) =
3∑

k=1

Ak(z)Bk

(
z3
)

(2.13)

where A1(z) = 1+z−1+z−2 and A3(z) = 1+z−2 are mirror-image symmetric polynomials

and A2(z) = 1 − z−2 is an anti-mirror-image symmetric polynomial.

The credibility of (2.12) and (2.13) has been proven formally in [16]. Proposition 1, to

be presented shortly, establishes a more general decomposition scheme for a linear-phase

FIR filter. In what follows, the term ”symmetric” refers to a type I or type II, and the term

”antisymmetric” refers to a type III or type IV linear-phase FIR filter. Moreover, �x� is the

smallest integer greater than or equal to x and the length of a filter signifies the length of

its impulse response.

Proposition 1. If H(z) is a symmetric (antisymmetric) linear-phase FIR filter of a length n

divisible by D, then it can always be decomposed according to (1.3a). For k = 1, 2, . . . , D,

i = 0, 1, . . . , �D/2�, and j = 0, 1 . . . �D/2 − 1�, Ak(z) = a
(k)
0 + a

(k)
1 z−1 + . . . +
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a
(k)
D−1z

−(D−1), with

a
(k)
i =

{
1, 0 ≤ i ≤ �(D − k)/2�,

0, otherwise, (2.14)

and

a
(k)
D−1−j =

⎧⎨⎩a
(k)
j , k is odd,

−a
(k)
j , k is even. (2.15)

For k odd (even), Bk(z) = b
(k)
0 + b

(k)
1 z−1 + . . . + b

(k)
n/D−1z

−(D−1) is a symmetric (anti-

symmetric) linear-phase FIR, .

Proof. Defining m =
⌈�n/2�/D⌉, x = [b

(1)
0 , b

(2)
0 , . . . , b

(D)
0 , b

(1)
1 , b

(2)
1 , . . . , b

(D)
1 , . . .

b
(1)
m−1, b

(2)
m−1, . . . , b

(D)
m−1]

T , and h = [h0, h1, . . . , hDm−1]
T , we require

Ax = h, (2.16a)

where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

H 0 0 . . . 0

0 H 0 . . . 0

0 0 H . . . 0
...

...
...

. . .
...

0 0 0 . . . H

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.16b)

with A ∈ {−1, 0, 1}(m+1)×(m+1),

H =

⎛⎜⎜⎜⎜⎜⎝
a

(1)
0 a

(2)
0 . . . a

(D)
0

a
(1)
1 a

(2)
1 . . . a

(D)
1

...
...

. . .
...

a
(1)
D−1 a

(2)
D−1 . . . a

(D)
D−1

⎞⎟⎟⎟⎟⎟⎠ , (2.16c)

and 0 is a D by D matrix, with its all entries being 0.
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Proving the existence of an x satisfying (2.16a) is tantamount to proving the decom-

posibility of H(z) according to (1.3). But as seen from (2.16c), matrix A is nonsingular

and hence the solution x = A−1h satisfies (2.16a).

2.1.2 The Optimization Problem

This section states the optimization problem for the proposed class of decimators.

By exploiting the coefficient symmetries of Ak(z)’s and Bk(z)’s, the overall number of

multipliers for the two-branch (K = 2) case becomes

R
(2)
M = (NA + 1) + (NB + 1). (2.17)

Similarly, the number of multipliers for the three-branch case (K = 3) is

R
(3)
M = (NA + 1) + (NB + 1) +

⌊
NA + 1

2

⌋
+

⌊
NB + 1

2

⌋
. (2.18)

From (2.1), the zero-phase response (the phase term e−jω(NA+DNB)/2 is omitted from

the frequency response) of MBD’s can be expressed as

H(ω) =
K∑

k=1

(−1)k−1Ak(ω)Bk(Dω), (2.19)

where for k odd

Bk(ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
bk

[
NB

2

]
+ 2

NB/2∑
n=1

bk

[
NB − n

]
cos(nω), for NB even,

2

NB−1

2∑
n=0

bk

[
NB − 1

2
− n

]
cos

(
2nω + 1

2

)
, for NB odd. (2.20)

Ak(ω) can be expressed in the same form by replacing NB by NA and the bk[n]’s by the
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ak[n]’s. For k even

Bk(ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2

NB/2∑
n=0

bk[NB − n] sin[(n + 1)ω], for NB even,

2

NB−1

2∑
n=0

bk

[
NB − 1

2
− n

]
cos

(
2nω + 1

2

)
, for NB odd, (2.21)

and Ak(ω) can be expressed in the same form by replacing NB by NA and the bk[n]’s by

the ak[n]’s. It is worth mentioning that the term (−1)k−1 in (2.19) is due to the fact the

phase term for k odd (k even) are ejNA/2 and ejDNB/2 (jejNA/2 and jejDNB/2). Therefore,

when expressing the overall response in terms of the zero-phase response and the phase

terms ej(DNB+NA), the multiplier (−1)k−1 = j2 should be included for k even.

The following criteria is stated for H(ω), as given by (2.19):

1 − δp ≤ H(ω) ≤ 1 + δp for ω ∈ [0, απ/D], (2.22a)

−δs ≤ H(ω) ≤ δs for ω ∈ [π/D, π], (2.22b)

where D is the decimation ratio, δp and δs are the maximum allowable ripples in the pass-

and stopband respectively, and α < 1 specifies the passband edge to be ωp = απ/D.

Alternatively, these criteria can be expressed as

|E(ω)| ≤ δp for ω ∈ [0, απ/D] ∪ ω ∈ [π/D, π], (2.23a)

where

E(ω) = W (ω)
[
D(ω) − H(ω)

]
, (2.23b)

D(ω) =

{
1, for ω ∈ [0, απ/D],

0, for ω ∈ [π/D, π], (2.23c)

and

W (ω) =

{
1, for ω ∈ [0, απ/D],

δp/δs, for ω ∈ [π/D, π]. (2.23d)
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The optimization problem under consideration is the following:

Optimization Problem: Given D, α, δp, δs, and the number of branches K (either two or

three), find the orders and coefficients of Ak(z)’s and Bk(z)’s, as given by (2.2) and (2.3),

to meet the criteria given by (2.22) such that first R
(2)
M or R

(3)
M , as given by (2.17) or (2.18),

is minimized, and second,

ε = max
ω∈[0, απ/D]∪[π/D, π]

|E(ω)| (2.24)

is minimized. This thesis concentrates on the K = 2 and K = 3 cases, since these selec-

tions have turned out to give the best solutions in terms of the required number of multipli-

cations per input sample.

2.1.3 The Optimization Algorithm

This section describes efficient algorithms for solving the optimization problem stated in

Section 2.1.2. Denoting the two-branch and three-branch cases by K = 2 and K = 3,

respectively, the overall optimization algorithm can be efficiently carried out as follows:

• Step 1: Design a minimum-order direct-form linear-phase FIR filter F (z) to meet the

criteria given by (2.22a) and (2.22b), with D = K. Let this order be Nmin.

• Step 2: Determine the minimum value of the integer L satisfying LK ≥ Nmin + 1.

• Step 3: Redesign a direct-form linear-phase FIR filter transfer function F (z) of order

LK−1 to minimize the peak absolute value of E(ω) as given by (2.23) with D = K.

• Step 4: For K = 2 [K = 3], find B1(z
2) and B2(z

2) [B1(z
2) and B2(z

2), and

B3(z
3)] to satisfy F (z) = (1 + z−1)B1(z

2) + (1 − z−1)B2(z
2) [F (z) = (1 + z−1 +

z−2)B1(z
3) + (1 − z−2)B2(z

3) + (1 + z−2)B3(z
3)].
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• Step 5: Find the minimum order NA for the transfer functions A1(z) and A2(z)

[A1(z), A2(z) and A3(z)] for K = 2 (K = 3) together with the corresponding

Bk(z)’s using the following two-step procedure in such a manner that the overall

transfer function resulting after Step 5(b) meets the given criteria:

– Step 5(a): Use linear programming to determine the coefficients of the Ak(z)’s

order of NA by keeping the Bk(z) fixed such that

δ̃s = max
ω∈[π/D, π]

|H(ω)| (2.25)

is minimized subject to the condition that H(ω) = 1 at ω = 0. Here, H(ω) is

given by (2.19).

– Step 5(b): Optimize the Ak(z) and Bk(z)’s simultaneously to minimize ε as

given by (2.24) using Sequential Quadratic Programming (SQP).

The above algorithm has been implemented as a MATLAB program. There are two

reasons for performing Steps 1, 2, 3, and 4 in the above manner. First, it is simple to find

initial values for the Bk(z)’s with the aid of a set of linear equations. Second, these initial

values are very close to the optimum ones also for a high value of D.

2.1.4 Performance Study

Example 1: Consider the filter specifications: D = 10, α = 0.5, δp = 0.01 and δs = 0.001.

This means that the passband and the stopband edges are located at ωp = 0.5π/D and

ωs = π/D respectively. The minimum length of an optimum single stage direct-form

filter to meet the criteria is 109. There exist two alternative decimator structures for this

transfer function, namely, the direct-form structure exploiting the coefficient symmetry and

the fact that only every tenth output sample has to be evaluated [31], and the commutative
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polyphase structure where the ten branch filters share the same delays [39]. Note that for

the polyphase implementation, only one branch filter has a symmetrical impulse response.

As mentioned above, the minimum length of a direct-form linear-phase FIR filter to

meet the specifications is 109. To make the length divisible by 10, it is increased to 110.

If the decomposition is performed into 10 branches according to the discussion of Section

2.1.1, then the lengths of Ak(z)’s become 10 and those of the Bk(z)’s become 11.

This decomposition would require 105 multipliers, 10.5 multiplications per input sam-

ple, and 19 delay elements when the coefficient symmetries are exploited, and both the

Ak(z)’s and the Bk(z)’s share the same delay elements. By exploiting the coefficient sym-

metry, the direct-form FIR filters of length 109 can be implemented using 55 multipliers,

5.5 multiplications per input sample, and 108 delay elements. If the direct-form FIR filter

is implemented using the commutative polyphase structure, then it requires 104 multipliers,

10.4 multiplications per input sample, and 10 delay elements.

Based on the above data, it is not beneficial to use K = 10 branches. However, the

K = 2 branch and the K = 3 branch cases are computationally very efficient. For K = 2,

the proposed algorithm results in the design with the lengths of B1(z) and B2(z) being

equal to 11 and the lengths of A1(z) and A2(z) being equal to 18. Hence, when reducing

the number of branches from 10 to 2, the lengths of the Bk(z)’s remain the same, whereas

those of Ak(z)’s increase from 10 to 18. For the K = 3 case, the lengths of the Bk(z)’s

remain 11, whereas the lengths of the Ak(z)’s become 13. The two-branch (three-branch)

design requires 29 (37) multipliers, 2.9 (3.7) multiplications per input sample, and 27 (22)

delay elements. Figures 2.1 and 2.2 illustrate the amplitude responses for the two-branch

and the three-branch cases.

Further savings in the number of multipliers of the optimal (minimum-order) filter can
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Figure 2.1: The amplitude response of the overall two branch structure.
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Figure 2.2: The amplitude response of the overall three branch structure.

be made if the impulse responses of its subfilters are slightly modified. To illustrate the idea,

consider the impulse responses of the non-periodic filter A2(z) meeting the specifications

of the two-branch structure in Section 2.1.4, presented in Figure 2.3.

It is observed that the values of some of the coefficients are close to zero. It is therefore

justified to check the existence of other minimum-order linear-phase FIR filters fulfilling
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Figure 2.3: The impulse response of the A2(z) meeting the specifications of section 2.1.4.

the specification, with some of their coefficients fixed to zero. If such filter or filters exist,

the number of multipliers needed for the realization will be less than the original least-order

filter by the number of the coefficients set to zero.

It proves that for the two-branch example considered in Section 2.1.4, such a filter does

exist, and at most two coefficients can be set to zero. Figure 2.4 presents the impulse

response of the subfilter A2(z) with its first and last coefficients set to zero, while Fig.

2.5 presents the amplitude response of the filter structure. The new structure requires one

multiplier and two adders less than the original design, that is, the number of multipliers

and the number of multipliers per input sample are now 28 and 2.8, respectively.

The same idea can be applied to the case in which the decimator filter is realized using

three branches. Now a total number of nine coefficients
(
a1[0], a1[6], a1[12], a3[1], a3[2],

a3[3], a3[9], a3[10], a3[11], as defined in (2.2)
)

can be set to zero simultaneously, yet the

least-order FIR filter still meets the specifications. Compared with the original design, the

number of multipliers decreases from 37 to 31, and that of multiplications per input sample

decreases from 3.7 to 3.1. The amplitude response of this filter is presented in Fig. 2.6.
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Figure 2.4: The impulse response of the A2(z) meeting the specifications of section 2.1.4,

with two coefficients forced to zero.
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Figure 2.5: The amplitude response of the two-branch filter structure meeting the specifi-

cations of section 2.1.4, with two coefficients forced to zero.

2.2 Single-Stage Two-Filter Decimators

It has been observed by several authors [24,27,61,86,87] that the computational complexity

of a decimator (interpolator) can be drastically reduced by using an additional filter stage at

the output (input) sampling rate. Figures 2.7 and 2.8 show the resulting structures and their
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Figure 2.6: The amplitude response of the three-branch filter structure meeting the specifi-

cations of section 2.1.4, with ten coefficients forced to zero.

single-stage equivalents used for the analysis and synthesis purposes. This observation has

been first made by Martinez and Parks in [65]. In their design scheme for decimators, A(z)

is a transfer function of a linear-phase FIR filter and B(z) is an all-pole filter. The role of

A(z) is to shape the stopband in the desired manner, whereas B(z) gives the desired re-

sponse for the overall passband. This results in a significant reduction in the overall number

of multiplications per input sample at the expense of a nonlinear-phase performance in the

passband. In order to achieve a linear-phase performance, Saramäki modified this approach

by using a linear-phase FIR transfer function for B(z) [86]. The resulting filters require a

slightly higher number of multipliers per input sample. In [86], B(z) has been designed to

provide one zero at z = −1 in order to reduce the multiplication rate even further in the

case where the stopband edge of the decimator is located at ω = π/D.

In the above-mentioned two approaches, the role of A(z) is mainly to take care of the

stopband shaping, whereas the role of B(z) is to generate the desired passband response.
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Figure 2.7: single-stage two-filter structure for a D-to-1 decimator. (a) Actual implemen-
tation. (b) Single-stage equivalent.
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Figure 2.8: single-stage two-filter structure for a 1-to-D interpolator. (a) Actual implemen-
tation. (b) Single-stage equivalent.

In [24] and [27], Chu and Burrus have proposed a different strategy in designing linear-

phase FIR decimators. In their design scheme, the goal is to meet the given overall criteria

such that A(z) has the minimum complexity. As has been observed by Saramäki in [87],

the best results in terms of the multiplication rate are obtained between the above extreme

cases.

This section presents a systematic approach for designing the decimator structures of

Figure 2.7 in such a manner that the overall number of multipliers is minimized. We con-

centrate on the case where both A(z) and B(z) are linear-phase FIR filters. In [87], the

optimum solution has been found by trying various frequency-response-shaping responsi-

bilities between A(z) and B(z) and then minimizing their orders for each selection. Since

there are a huge number of alternatives, this approach is very time consuming. Further-

more, it is very difficult to generate a systematic design scheme for automatically finding
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the optimum solution based on this approach.

2.2.1 The Transfer Function and the Zero-Phase Response

The transfer function of the proposed linear-phase FIR decimators is of the form

H(z) = A(z)B(zD), (2.26)

where

A(z) =

NA∑
n=0

a[n]z−n (2.27)

with a[NA − n] = a[n] for n = 0, 1, . . . , NA and

B(z) =

NB∑
n=0

b[n]z−n (2.28)

with b[NB − n] = b[n] for n = 0, 1, . . . , NB . Here, D is the sampling rate conversion

ratio. When this filter is used for decimation, B(zD) is realized as B(z) at the lower

output sampling rate as shown in Figure 2.7(a). This reduces the number of delay elements

required in the implementation significantly. The zero-phase frequency response for the

above transfer function is expressible as

H(ω) = A(ω)B(Dω), (2.29)

where

A(ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
b

[
NA

2

]
+ 2

NA/2∑
n=1

a[NA − n] cos(nω), for NA even,

2

NA−1

2∑
n=0

a

[
NA − 1

2
− n

]
cos(

2nω + 1

2
), for NA odd, (2.30)
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and

B(ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
b

[
NB

2

]
+ 2

NB/2∑
n=1

b[NB − n] cos(nω), for NB even,

2

NB−1

2∑
n=0

b

[
NB − 1

2
− n

]
cos(

2nω + 1

2
), for NB odd. (2.31)

2.2.2 The Optimization Problem

This section states the optimization problem for the proposed decimators.

When exploiting the coefficient symmetries of A(z) and B(z), the overall number of

multipliers becomes

RM = �(NA + 2)/2� + �(NB + 2)/2�. (2.32)

By defining the criteria for H(ω) as those stated by (2.22) and (2.23), the optimization

problem under consideration will be the following:

Optimization Problem: Given D, α, δp, and δs, find the orders and coefficients of A(z)

and B(z), as given by (2.27) and (2.28), to meet the criteria given by (2.22) and (2.23a)

such that first RM , as given by (2.32), is minimized, and second, ε, as given by (2.24) is

minimized.

2.2.3 The Optimization Algorithm

This section describes the proposed algorithm for finding the optimum solution to the prob-

lem stated in Section 2.2.2.

Sub-algorithm Used in the Main Algorithm

Before describing the overall algorithm, a sub-algorithm is introduced. Given the decimator

criteria as well as NA and NB, the orders of A(z) and B(z), this algorithm is carried out
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using the following three steps:

• Step 1: Use the Remez algorithm or linear programming to determine the coefficients

of B(z) of order NB to minimize

δ̃p = max
ω∈[0,απ]

|B(ω) − 1| (2.33)

subject to the condition that B(ω) = 0 at ω = π.

• Step 2: Use the Remez algorithm or linear programming to determine the coefficients

of A(z) of order NA to minimize

δ̃s = max
ω∈[π/D,π]

|A(ω)B(Dω)| (2.34)

subject to the condition that A(ω) = 1 at ω = 0.

• Step 3: Use SQP to simultaneously determine the coefficients of A(z) and B(z) to

minimize ε as given by (2.24).

2.2.4 The Main Algorithm

Based on the use of the above sub-algorithm, the overall procedure is performed using the

following steps:

• Step 1: Use the Remez algorithm to find the minimum-order linear-phase FIR filter

to meet the criteria of (2.22). Let this order be Nmin. Determine an initial guess for

NB as N
(1)
B = �Nmin/D�.

• Step 2: Use the above sub-algorithm with a small number of grid points for designing

various overall transfer functions H(z), as given by the 1, for the fixed NB = N
(1)
B .

First use NA = D and increment it by D until the overall stopband ripple becomes
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less than or equal to 2δs. Save this order as N
(2)
A . Another alternative would be

estimating NA from the specifications, which is discussed in Section 2.2.5 below.

• Step 3: Use the sub-algorithm with a small number of grid points in such a way that

NA = N
(2)
A is fixed and NB = N

(1)
B or is incremented by 1 until the passband ripple

becomes less than or equal to 1.2δp. Save this order as N
(3)
B .

• Step 4: Use the sub-algorithm with a small number of grid points in such a way that

NB = N
(3)
B is fixed and NA = N

(2)
A or is incremented by 1 until the stopband ripple

becomes less than or equal to 1.15δs. Save this order as N
(4)
A .

• Step 5: Use the sub-algorithm with a small number of grid points in such a way that

NA = N
(4)
A is fixed and NB = N

(3)
B or is incremented by 1 until the passband ripple

becomes less than or equal to 1.1δp. Save this order as N
(5)
B .

• Step 6: Form candidate order pairs (NA, NB) for the values of NB in the range

N
(5)
B ≤ NB ≤ N

(5)
B + J with J being an integer. To do this, the sub-algorithm with

a small number of grid points is used for each NB in the above range in order to find

the minimum value of NA to meet the given criteria. A good initial guess for NA is

NA = N
(4)
A . Save the resulting pairs (NA, NB).

• Step 7: Apply the sub-algorithm with a high number of grid points in order to check

whether the given criteria are met by each candidate pair (NA, NB). If this is not true

for some order pairs, then increment NA until the criteria are met. Save the resulting

pairs (NA, NB).

• Step 8: Select among the order pairs the one minimizing RM as given by (2.32). If

there are more than one pair giving the same minimum value, then select the pair
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having the smallest value of NB.

In the above algorithm, fewer grid points are used at Steps 2, 3, 4, 5, and 6 in order

to make them faster. At these steps there is no need to use a large number of grid points

since we are looking for the potential candidates and not for the ultimate solution. The

choice of the number of grid points depends strongly on the specifications, particularly on

the width of the transition band. Our simulations suggest that in the few-grid-point stages

of the algorithm, the proper number of grid points in the passband and stopband are

Mp =

⌊
π

ωs − ωp

⌋
(2.35)

and

Ms =

⌊
π(π − ωs)

ωp(ωs − ωp)

⌋
(2.36)

respectively. For the stages with a high number of grid points, Mp and Ms are multiplied

by four. The optimization algorithm has been illustrated by the flowchart of Fig. 2.9.

2.2.5 Order Estimation

This section addresses the problem of order estimation for the filter A(z).

In the algorithm introduced above, Step 1 determines the order of the filter B(z), de-

noted by NB, fairly precisely. The order of A(z), denoted by NA, is however found based

on a progressive search at Step 2. A good estimation for NA, specially in designing FIR

filters having narrow transition band, can speed up the execution time of the algorithm

drastically.

In what follows, two different methods for order estimation of the filter A(z) are in-

troduced. Later on in Section 2.2.6, the results with and without order estimation for filter

A(z) have been compared.
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Figure 2.9: The flowchart for the proposed algorithm of Section 2.2.4.

Order estimation using Remez

As mentioned in Section 2.2, A(z) is responsible for the stopband attenuation. This means

that to estimate NA, attention should be paid both to the transition band specification of the
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filter, and to its stopband attenuation.

Since A(z) is responsible for the stopband attenuation in the cascade structure A(z)B
(
zD
)
,

it is safe to assume that its stopband edge is located approximately at ωs, where ωs is the

stopband edge of the filter. On the other hand, since the order of A(z) is inversely propor-

tional to its transition band, it follows that the narrower the passband of A(z), the smaller

its order. Therefore the minimum order A(z) has a passband of length 0 and a transition

band approximately equal to the stopband edge of A(ω)B(Dω).

Remez algorithm can be used to estimate the order of A(z). It is impossible to define a

zero-width passband in Remez, but since for the fixed transition band, the passband width

doesn’t have any influence on the estimated order, an arbitrary passband can be assigned.

Since in the ideal case the passband is infinitely narrow, the ripple assigned should be as

small as possible. The assigned ripple should not however exceed the smallest ripple of the

specifications.

If the transition band of the filter to be designed is not too narrow, the stopband edge

of A(z) can stretch into the transition band of B
(
zD
)
, which means that the overlap of the

transition bands of A(z) and B
(
zD
)

can still meet the stopband specifications. In these

cases, the transition band of A(z) can be thought to be wider then the stopband of the filter,

and hence its estimated order becomes smaller. The overlap of transition bands of A(ω)

and B(Dω) proves to be insignificant in narrow-transition-band filter designs, therefore

this approach is not accurate for these extreme cases.

Order estimation using fixed zeros at z = −1

It has been experimentally observed that for the optimum design of 1S2F’s, B(z) has either

two or three zeros on the unit circle. Based on this fact, a lower estimate for NB and an
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upper estimate for NA can be found rather accurately as follows:

First, B(z), as given by (2.28), is factorized as

B(z) = E(z)F (z),

where

E(z) = (1 − z−1)
L

and

F (z) =

NB−L∑
n=0

f [n]z−n.

Here, L is either two or three, NB − L is even and f [n] = f [NB − L − n] for n =

1, 2, . . . , NB − L. In this case, the overall zero-phase response becomes

H(ω) = F (Dω)E(Dω)A(ω),

where

F (ω) = b

[
(NB − L)

2

]
+ 2

(NB−L)/2∑
n=1

b[NB − n] cos(nω),

E(ω) = [(2 cos(ω/2)]L,

and A(ω) is given by (2.30).

Second, the overall criteria are met by designing simultaneously F (z) to meet

1 − δp ≤ F (ω)E(ω)A(ω/D) ≤ 1 + δp for ω ∈ [0, Dωp]

and A(z) to meet

A(0) = 1

and

−δs ≤ F (Dω)E(Dω)A(ω) ≤ δs for ω ∈ [π/D, π].

Third, the minimum values of NA and NB − L for meeting the given criteria can be

found conveniently using the following iterative algorithm:
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1. Set F (ω) = 1.

2. Determine A(z) using the Remez algorithm such that the maximum absolute value

of the following error function

EA(ω) = WA(ω)[A(ω) − DA(ω)],

where

DA(ω) =

{
1 for ω ∈ [0, ε]

0 for ω ∈ [π/D, π]

and

WA(ω) =

{
α for ω ∈ [0, ε]

E(ω)F (Dω) for ω ∈ [π/D, π]

becomes less than or equal to δs with the minimum value of NA. By selecting ε to

be a very small positive number and α to be a very large positive number, the Remez

algorithm uses only one grid point (ω = 0) on [0, ε] and forces A(ω) to take the value

of unity at ω = 0.

3. Determine F (z) using the Remez algorithm such the the maximum absolute value of

the following error function

EF (ω) = WF (ω)[F (ω) − DF (ω)],

where

DF (ω) = 1/[E(ω)A(ω/D)], ω ∈ [0, Dωp]

and

WF (ω) = E(ω)A(ω/L), ω ∈ [0, Lωp]

becomes less than or equal to δp with the minimum even value of NB − L.
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4. Repeat Steps 2 and 3 until the difference between successive solutions is within the

given tolerance limits.

Typically, four to six iterations of the above algorithm are required to arrive at the desired

solution. The above algorithm is practically the same as that described in [86], with the

exception that now the number of fixed zeros at z = −1 for B(z) is two or three. As the

algorithm described in [86], the above algorithm determines for the given value of L, the

number of zeros at z = −1, the minimum order of B(z) (NB −L+L = NB) for achieving

the desired passband response for the overall filter as well as the minimum order for A(z)

for providing the desired stopband response.

The key idea of using the above algorithm is the fact that when forcing the L zeros (L

is two or three) of the optimum design lying on the unit circle to be located at z = −1,

the resulting order NB (NA) is less than or equal to (greater than or equal to) that of the

optimized overall design. The desired lower (upper) estimate for NB (NA) can be found by

first carrying out the above algorithm for both L = 2 and L = 3 and then selecting those

values of NB and NA, for which the sum NA + NB is lower.

2.2.6 Performance Study

This section illustrates, by means of two examples, the efficiency and flexibility of the

proposed algorithm.

Example 2: In this example, a step-by-step execution of the above-mentioned algorithm

for the specifications of Example 1 on page 20 is considered. The PC performing the

simulation was a Pentium 1.6 GHz with 512 Mb of memory. For simplicity, for all the steps

of the sub-algorithm of Subsection 2.2.3 the function fminimax from the optimization

toolbox provided by MathWorks Inc. has been used [28].



37

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

A
m

pl
itu

de
 in

 d
B

Angular Frequency
0 0.1π 0.2π 0.3π 0.4π 0.5π 0.6π 0.7π 0.8π 0.9π π

Figure 2.10: Amplitude response of the optimal 1S2F of Example 2.

First the algorithm described in the previous section starts with the order of B(z) being

equal to 11 (end of Step 1) and that of A(z) being equal to 10. After 9 seconds, the orders of

A(z) and B(z) become 40 and 11, respectively (end of Step 2). At this stage, the stopband

ripple is less than or equal to 2δs. At the end of Step 3, which takes only 3 seconds, the

orders of A(z) and B(z) become 40 and 12, respectively. Now the passband ripple is less

than or equal to 1.2δp.

It turns out that the same orders of A(z) and B(z) make the passband ripple less than

1.15δs. Therefore, Step 4 is skipped. After another 2 seconds, Step 5 is finished, resulting

in A(z) and B(z) of orders 40 and 12, respectively. Step 6 takes 38 seconds, and at the end

of this step, we have the following pairs of candidates: (40,12), (38,13), and (39,14). The

first member of each pair represents the order of A(z) and the second one represents the

order of B(z). In our simulation, we chose J = 2.

At the end of Step 7, which takes 31 seconds, we have the candidate pairs (40,12),

(38,13), and (39,14). The last stage is the selection of the result, which corresponds to

Steps 8. The pair (38,13) is the solution resulting in the smallest RM , and is, therefore, the
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Figure 2.11: Zero-phase frequency response of the optimal 1S2F of Example 2. (a) Pass-
band details. (b) Stopband details.

optimal solution.

If the estimation method introduced in Subsection 2.2.5 is utilized, the order of A(z)

will be found to be equal to 43, and Step 2 will take 7 seconds. The filter pair A(z) and

B(z) of order 43 and 11 respectively fulfill the criteria of Steps 3 to 5. Step 6 takes 38

seconds, and at the end of this step, we have the following pairs of candidates: (42,11),

(40,12), and (38,13), where the first member of each pair represents the order of A(z) and

the second one represents the order of B(z). J is chosen to be 2, as in the previous case.

The same pairs pass through Step 7, which takes 31 seconds. The pair (38,13) is obviously

the optimal solution. Various responses of the optimum overall filter with NA = 38 and

NB = 13 are depicted in Figs. 2.10 and 2.11.

The results for this example suggests that although order estimation introduced in Sub-

section 2.2.5 speeds up the optimization run time, the saving in terms of the elapsed time

is not substantial.

The optimized filter requires 27 multipliers, 51 delay elements, and 2.7 multiplications
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Figure 2.12: Amplitude response of the optimal 1S2F of Example 3.

per input sample, implying that the proposed 1S2F provides an excellent performance when

compared to its direct-form counterpart, for which the corresponding figures, as already

indicated in Example 1, are 55, 108, and 5.5 respectively.

Example 3: If we apply the same procedure for the following specifications [24, 61,

65, 86, 87]: D = 20, δp = 0.05, δs = 0.005, ωp = 0.045π, and ωs = 0.05π, then the

algorithm of Section 2.2.3 shows that the optimum solution is achieved by NA = 105

and NB = 40. The corresponding decimator requires 74 multipliers, 145 delay elements,

and 3.7 multiplications per input sample. The corresponding figures for the direct-form

linear-phase FIR filter of order 652 exploiting the coefficient symmetry and the fact that

only every twentieth output sample is evaluated are 327, 652, and 16.35. Once again the

superiority of the proposed design is clearly evident. Figures 2.12 and 2.13 show some

responses for this optimized design.

Order estimation proves to be very significant for this case. The first order estimation
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Figure 2.13: Zero-phase frequency response of the optimal 1S2F of Example 3. (a) Pass-
band details. (b) Stopband details.

scheme suggested in 2.2.5 shortens the execution time of Step 2 of the algorithm by a factor

of 8, and the few-grid-point phase of the algorithm (Steps 1–6) is cut down by 26%. The

effect of the second order estimation scheme is even more pronounced; the execution time

of Step 2 of the algorithm is reduced by a factor of 27 and that of the few-grid-point phase

of the algorithm (Steps 1–6) is cut down by 73%.

2.3 Hybrid Decimators

An interesting class of decimators can be developed by merging the ideas presented in

Sections 2.1 and 2.2. These structures enjoy the optimality of both the aforementioned

decimators, and can be readily designed by some modifications to the algorithms presented

in Sections 2.1.2 and 2.2.2.
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Figure 2.14: Hybrid FIR filter structure for a D-to-1 decimator.

2.3.1 The Transfer Function

This section introduces the proposed class of hybrid decimators. To arrive at the linear-

phase overall decimator with a symmetrical impulse response, the transfer function of this

class of decimators is initially considered. Then, the zero-phase frequency response for

this transfer function is expressed for the optimization purposes. Finally the optimization

problem is addressed.

Transfer Function of the Hybrid Decimators

The transfer function of the proposed linear-phase FIR hybrid decimators is of the form

H(z) = B(z)C
(
zD
)
, (2.37)

where B(z) is given by (2.1). When this filter is used for decimation, C(zD) as well as

the Bk(z
D)’s can be implemented as C(z) and Bk(z), respectively, at the lower output

sampling rate as shown in Fig. 2.14. This reduces the number of delay elements required

in the implementation significantly.
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Restrictions on the Transfer Function

As has been pointed out in Section 2.1.1, any symmetric transfer function B(z) is express-

ible in the form of (2.1) with K → D provided that

1. The length of B(z) is a multiple of D, that is, the order is NB = nD−1 with n being

an integer.

2. The orders of the Ak(z)’s are D − 1 (the lengths are D).

3. The Ak(z)’s for k odd (even) are linearly independent mirror-image (anti-mirror-

image) symmetrical polynomials and the Ak(z)’s for k even are linearly independent

anti-mirror-image symmetrical polynomials.

In this decomposition, the orders of the Bk(z)’s are D− 1 (lengths are D). The Bk(z)’s for

k odd (even) are mirror-image (anti-mirror-image) symmetrical polynomials.

As demonstrated in Section 2.1.1, the above decomposition is not very beneficial, since

in most cases, K = 2 or K = 3 minimizes the arithmetic complexity of the overall deci-

mator at the expense of a slightly increased overall filter order. The increase is mainly due

to the fact that after decreasing the number of branches from D to K, the transfer func-

tions Ak(z)’s require a higher order to meet the given criteria. The restrictions imposed on

Bk(z)’s and Ak(z)’s are presented in (2.2) and (2.3) respectively, while C(z) is restricted

to be of the form

C(z) =

NC∑
n=0

c[n]z−n, (2.38)

where c[NC − n] = c[n] for n = 0, 1, . . . , NC .
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The zero-phase frequency response for the above transfer function is expressible as

(ignoring the delay term e−jω(D(NC+NB)+NA)/2)

H(ω) = C(Dω)
K∑

k=1

(−1)k−1Bk(Dω)Ak(ω). (2.39)

Here,

C(ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
c

[
NC

2

]
+ 2

NC/2∑
n=1

c
[
NC − n

]
cos(nω), for NC even,

2

NC−1

2∑
n=0

c

[
NC − 1

2
− n

]
cos

(
2nω + 1

2

)
, for NC odd, (2.40)

and A(ω) and Bk(ω) are given by (2.20) and (2.21) respectively.

2.3.2 The Optimization Problem and the Optimization Algorithm

The optimization problem is exactly that of Section 2.1.2. The only modification is that

now R
(2)
M and R

(3)
M are defined to be

R
(2)
M = (NA + 1) + (NB + 1) +

⌊
NC + 1

2

⌋
. (2.41)

and

R
(3)
M = (NA + 1) + (NB + 1) +

⌊
NA + 1

2

⌋
+

⌊
NB + 1

2

⌋
+

⌊
NC + 1

2

⌋
(2.42)

respectively, and moreover, the order and coefficients of C(z) should also be obtained.

To solve the aforementioned optimization problem, the optimization algorithm already

presented in Section 2.1.3 can be utilized. The main difference is that now at Steps 1, 2 and

3, instead of B(z), the transfer function F (z)C(zK) is used such that

1. The impulse responses of both C(z) and F (z) are symmetric.
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2. The order of F (z) is selected such that the desired factorization at Step 4 can be

performed.

3. �(NC + 2)/2� + �(NF + 2)/2�, where NC and NF are the orders of C(z) and F (z),

respectively, is minimized.

Filters minimizing the quantity given by Condition 3 and fulfilling Conditions 1 and

2 can readily be obtained using the algorithm described in Section 2.2.3. At step 5(a), a

fixed C(z) is used, whereas at Step 5(b) it is optimized together with the Ak(z)’s and the

Bk(z)’s.

2.3.3 Multiplierless Designs

Multiplierless realization of the composite filters leads to further savings in the number of

the required components. An instance is a computationally efficient implementation of the

proposed multibranch design, exploiting multiplierless Ak(z)’s of the form

Ak(z) =
(1 − z−D

1 − z−1

)L D−1∑
n=0

αk(n)z−n (2.43a)

with

αk(n) =
(
n − (D − 1)/2

)(k−1)
. (2.43b)

The design of the desired two-branch structure starts by determining the optimized

B(z)C(z2)
(
1 + z−1

)L
for D = 2, according to the algorithm described in Section 2.2.3.

The resulting B(z) is subsequently decomposed according to Proposition 1 (with D = 2)

to yield B1(z) and B2(z), and the coefficients of the Bk(z)’s and C(z) thus obtained are

used as the starting point in the final optimization routine for designing the desired filter

with the given value of D.
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The design of the three-branch structure is carried out correspondingly. The only dif-

ference is that the initial transfer function to be optimally designed through the algorithm

of Section 2.2.3 is B(z)C(z3)
(
1+z−1 +z−2

)L
, and the resulting B(z) will be decomposed

according to Proposition 1 with D = 3.

2.3.4 Performance Study

Example 4: Consider the specifications of Example 1 of Section 2.1.4. The proposed al-

gorithm for the two-branch hybrid case results in an optimum filter structure, where the

lengths of A1(z) and A2(z) are 18, the lengths of B1(z) and B2(z) are 5 and the length

of C(z) is 8. This decimator requires 27 multipliers, 2.7 multiplications per input sample,

and 29 delay elements. Hence, compared to the corresponding MBD case (where C(z) is

absent), the number of multipliers reduces from 29 to 27 at the expense of a higher number

of delay elements(29 compared to 27).

Figures 2.15, and 2.16 present the amplitude responses for K = 2 and K = 3 hybrid

structures respectively. It proves that for the hybrid two-branch structure, two coefficients

can be set to zero. For the hybrid three-branch case, there is a maximum of six coefficients

to be set to zero. Figure 2.17 (2.18) presents the amplitude response for such two (three)

branch structure.

The specifications of this example can also be met through the multiplierless designs,

introduced in Section 2.3.3. With L = 4 in (2.43a), a two-branch structure with B1(z)

and B2(z) of length 4 and C(z) of length 8 meets the criteria. The structure requires 8

multipliers and 26 delay elements, and operates at 0.8 multiplications per input sample. The

amplitude response of this design is presented in Fig. 2.19. Table 2.1 compares different

decimator structures fulfilling the specifications of this example.
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Figure 2.15: The amplitude response of the whole hybrid two branch structure in Example
4.

Table 2.1: Comparison Between Various Decimator Structures for the Specifications of
Example 1. For More Details, See the Text.

Decimator Type Filter Orders Number of Multiplication Number of

Multipliers Rate Delays

Conventional FIR, Direct-Form N = 108 55 5.5 108

MBD, K = 2 NA = 17, NB = 10 29 2.9 27

Hybrid, K = 2 NA = 17, NB = 4, NC = 7 27 2.7 28

MBD, K = 3 NA = 12, NB = 10 39 3.9 22

Hybrid, K = 3 NA = 12, NB = 4, NC = 7 30 3.0 23

MBD, coefficients zeroed, K = 2 NA = 17, NB = 10 28 2.8 27

Hybrid, coefficients zeroed, K = 2 NA = 17, NB = 4, NC = 7 26 2.6 28

MBD, coefficients zeroed, K = 3 NA = 12, NB = 10 34 3.4 22

Hybrid, coefficients zeroed, K = 3 NA = 12, NB = 4, NC = 7 27 2.7 23

Hybrid, Multiplierless, K = 2 NB = 3, NC = 7 8 0.8 26

Hybrid, Multiplierless, K = 3 NB = 3, NC = 7 10 1.0 26

1S2F NA = 38, NB = 13 27 2.7 51

Example 5: Consider the specifications of Example 3 of Section 2.2.6. The design

criteria are met using a multiplierless two-branch structure with L = 4, B1(z) and B2(z)
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Figure 2.16: The amplitude response of the whole hybrid three branch structure in Example
4.

of length 6 and C(z) of length 34, requiring 23 multipliers, 1.15 multiplications per input

sample and 54 delay elements, implying a huge advantage of multiplierless hybrid design

compared to the implementation according to 1S2F design of Section 2.2.6. The amplitude

response of the optimum design is presented in Fig. 2.20.
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Figure 2.17: The frequency response of the hybrid two-branch filter structure in Example
4, with two coefficients forced to zero.
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Figure 2.18: The frequency response of the hybrid three-branch filter structure in Example
4, with six coefficients forced to zero.
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Figure 2.19: Amplitude response of the two-branch filter with fixed Ak(z) in Example 4.
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Figure 2.20: Amplitude response of the two-branch filter with fixed Ak(z) in Example 5.





Chapter 3

Cascade Structures for Generating

Sharp Linear-Phase FIR Filters

In this chapter, efficient structures composed of two cascaded FIR blocks are introduced.

Each block in turn is a parallel connection of several FIR filters, which are realized by using

IIR filters. Thanks to the incorporation of IIR filters, the structures can be implemented

efficiently. When generating these structures, special attention should be paid to combat

the roundoff noise.

This chapter starts by a short introduction to the principle of switching and resetting,

which is of key importance to the realizability of the design. Next, two transfer functions

for the proposed cascade structures are derived, and efficient schemes for their implementa-

tions are put forward. Finally, closed-form formulae for the noise generated in the proposed

structures are derived, and the efficiency of the resulting designs is illustrated through com-

puter simulations.

51
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3.1 Review of Principle of Switching and Resetting

In [38], an approach for synthesizing linear-phase FIR filters based on switching and re-

setting of the same IIR filters has been introduced. To explain this principle, consider the

following first-order stable IIR transfer function:

G1(z) =
1

1 − bz−1
. (3.1)

Here, b is either real or complex and |b| < 1 to make the filter stable. The FIR filter transfer

function

H1(z) =
1 − bNz−N

1 − bz−1
=

N−1∑
n=0

bnz−n (3.2)

could be made to have a frequency response that is as close to that of G1(z) as desired by

selecting an appropriately large N .

Similarly, the approximating causal FIR filter transfer function to the corresponding

unstable IIR transfer function

G2(z) =
1

1 − b−1z−1
(3.3)

is

H2(z) =
1 − b−Nz−N

1 − b−1z−1
=

N−1∑
n=0

b−nz−n. (3.4)

Cascading the filters with transfer functions as given by (3.2) and (3.4) results in a linear-

phase FIR filter that has an even symmetry.

H1(z) as given by (3.2) represents the transfer function of an FIR filter because the

pole at z = b is cancelled by one of the equispaced zeros on the circle of radius |b|. If

the cancellation due to finite coefficient wordlength is inexact, then the transfer function

becomes

Ĥ1(z) =
1 − b̂Nz−N

1 − b̂z−1
, (3.5)
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where b̂ and b̂N denote the implemented finite-precision values of b and bN , respectively.

The resulting impulse response of Ĥ1(z) is given by

ĥ1(n) =

⎧⎨⎩ b̂n, 0 ≤ n ≤ N − 1,(̂
bN − b̂N

)
(̂b)n−N , n ≥ N. (3.6)

By a similar argument, H2(z) with the transfer function as given by (3.4) represents an

FIR filter because the pole at z = b−1 is cancelled by one of the equispaced zeros on the

circle of radius |b−1|. If the cancellation due to finite coefficient wordlength is inexact, then

the transfer function becomes

Ĥ2(z) =
1 − b̂−Nz−N

1 − b̂−1z−1
, (3.7)

where b̂−1 and b̂−N denote the implemented finite-precision values of b−1 and b−N , respec-

tively. The impulse response of Ĥ2(z) is given by

ĥ2(n) =

⎧⎨⎩(b̂−1)
n
, 0 ≤ n ≤ N − 1,(

(b̂−1)N − b̂−N
)
(b̂−1)

n−N
, n ≥ N. (3.8)

Based on (3.6) and (3.8), it is obvious that in these two cases, the pole is not exactly

removed and its effect will appear in the output for n ≥ N . In particular, for the filter

Ĥ2(z) given by (3.7), the effect of an inexact pole-zero cancellation
(
b̂−N �= (b̂−1)N

)
is

growing as |b̂−1|n for n > N .

To avoid the above-mentioned problem, a technique based on switching and resetting

of IIR filters has been proposed in [38]. To elaborate on the idea, assume that the input to

Ĥ1(z) (or equally well Ĥ2(z)) consists of a set of 2N samples x(0), x(1), . . . , x(2N − 1),

of which the last N samples x(N), x(N + 1), . . . , x(2N − 1) are zero-valued. If Ĥ1(z)

works in the ideal way, i.e., if the finite wordlength effects are ignored, then the output at

time n = 2N−1 should be precisely equal to zero. This motivates to reset the state variable
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Figure 3.1: Switching and resetting for stabilizing pole-zero cancellation. A demultiplexer
is used to decompose x(n) into two signals x1(n) and x2(n) with periodic sequences of N
zeros. If the demultiplexer is switched every N points, then each copy of the filter is fed N
actual data points followed by N zeros. Each filter is reset following the N th zero and just
before receiving the next sequence of N actual data points.

at time n = 2N − 1 and hence avoids the effect of an inexact pole-zero cancellation from

growing too much. To extend the application of switching and resetting to arbitrary inputs,

the input sequence of the filter x(n) is decomposed into two sequences as follows:

x(n) = x1(n) + x2(n), (3.9a)

where

x1(n) =

{
x(n), rN ≤ n ≤ (r + 1)N − 1, r is even,

0, otherwise, (3.9b)

x2(n) =

{
x(n), rN ≤ n ≤ (r + 1)N − 1, r is odd,

0, otherwise. (3.9c)

The subsequences x1(n) and x2(n) are applied to two identical copies of Ĥ1(z) and the

outputs are added (see Fig. 3.1). This is equivalent to filtering x(n) by Ĥ1(z) as implied

by (3.9b)–(3.9c). Only the finite wordlength effects are different. Because after each set of

N actual data samples there is a set of N zero-valued samples, the filters can be reset at the

time when the last zero-valued sample enters the filter.
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3.2 Alternative Structures

The cascade structures introduced in this chapter are based on a finite approximation of an

IIR filter. To elaborate on the idea, consider the following transfer function of a stable and

causal IIR filter:

G(z) =

L∑
k=0

nkz
−k

1 −
K∑

k=1

dkz
−k

= g

L∏
k=1

(1 − qkz
−1)

K∏
k=1

(1 − pkz
−1)

. (3.10)

Here, the zeros qk and the poles pk are assumed to be either real or to occur in complex

conjugate pairs to make the coefficients nk and dk real. In addition, it is assumed that there

are KC complex conjugate pole pairs βk and β∗
k for k = 1, 2, . . . , KC and KR real poles

αk for k = 1, 2, . . . , KR. Using a partial fraction expansion and assuming that there are no

repeated poles, the above transfer function can be written as

G(z) = A(z) +

KR∑
k=1

G
(r)
k (z) +

KC∑
k=1

G
(c)
k (z), (3.11a)

where

A(z) =
L−K∑
k=0

akz
−k, (3.11b)

G
(r)
k (z) =

κk

1 − αkz−1
, (3.11c)

and

G
(c)
k (z) =

γk

1 − βkz−1
+

γ∗
k

1 − β∗
kz

−1

= 2
{ γk

1 − βkz−1

}
, (3.11d)

with

κk = (1 − αkz
−1)G(z)∣∣∣z=αk

(3.11e)
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and

γk = (1 − βkz
−1)G(z)∣∣∣z=βk

. (3.11f)

Here, {H(z)} denotes the transfer function that is the average of H(z) and the transfer

function obtained by replacing the complex coefficients of H(z) by their complex conju-

gates. The first term on the right-hand side of (3.11a) is absent if L < K.

Based on different approximations applied to (3.11c) and (3.11d), two alternative struc-

tures emerge, which will be referred to as Cascade Structure I and Cascade Structure II.

3.2.1 Cascade Structure I

Under the assumption that

1

1 − αkz−1
≈ 1 − αMk

k z−Mk

1 − αkz−1
(3.12a)

and
1

1 − βkz−1
≈ 1 − βNk

k z−Nk

1 − βkz−1
, (3.12b)

G(z) as given by (3.11a)–(3.11f) can be approximated by the following FIR filter transfer

function:

E(z) = A(z) +

KR∑
k=1

E
(r)
k (z) +

KC∑
k=1

E
(c)
k (z), (3.13a)

where

E
(r)
k (z) =

κk(1 − αMk
k z−Mk)

1 − αkz−1
(3.13b)

and

E
(c)
k (z) = 2

{γk(1 − βNk
k z−Nk)

1 − βkz−1

}
. (3.13c)

Using the notations

γk = Rke
jΦk (3.14a)
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and

βk = rke
jφk , (3.14b)

E
(c)
k (z) can be alternatively expressed as

E
(c)
k (z) =

2{γk(1 − βNk
k z−Nk)(1 − β∗

kz
−1)
}

(1 − βkz−1)(1 − β∗
kz

−1)
(3.15a)

=
b0 + b1z

−1 + b2z
−Nk + b3z

−Nk−1

1 − 2rk cos(φk)z−1 + r2
kz

−2
, (3.15b)

where

b0 = 2Rk cos(Φk), (3.16a)

b1 = −2Rkrk cos(Φk − φk), (3.16b)

b2 = −2Rkr
Nk
k cos(Φk + Nkφk), (3.16c)

and

b3 = 2Rkr
Nk+1
k cos(Φk + (Nk − 1)φk). (3.16d)

The impulse response of the resulting E(z) is given by

e(n) = e(a)(n) +

KR∑
k=1

e
(r)
k (n) +

KC∑
k=1

e
(c)
k (n), (3.17a)

where

e(a)(n) =

{
an, 0 ≤ n ≤ L − K,

0, otherwise, (3.17b)

e
(r)
k (n) =

{
κk(αk)

n, 0 ≤ n ≤ Mk − 1,

0, otherwise, (3.17c)

and

e
(c)
k (n) =

{
2Re
{
γk(βk)

n
}

= 2Rk(rk)
n cos(Φk + nφk), 0 ≤ n ≤ Nk − 1,

0, otherwise. (3.17d)
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The above E(z) is the transfer function of an FIR filter, whose impulse response be-

comes zero at n = D + 1, where

D = max{M1 − 1,M2 − 1, · · · ,MKR
− 1, N1 − 1, N2 − 1, · · · , NKC

− 1}. (3.18)

The FIR filter transfer function Ê(z), whose impulse response coefficients ê(n) are

related to the coefficients e(n) of E(z) via

ê(n) = e(D − n), n = 0, 1, 2, · · · , N − 1 (3.19)

is then

Ê(z) = z−DE(z−1). (3.20)

This transfer function is expressible as follows:

Ê(z) = z−(D−(L−K))Â(z) +

KR∑
k=1

z−(D+1−Mk)Ê
(r)
k (z) +

KC∑
k=1

z−(D+1−Nk)Ê
(c)
k (z), (3.21a)

where

Â(z) =
L−K∑
k=0

akz
−(L−K−k), (3.21b)

Ê
(r)
k (z) = κkα

Mk−1
k

(1 − (1/αk)
Mkz−Mk)

1 − (1/αk)z−1
=

κkα
−1
k (αMk

k − z−Mk)

1 − (1/αk)z−1
, (3.21c)

and

Ê
(c)
k (z) = 2

{γkβ
−1
k [(βk)

Nk − z−Nk ]

1 − (1/βk)z−1

}
. (3.21d)

A linear-phase FIR filter transfer function can then be constructed as follows:

F (z) = c0z
−D + c1E(z)Ê(z). (3.22)

Here, the role of the constants c0 and c1 is to adjust the zero-phase response of F (z) to stay

within the limits of the specifications. Alternatively, using the substitutions ak
√

c1 → ak
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Figure 3.2: Graphic representation of Cascade Structure I.

for k = 0, 1, . . . , L − K, κk
√

c1 → κk for k = 1, 2, . . . , KR, and γk
√

c1 → γk for

k = 1, 2, . . . , KC , the effect of c1 can be included in E(z) and Ê(z) and F (z) can be

expressed as

F (z) = c0z
−D + E(z)Ê(z). (3.23)

The basic structure for implementing the overall filter is shown in Fig. 3.2. More detail

on how to practically construct the constituent subfilters will be discussed in Section 3.3.1.

3.2.2 Cascade Structure II

For generating Cascade Structure II, G
(c)
k (z) as given by (3.11d) is first expressed as

G
(c)
k (z) = 2

{
γk(1 − β∗

k)z
−1

(1 − βkz−1)(1 − β∗
kz

−1)

}
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Alternatively, this equation can be written in the following forms:

G
(c)
k (z) =

2{γk(1 − β∗
kz

−1)
}

(1 − βkz−1)(1 − β∗
kz

−1)
=

b0 + b1z
−1

1 − 2rk cos(φk)z−1 + (rk)2z−2
, (3.24)

where b0 and b1 are given by (3.16a) and (3.16b). Then, applying the approximation of

(3.12b) and
1

1 − β∗
kz

−1
≈ 1 − (β∗

k)
Nkz−Nk

1 − β∗
kz

−1
(3.25)

yields

E
(c)
k (z) =

2{γk(1 − β∗
kz

−1)
}(

1 − β∗
kz

−Nk
) (

1 − βkz
−Nk
)

(1 − βkz−1)(1 − β∗
kz

−1)

=
(b0 + b1z

−1)Ωk(z)

1 − 2rk cos(φk)z−1 + (rk)2z−2
= 2Ωk(z)

{ γk

1 − βkz−1

}
, (3.26)

where

Ωk(z) = 1 − 2(rk)
Nk cos(Nkφk)z

−Nk + (rk)
2Nkz−2Nk . (3.27)

The corresponding impulse response is given by

e
(c)
k (n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2Re
{
γk(βk)

n
}

= 2Rk(rk)
n cos(Φk + nφk), 0 ≤ n ≤ Nk − 1,

−2Re
{
γk(β

∗
k)

Nk(βk)
(n−Nk)
}

= −2Rk(rk)
n cos(Φk + (n − 2Nk)φk),

Nk ≤ n ≤ 2Nk − 1,

0, otherwise. (3.28)

In this case, E(z) is given by (3.13a), (3.13b) and (3.26). The corresponding impulse

response of the overall transfer function becomes zero at n = D + 1, where

D = max{M1 − 1,M2 − 1, · · · ,MKR
− 1, 2N1 − 1, 2N2 − 1, · · · , 2NKC

− 1}. (3.29)

The corresponding

Ê(z) = z−DE(z−1)
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Figure 3.3: Graphic representation of Cascade Structure II.

is then given by

Ê(z) = z−(D−(L−K))Â(z) +

KR∑
k=1

z−(D+1−Mk)Ê
(r)
k (z) +

KC∑
k=1

z−(D+1−2Nk)Ê
(c)
k (z), (3.30a)

where Â(z) and the Ê
(r)
k (z)’s are given by (3.21b) and (3.21c), and

Ê
(c)
k (z) = 2Ω̂k(z)

{ γ̂k

1 − (1/βk)z−1

}
=

(̂b0 + b̂1z
−1)Ω̂k(z)

1 − 2(1/rk) cos(φk)z−1 + (1/rk)2z−2
, (3.30b)

with

Ω̂k(z) =r
(2Nk)
k

(
1 − 2(rk)

−Nk cos(Nkφk)z
−Nk + (rk)

−2Nkz−2Nk
)
, (3.30c)

γ̂k = −γk/βk, (3.30d)

b̂0 = −2Rk(rk)
−1 cos(Φk − φk), (3.30e)

and

b̂1 = 2Rk(rk)
−2 cos(Φk). (3.30f)

The graphical representation for implementing the overall filter is presented in Fig. 3.3.
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3.3 Filter Implementation

This section shows how to practically implement the subfilters for both Cascade Structure I

and Cascade Structure II respectively. In the sequel, special emphasis will be laid on finite

wordlength effects.

3.3.1 Cascade Structure I

As mentioned earlier in Section 3.2.1, Cascade Structure I is composed of two blocks in

cascade, where the first (second) block consists of parallel connection of stable (unstable)

IIR filters. In what follows, the implementations of the filter parts corresponding to the

stable and unstable IIR filter blocks are considered separately.

Stable Blocks

As mentioned in Section 3.1, applying the principle of switching and resetting is not nec-

essary for implementation of E
(r)
k (z) and E

(c)
k (z), since for these subfilters the output noise

variance does not increase boundlessly. Furthermore, instead of using two copies of the

same filter, it is advisable to use more bits for the coefficients in the feedforward part to pro-

vide a sufficient pole-zero cancellation. For E
(c)
k (z) implemented as shown in Fig. 3.4(b)

(see Fig. 3.5 for the definitions of the basic arithmetic operations), the input-output relation

can be described by the following difference equations:

y(l) =
2

νk

Re
{

W (l)
}

, (3.31a)

where

W (l) = βkW (l − 1) + V (l). (3.31b)
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Figure 3.4: Implementations for the subfilters E
(r)
k (z) and E

(c)
k (z) for Cascade Structure I.

with

V (l) = νkγkx(l) − νkγk(βk)
Nkx(l − Nk), (3.31c)

Here, V (l) (W (l)) is a complex-valued sequence before (after) the adder of Fig. 3.4(b),

whereas νk is the scaling constant. Alternatively, the above equations can be written using

real arithmetic as shown in Table 3.1, by expressing V (l) and W (l) in terms of their real

and imaginary parts, denoted by Vre(l) Vim(l), Wre(l) Wim(l), as V (l) = Vre(l) + jVim(l)

and W (l) = W re(l) + jWim(l).

From Table 3.1, it follows that the number of real-valued multiplications, additions, and

delays involved in the implementation are 9, 6, and Nk + 2, respectively 1 . The role of

1Generating Wre(l) and Wim(l) takes two multiplications and two additions, while generating Vre(l) and

Vim(l) requires two multiplications and one addition. Finally to yield y(l), one more multiplication is re-

quired. Other results presented in the coming pages of this work follow a similar approach.
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z 1--

z 1--X(n) = xre(n)

Y(n) = xre(n−1) + jxim(n−1)X(n) = xre(n) + jxim(n)

Y(n) = xre(n−1)

X(n) = xre(n)

Z(n) = zre(n)

Y(n) = xre(n) + zre(n)

X(n) = xre(n) + jxim(n)

Z(n) = zre(n) + jzim(n)

Y(n) = xre(n) + zre(n)

+ j(xim(n) + zim(n))

X(n) = xre(n)

X(n) = xre(n) + jxim(n)

A = are + jaim Y(n) = arexre(n) − aimxim(n)

+ j(arexim(n) + aimxre(n))

A = are

Y(n) = arexre(n)

X(n) = xre(n) + jxim(n)

A = are + jaim

Y(n) = arexre(n) − aimxim(n)

A = are + jaim Y(n) = arexre(n)

+ jaimxre(n)
X(n) = xre(n)

Figure 3.5: Basic arithmetic operations.

the scaling constant νk is to avoid overflows in the real and imaginary parts of W (l). In

the case of perfect pole-zero cancellation, the unit sample responses from the input to these

variables are given by

h
(real)
k (l) =

{
Re{νkγkβ

l
k}, 0 ≤ l ≤ Nk − 1,

0, otherwise, (3.32a)



65

Table 3.1: Real Arithmetic Input-Output Relation for E
(c)
k (z)

y(l) = (2/νk)Wre(l),

where

Wre(l) = Re{βk}Wre(l − 1) − Im{βk}Wim(l − 1) + Vre(l)

and

Wim(l) = Im{βk}Wre(l − 1) + Re{βk}Wim(l − 1) + Vim(l)

with

Vre(l) = Re{νkγk}x(l) − Re{νkγk(βk)
Nk}x(l − Nk)

and

Vim(l) = Im{νkγk}x(l) − Im{νkγk(βk)
Nk}x(l − Nk)

and

h
(imag)
k (l) =

{
Im{νkγkβ

l
k}, 0 ≤ l ≤ Nk − 1,

0, otherwise, (3.32b)

respectively.

E
(r)
k (z), in turn, can be implemented using conventional real arithmetic as shown in

Fig. 3.4(a). The scaling transfer functions for this filter is given by

Hk(z) = μkE
(r)
k (z). (3.33)

The implementation of E
(r)
k (z) requires 4 real-valued multiplications and 2 real-valued

additions. A(z), as given by (3.11b), is a conventional FIR filter requiring L − K + 1

real-valued multiplications and L−K real-valued additions. These results are summarized

in Table 3.2.

Unstable Blocks

Due to the unstable poles of Ê
(r)
k (z)’s and Ê

(c)
k (z)’s, special care should be taken to con-

trol the output noise variance due to the multiplication roundoff errors. By exploiting the
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Table 3.2: Arithmetic Operations for Cascade Structure I

Number of Real-Valued Number of Real-Valued

Multiplications Additions

Ek(z)

E
(r)
k (z) 4 2

E
(c)
k (z) 9 4

Ak(z) L − K + 1 L − K

Êk(z)

Ê
(r)
k (z) m

(b)
k + 3 m

(b)
k + 1

Ê
(c)
k (z) 2n

(b)
k + 7 2n

(b)
k + 2

Âk(z) L − K + 1 L − K

Overall 2(L − K + 1) + 1 2(L − K) + 1

Filter +7KR +

KR∑
k=1

m
(b)
k +4KR +

KR∑
k=1

m
(b)
k

+16KC + 2

KC∑
k=1

n
(b)
k 7KC + 2

KC∑
k=1

n
(b)
k

Number of Delay Elements

Ek(z) D + 1 + KR + 2KC

and c0z
−D

Êk(z) D + 1 + 2KR + 4KC

Overall Filter 2D + 2 + 3KR + 6KC

identity

1 − xm
(a)
k m

(b)
k = (1 − xm

(a)
k )

m
(b)
k −1∑
l=0

[xm
(a)
k ]l, (3.34)

Ê
(r)
k (z), as given by (3.21c) can be expressed for

Mk = m
(a)
k m

(b)
k (3.35a)

as

Ê
(r)
k (z) = Υ

(a)
k (z)Υ

(b)
k (z), (3.35b)
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where

Υ
(a)
k (z) =

κkα
−1
k (α

m
(a)
k

k − z−m
(a)
k )

1 − (1/αk)z−1
(3.35c)

and

Υ
(b)
k (z) =

m
(b)
k −1∑
l=0

[(αk)
m

(a)
k ](m

(b)
k −1−l)z−lm

(a)
k . (3.35d)

Similarly, Ê
(c)
k (z) as given by (3.21d) is expressible for

Nk = n
(a)
k n

(b)
k (3.36a)

as

Ê
(c)
k (z) = 2

{
Γ

(a)
k (z)Γ

(b)
k (z)

}
, (3.36b)

where

Γ
(a)
k (z) =

γkβ
−1
k (β

n
(a)
k

k − z−n
(a)
k )

1 − (1/βk)z−1
(3.36c)

and

Γ
(b)
k (z) =

n
(b)
k −1∑
l=0

[(βk)
n

(a)
k ](n

(b)
k −1−l)z−ln

(a)
k . (3.36d)

Figure 3.6 shows the resulting implementation for z−(D+1−Nk)Ê(c)(z), where the scal-

ing constant ν̂k is included and the principle of switching and resetting is employed. Since

the order of Γ
(a)
k (z) is n

(a)
k − 1, the demultiplexers are switched every n

(a)
k samples. The

feedforward part is realized only once. This is possible by synchronizing the two demulti-

plexers such that the first and second demultiplexers start feeding actual data samples to the

upper and the lower feedback loops at the time instants n = 2ρn
(a)
k and n = (2ρ − 1)n

(a)
k ,

respectively, where ρ is an integer. Ignoring the effects of switching and resetting as well as

those of the additional delay terms, the input-output relation for E
(c)
k (z) can be described

by the following difference equations:

y(l) =

n
(b)
k −1∑
i=0

Re
{2[(βk)

n
(a)
k ](n

(b)
k −1−i)

ν̂k

W (l − in
(a)
k )
}

, (3.37a)
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Figure 3.6: Implementation for z−(D+1−Nk)Ê
(c)
k (z) in Cascade Structure I of Fig. 3.2.

where

W (l) =
1

βk

W (l − 1) + V (l) (3.37b)

with

V (l) = ν̂kγk(βk)
n

(a)
k −1x(l) − ν̂kγk(βk)

−1x(l − n
(a)
k ). (3.37c)

The corresponding real-arithmetic input-output relation is given in Table 3.3.

In the implementation of Fig. 3.6, complex data is present in the delay elements in the

feedback loops as well as at the input and output of this loop. In the feedforward parts

before and after the feedback loops, in turn, the data is real. When implementing the

two copies of the feedback loop by demultiplexing the same filter, generating the complex
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Table 3.3: Real Arithmetic Input-Output Relation for Ê
(c)
k (z)

y(l) =

n
(b)
k −1∑
i=0

Re{2[(βk)
n

(a)
k ](n

(b)
k −1−i)

ν̂k

}Wre(l − in
(a)
k )

−
n

(b)
k −1∑
i=0

Im{2[(βk)
n

(a)
k ](n

(b)
k −1−i)

ν̂k

}Wim(l − in
(a)
k ),

where

Wre(l) = Re{1/βk}Wre(l − 1) − Im{1/βk}Wim(l − 1) + Vre(l),

and

Wim(l) = Im{1/βk}Wre(l − 1) + Re{1/βk}Wim(l − 1) + Vim(l),

with

Vre(l) = Re{ν̂kγk(βk)
n

(a)
k −1}x(l) − Re{ν̂kγk(βk)

−1}x(l − n
(a)
k ),

and

Vim(l) = Im{ν̂kγk(βk)
n

(a)
k −1}x(l) − Im{ν̂kγk(βk)

−1}x(l − n
(a)
k ).

outputs of the feedback loops requires 8 real-valued multiplications. From this output,

the overall output is obtained by using 2n
(b)
k − 1 real valued multiplications2. The overall

number of real-valued multiplications is thus 2n
(b)
k +7. The number of real-valued additions

is 2n
(b)
k + 2.

The role of the scaling constant ν̂k in the implementation of z−(D+1−Nk)Ê
(c)
k (z) is to

avoid overflows in the real and imaginary parts of W (l), denoted by Wre(l) and Wim(l).

Ignoring the additional delay terms, the unit sample responses of the scaling transfer func-

tions for these parts are given by

h
(real)
k (l) =

⎧⎨⎩Re{ν̂kγkβ
(n

(a)
k −1−l)

k }, 0 ≤ l ≤ n
(a)
k − 1,

0, otherwise, (3.38a)

2The coefficient 2/ν̂k is real-valued.
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Figure 3.7: Implementation for z−(D+1−Mk)Ê
(r)
k (z) in Cascade Structure I of Fig. 3.2.

and

h
(imag)
k (l) =

⎧⎨⎩ Im{ν̂kγkβ
(n

(a)
k −1−l)

k }, 0 ≤ l ≤ n
(a)
k − 1,

0, otherwise, (3.38b)

respectively.

For Ê
(r)
k (z) in turn, the scaling transfer function is given by

Hk(z) = μ̂kΥ
(a)
k (z). (3.39)

The corresponding implementation of z−(D+1−Mk)Ê
(r)
k (z) is depicted in Fig. 3.7, where μ̂k

is a scaling multiplier. This implementation requires m
(b)
k + 3 real-valued multiplications
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and m
(b)
k + 2 real-valued additions by using one copy of the feedback loop. The num-

ber of real-valued multiplications and real-valued additions for the overall implementation

are given in Table 3.2 on page 66. By factorizing the nonrecursive part of the unstable

block, the required number of multipliers and adders can be further reduced. To elaborate,

consider the identity

m(1)m(2)···m(I)−1∑
l=0

xlm(a)

=
I∏

i=1

[
m(i)−1∑

l=0

xlM(i)

]
, (3.40)

where M (1) = m(a) and M (i) = m(a)m(1)m(2) · · ·m(i−1) for i = 2, 3, . . . , I . Through

(3.40), a factorizing of m
(b)
k as

m
(b)
k =

Ik∏
i=1

m
(i)
k , (3.41a)

leads to a factorization of Υ
(b)
k (z) (given in (3.35d)) as

Υ
(b)
k (z) =

Ik∏
i=1

Υ
(i)
k (z), (3.41b)

where

Υ
(i)
k (z) =

m
(i)
k −1∑
l=0

(α
M

(i)
k

k )m
(i)
k −1−lz−lM

(i)
k (3.41c)

with

M
(i)
k = m

(a)
k

i−1∏
l=1

m
(l)
k . (3.41d)

Similarly, Γ
(b)
k (z) as given by (3.36d) for

n
(b)
k =

Jk∏
j=1

n
(j)
k (3.42a)

can be rewritten as

Γ
(b)
k (z) =

Jk∏
j=1

Γ
(j)
k (z), (3.42b)
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Figure 3.8: Decomposition of Υ
(b)
k (z).

where

Γ
(j)
k (z) =

n
(j)
k −1∑
l=0

(β
N

(j)
k

k )n
(j)
k −1−lz−lN

(j)
k (3.42c)

with

N
(j)
k = n

(a)
k

j−1∏
l=1

n
(l)
k . (3.42d)

Implementations for the above transfer functions including the scaling constants are

shown in Figs. 3.8 and 3.9. For Γ
(b)
k (z), the constants ϕ

(j)
k for j = 1, 2 . . . , Jk − 1 are

determined such that overflows are avoided at the outputs of the corresponding blocks

Γ
(j)
k (z), whereas

ϕ
(Jk)
k = 1/

[
ν̂k

Jk−1∏
j=1

ϕ
(j)
k

]
. (3.43)

The impulse responses of the scaling transfer functions to the real and imaginary parts in

the output of Γ
(j)
k (z) are given by



73

z M
(Jk)
k--

z M
(Jk)
k--

z M
(Jk)
k--

z M
(Jk--1)
k--

αk
M
(Jk--1)
k

z M
(Jk--1)
k--

z M
(Jk--1)
k--

αk
--2)M

(Jk--1)
k(m

(Jk--1)
k

z M
(1)
k--

αk
--1)M

(1)
k(m

(1)
k

αk
M
(1)
k

z M
(1)
k--

z M
(1)
k--

αk
--2)M

(1)
k(m

(1)
k

In

Out

ψ
(1)
k

ψ
(1)
k

ψ
(1)
k

ψ
(1)
k ψ

(Jk--1)
k

αk
--1)M

(Jk--1)
k(m

(Jk--1)
kψ

(Jk--1)
k

ψ
(Jk--1)
k

ψ
(Jk--1)
k

αk
--2)M

(Jk)
k(n

(Jk)
kψ

(Jk)
k

αk
--1)M

(Jk)
k(n

(Jk)
kψ

(Jk)
k

αk
M
(Jk)
kψ

(Jk)
k

ψ
(Jk)
k

Υk
(b)
(z)/μ

k

αk
2M

(Jk--1)
kψ

(Jk--1)
k αk

2M
(Jk)
kψ

(Jk)
kαk

2M
(1)
kψ

(1)
k

Figure 3.9: Decomposition of Γ
(b)
k (z).

h
( real)
k (j, l) =

⎧⎪⎨⎪⎩ Re{ν̂k

[ j∏
i=1

ϕ
(i)
k

]
γkβ

(N
(j+1)
k −1−l)

k }, 0 ≤ l ≤ N
(j+1)
k − 1,

0, otherwise, (3.44a)

and

h
(imag)
k (j, l) =

⎧⎪⎨⎪⎩ Im{ν̂k

[ j∏
i=1

ϕ
(i)
k

]
γkβ

(N
(j+1)
k −1−l)

k }, 0 ≤ l ≤ N
(j+1)
k − 1,

0, otherwise. (3.44b)

For Υ
(b)
k (z), the scaling constants ψ

(i)
k are determined in a similar manner.

Table 3.4 compares the multistage (factorized) implementations to the single-stage im-

plementation in two cases. In the first case, the subfilters are scaled as shown in Figs. 3.8

and 3.9, whereas in the second case ϕ
(j)
k = 1 for j = 1, 2, . . . Jk − 1 and ψ

(i)
k = 1 for

i = 1, 2, . . . Ik − 1 and the scalings of the overall filters are performed with the aid of the
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Figure 3.10: Non-recursive implementations for Υ
(a)
k (z) and Γ

(a)
k (z).

scaling constant ν̂k and μ̂k. It is seen that the factorized structures provide considerable

savings when the m
(i)
k ’s and the n

(j)
k ’s are small integers (two or three).

Alternatively, the scaled Υ
(a)
k (z) and Γ

(a)
k (z) can be rewritten in the following non-

recursive forms:

Υ
(a)
k (z) =

m
(a)
k −1∑
l=0

μ̂kκk(αk)
m

(a)
k −1−lz−l (3.45a)

and

Γ
(a)
k (z) =

n
(a)
k −1∑
l=0

ν̂kγk(βk)
n

(a)
k −1−lz−l, (3.45b)

respectively. The comparison of Table 3.4 shows that the non-recursive implementations

shown in Fig. 3.10 become more attractive only for relatively small values of m
(a)
k and n

(a)
k .
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Table 3.4: Comparison between Different Implementations of Ê
(r)
k (z) and Ê

(c)
k (z) for Cas-

cade Structure I

Number of Real-Valued Number of Real-Valued

Multiplications Additions

Υ
(b)
k (z)

Single-Stage
∏Ik

i=1 m
(i)
k

[∏Ik

i=1 m
(i)
k

]− 1

Multistage
∑Ik

i=1 m
(i)
k

∑Ik

i=1(m
(i)
k − 1)

General Scaling

Multistage One Scaler 1 +
∑Ik

i=1(m
(i)
k − 1)

∑Ik

i=1(m
(i)
k − 1)

Υ
(a)
k (z)

Recursive 3 3

Non-recursive m
(a)
k m

(a)
k − 1

Γ
(b)
k (z)

Single-Stage 2
[∏Jk

j=1 n
(j)
k

]− 1
[∏Jk

j=1 n
(j)
k

]− 1

Multistage
∑Jk−1

j=1 (4n
(j)
k − 2) +

∑Jk−1
j=1 2(n

(j)
k − 1)

General Scaling +2n
(Jk)
k − 1 +n

(Jk)
k − 1

Multistage
∑Jk−1

j=1 4(n
(j)
k − 1)

∑Jk−1
j=1 2(n

(j)
k − 1)

One Scaler +2n
(Jk)
k − 1 +n

(Jk)
k − 1

Γ
(a)
k (z)

Recursive 8 8

Non-recursive 2n
(a)
k − 1 2n

(a)
k − 2

Implementation of Delays

In the overall implementation of Fig. 3.2, the block delays z−D, z−Mk , and z−Nk as well as

the delays in A(z) can be obtained from a common delay term z−(D+1). This is because

D is equal to the maximum of the Mk’s and Nk’s. Hence, the implementation of c0z
−D ,

A(z), E
(r)
k (z)’s and E

(c)
k (z)’s requires D + 1 + KR + 2KC delay elements.
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The block delays z−D̂
(c)
k , z−D̂

(r)
k , z−(D+1−Nk−D̂

(c)
k ), and z−(D+1−Mk−D̂

(r)
k ) in the imple-

mentations of Figs. 3.6 and 3.7 are used to minimize the number of delays required in

implementing the overall Êk(z) in the structure of Fig. 3.2. This minimization can be

accomplished by using a delay term z−D̃in at the input of Êk(z), where

D̃in = max{ max
1≤k≤KR

{m(a)
k }, max

1≤k≤KC

{n(a)
k }}, (3.46a)

and a delay term z−D̃out at the output, where

D̃out = max
{

max
1≤k≤KR

{m(a)
k (m

(b)
k − 1)}, max

1≤k≤KC

{n(a)
k (n

(b)
k − 1)}

}
. (3.46b)

By selecting

D̂
(r)
k = min{D̃in − m

(a)
k , D + 1 − Mk}, k = 1, 2, . . . , KR, (3.47a)

and

D̂
(c)
k = min{D̃in − n

(a)
k , D + 1 − Nk}, k = 1, 2, . . . , KC , (3.47b)

the z−D̂
(c)
k ’s, z−D̂

(r)
k ’s, z−n

(a)
k ’s and z−m

(a)
k ’s that are located before the feedback loops can

be obtained from z−D̃in . Correspondingly, the z−n
(b)
k ’s, z−m

(b)
k ’s that are located after the

feedback loops as well as the z−(D+1−Nk−D̂
(c)
k )’s and z−(D+1−Mk−D̂

(r)
k )’s can be obtained

from a common delay term z−D̃out . In most cases, D̃in and D̃out are determined by one or

two outermost pole pairs. In this case, D̃out = D − D̃in. The number of delay elements

required by Ek(z), Êk(z), and the overall filter in this case are shown in Table 3.2.

3.3.2 Cascade Structure II

Similar to Cascade Structure I, Cascade Structure II, shown in Fig. 3.3 is composed of two

blocks in cascade, where the first (second) block consists of parallel connection of stable

(unstable) IIR filters. As in Section 3.3.1 for Cascade Structure I, the implementations of

the stable and the unstable parts of this structure are considered separately in this section.
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Figure 3.11: Implementation for E
(c)
k (z) in the Cascade Structure II.

Stable Blocks

For E
(c)
k (z), as given by (3.26), the input-output relation can be described by the following

difference equations:

y(l) =
2

νk

Re
{

γkW (l)
}

, (3.48a)

where

W (l) = βkW (l − 1) + v(l), (3.48b)

and

v(l) = νkx(l) − νkχk(1)x(l − Nk) + νkχk(2)x(l − 2Nk) (3.48c)

with

χk(1) = 2(rk)
Nk cos(Nkφk), (3.48d)

and

χk(2) = (rk)
2Nk . (3.48e)

Here, νk is a scaling constant and only W (l) is a complex variable. An implementation

for E
(c)
k (z) is shown in Fig. 3.11, requiring 8 real-valued multiplications and 4 real-valued

additions.
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For A(z) and the E
(r)
k (z)’s, the implementation costs are the same as that for Cascade

Structure I as shown in Table 3.5. Furthermore, similarly to Cascade Structure I, z−D as

well as the delays in A(z) and in the feedforward parts of the E
(r)
k (z)’s and the E

(c)
k (z)’s

can be obtained from a common block delay z−(D+1), where D is given by (3.29). The

overall number of real delays is shown in Table 3.5.

The unit sample responses of the scaling transfer functions to the real and imaginary

parts of the feedback loop are given by

h
( real)
k (l) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2νk Re
{
(βk)

l
}
, 0 ≤ l ≤ Nk − 1,

−2νk Re
{
(β∗

k)
Nk(βk)

(l−Nk)
}
, Nk ≤ l ≤ 2Nk − 1,

0, otherwise, (3.49a)

and

h
( imag)
k (l) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2νk Im
{
(βk)

l
}
, 0 ≤ l ≤ Nk − 1,

−2νk Im
{
(β∗

k)
Nk(βk)

(l−Nk)
}
, Nk ≤ l ≤ 2Nk − 1,

0, otherwise, (3.49b)

respectively.

Unstable Blocks

The output noise variance of Ê
(c)
k (z) as given by (3.30b)–(3.30e), can be reduced by fac-

torizing Ω̂k(z), as given by (3.30c), for

Nk = n
(a)
k n

(b)
k (3.50)

as

Ω̂k(z) = Ω̂
(a)
k (z)Ω̂

(b)
k (z), (3.51a)

where

Ω̂
(a)
k (z) = (rk)

2n
(a)
k − 2(rk)

n
(a)
k cos(n

(a)
k φk)z

−n
(a)
k + z−2n

(a)
k (3.51b)
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Table 3.5: Arithmetic Operations for Cascade Structure II

Number of Real-Valued Number of Real-Valued

Multiplications Additions

Ek(z)

E
(r)
k (z) 4 2

E
(c)
k (z) 9 4

Ak(z) L − K + 1 L − K

Êk(z)

Ê
(r)
k (z) m

(b)
k + 3 m

(b)
k + 1

Ê
(c)
k (z) 2n

(b)
k + 8 2n

(b)
k + 4

Âk(z) L − K + 1 L − K

Overall 2(L − K + 1) + 1 2(L − K) + 1

Filter +7KR +

KR∑
k=1

m
(b)
k +4KR +

KR∑
k=1

m
(b)
k

+17KC + 2

KC∑
k=1

n
(b)
k 9KC + 2

KC∑
k=1

n
(b)
k

Number of Delay Elements

Ek(z) D + 1 + KR + 2KC

and c0z
−D

Êk(z) D + 1 + 2KR + 4KC

Overall Filter 2D + 2 + 3KR + 6KC

and

Ω̂
(b)
k (z) =

2n
(b)
k −2∑
l=0

ηk(l)z
−ln

(a)
k (3.51c)

with

ηk(l) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(rk)
n

(a)
k (2n

(b)
k −2−l) sin[(l + 1)n

(a)
k φk]

sin[n
(a)
k φk]

, 0 ≤ l ≤ n
(b)
k − 1,

(rk)
n

(a)
k (2n

(b)
k −2−l) sin[(2n

(b)
k − 1 − l)n

(a)
k φk]

sin[n
(a)
k φk]

, n
(b)
k ≤ l ≤ 2n

(b)
k − 2.

(3.51d)
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Based on these equations, E
(c)
k (z) can be rewritten as

Ê
(c)
k (z) =

[
Ω̂

(a)
k (z)

{
Γ

(a)
k (z)
}]

[2Ω̂
(b)
k (z)], (3.52a)

where

Γ
(a)
k (z) =

γ̂k

1 − (1/βk)z−1
. (3.52b)

By including the scaling constant ν̂
(1)
k and ν̂

(2)
k , the input-output relation for this transfer

function can be described by the following difference equations:

y(l) =

2n
(b)
k −2∑
j=0

2ηk(l)

ν̂
(1)
k ν̂

(2)
k

w(l − jn
(a)
k ), (3.53a)

where

w(l) = Re
{

ν̂
(2)
k γ̂kW (l)

}
, (3.53b)

W (l) = (1/βk)W (l − 1) + v(l), (3.53c)

and

v(l) = ν̂
(1)
k χk(0)x(l) − ν̂

(1)
k χk(1)x(l − n

(a)
k ) + ν̂

(1)
k x(l − 2n

(a)
k ) (3.53d)

with

χk(0) = (rk)
2n

(a)
k (3.53e)

and

χk(1) = 2(rk)
n

(a)
k cos(n

(a)
k φk). (3.53f)

An implementation applying the principle of switching and resetting is depicted in

Fig. 3.12. The scaling constant ν̂
(1)
k is determined to avoid overflows in the real and imagi-

nary parts of W (l) based on the fact that the unit sample responses of corresponding scaling

transfer functions are given by
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Figure 3.12: Implementation for z−(D+1−2Nk)Ê
(c)
k (z) in the Cascade Structure II.

h
( real)
k (l) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Re{ν̂(1)

k (βkβ
∗
k)

n
(a)
k (βk)

−l}, 0 ≤ l ≤ n
(a)
k − 1,

Re{−ν̂
(1)
k (βk)

2n
(a)
k −l}, n

(a)
k ≤ l ≤ 2n

(a)
k − 1,

0, otherwise, (3.54a)

and

h
( imag)
k (l) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Im{ν̂(1)

k (βkβ
∗
k)

n
(a)
k (βk)

−l}, 0 ≤ l ≤ n
(a)
k − 1,

Im{−ν̂
(1)
k (βk)

2n
(a)
k −l}, n

(a)
k ≤ l ≤ 2n

(a)
k − 1,

0, otherwise. (3.54b)

The role of ν̂
(2)
k , in turn, is to avoid overflows in w(l). The corresponding unit sample

response from the input to this variable is obtained from (3.54a) by using the substitution

ν̂
(1)
k → ν̂

(1)
k ν̂

(2)
k γ̂k.
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The number of real-valued multiplications, real-valued additions, and delay elements for

Ê(c)(z) and for the overall filter are considered in Table 3.5. The role of the delay blocks

z−n
(b)
k , z−m

(b)
k , z−(D+1−2Nk−D̂

(c)
k ), and z−(D+1−Mk−D̂

(r)
k ) is the same as for Cascade Structure

I.

Similar to Cascade Structure I, the arithmetic complexity in the nonrecursive part of

Cascade Structure II can be reduced by factorizing Ω̂
(b)
k (z). In particular, for

n
(b)
k =

Jk∏
j=1

n
(j)
k , (3.55)

Ω̂
(b)
k (z) can be decomposed as

Ω̂
(b)
k (z) =

Jk∏
j=1

Ω̂
(j)
k (z), (3.56a)

where

Ω̂
(j)
k (z) =

2n
(j)
k −2∑
l=0

η
(j)
k (l)z−lN

(j)
k , (3.56b)

N
(j)
k = n

(a)
k

j−1∏
l=1

n
(l)
k , (3.56c)

and

η
(j)
k (l) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(rk)
N

(j)
k (2n

(j)
k −2−l) sin[(l + 1)N

(j)
k φk]

sin[N
(a)
k φk]

, 0 ≤ l ≤ n
(j)
k − 1,

(rk)
N

(j)
k (2n

(j)
k −2−l) sin[(2n

(j)
k − 1 − l)N

(j)
k φk]

sin[N
(a)
k φk]

, n
(j)
k ≤ l ≤ 2n

(j)
k − 2.

(3.56d)

An implementation for Ω̂
(b)
k (z) including the scaling constants ϕ

(j)
k is depicted in Fig. 3.13.

For j = 1, 2, . . . Jk − 1, the constants ϕ
(j)
k are determined to avoid overflows at the output

of Ω̂
(j)
k (z). The corresponding unit sample response from the filter input is obtained from
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Figure 3.13: Implementation for a multistage Ω̂
(b)
k (z).

(3.54) by using the substitutions n
(a)
k → N

(j+1)
k and ν̂

(1)
k → ν̂

(1)
k ν̂

(2)
k γ̂k

∏j−1
l=1 ϕ

(j)
k . Using

these substitutions, ϕ
(Jk)
k becomes

ϕ
(Jk)
k =

1

ν
(1)
k ν

(2)
k

∏Jk−1
j=1 ϕ

(j)
k

. (3.57)

Table 3.6 compares the multistage (factorized) and single-stage implementations of

Ω̂
(b)
k (z). It is again observed that the multistage implementation is advantageous for small

values of the n
(j)
k ’s.

Alternatively, as for Cascade Structure I, the use of feedback loops can be avoided by

exploiting the following identity:

ν
(1)
k ν

(2)
k Ω̂

(a)
k (z)

{
Γ

(a)
k (z)
}

=
[2n

(a)
k −2∑
l=0

ν
(1)
k η

(a)
k (l)z−l

]
×
[
ν

(2)
k Re{γ̂k} + ν

(2)
k Re{γ̂kβ

∗
k}z−1
]
, (3.58a)
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Table 3.6: Comparison between Different Implementations of Ê
(c)
k (z) in Cascade Structure

II

Number of Real-Valued Number of Real-Valued

Multiplications Additions

Ω̂
(b)
k (z)

Single-Stage 2
[∏Jk

i=1 n
(j)
k

]− 1
[∏Jk

j=1 n
(j)
k

]− 2

Multistage General Scaling
∑Jk

j=1(2n
(j)
k − 1)

∑Jk

j=1(2n
(j)
k − 2)

Multistage Two Scalers 1 +
∑Jk

j=1(2n
(j)
k − 2)

∑Jk

j=1(2n
(j)
k − 2)

Γ
(a)
k (z)

Recursive 8 10

Non-recursive 2n
(a)
k + 1 2n

(a)
k − 1

where

η
(a)
k (l) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(rk)

2n
(a)
k −2−l sin[(l + 1)φk]

sin(φk)
, 0 ≤ l ≤ n

(a)
k − 1

(rk)
2n

(a)
k −2−l sin[(2n

(a)
k − 1 − l)φk]

sin(φk)
, n

(a)
k ≤ l ≤ 2n

(a)
k − 2. (3.58b)

This transfer function is a cascade of two conventional FIR filter transfer functions with

real coefficients and real data. As seen from Table 3.6, the nonrecursive implementation

should be considered only for small values of the n
(a)
k ’s.

3.4 Noise Analysis

In order to analyze the output noise due to the multiplication roundoff errors taking place

in the feedback loops of Ê
(c)
k (z), as given by (3.36b) and (3.52a) and presented in Figs. 3.6

and 3.12, the following notations are used (see Fig. 3.14):

Ξ
(1)
k,in(l) = ξ

(1)
k,re(l) + jξ

(1)
k,im(l) (3.59a)
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Figure 3.14: Illustration of noise signals in the implementation of z−(D+1−Nk)Ê
(c)
k (z).

and

Ξ
(2)
k,in(l) = ξ

(2)
k,re(l) + jξ

(2)
k,im(l). (3.59b)

Here, ξ
(1)
k,re(l) and ξ

(1)
k,im(l) (ξ

(2)
k,re(l) and ξ

(2)
k,im(l)) are the multiplication roundoff errors

resulting from quantizing the real and imaginary parts in the feedback loop in the upper

(lower) branch respectively. In fact, the complex noises Ξ
(1)
k, in(l) and Ξ

(2)
k, in(l) consist of

both a real time-dependent noise generated in the nonrecursive part of the above-mentioned

Ê
(c)
k (z)’s, and the corresponding complex time-dependent noise generated in the recursive

part of Ê
(c)
k (z)’s. For the Ê

(r)
k (z)’s as given by (3.35b) and presented in Fig. 3.7, the

feedback loop consists only of the real part, and consequently ξ
(1)
k,im(l) ≡ ξ

(2)
k,im(l) = 0. In

what follows, the roundoff noise generated in the proposed structures are analyzed in detail.
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3.4.1 Cascade Structure I

Because of the switching and resetting, the (complex) roundoff error at the output of the

upper feedback loop of z−(D+1−Nk)Ê
(c)
k (z) (presented in Fig. 3.6), denoted by Ξ

(1)
k,out(l), is

zero at the time instants

l = 2ρn
(a)
k − 1, (3.60a)

where ρ is an integer, whereas for 0 ≤ λ ≤ 2n
(a)
k − 2,

Ξ
(1)
k,out(2ρn

(a)
k + λ) =

λ∑
i=0

(1/βk)
i Ξ

(1)
k,in(2ρn

(a)
k + λ − i). (3.60b)

Similarly, the output error at the output of the lower feedback loop of z−(D+1−Nk)Ê
(c)
k (z),

that is, Ξ
(2)
k,out(l) is zero at the time instants

l = (2ρ + 1)n
(a)
k − 1, (3.61a)

while for 0 ≤ λ ≤ 2n
(a)
k − 2,

Ξ
(2)
k,out((2ρ + 1)n

(a)
k + λ) =

λ∑
i=0

(1/βk)
iΞ

(2)
k,in((2ρ + 1)n

(a)
k + λ − i). (3.61b)

Equations (3.60) and (3.61) apply to z−(D+1−Mk)Ê
(r)
k (z) by n

(a)
k → m

(a)
k and βk → αk.

For the structure of Fig.3.7, the overall noise at time l can be expressed as

ξ(ove)
k (l) =

m
(b)
k −1∑
i=0

Re

{
[(αk)

m
(a)
k ](m

(b)
k −1−i)

μ̂k

×

[
Ξ

(1)
k (l − im

(a)
k , 0, 2m

(a)
k ) + Ξ

(2)
k (l − im

(a)
k ,m

(a)
k , 2m

(a)
k )
]}

, (3.62a)

where

Ξ
(m)
k (l, j, n) =

⎧⎪⎨⎪⎩
0, (l − j) mod (n) = n − 1,
(l−j)mod(n)∑

i=0

(1/αk)
iΞ

(m)
in (l − i), otherwise. (3.62b)
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By considering the effects of switching and resetting, and by taking into account the

fact that Ξ
(1)
k,in(l) and Ξ

(2)
k,in(l) consist of the sum of the input noises from the demultiplexers

and the roundoff noise generated in the coefficient of the recursive filter, the variance of the

output noise at the input of Υ
(b)
k (z) at any arbitrary time l can be expressed as:

(σ2)(out)
k (l) = (σ2)(1)

k (l) + (σ2)(1)
k (l − m

(a)
k ) (3.63a)

where

(σ2)(1)
k (l) =

⎧⎪⎪⎨⎪⎪⎩
0, λ(l) = 2m

(a)
k − 1,

σ2
e

[
2 − 2α

−2λ(l)−2
k

1 − α−2
k

− 1

α
2λ(l)
k

]
, otherwise, (3.63b)

and

λ(l) = l mod
(
2m

(a)
k

)
. (3.63c)

In (3.63a) and (3.63b), (σ2)(1)
k (l) is the noise variance at the output of the upper recursive

filter, (σ2)(out)
k (l) is the total noise variance at the input to Υ

(b)
k (z) and σ2

e is the noise variance

generated by each quantizer.

Based on (3.59a)–(3.63b), the total noise variance (after the transient time of Υ
(b)
k (z)

has elapsed) can be expressed as:

T1(σ
2)(out)

k (l) + m
(b)
k σ2

e , (3.64a)

where

T1 =

m
(b)
k −1∑
i=0

(
α

im
(a)
k

k

μ̂k

)2

=
1

μ̂2
k

1 − α
2m

(a)
k m

(b)
k

k

1 − α
2m

(a)
k

k

. (3.64b)

The variance takes the highest values at l = m
(a)
k − 2.

For the case of the structure of Fig.3.6, the overall noise at time l can be expressed

according to (3.62a) and (3.62b) by using the substitutions μ̂k → ν̂k/2,m
(b)
k → n

(b)
k and



88

αk → βk. In this case, σ2
k,up(l) for any arbitrary l is given by

(σ2)(1)
k (l) =

⎧⎨⎩0, λ = 2n
(a)
k − 1,

(2Aλ + Aλ+1)σ
2
e , otherwise, (3.65a)

where

λ = l mod
(
2n

(a)
k

)
, (3.65b)

and

Aλ =
λ−1∑
i=0

∣∣∣∣ 1βi
k

∣∣∣∣2 =
λ−1∑
i=0

r−2i
k =

1 − r−2λ
k

1 − r−2
k

. (3.65c)

Equation (3.65a) applies both to the real and the imaginary parts of the upper branch.

Based on (3.63a), (3.65a) and (3.65c), the total noise variance (after the transient time

of Γ
(b)
k (z) has elapsed) is bounded by:

[n(b)
k −1∑
i=0

|ci|2
]
(σ2)(out)

k (l) + 2n
(b)
k σ2

e =

[n(b)
k −1∑
i=0

(
r
2n

(a)
k

k

)i]4(σ2)(out)
k (l)

ν̂2
k

+ 2n
(b)
k σ2

e

=
1 − r

2n
(a)
k n

(b)
k

k

1 − r
2n

(a)
k

k

4(σ2)(out)
k (l)

ν̂2
k

+ 2n
(b)
k σ2

e , (3.66a)

where

ci =
2β

in
(a)
k

k

ν̂k

(3.66b)

and

|ci| =
2r

in
(a)
k

k

ν̂k

. (3.66c)

3.4.2 Cascade Structure II

Because of the switching and resetting, the (complex) roundoff error at the output of the

upper feedback loop, Ξ
(1)
k, out(l), is zero at the time instant

l = 4ρn
(a)
k − 1, (3.67a)
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where ρ is an integer, whereas for 0 ≤ λ ≤ 4n
(a)
k − 2,

Ξ
(1)
k, out(4ρn

(a)
k + λ) =

λ∑
i=0

(1/βk)
iΞ

(1)
k, in(4ρn

(a)
k + λ − i). (3.67b)

Similarly, the output error at the output of the lower branch is zero at

l = (4ρ + 2)n
(a)
k − 1, (3.68a)

and for 0 ≤ λ ≤ 4n
(a)
k − 2,

Ξ
(2)
k, out((4ρ + 2)n

(a)
k + λ) =

λ∑
i=0

(1/βk)
iΞ

(2)
k, in((4ρ + 2)n

(a)
k + λ − i). (3.68b)

For the structure of Fig.3.12, the overall noise at time l can be expressed as

ξ (ove)
k (l) =

2n
(b)
k −2∑
i=0

2η(i)

ν̂
(1)
k ν̂

(2)
k

Re

{
γ̂kν̂

(2)
k

[
Ξ

(1)
k (l − in

(a)
k , 0, 4n

(a)
k )

+ Ξ
(2)
k (l − in

(a)
k , 2n

(a)
k , 4n

(a)
k )
]}

, (3.69a)

where

Ξ
(m)
k (l, j, n) =

⎧⎪⎨⎪⎩
0, (l − j) mod (n) = n − 1,
(l−j)mod(n)∑

i=0

(1/βk)
iΞ

(m)
in (l − i), otherwise. (3.69b)

The variance of the complex output noise at the input of the coefficient ν̂
(2)
k γ̂ at any

arbitrary time l can be expressed as

(σ
( out)
k, re )2(l) = (σ (1)

k, re)
2(l) + (σ (1)

k, re)
2(l − 2n

(a)
k ) (3.70a)

and

(σ
( out)
k, im )2(l) = (σ (1)

k, im)2(l) + (σ (1)
k, im)2(l − 2n

(a)
k ), (3.70b)
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where (σ
( out)
k, re )2(l) and (σ

( out)
k, im )2(l) are the variances of the real and imaginary parts respec-

tively, with

(σ
(1)
k, re)

2(l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, λ(l) = 4n
(a)
k − 1,

σ2
e

[
λ(l)∑
i=0

c1(i)Re2(
1

βi
k

) +

λ(l)∑
i=1

c2(i)

(
Re2(

1

βi−1
k

) + Im2(
1

βi−1
k

)

)]

= σ2
e

[
λ(l)∑
i=0

c1(i)Re2(
1

βi
k

) +

λ(l)∑
i=1

c2(i)

(
r−i+1
k

)2]
, otherwise,

(3.70c)

(σ
(1)
k, im)2(l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, λ(l) = 4n
(a)
k − 1,

σ2
e

[
λ(l)∑
i=0

c1(i)Im
2(

1

βi
k

) +

λ(l)∑
i=1

c2(i)

(
Re2(

1

βi−1
k

) + Im2(
1

βi−1
k

)

)]

= σ2
e

[
λ(l)∑
i=0

c1(i)Im
2(

1

βi
k

) +

λ(l)∑
i=1

c2(i)

(
r−i+1
k

)2]
, otherwise,

(3.70d)

where

λ(l) = lmod(4n
(a)
k ), (3.70e)

c1(i) =

⎧⎨⎩2, λ(l) − 3n
(a)
k < i ≤ λ(l) − n

(a)
k ,

1, otherwise, (3.70f)

c2(i) =

{
1, i = λ(l),

2, otherwise. (3.70g)

In the equations (3.70a)–(3.70g), (σ
(1)
k, re)

2(l) is the noise variance at the real part of

the output of the upper recursive filter, (σ
(1)
k, im)2(l) is the noise variance at the imaginary

branch of the output of the upper recursive filter, (σ (out)
k, re )2(l) is the total noise variance at

real branch prior to the input to ν̂
(2)
k γ̂, (σ (out)

k, im)2(l) is the total noise variance at imaginary

branch prior to the input to ν̂
(2)
k γ̂, and σ2

e is the noise variance generated by each quantizer.
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The roundoff noise variance at the input to
2Ω̂

(b)
k (z)

ν̂
(1)
k ν̂

(1)
k

is given by

(σ (out)
k )2(l) = (σ (out)

k, re )2(l)Re2{ν̂(2)
k γ̂k} + (σ (out)

k, im)2(l)Im2{ν̂(2)
k γ̂k} + 2σ2

e . (3.71)

Based on (3.70) and (3.71), the total noise variance (after the transient time of Ω̂
(b)
k (z)

has elapsed) is bounded by:

T1(σ
(out)
k )2(l) + (2n

(b)
k − 1)σ2

e , (3.72)

where

T1 =

2n
(b)
k −2∑
l=0

(
2ηk(l)

ν̂
(1)
k ν

(2)
k

)2

, (3.73)

and ηk(l) is given by (3.51d).

3.5 Performance study

This section considers the results obtained from computer simulations for the structures

introduced in this chapter. Several cases have been considered, and the results have been

compared with some other efficient implementation of linear-phase FIR filters. In what

follows, ωp and ωs are the desired passband and stopband edges and δp and δs are the

maximum allowable ripples in the pass- and stopband respectively.

The design is based on a procedure which obtains the optimum parameters of the pro-

posed structure. The aforementioned parameters are essentially the coefficients ak’s, the

poles (αk’s and βk)’s and the numerator coefficients γk’s and κk’s, which together spec-

ify the proposed structure, as illustrated by (3.11). In other words, the coefficients of any

linear-phase FIR filter, regardless how large its order is, can be completely specified by a

small set of parameters.
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Based on (3.14a) and (3.14b), finding γk’s and βk’s is tantamount to finding the cor-

responding Rk’s, rk’s, φk’s and Φk’s. In other words, with a suitable starting point, an

optimization routine can be performed to yield the optimized parameters ak’s, αk’s, κk’s,

Rk’s, rk’s, φk’s and Φk’s, such that the zero-phase response of the resulting filter, as given

by (3.23) and determined by (3.11b), (3.13b), (3.15a) and (3.26) (or equally well by the cor-

responding impulse responses (3.17b), (3.17c), (3.17d) and (3.28)) meets the specifications.

In the simulations presented below, the Matlab routine fminimax3 has been employed to

yield the optimum solution.

3.5.1 The Prototype Filter Specifications

In this section we derive the specifications for a prototype IIR filter, which is used as the

starting point in the optimization routine of Section 3.5.2.

Consider the tolerance scheme for the zero-phase response of the desired linear-phase

FIR filter H(z), presented as

1 − δp ≤ H(ω) ≤ 1 + δp, 0 ≤ ω ≤ ωp, (3.74a)

−δs ≤ H(ω) ≤ δs, ωs ≤ ω ≤ 1. (3.74b)

Since for any IIR filter G(z), the amplitude response of |G(ejω)G(e−jω)| is non-negative

both in the passband and stopband regions, it follows that the zero-phase response of the

desired linear-phase FIR filter should first be raised by δs to give

1 − δp + δs ≤ H(ω) + δs ≤ 1 + δp + δs, 0 ≤ ω ≤ ωp, (3.75a)

0 ≤ H(ω) + δs ≤ 2δs, ωs ≤ ω ≤ π. (3.75b)

3The function fminimax uses a Sequential Quadratic Programming (SQP) method for minimizing the

maximum value of a set of multivariable functions subject to linear and nonlinear constraints.
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Traditionally IIR filters are designed such that the maximum amplitude response in the

passband is equal to 1, therefore the amplitude response of (3.75) should be normalized to

yield
1 − δp + δs

1 + δp + δs

≤ H(ω) + δs

1 + δp + δs

≤ 1, 0 ≤ ω ≤ ωp, (3.76a)

0 ≤ H(ω) + δs

1 + δp + δs

≤ 2δs

1 + δp + δs

, ωs ≤ ω ≤ π. (3.76b)

(H(ω) + δs)/(1 + δp + δs) can be assumed to be the amplitude response of cascade of

a prototype IIR filter G(z) with its unstable counterpart G(z−1), since according to (3.76),

it is non-negative for all frequencies. That is why

|G(ejω)G(e−jω)| =
H(ω) + δs

1 + δp + δs

(3.77)

is justified.

Based on (3.76) and (3.77), the amplitude response of the prototype IIR filter G(z) can

be written as:

√
1 − δp + δs

1 + δp + δs

≤ |G(ejω)| ≤ 1, 0 ≤ ω ≤ ωp, (3.78a)

|G(ejω)| ≤
√

2δs

1 + δp + δs

, ωs ≤ ω ≤ π. (3.78b)

3.5.2 Simulation Results

Example 1: Consider the specifications ωp = 0.4π, ωs = 0.41π, δp = 0.01 and δs = 0.001.

The minimum order required by an optimum linear-phase FIR filter designed by Remez

algorithm to meet the above specifications is 513. This filter needs 513 delay elements and

513 adders to meet the specifications. The required number of multipliers (utilizing the

symmetry of the coefficients) is 257.
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Figure 3.15: The impulse responses for the optimized Cascade Structure I for the spec-
ifications of Example 1. (a) First branch (b) Second branch (c) Third branch (d) Fourth
branch

Cascade Structure I requires five branches to meet the specifications, where one of the

branches corresponds to A(z) as given by (3.11b) with a single coefficient a0, and four

others correspond to E
(c)
k (z), k = 1, 2, 3, 4 as given by (3.13c). Applying a truncation

length of Nk = 324, k = 1, 2, 3, 4 leads to a filter structure meeting the specifications.

The impulse responses of these four branches of the resulting structure is presented in

Fig. 3.15. By decomposing Nk into n
(a)
k = 162 and n

(b)
k = 2, and considering the results

given on Table 3.4 with recursive implementation of Γ
(a)
k (z), the required delay elements,
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real-valued additions and real-valued multiplications for each E
(c)
k (z) are 654, 15, and 21

respectively.

A more careful inspection of the parameters of the optimum structure reveals that |β1| ≈
0.9866, |β2| ≈ 0.9353, |β3| ≈ 0.7926 and |β4| ≈ 0.3816. This implies that the impulse

responses of the branches corresponding to β3 and β4 decays quite rapidly, and therefore,

some of the samples of these branches can be discarded. In fact the structure meets the

specifications, if the largest 136 samples of the second branch, the largest 42 samples of the

third branch and the the largest 12 samples of the fourth branch are preserved. As a result,

the third and the fourth branches can essentially be implemented as FIR filters of order 42

and 12 respectively.

The above observation justifies a second round of optimization, in order to find the

minimum truncation length Nk for each branch separately. Doing so, it turns out that the

specifications of this example is met with N1 = 324, N2 = 88, N3 = 24 and N4 = 10.

Based on the results given in Table 3.4, with n
(a)
1 = 162, n

(a)
2 = 44 and n

(b)
1 = n

(b)
2 = 2,

the whole structure can be implemented using 78 real-valued additions, 90 real-valued

multiplications and 654 delay elements respectively.

The number of real-valued additions and real-valued multiplications are almost 15%

and 35% that of the optimum direct form design, while the number of delays has increased

by less than 27%. The zero-phase response of the proposed structure is presented in Fig.

3.16.

By the above setting and based on the results of Section 3.4.1, the maximum variance

of the noise generated by the first and the second branches4 are approximately 2.7× 106σ2
e

and 8.7 × 106σ2
e respectively. This implies that by assigning 12 extra bits, the variance of

4As indicated above, the other branches are implemented as FIR filters, and therefore, their roundoff noise

can be ignored.
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Figure 3.16: Amplitude response of the Cascade Structure I, meeting the specifications of
Example 1.

the noise can be lowered to that of a single quantizer.

To meet the above specifications, Cascade Structure II requires five branches, where one

of the branches corresponds to A(z) as given by (3.11b) with a single coefficient a0, and

four others correspond to E
(c)
k (z), k = 1, 2, 3, 4 as given by (3.26). Applying a truncation

length of Nk = 172, k = 1, 2, 3, 4 leads to a filter structure meeting the specifications. The

impulse responses of the four branches of the resulting structure is presented in Fig. 3.17.

By decomposing Nk into n
(a)
k = 86 and n

(b)
k = 2, and considering the results given on Ta-

ble 3.5 with recursive implementation of Γ
(a)
k (z), the required delay elements, real-valued

additions and real-valued multiplications for each E
(c)
k (z) are 694, 16, and 21 respectively.

For the optimum structure, |β1| ≈ 0.9871, |β2| ≈ 0.9431, |β3| ≈ 0.7954 and |β4| ≈
0.3755. As for the Cascade Structure I, the impulse response of β3 and β4 decay rapidly, and

therefore the specifications of this example can still be met with N1 = 172, N2 = 51, N3 =

17 and N4 = 5. Based on the results given in Table 3.5, with n
(a)
1 = 86, n

(a)
2 = 17, n

(b)
1 = 2
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Figure 3.17: The impulse responses for the optimized Cascade Structure II for the speci-
fications of Example 1. (a) First branch. (b) Second branch. (c) Third branch. (d) Fourth
branch.

and n
(b)
2 = 3, the whole structure can be implemented with the recursive implementation

of the first and the second branches, and nonrecursive implementation of the third and

the fourth branches, using 66 real-valued additions, 77 real-valued multiplications and 694

delay elements respectively.

The proposed structure shows significant savings compared to other efficient imple-

mentations of linear-phase FIR filters. For instance, to implement the above structure using

the frequency masking response technique [62,63], a total of 154 real-valued additions, 79
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Figure 3.18: Amplitude response of the Cascade Structure II, meeting the specifications of
Example 1.

real-valued multiplications and 564 delay elements is required. This implies that the pro-

posed design improves the number of real-valued additions and real-valued multiplications

by 57% and 3%, at the expense of 23% extra delay. The amplitude response of the proposed

structure is presented in Fig. 3.18.

By the above setting and based on the results of Section 3.4.2, the maximum variance of

the noise generated by the first and the second branches are 3.54× 105σ2
e and 1.64× 103σ2

e

respectively. This implies that by assigning 10 extra bits, the variance of the noise can be

lowered to that of a single quantizer.

Example 2: Consider the specifications: ωp = 0.4π, ωs = 0.402π, δp = 0.01 and

δs = 0.001. The minimum order required by a linear-phase FIR filter designed by Remez

algorithm to meet the above specifications is 2541 [92], implying that the filter requires

2541 delay elements, 2541 adders and 1271 multipliers to meet the specifications.

Cascade Structure I requires six branches to meet the specifications, where one of the
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Figure 3.19: The impulse responses for the optimized Cascade Structure I for the specifi-
cations of Example 2. (a) First branch. (c) Third branch.

branches corresponds to A(z) as given by (3.11b) with a single coefficient a0, and five oth-

ers correspond to E
(c)
k (z), k = 1, 2, . . . , 5 as given by (3.13c). Applying a truncation length

of Nk = 2139, k = 1, 2, . . . , 5 leads to a filter structure meeting the specifications. The

impulse responses of the first and the third branches of the resulting structure is presented

in Fig. 3.19. By decomposing Nk into n
(a)
k = 713 and n

(b)
k = 3, and considering the results

given on Table 3.4 with recursive implementation of Γ
(a)
k (z), the required delay elements,

real-valued additions and real-valued multiplications for each E
(c)
k (z) are 4284, 17, and 23

respectively.

A more careful inspection of the parameters of the optimum structure reveals that |β1| ≈
0.9975, |β2| ≈ 0.9868, |β3| ≈ 0.9471 and |β4| ≈ 0.8032 and |β5| ≈ 0.4291. This implies

that the impulse responses of the branches corresponding to β4 and β5 decays quite rapidly,
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Figure 3.20: Amplitude response of the Cascade Structure I, meeting the specifications of
Example 2.

and therefore, some of the samples of these branches can be discarded. In fact the structure

meets the specifications, if the largest 417 samples of the second branch, the largest 135

samples of the third branch, the largest 38 samples of the fourth branch and the the largest

14 samples of the fifth branch are preserved. As a result, the fourth and the fifth branches

can essentially be implemented as FIR filters of order 37 and 12 respectively.

The above observation justifies a second round of optimization, in order to find the

minimum truncation length Nk for each branch separately. Doing so, it turns out that the

specifications of this example is met with N1 = 2139, N2 = 376, N3 = 119, N4 = 30 and

N5 = 11. Based on the results given in Table 3.4, the whole structure can be implemented

using 81 real-valued additions, 99 real-valued multiplications and 4284 delay elements

respectively.

The number of real-valued additions and real-valued multiplications are almost 3% and

8% that of the optimum direct form design, while the number of delays has increased by
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Figure 3.21: The impulse responses for the optimized Cascade Structure II for the specifi-
cations of Example 2. (a) First branch. (b) Third branch.

less than 69%. The amplitude response of the proposed structure is presented in Fig. 3.20.

The proposed structure shows considerable savings compared to other efficient imple-

mentation of linear-phase FIR filters. For instance, to implement the above structure using

the frequency masking response technique [62,63] a total of 332 real-valued additions, 168

real-valued multiplications and 2690 delay elements is required. This implies that the pro-

posed design improves the number of real-valued additions and real-valued multiplications

by 75% and 41%, at the expense of 59% extra delay.

By the above setting and based on the results of Section 3.4.1, the maximum variance of

the noise generated by the first and the second branches are 2.04×108σ2
e and 5.83×1010σ2

e

respectively. This implies that by assigning 18 extra bits, the variance of the noise can be

lowered to that of a single quantizer.
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Figure 3.22: Amplitude response of the Cascade Structure II, meeting the specifications of
Example 2.

To meet the above specifications, Cascade Structure II requires six branches, where one

of the branches corresponds to A(z) as given by (3.11b) with a single coefficient a0, and

five others correspond to E
(c)
k (z), k = 1, 2, . . . , 5 as given by (3.26). Applying a truncation

length of Nk = 927, k = 1, 2, . . . , 5 leads to a filter structure meeting the specifications.

The impulse responses of the first and the third branches of the resulting structure is pre-

sented in Fig. 3.21. By decomposing Nk into n
(a)
k = 309 and n

(b)
k = 3, and considering

the results given on Table 3.5 with recursive implementation of Γ
(a)
k (z), the required delay

elements, real-valued additions and real-valued multiplications for each E
(c)
k (z) are 3714,

18, and 23 respectively.

For the optimum structure, |β1| ≈ 0.9976, |β2| ≈ 0.9875, |β3| ≈ 0.9500, |β4| ≈ 0.8082

and |β5| ≈ 0.4225. As for the Cascade Structure I, the impulse response of β4 and β5 decay

rapidly, and therefore the specifications of this example can still be met with N1 = 927,

N2 = 476, N3 = 97, N4 = 38 and N5 = 9.
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Table 3.7: Summary of the Crucial Parameters of the Re-optimized Cascade Structures I
and II for Example 1 and Example 2

Cascade Structure I Cascade Structure II

Example 1 β1 = 0.2939 − 0.9417i, γ1 = 0.0120 +
0.0091i,

β1 = 0.2929 − 0.9426i, γ1 = 0.0065 +
0.0137i,

β2 = 0.2765 − 0.8926i, γ2 = 0.0524 −
0.0485i

β2 = 0.2820 − 0.9000i, γ2 = 0.0544 −
0.0400i

β3 = 0.2465 − 0.7576i, γ3 = −0.2051 −
0.1798i,

β3 = 0.2694 − 0.7484i, γ3 = −0.2131 −
0.1865i,

β4 = 0.2240 − 0.3348i, γ4 = −0.3832 +
1.2375i,

β4 = 0.2195 − 0.3047i, γ4 = −0.4798 +
1.3992i,

a0 = 1.1581 a0 = 1.3615
Example 2 β1 = 0.3063 − 0.9492i, γ1 = −0.0025 +

0.0013i,
β1 = 0.3060 − 0.9495i, γ1 = −0.0027 −
0.0004i,

β2 = 0.3044 − 0.9379i, γ2 = 0.0071 +
0.0123i

β2 = 0.3046 − 0.9396i, γ2 = 0.0008 +
0.0134i

β3 = 0.2993 − 0.8982i, γ3 = 0.0519 −
0.0344i,

β3 = 0.3024 − 0.9016i, γ3 = 0.0600 −
0.0189i,

β4 = 0.2882 − 0.7518i, γ4 = −0.2017 −
0.1811i,

β4 = 0.2963 − 0.7561i, γ4 = −0.1524 −
0.2121i,

β5 = 0.2784 − 0.3288i, γ5 = −0.1629 +
1.0811i,

β5 = 0.2853 − 0.3297i, γ5 = −0.3633 +
1.2074i,

a0 = 0.7250 a0 = 0.9921

Based on the results given in Table 3.5 with the recursive implementation of the first, the

second, and the third branches and nonrecursive implementation of the fourth and the fifth

branches, the whole structure can now be implemented using 88 real-valued additions, 103

real-valued multiplications and 3714 delay elements respectively. The amplitude response

of the proposed structure is presented in Fig. 3.22.

By the above setting and based on the results of Section 3.4.2, the maximum variance

of the noise generated by the first, second and third branches are 1.11×104σ2
e , 3.21×108σ2

e

and 8.58 × 108σ2
e respectively. This implies that by assigning 15 extra bits, the variance

of the noise can be lowered to that of a single quantizer. Table 3.7 presents the crucial

parameters of the structures proposed in this chapter for the above examples.





Chapter 4

Parallel Structures for Generating

Sharp Linear-Phase FIR Filters

In addition to the cascade structures introduced in Chapter 3, the principle of switching

and resetting can be employed in a different setting to yield alternative, one-block struc-

tures. The block being considered is composed of a parallel connection of FIR filters,

implemented as IIR filters.

In this chapter, three transfer functions exploiting the proposed parallel structures are

derived, and their implementational aspects are discussed. In addition, the roundoff noise

effects in the proposed structures are analyzed in detail, and simulation results are provided

to illustrate the efficiency of the design.
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4.1 Alternative Structures

Consider the transfer function G(z) as given by (3.10) in Section 3.2. Multiplying G(z) by

G(z−1) yields the following zero-phase IIR transfer function:

G(z)G(z−1) = ĝ

L∏
k=1

[(z + z−1) − (qk + q−1
k )]

K∏
k=1

[(z + z−1) − (pk + p−1
k )]

, (4.1a)

where

ĝ = g2

L∏
k=1

(−qk)
/ K∏

k=1

(−pk). (4.1b)

Since G(z)G(z−1) is a ratio of two polynomials in z+z−1, the partial fraction expansion

in terms of z + z−1 enables one to express G(z)G(z−1) in the following form:

G(z)G(z−1) = A(z) +

KR∑
k=1

Rk(z) +

KC∑
k=1

Ck(z), (4.2a)

where

A(z) =
L−K∑
k=0

Ak(z + z−1)k, (4.2b)

Rk(z) =
κ̂k

(z + z−1) − (αk + α−1
k )

, (4.2c)

and

Ck(z) =
γ̂k

(z + z−1) − (βk + β−1
k )

+
γ̂∗

k

(z + z−1) − (β∗
k + β∗

k
−1)

= 2
{ γ̂k

(z + z−1) − (βk + β−1
k )

}
, (4.2d)

with

κ̂k = [(z + z−1) − (αk + 1/αk)]G(z)G(z−1)∣∣∣(z+z−1)=(αk+α−1
k )

, (4.2e)
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and

γ̂k = [(z + z−1) − (βk + 1/βk)]G(z)G(z−1)∣∣∣(z+z−1)=(βk+β−1
k )

. (4.2f)

As in Section 3.2, {H(z)} denotes the transfer function that is the average of the

transfer function H(z) and the one obtained by replacing the coefficients of H(z) by their

complex conjugates. Furthermore, as in Section 3.2, it is assumed that there are no repeated

poles in the above partial fraction expansion. In addition, the first term on the right-hand

side of (4.2a) is absent if L < K.

Alternatively, A(z), the Rk(z)’s, and the Ck(z)’s can be expressed as

A(z) = a0 +
L−K∑
k=1

ak(z
k + z−k), (4.3a)

Rk(z) =
κk

(1 − αkz−1)(1 − αkz)
, (4.3b)

and

Ck(z) = 2
{

Γk(z)
}

, (4.3c)

with

Γk(z) =
γk

(1 − βkz−1)(1 − βkz)
. (4.3d)

Here,

ak =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

L−K∑
r=k

r even

(
r

(r − k)/2

)
Ar, for k even,

L−K∑
r=k
r odd

(
r

(r − k)/2

)
Ar, for k odd, (4.4a)

κk = −αkκ̂k, (4.4b)

and

γk = −βkγ̂k. (4.4c)
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Using the notations βk = rke
jφk and γk = Rke

jΦk , the impulse response of G(z)G(z−1)

is expressible as

g(n) = g(a)(n) +

KR∑
k=1

g
(r)
k (n) +

KC∑
k=1

g
(c)
k (n), (4.5a)

where

ga(n) =

{
an, |n| ≤ L − K,

0, otherwise, (4.5b)

g
(r)
k (n) =

κkα
|n|
k

1 − α2
k

, (4.5c)

and

g
(c)
k (n) =2 Re

{
γkβ

|n|
k

1 − β2
k

}

=

2Rk

[
r
|n|
k cos(Φk + |n|φk) − r

|n|+2
k cos(Φk + (|n| − 2)φk)

]
1 − 2r2

k cos(2φk) + r4
k

. (4.5d)

As in designing FIR filters by windowing, truncating and smoothing of (4.5a) yields

a zero-phase FIR transfer function, whose frequency response approximates |G(ejω)|2. In

what follows, three approximating zero-phase FIR filter transfer function alternatives of the

form

F (0)(z) = A(z) +

KR∑
k=1

R̂k(z) +

KC∑
k=1

Ĉk(z), (4.6)

will be proposed, giving rise to three filter structures denoted by Parallel Structure I, Parallel

Structure II, and Parallel Structure III. In (4.6), the R̂k(z)’s and Ĉk(z)’s are finite-duration

approximations to the Rk(z)’s and Ck(z)’s, respectively.
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4.1.1 Parallel Structure I

The transfer function for an FIR filter having the following truncated impulse response

ĝ
(r)
k (n) =

⎧⎨⎩g
(r)
k (n), |n| ≤ Mk − 1,

0, otherwise, (4.7)

can be expressed as

R̂k(z) =
κk

(1 − αkz−1)(1 − αkz)

[
1 +

αMk+1
k

1 − α2
k

[zMk−1 + z−(Mk−1)] − αMk
k

1 − α2
k

[zMk + z−Mk ]
]
.

(4.8)

Similarly, the transfer function for a filter having the impulse response

ĝ
(c)
k (n) =

⎧⎨⎩g
(c)
k (n), |n| ≤ Nk − 1,

0, otherwise, (4.9)

is

Ĉk(z) = 2
{

Γ̂k(z)
}

, (4.10a)

where

Γ̂k(z) =
γk

(1 − βkz−1)(1 − βkz)

[
1 +

βNk+1
k

1 − β2
k

[zNk−1 + z−(Nk−1)] − βNk
k

1 − β2
k

[zNk + z−Nk ]
]
.

(4.10b)

4.1.2 Parallel Structure II

Using the approximation

1

(1 − x)
=

∞∑
k=0

xk ≈
N−1∑
k=0

xk =
1 − xN

1 − x
, (4.11)

we obtain
1

1 − βz−1
≈ 1 − βNz−N

1 − βz−1
(4.12a)
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and
1

1 − βz
≈ 1 − βNzN

1 − βz
. (4.12b)

Applying (4.12a) and (4.12b) with N = Mk to Rk(z), as given by (4.3b), gives

R̂k(z) = κk
(1 − αMk

k z−Mk)(1 − αMk
k zMk)

(1 − αkz−1)(1 − αkz)
. (4.13)

Similarly, applying the above approximations with N = Nk to Ck(z), as given by (4.3c)

and (4.3d), yields

Ĉk(z) = 2
{

Γ̂k(z)
}

, (4.14a)

where

Γ̂k(z) = γk
(1 − βNk

k z−Nk)(1 − βNk
k zNk)

(1 − βkz−1)(1 − βkz)
. (4.14b)

The impulse responses of the resulting R̂k(z) and Ĉk(z) are given by

ĝ
(r)
k (n) =

⎧⎪⎨⎪⎩
κkα

|n|
k (1 − (α2

k)
Mk−|n|

)

1 − α2
k

, |n| ≤ Mk − 1,

0, otherwise, (4.15)

and

ĝ
(c)
k (n) =

⎧⎪⎨⎪⎩2 Re

{
γkβ

|n|
k (1 − (β2

k)
Nk−|n|

)

1 − β2
k

}
, |n| ≤ Nk − 1,

0, otherwise, (4.16)

respectively.

4.1.3 Parallel Structure III

Ck(z), as given by (4.3c), can also be written as

Ck(z) =
η0 + η1(z + z−1)

(1 − βkz−1)(1 − β∗
kz

−1)(1 − βkz)(1 − β∗
kz)

, (4.17a)

where

η0 = 2 Re{γk

(
1 + β∗

k
2
)}, (4.17b)
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and

η1 = −2 Re{γkβ
∗
k}. (4.17c)

An approximation to Ck(z) is obtained by applying (4.12a) and (4.12b) to (4.17a),

yielding

Ĉk(z) =

(
η0 + η1(z + z−1)

)
Ω̂k(z)

(1 − βkz−1)(1 − β∗
kz

−1)(1 − βkz)(1 − β∗
kz)

, (4.18a)

where

Ω̂k(z) = (1 − βNk
k z−Nk)(1 − (β∗

k)
Nkz−Nk)(1 − βNk

k zNk)(1 − (β∗
k)

NkzNk). (4.18b)

Alternatively, Ĉk(z) can be expressed as

Ĉk(z) = 2Ω̂k(z)
{ γk

(1 − βkz−1)(1 − βkz)

}
. (4.19)

The impulse response of Ĉk(z) is given by

ĝ
(c)
k (n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 Re

{
γk

1 − β2
k

(
(1 + β∗

k
2Nk)(β

|n|
k − β

2Nk−|n|
k ) + β∗

k
Nk(βNk+n

k − β
Nk−|n|
k )

)}
,

|n| ≤ Nk − 1,

2 Re

{
γkβ

Nk
k β∗

k
Nk(β

2Nk−|n|
k − β

|n|−2Nk

k )

1 − β2
k

}
, Nk ≤ |n| ≤ 2Nk − 1,

0 otherwise. (4.20)

4.2 Filter Implementation

This section presents efficient implementations for the transfer functions presented in Sec-

tion 4.1. Filters corresponding to Parallel Structure I are not treated, since in this case we

have not found any implementation form for reasonably reducing the output roundoff error

noise.
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4.2.1 Parallel Structure II

Multiplying F (0)(z) in (4.6) by z−D results in a realizable transfer function for Parallel

Structure II, where

D = max{M1 − 1,M2 − 1, · · · ,MKR
− 1, N1 − 1, N2 − 1, · · · , NKC

− 1} (4.21)

is half the order of the resulting filter. This yields

H(z) =z−(D−(L−K))A(z) +

KR∑
k=1

z−(D+1−Mk)H(r)(z) +

KC∑
k=1

z−(D+1−Nk)H(c)(z), (4.22a)

where

A(z) = a0z
−(L−K) +

L−K∑
k=1

ak[z
−(L−K+k) + z−(L−K−k)], (4.22b)

H
(r)
k (z) =κk(αk)

(Mk−1) 1 − [(αk)
Mk + (1/αk)

Mk ]z−Mk + z−2Mk

1 − [αk + 1/αk]z−1 + z−2
, (4.22c)

and

H
(c)
k (z) = 2

{
Γk(z)
}

, (4.22d)

with

Γk(z) =γk(βk)
(Nk−1) 1 − [(βk)

Nk + (1/βk)
Nk ]z−Nk + z−2Nk

1 − [βk + 1/βk]z−1 + z−2
. (4.22e)

An implementation for the overall filter is depicted in Fig. 4.1.

The output noise variance due to the multiplication roundoff errors occurring in the

feedback loops of H
(r)
k (z) and H

(c)
k (z) can be significantly reduced by exploiting the fol-

lowing identity:

1 − xm
(a)
k m

(b)
k = (1 − xm

(a)
k )

m
(b)
k −1∑
l=0

[xm
(a)
k ]l. (4.23)

Based on this, H
(r)
k (z) for

Mk = m
(a)
k m

(b)
k (4.24)
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A(z)z (D--(L--K))--

H2
(c)

z (D+1--N2)-- (z)

In Out

HKC

(c)
z (D+1--NK

C
)-- (z)

HKR

(r)
z (D+1--MK

R
)-- (z)

H1
(c)

z (D+1--N1 )-- (z)

H2
(r)

z (D+1--M2)-- (z)

H1
(r)

z (D+1--M1 )-- (z)

Figure 4.1: Structure for a linear-phase FIR filter obtained by using Parallel Structure II.

can be expressed as

H
(r)
k (z) = Υ

(a)
k (z)Υ

(b)
k (z), (4.25a)

where

Υ
(a)
k (z) =κk(αk)

(Mk−1) 1 − [(αk)
m

(a)
k + (1/αk)

m
(a)
k ]z−m

(a)
k + z−2m

(a)
k

1 − [αk + 1/αk]z−1 + z−2
, (4.25b)

and

Υ
(b)
k (z) =

2m
(b)
k −2∑
l=0

ζk(l)z
−lm

(a)
k , (4.25c)

with

ζk(l) =

⎧⎪⎪⎨⎪⎪⎩
[(αk)

m
(a)
k ](l+1) − [(1/αk)

m
(a)
k ](l+1)

(αk)
m

(a)
k − (1/αk)

m
(a)
k

, 0 ≤ l ≤ m
(b)
k − 1,

ζk(2m
(b)
k − 2 − l), m

(b)
k ≤ l ≤ 2m

(b)
k − 2. (4.25d)

Similarly, H
(c)
k (z) for

Nk = n
(a)
k n

(b)
k (4.26)
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can be rewritten in the form

H
(c)
k (z) = 2

{
Γ

(a)
k (z)Γ

(b)
k (z)
}

, (4.27a)

where

Γ
(a)
k (z) =γk(βk)

(Nk−1) 1 − [(βk)
n

(a)
k + (1/βk)

n
(a)
k ]z−n

(a)
k + z−2n

(a)
k

1 − [βk + 1/βk]z−1 + z−2
(4.27b)

and

Γ
(b)
k (z) =

2n
(b)
k −2∑
l=0

ηk(l)z
−ln

(a)
k , (4.27c)

with

ηk(l) =

⎧⎪⎪⎨⎪⎪⎩
[(βk)

n
(a)
k ](l+1) − [(1/βk)

n
(a)
k ](l+1)

(βk)
n

(a)
k − (1/βk)

n
(a)
k

, 0 ≤ l ≤ n
(b)
k − 1,

ηk(2n
(b)
k − 2 − l), n

(b)
k ≤ l ≤ 2n

(b)
k − 2. (4.27d)

Figures 4.2 and 4.3 present, respectively, the implementations of z−(D+1−Nk)H
(c)
k (z)

and z−(D+1−Mk)H
(r)
k (z), where the principle of switching and resetting is applied and the

scaling constants μk and νk are included.

Ignoring the extra delay elements as well as the effect of switching and resetting, the

input-output relation for H
(c)
k (z) can be described by the following difference equations:

y(l) =

2n
(b)
k −2∑
i=0

2 Re
{

(ηk(i)/νk)W (l − in
(a)
k )
}

, (4.28a)

where

W (l) =
(
βk +

1

βk

)
W (l − 1) − W (l − 2) + V (l), (4.28b)

and

V (l) = νkχk(0)[x(l) + x(l − 2n
(a)
k )] − νkχk(1)x(l − n

(a)
k ), (4.28c)
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z 1--

RS(2ρ (2n
(a)
k--1) --1)

z 1--

--1

βk+1/βk

RS((2ρ+1)(2n
(a)
k --1) --1)

z 1--

z 1--

--1

βk+1/βk

z n
(a)
k--

z n
(a)
k--

z n
(a)
k--

z n
(a)
k--

z n
(a)
k--

η
k
(2 n

k
(b)--2)

z n
(a)
k--

z n
(a)
k--

z n
(a)
k--

SW(2ρ(2n
(a)
k--1) , (2n

(a)
k--1))

SW(2ρ(2n
(a)
k--1)+ , (2n

(a)
k--1))2n

(a)
k

SW(2ρ(2n
(a)
k--1)+ , (2n

(a)
k--1))n

(a)
k

/νk

η
k
(2 2)/νk

χ
k
(0)νk

χ
k
(1)--νk

χ
k
(0)νk

In

z--D
(c)

k

Out

z (D+1--N k )-- --D
(c)

k

z (D+1--Nk)-- H
k
(c)
(z)

η
k
(2 n

k
(b)--1)/νk

Γk
(b)
(z)Γk

(a)
(z) / ν

k
2ν

k

η
k
(2 1)/νk

η
k
(2 0)/νk

Figure 4.2: Implementation for z−(D+1−Nk)H
(c)
k (z).

z 1--

RS(2ρ (2m
(a)
k--1) --1)

z 1--

--1

αk+1/αk

RS((2ρ+1)(2m
(a)
k --1) --1)

z 1--

z 1--

--1

αk+1/αk

z m
(a)
k--

z m
(a)
k--

z m
(a)
k--

z m
(a)
k--

z m
(a)
k--

ζ
k
(m

k
(b)--2)

z m
(a)
k--

z m
(a)
k--

z m
(a)
k--

SW(2ρ(2m
(a)
k--1) , (2m

(a)
k--1))

SW(2ρ(2m
(a)
k--1)+ , (2m

(a)
k--1))2m

(a)
k

SW(2ρ(2m
(a)
k--1)+ , (2m

(a)
k--1))m

(a)
k

/μk

ζ
k
(2)/

ζ
k
(1)/μk

μk

μkζ
k
(0)/

ε
k
(0)μk

ε
k
(1)--μk

ε
k
(0)μk

ζ
k
(m

k
(b)--1)/μk

Out

z (D+1--M k )-- --D
(r)

k

In

z--D
(r)

k

z (D+1--Mk)-- H
k
(r)
(z)

Υk
(b)
(z)/μ

k
Υk
(a)
(z) μ

k

Figure 4.3: Implementation for z−(D+1−Mk)H
(r)
k (z).
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Table 4.1: Real Arithmetic Input-Output Relation For H
(c)
k (z)

y(l) =

2n
(b)
k −2∑
i=0

Re{2ηk(i)/νk}W re(l − in
(a)
k ) −

2n
(b)
k −2∑
i=0

Im{2ηk(i)/νk}W im(l − in
(a)
k ),

where

W re(l) = Re{βk + 1/βk}W re(l − 1) − Im{βk + 1/βk}W im(l − 1) + V re(l)

W im(l) = Re{βk + 1/βk}W im(l − 1) + Im{βk + 1/βk}W re(l − 1) + V im(l)

with

V re(l) = Re{νkχk(0)}[x(l) + x(l − 2n
(a)
k )] − Re{νkχk(1)}x(l − n

(a)
k )

V im(l) = Im{νkχk(0)}[x(l) + x(l − 2n
(a)
k )] − Im{νkχk(1)}x(l − n

(a)
k )

with

χk(0) = γk(βk)
Nk−1, (4.28d)

and

χk(1) = γk(βk)
Nk−1[(βk)

n
(a)
k + (1/βk)

n
(a)
k ]. (4.28e)

Here, V (l) and W (l) are complex numbers and x(l) and y(l) are real. The corre-

sponding real-arithmetic input-output relation is given in Table 4.1, where V (l) = V re(l)+

jV im(l) and W (l) = W re(l)+jW im(l). Since the order of Γ
(a)
k (z) is 2(n

(a)
k −1), the demulti-

plexers are switched at every 2n
(a)
k −1 samples. The feedforward part is realized only once.

This is made possible by synchronizing three demultiplexers in such a way that if the first

demultiplexer starts giving actual data to the first feedback loop at time n = �(2n
(a)
k − 1),

where � is a non-negative integer, then the second and the third demultiplexers start giving

data to this loop at time instants n = �(2n
(a)
k − 1) + n

(a)
k and n = �(2n

(a)
k − 1) + 2n

(a)
k ,

respectively. The data is complex only in the feedback loops. This is made possible by
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using the direct-form and the transposed structures for the feedforward parts before and

after the feedbacks, respectively.

The scaling constant νk appearing in (4.28) is determined to avoid overflows in the real

and imaginary parts of the feedback loop of Fig. 4.2. Ignoring the extra delay terms, the

unit sample responses of the corresponding scaling transfer functions are given by

b (real)
k (l) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Re
{

γk(βk)
Nk−1 (βk)

(l+1) − (1/βk)
(l+1)

βk − 1/βk

}
, 0 ≤ l ≤ n

(a)
k − 1,

b (real)
k (2n

(a)
k − 2 − l), n

(a)
k ≤ l ≤ 2n

(a)
k − 2,

0, otherwise, (4.29a)

and

b (imag)
k (l) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Im
{

γk(βk)
Nk−1 (βk)

(l+1) − (1/βk)
(l+1)

βk − 1/βk

}
, 0 ≤ l ≤ n

(a)
k − 1,

b
( imag)
k (2n

(a)
k − 2 − l), n

(a)
k ≤ l ≤ 2n

(a)
k − 2,

0, otherwise. (4.29b)

By βk → αk, n
(a)
k → m

(a)
k , χk → εk, and νk → μk, (4.28a)–(4.28e) can be modified

to describe the input-output relation for H
(r)
k (z), as given by (4.25a) and presented in Fig.

4.3. Now

εk(0) = κk(αk)
Mk−1 (4.30a)

and

εk(1) = κk(αk)
Mk−1[(αk)

m
(a)
k + (1/αk)

m
(a)
k ]. (4.30b)

Moreover, similar to the role of νk, the scaling constant μk is determined to avoid overflows

in the feedback loop of Fig. 4.3, where the unit sample response of the scaling transfer

function is given by

bk(l) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
κk(αk)

Mk−1 (αk)
(l+1) − (1/αk)

(l+1)

(αk) − (1/αk)
, 0 ≤ l ≤ m

(a)
k − 1,

bk(2m
(a)
k − 2 − l), m

(a)
k ≤ l ≤ 2m

(a)
k − 2,

0, otherwise. (4.31)
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The nonrecursive parts of H
(r)
k (z) and H

(c)
k (z) can be factorized to reduce the required

number of real-valued multiplications and real-valued additions in their implementations.

To elaborate this, consider the identity

m(1)m(2)···m(I)−1∑
l=0

xlm(a)

=
I∏

i=1

[
m(i)−1∑

l=0

xlM(i)

]
, (4.32)

where M (1) = m(a) and M (i) = m(a)m(1)m(2) · · ·m(i−1) for i = 2, 3, . . . , I . Based on this

identity, Υ
(b)
k (z), as given by (4.25c), for

m
(b)
k =

Ik∏
i=1

m
(i)
k (4.33a)

can be expressed as

Υ
(b)
k (z) =

Ik∏
i=1

Υ
(i)
k (z), (4.33b)

where

Υ
(i)
k (z) =

2m
(i)
k −2∑

l=0

ζ
(i)
k (l)z−lM

(i)
k , (4.33c)

with

ζk(l) =

⎧⎪⎪⎨⎪⎪⎩
[(αk)

M
(i)
k ](l+1) − [(1/αk)

M
(i)
k ](l+1)

(αk)
M

(i)
k − (1/αk)

M
(i)
k

, 0 ≤ l ≤ m
(i)
k − 1,

ζk(2m
(i)
k − 2 − l), m

(i)
k ≤ l ≤ 2m

(i)
k − 2, (4.33d)

and

M
(i)
k = m

(a)
k

i−1∏
l=1

m
(l)
k . (4.33e)

Similarly, Γ
(b)
k (z), as given by (4.27c), for

n
(b)
k =

Jk∏
j=1

n
(j)
k (4.34a)

can be written as

Γ
(b)
k (z) =

Jk∏
j=1

Γ
(j)
k (z), (4.34b)
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where

Γ
(j)
k (z) =

2n
(j)
k −2∑
l=0

η
(j)
k (l)z−lN

(j)
k , (4.34c)

with

η
(j)
k (l) =

⎧⎪⎪⎨⎪⎪⎩
[(βk)

N
(j)
k ](l+1) − [(1/βk)

N
(j)
k ](l+1)

(βk)
N

(i)
k − (1/βk)

N
(j)
k

, 0 ≤ l ≤ n
(j)
k − 1,

ηk(2n
(j)
k − 2 − l), n

(j)
k ≤ l ≤ 2n

(j)
k − 2, (4.34d)

and

N
(j)
k = n

(a)
k

j−1∏
l=1

n
(l)
k . (4.34e)

The scaled implementations for the above transfer functions are depicted in Figs. 4.4

and 4.5. For Γ
(b)
k (z), the constants ϕ

(j)
k for j = 1, 2 . . . , Jk − 1 are determined to avoid the

overflows at the outputs of the Γ
(j)
k (z)’s based on the fact that the unit sample responses of

the scaling transfer functions to the real and imaginary parts of these outputs are obtained

from (4.29a) and (4.29b) by using the substitutions

n
(a)
k → n

(a)
k

j∏
l=1

n
(j)
k (4.35a)

and

νk → νk

j−1∏
i=1

ϕ
(j)
k . (4.35b)

ϕ
(Jk)
k is then given by

ϕ
(Jk)
k = 1/

[
νk

Jk−1∏
j=1

ϕ
(j)
k

]
. (4.36)

The scaling constants ψ
(i)
k for Υ

(b)
k (z) are determined in a similar manner.

Table 4.2 compares the number of real-valued multiplications1 and real-valued addi-

tions required by multistage implementations to those of single-stage equivalents in two

1η
(j)
k (0) = 1 for j = 1, 2, . . . Jk so that the ϕ

(j)
k η

(j)
k (0)’s are real-valued.
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Γk
(a)
(z)

z--
In

D
(c)
k

z (D+1--Nk)-- H
k
(c)
(z)

Out

z (D+1--N k )-- --D
(c)
k

ν
k Γk

(Jk)(z)2ϕ(Jk)
kΓk

(1)
(z)ϕ(1)

k Γk
(2)
(z)ϕ(2)

k

z N
(Jk)

k-- z N
(Jk)
k--

z N
(Jk)
k-- z N

(Jk)
k--

z N
(Jk)
k-- z N

(Jk)
k--

Ωk
(j)

(z) , 1 <-- j <-- Jk--1 Ωk
(Jk)

(z)

In Out

z N
(j)
k-- z N

(j)
k--

z N
(j)
k-- z N

(j)
k--

z N
(j)
k-- z N

(j)
k--

In Out

2 ϕ
(Jk)
k

η
k

(Jk)
(2n

k
(Jk)

--3)

2 ϕ
(Jk)
k

η
k

(Jk)
(2n

k
(Jk)

--2)ϕ(j)
k
η

k

(j)
(2n

k
(j)

--2)

2 ϕ
(Jk)
k

η
k

(Jk)
(0)

2 ϕ
(Jk)
k

η
k

(Jk)
(1)

2 ϕ
(Jk)
k

η
k

(Jk)
(2)

ϕ(j)
k
η

k

(j)
(2n

k
(j)

--3)

ϕ(j )
k
η

k

(j)
(2)

ϕ(j )
k
η

k

(j)
(1)

ϕ(j)
k
η

k

(j)
(0)

2ϕ(Jk)
k

ϕ(j)
k

Figure 4.4: Generalized implementation for z−(D+1−Mk)H
(c)
k (z).

cases. In the first case, the filters are scaled as shown in Figs. 4.4 and 4.5, whereas, in the

second case, the filter scalings are taken care of by a single constant μk or νk and the fact

that now ψ
(i)
k ζ

(j)
k (0) = 1 for i = 1, 2, . . . , Ik−1 and ϕ

(j)
k η

(j)
k (0) = 1 for j = 1, 2, . . . , Jk−1.

It is seen from the table that the multistage cases provide significant savings when the m
(i)
k ’s

and the n
(j)
k ’s are relatively small (2 or 3).

If desired, the scaled Υ
(a)
k (z) and Γ

(a)
k (z) can also be implemented in the following

non-recursive forms:

μkΥ
(a)
k (z) =

2m
(a)
k −2∑
l=0

μkζ
(a)
k (l)z−l (4.37a)
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Υk
(a)
(z)

z--
In

D
(r)
k

z (D+1--Nk)-- H
k
(r)
(z)

Out

z (D+1--N k )-- --D
(r )
k

ν
k Υk

(Jk)(z)ψ(Jk)
k

Υk
(1)
(z)ψ(1)

k Υk
(2)
(z)ψ(2)

k

z M
(Ik)
k-- z M

(Ik)
k--

z M
(Ik)
k-- z M

(Ik)
k--

z M
(Ik)
k-- z M

(Ik)
k--

Υk
(i)

(z) , 1 <-- i <-- Ik --1 Υk
(Ik)

(z)

In Out

z M
(i)
k-- z M

(i)
k--

z M
(i)
k-- z M

(i)
k--

z M
(i)
k-- z M

(i)
k--

In Out

ψ(i)
k
ζ

k

(i)
(m

k
(i)

--2)

ψ(i)
k
ζ

k

(i)
(m

k
(i)

--1)

ψ(i )
k
ζ

k

(i)
(0)

ψ(i )
k
ζ

k

(i)
(1)

ψ(i )
k
ζ

k

(i)
(2)

ψ(Jk)
k

ζ
k

(Jk)
(m

k
(Jk)

--1)

ψ(Ik)
k

ζ
k

(Jk)
(m

k
(Ik)

--1)

ψ(Ik)
k

ζ
k

(Ik)
(2)

ψ(Ik)
k

ζ
k

(Ik)
(1)

ψ(Ik)
k

ζ
k

(Ik)
(0)

ψ(i)
k

ψ(Ik)
k

Figure 4.5: Generalized implementation for z−(D+1−Nk)H
(r)
k (z).

and

νkΓ
(a)
k (z) =

2n
(a)
k −2∑
l=0

νkη
(a)
k (l)z−l, (4.37b)

where

ζ
(a)
k (l) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
κk(αk)

Mk−1 (αk)
(l+1) − (1/αk)

(l+1)

αk − 1/αk

, 0 ≤ l ≤ m
(a)
k − 1,

ζ
(a)
k (2m

(a)
k − 2 − l), m

(a)
k ≤ l ≤ 2m

(a)
k − 2,

(4.37c)



122

Table 4.2: Comparison Between Different Implementations of H
(r)
k (z) and H

(c)
k (z) in Par-

allel Structure II

Number of Real-Valued Number of Real-Valued

Multiplications Additions

Υ
(b)
k (z)

Single-Stage
∏Ik

i=1 m
(i)
k 2

[∏Ik

i=1 m
(i)
k

]− 2

Multistage General Scaling
∑Ik

i=1 m
(i)
k

∑Ik

i=1(2m
(i)
k − 2)

Multistage One Scaler 1 +
∑Ik

i=1(m
(i)
k − 1)

∑Ik

i=1(2m
(i)
k − 2)

Υ
(a)
k (z)

Recursive 4 5

Non-recursive m
(a)
k 2m

(a)
k − 2

Γ
(b)
k (z)

Single-Stage 2
[∏Jk

j=1 n
(j)
k

]− 1 2
[∏Jk

j=1 n
(j)
k

]− 2

Multistage 2n
(Jk)
k − 1 2n

(Jk)
k − 2

General Scaling +
∑Jk−1

j=1 (4n
(j)
k − 2) +

∑Jk−1
j=1 4(n

(j)
k − 1)

Multistage 2n
(Jk)
k − 1 2n

(Jk)
k − 2

One Scaler +
∑Jk−1

j=1 4(n
(j)
k − 1) +

∑Jk−1
j=1 4(n

(j)
k − 1)

Γ
(a)
k (z)

Recursive 10 20

Non-recursive 2n
(a)
k − 1 2n

(a)
k − 2

and

η
(a)
k (l) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
γk(βk)

Nk−1 (βk)
(l+1) − (1/βk)

(l+1)

βk − 1/βk

, 0 ≤ l ≤ n
(a)
k − 1,

η
(a)
k (2n

(a)
k − 2 − l), n

(a)
k ≤ l ≤ 2n

(a)
k − 2.

(4.37d)

From Table 4.2, it is seen that the non-recursive implementations as shown in Fig. 4.6

become more attractive than the recursive equivalents for small values of m
(a)
k and n

(a)
k .
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z 1--
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Out
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(a)
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ζ
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(a)
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k
(a)
--2)

μ
k
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(a)
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μ
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(m

k
(a)
--1)

μ
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ζ
k

(a)
(0)

μ
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(a)
(2)

z 1--

z 1-- z 1--

z 1-- z 1--

z 1--

In

Out

Γk
(a)
(z)ν

k

ν
k
η
k

(j)
(n

k
(a)
--2)

ν
k
η
k

(a)
(1)

ν
k
η
k

(j)
(n

k
(a)
--1)

ν
k
η
k

(a)
(0)

ν
k
η
k

(a)
(2)

z 1--

z 1-- z 1--

z 1-- z 1--

Figure 4.6: Non-recursive implementations for Υ
(a)
k (z) and Γ

(a)
k (z).

Implementation of Delays

The number of delay elements required by the overall structure of Fig. 4.1 can be mini-

mized by determining

D̃ in = max
{

max
1≤k≤KR

{2m(a)
k }, max

1≤k≤KC

{2n(a)
k }
}

, (4.38a)

D̃ out = max
{

max
1≤k≤KR

{2m(a)
k (m

(b)
k − 1)}, max

1≤k≤KC

{2n(a)
k (n

(b)
k − 1)}

}
, (4.38b)

D̂
(r)
k = min{D + 1 − 2Mk, D̃ in − 2m

(a)
k }, k = 1, 2, . . . , KR, (4.38c)

and

D̂
(c)
k = min{D + 1 − 2Nk, D̃ in − 2n

(a)
k }, k = 1, 2, . . . , KC . (4.38d)

This minimization can be performed by using the common delay blocks z−D̃ in and
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z−D̃ out at the filter input and output, respectively. With these selections, the block de-

lays z−D̂
(c)
k and z−D̂

(r)
k in Figs. 4.2 and 4.3 as well as the z−n

(a)
k ’s and z−m

(a)
k ’s before

the feedback loops can be obtained from z−D̃ in , whereas z−D̃ out provides delays for the

z−(D+1−Nk−D̂
(c)
k )’s and z−(D+1−Mk−D̂

(r)
k )’s as well as for the z−n

(a)
k ’s and z−m

(a)
k ’s after the

feedback loops. In most practical cases, D̃ in and D̃ out are determined by one or two out-

ermost complex pole pairs. In this case, D̃ in + D̃ out, the delays required by feedforward

parts, is equal to 2D + 2, which is two more than the overall filter order. Including the

delays in the feedback loops, the number of delay elements required by the overall filter is

2D+4KR +8KC +2. When implementing the two copies of the feedback loops by demul-

tiplexing the same filter and exploiting the symmetries in the coefficients after the feedback

loops, the implementations of z−(D+1−Mk)H
(r)
k (z) and z−(D+1−Nk)H

(c)
k (z) require m

(b)
k +4

and 2n
(b)
k + 9 real-valued multiplications, respectively.2 The corresponding number of real

adders are 2n
(a)
k +6 and 2m

(b)
k +2. A(z) requires L−K +1 multipliers and L−K adders.

For the overall filter, the number of real-valued multiplications and real-valued additions

are

KR∑
k=1

m
(a)
k +

KC∑
k=1

2n
(a)
k + 4KR + 9KC + L − K + 1

and

2

KR∑
k=1

m
(a)
k + 2

KC∑
k=1

2n
(a)
k + 2KR + 6KC + L − K,

respectively.

2ηk(0) = 1 so that 2ηk(0)/νk is real-valued.
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4.2.2 Parallel Structure III

For the implementation of Parallel Structure III, F (0)(z) in (4.6) is multiplied by z−D where

D = max{M1 − 1,M2 − 1, · · · ,MKR
− 1, 2N1 − 1, 2N2 − 1, · · · , 2NKC

− 1}, (4.39)

yielding

H(z) =z−(D−(L−K))A(z) +

KR∑
k=1

z−(D+1−Mk)H
(r)
k (z) +

KC∑
k=1

z−(D+1−2Nk)H
(c)
k (z), (4.40a)

where H(r)(z) and A(z) are the same as those for Parallel Structure II, whereas

H
(c)
k (z) = 2Ωk(z)

{ γ̂k

1 − [βk + 1/βk]z−1 + z−2

}
, (4.40b)

where

γ̂k = −(βkβ
∗
k)

Nkγk/βk (4.40c)

and

Ωk(z) =[1 + z−4Nk ] − χk(0)[z−Nk + z−3Nk ] + χk(1)z−2Nk (4.40d)

with

χk(0) = (βk)
Nk + (β∗

k)
Nk + (1/βk)

Nk + (1/β∗
k)

Nk (4.40e)

and

χk(1) = 2 +
(
(βk)

Nk + (1/βk)
Nk

)(
(β∗

k)
Nk + (1/β∗

k)
Nk

)
. (4.40f)

For

Nk = n
(a)
k n

(b)
k (4.41a)

with

n
(b)
k =

Jk∏
j=1

n
(j)
k , (4.41b)
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Ωk(z), as given by (4.40d), can be factorized in the form

Ωk(z) = Ω
(a)
k (z)Ω

(b)
k (z), (4.41c)

where

Ω
(b)
k (z) =

Jk∏
j=1

Ω
(j)
k (z). (4.41d)

Here,

Ω
(a)
k (z) =[1 + z−4n

(a)
k ] − εk(0)[z−n

(a)
k + z−3n

(a)
k ] + εk(1)z−2n

(a)
k (4.42a)

and

Ω
(j)
k (z) =

4n
(j)
k −4∑
l=0

η
(j)
k (l)z−lN

(j)
k , (4.42b)

where

εk(0) = (βk)
n

(a)
k + (β∗

k)
n

(a)
k + (1/βk)

n
(a)
k + (1/β∗

k)
n

(a)
k , (4.42c)

εk(1) = 2 +
(
(βk)

n
(a)
k + (1/βk)

n
(a)
k

)(
(β∗

k)
n

(a)
k + (1/β∗

k)
n

(a)
k

)
, (4.42d)

N
(j)
k = n

(a)
k

j−1∏
l=1

n
(l)
k , j = 1 . . . J (4.42e)

and

η
(j)
k (l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ϑk(l/2)ϑ∗
k(l/2) + 2 Re

{ l/2∑
i=0

ϑk(i)ϑ
∗
k(l − i)

}
, l even, 0 ≤ l ≤ 2n

(j)
k − 2,

2 Re
{(l−1)/2∑

i=0

ϑk(i)ϑ
∗
k(l − i)

}
, l odd, 0 ≤ l ≤ 2n

(j)
k − 2,

η
(j)
k (l) 2n

(a)
k − 1 ≤ l ≤ 4n

(a)
k − 4,

(4.42f)

with

ϑk(l) =

⎧⎪⎪⎨⎪⎪⎩
[(βk)

N
(j)
k ](l+1) − [(1/βk)

N
(j)
k ](l+1)

(βk)
N

(j)
k − (1/βk)

N
(j)
k

, 0 ≤ l ≤ n
(j)
k − 1,

ϑk(2n
(j)
k − 2 − l), n

(j)
k ≤ l ≤ 2n

(j)
k − 2. (4.42g)
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From (4.41), it follows that if J = 1, then N
(j)
k = n

(a)
k and n

(j)
k = n

(b)
k . For this special

case, η
(1)
k ≡ η

(b)
k , and Ω

(b)
k (z) can be expressed as:

Ω
(b)
k (z) =

4n
(b)
k −4∑
l=0

η
(b)
k (l)z−ln

(a)
k . (4.43)

Based on the factorization of (4.42), H
(c)
k (z) can be written as

H
(c)
k (z) = Γ

(a)
k (z)

[
2

Jk∏
j=1

Ω
(j)
k (z)

]
, (4.44a)

where

Γ
(a)
k (z) = Ω

(a)
k (z) · 

{ γ̂k

1 − [βk + 1/βk]z−1 + z−2

}
. (4.44b)

An implementation for the overall filter is shown in Fig. 4.7, whereas a scaled imple-

mentation for z−(D+1−2Nk)H
(c)
k (z) is depicted in Fig. 4.8. In order to determine the scaling

constants ν
(1)
k , ν(2)

k , ϕ(1)
k , ϕ(2)

k , . . . , and ϕ
(Jk)
k , the following unit sample response is defined:

b(l, N, υ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

υτ (1)(l)

βk − 1/βk

, 0 ≤ l ≤ N − 1,

υτ (2)(l)

βk − 1/βk

, N ≤ l ≤ 2N − 1,

b(4N − 2 − l, N, υ), 2N ≤ l ≤ 4N − 2,

0, otherwise, (4.45a)

where

τ (1)(l) = (βk)
(l+1) − (βk)

−(l+1) (4.45b)

and

τ (2)(l) = − (βk)
(l−N+1)[(β∗

k)
N + (β∗

k)
−N + (βk)

−N ]

+ (βk)
−(l−N+1)[(β∗

k)
N + (β∗

k)
−N + (βk)

N ]. (4.45c)
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ν
(1)
k is determined to avoid overflows at the outputs of the feedback loops, based on

the fact that the unit sample responses to the real and imaginary parts are, respectively,

Re{b(l, n(a)
k , ν

(1)
k } and Im{b(l, n(a)

k , ν
(1)
k }. ν

(2)
k is used to scale the output of ν

(1)
k ν

(2)
k Γ

(a)
k (z).

The corresponding unit sample response is Re{b(l, n(a)
k , ν

(1)
k ν

(2)
k γ̂k}. The ϕ

(j)
k ’s for j =

1, 2 . . . Jk − 1 scale the outputs of the corresponding Ω
(j)
k (z)’s. The unit sample response

from the overall filter input to these outputs is

Re

{
b(l, N

(j+1)
k , ν

(1)
k ν

(2)
k γ̂k

j−1∏
l=1

ϕ
(l)
k

}
. (4.46)

Finally, ϕ
(Jk)
k is used to compensate the scalings and is given by

ϕ
(Jk)
k =

1

ν
(1)
k ν

(2)
k

∏Jk−1
l=1 ϕ

(l)
k

. (4.47)

Table 4.3 gives the number of real-valued multiplications and real-valued additions for

the above Ω
(b)
k (z) in two cases in a manner similar to Parallel Structure II. In the first case,

all the scaling constants are used and, in the second case, only ν
(1)
k and ν

(2)
k take care of the

filter scaling. In the latter case, ϕ(j)η
(j)
k (0) = 1 for j = 1, 2, . . . , Jk − 1. For comparison

purposes, the data for the single-stage Ω
(b)
k (z) is also included.

Alternatively, the scaled Γ
(a)
k (z) can be expressed non-recursively as

ν
(1)
k ν

(2)
k Γ

(a)
k (z) =

[4n
(a)
k −4∑
l=0

ν
(1)
k η

(a)
k (l)z−l

]
×[

ν
(2)
k Re{γ̂k}[1 + z−2] − ν

(2)
k Re{γ̂k(β

∗
k + 1/β∗

k)}z−1
]
, (4.48)

where the η
(a)
k (l)’s can be determined from (4.42f) and (4.42g) using N

(j)
k = 1 and n

(j)
k =

n
(a)
k . The above transfer function is a cascade of two conventional linear-phase FIR filters

of orders 4n
(a)
k − 4 and 2, respectively. Table 4.3 compares the non-recursive and recursive

implementations of Γ
(a)
k (z).
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A(z)z (D--(L--K))--

H2
(c)

z (D+1--2N2)-- (z)

In Out

HKC

(c)
z (D+1--2NK

C
)-- (z)

HKR

(r)
z (D+1--MK

R
)-- (z)

H1
(c)

z (D+1--2N1 )-- (z)

H2
(r)

z (D+1--M2)-- (z)

H1
(r)

z (D+1--M1 )-- (z)

Figure 4.7: Structure for a linear-phase FIR filter obtained by using the Parallel Structure
III.

Of special interest is the case, where Γ
(a)
k (z) is implemented non-recursively and n

(j)
k =

2 for j = 1, 2, . . . , Jk so that, Nk = n
(a)
k 2Jk . By this setting,

Ω
(j)
k (z) =[1 + z−4N

(j)
k ] + η

(j)
k (1)[z−N

(j)
k + z−3N

(j)
k ] + η

(j)
k (2)z−2N

(j)
k . (4.49)

When two scaling constants are used, this implementation requires only 2n
(a)
k +2+2Jk real-

valued multiplications and 4n
(a)
k − 2 + 4Jk real-valued additions to generate a linear-phase

FIR filter response of length 2n
(a)
k 2Jk − 2.

4.3 Noise Analysis

In order to analyze the output noise due to the multiplication roundoff errors taking place

in the feedback loops of Ĥ
(c)
k (z) and Ĥ

(r)
k (z), the notations of (3.59) are applied to Ĥ

(c)
k (z)
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k
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z (D+1--2N k )-- --D
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k
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(Jk)(z)2ϕ(Jk)

kΩk
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(z)ϕ(1)

k Ωk
(2)
(z)ϕ(2)

k
Γk
(a)
(z)ν(1)

k ν
(2)
k

z 1--

RS(2ρ (4n
(a)
k--1) --1)

z 1--

--1

βk+1/βk

RS((2ρ+1)(4n
(a)
k --1) --1)

z 1--

z 1--

--1

βk+1/βk

z n
(a)
k--

SW(2ρ(4n
(a)
k--1) , (4n

(a)
k--1))
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(a)
k --1)+ , (4n

(a)
k--1))n
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ε
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Figure 4.8: Generalized implementation for z−(D+1−Nk)Ĥ
(c)
k (z).
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Table 4.3: Comparison Between Different Implementations of H (c)(z) in Parallel Structure
III

Number of Real-Valued Number of Real-Valued

Multiplications Additions

Ω
(b)
k (z)

Single-Stage 2
[ Jk∏

j=1

n
(j)
k

]
− 1 4

[ Jk∏
j=1

n
(j)
k

]
− 2

Multistage General Scaling
Jk∑

j=1

(
2n

(j)
k − 1
) Jk∑

j=1

(
4n

(j)
k − 4
)

Multistage Two Scalers 1 +

Jk∑
j=1

(
2n

(j)
k − 2
) Jk∑

j=1

(
4n

(j)
k − 4
)

Γ
(a)
k (z)

Recursive 11 12

Non-recursive 2n
(a)
k + 1 4n

(a)
k − 2

and Ĥ
(r)
k (z) in the same sense that they were applied to Ê

(c)
k (z) and Ê

(r)
k (z). In what

follows, the roundoff noise generated in the proposed structures are analyzed in detail.

4.3.1 Parallel Structure II

Because of the switching and resetting, the (complex) roundoff error at the output of the

upper feedback loop of z−(D+1−Nk)H
(c)
k (z), Ξ

(1)
k, out(l), is zero at the time instant

l = 2ρ(2n
(a)
k − 1) − 1, (4.50a)

where ρ is an integer, whereas for 0 ≤ λ ≤ 4n
(a)
k − 4,

Ξ
(1)
k, out(2ρ(2n

(a)
k − 1) + λ) =

λ∑
i=0

β
(λ+1−i)
k − (1/βk)

(λ+1−i)

βk − 1/βk

Ξ
(1)
k, in(2ρ(2n

(a)
k − 1) + i).

(4.50b)
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Similarly the (complex) roundoff error at the output of the lower feedback loop of

z−(D+1−Nk)H
(c)
k (z), Ξ

(2)
k, out(l), is zero at the time instant

l = (2ρ − 1)(2n
(a)
k − 1) − 1, (4.51a)

whereas for 0 ≤ λ ≤ 4n
(a)
k − 4,

Ξ
(2)
k, out((2ρ − 1)(2n

(a)
k − 1) + λ) =

λ∑
i=0

β
(λ+1−i)
k − (1/βk)

(λ+1−i)

βk − 1/βk

×

Ξ
(2)
k, in((2ρ − 1)(2n

(a)
k − 1) + i). (4.51b)

Equations (4.50) and (4.51) can be expressed more compactly by defining

Ξ
(m)
k, out(l, j, n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, λ = n − 1,

λ∑
i=0

β
(λ+1−i)
k − (1/βk)

(λ+1−i)

βk − 1/βk

Ξ
(m)
k, in(l − λ + i), otherwise,

(4.52a)

where

λ = (l − j)mod(n). (4.52b)

For the upper branch, m = 1, j = 0 and n = 4n
(a)
k − 2, while for the lower branch,

m = 2, j = n = 2n
(a)
k − 1 and n = 4n

(a)
k − 2. Equations (4.50)–(4.52) apply to

z−(D+1−Mk)H
(r)
k (z) by n

(a)
k → m

(a)
k and βk → αk.

Using the notation of (4.52a), the overall output noise generated in the structure of Fig.

4.3 at time l can be expressed as

ξ (ove)
k (l) =

2m
(b)
k −2∑
i=0

Re

{
ζk(i)

μk

[
Ξ

(1)
k, out(l − im

(a)
k , 0, 4m

(a)
k − 2)

+Ξ
(2)
k, out(l − im

(a)
k , 2m

(a)
k − 1, 4m

(a)
k − 2)

]}
. (4.53)

By considering the effects of switching and resetting, and by taking into account the

fact that Ξ
(1)
k, in(l) and Ξ

(2)
k, in(l) consist of the sum of the input noises from the demultiplexers
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and the round-off noise generated in the coefficient of the recursive filter, the variance of

the output noise at the input of Υ
(b)
k (z)/μk at any arbitrary time l can be expressed as:

(σ2) (out)
k (l) = (σ2) (1)

k (l) + (σ2) (1)
k (l − 2m

(a)
k + 1), (4.54a)

where

(σ2) (1)
k (l) =

⎧⎪⎪⎨⎪⎪⎩
0, δ(l) = 4m

(a)
k − 3,

σ2
e

[
δ(l)∑
i=0

c(i)T 2
i +

δ(l)−1∑
i=0

T 2
i

]
, otherwise. (4.54b)

The polynomials Tn in (4.54b) are defined recursively as T−1 = 0, T0 = 1, and

Tn = (αk + 1/αk)Tn−1 − Tn−2, (4.54c)

where

c(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2, δ(l) − 2m

(a)
k + 2 ≤ i ≤ δ(l) − m

(a)
k

or δ(l) − 3m
(a)
k + 2 ≤ i ≤ δ(l) − 2m

(a)
k ,

1, otherwise, (4.54d)

with

δ(l) = l mod(4m
(a)
k − 2). (4.55)

In (4.54a)–(4.54b), (σ2) (1)
k (l) is the noise variance at the output of the upper recursive

filter, (σ2) (out)
k (l) is the total noise variance at the input to Υ

(b)
k (z) and σ2

e is the noise

variance generated by each quantizer.

Based on (4.54a)–(4.54d), the total noise variance at any arbitrary time l (after the

transient time of Υ
(b)
k (z) has elapsed) is bounded by:

U1 × (σ2) (out)
k (l) + (2m

(b)
k − 1)σ2

e (4.56a)
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where

U1 =

2m
(b)
k −2∑
i=0

(
ζ(i)

μk

)2

(4.56b)

For the case of the structure of Fig. 4.2, the overall noise at time l can be expressed

according to Equation (4.53) by using the substitutions μk → νk and ζk → 2ηk. Now

the noise variance of both the real and the imaginary branches of the upper branch for any

arbitrary time l can be expressed as:

(σ2) (1)
k (l) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, δ(l) = 4m

(a)
k − 3,

σ2
e

[
δ(l)∑
i=0

c(i)({Pi}2 + �{Pi}2) +

δ(l)−1∑
i=0

{Pi}2 + �{Pi}2

]
,

otherwise. (4.57)

The polynomials Pi are derived from Ti defined on (4.54c) with (αk + 1/αk) → (βk +

1/βk). The coefficients c(i) are given in (4.54d).

Based on (4.54)–(4.57), the total noise variance at any arbitrary time l (after the tran-

sient time of Γ
(b)
k (z) has elapsed) is bounded by:

2

[2n
(b)
k −2∑
i=0

Re2{ci} +

2n
(b)
k −2∑
i=0

Im2{ci}
]
σ

(2)
out(l) + (2n

(b)
k − 2)σ2

e , (4.58a)

where

ci =
2η(i)

νk

. (4.58b)

4.3.2 Parallel Structure III

The noise analysis for the structure of Fig. 4.8 is very similar to that of Fig. 4.2. There are,

however, two major differences.

• The resetting time of the upper and lower recursive filters for the structure of Fig. 4.8

are 2ρ(4n
(a)
k − 1) − 1 and (2ρ + 1)(4n

(a)
k − 1) − 1 respectively.
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• The number of demultiplexers are increased from two to five, and the time slot in

which each multiplexer feeds each recursive filter has changed.

Considering the above facts, and using the notations of (3.59) and (4.43), the overall

output noise error at any arbitrary time l for the single stage implementation of Ω
(b)
k (z) is

given by

ξ (ove)
k (l) =

4n
(b)
k −4∑
i=0

2η
(b)
k (i) Re

{
ν

(2)
k γ̂k

[
Ξ

(1)
k, out(l − in

(a)
k , 0, 8n

(a)
k − 2)

+ Ξ
(2)
k, out(l − in

(a)
k , 4n

(a)
k − 1, 8n

(a)
k − 2)

]}
, (4.59)

where Ξ
(m)
k, out(l, j, n) is defined in (4.52a) and (4.52b).

The variance of the complex output noise at the input of Ω
(b)
k (z) at any arbitrary time l

can be expressed as

(σ2) (out)
k, real(l) = (σ2) (1)

k, real(l) + (σ2) (1)
k, real(l + 4n

(a)
k − 1), (4.60a)

and

(σ2) (out)
k, imag(l) = (σ2) (1)

k, imag(l) + (σ2) (1)
k, imag(l + 4n

(a)
k − 1), (4.60b)

with

δ(l) = l mod(8n
(a)
k − 2), (4.60c)

(σ2) (1)
k, real(l) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, δ(l) = 8n

(a)
k − 3,

σ2
e

[
δ(l)∑
i=0

c(i){Pi}2 +

δ(l)−1∑
i=0

{Pi}2 + �{Pi}2

]
,

otherwise, (4.60d)

(σ2) (1)
k, imag(l) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, δ(l) = 8n

(a)
k − 3,

σ2
e

[
δ(l)∑
i=0

c(i)�{Pi}2 +

δ(l)−1∑
i=0

{Pi}2 + �{Pi}2

]
,

otherwise, (4.60e)
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and

c(i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2, n
(a)
k ≤ δ(l) − k ≤ 2n

(a)
k − 1 or 6n

(a)
k − 1 ≤ δ(l) − k ≤ 7n

(a)
k − 2,

3, 2n
(a)
k ≤ δ(l) − k ≤ 3n

(a)
k − 1 or δ(l) − k = 4n

(a)
k − 1,

4, 3n
(a)
k ≤ δ(l) − k ≤ 4n

(a)
k − 2 or 4n

(a)
k ≤ δ(l) − k ≤ 5n

(a)
k − 2,

1, otherwise. (4.60f)

In (4.60a)–(B.41), (σ2) (1)
k, real(l) and (σ2) (1)

k, imag(l) are the noise variances at the output of

the real and the imaginary branches of the upper recursive filter respectively, (σ2) (out)
k, real(l)

and (σ2) (out)
k, imag(l) are the total noise variance at the input to the multiplier ν

(2)
k γ̂k and σ2

e is

the noise variance generated by each quantizer. The polynomials Pi are derived from Ti

defined in (4.54c) with αk + 1/αk → βk + 1/βk.

Based on (4.59)–(4.60), the total noise variance at any arbitrary time l (after the tran-

sient time of Ω
(b)
k (z) has elapsed) is bounded by:(4n

(b)
k −4∑
i=0

c2
i

)
(σ2) (out)

k,Γ (l) + (4n
(b)
k − 5)σ2

e , (4.61a)

where

(σ2) (out)
k,Γ (l) = (σ2) (out)

k, real(l)Re{ν(2)
k γ̂k}2 + (σ2) (out)

k, imag(l)Im{ν(2)
k γ̂k}2 + 2σ2

e (4.61b)

and

ci =
2η

(b)
k (i)

ν
(1)
k ν

(2)
k

. (4.61c)

4.4 Performance study

This section presents the results obtained from computer simulation for the structures in-

troduced in this chapter. The prototype IIR filter specification and the algorithm in use are

already presented in Section 3.5. Several cases have been considered, and the results have

been compared with other efficient implementations of linear-phase FIR filters.
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4.4.1 Simulation Results

Example 1: Consider the specifications of Example 1 on page 93, i.e., ωp = 0.4π, ωs =

0.41π, δp = 0.01 and δs = 0.001. Parallel Structure II requires five branches to meet the

specifications, where one of the branches corresponds to A(z) as given by (4.22b) with

a single coefficient a0, and four others correspond to H
(c)
k (z), k = 1, 2, 3, 4 as given by

(4.22d). Applying a truncation length3 of Nk = 288, k = 1, 2, 3, 4 leads to a filter structure

meeting the specifications. The impulse responses of these four branches of the resulting

structure is presented in Fig. 4.9. By decomposing Nk into n
(a)
k = 144 and n

(b)
k = 2,

and considering the results given on Table 4.2 with recursive implementation of Γ
(a)
k (z),

the required delay elements, real-valued additions and real-valued multiplications for each

H
(c)
k (z) are 584, 22, and 14 respectively.

A more careful inspection of the parameters of the optimum structure reveals that |β1| ≈
0.9866, |β2| ≈ 0.9399, |β3| ≈ 0.7868 and |β4| ≈ 0.3751. This implies that the impulse

responses of the branches corresponding to β3 and β4 decay quite rapidly, and therefore,

some of the samples of these branches can be discarded. In fact the structure meets the

specifications, if the largest 269 samples of the second branch, the largest 61 samples of

the third branch and the largest 19 samples of the fourth branch are preserved. As a result,

the third and the fourth branches can essentially be implemented as symmetric linear-phase

FIR filters of order 61 and 19 respectively.

The above observation justifies a second round of optimization, in order to find the

minimum truncation length Nk for each branch separately. Doing so, it turns out that the

specifications of this example is met with N1 = 288, N2 = 80, N3 = 21 and N4 = 10.

Based on the results given in Table 4.2, the whole structure can be implemented using 81

3The minimum truncation length to meet the specifications is the prime number Nk = 283, which cannot

be factorized and therefore is not interesting in terms of implementation.
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Figure 4.9: The impulse responses for the optimized Parallel Structure II for the specifi-
cations of Example 1. (a) First branch. (b) Second branch. (c) Third branch. (d) Fourth
branch.

real-valued additions, 49 real-valued multiplications and 584 delay elements respectively.

The number of real-valued additions and real-valued multiplications are almost 19% and

16% that of the optimum direct form design, while the number of delays has increased by

less than 14%. The amplitude response of the proposed structure is presented in Fig. 4.10.

The proposed structure shows significant savings compared to other efficient imple-

mentation of linear-phase FIR filters. For instance, to implement the above structure using

the frequency masking response technique [62, 63] a total of 154 real-valued additions, 79
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Figure 4.10: Amplitude response of the Parallel Structure II, meeting the specifications of
Example 1.

real-valued multiplications and 564 delay elements is required. This implies that the pro-

posed design improves the number of real-valued additions and real-valued multiplications

by 47% and 38%, at the expense of 4% extra delay.

By the above setting and based on the results of Section 4.3.1, the maximum variance of

the noise generated by the first and the second branches are 4.53× 106σ2
e and 8.13× 107σ2

e

respectively. This implies that by assigning 13 extra bits, the variance of the noise can be

lowered to that of a single quantizer.

To meet the above specifications, Parallel Structure III requires five branches, where one

of the branches corresponds to A(z) as given by (4.22b) with a single coefficient a0, and

four others correspond to H
(c)
k (z), k = 1, 2, 3, 4 as given by (4.40b). Applying a truncation

length of Nk = 244, k = 1, 2, 3, 4 leads to a filter structure meeting the specifications.

The impulse responses of these four branches of the resulting structure is presented in

Fig. 4.11. By decomposing Nk into n
(a)
k = 122 and n

(b)
k = 2, and considering the results



140

0 100 200 300 400 500 600 700 800 900 1000
−0.01

0

0.01

0 100 200 300 400 500 600 700 800 900 1000
−0.02

0

0.02

0.04

0 100 200 300 400 500 600 700 800 900 1000
−0.1

0

0.1

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

Figure 4.11: The impulse responses for the optimized Parallel Structure III for the speci-
fications of Example 1. (a) First branch. (b) Second branch. (c) Third branch. (d) Fourth
branch.

given on Table 4.3 with recursive implementation of Γ
(a)
k (z), the required delay elements,

real-valued additions and real-valued multiplications for each H
(c)
k (z) are 984, 18, and 15

respectively.

For the optimum structure, |β1| ≈ 0.9871, |β2| ≈ 0.9376, |β3| ≈ 0.7997 and |β4| ≈
0.4207. As for the Parallel Structure II, the impulse response of β3 and β4 decay rapidly,

and therefore the specifications of this example can still be met with N1 = 244, N2 =

64, N3 = 18 and N4 = 5. Based on the results given in Table 4.3 with the recursive
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Figure 4.12: Amplitude response of the Parallel Structure III, meeting the specifications of
Example 1.

implementation of the first and the second branches, and nonrecursive implementation of

the third and the fourth branches, the whole structure can now be implemented using 78

real-valued additions, 55 real-valued multiplications and 984 delay elements respectively.

The zero-phase response of the proposed structure is presented in Fig. 4.12.

By the above setting and based on the results of Section 4.3.1, the maximum variance of

the noise generated by the first and the second branches are 3.91×108σ2
e and 5.24×1010σ2

e

respectively. This implies that by assigning 18 extra bits, the variance of the noise can be

lowered to that of a single quantizer.

Example 2: Consider the specifications of Example 2 on page 93, i.e., ωp = 0.4π,

ωs = 0.402π, δp = 0.01 and δs = 0.001. Parallel Structure III requires six branches

to meet the specifications, where one of the branches corresponds to A(z) as given by

(4.22b) with a single coefficient a0, and five others correspond to H
(c)
k (z), k = 1, 2, . . . , 5

as given by (4.22d). Applying a truncation length of Nk = 1398, k = 1, 2, . . . , 5 leads
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Figure 4.13: The impulse responses for the optimized Parallel Structure II for the specifi-
cations of Example 2. (a) First branch. (c) Third branch.

to a filter structure meeting the specifications. The impulse responses of the first and the

third branches of the resulting structure is presented in Fig. 4.13. By decomposing Nk

into n
(a)
k = 233, n

(1)
k = 2 and n

(2)
k = 3, and considering the results given on Table 4.2 with

recursive implementation of Γ
(a)
k (z), the required delay elements, real-valued additions and

real-valued multiplications for each H
(c)
k (z) are 2804, 28, and 22 respectively.

A more careful inspection of the parameters of the optimum structure reveals that |β1| ≈
0.9973, |β2| ≈ 0.9877, |β3| ≈ 0.9525 and |β4| ≈ 0.8111 and |β5| ≈ 0.4093. This implies

that the impulse responses of the branches corresponding to β4 and β5 decays quite rapidly,

and therefore, some of the samples of these branches can be discarded. In fact the structure

meets the specifications, if the largest 1417 samples of the second branch, the largest 401

samples of the third branch, the largest 87 samples of the fourth branch and the largest 23
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Figure 4.14: Amplitude response of the Parallel Structure II, meeting the specifications of
Example 2.

samples of the fourth branch are preserved. As a result, the third and the fourth branches

can be implemented as symmetric linear-phase FIR filters of order 87 and 23 respectively.

A second round of optimization reveals that with N1 = 1398, N2 = 308, N3 = 104,

N4 = 22 and N5 = 7, the specifications of this example are still met. Based on the results

given in Table 4.2, the whole structure can be implemented using 115 real-valued addi-

tions, 74 real-valued multiplications and 2804 delay elements respectively. The number

of real-valued additions and real-valued multiplications are almost 5% of that of the opti-

mum direct form design, while the number of delays has increased by less than 9%. The

amplitude response of the proposed structure is presented in Fig. 4.14.

The proposed structure shows considerable savings compared to other efficient imple-

mentation of linear-phase FIR filters. For instance, to implement the above structure using

the frequency masking response technique [62,63] a total of 332 real-valued additions, 168



144

real-valued multiplications and 2690 delay elements is required. This implies that the pro-

posed design improves the number of real-valued additions and real-valued multiplications

by 65% and 32%, at the expense of 4% extra delay.

By the above setting and based on the results of Section 4.3.1, the maximum variance

of the noise 5.47 × 1010σ2
e is generated by the third branch. This implies that by assigning

18 extra bits, the variance of the noise can be lowered to that of a single quantizer.

To meet the above specifications, Parallel Structure III also requires six branches, where

one of the branches corresponds to A(z) as given by (4.22b) with a single coefficient a0,

and four others correspond to H
(c)
k (z), k = 1, 2, . . . , 5 as given by (4.40b). Applying a

truncation length of Nk = 1194, k = 1, 2, . . . , 5 leads to a filter structure meeting the

specifications. The impulse responses of the first and the third branches of the resulting

structure is presented in Fig. 4.15. By decomposing Nk into n
(a)
k = 597 and n

(b)
k = 2,

and considering the results given on Table 4.3 with recursive implementation of Γ
(a)
k (z),

the required delay elements, real-valued additions and real-valued multiplications for each

H
(c)
k (z) are 4784, 18, and 15 respectively.

For the optimum structure, |β1| ≈ 0.9971, |β2| ≈ 0.9854, |β3| ≈ 0.9441, |β4| ≈ 0.7864

and |β5| ≈ 0.4076. As for the Parallel Structure II, the impulse response of β4 and β5 decay

rapidly, and therefore the specifications of this example can still be met with N1 = 1194,

N2 = 246, N3 = 69, N4 = 25 and N5 = 5. Based on the results given in Table 4.3 with the

recursive implementation of the first, second and third branches, and nonrecursive imple-

mentation of the fourth and the fifth branches, the whole structure can now be implemented

using 96 real-valued additions, 67 real-valued multiplications and 4784 delay elements re-

spectively. This implies that compared to Parallel Structure II, Parallel Structure III is even

more efficient by 9% and 17% in terms of the number of real-valued multiplications and
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Figure 4.15: The impulse responses for the optimized Parallel Structure III for the specifi-
cations of Example 2. (a) First branch. (c) Third branch.

real-valued additions respectively. However, this comes at the expense of 68% extra delay

elements. The amplitude response of the proposed structure is presented in Fig. 4.16.

By the above setting and based on the results of Section 4.3.1, the maximum variance of

the noise generated by the first and the second branches are 3.08×109σ2
e and 5.24×1011σ2

e

respectively. This implies that by assigning 20 extra bits, the variance of the noise can be

lowered to that of a single quantizer.

Table 4.4 presents the crucial parameters of the structures proposed in this chapter for

the above examples. The required number of elements and the generated noise variance for

different filter structures meeting the specifications of Example 1 and Example 2 have been

summarized in Tables 4.5 and 4.6 respectively.
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Figure 4.16: Amplitude response of the Parallel Structure III, meeting the specifications of
Example 2.

Table 4.4: Summary of the Crucial Parameters of the Re-optimized Parallel Structures II
and III for Example 1 and Example 2

Parallel Structure II Parallel Structure III

Example 1 β1 = 0.2928 + 0.9423i, γ1 = −0.0019 −
0.0085i,

β1 = 0.2941 + 0.9424i, γ1 = −0.0013 −
0.0088i,

β2 = 0.2896 + 0.8979i, γ2 = 0.0008 −
0.0215i

β2 = 0.2934 + 0.8909i, γ2 = 0.0019 −
0.0262i,

β3 = 0.2933 + 0.7548i, γ3 = 0.0068 −
0.0746i,

β3 = 0.2930 + 0.7218i, γ3 = 0.0020 −
0.0858i,

β4 = 0.2934 + 0.3312i, γ4 = 0.1149 −
0.1932i,

β4 = 0.2285 + 0.2871i, γ4 = 0.0958 −
0.2319i,

a0 = 0.0705 0.1145
Example 2 β1 = 0.3056 + 0.9492i, γ1 = −0.0004 −

0.0020i,
β1 = 0.3059 + 0.9493i, γ1 = −0.0004 −
0.0018i,

β2 = 0.3038 + 0.9374i, γ2 = −0.0007 −
0.0059i

β2 = 0.3037 + 0.9385i, γ2 = −0.0009 −
0.0052i

β3 = 0.2998 + 0.8953i, γ3 = −0.0016 −
0.0239i,

β3 = 0.3019 + 0.9033i, γ3 = 0.0002 −
0.0195i,

β4 = 0.2929 + 0.7298i, γ4 = 0.0070 −
0.0842i,

β4 = 0.3002 + 0.7648i, γ4 = 0.0043 −
0.0736i,

β5 = 0.2763 + 0.2996i, γ5 = 0.1125 −
0.1948i,

β5 = 0.2931 + 0.3379i, γ5 = 0.1115 −
0.1982i,

a0 = 0.0721 a0 = 0.0762
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Table 4.5: The Required Number of Elements and the Noise Generated for Different Filter
Structures Implementing Specifications of Example 1

Structure Number of Number of Number of Generated Noise

Required Adders Required Multipliers Required Delays Variance in σ2
e

Cascade Structure I 78 90 654 8.70 × 106

Cascade Structure II 66 77 694 3.54 × 105

Parallel Structure II 81 49 584 8.13 × 107

Parallel Structure III 78 55 984 5.24 × 1010

Frequency Response 154 79 564 –

Masking

Conventional FIR, 513 257 513 –

Direct Form

Table 4.6: The Required Number of Elements and the Noise Generated for Different Filter
Structures Implementing Specifications of Example 2

Structure Number of Number of Number of Generated Noise

Required Adders Required Multipliers Required Delays Variance in σ2
e

Cascade Structure I 81 99 4284 5.83 × 1010

Cascade Structure II 88 103 3714 8.58 × 108

Parallel Structure II 115 74 2804 5.47 × 1010

Parallel Structure III 96 67 4784 5.24 × 1011

Frequency Response 332 168 2690 –

Masking

Conventional FIR, 2541 1271 2541 –

Direct Form





Chapter 5

Concluding Remarks

Efficient decimator and interpolator structures have been the subject of the first part of this

work. The problem of designing 1S2F was shown to boil down to a systematic algorithm

for solving an optimization problem. The algorithm used the fact that the filters of a 1S2F

shape different parts of the amplitude response of a filter, and consequently, the amplitude

response of the filter at the end of each stage of the algorithm is an indication for the

sufficiency of the orders of the constituent filters. In other words, a superfluous ripple in

each band can be compensated by an increase in the order of the filter taking care of that

particular band. Order estimation schemes, especially helpful for narrow transition-band

decimators, were developed to facilitate the algorithm.

MBD’s, which are another class of efficient decimators were subsequently introduced.

By spelling out the zero-phase response of an MBD, and using the result of Proposition

1, the design of these decimators was converted to an algorithm for solving an optimiza-

tion problem. By combining MBD’s and 1S2F’s, and adding extra constraints and using

multiplierless filters, very efficient decimators excelling the known designs were derived.

The presented schemes prove to be the only systematic and the most precise among the
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known schemes, supported by the simulation results presented in Chapter 2.

The focus of the second and third parts of the thesis was on developing efficient struc-

tures for narrow transition-band specifications. The idea was based on different designs

for approximating a zero-phase IIR filter. Four different decomposition schemes were pro-

posed to alleviate the noise and/or reduce the required number of the components. Noise

analysis for all the above-mentioned schemes, taking all the possible decompositions into

account was performed.

The simulation results provided in this work clearly indicate the capabilities and poten-

tials of the proposed schemes. The number of the real-valued multiplications required to

implement the design were a fraction of that of an optimum minimax design. Moreover,

compared to many designs, the proposed design proved to be superior; the design can be

implemented online, its group delay is slightly higher than that of a minimax design, it can

virtually be applied to any set of specifications, and it doesn’t require any time reversal

circuitry.

The simulations proved that the noise generated in the structure is tolerable for a number

of different cases. The flexibility of the design allows the efficiency to be traded by a higher

noise tolerance if needed.

To improve the design, the optimum truncation length for each constituent branch of

the filter can be addressed. As already illustrated in Section 4.4.1, different branches are of

different significance to the overall zero-phase of the design. The optimum length of each

branch is a subject of future topic.



Appendix A

Derivation of Some Formulae in

Chapter 3

A.1 Derivation of (3.17d)

E
(c)
k (z) =2

⎧⎨⎩γk

(
1 − βNk

k z−Nk

)
1 − βkz−1

⎫⎬⎭ (By (3.13c))

=
γk

(
1 − βNk

k z−Nk

)
1 − βkz−1

+
γ∗

k

(
1 − (β∗

k)
Nkz−Nk

)
1 − β∗

kz
−1

=γk

Nk−1∑
n=0

(βk)
nz−n + γ∗

k

Nk−1∑
n=0

(β∗
k)

nz−n =

Nk−1∑
n=0

(γk(βk)
n + γ∗

k(β
∗
k)

n) z−n

=

Nk−1∑
n=0

2Re {γk(βk)
n} z−n

A.2 Derivation of (3.24):

The numerator of (3.24) is obtained by

2{γk

(
1 − β∗

kz
−1
)}

=
(
γk − γkβ

∗
kz

−1
)

+
(
γ∗

k − γ∗
kβkz

−1
)

=2Re (γk) − 2Re (γkβk) z−1

=2Rk cos(Φk) − 2Rkrk cos(Φk − φk)z
−1

151



152

The denominator of (3.24) follows from

(
1 − βkz

−1
) (

1 − β∗
kz

−1
)

=1 − 2Re{βk}z−1 + |βk|2 z−2

=1 − 2rk cos(φk)z
−1 + r2

kz
−2 (A.1)

A.3 Derivation of (3.26):

As shown in (A.1) above:(
1 − βNk

k z−Nk

)(
1 − β∗Nk

k z−Nk

)
= 1 − 2Re{βNk

k }z−Nk +
∣∣∣βNk

k

∣∣∣2 z−2Nk

= 1 − 2rN
k cos(Nkφk)z

−Nk + (rk)
2z−2Nk

(A.2)

Now

E
(c)
k (z) =G

(c)
k (z)
(
1 − β∗Nk

k z−Nk

)(
1 − βNk

k z−Nk

)
( By (3.24) and (3.25))

=
2{γk (1 − β∗

kz
−1)}
(
1 − βNk

k z−Nk

)(
1 − β∗Nk

k z−Nk

)
(1 − βkz−1) (1 − β∗

kz
−1)

=
2{γk (1 − β∗

kz
−1)}Ωk(z)

(1 − βkz−1) (1 − β∗
kz

−1)
(By (A.2) and (3.27))

=
Ωk(z) {γk (1 − β∗

kz
−1) + γ∗

k (1 − βkz
−1)}

(1 − βkz−1) (1 − β∗
kz

−1)

=Ωk(z)

[
γk

(1 − βkz−1)
+

γ∗
k

(1 − β∗
kz

−1)

]
=Ωk(z)2

{
γk

(1 − βkz−1)

}
A.4 Derivation of (3.28):

E
(c)
k (z) =2Ωk(z)

{
γk

1 − βkz−1

}
(By (3.26))

=(1 − βNk
k )(1 − β∗

k
Nk)2
{

γk

1 − βkz−1

}
(By (A.2) and (3.27))

=2
{

γk(1 − β∗
k

Nk)

Nk−1∑
n=0

(βk)
nz−n

}
(A.3)
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The last equality is established by a similar argument presented in the Derivation of (3.17d).

The corresponding impulse response as given by (3.28) follows directly from (A.3).

A.5 Derivation of (3.30b)

To prove the second equality, we note that

2
{

γ̂k

1 − β−1
k z−1

}
= 2
{

γk

z−1 − βk

}
(By (3.30d))

=
γk

z−1 − βk

+
γ∗

k

z−1 − β∗
k

=
−2Re(βkγ

∗
k) + 2Re(γk)z

−1

r2
k − 2Re(βk)z−1 + z−2

=
−2rkRk cos(Φk − φk) + 2Rk cos(Φk)z

−1

r2
k − 2rk cos(φk)z−1 + z−2

=
−2Rkr

−1
k cos(Φk − φk) + 2Rkr

−2
k cos(Φk)z

−1

1 − 2r−1
k cos(φk)z−1 + r−2

k z−2
(A.4)

From (3.26):

E
(c)
k (z−1) =

(
1 − 2rNk

k cos(Nkφk)z
Nk + r2Nk

k z2Nk

)
.2
{

γk

1 − βkz

}
=r2Nk

k z2Nk

(
1 − 2r−Nk

k cos(Nkφk)z
−Nk + r−2Nk

k z−2Nk

){ γk

1 − βkz
+

γ∗
k

1 − β∗
kz

}
=Ω̂k(z)z2Nk

{
γk

1 − βkz
+

γ∗
k

1 − β∗
kz

}
(By (3.30c))

=Ω̂k(z)z2Nk−1

{
γ̂k

1 − β−1
k z−1

+
γ̂∗

k

1 − β∗
k
−1z−1

}
(By (3.30d))

= z2Nk−1Ê
(c)
k (z),

as required by (3.29) and (3.30b).

A.6 Derivation of (3.32)

In what follows, the scaling factor νk has been ignored. By (3.13c)

E
(c)
k (z) = 2

⎧⎨⎩γk

(
1 − βNk

k z−Nk

)
1 − βkz−1

⎫⎬⎭ ,

implying that to implement E
(c)
k (z), it suffices to implement H(z) =

γk

(
1−β

Nk
k z−Nk

)
1−βkz−1 . Thus

the output of E
(c)
k (z) is equal to the output of the real branch of H(z), multiplied by 2.
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(This fact is also illustrated by Fig. 3.4). The impulse response of the aforementioned

H(z), denoted by h[n] is given by

h[n] =

{
γkβ

l
k, 0 ≤ l ≤ Nk − 1,

0, otherwise,

as indicated by (3.32a) and (3.32b).

A.7 Derivation of (3.35b) and (3.36b)

For (3.35b), consider:

αMk
k − z−Mk = α

m
(a)
k m

(b)
k

k − z−m
(a)
k m

(b)
k (By (3.35a))

= α
m

(a)
k m

(b)
k

k

⎛⎝1 −
(

1

αkz

)m
(a)
k m

(b)
k

⎞⎠
= α

m
(a)
k

k α
m

(a)
k

(
m

(b)
k −1

)
k

⎛⎝1 −
(

1

αkz

)m
(a)
k

⎞⎠⎛⎝m
(b)
k −1∑
l=0

(
1

αkz

)lm
(a)
k

⎞⎠ (By (3.34))

=

(
α

m
(a)
k

k − z−m
(a)
k

)m
(b)
k −1∑
l=0

(
α

m
(a)
k

k

)m
(b)
k −1−l

z−lm
(a)
k (A.5)

Now consider (3.21c):

Ê
(r)
k (z) =

κkα
−1
k

(
αMk

k − z−Mk

)
1 − 1

αk
z−1

=

κkα
−1
k

(
α

m
(a)
k

k − z−m
(a)
k

)
1 − 1

αk
z−1︸ ︷︷ ︸

Υ
(a)
k (z)

.

m
(b)
k −1∑
l=0

(
α

m
(a)
k

k

)m
(b)
k −1−l

z−lm
(a)
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Υ
(b)
k (z)

The last equality follows from (A.5). A similar argument goes for (3.36b).
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A.8 Derivation of (3.38a) and (3.38b)

According to (3.36c):

ν̂kΓ
(a)
k (z) =

ν̂kγkβ
−1
k

(
β

n
(a)
k

k − z−n
(a)
k

)
1 − β−1

k z−1
= ν̂kγk β−1

k β
n

(a)
k
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β

n
(a)
k

−1

k

.
1 − β

−n
(a)
k

k z−n
(a)
k

1 − β−1
k z−1︸ ︷︷ ︸

G(z)

.

g[l], the impulse response of G(z) is given by:

g [l] =

⎧⎨⎩β−l
k , 0 ≤ l ≤ n

(a)
k − 1,

0, otherwise,

from which the impulse response of ν̂kΓ
(a)
k (z) (Equations (3.38a) and (3.38b)) follows.

A.9 Derivation of (3.41c) and (3.42c)

First the validity of

Ik∑
i=1

(
m

(i)
k − 1
) i−1∏

l=1

m
(l)
k = m

(b)
k − 1, (A.6)

is proved. To this end,
Ik∑

i=1

(
m(i) − 1

) i−1∏
l=1

m
(l)
k is written down term by term:

i =Ik :
(
m

(Ik)
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) Ik−1∏
l=1

m
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(Ik)
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k (By (3.41a))

i =Ik − 1 :
(
m

(Ik−1)
k − 1

) Ik−2∏
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k

Ik−2∏
l=1

m
(l)
k −

Ik−2∏
l=1

m
(l)
k =

Ik−1∏
l=1

m
(l)
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(
m
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m
(l)
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(1)
k

0∏
l=1

m
(l)
k −

0∏
l=1

m
(l)
k =

1∏
l=1

m
(l)
k − 1

Obviously the second term of the ith row is cancelled by the first term of i − 1th row, and

consequently the whole sum is equal to m
(b)
k − 1.
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Next the validity of
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α
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k m

(i)
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(i)
k

k = α
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k

(
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is established as follows:
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k (By (A.6))

Finally by (3.40), (3.41a) and (3.41d)
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Now
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=
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Υ
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A.10 Derivation of (3.44a) and (3.44b)

Ignoring the scaling coefficients υ̂k

[
j∏

i=1

ϕ
(i)
k

]
γk, an inductive proof (on index j, j =

0, · · · , J) is provided.
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1. Inductive base: With j = 0, the cascade of Γ
(a)
k (z) with no Γ

(j)
k (z) is implied, in other

words j = 0 indicates the impulse response of Γ
(a)
k (z). If j = 0, N (1)

k = n
(a)
k as given

by (3.42d). Consequently, (3.44) boils down to the impulse response of hk(j, l), as

given by

hk(j, l) =

⎧⎨⎩β
(n

(a)
k −1−l)

k , 0 ≤ l ≤ n
(a)
k − 1,

0, otherwise. (A.9)

This is exactly the impulse response of Γ
(a)
k (z), as given by (3.36c).

2. Inductive hypothesis: For any j − 1, we assume that the impulse response of the

cascade of Γ
(a)
k (z) with the first Γ

(i)
k (z), i = 1, · · · , j − 1 is given by

hk(j − 1, l) =

⎧⎨⎩β
(N

(j)
k −1−l)

k , 0 ≤ l ≤ N
(j)
k − 1,

0, otherwise. (A.10)

3. Inductive step: By (3.42c), the transfer function of Γ
(j)
k (z) is given by

Γ
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k (z) =

n
(j)
k −1∑
l=0

(β
N

(j)
k

k )n
(j)
k −1−lz−lN

(j)
k . (A.11)

The terms z−lN
(j)
k in (A.11) indicate that there are N

(j)
k − 1 zeros between each nonzero

impulse response samples of Γ
(j)
k (z). This in turn implies that if the filter with the impulse

response of (A.10) is placed in cascade with the filter with transfer function of (A.11), the

impulse response of the composite filter is a scaled and shifted versions of (A.10). In other

words, the transfer function of the composite filter H̃(z) is given by

H̃(z) =(β
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(j)
k

k )n
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k −1

N
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β
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β
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k (n

(j)
k −1)

N
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β
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k −1−l)

k z−l, (A.12)
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but (3.42d) implies N
(j+1)
k = N

(j)
k n

(j)
k and therefore (A.12) can be expressed as

H̃(z) =

N
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β
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k −1−l)

k z−l +

N
(j)
k −1∑
l=0

β
(N

(j+1)
k −N

(j)
k −1−l)

k z−(l+N
(j)
k ) + · · ·

+

N
(j)
k −1∑
l=0

β
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Finally changing the variables in the summation indices in (A.13) yields

H̃(z) =

N
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k −1∑
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β
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k −1−l)

k z−l,

from which the impulse responses of (3.44) follows.

A.11 Derivation of (3.45a)

Starting from (3.35c) and ignoring the scaling term μ̂k, we have:
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κkα
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k

(
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κkα
m

(a)
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k z−l

A.12 Derivation of (3.49a) and (3.49b)

The impulse response of E
(c)
k is given by (3.28). Equations (3.49a) and (3.49b) are valid

representations of the impulse response of the part prior to the multiplier γk/νk, as seen
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from Fig. 3.11. The reason is that (taking the scaling factor νk into account), multiplying

(3.49a) and (3.49b) by γk/νk yields (3.28), as required.

A.13 Derivation of (3.50)–(3.51)

Let x =
(
rke

jφkz
)−1

. Now by (3.35a)

1 − xNk

1 − xn
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=

n
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)l
=

n
(b)
k −1∑
l=0

(
rke

jφkz
)−n

(a)
k l

, (A.14)

in other words,
(
1 − r−Nk

k e−jNkφkz−Nk

)
is divisible by

(
1 − r

−n
(a)
k

k e−jn
(a)
k φkz−n

(a)
k

)
. By

the same argument,
(
1 − r−Nk

k ejNkφkz−Nk

)
is divisible by

(
1 − r

−n
(a)
k

k ejn
(a)
k φkz−n

(a)
k

)
and

the quotient is
n

(b)
k −1∑
l=0

(
rke

−jφkz
)−n

(a)
k l

. (A.15)

On the other hand, Ω̂k(z) as given by (3.30c) can be factorized as:

Ω̂k(z) =r2Nk
k

(
1 − 2r−Nk

k cos(Nkφk)z
−Nk + r−2Nk

k z−2Nk

)
=r2Nk

k

(
1 − r−Nk

k e−jNkφkz−Nk

)(
1 − r−Nk

k ejNkφkz−Nk

)
(A.16)

and similarly, Ω̂
(a)
k (z) as given by (3.51b) can be factorized as:

Ω̂
(a)
k (z) = r

2n
(a)
k

k

(
1 − r

−n
(a)
k

k e−jn
(a)
k φkz−n

(a)
k

)(
1 − r

−n
(a)
k

k ejn
(a)
k φkz−n

(a)
k

)
. (A.17)

It follows from (A.14), (A.15),(A.16), and (A.17), that Ω̂k(z) is divisible by Ω̂
(a)
k (z):

Ω̂N
k

Ω̂
n

(a)
k

k

=
r2N
k

r
2n

(a)
k

k

Gk(z) = r
n

(a)
k

(
2n

(b)
k −2

)
k Gk(z), (A.18)

where

Gk(z) =

n
(b)
k −1∑
l=0

(
e−jφkn

(a)
k (rkz)−n

(a)
k

)l n
(b)
k −1∑
l=0

(
ejφkn

(a)
k (rkz)−n

(a)
k

)l
. (A.19)
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But Gk(z) according to my notes on (4.32)–(4.34e) for the parallel case (with ejφkn
(a)
k →

αk and rkz → z) can be expressed as

Ω̃
(b)
k (z) =

2n
(b)
k −2∑
l=0

η̃k(l)r
−n

(a)
k lz−ln

(a)
k (A.20)

where

η̃k(l) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
ejφkn

(a)
k

)l+1

−
(
e−jφkn

(a)
k

)l+1(
ejφkn

(a)
k

)
−
(
ejφkn

(a)
k

) , 0 ≤ l ≤ n
(b)
k − 1,

η̃k(2n
(b)
k − 2 − l), n

(b)
k ≤ l ≤ 2n

(b)
k − 2. (A.21)

Since 2j sin(α) = ejα − e−jα, (A.21) can also be expressed as

η̃k(l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin
[
(l + 1)n

(a)
k φk

]l+1

sin
[
n

(a)
k φk

] , 0 ≤ l ≤ n
(b)
k − 1,

sin
[(

2n
(b)
k − 1 − l

)
n

(a)
k φk

]l+1

sin
[
n

(a)
k φk

] , n
(b)
k ≤ l ≤ 2n

(b)
k − 2. (A.22)

Incorporating r−n
(a)
k l in (A.20) and r

n
(a)
k

(
2n

(b)
k −2

)
k in (A.18) into η̃k(l) in (A.22) yields ηk(l) =

r
n

(a)
k

(
2n

(b)
k −2−l

)
k η̃k(l), which is exactly what is given in (3.51d).

A.14 Derivation of (3.54a) and (3.54b)

The transfer function of Hk(z) is (see the left boxed area of Fig. 3.12, prior to the

premultiplier ν̂
(2)
k γ̂k)

Hk(z) =ν̂
(1)
k Ω̂

(a)
k (z)Γ

(a)
k (z)/γ̂k = ν

(1)
k Ω̂

(a)
k (z)

1

1 − β−1
k z−1

. (By (3.52b)) (A.23)

Ω
(a)
k (z) as given by (A.17) can be alternatively expressed as:

Ω
(a)
k (z) = (βkβ

∗
k)

n
(a)
k

(
1 − β

−n
(a)
k

k z−n
(a)
k

)(
1 − β∗

k
−n

(a)
k z−n

(a)
k

)
. (A.24)
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Plugging (A.24) in (A.23) yields

Hk(z) =ν̂
(1)
k (βkβ

∗
k)

n
(a)
k

(
1 − β∗

k
−n

(a)
k z−n

(a)
k

) (1 − β
−n

(a)
k

k z−n
(a)
k

)
1 − β−1

k z−1

=ν̂
(1)
k (βkβ

∗
k)

n
(a)
k

(
1 − β∗

k
−n

(a)
k z−n

(a)
k

) n
(a)
k −1∑
l=0

βk
−lz−l

=
(
ν̂

(1)
k (βkβ

∗
k)

n
(a)
k − βk

n
(a)
k z−n

(a)
k

) n
(a)
k −1∑
l=0

βk
−lz−l (A.25)

The corresponding impulse responses as given by (3.54a) and (3.54b) follow directly from

the above equation.

A.15 Derivation of (3.56b) and (3.56d)

Based on the definition of N
(j)
k (as given by (3.56c)),

N
(j+1)
k = n

(a)
k

j∏
l=1

n
(l)
k =

(
n

(a)
k

j−1∏
l=1

n
(l)
k

)
n

(j)
k = N

(j)
k n

(j)
k .

This implies that (3.56d) is another version of (3.51d), with Nk → N
(j+1)
k , n

(a)
k → N

(j)
k

and n
(b)
k → n

(j)
k .

Finally by the same reasoning presented in the Derivation of (3.50)–(3.52), decomposi-

bility of Nk as given by (3.50), (3.55), and (3.56d) leads to a corresponding decomposibility

of Ω
(b)
k (z), as given by (3.56a) and (3.56b). For instance, assume

Nk =n
(a)
k n

(1)
k n

(2)
k

=N
(1)
k n

(2)
k By (3.56c) (A.26)

Since N
(1)
k divides Nk, then by (A.18) and (A.19), Ω̂

(a,1)
k (z) divides Ω̂k(z), where

Ω̂
(a,1)
k (z) = r

2N
(1)
k

k

(
1 − r

−N
(1)
k

k e−jN
(1)
k φkz−N

(1)
k

)(
1 − r

−N
(1)
k

k ejN
(1)
k φkz−N

(1)
k

)
.
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As proven above, the transfer function of the quotient, denoted by Ω̂
(2)
k (z), is in the

form of (3.56b). But by the same argument, Ω̂
(a,1)
k (z) is divisible by Ω̂

(a)
k (z) as given by

(3.51b), and the quotient, denoted by Ω̂
(1)
k (z), is in the form of (3.56b). In other words, it

has been shown that

Ω̂k(z) = Ω̂
(a)
k (z)Ω̂

(1)
k (z)Ω̂

(2)
k (z)

as required.

A.16 Derivation of (3.58a)

Factorizing n
(a)
k as n

(a)
k = 1.n

(a)
k and applying the decomposition of (3.51a) to Ω̂

(a)
k (z)

as given by (3.51a) yields

Ω̂
(a)
k (z) = Ω̃

(a)
k (z)Ω̃

(b)
k (z) (A.27)

where

Ω̃
(a)
k =r2

k − 2rk cos(nφk)z
−1 + z−2

=r2
k

(
1 − r−1

k e−jφkz−1
) (

1 − r−1
k ejφkz−1

)
=r2

k

(
1 − β−1

k z−1
) (

1 − β∗
k
−1z−1
)
, (A.28)

and

Ω̃
(b)
k (z) =

2n
(a)
k −2∑
l=0

η
(a)
k (l)z−l, (A.29)

with η
(a)
k (l) defined in (3.58b).

Now

Ω̂
(a)
k (z)

{
Γ

(a)
k (z)
}

=Ω̃
(b)
k (z)Ω̃

(a)
k (z)

{
Γ

(a)
k (z)
}

(By (A.27))

=r2
k

2n
(a)
k −2∑
l=0

η
(a)
k (l)z−l{γ̂k

(
1 − β∗

k
−1
)}

(By (A.28), (A.29) and (3.52b))
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from which (3.58a) follows.

A.17 Derivation of (3.58b)

Follows from (3.50) and (3.51d), with Nk → n
(a)
k , n

(a)
k → 1 and n

(b)
k → n

(a)
k .

A.18 Derivation of (3.62a) and (3.62b)

To appreciate these equations, an example is in order. Assuming m
(a)
k =3 and m

(b)
k =2,

by (3.35c), the order of Υ
(a)
k (z) is found to be m

(a)
k − 1 = 2. This implies that the input

signal x(n) is parsed into blocks of length m
(a)
k = 3.

First, the upper branch of the structure of Figs. 3.6 and 3.7 is considered. The upper

demultiplexer has been denoted by Up and the lower one by Lo. The following table

indicates the samples x(n) fed to the upper branch at each time instant n. The table also

signifies which demultiplexer feeds the sample in question.

Time

n
0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

Up x(0) x(1) x(2) − − − x(6) x(7) x(8) − − − x(12) x(13)
Lo − − − x(0) x(1) x(2) − − − x(6) x(7) x(8) − −

Table A.1: The flow of the input samples in the upper branch of the structure of Figs. 3.6
and 3.7.

Obviously the upper branch is in charge of filtering the samples x(0), x(1), x(2), x(6),

x(7), x(8), x(12), x(13), x(14), . . ., and the lower branch is in charge of filtering the sam-

ples x(3), x(4), x(5), x(9), x(10), x(11), x(15), x(16), x(17), . . .. The time instance n = 5

is very important, since then, the output will be computed, and at the same time, the mem-

ory elements will be set to zero before the beginning of a new cycle, that is, the time

instance n = 6. Note that ideally, the output at time n = 5 should be zero, since the order

of the FIR filter Υ
(a)
k (z) is 2. Filtering of 3 samples (such as x(0), x(1), x(2)) by such filter

must yield zero at n = 5. That explains why the memory (delay) elements are set to zero



164

at such time instant.

Based on the above-mentioned example, the effects of the recursive filter on the input

noise x(0) ≡ Ξ
(1)
k,in(0) (as given by (3.59a)) is considered next. As seen from Fig. 3.6, x(0)

is filtered by the recursive IIR filter

H(z) =
1

1 − (1/βk)z−1
, (A.30)

which defines the difference equation

y[n] = x[n] + (1/βk) y[n − 1]. (A.31)

Based on (A.38), for this noise input sample (x(0)), the output of the recursive filter of the

upper branch Ξ
(1)
k,out between the time instants n = 0 and n = 5 is given in Table A.2.

n 0 1 2 3 4 5 (resetting time)

Ξ(1)
k,out x(0) (1/βk)x(0)

(
1/β2

k

)
x(0)

(
1/β3

k

)
x(0)

(
1/β4

k

)
x(0) 0

Table A.2: The output of the recursive filter of the upper branch for n = 0 · · ·n = 5.

As noted from Table A.2, at time n = 5, the filter is reset, implying that the cumula-

tive (recursive) effect of the filter on the noise sample Ξ
(1)
k,in(0) has been removed (in fact

this cancellation applies to other noises in the filter, that is, Ξ
(1)
k,in(1) and Ξ

(1)
k,in(2). Note

that Ξ
(1)
k,in(3), Ξ

(1)
k,in(4) or Ξ

(1)
k,in(5) are not considered here, since the upper demultiplexer is

feeding the lower recursive filter at those time instances).

The next cycle starts at n = 6 and ends at n = 11, following exactly the same pattern

as that for n = 0 up to n = 5. The output noise is zero at n = 5, n = 11, etc, justifying

(3.60a). Compared to the input noise, the output noise is equally amplified at n = 0 and

n = 6, n = 1 and n = 7, etc. This justifies the periodicity of (3.60b), and also explains
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why only the time instances λ ≡ n, 0 ≤ λ ≤ 2n
(a)
k − 2 are considered. (In the above table,

this corresponds to the time instances 0. . .4).

Finally the validity of (3.60b) for each cycle defined above is illustrated. The impulse

response of the H(z) as given by (A.30) is

h(n) = (1/βk)
n, n ≥ 0. (A.32)

The output noise is the convolution sum of the input noise Ξ
(1)
k,in(2ρn

(a)
k +n) with (A.32),

which is exactly (3.60b) for the cycle 0 ≤ i ≤ n (note that in (3.60b), λ ≡ n). In other

words, (3.60b) can be interpreted as multiplying the latest input noise Ξ
(1)
k,in(2ρn

(a)
k + λ) by

(1/βk)
0 = 1,

the previous one i = λ − 1 → Ξ
(1)
k,in(2ρn

(a)
k + λ − 1) by

(1/βk)
1 = 1/βk,

still the previous one i = λ − 2 → Ξ
(1)
k,in(2ρn

(a)
k + λ − 2) by

(1/βk)
2 = 1/β2

k ,

etc.

By considering the fact that the lower branch lags the upper branch by n
(a)
k , (3.61a) and

(3.61b) follow from (3.60a) and (3.60b).

A.19 Derivation of (3.62b)

The cyclic nature of the output noise indicates that a “mod” operator can facilitate the

noise calculation. In the sequel, only the upper branch is considered.

By (3.60a), Ξ
(1)
k,out(l) ≡ Ξ

(1)
k,out(2ρn

(a)
k + λ), therefore λ = l mod (2n

(a)
k ) ≡ (l − j) mod

(n), with j ≡ 0, n ≡ 2n
(a)
k .
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By (3.61a), Ξ
(1)
k,out(l) ≡ Ξ

(1)
k,out((2ρ+1)n

(a)
k +λ), therefore λ = (l−n

(a)
k ) mod (2n

(a)
k ) ≡

(l − j) mod (n) with j ≡ n
(a)
k , n ≡ 2n

(a)
k .

In (3.62b), the variable ”j” denotes the lag between the upper and lower branches,

in other words, if the upper branch is at time l of the above-mentioned noise cycle, the

lower branch is at time l − n
(a)
k of the noise cycle. Using j, a single symbol Ξ

(m)
k,out(l, j, n)

encompasses the noise cycle in both the upper and the lower branches.

In other words, to obtain the overall (cyclic) noise of the structure of Fig. 3.7, the time

instant (l), the lag (j) between the upper and the lower branches, and the base of the mod

operation (n) are needed, and moreover, the branch in question (m) should be specified.

The function Ξ
(m)
k (l, j, n) contains all these features effectively, and when convolved by the

input noise as governed by the modular convolution of (3.62b), yields the overall output

noise.

A.20 Derivation of (3.62a)

In words, (3.62a) states that ”add the output noises of the first and the second branches,

Ξ
(1)
k,out(l)+Ξ

(2)
k,out(l), using the notation of (3.62b), and convolve that by Υ

(b)
k (z)/μ̂k, as shown

in Fig. 3.7”.

A.21 Derivation of (3.63a)–(3.64b) for Fig. 3.7

Taking the upper branch into account, two separate noise sources in the structure are

distinguished, i.e., the noise generated by the multipliers before the demultiplexers, and

those generated by the upper recursive filter coefficients.

The noise generated by the multipliers before the demultiplexers

Denoting the input noise sample to the upper branch at time instant i by ei, the output noise

Ξ
(1)
k,out(n) of the upper branch of Fig. 3.7 is presented in Table A.3.
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n 0 1 2 . . . 2m(a)
k − 1

Ξ(1)
k,out(n) E0 = e0 E1 = e1 +

(1/αk)E0

E2 = e2 + (1/αk)E1 . . . 0 (=resetting time)

= e1 + (1/αk) e0 =(1/αk)2 e0 +(1/αk) e1 +
e2

Table A.3: The output noise of the upper branch of Fig. 3.7, generated by the multipliers
before the demultiplexers.

Table A.3 is in fact a generalization of Table A.2, where all the input samples (instead of

only e0) are considered, and is therefore governed by the same difference equation ((A.32)).

In other words,

En =
n∑

i=0

Tn−iei, 0 ≤ n ≤ 2m
(a)
k − 2, (A.33)

where the coefficients Tn are defined recursively as:

T0 = 1, and Tn = 1/αkTn−1, (A.34)

as indicated by the transfer function of the recursive filter H(z), defined in (A.30). Equation

(A.35) can alternatively be expressed as

En =
n∑

i=0

(1/αk)
n ei, 0 ≤ n ≤ 2m

(a)
k − 2. (A.35)

The noise generated by the upper recursive filter

The noise generated by the upper recursive filter lags that generated by the multipliers

before the demultiplexers by one sample (since it takes one multiplication operation before

this noise is generated in the recursive part of the filter), but otherwise, it is subject to the

same recursion. The generation of noise originated by the upper recursive filter is illustrated

in Table A.4.
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n 0 1 2 3 . . . 2m(a)
k − 1

Ξ(1)
k,out(n) 0

(=zero still in

the memory)

F1 = f1 F2 = f2 +
(1/αk)F1 =
f2 +(1/αk) f1

F3 =
f3+(1/αk)F2 =
f3 +(1/αk) f2 +
(1/αk)2 f1

. . . 0 (=resetting

time)

Table A.4: Generation of noise originated by the upper recursive filter in Fig 3.7.

Comparing Table A.4 to Table A.3 reveals that Fn =
n∑

i=1

Tn−ifi, where Ti is defined in

(A.34). As seen above, the lower bound of index i lags that of En by 1.

n 1 2 3 4 5 . . . 2ρn
(a)
k

0
(=zero in the
memory)

f1 f2 +
1
βk

f1

f3 + 1
βk

f2 +
1
β2

k
f1

f4 + 1
βk

f3 +
1
β2

k
f2 + 1

β3
k
f1

. . . 0 (=resetting
time)

The total noise

Considering the independency of fi (n) and ei (n), and appreciating the fact that the noise

variances of both fi and ei is σ2
e , the total variance of the noise generated at time n in the

upper branch is:

Vn =

⎡⎢⎢⎢⎢⎢⎣
n∑

i=0

T 2
n−i︸ ︷︷ ︸

The part related to Ei

+
n∑

i=1

T 2
n−i︸ ︷︷ ︸

The part related to Fi

⎤⎥⎥⎥⎥⎥⎦σ2
e
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k=n−i
=

⎡⎢⎢⎢⎢⎢⎣
n∑

k=0

T 2
k︸ ︷︷ ︸

The part related to Ei

+
n−1∑
k=0

T 2
k︸ ︷︷ ︸

The part related to Fi

⎤⎥⎥⎥⎥⎥⎦σ2
e ,

=

[
n−1∑
k=0

(1/αk)
2 +

n∑
k=0

(1/αk)
2

]
σ2

e , (A.36)

where σ2
e = 2−2b

12
is the variance of a single noise source.

The geometric series of (A.36) can be written in the following closed form:

Vn =

[
2

n−1∑
i=0

1

α2i
k

− 1

α2n−2
k

]
σ2

e =

[
2
1 − α−2n

k

α−2
k

− 1

α2n−2
k

]
σ2

e . (A.37)

The output of Υ
(a)
k (z)

Considering the fact that the variance of the noise at each branch is periodic with the period

of 2m
(a)
k , and also the fact that the variance of the noise at the time instant n + m

(a)
k for the

lower branch is equal to that of the upper branch at the time instant n, the variance of the

noise at any time instant n at the output of Υ
(a)
k (z) is:

Vtot = Vn + V
n+m

(a)
k

, (A.38)

where Vn is given by (A.37).

The output of Ê
(r)
k (z)

As seem from Fig. 3.7, the noise at the output of Υ
(a)
k (z) is fed to the FIR filter Υ

(b)
k (z)/μ̂k,

whose transfer function is given by (3.35d). The total noise variance at the filter output is

consequently ⎡⎣m
(b)
k −1∑
i=0

⎛⎝α
im

(a)
k

k

μ̂k

⎞⎠2⎤⎦Vtot + m
(b)
k σ2

e ,
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where Vtot is given by (A.38).

A.22 Derivation of (3.63a)–(3.66c) for Fig. 3.6

The derivation of (3.63a)–(3.64b) for Fig. 3.6 follows the same principle as that stated

for Fig. 3.7. The only difference is the complex nature of the noise and the coefficients. In

what follows, the upper branch is considered first.

The noise generated by the multipliers before the demultiplexers

The output noise Ξ
(1)
k,out(n) of the upper branch of Fig. 3.6 is presented in Table A.5, which

is essentially Table A.3 of Fig. 3.7 with αk �→ βk and m
(a)
k �→ n

(a)
k .

n 0 1 2 . . . 2n(a)
k − 1

Ξ(1)
k,out(n) E0 = e0 E1 = e1 +

(1/βk)E0

E2 = e2 + (1/βk)E1 . . . 0 (=resetting time)

= e1 + (1/βk) e0 =(1/βk)2 e0 + (1/βk) e1 +
e2

Table A.5: The output noise of the upper branch of Fig. 3.6, generated by the multipliers
before the demultiplexers.

As for the case of Fig. 3.7, in general:

En =
n∑

i=0

Tn−iei, 0 ≤ n ≤ 2n
(a)
k − 2,

where the coefficients Tn are defined according to (A.34), with αk �→ βk.

Since the noise En is complex, the real and the imaginary parts of En are

Re {En} =Re

{
n∑

i=0

Tn−iei

}
=

n∑
i=0

Re {Tn−iei}

=
n∑

i=0

(Re {Tn−i}Re {ei} − Im {Tn−i} Im {ei}) (A.39a)
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and

Im {En} =Im

{
n∑

i=0

Tn−iei

}
=

n∑
i=0

Im {Tn−iei}

=
n∑

i=0

(Re {Tn−i} Im {ei} + Im {Tn−i}Re {ei}) (A.39b)

respectively.

Considering the independency of Re {ei} and Im {ei}, and appreciating the fact that the

noise variance of both Re{ei} and Im{ei} is σ2
e , the variances of the real and the imaginary

parts of En are followed from (A.39a) and (A.39b) to be

var (Re {En}) =var (Im {En}) = An+1σ
2
e (A.40a)

where

An+1 =
n∑

i=0

Re2 {Tn−i} + Im2 {Tn−i} .

=
n∑

i=0

∣∣∣∣ 1βi
k

∣∣∣∣2 (By (A.35)) (A.40b)

The noise generated by the upper recursive filter

The generation of noise originated by the upper recursive filter is illustrated in Table A.6.

n 0 1 2 3 . . . 2n(a)
k −1

Ξ(1)
k,out(n) 0

(=zero

still in the

memory)

F1 = f1 F2 = f2 + (1/βk)F1 =
f2 + (1/βk) f1

F3 = f3 + (1/βk)F2 =
(1/βk)2 f1+(1/βk) f2+
f3

. . . 0 (=re-

setting

time)

Table A.6: Generation of noise originated by the upper recursive filter in Fig. 3.6.

As seen from Table A.6, the noise generated by the upper recursive filter lags that

generated by the multipliers before the demultiplexers by one sample (since it takes one
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multiplication operation before this noise is generated in the recursive part of the filter), but

otherwise, it is subject to the same recursion. Consequently, the variance of the real and

complex parts of the noise Fn are simple modification of (A.40a), as given by

var (Re {Fn}) =var (Im {Fn}) = 2Anσ
2
e (A.41)

The premultiplier ”2” in (A.41) stems from the fact that both the real and the imaginary

parts of the complex noise fi are equivalent to two noise sources, since they are generated

by two multiplications.

The total noise

Considering the independencies of the real and imaginary parts of the complex noises fi

and ei, the total variance of the noise generated at time n in the upper branch follows from

(A.40a) and (A.41) to be

Vn = (2An + An+1) σ2
e . (A.42)

The variance Vn as given by (A.42) applies to both the real and the imaginary parts of the

upper branch.

The output of Γ
(a)
k (z)

Considering the fact that the variance of the noise at each branch is periodic with the period

of 2n
(a)
k , and also the fact that the variance of the noise at the time instant n + n

(a)
k for the

lower branch is equal to that of the upper branch at the time instant n, the variance of the

noise at any time instant n at the output of Γ
(a)
k (z) is:

Vtot = Vn + V
n+n

(a)
k

, (A.43)

where Vn is given by (A.42). The total variance Vtot as given by (A.43) applies to both the

real and the imaginary parts of the output of Γ
(a)
k (z).
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The output of Ê
(r)
k (z)

As seen from Fig. 3.6, the noise at the output of Γ
(a)
k (z) is fed to the FIR filter Γ

(b)
k (z)/ν̂k,

whose transfer function is given by (3.36d). The total noise variance at the filter output is

consequently ⎡⎣n
(b)
k −1∑
i=0

(bi)
2

⎤⎦Vtot + (2n
(b)
k − 1)σ2

e , (A.44)

where Vtot is given by (A.43) and

bi = abs

⎛⎝2β
in

(a)
k

k

ν̂k

⎞⎠ .

Note that each complex multiplier 2β
in

(a)
k

k

ν̂k
is realized by 2 real multipliers except for the

real multiplier b0. Hence the total number of real multipliers to implement all 2β
in

(a)
k

k

ν̂k
’s is

2n
(b)
k − 1, explaining the second term of (A.44).

A.23 Derivation of (3.69a) and (3.69b)

To appreciate these equations, an example is in order. Assuming n
(a)
k =2 and n

(b)
k =3, by

(3.51b), (3.52a) and (3.52b), the order of

[
Ω̂

(a)
k (z)

{
Γ

(a)
k (z)
}]

is found to be 2n
(a)
k − 1 =

3. This implies that the input signal x(n) is parsed into blocks of length 2n
(a)
k = 4.

First, the upper branch of the structure of Fig. 3.12 is considered. The upper demulti-

plexer has been denoted by Up, the middle demultiplexer by Mi and the lower one by Lo.

The following table indicates the samples x(n) fed to the upper branch at each time instant

n. The table also signifies which demultiplexer feeds the sample in question.

Obviously the upper branch is in charge of filtering the samples x(0), x(1), x(2), x(3),

x(8), x(9), x(10), x(11), x(16), . . ., and the lower branch is in charge of filtering the sam-

ples x(4), x(5), x(6), x(7), x(12), x(13), x(14), x(15), x(20), . . .. The time instance n = 7

is very important, since then, the output will be computed, and at the same time, the
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Time

n
0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

Up x(0) x(1) x(2) x(3) − − − − x(8) x(9) x(10) x(11) − −
Mi − − x(0) x(1) x(2) x(3) − − − − x(8) x(9) x(10) x(11)
Lo − − − − x(0) x(1) x(2) x(3) − − − − x(8) x(9)

Table A.7: The flow of the input samples in the upper branch of the structure of Fig. 3.12.

memory elements will be set to zero before the beginning of a new cycle, that is, the

time instance n = 8. Note that ideally, the output at time n = 7 should be zero, since

the order of the FIR filter

[
Ω̂

(a)
k (z)

{
Γ

(a)
k (z)
}]

is 3. Filtering of 4 samples (such as

x(0), x(1), x(2), x(3) ) by such filter must yield zero at n = 7. That explains why the

memory (delay) elements are set to zero at such time instant.

Based on the above-mentioned example, the effects of the recursive filter on the input

noise x(0) ≡ Ξ
(1)
k,in(0) (as given by (3.59a)) for the time instants n = 0 · · · 7 is presented

in Table A.8. The result is identical to that presented in TableA.2, since x(0) in both cases

is subject to the same recursive filter as given by (A.30), and therefore the argument of

page 164 applies. The only difference is that for the structure of Fig. 3.12, the cycle takes

4n
(a)
k − 1 samples, while for that of Fig. 3.6, the cycle takes 2n

(a)
k − 1 samples.

n 0 1 2 3 4 5 6 7 (re-

setting

time)

Ξ(1)
k,out x(0) (1/βk)x(0)

(
1/β2

k

)
x(0)

(
1/β3

k

)
x(0)

(
1/β4

k

)
x(0)

(
1/β5

k

)
x(0)

(
1/β6

k

)
x(0) 0

Table A.8: The output of the recursive filter of the upper branch for n = 0 · · ·n = 7.

A.24 Derivation of (3.69b)

The cyclic nature of the output noise indicates that a “mod” operator can facilitate the

noise calculation. In the sequel, only the upper branch is considered.
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By (3.67a), Ξ
(1)
k,out(l) ≡ Ξ

(1)
k,out(4ρn

(a)
k + λ), therefore λ = l mod (4n

(a)
k ) ≡ (l − j) mod

(n), with j ≡ 0, n ≡ 4n
(a)
k .

By (3.67b), Ξ(1)
k,out(l) ≡ Ξ

(1)
k,out((4ρ+2)n

(a)
k +λ), therefore λ = (l−2n

(a)
k ) mod (4n

(a)
k ) ≡

(l − j) mod (n) with j ≡ 2n
(a)
k , n ≡ 4n

(a)
k .

A.25 Derivation of (3.69a)

In words, (3.69a) states that ”add the output noises of the first and the second branches,

Ξ
(1)
k,out(l) + Ξ

(2)
k,out(l), using the notation of (3.69b), and convolve that by Ω̂

(b)
k (z)/ν̂

(1)
k ν

(2)
k ,

as shown in Fig. 3.12”. Note that the coefficients of Ω̂
(b)
k (z) are called ηk(l), as given by

(3.51c).

A.26 Derivation of (3.70c)–(3.70g) for Fig. 3.12

Taking the upper branch into account, two separate noise sources in the structure are

distinguished, i.e., the noise generated by the multipliers before the demultiplexers, and

those generated by the upper recursive filter coefficients.

The noise generated by the multipliers before the demultiplexers

Since at different time instants, the upper branch is fed by different number of demultiplex-

ers, the noise generated by the multipliers before the demultiplexers has a time dependent

variance. For instance as seen from Table A.7, at time instants n = 0 or n = 1, there

is only one noise input, but at time instants n = 2 · · · 5, there are two noise inputs. This

time dependency of the input noise can be characterized by a variable c(n), which has been

considered in more details later. To make the analysis less complicated, for the moment we

assume that ∀n : c(n) = 1, in other words, it has been assumed that there is only one input

noise at each time.

Denoting the input noise sample to the upper branch at time instant i by ei, the output
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noise Ξ
(1)
k,out(n) of the upper branch of Fig. 3.12 is presented in Table A.9.

n 0 1 2 . . . 4n(a)
k − 1

Ξ(1)
k,out(n) E0 = e0 E1 = e1 +

(1/βk)E0

E2 = e2 + (1/βk)E1 . . . 0 (=resetting time)

= e1 + (1/βk) e0 =(1/βk)2 e0 + (1/βk) e1 +
e2

Table A.9: The output noise of the upper branch of Fig. 3.12, generated by the multipliers
before the demultiplexers.

Apart from the resetting time, Table A.9 is identical to Table A.5, and therefore the

analysis presented on page 170 applies here too. The only difference is that now ei is real,

and therefore Im{ei} = 0. By this setting, the real and imaginary parts of En are simple

modifications of (A.39a) and (A.39b), and are given by

Re {En} =
n∑

i=0

Re {Tn−i}Re {ei} (A.45a)

and

Im {En} =
n∑

i=0

Im {Tn−i}Re {ei} (A.45b)

respectively. The coefficients Tn are defined according to (A.34), with αk �→ βk.

Considering the independency of Re {ei} and Im {ei}, and appreciating the fact that the

noise variance of both Re{ei} and Im{ei} is σ2
e , the variances of the real and the imaginary

parts of En are followed from (A.45a) and (A.45b) to be

var (Re {En}) =var

(
n∑

i=0

Re {Tn−i}Re {ei}
)

=
n∑

i=0

Re2

{
1

βi
k

}
σ2

e (A.46a)



177

and

var (Im {En}) =var

(
n∑

i=0

Im {Tn−i}Re {ei}
)

=
n∑

i=0

Im2

{
1

βi
k

}
σ2

e . (A.46b)

The correspondence of Tn to 1/βk is established in (A.35) with αk �→ βk.

The noise generated by the upper recursive filter

The generation of noise originated by the upper recursive filter is illustrated in Table A.6.

n 0 1 2 3 . . . 4n(a)
k −1

Ξ(1)
k,out(n) 0

(=zero

still in the

memory)

F1 = f1 F2 = f2 + (1/βk)F1 =
f2 + (1/βk) f1

F3 = f3 + (1/βk)F2 =
(1/βk)2 f1+(1/βk) f2+
f3

. . . 0 (=re-

setting

time)

Table A.10: Generation of noise originated by the upper recursive filter in Fig. 3.12.

Apart from the resetting time, Table A.10 is identical to Table A.6, and therefore the

analysis presented on page 170 applies here too. The only difference is that at any time

instance n, fn is generated by a real input while Fi, i < n are generated by complex

inputs. In other words, fn is generated by one and Fi, i < n by two multiplications. Since

each multiplication gives rise to a quantization error input, this error dependency should be

included in (A.41). To this end, the coefficient c2(i) is introduced to modify (A.41) as

var (Re {Fn}) =var (Im {Fn}) =
n∑

i=1

c2(i)

∣∣∣∣ 1

βi−1
k

∣∣∣∣2 σ2
e , (A.47)

with

c2(i) =

{
1, i = 1,

2, otherwise. (A.48)

Note that An as given by (A.41) is defined in (A.40b).
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The total noise

Considering the independencies of the real and imaginary parts of the complex noises fi

and ei, the total variance of the noise generated at time n in real and imaginary parts of the

upper branch follows from (A.46) and (A.47) to be

Vn,re =
n∑

i=0

c1(i)Re2

{
1

βi
k

}
σ2

e +
n∑

i=1

c2(i)

∣∣∣∣ 1

βi−1
k

∣∣∣∣2 σ2
e (A.49a)

and

Vn,im =
n∑

i=0

c1(i)Im
2

{
1

βi
k

}
σ2

e +
n∑

i=1

c2(i)

∣∣∣∣ 1

βi−1
k

∣∣∣∣2 σ2
e (A.49b)

respectively.

To find out the coefficient c(i), the example of page 173 is reconsidered. As illustrated

by Table A.7, the time slot in which the upper branch is fed by the demultiplexers Up,Mi

and Lo is 0 ≤ n ≤ 2n
(a)
k −1, n(a)

k ≤ n ≤ 3n
(a)
k −1, and 2n

(a)
k ≤ n ≤ 4n

(a)
k −1 respectively.

In other words, at time instants n
(a)
k ≤ n ≤ 3n

(a)
k − 1, two simultaneous input noise are

introduced to the upper branch by the demultiplexers, and the values to be counted twice

are in a ”window”, starting from n − 3n
(a)
k + 1 stretching up to n − n

(a)
k (if possible). For

instance as seen from Table A.7, at n = 6, the noises produced from n − 3n
(a)
k + 1 = 1 to

n − n
(a)
k = 4 samples before n = 6 should be considered twice, that is, the noise produced

at time instants 2 · · · 5. Consequently, c1(i) in (A.49a) and (A.49b) can be expressed as

c1(i) =

⎧⎨⎩2, n − 3n
(a)
k + 1 < i ≤ n − n

(a)
k ,

1, otherwise. (A.50)

The output prior to the multiplier ν̂
(2)
k γ̂k

Considering the fact that the variance of the noise at each branch is periodic with the period

of 4n
(a)
k , and also the fact that the variance of the noise at the time instant n + 2n

(a)
k for
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the lower branch is equal to that of the upper branch at the time instant n, the variances of

the real and the imaginary part of the noise at any time instant n at the output prior to the

multiplier ν̂
(2)
k γ̂k are given by

Vn,tot,re = Vn,re + V
n+2n

(a)
k ,re (A.51a)

and

Vn,tot,im = Vn,im + V
n+2n

(a)
k ,im (A.51b)

where Vn,re and Vn,im are given by (A.49a) and (A.49b) respectively.

The output after ν̂
(2)
k γ̂k

The variance of the output noise after the multiplier ν̂
(2)
k γ̂k is given by

Vn,tot = Re2
{
ν̂

(2)
k γ̂kVn,tot,re

}
+ Im2
{
ν̂

(2)
k γ̂k

}
Vn,tot,im + 2σ2

e . (A.52)

The term σ2
e in (A.52) signifies the noise generated by the two real multiplier imple-

menting the complex multipliers ν̂
(2)
k γ̂k.

The output of Ê(c)(z)

As seem from Fig. 3.12, the noise after the multiplier ν̂
(2)
k γ̂k is fed to the FIR filter with

the transfer function 2Ω̂
(b)
k (z)/ν̂

(1)
k ν

(2)
k . The transfer function of Ω̂

(b)
k (z) is given by (3.51c),

and consequently, the total noise variance at the filter output is given by⎡⎣2n
(b)
k −2∑
i=0

(bi)
2

⎤⎦Vn,tot + (2n
(b)
k − 1)σ2

e , (A.53)

where

bi = abs

(
2ηk(i)

ν̂
(1)
k ν̂

(2)
k

)
.
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The term (2n
(b)
k − 1)σ2

e in (A.53) signifies the noise generated by the (2n
(b)
k − 1) real

multipliers implementing the filter with the transfer function 2Ω̂
(b)
k (z)/ν̂

(1)
k ν

(2)
k .



Appendix B

Derivation of Some Formulae in

Chapter 4

B.27 Derivation of (4.1)

Consider the numerator of (3.10). Now

(1 − qkz
−1)(1 − qkz) = 1 − qk(z + z−1) + q2

k = −qk

[
(z + z−1) − (qk + q−1

k )
]
.

The same applies to the each numerator/denominator term of G(z)G(z−1).

B.28 Derivation of (4.3b)

By (4.2c) and the definition of (4.4b), (4.3b) follows from the identity:

m

(z + z−1) − (x + x−1)
=

−x.m

(1 − xz−1)(1 − xz)
(B.1)
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B.29 Derivation of (4.3a)

Consider (4.2b). Now

Ak(z) =
L−K∑
k=0

Ak

(
z + z−1

)k
= A0

(
z + z−1

)0
+ A1

(
z + z−1

)1
+ A2

(
z + z−1

)2
+ A3

(
z + z−1

)3
+ · · ·

=

(
0

0

)
A0z

0+

=

(
1

0

)
A1z

−1 +

(
1

0

)
A0z

1

=

(
2

0

)
A2z

−1 +

(
2

1

)
A2z

0 +

(
2

2

)
A2z

1

=

(
3

0

)
A3z

−3 +

(
3

1

)
A3z

−2 +

(
3

2

)
A3z

1 +

(
3

3

)
A3z

3 + · · ·

The pattern above is exactly what has been expressed in (4.3a) with ak defined in (4.4a).

(The pattern follows that of the so-called Pascal triangle [45].)

B.30 Derivation of (4.8) and (4.10b)

Based on the identity

(1 − αz)
(
1 − αz−1

) M−1∑
n=−M+1

α|n|zn =1 − α2 + αM+1
[
zM−1 + z−(M−1)

]
− αM
[
zM + z−M

]
,

(4.8) simplifies to

κk

1 − α2
k

Mk−1∑
n=−Mk+1

α
|n|
k zn,

whose impulse response is a truncation of (4.5c), as represented by (4.7). Derivation of

(4.10b) follows by the same argument.
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B.31 Derivation of (4.15)

By (4.13), R̂(z) is an FIR filter, whose impulse response should be defined for |n| ≤
Mk − 1. Using (4.13) and ignoring the scaling factor κk, the transfer function of R̂(z) can

be written as:

1 + α2Mk
k

(1 − αkz−1)(1 − αkz)
−αMk

k zMk
1

(1 − αkz−1)(1 − αkz)
−αMk

k z−Mk
1

(1 − αkz−1)(1 − αkz)
.

(B.2)

By (4.3b) and (4.5c), the impulse response of 1
(1−αk(z))(1−αk(z−1))

is given by α
|n|
k

1−α2
k
.

Hence (using the time shift property of z-transform [72]), the impulse response of (B.2)

can be expressed as(
1 + α2Mk

k

)
α
|n|
k

1 − α2
k

− αMk
k

α
|n+Mk|
k

1 − α2
k

− αMk
k

α
|n−Mk|
k

1 − α2
k

, |n| < Mk − 1. (B.3)

Since |n| < Mk − 1, α
|n+Mk|
k = αMk

k αn
k and α

|n−Mk|
k = αMk

k α−n
k , and consequently the

numerator of (B.3) becomes:

(
1 − α2Mk

k

)
α
|n|
k − α2Mk

k

(
αn

k + α−n
k

)
=α

|n|
k + α2Mk

k α
|n|
k︸ ︷︷ ︸

T1

−α2Mk
k αn

k︸ ︷︷ ︸
T2

−α2Mk
k α−n

k︸ ︷︷ ︸
T3

=α
|n|
k − α2Mk

k α
−|n|
k ,

since for n ≥ 0, T1 = T2, and for n < 0, T1 = T3.

B.32 Derivation of (4.16)

Obviously (
N−1∑
l=0

xlz−l

)(
N−1∑
l=0

xlzl

)
= t(0) +

N−1∑
l=1

t(l)
(
zl + z−l

)
, (B.4a)

where

t(l) = xl
(
1 + x2 + · · · + (x2

)(N−1−l)
)

=
xl
(
1 − (x2)

(N−l)
)

1 − x2
. (B.4b)
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Expressing (4.14b) as

Γ̂k(z) =γk

(
Nk−1∑
l=0

βl
kz

−l

)(
Nk−1∑
l=0

βl
kz

l

)
(B.5)

and applying (B.4) to (B.5) yields

Γ̂k(z) = tk(0) +

Nk−1∑
l=1

tk(l)
(
zl + z−l

)
, (B.6a)

where

tk(l) =
γkβ

l
k

(
1 − (β2

k)
Nk−l
)

1 − β2
k

. (B.6b)

Now

Ĉk(z) =2
{

Γ̂k(z)
}

( By (4.14a))

=2Re{tk(0)} +

Nk−1∑
l=1

2Re{tk(l)}
(
zl + z−l

)
( By (B.6a)) (B.7)

By (B.6b), the transfer function of (B.7) gives the impulse response of (4.16).

B.33 Derivation of (4.17a)–(4.19)

Starting from (4.3c):

Ck(z) =2
{

γk

(1 − βkz) (1 − βkz−1)

}
=

γk

(1 − βkz) (1 − βkz−1)
+

γ∗
k

(1 − β∗
kz) (1 − β∗

kz
−1)

=

η0︷ ︸︸ ︷
γk

(
1 + β∗

k
2
)

+ γ∗
k

(
1 + β2

k

)
+

η1︷ ︸︸ ︷
(−2γkβ

∗
k − 2γ∗

kβk) (z + z−1)

(1 − βkz) (1 − βkz−1) (1 − β∗
kz) (1 − β∗

kz
−1)

Ω̂k(z) implements the truncation by providing zeros to cancel the poles of Ck(z), in

other words Ĉk(z) = Ω̂k(z)Ck(z), which by (4.3c) yields (4.19).
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B.34 Derivation of (4.20)

By (4.3d), (4.14b) and (4.18b):

Γ̃k(z) ≡Ω̂k(z)Γk(z)

=γk

(
1 − βNk

k z−Nk

)(
1 − βNk

k zNk

)
(1 − βkz−1) (1 − βkz)

(
1 − β∗

k
Nkz−Nk

) (
1 − β∗

k
NkzNk
)

=Γ̂k(z)Ω̃k(z), (B.8a)

where

Ω̃k(z) =
(
1 − β∗

k
Nkz−Nk

) (
1 − β∗

k
NkzNk
)

=1 + β∗
k
2Nk − β∗

k
Nk
(
zNk + z−Nk

)
. (B.8b)

Equation (B.8) implies that the transfer function of Γ̃k(z) is a scaled and shifted version

of that of Γ̂k(z), where the transfer function Ω̃k(z) determines the shift and the scaling.

Using (B.6), the resulting transfer function is given by

Γ̃k(z) =
(
1 + β∗

k
2Nk
)
tk(0) +

Nk−1∑
l=1

(
1 + β∗

k
2Nk
)
tk(l)
(
zl + z−l

)
−

Nk−1∑
l=1

β∗
k

Nktk(l)
[
zl−Nk + z−(l−Nk) + zl+Nk + z−(l+Nk)

]
. (B.9)

Hence for 0 ≤ l ≤ Nk − 1, the impulse response of Γ̃k(z), denoted by g(l) is given by

g(l) =
(
1 + β∗

k
2Nk
)
tk(l) − β∗

k
Nktk(Nk − l)

=
γk

1 − β2
k

[(
1 + β∗

k
2Nk
) (

βl
k − β2Nk−l

k

)
+ β∗

k
Nk

(
βNk+l

k − βNk−l
k

)]
. (B.10)

For Nk ≤ l ≤ 2Nk − 1, g(l) is given by

−β∗
k

Nktk(l − Nk) =
γk (βkβ

∗
k)

Nk

(
β2Nk−l

k − βl−2Nk
k

)
1 − β2

k

. (B.11)
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B.35 Derivation of (4.25)–(4.27)

Obviously

1 −
(

αMk
k +

1

αMk
k

)
z−Mk + z−2Mk =

(
1 − (αkz

−1
)Mk

)(
1 − (α−1

k z−1
)Mk

)
. (B.12)

Ignoring the term κk(αk)
(Mk−1), (B.12) presents a factorization for the numerator of

(4.22c). If Mk = m
(a)
k m

(a)
k , then (4.23) can be applied to the right hand side (RHS) of

(B.12), yielding(
1 − (αkz

−1)
Mk

)(
1 − (α−1

k z−1
)Mk

)
=

(
1 − α

m
(a)
k

k z−m
(a)
k

)m
(b)
k −1∑
i=0

(
α

m
(a)
k

k z−m
(a)
k

)i(
1 − α

−m
(a)
k

k z−m
(a)
k

)m
(b)
k −1∑
i=0

(
α
−m

(a)
k

k z−m
(a)
k

)i

=

⎛⎝1 −
⎛⎝α

m
(a)
k

k +
1

α
m

(a)
k

k

⎞⎠ z−m
(a)
k + z−2m

(a)
k

⎞⎠
︸ ︷︷ ︸

T

×

m
(b)
k −1∑
i=0

(
α

m
(a)
k

k z−m
(a)
k

)i

.

m
(b)
k −1∑
i=0

(
α
−m

(a)
k

k z−m
(a)
k

)i

︸ ︷︷ ︸
S

Ignoring the term κk(αk)
(Mk−1), T defines the numerator of (4.25b).

The transfer function of S can be alternatively expressed as

z−m
(a)
k (m

(b)
k −1)

⎛⎝sk(0) +

m
(b)
k −1∑
l=1

sk(l)
(
zl + z−l

)⎞⎠ , (B.13)

where

sk(l) =α
−m

(a)
k (m

(b)
k −1−l)

k

m
(b)
k −l−1∑
i=0

(
α

2m
(a)
k

k

)i

=α
−m

(a)
k (m

(b)
k −1−l)

k

1 − α
2m

(a)
k (m

(b)
k −l)

k

1 − α
2m

(a)
k

k

=

(
αm

(a)
k

)(m(b)
k −l)

−
(
α−m

(a)
k

)(m(b)
k −l)

αm
(a)
k − α−m

(a)
k

. (B.14)
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Equation (B.14) defines the ζk(2m
(b)
k − 2 − l) part of (4.25d). The first part of (4.25d)

follows directly from the symmetry of the transfer function defined in (B.13). Through

changing the variables αk,Mk,m
(a)
k and m

(b)
k with βk, Nk, n

(a)
k and n

(b)
k respectively, the

argument presented above proves (4.27).

B.36 Derivation of (4.29) and (4.31)

To prove (4.31), consider (4.24) with m
(a)
k = 1 and m

(b)
k = m

(a)
k . Now Υ

(a)
k as given

by (4.25b) is κkα
Mk−1
k and Υ

(b)
k =

2m
(b)
k −2∑
l=0

ζk(l)z
−l, where ζk is given by (4.25d) with

m
(a)
k → 1. By the same argument, (4.29a) and (4.29b) can be derived from (4.27d) with

n
(a)
k = 1 and n

(b)
k = n

(a)
k .

B.37 Derivation of (4.32)–(4.34)

Υ
(b)
k (z) =

m
(b)
k −1∑
l=0

(
αkz

−1
)lm(a)

k

m
(b)
k −1∑
l=0

(
α−1

k z−1
)lm(a)

k (Derivation of (4.25)–(4.27))

=
I∏

i=1

m
(i)
k −1∑
l=0

(
αkz

−1
)lMk

(i)
I∏

k=1

m
(i)
k −1∑
l=0

(
α−1

k z−1
)lMk

(k)

(By (4.32))

=
I∏

k=1

m
(i)
k −1∑
l=0

(
αkz

−1
)lMk

(i)
m

(i)
k −1∑
l=0

(
α−1

k z−1
)lMk

(i)

︸ ︷︷ ︸
Υ

(i)
k (z)

.

By what has been shown in the Derivation of (4.25a)–(4.25d) on page 186, the impulse

response of Υ
(i)
k (z) is given by (4.33d). (4.34d) is derived by a similar argument.

B.38 Derivation of (4.37)

Ignoring the pre-multiplier κkα
Mk−1
k in (4.25b), Υ

(a)
k (z) can be expressed as:

Υ
(a)
k (z) =

1 −
(

α
m

(a)
k

k + α
−m

(a)
k

k

)
z−m

(a)
k + z−2m

(a)
k

1 − (αk + α−1
k

)
z−1 + z−2
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=

(
1 − α

m
(a)
k

k z−m
(a)
k

)(
1 − α

−m
(a)
k

k z−m
(a)
k

)
(1 − αkz−1)

(
1 − α−1

k z−1
)

=

m
(a)
k −1∑
l=0

(
αkz

−1
)l m

(a)
k −1∑
l=0

(
α−1

k z−1
)l

,

but according to Derivation of (4.25a)–(4.25d), the impulse response of the last transfer

function, denoted by ζ
(a)
k (l), is given by:

ζ
(a)
k (l) =

⎧⎪⎨⎪⎩
α

1(l+1)
k − α

−1(l+1)
k

αk − α−1
k

, 0 ≤ l ≤ m
(a)
k − 1,

ζ(2m
(a)
k − 2 − l), m

(a)
k ≤ l ≤ 2m

(a)
k − 2,

proving the validity of (4.37c). Derivation of (4.37d) follows by a similar argument.

B.39 Derivation of (4.40)

It should be proven that H
(c)
k (z) as given by (4.40b) is a delayed version of Ĉk(z), as

given by (4.19). To this end, (4.18b) is expanded:

Ω̂k(z) =
(
1 − βNk

k z−Nk

)(
1 − β∗Nk

k z−Nk

)(
1 − βNk

k zNk

)(
1 − β∗Nk

k zNk

)
=βNk

k β∗Nk
k z2Nk

[
1 −
(
βNk

k β∗Nk
k + 1

)(
βNk

k + β∗Nk
k

)
βNk

k β∗Nk
k︸ ︷︷ ︸

=χ(0)

z−Nk

+
1 +
(
βNk

k + β∗Nk
k

)2
+ β2Nk

k β∗2Nk
k

βNk
k β∗Nk

k︸ ︷︷ ︸
=χ(1)

z−2Nk

+

(
βNk

k β∗Nk
k + 1

)(
βNk

k + β∗Nk
k

)
βNk

k β∗Nk
k

z−3Nk + z−4Nk

]
=βNk

k β∗Nk
k z2NkΩk(z), (B.15)

where Ωk(z) is given in (4.40d).
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The denominator term of (4.19) can also be expanded as

1 − βkz − βkz
−1 + β2

k = −βkz
(
1 − (βk + β−1

k

)
z−1 + z−2

)
. (B.16)

By (B.15) and (B.16), (4.19) can alternatively be expressed as:

Ĉk(z) =
z2Nk

z
2Ωk(z)

{
−βNk

k β∗Nk
k /βk

1 − (βk + β−1
k

)
z−1 + z−2

}

=
z2Nk

z
2Ωk(z)

{
γ̂k

1 − (βk + β−1
k

)
z−1 + z−2

}
(By (4.40c)) , (B.17)

proving that H
(c)
k (z) as given by (4.40b) is a delayed version of Ĉk(z).

B.40 Derivation of (4.42)

By (B.15), Ωk(z) can alternatively be expressed as

Ωk(z) =
(
1 − βNk

k z−Nk

)(
1 − β∗Nk

k z−Nk

)(
1 − β−Nk

k z−Nk

) (
1 − β∗

k
−Nkz−Nk

)
, (B.18)

and by the same argument

Ω
(a)
k (z) =

(
1 − β

n
(a)
k

k z−n
(a)
k

)(
1 − β

∗n(a)
k

k z−n
(a)
k

)(
1 − β

−n
(a)
k

k z−n
(a)
k

)(
1 − β

∗−n
(a)
k

k z−n
(a)
k

)
.

(B.19)

Now by (B.18) and (B.19)

Ωk(z)

Ω
(a)
k (z)

=

(
1 − βNk

k z−Nk

)
(

1 − β
n

(a)
k

k z−n
(a)
k

)
(
1 − β∗Nk

k z−Nk

)
(

1 − β
∗n(a)

k
k z−n

(a)
k

)
(
1 − β−Nk

k z−Nk

)
(

1 − β
−n

(a)
k

k z−n
(a)
k

)
(
1 − β∗−Nk

k z−Nk

)
(

1 − β
∗−n

(a)
k

k z−n
(a)
k

) .

(B.20)

If N = n
(a)
k n

(b)
k , then (B.20) can be expressed according to (4.23) as

n
(b)
k −1∑
l=0

(
β

n
(a)
k

k z−n
(a)
k

)l n
(b)
k −1∑
l=0

(
β
−n

(a)
k

k z−n
(a)
k

)l n
(b)
k −1∑
l=0

(
β
∗n(a)

k
k z−n

(a)
k

)l n
(b)
k −1∑
l=0

(
β
∗−n

(a)
k

k z−n
(a)
k

)l

.

(B.21)
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By what has been shown in the Derivation of (4.32)–(4.34), (B.21) equals

Γ
(b)
k (z)Γ∗(b)

k (z), (B.22)

where Γ
(b)
k (z) is defined by (4.34c) and (4.34d), and Γ∗(b)

k (z) is derived from Γ
(b)
k (z) by

βk → β∗
k . This proves (4.42g).

In principle, (4.42f) states that the polynomial multiplication defined by (B.22) can be

performed by the convoluting the coefficients of Γ
(b)
k (z) and Γ∗(b)

k (z). Moreover, since both

Γ
(b)
k (z) and Γ∗(b)

k (z) are symmetric, Ω
(j)
k (z) as given by (4.42f) is symmetric too.

To appreciate (4.42f), an example is worked out. Define

g
(b)
k [n] = [a0 a1 a2 a3 a2 a1 a0]

and

g∗(b)
k [n] = [a∗

0 a∗
1 a∗

2 a∗
3 a∗

2 a∗
1 a∗

0]

to represent the impulse responses of Γ
(b)
k (z) and Γ∗(b)

k (z) respectively. Denoting the con-

volution operation by ⊗, the first, the second and the third samples of g
(b)
k [n] ⊗ g∗(b)

k [n] are

given by a0a
∗
0, a0a

∗
1 + a1a

∗
0︸ ︷︷ ︸

2Re{a0a∗
1}

, and a0a
∗
2 + a2a

∗
0︸ ︷︷ ︸

2Re{a0a∗
2}

+a1a
∗
1 respectively, which are exactly those

given in (4.42f).

Finally by (B.18)–(B.20), decomposibility of Nk as given by (4.41b) and (4.41a) leads

to a corresponding decomposibility of Ω
(b)
k (z), as given by (4.41d). For instance, assume

Nk =n
(a)
k n

(1)
k n

(2)
k

=N
(2)
k n

(2)
k By (4.42e) (B.23)
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Since N
(2)
k divides Nk, then by (B.20) and (B.21), Ω

(a,1)
k (z) divides Ωk(z), where

Ω
(a,1)
k (z) =

(
1 − β

N
(2)
k

k z−N
(2)
k

)(
1 − β

∗N(2)
k

k z−N
(2)
k

)
×(

1 − β
−N

(2)
k

k z−N
(2)
k

)(
1 − β

∗−N
(2)
k

k z−N
(2)
k

)
.

As proven above, the transfer function of the quotient, denoted by Ω
(2)
k (z), is in the form

of (4.42b). But by the same argument, Ω
(a,1)
k (z) is divisible by Ω

(a)
k (z) as given by (B.19),

and the quotient, denoted by Ω
(1)
k (z), is in the form of (4.42b). In other words, it has been

shown that

Ωk(z) = Ω
(a)
k (z)Ω

(1)
k (z)Ω

(2)
k (z)

as required. So basically the argument presented above boils down to an inductive proof,

where the inductive base is Ω
(a)
k (z) and all other Ω

(i)
k (z)’s are of the form of (4.42b).

B.41 Derivation of (4.43)

Ω
(1)
k (z) =

4n
(1)
k −4∑
l=0

η
(1)
k (l)z−lN

(1)
k (By (4.42b))

=

4n
(1)
k −4∑
l=0

η
(1)
k (l)z−ln

(a)
k (By (4.42e)) . (B.24)

But for Jk=1, n(b)
k = n

(1)
k ( by(4.41b)) and Ω

(b)
k (z) = Ω

(1)
k (z) ( by(4.41d)), and consequently

(B.24) can be expressed by

Ω
(b)
k (z) =

4n
(b)
k −4∑
l=0

η
(b)
k (l)z−ln

(a)
k

as required.

B.42 Derivation of (4.45) and (4.46)

Before presenting the discussion, the following proposition is presented and proved.
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Proposition 2. Assuming the realness of the impulse response of Ak(z), if the impulse

response of Ak(z)B(z) is h(n), then the impulse response of Ak(z){B(z)} is Re {h(n)}.

Proof. Assume that Ak(z) =
∞∑
i=0

aiz
−i and B(z) =

∞∑
i=0

biz
−i. Then B∗(z) =

∞∑
i=0

b∗i z
−i.

B∗(z) is the transfer function corresponding to B(z), with changing all the coefficients

of B(z) into their complex conjugate counterparts, and ai, bi, and b∗i are the impulse re-

sponse values of Ak(z), B(z) and B∗(z) respectively. Now if the impulse response values

of the filter Ak(z){B(z)}are called ci, then

∞∑
i=0

ciz
−i = Ak(z){B(z)} =

1

2
Ak(z) (B(z) + B∗(z))

=
1

2

∞∑
i=0

aiz
−i.

∞∑
i=0

2Re {bi} z−i = Re

{ ∞∑
i=0

aiz
−i

∞∑
i=0

biz
−i

}
The last term in brackets gives the impulse response values of Ak(z)B(z).

On page 128, it reads that the impulse response of ν
(1)
k ν

(2)
k Γ

(a)
k (z)

j∏
i=1

Ω
(j)
k (z) is given by

Re

{
b(l, N

(j+1)
k , ν

(1)
k ν

(2)
k γ̂k

j∏
i=1

ϕ
(i)
k )

}
. The validity of the claim is investigated below. In

what follows, the coefficients ν
(1)
k ν

(2)
k have been ignored.

As seen from Fig. 4.8 as using (4.44b), the transfer function from the input to the output

of Ω
(j)
k (z) is:

H(z) =

j∏
i=1

ϕ
(i)
k

[
G(z)

{
γ̂k

1 − (βk + β−1
k

)
z−1 + z−2

}]
, (B.25)

where

G(z) = Ω
(a)
k (z)

j∏
i=1

Ω
(i)
k (z).

By the proof presented in the Derivation of (4.42), the transfer function G(z) is of the
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form:

G(z) =

(
1 − β

N
(j+1)
k

k z−N
(j+1)
k

)(
1 − β

∗N(j+1)
k

k z−N
(j+1)
k

)(
1 − β

−N
(j+1)
k

k z−N
(j+1)
k

)
(

1 − β
∗−N

(j+1)
k

k z−N
(j+1)
k

)
=1 − ε(0)z−N

(j+1)
k + ε(1)z−2N

(j+1)
k − ε(0)z−3N

(j+1)
k + z−4N

(j+1)
k , (B.26)

where N
(j)
k is given by (4.42e) and

ε(0) =β
N

(j+1)
k

k + β
∗N(j+1)

k
k + β

−N
(j+1)
k

k + β
∗−N

(j+1)
k

k ,

ε(1) =2 +

(
β

N
(j+1)
k

k + β
−N

(j+1)
k

k

)(
β
∗N(j+1)

k
k + β

∗−N
(j+1)
k

k

)
.

As an example for J = 1:

n
(b)
k = n

(1)
k , so Nk = n

(a)
k n

(b)
k = n

(b)
k n

(1)
k , and N

(1)
k = n

(a)
k , N

(2)
k = n

(a)
k n

(1)
k = n

(a)
k n

(b)
k .

In other words, the index J indicates the number of filters coming after Ω
(a)
k (z). If there is

only one filter to come, it is Ω
(b)
k (z). If there are more, they are Ω

(1)
k (z), Ω

(2)
k (z), etc. The

index ”j” in Ω
(j)
k (z) corresponds to the aforementioned Ω

(1)
k (z), Ω

(2)
k (z), · · · ,. The index j

in N
(j)
k is a number indicating the total number of filters in the compound cascade structure,

so N
(1)
k corresponds to Ω

(a)
k (z), N

(2)
k corresponds to the cascade of Ω

(a)
k (z) with Ω

(1)
k (z),

etc. For the simplest (two filter) structure, J = 1, N
(1)
k = n

(a)
k , and so the whole structure

is: Ω
(a)
k (z)︸ ︷︷ ︸
n

(a)
k ×

Ω
(1)
k (z)︸ ︷︷ ︸

n
(1)
k =N

(2)
k

and for J=2 we have: Ω
(a)
k (z)︸ ︷︷ ︸
n

(a)
k ×

Ω
(1)
k (z)︸ ︷︷ ︸
n

(1)
k ×

Ω
(2)
k (z)︸ ︷︷ ︸

n
(2)
k =N

(3)
k

. The examples above

should clarify the significance of N
(j+1)
k appearing in the expression for G(z) as given by

(B.26).

Finally we prove that b(l, N
(j+1)
k , ν

(1)
k ν

(2)
k γ̂k

j∏
l=1

ϕ
(l)
k ) is the impulse response of H(z) as

given by (B.25). To this end, the impulse response of

K(z) = G(z)
1

1 − (βk + β−1
k

)
z−1 + z−2
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is considered, where G(z) is defined in (B.26).

1. The roots of the denominator of K(z), βk and β−1
k , are the roots of G(z), and con-

sequently, K(z) is an FIR filter of order 4N
(j+1)
k − 2. This proves the last part of

(4.45a).

2. The second last part of (4.45a) states that the impulse response of K(z) is symmetric.

This stems from the fact that if the symmetric polynomial q(x) divides the symmetric

polynomial p(x), then p(x)/q(x) is a symmetric polynomial. Evidently both the

numerator and the denominator of K(z) are symmetric polynomials in z, implying

that the impulse response samples of K(z) for 0 ≤ n ≤ 2N
(j+1)
k − 2 are also those

of 2N
(j+1)
k ≤ n ≤ 4N

(j+1)
k − 2.

3. The impulse response of K(z) is a shifted and scaled version of that of F (z) (by

G(z)), with

F (z) =
1

(1 − βkz−1)

1(
1 − β−1

k z−1
) .

In particular, the first N
(j+1)
k −1 impulse response samples of K(z) are equal to those

of F (z). By what has been shown in the Derivation of (4.25)–(4.27) on page 186,

the impulse response of F (z) for 0 ≤ n ≤ N
(j+1)
k − 1 can be found by:

∑
βl

kz
−l
∑

β−l
k z−l =

βl+1
k − β−l−1

k

βk − β−1
k

z−l, 0 ≤ l ≤ N
(j+1)
k − 1.

This confirms the first part of (4.45a).

4. For N
(j+1)
k ≤ n ≤ 2N j+1

k − 1, a scaled-shifted version of the impulse response of

F (z) (scaled by ε(0) as given by (4.40f) and shifted by N
(j+1)
k ), should be added

to the impulse response of F (z). This means that the z-transform of the impulse
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response is:

βl+1
k − β−l−1

k

βk − β−1
k

z−l−
(

β
N

(j+1)
k

k + β
∗N(j+1)

k
k + β

−N
(j+1)
k

k + β
∗−N

(j+1)
k

k

)
β

l+1−N
(j+1)
k

k − β
−l−1+N

(j+1)
k

k

βk − β−1
k

z−l

=
1

βk − β−1
k

×[
− β

l−N
(j+1)
k +1

k

(
β
∗N(j+1)

k
k + β

∗−N
(j+1)
k

k + β
−N

(j+1)
k

k

)

+ β
−l+N

(j+1)
k −1

k

(
β
∗N(j+1)

k
k + β

∗−N
(j+1)
k

k + β
N

(j+1)
k

k

)]
,

which is exactly of the form given by (4.45b) and (4.45c). This proves the second

line of (4.45a).

5. By Items 1–4 above, the impulse response of K(z) is b(l, N
(j+1)
k , ν

(1)
k ν

(2)
k γ̂k

j∏
i=1

ϕ
(i)
k ).

Since the impulse response of G(z) is real (it consists of cascade of Ω
(j)
k (z)’s, all

having real impulse responses according to (4.42f)), by Proposition 2, the impulse

response of H(z) is Re

{
b(l, N

(j+1)
k , ν

(1)
k ν

(2)
k γ̂k

j∏
i=1

ϕ
(i)
k

}
, as required.

B.43 Derivation of (4.50b) and (4.51b)

To appreciate these equations, an example is in order. Assuming m
(a)
k =2 and m

(b)
k =3,

by (4.25b), the order of Υ
(a)
k (z) is found to be 2m

(a)
k − 2 = 2. This implies that the input

signal x(n) is parsed into blocks of length 2m
(a)
k − 1 = 3.

First, we consider the upper branch of the structure. The upper demultiplexer has been

denoted by Up, the middle one by Mi and the lower one by Lo. The following table

indicates the samples fed to the upper branch at each time instant n. The table also signifies

which demultiplexer feeds the sample in question.
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Time

n
0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

Up x(0) x(1) x(2) − − − x(6) x(7) x(8) − − − x(12) x(13)
Mi − − x(0) x(1) x(2) − − − x(6) x(7) x(8) − − −
Lo − − − − x(0) x(1) − − − − x(6) x(7) − −

Table B.1: The flow of the input samples in the upper branch.

Obviously the upper branch is in charge of filtering the samples x(0), x(1), x(2), x(6),

x(7), x(8), x(12), x(13), x(14), . . ., and the lower branch is in charge of filtering the sam-

ples x(3), x(4), x(5), x(9), x(10), x(11), x(15), x(16), x(17), . . .. The time instance n = 5

is very important, since then, the output will be computed, and at the same time, the mem-

ory elements will be set to zero before the beginning of a new cycle, that is, the time

instance n = 6. Note that ideally, the output at time n = 5 should be zero, since the order

of the FIR filter Υ
(a)
k (z) is 2. Filtering of 3 samples (such as x(0), x(1), x(2)) by such filter

must yield zero at n = 5. That explains why the memory (delay) elements are set to zero

at such time instant.

Based on the above-mentioned example, the effects of the recursive filter on the input

noise x(0) ≡ Ξ
(1)
k,in(0) (as given by (3.59a)) is considered next. x(0) is filtered by the

recursive IIR filter

H(z) =
1

1 − (βk + 1/βk)z−1 + z−2
, (B.27)

which defines the difference equation

y[n] = x[n] + βy[n − 1] − y[n − 2], (B.28)

where

β ≡ βk + 1/βk. (B.29)

Based on (B.28), for this noise input sample (x(0)), the output of the recursive filter of the
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upper branch Ξ
(1)
k,out between the time instants n = 0 and n = 5 is given in Table B.2.

n 0 1 2 3 4 5 (resetting time)

Ξ(1)
k,out x(0) βx(0) β2x(0) − x(0) β3x(0) −

2βx(0)
β4x(0) − 3β2x(0) +
x(0)

0

Table B.2: The output of the recursive filter of the upper branch for n = 0 · · ·n = 5.

As noted from Table B.2, at time n = 5, the filter is reset, implying that the cumula-

tive (recursive) effect of the filter on the noise sample Ξ
(1)
k,in(0) has been removed (in fact

this cancellation applies to other noises in the filter, that is, Ξ
(1)
k,in(1) and Ξ

(1)
k,in(2). Note

that Ξ
(1)
k,in(3), Ξ

(1)
k,in(4) or Ξ

(1)
k,in(5) are not considered here, since the upper demultiplexer is

feeding the lower recursive filter at those time instances).

The next cycle starts at n = 6 and ends at n = 11, following exactly the same pattern

as that for n = 0 up to n = 5. The output noise is zero at n = 5, n = 11, etc, justifying

(4.50a). Compared to the input noise, the output noise is equally amplified at n = 0 and

n = 6, n = 1 and n = 7, etc. This justifies the periodicity of (4.50b), and also explains

why only the samples λ ≡ n, 0 ≤ λ ≤ 4m
(a)
k − 4 are considered. (In the above table, this

corresponds to the time instances 0. . .4).

Finally the validity of (4.50b) for each cycle defined above is illustrated. The impulse

response of the H(z) as given by (B.27) is [76]

h(n) =
βn+1

k − 1/βn+1
k

βk − 1/βk

, n ≥ 0. (B.30)

The output noise is the convolution sum of the input noise Ξ
(1)
k,in(2ρ(2n

(a)
k −1)+n) with

(B.30), which is exactly (4.50b) for the cycle 0 ≤ i ≤ n (note that in (4.50b), λ ≡ n). In

other words, (4.50b) can be interpreted as multiplying the latest input noise Ξ
(1)
k,in(2ρ(2n

(a)
k −
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1) + λ) by
βλ+1−λ

k − 1/βλ+1−λ
k

βk − 1/βk

= 1,

the previous one i = λ − 1 → Ξ
(1)
k,in(2ρ(2n

(a)
k − 1) + λ − 1) by

βλ+1−λ+1
k − 1/βλ+1−λ+1

k

βk − 1/βk

= βk + 1/βk,

still the previous one i = λ − 2 → Ξ
(1)
k,in(2ρ(2n

(a)
k − 1) + λ − 2) by

β3
k − 1/β3

k

βk − 1/βk

= β2
k + 1/β2

k − 1

etc.

By considering the fact that the lower branch lags the upper branch by 2n
(a)
k −1, (4.51a)

and (4.51b) follow from (4.50a) and (4.50b).

B.44 Derivation of (4.52)

The cyclic nature of the output noise indicates that a “mod” operator can facilitate the

noise calculation. In the sequel, only the upper branch is considered.

By (4.50a), Ξ
(1)
k,out(l) ≡ Ξ

(1)
k,out(2ρ(2n

(a)
k − 1) + λ), therefore λ = l mod (4n

(a)
k − 2) ≡

(l − j) mod (n) and 2ρ(2n
(a)
k − 1) = l − λ.

By (4.51a), Ξ
(1)
k,out(l) ≡ Ξ

(1)
k,out((2ρ − 1)(2n

(a)
k − 1) + λ), therefore λ = (l − 2n

(a)
k −

1) mod (4n
(a)
k − 2) ≡ (l − j) mod (n) and (2ρ − 1)(2n

(a)
k − 1) = l − λ. In (4.52),

the variable ”j” denotes the lag between the upper and lower branches. Using j, a single

symbol Ξ
(m)
k,out(l, j, n) encompasses the noise cycle in both the upper and the lower branches.

B.45 Derivation of (4.53)

In words, (4.53) states that ”add the output noises of the first and the second branches,

Ξ
(1)
k,out(l)+Ξ

(2)
k,out(l), using the notation of (4.52), and convolve that by Υ

(b)
k (z)/μ, as shown in

Fig. 4.3”. For instance note that the output at time l−m
(a)
k is multiplied by ζ(1)/μ (actually
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is first multiplied and then delayed). Also note that based on (4.25d), the coefficients ζ(i)

are symmetric.

B.46 Derivation of (4.54a)–(4.57) for Fig. 4.3

Taking the upper branch into account, two separate noise sources in the structure are

distinguished, i.e., the noise generated by the multipliers before the demultiplexers, and

those generated by the upper recursive filter coefficients.

The noise generated by the multipliers before the demultiplexers

Since at different time instants, the upper branch is fed by different number of demultiplex-

ers, the noise generated by the multipliers before the demultiplexers has a time dependent

variance. For instance as seen from Table B.1, at time instants n = 0 or n = 1, there is

only one noise input, but at time instants n = 2 or n = 4, there are two noise inputs. This

time dependency of the input noise can be characterized by a variable c(n), which has been

considered in more details later. To make the analysis less complicated, for the moment we

assume that ∀n : c(n) = 1, in other words, it has been assumed that there is only one input

noise at each time.

Defining

δ ≡ αk +
1

αk

,

and denoting the input noise sample to the upper branch at time instant i by ei, the output

noise Ξ
(1)
k,out(n) of the upper branch of Fig. 4.3 is presented in Table B.3.

Table B.3 is in fact a generalization of Table B.1, where all the input samples (instead of

only e0) are considered, and is therefore governed by the same difference equation ((B.28)).

In other words,

En =
n∑

i=0

Tn−iei, 0 ≤ n ≤ 4m
(a)
k − 4,
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n 0 1 2 3 . . . 4m(a)
k − 3

Ξ(1)
k,out(n) E0 = e0 E1 = e1 + δE0 E2 = e2 + δE1 − E0 E3 = e3+δE2−E1 . . . 0 (=reset-

ting time)

= e1 + δe0 =(δ2 − 1)e0 + δe1 + e2

Table B.3: The output noise of the upper branch of Fig. 4.3, generated by the multipliers
before the demultiplexers.

where the coefficients Tn are defined recursively as:

T−1 = 0, T0 = 1, and Tn = δTn−1 − Tn−2, (B.31)

as indicated by the transfer function of the recursive filter H(z), defined in (B.27).

The noise generated by the upper recursive filter

The noise generated by the upper recursive filter lags that generated by the multipliers

before the demultiplexers by one sample (since it takes one multiplication operation before

this noise is generated in the recursive part of the filter), but otherwise, it is subject to the

same recursion. The generation of noise originated by the upper recursive filter is illustrated

in Table B.4.

n 0 1 2 3 4 . . . 4m(a)
k − 3

Ξ(1)
k,out(n) 0

(=zero still in

the memory)

F1 =
f1

F2 = f2 +
δF1

F3 = f3 +
δF2 − F1

F4 = f4 +
δF3 − F2

. . . 0 (=reset-

ting time)

Table B.4: Generation of noise originated by the upper recursive filter in Fig 4.3.

Comparing Table A.4 to Table A.3 reveals that Fn =
n∑

i=1

Tn−ifi, where Ti is defined in

(B.31). As seen above, the lower bound of index i lags that of En by 1.
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The total noise

Considering the independency of fi and ei, and appreciating the fact that the noise variances

of both fi and ei is σ2
e , the total variance of the noise generated at time n in the upper branch

is:

Vn =

⎡⎢⎢⎢⎢⎢⎣
n∑

i=0

c(i)T 2
n−i︸ ︷︷ ︸

The part related to Ei

+
n∑

i=1

T 2
n−i︸ ︷︷ ︸

The part related to Fi

⎤⎥⎥⎥⎥⎥⎦σ2
e

k=n−i
=

⎡⎢⎢⎢⎢⎢⎣
n∑

k=0

c(k)T 2
k︸ ︷︷ ︸

The part related to Ei

+
n−1∑
k=0

T 2
k︸ ︷︷ ︸

The part related to Fi

⎤⎥⎥⎥⎥⎥⎦σ2
e , (B.32)

where σ2
e = 2−2b

12
is the variance of a single noise source. c is no longer a function of i, but

rather a function of k.

To find out the coefficient c(k), the example of page 195 is reconsidered. As illus-

trated by Table B.1, the upper and the lower demultiplexers never feed the upper branch

simultaneously. The middle and the upper, and the middle and the lower demultiplex-

ers however overlap. The upper demultiplexer feeds the upper branch for the time slot

0 ≤ n ≤ 2m
(a)
k − 2, the middle demultiplexer feeds the upper branch for the time slot

m
(a)
k ≤ n ≤ 3m

(a)
k − 2, and the lower does so for the time slot 2m

(a)
k ≤ n ≤ 4m

(a)
k − 3. It

means that the simultaneous feeding of the upper branch takes place in the time slots

m
(a)
k ≤ n ≤ 2m

(a)
k − 2 (B.33a)

and

2m
(a)
k ≤ n ≤ 3m

(a)
k − 2. (B.33b)
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In the context of Table B.1 and without loss of generality, consider the time instant δ(n) ≡
n = 0, where δ(n) is given by (4.55), i.e., assume that we are at the beginning of the noise

cycle of the upper branch. At n = 0, only x(0) is fed to the upper branch and so c(0) = 1.

Note that c(0) corresponds to the current time and the coefficient T0 of (B.31). At n = 1,

only x(1) is fed to the upper branch and so c(0) = c(1) = 1. Here, c(1) corresponds to the

previous time instant (n = 0) and the coefficient T1 of (B.31). For n = 2, c(0) = 2, since

two samples (x(2) and x(0)) are fed to the upper branch simultaneously, but for instance

c(1) = 1, since there was only one sample x(1) which was fed to the upper branch at the

previous time instant (n = 1). By a similar argument, at n ≡ δ(n) = 3, c(1) = 2, and

at n ≡ δ(n) = 4, c(0) = c(2) = 2, and other c(i)’s are 1. This means that if n ≡ δ(n)

is larger than the overlap time as given by (B.33), n should be subtracted from the overlap

time, yielding the indices that should be regarded twice. In other words,

c(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2, δ(n) − 2m

(a)
k + 2 ≤ n ≤ δ(n) − m

(a)
k

or δ(n) − 3m
(a)
k + 2 ≤ n ≤ δ(n) − 2m

(a)
k ,

1, otherwise, (B.34)

The output of Υ
(a)
k (z)

Considering the fact that the variance of the noise at each branch is periodic with the period

of 4m
(a)
k − 2, and also the fact that the variance of the noise at time “n + 2m

(a)
k − 1” for

the lower branch is equal to that of the upper branch at time n, the variance of the noise at

time “n” at the output of Υ
(a)
k (z) is: Vtot = Vn + V

n+2m
(a)
k −1

, where Vn is given by (B.32).
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The output of H
(r)
k (z)

The total noise variance at the filter output is given by

Ntot =

⎡⎣2m
(b)
k −2∑
i=0

bi
2

⎤⎦Vtot + (2m
(b)
k − 1)σ2

e ,

where bi = ζ(i)
μ

. The term (2m
(b)
k − 1)σ2

e is the noise generated by the coefficients of

Υ
(b)
k (z).

B.47 Derivation of (4.54a)–(4.57) for Fig. 4.2

The derivaiton of (4.54a)–(4.57) for Fig. 4.2 follows the same principle as that stated

for Fig. 4.3. The only difference is the complex nature of the noise and the coefficients. In

what follows, the upper branch is considered first.

The noise generated by the multipliers before the demultiplexers

Ignoring the coefficient c(n) (as for the case of Fig. 4.3), the output noise Ξ
(1)
k,out(n) of the

upper branch of Fig. 4.2 is presented in Table B.5. The main difference compared to the

case of Fig. 4.3 is that now

δ ≡ βk +
1

βk

. (B.35)

n 0 1 2 3 . . . 4n(a)
k − 3

Ξ(1)
k,out(n) E0 = e0 E1 = e1 + δ E2 = e2 + δE1 − E0 E3 = e3+δE2−E1 . . . 0 (=reset-

ting time)

= e1 + δe0 =(δ2 − 1)e0 + δe1 + e2

Table B.5: The output noise of the upper branch of Fig. 4.2, generated by the multipliers
before the demultiplexers.

As for the case of Fig. 4.3, in general:

En =
n∑

i=0

Tn−iei, 0 ≤ n ≤ 4n
(a)
k − 4,



204

where the coefficients Tn are defined according to (B.31), with δ as given by (B.35).

With c(i) as defined by (B.34), the real and the imaginary parts of the complex noise

En are given by

Re {En} =Re

{
n∑

i=0

c(i)Tn−iei

}
=

n∑
i=0

Re {c(i)Tn−iei}

=
n∑

i=0

c(i) (Re {Tn−i}Re {ei} − �{Tn−i}�{ei})

and

Im {En} =Im

{
n∑

i=0

c(i)Tn−iei

}
=

n∑
i=0

Im {c(i)Tn−iei}

=
n∑

i=0

c(i) (Re {Tn−i} Im {ei} + Im {Tn−i}Re {ei})

respectively. Re {ei} is independent of Im {ei}, and consequently

var (Re {En}) = var (Im {En}) =

(
n∑

i=0

c(i)
(
Re {Tn−i}2 + Im {Tn−i}2))σ2

e .

The noise generated by the upper recursive filter

As shown for the case of Fig. 4.3, the noise generated by the upper recursive filter at any

time instant n, denoted by Fn, is basically a delayed version of the noise generated by

the multipliers before the demultiplexers. Moreover, contrary to the noise introduced by

the demultiplexers, there are no multiple simultaneous noise inputs in this case, that is,

∀i : c(i) = 1 and hence

var (Re {Fn}) = var (Im {Fn}) =

(
n∑

i=1

Re {Tn−i}2 + Im {Tn−i}2

)
σ2

e .

The total noise

As in the case of Fig. 4.3, considering the independency of the real and the imaginary parts

of fi (n) and ei (n), and following the steps taken in (B.32), the total variance of the noise
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generated at time n of the upper branch can be expressed as:

Vn =

(
n∑

k=0

c(k)
(
Re {Tk}2 + Im {Tk}2)+ n−1∑

k=0

(
Re {Tk}2 + Im {Tk}2))σ2

e ,

where the coefficient c (k) is given by (B.34).

The output of Γ
(a)
k (z)

By the same argument discussed for Υ
(a)
k (z) of Fig. 4.3 (with m

(a)
k → n

(a)
k ), the variance

of the noise at time ”n” at the output of Γ
(a)
k (z) is given by

Vtot,n = Vn + V
n+2n

(a)
k −1

. (B.36)

The output of H
(c)
k (z)

For calculating the total variance, first note that each complex coefficient k = 2ηk(k)/νk is

realized as two multipliers, one as the real part of k and the other as the imaginary part of

k.

Consider the complex coefficient k = 2ηk(k)/νk. As seen from Fig. 4.2, in the real-

ization of H
(c)
k (z), only n

(b)
k of these k’s are needed, but the generated noise by these k’s

is fed into 2n
(b)
k − 1 different adders and hence 2n

(b)
k − 1 complex noise sources should be

considered. Since each complex coefficient k is realized as two multipliers (one as the real

part of k and the other as the imaginary part of k), the noise variance generated by these

2n
(b)
k − 1 number of k’s is equal to 2(2n

(b)
k − 1)σ2

e = (4n
(b)
k − 2)σ2

e .

On the other hand, the complex input noise from Γ
(a)
k (z) is filtered by the aforemen-

tioned k’s. This gives rise to the noise

⎡⎣2n
(b)
k −2∑
i=0

ci

⎤⎦Vtot,n, where Vtot,n is given in (B.36)

and

ci = Re2

{
2ηk(i)

νk

}
+ Im2

{
2ηk(i)

νk

}
=

(
abs

{
2ηk(i)

νk

})2

.
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The total noise variance at the filter output is then

T =

⎡⎣2n
(b)
k −2∑
i=0

ci

⎤⎦Vtot,n + (4n
(b)
k − 2)σ2

e .

B.48 Derivation of (4.59)

To appreciate (4.59), an example is first in order. Assuming n
(a)
k =2 and n

(b)
k = 3, by

(4.42a) the order of Ω
(a)
k will be 4n

(a)
k = 8, and consequently, the order of the FIR filter

Γ
(a)
k (z) as given by (4.44b) is found to be 4n

(a)
k − 2 = 6. This implies that the input signal

x(n) is parsed into blocks of length 4n
(a)
k − 1 = 7.

First, the upper branch of ν
(1)
k ν

(2)
k Γ

(a)
k (z) as depicted in Fig. 4.8 is considered. The

demultiplexers have been denoted by M1,. . . ,M5, with M1 being the uppermost and M5

being the lowermost demultiplexer. The following table indicates the input samples (x(n))

fed to the upper branch at each time instant n. The table also signifies which demultiplexer

feeds the sample in question.

Time
n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .

M1 x(0) x(1) x(2) x(3) x(4) x(5) x(6) - - - - - - - x(14) . . .
M2 - - x(0) x(1) x(2) x(3) x(4) x(5) x(6) - - - - - - . . .
M3 - - - - x(0) x(1) x(2) x(3) x(4) x(5) x(6) - - - - . . .
M4 - - - - - - x(0) x(1) x(2) x(3) x(4) x(5) x(6) - - . . .
M5 - - - - - - - - x(0) x(1) x(2) x(3) x(4) x(5) - . . .

Table B.6: The flow of the input samples in the upper branch of Fig. 4.8.

Obviously the upper branch is in charge of filtering the samples x(0), x(1), · · · , x(6),

x(14), x(15), · · · , and the lower branch is in charge of filtering the samples x(7), x(8), · · · ,

x(13), x(21), x(22), · · · . The time instance n = 13 is very important, since then, the output

will be computed, and at the same time, the memory elements will be set to zero before the
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beginning of a new cycle, that is, the time instance n = 14. Note that ideally, the output at

time n = 13 should be zero, since as mentioned above, the order of the FIR filter Γ
(a)
k (z)

is 6. Filtering of 7 samples (such as x(0), x(1), · · · , x(6)) by such filter must yield zero

at n = 13. That explains why the memory (delay) elements are set to zero at such time

instant.

For both structures of Fig. 4.2 and Fig. 4.8, the noise introduced by the demultiplexers

(Ξ
(1)
k,in(n)) is subject to the same recursive filter. This implies that (4.52a) and (4.52b) apply

as such to the structure of Fig. 4.8, with m = 1, j = 0, n = 8n
(a)
k − 2 for the upper branch

and m = 2, j = 4n
(a)
k − 1, n = 8n

(a)
k − 2 for the lower branch1.

Using the notation of (4.52a), (4.59) states that ”add the output noises at the output of

the upper and the lower recursive filters, multiply this sum by ν
(2)
k γ̂k and take the real part

of it, and finally convolve that by the filter 2Ω
(b)
k (z), as given by (4.43). In other words,

the noise at the output of Γ
(a)
k (z) as given by (4.44b) and depicted in Fig. 4.8 should be

convolved by Ω
(b)
k (z) to yield the overall noise. This is another manifestation of the fact

that by (4.40b), (4.41c), and (4.44b), H
(c)
k (z) = Γ

(a)
k (z)Ω

(b)
k (z).

B.49 Derivation of (4.60)–(4.61) for Fig. 4.8

Taking the upper branch into account, two separate noise sources in the structure are

distinguished, i.e., the noise generated by the multipliers before the demultiplexers, and

those generated by the upper recursive filter coefficients.

1As already mentioned on page 198, in Ξ(1)
k,out(l, j, n), the variable l denotes the time instant, the variable

m = 1(m = 2) denotes the upper (lower) branch, the variable n denotes the lag between successive resetting

of the recursive filters, and the variable j denotes the lag between the resetting time of the upper- and lower

recursive filters.
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The noise generated by the multipliers before the demultiplexers

Since at different time instants, the upper branch is fed by different number of demultiplex-

ers, the noise generated by the multipliers before the demultiplexers has a time dependent

variance. For instance as seen from Table B.6, at time instants n = 0 or n = 1, there is only

one noise input, but at time instants n = 2, n = 4 and n = 6, there are two, three and four

noise inputs respectively. This time dependency of the input noise can be characterized by

a variable c(n), which has been considered in more details later. To make the analysis less

complicated, for the moment we assume that ∀n : c(n) = 1, in other words, it has been

assumed that there is only one input noise at each time. Denoting the input noise sample to

the upper branch at time instant i by ei and defining δ as given by (B.35), the output noise

Ξ
(1)
k,out(n) of the upper branch of Fig. 4.8 is presented in Table B.7.

n 0 1 2 3 . . . 8n(a)
k − 3

Ξ(1)
k,out(n) E0 = e0 E1 = e1 + δE0 E2 = e2 + δE1 − E0 E3 = e3+δE2−E1 . . . 0 (=reset-

ting time)

= e1 + δe0 =(δ2 − 1)e0 + δe1 + e2

Table B.7: The output noise of the upper branch of Fig. 4.8, generated by the multipliers
before the demultiplexers.

The results presented in Table B.7 are identical to those presented in Table B.5 on page

203 and therefore in Table B.7,

En =
n∑

i=0

Tn−iei, 0 ≤ n ≤ 8n
(a)
k − 4, (B.37)

where the coefficients Tn are defined according to (B.31).

Since the noise En is complex, and appreciating the fact that ei is real, the real and the
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imaginary parts of En are

Re {En} =Re

{
n∑

i=0

c(i)Tn−iei

}
=

n∑
i=0

Re {c(i)Tn−iei}

=
n∑

i=0

c(i)

⎛⎝Re {Tn−i}Re {ei} − Im {Tn−i} Im {ei}︸ ︷︷ ︸
=0

⎞⎠
=

n∑
i=0

c(i) (Re {Tn−i} ei)

and

Im {En} =Im

{
n∑

i=0

c(i)Tn−iei

}
=

n∑
i=0

Im {c(i)Tn−iei}

=
n∑

i=0

c(i)

⎛⎝Re {Tn−i} Im {ei}︸ ︷︷ ︸
=0

+Im {Tn−i}Re {ei}
⎞⎠ =

n∑
i=0

c(i) (Im {Tn−i} ei)

=
n−1∑
i=0

c(i) (Im {Tn−i} ei) . (B.38)

respectively. The last equality of (B.38) stems from the fact that Im {T0} = 0.

All the samples of Re {ei} are independent of those of Im {ei}, therefore

var (Re {En}) =

(
n∑

i=0

c(i)Re {Tn−i}2

)
σ2

e ,

and

var (Im {En}) =

(
n−1∑
i=0

c(i)Im {Tn−i}2

)
σ2

e .

The noise generated by the upper recursive filter

Since the recursive filter of Fig. 4.8 is identical to that of Fig. 4.2, the analysis presented

on page 204 applies here as such, and consequently

var (Re {Fn}) = var (Im {Fn}) =

(
n∑

i=1

Re {Tn−i}2 + Im {Tn−i}2

)
σ2

e .
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The total noise

Considering the independency of the real and the imaginary parts of the complex noise

fi (n) and the real noise ei (n), and appreciating the fact that the noise variance of Re{fi},
Im{fi} and ei is σ2

e , the total variance of the real and imaginary noise generated at the time

instant n in the upper branch are given by

Vreal,n =

(
n∑

i=1

Re {Tn−i}2 + Im {Tn−i}2 +
n∑

i=0

c(i)Re {Tn−i}2

)
σ2

e

k=n−i
=

(
n−1∑
k=0

Re {Tk}2 + Im {Tk}2 +
n∑

k=0

c(k)Re {Tk}2

)
σ2

e (B.39)

and

Vimag,n =

(
n∑

i=1

Re {Tn−i}2 + Im {Tn−i}2 +
n−1∑
i=0

c(i)Im {Tn−i}2

)
σ2

e

k=n−i
=

(
n−1∑
k=0

Re {Tk}2 + Im {Tk}2 +
n∑

k=1

c(k)Im {Tk}2

)
σ2

e (B.40)

respectively.

To find out the coefficient c(k), the example of page 173 is reconsidered. As il-

lustrated by Table B.6, the time slot in which the upper branch is fed by the demulti-

plexers M1,M2,M3,M4 and M5 is 0 ≤ n ≤ 4n
(a)
k − 2, n

(a)
k ≤ n ≤ 5n

(a)
k − 2,

2n
(a)
k ≤ n ≤ 6n

(a)
k − 2, 3n

(a)
k ≤ n ≤ 7n

(a)
k − 2 and 4n

(a)
k ≤ n ≤ 8n

(a)
k − 2 respectively.

Consequently the number of overlap at different time slots can be expressed according to

the Table B.8.

In the context of Table B.6 and without loss of generality, consider the time instant

δ(n) ≡ n = 0, where δ(n) is given by (4.60c), i.e., assume that we are at the beginning

of the noise cycle of the upper branch. At n = 0, only x(0) is fed to the upper branch

and so c(0) = 1. Note that c(0) corresponds to the current time and the coefficient T0 of
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Time n Number of overlaps Number of input noise samples

0 ≤ n ≤ n
(a)
k − 1 0 1

n
(a)
k ≤ n ≤ 2n

(a)
k − 1 1 2

2n
(a)
k ≤ n ≤ 3n

(a)
k − 1 2 3

3n
(a)
k ≤ n ≤ 4n

(a)
k − 2 3 4

4n
(a)
k − 1 2 3

4n
(a)
k ≤ n ≤ 5n

(a)
k − 2 3 4

5n
(a)
k −1 ≤ n ≤ 6n

(a)
k −2 2 3

6n
(a)
k −1 ≤ n ≤ 7n

(a)
k −2 1 2

7n
(a)
k −1 ≤ n ≤ 8n

(a)
k −3 0 1

Table B.8: The number of overlapping noise samples at different time slots at the output of
the recursive filter of Fig. 4.8.

(B.37). At n = 1, only x(1) is fed to the upper branch and so c(0) = c(1) = 1. Here, c(1)

corresponds to the previous time instant (n = 0) and the coefficient T1 of (B.37). For n = 2,

c(0) = 2, since two samples (x(2) and x(0)) are fed to the upper branch simultaneously,

but for instance c(1) = 1, since there was only one sample x(1) which was fed to the upper

branch at the previous time instant (n = 1). By a similar argument, at n ≡ δ(n) = 3,

c(0) = c(1) = 2, and at n ≡ δ(n) = 6, c(0) = 4, c(1) = c(2) = 3, c(3) = c(4) = 2,

and c(1) = c(0) = 1. This means that if n ≡ δ(n) is larger than the overlap time as given

by Table B.8, n should be subtracted from the overlap time, yielding the indices that are

regarded repeatedly. In other words,

c(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2, n
(a)
k ≤ δ(n) − k ≤ 2n

(a)
k − 1 or 6n

(a)
k − 1 ≤ δ(n) − k ≤ 7n

(a)
k − 2,

3, 2n
(a)
k ≤ δ(n) − k ≤ 3n

(a)
k − 1 or δ(n) − k = 4n

(a)
k − 1,

4, 3n
(a)
k ≤ δ(n) − k ≤ 4n

(a)
k − 2 or 4n

(a)
k ≤ δ(n) − k ≤ 5n

(a)
k − 2,

1, otherwise. (B.41)
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The output of Γ
(a)
k (z) before the multiplier ν

(2)
k γ̂k

The complex multiplier ν
(2)
k γ̂k consists of two real multipliers, Re

{
ν

(2)
k γ̂k

}
and Im

{
ν

(2)
k γ̂k

}
.

If the real and imaginary inputs to this multiplier are denoted by Rin and Iin respectively,

the output after this multiplier will be given by

RinRe
{

ν
(2)
k γ̂k

}
− IinIm

{
ν

(2)
k γ̂k

}
.

If the variances of Rin and Iin at any arbitrary time n are denoted by VR,n and VI,n respec-

tively, the variance of the output after ν
(2)
k γ̂k at any arbitrary time n denoted by Vout,n will

be:

Vout,n = VR,n

(
Re
{

ν
(2)
k γ̂k

})2
+ VI,n

(
Im
{

ν
(2)
k γ̂k

})2
+ 2σ2

e . (B.42)

The term 2σ2
e in (B.42) is generated by the two real multipliers of ν

(2)
k γ̂k.

Since the variance of the noise at each branch is periodic with the period of 8n
(a)
k − 2,

and also considering the fact that the variance of the noise at the time instant n + 4n
(a)
k − 1

for the lower branch is equal to that of the upper branch at time n (and also the fact that the

noises in the upper and the lower branches are independent), VR,n and VI,n in (B.42) are

found to be

VR,n = Vreal,n + Vreal,n+4n
(a)
k −1

and

VI,n = Vimag,n + Vimag,n+4n
(a)
k −1

,

where Vimag,n and Vreal,n are defined in (B.39) and (B.40) respectively.

The output of H
(c)
k (z)

Once the transient time of H
(c)
k (z) has elapsed, the total noise variance at its output using

(4.43) can be calculated to be:
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Vtot =

⎡⎣4n
(b)
k −4∑
i=0

Ck
2

⎤⎦Vout,n + (4n
(b)
k − 5)σ2

e ,

where

Ck =
2η

(b)
k

ν
(1)
k ν

(2)
k

. (B.43)

The reason for the second term (4n
(b)
k − 5)σ2

e is that there are 4n
(b)
k − 3 coefficients in the

filter Ω
(b)
k (z), as indicated by (4.43). But according to (4.42f) and (4.42g), two of these

coefficients are equal to 1, and therefore they generate no quantization noise. Hence there

are 4n
(b)
k − 5 noise generating coefficients left.

The pre-multiplier ”2” in (B.43) comes from (4.44a), and the denominator in (B.43)

accounts for the scaling coefficients introduced in Γ
(a)
k (z).

B.50 Derivation of (4.48)


{

γ̂k

1 − (βk + β−1
k

)
z−1 + z−2

}

=
1

2

[
γ̂k

(1 − βkz−1)
(
1 − β−1

k z−1
) +

γ̂∗
k

(1 − β∗
kz

−1)
(
1 − β∗−1

k z−1
)]

=
{γ̂k

(
1 − (βk + β∗−1

k

)
z−1 + z−2

)}
(1 − βkz−1)

(
1 − β−1

k z−1
)
(1 − β∗

kz
−1)
(
1 − β∗−1

k z−1
) (B.44)

According to (4.41c) (with n
(a)
k = 1.n

(a)
k ), Ω

(a)
k (z) can be decomposed as

Ω
(a)
k (z) = Ω

(m)
k (z)Ω

(n)
k (z), (B.45)

where

Ω
(m)
k (z) =

(
1 + z−4

)− (βk + β∗
k + β−1

k + β∗−1
k

) (
z−1 + z−3

)
+
(
2 +
(
βk + β−1

k

) (
β∗

k + β∗−1
k

))
z−2 (B.46)
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and

Ω
(n)
k (z) =

4n
(1)
k −4∑
l=0

η
(1)
k (l)z−lN

(1)
k

=

4n
(a)
k −4∑
l=0

η
(a)
k (l)z−l,

The last equality follows from the fact that by (4.42e), for n
(a)
k = 1 and n

(1)
k = n

(a)
k ,

N
(1)
k = 1. The notation η

(1)
k ≡ η

(a)
k has been used to emphasize that n

(1)
k ≡ n

(a)
k . (n(1)

k is

used in (4.42g) to calculate η
(1)
k ).

Ω
(m)
k (z) is equal to the denominator of (B.44), so

Ω
(m)
k (z)

{
γ̂k

1 − (βk + β−1
k

)
z−1 + z−2

}
= {γ̂k

(
1 − (βk + β∗−1

k

)
z−1 + z−2

)}
.

(B.47)

Plugging (B.45) in (4.44b) and using (B.47) yields

Γ
(a)
k (z) =Ω

(n)
k Ω

(m)
k (z)

{
γ̂k

1 − (βk + β−1
k

)
z−1 + z−2

}
=Ω

(n)
k (z){γ̂k

(
1 − (β∗

k + β∗−1
k

)
z−1 + z−2

)}
.

Ignoring the scaling coefficients ν
(1)
k and ν

(2)
k , the above equation is exactly what is given

in (4.48).

B.51 Derivation of (4.49)

If n
(j)
k = 2, then by (4.42b)

Ω
(j)
k (z) =

4∑
l=0

η
(j)
k (l)z−lN

(j)
k .

By (4.42f), the impulse response defined by Ω
(j)
k (z) is symmetric, and therefore, η

(j)
k (0) =

η
(j)
k (4) and η

(j)
k (1) = η

(j)
k (3). Hence

Ω
(j)
k (z) = η

(j)
k (0)
[
1 + z−4N

(j)
k

]
+ η

(j)
k (1)
[
z−N

(j)
k + z−3N

(j)
k

]
+ η

(j)
k (2)z−2N

(j)
k ,
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but by (4.42f) and (4.42g), υk(0) = η
(j)
k (0) = 1, and (4.49) follows.
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