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ABSTRACT

This thesis addresses two aspects of designing on-chip communication networks. One is

about applying Globally-Asynchronous Locally-Synchronous (GALS) communication sch-

eme into Network-on-Chip (NoC). Another is of designing andrealizing different types of

on-chip communication structures in the frame of GALS scheme.

The work of applying GALS scheme into on-chip networks presented in this thesis includes

the strategy of realizing GALS scheme in a NoC, synchronization method in a GALS NoC,

and asynchronous circuit design. GALS scheme is applied in the NoC designs presented

in this thesis by applying synchronous style in the communications between network nodes

and their attached function hosts while applying asynchronous style in the communications

among network nodes. The asynchronous circuits developed for realizing the GALS on-

chip networks include an asynchronous First-In First-Out (FIFO) design, control pipeline

structures, C-element structure, and an arbiter design.

Three different types of on-chip networks are designed and presented in this thesis, which

include a direct network, a Code-Division Multiple-Access(CDMA) network, and a crossbar

network. The direct on-chip network presented in this thesis is a bidirectional ring network

which gives an example of realizing GALS scheme in Proteo NoCarchitecture. The ring

network realization consists of six nodes and requires an area of 177K equivalent gates when

it is realized with a 0.18µm standard-cell library of Application Specific IntegratedCircuits

(ASIC). Although the ring network has a scalable network structure, its data transfer la-

tency can vary largely depending on the data destination androuting process. This drawback

increases the difficulty for the ring network to provide constant quality of communication

service.

Therefore, a network structure which applies CDMA technique is developed and presented in

this thesis in order to provide non-blocking data transfersamong network nodes so that data

transfer latencies have small variances. The CDMA NoC achieves this feature by applying

orthogonal codes to build non-blocking data transfer channels among network nodes. The

six-node realization of CDMA NoC presented in this thesis has an area of 272K equivalent

gates when it is realized with a 0.18µm standard-cell library and the data path width is 32 bits.

The compensation of the larger area cost is that the asynchronous data transfer latency in the

six-node CDMA NoC is equivalent to the best-case latency in the ring network. When the
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data path width is 32 bits, the realized CDMA network can transfer a 96-bit payload packet

between network nodes within 49ns through a four-phase handshake protocol if there is no

congestion of destination, which is equivalent to 11.76Gbits/s throughput of the network.

Crossbar is a well-known structure which can also supply thefeature of non-blocking data

transfers. Therefore, a six-node crossbar network is developed in this work as a reference to

evaluate the CDMA network. In comparison with the six-node crossbar network, the CDMA

network realization has 39.4% larger logic gate area cost when the data path width is 8 bits,

whereas, the number of data wires in the CDMA network is 80.1%less than the number in

the crossbar network if there are 31 network nodes.

Besides ASIC realizations, a four-node GALS bidirectionalring network is realized on an

Field-Programmable Gate Array (FPGA) device as an example of prototyping a synchronous-

asynchronous mixed NoC design on a Look-Up-Table (LUT) based FPGA device. The real-

ization consumes 41.7K LUTs on an Altera StratixII FPGA device.
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1. INTRODUCTION

Communications play a fundamental and crucial role for the development of human society in

every aspect because better communications facilitate better understanding and cooperation

between individuals, which in turn facilitate the achievements and development in society.

As the society is continuously growing and developing, the need for cooperation and devel-

opment expands to global level. Therefore, communication plays more and more important

role of this globalization process, and the need for effective communications in all kinds of

ways becomes higher and higher.

As a researcher in electronics field, the author believes that the same truth also applies to on-

chip systems, which means that the quality of communicationin an on-chip system promi-

nently affects system performance. As the complexity of an on-chip system keeps growing,

the communication among functional hosts in the system becomes a non-trivial issue to deal

with. Therefore, with the interest in on-chip communication, the author started his research

work on this topic in Tampere University of Technology (TUT)in October of 2003.

1.1 Research Background

Currently, silicon chips which contain thousands of million of transistors with 45nm feature

size are already available on market, e.g. Intel Penryn processor. According to the report [42]

from International Technology Roadmap for Semiconductors(ITRS) in 2007, a single semi-

conductor chip will contain multi-billion transistors with feature sizes around 22nm and

clock frequencies around 35GHz by the year of 2016. This growing manufacture capacity

and the highly demanding applications continuously drive the complexity of a System-on-

Chip (SoC) to a higher degree in terms of number of system components and functionalities.

For example, Cell Broadband Engine Architecture (CBEA) [33] jointly developed by IBM,

Sony, and Toshiba, also referred as Cell processor, contains altogether 9 processing units in

one chip. Furthermore, Tilera, a MIT spin-off company, released a 64-core processor called

TILE64 [89] in 2007. As the number of system components becomes larger, current widely

applied bus structures for data transfers in an on-chip system, e.g. CoreConnect [39], expose

several disadvantages as addressed in [34]. Two main disadvantages are bus arbitration bot-

tleneck and bandwidth limitation. The arbitration bottleneck means that the arbitration delay
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will grow if the number of bus hosts increases. The bandwidthlimitation refers to the fact

that the data transfer bandwidth of a bus structure is sharedby all hosts attached to it in a time

division manner. Hence, more hosts incur a lower share of bandwidth for each one.

Another challenge that an on-chip system faces is the heterogeneous characteristics of sys-

tem components. The components in a SoC may include processors for computation tasks,

functional blocks for accelerating certain tasks, and the modules for communicating with the

peripherals of system. The different functions among different system components naturally

cause them to work in different clock rates for optimal performance. Hence, coordination and

communications among those components become challengingtasks. At the same time, the

issues of wire delay, on-chip noise, process variance, and power consumption in the realm of

Deep Sub-Micron (DSM) technologies also become challenging for chip design. Altogether,

these challenges have brought more and more concerns on the on-chip communication issue

of a SoC design.

In order to overcome the disadvantages of bus structures, the concept of Network-on-Chip

(NoC) has been proposed as a solution at the beginning of 2000s, e.g. [6, 19, 34]. The idea

of NoC is to separate the concerns of communication from computation by building on-chip

communication structure with concepts adopted from computer networks. Each component

of a SoC is viewed as a node of the on-chip communication network. System components

communicate with each other through the on-chip network. For the challenges of multiple

clock domains and DSM technology effect, Globally-Asynchronous Locally-Synchronous

(GALS) scheme has been proposed as a solution. In 1984, the concept of GALS scheme

was firstly introduced in [15] to handle metastability problem. In 1999, several chip designs

[62,69] which apply GALS scheme were published. The idea of aGALS system is to partition

a system into separate clock domains which run at different clock rates, and the separated

domains communicate with each other in an asynchronous manner.

When the author joined the research group at TUT in 2003, a NoC architecture named Pro-

teo [85] was under development in the group. At that time, a few NoC designs have been

published, including Æthereal NoC [23], NOSTRUM NoC [54], and SPIN NoC [34]. There

was no published paper dedicated to GALS NoC. Therefore, theauthor started this research

work with realizing GALS scheme in a Proteo NoC instance.

1.2 Objective and Scope of Research

The goal of this work is to design a GALS on-chip network in theframe of Proteo NoC

architecture while experimenting with different NoC structures. The work focuses on the

following topics.

(1) Developing a network node structure and building a bidirectional-ring network to find a
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way of realizing GALS scheme in Proteo NoC.

(2) Designing asynchronous circuits which include asynchronous FIFO design and asyn-

chronous control logic for realizing the GALS NoC designs.

(3) Developing a GALS on-chip network which applies CDMA technique.

(4) Developing a modeling and performance estimation method for a GALS NoC design

using SystemC.

(5) Developing a crossbar on-chip data switch structure forcomparison purpose.

(6) Examining the characteristics of the developed CDMA NoCby comparing it with other

NoC structures.

(7) Realizing a synchronous-asynchronous mixed GALS NoC design on a LUT-based FPGA

device.

1.3 Thesis Outline

This thesis consists of two parts: Argumentation (Part I) and Publications (Part II). Part II in-

cludes reprints of nine international conference and journal publications on which this thesis

bases. Part I starts with this chapter, Chapter 1, to introduce background and objective of this

work. Chapter 2 gives an overview of on-chip networks including the background of NoC,

the related design issues, and some examples of existing NoCdesigns. The topics addressed

in Chapter 3 include the method of applying GALS scheme in on-chip networks and the re-

lated issues including synchronization and asynchronous designs for realizing a GALS NoC.

Chapter 4 presents the work of designing and realizing a GALSring NoC as a direct network

instance of Proteo NoC architecture. Chapter 5 presents thework of designing and realizing

an on-chip network which applies CDMA technique. Chapter 6 presents a crossbar network

developed for comparison purpose. The comparisons betweenthe CDMA network and other

types of NoC designs including the ring and crossbar networks developed in this work are

presented in Chapter 7. Chapter 8 presents the work of realizing a GALS NoC design on an

FPGA device. Finally, the conclusions of this thesis including summary of the publications

in Part II and the main results of the research work are presented in Chapter 9.



6 1. Introduction



2. NETWORK-ON-CHIP OVERVIEW

The appearance of Integrated Circuit (IC) in 1959 was a milestone of the development of

electronics industry. It created a productive way to manufacture large scale electronic cir-

cuits on a semiconductor device. As stated by Gordon Moore in1965, “the complexity for

minimum component costs has increased at a rate of roughly a factor of two per year” [64].

This statement is known as the original formulation of Moore’s law and often quoted as “the

number of transistors that can be placed on an IC is increasing exponentially, doubling ap-

proximately every two years.” The Moore’s Law is still validnowadays and believed to be

valid until reaching the size of atoms.

Therefore, driven by the growing manufacture capacity and the growing requirement of ap-

plications, the complexity of an on-chip system is continuously growing in terms of number

of transistors and functionalities. For example, Intel’s ‘Core 2 Duo’ processor fabricated

with 65nm technology process contains 291 million transistors [40]. When the on-chip sys-

tem becomes complicated, the system design methodology called orthogonalization of con-

cerns [49] can be applied to deal with the complexity. As addressed in Chapter 1, the commu-

nication issue is very crucial for an on-chip system to perform its tasks efficiently. Therefore,

in the context of SoC design, one way of applying the methodology of concerns orthogo-

nalization is to separate the concerns of communication from computation to enable more

efficient exploration of optimal solutions on each subject.

On-chip bus structure was firstly applied to handle on-chip communications for a SoC design

in 1990s. The idea of on-chip bus is derived from the bus schemes, such as VersaModule

Eurocard (VME) bus [78] and Peripheral Component Interconnect (PCI) bus [77], which are

designed for connecting discrete devices on a Printed Circuit Board (PCB). The examples of

on-chip bus structures include CoreConnect [39] and Advanced Microcontroller Bus Archi-

tecture (AMBA) [3]. CoreConnect is a complete and versatilebus specification which defines

three types of buses: Processor Local Bus (PLB), On-chip Peripheral Bus (OPB) and Device

Control Register Bus (DCR). AMBA, which is similar to CoreConnect, also specifies three

kinds of buses: Advanced High-performance Bus (AHB), Advanced System Bus (ASB) and

Advanced Peripheral Bus (APB). These bus structures supplymany advanced features, such

as split transactions and line transfers, for on-chip systems which contain a few processors.

However, as addressed in [34], bus structures have several disadvantages by the compari-
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son of on-chip networks. The main disadvantages, bus arbitration bottleneck and bandwidth

limitation as mentioned in section 1.1 of Chapter 1, are caused by the centralized and time-

division manner of sharing a communication channel among all the hosts of a bus. The trend

of future on-chip systems is that a large number of processing units will be integrated into one

system, as the example shown by TILE64 [89]. Therefore, if a bus structure is applied in the

future on-chip systems which contain a large number of components, it will suffer from the

problems of arbitration delay, bandwidth limitation, and poor scalability. Hence, developing a

dedicated on-chip network is the most promising solution for future on-chip communication.

The issues of designing an on-chip network and the existing NoC designs will be introduced

in the following two sections of this chapter.

2.1 NoC Design Issues

The concept of on-chip networks is derived from the well-established inter-computer net-

works. Therefore, taking a look at the design issues of designing computer networks is help-

ful for tackling design problems of NoC because they have a lot of similarities despite of

different characteristics and application environments.The Open Systems Interconnection

(OSI) reference model [41] is a layered description which has been used for building com-

puter networks. Thus, the NoC design issues can be addressedaccording to the OSI reference

model illustrated in Fig.1.

Seven layers are defined in the OSI model and illustrated in Fig.1. The seven layers include

application layer, presentation layer, session layer, transport layer, network layer, data link

layer, and physical layer. Each layer provides certain services to facilitate the communication

Fig. 1. ISO Open Systems Interconnection Reference Model.
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processes in the network. The issues and challenges of designing on-chip networks will be

addressed together with describing the functions of each layer in the following paragraphs of

this section.

(1) Physical Layer. This layer defines all the electrical and physical specifications to acti-

vate, maintain, and de-activate physical connections for data transfers. Normally, a NoC de-

sign is implemented on a silicon chip in which the characteristics of the physical connection

medium are determined by the manufacturing technology. As the manufacture technology

scales down to DSM domain, the on-chip physical links face the challenges of large wire de-

lay, large power consumption, crosstalk noise, etc. Therefore, the NoC design efforts in this

layer mainly concentrate on conquering the above mentionedchallenges in physical level.

For example, the work presented in [27] gives a wire segmentation repeater structure to re-

duce wire delays. The work in [71] presents a booster structure to drive long wires instead

of repeaters to achieve better performance in terms of area,power, and placement sensitiv-

ity. The work presented in [98] applies low-swing signalingtechniques to reduce the power

consumption of link wires. A physical link design for a NoC application is presented in [59].

The design applies mesochronous approach to realize a clockskew insensitive physical link.

(2) Data Link Layer. This layer is responsible for setting up reliable data transfers over

physical links. The NoC design issues in this layer can include error detection and correc-

tion, access arbitration of physical media, and the methodsof utilizing physical links. For

instance, the Cyclic Redundant Code (CRC) scheme is appliedin Xpipe NoC [7] to detect

the possible transition errors. Another design issue related with this layer is the multi-clock-

domain communication issue. In a large on-chip system, different functional hosts may work

in different clock domains in order to achieve optimal performance; hence data transfer cross-

ing clock domains is a design challenge. A data link design ispresented in [58] to deal with

this issue using mesochronous links. Another approach is toapply GALS scheme [15, 69]

into on-chip networks. It means that the global links and thelocal links in a large on-chip

system apply different communication methods to solve the multiple clock domain problem

and increase data transfer reliability. This topic will be discussed further in Chapter 3.

(3) Network Layer. The network layer provides the means of data transfers through a net-

work connection between a source and a destination. It should make the transport layer

independent on the data routing and relay considerations. For a NoC design, the main issues

to be handled in this layer include network topology and datarouting.

Network topology concerns the layout and connectivity of the nodes and channels in a net-

work. According to the functions of network nodes in a network topology, networks can be

classified into direct and indirect networks. In a direct network, each node is both a terminal

and a switch node. An example topology of direct networks is the 2-Dimensional (2-D) mesh

topology illustrated in Fig.2(a). In a mesh topology, each node is used as a terminal node

connecting with a functional host and as a router node switching data to their destinations.
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Fig. 2. Network Topology Examples.

Many NoC designs apply mesh topology since its simple structure and the ease of placement.

Another topology of direct networks which has been applied in NoC designs is the octagon

topology illustrated in Fig.2(b). It is an eight-node ring network with extra links between each

pair of opposite nodes in the ring structure. In an indirect network, each node works either

as a terminal or a switch. It cannot carry out both functions.An example of this category is

the tree-based topology illustrated in Fig.2(c) with a caseof binary tree. As illustrated in the

figure, the nodes at the bottom level work as terminals to connect with functional hosts, while

the nodes in higher levels function only as data switching nodes. Although other topologies

exist for interconnection networks, only a few examples which have been applied in NoC

designs were presented in this paragraph to give a glimpse onNoC topology choices. The

NoC examples which apply these topologies will be presentedin section 2.2.

Besides network topology, the routing method is another issue that needs to be considered in

the network layer of a NoC design. After a network topology isset, a routing method is used

to decide the path that data will be transferred from the source node to the destination node.

According to different aspects, routing methods summarized in [72] can be classified in three

ways as presented in the following three paragraphs.

Depending on where the routing decision is made, we can have source routing and distributed

routing. By source routing method, the entire path of data transfers is determined by the

source node before data transfers. By distributed routing,each router node decides the next

node where the received data will be sent.

Depending on the information on which the routing decision bases, routing methods can be

classified into deterministic routing and adaptive routing. Deterministic routing means that

the data transfer path is determined only according to the source and destination addresses.

Whereas, with adaptive routing method, the path is decided not only by the source and des-

tination information, but also by the dynamic network conditions, such as traffic congestion

information in the network.

Depending on the length of the decided path, minimal routingand non-minimal routing meth-
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Fig. 3. Packet-Buffer Flow Control Methods.

ods can be differentiated. If a selected path is one of the shortest paths between the source and

the destination, this method is called minimal routing. Otherwise, it is called non-minimal

routing method.

A routing method applied in NoC designs can be a mixture of different routing categories.

For example, the X-Y routing method is both deterministic and minimal. In X-Y routing,

the data are transferred along the rows first, then are moved along the columns toward the

destination in a 2-D mesh network. Because adaptive routinginvolves dynamic arbitration

mechanisms which incur complex node implementation, deterministic routing is normally

applied in NoC designs.

(4) Transport Layer. Transport layer protocols establish and maintain end-to-end connec-

tions between transport level entities. The concerned design issues in this layer include flow

control and Quality of Service (QoS) management.

Flow control is the mechanism that determines the allocation of resources for data as they

progress along their routes. According to the way of utilizing the channels between network

nodes, two different approaches, circuit-switching and packet-switching [20], can be applied.

In a circuit-switched network, a dedicated path from sourceto destination is set up before data

transport and reserved until the transport is complete. In apacket-switched network, the data

are transferred in form of packets. There are no channels setup for a data packet. All packets

travel to their destinations by sharing the existing channels among nodes and following their

paths determined by a routing method. The main disadvantageof circuit-switched networks

is the lower efficiency of channel usage than the packet-switched network, which is caused by

setting up dedicated paths for data transport. Therefore, packet-switching method is popular

in NoC designs.

Normally, an on-chip network needs to include buffers to facilitate data transfers. According

to the granularity at which buffers and channels are allocated and the way of forwarding data

along their routes, flow control methods can be classified into packet-buffer flow control and

flit-buffer flow control [20]. A flit is the minimum unit in a packet that can be recognized by

a flow control method.

Two basic packet-buffer flow control methods are store-and-forward and virtual cut-through

[20]. The principle of store-and-forward method is illustrated in Fig.3(a) with an example
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of transferring a four-flit packet. With store-and-forwardmethod, a packet will not be for-

warded to the next node along its path until all flits of the packet are received by the current

intermediate node. Therefore, the disadvantage of this method is the high packet transfer la-

tency caused by inefficient usage of channels. Hence, virtual cut-through method is proposed

to solve this problem by immediately forwarding the received packet flit to the next node if

the buffer and channel resources are available for the wholepacket, without waiting for the

entire packet to be received. Its principle is illustrated in Fig.3(b) without contentions. By

transferring packets as soon as possible, virtual cut-through method reduces the serialization

latency of store-and-forward method. However, there are two main shortcomings of virtual

cut-through, or of any other packet-based flow control methods. One of them is the ineffi-

cient usage of buffers caused by allocating buffers in unitsof packets. This is very important

when there are multiple buffer sets to reduce blocking or providing deadlock avoidance in a

NoC. Another shortcoming is that the contention latency is increased by allocating channels

in units of packets. The blocked packet needs to wait for the whole packet in transmission

passing through the channel before it can acquire that channel. These shortcomings can be

overcome by allocating resources in units of flits rather than packets.

A popular flit-buffer flow control method is wormhole method [20] which operates like virtual

cut-through, but with resources allocated to flits rather than packets. It means that a flit only

needs to acquire one flit buffer and one flit channel bandwidthbefore it can travel to the next

node, which relieves the requirement of resources in comparison with virtual cut-through

method. Whereas, with wormhole method, a packet in transfer occupies multiple channels

when its flits are traversing along the channels one by one. This will cause a problem if the

current packet is blocked during transfer. As illustrated in Fig.4(a), if the flit of packet A is

blocked at the intermediate node 3 because of congestions, all the channels occupied by this

packet will exclude packet B from using them. In this situation, virtual-channel method [20]

is proposed to solve this blocking problem by associating multiple buffers to one physical

channel. By using the buffers, multiple virtual channels can be set up on a single physical

channel. As illustrated in Fig.4(b), with the virtual channels, the flits of packet B can be

transferred to node 3 even when the flits of packet A are blocked at node 3.

Generally, the flit-buffer flow control methods are preferred in NoC designs because of its

efficient usage of buffers and channel bandwidth. The application examples in NoC designs

will be presented later in section 2.2.

Another issue concerned in the transport layer of a NoC design is QoS. It refers to the service

qualification that is provided by the network to its users. In[43], the QoS in the context of

NoC designs is classified into two basic classes, Best-Effort (BE) services and Guaranteed

Services (GS). In BE services, the network makes no strong guarantee about the delay or loss,

while the GS scheme can guarantee a certain level of performance as long as the injected

traffic complies with a set of restrictions. Both types of QoShave been applied in NoC
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Fig. 4. Flit-Buffer Flow Control Methods.

designs. Because GS service demands more resource reservation and complex control logic

than the BE service does, it is more expensive to support GS service in a NoC design.

(5) Session/Presentation/Application Layer.These three layers handle the communication

processes of an interconnection network in high levels. Session layer mainly focuses on the

connections between hosts. Presentation layer concerns the data representation and security

issues. Application layer supplies services to user-defined application processes using in-

terconnection networks. Generally, the services and functions of these three layers will be

implemented by processors or software. Therefore, a NoC design normally does not need to

directly handle the issues related to these layers.

The OSI model is only a reference for designing an interconnect network. Therefore, it only

gives a guideline for designing an on-chip network rather than a regulation. From the above

discussions about the OSI model and NoC design issues, we cansee that the NoC design

issues are generally within the three or four lowest layers in the OSI model and the boundaries

between the design issues according to the layer definitionsare not very strict. The presented

design issues in this subsection do not mean a complete list of all possible design issues of

on-chip networks, or rather, they are some typical NoC design issues addressed according to

the OSI model.

2.2 Examples of Existing NoC Designs

A lot of research work about NoC structures has been carried out with different application

requirements and backgrounds. There is no standard way to classify or summarize them.

In this section, some examples are introduced to present thediversity of the existing NoC

designs.
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1. Different Topologies

As presented in section 2.1, 2-D mesh is the most widely applied topology since its simple

structure and tidiness for placement. The SoCBUS presentedin [93], HERMES NoC pre-

sented in [66], and the NoC design presented in [19] are the examples of 2-D mesh network.

Based on 2-D mesh, another topology called 2-D torus can be formed by connecting each row

and column of nodes in a 2-D mesh network into a ring. An interconnection network pre-

sented in [60] is the example of 2-D torus network. The torus network consists of four nodes

and it is implemented on an FPGA device. Another type of topology quite different from

the mesh and torus is an octagon topology illustrated in Fig.2(b), the NoC presented in [45]

applies this topology. In the octagon NoC, the channels between every node are bidirectional

links.

Besides the topologies of direct networks, indirect network topology is also applied in NoC

designs. For example, SPIN [34] is a NoC design which appliesa fat-tree topology consisted

of two levels of routers, four routers in each level. Each router in the first level connects

with four functional hosts. Each channel is comprised of twoone-way 32-bit data paths.

The fat-tree topology network is further explored by a NoC design called XGFT [46]. The

XGFT NoC applies an extended generalized fat-tree topologyto achieve better scalability

and performance in comparison with a fat-tree network.

2. Different Data Switching Methods

The PROPHID architecture [55] is an early developed NoC which applies circuit-switching

scheme. PROPHID uses a three-stage switch structure which consists of time-division switch

and space-division switch to carry out data transfers in a multiprocessor system. Because the

circuit-switching scheme has the disadvantage of non-scalability and insufficient parallelism

for future on-chip systems, packet-switching scheme is most widely applied in current NoC

designs, such as the mentioned HERMES network, SPIN network, and XGFT network.

However, there exists switching methods which combine the characteristics of both circuit

switching and packet switching in NoC designs. For example,the SoCBUS applies a Packet

Connected Circuit (PCC) [93] method which hybrids circuit switching with packet switching

to transfer data in the network. It uses packet switching to set up the connection between

network nodes and lock the setup as a circuit for data transmission. The Æthereal NoC

[23] developed by Philips research laboratories applies a pipelined time-division multiplexed

circuit switching scheme in a packet-switched network in order to acquire contention-free

routing.

3. Different Routing Methods

For the sake of simplicity, deterministic routing methods are applied in the most of NoC

designs. For example, the X-Y routing method introduced in section 2.1 has been applied

in the 2-D mesh HERMES NoC, SoCIN NoC [97], and the network presented in [60]. In
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SoCBUS, each node makes the routing decision based on the destination address and the

static knowledge of the general direction to each destination. In Octagon NoC, a deterministic

minimal routing method is realized by choosing the output direction at each node according

to predefined rules.

In [22], three partially adaptive routing methods, west-first, north-last, and negative-first, are

proposed for 2-D mesh networks. The common idea of those methods is that a deterministic

route is followed when certain limits are obeyed, otherwise, the routing decision made by a

node can be adaptive according to traffic conditions. For example, with the west-first routing,

a node always tries to transfer packets firstly to the west direction of the source node whenever

it is possible, otherwise, routing direction is adaptive tothe traffic condition. The comparison

between the three partially adaptive methods and X-Y methodis also presented in [22]. The

conclusion is that X-Y routing appears as the better choice in most situations in HERMES

NoC.

4. Different Flow Control Methods

Wormhole and virtual-channel methods are two most frequently used flow control methods

in NoC designs. Because the wormhole method requires less buffers and simpler control, it

is easier to be applied in NoC designs. The widely accepted Æthereal NoC applies wormhole

method in its best-effort router. HERMES, SoCIN, and SPIN also apply wormhole method.

For virtual-channel method, the NoC design presented in [19] is an example. It applies 10K

bits storage for virtual channels at each input controller.Virtual channels are also applied in

a router design presented in [28] to support different QoS.

5. Different QoS Strategies

As addressed in section 2.1, GS and BE are two types of QoS applied in NoC designs. GS

provides predictability of data transfers, while BE service has higher resource utilization.

NOSTRUM [54] is an example of NoC design which provides GS. Ituses looped containers

implemented by virtual circuits to support GS in a mesh network. While in Æthereal NoC,

both GS and BE services are provided by using a combined GS-BErouter structure. The

router includes two parts; one part applies pipelined circuit switching to implement its guar-

anteed service, while the other part applies input-queued wormhole flow control to provide

best-effort service. Another type of combination of GS and BE services is presented in [28].

The design provides differentiated QoS between GS and BE by allowing higher priority data

streams to overtake those of lower priority in virtual channels.

6. Different Implementation Strategies

As the design requirements for a NoC may vary largely depending on the applications, there

is no a universal design which suits for all applications. Therefore, some NoC designs, e.g.

SoCIN and Xpipes, realize the network components in a soft format which can be customized

for a specific application. With the support of specialized design tools, e.g. XpipesCompiler,
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many design parameters, such as topology, network interfaces, and switch structures, can be

customized to meet the requirements of a specific application during the design stage. Of

course, the changeable design parameters in this type of NoCdesign can not be arbitrary. For

instance, the topologies supported by SoCIN NoC only include mesh and torus. However,

these choice limitations are reasonable since it is impossible to predict and meet all possible

application requirements in one design.

7. Different Communication Synchronization Strategies

As addressed in section 2.1, GALS communication scheme is introduced in NoC to deal with

the issue of multiple clock domain data transfer. Thus, asynchronous circuit design is applied

in some NoC designs to implement GALS scheme. A NoC design called CHAIN [4] is such

an example of an asynchronous NoC. It applies self-timed logic to build pipelines, multiplex-

ing structures, and steering latches to transfer data with handshake protocols. Another GALS

NoC example is MANGO presented in [8] which applies OCP compliant network adapter

block to connect the functional blocks with its asynchronous communication network. It also

provides both guaranteed and best-effort services by utilizing virtual channels [11]. Nexus

NoC presented in [57] is an example of GALS NoC different fromrouter-based NoC. It

applies a 16-port asynchronous crossbar structure to buildan on-chip data switch.

8. The Proteo NoC Architecture

Finally, the Proteo NoC architecture [85] developed in our department is introduced. Its

name, Proteo, is taken from ancient Greek mythology to express the idea of flexibility of

the proposed NoC architecture. Conceptually, as stated in [85], the Proteo NoC architecture

consists of a library of hardware components, a set of CAD tools and a methodology of

usage. The idea of Proteo NoC is to make a NoC instance be easily and quickly built for a

specific application by applying specialized design tools and optimization methodology on

a heterogeneous hardware IP library. A Proteo NoC instance is a packet-switched network

in which topologies can be customized according to applications. Currently, deterministic

routing and virtual cut-through flow control method are applied in a Proteo NoC instance.

Proteo NoC supports Virtual Component Interface (VCI) [91]and Open Core Protocol (OCP)

[75] interface standards for connecting each functional host to its corresponding network

node.



3. APPLYING GALS SCHEME INTO ON-CHIP NETWORKS

As mentioned in Chapter 2, the number of processing or functional components in an on-

chip system becomes larger and larger. Currently, a 64-coreon-chip system, TILE64 [89],

has already been produced. It is believed that a future on-chip system will consist of sea-of-

processors in one chip [80]. Besides the growing number of system components, the func-

tionalities of system components also become largely different from each other. It means that

an on-chip system may include different processors for different computation tasks, varied

hardware accelerators for varied functions, and various interface controllers for various pe-

ripheral devices. Therefore, these heterogeneous system components have different optimal

working clock frequencies according to the tasks that they are handling. When integrating all

the heterogeneous components into an on-chip system, coordinating different clock domains

is a challenge.

3.1 Multi-Clock Challenge and GALS Scheme

From the viewpoint of a chip design, as addressed in [74], forlarge high-speed globally

synchronous ASICs, designing the clock distribution net becomes a troublesome task because

of the problems caused by clock skew, by the growing die sizesand shrinking clock periods.

At the same time, the power consumption is increasing tremendously because the working

clock frequency driven by demanding applications is getting higher in the scale of giga-hertz.

Therefore, one solution of the challenges mentioned above is to enable different process-

ing or functional system components to work at their own clock rates. Thus, the following

challenge that a SoC designer needs to handle is how to integrate the clock independent com-

ponents into one system. In this situation, GALS scheme is proposed to solve the system

integration challenge. The GALS scheme is firstly introduced in [15] to prevent metastability

by stretching local clocks. The basic idea of applying GALS scheme into on-chip systems

is to partition the system into several independently clocked domains that communicate with

each other in an asynchronous fashion. The GALS scheme is thebasis of the NoC structures

designed and realized in this work. The method and challenges of designing a GALS on-chip

network will be presented in the following two sections.



18 3. Applying GALS Scheme into On-Chip Networks

Fig. 5. A Method of Applying GALS Scheme in a NoC Design.

3.2 The Synchronization in GALS NoC

In an on-chip system, communication tasks among system components are performed by the

on-chip network. Thus, the issue of realizing GALS scheme inan on-chip system equals to

realize GALS scheme in the on-chip network. The method of applying GALS scheme in the

NoC structures developed in this work are illustrated in Fig.5. From the figure, we can see

that each network node contains an interface block which works at the same clock rate as

the system functional block attached to it, while the blocksfor global communication among

network nodes apply asynchronous scheme.

Therefore, the data synchronization between synchronous and asynchronous domains is the

main challenge of designing a GALS NoC. The term, synchronous domain, used in this thesis

refers to the group of design blocks which work under the dictation of clock signals in a SoC,

while, the term of asynchronous domain refers to the group ofblocks which work in a self-

timed manner without any clock signals.

Many synchronization schemes or structures for data transfers among independent clock do-

mains in a GALS system have been presented. One category of solutions is to avoid syn-

chronization failure by adjusting the clock signal of the local synchronous module or by

generating a controllable clock signal in the synchronization interface. For example, the

work presented in [35] develops a stoppable clock structureto build a deterministic wrapper.

The work in [69, 99] presents stretchable clock schemes to avoid synchronization failure in

the interface between synchronous and asynchronous domains. A pausible clock scheme is

firstly presented in [96] to manage the data transfers between independent clock domains

without synchronization failure. The work presented in [63, 68] further develops the pausi-

ble clock scheme. The work in [12] presents an asynchronous wrapper which combines the
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Fig. 6. Double-Latching Synchronization Scheme.

stretchable and pausible schemes together. This wrapper can avoid synchronization failures

caused by metastability in circuits. One common feature of those presented synchronization

schemes is that they all involve specialized clock generation or control circuits which need

to be implemented in circuit level. Thus, if a GALS NoC designapplies one of those syn-

chronization schemes, the whole design can not be realized in Register-Transfer Level (RTL)

by using Hardware Description Language (HDL), which in turnmakes the NoC design less

implementation flexible and portable. Therefore, this typeof synchronization scheme is not

applied in the NoC designs presented in this thesis.

Another type of solutions of data synchronization in a GALS system is to synchronize the

signals from asynchronous domain with the local clock in an arbitrary timing relationship and

limit synchronization failures within an acceptable level. The most widely applied scheme in

this category is the double-latching scheme as illustratedin Fig.6. It consists of two serially

connected D-Flip-Flop (D-FF) components to latch the inputsignals with the reference clock

of the receiver. It is possible that the first D-FF enters intometastable state if input signal

transitions violate the setup or hold timing requirement. In this situation, the second D-FF

gives a whole clock cycle for the first D-FF to resolve the metastability before latching its

output. However, in the double-latching scheme, there still exists the failure possibility if

the first latch can not get rid of metastability state before the second flip-flop samples its

output. Therefore, Mean Time Between Failure (MTBF) is introduced to measure the safety

of a synchronizer. MTBF gives indication about how often a synchronization failure occurs.

The performance analysis of double-latching synchronizers and the equation of calculating

MTBF of a synchronizer are presented in [24,53]. As addressed in [24] and presented in (1),

the MTBF equation consists of the time (t) allowed for synchronization, the settling time (τ)

of Flip-Flop (FF), the sampling clock frequency (fs), the frequency (fd) of data edges which

generates a metastability, and a parameter (Tw) related to the metastability window of the FF.

MTBF =
et/τ

Tw · fs · fd
(1)

Besides the double-latching scheme, many other synchronization schemes or structures have

also been proposed. For instance, a pipeline synchronization structure is proposed in [82] to

achieve high communication bandwidth while keeping the failure possibility arbitrarily low.
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Publication [26] presents a speculative synchronizer structure in transistor level to reduce

synchronization latency. Another transistor level synchronizer design is presented in [44]

to achieve high performance in a low voltage application. In[52], a parallel synchronizer

scheme which bases on the double-latching scheme is introduced to reduce synchronization

latency. All those presented synchronizer structures require the design to be implemented

in gate or transistor level. In order to make the entire design of a GALS NoC suit the com-

monly used synchronous design flow, both the synchronous andasynchronous designs need

to be modeled by using the commonly used HDL. Therefore, the double-latching scheme is

selected to be used in the GALS NoC designs in this thesis.

In the GALS NoC designs presented in this thesis, double-latching scheme is used for syn-

chronizing the handshake control signals for data transfers rather than the data signals them-

selves. For example, when transferring data from asynchronous domain to synchronous do-

main, the asynchronous logic will assert a request signal after the data to be transferred are

ready. Then the asserted request signal will be synchronized with the receiving clock do-

main through a double-latching structure as illustrated inFig.6. Whereas, the acknowledge

signal that the synchronous domain sends back to the asynchronous domain can be received

directly. When data are transferred from synchronous domainto asynchronous domain, the

double-latching scheme is only needed for the synchronous logic to receive an acknowledge

signal from the asynchronous domain during a four-phase handshake process. The safety of

applying double-latching scheme has been analyzed in [31],where it is stated that the MTBF

of most SoC designs is safe far more than enough by simply setting the resolving time win-

dow to one clock cycle. Among the published NoC designs, MANGO NoC is an example

which applies the double-latching scheme to synchronize the synchronous and asynchronous

domains. In [9], the designer of MANGO NoC claims that the estimated MTBF of the im-

plemented double-latching synchronizer is longer than 8000 years. Therefore, the simple and

safe enough double-latching scheme is a reasonable choice for a GALS NoC design.

3.3 The Asynchronous Design for GALS NoC

In order to realize a GALS NoC design, both synchronous and asynchronous designs are

needed. Synchronous design methodology and techniques have been well established and

applied. Many standard design tools and design flows are developed for synchronous designs.

Whereas, asynchronous design has not been widely applied after it was born in 1950s. The

asynchronous designs of the GALS NoCs developed in this workwill be presented in this

section.
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3.3.1 Introduction of Asynchronous Design

As stated in [70], asynchronous design methods can date backto 1950s and to two people

in particular: D.A. Huffman and D.E. Muller. Huffman developed an asynchronous design

methodology known as fundamental-mode circuits [38] in which the delay in all circuit ele-

ments and wires is assumed to be known, or at least bounded. The methodology developed

by Muller is Speed-Independent (SI) circuits [67] in which gate delays are assumed to be

unbounded while the wire delays are negligible.

Almost all the other types of asynchronous design methods can find their roots in those two

fundamental methodologies. For example, Delay-Insensitive (DI) circuit model extends the

assumption of SI circuits by assuming that both gate and wiredelays in circuits are un-

bounded. The burst-mode design methodology [73] assumes that only the specified input

bursts which can make circuits leave the current state can occur in a given circuit state, and the

fundamental-mode assumption is applied between transitions among different input bursts.

Ivan Sutherland developed a micropipeline structure [87] as an asynchronous alternative of

synchronous elastic pipelines. A micropipeline structureconsists of a bounded-delay data

path controlled by delay-insensitive control logic.

After the birth of asynchronous design in 1950s, it has not been as widely adopted as syn-

chronous designs except several academic projects during the first several decades, such as

the ILLIAC II computer [13] developed at University of Illinois in 1960s, the first opera-

tional data-flow computer [21] developed at the University of Utah in 1970s, and the first

fully asynchronous microprocessor [61] developed at California Institute of Technology in

1980s. As the development of IC design in recent decades, synchronous designs face the

hard challenges of clock distribution, power consumption,and design complexity. There-

fore, as an alternative to synchronous design, asynchronous design gains more applications

than before. For instance, Philips developed asynchronouspager chips [79] in 1998 and a

contactless smart-card chip [48] in 2000. A series of asynchronous microprocessors called

Amulet [29,30,94] have been developed in University of Manchester from 1994 to 2000. In

2005, products based on an asynchronous NoC design were released by a company called

Silistix [37]. One common motivation of those asynchronousdesign applications is to utilize

the advantages of asynchronous design. Several main advantages of asynchronous design are

briefly introduced in the following five paragraphs as the endof this short introduction of

asynchronous design.

(1) Low power consumption.Because asynchronous circuits do not need any clock signals,

the power spent on clock switching in a synchronous chip is avoided. Additionally, the signal

transitions in asynchronous circuits will automatically stop when there is no driven event.

Therefore, asynchronous designs can achieve lower power consumption.

(2) No clock distribution and clock skew.This advantage is obvious since the lack of clock
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Fig. 7. The Control Logic of Micropipeline.

signal in asynchronous circuits. Thus, the difficulties of clock distribution and clock skew

faced by synchronous designs are removed from asynchronousdesigns.

(3) Average-case performance.In a synchronous design, the operating speed is limited by

the worst-case, called critical path, in the circuits. However, in asynchronous circuits, the

operating speed is determined by actual local latencies in the circuits rather than the global

worst-case latency. In most of cases, the average-case of latencies are smaller than the worst-

case latency, hence, asynchronous designs can achieve better operating speed performance.

(4) Less Electromagnetic Interference (EMI) radiation. In a synchronous design, flip-flop

transitions follow a certain clock frequency so that the energy spent on signal transitions con-

centrates within the very narrow bands around the clock frequency. Thus, the synchronized

signal switching activities will produce substantial electrical noise. Whereas, the switch-

ing activities in an asynchronous circuit are correlated loosely because there is no universal

timing pace, hence, they produce a more distributed noise spectrum and a lower peak noise

value.

(5) Robust and adaptive.A synchronous circuit is sensitive to the delay variations caused

by the variations of clock signal, supply voltage, and operating temperature related with

the manufacture process and application surrounding. Whereas, because the loose timing

requirement, asynchronous circuits can operate correctlyunder large variations caused by

different manufacture processes and application environment.

3.3.2 The Asynchronous Designs Applied in the GALS NoCs

Although some asynchronous design tools and methods have been proposed, such as Balsa

[81] and Tangram [90], there is no widely adopted or standardone. The asynchronous designs

applied in the GALS NoC structures in this thesis base on the delay-insensitive control logic

of micropipeline. The structure of micropipeline control logic is illustrated in Fig.7.

The logic components marked with ‘C’ in the figure represent the basic component of asyn-

chronous circuits called C-element. The truth table of a C-element is listed in Table 1. From

Fig.7, we can see that the principle of micropipeline control logic is to use the output from

the next stage to enable or disable the output of the current stage. The components marked
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Table 1. Truth Table of C-Element.

Input1 Input2 Output
0 0 0
0 1 No Change
1 0 No Change
1 1 1

with ‘delay’ in Fig.7 illustrate the logic and wire delays along the paths. The asynchronous

design applied in this work bases on the micropipeline control logic and will be presented in

the following paragraphs.

As illustrated in Fig.5, the GALS NoC designs in this thesis apply asynchronous design in

a part of the network node and the interconnection structures between network nodes. The

asynchronous design in the GALS NoCs can be divided into two parts which include data

path and control logic. The data path is composed of the data registers which store or deliver

the data items through a four-phase dual-rail handshake protocol under the control of the

micropipeline-based control logic. Hence, the main designtask is to design the control logic.

Two pipeline structures were developed as the control logicof the asynchronous design. One

type of control pipeline is used for control-centric blocks, such as the control block in a

network node which coordinates packet receiving and sending tasks. Another type of control

pipeline, called block control pipeline, is used in data-path centric blocks, such as packet

receiver and packet sender blocks in a network node. A hybridcontrol pipeline structure

which combines the two pipelines mentioned above is appliedas the control logic of the

asynchronous FIFOs used in the packet buffer blocks of the GALS NoCs. Therefore, the

following two paragraphs will present the two main control pipeline structures by analyzing

their basic portions.

Two stages of the control pipeline used in control-centric blocks are illustrated in Fig.8. In the

figure, we can see that the control pipeline uses micropipeline control logic as the backbone

and applies a few AND gates as the delay components, hence, itis still delay-insensitive. The

state information of the pipeline is passed through each stage in the pipeline by a four-phase

handshake protocol. If we take the ‘Stage 1’ illustrated in Fig.8 as an example, when both the

‘req from stage0’ and ‘stag1enable’ signals are ‘1’, the output of ‘C1’ will be set to logic

‘1’ which indicates that the current active state of the pipeline is in the ‘Stage 1’. Then the

output of ‘C1’ can be used as a request signal to trigger the control logic in the corresponding

function blocks for a certain communication process.

The structure of block control pipeline is illustrated in Fig.9. The main task of this type of

control logic is to generate four-phase request or acknowledge signals for data transfers. Each

stage of the control pipeline is composed of two C-elements as illustrated in Fig.9. The ‘C1’

is used to record the rising edge of a request or acknowledge signal, while the ‘C2’ is used
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Fig. 8. Control Pipeline of Control-Centric Blocks.

Fig. 9. Block Control Pipeline.

to record the falling edge of a request or acknowledge signal. Therefore, each stage of the

block control pipeline will pass the enable signal to the next stage only after the four-phase

handshake process on the current stage has been completed. Although the presented block

control pipeline structure can only meet Quasi-Delay-Independent (QDI) model because the

input ‘ack/req’ signal is branched to ‘A1’ and ‘A3’, the timing requirement for distributing

the ‘ack/req’ input signal along the isochronic wire forks is quite loose since the logic delays

in ‘A1’ and ‘C1’ are usually much larger than the logic delay of the inverter at the input of

‘A3’.

By using the presented control pipelines, the asynchronousdesign for the GALS NoCs pro-

posed in this thesis are realized in RTL by using VHSIC Hardware Description Language

(VHDL) together with the synchronous design. Thus, the GALSNoC designs are compat-

ible with the commonly used design tools and flow for synchronous circuits. This feature

facilitates the portability and flexibility of the NoC designs.
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As mentioned in section 1.1, the work presented in this thesis started from implementing

GALS scheme in Proteo NoC architecture. This chapter presents the work of designing a

GALS direct on-chip network as an instance of Proteo NoC architecture.

4.1 Network Topology

As stated in [85], Proteo NoC architecture consists of an interconnection IP library and soft-

ware tools which automate the process of designing and configuring a network instance.

Therefore, the topology of Proteo NoC architecture is open for exploration during the design

stage. An optimal topology can be generated and utilized in anetwork instance of Proteo

NoC for a specific application.

The author of Proteo NoC suggests applying ring-like topologies in an instance of Proteo

NoC. As addressed in [85], this kind of topologies can simplify the analysis and make routing

algorithms straightforward, while attaining a reasonableflexibility. After the further devel-

opment of the automation tools and interconnect IP library of Proteo NoC architecture, the

topologies presented in Chapter 2, such as 2-D mesh, torus, and octagon, can also be included.

Fig. 10. Ringlet Topology Example.
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Fig. 11. Six-Node Bidirectional Ring Network.

Currently, studying on ring-like topologies can already give a clue of the characteristics of

Proteo NoC when a direct network structure is applied. Therefore, the GALS NoC design

presented in this chapter applies a bidirectional ring topology. More complex topologies can

be built by using the ring structure and bridge blocks as described in [85] and illustrated in

Fig.10.

4.2 Network Structure

The bidirectional ring NoC developed in this work is illustrated in Fig.11. It is a six-node

network in which each functional host block is connected into the network through individ-

ual network node block. The interface between a functional host and a network node can

apply one of the two widely accepted interface standards, VCI [91] or OCP [75], to adopt

heterogeneous functional IP blocks in the design library. In this work, Basic VCI (BVCI)

is applied because it is a good compromise between advanced features and the simplicity of

realization. In the bidirectional ring network, each network node has two output and two

input connections with its two neighbour nodes. From Fig.11, we can see that each func-

tional host works at its own clock rate which may be very different from the clock rates of the

other functional hosts. This setup highlights the necessity of applying GALS scheme in an

on-chip network since all functional hosts work at different clock rates. In the context of the

illustrated network, applying GALS scheme means that each local functional host can work

with its own frequency while the communications between network nodes are performed in

an asynchronous manner.

4.3 Network Node Design

A ring network belongs to direct network category in which each network node is both an

interface block of a functional host in the system and a router node of switching data in the
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Fig. 12. Network Node Structure of the Bidirectional Ring Network.

network. A network node structure developed for the bidirectional ring network is illustrated

in Fig.12. It contains two ‘Communication Layer’ blocks to handle the two output and two

input links with its neighbour nodes. Although it is designed for the bidirectional ring net-

work, it can be easily adapted for other types of topologies by adding more ‘Communication

Layer’ blocks. For example, by using four ‘Communication Layer’ blocks, the illustrated

network node structure can be used to set up a mesh network. The functions of each block in

the network node are described in the following paragraphs of this section.

1. ‘Node IF’ Block

This block is the interface block which applies BVCI interface standard to communicate with

the functional host via the ‘Network IF’ block of the functional host. The ‘Node IF’ block

acts as an counterpart of the functional host. It means that if the host is the initiator type

according to the BVCI standard, the ‘Node IF’ should be the target type and vice versa. The

main tasks of the ‘Node IF’ include receiving data from the functional host and assembling

the data into packet format. And then, it will deliver the packets to ‘Communication Layer’

blocks via ‘Layer MUX’ block. In the process of receiving data, this block takes care of

extracting data from the received data packets and deliversthe data to the functional host

according to the BVCI interface standard.

2. ‘Layer MUX’ Block

This block is a multiplexer which sets up data channels between ‘Node IF’ and the two

‘Communication Layer’ blocks. ‘Layer MUX’ can set up one data sending channel and

one data receiving channel for the ‘Node IF’ block simultaneously. It means that the two

‘Communication Layer’ blocks can communicate with ‘Node IF’ at the same time only if

one is used for data sending while the other one is used for data receiving. Otherwise, only

one ‘Communication Layer’ block can communicate with ‘NodeIF’ through ‘Layer MUX’.

If one ‘Communication Layer’ block is communicating with ‘Node IF’ both for data sending

and receiving simultaneously, then the other one can not be connected to ‘Node IF’ at this

moment.
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3. ‘Communication Layer’ Block

The function of this block is to perform the asynchronous communications with other network

nodes through a handshake protocol. As illustrated in Fig.12, two ‘Communication Layer’

blocks are used for the bidirectional ring topology. However, more ‘Communication Layer’

blocks can be included to support other types of topologies.

There are five sub-blocks in a ‘Communication Layer’ block tocarry out the data packet

sending or receiving tasks. The ‘Packet Receiver’ sub-block is used to receive data packets

from the other network node connected to the current node. Ifthe destination of the received

packet is the current node, the packet is called ‘incoming packet’, and it will be stored in

‘Rx Packet Buffer’. Otherwise, the received packet is called ‘bypass packet’, and it will

be dispatched into ‘Packet Sender’ block via ‘Packet Distributor’ for further transfers. The

data packets which come from the functional host via ‘Node IF’ will also be sent to ‘Packet

Sender’ block for asynchronous transfer. The ‘Communication Controller’ sub-block is the

controller which takes care of the necessary arbitrations and control tasks of data sending and

receiving processes.

4.4 Front-End Synthesis and Simulation Results

The presented network node design and the six-node bidirectional ring network illustrated

in Fig.11 are modeled in RTL by using VHDL and synthesized with a 0.18µm standard-cell

library. The ‘functional host’ blocks and their ‘Network IF’ blocks are not realized with any

real IP blocks, instead, they are simulated by adding stimulus signals on each ‘Network Node’

block according to the BVCI standard. Two important aspectsof this front-end realization

results, logic gate area cost and data transfer latency, arepresented in this section.

Table 2. Area Cost of the Bidirectional Ring Network.

Block Name
Area

(K equivalent gates)

Node IF
Target 1.145

Initiator 2.835
Layer MUX 0.374

Communication Controller 0.665
Packet Distributor 0.577

Packet Sender
3.893

(include Tx Packet Buffer)
Packet Receiver 0.643
Rx Packet Buffer 3.422

Total area of the six-node
177.007

bidirectional ring network
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Table 3. STL Values of the Bidirectional Ring Network.

Node Type
Latency of sending data Latency of receiving data

to ‘Network Node’ from ‘Network Node’
BVCI Initiator 8 local clock cycles + 2.5 ns 8 local clock cycles + 3.2 ns
BVCI Target 4 local clock cycles + 2.5 ns 4 local clock cycles + 3.1 ns

Table 4. ATL Values of the Bidirectional Ring Network.

Packet Length PLL (ns) PTL (ns) PBL (ns) PSL (ns)
1 data cell 11.7 13.4 10.7 3.3
2 data cells 15.2 18.7 14.2 3.3
3 data cells 18.6 24.0 17.6 3.3

1. Logic Gate Area Cost

The logic gate area cost of the network node and the six-node network are listed in Table 2

with the number of equivalent gates. From the figures in Table2, we can see that the Tx/Rx

buffer takes the largest portion in the area cost. Although this area report is only taking logic

gates into account, these front-end synthesis results are indicative enough for estimating the

complexity of the design and carrying out comparisons to alternative implementations. An

estimation of the area cost of wires will be presented in section 7.3.3.

2. Data Transfer Latency

Data transfer latency is an important performance indicator of the bidirectional ring network.

The latency values of transferring data packets in the six-node network are measured during

the gate-level simulations. Because the GALS scheme is applied in the ring network, the data

transfer latency of the network can be divided into two parts, Synchronous Transfer Latency

(STL) and Asynchronous Transfer Latency (ATL).

The STL refers to the data transfer latency between a functional host and the network node

attached to it. The value of STL depends on the local clock andthe type of interface. The

measured STL values during gate-level simulations are listed in Table 3. The constant values

in Table 3 are caused by the handshakes in the asynchronous domain. They are independent

of the local clock rate but belong to the synchronous transfer processes. Therefore they are

counted as a part of STL.

The ATL refers to the data transfer latency of transferring data packets from one network

node to the neighbour node by using a four-phase handshake protocol. The ATL value of the

bidirectional ring network consists of four portions: Packet Loading Latency (PLL), Packet

Transfer Latency (PTL), Packet Bypass Latency (PBL), and Packet Storing Latency (PSL).

The concept of these four latency portions is illustrated inFig.13 with an example that ‘Net-

work Node 0’ sends one packet to ‘Network Node 2’ via ‘NetworkNode 1’. The black arrows
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Fig. 13. ATL Portions of the Bidirectional Ring Network.

in Fig.13 represent the packet transfer direction. The different portions of the ATL are marked

by grey arrows in Fig.13 and explained in the following paragraphs.

(1) Packet Load Latency (PLL). It is the time used to load one packet from a functional

host into ‘Tx Packet Buffer’ block.

(2) Packet Transfer Latency (PTL).This latency refers to the time used to transfer one data

packet from the ‘Packet Sender’ of a network node to the ‘Packet Receiver’ of its adjacent

node using a four-phase handshake protocol.

(3) Packet Bypass Latency (PBL).After a network node receives a packet from another

node, it will check the destination address of the received packet. If it is a ‘bypass packet’, it

will be delivered into ‘Tx Packet Buffer’. The time spent on this process is called PBL.

(4) Packet Storing Latency (PSL).It is the time spent on storing one ‘incoming packet’ into

‘Rx Packet Buffer’.

The formula of calculating the ATL of transferring one packet in the ring network is given

in (2). It represents the situation in which the packet traverses several network nodes before

reaching its destination. N refers to the number of intermediate nodes between the source

node and destination node of a packet. If a packet is transferred between two adjacent network

nodes, then N is 0. The measured values of each ATL portion arelisted in Table 4. The values

are measured in a non-congestion situation which means thatno conflicts between ‘bypass

packet’ transfer and the ‘local packet’ transfer are included in the simulation. The listed

latency values only include the logic gate delay of the circuits, no wire delay is considered.

More accurate latency values could be obtained by includingthe wire delay after layout.

ATL= PLL+PTL× (N+1)+PBL×N+PSL (2)

By using the listed latency values and (2), we can estimate the latency range of the six-node

ring network in a non-congestion situation. From Fig.11, wecan see that the worst case

would be a 3-data-cell packet transfer from functional host4 (1 MHz) to host 1 (10 MHz),

and the estimation value is 8534.7ns. The best case would be a 1-data-cell packet transfer

from the host 2 (500 MHz) to host 3 (250 MHz), and the estimation value is 66ns.



5. A CDMA ON-CHIP NETWORK

In 1948, Claude Shannon, a Bell Labs research mathematician, published his landmark pa-

per titled ‘A Mathematical Theory of Communication’ [83] oninformation theory. Claude

Shannon observed that “the fundamental problem of communication is that of reproducing at

one point either exactly or approximately a message selected at another point” [83], and gave

the Shannon’s communication capacity equation as presented in (3). In (3), the parameterBω

refers to the bandwidth of the communication channel. S is the signal power, and N is the

noise power.

C = Bω · log2[1+
S
N

] (3)

The equation reveals that the communication channel capacity relates with the channel band-

width and signal-to-noise ratio. Therefore, the communication channel capacity can be in-

creased by two means, increasing the signal-to-noise ratio, and/or spreading the channel

bandwidth. The work presented in this chapter concentrateson the application of channel

bandwidth spreading method in a NoC design.

5.1 Introduction of CDMA Technique

The Spread Spectrum (SS) technique is based on the idea of increasing channel capacity

by spreading the channel bandwidth. CDMA technique [92] is one of SS techniques that

originate from military secure communication. There are two types of mainly used CDMA

techniques, one is called Frequency-Hopping Spread-Spectrum (FHSS), and another is called

Direct-Sequence Spread-Spectrum (DSSS). The principle ofFHSS technique is illustrated in

Fig.14. In a FHSS system, each user’s narrow-band signal hops among discrete frequencies

with a certain sequence, and the receiver follows the hopping frequencies with the sequence.

It is currently used mainly in military communication.

The principle of the DSSS technique is illustrated in Fig.15with a two-user system. It applies

a set of orthogonal codes to spread the narrow-band signals from different users to wide-band

signals, and then transmits the wide-band signals in the same communication media with the

same frequency concurrently. At the receiving end, the original signals can be recovered by
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utilizing the auto-correlation characteristic of orthogonal codes. Therefore, by introducing

orthogonal code domain, different signals can share the time and frequency simultaneously

in the transmission media. The illustrated system is also called Direct-Sequence CDMA

(DS-CDMA) and it is widely used in civil communication systems. The main advantages of

CDMA technique are listed in the following six paragraphs:

(1)Data transmission overlapping both in time and frequency domains. This feature

increases usage efficiency of communication media.

(2)Anti-jam capability. This is because the user-unique orthogonal code for data encoding

is known only by the intended receiver.

(3)Anti-interference capability. This feature is obtained by the fact that the signal dispread-

ing can reject strong undesired noise, even stronger than the desired one.

(4)Low probability of intercept. Because the transmitted signal is masked in the background

noise by spreading the signal uniformly in the frequency domain, it is very difficult to detect

the signal among the noise in the communication channel.

(5)Anti-multipath capability. By using path-delay differences, a CDMA receiver can use

the multipath signals for receiving data.

(6)Multiple access capability.This feature is supported by applying the orthogonal code of

the sender in multiple receivers.

These advantages apply for the traditional use of DS-CDMA technique, for the purpose of

on-chip data transfers, advantages (1) and (6) are of interest.

Fig. 14. The Principle of FHSS Technique.
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Fig. 15. The Principle of DSSS Technique.

5.2 Motivation of Applying CDMA Technique in NoC

In a direct on-chip network, the packet transfer latency caused by routing data packets via

multiple intermediate network nodes is unavoidable exceptthat the destination of a packet is

a neighbour node. Therefore, the packet transfer latency ina direct connection NoC may vary

largely when data packets are transferred to different destinations or to the same destination

via different routes. The variant data transfer latencies in a direct network have negative effect

for the on-chip network to provide a stable and guaranteed data transfer service.

One way of solving this problem is to optimize the routing technique, such as X-Y rout-

ing [18] and planar-adaptive routing [16], etc., so that thetransfer latency caused by packet

routing is minimized or reduced. The research work presented in this thesis examines another

way of solving the transfer latency variation problem by applying the CDMA technique into

on-chip communications. As introduced in section 5.1, the CDMA technique can transfer

data concurrently both in time and frequency domains by separating different data streams

in the orthogonal code domain. Therefore, if the data packets from different network nodes

are encoded with a set of orthogonal codes, they can be transferred in a shared communi-

cation media concurrently without interfering each other.Namely, data packets in a CDMA

network can be transferred to their different destinationswith ‘one-hop’ transfer. Hence, ap-

plying CDMA technique can be a promising way of realizing constant data transfer latency

in an on-chip network.



34 5. A CDMA On-Chip Network

Fig. 16. The Principle of Digital CDMA NoC.

5.3 Applying CDMA Technique into On-Chip Networks

The CDMA technique applied in this work is the DS-CDMA technique introduced in section

5.1. The principle of DS-CDMA is illustrated in Fig.15 and the name of DS-CDMA tech-

nique will be referred as CDMA technique in the rest of this thesis for the sake of simplicity.

The idea of applying the CDMA technique into on-chip communication has already been

presented in several works [47, 84, 88, 95] before this work.They all apply analog circuits

to implement the CDMA technique, for example, the encoded data are represented by the

continuous voltage or capacitance value of the circuits. Thus, the data transfers through the

analog circuits are challenged by the coupling noise, clockskew, and the variations of capac-

itance and resistance caused by manufacture processes [88]. Therefore, a way of applying

the CDMA technique in an on-chip network by using digital circuit design is developed in

this work. The basic principle of the digital CDMA on-chip network is illustrated in Fig.16.

It follows the principle of CDMA systems illustrated in Fig.15. The difference is that the

radio transmission part is replaced by adding the encoded signals together for transferring

through on-chip wires. Several important design issues of realizing the CDMA technique in

an on-chip network will be addressed in the following.

1. Digital CDMA Encoding/Decoding Schemes

In order to avoid the challenges faced by the analog circuit implementation, digital encod-

ing and decoding schemes were developed for the CDMA NoC and illustrated in Fig.17 and

Fig.18 respectively. In the encoding scheme illustrated inFig.17, each data bit from different

senders will be spread into S bits by multiplying it with a unique S-bit spreading code. The

actual encoding operations are realized by XOR logic gates.Each bit of the S-bit encoded

data generated by XOR operations is called a data chip. Then the data chips from different

senders are arithmetically added together according to their positions in the S-bit sequences.

In other words, all the first data chips from different senders are added together, and all the

second data chips from different senders are added together, and so on. Therefore, after the

add operations, we will get S sum values of S-bit encoded data. Each sum value is repre-
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Fig. 17. Digital CDMA Data Encoding Scheme.

Fig. 18. Digital CDMA Data Decoding Scheme.

sented by a (log2N)-bit number, where N is the number of senders in the network. Finally,

as proposed in [5], binary equivalents of the S sum values aretransferred to the receiving end

one by one.

The digital decoding scheme for applying the CDMA techniqueinto an on-chip network is

illustrated in Fig.18. The decoding scheme accumulates thereceived sum values into two

separate parts, a positive part and a negative part, according to the bit value of the spreading

code used for decoding. For example, the received first sum value will be put into the positive

part accumulator if the first bit of the spreading code for decoding is ‘0’, otherwise, it will

be put into the negative part accumulator. The same selection and accumulation operations

are also carried out on the other received sum values. If the spreading codes have orthogonal

and balance properties, either the positive part or negative part is larger than the other after

accumulating all sum values according to the bit values of the spreading code. Hence, the

original data bit can be decoded by comparing the values of the two accumulators. Namely,

if the positive accumulation value is larger than the negative accumulation value, the original

data bit is ‘1’; otherwise, the original data bit is ‘0’.

2. Spreading Code Selection

As addressed previously, the presented encoding and decoding schemes require the spreading

codes having both the orthogonal and balance properties. The orthogonal property in the

context of the CDMA NoC means that the normalized auto-correlation of the spreading codes

is 1, while the cross-correlation of the spreading codes is 0. The balance property means that

the number of bit ‘1’ and bit ‘0’ in a spreading code should be equal. Several types of

spreading codes have been proposed for CDMA communication,such as Walsh code, M-
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sequence, Gold sequence, and Kasami sequence, etc [25]. However, only Walsh code [25]

has the required orthogonal and balance properties. Therefore, the Walsh code family is

selected as the spreading code library for the proposed CDMANoC. In an S-bit (S>0, S mod

4 = 0) length Walsh code set, there are S-1 sequences which have both the orthogonal and

balance properties. Hence, the proposed CDMA NoC can have atmost S-1 network nodes,

in other words, S has to be at least N+1 for a N-node network.

3. Spreading Code Protocol

In a CDMA network, if multiple users apply the same spreadingcode to encode their data

to be transferred at the same time, the encoded data will interfere with each other because of

the loss of orthogonal property among the spreading codes. This situation is called spreading

code conflict, which should be avoided. Spreading code protocol is a policy used to decide

how to assign and use the spreading codes in a CDMA network in order to eliminate or

reduce the possible spreading code conflicts. Several spreading code protocols have been

proposed for CDMA packet radio network [56, 86]. Among theseproposed spreading code

protocols, only Transmitter Based Protocol (T protocol) [86] and Transmitter-Receiver-Based

Protocol (T-R protocol) [56] are conflict-free if the users in the network send data to each

other randomly. In the T protocol, each user is allocated a unique spreading code to encode

and transfer data to others. However, the main drawback is that a receiver can not choose the

proper spreading code for decoding because it can not know who is sending data to it. In the

T-R protocol, two unique spreading codes are assigned to each user in the network, and then

a user will generate a new spreading code from the assigned two spreading codes for its data

encoding. Hence, it suffers from using a large amount of spreading codes and complicated

decoding scheme.

In order to solve this problem, an Arbiter-Based T protocol (A-T protocol) is developed for

the CDMA on-chip network. In a CDMA network which applies A-Tprotocol, each user is

assigned with a unique spreading code for data transfer. Whena user wants to send data to

another user, he will send the destination information of the data packet to the arbiter before

starting data transmission. Then the arbiter will inform the requested receiver to prepare the

corresponding spreading code for data decoding according to the sender. After the arbiter has

got the acknowledge signal from the receiver, it will send anacknowledge signal back to the

sender to grant its data transmission. If there are several users who want to send data to the

same receiver, the arbiter will grant only one sender at a time. Therefore, by applying the

A-T protocol, spreading code conflicts in the CDMA NoC can be eliminated.

5.4 CDMA NoC Structure

Based on the schemes and protocols presented in section 5.3,a small CDMA on-chip network

was developed for study and functional verification. Its network structure is illustrated in
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Fig. 19. Six-Node CDMA On-Chip Network Structure.

Fig. 20. The Block Diagram of the Network Node for CDMA NoC.

Fig.19. By comparing it with the bidirectional ring NoC structure illustrated in Fig.11, the

CDMA NoC has two unique blocks named as ‘CDMA Transmitter’ and ‘Network Arbiter’

besides the common ‘network node’ blocks. The function of each block in the CDMA NoC

will be introduced in the following three subsections.

5.4.1 Network Node

The block diagram of the ‘Network Node’ design of the CDMA NoCis illustrated in Fig.20.

The arrows in Fig.20 represent the direction of data packet flow. The ‘Network IF’ block in

the network node which belongs to the functional host is an interface block for connecting a

functional host with a ‘Network Node’ through VCI or OCP interface standard. The function

of each sub-block in the ‘Network Node’ will be described in the following paragraphs.

(1) Node IF. This block is used to receive data from the ‘Network IF’ blockof a functional

host through the applied interface standard. The main task is to assemble the received data

into packet format and send the packet to ‘Tx Packet Buffer,’or disassemble the received

packet from ‘Rx Packet Buffer’ and send the extracted data tothe functional host.

(2) Tx/Rx Packet Buffer. These two blocks are buffers for sending or receiving data packets.
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‘Tx Packet Buffer’ is used to store the data packets from ‘Node IF’ block, and then deliver the

packets to ‘Packet Sender.’ The ‘Rx Packet Buffer’ stores the received packets and delivers

them from ‘Packet Receiver’ to ‘Node IF.’

(3) Packet Sender.This block will fetch a data packet from ‘Tx Packet Buffer’ block by

an asynchronous handshake protocol when it finds that the buffer is not empty. Then the

destination information of the fetched packet will be extracted and sent to ‘Network Arbiter.’

After ‘Packet Sender’ gets the grant signal from the arbiter, it will start to send the data packet

to ‘CDMA Transmitter’ block.

(4) Packet Receiver.This block will wait for the sender information from ‘Network Arbiter’

to select the proper spreading code for decoding. After the spreading code for decoding is

ready, the receiver will send an acknowledge signal back to ‘Network Arbiter’ and wait to

receive and decode the data from ‘CDMA Transmitter,’ and then send the decoded data to

‘Rx Packet Buffer’ in packet format.

5.4.2 Network Arbiter

As addressed in section 5.3, an A-T spreading code protocol is applied in the CDMA on-chip

network to avoid spreading code conflicts. By applying the A-T protocol, every node needs

to get the grant from the ‘Network Arbiter’ before it can start to send data packets to the

network. Thus, the ‘Network Arbiter’ block is the core component for implementing the A-T

protocol in the CDMA NoC. Its main functions are described inthe following paragraph.

After receiving a data sending request from a network node, the ‘Network Arbiter’ needs to

inform the requested receiver node to prepare the proper spreading code for decoding. When

the ‘Network Arbiter’ gets the acknowledge signal from the requested receiver node, it will

send a grant signal back to the sender node to enable the data transfer process. If there are

multiple network nodes requesting to send data to the same destination node simultaneously

or at different time, the ‘Network Arbiter’ will apply ‘round-robin’ scheme or the ‘first-come

first-served’ principle, respectively, to guarantee that there is only one sender sending data

to one specific receiver at a time. However, if the destination nodes requested by the sender

nodes are different, these requests from different senderswill be handled in parallel without

blocking each other. The ‘Network Arbiter’ in the CDMA NoC isdifferent from the arbiter

used in a conventional bus. The reason is that the ‘Network Arbiter’ in the CDMA NoC is

only used to set up spreading codes for receiving and it handles the requests concurrently

in time domain. In contrary, a conventional bus arbiter is used to allocate the usage of the

common communication media among the users in the time-division manner.
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Fig. 21. Bit-Synchronous Transfer Scheme.

5.4.3 CDMA Transmitter

The ‘CDMA Transmitter’ block is the core component to perform the data encoding and

transfer operations in the CDMA NoC. As introduced in section 5.4.2, a network node will

start to send data packets to the ‘CDMA Transmitter’ after itgets the grant signal from the

‘Network Arbiter.’ When the ‘CDMA Transmitter’ receives thedata to be transferred, it will

encode the data bits with the unique spreading code of the sender node.

Although each network node may send data to the ‘CDMA Transmitter’ block independently

and randomly, the ‘CDMA Transmitter’ block applies a bit-synchronous transfer scheme

to coordinate the asynchronous data transfer processes. The basic principle of this bit-

synchronous transfer scheme is that the data from differentnodes will be encoded and trans-

mitted synchronously in terms of data bits rather than any clock signals. Fig.21 illustrates

the principle of bit-synchronous transfer scheme by an example in which network nodes ‘A’

and ‘B’ send data packets to ‘CDMA Transmitter’ simultaneously and node ‘C’ sends a data

packet later than node ‘A’ and ‘B’. In this situation, the data packet from node ‘A’ will be

encoded and transmitted together with the packet from node ‘B’ synchronously in terms of

each data bit. As the data packet from node ‘C’ arrives at a later time point, the transmitter

will handle the data bit from ‘Packet C’ together with the data bits from packet ‘A’ and ‘B’ at

the next start point of the time slot for bit encoding and transmitting processes. The dot-line

frame at the head of the ‘Packet C’ in Fig.21 illustrates the waiting duration when the ‘Packet

C’ arrives in the middle of the time slot for handling the previous data bit. The time slot for

handling a data bit is formed by a four-phase handshake process.

The main advantage of the presented bit-synchronous schemeis that it avoids the interfer-

ences caused by the phase offsets among the orthogonal spreading codes when the data bits

from different nodes are encoded and transmitted asynchronously with each other. Because

the nodes in the network can request data transfer randomly and independently of each other,

‘CDMA Transmitter’ applies the ‘first come, first served’ mechanism to ensure that the data

encoding and transmission are performed as soon as there is adata transfer request.
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5.5 Front-End Synthesis and Simulation Results

The CDMA NoC structure illustrated in Fig.19 is modeled in RTL using VHDL for func-

tional verification and performance estimation. The principle of data encoding and decoding

schemes illustrated in Fig.17 and Fig.18 use an example of processing and delivering one

data chip of encoded data from the sender to the receiver at one time. Since one original data

bit will be spread into S bits after encoding, the degree of data transfer parallelism between

the ‘CDMA Transmitter’ and ‘Network Node’ blocks affects the data transfer latency of the

CDMA NoC significantly. Namely, increasing the number of data bits encoded and delivered

via ‘CDMA Transmitter’ at one time can reduce the data transfer latency of the CDMA NoC

and vice versa. However, increasing the data processing anddelivering parallelism will incur

larger area cost. Thus, in order to figure out the trade-off between the data processing par-

allelism and the area cost, the ‘Packet Sender,’ ‘CDMA Transmitter,’ and ‘Packet Receiver’

blocks are realized with four different data path widths. According to the number of data bits

transferred from the ‘Packet Sender’ in a sender node to the ‘Packet Receiver’ in the receiver

node through ‘CDMA Transmitter,’ the four data path widths which have been applied are

named as 1-, 8-, 16-, and 32-bit schemes.

Except the different data path widths, the CDMA NoC illustrated in Fig.19 has the similar

network configurations as the bidirectional ring NoC illustrated in Fig.11. The six network

nodes work at different clock rates. The network nodes communicate with each other through

‘CDMA Transmitter’ and ‘Network Arbiter’ blocks. The spreading codes used in the network

are six 8-bit Walsh codes. The ‘functional host’ blocks and their ‘Network IF’ blocks are not

realized with any real IP blocks, instead, they are simulated by adding stimulus signals on

each ‘Network Node’ block according to the BVCI standard. A 0.18µm standard-cell library

is used in the synthesis. Two aspects of the realization results, logic gate area cost and data

transfer latency, are presented in the following paragraphs.

1. Logic Gate Area Cost

The logic gate area cost of each block in the CDMA NoC and the total of the six-node network

under different data path widths are listed in Table 5. Although these figures only include

the area cost of logic gates, they are indicative enough to estimate the design complexity

and compare of alternative implementations. An estimationof the area cost of wires will

be presented in section 7.3.3. From Table 5, we can see that when the data path width is

increased from 1 to 32 bits in the CDMA NoC, the area cost of thenetwork becomes 2.4

times larger because more logic are used to perform paralleldata encoding and decoding. To

be noticed in Table 5 is that the area cost of the 32-bit version of ‘Packet Sender’ block is

smaller than the costs under other data path widths. The reason is that the data width of the

output of ‘Tx Packet Buffer’ block is 32 bits, thus the ‘Packet Sender’ block needs control

logic to adjust the fetched packet cells to be sent out according to the applied data path width
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Table 5. Area Cost of the Six-Node CDMA Network.

Block Name
Area Cost ( K equivalent gates )

1-bit 8-bit 16-bit 32-bit

Node IF
Target 1.600

Initiator 3.882
Tx/Rx Packet Buffer 6.101

Packet Sender 1.505 1.509 1.513 0.962
Packet Receiver 1.977 7.331 13.718 26.488

CDMA Transmitter 0.879 3.970 7.730 15.161
Network Arbiter 0.936

Area cost of the 6-node
113.145 148.369 191.037 272.806

CDMA network

if it is smaller than 32 bits. However, when the path width is increased to 32 bits, the output

data width adjusting logic is not needed in the ‘Packet Sender’ block.

2. Data Transfer Latency

The data transfer latency of the six-node CDMA NoC consists of two parts, the synchronous

transfer latency (STL) and asynchronous transfer latency (ATL), which have the same names

as the latency components of the ring network presented in Chapter 4.

Because the same control logic of ‘Node IF’ block design is applied in the two networks,

the STL values of the CDMA NoC are the same with the values listed in Table 3. The

constant values in Table 3 are caused by the handshakes in theasynchronous domain. They

are independent of the local clock rate but belong to the synchronous transfer processes.

Therefore, they are included in the STL part.

The ATL of the CDMA NoC has the same meaning with the ATL of the ring NoC presented

in Chapter 4, however, the ATL of the CDMA NoC has less portions because there are no

bypass packets going through a network node due to the ‘one-hop’ data transfer scheme.

The concept of the ATL portions of the CDMA NoC is illustratedin Fig.22 with an example

where ‘Network Node 0’ sends one data packet to ‘Network Node2.’ The black arrows in

Fig.22 represent the direction of packet transfer. The three portions of the ATL, PLL, PTL,

and PSL, are marked by grey arrows in Fig.22 and will be brieflyintroduced in the following

paragraphs.

(1) Packet Load Latency (PLL). This is the time used by the ‘Packet Sender’ block in a

network node to fetch a data packet from ‘Tx Packet Buffer’ and prepare to send the packet

out via ‘CDMA Transmitter.’

(2) Packet Transfer Latency (PTL).This latency refers to the time used to transfer one data

packet from the ‘Packet Sender’ of the sender node to the ‘Packet Receiver’ of the receiver

node via the ‘CDMA Transmitter’ and ‘Network Arbiter’ blocks using a handshake protocol.



42 5. A CDMA On-Chip Network

Fig. 22. ATL Portions of the CDMA NoC.

(3) Packet Storing Latency (PSL).The receiver node needs to spend a certain amount of

time to store the received data packet into ‘Rx Packet Buffer’ after it receives a data packet.

This time duration is measured as PSL.

The measured values of ATL portions in the CDMA NoC under different data path configu-

rations are listed in Table 6. The ATL value of the CDMA NoC canbe calculated by directly

adding the three portions under the same configuration together. By using the latency values

listed in Table 3 and 6, we can estimate the latency range of the six-node CDMA network

with 8-bit channel width in a non-congestion situation. From Fig.19, we can see that the

worst case would be a 3-data-cell packet transfer from functional host 4 (1 MHz) to host 1

(10 MHz), and the estimation value is 8547.7ns. The best case would be a 1-data-cell packet

transfer from the host 2 (500 MHz) to host 3 (250 MHz), and the estimation value is 94.7ns.

If the data width is increased to 16 bits, the best-case and worst-case estimation values will

change to 8488.6nsand 75.0ns, respectively.

5.6 SystemC Modeling and Performance Estimation

As the complexity of an on-chip system is continuously growing, a system designer needs to

estimate the performance of the on-chip system in an early design stage. Therefore, as an im-

portant part of an on-chip system, the on-chip communication network needs to be evaluated

in terms of performance and cost in a fast and flexible way to facilitate the design exploration

of the system architecture. Section 5.5 presented a design exploration on different data path

widths of the CDMA network by using RTL realizations. Although the design exploration

Table 6. ATL Values of the CDMA NoC.

ATL Portion 1 data cell 2 data cells 3 data cells
PLL (ns) 5.7 5.7 5.7

PTL (ns)

1-bit 384.6 768.9 1153.7
8-bit 45.9 88.4 130.9
16-bit 26.2 49.0 71.8
32-bit 14.7 26.0 37.8

PSL (ns) 5.5 5.5 5.5
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using RTL realizations has the advantage of accuracy, it is time consuming and not efficient

due to the tedious process of synthesis and simulation. Therefore, a fast and flexible method

of evaluating the CDMA network is developed in this work by using SystemC modeling tech-

nique. This section will present the SystemC model and the performance estimation method

of the CDMA network.

5.6.1 Modeling the CDMA NoC with SystemC

SystemC [76] is a C++ class library which has been developed to meet the requirement for

system modeling. Since a SystemC model is described by a programming language, the

abstraction level of the model can be very flexible and the simulation can run at a faster speed

than a RTL model if the SystemC model is built in a higher level. Therefore, a transaction-

level SystemC model of the CDMA NoC is developed to facilitate design exploration.

Transaction-Level Modeling (TLM) [32] is a modeling style which bases on the features of

channels and interfaces of SystemC 2.1. With TLM style, the communication processes are

modeled by calling the interface functions of a channel without knowing the implementation

details of the interface functions in the channel. Therefore, by separating the definition from

the implementation of the interface functions, the system model only needs to concern the

transactions among modules and data flows in the system without the details of the commu-

nication method. The SystemC model of the CDMA NoC is built according to the block

diagrams illustrated in Fig.19 and Fig.20 in order to keep the uniform hierarchy between dif-

ferent levels of abstractions. Each block in the CDMA NoC is modeled as a channel. The

channels and relationships of interface function calls within a ‘Network Node’ are illustrated

in Fig.23. Fig.24 presents the interface functions and calling relationships among ‘Network

Node,’ ‘Network Arbiter,’ and ‘CDMA Transmitter.’ In Fig.23 and Fig.24, each grey square

at the boundary of a channel represents an interface of that channel, and each grey circle at

the boundary of a channel represents an instantiated interface port of other channels. The ar-

rows in the figures point from the instantiated interface port to its original channel interfaces.

For example, as illustrated in Fig.24, the ‘CDMA Transmitter’ block communicates with a

‘Network Node’ block by instantiating an interface, called‘tx if,’ of the ‘Network Node,’

then calling the functions in the ‘txif’ interface to get data from the ‘Network Node’ block.

5.6.2 Performance Estimations

Although a transaction-level SystemC model is good for fastfunctionality modeling and sim-

ulation, in comparison with the RTL realization, it has the shortcoming of getting accurate

performance estimation results, such as data transfer latency. Therefore, a performance es-

timation method which combines the merits from both the SystemC model and the RTL
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Fig. 23. Channels and Interfaces in the CDMA Network Node.

Fig. 24. Channels and Interfaces in the CDMA NoC.

realization is developed. It bases on the SystemC model of the CDMA NoC. The method can

be summarized as the following four steps.

Step1: Model each block of the CDMA NoC as a channel using SystemC andbuild the

CDMA NoC model in transaction-level according to the block hierarchy.

Step2: Realize each block of the CDMA NoC in RTL and do the synthesis and gate-level

simulation using the target technology library.

Step3: Record the latency information of the handshake processes among the blocks from

the gate-level simulation, and then back annotate the latency values to the corresponding

channels in the SystemC model of the CDMA NoC.

Step4: Estimate the performance of the CDMA NoC under different configurations by sim-

ulating the timed SystemC model.

Based on the presented estimation method, the performance of the CDMA NoC under three

different types of configurations, CDMA channel widths, number of network nodes, and

traffic patterns, are estimated through the simulations in an open-loop environment. The setup

of the simulation environment is illustrated in Fig.25. In order to concentrate on simulating

the global asynchronous network other than the local synchronous communications in the

CDMA NoC, the ‘Network Node’ block is revised as illustratedin Fig.25. The ‘Node IF’

is replaced by a ‘Packet Source’ block which generates data packets according to a specific

traffic pattern. The size of ‘Tx Packet Buffer’ block is set tobe large enough for storing all

packets generated by the packet source during the simulation in order to make the simulation

to be an open-loop simulation, which ensures that the trafficproduced by the source is not
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Fig. 25. Open-Loop Simulation Environment.

influenced by the status of the network. The ‘Rx Packet Buffer’ is used to store the received

packets. The ‘Packets Count & Timing’ process is added on the‘Tx/Rx Packet Buffer’ blocks

for counting and recording the packet transfer informationduring simulations. The simulation

results are presented in the following paragraphs.

1. Different CDMA channel widths

A preliminary data transfer latency estimation of a six-node CDMA NoC with different chan-

nel widths has been presented in section 5.5. However, that estimation does not include

packet transfer congestions in the simulations. With the SystemC model and the presented

performance estimation method, an overall data transfer latency estimation of the six-node

CDMA NoC is performed in transaction level. The traffic pattern used in the simulations is

independent and uniform traffic. It means that the same amount of packets is independently

generated at each network node, and the destinations of the generated packets in each node

are uniformly distributed to all the other network nodes. Each node sent 5000 packets to the

network, and the average number of data cells of the packets is two. Fig.26 gives the average

ATL of delivering a 32-bit data cell with different channel widths in the CDMA NoC. From

the values illustrated in Fig.26, we can see that the packet arbitration contentions and CDMA

transfer contentions increase the latency severely in comparison with the ATL values listed

in Table 6.

2. Different number of network nodes

Another configuration of the CDMA NoC which has been exploredby using the SystemC

model is the number of network nodes. The traffic pattern and other simulation configurations

are the same with the ones used in the simulations of different channel widths except that each

network node sent 500 packets to every other node, thus increasing the traffic proportionally

to the network size. The channel width used in the simulations is 8 bits. The average ATL

values under different numbers of network nodes are illustrated in Fig.27. From the results,

we can see that the transfer latency increases when the number of network nodes increases

since the probability of contentions increases.
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Fig. 26. ATL Estimations with Different Channel Widths.

Fig. 27. ATL Estimations with Different Number of Network Nodes.

3. Different traffic patterns

The performance estimations presented in the two previous paragraphs are all under the uni-

form traffic pattern. In a real application, a hot-spot traffic pattern is more likely to appear.

Hence, the performance of the CDMA NoC with different numbers of network nodes is esti-

mated under a hot-spot traffic pattern. In the simulations, Node 1 is selected as the ‘hot’ node

and the ‘hot’ degree is 0.25, which means that 25% of the generated packets in each node are

transferred to Node 1. The other generated packets are stilluniformly distributed to all the

other nodes besides Node 1. The channel width used in the simulations is still 8 bits.

The average ATL values of transferring a 32-bit data cell with hot-spot traffic is illustrated

in Fig.28. In comparison with the latency values illustrated in Fig.27, the CDMA NoC has
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Fig. 28. ATL Estimations with Hot-Spot Traffic Pattern.

similar latency values under hot-spot traffic when the network load is smaller than 50%.

Under the heavier network loads, the transfer latencies become larger. It means that the

CDMA NoC is not sensitive to the balance of network load when the network load is light.

The presented SystemC model and performance estimation method of the CDMA NoC are

very important for applying it in an on-chip system design because they present a way to

make a fast estimation of the NoC in the early design stage.
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6. A CROSSBAR ON-CHIP NETWORK

By applying the CDMA technique, the CDMA NoC can provide non-blocking concurrent

data transfer service for an on-chip system. However, the CDMA NoC is not the only struc-

ture that can provide such kind of communication service. The crossbar structure is another

type of non-blocking concurrent data transfer structure. Therefore, in order to examine the

characteristics of the CDMA NoC, a network which applies crossbar structure to switch data

among network nodes was developed for the comparison purpose. This chapter presents the

structure and front-end realization results of the crossbar network developed in this work.

6.1 Introduction of Crossbar Structure

Crossbar is a well-known and widely accepted structure for composing a circuit-switched

network. A four-port crossbar switch structure is illustrated in Fig.29 in order to explain the

data transfer principle of crossbar. As illustrated in the figure, an input port in a crossbar

structure can be connected to any output ports by optionallyclosing the switches between

input and output lines. For correct operations, one output can be connected to at most one

input. Therefore, we can see that the data transfers in the crossbar switch are non-blocking

because a dedicated data channel can be set up from each inputto its selected output without

any conflicts with other channels if the selected outputs aredifferent.

In order to apply the crossbar structure in an on-chip environment, a method of realizing the

cross points needs to be settled. An on-chip crossbar network for SoC designs has already

been presented in [57], the cross points in the network were implemented in circuit level with

Fig. 29. An Example of Crossbar Structure.
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Fig. 30. A Four-Node Crossbar Switch Structure.

transistors. Therefore, it does not suit the purpose of designing a crossbar network in RTL

with the same network configuration as the CDMA NoC for comparisons. In this design, the

crossbar structure is realized by using multiplexers. A four-node crossbar switch structure

realized by multiplexers is illustrated in Fig.30 as an example. From the figure, we can see

that the crossbar structure is realized by using four multiplexers to set up data channels among

network nodes. Each multiplexer is called a channel multiplexer to emphasize its function of

setting up data channels in the network. The number of channel multiplexers is equal to the

number of network nodes. By applying this structure, the crossbar network can be modeled

in the same abstract level as the CDMA network does by using HDL.

6.2 Network Structure and Network Node Design

The crossbar network structure developed in this work is illustrated in Fig.31. In order to

compare the crossbar network with the CDMA network, the configuration of the crossbar

network is kept as same as possible with the CDMA network illustrated in Fig.19. The cross-

bar network is also a six-node network which applies GALS scheme. The configurations of

the functional host are same with the CDMA network. The only difference is that the ‘CDMA

Transmitter’ and ‘Network Arbiter’ blocks in the CDMA network are replaced by a ‘Crossbar

Switch’ block composed of channel multiplexers. Each channel multiplexer contains arbitra-

tion logic to control the selection of the output. When multiple data transfer requests from

different network nodes come to a channel multiplexer simultaneously, the multiplexer will

record the requests and serve one request at a time. For the requests that come at different

time, a channel multiplexer will serve the requests by the principle of ‘first come, first served.’

After setting up the data channel, a channel multiplexer will send a grant signal back to the

sender node to enable data transfer processes.

The network node used in the crossbar network has the same structure as the network node

of the CDMA NoC illustrated in Fig.20. The only difference isthe functions of the ‘Packet

Sender’ and ‘Packet Receiver’ blocks in the asynchronous domain of a node. In the crossbar

network, after fetching a packet from the buffer, the ‘Packet Sender’ will assert a request

signal to the channel multiplexer attached to the receiver node. Then the ‘Packet Sender’ will

wait for the grant signal from the requested channel multiplexer before it starts to send a data
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Fig. 31. Crossbar Network Structure.

packet to the receiver node through the multiplexer. After adata packet transfer is completed,

the ‘Packet Sender’ needs to clear the request signal in order to release the requested channel

multiplexer for serving requests from other nodes. The ‘Packet Receiver’ block in the cross-

bar network will wait for the request from the multiplexer block attached with it. When a

request comes, the ‘Packet Receiver’ block will receive thedata packet and then deliver it to

‘Rx Packet Buffer’ block.

6.3 Front-End Synthesis and Simulation Results

In order to compare with the CDMA network, the six-node crossbar network is also realized

with four different data path widths, 1-bit, 8-bit, 16-bit,and 32-bit, as the CDMA network

realization presented in section 5.5. The ‘functional host’ blocks and their ‘Network IF’

blocks are not realized with any real IP blocks, instead, they are simulated by adding stimulus

signals on each ‘Network Node’ block according to the BVCI standard. The same 0.18µm

standard-cell library is used in the synthesis. Two aspectsof the front-end realization results,

logic gate area cost and data transfer latency, are presented in the following paragraphs.

1. Logic Gate Area Cost

The logic gate area costs of each basic component and the whole crossbar network with

different data path widths are listed in Table 7. An estimation of the area cost of wires will

be presented in section 7.3.3. From the table, we can see thatthe gate area costs of ‘Packet

Sender’ and ‘Packet Receiver’ blocks increase slightly when the data path width increases.

When the data path width is 1 bit, the ‘Packet Receiver’ block has a larger area caused by

the logic for arranging the received serialized data bits into packet format. The reason of the

large area increase of the ‘Channel Multiplexer’ blocks is that the logic for setting up data

channels is multiplied when the data path width increases from 1-bit to 32-bit.
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Table 7. Area Cost of the Six-Node Crossbar Network.

Block Name
Area Cost ( K equivalent gates )

1-bit 8-bit 16-bit 32-bit

Node IF
Target 1.600

Initiator 3.882
Tx/Rx Packet Buffer 6.101

Packet Sender 1.514 1.518 1.523 1.538
Packet Receiver 0.995 0.906 0.921 0.934

Channel Multiplexer 0.236 0.325 0.437 0.660
Area cost of the 6-node

106.393 106.415 107.206 108.698
crossbar network

Table 8. ATL Values of the Crossbar Network.

ATL Portion 1 data cell 2 data cells 3 data cells
PLL (ns) 3.0 3.0 3.0

PTL (ns)

1-bit 112.5 211.8 354.4
8-bit 17.3 32.7 47.5
16-bit 10.6 19.4 27.8
32-bit 7.5 12.7 17.9

PSL (ns) 4.7 4.7 4.7

2. Data Transfer Latency

The data transfer latency of the realized six-node crossbarnetwork has the same components,

STL and ATL, as the CDMA network has. The STL of the crossbar network has the same

values as the STL of the CDMA network presented in Table 3 because the same node structure

and the same design of the ‘Node IF’ and ‘Tx/Rx Packet Buffer’blocks are applied in the

crossbar network realization.

The ATL of the crossbar network has the same portions of the ATL of the CDMA network.

The measured latency values during the gate-level simulation of the crossbar network are

listed in Table 8. These values are measured in a contention-free situation during the sim-

ulation. The PTL values listed in the table decrease roughlylinearly as the data path width

increases from 1 bit to 16 bits. When the data path width is increased from 16 bits to 32

bits, the improvement of PTL is not large if the size of a packet is small, such as 1-data-cell.

The reason is that the overhead of setting up data channels takes a larger portion of the PTL

value when a packet is small. Hence, the overall PTL value cannot be reduced linearly be-

cause of the overhead caused by the data channel setting up. From the table, we can also see

that the overall ATL values of the crossbar network are not very large due to its direct and

non-blocking data transfer scheme.

By using the latency values listed in Table 3 and Table 8, we can estimate the latency range of

the six-node crossbar network with 8-bit channel width in a non-congestion situation. From
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Fig.31, we can see that the worst case would be a 3-data-cell packet transfer from functional

host 4 (1 MHz) to host 1 (10 MHz), and the estimation value is 8460.8ns. The best case

would be a 1-data-cell packet transfer from the host 2 (500 MHz) to host 3 (250 MHz), and

the estimation value is 62.6ns. If the data width is increased to 16 bits, the best-case and

worst-case estimation values will change to 8441.1nsand 55.9ns, respectively.
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7. COMPARISONS

By realizing the ‘one-hop’ non-blocking transfer scheme, the CDMA NoC can reduce the

variations of data transfer latencies caused by data routing in a direct connection network.

However, the price of this feature is the area and performance overhead incurred by introduc-

ing data encoding and decoding operations. Therefore, in order to examine the pros and cons

of the CDMA NoC thoroughly, this chapter presents the comparisons between the CDMA

network and the two on-chip networks developed in this work,the bidirectional ring network

and the crossbar network, in the first three sections. In the last section of this chapter, perfor-

mance comparisons between the CDMA NoC and other NoC designsfound in publications

are presented.

7.1 Data Transfer Principles

The data transfer principle is the main difference between the CDMA NoC and the two other

networks. The ring network presented in Chapter 4 and the crossbar network presented in

Chapter 6 both apply a direct and plain data transfer principle which means that the data

are transferred in their original form, while the CDMA NoC introduces data encoding and

decoding operations for data transfers.

The main advantage of applying CDMA technique is the featureof data transfer concurrency

realized by using data encoding and decoding operations. Although the data transfers in the

ring NoC can also be concurrent if they take place in different channels among the network

nodes, the data transfer parallelism in the ring network is largely limited by the possible traffic

congestions in a channel. The congestions are unavoidable because a channel between two

network nodes is shared by all the packets which need to pass this channel in a time-division

manner. This character exists in all the networks which apply direct connections, such as

2-D mesh, torus, and fat-tree. However, in the CDMA and crossbar networks, this type of

congestions are avoided because of the feature of non-blocking data transfers. The difference

between the CDMA and crossbar networks is that the CDMA network applies orthogonal

codes to set up independent data transfer channels, whereasa crossbar structure uses direct

circuit connections.

Another advantage of applying the CDMA technique is that it can easily realize multicast data
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transfer by requesting multiple receiver nodes to use the same spreading code for receiving.

In the ring network, the multicast transfer can be realized only by sending multiple copies of

a data packet to its multiple destinations, unless extra logic is added in each network node to

copy the multicast or broadcast packet both to the functional host and to the output link to the

next node. In the crossbar network, the multicast transfer can be done by sending multiple

copies of packets to several channel multiplexers. All of these operations either increase the

traffic load in the network, or complicate the network implementation.

The main drawback of applying the CDMA transfer principle isthat the data transfer effi-

ciency obtained by concurrent data transfers is compromised by the latency introduced by the

data spreading scheme. As presented in section 5.3, one databit will be extended to S bits

for CDMA data transfers. As the number of nodes in the NoC increasing, the spreading code

width will increase. Then the transfer latency caused by data spreading will also increase.

7.2 Network and Node Structures

By comparing the network structures of the ring NoC illustrated in Fig.11, the CDMA NoC

illustrated in Fig.19, the crossbar NoC illustrated in Fig.31, the similarity among the three

network structures is the way of applying GALS scheme in the networks. All networks apply

asynchronous scheme in the communications among network nodes and synchronous scheme

in the local communications between a network node and the functional host attached to it.

The main difference observed is that the ring network applies distributed communication

scheme while the other two networks apply centralized scheme. The distributed scheme

means that the data traffic load in the ring network distributes to all the links among network

nodes. The advantage of this distributed scheme is the scalability, whereas the disadvantage

is that the data transfer latency between two network nodes can be largely different because

the data may be delivered through different routes.

In the CDMA network and the crossbar network, all network nodes communicate each other

through a central block. In the CDMA network, the central block is composed of ‘CDMA

Transmitter’ and ‘Network Arbiter’ blocks, while, in the crossbar network, the ‘Crossbar

Switch’ block is the central one. This centralized scheme isdifferent from conventional

bus structures since it provides parallel data transfers both in time and space domains by

either applying CDMA technique or setting up parallel channels, whereas a bus structure

supplies data transfer service among users in a time-division manner. The advantage of the

centralized scheme is the ‘one-hop’ concurrent data transfer ability obtained by setting up

parallel channels either in code domain or multiple physical links.

Due to the centralized scheme, the network node designs of the CDMA and crossbar network

illustrated in Fig.20 have simpler structure than the design of the ring network illustrated in
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Fig.12. In the ring network, every network node needs to takecare of receiving and forward-

ing the bypass packets. Hence, ‘Communication Controller’and ‘Packet Distributor’ blocks

are included in the network node to handle the packet routingprocesses. However, these two

blocks are removed in the network nodes of the CDMA and crossbar networks because all

data packets are delivered to their destination nodes directly without routing. One drawback

of the node design in the ring network is that more ‘Communication Layer’ blocks are needed

in each network node in order to set up more links with other nodes if the data transfer paral-

lelism needs to be increased or the topology needs to be changed, whereas, the node structure

in the CDMA and crossbar network does not need to be changed inthose situations.

7.3 Performance

The performance comparison of the three networks bases on the three six-node networks

illustrated in Fig.11, Fig.19, and Fig.31. Area cost, data transfer latency, number of data

wires, and dynamic power consumption are compared in the following subsections.

7.3.1 Area Cost of Logic Gates

For comparison purpose, the logic gate area costs of the nodedesigns of the three networks are

illustrated in Fig.32. The portions of each sub-blocks in each node design are also illustrated

in the figure. The data presented in the figure base on the values listed in Table 2, Table 5,

and Table 7 under the 32-bit category. From the figure we can see that the CDMA network

node has the largest gate area cost when the data path width isset to 32 bits in all the three

networks. This is due to the large logic for parallel decoding in the ‘Packet Receiver’ blocks

of the CDMA network. In order to get an overall view of the gatearea costs of all the three

networks, Fig.33 illustrates the total gate area costs of the networks with different data path

widths. From the figure we can see that the crossbar network takes the smallest area costs

with all the situations. The reason is that the crossbar network has the simplest structure since

it does not include either the data encoding and decoding operations in the CDMA network or

the data routing operations in the ring network. However, ifthe area cost of wires is included,

the area cost of the crossbar network would increase a lot because it requires a large number

of connection wires. This will be discussed later in section7.3.2 and 7.3.3. When the data

path width increases in the crossbar network, only the ‘Packet Receiver’ and ‘Packet Sender’

blocks need to be adjusted a little to suit the different pathwidths. Hence, its overall gate area

cost changes slightly with different data path widths. The same situation would also happen

in the ring network if it was realized with different data path widths. The small changes in

the ‘Packet Receiver’ and ‘Packet Sender’ blocks to be compatible with different data path

widths would not affect the overall network area in the ring network. The gate area cost
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Fig. 32. Logic Gate Area Costs of Network Nodes.

Fig. 33. Total Logic Gate Area Costs of the Three Networks.

of the CDMA network increases almost linearly as the data path width increases. This is

because more logic components are required to perform parallel data encoding and decoding

processes in the CDMA network. With 16- and 32-bit data path widths, the CDMA network

loses its area cost advantage in comparison with the ring network. Therefore, in terms of

logic gate area cost, the 8-bit version of the CDMA network could be an optimal alternative

to replace the ring network.

7.3.2 Number of Data Connection Wires

Unlike the distributed structure applied in the ring network, the centralized structure applied

in the CDMA and crossbar networks needs a large amount of dataconnections wires to set
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up parallel data channels among network nodes. Therefore, this subsection presents a com-

parison about this issue between the CDMA and crossbar networks.

In comparison with the CDMA network, the crossbar network has smaller area cost by setting

up parallel physical connections among nodes. However, these parallel connections cause a

large overhead of the required number of data connection wires. The number of data con-

nection wires in a crossbar network refers to the number of data wires between ‘Network

Node’ blocks and channel multiplexer blocks. In the CDMA network, this number refers to

the number of data wires between ‘Network Node’ blocks and ‘CDMA Transmitter’ block.

The equation of calculating the number of data wires in the crossbar network is given in (4).

In (4), parameter ‘n’ refers to the number of network nodes, and parameter ‘w’ refers to the

data path width. The first term of (4) represents the data wires for connecting the data output

port of each node to all the other nodes via channel multiplexers. The second term of (4)

refers to the data wires between the data output port of a channel multiplexer and its attached

network node.

The equation of calculating the number of data wires in the CDMA network is given in (5).

In (5), the meaning of parameters ‘n’ and ‘w’ is the same with the parameters in (4). The

parameter ‘s’ refers to the bit length of spreading codes. The first term in (5) represents

the data wires for connecting data output port of each network node with the input port of

‘CDMA Transmitter’ block. The number of data wires from the data output port of ‘CDMA

Transmitter’ is represented by the second term in (5). In theCDMA network, each data bit

to be transferred will be extended into s bits by the s-bit spreading code. Each bit of the s-bit

encoded data is called a data chip. The sum value for n data chips from n network nodes can

be represented bylog2n bits. Therefore, the ‘CDMA Transmitter’ needs to uses· log2n bits

to represent all the sum values of s-bit encoded data. Hence,in order to transfer w data bits

at one time, we needw ·s· log2n data wires as the output of ‘CDMA Transmitter’ block.

Table 9 lists the number of data wires in the crossbar and CDMAnetworks under different

data path widths. We can see that the crossbar network needs ahuge amount of data wires

in order to obtain the feature of concurrent data transfer asthe CDMA network does. This

is a major obstacle to apply the crossbar structure in an on-chip system because the number

of network nodes in a future SoC will be very large. Therefore, the CDMA network has the

advantage of utilizing less data wires to achieve the feature of concurrency in comparison

with the crossbar network.

Ncrossbarnoc = n· (n−1) ·w+n·w = w ·n2 (4)

NCDMA noc = n·w+w ·s· log2n (5)
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Table 9. Number of Data Connection Wires.

NoC Type
Number of Data Wires

n=6, s=8 n=15, s=16 n=31, s=32

Crossbar NoC

w = 1 36 225 961
w = 8 288 1,800 7,688
w = 16 576 3,600 15,376
w = 32 1,152 7,200 30,752

CDMA NoC

w = 1 30 79 191
w = 8 240 632 1,528
w = 16 480 1,264 3,056
w = 32 960 2,528 6,112

7.3.3 Area Cost of Interconnect Wires

As presented in section 7.3.2, both the CDMA and crossbar networks need a large num-

ber of interconnect wires to build the non-blocking data transfer channels among network

nodes. The main portion of the interconnect wires among network nodes are the data wires.

Therefore, taking the area cost of data wires into account would be helpful for getting more

accurate views of the presented NoC designs. The data-wire area estimations of the presented

six-node CDMA, crossbar, and the bidirectional ring networks with 32-bit data path width are

presented in the following paragraphs.

According to the logic gate area cost of the six-node CDMA network listed in Table 5 and

the average gate density, 85K gates/mm2, of the 0.18µm technology library, we can get that

the gate area of a network node of the CDMA network with 32-bitdata path width is 0.5mm2,

which is approximately equivalent to a 0.72mmx 0.72mmsquare area. Similarly, we can get

that the gate area of ‘CDMA Transmitter’ block is 0.18mm2 which is equivalent to a 0.1mm

x 1.8mm rectangular area. The gate area of ‘Network Arbiter’ block is 0.011mm2 which

is equivalent to a 0.1mmx 0.11mmrectangle. Therefore, if the six-node CDMA network is

placed as the pattern illustrated in Fig.34 (a), we can get anapproximate 1.6mmx 2.4mmcore

area of the design including some overhead and spacing. Because all the network nodes need

to be connected to the central located ‘CDMA Transmitter’ and ‘Network Arbiter’ blocks, we

can assume the average wire length is half of the core dimension, which is (1.6mm+ 2.4mm)

/ 2 = 2mm. For those global interconnect wires among blocks, the upper metal layers, metal

5 or 6, which have a minimum width and spacing of 0.64µm in the 0.18µm library should be

used for the sake of better conductance. Therefore, the equation of estimating the wire area

cost is given in (6). In (6),Nwire refers to the number data wires in a network. TheLaverageis

the average length of the wires.Wwire andWspaceare the minimum width and spacing of the

interconnect wires defined by the technology library. Hence, through the equation given in

(6) and the number of data wires listed in Table 9, we can get the approximate interconnect

wire area cost of the six-node CDMA network with 32-bit data path width is 960 x 2mmx
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Fig. 34. Placement of the NoC Designs.

(0.64µm + 0.64µm)≈ 2.46mm2 which is 76.6% of the logic gate area of the CDMA network.

For the six-node crossbar network with 32-bit data path width, we can get that the logic

gate area of a network node is 0.22mm2 according to the value listed in Table 7. This area

is equivalent to a 0.47mmx 0.47mmsquare area. Each channel multiplexer block occupies

0.01mm2 which is equivalent to a 0.1mmx 0.1mmsquare. Hence, if the six-node crossbar

network is placed as the pattern illustrated in Fig.34 (b), we can get an approximate 1.4mm

x 1.7mmcore area of the design. Similar to the estimation for the CDMA network, we also

assume the average wire length is half of the core dimension,which is (1.4mm+ 1.7mm) /2

≈ 1.6mm. Therefore, according to the number of data wires listed in Table 9 and (6), we

can get the approximate wire area cost of the crossbar network is 1152 x 1.6mmx (0.64µm +

0.64µm) ≈ 2.36mm2 which is 184.4% of the logic gate area of the crossbar network.

Wire Area= Nwire×Laverage× (Wwire +Wspace) (6)

In a similar way, we can also get the corresponding area figures of the six-node bidirectional

ring network presented in Chapter 4. According to the valueslisted in Table 2, the logic gate

area of a network node in the ring network is 0.25mm2 which is equivalent to a 0.5mmx

0.5mmsquare. If the six-node ring network is placed as the patternillustrated in Fig.34 (c),

we can get an approximate 1.1mmx 1.7mmcore area of the design. We also take half of

the core dimension as the the average wire length, which is (1.1mm+ 1.7mm) / 2 = 1.4mm.

Because the data connection between two network nodes is bidirectional and the data path

width of each direction is 32 bits, the number of data wires inthe six-node ring network is (32

x 2) x 6 = 384. Hence, according to (6), we can get the approximate interconnect wire area

cost of the ring network is 384 x 1.4mmx (0.64µm + 0.64µm)≈ 0.69mm2 which is 33.2% of

its logic gate area.

Through the presented estimations, we can see that the ring network has the smallest inter-

connect wire area cost since its smallest core area and number of data wires. In comparison

with the crossbar network, the advantage of less number of data wires gained by the CDMA
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network is degraded in terms of wire area cost because of its larger core area. However, one

fact to be noticed is that the difference of number of data wires between the six-node CDMA

and crossbar network is very small. Therefore, as the numberof network nodes grows, the

difference of the number of wires will greatly increase as presented in Table 9. For example,

when there are 15 nodes in a network and the data path width is 32 bits, the crossbar network

needs 7,200 data wires while the CDMA network only needs 2,528 data wires. With the

presented estimation, we can already see that the wire area of the six-node crossbar network

is almost 2 times larger than its logic gate area. Hence, as the number of nodes grows, the

overhead of wire area cost of the crossbar network will tremendously increase.

7.3.4 Data Transfer Latency

The data transfer latency in the three networks consists of two parts, STL and ATL, as pre-

sented in chapters 4, 5 and 6. Because STL values mainly depend on the local clock rates of a

functional host, the comparison presented in this subsection mainly concerns the ATL values

of the networks.

Because the CDMA and crossbar networks both apply ‘one-hop’concurrent data transfer

scheme, the ATL of these two networks consists of same portions, PLL, PTL, and PSL. The

values of ATL in the two networks can be obtained by directly adding the three portions

together. However, the ATL of the ring network has differentportions and it is a variable

depending on the packet traffic route. The ATL portion calledPBL of the ring network does

not exist in the ATL of the other two networks because the datapackets in the CDMA and

crossbar networks are transferred directly from the sourcenode to the destination node.

Based on the values listed in Table 4, Table 6, and Table 8, Fig.35, Fig.36, and Fig.37, are

plotted to illustrate the ATL of the three networks with different data path widths and packet

lengths. The ATL values of the ring network illustrated in the figures are measured in the

best case which means that packets are transferred between two adjacent nodes in the ring

network. Thus, PBL values of the ring network are zero.

From the figures, we can see that ATL values of the CDMA networkare tremendously larger

than the values of the crossbar network when the data path width is 1 bit. The difference is

getting smaller quickly when the data path width is increased. For example, the ATL value of

transferring one-data-cell packet in the crossbar networkis around 70% less than the value of

the CDMA network when the data path width is 1 bit, whereas this figure is reduced to 41%

when the data path width is increased to 32 bits. The large latency in the CDMA network is

mainly caused by the data encoding and decoding operations.

In comparison to the ATL values of the ring network realized with 32-bit data path width, the

ATL values of the CDMA network are quite close. As illustrated in Fig.35, the ATL value of

the CDMA network is even smaller than the best case ATL value of the ring network when
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Fig. 35. ATL Values of Tx 1-data-cell Packet.

Fig. 36. ATL Values of Tx 2-data-cell Packet.

Fig. 37. ATL Values of Tx 3-data-cell Packet.
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Table 10. Equivalent Number of Intermediate Nodes in the Ring NoC.

Packet Length 1-bit 8-bit 16-bit 32-bit
1 data cell N = 15.2 N = 1.2 N = 0.4 N = -0.1
2 data cells N = 22.6 N = 1.9 N = 0.7 N = 0.0
3 data cells N = 26.9 N = 2.3 N = 0.9 N = 0.1

the transferred packet has one data cell. In order to comparethe data transfer latencies of

the ring and CDMA networks clearly, Table 10 lists the equivalent number of intermediate

network nodes which would be gone through by a data packet in the ring NoC when the same

packet is transferred in the CDMA network under different data path widths. From Table 10,

we can see that when the data path width is larger than 8 bits, the ATL value of the CDMA

network is already very close to the best-case value of the ring network. Therefore, we can

see that the latency caused by the data encoding and decodingscheme in the CDMA network

is compensated by its ‘one-hop’ data transfer capability incomparison with the ring network.

7.3.5 Dynamic Power Consumption

Dynamic power consumption values of the three networks are also estimated during the gate

level simulations using the same test stimulus. The measured consumption values are illus-

trated in Fig.38. From the figure, we can see that the 1-bit CDMA network should not be

applied due to the largest power consumption in comparison with other realizations.

The reason of the large power consumption is that it needs much more switching activities

than the others because of the over-serialized data transfers. As illustrated in Fig.38, when

the data path width is over 8 bits, the power consumption values of the three networks are

very close to each other, which means that a similar amount ofswitching activities happened

Fig. 38. Dynamic Power Consumption Comparison.
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Table 11. Theoretical Throughput of the Six-Node CDMA Network.

Packet Length
Throughput under Different Data Path Widths (Gbits/s)

1-bit 8-bit 16-bit 32-bit
1 data cell 0.48 3.36 5.13 7.41
2 data cells 0.49 3.86 6.38 10.32
3 data cells 0.49 4.05 6.94 11.76

in all the networks to perform the same data transfers.

Through the presented comparison work, we can see that the CDMA network can not com-

pete with the other two networks in the aspect of area cost because of its data encoding and

decoding scheme. However, when the data path width is equal or larger than 8 bits, the

CDMA network has better asynchronous transfer latency performance than the ring network.

Although the crossbar network shows smaller logic gate areacost and asynchronous transfer

latency, the CDMA network can still be a good alternative of the crossbar structure because

it largely reduces the requirement of data connection wires.

7.4 Performance Comparisons with Other NoC Designs

The NoC designs found in literature have different structures and implementations, and their

performance estimations are reported with different forms. Therefore, it is difficult to make

fair and thorough comparisons with the presented CDMA NoC realization under the same

conditions. In this section, quantitative comparisons between the CDMA NoC realization and

several other types of NoC designs are presented in order to evaluate the presented CDMA

NoC structure in a wider scope.

In order to facilitate comparisons, theoretical throughput values of the six-node CDMA net-

work are listed in Table 11. The values are calculated according to the ATL values listed in

Table 6 and the equation given in (7). From (7), we can see thatthe calculated throughput

values exclude the synchronous transfer latency between a network node and its attached

functional host. The reason is that these latencies depend on the local clock rate of the host

instead of the on-chip network. Hence, the throughput values listed in Table 11 give one type

of performance estimations of the GALS CDMA NoC. In this case, the number of nodes used

in calculations is 6. The number of data bits depends on the number of data cells in a packet.

The size of a data cell is fixed at 32 bits.

Throughput=
(Number o f Data Bits)× (Number o f Network Nodes)

ATL value
(7)
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1. Comparing with a Synchronous NoC Design

In the category of synchronous NoC designs, Æthereal NoC developed by Philips research

laboratories is a well-known and frequently quoted NoC design. It consists of routers which

can provide both guaranteed and best-effort services. According to the performance reported

in [23], an Æthereal NoC router which has six bidirectional ports was realized with a 0.13µm

technology library. The data path width is 32 bits accordingto the width of the input queues.

This router has an area of 0.175mm2 after layout and a bandwidth of 16Gbits/s at 500 MHz.

This figure is larger than the throughput value of the CDMA NoCwith 32-bit data path

as listed in Table 11. In this comparison, the factor of different technology libraries for

realizations should be noticed.

2. Comparing with a GALS NoC Design

MANGO NoC is a good example of a NoC design which applies both synchronous and

asynchronous designs to realize GALS scheme while using routing schemes to share the data

links among users in the network. Similar with the Æthereal NoC, a router of MANGO NoC

also provides both guaranteed and best-effort services by using virtual channels. A virtual

channel design of MANGO router realized with a 0.18µm technology library is reported

in [10]. The design has 16-bit data path width and 8 virtual channels. 537Mflits/s throughput

of the virtual channel is achieved in typical timing cases. This throughput value equals to

8.59Gbits/s if a flit consists of 16 bits. According to the figures listed in Table 11, this value

is close to the 10.32 Gbits/s throughput of the CDMA network when the data path is 32 bits

and a packet containing two 32-bit data cells.

3. Comparing with an Asynchronous NoC Design

A NoC design, named CHAIN, which applies pure asynchronous design has been presented

in [4]. The CHAIN network applies routers, arbiters, multiplexers, and pipeline channels to

set up data links between senders and receivers. By implementing with a 0.18µm technology

library, the CHAIN network can achieve a throughput of 1Gbits/s per data link when the

data path width in a link is 1 bit. Wider data paths can be builtby using parallel data links,

although it will incur extra latencies in route set-up and end-to-end transfers as reported in [4].

By comparing of the throughput values of the CDMA network with 1-bit data path width, the

CHAIN network can achieve around two times higher throughput.

4. Comparing with Other CDMA Schemes

As addressed in section 5.3 of Chapter 5, the presented GALS CDMA NoC design is not

the only one which applies CDMA technique into on-chip communications. A CDMA bus

structure which applies analog design to implement CDMA transfers is presented in [88].

The data are encoded and decoded by modulating the voltage signal in the bus. According to

the simulation results reported in [88], its throughput is only 70Mbits/s even it can support

60 simultaneous transmissions in the bus. Another analog CDMA bus which has a better
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performance is presented in [84]. The presented realization which can contain 16 hosts is

realized with a 0.35µm technology library and has a throughput of 2.5Gbits/s whenthe data

path width is 15 bits. This throughput figure is smaller than the throughput values of the

CDMA NoC even with 8-bit data path width.

Besides analog CDMA buses, another NoC design which also applies CDMA technique is

presented in [50, 51]. However, it applies fully synchronous scheme in the network, which

means that the CDMA coding and transfer processes are realized with synchronous design

instead of the asynchronous design used by the CDMA NoC presented in this thesis. There-

fore, it does not address the multi-clock-domain issue in a SoC design. The synchronous

CDMA NoC applies a receiver-based spreading code protocol which is not conflict-free as

addressed in Chapter 5. The decoding scheme applied in the synchronous CDMA NoC in-

volves subtraction and division operations which make it more complicated than the scheme

used in the GALS CDMA NoC presented in this thesis. The synchronous CDMA NoC has

been realized with a 0.18µm structured ASIC library which is different from the standard-

cell library used in this work. According to the realizationresults presented in [51] and the

explanation presented in [50], the seven-node synchronousCDMA NoC realization running

at maximum 94.2 MHz has a throughput of 5.28Gbits/s when the data path width is 32 bits.

This figure is less than the throughput values of the GALS CDMANoC with 32-bit data path

as listed in Table 11.

Through the presented comparisons, we can see that the GALS CDMA NoC developed in

this work has no apparent advantages of throughput values bycomparing with the NoC de-

signs which share data links among network nodes in a time-division manner with all kinds of

routing methods. The reason of the lower throughput of the CDMA network is that the data

encoding and decoding operations required by CDMA technique incur large latency overhead

in data transfer processes. However, this throughput penalty does not obliterate the merit of

the non-blocking and ‘one-hop’ data transfer abilities of the CDMA NoC as presented in

Chapter 5. By comparing with other on-chip communication structures which also apply

CDMA technique, the CDMA NoC presented in this thesis has a better throughput perfor-

mance by applying the presented GALS scheme and simplified data encoding and decoding

schemes.
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8. REALIZING A GALS NOC ON AN FPGA DEVICE

The Non-Recurring Engineering (NRE) cost of chip design andmanufacture continuously

rises as the size of transistors shrinks down. At the 90 nm process node, the total development

cost of a single standard-cell chip can be in the range of $20-30 million [17]. Also, the trial

and error process of getting an on-chip system design works is also a time consuming process.

Therefore, Field-Programmable Gate Array (FPGA) prototyping is widely accepted as a fast

and cheap way of verifying an IC design before manufacturingor even using the FPGA in

the final product for low production volumes.

FPGA device is a chip containing programmable logic blocks and programmable intercon-

nects. The logic blocks in an FPGA chip can be programmed to perform basic logic oper-

ations such as AND, and OR. Therefore, digital circuit designs implemented on an FPGA

device can be easily modified in a fast and cheap way. Hence, prototyping a SoC design on

an FPGA device is a good way of carrying out design exploration and functional verifica-

tion before turning to ASIC implementation. Currently, theFPGA devices available on the

market are oriented only for realizing synchronous designsby using Look-Up-Table (LUT)

structures [14]. Hence, a major challenge in realizing a GALS NoC design on a LUT-based

FPGA device is how to realize asynchronous designs. This chapter presents a solution to

this challenge and the work of prototyping a bidirectional ring GALS NoC on a LUT-based

FPGA device.

8.1 Two Key Components for Realizing Asynchronous Designs on an
FPGA Device

As presented in section 3.3.2, the control pipelines of the asynchronous circuits used in the

bidirectional ring NoC mainly consist of C-elements. Therefore, realizing the C-element in

a LUT-based FPGA is the prerequisite for realizing the asynchronous design. Besides the C-

element, an asynchronous arbiter is another important component used in the asynchronous

design to allocate the shared resource to only one user at a time. For example, ‘Communi-

cation Controller’ block needs an arbiter to decide that either the ‘local packet’ or ‘bypass

packet’ will be put into the ‘Tx Packet Buffer’ first if they come to the ‘Packet Distribu-

tor’ simultaneously. Thus, the structures of the C-elementand arbiter developed for FPGA
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Fig. 39. C-element Structures.

realization will be presented in the following subsections.

8.1.1 C-element Structure

In order to map C-element on a LUT-based FPGA, an equivalent two-input C-element struc-

ture illustrated in Fig.39(a) has been presented in [36]. Ithas been proved to be logic hazard-

free under the single-bit input change assumption and certain two-input change patterns. The

drawback of this structure is that it needs a netlist-formatdescription as a component library

in the design flow to ensure that the feedback path is mapped ona LUT correctly. In order

to avoid the explicit feedback path, another two-input C-element structure is developed in

this work and illustrated in Fig.39(b). It bases on a D-latchwhich uses ‘A AND B’ as the

enable (‘EN’) signal and ‘A OR B’ as the reset signal (‘CLR’).The data input port (‘D’) of

the D-latch is tied to logic ‘1’ constantly. The idea of usinglatch to map a C-element in LUT

has already been presented in [36] where a RS-latch is suggested. Whereas, the C-element

structure based on D-latch in Fig.39(b) is safer than the suggested RS-latch structure because

it avoids data switching at the data input port ‘D’.

8.1.2 Arbiter Structure

Cross-coupled NAND gates are normally used as the simplest arbiter structure in an ASIC

implementation. For implementing an arbiter on an FPGA device, the built-in Flip-Flop is

suggested to be used in order to minimize metastability effects [65]. Therefore, an arbiter

structure which bases on the built-in Flip-Flop of an FPGA device and applies the cross-

coupled NAND structure is developed for realizing the asynchronous design of the GALS

NoC. The developed arbiter structure is illustrated in Fig.40. The arbiter is a two-input fixed-

priority arbiter and can be divided into three stages.

The first stage consists of two cross-coupled AND gates, ‘A1’and ‘A2’, with inverted inputs.

The gate ‘A0’ is used to disable the input ‘r2’ when a conflict between ‘r1’ and ‘r2’ is detected

at the output of C-element ‘C3’. If the two input requests ‘r1’ and ‘r2’ appear simultaneously

or very close to each other, the LUT implementation of ‘Stage1’ will enter into an oscillation
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Fig. 40. The Arbiter Structure for FPGA Realization.

state instead of the metastability state as the ASIC implementation. In this situation, the

second stage of the arbiter is used to filter out the possible oscillating outputs from ‘Stage1’.

The ‘Stage2’ illustrated in Fig.40(a) bases on two built-inD-FF registers of an FPGA device.

The C-elements, ‘C1’ and ‘C2’, are used to convert the oscillation outputs from ‘Stage1’ into

a single 0→1 signal transition which is used as the clock signal to trigger the registers ‘D1’

and ‘D2’ respectively. After passing through ‘Stage2’ of the arbiter, the oscillation outputs

from ‘Stage1’ may trigger the outputs of both ‘D1’ and ‘D2’ into logic ‘1’. In this case,

the ‘C3’ will detect this conflict and disable the ‘r2’ request by the feedback path from the

output of ‘C3’ to the input of ‘A0’. The ‘delay’ components in‘Stage2’ which consist of a

C-element chain as illustrated in Fig.40(b) are used to ensure that the rising edge from the

outputs of ‘C1’ and ‘C2’ will arrive after the ‘CLR’ signals from ‘A3’ and ‘A4’.

The actual arbitration process takes place in the ‘Stage 3’ where another two built-in D-

FF registers are used. When a request conflict is detected at the outputs of ‘D1’ and ‘D2’,

the ‘XOR’ logic in ‘Stage3’ will close the arbiter output by disabling ‘C4’ and ‘C5’. The

arbitration outputs will be enabled only after the output of‘D2’ is cleared by the feedback

from ‘C3’. Therefore, request ‘r1’ has a higher priority in the presented arbiter. The ‘delay’

components in ‘Stage3’ are used to filter out the possible glitches from ‘XOR’ when the

output signals of ‘D1’ and ‘D2’ did not reach the inputs of the‘XOR’ gate simultaneously in

a request-conflict situation.



72 8. Realizing a GALS NoC on an FPGA Device

8.2 Realizing a Four-Node GALS Ring NoC

By applying the presented C-element and arbiter structures, the barriers of realizing the asyn-

chronous designs on a LUT-based FPGA device are removed. Therefore, both the asyn-

chronous and synchronous designs of the GALS bidirectionalring NoC can be fed into the

same design flow for realizing synchronous designs. The design tool and the FPGA device

used in this work are QuartusII and Altera StratixII respectively. The realizing method used

in this work is summarized as the following four steps.

Step1: Describe both synchronous and asynchronous designsin a hierarchical manner
by using VHDL.

Namely, the C-element structure illustrated in Fig.39(b) is modeled using VHDL as a com-

ponent. Then, any other blocks, such as the arbiter or the control pipelines, use the VHDL

model of the C-element as component instances in their own VHDL description. In the same

manner, the control pipelines, arbiter, and C-element are used by a higher level block as

component instances in their VHDL descriptions.

Step2: Define a design partition for each component.

In order to prevent the synthesis tool to mix all the combinational logic from different com-

ponents together, each instance of the C-element and arbiter in the design is set as a design

partition by using QuartusII. The higher level components or blocks are also to be set as sepa-

rate partitions according to the design hierarchy. During the synthesis process, each partition

of the design will be synthesized separately from each otherby QuartusII. Therefore, the

presented C-element and arbiter structures will be generated correctly.

Step3: Set a LogicLock region for all delay sensitive arbiter and control blocks.

In order to meet the QDI timing requirements of the presentedarbiter and block control

pipeline structures, LogicLock technique [1] provided by QuartusII is applied during the

placement and routing process. A LogicLock region is set to each arbiter and block control

logic pipeline in the design so that the components in the arbiter and the control pipeline

will be automatically placed into one Logic Array Block (LAB) [2] or the adjacent LABs by

QuartusII. Thus, the fast intra-connects inside a LAB and inter-connects [2] between adjacent

LABs can meet the loose timing requirements of the arbiter and the block control pipeline as

addressed in section 3.3.2.

Step4: Run synthesis, placement, and routing steps withoutadditional constraint files.

After the design partitions and LogicLock regions are set byusing QuartusII, both the syn-

chronous and asynchronous designs of the GALS NoC can be realized on an FPGA device

without any other constraints.

By using the presented realization method, a four-node GALSbidirectional ring NoC is re-
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Table 12. ALUTs Utilization of ‘Network Node’ Blocks.

Block Name
Utilized
ALUTs

Node IF (BVCI Slave Type) 146
Node IF (BVCI Master Type) 399

Layer MUX 142
Communication Controller 238

Communication Packet Distributor 451
Layer Packet Sender +Tx Packet Buffer 2,202

(CL block) Packet Receiver 233
Rx Packet Buffer 1,878

Total (with 2 BVCI Slave Type Network Node 10,292
CL blocks) BVCI Master Type Network Node 10,545

alized on a StratixII EP2S60 device. The whole network utilizes 41,674 Adaptive LUTs

(ALUTs) [2] which is 86.2% of the ALUTs on the device. The areacosts of ‘Network Node’

block and their sub-blocks in terms of utilized ALUTs are listed in Table 12. The reason of

the large area cost is that each LogicLock region for a basic component or a delay sensitive

block, such as C-element and arbiter, exclusively occupiesa square area even the block can

not fully utilize the LUT resources in that area. Therefore,when all LogicLock regions for

basic components and delay sensitive blocks in the design pile together, they occupy a large

area on the FPGA device.

Through this prototyping practice of a GALS NoC design, we can see that it is possible to

realize a synchronous-asynchronous mixed design on an FPGAdevice aimed for synchronous

designs. However, extra care of placing the asynchronous components is needed and the

utilization of the resources on an FPGA device is not efficient due to the compensation caused

by meeting the timing requirements of asynchronous designs. Therefore, an FPGA device

which includes the basic and frequently used asynchronous components, such as C-element,

would be very helpful for the FPGA prototyping work of a GALS NoC design.
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9. CONCLUSIONS

This chapter concludes this thesis by summarizing the author’s publications included in Part

II, and then describing the main results of the presented work. Finally, directions of future

research are proposed.

9.1 Summary of Publications

Publication [P1]: A Synthesizable RTL Design of Asynchronous FIFO.This publication

presents the work of developing an asynchronous FIFO. This FIFO is modeled in RTL using

VHDL and suits the commonly used synchronous design tools and flow. The motivation of

this work is to develop an asynchronous FIFO as a reusable RTLIP block for the following

work of designing GALS NoC. The overall structure and an ad hoc control logic of the

asynchronous FIFO are presented. The presented asynchronous FIFO is synthesized using

a synchronous design tool and it passes the functional verification in gate-level.

Publication [P2]: Asynchronous Network Node Design for Network-on-Chip.In order to

apply GALS scheme in Proteo NoC architecture, a network nodewhich includes both syn-

chronous and asynchronous designs is developed and presented in this publication. The syn-

chronous design is applied in the interface block to carry out locally synchronous communi-

cations with the attached functional host, while the asynchronous design is used in the blocks

for performing globally asynchronous data transfers. The presented network node is real-

ized as a synthesizable IP block in RTL using VHDL. A six-nodebidirectional ring on-chip

network composed of the presented network node design is built for the simulation purpose.

The way of applying GALS scheme in Proteo NoC architecture isfirstly presented in this

publication and adopted by the other NoC structures developed later on.

Publication [P3]: An On-Chip CDMA Communication Network.This is the first publication

of the author to present the idea of applying CDMA technique into an on-chip network. The

issues and related methods of applying CDMA technique in a NoC design, including data

encoding and decoding, spreading code selection, and spreading code protocol, are presented

in this publication. The structure of the blocks for building the CDMA NoC is also pre-

sented. The GALS scheme is applied in the CDMA network by utilizing both synchronous

and asynchronous designs. A six-node CDMA NoC is built and synthesized. The preliminary
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performance estimations of the area cost and data transfer latency of the six-node network are

presented.

Publication [P4]: Prototyping A Globally Asynchronous Locally Synchronous Network-on-

Chip on a Conventional FPGA Device Using Synchronous DesignTools. This publica-

tion presents the work of prototyping a four-node GALS bidirectional ring NoC design on

a LUT-based FPGA device. The issues and related solutions ofrealizing a synchronous-

asynchronous mixed NoC design on an FPGA device aimed for synchronous designs are

presented. The structures of key components, C-element, arbiter, and the structures of two

control pipelines are presented. The presented structuressuit for the realizations on a LUT-

based FPGA device. A method of prototyping a GALS NoC design on an Altera FPGA

device using synchronous design tools is also presented in this publication.

Publication [P5]: A RTL Asynchronous FIFO Design Using Modified Micropipeline. This is

the second publication of the author to present a general purpose asynchronous FIFO design.

In this publication, the preliminary FIFO design presentedin [P1] is improved largely by re-

placing the ad hoc control logic design with the newly developed control pipelines. The pre-

sented control pipelines are based on the control logic of Micropipeline and they are more ro-

bust than the control logic presented in [P1] in terms of delay sensitivity. An arbiter structure

and a C-element structure which suit for RTL modeling are also presented. A synchronous

FIFO design is also developed as a reference to evaluate the performance of the presented

asynchronous FIFO. The area cost and power consumption of the synchronous and asyn-

chronous FIFO designs are estimated and compared accordingto the gate-level realizations.

The data transfer latency values extracted from gate-levelsimulations of the asynchronous

FIFO are also presented.

Publication [P6]: Comparison of a Ring On-Chip Network and a Code-Division Multiple-

Access On-Chip Network.The main purpose of this work is to thoroughly compare the GALS

ring NoC design presented in [P2] with the GALS CDMA NoC design presented in [P3] in

order to examine their different characteristics. The aspects of the two NoC designs exam-

ined and compared in this publication include network structures, data transfer principles,

network node structures, and their asynchronous designs. Based on the gate-level realiza-

tions of two six-node networks, the performance of the two networks, including area costs

and data transfer latencies, are also compared. At the end ofthis publication, a preliminary

work of SystemC modeling is briefly introduced.

Publication [P7]: Comparing Two Non-Blocking Concurrent Data Switching Schemes for

Network-on-Chip.Although the CDMA NoC presented in [P3] achieves the featureof non-

blocking data transfers by using CDMA technique, it incurs alarge overhead caused by in-

troducing data encoding and decoding operations. Another type of data switching scheme

called crossbar has also the feature of non-blocking data transfers. Therefore, the overhead

of applying CDMA technique in an on-chip network is examinedby comparing a CDMA
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network with a crossbar network in the same network environment. The characteristics of the

CDMA and the crossbar networks are further examined by comparing the two networks un-

der different data path widths. Based on the synthesis results, area costs, power consumption,

data transfer latencies, and the numbers of data wires of thetwo networks are also compared.

Publication [P8]: Applying CDMA Technique to Network-on-Chip.This publication thor-

oughly presents the work of developing the CDMA NoC. The issues of applying CDMA

technique in an on-chip network and the design of realizing aGALS CDMA NoC are ad-

dressed with details and examples. The realizations of a six-node GALS CDMA network

with different data path widths are presented and compared with the six-node GALS bidirec-

tional ring NoC presented in [P6]. By the comparisons, the area cost and power consumption

overhead caused by applying CDMA technique in an on-chip network are further examined.

The effect of different data path widths on data transfer latency performance in the CDMA

NoC is also examined. In comparison to the bidirectional ring NoC, the optimal configuration

of the CDMA NoC is clarified.

Publication [P9]: Modeling A Code-Division Multiple-Access Network-on-Chip Using Sys-

temC.This publication presents a SystemC modeling and simulation work based on the pre-

liminary SystemC modeling work introduced in [P6]. A SystemC model of the presented

CDMA NoC design is developed in order to facilitate the design exploration of the CDMA

NoC with different configurations in a fast and flexible way. The presented SystemC model

uses transaction level modeling approach to model the asynchronous handshake processes

of data transfers in the CDMA NoC. By utilizing the RTL realizations of the CDMA NoC

presented in [P8], a performance estimation method which bases on timing back-annotation

is presented to estimate the CDMA NoC performance under different configurations. Fi-

nally, the performance estimation results of the CDMA NoC with different channel widths,

different number of network nodes, and different traffic patterns are presented.

9.2 The Main Results

The work presented in this thesis concentrates on designingand realizing GALS on-chip

networks. The main results are summarized in the following six aspects.

1. Developed asynchronous designs for GALS NoCs

An asynchronous FIFO structure was developed. Although theasynchronous FIFO design is

meant to be used in the GALS NoC designs, it is a general purpose asynchronous FIFO IP

module for any other applications. In comparison to a synchronous FIFO reference, the asyn-

chronous FIFO can save 48.5% logic gate area cost and 45.8% dynamic power consumption.

Besides the asynchronous FIFO design, two control pipelines were developed as the control

logic for the asynchronous designs of the GALS NoCs. All the developed asynchronous
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designs in this work suit to be modeled in RTL by using HDL. This feature facilitates the

asynchronous designs to be realized together with the synchronous designs in a GALS NoC

by using the commonly used synchronous design tools and design flow.

2. Applying GALS scheme into Proteo NoC architecture

A network node which applies both synchronous and asynchronous designs was developed

as an IP module to realize the GALS scheme in the Proteo NoC. A six-node bidirectional

ring network was set up for evaluating the network node design. The buffers for sending

and receiving data packets occupy around 33% of the network node area in the bidirectional

ring network. According to a standard-cell realization of the six-node network, the network

node can deliver a 64-bit packet to an adjacent node in 28.4ns through a four-phase dual-rail

handshake protocol.

3. Developed a GALS CDMA NoC structure

An on-chip GALS NoC which applies CDMA technique was developed. The main benefit

of applying CDMA technique in on-chip communications is thefeature of non-blocking and

‘one-hop’ data transfers. This feature is very useful for providing small-variance data transfer

latency in an on-chip network. A six-node GALS CDMA network was built and realized in

gate-level in order to examine its performance. By comparing the six-node CDMA network

with a six-node ring network, the CDMA network has 54.1% larger logic gate area cost

when they both apply 32-bit data path width. The larger area cost in the CDMA network

is mainly caused by the parallel data encoding and decoding logic. However, the reward

for this area overhead is that the asynchronous data transfer latency in the 32-bit CDMA

network equals to the best case latency in the ring network. By comparing the performance

of the CDMA network under different data path widths, the CDMA network has a good

balance between area cost and data transfer latency when itsdata path width is 8 bits or 16

bits. If an application is sensitive to area cost and power consumption, the CDMA network

with 8-bit data path is a good option to replace the bidirectional ring network. If small data

transfer latency is required in the application, the 16-bitCDMA network is a better choice. In

comparison with other NoC designs which share data links among network nodes in a time-

division manner, the CDMA NoC has no apparent advantages of throughput because of the

latency overhead incurred by the data encoding and decodingprocesses. In comparison with

analog CDMA buses and a synchronous CDMA NoC design, the CDMANoC presented

in this work can achieve better throughput performance by using the GALS scheme and

simplified data encoding and decoding schemes. Through an estimation of layout with a

0.18µm technology, a six-node CDMA network with 32-bit data path width has a 3.21mm2

logic gate area and a 2.46mm2 data wire area, and its possible core area on a wafer would be

around 1.6mmx 2.4mm.
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4. Developed a GALS Crossbar Network

In order to examine the overhead of the data encoding and decoding operations in the CDMA

network, another six-node non-blocking network which usesa crossbar switch was developed

for comparisons. The crossbar network applies multiplexerstructure to realize the crossbar

switch in the network. By comparing the crossbar network with the CDMA network, the data

encoding and decoding logic incurs 39.4% larger logic gate area cost in the CDMA network

when the data path width in both networks is set to 8 bits. In comparison to the crossbar

network, the advantage of the CDMA network is that the numberof data connection wires is

much smaller. For example, when the number of nodes is 31, thecrossbar network requires

30,752 connection wires to achieve concurrent transfers ifthe data path is 32 bits, whereas,

this number is reduced to 6,112 in the CDMA network.

5. Realized a GALS NoC design on an FPGA device

A four-node GALS bidirectional ring network was realized ona LUT-based FPGA device.

This prototype work exhibits a way of realizing a synchronous-asynchronous mixed design on

an FPGA device aimed for synchronous designs. A C-element and an arbiter structure which

suit for LUT-based FPGA devices were developed. A method of realizing asynchronous de-

signs on an Altera FPGA device was presented. The realized four-node bidirectional ring

network takes 41,674 ALUTs which is 86.2% of the ALUTs on a StratixII EP2S60 FPGA

device. The drawback of the presented realization method isthat lots of unused LUT re-

sources in each LogicLock region can not be utilized in orderto meet the delay requirements

of each asynchronous block. This situation can be improved in the future if an FPGA de-

vice containing the basic components of asynchronous designs, such as the C-element, will

become available.

6. SystemC modeling for design exploration and performanceestimation

A SystemC model of the CDMA network was built in transaction level for design exploration

and performance estimation in an early design stage. Based on back-annotating the delay

information of a synthesized CDMA network, a method was developed to estimate asyn-

chronous data transfer latencies under different configurations by using the SystemC model.

Different data path widths, different number of network nodes, and different traffic patterns

of the CDMA network were experimented by using the SystemC model. The simulation re-

sults show that the asynchronous data transfer latency in the CDMA network increases as the

number of network nodes increases. The transfer latency also increases when the traffic load

in the CDMA network increases. The developed SystemC model and the performance esti-

mation method are important for integrating the CDMA NoC into a SoC design exploration

process in transaction level.

The GALS NoC designs developed in this work present a few preliminary solutions to address

the on-chip communication issue of on-chip systems. When conventional bus structures can
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not meet the on-chip communication requirements pushed up by the growing on-chip sys-

tems, the GALS NoC structures proposed in this work can be considered as possible alterna-

tive choices depending on the application requirements. Although the presented GALS NoC

designs are currently realized with a 0.18µm standard-cell technology library, they can be

easily adapted to other technologies because the developedGALS NoC designs are modeled

in RTL using VHDL.

9.3 Future Research Directions

Since several disadvantages of the CDMA NoC have been discovered during this work, one

direction of future research can focus on the following aspects.

(1) Develop a distributed data encoding and decoding schemein order to make the CDMA

NoC structure more scalable.

(2) Find more efficient data encoding or decoding method to reduce the data transfer latency

and minimize area cost and power consumption.

(3) Prototyping a larger CDMA NoC design on an FPGA device to evaluate its performance.

(4) Comparison of the CDMA NoC to more examples of other NoC topologies.

Another direction of future work is to improve the presentedasynchronous designs with other

methodologies so that the performance can be improved in terms of delay, area cost, and

power consumption.
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Abstract 

 
An asynchronous FIFO which avoids data movement 

in a micropipeline FIFO is presented and it has been 
implemented as a gate-level netlist. The presented 
asynchronous FIFO model is constructed by commonly 
used Hardware-Description Language and synthesized 
using the conventional EDA tools and methods for 
synchronous design. The purpose of this work is to 
construct a reusable asynchronous FIFO design which 
suits the commonly used synchronous design tools and 
flow. 
 
1. Introduction 
 

Globally-Asynchronous Locally-Synchronous (GALS) 
[1] is a promising paradigm to solve the problem of clock 
skew and delay in the deep submicron System-on-Chip 
(SoC) design. In the GALS architecture, the blocks in 
different clock domains communicate with each other 
using asynchronous connections. Asynchronous FIFO is 
an important component for the efficient data transfer in 
asynchronous communication. Therefore, the 
asynchronous FIFO design is necessary for implementing 
the GALS structure in a SoC design.  

Asynchronous FIFO using micropipeline is presented 
in [2]. The main characteristic of a micropipeline FIFO is 
that the data will flow through all data cells in the FIFO 
before reaching the output port. Therefore, the latency 
(the delay from the input of a data item to its presence at 
the output [4]) caused by data movement is inevitable. In 
[3], an asynchronous FIFO using counter as control logic 
is presented, data movement is avoided, but complexity is 
high. [4, 5] present similar asynchronous FIFO structures 
using token passing (a sender/receiver can 
transmit/receive data to/from FIFO only when it has a 
token) and a common data bus for data in and out. Using 
these structures, the data can be pushed into or popped 
from the asynchronous FIFO without data movement 
inside the FIFO. Therefore, the latency caused by data 
movement in a micropipeline FIFO is eliminated and less 
power is consumed. The asynchronous FIFO presented in 
this paper also bases on the token passing presented in [4, 
5], but the difference is that the presented asynchronous  
FIFO model is suitable for HDL modeling in Register- 
 

Transfer Level (RTL) and implementation using the 
conventional synchronous design tools and flow. Current 
asynchronous design tools require a significant re-
education of designers, and their capabilities are limited 
compared to commonly used synchronous tools [6]. 
Therefore, if commonly used synchronous design 
methods could be used for asynchronous design, the 
benefit is that it would facilitate the integration of 
synchronous and asynchronous parts of a design.       

The paper structure is as follows. In section 2, the 
structure of asynchronous FIFO is presented and the 
control logic is reviewed in detail. Section 3 describes the 
RTL model of the basic elements used in this 
synthesizable RTL design of the asynchronous FIFO. The 
simulation results are presented in section 4. The 
conclusion is drawn in section 5. 

 
2. The Structure of the Asynchronous FIFO 
 
2.1 Top Structure 
 

There are two blocks in the asynchronous FIFO 
illustrated in Figure 1 – ‘Control Logic’ Block and ‘Data 
Bank’ Block. This asynchronous FIFO works with four-
phase bundled-data handshake protocol [7]. The process 
of pushing data into the asynchronous FIFO is explained 
as following steps: 
• Step1: The sender sets the request signal (‘push_req’ 

signal in Figure1) after the data to be sent are ready 
(‘Data_In[D-1:0]’ in Figure1). 

• Step2: The FIFO will set acknowledge signal 
(push_ack signal in Figure1) after successfully 
obtaining the incoming data. 

• Step3: Then the sender responds to push_ack signal by 
resetting push_req signal.  

• Step4: The FIFO resets the push_ack signal after 
push_req has been reset. 
The process of popping data from the asynchronous 

FIFO is equal to pushing process except that the data is 
supplied by the FIFO and obtained by the receiver. 

The ‘control logic’ block contains control cells for 
every data-cell in ‘Data Bank’ Block. The ‘Control 
Signals’ illustrated in Figure 1 are used to control the 
actions of pushing and popping data from the data bank. 

0-7803-8558-6/04/$20.00 ©2004 IEEE.



 
Figure 1. Block Diagram of the Asynchronous FIFO 

 
Figure 2. Block Diagram of the ‘Control Logic’ Block 

2.2 The Structure of the ‘Control Logic’ Block 
 

The ‘Control Logic’ block consists of N control cells 
illustrated in Figure 2. The number N is the depth of 
FIFO referring to the maximum number of data items 
that can be stored into the FIFO. Each control cell is 
used to control one data cell in the ‘Data Bank’ Block. 
In Figure 2, the push/pop_req input signals are fed into 
every control cell by default. The basic operating 
principle of this ‘Control Logic’ Block is that every 
control cell responds to push and pop request signals 
only when it has a token (permission) for the 
corresponding operation. The token for responding push 
operation (push token) is granted to ‘Control Cell 1’ 
after system reset. Then, the push token will be 
transferred to the next control cell after the current 
owner of push token completed its operations about 
pushing data. When the push token reached the last 
control cell, ‘control cell N’, it will return to ‘control 
cell 1’. The operating process of pop token, token for 
responding pop request, is equal to the process of push 
token except that the initial pop token will be granted to 
‘control cell 1’ only when the first data cell in ‘Data 
Bank’ Block contains a valid data item. With this token 
passing principle, the data can be pushed into or popped 
from the asynchronous FIFO eliminating data 
movement.  

The token transfer is implemented by the 
‘celli_pop/push_en’ (i=1, 2, 3, … , N) signals illustrated 
in Figure 2. For example, when the ‘cell2_pop_en’ 
signal is set, it means that the pop token is delivered to 
‘control cell 2’. After ‘control cell 2’ has responded to 
the current pop request, the ‘cell2_pop_en’ signal will 
be reset and the ‘cell3_pop_en’ signal will be set in 
order to transfer the pop token to ‘control cell 3’. 

The ‘push/pop_ack’ output signals in Figure 2 are 
composed by the ‘push/pop_ack’ signals from all 
control cells, which is reasonable because only one 
control cell will assert its push/pop acknowledge signal 
for the current push/pop request. The 
‘cellN_push/pop_ctr’ signals in Figure 2 represent the 
control signals fed into the ‘Data Bank’ Block.  

The detailed structure of ‘control cell 1’ and other 
central control cells, which include from ‘control cell 2’ 
to ‘control cell N-1’, are illustrated together in Figure 3, 
because they have almost the same structure. The 
dashed line in Figure 3 means those connections are 
only valid for ‘control cell 1’. For example, the 
‘celli_pop_en’ signal will be replaced by ‘pop_req’ 
signal when Figure 3 refers to ‘control cell 1’. In Figure 
3, the letter ‘i’ used in the signal names refers to the 
signal index in different control cells. For example, 
‘celli_push_en’ refers to the ‘cell2_push_en’ signal in 
‘control cell 2’.  
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Figure 3. First and Central Control Cell Block Diagram 

 
Figure 4. ‘Control Cell N’ Block Diagram 

The little circles at the input port of C1, AND2 and 
AND3 element represent inverters. In Figure 4, the 
detailed structure of last control cell – ‘control cell N’ is 
depicted.  

Three types of logic elements (Latch, Muller C-
element and AND logic gate) are used in the control cells. 
Except the well understood AND logic, it is necessary to 
describe the model of Latch and Muller C-element used 
here before introducing the operating principle of an 
individual control cell. 

(1) The truth table of the latch model used here is 
given in Table 1. When the value at input port ‘rst’ is set, 
the output value at port ‘q’ will be reset. When the value 
at input port ‘set’ is set, the output value at port ‘q’ will 
be set. The value at ‘rst’ and ‘set’ ports should not be set 
at the same time. The value at output port ‘q’ will be kept 
unchanged when the value at ‘rst’ and ‘set’ ports is ‘0’. 

The value at port ‘qn’ is always the inverse value at port 
‘q’.  

Table 1. Truth Table of Latch Model 

 
 (2) Two types of Muller C-element [7] are used in the 

control cells – two-input and three-input C-elements. The 
operating principles of these C-elements are the same. 
The truth table of two-input C-element is given in Table 2 
as an example. The output value of C-element would be 
set/reset only when all of its input values are set/reset.      
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0 0 no change no change

1 0 0 1 
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If the input signals have different values from each other, 
the output value of C-element should not change. 

 
Table 2. Truth Table of two-input C-element 

 
After all logic elements used in the control cells are 

introduced, the control process of ‘control logic’ Block 
can be examined through the ‘control cell 1’ as the 
example in the following steps. An assumption taken here 
is that the transition delay (the time duration in which the 
output signal becomes stable after the newly coming input 
signal became stable) of the latch is larger than the 
transition delay of the inverter. This assumption is 
reasonable in most cases.  
•  Step1: After system reset, all output values of logic 

elements in Figure 3 will be reset except that the 
‘celli_push_en’ signal will be set. 

•  Step2: When the ‘push_req’ signal is set, all inputs of 
C2 will be set. Therefore, the output value of C2 will 
also be set after a certain delay. 

•  Step3: Then the output value of C2 will cause the value 
at ‘q’ port of L1 be set to ‘1’. When the value at ‘q’ 
port of L1 is set, it means the first data cell in the ‘Data 
Bank’ Block contains a valid data item. Otherwise, 
there is no valid data item in the first data cell. 

•  Step4: In this step, the ‘celli_push_en’ will be reset to 
indicate that the first control cell already responded to 
the first push_req signal and the push token will be 
transferred to the next control cell. 

•  Step5: The ‘celli+1_push_en’ signal is reset after the 
output value of C2 is set in step2. This ‘0’ value of 
‘celli+1_push_en’ signal means that the current process 
of push request is not complete. Thus, the push token 
should not be transferred to the next control cell at this 
moment. At the same time, ‘celli_push_ack’ and 
‘cell_i_push_ctr’ signals which are used to generate 
acknowledge signal and enable latching the incoming 
data respectively will be set since all inputs of C4 and 
AND4 are ‘1’.  

•  Step6: After the sender has received the acknowledge 
signal for the current pushing request, it will reset 
‘push_req’ signal. 

•  Step7: The reset of ‘push_req’ signal will cause all 
inputs of C2 become ‘0’. Consequently, the output 
value of C2 will be reset. 

•  Step8: As the output value of C2 is reset, the inputs of 
AND3 will be set. Thus, the ‘celli+1_push_en’ signal 

will be set when the next pushing request signal comes. 
It means that the push token is transferred to the next 
control cell by the asserted ‘celli+1_push_en’ signal.  

• Step9: Because the output of C2 and ‘push_req’ signal 
became ‘0’, the output of C4 -- ‘celli_push_ack’ signal, 
will be reset. The resetting of acknowledge signal 
indicates that a four-phase handshake process is 
completed. 
The control process for a pop-request is similar to that 

of a push-request. The L2 in Figure 3 is used to record the 
position where the pop token locates by keeping its output 
always ‘1’ after the output value of C1 is set. That means 
the control cells which has been granted with pop token 
will be marked by the ‘1’ value at the output of L2. The 
pop token will be transferred to the next control cell 
which has no mark value at its L2 latch. When the pop 
token returns back to the first control cell, the L2 will be 
reset by the asserted ‘clr_record’ signal. 

The structure of ‘control cell N’ illustrated in Figure 4 
has some differences by comparing with other control 
cells depicted in Figure 3. The ‘cellN_pop_done’ signal is 
used as one condition to generate ‘clr_record’ signal. 
Latch L2 and ‘cellN_push/pop_en’ signals are not needed 
in the last control cell because the pop token will be 
transferred back to ‘control cell 1’ by resetting the mark 
value at the output of L2 in other control cells. Except 
these mentioned differences, the control process is same 
with the process of the first and the central control cells.  
 

 
 

Figure 5. Data Bank Block Diagram 

 
 
2.3The Structure of the Data Bank 
 

The structure of the ‘Data Bank’ Block illustrated in 
Figured 5 is composed by a series of latch-array named as 
‘Data Cell’ and a multiplexer. The main function of the 
‘Data Bank’ Block is to latch the incoming data or output 
the requested data by the control signals from the 
‘Control Logic’ Block.  
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The ‘celli_push_en’ (i=1, 2, … , N) signals coming 
from ‘Control Logic’ Block are used as the enable signals 
for latching the incoming data. The latches used in ‘Data 
Cell’ latch-array are same with the latches used in the 
‘Control Logic’ Block. The number of latches in ‘Data 
Cell’ latch-array depends on the data width of the 
asynchronous FIFO. The ‘pop_data_en_vector’ in Figure 
5 is the combination of ‘celli_pop_en’ signals from the 
control cells depicted in Figures 3 and 4. It is used as the 
control signal of selecting the requested data item in 
different data cells. 

 
3. The RTL Modeling 

 
Three elements, AND logic gate, Muller C-element 

and latch, are used in this asynchronous FIFO. Unlike the 
AND logic gate, the Muller C-element and the latch 
model used in this design are not basic elements in the 
conventional synchronous design. Therefore, in order to 
make this asynchronous FIFO to be constructed by 
commonly used HDL description and synchronous design 
flow, it is necessary to construct the RTL models using 
basic elements in digital circuits for Muller C-element 
and the latch model described in section 2.2. D-Latch, 
inverter, OR logic gate and AND logic gate are used as 
the basic elements in this RTL design. 
 
3.1 The RTL Model of C-element 
 

Figure 6 illustrates a two-input C-element model 
suitable for synthesizable HDL modeling. The three-input 
C-element model can be obtained by adding the third 
input on AND1 gate and OR1 gate respectively. 

 
Figure 6. The two-input C-element model 

The latch used in the two-input C-element model is a 
D-Latch with an asynchronous reset port. The value at ‘q’ 
output port of D-Latch will follow the value at ‘d’ port 
when the value at ‘g’ port is ‘1’ ( gate is open). If the 
value at ‘g’ port becomes ‘0’ (gate is closed), the value at 
‘q’ port will be kept unchanged. The ‘reset’ port is used 
to reset the value at ‘q’ port, that is, the value at ‘q’ port 
will be reset whenever the value at ‘reset’ port is ‘1’. The 
operating process of the two-input C-element model can 

be observed through Figure 6 directly. During the system 
reset (sys_rst = ‘0’), the output value of this C-element at 
‘q’ port will be reset to ‘0’. If one input signal ‘a’ or ‘b’ is 
‘1’ and another is ‘0’, the gate of D-Latch will be closed. 
Therefore, the reset value at ‘q’ port will be kept 
unchanged. When the values at ‘a’ and ‘b’ are both ‘1’, 
the gate of D-Latch will open. Then the constant value ‘1’ 
at ‘d’ port will be captured by the output port ‘q’ of D-
Latch, thus, the output value of this C-element will be ‘1’. 
The output value of C-element will be back to ‘0’ again 
only when both input signals ‘a’ and ‘b’ are reset to ‘0’. 
 
3.2 The RTL Model of Latch 
 

The D-Latch described in section 3.1 can also be used 
to construct the latch model described in section 2.2. The 
latch model used in this design has two input ports ‘rst’ 
and ‘set’ and one output port ‘q’ (‘qn’ is the inverse of 
‘q’). The RTL model of the latch can be obtained by 
feeding the ‘set’ input directly into the ‘g’ port of D-
Latch and the ‘rst’ port into the ‘reset’ port of D-Latch. 
The ‘d’ port of D-Latch is connected with constant ‘1’ as 
illustrated in Figure 6. 

With the RTL model depicted in sections 3.1 and 3.2, 
the synthesizable model of the asynchronous FIFO can be 
constructed with the commonly used hardware 
description languages such as VHDL and Verilog. Then, 
the synthesizable HDL descriptions will suit the 
synchronous design tools naturally in the following steps 
of the conventional synchronous design flow. 

 
4. Simulation Results 

 
The asynchronous FIFO has been implemented using 

VHDL. A 0.35µm technology library was used for 
synthesis. The latency of the asynchronous FIFO is 
measured as the time between the positive edge of 
‘push/pop_req’ signal and the negative edge of the 
acknowledge signal. This latency is independent on the 
depth of the asynchronous FIFO, because the push/pop 
request is performed into/from the respective data cell. 
Table 3 summarizes the timing characteristics obtained by 
gate-level simulation when data width of asynchronous 
FIFO is four bits and FIFO depth is four.  

All the values presented in Table 3 are the average 
values among the measured values of the four different 
data cells in ‘Data Bank’ Block. The terms presented in 
Table 3 are explained as following. 
• ‘Data Valid Delay’ is measured as the time between the 

rising edge of ‘pop_req’ signal and the valid data 
appearing on the output of the FIFO.  

• ‘Ack Rise Delay’ is measured as the time between the 
rising edge of ‘push/pop_req’ signal and the rising 
edge of ‘push/pop_ack’ signal. 

d 
 D-latch   q
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AND1 a 
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sys_rst 

constant ‘1’ 



Table 3 Timing Characteristics of the Asynchronous FIFO 
 DataValid 

Delay (ns) 
Ack Rise 
Delay (ns)

Req Hold 
Time (ns) 

Ack Fall Delay 
(ns) 

Handshake 
Cycle (ns) 

Push Request - 3.78 0.50 3.34 7.62 
Pop Request 2.95 3.51 0.01 3.41 6.93 

 
•   ‘Req Hold Time’ is measured as the time between the 

rising edge of ‘push/pop_ack’ signal and the falling 
edge of ‘push/pop_req’ signal. 

•  ‘Ack Fall Delay’ is measured as the time between the 
falling edge of ‘push/pop_req’ signal and the falling 
edge of ‘push/pop_ack’ signal.  

•  ‘Handshake Cycle’ is measured as the time between 
the rising edge of ‘push/pop_req’ signal and the falling 
edge of ‘push/pop_ack’ signal.  
The timing for pushing and popping data from 

different data cells is different. The reason is the different 
signal paths and the different types of gates incorporated. 
The delay in the asynchronous FIFO mainly depends on 
the technology used. According to the timing of 
‘Handshake Cycle’, the throughput of the asynchronous 
FIFO is about 100 million data items per second when 
0.35µm technology is used. 
 
5. Conclusions 

 
An asynchronous FIFO structure suitable for HDL 

modeling and the conventional synchronous design tools 
and flow is presented and the gate-level simulation results 
are discussed. An approach of constructing the 
asynchronous circuits using HDL descriptions is 
presented. The approach is that constructing the RTL 
model of the circuits with Muller C-element and latches 
firstly, then, modeling the latches and Muller C-elements 
using applicable basic element, such as D-Latch, which 
can be described by HDL code. The presented RTL 
model of Muller C-element and latches can be reused for 
other asynchronous design if the RTL models of those 
elements are needed. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
The drawback of the presented asynchronous FIFO 

design is that the RTL model of Muller C-element is not 
as efficient as the model constructed in circuit-level. If the 
circuit-level model of Muller C-element is available as a 
library component, this disadvantage can be conquered. 
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Abstract— A network node for Proteo Network-on-Chip (NoC) has 
been developed in order to support Globally-Asynchronous 
Locally-Synchronous (GALS) communication in an on-chip system. 
The network node presented in this paper was implemented as a 
synthesizable Intellectual Property (IP) block in Register-Transfer 
Level (RTL) using VHDL. The proposed design applies both 
asynchronous and synchronous circuits to make the globally 
asynchronous data transfer rate between network nodes 
independent of local clocks. 

I. INTRODUCTION 
A System-on-Chip (SoC) combines multiple functional IP 

blocks together to implement complex applications. As the 
number of components becomes larger, designing a SoC requires 
the introduction of networking concepts to manage the 
complexity of the interconnection. Network-on-Chip (NoC) 
addresses the issue of constructing an efficient and flexible 
on-chip communication infrastructure in the framework of Deep 
Sub-Micron (DSM) technology. 

Proteo [1] is a packet-switched NoC developed at Tampere 
University of Technology. A Proteo NoC instance basically 
consists of network nodes and asynchronous links. Each 
functional block in the system is connected to a corresponding 
network node through an interface which supports VCI [2] and 
OCP [3] standards. A synchronous network node IP [4] [5] has 
been implemented for constructing Proteo NoCs. Nodes could be 
clocked using the same clock signal as the local functional block 
uses or introducing an independent network clock. Both schemes 
present difficulties in synchronization. In this situation, a 
Globally-Asynchronous Locally-Synchronous (GALS) scheme 
[6] was proposed as a solution. For a NoC, GALS means that 
data transfers between each functional block and its attached 
node are synchronous, whereas data transfers between network 
nodes are asynchronous. The network node presented in this 
paper uses asynchronous circuits to perform global data transfers 
and synchronous circuits to deal with local data transfers.  

This paper is organized as follows: in Section II, the structure 
of the network node is presented. The implementation issues will 
be addressed in Section III. In Section IV, the synthesis and 
simulation results are presented. Finally, conclusions are drawn 
in Section V.  

II. NETWORK NODE STRUCTURE 

A. Block Description 
The network node structure is illustrated in Fig.1. The two 

blocks outside of the dash-dot frame represent the functional IP  

block (‘Functional Host’) which is connected to the network 
node through its VCI or OCP standard interface (‘Standard 
Network IF’) block. The arrows in Fig.1 illustrate the data flow. 
The function of the blocks in the network node will be described 
in the following paragraphs. 

I) ‘Node IF’. This block is the interface block which complies 
with the VCI or OCP standards. It acts as the counterpart of the 
block named ‘Standard Network IF’ which belongs to the 
functional host. If ‘Standard Network IF’ is of the master type, 
‘Node IF’ should be of the slave type and vice versa (details can 
be found in [2] [3]). The functionality of this block consists of 
communicating with the functional host and, through ‘Layer 
MUX’, the ‘Communication Layer’ blocks, and assembling or 
extracting data into or from the predefined Proto packet format. 

II) ‘Layer MUX’. This block behaves as a multiplexer 
connecting ‘Node IF’ with a set of ‘Communication Layer’ 
blocks. ‘Layer MUX’ can connect ‘Node IF’ with two different 
‘Communication Layer’ blocks at the same time if only one of 
them is used to send packets and the other one is used to receive 
packets. However, the ‘Communication Layer’ block for sending 
packets and the ‘Communication Layer’ block for receiving 
packets can be the same block at any given time. 

III) ‘Communication Layer’. The function of this block is to 
perform the globally asynchronous communication with other 
network nodes through a handshake protocol. In Fig. 1, two 
‘Communication Layer’ blocks labeled with 1 and 2 respectively 
are presented, but the number of ‘Communication Layer’ blocks 
can be more than two. Each ‘Communication Layer’ block is 
used to connect the network node into a certain network topology. 
The function of the sub-blocks that constitute ‘Communication 
Layer’ will be explained by describing the communication 
process of sending and receiving data packets in the following 
paragraphs: 

a) Sending a locally generated packet. After ‘Node IF’ 
obtained the data to be sent from the functional host and 
assembled it into a packet, called ‘local packet’, ‘Node IF’ will 
send a request signal to the selected ‘Communication Layer’. 
Then the ‘Communication Controller’ sub-block will check 
whether the FIFO array in the ‘Packet Sender’, called ‘Tx Packet 
Buffer’, is full or not. If the buffer is full, ‘local packet’ will be 
held by ‘Node IF’ until there is a room available. If the buffer is 
not full, ‘Communication Controller’ will enable the ‘Packet 
Distributor’ to push ‘local packet’ into ‘Tx Packet Buffer’. The 
data packets in ‘Tx Packet Buffer’ will be sent to the adjacent 
network node by ‘Packet Sender’ using a handshake protocol 
under the control of ‘Communication Controller’. 
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Figure 1.  Network Node Block Diagram and Data Flow  

b) Receiving a packet. If ‘Communication Controller’ 
received the packet-transfer request signal from the network 
node connected to the input of the node, it will enable ‘Packet 
Receiver’ to obtain the data packet. ‘Packet Receiver’ will check 
the destination address information, and if it is the current 
network node, the ‘incoming packet’ will be delivered to the 
FIFO array named ‘Rx Packet Buffer’ after getting the grant 
signal from the ‘Communication Controller’. If ‘Packet 
Receiver’ found that the destination of the received packet is not 
the current network node, the packet is a ‘bypass packet’, and 
will be pushed into ‘Tx Packet Buffer’ through ‘Packet 
Distributor’ under the control of ‘Communication Controller’. If 
either buffer is full when needed, ‘Packet Receiver’ will hold the 
packet until there is room available.  

B. Packet Transfer Arbitration 
Different packet transfer processes may use the same 

sub-block in ‘Communication Layer’ during sending or 
receiving packets. For example, ‘Packet Distributor’ is a shared 
resource for moving ‘local packet’ and ‘bypass packet’ into ‘Tx 
Packet Buffer’. Therefore, an arbitration mechanism is needed to 
coordinate the packet transfer processes in the ‘Communication 
Layer’ block. The basic principle of arbitration is ‘First Come, 
First Served’. In case of conflict, the resolution mechanism is 
explained below: 

I) One conflict may occur if the requests of pushing ‘local 
packet’ and pushing ‘bypass packet’ into ‘Tx Packet Buffer’ are 
presented to ‘Communication Controller’ simultaneously. In this 
situation, ‘bypass packet’ will be sent into ‘Tx Packet Buffer’ 
first. Assigning a higher priority to ‘bypass packet’ can reduce 
the communication load of network. 

II) Another conflict may occur in ‘Packet Sender’ sub-block if 
it receives the packet pushing request from ‘Packet Distributor’ 
and transmission handshake request from the network node 
connected to the output of the node simultaneously. In this case, 
‘Packet Sender’ will send the packet in ‘Tx Packet Buffer’ to the 

other network node first in order to make room in the buffer for 
new packets. This strategy decreases the probability of ‘Tx 
Packet Buffer’ being full. Also other conflict handling schemes 
[7] [8] have been devised and will be implemented.  

III. IMPLEMENTATION OF THE NETWORK NODE 
In order to implement the GALS scheme in Proteo NoC, the 

presented network node applies both synchronous and 
asynchronous circuits, delimited by the dash line in Fig.1. 

The reason of applying synchronous circuits is that both most 
of the functional hosts available and the network interface 
standards used in Proteo NoC are synchronous. Therefore, the 
network node should work in a synchronous manner and at the 
same clock rate when communicating with its functional host in 
order to be naturally compatible with it. The blocks in this 
domain are implemented in RTL with VHDL.  

 The blocks in the asynchronous domain interact with each 
other and perform the globally asynchronous data transfer using 
a handshake protocol. A four-phase bundled data protocol is  
used in this implementation. In order to make the asynchronous 
design compatible with the commonly used synchronous design 
tools and flow, the asynchronous circuits are constructed in RTL 
with VHDL. The approach is to construct the asynchronous 
circuits using C-elements, latches and combinational logic gates, 
and then describe the RTL structure in VHDL. An example of 
using this approach to design asynchronous circuits can be found 
in [9]. 

The challenge of combining the synchronous and 
asynchronous circuits together is how to avoid synchronization 
failure caused by setup or hold-time violation during signal 
transfer from asynchronous domain to synchronous domain. 
Two principal solutions of this problem have been developed. 
One solution is to stretch or pause the clock signal [10, 11, 12]. 
The other solution is to reduce the probability of synchronization 
failure by using multiple receiving flip-flops. The first category 
of solutions introduces some special components implemented in 
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Figure 2.  Six-Node Bidirectional Ring Network  

transistor level, such as stretchable or pausable clock generator 
[10, 11] and delay lines [12], therefore, it does not meet the 
requirement of implementing the presented network node in RTL. 
The synchronization method used in the presented network node 
is a double-latching scheme. Hence, synchronization failure may 
occur during the double-latching process. However, in this 
network node, the synchronization failures only can delay the 
data transfer other than ruin it, because the double-latching 
scheme is only used for sampling the handshake signals from 
asynchronous domain other than the data. For example, if ‘0 1’ 
transition of a request signal from asynchronous domain failed to 
be sampled by the receiving flip-flop, the block in synchronous 
domain would not latch the data until it got the request signal 
correctly after the receiving flip-flop recovered from the 
synchronization failure in following cycles.  

Therefore, by designing both the synchronous and 
asynchronous circuits using VHDL, the network node is 
implemented as a synthesizable IP block which suits the 
commonly used synchronous EDA design tools.  

IV. SYNTHESIS AND SIMULATION 

A.  Synthesis Results 
The network node has been synthesized using a 0.18µm 

standard cell technology library. The data depth and data width 
of FIFO used in ‘Tx/Rx Packet Buffer’ is set to 4 and 32 bits 
respectively. The area cost (without wire area) for each block of 
the network node is listed in Table I. The FIFOs in ‘Tx/Rx Packet 
Buffer’ take around 58% area of the network node.  

TABLE I.  AREA COST OF NETWORK NODE 

Blocks of Network Node Area (µm2) Percentage of 
total  area 

Node IF (BVCI Slave Type) 13430.8 9.7 % 

Layer MUX 18346.0 13.3 % 

Communication Controller 7823.4 5.7 % 

Packet Distributor 6783.0 4.9 % 
Packet Sender 

(include Tx Packet Buffer) 44740.6 32.3 % 

Packet Receiver 6955.0 5.0 % 

Rx Packet Buffer 40255.5 29.1 % 

Total 138334.3 100 % 

B. Simulation Network Set-up 
Fig.2 illustrates the network constructed with the presented 

network node for simulation. All the nodes are connected 
together in a bidirectional ring topology which consists of one 
clockwise ring, marked as ‘Ring 1’, and one anti-clockwise ring, 
marked as ‘Ring 2’. The number of data cells (handshake units) 
in each packet varies between two and four. The width of each 
data cell is 32 bits. In this simulation, three hosts are acting as 
masters and the other three as slaves, as denoted by the labels 
‘M’ and ‘S’ in the ‘Network IF’ blocks. The different hosts work 
at different clock frequencies as illustrated in Fig.2. Any master 
can send a request to any slave. Request and response packets 
travel through the shortest path in the network according to a 
simple deterministic hop-by-hop routing mechanism. For 
example, requests sent from Host 0 to Host 3 are delivered 
through nodes 1 and 2 (‘Ring 1’).  The interface standard 
modeled in this simulation is the Basic VCI (BVCI). 

The data transactions performed in the simulation are listed in 
Table II. Each data transaction consists of one request packet 
from a Master Node to a Slave Node and one corresponding 
response packet from the Slave Node to the Master Node. 

C. Simulation Results 
The simulation is performed in gate level. The data transfer 

latency between functional host and network node is measured as 
the locally synchronous transfer latency, which depends on the 
local clock and the type of interface. The measured values of the 

TABLE II.  DATA TRANSACTIONS SPECIFICATION 

Packet Length Master 
Node 

Slave 
Node 

Number of 
Transactions Request 

Packet 
Response 

Packet 
Node 1 1  4 2 

Node 3 1  3 3 Node 0 

Node 5 3  3, 4, 3 3, 2, 3 

Node 1 4  3, 4, 3, 4 3, 2, 3, 2
Node 3 1  3 3 Node 2 

Node 5 1  3 3 

Node 1 1  4 2 

Node 3 3  4, 3, 4 2, 3, 2 Node 4 

Node 5 1 4 2 

Ring 1

Ring 2

Network Node 0  

Host0 (100MHz)

Network IF (M)

Host1 (10MHz)

Network IF (S)

Host2 (1GHz)

Network IF (M)

Network Node 2 Network Node 1 

Host5 (50MHz)

Network IF (S)

Network Node 5  

Host4 (1MHz)

Network IF (M)

Host3 (250MHz)

Network IF (S) 

Network Node 3 Network Node 4 
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TABLE III.  SYNCHRONOUS TRANSFER LATENCY 

Interface 
Type 

Latency of sending data 
to ‘Network Node’ 

Latency of receiving data 
from ‘Network Node’ 

BVCI Master 8 local clock cycles 13 local clock cycles + 2.6 ns

BVCI Slave 4 local clock cycles 9 local clock cycles + 2.6 ns

TABLE IV.  ASYNCHRONOUS TRANSFER LATENCY PARAMETERS 

Packet Length PLL (ns) PTL (ns) PBL (ns) PSL (ns) 

2 data cells 11.7 9.7 10.7 3.3 

3 data cells 15.2 13.1 14.2 3.3 

4 data cells 18.6 16.5 17.6 3.3 

  
synchronous transfer latency are listed in Table III.  The constant 
value of 2.6 ns in Table III is caused by the latency of popping 
data from ‘Rx Packet Buffer’ in the asynchronous domain, and it 
is independent on the local clock rate but belongs to the process 
of receiving data from ‘Network Node’.  

The latency for globally asynchronous transfers consists of 
four parameters: Packet Loading Latency (PLL), Packet Transfer 
Latency (PTL), Packet Bypass Latency (PBL), and Packet 
Storing Latency (PSL). These latency parameters are measured 
in a non-congested situation, which means that the packet 
transfer conflicts discussed in Section II are not included in the 
simulation. The concept of the four latency parameters is 
illustrated in Fig.3 with an example: ‘Network Node 0’ sends one 
packet to ‘Network Node 2’ via ‘Network Node 1’. The black 
arrows in Fig.3 represent the packet transfer direction. The 
portions of the transfer used to measure the different parameters 
of latency are marked by gray arrows in Fig.3 and explained as 
below: 

I) Packet Load Latency (PLL): It is the time used to load one 
‘local packet’ into ‘Tx Packet Buffer’. 

II) Packet Transfer Latency (PTL): This latency refers to the 
time used to transfer one data packet from the ‘Packet Sender’ of 
a network node to the ‘Packet Receiver’ of an adjacent node 
using a four-phase handshake protocol. 

III) Packet Bypass Latency (PBL): After a network node 
receives a packet from another node, it will check its destination 
address. If it is not targeted to the current node, the ‘bypass 
packet’ is transferred into ‘Tx Packet Buffer’. The time spent on 
these operations is called PBL. 

IV) Packet Storing Latency (PSL): It is the time it takes to store 
one ‘incoming packet’ into ‘Rx Packet Buffer’. 

The formula of Asynchronous Transfer Latency (ATL) of one 
packet is given in equation (1). It represents the situation in 
which the packet traverses several network nodes before 
reaching its destination. N refers to the number of intermediate 
nodes between the source node and destination node of a packet. 
If a packet is transferred between two adjacent network nodes, 
then N is 0. 

      ( 1)ATL PLL PTL N PBL N PSL= + × + + × +  (1) 
The values of asynchronous transfer latency parameters 

measured in the 0.18µm technology node are listed in Table IV. 
The listed latency values only include the logic gate delay of the 
circuits, no wire delay is considered. More accurate latency 
values could be obtained by adding the wire delay after layout.   

 
Figure 3.  Asynchronous Transfer Latency Parameters  

In Table IV, we can see that PLL, PTL, and PBL increase as the 
packet length increases. This is because the data cells in a packet 
are sent in serial way, so that more data cells need more time for 
transferring. The reason that PSL is not affected by the packet 
length is that the data cells of ‘incoming packet’ are stored in 
parallel in ‘Rx Packet Buffer’. 

V. CONCLUSIONS 
A network node for Proteo NoC which can support a GALS 

communication scheme in on-chip systems was presented. It uses 
asynchronous circuits to perform global data transfers between 
network nodes, and synchronous circuits to deal with the local 
data transfers. Both the asynchronous and synchronous circuits 
of this network node were implemented using VHDL to suit the 
conventional synchronous design tools. A six-node bidirectional 
ring network was constructed and synthesized for simulation at 
gate level. Figures for the asynchronous transfer latency between 
network nodes are given. The simulation reveals that the latency 
of the globally asynchronous transfers of data packets is 
independent on the local clock rates at each functional host. 
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Abstract 
 

An on-chip packet-switched communication network 
which applies Code-Division Multiple Access (CDMA) 
technique has been developed and implemented in 
Register-Transfer Level (RTL) using VHDL. In order to 
support Globally-Asynchronous Locally-Synchronous 
(GALS) communication scheme, the proposed CDMA on-
chip network combines both synchronous and 
asynchronous circuits together. In a packet-switched 
Network-on-Chip (NoC) which applies point-to-point 
connection scheme, the data transfer latency varies 
largely if the packets are transferred to different 
destinations or to a same destination through different 
routes in the network. The proposed CDMA NoC can 
make the data transfer latency become a constant value 
by multiplexing the data transfers in code domain instead 
of in time domain. Therefore, the data transfer latency 
can be guaranteed in the proposed CDMA network by 
avoiding communication media sharing in time domain. 
 
1. Introduction 
 

As more and more components are integrated into an 
on-chip system, the communication issue in the system 
becomes complicated. Network-on-Chip is proposed to 
solve the on-chip communication issue by separating the 
concerns of communication from computation and 
constructing an on-chip communication network to 
connect the system components together. The NoC 
structures which have been proposed can be sorted into 
two categories, circuit-switched and packet-switched 
network. PROPHID architecture [1] is an example of 
circuit-switched network which connects the terminals in 
the network by allocating them a set of time or space 
slices on the communication links. In packet-switched 
category, SPIN [2] and Proteo NoC [3] are the examples. 
SPIN network applies fat-tree topology and router blocks 
to transfer data packets from source node to destination 
node. In Proteo NoC, all functional Intellectual Property 
(IP) blocks in a system are connected through network 
nodes and hubs. The network topology and connection in 
Proteo NoC can be customized and optimized for a 
specific application. The circuit-switched network will 
face the problem of scalability and parallelism if it is 
applied in a future on-chip system which contains 

hundreds of functional IP blocks. The packet-switched 
network can overcome the shortcomings of circuit-
switched network, however, if it applies point-to-point 
connection as in [2] and [3], the packet transfer latency 
will be uncertain when data packets are transferred to 
different destinations or to a same destination via 
different routes in the network. 

CDMA as one of spread-spectrum techniques [4] has 
been widely used in wireless communication systems 
because it has great bandwidth efficiency and multiple 
access capabilities. CDMA applies orthogonal codes to 
encode the information before transmission in a 
communication media, hence, it permits multiple users to 
use the communication media parallel in time domain by 
separating the different data streams in code domain. The 
CDMA NoC proposed in this paper uses the multiple- 
access feature of CDMA technique to transfer the data 
packets from the source nodes to their destination nodes 
directly and in parallel. Namely, the variance of data 
transfer latency caused by sharing the communication 
media in time domain in a point-to-point connection 
network can be eliminated. Therefore, the data transfer 
latency in the proposed CDMA NoC can be guaranteed. 

In the second section of this paper, the considerations 
about applying CDMA technique into an on-chip network 
will be discussed. In Section 3, the structure of the 
proposed CDMA NoC will be presented. The synthesis 
and simulation results of the CDMA NoC will be 
addressed in Section 4. Finally, the conclusions are drawn 
in Section 5. 
 
2. Applying CDMA Technique in NoC 
 

The principle of CDMA system is to use orthogonal 
spreading codes to encode the original data. Then the 
encoded data from different data senders are added 
together for transmission without messing each other 
because of the orthogonality of spreading codes. The 
orthogonality means that the normalized auto-correlation 
of spreading codes is 1, while the cross-correlation of 
spreading codes is 0. Therefore, at the receiving end the 
data can be decoded from the received signals by 
multiplying the received signals with the corresponding 
spreading code. The following paragraphs will discuss the 
considerations which have been made for the proposed 
CDMA network in this paper. 
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Figure 1. Digital CDMA Encoding Scheme 

 

2.1. Digital Encoding and Decoding Scheme  
 

Several on-chip bus schemes which apply CDMA 
technique have been proposed in [5] [6] [7] [8]. Those 
schemes are implemented by analog circuits, namely, the 
encoded data are represented by the continuous voltage or 
capacitance value of the circuits. Therefore, the data 
transfers on the analog bus are challenged by the coupling 
noise, clock skew, and variations of capacitance and 
resistance caused by circuit implementation [8]. In order 
to avoid the challenges faced by the analog circuit 
implementation, digital circuit implementation is 
preferred in the proposed CDMA NoC. The encoding 
scheme suitable for digital circuit implementation is 
illustrated in Fig.1. The principle, as proposed in [9], is to 
transfer the binary equivalent of the summation value of 
the encoded data to the receiving end, which is instead of 
using the encoded data value to modulate the voltage or 
capacitance parameters in the analog CDMA buses. This 
encoding scheme can reduce the number of wires for data 
transfer. For example, in Fig. 1, if we use one data 
transfer wire for each data source, the number of wires for 
data transfer will be N, whereas, if the binary summation 
value of the data is transferred, we only need log2N wires. 

A new decoding scheme suitable for the proposed 
CDMA NoC is illustrated in Fig.2. The new decoding 
scheme simplifies  the decoding scheme presented in [9] 
by accumulating the received summation values into two 
separated parts, positive part and negative part, according 
to the spreading code used for decoding. As illustrated in 
Fig.2, the received summation values will be accumulated 
into the positive part when the current chip of spreading 
code for decoding is 0, otherwise, they will be 
accumulated into the negative part. The principle can be 
explained as following. If the original data to be encoded 
are 1, after the XOR logic in the encoding scheme, they 
can only contribute non-zero value to the summation of 
encoded data when a chip of spreading code is 0. 
Similarly, the 0-value original data to be encoded can 
only contribute to the summation of encoded data when a 
chip of spreading code is 1. Therefore, after accumulating 
the summation values according to the bit values of 
spreading code, either the positive part or negative part is 
larger than the other if the spreading code has orthogonal 
and balance property. Hence, the original data can be 
decoded by comparing the two accumulation parts. 

 
Figure 2. Digital CDMA Decoding Scheme 

 

2.2. Spreading Code Selection 
 

As discussed in Section 2.1, the proposed decoding 
scheme requires the spreading codes used in the CDMA 
NoC should have the orthogonal and balance properties.  
The orthogonal property has been explained in the first 
paragraph of Section 2. The balance property in this paper 
means that the number of bit ‘1’ and bit ‘0’ in a spreading 
code should be equal. Many spreading codes have been 
proposed for CDMA communication, such as Walsh 
code, M-sequence, Gold sequence, and Kasami sequence 
etc [10].  However, only Walsh code has both the 
orthogonal and balance properties. Therefore, the 
proposed CDMA NoC uses Walsh code as the spreading 
code in the network. In a L-bit (L>0, L mod 4=0) length 
Walsh code set, there are L-1 sequences which have both 
orthogonal and balance properties. Hence, the proposed 
CDMA NoC can connect L-1 functional hosts at most. 
 

2.3. Spreading Code Protocol 
 

Spreading code protocol is a policy used to decide how 
to assign and use the spreading codes in the CDMA 
network in order to eliminate or reduce the possible 
conflicts during the communication processes. Several 
spreading code protocols have been proposed for CDMA 
packet radio network [11] [12] and will be shortly 
introduced as below. 

1) Common Code Protocol (C protocol): All users in 
the network use a same spreading code to encode their 
data packets to be transferred. 

2) Receiver Based Protocol (R protocol): Each user in 
the network will be assigned a unique spreading code 
which will be used by other users to send data to it. 

3) Transmitter Based Protocol (T protocol): The unique 
spreading code allocated to each user will be used by the 
user itself to transfer data to others. 

4) Common-Transmitter-Based Protocol(C-T protocol): 
The destination address of a data packet is encoded using 
C protocol, whereas, the data portion of a packet is 
encoded using T protocol.  

5) Receiver-Transmitter-Based Protocol (R-T protocol): 
It is same as the C-T protocol except that the destination 
address of a data packet is encoded using R protocol. 

6) Transmitter-Receiver-Based Protocol (T-R protocol): 
Two unique spreading codes will be assigned to each user 
in the network, and then a user will generate a new  



 
Figure 3.  The Proposed CDMA NoC Structure 

 

spreading code from the assigned two unique codes for 
encoding its data packets.  

Among these spreading code protocols introduced 
above, only T protocol and T-R protocol are collision-free 
if the users in the network send data to each other 
randomly. Because the T-R protocol has the drawback of 
using a large amount of spreading codes and complicated 
decoding scheme, T protocol is preferred in the proposed 
CDMA NoC. However, if T protocol is applied in the 
network, the receiver can not choose the proper spreading 
code for decoding because it can not know who is 
sending data to it. In order to solve this problem, an 
Arbiter-Based T protocol (A-T protocol) is proposed for 
the CDMA NoC. In a CDMA network which applies A-T 
protocol, each user is allocated with a unique spreading 
code for data transfer. When a user wants to send data to 
the other user, it will send the destination information of 
data to the arbiter before starting data transfer. Then the 
arbiter will inform the receiver to prepare the 
corresponding spreading code of the sender for data 
decoding. After the sender receives the acknowledge 
signal from the arbiter, it will start the data transfer by 
using its unique spreading code. If there are more than 
one user who want to send data to a same receiver, the 
arbiter will grant only one sender to send data at a time. 
Therefore, transfer conflicts in the proposed CDMA NoC 
which uses A-T protocol can be avoided.  

 

3. The Proposed CDMA NoC Structure 
 

The proposed CDMA NoC is a packet-switched 
network which consists of ‘Network Node’, ‘CDMA 
transmitter’, and ‘Network Arbiter’ blocks as illustrated 
in Fig.3. The functional IP blocks (functional hosts) in the 
system are connected with the on-chip CDMA network 
through individual network node blocks. The CDMA 
communications in the network are performed by 
‘CDMA Transmitter’ and ‘Network Arbiter’ blocks. VCI 
or OCP standard [13] is applied as the interface standard 
between a functional host and a network node. As the 
different functional hosts may work with different clock 
frequencies, coordinating the communications among 
different clock domains would be a problem when 
integrating all functional hosts into one network. 

 
 

Figure 4.  Block Diagram of Network Node 
 

Globally-Asynchronous Locally-Synchronous (GALS) 
scheme [14] was proposed as a solution for this problem. 
The meaning of GALS scheme in the proposed NoC is 
that the communications between each functional host 
and its network node use local clock frequency, while the 
communications between network nodes through the 
CDMA network are asynchronous. In order to support 
GALS scheme, both synchronous and asynchronous 
circuits are used in the proposed design. The three 
components of the proposed CDMA NoC will be 
presented in Section 3.1 and 3.2 with more details. 
 

3.1. Network Node 
 

The block diagram of ‘Network Node’ is illustrated in 
Fig.4 where the arrows represent the flows of data 
packets. Because the interface standard, VCI or OCP, and 
the functional host both work in synchronous manner, the 
‘Node IF’ sub-block applies synchronous design, whereas 
the other sub-blocks in ‘Network Node’ use 
asynchronous design to implement GALS scheme in the 
network. The function of the sub-blocks in ‘Network 
Node’ will be described in the following paragraphs. 

1) ‘Node IF’: This sub-block is the interface block 
which applies the same interface standard, VCI or OCP 
standard, as the ‘Network IF’ interface block of 
functional host. ‘Node IF’ sub-block is used to assemble 
the data from functional host into packet format and send 
the packet to ‘Tx Packet Buffer’, or deassemble the 
received packet from ‘Rx Packet Buffer’ and send the 
extracted data to the functional host.   

2) ‘Tx/Rx Packet Buffer’: These two sub-blocks are 
buffers which consist of the asynchronous FIFO proposed 
in [15]. ‘Tx Packet Buffer’ is used to store the data 
packets from ‘Node IF’ sub-block, and then deliver the 
packets to ‘Packet Sender’ sub-block, while the ‘Rx 
Packet Buffer’ delivers the packets from ‘Packet 
Receiver’ to ‘Node IF’.  

3) ‘Packet Sender’: If ‘Tx Packet Buffer’ is not empty, 
‘Packet Sender’ will fetch the data packet from the buffer 
by asynchronous handshake protocol. Then it will extract 
the destination information from the received packet and 
send the destination address to ‘Network Arbiter’. After 
‘Packet Sender’ gets the grant signal from arbiter, it will 



start to send data packet to ‘CDMA Transmitter’.   
4) ‘Packet Receiver’: After system reset, this sub-

block will wait the sender information from ‘Network 
Arbiter’ to select the spreading code for decoding. After 
the spreading code for decoding is set, the receiver will 
start to receive and decode the data from ‘CDMA 
Transmitter’, and then send the decoded data to ‘Rx 
Packet Buffer’ in packet format. 

Because the ‘Network Node’ block in the CDMA 
network need not handle any bypass packets, the 
‘Network Node’ block presented in this paper has less 
complexity by comparing with the ‘Network Node’ block 
presented in [16] for a point-to-point connection network. 
This is another benefit of applying CDMA technique into 
an on-chip network. 

 

3.2. CDMA Transmitter and Network Arbiter 
 

The ‘CDMA Transmitter’ block takes care of 
receiving data packets from network nodes and encoding 
the data to be transferred with the corresponding unique 
spreading code of the sender node. Although this block is 
implemented by asynchronous circuits, it applies 
synchronous CDMA transfer scheme which means that 
the data from different nodes will be encoded and 
transmitted synchronously. The synchronous CDMA 
scheme can avoid the interferences caused by the phase 
offsets among the orthogonal spreading codes if the data 
from different nodes are encoded and transmitted 
asynchronously with each other. The data encoding and 
transfer processes for different network nodes are 
performed in parallel and independently in ‘CDMA 
Transmitter’. However, because the nodes in the proposed 
CDMA network can request data transfer randomly, 
‘CDMA Transmitter’ applies ‘first come, first served’ 
mechanism to ensure the data encoding and transfer are 
performed in synchronous manner. For example, if 
network node ‘A’ and ‘B’ assert data transfer requests to 
‘CDMA Transmitter’ simultaneously and node ‘C’ asserts 
the request later than ‘A’ and ‘B’, the transmitter will 
encode and transfer the data from node ‘A’ and ‘B’ at the 
same time, and then will start to do the encoding and 
transferring for node ‘C’ after the data transfer for ‘A’ 
and ‘B’ are completed. The synchronization of encoding 
and transferring in ‘CDMA Transmitter’ are controlled by 
the four-phase handshake control signals in the 
asynchronous circuits. 

‘Network Arbiter’ block is the core component to 
implement the A-T spreading code protocol proposed in 
Section 2.3. Every sender node can not send data packet 
to ‘CDMA Transmitter’ until it gets the grant signal from 
‘Network Arbiter’. Namely, ‘Network Arbiter’ takes 
charge of setting up data transfer channel between sender 
node and receiver node. In case that there are more than 
one sender node requesting to send data to the same 
receiver node, the arbiter will also apply ‘first come, first 

served’ principle to guarantee that there is only one 
sender  sending data to one specific receiver at a time. 
The reason of this limitation is that the ‘Packet Receiver’ 
of ‘Network Node’ block can receive and decode data 
from only one sender at a time. However, if different 
sender nodes request to send data to different receiver 
nodes, these requests will be handled independently and 
in parallel. Therefore, the arbitration scheme applied in 
‘Network Arbiter’ is distributed arbitration other than the 
centralized arbitration applied in the conventional bus. 

 

4. Synthesis and Simulation 
 

In order to support GALS scheme in the proposed 
CDMA NoC, only ‘Node IF’ sub-block in network node 
uses synchronous circuits, the other components use 
asynchronous circuits. Both the synchronous and 
asynchronous designs in the proposed CDMA NoC are 
implemented in RTL using VHDL in order to suit the 
conventional synchronous design tools and flow. The 
method of designing asynchronous circuits in RTL using 
VHDL was presented in [15]. The basic principle is to 
construct the asynchronous circuits with C-element, 
latches, and combinational logic gates, and then describe 
the RTL structure using VHDL. 
 

4.1. Synthesis Results 
 

The components of the proposed CDMA NoC have 
been synthesized using a 0.18µm standard cell library. 
The data width and buffer depth in ‘Network Node’ are 
set to 32 bits and 4 respectively. The area costs (without 
wire area) of components of the CDMA NoC are listed in 
Table 1. From Table 1 we can see that the ‘Tx/Rx Packet 
Buffer’ takes a large portion in the total design costs. 
Therefore, it needs to compromise between buffering 
ability and area cost. 

 

4.2. Simulation Network Setup 
 

A network which applies the proposed CDMA NoC 
structure is built for simulation purpose. The simulation 
network illustrated in Fig.5 contains six network nodes. 
Six functional hosts work in different clock domains as 
presented in Fig.5. Three hosts act as masters and the 
other three act as slaves, as denoted by the labels ‘M’ and  

 

Table 1. Area Cost of CDMA NoC Components 

Block Name Area (µm2) 

Node IF 18825.2

Tx/Rx Packet Buffer 71778.3 

Packet Sender 17707.0

Network 
Node 

Packet Receiver 23253.0 

CDMA Transmitter 10338.3 

Network Arbiter 17686.5 



 
Figure 5.  Six-Node CDMA On-Chip Network 

 

 ‘S’ in the ‘Network IF’ blocks. The network nodes are 
connected to each other through a ‘CDMA Channel’ 
composed by ‘CDMA Transmitter’ and ‘Network 
Arbiter’ blocks. The spreading codes used in the network 
are six 8-bit Walsh codes. The interface standard applied 
in the network is Basic VCI (BVCI) [13] standard. The 
basic data transfer unit in the simulation network is a data 
packet composed of data cells. The number of data cells 
in a packet varies from two to four, while the width of 
each data cell is fixed at 32 bits. The data transactions 
performed in the simulation are listed in Table 2. Each 
data transaction consists of one request packet from a 
master host to a slave host and one corresponding 
response packet from the slave host to the master host. 

 

4.3. Simulation Results 
 

The simulation was performed in gate-level. Because 
GALS scheme is applied in the network, the data transfer 
latency in the simulation network is separated into two 
parts, Synchronous Transfer Latency (STL) and 
Asynchronous Transfer Latency (ATL). The STL refers 
to the data transfer latency between a functional host and 
the network node attached to it. STL depends on the local 
clock and the type of interface. The measured values of 
STL are listed in Table 3. The constant values in Table 3 
are caused by the handshakes in the asynchronous 
domain, and they are independent on the local clock rate 
but belong to the synchronous transfer processes.  

The ATL refers to the data transfer latency of 
transferring data packets from one network node to the 
other node through the CDMA channel by asynchronous 
circuits. The ATL consists of three parameters: Packet 
Loading Latency (PLL), Packet Transfer Latency (PTL), 
and Packet Storing Latency (PSL). The concept of those 
ATL parameters is illustrated in Fig.6 with an example 
where ‘Network Node 0’ sends one data packet to 
‘Network Node 1’. The black arrows in Fig.6 represent 
the packet transfer direction. The portions of the transfer 
used to measure the different parameters of latency are 
marked by grey arrows in Fig.6 and explained as below:  

Table 2. Data Transaction Specification 
Packet Length 

Master 
Node 

Slave 
Node 

Number of 
Transactions Request 

Packet 
Response 

Packet 
Node 1 2 4, 3 2, 3 

Node 3 2 3, 4 3, 2 Node 0 

Node 5 3 3, 4, 3 3, 2, 3 

Node 1 4 3, 4, 3, 4 3, 2, 3, 2 

Node 3 1 3 3 Node 2 

Node 5 2 4, 3 2, 3 

Node 1 2 3, 4 3, 2 

Node 3 3 4, 3, 4 2, 3, 2 Node 4 

Node 5 1 4 2 
 

Table 3. Synchronous Transfer Latency 
Interface 

Type 
Latency of sending data to 

‘Network Node’ 
Latency of receiving data 

from ‘Network Node’ 

BVCI Master 8 local clock cycles + 2.5 ns 8 local clock cycles + 3.2 ns 

BVCI Slave 4 local clock cycles + 2.5 ns 4 local clock cycles + 3.1 ns 

 

Table 4. Asynchronous Transfer Latency Parameters 
Packet Length PLL (ns) PTL (ns) PSL (ns) 

2 data cells 5.7 384.6 5.5 

3 data cells 5.7 768.9 5.5 

4 data cells 5.7 1153.7 5.5 
 

1) Packet Load Latency (PLL): This is the time used by 
‘Packet Sender’ sub-block in network node to fetch one 
data packet from ‘Tx Packet Buffer’ and prepare to send 
the data packet to ‘CDMA Transmitter’. 

2) Packet Transfer Latency (PTL): This latency refers to 
the time used to transfer one data packet from the ‘Packet 
Sender’ of sending node to the ‘Packet Receiver’ of 
receiving node through the CDMA channel using a four-
phase handshake protocol. 

3) Packet Storing Latency (PSL): After the receiving 
node receives a data packet, it will spend a certain time to 
store the received data packet into ‘Rx Packet Buffer’. 
This time duration is measured as PSL. 

The measured values of ATL parameters are listed in 
Table 4. The listed latency values only include the logic 
gate delay of the circuits, no wire delay is considered. 
More accurate latency values could be obtained by adding 
the wire delay after layout. In Table 4, we can see that 
PTL increases as the packet length increases. This is 
because the data cells in a packet are sent in a serial 
manner between ‘CDMA Transmitter’ and ‘Packet 
Receiver’, so that more data cells need more transmission 
time. The reason that PLL and PSL are not affected by the 
packet length is that the data cells in a packet are loaded 
or stored in a parallel manner. By comparing with point-
to-point connection on-chip network presented in [16], 
the ATL value in the CDMA network is larger although it 
is a constant value. For example, according to values in 
Table 4, if a 2-data-cell packet is transferred in the  



 
Figure 6. Asynchronous Transfer Latency Parameters 

 

proposed CDMA network, the ATL will equal to the ATL 
of transfer a same size packet through 19 intermediate 
nodes in the network presented in [16]. The reason of the 
large ATL value in the CDMA network is that each bit of 
the data to be transferred is spreaded into L bits, where L 
is the length of the spreading code, then the encoded data 
are   transferred serially. However, the data bits are 
transferred directly in the point-to-point network in 
parallel. Therefore, the ATL value of CDMA network can 
be reduced by transferring the encoded bits in parallel.  
 

5. Conclusions 
 

An on-chip communication network which applies 
CDMA technique and supports GALS communication 
scheme was presented. The proposed CDMA network 
uses asynchronous circuits to perform the global data 
transfers between network nodes, and synchronous 
circuits to deal with the local data transfers between a 
functional host and the network node attached to it. Both 
the asynchronous and synchronous circuits of the 
proposed network are implemented in RTL using VHDL 
to suit the synchronous design tools naturally. A six-node 
CDMA network was constructed and synthesized for 
simulation purpose. The simulation reveals that the data 
can be correctly transferred in parallel in time domain by 
using CDMA technique in an on-chip communication 
network implemented totally by digital circuits. By 
comparing with a point-to-point connection network 
which shares the communication media in time domain, 
the proposed CDMA NoC has a constant data transfer 
latency value by sharing the communication media in 
code domain.  
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ABSTRACT 

An FPGA prototype of a four-node globally-asynchronous 
locally-synchronous network-on-chip is described. The 
network for global communication operates asynchronously 
at the link level and synchronously within a node. Two C-
element control pipelines constitute the control logic for the 
asynchronous part. C-element and asynchronous arbiter 
realizations on FPGA using standard synchronous design 
tools are presented. 

1. INTRODUCTION 

As the complexity of System-on-Chip (SoC) is increasing, 
the communications among the large number of 
components in a SoC become more and more complicated. 
Network-on-Chip (NoC) has been proposed to separate the 
concern of communications with the concern of 
computations in a SoC, namely, NoC only handle the 
communications in an on-chip system. In a complex SoC, it 
is very common that different functional components work 
with different clock frequencies. Therefore, a NoC scheme 
should have the ability to handle the multiple-clock-domain 
communication problem. Globally-Asynchronous Locally-
Synchronous (GALS) scheme [1] has been proposed as a 
solution of this problem, and many NoC architectures [2-4] 
based on GALS scheme have been presented. However, 
only ASIC implementations of those proposed GALS NoC 
have been reported. As the cost of ASIC implementation is 
getting higher, FPGA prototyping supplies a fast and cheap 
way of verifying a NoC design. 
 The FPGA devices available on the market have been 
oriented only for prototyping synchronous circuits. This 
type of FPGA device will be referred as conventional 
FPGA in this paper. Hence, a main challenge of prototyping 
a GALS NoC design on a conventional FPGA is how to 
prototype asynchronous circuits. There are two approaches 
to conquer this challenge. The first approach is to develop a 
specific FPGA structure for prototyping asynchronous 
circuits. Some specific FPGA structures [5-7] for 
asynchronous circuits have been presented. However, those 

asynchronous FPGA structures exclude synchronous 
circuits out of the considerations, and they are not available 
on the market. Therefore, we come to the second approach 
which is prototyping asynchronous circuits on a 
conventional FPGA. Few presented works [8-10] belong to 
this approach. In [8], a GALS system which applies 
stoppable clock and port-controller to connect different 
clock domains is presented, hence, it concerns more about 
prototyping particular asynchronous components rather 
than asynchronous NoC. The works in [9, 10] presented a 
methodology of prototyping a GALS SoC on a 
conventional FPGA device.  However, the presented 
methodology involves a special synthesis tool for 
asynchronous circuits and a netlist-format component 
library in the design flow. Therefore, in order to suit the 
synchronous design tools and flow of conventional FPGA 
more smoothly, both the synchronous and asynchronous 
circuits in the proposed GALS NoC have been designed 
using VHDL. A C-element structure and an asynchronous 
arbiter which suit for asynchronous circuits’ prototyping are 
presented. The prototyping work in this paper presents a 
way of prototyping a synchronous-asynchronous mixed 
design onto a conventional FPGA by the commonly used 
synchronous design tools and flow. 
 The paper is organized as follows. Section 2 presents 
the GALS NoC structure to be prototyped in this work. The 
asynchronous design in a network node and the control 
logics for the asynchronous circuits are addressed in 
Section 3. In Section 4, the C-element structure and the 
arbiter for prototyping the NoC and the prototyping method 
are presented. The conclusion is drawn in Section 5. 

2. THE GALS NOC 

The prototyped GALS NoC is an asynchronous version of 
the Proteo NoC presented in [11]. Proteo NoC [3] is a 
packet-switched on-chip communication network 
developed for performing the complex communication 
tasks in a SoC. In Proteo NoC, each functional Intellectual 
Property (IP) block (Functional Host) is connected to the 
on-chip network through a corresponding network node. 
Then the network is built by connecting the network nodes 
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Fig. 1.  Network Node Block Diagram 

together with any topologies which suit the application 
requirements. A Proteo network node [11] which can 
support GALS scheme is illustrated in Fig.1. The network 
node consists of ‘Node IF’, ‘Layer MUX’, and 
‘Communication Layer’ blocks. The two blocks outside of 
the network node illustrate how a ‘Functional Host’ block is 
connected with a network node through a standard network 
interface (‘Standard Network IF’) block. In Proteo NoC, the 
applied interface standards include VCI [12] and OCP [13]. 
As illustrated in Fig.1, GALS scheme in the on-chip 
network is supported by applying both synchronous and 
asynchronous designs in each network node. The 
synchronous blocks, ‘Node IF’ and ‘Layer MUX’, are used 
to communicate with locally synchronous ‘Functional Host’ 
in the system, while the asynchronous blocks are used to 
perform asynchronous communications among the network 
nodes. The bold arrows in Fig.1 demonstrate the data 
packet flow in a network node. The functions of each block 
in a network node are shortly presented in the following 
three paragraphs.  
 1) ‘Node IF’. This block is responsible for assembling 
the data from ‘Functional Host’ into data packets or 
transferring the data packets from network node to 
‘Functional Host’ block according to the interface standard 
applied in ‘Standard Network IF’ block.  
 2) ‘Layer MUX’. As the name of this block indicated, 
this block behaves as a multiplexer used to connect ‘Node 
IF’ block with a certain ‘Communication Layer’ block 
during the data transfers between network node and 
‘Functional Host’ block. 
 3) ‘Communication Layer’. The function of this block is 
to perform the globally asynchronous communication with 
other network nodes through a handshake protocol. As 
illustrated in Fig.1, there can be more than one 
‘Communication Layer’ block in a network node. With 
multiple ‘Communication Layer’ blocks, a network node 
can connect with multiple other network nodes in Proteo 
NoC. There are four sub-blocks in the ‘Communication 
Layer’ block. The ‘Packet Receiver’ sub-block is used to 

receive data packets from another network node. If the 
destination of the received packet is the current network 
node, the packet is called ‘incoming packet’, and it will be 
stored in ‘Rx Packet Buffer’. Otherwise, the received 
packet is called ‘bypass packet’, and it will be dispatched 
into ‘Packet Distributor/Sender’ for further transferring. 
The ‘Communication Controller’ sub-block in Fig.1 
represents the controller which takes charge of the 
necessary arbitrations and communication controls. 
 A four-node bidirectional ring network which consists 
of the network node illustrated in Fig.1 is used for the 
prototyping work in this paper. In the four-node network, 
two nodes are BVCI slave [12] type and two nodes are 
BVCI master [12] type. No any ‘Functional Host’ blocks 
are included in the prototyping work. Therefore, only a 
GALS communication network, not a GALS system, is 
considered in this work. 

3. ASYNCHRONOUS NETWORK NODE DESIGN 

The presented GALS on-chip network in Section 2 is built 
by connecting the multiple network nodes illustrated in 
Fig.1 together. Therefore, the major challenge of the GALS 
NoC design is the asynchronous design in each network 
node. The control logic structures and data path used in the 
asynchronous blocks of a network node will be addressed in 
this section. 
 The asynchronous design in the network node illustrated 
in Fig.1 can be divided into two parts which are data path 
and control logic part. The data path represented by the 
black arrows in Fig.1 applies four-phase dual-rail protocol 
in order to transfer data in a delay-insensitive manner. The 
control logics used in a network node include the Finite 
State Machine (FSM) in the ‘Communication Controller’ 
block and the block controls in ‘Packet Receiver’, ‘Packet 
Distributor’, and ‘Packet Sender’ blocks illustrated in Fig.1. 
The FSM in the ‘Communication Controller’ block takes 
care of the processes of receiving, sending or storing data 
packets in a network node by triggering the block control 
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logics in the corresponding function blocks with a four-
phase handshake protocol. The block control logics take 
charge of moving the data packets in or out of the 
individual blocks through four-phase dual-rail protocol. For 
example, the control logic in ‘Packet Sender’ is used to 
control the process of storing the incoming packets into the 
‘Tx Buffer’ or sending out the packets to the other network 
node via dual-rail protocol. In order to ensure the control 
logics operate correctly, the delay-insensitive (DI) or quasi-
delay-independent (QDI) model is preferred for the control 
logic structure. A delay-insensitive control logic for 
micropipeline has been presented in [14] and illustrated in 
Fig.2(a). The principle of micropipeline control logic is to 
use the output from the next stage to enable or disable the 
output of current stage. Two C-element control pipelines 
based on the micropipeline control logic are designed as the 
control logics in the network node.  
 Two stages of the C-element control pipeline used in 
‘Communication Controller’ block to build the FSM are 
illustrated in Fig.2(b). Each stage of the pipeline represents 
a state element of the FSM. In Fig.2(b), we can see that the 
FSM uses micropipeline control logic as the backbone and 
applies few AND gates as the delay components illustrated 
in Fig.2(a), hence, it is delay-insensitive. The state 
information of the FSM is passed through each stage in the 
pipeline by a four-phase handshake protocol. If we take the 
‘Stage 1’ illustrated in Fig.2(b) as an example, when both 
the ‘req_from_stage0’ and ‘stag1_enable’ signals are ‘1’, 
the output of ‘C1’ will be set to logic ‘1’ which indicates 
that the current state of the FSM is in the ‘Stage 1’.  Then 
the output of ‘C1’ can be used as a request signal to trigger 
the control logics in the corresponding function blocks for a 
certain communication process. 

 The C-element control pipeline structure illustrated in 
Fig.2(c) is used in the ‘Packet Receiver’, ‘Packet 
Distributor’, and ‘Packet Sender’ blocks as the block 
control logic to generate four-phase request or acknowledge 
signals for data transfers. Each stage of the control pipeline 
is composed by two C-elements as illustrated in Fig.2(c). 
The ‘C1’ is used to record the rising edge of a request or 
acknowledge signal, while the ‘C2’ is used to record the 
falling edge of a request or acknowledge signal. Therefore, 
each stage of the block control pipeline will pass the enable 
signal to the next stage only after the four-phase handshake 
process on the current stage has done. Although the 
presented block control pipeline structure can only meet 
QDI model because the input ‘ack/req’ signal is branched to 
‘A1’ and ‘A3’, the timing requirement for distributing the 
‘ack/req’ input signal along the isochronic wire forks is 
quite loose since the logic delays in ‘A1’ and ‘C1’ are 
usually much larger than the logic delay of the inverter at 
the input of ‘A3’. 
 Besides the control logics, asynchronous arbiters are 
also needed in the network node to allocate the shared 
resource to only one user at a time. For example, 
‘Communication Controller’ block needs an arbiter to 
decide that either the ‘local packet’ or ‘bypass packet’ will 
be transferred by the ‘Packet Sender’ first if they come to 
the ‘Packet Distributor’ simultaneously. The arbiter 
structure used in this work will be discussed with more 
details in Section 4.2. 
 Another issue about the asynchronous design of the 
network node is how to transfer the signals from 
asynchronous domain to synchronous domain safely. In this 
design, a normal double-latching scheme [15] is applied to 
sample the signals from asynchronous domain by the 
‘Layer Switch’ block illustrated in Fig.1. 
 Finally, by applying the presented pipeline control 
logics, arbiters, and other data path logics, the 
asynchronous design in the network node has been done 
and combined with the synchronous design through the 
double-latching scheme. Thus, the presented four-node 
GALS NoC design is ready for the prototyping work. 

4. PROTOTYPING THE GALS NOC ON A 
CONVENTIONAL FPGA 

Look-Up-Table (LUT) based FPGA device has been widely 
used for prototyping synchronous designs because of its 
flexible and reprogrammable features.  However, if a LUT 
based conventional FPGA device is used to prototype 
asynchronous circuits, several limitations which have been 
addressed in [5, 16] are summarized as follows. 
 1) LUT cannot guarantee hazard-free because the 
routing delays and input change patterns are unpredictable. 
  2) The timing requirements of asynchronous circuits are 
difficult to guarantee in a conventional FPGA. 
 3) The commonly used arbitration structures in 
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asynchronous circuits are usually designed in transistor 
level. Therefore, they are not supported by LUT based 
FPGA. 
 As discussed in Section 1, the LUT based conventional 
FPGA is the only choice for prototyping the presented 
GALS NoC although some limitations have been addressed. 
In order to circumvent the addressed limitations, the C-
element and arbiter structures which suit for this purpose 
will be presented in Section 4.1 and Section 4.2. The 
method of prototyping the presented four-node GALS NoC 
will be addressed in Section 4.3. 

4.1.  A C-element Structure for FPGAs 

The Reed-Müller C-element is a basic component for 
asynchronous circuits, which is normally implemented in 
transistor level. In order to map asynchronous circuits on a 
conventional FPGA, an equivalent two-input C-element 
structure illustrated in Fig.3(a) has been presented in [9, 10]. 
It has been proved to be logic hazard-free under the single-
bit input change assumption and certain two-input change 
patterns. However, it needs a netlist-format description as a 
component library in the design flow to ensure the feedback 
path illustrated in Fig.3(a) is mapped on a LUT correctly. In 
order to avoid the explicit feedback path, another two-input 
C-element structure is proposed and illustrated in Fig.3(b). 
The C-element illustrated in Fig.3(b) bases on a D-latch 
which uses ‘A AND B’ as the enable (‘EN’) signal and ‘A 
OR B’ as the reset signal (‘CLR’). The data input port (‘D’) 
of the D-latch is attached to logic ‘1’ constantly. Because 
the explicit feedback path is avoided in the D-latch-based 
C-element structure, the special netlist format component 
library in the design flow can be removed. Therefore, the C-
element structure illustrated in Fig.3(b) suits the design 
flow of conventional FPGA better. The idea of using latch 
to map a C-element in LUT has already been presented in 
[9] where a RS-latch is suggested. Whereas, the C-element 
structure based on D-latch in Fig.3(b) is more safe than the 
suggested RS-latch structure because there is no data 
switching at the data input port ‘D’. 
 In Fig.3(b), we can see that the C-element structure is 
hazard-free under one-input change assumption by applying 
the ‘AND’ gate and ‘OR’ gate at the ‘EN’ port and ‘CLR’ 
port respectively. For certain two-input switch patterns, 

A1

A2

A3

A0

C1

C2

A4

D

CLK
CLR

Q

C3

C4

C5

A5

A6

r1

r2

r1
rst

r1

'1'

'1'

rst
valid_r2 valid_r2

rst

r1

'1'

'1'

g_r1

g_r2

D1

D2

D3
D

CLK
CLR

Q
D

CLK
CLR

Q

D

CLK
CLR

Q

rst

D4

Stage 1 Stage 2 Stage 3

delay

delay

XOR

delay

delay

Cr1 Cr1 Cr1

The 'delay' component between 
'C1' and 'D1'  in Stage2

Cr1 Cr1 Cr1
D1_Q

C4

Fig.4 (a )

Fig.4 (b )

The 'delay' component between 
'D1' and 'C4'  in Stage3

Fig.4 (c )  
Fig. 4.  Asynchronous Arbiter Structure 

00→11 and 11→00, the structure in Fig.3(b) is also hazard-
free. Whereas, the input switch patterns, 01→10 and 
10→01, are not allowed because they may produce a logic 
error which depends on the wire delay. Because all the C-
elements in the GALS NoC design are used to follow a 
request or acknowledge signal of four-phase handshake 
protocol, as the control logics illustrated in Fig.2, there are 
no 01→10 or 10→01 input switch patterns for the C-
elements in the design. Thus, the proposed C-element 
structure is safely to be used in this prototyping work. 

4.2. An Asynchronous Arbiter Realization on FPGA 

Asynchronous arbiter is a component used to allocate a 
shared resource among multiple users to only one user at a 
time. For ASIC implementation, cross-coupled NAND 
gates are used as the simplest arbiter structure. For 
implementing arbiter on a conventional FPGA, the built-in 
Flip-Flop is suggested to use in order to minimize the 
metastability effects [17]. An asynchronous arbiter structure 
which uses the built-in Flip-Flop of conventional FPGA has 
been presented in [17]. It uses a clock signal which comes 
from the outside of the arbiter block to drive the built-in 
Flip-Flop. Hence, it needs an extra clock generation circuit 
presented in [17].  
 In order to take advantage of the simplicity of the cross-
coupled NAND gates arbiter structure and avoid using extra 
clock generation circuit, a two-input fixed-priority arbiter 
structure is designed and illustrated in Fig.4(a). It applies a 
revised cross-coupled NAND gates structure and the built-
in Flip-Flop of a conventional FPGA. The arbiter illustrated 
in Fig.4(a) can be divided into three stages.  
 The first stage consists of two cross-coupled AND gates, 
‘A1’ and ‘A2’, with inverted inputs. The ‘A0’ gate is used 
to disable the input ‘r2’ when a conflict between ‘r1’ and 
‘r2’ is detected at the output of C-element ‘C3’. When the 
combinational logics of ‘Stage1’ illustrated in Fig.4(a) are 



modeled using VHDL and synthesized by a tool for the 
conventional FPGA, they will be implemented by LUTs 
instead of the AND gates. Therefore, the feedback delays in 
the LUTs for ‘Stage1’ are much larger than the ASIC 
implementation which uses standard cells. Hence, when 
two input requests ‘r1’ and ‘r2’ appear simultaneously or 
very close to each other, the LUT implementation of 
‘Stage1’ will enter into an oscillation state instead of the 
metastability state as the ASIC implementation. In this 
situation, the second stage of the arbiter is used to filter out 
the possible oscillation outputs from ‘Stage1’.  
 The ‘Stage2’ illustrated in Fig.4(a) bases on two built-in 
D Flip-Flop (D-FF) registers of a conventional FPGA. The 
C-elements, ‘C1’ and ‘C2’, are used to convert the 
oscillation outputs from ‘Stage1’ into a single 0→1 signal 
transition which is used as the clock signal to trigger the 
registers ‘D1’ and ‘D2’ respectively. The ‘A3’ and ‘A4’ 
gates are used to generate reset signals for ‘D1’ and ‘D2’. 
After passing through ‘Stage2’ of the arbiter, the oscillation 
outputs from ‘Stage1’ may trigger the outputs of both ‘D1’ 
and ‘D2’ into logic ‘1’. In this case, the ‘C3’ will detect this 
confliction and disable the ‘r2’ request by the feedback path 
from the output of ‘C3’ to the input of ‘A0’. The ‘delay’ 
components in ‘Stage2’ as illustrated in Fig.4(a) are used to 
ensure that the rising edge from the outputs of ‘C1’ and 
‘C2’ will arrive after the ‘CLR’ signals from ‘A3’ and ‘A4’. 
An exemplar structure of the ‘delay’ components is 
presented in Fig.4(b) where the number of C-element 
depends on the timing character of the built-in D-FF. 
 The actual arbitration process is taken place in the 
‘Stage 3’ where another two built-in D-FF registers are 
used. When a request conflict is detected at the outputs of 
‘D1’ and ‘D2’, the ‘XOR’ logic in ‘Stage3’ will close the 
arbiter output by disabling ‘C4’ and ‘C5’. The arbitration 
outputs will be enabled only after the output of ‘D2’ is 
cleared by the feedback from ‘C3’. Therefore, request ‘r1’ 
has a higher priority in the presented arbiter. The ‘delay’ 
components in ‘Stage3’ are used to filter out the possible 
glitch from ‘XOR’ when the output signals of ‘D1’ and 
‘D2’ did not reach the inputs of the ‘XOR’ gate 
simultaneously in a request-conflict situation. One 
exemplar structure of the ‘delay’ components is illustrated 
in Fig.4(c).  
 Although the presented arbiter works under QDI model 
since the isochronic wire forks for distributing ‘r1’ and 
‘valid_r2’ signals are needed, the timing requirement for 
those isochronic forks is loosened a lot by the logic delays 
and ‘delay’ components in the design. In the presented 
arbiter, the data input ports ‘D’ of the built-in D-FF 
registers are attached to logic ‘1’ constantly in order to 
enhance the operation stability of the D-FF register. The 
presented asynchronous arbiter consumes 45 Adaptive 
LUTs (ALUTs) [19] on a StratixII device when six C-
elements are used in its ‘delay’ components illustrated in 
Fig.4(b) and Fig.4(c). 

4.3. Prototyping The Four-Node GALS NoC 

By applying the presented C-element and arbiter structure, 
the asynchronous design of the network node discussed in 
Section 3 can be modeled using VHDL in a hierarchy 
manner. Namely, the C-element structure presented in 
Fig.3(b) is modeled using VHDL as a component. Then, 
any other logics, such as the arbiter or the control logics, 
use the C-elements as component instances in their own 
VHDL files. In a same manner, the control logic, arbiter, 
and C-element are used by a higher level asynchronous 
block as component instances in their VHDL descriptions. 
The synchronous blocks in the network node are also 
designed with VHDL. Therefore, both the synchronous and 
asynchronous designs in the presented GALS NoC apply a 
same design input format which suits the design tools for 
conventional FPGA. The design tool and the conventional 
FPGA used in this work are QuartusII and Altera StratixII 
respectively.  
 In order to prevent the synthesis tool to mix all the 
combinational logics from different components together, 
each instance of the C-element and arbiter in the design is 
set as a design partition. The higher level components or 
blocks are also be set as a unique partition according to the 
design hierarchy. During the synthesis process, each 
partition of the design will be synthesized separately from 
each other by QuartusII. Therefore, the proposed C-element 
and arbiter structures will be generated correctly. 
 After synthesis the entire design with the hierarchical 
partition method, the next issue is to meet the QDI timing 
requirements of the proposed arbiter and block control 
pipeline structures during the placement and routing 
process. LogicLock technique [18] is applied for this 
purpose. A LogicLock region is set to each arbiter and 
block control logic pipeline in the design so that the 
components in a same arbiter or control pipeline will be 
automatically placed into one Logic Array Block (LAB) 
[19] or the adjacent LABs of StratixII device by QuartusII. 
Thus, the fast intra-connects inside a LAB and inter-
connects between adjacent LABs [19] can meet the loose 
timing requirements of the arbiter and the block control 
pipeline addressed respectively in Section 4.2 and Section 3. 
 Finally, the prototyping method with Quartus II can be 
summarized as follows. 
 1) Step1: Describe both synchronous and asynchronous 
parts in the hierarchical manner using VHDL. 
 2) Step2: Define a design partition for each component. 
 3) Step3: Set a LogicLock region for all delay sensitive 
arbiter and control blocks. 
 4) Step4: Run synthesis, placement, and routing steps 
without additional constraint files. 
 By using the proposed prototyping method, the four-
node GALS NoC presented in Section 2 are realized on a 
StratixII device. The four-phase dual-rail protocol is used in 
the asynchronous data transfers between network nodes. 
The whole network utilizes 41,674 ALUTs on the StratixII 



Table 1. ALUTs Utilization of ‘Network Node’ Blocks 
Sub-blocks Utilized 

ALUTs
Node IF (BVCI Slave Type) 146 

Node IF (BVCI Master Type) 399 
Layer MUX 142 

Communication Controller 238 
Packet Distributor 451 

Packet Sender +Tx Packet Buffer 2,202 
Packet Receiver 233 

Communication 
Layer 

(CL block) 
Rx Packet Buffer 1,878 

BVCI Slave Type Network Node 10,292Total  
(with 2 CL blocks) BVCI Master Type Network Node 10,545

 
device. The utilized ALUTs by the two different types of 
‘Network Node’ blocks and their sub-blocks are listed in 
Table 1.  
 The gate-level simulation reveals that the prototyped 
four-node GALS network can deliver a four-cell packet 
between two adjacent network nodes with 632.78 ns by a 
four-phase dual-rail handshake protocol. Each data cell in a 
packet has 32 data bits. Thus, the asynchronous transfer 
speed of the prototyped GALS network in a StratixII device 
is equivalent to 202.24 kb/s in theory. 

5. CONCLUSION 

Conventional FPGA devices and design tools are oriented 
towards synchronous design. The presented work applied 
the synchronous design tools of Quartus II to realize a 
synchronous-asynchronous mixed design on a Stratix II 
device. 
 We described a four-node on-chip network prototype 
that applies both synchronous and asynchronous designs. 
Two C-element control pipelines were designed for the 
control of the asynchronous parts. A C-element structure 
and an asynchronous arbiter suited for realization on a 
conventional FPGA were presented. 
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ABSTRACT: An asynchronous FIFO which applies four-
phase handshake protocol to read or write data has been 
designed in Register-Transfer Level (RTL) using VHDL. 
The asynchronous FIFO in this paper avoids data movement 
in a flow-through FIFO by applying token passing scheme in 
its control pipelines and multiplexer in its data register bank. 
Two control pipelines which base on micropipeline structure 
are proposed and used as the control logic for the 
asynchronous FIFO. An asynchronous arbiter and C-
element RTL structures used in the proposed asynchronous 
FIFO are also presented. 

1 Introduction 
Asynchronous FIFO is an important component for 
building the packet buffers in a packet-switched on-chip 
network which applies Globally-Asynchronous Locally-
Synchronous (GALS) [1] scheme. A network node 
structure for building GALS on-chip network has been 
presented in [2]. The network node applies asynchronous 
handshake protocol for globally data packet transfers. 
Therefore, it needs efficient asynchronous FIFOs to buffer 
the input or output data packets of the network node. 
Although the asynchronous FIFO presented in this paper 
is designed under an on-chip network application 
background, it is a general purpose asynchronous FIFO 
which can be used in other applications. 

The asynchronous FIFO designs which have been 
presented can be roughly classified into two categories in 
terms of data movement. The first category includes the 
flow-through FIFOs [3, 4] which base on micropipeline 
structure [3]. Those FIFOs make the data flow through all 
data cells in the FIFO before reaching the output port.  
Thus, the latency is poor although the throughput can be 
high. The asynchronous FIFOs in another category use 
counter control logic [5], or token passing and common 
data bus structure [6, 7] to avoid the data movement 
inside the FIFOs. Therefore, the latency caused by data 
movement in a flow-through FIFO is eliminated. 
However, the compensation is the high complexity of the 
control logic. The asynchronous FIFO presented in this 
paper belongs to the second category in which the data 
would not flow through the data cells, while the control 
complexity is lowered by using a modified micropipeline 
structure to pass around the read or write token in the 
FIFO. Another advantage of the presented FIFO design is 

that it is designed in RTL by using commonly adopted 
hardware description language VHDL. Therefore, it can 
be easily integrated with other synchronous RTL designs 
to build a large synchronous-asynchronous mixed system, 
such as a GALS on-chip network, and it also suits for the 
commonly used synchronous design flow and tools. 

The following sections of this paper are organized as 
follows. In Section 2, the asynchronous FIFO structure 
and the modified micropipeline control logic are 
presented. Section 3 describes the RTL model of C-
element and the arbiter used in this asynchronous FIFO. 
The synthesis and simulation results are presented in 
Section 4. Finally, the conclusions are drawn in Section 5. 

2 The Asynchronous FIFO Structure 
The proposed asynchronous FIFO works with four-phase 
handshake protocol. By changing the interface 
descriptions, it can support bundled-data and dual-rail 
protocols. For the simplicity, an asynchronous FIFO 
which uses four-phase bundled-data protocol is illustrated 
in Fig.1. There are two main functional blocks in the 
FIFO, ‘Control Logic’ block and ‘Data Bank’ block, as 
illustrated in Fig.1. The ‘control logic’ block consists of 
the control pipelines derived from micropipeline structure. 
Each cell in the control pipeline is used to control read or 
write operation of a data cell in ‘Data Bank’ Block. The 
details of ‘Control Logic’ block and ‘Data Bank’ block 
will be presented in Section 2.1 and Section 2.2 
respectively.

2.1 The ‘Control Logic’ Block 
A micropipeline control logic [3] is illustrated in Fig.2 (a). 
The principle of micropipeline control logic is to use 

Control Pipelines

Control Logic

Data Cell Array

Data Bank

wr_req

wr_ack

rd_req

rd_ack

data_in data_out

Fig.1 Asynchronous FIFO Block Diagram 
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the output from the next stage to enable or disable the 
output of current stage, therefore, the request event at the 
input port will be delivered to the output port in a 
pipelined manner. The ‘Control Logic’ block in the 
presented FIFO design consists of two control pipelines 
which base on the micropipeline control logic. One 
pipeline is dedicated to read control while another is for 
write control. Each pipeline is composed of a series of 
control cells. Fig.2 (b) illustrates two single cells from the 
two control pipelines respectively and the signaling 
between the two control cells.

By comparing the two structures in Fig.2 (a) and (b), 
we can see that the modified control pipelines in Fig.2 (b) 
use micropipeline control logic as the backbone and apply 
few AND gates as the delays illustrated in Fig.2 (a). Each 
cell of the modified control pipelines consists of two C-
elements. The first C-element, ‘C1’ in read control cell 
and ‘C3’ in write control cell, is used to record the rising 
edge of request signal. The second C-element, ‘C2’ and 
‘C4’ in Fig.2 (b), is used to record the falling edge of 
request signal. Therefore, each cell of the control pipeline 
illustrated in Fig.2 (b) will pass the enable signal as a 
token to the next cell only after the four-phase handshake 
process on the current cell has done. The token signals in 
the current control cells, such as ‘rd_cell1_en’ and 
‘wr_cell1_en’ signals in Fig.2 (b), are used to enable the 
corresponding data cell to respond to the current read or 
write operation. After the completion of current data 
operation, the token will be delivered to the next control 
cell. When the read or write token reaches the last cell of 
the control pipeline, it will be passed back to the first 
control cell if the corresponding data cell is ready for read 
or write operation. 

The feedback signal from ‘C2’ to ‘A3’ in Fig.2 (b) is 
used to synchronize the status information between read 
and write control cells. For example, in Fig.2 (b), if the 
output of ‘C2’ is ‘1’, it means that the data in the 
corresponding data cell has been read. Therefore the 

cell1_wr_en
data_in

Data Cell 1
data_out

celln_wr_en
data_in

Data Cell n

MUX

rd_data_en_vector

Fig.3 Data Bank Block Diagram 

output of ‘A3’ is set to ‘1’ which indicates that the empty 
data cell is enabled for future write operation. The other 
two input signals of ‘A3’, ‘rd_cell1_en’ and ‘rd_req’, are 
used to reset the write control cell after the corresponding 
data cell has been read, so that the write control cell will 
have room for receiving the write token in the next round. 

The control pipelines illustrated in Fig.2 (b) require 
that the read and write requests should not appear at the 
same time. The arbiter used to solve this read/write 
conflict problem in the presented FIFO will be discussed 
in Section 3.1. 

2.2 The ‘Data Bank’ Block 
The structure of the ‘Data Bank’ Block illustrated in Fig.3 
is composed of a multiplexer and multiple ‘Data Cell’ 
blocks. Each ‘Data Cell’ block consists of a set of latches. 
The number of latches in a ‘Data Cell’ depends on the 
data width of the asynchronous FIFO. The main function 
of the ‘Data Bank’ Block is to latch the incoming data or 
output the requested data by the control signals from the 
‘Control Logic’ Block. For example, the ‘cell1_wr_en’ 
signal comes from the first write control cell is used to 
enable write operation on the ‘Data Cell 1’ block in Fig.3. 
The ‘rd_data_en_vector’ in Fig.3 is the combination of 
read enable signals from the read control pipeline. It is 
used to select the corresponding data cell for the current 
read operation. 

3 RTL Structures of Asynchronous Arbiter 
and C-Element 

3.1 RTL Structure of Asynchronous Arbiter 
As mentioned in Section 2.1, the proposed control 
pipelines of the asynchronous FIFO can handle only one 
request at a time, therefore, an arbiter is needed to grant 
either read or write request to take effect at one time. 

For ASIC implementation, cross-coupled NAND gates 
illustrated in Fig.4 (b) are used as the simplest arbiter 
structure. However, if two requests appear simultaneously, 
the NAND structure will enter into metastability state. 
Four-input NOR gates illustrated in Fig.4 (b) are 
suggested in [8] to filter the metastability because they 
have high threshold voltage. However, this scheme needs 
to be designed in gate level with certain standard-cell 
library. If it is described in RTL using VHDL, the four 
inputs of the NOR gates will be simplified by the 
synthesis tool because they are from a same signal node.  
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Therefore, it does not suit our purpose of modeling the 
asynchronous FIFO in RTL using VHDL. Hence, an 
arbiter structure illustrated in Fig.4 (a) is proposed for the 
presented asynchronous FIFO design. The proposed 
arbiter applies the cross-coupled AND gates derived from 
the cross-coupled NAND structure as the basic structure 
and uses double-latching scheme to filter out metastability. 
The clock signals for sampling the outputs from the cross-
coupled AND gates are generated by a delay line 
composed of a chain of C-elements. The C-element chain 
illustrated in Fig.4 (c) uses the input requests as the 
trigger signal to generate a clock signal at a certain 
frequency until the qualified request is sampled 
successfully. The sampling clock cycle depends on the 
gate and wire delays in the C-element chain and gives the 
cross-coupled AND gates a certain amount of time to 
recover from metastability before sampling. An advantage 
of using the C-element chain to generate sampling clock 
is that the sampling frequency can be easily adjusted 
according to the target technology library by changing the 
number of C-elements. The mean time between failures 
(MTBF) of double-latching scheme can be guaranteed to 
be long enough by using low sampling frequency [9]. 

3.2 RTL Structure of C-Element 
The Müller C-element is a basic component widely used 
in the presented asynchronous FIFO. It is normally 
implemented in transistor level. In order to model the 
presented FIFO totally in RTL using VHDL, a RTL two-
input C-element structure is proposed in Fig.5. The 
proposed C-element bases on a D-latch which uses 

Table 1. Area and Power Consumptions 

FIFO Types Area 
 (µm2)

Dynamic Power 
 (mW) 

Synchronous 
FIFO 

21032.96  
(100%) 

3.84 
(100%) 

Asynchronous 
FIFO 

10821.63 
(51.5%) 

2.08 
(54.2%) 

Table 2 Timing Characteristics of the Asynchronous FIFO 

Ack Rise 
Latency 

(ns)

Req Hold 
Time (ns) 

Ack Fall 
Latency 

(ns)

Handshake
 Cycle 
(ns)

Write
Request 4.2 0.1 0.8 5.1 

Read
Request 4.5 0.1 0.9 5.5 

‘A AND B’ as the enable (‘EN’) signal and ‘A OR B’ as 
the reset signal (‘CLR’). The data input port (‘D’) of the 
D-latch is attached to logic ‘1’ constantly. The idea of 
using a latch to build a C-element has already been 
presented in [10] where a RS-latch is suggested to use. 
Whereas, the D-latch C-element structure in Fig.5 is safer 
than the suggested RS-latch C-element structure because 
it avoids data switching at the data input port ‘D’. 

4 Synthesis and Simulation Results 
4.1 Synthesis Result 
After all the main components, C-element, control 
pipelines, and the arbiter, have been built in RTL, the 
asynchronous FIFO design presented in Section 2 are 
constructed in RTL with VHDL. Thus, the presented 
asynchronous FIFO design suits for the synchronous 
design flow and tools naturally and can be easily 
integrated with other synchronous designs. 

For the purpose of comparison, a reference 
synchronous FIFO which has very similar structure has 
been designed also in RTL using VHDL. The reference 
synchronous FIFO has the same top level structure with 
the asynchronous FIFO illustrated in Fig.1. The 
differences are that the synchronous FIFO applies clocked 
four-phase handshake protocol to read or write data, and a 
Finite State Machine (FSM) and a few counters are used 
as the control logic to record the location of current read 
or write token. 

Both the presented asynchronous FIFO and the 
reference synchronous FIFO have been synthesized by a 
same synthesis tool and 0.18 µm technology library. The 
data width and FIFO depth for both synchronous and 
asynchronous FIFO designs are set to 32 bits and four 
cells respectively. In the asynchronous FIFO design, five 
C-elements are used in the C-element chain of the arbiter 
to generate the sampling clock signal. The area and 
dynamic power consumption after synthesis are listed in 
Table1. The dynamic power consumptions listed in 
Table1 are the estimated value reported by the synthesis 
tool without any switching activity back-annotation. 
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In Table1, we can see that the presented asynchronous 
FIFO design has smaller dynamic power consumption and 
area even though it has a large overhead of the C-element 
chain in its arbiter. 

4.2 Simulation Result 
A gate-level simulation of the synthesized asynchronous 
FIFO has been performed by an event-driven simulation 
tool. The latency of the asynchronous FIFO is measured 
as the time between the rising edge of ‘rd/wr_req’ signal 
and the falling edge of the acknowledge signal. This 
latency is independent on the depth of the asynchronous 
FIFO because the data in the presented asynchronous 
FIFO are not moved in the FIFO after stored. The 
meanings of measured timing parameters of a four-phase 
handshake process during the simulation are illustrated in 
Fig.6 and the values are listed in Table2. To be noticed is 
that the ‘Req Hold Time’ is decided by the environment 
other than the FIFO itself. A 0.1 ns delay is used in this 
simulation. 

According to the timing of ‘Handshake Cycle’ listed 
in Table2, the presented asynchronous FIFO can perform 
94.3 million 32-bit data read-after-write operations per 
second, which is equivalent to 3.01 Gb/s throughput in 
theory. 

5 Conclusions
A RTL asynchronous FIFO design which suits the 
conventional synchronous design flow and tools has been 
presented. The presented asynchronous FIFO is mainly 
composed of control logic and data bank blocks. The 
presented FIFO in this paper avoids data movement in a 
flow-through FIFO by applying token passing scheme in 
its control pipelines and applying multiplexer in its data 
register bank. Two control pipelines which base on 
micropipeline structure have been proposed and used in 
this design. The RTL structures of asynchronous arbiter 
and C-element which suit for VHDL modeling have been 
presented. By comparing with a reference synchronous 
FIFO design, the proposed asynchronous FIFO has 
smaller area and dynamic power consumption. When a 
0.18µm technology library is used for implementation, the 
throughput of the presented asynchronous FIFO can reach 
3.01 Gb/s in theory. 
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1. INTRODUCTION

As the technology feature size of integrated circuit fabrica-
tion is continuously shrinking down in the deep submicron
regime, the number of components which can be integrated
into an on-chip system is getting larger and larger. Therefore,
the communications among the large number of compo-
nents in a system-on-chip (SoC) are challenging tasks to deal
with. Network-on-chip addresses this communication issue
in an on-chip system by separating the concerns of commu-
nication from the concerns of computation. It means that the
communication issue in an SoC is abstracted and handled by
an on-chip communication network which hides the detailed
information about how the communications are performed.
Therefore, a system designer can pay more attention on the
functions of system components and system integration by
treating the NoC as a component of an on-chip system.

The NoC structures which have been proposed can be
roughly classified into two categories, circuit-switched net-
work and packet-switched network, in terms of the way of
using the communication media. PROPHID architecture [1]
is an example of a circuit-switched network which connects
the terminals in the network by allocating them a set of time

or space slices on the communication links. Examples in the
packet-switched category are SPIN [2] and Proteo NoC [3].
SPIN network applies fat-tree topology and router blocks to
transfer data packets from source node to destination node.
In Proteo NoC, the components in the system are connected
through network nodes and hubs. The network topology and
connections in Proteo NoC can be customized and optimized
for a specific application. Since an on-chip system can con-
tain hundreds of functional intellectual property (IP) blocks
in the near future, the circuit-switched network will face
the problem of scalability and parallelism in that situation.
Therefore, a packet-switched scheme is a better choice for
future NoC designs because its structure is scalable and its
data transfers are performed in parallel by sharing the com-
munication media among multiple network nodes in a time-
division manner.

As the number of IP blocks in an SoC is increasing, it
is natural that different functional blocks work with differ-
ent clock frequencies in an SoC. Hence, data transfer among
multiple clock domains is another issue that needs to be han-
dled by an on-chip network. A globally asynchronous lo-
cally synchronous (GALS) scheme [4] has been proposed to
solve this problem of SoC designs. For an NoC, GALS means
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that data transfers between each functional IP block and its
attached network node are synchronous, whereas data trans-
fers between network nodes are asynchronous.

From the analysis addressed in the previous two para-
graphs, we can see that the GALS packet-switched scheme is
a promising direction to explore the NoC designs for future
on-chip systems. A common and natural way of composing
a GALS packet-switched on-chip network is to connect two
network nodes with a direct link. This way of connecting net-
work nodes will be referred to as point-to-point (PTP) con-
nection in this paper. Different patterns of the connection
links in the network form different network topologies. For
example, a mesh topology is applied in the NoC design pre-
sented in [5]. In a PTP connection NoC, the routing scheme
and router architecture, such as the router presented in Æthe-
real NoC [6], are very important factors for supplying guar-
anteed services because the packet transfer latency may vary
largely when data packets are transferred to different desti-
nations or to the same destination via different routes in the
network.

In order to eliminate the variance of the data transfer la-
tency and complexity incurred by routing in a PTP connec-
tion NoC, a connection scheme which applies code-division
multiple-access technique has been briefly introduced in [7].

By separating the different data from different users in
the code domain, the data transfer latency in the CDMA NoC
is stabilized by enabling multiple users to use the communi-
cation media parallel in time domain.

In order to examine the advantages and disadvantages of
both the PTP connection scheme and the CDMA connection
scheme, a bidirectional ring NoC design and a CDMA NoC
design developed in our institute will be addressed and com-
pared in terms of the network structure, data transfer princi-
ple, network node design, asynchronous design, and perfor-
mance. For the sake of abbreviation, the bidirectional ring
NoC design will be referred to as the PTP NoC in this paper.

The following sections of this paper will be arranged as
follows. The network structures of the PTP NoC design and
the CDMA NoC design will be presented and compared in
Section 2. In Section 3, the data transfer principles of the
two NoC designs will be studied and compared. Then the
different network node structures in the two NoC designs
will be addressed and compared in Section 4. Section 5 will
present the asynchronous designs applied in both the PTP
NoC and the CDMA NoC designs. In Section 6, two simu-
lation networks of the two NoC designs built up for perfor-
mance estimation will be presented. Then the performance
comparison of the two NoC designs will be addressed upon
the simulation results. Finally, the conclusion will be drawn
in Section 7.

2. THE NETWORK STRUCTURES

2.1. The network structures of the two NoC designs

The PTP NoC design examined in this paper is based on a
network node design [8] proposed for implementing GALS
scheme in Proteo NoC. The network structure of the PTP
NoC is illustrated in Figure 1. From Figure 1, we can see that
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Figure 1: The bidirectional ring NoC structure.
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the communication between a “functional host” (functional
IP block) and its network node is synchronous, while the
data transfers among network nodes are preformed in asyn-
chronous manner. For a large network, it may be necessary to
break the entire network into sections and use some bridge
nodes or hub nodes as addressed in [3] to connect the net-
work sections together, whereas these bridges or hubs can be
seen as one type of network nodes. Therefore, as illustrated
in Figure 1, the PTP NoC can be composed simply by con-
necting the network nodes together with direct links.

The network structure of the CDMA NoC design intro-
duced in [7] is illustrated in Figure 2. In the CDMA NoC,
the GALS scheme is applied in the same way as in the PTP
NoC; however, the network nodes in the CDMA NoC are no
longer connected to each other with direct links. A “CDMA
transmitter” and a “network arbiter” blocks are introduced
in the CDMA NoC. All the network nodes need to commu-
nicate with the “CDMA transmitter” and “network arbiter”
blocks directly. The functionality of the “CDMA transmitter”
and “network arbiter” blocks will be addressed thoroughly
in Section 3. With a direct comparison, we can see that the
structure of the CDMA NoC is more complex than the PTP
NoC since extra blocks are introduced in the CDMA NoC.

2.2. Distributed traffic versus centralized traffic

After a direct comparison of the two network structures in
terms of simplicity, we can take a further analysis of the ef-
fects of the two different network structures on the features
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of the networks. In the PTP NoC as illustrated in Figure 1,
the data traffic load is distributed into the links among the
network nodes. This distributed data traffic scheme has the
merits of flexibility and scalability, whereas the main disad-
vantage of the PTP connection is that the data transfer la-
tency between two network nodes can be largely different
because the data may be transferred through different routes
or because of data traffic congestions in the network. There-
fore, the main concern of designing a PTP NoC is to find
out the optimal topology and use all kinds of routing and
flow-control methods to guarantee a high throughput and
low transfer latency.

In the CDMA NoC illustrated in Figure 2, a centralized
data transfer scheme is applied since all network nodes com-
municate with the “CDMA transmitter” and the “network
arbiter” blocks directly. This centralized data transfer scheme
is different from the conventional bus structures since it can
supply parallel data transfers both in time and space domains
by applying CDMA technique, whereas a bus structure sup-
plies data transfer service among users in a time-division
manner. The advantage of the centralized scheme applied in
the CDMA NoC is that the data transfer latency between net-
work nodes is a stable value. This stable transfer latency is
contributed by the feature of parallel data transfer in time
domain and the universal link distance among all network
nodes. With the stable data transfer latency, the communica-
tion quality in the CDMA NoC will not vary.

3. THE DATA TRANSFER PRINCIPLES

The fundamental reason of the different network structures
between the PTP NoC and the CDMA NoC is the differ-
ent data transfer principles applied in the two NoC designs.
Thus, the data transfer principles of the two NoC designs will
be addressed and compared in this section.

3.1. Data transfer principle in the PTP NoC

As presented in Section 2.1, the PTP NoC is built by con-
necting the network nodes with direct links. The reason of
this simplicity of connecting the network nodes is that the
data are transferred in their original form in the PTP NoC.
The only operation on the data is to encapsulate them into a
packet format. This operation is done by a network node af-
ter getting the data from its attached functional host block.
The packet format used in the PTP NoC is illustrated in
Figure 3. After the data packet is formed, the PTP NoC will
transfer the data bits with their original values to their desti-
nation through the links to the other nodes. Therefore, direct
links between the network nodes in the PTP NoC are enough
to handle the data transfers.

3.2. Data transfer principle in the CDMA NoC

As indicated by the name, the CDMA NoC applies CDMA
technique to perform data transfers in the NoC. The ba-
sic principle of CDMA technique is illustrated in Figure 4.
At the sending end, the data from different senders are en-
coded using a set of orthogonal spreading codes. Then the
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Figure 3: Packet format specification.
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Figure 4: CDMA technique principle.

encoded data from different senders are added together for
transmission without interfering with each other because of
the orthogonal property of spreading codes. The orthogo-
nal property means that the normalized autocorrelation of
the spreading codes is 1, while the cross-correlation of the
spreading codes is 0. Therefore, at the receiving end, the data
can be decoded from the received sum signals by multiplying
the received signals with the corresponding spreading code
used for encoding. The data packet format applied in the
CDMA NoC is the same format as illustrated in Figure 3. The
issues related with the data encoding/decoding and transfer
principles in the CDMA NoC will be addressed with details
in the following subsections.

3.2.1. Data encoding and decoding schemes

Some CDMA encoding and decoding schemes for on-chip
communication implemented by analog circuits have been
proposed [9–11]. In those schemes, the encoded data are rep-
resented by the continuous voltage or capacitance value of
the circuits. Therefore, the data transfers in the analog cir-
cuits are challenged by the coupling noise, clock skew, and
the variations of capacitance and resistance caused by circuit
implementation [11]. In order to avoid the challenges faced
by the analog circuit implementation, digital encoding and
decoding schemes are developed for the CDMA NoC and are
illustrated in Figures 5 and 7, respectively. In the presented
encoding scheme, data from different senders are fed into
the encoding function bit by bit. Each data bit will be spread
into S bits by multiplying it with a unique S-bit spreading
code. The multiplications are performed by XOR logic gates
as illustrated in Figure 5. Each bit of the S-bit encoded data
generated by XOR operations is called a data chip. Then
the data chips which come from different senders are added
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together arithmetically according to their positions in the S-
bit sequences. Namely, all the first data chips from differ-
ent senders are added together, and all the second data chips
from different senders are added together, and so on. There-
fore, after the add operations, we will get S sum values of S-
bit encoded data. Finally, as proposed in [12], binary equiva-
lents of the S sum values are transferred to the receiving end
one by one. An example of encoding two data bits from two
senders is illustrated in Figure 6 in order to explain the pro-
posed encoding scheme more specifically. Figure 6(a) shows
two original data bits from different senders and two 8-bit
spreading codes. The top two figures in Figure 6(b) illustrate
the results after data encoding (XOR operations) for the orig-
inal data bits. The bottom figure in Figure 6(b) presents the
8 sum values after adding operations. Then the binary equiv-
alents of each sum value will be transferred to the receiving
end. In this case, two binary bits are enough to represent the
three possible decimal sum values, “0,” “1,” and “2.” Hence,
for example, if a decimal sum value “2” needs to be trans-
ferred, we need to transfer two binary digits “10.”

The digital decoding scheme used in the CDMA NoC is
illustrated in Figure 7. The decoding scheme accumulates the
received sum values into two separated parts, a positive part
and a negative part, according to the bit value of the spread-
ing code used for decoding. For instance, as illustrated in
Figure 7, the received first sum value will be put into the pos-
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S bits

Spreading code

0

1
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accumulator

Negative-part
accumulator

Compare
Decoded

data bit

Figure 7: Digital CDMA decoding scheme.

itive accumulator if the first bit of the spreading code for de-
coding is “0,” otherwise, it will be put into the negative accu-
mulator.

The same selection and accumulation operations are also
performed on the other received sum values. The principle
of this decoding scheme can be explained as follows. If the
original data bit to be transferred is “1,” after the XOR logic
in the encoding scheme illustrated in Figure 5, it can only
contribute a nonzero value to the sums of data chips when
a bit of spreading code is “0.” Similarly, the 0-value original
data bit can only contribute a nonzero value to the sums of
data chips when a bit of spreading code is “1.” Therefore, af-
ter accumulating the sum values according to the bit values
of the spreading code, either the positive part or negative part
is larger than the other if the spreading codes have orthogo-
nal and balance properties. Hence, the original data bit can
be decoded by comparing the values between the two accu-
mulators. Namely, if the positive accumulation value is larger
than the negative accumulation value, the original data bit is
“1”; otherwise, the original data bit is “0.”

3.2.2. Spreading code selection

As discussed in Section 3.2.1, the presented encoding/decod-
ing scheme requires the spreading codes used in the CDMA
NoC to have both the orthogonal and balance properties. The
orthogonal property was explained in the first paragraph of
Section 3.2. The balance property means that the number of
bit “1” and the number of bit “0” in a spreading code should
be equal. Because Walsh code [13] has the required orthogo-
nal and balance properties, it is chosen as the spreading code
for the CDMA NoC. In an S-bit (S = 2N , integer N > 1)
length Walsh code set, there are S-1 sequences which have
both the orthogonal and balance properties. Hence, the pro-
posed CDMA NoC can have at most S-1 nodes connecting
with one “CDMA transmitter” and one “network arbiter”
block as illustrated in Figure 2.

3.2.3. Spreading code protocol

In a CDMA network, if multiple users simultaneously use the
same spreading code to encode their data packets for trans-
mission, the data to be transferred will interfere with each
other because of the loss of orthogonal property among the
spreading codes. This situation is called spreading code con-
flict, which should be avoided. Spreading code protocol is a
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policy used to decide how to assign and use the spreading
codes in a CDMA network in order to eliminate or re-
duce the possible spreading code conflicts. Several spread-
ing code protocols have been proposed for CDMA packet
radio network [14, 15]. Among these proposed spreading
code protocols, only transmitter-based protocol (T protocol)
and transmitter-receiver-based protocol (T-R protocol) are
conflict-free if the users in the network send data to each
other randomly. The principles of these two spreading code
protocols will be shortly introduced in the following two
paragraphs.

(1) Transmitter-based protocol (T protocol): the unique
spreading code allocated to each user will be used by the user
himself to transfer data to others.

(2) Transmitter-receiver-based protocol (T-R protocol):
two unique spreading codes will be assigned to each user in
the network, and then a user will generate a new spreading
code from the assigned two unique codes for its data encod-
ing.

Because the T-R protocol has the drawback of using a
large amount of spreading codes and complicated decoding
scheme, T protocol is preferred in the CDMA NoC. How-
ever, if T protocol is applied in the network, a receiver can-
not choose the proper spreading code for decoding because
it cannot know who is sending data to it. In order to solve
this problem, an arbiter-based T protocol (A-T protocol) is
proposed for the CDMA NoC. In a CDMA network which
applies A-T protocol, each user is assigned a unique spread-
ing code for data transfer. When a user wants to send data
to another user, he will send the destination information of
the data packet to the arbiter before starting data transmis-
sion. Then the arbiter will inform the requested receiver to
prepare the corresponding spreading code for data decoding
according to the sender. After the arbiter has got the acknowl-
edge signal from the receiver, it will send an acknowledge sig-
nal back to the sender to grant its data transmission. If there
are several users who want to send data to the same receiver,
the arbiter will grant only one sender to send data at a time.
Therefore, by applying the A-T protocol, spreading code con-
flicts in the CDMA NoC can be eliminated.

3.2.4. Parallel data transfer principle

The parallel data transfer principle of the CDMA NoC is
based on the A-T spreading code protocol described in
Section 3.2.3. By applying A-T spreading code protocol, ev-
ery node in the CDMA NoC needs to send the destination
address of the packets to the “network arbiter” as illustrated
in Figure 2. After getting the grant signal from “network ar-
biter,” the sender node will send data packets to the “CDMA
transmitter” block. The data encoding operations and data
transfers are performed in the “CDMA Transmitter” block.
Finally, the data decoding operation will be carried out by
the data receiving network node. Therefore, the data transfer
process in the CDMA NoC can be clarified by describing the
functions in the “network arbiter” and the “CDMA transmit-
ter” block, respectively.

(1) Network arbiter. After receiving a data transfer request
from a network node, “network arbiter” will inform the re-
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Figure 8: Bit-synchronous transfer scheme.

quested receiver node to prepare the proper spreading code
for decoding and send a grant signal back to the sender node.
In case that there are more than one sender nodes request-
ing to send data to the same receiver node simultaneously or
at different times, the arbiter will apply “round-robin” arbi-
tration scheme or the “first-come first-served” principle to
guarantee that there is only one sender sending data to one
specific receiver at a time. The reason for this limitation is
that the “packet receiver” block in a network node can receive
and decode data from only one sender at a time. However,
if different sender nodes request to send data to different re-
ceiver nodes, these requests will not block each other and will
be handled in parallel in the “network arbiter.” The “network
arbiter” in the CDMA NoC is different from the arbiter used
in a conventional bus. This is because the “network arbiter”
here is only used to set up spreading codes for receiving and
it handles the requests in parallel in the time domain. In con-
trary, a conventional bus arbiter is used to allocate the usage
of the common communication media among the users in
the time-division manner.

(2) CDMA transmitter. The sender node will start to send
data packets to the “CDMA transmitter” after it gets the
grant signal from the arbiter. Then the “CDMA transmitter”
will encode the data to be transferred with the correspond-
ing unique spreading code of the sender node. Although the
“CDMA transmitter” block is implemented by asynchronous
circuits, it applies the bit-synchronous transfer scheme. This
means that the data from different nodes will be encoded
and transmitted synchronously in terms of data bits rather
than any clock signals. In Figure 8, the principle of the re-
ferred bit-synchronous transfer is illustrated by a situation
in which network nodes “A” and “B” send data packets to
“CDMA transmitter” simultaneously and node “C” sends a
data packet later than “A” and “B.” In this situation, the data
packet from node “A” will be encoded and transmitted to-
gether with the data packet from node “B” synchronously
in terms of each data bit. As the data packet from node “C”
arrive at a later time point, the transmitter will handle the
data bit from “packet C” together with the data bits from
packets “A” and “B” at the next start point of the time slot
for bit encoding and transmitting processes. The dotted-line
frame at the head of the “packet C” in Figure 8 illustrates
the waiting duration if the “packet C” arrived in the mid-
dle of the time slot for handling the previous data bit. The
time slot for handling a data bit is formed by a four-phase
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handshake process. The bit-synchronous scheme can avoid
the interferences caused by the phase offsets among the or-
thogonal spreading codes when the data bits from differ-
ent nodes are encoded and transmitted asynchronously with
each other. Because the nodes in the network can request data
transfer randomly and independently of each other, “CDMA
transmitter” applies the “first-come first-served” mechanism
to ensure that the data encoding and transmission are per-
formed as soon as there is a data transfer request.

3.3. Comparison of the data transfer principles

One advantage of the data transfer principle in the CDMA
NoC is the feature of parallel data transfer. Although the data
transfers in the PTP NoC can also be parallel if they take place
in different links among the network nodes, the parallelism
in the PTP NoC is largely limited by the possible traffic con-
gestions in a link because the data are transferred through
a link between two network nodes in a time-division man-
ner. Another advantage of the CDMA data transfer principle
is that no data routing is needed because of the centralized
data transfer scheme. This feature can supply stable trans-
fer latency in the CDMA NoC, which in turn facilitates the
CDMA NoC to provide a guaranteed service for the on-chip
system.

Another advantage of the CDMA NoC is that it can easily
support multicast data transfers by requesting multiple re-
ceiver nodes to use the same spreading code for receiving. In
the PTP NoC, the multicast transfer can be realized only by
sending multiple copies of a data packet to its multiple desti-
nations, unless extra logic is added in each network node to
copy the multicast packet to both the functional host and the
output link to the next node. This increases the traffic load in
the network, or complicates the network implementation.

By comparing with the data transfer principle in the PTP
NoC, one disadvantage of the CDMA data transfer principle
is its complexity caused by the data encoding and decoding
operations. Another drawback of the CDMA data transfer
principle is that the data transfer efficiency obtained by par-
allel transfers in the time domain is compromised by the la-
tency introduced by the data spreading scheme. As presented
in Section 3.2.1, one data bit will be extended to S bits for
the CDMA data transfers. The parameter S is the width of

the spreading code applied in the CDMA NoC. As the num-
ber of nodes in the NoC increases, the width of the applied
spreading code will also be increased. Then the data latency
caused by the data spreading will be also increased.

4. THE NETWORK NODE STRUCTURES

“Network node” block is a common type of component
needed in both of the PTP NoC and the CDMA NoC. How-
ever, different data transfer principles in the two NoC designs
imply different structures in the network nodes. This section
will present the network node structure in each of the two
NoCs.

4.1. Network node structure in the PTP NoC

The network node structure of the PTP NoC is illustrated
in Figure 9. The network node consists of “node if,” “layer
MUX,” and “communication layer” blocks. The two blocks
outside of the network node illustrate how a “functional
host” block as presented in Figure 1 is connected with a net-
work node through a network interface (“network if”) block.
In the PTP NoC, the applied interface standards include
VCI [16] and OCP [17]. As illustrated in Figure 9, GALS
scheme in the network is implemented by applying both syn-
chronous and asynchronous designs in each network node.
The synchronous blocks, “node if” and “layer MUX,” are
used to communicate with locally synchronous “functional
host” in the system, while the asynchronous blocks are used
to perform asynchronous communications among the net-
work nodes. The arrows in Figure 9 demonstrate the data
packet flow in a network node. The blocks in the network
node illustrated in Figure 9 will be introduced in the follow-
ing three paragraphs.

(1) Node if. This block is responsible for assembling the
data from “functional host” into data packets or delivering
the data packets from network node to “functional host”
according to the interface standard applied in “network if”
block.

(2) Layer MUX. As the name of this block indicates, this
block behaves as a multiplexer used to connect “node if”
block with a certain “communication layer” block during the
data transfers between network node and “functional host”
block.
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Figure 10: Network node structure of the CDMA NoC.

(3) Communication layer. The function of this block is
to perform the globally asynchronous communication with
other network nodes through a handshake protocol. As il-
lustrated in Figure 9, the two “communication layer” blocks
in a network node are used to connect with two other net-
work nodes in the bidirectional ring NoC. More “communi-
cation layer” blocks can be used in a network node to im-
plement other types of topology. There are five subblocks in
a “communication layer” block. The “packet receiver” sub-
block is used to receive data packets from another network
node. If the destination of the received packet is the cur-
rent network node, the packet is called “incoming packet,”
and it will be stored in “Rx packet buffer.” Otherwise, the
received packet is called “bypass packet,” and it will be dis-
patched into “packet sender” block via “packet distributor”
for further transferring. The “communication controller”
subblock in Figure 9 represents the controller which takes
care of the necessary arbitrations and communication con-
trol.

4.2. Network node structure in the CDMA NoC

The block diagram of the network node structure of the
CDMA NoC is shown in Figure 10 where the arrows rep-
resent the flows of data packets. In Figure 10, the “network
if” block which belongs to the functional host is an inter-
face block for connecting a functional host with a “network
node.” The GALS scheme is applied in “network node” block
of the CDMA NoC by using synchronous design in the “node
if” subblock and using asynchronous design in the other sub-
blocks. The network interface standards supported in the
CDMA NoC also include the VCI and OCP standards. The
subblocks in the network node will be addressed in the fol-
lowing four paragraphs.

(1) Node if. This block is used to assemble the data from
“functional host” into packets and send the packets to “Tx
packet buffer” or disassemble the received packet from “Rx
packet buffer” and send the extracted data to “functional
host.”

(2) Tx/Rx packet buffer. “Tx packet buffer” is used to store
the data packets from “node if,” and then deliver the pack-
ets to “packet sender.” The “Rx packet buffer” stores and de-
livers the received packets from “packet receiver” to “node
if.”

(3) Packet sender. If “Tx packet buffer” is not empty,
“packet sender” will fetch a data packet from the buffer
by an asynchronous handshake protocol. Then it will ex-
tract the destination information from the fetched packet
and send the destination address to “network arbiter.” Af-
ter “packet sender” gets the grant signal from the arbiter,
it will start to send data packets to “CDMA transmit-
ter.”

(4) Packet receiver. After system reset, this subblock will
wait for the sender information from “network arbiter” to
select the proper spreading code for decoding. After the
spreading code for decoding is ready, the receiver will send
an acknowledge signal back to “network arbiter” and start
to receive data from “CDMA transmitter,” and then send
the decoded data to “Rx packet buffer” in the packet for-
mat.

4.3. Comparison of the network node structures

By comparing with the presented network node in the PTP
NoC, the network node in the CDMA NoC has less com-
plexity. The main reason is that the network node of the
CDMA NoC does not need to handle any bypass packets
or the packet routing issues because of the centralized traf-
fic scheme. Therefore, the “communication controller” block
and the “packet distributor” block in the network node for
the PTP NoC are not needed in the node for the CDMA NoC.
When the data transfer parallelism needs to be increased in
the PTP NoC, more “communication layer” blocks in a net-
work node are needed in order to set up more links with
other nodes, whereas the network node in the CDMA NoC
does not need to change in this situation. One advantage
of both of the network nodes is that they are both replica-
ble because each network node structure in the network is
the same. This advantage makes both the PTP NoC and the
CDMA NoC designs modular.

5. ASYNCHRONOUS DESIGNS

As presented in Section 4, the GALS scheme is applied in
the PTP NoC and in the CDMA NoC by implementing the
global interconnect fabric with asynchronous designs. How-
ever, this is not the only way to implement GALS scheme in
an on-chip network. For example, in “islands of synchronic-
ity” (IoS) methodology presented in [18], the GALS scheme
is implemented in SoC designs by localizing the clock in each
of the functional IP blocks and connecting the isolated clock
“islands,” the functional IPs, with asynchronous communi-
cation links. If the IoS methodology is applied in the pre-
sented PTP NoC and the CDMA NoC, it means that all the
blocks, including network nodes, “CDMA transmitter,” and
“network arbiter,” in the designs need to be synchronous
designs which work with different local clock frequencies.
Then, the communications among the blocks in the NoC de-
signs use asynchronous protocols. The advantage of applying
the IoS methodology is that all the blocks in the design can
be implemented by using standard synchronous design tools
and flow. However, two disadvantages addressed in the fol-
lowing two paragraphs need to be noticed.
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(1) Synchronization cost. The signals need to be synchro-
nized with the local clocks when they cross different clock do-
mains. If the IoS methodology is applied, two synchroniza-
tion operations are needed when data enter into and leave
from the global interconnect fabric during a data transfer
process because the interconnect fabric works with its own
clock rate. If the interconnect fabric is implemented by asyn-
chronous designs, the synchronization step is not needed
when data enter into the global interconnect fabric because
a signal from a synchronous domain can enter into an
asynchronous domain directly. Therefore, synchronization-
related latency and area cost can be reduced 50% if the global
interconnect fabric is implemented by asynchronous designs
directly.

(2) Area and power costs. As presented in Section 4, “Tx/
Rx packet buffer” composed by the asynchronous FIFO pre-
sented in [19] takes a large portion of the network node
structure in both of the NoCs. As addressed in [19], the area
and power costs of the asynchronous FIFO are 51.5% and
54.2% less than a synchronous implementation. Hence, if
all the blocks related with global interconnection are imple-
mented by synchronous designs, the area and power costs of
the “Tx/Rx packet buffer” will be nearly doubled by compar-
ing with the asynchronous implementation.

Therefore, in order to reduce the cost of synchronization,
area, and power, asynchronous designs are applied to imple-
ment the blocks for global interconnections in the PTP NoC
and the CDMA NoC. The asynchronous designs applied in
the two NoC designs will be addressed in this section.

5.1. Asynchronous design in the PTP NoC

The basic component of the PTP NoC is the network node
presented in Section 4.1. As illustrated in Figure 9, the blocks
which apply asynchronous designs in the network node are
the “communication controller,” “packet receiver,” “packet
distributor/sender,” and “packet Rx/Tx buffer” blocks. The
four-phase dual-rail protocol is applied in the asynchronous
designs in order to make the data transfers delay-insensitive.
The control logic used in the asynchronous blocks of the PTP
NoC will be presented in this subsection.

5.1.1. Control logic in the “communication controller”

The “communication controller” block is the main control
block which takes care of data packet receiving, sending, and
storing processes in the network node. Each of the men-
tioned packet handling processes is controlled by a control
pipeline which can be seen as a finite state machine (FSM) in
the “communication controller” block. The control processes
of the FSMs are illustrated in Figure 11 and are explained in
the following three paragraphs.

(1) Packet receiving FSM. As illustrated in Figure 11(a),
there are six states in this FSM. The machine will move from
its initial “rx idle” state to “rx pkt” state when “packet re-
ceiver” starts to receive a packet. After the packet receiving is
completed, the FSM will move to “chk addr” state to check
the destination of the received packet. If the received packet
is “incoming packet,” the FSM will move to “chk buf” state

chk addr chk buf

rx pkt

rx idle

bp pkt st pkt

(a)

tx lp2

tx lp1 tx lp3

tx idle

tx bp3 tx bp1

tx bp2

(b)

rd start rd done

ps idle

wr done wr start

(c)

Figure 11: State transfer graphs of the FSMs.

to check the status of “Rx packet buffer.” If the buffer is not
full, the “incoming packet” will be stored in the buffer dur-
ing “st pkt” state, otherwise, it will be held by “packet re-
ceiver” until there is room available in the buffer. If the re-
ceived packet is “bypass packet,” it will be sent to the net-
work node connected to the output port of current node in
“bp pkt” state.

(2) Packet sending FSM. This FSM illustrated in Figure
11(b) is responsible for sending two types of data packets into
the “Tx packet buffer” in “packet sender” via “packet dis-
tributor” block. One type of packets is “local packet” which
refers to the packet which comes from the “functional host”
connected with the network node. Another type of packets
is the “bypass packet” explained in Section 4.1. For send-
ing “local packet,” the FSM will be triggered by the signal
from the “node if” block after a “local packet” is ready to be
transferred. Then the FSM will go through “tx lp1,” “tx lp2,”
and “tx lp3” states for checking the status of the “Tx packet
buffer,” sending the packet into the buffer, and going back to
“tx idle” state, respectively. The process of sending a “bypass
packet” into the transfer buffer is similar to the process of
sending “local packet” except that the FSM will go through
“tx bp1,” “tx bp2,” and “tx bp3” states.

(3) Packet storing FSM. This FSM presented in Figure
11(c) is used to store or fetch an “incoming packet” to
or from “Rx packet buffer” block. The process of storing
an “incoming packet” will be triggered by packet receiving
FSM during the “st pkt” state as illustrated in Figure 11(a).
The packet storing FSM will go through the “wr start” and
“wr done” states to complete the storing task. The “rd start”
and “rd done” states are for the process of fetching a stored
“incoming packet” from “Rx packet buffer.” The fetching
process will be triggered by the “node if” block after getting
flag signal from“communication controller” block.
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Figure 13: Control pipeline structure in the FSMs.

The presented control FSMs in the “communication con-
troller” block are realized by applying the delay-insensitive
micropipeline control logic presented in [20]. The structure
of the micropipeline control logic is illustrated in Figure 12.
The principle of micropipeline control logic is to use the
output from the current stage to enable or disable the in-
put of previous stage. Two stages of the control pipeline used
in “communication controller” block for building the FSMs
are illustrated in Figure 13. Each stage of the pipeline rep-
resents a state element of an FSM. In Figure 13, we can see
that the FSM uses micropipeline control logic as the back-
bone and few AND gates as the delay components illustrated
in Figure 12, hence it is also delay-insensitive. The state in-
formation of the FSM is passed through each stage in the
pipeline by a four-phase handshake protocol. If we take the
“stage 1” illustrated in Figure 13 as an example, when both
the “req from stage0” and “stag1 enable” signals are “1,” the
output of “C1” will be set to logic “1” which indicates that
the current state of the FSM is in “stage 1.” Then the output
of “C1” can be used as a request signal to trigger the con-
trol logic in the corresponding function blocks for a certain
communication process.

5.1.2. Control logic in other blocks

Besides the FSMs in the “communication controller” block,
control pipelines exist also in other asynchronous blocks
used to perform the concrete task of moving the data pack-
ets in or out of the individual blocks through a four-phase
dual-rail protocol. The FSMs in the “communication con-
troller” block control the processes of receiving, sending, or
storing data packets by triggering the control pipeline in the
corresponding function blocks. The control pipeline struc-
ture used in the “packet receiver,” “packet distributor,” and
“packet sender” blocks is illustrated in Figure 14. This struc-
ture is derived from the micropipeline control logic and is
used to perform data transfers by interacting with the control
signals coming from the “communication controller” block.
For example, when the pipeline structure is used in “packet

enable from stage0

ack ack

ctr fb to stage0 ctr fb from stage2

enable to stage2

req

A1

A2

A3

C1
C2

Stage 1

Figure 14: Block control pipeline structure.

receiver,” it will receive the packet receiving enable signal
from the “communication controller” block as the enable sig-
nal for the first stage of the pipeline structure. Then, a request
signal will be generated by gate “A2” in the pipeline stage
as illustrated in Figure 14. The generated request signal will
start a handshake process to receive and store a packet. When
the acknowledge signal appears at the input of “A1,” it will
turn the output of “C1” to “1,” which will clear the request
signal via “A2” and enable the “C2” to capture the falling edge
of the acknowledge signal through “A3.” The falling edge of
the “ack” signal means that the required tasks of the current
step have been done and the current handshake process is
completed. Hence, when it appears at the input of “A3,” the
output of “C2” will be triggered to “1” to enable the next
stage to take over the control process of the next operation,
for example, receiving next data packet cell in the “packet re-
ceive” block.

The presented block control pipeline structure can only
meet quasidelay-independent (QDI) model because the in-
put “ack” signal is branched to “A1” and “A3,” however, the
timing requirement for distributing the “ack” input signal
along the isochronic wire forks is quite loose since the logic
delays in “A1” and “C1” are usually much larger than the
logic delay of the inverter at the input of “A3.”

The control pipeline structure illustrated in Figure 14 is
also used in the “Tx/Rx packet buffer” blocks to control the
process of accessing the asynchronous FIFOs presented in
[19].

5.2. Asynchronous design in the CDMA NoC

As illustrated in Figure 2 and addressed in Section 4.2, the
asynchronous blocks in the CDMA NoC include the “CDMA
transmitter,” “network arbiter,” “Tx/Rx packet buffer,” and
“packet receiver/sender” blocks. Since the “CDMA trans-
mitter” and “network arbiter” blocks are data-path centric
blocks, the control logic used in these blocks can be com-
posed by a straightforward C-element pipeline as illustrated
in Figure 15. Each stage in the C-element pipeline is enabled
by the enable signals generated by the data completion detec-
tion circuits. The control token will be passed from one stage
to the next one through each C-element in the pipeline.

The control logic used in the “Tx/Rx packet buffer” and
“packet receiver/sender” blocks of the network node for the
CDMA NoC is similar to the control logic illustrated in
Figure 14 except that the enable conditions of the C-element
are different.
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Figure 16: C-element structure.

5.3. Asynchronous design implementation

Since the synchronous designs in the presented PTP NoC and
the CDMA NoC are done in register-transfer level (RTL) by
using VHDL, it would be convenient for the implementation
if the asynchronous designs apply the same design format.
From the control logic structures described, we can see that
the C-element is a basic component widely used in the asyn-
chronous designs and a C-element is normally implemented
in transistor level. Therefore, modeling the C-element in RTL
is an important task for modeling the asynchronous designs
using VHDL. Hence, an RTL two-input C-element structure
is proposed in Figure 16. The proposed C-element structure
is based on a D-flipflop (D-FF) which uses “A AND B” as
the enable (“EN”) signal and “A OR B” as the reset signal
(“CLR”). The data input port (“D”) of the D-FF is attached
to logic “1” constantly. The idea of using a flipflop to build
a C-element has been presented in [21] where an RS-FF is
suggested to be used; whereas, the D-FF C-element structure
in Figure 16 is more stable because it avoids data switching at
the data input port.

The C-element structure illustrated in Figure 16 is
hazard-free under one-input change assumption by apply-
ing the “AND” gate and “OR” gate at the “EN” port and
“CLR” port, respectively. For certain two-input switch pat-
terns, 00→11 and 11→00, the structure in Figure 16 is also
hazard-free; whereas, the input switch patterns, 01→10 and
10→01, are not allowed because they may produce a logic
error which depends on the wire delay. Because all the C-
elements in the PTP and the CDMA NoC designs are used to
follow a four-phase handshake protocol, there are no 01→10
or 10→01 input switch patterns for the C-elements in the de-
signs. Thus, the proposed C-element structure can be safely
used in the NoC designs.
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Figure 17: Six-node PTP NoC simulation network.
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Figure 18: Six-node CDMA NoC simulation network.

By using the proposed RTL C-element structure, the
asynchronous designs of the two NoCs are modeled in RTL
using VHDL. Since the entire designs are in a uniform VHDL
format, the commonly used synchronous design tools and
flow can be used for implementing the NoC designs.

6. PERFORMANCE ESTIMATION

After the structures and designs of the PTP NoC and the
CDMA NoC have been discussed, the performance of the two
NoC designs will be addressed in this section. The two six-
node simulation networks used for performance estimations
and the estimation results will be presented and discussed in
the following subsections.

6.1. The simulation network setup

In order to estimate the performance, two six-node networks
have been set up for simulation purpose. The simulation net-
work which applies the PTP NoC structure is illustrated in
Figure 17, while the network which applies the CDMA NoC
structure is illustrated in Figure 18. In each of the two sim-
ulation networks, six “functional host” blocks are connected
into the network through six network nodes. The network
nodes are connected to each other through the two different
NoC structures, respectively, for the purpose of comparison.
The interface standard applied in the simulation networks
is BVCI standard [16]. Three hosts act as masters and the
other three act as slaves, as denoted by the labels “M” and “S,”
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Table 1: Area cost of the PTP NoC components.

Blocks of network node Area (μm2)

Node IF (BVCI slave type) 13430.8

Layer MUX 18346.0

Communication controller 7823.4

Packet distributor 6783.0

Packet sender (include Tx packet buffer) 44740.6

Packet receiver 6955.0

Rx packet buffer 40255.5

Total area of a network node
(includes 2 “communication layer
blocks”)

244891.8

Table 2: Area cost of the CDMA NoC components.

Block name Area (μm2)

Network node

Node IF 18825.2

Tx/Rx packet buffer 71778.3

Packet sender 17707.0

Packet receiver 23253.0

Total area of a network node 131563.5

CDMA transmitter 10338.3

Network arbiter 17686.5

respectively, in the “network if” blocks. The master hosts can
generate requests to any slave hosts, while the slave hosts can
generate responses only for the received requests passively.
The functional hosts in the two simulation networks are not
implemented as any concrete designs. They are simulated by
the stimulus which comes from the “network if” block to the
network nodes. Hence, the configurations of the two simula-
tion networks are the same except for the connection struc-
tures.

6.2. The area costs

By using the scheme described in Section 5.3, both the syn-
chronous and asynchronous designs in the simulation net-
works are realized in RTL using VHDL. A 0.18 μm standard
cell library is used for synthesizing the two simulation net-
works. The area costs of the two simulation networks are
listed in Tables 1 and 2, respectively. As listed in Table 2, the
area cost of the “network node” in the CDMA NoC is 53%
smaller than the area of the “network node” block in the PTP
NoC. The reason of this big difference of the area costs is
that there are two “communication layer” blocks contained
in each network node of the PTP NoC in order to set up bidi-
rectional ring links. After including the area costs of “CDMA
transmitter” and “network arbiter” blocks, the total area cost
of the six-node CDMA NoC is 55% smaller than the area cost
of the six-node PTP NoC.

6.3. The data transfer latencies

After the networks were synthesized, gate-level simulations
of the two networks were performed using an event-driven

Table 3: Synchronous transfer latency.

Interface type
Latency of sending
data to “network
node”

Latency of receiving
data from “network
node”

BVCI master
8 local clock cycles +
2.5 ns

8 local clock cycles +
3.2 ns

BVCI slave
4 local clock cycles +
2.5 ns

4 local clock cycles +
3.1 ns

Network node 0 Network node 1 Network node 2

PLL PTL PBL PTL PSL

ATL

Figure 19: ATL parameters of the PTP NoC.

simulator. Because the GALS scheme is applied in the two
simulation networks, the data transfer latency of the net-
works can be separated into two parts which include syn-
chronous transfer latency (STL) and asynchronous transfer
latency (ATL). The STL refers to the data transfer latency be-
tween a functional host and the network node attached to
it. STL depends on the local clock and the type of interface.
Since the same “node if” block is applied in both networks,
the STL values for the two simulation networks are the same.
The measured STL values are listed in Table 3. The constant
values in Table 3 are caused by the handshakes in the asyn-
chronous domain. They are independent of the local clock
rate but belong to the synchronous transfer processes. There-
fore they are counted as a part of STL.

The ATL refers to the data transfer latency of transfer-
ring data packets from one network node to the other node
through an NoC structure using asynchronous handshake
protocols. The ATL values in the PTP and CDMA simula-
tion networks consist of different parameters which will be
discussed in the following subsections.

6.3.1. ATL in the PTP NoC

The ATL in the PTP NoC consists of four parameters: packet
loading latency (PLL), packet transfer latency (PTL), packet
bypass latency (PBL), and packet storing latency (PSL).
These latency parameters are measured in a noncongested
situation which means that no conflicts between “bypass
packet” transfer and the “local packet” transfer are included
in the simulation. The concept of the four latency param-
eters is illustrated in Figure 19 with an example that “net-
work node 0” sends one packet to “network node 2” via “net-
work node 1.” The black arrows in Figure 19 represent the
packet transfer direction. The portions of the transfer used
to measure the different parameters of latency are marked by
grey arrows in Figure 19 and are explained in the next four
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Table 4: Measured ATL values of the PTP NoC.

Packet length PLL (ns) PTL (ns) PBL (ns) PSL (ns)

2 data cells 11.7 9.7 10.7 3.3

3 data cells 15.2 13.1 14.2 3.3

4 data cells 18.6 16.5 17.6 3.3

Network node 0 Network node 1

PLL PTL PSL

ATL

Figure 20: ATL parameters of the CDMA NoC.

paragraphs,

ATL = PLL + PTL×(N + 1) + PBL×N + PSL . (1)

(1) Packet load latency (PLL). It is the time used to load
one “local packet” into “Tx packet buffer.”

(2) Packet transfer latency (PTL). This latency refers to
the time used to transfer one data packet from the “packet
sender” of a network node to the “packet receiver” of an ad-
jacent node using a handshake protocol.

(3) Packet bypass latency (PBL). After a network node re-
ceives a packet from another node, it will check its destina-
tion address. If it is a “bypass packet,” it will be delivered into
“Tx packet buffer.” The time spent on this process is called
PBL.

(4) Packet storing latency (PSL). It is the time spent on
storing one “incoming packet” into “Rx packet buffer.”

The formula of calculating the ATL of transferring one
packet in the PTP NoC is given in (1). It represents the sit-
uation in which the packet traverses several network nodes
before reaching its destination. N refers to the number of in-
termediate nodes between the source node and destination
node of a packet. If a packet is transferred between two adja-
cent network nodes, then N is 0. The values of ATL param-
eters measured in the simulation are listed in Table 4. The
listed latency values only include the logic gate delay of the
circuits, no wire delay is considered. More accurate latency
values could be obtained by including the wire delay after
layout.

6.3.2. ATL in the CDMA NoC

The ATL in the CDMA NoC consists of three parameters:
packet loading latency (PLL), packet transfer latency (PTL),
and packet storing latency (PSL). The concept of those ATL
parameters is illustrated in Figure 20 with an example where
“network node 0” sends one data packet to “network node
1.” The black arrows in Figure 20 represent the packet trans-
fer direction. The portions of the transfer used to measure

Table 5: Measured ATL values of the CDMA NoC.

Packet length PLL (ns) PTL (ns) PSL (ns)

2 data cells 5.7 384.6 5.5

3 data cells 5.7 768.9 5.5

4 data cells 5.7 1153.7 5.5

the different parameters of ATL are marked by grey arrows
in Figure 20 and are explained in the following three para-
graphs.

(1) Packet load latency (PLL). This is the time used by the
“packet sender” block in a “network node” to fetch one data
packet from “Tx packet buffer” and prepare to send the data
packet to “CDMA transmitter.”

(2) Packet transfer latency (PTL). This latency refers to
the time used to transfer one data packet from the “packet
sender” of the sender node to the “packet receiver” of the
receiver node through the CDMA channel using a handshake
protocol.

(3) Packet storing latency (PSL). After the receiver node
receives a data packet, it will spend a certain amount of time
to store the received data packet into “Rx packet buffer.” This
time duration is measured as PSL.

The measured values of ATL parameters of the CDMA
NoC are listed in Table 5. The listed latency values only in-
clude the logic gate delay of the circuits, no wire delay is
considered. In Table 5, we can see that PTL increases as the
packet length increases. This is because the data cells in a
packet are sent in a serial manner in the CDMA NoC. Thus,
more data cells need more transmission time. The PLL and
PSL values are not affected by the packet length. The reason is
that the data cells in a packet are loaded or stored in a parallel
manner.

6.3.3. Comparing the ATL values

From the simulation results presented in Sections 6.3.1 and
6.3.2, we can see that the ATL value in the six-node CDMA
NoC is a stable value for a certain data packet length, whereas
the ATL value in the PTP NoC is a variable depending on the
packet traffic route. The ATL parameter “PBL” of the PTP
NoC does not exist in the ATL of the CDMA NoC because
the data packets in the CDMA NoC are transferred directly
from their source nodes to their destination nodes. The sta-
ble ATL value is an advantage of the CDMA NoC since it is
very helpful for supplying guaranteed transfer latency ser-
vice in the network. However, by comparing with the ATL
value of the PTP NoC, the ATL value of the CDMA NoC
is much larger. For example, according to values listed in
Table 5, ATL of transferring a two-cell packet in the CDMA
NoC is 395.8 nanoseconds. This value equals the ATL value
of transferring the same size packet through 17 intermediate
nodes in the PTP NoC according to (1) and Table 4. The rea-
son for the large ATL value in the CDMA NoC is that each
original data bit is extended into S bits by an S-bit spreading
code during the obligatory data spreading process for CDMA
transmission, and the encoded data are transferred bit by bit
in the current realization of the CDMA NoC; whereas, in the
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PTP NoC, the data bits are transferred cell by cell without
any encoding, namely 32 original data bits are transferred at
one time. Therefore, the ATL value of CDMA NoC can be
reduced by transferring the encoded bits in parallel.

6.4. SystemC modeling for further estimation

The data transfer latency estimations made in Section 6.3 are
based on two six-node simulation networks. However, in dif-
ferent applications, the number of nodes in an NoC can be
different. Therefore, data transfer latency estimations under
different numbers of network nodes of the two NoC designs
would be helpful for further evaluation.

As discussed in Section 6.3.1, the data transfer latency of
the PTP NoC is mainly affected by the number of intermedi-
ate network nodes which a packet passes through during the
transfer. Therefore, by using the transfer latency values ex-
tracted from the six-node RTL simulation network, the ATL
values of the PTP NoC with different numbers of network
nodes can be estimated by using (1). For the CDMA NoC,
the ATL values with different network node numbers are dif-
ficult to get from the six-node simulation network presented
in Section 6.3 due to the lack of scalability in the CDMA
NoC. Since the data transfer latency estimation presented in
Section 6.3 is based on the RTL simulation network realized
by using VHDL, any changes in the simulation network will
incur a time-consuming synthesis and simulation design cy-
cle. Therefore, a flexible and fast simulation model of the
CDMA NoC is preferred for further ATL performance esti-
mations of the CDMA NoC.

SystemC [22] is a C++ class library which can be used
to model system-level designs. Since a SystemC model is to-
tally described by a software programming language, the ab-
straction level of the system model can be very flexible and
the simulation can run at a faster speed than an RTL model.
Thus, a SystemC model of the CDMA NoC is built for the
flexible and fast simulation purpose.

The SystemC model of the CDMA NoC is built in trans-
action level by modelling each block of the CDMA NoC as a
channel [22]. The asynchronous communications among the
blocks are modelled by calling each others’ channel interface
functions in the SystemC model. In order to estimate the ATL
values of the CDMA NoC via the transaction-level SystemC
model, a set of latency values listed in Table 6 is extracted
from the gate-level simulation of the RTL six-node CDMA
network presented in Section 6.3. By back-annotating the
transfer latency values to the corresponding channels in the
SystemC model, the ATL estimations of the CDMA NoC with
different numbers of network nodes can be obtained through
simulating the SystemC model in transaction level. The ob-
tained ATL estimation values from the SystemC model sim-
ulations are listed in Table 7. From Table 7, we can see that
the transfer latency of the CDMA NoC increases as the num-
ber of network nodes increases. The main reason of the la-
tency increasing is that the data encoding latency in “CDMA
transmitter” block is getting larger when the number of net-
work nodes increased. Another reason is that the width of the
orthogonal codes used for encoding increases as the num-
ber of nodes increased in the network. Thus, the spreading

Table 6: Extracted transfer latency values.

Blocks Processes Latency

Tx/Rx packet buffer
Read 10.9 ns

Write 11.5 ns

Packet sender
Send a 2-cell packet to
“CDMA transmitter”

99.2 ns

Packet receiver
Load decoding PN code 1.2 ns

Receive a 2-cell packet from
“CDMA transmitter”

192.0 ns

Network arbiter Arbitration 4.3 ns

CDMA transmitter Data encoding 2.9 ns

Table 7: ATL estimation values of the CDMA NoC with different
numbers of nodes.

Number of nodes
Spreading code
length (bits)

ATL of sending
a 2-cell packet

3 4 362.7 ns

6 8 411.8 ns

12 16 510.0 ns

24 32 706.4 ns

code loading latency in “packet receiver” block would be in-
creased as a consequence. Because the back-annotated Sys-
temC model of the CDMA NoC only uses a limited number
of extracted latency values presented in Table 6, the ATL val-
ues listed in Table 7 only can give a quick glimpse on the la-
tency situations when the number of network nodes in the
CDMA NoC is changed. The accurate latency information
needs to be obtained through real circuit implementations.

7. CONCLUSION

A PTP connection NoC and a CDMA connection NoC were
examined and compared in this paper. Both of the presented
NoC designs are packet-switched networks and support the
GALS communication scheme. The two NoC designs are
compared in terms of NoC structures, data transfer princi-
ples, network node designs, asynchronous designs, and the
performances. The features of the two NoC structures are
summarized in the following five paragraphs.

(1) NoC structures. The PTP NoC applies direct links
among the network nodes and a distributed traffic scheme
for the data communication. The CDMA NoC applies a cen-
tralized connection scheme and provides parallel data trans-
fers in time domain.

(2) Data transfer principles. The PTP NoC transfers data
packets in their original form among the links in the net-
work. The CDMA NoC applies CDMA technique to share the
centralized communication channel among all the network
nodes both in time and space domains. The data streams
from different network nodes in the CDMA NoC are sep-
arated from each other by encoding them with a set of or-
thogonal codes.
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(3) Network node designs. The network node structure
in the PTP NoC is more complex than the structure of the
network node in the CDMA NoC. The communication con-
trol tasks in the CDMA NoC network node are less than the
tasks in the PTP NoC network node. The complexity caused
by packet routing processes in the network node of the PTP
NoC is avoided in the network node of the CDMA NoC.

(4) Asynchronous designs. The asynchronous designs ap-
plied in the PTP and CDMA NoCs are similar to each other.
The four-phase dual-rail protocol is applied in both NoC de-
signs. The control logic used in the asynchronous designs of
the two NoC designs is based on the micropipeline control
logic. Both the synchronous and asynchronous designs in the
two NoC designs are realized in RTL using VHDL.

(5) Performance estimations. Two simulation networks
which apply the PTP NoC structure and the CDMA NoC
structure, respectively, have been synthesized using a 0.18 μm
standard cell library. The area cost of the CDMA simulation
network is 55% smaller than the PTP simulation network.
When the number of network nodes is certain, the ATL value
of the CDMA NoC is a stable value for the same-size pack-
ets. However, the ATL value of the PTP NoC is smaller than
the value of the CDMA NoC when no data transfer conges-
tions are considered in the PTP NoC. One reason of the large
ATL in the CDMA NoC is that the applied data spreading
technique produces a large amount of encoded data bits for
transmission. Another reason is that the encoded data are de-
livered bit by bit in the CDMA NoC, whereas the PTP NoC
transfers 32 data bits at one time. Therefore, the ATL value
of the CDMA NoC can be improved largely by increasing the
number of data bits delivered at one time.
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Abstract— Based on a previously developed Code-Division 
Multiple-Access (CDMA) Network-on-Chip (NoC) structure, 
this paper examines the overhead cost of data encoding and 
decoding operations in the CDMA data switching scheme by 
comparing it with another non-blocking concurrent data 
switching scheme, crossbar, in the same six-node on-chip 
network environment. Different data path configurations 
are explored in the realizations of the six-node network in 
order to further examine the characteristics of the CDMA 
NoC. The crossbar structure is realized by parallel 
multiplexers. The two different realizations of the six-node 
network which apply the CDMA scheme and crossbar 
scheme separately are realized in Register-Transfer Level 
(RTL) by using Hardware Description Language (HDL). 
Based on the RTL realizations, area and power costs, data 
transfer latencies, and the number of data wires of the two 
schemes is compared. 

Keywords—Code-Division Multiple-Access, Crossbar, 
Network-on-Chip 

I. INTRODUCTION 
Driven by the complexity of System-on-Chip (SoC) 

applications, more and more components are integrated 
into an on-chip system. Thus, the communication among 
the large number of components is a challenging task to 
deal with. In this situation, Network-on-Chip is proposed 
to handle the communications in an on-chip system. 
Namely, the concerns of communication are separated 
from computation by applying a dedicated on-chip 
communication network in a SoC design. The published 
NoC structures can be classified into two categories, 
circuit-switched network and packet-switched network, 
according to data switching schemes. The circuit-switched 
network, such as PROPHID [1], connects the terminals in 
the network by allocating them a set of time or space 
slices on the communication links. The packet-switched 
networks, e.g. Æthereal [2] and Proteo [3], share the 
communication links among all the terminals in space and 
time domains by encapsulating data into packet format 
and delivering them through routers or switch nodes. 

For performing the data transfers among a large amount 
of components in the future SoC, the packet-switched 
scheme is a more promising choice than circuit-switched 
scheme in terms of scalability and parallelism. However, 
routing issue is a main challenge of a packet-switched 
NoC because it affects the packet transfer latency in the 
network severely. One type of solutions is to optimize the 
routing scheme to equalize and improve data transfer 
latencies when data packets are transferred to their 
destinations via different routes. Another type of solutions 
is to avoid the routing issue by applying non-blocking 
concurrent data switching scheme which means that data 
transfers which have different destinations can be 

performed concurrently without blocking each other. In 
this paper, the costs and performance of applying two 
non-blocking concurrent data switching schemes in a NoC 
design are presented and compared. 

A CDMA scheme [4] has been proposed to implement 
the non-blocking concurrent data switching scheme in a 
NoC design. CDMA technique applies a set of orthogonal 
codes to encode the data from different users before 
transmission in a shared communication media. Hence, it 
permits multiple users to use the communication media 
concurrently by separating the different data from 
different users in the code domain. The CDMA scheme 
presented in [4] uses the feature of multiple access of 
CDMA technique to transfer the data packets from 
different sources to their destinations directly and 
concurrently. The main overhead of the CDMA NoC 
structure is the complexity and data transfer latency 
caused by data encoding and decoding operations. 
Another type of non-blocking concurrent data transfer 
scheme is crossbar which avoids data encoding and 
decoding operations while keeping the feature of 
concurrent data transfers. Therefore, in order to examine 
the overhead of applying CDMA technique in a NoC, a 
crossbar structure realized by parallel multiplexers is 
presented and compared with the CDMA NoC. 
Furthermore, in this paper, the characteristics of the 
CDMA NoC are further examined by realizing the NoC 
with different data path configurations. 

The rest of this paper is arranged as follows. Section II 
will compare the CDMA data switching scheme with the 
crossbar scheme in terms of data transfer principles and 
network structures. The realizations of the six-node 
CDMA NoC and crossbar NoC with different data path 
configurations will be presented in Section III. Section IV 
will present and compare the simulation results based on 
the RTL realizations of the six-node network. Finally, the 
conclusions will be drawn in Section V. 

II. COMPARING THE CDMA AND CROSSBAR DATA 
SWITCHING SCHEMES 

In this section, data transfer principles of the CDMA 
data switching scheme and the crossbar scheme will be 
compared firstly. Then the NoC structures which apply the 
two data switching schemes will be compared. 

A. Data Transfer Principles 
As the name indicated, the CDMA data switching 

scheme applies the Code-Division Multiple-Access 
communication technique [5] to transfer data among 
multiple users concurrently. The principle of CDMA data 
transfer is illustrated in Fig.1. Each data stream from 
different users is encoded with a unique orthogonal 
spreading code at the sending end. Then the encoded data 
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Fig. 1.  CDMA Data Transfer Principle 

from different users are added together for transmission in 
a shared communication media without interfering with 
each other because of the orthogonal property of the 
spreading code. The orthogonal property means that the 
normalized autocorrelation value of the spreading codes is 
1, while the normalized cross-correlation value is 0. At the 
receiving end, each data stream from different users can 
be decoded from the received sum signals by using the 
same spreading code for encoding as illustrated in Fig.1. 

Crossbar is a well-known structure for building a 
circuit-switched network. The data transfer principle of 
crossbar is illustrated in Fig.2 with a four-port switch. In 
the crossbar structure, an input can be connected to any 
outputs by optionally closing the switches between input 
and output lines. For correct operation, one output can be 
connected to at most one input. 

From the introduced data transfer principles, we can see 
that the data transfers in the CDMA scheme and the 
crossbar scheme are non-blocking and concurrent because 
a dedicated data transfer channel can be set up from each 
input to its selected output without any conflicts with 
other channels if the selected outputs are different. Hence, 
the crossbar scheme is a good reference to evaluate the 
overhead of applying the CDMA scheme in a NoC. 

B. Applying the CDMA Scheme and Crossbar Scheme 
In a NoC 

In order to adapt the CDMA scheme and crossbar 
scheme into a NoC design, all the operations or structures 
in the schemes need to suit the commonly used digital 
circuit design. The following two paragraphs describe the 
methods of implementing the CDMA and crossbar 
schemes for NoC designs. 

The key operations in the CDMA scheme are data 
encoding and decoding. The detailed information of 
implementing the encoding and decoding operations for a 
NoC design has been presented in [4] and briefly 
summarized as follows. The encoding operations are 
performed by XOR logic gates in the design, while the 
decoding operations are carried out by accumulating the 
received sum values into two separate parts according to 
the bit value of the spreading code used for decoding. 
Then the original data value can be restored by comparing 
the values in the two accumulators. 

In order to realize the crossbar scheme in a NoC design, 
multiplexers can be used to set up the switches between 
input ports and output ports. An example structure of 
realizing crossbar among four nodes is illustrated in Fig.3. 
It uses four 3:1 multiplexers to build the required data 
switching channels. The control signal of each multiplexer 
is generated by the arbitration result of the input requests. 

in 0

in 1

in 2

in 3

out 0 out 1 out 2 out 3  
Fig. 2.  Four-Port Crossbar Structure 

Node 4Node 3

Node 2Node 1

 
Fig. 3.  Four-Node Crossbar Realized by Multiplexers 

C. NoC Structures 
The NoC structure which can apply either CDMA 

scheme or crossbar scheme is illustrated in Fig.4. If the 
CDMA scheme is applied, the NoC structure contains 
‘Network Node’, ‘CDMA Transmitter’, and ‘Network 
Arbiter’ blocks. If the crossbar scheme is applied, we need 
to replace the ‘CDMA Transmitter’ and ‘Network Arbiter’ 
blocks with ‘Crossbar Switch’ block as illustrated in Fig.4. 

‘Network Node’ block is used to connect the functional 
Intellectual Property (IP) blocks (‘Functional Host’) into 
the on-chip network. The structure and function of the 
‘Network Node’ blocks for the CDMA NoC and the 
crossbar NoC will be presented in Section II D.  

The function of ‘CDMA Transmitter’ and ‘Network 
Arbiter’ blocks in the CDMA NoC which have been 
presented in [4] will be briefly summarized in the 
following paragraph. 

‘Network Arbiter’ takes care of informing the requested 
receiver node to prepare the proper spreading code for 
decoding, and then sending a grant signal back to the 
sender node. After getting the grant signal, the sender 
node will start to send data packets to ‘CDMA 
Transmitter’. In case that there are more than one sender 
node requesting to send data to the same  receiver node, 
the arbiter will apply the ‘first come, first served’ principle 
to guarantee that only one sender is  sending data to one 
specific receiver at a time. If different sender nodes 
request to send data to different receiver nodes, these 
requests would not interfere with each other and will be 
handled in parallel in the ‘Network Arbiter’. The main 
task of the ‘CDMA Transmitter’ block is to receive data 
packets from different network nodes and encode the data 
with the corresponding unique spreading code of the 
sender node. Because the nodes in the network can request 
data transfer randomly and independently of each other, 
‘CDMA Transmitter’ also applies the ‘first come, first 
served’ mechanism to ensure that the data encoding and 
transmission are performed as soon as a data transfer 
request appears. 

In the crossbar NoC, ‘Crossbar Switch’ block consists 
of multiple channel multiplexers to set up data channels 
between certain network nodes according to data transfer 
requests. The number of channel multiplexers in the 
‘Crossbar Switch’ block is equal to the number of 
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Fig. 4.  The CDMA and Crossbar NoC Structure 

network nodes in the NoC. Each channel multiplexer 
contains arbitration logic to control the selection of the 
output. When multiple data transfer requests from 
different network nodes come to a channel multiplexer 
simultaneously, the multiplexer will record the requests 
and serve one request at a time. For the requests that come 
at different times, a channel multiplexer will serve the 
requests by the principle of ‘first come, first served’. After 
setting up the data channel, a channel multiplexer will 
send a grant signal back to the sender node to enable the 
data transfer process. 

Since the crossbar NoC is exempted from data encoding 
and decoding operations in the CDMA NoC, it has 
simpler structure than the CDMA NoC. Although the 
CDMA and crossbar data switching schemes are non-
blocking, the NoC which applies either of these two data 
switching schemes is not non-blocking network because 
of the buffers introduced in the ‘Network Node’ blocks. 

D. ‘Network Node’ Structures 
The structure of ‘Network Node’ blocks for the CDMA 

NoC and the crossbar NoC are same except the different 
functions in ‘Packet Receiver’ and ‘Packet Sender’ sub-
blocks. The block diagram of a ‘Network Node’ block is 
illustrated in Fig.5. It consists of ‘Node IF’, ‘Tx/Rx 
Buffer’, ‘Packet Sender’, and ‘Packet Receiver’ sub-
blocks. As illustrated in Fig.5, the ‘Network IF’ block 
which belongs to the functional host is an interface block 
for connecting a functional host with a ‘Network Node’. 
Because the different functional hosts may work at 
different clock frequencies as illustrated in Fig.4,  
Globally-Asynchronous Locally- Synchronous (GALS) 
scheme [6] scheme is applied in the network node by 
using synchronous design in the ‘Node IF’ block and 
using asynchronous design in the other blocks. VCI [7] or 
OCP [8] interface standards can be applied to transfer data 
between ‘Network IF’ and ‘Node IF’. The function of the 
sub-blocks in a ‘Network Node’ will be described in the 
following four paragraphs. 

1) ‘Node IF’. This block is used to assemble the data 
from the functional host into packet format and send the 
packet to ‘Tx Packet Buffer’, or disassemble the received 
packet from ‘Rx Packet Buffer’ and send data to the 
functional host.  

2) ‘Tx/Rx Packet Buffer’. These two blocks are the 
buffers which consist of the asynchronous FIFO presented 
in [9]. ‘Tx Packet Buffer’ is used to store the data packets 
for transfer. The ‘Rx Packet Buffer’ stores and delivers the 
received packets from ‘Packet Receiver’ to ‘Node IF’. 

3) ‘Packet Sender’. In the CDMA NoC, when ‘Tx 
Packet Buffer’ is not empty, ‘Packet Sender’ will fetch a 
data packet from the buffer. Then it will extract the 
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Fig. 5.  The Network Node Block Diagram 

destination information from the packet and send the 
destination address to ‘Network Arbiter’. After ‘Packet 
Sender’ gets the grant signal from the arbiter, it will start 
to send the data packet to ‘CDMA Transmitter’. In the 
crossbar NoC, after fetching a packet from the buffer, the 
‘Packet Sender’ will assert a request signal to the channel 
multiplexer attached to the receiver node. After ‘Packet 
Sender’ gets the grant signal from the requested channel 
multiplexer, it will start to send the data packet to the 
receiver node through the multiplexer. After a data packet 
transfer is completed, the ‘Packet Sender’ needs to clear 
the request signal in order to release the requested channel 
multiplexer for serving requests from other nodes. 

4) ‘Packet Receiver’. In the CDMA NoC, this block 
will wait for the sender information from ‘Network 
Arbiter’ to select the proper spreading code for decoding. 
After the spreading code for decoding is ready, the 
receiver will start to receive and decode the data from 
‘CDMA Transmitter’, and then send the decoded data to 
‘Rx Packet Buffer’ in packet format. In the crossbar NoC, 
this block will wait for the request from the multiplexer 
block attached with it. When the request comes, the 
‘Packet Receiver’ block will first receive the data packet 
and then deliver it to ‘Rx Packet Buffer’ block. 

III. REALIZATIONS OF A SIX-NODE NOC 
In order to compare the performance of the CDMA and 

crossbar data switching schemes in a NoC surrounding, a 
six-node network is built for simulation purpose. This 
simulation network has the same configurations with the 
network presented in [4] except that different data path 
configurations of the network are explored in this work to 
further examine the characteristics of the CDMA NoC. 
The different realizations of the six-node simulation 
network will be addressed and compared in this section. 

A. Simulation Network Setup 
The six-node simulation network is illustrated in Fig.6. 

Each functional host works in different clock frequencies. 
The interface standard applied in the network is Basic VCI 
(BVCI) [7] standard. Three hosts act as initiators and the 
other three act as targets, as denoted by the labels ‘I’ and 
‘T’ respectively in the ‘Network IF’ blocks. The initiator 
hosts can generate requests to any target hosts, while the 
target hosts can generate responses only for the received 
requests passively. The basic data unit transferred in the 
network is a data packet composed of one header cell and 
several data cells. The number of data cells in a packet 
varies from one to three, while the width of each packet 
cell is fixed at 32 bits. As illustrated in Fig.6, the 
interconnection structure in the network is either ‘CDMA 
Transmitter’ and ‘Network Arbiter’ blocks or the 
‘Crossbar Switch’ block. For the CDMA scheme 
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Fig. 6.  Six-Node Simulation Network 

realization, the spreading codes used in the network are 
six 8-bit Walsh codes. For the crossbar scheme realization, 
the ‘Crossbar Switch’ block is composed by six 
multiplexers similar with the example illustrated in Fig.3. 

B. Data Path Configuration 
The CDMA NoC presented in [4] delivers one data bit 

from the sender to the receiver at one time. Namely, the 
data path was set to 1-bit. In the CDMA NoC, since one 
original data bit will be spread into S bits after encoding, 
the degree of data transfer parallelism between the 
‘CDMA Transmitter’ and ‘Packet Sender/Receiver’ 
blocks affects the data transfer latency largely. Therefore, 
increasing the number of data bits encoded and delivered 
via ‘CDMA Transmitter’ at one time can reduce the data 
transfer latency in the CDMA NoC. However, increasing 
the data processing and delivering parallelism will incur 
larger area cost. Therefore, in order to figure out the trade-
off character between the data path width and the area cost, 
four different data path widths are explored in both the 
CDMA NoC and the crossbar NoC realizations. 
According to the number of data bit transferred from a 
‘Packet Sender’ to a ‘Packet Receiver’ through ‘CDMA 
Transmitter’ in the CDMA NoC or through ‘Crossbar 
Switch’ in the crossbar NoC, the data path configurations 
are named as 1-bit, 8-bit, 16-bit, and 32-bit schemes. 

C. Area Costs 
Both the synchronous and asynchronous designs in the 

network illustrated in Fig.6 are realized in RTL using 
VHDL in order to suit the conventional synchronous 
design tools and flow. The same 0.18µm standard cell 
library used to synthesize the realizations of CDMA and 
crossbar NoCs. The data width and buffer depth in a 
‘Network Node’ block are set to 32 bits and 4 respectively. 
The logic-gate area costs of the components in the CDMA 
and crossbar networks under different data path 
configurations are listed in Table I and Table II 
respectively. Since the designs of ‘Node IF’ and ‘Tx/Rx 
Packet Buffer’ blocks are same in the two NoC 
realizations, the area costs of these two blocks are same in 
both realizations. The big difference appears in the area 
cost of ‘Packet Receiver’ block. The ‘Packet Receiver’ 
block in the crossbar NoC is much smaller than the one in 
the CDMA NoC because it does not have any data 
decoding circuits. Because there is no data encoding in the 
crossbar NoC, the area cost of one single channel 
multiplexer is much smaller than the total area of the 
‘CDMA Transmitter’ and ‘Network Arbiter’ blocks in the 

Table I. Area Cost of CDMA NoC Components 
Area (µm2)  1-bit 8-bit 16-bit 32-bit 

Target 18825.2 Node 
IF Initiator 45674.5 
Tx/Rx Packet 

Buffer 71778.3 

Packet Sender 17707.0 17756.2 17805.3 11321.3 
Packet Receiver 23253.0 86241.3 161390.6 311623.7

CDMA 
Transmitter 10338.3 46710.8 90935.3 178368.5

Network 
Arbiter 11014.1 

Table II. Area Cost of Crossbar NoC Components 
Area (µm2) 

 1-bit 8-bit 16-bit 32-bit 
Target 18825.2 Node 

IF Initiator 45674.5 
Tx/Rx Packet 

Buffer 71778.3 

Packet Sender 17813.5 17862.6 17911.8 18092.0 
Packet Receiver 11710.5 10653.7 10833.9 10989.6 
Channel MUX 2773.0 3821.6 5136.4 7761.9 

Table III. Total Area Cost of The Two Six-Node NoC 
Area (µm2) 

 1-bit 8-bit 16-bit 32-bit 
CDMA 

NoC 1331118.1 1745518.6 2247491.5 3209482.3 

Crossbar 
NoC 1251684.4 1251938.3 1261252.6 1278799.9 

 
CDMA NoC. However, in the crossbar NoC, each node 
needs a channel multiplexer block. Thus, the area cost of 
all the multiplexers will increase linearly when the 
number of nodes increases in the crossbar NoC. 

The total area costs of the two six-node network 
realizations under different data path configurations are 
listed in Table III. We can see that the area cost of the 
CDMA NoC becomes 2.4 times larger when the data path 
width increases from 1-bit to 32-bit. Whereas, the area 
cost of the crossbar NoC only increases 2.2% in the same 
situation. Therefore, introducing CDMA technique incurs 
a large area overhead in the six-node simulation network.  

D. Number of Data Wires 
By avoiding data encoding and decoding schemes in the 

CDMA NoC, the crossbar NoC has smaller area cost by 
setting up direct connections from each input to each 
output. However, these direct connections cause a large 
overhead of the number of data wires in the crossbar NoC. 
This sub-section will address and compare the number of 
data wires in the CDMA NoC and crossbar NoC. 

The number of data wires in the crossbar NoC refers to 
the number of data wires between ‘Network Node’ blocks 
and channel multiplexer blocks. The equation for 
calculating the number of data wires in the crossbar NoC 
is given in (1). In (1), parameter ‘n’ refers to the number 
of network nodes in the NoC, and parameter ‘w’ refers to 
the data path width. The first term of (1) represents the 
data wires for connecting the data output port of each 
node to all the other nodes via channel multiplexers in the 
network. The second term of (1) refers to the data wires 
between the data output port of a channel multiplexer and 
its attached network node. 
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Table IV. Number of Data Wires 
Number of Data Wires  n=6, s=8 n=15, s=16 n=31, s=32

w = 1 36 225 961 
w = 8 288 1800 7688 
w = 16 576 3600 15376 

Crossbar 
NoC  

w = 32 1152 7200 30752 
w = 1 30 79 191 
w = 8 240 632 1528 
w = 16 480 1264 3056 

CDMA 
NoC  

w = 32 960 2528 6112 
 

2
_ )1( nwwnwnnN noccrossbar ⋅=⋅+⋅−⋅=     (1) 

 
nswwnN noccdma 2_ log⋅⋅+⋅=               (2) 

 
In the CDMA NoC, the number of data wires refers to 

the number of data wires between ‘Network Node’ blocks 
and ‘CDMA Transmitter’ block. The equation for 
calculating the number of data wires in the CDMA NoC is 
given in (2). In (2), the meaning of parameters ‘n’ and ‘w’ 
is same with the parameters in (1). The parameter ‘s’ 
refers to the bit width of spreading codes used in the 
CDMA NoC. The first term in (2) represents the data 
wires for connecting data output port of each network 
node with data input port of ‘CDMA Transmitter’ block. 
The number of data wires from the data output port of 
‘CDMA Transmitter’ is represented by the second term in 
(2). In the CDMA NoC, each data bit to be transferred will 
be extended into s bits by the s-bit spreading code after 
data encoding step. Each bit of the s-bit encoded data is 
called a data chip. Then each data chip from different 
network nodes will be added together in the ‘CDMA 
Transmitter’ block. The sum value for n data chips from n 
network nodes can be represented by log2n bits. Therefore, 
the ‘CDMA Transmitter’ need to use s·log2n bits to 
represent the all the sum values of s-bit encoded data. 
Hence, for transferring w bits data at one time, we need 
w·s·log2n data wires as the output of ‘CDMA Transmitter’ 
block. 

Table IV lists the numbers of data wires for the crossbar 
NoC and the CDMA NoC with different number of 
network nodes and data path widths. From Table IV, we 
can see that the presented crossbar NoC structure will 
incur a huge amount of data wires in order to obtain the 
feature of concurrent data transfer as the CDMA NoC 
does. This large number of data wires of the crossbar NoC 
is a strong weakness for its application in an on-chip 
system because the number of network nodes in a future 
SoC will be very large. Therefore, the CDMA NoC has 
the advantage of utilizing less data wires to achieve 
concurrent data transfer feature by comparing with the 
crossbar NoC. 

IV. SIMULATION RESULTS 
The simulation is performed in gate-level after the RTL 

realizations of the simulation network were synthesized. 
The functional hosts which are not realized with any 
designs are simulated by adding stimulus signals on each 
‘Network IF’ block according to the BVCI standard. The 
data transactions performed in the simulation are listed in 
Table V. Each data transaction consists of one request 
packet from an initiator host to a target host and one 
corresponding response packet from the target host to the 

Table V. Data Transaction Specification 
Packet Length (cell) Initiator 

Node 
Target 
Node 

Number of 
Transactions Request 

Packet 
Response 

Packet 
Node 1 2 4, 3 2, 3 
Node 3 2 3, 4 3, 2 Node 0
Node 5 1 4 2 
Node 1 1 4 2 
Node 3 1 3 3 Node 2
Node 5 2 4, 3 2, 3 
Node 1 2 3, 4 3, 2 
Node 3 1 3 3 Node 4
Node 5 1 4 2 

Table VI. Synchronous Transfer Latency 
Interface 

Type 
Latency of sending data 

to ‘Network Node’ 
Latency of receiving data 

from ‘Network Node’ 
BVCI 

Initiator
8 local clock cycles  

+ 2.5 ns 
8 local clock cycles  

+3.2 ns 
BVCI 
Target 

4 local clock cycles  
+ 2.5 ns 

4 local clock cycles  
+ 3.1 ns 

 
initiator host. The following paragraphs in this section will 
present and compare the data transfer latency and power 
consumption figures of the CDMA NoC and crossbar 
NoC obtained from the gate-level simulation. 

Because the GALS scheme is applied in the network, 
the data transfer latency in the simulation network is 
separated into two parts, Synchronous Transfer Latency 
(STL) and Asynchronous Transfer Latency (ATL). The 
STL refers to the data transfer latency between a 
functional host and the network node attached to it. STL 
depends on the local clock and the type of interface. The 
measured STL values are listed in Table VI. The constant 
values in Table VI are caused by the handshakes in the 
asynchronous domain. They are independent of the local 
clock rate but belong to the synchronous transfer 
processes. Therefore they are counted as a part of STL. 
Because the ‘Node IF’ block and ‘Tx/Rx Packet Buffer’ 
block of the crossbar NoC are same as the blocks in the 
CDMA NoC, the STL values are also same with the 
values of the CDMA NoC. 

The ATL refers to the data transfer latency of 
transferring data packets from one network node to the 
other node using asynchronous four-phase handshake 
protocol in the simulation network. The ATL of the 
CDMA NoC and the crossbar NoC consists of three 
portions: Packet Loading Latency (PLL), Packet Transfer 
Latency (PTL), and Packet Storing Latency (PSL). The 
concept of those ATL portions is illustrated in Fig.7 with 
an example where ‘Network Node 1’ sends data packets to 
‘Network Node 2’. The black arrows in Fig.7 represent the 
packet transfer direction, whereas the three portions of the 
ATL are marked by grey arrows in Fig.7 and explained in 
the following three paragraphs. 

1) Packet Load Latency (PLL). This is the time used by 
the ‘Packet Sender’ block in a ‘Network Node’ to fetch 
one data packet from ‘Tx Packet Buffer’ and prepare to 
assert a request signal to the corresponding channel 
multiplexer in the crossbar NoC or to the ‘Network 
Arbiter’ in the CDMA NoC. 

2) Packet Transfer Latency (PTL). This latency refers 
to the time used to transfer one data packet from the 
‘Packet Sender’ of the sender node to the ‘Packet 
Receiver’ of the receiver node through ‘Crossbar Switch’ 
or ‘CDMA Transmitter’ using a handshake protocol. 
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Network Node 1 Network Node 2

PLL PTL PSL

ATL  
Fig. 7.  Asynchronous Transfer Latency 

3) Packet Storing Latency (PSL). After the receiver 
node receives a data packet, it will spend a certain amount 
of time to store the received data packet in ‘Rx Packet 
Buffer’. This time duration is measured as PSL. 

The values of ATL portions of the CDMA NoC and the 
crossbar NoC measured in the simulations are listed in 
Table VII and Table VIII respectively. From the listed 
figures, we can see that PTL increases as the packet length 
increases. This is because the data cells in a packet are 
sent in a serial manner. Thus, more data cells need more 
transmission time. The PLL and PSL values are not 
affected by the packet length because the data cells in a 
packet are loaded or stored in a parallel manner. From 
Table VII and Table VIII, we also can see that the PLL 
and PSL values are reduced in the crossbar NoC because 
of the less complexity in its ‘Packet Sender’ and ‘Packet 
Receiver’ blocks. The PTL values of the crossbar NoC are 
smaller than the PTL values of the CDMA NoC because 
the latency caused by data encoding and decoding 
schemes is exempted from the crossbar NoC. However, 
the differences are getting smaller when the data path 
width increases. For example, the PTL values of the 
crossbar NoC is around 30% of the PTL values of the 
CDMA NoC when the data path is 1 bit, whereas, this 
figure changes to 49% when the data path width is 
increased to 32 bits. 

Power costs of the two NoC designs are also estimated 
during the simulations by back annotating the switching 
activities to the gate-level netlists. The estimated dynamic 
power costs of the two NoCs with different data path 
widths are listed in Table IX. From the table, we can see 
that the CDMA NoC consumes more dynamic power than 
the crossbar NoC due to the data encoding and decoding 
schemes. When the data path width is 8-bit, the CDMA 
NoC has similar power cost with the crossbar NoC. 
Therefore, 8-bit CDMA NoC is a good choice in terms of 
power consumption. 

V. CONCLUSIONS 
Two non-blocking concurrent data switching schemes, 

CDMA scheme and crossbar scheme, for on-chip 
networks are presented and compared in this paper. Both 
data switching schemes are examined and compared in the 
same six-node network environment. The crossbar 
structure is realized by using one multiplexer for each 
node in the network to set up concurrent data transfer 
channels. By comparing the two data switching schemes 
in the same network environment, the overhead of data 
encoding and decoding operations in the CDMA NoC are 
examined. Different data path configurations are also 
explored in the network realizations in order to further 
examine the characteristics of the CDMA NoC. 

According to the realization and simulation results, the 
six-node crossbar NoC has a smaller area than the 

Table VII. ATL Portion Values of the CDMA NoC 
 1 data cell 2 data cells 3 data cells

PLL (ns) 5.7 5.7 5.7 
1-bit 384.6 768.9 1153.7 
8-bit 45.9 88.4 130.9 
16-bit 26.2 49.0 71.8 

PTL (ns)

32-bit 14.7 26.0 37.8 
PSL (ns) 5.5 5.5 5.5 

Table VIII. ATL Portion Values of the Crossbar NoC 
 1 data cell 2 data cells 3 data cells

PLL (ns) 3.0 3.0 3.0 
1-bit 112.5 211.8 354.4 
8-bit 17.3 32.7 47.5 
16-bit 10.6 19.4 27.8 

PTL (ns)

32-bit 7.5 12.7 17.9 
PSL (ns) 4.7 4.7 4.7 

Table IX. Dynamic Power Costs of the Two NoC Designs 
Dynamic Power Costs (mW)  1-bit 8-bit 16-bit 32-bit 

CDMA NoC 19.340 6.563 7.331 7.332 
Crossbar NoC 6.559 6.558 6.558 6.558 
 

six-node CDMA NoC with four different data path widths. 
The asynchronous data transfer latency values in the 
CDMA NoC is reduced nearly 30 times when the data 
path width is increased from 1-bit to 32-bit. In the realized 
six-node simulation network, the overhead of data 
encoding and decoding operations in the CDMA NoC 
causes around 50% larger asynchronous data transfer 
latency by comparing with the figures in the crossbar NoC. 
However, the crossbar structure suffers from the drawback 
of requiring a huge number of data wires in the NoC when 
the number of network nodes is large. The CDMA NoC 
can reduce the number of data wires while keeping the 
feature of concurrent data transfers. When the data path 
width is set to 8-bit, the six-node CDMA NoC has similar 
dynamic power cost and area cost with the crossbar NoC. 
Hence, 8-bit CDMA NoC is a good option for applying 
the CDMA scheme in a NoC design. 
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Applying CDMA Technique to Network-on-Chip
Xin Wang, Tapani Ahonen, and Jari Nurmi

Abstract—The issues of applying the code-division multiple
access (CDMA) technique to an on-chip packet switched commu-
nication network are discussed in this paper. A packet switched
network-on-chip (NoC) that applies the CDMA technique is re-
alized in register-transfer level (RTL) using VHDL. The realized
CDMA NoC supports the globally-asynchronous locally-syn-
chronous (GALS) communication scheme by applying both
synchronous and asynchronous designs. In a packet switched
NoC, which applies a point-to-point connection scheme, e.g., a
ring topology NoC, data transfer latency varies largely if the
packets are transferred to different destinations or to the same
destination through different routes in the network. The CDMA
NoC can eliminate the data transfer latency variations by sharing
the data communication media among multiple users concur-
rently. A six-node GALS CDMA on-chip network is modeled and
simulated. The characteristics of the CDMA NoC are examined
by comparing them with the characteristics of an on-chip bidirec-
tional ring topology network. The simulation results reveal that
the data transfer latency in the CDMA NoC is a constant value for
a certain length of packet and is equivalent to the best case data
transfer latency in the bidirectional ring network when data path
width is set to 32 bits.

Index Terms—Code-division multiple access (CDMA), inte-
grated circuit (IC) design, network-on-chip (NoC).

I. INTRODUCTION

AS MORE and more components are integrated into an
on-chip system, communication issues become compli-

cated. Network-on-chip (NoC) is proposed to solve the on-chip
communication problem by separating the concerns of com-
munication from computation. The idea of NoC is to construct
an on-chip communication network to perform data trans-
fers among a large number of system components. The NoC
structures that have been proposed can be roughly sorted into
two categories, circuit switched network and packet switched
network, according to their data switching modes. SoCBUS
architecture [1], a mesh on-chip network, is an example of a
circuit switched network that uses packet connected circuit
scheme to allocate time or space slices on the switch links
among the terminals in the network. Æthereal NoC [2] and
Proteo NoC [3] are examples of the packet switched category.
Æthereal NoC applies the combined guaranteed service and
best-effort routers to transfer data packets in the network.
In Proteo NoC, the components in the system are connected
through network nodes and hubs. The network topology and
data links in Proteo NoC can be customized and optimized for
a specific application. Circuit-switched networks will face the
problem of scalability and parallelism if they are applied in a
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future on-chip system which contains hundreds of functional
intellectual property (IP) blocks. The packet switched network
can overcome the shortcomings of the circuit switched network
by dividing data streams into packets and routing packets to
their destinations node by node. However, in a packet switched
network that applies multihop point-to-point (PTP) connection
scheme as in [2] and [3], the packet transfer latency will vary
largely when data packets are transferred to different desti-
nations or to the same destination via different routes in the
network. Hence, the upper bound of the packet transfer latency
is determined by the worst case scenario.

In order to eliminate variance of data transfer latency and
complexity incurred by routing issues in a PTP connected NoC,
an on-chip network which applies a code-division multiple ac-
cess (CDMA) technique is introduced in this paper. As one
of the spread-spectrum techniques, the CDMA technique [4]
has been widely used in wireless communication systems be-
cause it has great bandwidth efficiency and multiple access ca-
pability. The CDMA technique applies a set of orthogonal codes
to encode the data from different users before transmission in
a shared communication media. Therefore, it permits multiple
users to use the communication media concurrently by sepa-
rating data from different users in the code domain. Hence, the
CDMA NoC proposed in this paper can transfer data packets
from different sources to their destinations directly and con-
currently. Consequently, the large variance of data transfer la-
tencies in a PTP connected NoC is eliminated in the CDMA
NoC. The constant data transfer latency in the CDMA NoC is
helpful for providing a guaranteed communication service for
an on-chip system.

The rest of this paper is arranged as follows. In Section II,
issues with applying CDMA technique into an on-chip network
will be discussed. Section III presents the structure of the
CDMA NoC. The realization of the basic components in the
CDMA NoC is presented in Section IV. A six-node CDMA
NoC is presented in Section V in order to examine characteris-
tics of the CDMA NoC by comparing it with a PTP connected
NoC. Finally, conclusions are drawn in Section VI.

II. APPLYING CDMA TECHNIQUE TO NOC

The principle of the CDMA technique is illustrated in Fig. 1.
At the sending end, the data from different senders are encoded
using a set of orthogonal spreading codes. The encoded data
from different senders are added together for transmission
without interfering with each other because of the orthogonal
property of spreading codes. The orthogonal property means
that the normalized autocorrelation value and the cross-cor-
relation value of spreading codes are 1 and 0, respectively.
Autocorrelation of spreading codes refers to the sum of the
products of a spreading code with itself, while cross-correlation
refers to the sum of the products of two different spreading

1063-8210/$25.00 © 2007 IEEE
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Fig. 1. CDMA technique principle.

Fig. 2. Digital CDMA encoding scheme.

codes. Because of the orthogonal property, at the receiving
end, the data can be decoded from the received sum signals by
multiplying the received signals with the spreading code used
for encoding. The following three subsections will discuss the
issues related to apply the CDMA technique in an NoC.

A. Digital Encoding and Decoding Scheme

Several on-chip bus schemes that apply the CDMA technique
have been presented in [5]–[8]. Those schemes are implemented
by analog circuits, namely, the encoded data are represented
by the continuous voltage or capacitance value of the circuits.
Therefore, the data transfers in the analog bus are challenged
by the coupling noise, clock skew, and the variations of capac-
itance and resistance caused by circuit implementation [8]. In
order to avoid the challenges faced by the analog circuit imple-
mentation, digital encoding and decoding schemes developed
for the CDMA NoC are illustrated in Figs. 2 and 4, respectively.
In the encoding scheme illustrated in Fig. 2, data from different
senders fed into the encoder bit by bit. Each data bit will be
spread into S bits by XOR logic operations with a unique S-bit
spreading code as illustrated in Fig. 2. Each bit of the S-bit en-
coded data generated by XOR operations is called a data chip.
Then, the data chips which come from different senders are
added together arithmetically according to their bit positions in
the S-bit sequences. Namely, all the first data chips from dif-
ferent senders are added together and all the second data chips
from different senders are added together, and so on. Therefore,
after the add operations, we will get S sum values of S-bit en-
coded data. Finally, as proposed in [9], binary equivalents of the
S sum values are transferred to the receiving end. An example of
encoding two data bits from two senders is illustrated in Fig. 3 in
order to illustrate the proposed encoding scheme in more detail.
Fig. 3(a) illustrates two original data bits from different senders
and two 8-bit spreading codes. The top two figures in Fig. 3(b)
illustrate the results after data encoding (XOR operations) for the
original data bits. The bottom figure in Fig. 3(b) presents the

Fig. 3. Data encoding example.

Fig. 4. Digital CDMA decoding scheme.

eight sum values after add operations. Then the binary equiva-
lents of each sum value will be transferred to the receiving end.
In this case, two binary bits are enough to represent the three
possible different decimal sum values, “0,” “1,” and “2.” For
example, if a decimal sum value “2” needs to be transferred, we
need to transfer two binary digits “10.”

The digital decoding scheme applied in the CDMA NoC is
depicted in Fig. 4. The decoding scheme accumulates the re-
ceived sum values into two separate parts, a positive part and a
negative part, according to the bit value of the spreading code
used for decoding. For instance, as illustrated in Fig. 4, the re-
ceived first sum value will be put into the positive accumulator if
the first bit of the spreading code for decoding is “0,” otherwise,
it will be put into the negative accumulator. The same selection
and accumulation operations are also performed on the other re-
ceived sum values. The principle of this decoding scheme can be
explained as follows. If the original data bit to be transferred is
“1,” after the XOR operations in the encoding scheme illustrated
in Fig. 2, it can only contribute nonzero value to the sums of data
chips when a bit of spreading code is “0.” Similarly, the 0-value
original data bit can only contribute nonzero value to the sums
of data chips when a bit of spreading code is “1.” Therefore,
after accumulating the sum values according to the bit values
of the spreading code, either the positive part or negative part is
larger than the other if the spreading codes are orthogonal and
balance. Hence, the original data bit can be decoded by com-
paring the values between the two accumulators. Namely, if the
value of the positive accumulator is larger than the value in the
negative accumulator, the original data bit is “1”; otherwise, the
original data bit is “0.”
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B. Spreading Code Selection

As discussed in Section II-A, the proposed decoding scheme
requires the spreading codes used in the CDMA NoC to have
both the orthogonal and balance properties. The orthogonal
property has been explained in the first paragraph of Section II.
The balance property means that the number of bit “1” and
bit “0” in a spreading code should be equal. Several types of
spreading codes have been proposed for CDMA communica-
tion, such as Walsh code, M-sequence, Gold sequence, and
Kasami sequence, etc. [10]. However, only Walsh code [10]
has the required orthogonal and balance properties. Therefore,
Walsh code family is chosen as the spreading code library
for the CDMA NoC. In an S-bit ( , integer )
length Walsh code set, there are sequences that have both
the orthogonal and balance properties. Hence, the proposed
CDMA NoC can have at most network nodes. The
length of applied Walsh code set should be kept as small as
possible according to the number network nodes. The purpose
is to reduce the number of data chips generated during data
encoding operations as illustrated in Fig. 2. For example, if
there are six nodes in the CDMA NoC, the 8-bit Walsh code set
should be used instead of a longer Walsh code set.

C. Spreading Code Protocol

In a CDMA network, if multiple users use the same spreading
code to encode their data packets for transmission simultane-
ously, the data to be transferred will interfere with each other
because of the loss of orthogonal property among the spreading
codes. This situation is called spreading code conflict, which
should be avoided. Spreading code protocol is a policy used to
decide how to assign and use the spreading codes in a CDMA
network in order to eliminate or reduce the possible spreading
code conflicts during the communication processes. Several
spreading code protocols have been presented for CDMA
packet radio network [11], [12] and will be shortly introduced
in the following six paragraphs.

1) Common Code Protocol (C protocol): All users in the net-
work use the same spreading code to encode their data
packets to be transferred.

2) Receiver-Based Protocol (R protocol): Each user in the net-
work is assigned a unique spreading code used by the other
users who want to send data to that user.

3) Transmitter-Based Protocol (T protocol): The unique
spreading code allocated to each user is used by the user
himself to transfer data to others.

4) Common-Transmitter-Based Protocol (C-T protocol): The
destination address portion of a data packet is encoded
using C protocol, whereas, the data portion of a packet is
encoded using T protocol.

5) Receiver-Transmitter-Based Protocol (R-T protocol): It is
the same as the C-T protocol except that the destination ad-
dress portion of a data packet is encoded using R protocol.

6) Transmitter-Receiver-Based Protocol (T-R protocol): Two
unique spreading codes are assigned to each user in the net-
work, and then a user will generate a new spreading code
from the assigned two unique codes for its data encoding.

Fig. 5. Proposed CDMA NoC structure.

Among the introduced spreading code protocols, only T pro-
tocol and T-R protocol are conflict-free if the users in the net-
work send data to each other randomly. Because the T-R pro-
tocol has the drawback of using a large amount of spreading
codes and complicated decoding scheme, T protocol is preferred
in the CDMA NoC. However, if T protocol is applied in the net-
work, a receiver cannot choose the proper spreading code for
decoding because it cannot know who is sending data to it. In
order to solve this problem, an arbiter-based T protocol (A-T
protocol) is developed for the CDMA NoC. In a CDMA NoC
which applies A-T protocol, each user is assigned with a unique
spreading code for data transfer. When a user wants to send
data to another user, he will send the destination information of
the data packet to the arbiter before starting data transmission.
Then, the arbiter will inform the requested receiver to prepare
the corresponding spreading code for data decoding according
to the sender. After the arbiter has got the acknowledge signal
from the receiver, it will send an acknowledge signal back to the
sender to grant its data transmission. If there is more than one
user who wants to send data to the same receiver, the arbiter will
grant only one sender to send data at a time. Therefore, by ap-
plying the proposed A-T protocol, spreading code conflicts in
the CDMA NoC can be eliminated.

III. CDMA NOC STRUCTURE

The proposed CDMA NoC is a packet switched network
that consists of “Network Node,” “CDMA Transmitter,” and
“Network Arbiter” blocks as illustrated in Fig. 5. The functional
IP blocks (functional hosts) are connected to the CDMA NoC
through individual “Network Node” blocks. The CDMA com-
munications in the network are performed by “CDMA Trans-
mitter” and “Network Arbiter” blocks. Because the different
functional hosts may work at different clock frequencies as illus-
trated in Fig. 5, coordinating the data transfers among different
clock domains would be a problem. A globally-asynchronous
locally-synchronous (GALS) scheme [13] has been proposed
as a solution for this problem. Applying the GALS scheme to
the CDMA NoC means that the communications between each
functional host and its network node use local clock frequency,
while the communications between network nodes through the
CDMA network are asynchronous. In order to support the GALS
scheme, both synchronous and asynchronous circuits are applied
in the design. The three types of components in the CDMA
NoC will be presented in the following three subsections.
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Fig. 6. Block diagram of the network node in CDMA NoC.

A. Network Node

The block diagram of the “Network Node” in the CDMA
NoC is illustrated in Fig. 6, where the arrows represent the flows
of data packets. In Fig. 6, the “Network IF” block, which be-
longs to the functional host, is an interface block for connecting
a functional host with a “Network Node” through VCI [14] or
OCP interface standard [15]. GALS scheme is realized in “Net-
work Node” block by using synchronous design in the “Node
IF” subblock and using asynchronous design in the other sub-
blocks. The function of the subblocks in a “Network Node” will
be described in the following four paragraphs.

1) Node IF: This block is used to receive data from the
“Network IF” block of a functional host through the
applied VCI or OCP standard. Then it will assemble the
received data into packet format and send the packet to
“Tx Packet Buffer,” or disassemble the received packet
from “Rx Packet Buffer” and send the extracted data to
the functional host.

2) Tx/Rx Packet Buffer: These two blocks are buffers that
consist of the asynchronous first-input–first-output (FIFO)
presented in [16]. “Tx Packet Buffer” is used to store the
data packets from “Node IF” block, and then deliver the
packets to “Packet Sender” block. The “Rx Packet Buffer”
stores and delivers the received packets from “Packet Re-
ceiver” to “Node IF.”

3) Packet Sender: If “Tx Packet Buffer” is not empty, “Packet
Sender” will fetch a data packet from the buffer by an asyn-
chronous handshake protocol. Then it will extract the des-
tination information from the fetched packet and send the
destination address to “Network Arbiter.” After “Packet
Sender” gets the grant signal from the arbiter, it will start
to send the data packet to “CDMA Transmitter.”

4) Packet Receiver: After system reset, this block will wait
for the sender information from “Network Arbiter” to
select the proper spreading code for decoding. After the
spreading code for decoding is ready, the receiver will
send an acknowledge signal back to “Network Arbiter”
and wait to receive and decode the data from “CDMA
Transmitter,” and then send the decoded data to “Rx Packet
Buffer” in packet format.

B. Network Arbiter

“Network Arbiter” block is the core component to imple-
ment the A-T spreading code protocol presented in Section II-C.
By applying A-T spreading code protocol, every sender node
cannot start to send data packets to “CDMA Transmitter” until

Fig. 7. Bit-synchronous transfer scheme.

it gets the grant signal from “Network Arbiter.” “Network Ar-
biter” takes charge of informing the requested receiver node to
prepare the proper spreading code for decoding and sending a
grant signal back to the sender node. In the case that there are
more than one sender nodes requesting to send data to the same
receiver node simultaneously or at different times, the arbiter
will apply a “round-robin” arbitration scheme or the “first-come
first-served” principle, respectively, to guarantee that there is
only one sender sending data to one specific receiver at a time.
However, if different sender nodes request to send data to dif-
ferent receiver nodes, these requests would not block each other
and will be handled in parallel in the “Network Arbiter.” The
“Network Arbiter” in the CDMA NoC is different from the ar-
biter used in a conventional bus. The reason is that the “Net-
work Arbiter” here is only used to set up spreading codes for
receiving and it handles the requests in parallel in the time do-
main. However, a conventional bus arbiter is used to allocate the
usage of the common communication media among the users in
the time-division manner.

C. CDMA Transmitter

The “CDMA Transmitter” block takes care of receiving
data packets from network nodes and encoding the data to be
transferred with the corresponding unique spreading code of
the sender node. Although this block is realized using asyn-
chronous circuits, it applies a bit-synchronous transfer scheme.
It means that the data from different nodes will be encoded
and transmitted synchronously in terms of data bits rather
than any clock signals. In Fig. 7, the principle of the referred
bit-synchronous transfer scheme is illustrated by a situation
that network nodes “A” and “B” send data packets to “CDMA
Transmitter” simultaneously and node “C” sends a data packet
later than “A” and “B.” In this situation, the data packet from
node “A” will be encoded and transmitted together with the
data packet from node “B” synchronously in terms of each data
bit. When the data packet from node “C” arrives at a later time
point, the transmitter will handle the data bit of “Packet C”
together with the data bits of packet “A” and “B” at the next
start point of the time slot for bit encoding and transmitting
processes. The dot-line frame at the head of the “Packet C” in
Fig. 7 is used to illustrate the waiting duration if the “Packet C”
arrived in the middle of the time slot for handling the previous
data bit. The time slot for handling a data bit is formed by a
four-phase handshake process. The bit-synchronous transfer
scheme can avoid the interferences caused by the phase offsets
among the orthogonal spreading codes if the data bits from dif-
ferent nodes are encoded and transmitted asynchronously with
each other. Because the nodes in the network can request data
transfer randomly and independently of each other, “CDMA
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Fig. 8. C-element control pipeline.

Fig. 9. Micropipeline control logic.

Transmitter” applies the “first come, first served” mechanism to
ensure that the data encoding and transmission are performed
as soon as there is data transfer request.

IV. REALIZATION

Two issues related with realizing the CDMA NoC are ad-
dressed in this section. One issue is about asynchronous design
realization. Another is the configuration of the data path in the
CDMA NoC.

A. Asynchronous Design

As illustrated in Fig. 5 and addressed in Section III-A, the
asynchronous blocks in the CDMA NoC include the “CDMA
Transmitter,” “Network Arbiter,” “Tx/Rx Packet Buffer,” and
“Packet Receiver/Sender” blocks. The important part of the
asynchronous design of these blocks is the control logic. Since
the “CDMA Transmitter” and “Network Arbiter” blocks are
data-path centric blocks, the control logic used in these blocks
is composed by a straightforward C-element pipeline as illus-
trated in Fig. 8. Each stage in the C-element pipeline is enabled
by the enable signals generated from data completion detection
circuits. The control token will be passed from one stage to
the next one through each C-element in the pipeline. The
control logic used in the “Tx/Rx Packet Buffer” and “Packet
Receiver/Sender” blocks bases on the micropipeline control
logic presented in [17] and illustrated in Fig. 9. The principle
of micropipeline control logic is to use the output from the
current stage to enable or disable the input of previous stage.
The “delay” components illustrated in Fig. 9 are realized by
logic gates of generating or receiving four-phase handshake
signals for control tasks in the asynchronous blocks in the
CDMA NoC. An example with more details about applying
micropipeline control logics to asynchronous designs can be
found in [18].

In order to suit the conventional synchronous design tools
and other synchronous designs in the CDMA NoC, all the asyn-
chronous blocks of the CDMA NoC are realized in RTL using
VHDL together with the synchronous blocks. The basic prin-
ciple is to model the basic components, C-element, latches, and
combinational logic gates, in RTL using VHDL, and then build
the asynchronous circuits using these RTL component models
in a hierarchical way.

TABLE I
AREA COST OF CDMA NOC COMPONENTS

B. Data Path Configuration

Figs. 2 and 4 illustrate the principle of data encoding and
decoding schemes used in the CDMA NoC by an example
of processing and delivering one data chip of encoded data
from the sender to the receiver at one time. Since one original
data bit will be spread into S bits after encoding, the degree
of data transfer parallelism between the “CDMA Transmitter”
and “Packet Sender/Receiver” blocks affects the data transfer
latency in the CDMA NoC largely. Namely, increasing the
number of data bit encoded and delivered via “CDMA Trans-
mitter” at one time can reduce the data transfer latency in the
CDMA NoC and vice versa. However, increasing the data
processing and delivering parallelism will incur larger area
cost. Hence, in order to figure the tradeoff character between
the parallelism and the area cost, the “Packet Sender,” “CDMA
Transmitter,” and “Packet Receiver” blocks have been realized
with four different data path configurations. According to the
number of data bit transferred from a “Packet Sender” to a
“Packet Receiver” through “CDMA Transmitter,” the configu-
rations are named as 1-, 8-, 16-, and 32-bit schemes.

C. Synthesis Results

The components of the CDMA NoC are synthesized using
a 0.18- m standard cell library. The Basic VCI (BVCI) inter-
face standard [14] is applied in the realization of “Node IF”
block. The data width and buffer depth in the “Tx/Rx Packet
Buffer” blocks are set to 32 bits and 4 packets, respectively. In
order to facilitate the simulation work later on, six network node
and 8-bit Walsh codes are applied for synthesizing the “CDMA
Transmitter,” “Network Arbiter,” and “Packet Sender/Receiver”
blocks. The area cost of the components of the CDMA NoC
under different data path configurations are listed in Table I. The
area cost figures in Table I are presented as the number of equiv-
alent gates. 85 K gates/mm is used to calculate the number of
equivalent gates for the 0.18- m standard cell library.

From Table I we can see that when the data path width is in-
creased from 1 to 32 bits, the area cost of “Packet Receiver” and
“CDMA Transmitter” becomes 13 and 17 times larger. The area
increase is due to the duplications of the encoding and decoding
logic in the “CDMA Transmitter” and “Packet Receiver” blocks
for increasing the data path width. By comparing the ratio of
increased data path width, the increased area cost of the com-
ponents is reasonable. To be noticed in Table I is that the area
cost of the 32-bit version of “Packet Sender” block is smaller
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Fig. 10. Six-node CDMA NoC simulation network.

Fig. 11. Data packet format specification.

than others. The reason is that the data width of the output of
“Tx Packet Buffer” block is 32 bits, thus the “Packet Sender”
block need some control logic to adjust the fetched packet cells
to be sent out according to the data path width if it is smaller
than 32 bits. However, when the data path width is increased to
32 bits, the output data width adjusting logic is not needed in the
“Packet Sender” block. The initiator type “Node IF” has larger
area than the target type because it needs a buffer to store the
header cell of received packets for supporting split-transaction
feature in the BVCI standard.

V. COMPARING WITH A PTP NOC

In order to examine the characteristics and performance of
the CDMA NoC thoroughly, a simulation network that applies
the CDMA NoC scheme is built and compared with a PTP NoC
presented in [19].

A. Simulation Network Setup

The simulation network that applies the CDMA NoC is illus-
trated in Fig. 10. It contains six network nodes which work in
different clock frequencies as illustrated in Fig. 10. The BVCI
interface standard is applied in the network. Three hosts act as
initiators and the other three act as targets, as denoted by the la-
bels “I” and “T,” respectively, in the “Network IF” blocks. The
initiator hosts can generate requests to any target hosts, while
the target hosts can generate responses only for the received re-
quests passively. The network nodes are connected to each other
through “CDMA Transmitter” and “Network Arbiter” blocks.
The spreading codes used in the network are six 8-bit Walsh
codes. The basic data unit transferred in the network is data
packets composed by one header cell and several data cells as
illustrated in Fig. 11. The number of data cells in a packet varies
from one to three, while the width of each packet cell is fixed
at 32 bits. The “functional host” blocks and their “Network IF”

Fig. 12. Six-node PTP NoC simulation network.

blocks are not realized with any real IP blocks; they are simu-
lated by adding stimulus signals on each “Network Node” block
according to the BVCI standard. A four-phase dual-rail hand-
shake protocol is applied in the CDMA network to transfer data
between network nodes. The PTP network illustrated in Fig. 12
has the same mentioned network configurations as the CDMA
network except that the network nodes in the PTP network are
connected with each other through bidirectional ring topology.
Therefore, the characteristics of the CDMA NoC can be exam-
ined more clearly by comparing the two networks in different
aspects in the following four subsections.

B. Comparison of Data Transfer Principles

In the PTP connected network illustrated in Fig. 12, the data
traffic load is distributed into the links among the network nodes.
This distributed traffic scheme has the benefits of flexibility
and scalability, whereas the main disadvantage is that the data
transfer latency between two network nodes can be largely dif-
ferent when data are transferred to different destinations or to
the same destination via different routes.

Although data transfers in the PTP network can be parallel
if they take place in different links among the network nodes,
concurrent data transfers over a single link is impossible in the
PTP NoC because a link between two network nodes is shared
in a time-division manner. Therefore, by applying CDMA tech-
nique, the main advantage of the CDMA NoC is the feature of
concurrent data transfers. Hence, the data transfer latency in the
CDMA NoC is a constant value which in turn helps the CDMA
NoC to provide a guaranteed service for the on-chip system.

Another advantage of the CDMA NoC is that it can easily
support multicast data transfers by requesting multiple receiver
nodes to use the same spreading code for receiving. In the PTP
NoC, the multicast transfer can be realized only by sending mul-
tiple copies of a data packet to its multiple destinations, unless
extra logic is added in each network node to copy the multicast
packet to both the functional host and the output link to the next
node. This would increase the traffic load in the PTP network,
or complicate the network implementation. One more benefit
of applying the CDMA NoC is that the header cell in a packet
needs not to be transferred in the network after a sending node
gets the grant signal from the “Network Arbiter” since the re-
ceiving node already knew the sender information through the
A-T protocol presented in Section II-C. However, in the PTP
NoC, the header cell in a packet needs to be transferred in the
network for packet routing.



WANG et al.: APPLYING CDMA TECHNIQUE TO NoC 1097

Fig. 13. Network node structure of the PTP NoC.

TABLE II
DATA TRANSACTION SPECIFICATION

C. Comparison of Network Node Structures

The network node structure of the PTP NoC presented in [19]
is illustrated in Fig. 13. It contains two same “Communication
Layer” blocks for supporting the bidirectional ring topology. By
comparing with the network node illustrated in Fig. 6, the net-
work node of the CDMA NoC has less complexity. The main
reason is that the network node of the CDMA NoC does not need
to handle any bypass packets or the packet routing issues be-
cause of its one-hop data transfer scheme. Therefore, the “Com-
munication Controller” and “Packet Distributor” blocks illus-
trated in Fig. 13 are not needed in the node of the CDMA NoC.
Since the CDMA NoC applies centralized traffic scheme, its
network node does not need multiple “Communication Layer”
blocks and “Layer MUX” block in the node of the PTP NoC
illustrated in Fig. 13. When the data transfer parallelism needs
to be increased in the PTP NoC, more “Communication Layer”
blocks in a network node are needed in order to set up more
links with other nodes, whereas the network node structure in
the CDMA NoC does not need to change in this situation be-
cause of the parallel data transfer scheme.

D. Comparison of Data Transfer Latencies

The CDMA network illustrated in Fig. 10 and the PTP
NoC illustrated in Fig. 12 are both synthesized using the
same 0.18- m technology library. Gate-level simulations are
performed on both simulation networks. The data transactions
performed during the simulations are listed in Table II. Each
data transaction consists of one request packet from an initiator
host to a target host and one corresponding response packet
from the target host to the initiator host.

Because the GALS scheme is applied both in the CDMA
network and the PTP network, the data transfer latency in the

TABLE III
SYNCHRONOUS TRANSFER LATENCY

Fig. 14. ATL portions of the CDMA NoC.

two simulation networks can be separated into two parts, syn-
chronous transfer latency (STL) and asynchronous transfer la-
tency (ATL). The STL refers to the data transfer latency between
a functional host and the network node attached to it. STL de-
pends on the local clock and the type of interface. The measured
STL values of the CDMA network are listed in Table III. The
constant values in Table III are caused by the handshakes in the
asynchronous domain. They are independent of the local clock
rate but belong to the synchronous transfer processes. There-
fore, they are counted as a part of STL. From Table III, we can
see that an initiator type of network node takes more clock cy-
cles for local data transfers. The reason is that the initiator node
needs to store or read the header cell to or from a buffer as men-
tioned in Section IV-C. Since the same “Node IF” block design
is applied in both simulation networks, the STL of the PTP net-
work has the same value as listed in Table III.

The ATL refers to the data transfer latency of transferring
data packets from one network node to the other node through
a NoC structure using asynchronous handshake protocols. The
ATL values in the PTP and CDMA networks consist of different
portions which will be discussed separately in the following
subsections.

1) ATL in the CDMA NoC: The ATL of the CDMA net-
work consists of three portions: packet loading latency (PLL),
packet transfer latency (PTL), and packet storing latency (PSL).
The concept of those ATL portions is illustrated in Fig. 14 with
an example where “Network Node 0” sends one data packet
to “Network Node 2.” The black arrows in Fig. 14 represent
the packet transfer direction. The different portions of ATL are
marked by grey arrows in Fig. 14 and explained in the following
three paragraphs.

a) PLL: This is the time used by the “Packet Sender” block to
fetch a data packet from “Tx Packet Buffer” and prepare
to send the packet to “CDMA Transmitter.”

b) PTL: This latency refers to the time used to transfer one
data packet from the “Packet Sender” of the sender node
to the “Packet Receiver” of the receiver node through
the “CDMA Transmitter” and “Network Arbiter” blocks
using a handshake protocol.

c) PSL: After the receiver node receives a data packet, it
will spend a certain amount of time to store the received
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TABLE IV
ATL PORTION VALUES OF THE CDMA NOC

Fig. 15. ATL portions of the PTP NoC.

TABLE V
ATL PORTION VALUES OF THE PTP NOC

data packet into “Rx Packet Buffer.” This time duration is
measured as PSL.

The measured values of ATL portions of the CDMA NoC
under different data path configurations are listed in Table IV.
The ATL value of the CDMA NoC can be calculated by directly
adding the three portions under the same configuration.

2) ATL in the PTP NoC: The concept of the ATL portions
of the PTP NoC is illustrated in Fig. 15 with an example that
“Network Node 0” sends one packet to “Network Node 2” via
“Network Node 1.” The black and grey arrows in Fig. 15 repre-
sent the same meanings as the arrows in Fig. 14. The meaning
of ATL portions will be explained briefly in the following four
paragraphs.

a) PLL: It is the time used to load one “local packet” into “Tx
packet buffer” in the “Packet Sender” block as illustrated
in Fig. 13.

b) PTL: This latency refers to the time used to transfer one
data packet from the “Packet Sender”

(1)

of a network node to the “Packet Receiver” of an adjacent
node using a handshake protocol.

c) PBL: After a network node receives a packet from another
node, it will check its destination address. If it is a “bypass
packet,” it will be delivered into “Tx Packet Buffer.” The
time spent on this process is called PBL.

d) PSL: It is the time spent on storing one “incoming packet”
into “Rx Packet Buffer” block.

The ATL portion values of the PTP NoC are listed in Table V.
The formula of calculating the ATL of transferring one packet in

TABLE VI
EQUIVALENT NUMBER OF INTERMEDIATE NODES IN THE PTP NOC

the PTP NoC is given in (1). refers to the number of interme-
diate nodes between the source node and destination node of a
packet. If a packet is transferred between two adjacent network
nodes, then is 0.

3) Comparing the ATL Values: In Tables IV and V, we can
see that PTL values of the CDMA NoC and the PTP NoC in-
creases as the packet length increases. This is because the data
cells in a packet are sent in a serial manner in the two networks.
Thus, more data cells need more transmission time. Whereas,
the PLL and PSL values of the CDMA NoC and the PTP NoC
are nearly not affected by the packet length. The reason is that
the data cells in a packet are loaded or stored in a parallel manner
in both networks.

The main difference between the ATL values of the two NoCs
is that the ATL value of the CDMA NoC is a constant value for
a certain data packet length, whereas the ATL value in the PTP
NoC is a variable depending on the packet traffic route. The ATL
portion PBL of the PTP NoC does not exist in the ATL of the
CDMA NoC because the data packets in the CDMA NoC are
transferred directly from their source nodes to their destination
nodes. The stable ATL value is an advantage of the CDMA NoC
since it is very helpful for providing guaranteed service in the
network.

The PTL values listed in Table IV show that the data path
width configuration affects the ATL of the CDMA NoC in a
linear manner. For instance, the PTL value of transferring a
three-data-cell packet is reduced around 30 times when the data
path width is increased from 1 to 32 bits. Since the data path
width in the PTP network illustrated in Fig. 12 is realized as
32 bits, only the ATL value of the CDMA NoC with 32-bit
data path width is comparable with the ATL value of the PTP
NoC. However, in order to compare the data transfer latency
characteristics of the two NoCs thoroughly, Table VI lists the
equivalent number of intermediate network nodes which would
be gone through by a data packet in the PTP NoC when the
same size packet is transferred in the CDMA NoC under dif-
ferent data path configurations. From Table VI, we can see that
when the data path widths in the CDMA NoC and the PTP NoC
are both 32 bits, the ATL of delivering a two-data-cell packet
in the CDMA NoC is equivalent to transferring the same packet
between two adjacent network nodes in the PTP NoC, which
means that the ATL of the CDMA NoC equals to the best case
ATL value in the PTP NoC. When transferring a one-data-cell
packet, the ATL in the CDMA NoC is even smaller than the
best case ATL in the PTP NoC as denoted by the negative value
of in Table VI. The latency caused by the data encoding
and decoding scheme in the CDMA NoC is compensated by
its one-hop data transfer scheme. Hence, the CDMA NoC can
transfer data packets with the equivalent best case ATL of the
PTP NoC when the data path width is set to 32 bits.
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TABLE VII
AREA AND POWER COSTS OF THE TWO NETWORKS

E. Comparison of Area and Power Costs

The two simulation networks illustrated in Figs. 10 and 12 are
synthesized using a 0.18- m technology library. The area costs
of the two simulation networks with different data path widths
are listed in Table VII for comparison purpose. According to
the data transactions performed in the gate level simulations and
listed in Table II, the dynamic power costs during simulations
and the energy costs of transferring 32 data bits in the CDMA
NoC and the PTP NoC are also listed in Table VII.

From the figures in Table VII, we can see that when the data
path width is increased from 1 to 32 bits in the CDMA NoC, the
area cost of the CDMA network becomes 2.4 times larger be-
cause more logic are used to perform parallel data encoding and
decoding. With 16- and 32-bit data path widths, the CDMA NoC
loses its area cost advantage by comparing with the PTP NoC.

In terms of the dynamic power costs listed in Table VII, a 1-bit
CDMA NoC should not be applied due to the much larger power
consumption by comparing with the CDMA NoCs under other
data path width configurations and the PTP NoC. The reason
of the large power cost of the 1-bit CDMA NoC is that the
1-bit CDMA NoC needs much more switching activities than
the other versions of the CDMA NoC due to the over-serial-
ized data transfer scheme. To be noticed in Table VII is that
the 16- and 32-bit CDMA NoCs have almost the same power
consumptions. The reason is that the power consumption in-
crease caused by the data path width increasing is compensated
by reducing the control logic for data output adjust operations
in each “Packet Sender” in the 32-bit CDMA NoC as explained
in Section IV-C. By comparing the dynamic power costs and
the energy costs of transferring 32 bits in Table VII, we can see
that the PTP NoC has similar dynamic power cost with the 16-
and 32-bit CDMA NoCs, while the energy figures are slightly
larger than the figures in the two CDMA NoCs. This is because
the PTP NoC takes more time to perform the data transactions
listed in Table II due to its multiple hop data routing scheme.
However, the CDMA NoC can perform the same data transac-
tions with shorter time since its one-hop concurrent data transfer
scheme. Therefore, the average energy spent on transferring 32
data bits in the CDMA NoC, except the 1-bit CDMA NoC, is
smaller than the energy cost in the PTP NoC.

VI. CONCLUSION

An on-chip packet switched communication network that
applies the CDMA technique and supports the GALS commu-
nication scheme was presented. The presented CDMA NoC

uses an asynchronous scheme to perform the global data trans-
fers between network nodes, and uses synchronous scheme
to deal with the local data transfers between a functional host
and the network node attached to it. A CDMA encoding and
decoding scheme which suits digital-circuit implementation
was presented. The main advantage of the presented CDMA
NoC is that it can perform data transfer concurrently by ap-
plying CDMA technique in the network. Therefore, the large
data transfer latency variance caused by the packet routing in a
PTP NoC is eliminated in the CDMA NoC. The constant data
transfer latency in the CDMA NoC is helpful for providing
guaranteed communication services to an on-chip system.
Another advantage of the CDMA NoC is that it can perform
multicast data transfers easily by utilizing the multiple access
feature of CDMA technique.

Both the asynchronous and synchronous circuits of the
CDMA NoC with different data path widths are realized in
RTL using VHDL in order to suit the conventional synchronous
design flow and tools. Two six-node on-chip networks were
constructed to compare the CDMA NoC with a PTP NoC. One
network applies the CDMA NoC, while the other applies a
bidirectional ring PTP NoC. The two networks were simulated
and compared against each other. The simulation results reveal
that when the data path width of the two simulation networks is
set to 32 bits, the asynchronous transfer latency in the CDMA
NoC is equivalent to the best case data transfer latency in the
PTP NoC. The best case data transfer in the PTP NoC means that
packets are transferred between two adjacent nodes. It indicates
that the data transfers between any network nodes in the CDMA
NoC can be performed as quickly as transferring the same data
packets between two adjacent nodes in the PTP NoC.

By considering the tradeoff between transfer latency perfor-
mance listed in Table VI and the costs listed in Table VII, a 16-bit
CDMA NoC is a good option for replacing the PTP NoC in an
on-chip system where universal data transfer latency is a desired
requirement. With a 16-bit data path width, the data transfer la-
tency of the CDMA NoC is close to the best case transfer latency
in the PTP NoC while the area and dynamic power costs remain
similar. If the area and power costs have higher priority, the 8-bit
CDMA NoC can be applied because its area is 16.2% smaller
than the PTP NoC while its energy cost of transferring 32 bits
is 21.0% smaller than the cost in the PTP NoC.
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Abstract- A SystemC model of A Code-Division Multiple-

Access (CDMA) Network-on-Chip (NoC) is presented in this 
paper. The CDMA NoC modeled in this paper is a Globally-
Asynchronous Locally-Synchronous (GALS) on-chip 
communication network which applies CDMA technique to 
transfer data among different network nodes concurrently. The 
presented SystemC model uses Transaction-Level Modeling 
(TLM) approach to model the asynchronous handshake 
processes for data transfers in the CDMA NoC. A performance-
estimation method which bases on timing back-annotation is 
also presented for exploring the CDMA NoC performance under 
different configurations in a fast and efficient way. Finally, the 
performance estimation results of the CDMA NoC with different 
configurations and traffic patterns are presented. 

I. INTRODUCTION 

As the number of components integrated into an on-chip 
system is increasing, the communications among the large 
number of components become more and more complicated. 
Network-on-Chip has been proposed as a promising solution 
for the complex on-chip communication issue. A NoC 
scheme which applies CDMA technique has been presented 
in [1]. As a different approach from the point-to-point (PTP) 
connection NoC such as SPIN [2] and Æthereal [3], the 
CDMA NoC uses a set of orthogonal pseudo-noise codes to 
separate the data streams from different network nodes in 
code domain, therefore, the different data streams can be 
transferred concurrently in time domain. Hence, the CDMA 
NoC can supply an invariable data transfer latency 
independent on the data transfer routes and network topology. 

Before applying a NoC scheme into an on-chip system, the 
designer needs to estimate the NoC performance under 
different system configurations in an early design stage. 
Therefore, a high level system model which can run much 
faster and be more flexible than Register-Transfer Level 
(RTL) model is needed. SystemC [4], a C++ class library, has 
been developed to meet this requirement for system modeling. 
Since a SystemC model is totally described by a software 
programming language, the abstraction level of the system 
model can be very flexible and the simulation can run at a 
faster speed than a RTL model. Several works about 
modelling on-chip communication architecture in transaction 
level using SystemC have been published. [5] and [6] concern 
more about system design methodologies using SystemC.  
The work in [7] presented a transaction-level interface model 
which translates interface functions into signal level for 
verifying blocks designed by a Hardware-Description 
Language (HDL). The issue of modeling a GALS NoC 
structure using SystemC is presented in [8]. It uses sc_fifo 
primitive to model the asynchronous logics of the NoC, 
therefore, it encounters the problem of memory effect of 
sc_fifo primitive and has difficulty to model an active-
input/passive-output channel [8]. The SystemC modeling 
work presented in this paper avoids the problems met in [8] 

by abstracting each asynchronous block of the CDMA NoC 
as a channel and using interface functions to model 
asynchronous communication processes. By using the 
proposed SystemC model, a performance-estimation method 
for evaluating the performance of the CDMA NoC under 
different configurations is also presented in this paper. 

The following sections of this paper are arranged as 
follows. Section 2 will briefly introduce the CDMA NoC 
structure. Section 3 presents the SystemC model of the 
CDMA NoC using TLM approach. The performance-
estimation of the CDMA NoC under different configurations 
will be presented in Section 4. Finally, the conclusions are 
drawn in Section 5. 

II. THE GALS CDMA NOC STRUCTURE 

The on-chip CDMA network used in this modeling work 
has been presented in [1]. It applies both GALS scheme [9] 
and CDMA technique [10] to deliver the data packets for an 
on-chip system. By applying the GALS scheme, it solves the 
problem of data transfers among different clock domains. By 
applying CDMA technique, the different data streams from 
different functional components in the system are separated in 
code domain to achieve concurrent data transfers in time 
domain. By comparing with a PTP connection on-chip 
network, such as a GALS bidirectional ring NoC [11], the 
CDMA NoC has the advantage of supplying a constant data 
transfer latency which is independent on data transfer routes 
and network topology. Since the details of the CDMA NoC 
have been presented in [1] already, the following part of this 
section will briefly go over the basic information of the NoC. 
In Fig.1, we can see the structure of the CDMA NoC in which 
each functional component (‘functional host’) is connected to 
the network through a ‘Network Node’ block. The network 
nodes transfer data to each others through a backbone 
structure which consists of ‘Network Arbiter’ and ‘CDMA 
Transmitter’ blocks. The dotted circles and the clock 
frequencies marked in Fig.1 are used to illustrate how the 
GALS scheme is applied in the CDMA NoC. The function of 
each block in the NoC will be briefly introduced by the 
following subsections. 

A. Network Node 
The block diagram of ‘Network Node’ is illustrated in 

Fig.2 where the arrows represent the flows of data packets. 
The ‘Network IF’ block in Fig.2, which belongs to the 
functional host, is an interface block between a functional 
host and a ‘Network Node’. Only ‘Node IF’ block in a 
‘Network Node’ applies synchronous design since the 
interface standard, VCI [12] or OCP [13], used in the 
interface is synchronous. The function of the other blocks in 
‘Network Node’ will be briefly described in the following 
four paragraphs. 
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Fig. 1．The GALS CDMA NoC Structure 

1) ‘Node IF’: This is an interface block which applies VCI 
or OCP standard to assemble the data from the functional host 
into packet format and send the packet to ‘Tx Packet Buffer’, 
or to disassemble the received packet from ‘Rx Packet 
Buffer’ and send the extracted data to the functional host.  

2) ‘Tx/Rx Packet Buffer’: These two blocks are buffers 
used to store the data packets to be transferred or to store the 
received data packets from ‘Packet Receiver’. 

3) ‘Packet Sender’: If ‘Tx Packet Buffer’ is not empty, 
‘Packet Sender’ will fetch a data packet from the buffer. Then, 
it will extract the destination information from the fetched 
packet and send the destination address to ‘Network Arbiter’. 
After ‘Packet Sender’ gets the grant signal from the arbiter, it 
will start to send data packets to the destination node through 
‘CDMA Transmitter’.  

4) ‘Packet Receiver’: This block waits the request from 
‘Network Arbiter’ to load the proper spreading code for 
decoding. After it is ready, the receiver will start to receive 
and decode the data from ‘CDMA Transmitter’, and then 
send the decoded data to ‘Rx Packet Buffer’ in packet format. 

B. CDMA Transmitter and Network Arbiter 
Each ‘Network Node’ can start to send data to the ‘CDMA 

Transmitter’ block only after it received grant signal from 
‘Network Arbiter’. Then the ‘CDMA Transmitter’ will 
encode the data with the corresponding unique spreading 
code of the sender node and send the encoded data to 
destination nodes. ‘First come, first served’ mechanism is 
applied to ensure that the data encoding and sending are 
performed as soon as there is data transfer request. The data 
from different nodes will be encoded and delivered in the unit 
of channel width. For instance, if the channel width is 8 bits, 
8-bit data sections from different network nodes will be 
handled by ‘CDMA Transmitter’ at a time. If a node requests 
to send data to ‘CDMA Transmitter’ before the completion of 
the current data encoding and transfer process, the sender 
node has to wait until the next round of data handling starts in 
‘CDMA Transmitter’. This situation is called CDMA transfer 
contention. 

 ‘Network Arbiter’ takes charge of informing the 
destination nodes to prepare the proper decoding code and 
arbitrating the data transfer requests from different sender 
nodes if they are requesting the same destination node. In the 
case that there are more than one sender nodes requesting to 
send data to the same destination node simultaneously or at 
different times, the arbiter will apply ‘round-robin’ arbitration 
scheme or the ‘first-come first-served’ principle, respectively, 
to guarantee that there is only one sender sending data to one  
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Fig. 2．Block Diagram of ‘Network Node’ 

specific receiver at a time. However, if different nodes 
request to send data to different destination nodes, these 
requests would not interfere with each other and will be 
handled concurrently in ‘Network Arbiter’. 

III. SYSTEMC MODEL OF THE CDMA NOC 

Transaction-Level Modeling (TLM) [14] is a modeling 
style which bases on the features about channels and  
interfaces of SystemC 2.1. In TLM, the communication 
transactions are modeled by calling the interface functions 
defined in the interfaces of channels. The interface functions 
are implemented in the channels. Therefore, by separating the 
definition from the implementation of the interface functions, 
the system model only needs to care about the transactions 
among modules and the data flow in the system without the 
details of the communication method. The processes of 
calling an interface function of a channel includes call and 
return steps, which is very similar to the request and 
acknowledge steps in an asynchronous handshake protocol. 
Thus, TLM method is used to model the asynchronous data 
transfers in the CDMA NoC by modeling the handshake 
processes as the interface functions of a channel. The details 
about the transaction-level SystemC model of the CDMA 
NoC will be presented in the following subsections. 

A. The Channels and Interfaces in the SystemC Model of the 
CDMA NoC 

The data packets are delivered from one block to the other 
in the CDMA NoC through an asynchronous handshake 
protocol. Therefore, the SystemC model of the CDMA NoC 
also follows the block hierarchy illustrated in Fig.1 and Fig.2 
in order to keep the uniform hierarchy between different 
levels of abstractions. Each block in the CDMA NoC is 
modelled as a channel. The interface functions and the 
relationships among the channels are illustrated in Fig.3. 
Fig.3 (a) illustrates the channels and interface function calling 
relationships within a ‘Network Node’, while, Fig.3 (b) 
presents the relationships among ‘Network Node’, ‘Network 
Arbiter’, and ‘CDMA Transmitter’. In Fig.3, each grey square 
at the boundaries of a channel represents an interface of that 
channel, and each grey circle at the boundaries of a channel 
represents an instantiated interface port of other channels. 
The arrows in Fig.3 point from the instantiated interface port 
to its original interfaces of channels. For example, the 
‘CDMA Transmitter’ block communicates with a ‘Network 
Node’ block by instantiating an interface, called ‘tx_if’, of the 
‘Network Node’, then calling the functions in the ‘tx_if’ 
interface to get data. The interface functions contained in  
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Fig. 3 Channels and Interfaces Diagram of the CDMA 

NoC SystemC Model 

each interface in the NoC model are listed in Table I and 
described in the following seven paragraphs. 

1) read()/write(): These two functions are used to read or 
write data packets from or to a ‘Tx/Rx Packet Buffer’. 

2) get_status(): This function is used to get the stored 
number of packets in a buffer. 

3) cdma_tx_ack(): This function of ‘CDMA Transmitter’ 
channel is used to send acknowledge to the ‘Packet Sender’ 
channel as the end of current data transfer. 

4) load_rx_pn_code(): The ‘Network Arbiter’ will call this 
function to let a receiver node load the right spreading code  
for decoding. 

5) rx_from_noc():‘CDMA Transmitter’ uses this function 
to send data to a ‘Network Node’ channel. 

6) cdma_tx_req(): This function is used by a ‘Network 
Node’ to send data to ‘CDMA Transmitter’ channel. 

7) tx_arb_req(): Each ‘Network Node’ will call this 
function to request arbitration from the ‘Network Arbiter’. 

B. Modeling the Parallel Request/Arbitration Processes 
The main challenge of modeling the CDMA NoC is to 

model the parallel data transfer and arbitration processes 
carried out in hardware blocks, ‘CDMA Transmitter’ or 
‘Network Arbiter’ blocks as described in Section II-B, with 
SystemC software model. In hardware design, there are 
dedicated circuits for each ‘Network Node’ to handle the 
requests so that the handling processes are performed in 
parallel. However, in the software model, a design method of 
modelling the parallel handling processes needs to be applied 
since the simulation kernel of SystemC only can run one 
process at a time [4]. The parallel process modelling method 
applied in this work is illustrated in Fig.4 with an example 
from ‘CDMA Transmitter’ channel. In Fig.4, we can see that 
all ‘Network Node’ send their requests to ‘CDMA 
Transmitter’ via the generic interface function ‘cdma_tx_ 
req()’. In order to let more requests get through the calling of 
‘cdma_tx_req()’, a separate SC_THREAD process, 
cdma_tx_proc(), is used to handle the received requests after 
waiting for a certain amount of time. This method works 

Table I. Interface Functions in Each Channel 
Channels Interface Functions

read() 
write() Tx/Rx Packet Buffer Chnl 

get_status() 
Packet Sender Chnl cdma_tx_ack() 

load_rx_pn_code() Packet Receiver Chnl rx_from_noc() 
CDMA Transmitter Chnl cdma_tx_req() 

Network Arbiter Chnl tx_arb_req() 
 

Interface Functions

cdma_tx_req(...){ 
   ...
   tx_req.notify ;
   ... 
}

cdma tx sc_thread
cdma_tx_proc(...){ 
   wait(tx_req);
   wait(a_certain_time) ;
   ... 
}

CDMA_Transmitter ChannelNetwork
Node

Network
Node

 
Fig. 4 Modeling Parallel Request/Arbitration Processes 

since a SC_THREAD process will be suspended when it runs 
to a wait() function. Thus, the simulation kernel gets chance 
to run more request function call processes before starting the 
request handling process. In this way, multiple request 
handling processes are performed in parallel. 

The same method is also applied in ‘Network Arbiter’ to 
realize the arbitration process by using a generic interface 
function for ‘Network Node’ to send requests. 
Simultaneously appeared requests for the same destination 
node will be arbitrated by the simulation kernel automatically 
since only one request process will be chosen to run at a time. 
The other failed requests will be kept until they are granted. 
The requests for different destination nodes will be handled 
one by one in the ‘Network Arbiter’ channel. 

IV. PERFORMANCE ESTIMATION OF THE CDMA NOC 

Based on the SystemC model of the CDMA NoC presented 
in Section III and the RTL realization presented in [15], a 
performance estimation method which combines the 
flexibility of SystemC model and the accuracy of RTL 
realization of the CDMA NoC is proposed as the following 
steps. 

Step1: Model each block of the CDMA NoC as a channel 
and build the CDMA NoC model according to the block 
hierarchy. 

Step2: Realize each block of the CDMA NoC in RTL and 
do the synthesis and gate-level simulation using the target 
technology library. 

Step3: Record the latency information of the handshake 
processes among the blocks from the RTL simulation, and 
then back annotate the latency information to the correspond-
ing channels in the SystemC model of the CDMA NoC. 

Step4: Estimate the performance of the CDMA NoC under 
different configurations by simulating the timed SystemC 
model of the CDMA NoC. 

A. Simulation Environment Setup 
The setup of the simulation environment for the CDMA 

SystemC model is illustrated in Fig.5. In order to concentrate  

1-4244-1517-9/07/$25.00 (C)2007 IEEE



 

Packet
Source

Tx Packet
Buffer

Packet
Sender

Network 
  Node

Rx Packet
Buffer

Packet
Receiver

Packet Count & Timing

Network Node

C
D

M
A

 T
ra

ns
m

itt
er

 
   

   
   

   
&

 
N

et
w

or
k 

A
rb

ite
r

 
Fig. 5 Simulation Environment Setup 

Table II. The Extracted Latency Values from RTL 
Realization 

Communication Processes Latency 
Read/Write Tx Packet Buffer 10.9/11.5 ns

Store a packet into Rx Packet Buffer 5.5 ns 
1-bit 384.6 ns 
8-bit 45.9 ns 
16-bit 26.2 ns 

Tx 32 bits data from ‘Packet 
Sender’ to ‘Packet Receiver’  
(with different channel widths) 

32-bit 14.7 ns 
Arbitration retry after contention 2.4 ns 

 
the simulation work on the asynchronous global network 
itself other than the local synchronous interface which 
depends on the type of applied interface standard in the 
CDMA NoC, the ‘Network Node’ block is revised as 
illustrated in Fig.5. The ‘Node IF’ is replaced by a ‘Packet 
Source’ block which generates data packets according to a 
specific traffic pattern. The size of ‘Tx Packet Buffer’ block 
is set to be large enough for storing all packets from the 
packet source during the simulation in order to make the 
simulation to be an open-loop simulation, which ensures that 
the traffic produced by the source is not influenced by the 
network. The ‘Rx Packet Buffer’ is used to store the received 
packets. The ‘Packets Count and Timing’ process is added on 
the ‘Tx/Rx Packet Buffer’ blocks for counting and recording 
the packet transfer information during simulations.  

B. Performance Estimation Results 
Three kinds of configuration parameters, CDMA channel 

widths, numbers of network node, and traffic patterns, are 
explored during the simulations. The latency information 
used in the simulations are extracted from the RTL realization 
presented in [15] and listed in Table II.  

Firstly, the different CDMA channel widths, which refer to 
the number of data bits encoded and transferred at a time via 
‘CDMA Transmitter’, are explored in the 6 nodes CDMA 
network. The traffic pattern used in the simulations is 
independent and uniform traffic which means that the same 
amount of packets are independently generated at each 
network node. The destinations of the generated packets in 
each node are uniformly distributed to all the other network 
nodes. Each node has sent 5000 packets to the network, and 
the average number of data cells in the packets is 2. Fig.6 
gives the average Asynchronous Transfer Latency (ATL) of 
delivering a 32 bits data cell with different channel widths in 
the CDMA NoC. By comparing with the latency values 
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Fig. 6 Latencies with Different Channel Widths 
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Fig. 7 Latencies with Different Numbers of Nodes 
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Fig. 8 Latencies of Hot-Spot Traffic 

presented in [15], we can see that the packet arbitration 
contentions and CDMA transfer contentions increase the 
latency severely. 

Secondly, the different numbers of network nodes are 
tested in the SystemC simulations since it can be done much 
easier than the RTL realization and simulation. The traffic 
pattern and other simulation configurations are same with the 
ones used in the simulations of different channel widths 
except that each network node sends 500 packets to each 
other nodes. The channel width used in the simulations is 8-
bit. The average ATL values under different numbers of 
network nodes are illustrated in Fig.7. From the results, we 
can see that the transfer latency increases when the number of 
network nodes increases since the probability of contentions 
increases. 

Thirdly, a hot-spot traffic pattern which is more likely 
appears in real applications is simulated in the CDMA 
networks with different numbers of network nodes. Node 1 is 
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selected as the ‘hot’ node and the ‘hot’ degree is 0.25 which 
means that 25% of the generated packets in each node are 
transferred to Node 1. The other packets are still uniformly 
distributed to all other nodes besides Node 1. The average 
ATL values of transferring a 32 bits data cell with hot-spot 
traffic is illustrated in Fig.8. By comparing with the transfer 
latency values illustrated in Fig.7, the CDMA NoC has 
similar latency values under hot-spot traffic when the network 
load is smaller than 50%. For the heavier network loads, the 
transfer latencies become larger. It means that the CDMA 
NoC is not sensitive to the balance of network load when the 
network load is light. 

V. CONCLUSIONS 

A SystemC modelling work for a GALS CDMA NoC is 
presented in this paper. The SystemC model is built in 
transaction level by modelling each block of the CDMA NoC 
as a channel. The asynchronous handshake processes for data 
transfers in the NoC are modelled by the interface function 
calls between channels. Based on the presented SystemC 
model and the previously developed RTL realization of the 
CDMA NoC, a performance estimation method is presented. 
With the estimation method, the performances of the CDMA 
NoC under different configurations have been simulated. The 
different configurations which have been explored during 
simulations include channel width, number of network nodes, 
and traffic patterns. The simulation results give a fast 
estimation of the transfer latency of the CDMA NoC under 
different channel widths when contentions are included. 
According to the simulation results, when the number of 
nodes increased in the CDMA NoC, the transfer latency will 
increase linearly since the possibility of contention increases. 
Finally, a hot-spot traffic pattern is also been simulated, the 
results reveal that the CDMA NoC is not sensitive to the 
network load balance when the network load is lighter than 
50%. 

With the presented performance-estimation method, a 
system designer can evaluate the performance of the CDMA 
NoC under different configurations in a manner which 

combines the fastness of TLM SystemC model and the 
accuracy of RTL realization. 
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