TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

Julkaisu 742 « Publication 742

Xin Wang

Designing Globally-Asynchronous Locally-Synchronous
On-Chip Communication Networks

Tampere 2008

Tampereen teknillinen yliopisto. Julkaisu 742
Tampere University of Technology. Publication 742

Xin Wang

Designing Globally-Asynchronous Locally-
Synchronous On-Chip Communication
Networks

Thesis for the degree of Doctor of Technology to be presented with
due permission for public examination and criticism in Tietotalo
Building, Auditorium TB104 at Tampere University of Technology, on
the 3rd of June 2008, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of
Technology
Tampere 2008

ISBN 978-952-15-1987-1 (printed)
ISBN 978-952-15-2005-1 (PDF)
ISSN 1459-2045

ABSTRACT

This thesis addresses two aspects of designing on-chip caination networks. One is
about applying Globally-Asynchronous Locally-SynchraasdGALS) communication sch-
eme into Network-on-Chip (NoC). Another is of designing ardlizing different types of
on-chip communication structures in the frame of GALS sahem

The work of applying GALS scheme into on-chip networks pnése in this thesis includes
the strategy of realizing GALS scheme in a NoC, synchroigrainethod in a GALS NoC,
and asynchronous circuit design. GALS scheme is appliedenNoC designs presented
in this thesis by applying synchronous style in the commations between network nodes
and their attached function hosts while applying asyncbusrstyle in the communications
among network nodes. The asynchronous circuits developeteélizing the GALS on-
chip networks include an asynchronous First-In First-GRIEQ) design, control pipeline
structures, C-element structure, and an arbiter design.

Three different types of on-chip networks are designed aedgmted in this thesis, which
include a direct network, a Code-Division Multiple-Acc€€MA) network, and a crossbar
network. The direct on-chip network presented in this thésa bidirectional ring network
which gives an example of realizing GALS scheme in Proteo Moghitecture. The ring
network realization consists of six nodes and requires ea af 177K equivalent gates when
it is realized with a 0.1@m standard-cell library of Application Specific Integrat€itcuits
(ASIC). Although the ring network has a scalable networkictre, its data transfer la-
tency can vary largely depending on the data destination@utthg process. This drawback
increases the difficulty for the ring network to provide damé quality of communication
service.

Therefore, a network structure which applies CDMA techeigudeveloped and presented in
this thesis in order to provide non-blocking data transén®ng network nodes so that data
transfer latencies have small variances. The CDMA NoC &eki¢his feature by applying
orthogonal codes to build non-blocking data transfer ceEnamong network nodes. The
six-node realization of CDMA NoC presented in this thesis Aa area of 272K equivalent
gates when itis realized with a 011@ standard-cell library and the data path width is 32 bits.
The compensation of the larger area cost is that the asymohsadata transfer latency in the
six-node CDMA NoC is equivalent to the best-case latenchéring network. When the

ii Abstract

data path width is 32 bits, the realized CDMA network candfana 96-bit payload packet
between network nodes within #9through a four-phase handshake protocol if there is no
congestion of destination, which is equivalent to 11.7@&8bithroughput of the network.

Crossbar is a well-known structure which can also supplyfé¢héure of non-blocking data
transfers. Therefore, a six-node crossbar network is dpeel in this work as a reference to
evaluate the CDMA network. In comparison with the six-nodessbar network, the CDMA
network realization has 39.4% larger logic gate area costwthe data path width is 8 bits,
whereas, the number of data wires in the CDMA network is 80144 than the number in
the crossbar network if there are 31 network nodes.

Besides ASIC realizations, a four-node GALS bidirectioriag) network is realized on an
Field-Programmable Gate Array (FPGA) device as an exanijetotyping a synchronous-
asynchronous mixed NoC design on a Look-Up-Table (LUT) 8&#RGA device. The real-
ization consumes 41.7K LUTs on an Altera Stratixll FPGA devi

PREFACE

The work presented in this thesis has been carried out in¢fpament of Computer Systems
at Tampere University of Technology (TUT) during the yead82-2007.

I would like to deeply thank my supervisor Professor Jarimifior his kind encouragement,
patient guidance, and financial support throughout thisanesh work. | would also like to
express my deep gratitude to Dr. Tapani Ahonen and Dr. Daigtde®za-Tortosa for their
numerously inspiring suggestions and warmly help durirgpést four years. | also want to
express many thanks to my other colleagues, Mikko Alho, 8avatta, Bin Hong, Yang
Qu, Claudio Brunelli, Fabio Garzia, Markus Moisio, Srirseam Sudharsan, Pauli Ré,
Raimo Makeh, Ethiopia Nigussie, for their kindness, friendliness;@magement, and help
during these years. | would also like to thank Professor anausala from University of
Oulu in Finland and Professor Axel Jantsch from Royal lngiof Technology in Sweden
for reviewing this thesis and giving valuable comments tpriove it.

I would also like to thank Juha Pirttiéiki, Ari Nuuttila, and Timo Rintakoski for their patient
and warm help to handle all kinds of computer and softwarblpros or requests from me
during these years. My sincere gratitude is also expresstettinstitute secretaries and co-
ordinators, Irmeli Lehto, Johanna Reponen, Ulla Siltalpapd Elina Orava, for their warm
help about many administrative and document affairs duriggtay in TUT. Of course, there
are many other friends whose names are not listed at herdsareexy important to make
my living in Tampere smoothly and happily, | would also likeexpress my thankfulness to
them.

This research work was financially supported by the Departroé Computer Systems of
Tampere University of Technology, which is gratefully ackiedged.

Finally, I would like to express my sincere love and deep Kfaness to my wife — Xi Guo,
my parents — YanMing Zhang and FuLu Wang, my brother — Qun \Wang other relatives
who constantly supported and encouraged me during my limignland. Without their love
and support, | can not imagine how | could carry out this redeaork.

Tampere, April 2008

Xin Wang

Preface

TABLE OF CONTENTS

Abstract [
Preface. e iii
Tableof Contents. v
Listof Publications iX
Listof Figures. Xi
Listof Tables e Xiii
Listof Abbreviations. XV
Part I: Argumentation 1
1. Introduction 3
1.1 ResearchBackground 3
1.2 Objective and ScopeofResearch 4
1.3 ThesisOutline e
2. Network-on-Chip Overview. 7
2.1 NoCDesignlIssues it
2.2 Examples of Existing NoC Designs 13
3. Applying GALS Scheme into On-Chip Networks 17

3.1 Multi-Clock Challenge and GALS Scheme 17
3.2 The Synchronizationin GALSNoC 18
3.3 The Asynchronous Designfor GALSNoC 20

3.3.1 Introduction of Asynchronous Design 21

3.3.2 The Asynchronous Designs Applied in the GALS NoCs 22

vi Table of Contents
4. ADirect On-Chip Network 25
4.1 NetworkTopology 25
4.2 Network Structure 26
4.3 Network NodeDesign 26
4.4 Front-End Synthesis and SimulationResults 28
5. ACDMA On-Chip Network. 31
5.1 Introduction of CDMA Technique 31
5.2 Motivation of Applying CDMA TechniqueinNoC 33
5.3 Applying CDMA Technique into On-Chip Networks 34
54 CDMANoCStructure 36
5.4.1 NetworkNode 37
5.4.2 Network Arbiter 38
543 CDMATransmitter 39
5.5 Front-End Synthesis and SimulationResults 40
5.6 SystemC Modeling and Performance Estimation. 42
5.6.1 Modeling the CDMA NoC with SystemC 43
5.6.2 Performance Estimations43
6. A Crossbar On-Chip Network 49
6.1 Introduction of Crossbar Structure, 49
6.2 Network Structure and Network Node Design 50
6.3 Front-End Synthesis and SimulationResults 51
7. COmMParisons 55
7.1 DataTransfer Principles 55
7.2 Network and Node Structures 56
7.3 Performance 57
7.3.1 AreaCostoflogicGates. 57

7.3.2 Number of Data ConnectionWires 58

7.3.3 AreaCostof InterconnectWires 60

Table of Contents vii

7.3.4 DataTransferLatency 62
7.3.5 Dynamic Power Consumption 64
7.4 Performance Comparisons with Other NoC Designs 65
8. Realizing a GALS NoC onan FPGA Device 69

8.1 Two Key Components for Realizing Asynchronous DesigrasroFPGA Device 69

8.1.1 C-elementStructure 70
8.1.2 Arbiter Structure 70
8.2 Realizing a Four-Node GALSRingNoC 72
9. Conclusions. 75
9.1 Summary of Publications 75
9.2 TheMainResults e 77
9.3 Future Research Directions 80
Bibliography 81

Part Il: Publications 91

viii Table of Contents

LIST OF PUBLICATIONS

This is a compilation style thesis which bases on the folhgaiine publications. The publi-
cations are enclosed in Part Il of this thesis and are refersdP1], [P2] ..., [P9].

[P1] X. Wang, T.Ahonen, and J. Nurmi, “A Synthesizable RTLsigm of Asynchronous
FIFO”, in Proceedings of the 2004 International Symposium on Syste@hip
(SOC 2004), pages 123-128, Tampere, Finland, November. 2004

[P2] X. Wang, D. Sigienza-Tortosa, T. Ahonen, and J. Nurmi,"Asynchronous Mekw
Node Design for Network-on-Chip”, iRroceedings of the 2005 International Sym-
posium on Signal, Circuits, and Systgii$SCS 2005), Volume 1, pages 55-58, lasi,
Romania, July 2005.

[P3] X.Wang, and J. Nurmi,“"An On-Chip CDMA CommunicationtM@rk”, in Proceed-
ings of the 2005 International Symposium on System-on;C8PC 2005), pages
155-160, Tampere, Finland, November 2005.

[P4] X. Wang, T. Ahonen, and J. Nurmi,“Prototyping A Glolyalsynchronous Lo-
cally Synchronous Network-on-Chip On A Conventional FPGévige Using Syn-
chronous Design Tools”, iProceedings of the 2006 International Conference on
Field Programmable Logic and Application@PL 2006), pages 657-662, Madrid,
Spain, August 2006.

[P5] X. Wang, and J. Nurmi, “A RTL Asynchronous FIFO DesigningsModified Mi-
cropipeline”, in Proceedings of the 10 Biennial Baltic Electronics Conferenge
(BEC 2006), pages 95-98, Tallinn, Estonia, October 2006.

[P6] X. Wang, and J. Nurmi, “Comparison of a Ring On-Chip Netikwand a Code-
Division Multiple-Access On-Chip Network”, iRLSI Design, Special Issue on Net-
works-on-ChipVolume 2007, Article ID 18372, 14 pages, Hindawi Publigh@®or-
poration, April 2007.

[P7] X.Wang, and J. Nurmi, “Comparing Two Non-Blocking Canent Data Switching
Schemes for Network-on-Chip”, iRroceedings of the 2007 International Confer-
ence on Computer as a tggEUROCON 2007), pages 2587-2592, Warsaw, Poland,
September 2007.

List of Publications

[P8]

[P9]

X. Wang, T. Ahonen, and J. Nurmi, “Applying CDMA Technig to Network-on-
Chip”, in IEEE Transactions on Very Large Scale Integration (VLSBt&ws Vol-
ume 15, Number 10, pages 1091-1100, October 2007.

X. Wang, and J. Nurmi, “Modeling A Code-Division MultgyAccess Network-on-
Chip Using SystemC”, ifProceedings of the 25Norchip ConferenceNORCHIP
2007), Aalborg, Denmark, November 2007.

© 00 N o g b~ w N P

N NN R R R R R R R R R R
N B O © 00 N OO U M WON O

LIST OF FIGURES

ISO Open Systems Interconnection Reference Model. 8
Network Topology Examples.| 01
Packet-Buffer Flow Control Methods. 11
Flit-Buffer Flow Control Methods. 13
A Method of Applying GALS Scheme ina NoC Design. 18
Double-Latching Synchronization Scheme. 19
The Control Logic of Micropipeline. 22
Control Pipeline of Control-Centric Blocks. 24
Block Control Pipeline. 24
Ringlet Topology Example. 25
Six-Node Bidirectional Ring Network. 26
Network Node Structure of the Bidirectional Ring Network 27
ATL Portions of the Bidirectional Ring Network. 30
The Principle of FHSS Technique. 32
The Principle of DSSS Technique. 33
The Principle of Digital CDOMANoC. 34
Digital CDMA Data Encoding Scheme. 35
Digital CDMA Data Decoding Scheme. 35
Six-Node CDMA On-Chip Network Structure. 37
The Block Diagram of the Network Node for CDMANoC. 37
Bit-Synchronous Transfer Scheme. 39
ATL Portions ofthe CDMANOC. 42

Xii

List of Figures

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Channels and Interfaces in the CDMA Network Node.

Channels and Interfaces inthe CDMANoC.
Open-Loop Simulation Environment.
ATL Estimations with Different Channel Widths.
ATL Estimations with Different Number of Network Nodes.
ATL Estimations with Hot-Spot Traffic Pattern.
An Example of Crossbar Structure.
A Four-Node Crossbar Switch Structure.
Crossbar Network Structure.
Logic Gate Area Costs of Network Nodes.
Total Logic Gate Area Costs of the Three Networks.
Placement of the NoC Designs.
ATL Values of Tx 1-data-cell Packet.
ATL Values of Tx 2-data-cell Packet.

ATL Values of Tx 3-data-cell Packet.

Dynamic Power Consumption Comparison.

C-element Structures.

The Arbiter Structure for FPGA Realization.

44
44
45
46
46
47
49
50
51
58
58
61
63
63
63
64

...... 70

© 00 N oo o b~ wWw N P

S = T
N Rk O

LIST OF TABLES

Truth Table of C-Element. 32
Area Cost of the Bidirectional Ring Network. 28
STL Values of the Bidirectional Ring Network. 29
ATL Values of the Bidirectional Ring Network. 29
Area Cost of the Six-Node CDMA Network. 41
ATL Values of the CDMANOC. i 42
Area Cost of the Six-Node Crossbar Network. 52
ATL Values of the Crossbar Network. 52
Number of Data Connection Wires. 60
Equivalent Number of Intermediate Nodes in the RingNoC. 64
Theoretical Throughput of the Six-Node CDMA Network. 65

ALUTSs Utilization of ‘Network Node' Blocks. 73

Xiv List of Tables

2-D

AHB

ALUT

AMBA

APB

ASB

ASIC

ATL

A-T Protocol

BE

BVCI

CDMA

CRC

DCR

D-FF

DI

DS-CDMA

DSM

DSSS

EMI

LIST OF ABBREVIATIONS

2-Dimensional

Advanced High-performance Bus
Adaptive LUT

Advanced Microcontroller Bus Architecture
Advanced Peripheral Bus

Advanced System Bus

Application Specific Integrated Circuits
Asynchronous Transfer Latency
Arbiter-based T Protocol

Best-Effort

Basic VCI

Code-Division Multiple-Access

Cyclic Redundant Code

Device Control Register

D-Flip-Flop

Delay-Insensitive

Direct-Sequence CDMA

Deep Sub-Micron

Direct-Sequence Spread-Spectrum

Electromagnetic Interference

XVi

List of Abbreviations

FF
FHSS
FIFO
FPGA
GALS
GS

HDL

ITRS
LAB
LUT
MTBF
NoC
NRE
OCP
OPB
(O8]
PBL
PCB
PCC
PCI
PLB
PLL
PSL
PTL
QDI

Flip-Flop

Frequency-Hopping Spread-Spectrum
First-In First-Out

Field-Programmable Gate Array
Globally-Asynchronous Locally-Synchronous
Guaranteed Services

Hardware Description Language
Integrated Circuit

International Technology Roadmap for Semiconductors
Logic Array Block

Look-Up-Table

Mean Time Between Failure
Network-on-Chip

Non-Recurring Engineering

Open Core Protocol

On-chip Peripheral Bus

Open Systems Interconnection
Packet Bypass Latency

Printed Circuit Board

Packet Connected Circuit

Peripheral Component Interconnect
Processor Local Bus

Packet Loading Latency

Packet Storing Latency

Packet Transfer Latency

Quasi-Delay-Independent

Xvii

QoS

RTL

Sl

SoC

SS

STL

TLM

T Protocol
T-R Protocol
TUT

VCI

VHDL
VHSIC
VME

XOR

Quality of Service

Register-Transfer Level
Speed-Independent
System-on-Chip

Spread Spectrum

Synchronous Transfer Latency
Transaction-Level Modeling
Transmitter-based Protocol
Transmitter-Receiver-based Protocol
Tampere University of Technology
Virtual Component Interface

VHSIC Hardware Description Language
Very High Speed Integrated Circuit
VersaModule Eurocard

eXclusive-OR

Xviii List of Abbreviations

Part I: Argumentation

1. INTRODUCTION

Communications play a fundamental and crucial role for #aestbpment of human society in

every aspect because better communications facilitaterhatderstanding and cooperation
between individuals, which in turn facilitate the achiewats and development in society.
As the society is continuously growing and developing, teechfor cooperation and devel-
opment expands to global level. Therefore, communicatlapspmore and more important

role of this globalization process, and the need for effectommunications in all kinds of

ways becomes higher and higher.

As a researcher in electronics field, the author believestiessame truth also applies to on-
chip systems, which means that the quality of communicdticem on-chip system promi-
nently affects system performance. As the complexity of @utltip system keeps growing,
the communication among functional hosts in the systemrbesa non-trivial issue to deal
with. Therefore, with the interest in on-chip communicatithe author started his research
work on this topic in Tampere University of Technology (TUmm)October of 2003.

1.1 Research Background

Currently, silicon chips which contain thousands of miiliof transistors with 45nm feature
size are already available on market, e.g. Intel Penryngssmr. According to the report [42]
from International Technology Roadmap for SemiconducidrRS) in 2007, a single semi-
conductor chip will contain multi-billion transistors ‘itfeature sizes around 22nm and
clock frequencies around 35GHz by the year of 2016. This gmpwnanufacture capacity
and the highly demanding applications continuously drive ¢complexity of a System-on-
Chip (SoC) to a higher degree in terms of number of system coemits and functionalities.
For example, Cell Broadband Engine Architecture (CBEA)] [8dtly developed by IBM,
Sony, and Toshiba, also referred as Cell processor, cengdtiogether 9 processing units in
one chip. Furthermore, Tilera, a MIT spin-off company, asked a 64-core processor called
TILE64 [89] in 2007. As the number of system components beolarger, current widely
applied bus structures for data transfers in an on-chigeyst.g. CoreConnect [39], expose
several disadvantages as addressed in [34]. Two main distaes are bus arbitration bot-
tleneck and bandwidth limitation. The arbitration botdek means that the arbitration delay

4 1. Introduction

will grow if the number of bus hosts increases. The bandwiidtitation refers to the fact
that the data transfer bandwidth of a bus structure is stigratl hosts attached to itin a time
division manner. Hence, more hosts incur a lower share afwatth for each one.

Another challenge that an on-chip system faces is the hggaemus characteristics of sys-
tem components. The components in a SoC may include prasegssa@omputation tasks,
functional blocks for accelerating certain tasks, and tbeutes for communicating with the
peripherals of system. The different functions among tkffie system components naturally
cause them to work in different clock rates for optimal parfance. Hence, coordination and
communications among those components become challetagkg. At the same time, the
issues of wire delay, on-chip noise, process variance, amgpconsumption in the realm of
Deep Sub-Micron (DSM) technologies also become challepfyinchip design. Altogether,
these challenges have brought more and more concerns on-ttfépcommunication issue
of a SoC design.

In order to overcome the disadvantages of bus structures;ahcept of Network-on-Chip
(NoC) has been proposed as a solution at the beginning ofs2@0§. [6, 19, 34]. The idea
of NoC is to separate the concerns of communication from cation by building on-chip
communication structure with concepts adopted from cospugtworks. Each component
of a SoC is viewed as a node of the on-chip communication mktw®ystem components
communicate with each other through the on-chip network. the challenges of multiple
clock domains and DSM technology effect, Globally-Asymrious Locally-Synchronous
(GALS) scheme has been proposed as a solution. In 1984, tieepbof GALS scheme
was firstly introduced in [15] to handle metastability prerol. In 1999, several chip designs
[62,69] which apply GALS scheme were published. The idea@A&S system is to partition
a system into separate clock domains which run at differkrkcrates, and the separated
domains communicate with each other in an asynchronousénann

When the author joined the research group at TUT in 2003, a Noldtacture named Pro-
teo [85] was under development in the group. At that time,va¥®C designs have been
published, including Athereal NoC [23], NOSTRUM NoC [54}daSPIN NoC [34]. There
was no published paper dedicated to GALS NoC. Thereforeauttgor started this research
work with realizing GALS scheme in a Proteo NoC instance.

1.2 Objective and Scope of Research

The goal of this work is to design a GALS on-chip network in fremme of Proteo NoC
architecture while experimenting with different NoC stures. The work focuses on the
following topics.

(1) Developing a network node structure and building a bitional-ring network to find a

1.3. Thesis Outline 5

way of realizing GALS scheme in Proteo NoC.

(2) Designing asynchronous circuits which include asyoachus FIFO design and asyn-
chronous control logic for realizing the GALS NoC designs.

(3) Developing a GALS on-chip network which applies CDMAhaimjue.

(4) Developing a modeling and performance estimation ntefoo a GALS NoC design
using SystemcC.

(5) Developing a crossbar on-chip data switch structuredonparison purpose.

(6) Examining the characteristics of the developed CDMA Ngy@&omparing it with other
NoC structures.

(7) Realizing a synchronous-asynchronous mixed GALS Na&ydeon a LUT-based FPGA
device.

1.3 Thesis Outline

This thesis consists of two parts: Argumentation (Part §) Bablications (Part Il). Part Il in-
cludes reprints of nine international conference and jalupablications on which this thesis
bases. Part | starts with this chapter, Chapter 1, to intedackground and objective of this
work. Chapter 2 gives an overview of on-chip networks inolgdhe background of NoC,
the related design issues, and some examples of existingddsigns. The topics addressed
in Chapter 3 include the method of applying GALS scheme irtloip-networks and the re-
lated issues including synchronization and asynchronesamds for realizing a GALS NoC.
Chapter 4 presents the work of designing and realizing a GAigGNoC as a direct network
instance of Proteo NoC architecture. Chapter 5 presentsdheof designing and realizing
an on-chip network which applies CDMA technique. Chapterésents a crossbar network
developed for comparison purpose. The comparisons betiieddDMA network and other
types of NoC designs including the ring and crossbar netsvddveloped in this work are
presented in Chapter 7. Chapter 8 presents the work of irgaizGALS NoC design on an
FPGA device. Finally, the conclusions of this thesis incdgdsummary of the publications
in Part Il and the main results of the research work are ptedeén Chapter 9.

1. Introduction

2. NETWORK-ON-CHIP OVERVIEW

The appearance of Integrated Circuit (IC) in 1959 was a maifess of the development of
electronics industry. It created a productive way to mactui@ large scale electronic cir-
cuits on a semiconductor device. As stated by Gordon Moof®éb, “the complexity for
minimum component costs has increased at a rate of rouglagtarfof two per year” [64].
This statement is known as the original formulation of Md®tew and often quoted as “the
number of transistors that can be placed on an IC is incrgasiponentially, doubling ap-
proximately every two years.” The Moore’s Law is still valwwadays and believed to be
valid until reaching the size of atoms.

Therefore, driven by the growing manufacture capacity &edgrowing requirement of ap-
plications, the complexity of an on-chip system is contumlg growing in terms of number
of transistors and functionalities. For example, InteGote 2 Duo’ processor fabricated
with 65nm technology process contains 291 million trawesssf40]. When the on-chip sys-
tem becomes complicated, the system design methodololpd aathogonalization of con-
cerns [49] can be applied to deal with the complexity. As adsed in Chapter 1, the commu-
nication issue is very crucial for an on-chip system to penfds tasks efficiently. Therefore,
in the context of SoC design, one way of applying the methmgipbf concerns orthogo-
nalization is to separate the concerns of communicatiom fromputation to enable more
efficient exploration of optimal solutions on each subject.

On-chip bus structure was firstly applied to handle on-cbhipmunications for a SoC design
in 1990s. The idea of on-chip bus is derived from the bus selseisuch as VersaModule
Eurocard (VME) bus [78] and Peripheral Component Intereah@Cl) bus [77], which are
designed for connecting discrete devices on a Printed iCBoard (PCB). The examples of
on-chip bus structures include CoreConnect [39] and Adedidicrocontroller Bus Archi-
tecture (AMBA) [3]. CoreConnect is a complete and versdtile specification which defines
three types of buses: Processor Local Bus (PLB), On-chiiplrenal Bus (OPB) and Device
Control Register Bus (DCR). AMBA, which is similar to Core@ect, also specifies three
kinds of buses: Advanced High-performance Bus (AHB), AdethSystem Bus (ASB) and
Advanced Peripheral Bus (APB). These bus structures supaty advanced features, such
as split transactions and line transfers, for on-chip sgsterhich contain a few processors.

However, as addressed in [34], bus structures have sevisealvdintages by the compari-

8 2. Network-on-Chip Overview

son of on-chip networks. The main disadvantages, bus atibitr bottleneck and bandwidth
limitation as mentioned in section 1.1 of Chapter 1, are eduwy the centralized and time-
division manner of sharing a communication channel amoingehosts of a bus. The trend
of future on-chip systems is that a large number of procgasiits will be integrated into one
system, as the example shown by TILE64 [89]. Therefore, isdiructure is applied in the
future on-chip systems which contain a large number of carapts, it will suffer from the
problems of arbitration delay, bandwidth limitation, armbpscalability. Hence, developing a
dedicated on-chip network is the most promising solutiarfditure on-chip communication.
The issues of designing an on-chip network and the existio@ tesigns will be introduced
in the following two sections of this chapter.

2.1 NoC Design Issues

The concept of on-chip networks is derived from the welkbBshed inter-computer net-
works. Therefore, taking a look at the design issues of d@sigcomputer networks is help-
ful for tackling design problems of NoC because they havet aflsimilarities despite of
different characteristics and application environmeritee Open Systems Interconnection
(OSI) reference model [41] is a layered description whick baen used for building com-
puter networks. Thus, the NoC design issues can be addrassedling to the OSlI reference
model illustrated in Fig.1.

Seven layers are defined in the OSI model and illustratedgriFiThe seven layers include
application layer, presentation layer, session layenspart layer, network layer, data link
layer, and physical layer. Each layer provides certainisesuo facilitate the communication

System Terminal System Terminal

[7. Application Layer [7. Application Layea
[6. Presentation Layer [6. Presentation Layer

[5. Session Layer [5. Session Layer

.

A=)
A=)

[4. Transport Layer }— —{ 4. Transport Layer]
[3. Network Layer }7 NoC —b[3. Network Layer]
Design
[2. Data Link Layer }— Issues —{ 2. Data Link Layer]
[1. Physical Layer }7 —{ 1. Physical Layer]
Physical Media

Fig. 1. ISO Open Systems Interconnection Reference Model.

2.1. NoC Design Issues 9

processes in the network. The issues and challenges ofndlegign-chip networks will be
addressed together with describing the functions of eaar ia the following paragraphs of
this section.

(1) Physical Layer. This layer defines all the electrical and physical specibostto acti-
vate, maintain, and de-activate physical connectionsdta ttansfers. Normally, a NoC de-
sign is implemented on a silicon chip in which the charasti&s of the physical connection
medium are determined by the manufacturing technology. hdstianufacture technology
scales down to DSM domain, the on-chip physical links faeectiallenges of large wire de-
lay, large power consumption, crosstalk noise, etc. Tlheeethe NoC design efforts in this
layer mainly concentrate on conquering the above mentiahedlenges in physical level.
For example, the work presented in [27] gives a wire segntientaepeater structure to re-
duce wire delays. The work in [71] presents a booster stradtudrive long wires instead
of repeaters to achieve better performance in terms of ameer, and placement sensitiv-
ity. The work presented in [98] applies low-swing signalieghniques to reduce the power
consumption of link wires. A physical link design for a NoQuéipation is presented in [59].
The design applies mesochronous approach to realize askegkinsensitive physical link.

(2) Data Link Layer. This layer is responsible for setting up reliable data tienssover
physical links. The NoC design issues in this layer can ishelarror detection and correc-
tion, access arbitration of physical media, and the metloddgilizing physical links. For
instance, the Cyclic Redundant Code (CRC) scheme is apipli¥gipe NoC [7] to detect
the possible transition errors. Another design issuegdlaifith this layer is the multi-clock-
domain communication issue. In a large on-chip systeneifit functional hosts may work
in different clock domains in order to achieve optimal periance; hence data transfer cross-
ing clock domains is a design challenge. A data link desigrésented in [58] to deal with
this issue using mesochronous links. Another approach @ppdy GALS scheme [15, 69]
into on-chip networks. It means that the global links andltdwal links in a large on-chip
system apply different communication methods to solve th#ipte clock domain problem
and increase data transfer reliability. This topic will headissed further in Chapter 3.

(3) Network Layer. The network layer provides the means of data transfers gfraunet-
work connection between a source and a destination. It dhmake the transport layer
independent on the data routing and relay consideratiarsa NoC design, the main issues
to be handled in this layer include network topology and dat#ing.

Network topology concerns the layout and connectivity @& ttodes and channels in a net-
work. According to the functions of network nodes in a netwmpology, networks can be
classified into direct and indirect networks. In a direcivak, each node is both a terminal
and a switch node. An example topology of direct networkkés2-Dimensional (2-D) mesh
topology illustrated in Fig.2(a). In a mesh topology, eaddais used as a terminal node
connecting with a functional host and as a router node simictata to their destinations.

10 2. Network-on-Chip Overview

T ok

(a) 2-D Mesh (b) Octagon (c) Binary Tree
|:| Functional Host O Network Node

Fig. 2. Network Topology Examples.

Many NoC designs apply mesh topology since its simple airecind the ease of placement.
Another topology of direct networks which has been applietloC designs is the octagon
topology illustrated in Fig.2(b). Itis an eight-node ringtwork with extra links between each
pair of opposite nodes in the ring structure. In an indiresttuork, each node works either
as a terminal or a switch. It cannot carry out both functiohs.example of this category is
the tree-based topology illustrated in Fig.2(c) with a aafdginary tree. As illustrated in the
figure, the nodes at the bottom level work as terminals to ecnwith functional hosts, while
the nodes in higher levels function only as data switchingeso Although other topologies
exist for interconnection networks, only a few exampleschihhave been applied in NoC
designs were presented in this paragraph to give a glimp$¢o@htopology choices. The
NoC examples which apply these topologies will be preseintedction 2.2.

Besides network topology, the routing method is anothereissat needs to be considered in
the network layer of a NoC design. After a network topologges a routing method is used

to decide the path that data will be transferred from thes®uapde to the destination node.
According to different aspects, routing methods summedrizg72] can be classified in three

ways as presented in the following three paragraphs.

Depending on where the routing decision is made, we can lmawreerouting and distributed
routing. By source routing method, the entire path of datadfers is determined by the
source node before data transfers. By distributed rouéagh router node decides the next
node where the received data will be sent.

Depending on the information on which the routing decisiands, routing methods can be
classified into deterministic routing and adaptive routilgeterministic routing means that

the data transfer path is determined only according to thececand destination addresses.
Whereas, with adaptive routing method, the path is decidédmlg by the source and des-

tination information, but also by the dynamic network cdiudis, such as traffic congestion

information in the network.

Depending on the length of the decided path, minimal roudimdjnon-minimal routing meth-

2.1. NoC Design Issues 11

%

Channel
Channel
(3]

|

Time Time
(a) Store-and-forward (b) Virtual cut-through

Fig. 3. Packet-Buffer Flow Control Methods.

ods can be differentiated. If a selected path is one of theesttgpaths between the source and
the destination, this method is called minimal routing. éttise, it is called non-minimal
routing method.

A routing method applied in NoC designs can be a mixture dédbht routing categories.
For example, the X-Y routing method is both deterministid amnimal. In X-Y routing,
the data are transferred along the rows first, then are mdeed she columns toward the
destination in a 2-D mesh network. Because adaptive routvaves dynamic arbitration
mechanisms which incur complex node implementation, detéstic routing is normally
applied in NoC designs.

(4) Transport Layer. Transport layer protocols establish and maintain endatbemnnec-
tions between transport level entities. The concernedydassues in this layer include flow
control and Quality of Service (QoS) management.

Flow control is the mechanism that determines the allonadioresources for data as they
progress along their routes. According to the way of utiligthe channels between network
nodes, two different approaches, circuit-switching anckp&rswitching [20], can be applied.
In a circuit-switched network, a dedicated path from sotwaestination is set up before data
transport and reserved until the transport is complete.packet-switched network, the data
are transferred in form of packets. There are no channelgder a data packet. All packets
travel to their destinations by sharing the existing chémamong nodes and following their
paths determined by a routing method. The main disadvamtbgecuit-switched networks
is the lower efficiency of channel usage than the packetebei network, which is caused by
setting up dedicated paths for data transport. Therefaiekgi-switching method is popular
in NoC designs.

Normally, an on-chip network needs to include buffers tdlitate data transfers. According
to the granularity at which buffers and channels are alktand the way of forwarding data
along their routes, flow control methods can be classifien paicket-buffer flow control and

flit-buffer flow control [20]. A flit is the minimum unit in a paet that can be recognized by
a flow control method.

Two basic packet-buffer flow control methods are storefamalard and virtual cut-through
[20]. The principle of store-and-forward method is illegtd in Fig.3(a) with an example

12 2. Network-on-Chip Overview

of transferring a four-flit packet. With store-and-forwargtthod, a packet will not be for-
warded to the next node along its path until all flits of theked@are received by the current
intermediate node. Therefore, the disadvantage of thisades the high packet transfer la-
tency caused by inefficient usage of channels. Hence, Viotiahrough method is proposed
to solve this problem by immediately forwarding the recdipacket flit to the next node if
the buffer and channel resources are available for the whantket, without waiting for the
entire packet to be received. Its principle is illustratedig.3(b) without contentions. By
transferring packets as soon as possible, virtual cutatiiranethod reduces the serialization
latency of store-and-forward method. However, there amerhain shortcomings of virtual
cut-through, or of any other packet-based flow control m#ghdOne of them is the ineffi-
cient usage of buffers caused by allocating buffers in wfifsackets. This is very important
when there are multiple buffer sets to reduce blocking oviging deadlock avoidance in a
NoC. Another shortcoming is that the contention latencyiseased by allocating channels
in units of packets. The blocked packet needs to wait for thelevpacket in transmission
passing through the channel before it can acquire that ehafihese shortcomings can be
overcome by allocating resources in units of flits rathen thackets.

A popular flit-buffer flow control method is wormhole meth@®] which operates like virtual
cut-through, but with resources allocated to flits rathentpackets. It means that a flit only
needs to acquire one flit buffer and one flit channel bandwhbéfore it can travel to the next
node, which relieves the requirement of resources in coisgramwith virtual cut-through
method. Whereas, with wormhole method, a packet in transfeupgies multiple channels
when its flits are traversing along the channels one by on& Wil cause a problem if the
current packet is blocked during transfer. As illustratedrig.4(a), if the flit of packet A is
blocked at the intermediate node 3 because of congestilbtise @hannels occupied by this
packet will exclude packet B from using them. In this sitaativirtual-channel method [20]
is proposed to solve this blocking problem by associatindtipie buffers to one physical
channel. By using the buffers, multiple virtual channels ba set up on a single physical
channel. As illustrated in Fig.4(b), with the virtual chats) the flits of packet B can be
transferred to node 3 even when the flits of packet A are bkbek@ode 3.

Generally, the flit-buffer flow control methods are prefdrie NoC designs because of its
efficient usage of buffers and channel bandwidth. The aafitin examples in NoC designs
will be presented later in section 2.2.

Another issue concerned in the transport layer of a NoC desiQoS. It refers to the service
qualification that is provided by the network to its users[48], the QoS in the context of
NoC designs is classified into two basic classes, Bestf¥) services and Guaranteed
Services (GS). In BE services, the network makes no stroagpgtee about the delay or loss,
while the GS scheme can guarantee a certain level of perfarenas long as the injected
traffic complies with a set of restrictions. Both types of Qu&e been applied in NoC

2.2. Examples of Existing NoC Designs 13

Node 1 Node 2 Node 3
output channel
A channel channel of packet B
%» A >~ A A
B|B|B|B %

output channel Block
of packet A ¢ (Blocked)
(a) Wormhole

Node 1 Node 2 Node 3

channel channel Ol:?g; Cc?:tn]r;el

output channel Blocked
of packet A V(ocked)

(b) Virtual-channel

Fig. 4. Flit-Buffer Flow Control Methods.

designs. Because GS service demands more resource researat complex control logic
than the BE service does, it is more expensive to support G&een a NoC design.

(5) Session/Presentation/Application LayerThese three layers handle the communication
processes of an interconnection network in high levelssiS8edayer mainly focuses on the
connections between hosts. Presentation layer concesrtath representation and security
issues. Application layer supplies services to user-deéfapgplication processes using in-
terconnection networks. Generally, the services and iomstof these three layers will be
implemented by processors or software. Therefore, a No@mesrmally does not need to
directly handle the issues related to these layers.

The OSI model is only a reference for designing an interconnetwork. Therefore, it only
gives a guideline for designing an on-chip network rathanth regulation. From the above
discussions about the OSI model and NoC design issues, weegathat the NoC design
issues are generally within the three or four lowest layeteé OSI model and the boundaries
between the design issues according to the layer definigimneot very strict. The presented
design issues in this subsection do not mean a completd kit possible design issues of
on-chip networks, or rather, they are some typical NoC desigues addressed according to
the OSI model.

2.2 Examples of Existing NoC Designs

A lot of research work about NoC structures has been cartigavith different application

requirements and backgrounds. There is no standard ways$sifyl or summarize them.
In this section, some examples are introduced to preserdivkesity of the existing NoC

designs.

14 2. Network-on-Chip Overview

1. Different Topologies

As presented in section 2.1, 2-D mesh is the most widely egpbpology since its simple
structure and tidiness for placement. The SoCBUS presénti8], HERMES NoC pre-
sented in [66], and the NoC design presented in [19] are tamples of 2-D mesh network.
Based on 2-D mesh, another topology called 2-D torus canrbeefihby connecting each row
and column of nodes in a 2-D mesh network into a ring. An imdenection network pre-
sented in [60] is the example of 2-D torus network. The tortsvork consists of four nodes
and it is implemented on an FPGA device. Another type of togplquite different from
the mesh and torus is an octagon topology illustrated ir2fiy, the NoC presented in [45]
applies this topology. In the octagon NoC, the channels éetvevery node are bidirectional
links.

Besides the topologies of direct networks, indirect nekatopology is also applied in NoC
designs. For example, SPIN [34] is a NoC design which applies$-tree topology consisted
of two levels of routers, four routers in each level. Eachteouin the first level connects
with four functional hosts. Each channel is comprised of twme-way 32-bit data paths.
The fat-tree topology network is further explored by a NoGide called XGFT [46]. The

XGFT NoC applies an extended generalized fat-tree topotoggchieve better scalability
and performance in comparison with a fat-tree network.

2. Different Data Switching Methods

The PROPHID architecture [55] is an early developed NoC Wwhigplies circuit-switching
scheme. PROPHID uses a three-stage switch structure whidists of time-division switch
and space-division switch to carry out data transfers in kipnocessor system. Because the
circuit-switching scheme has the disadvantage of norabdiy and insufficient parallelism
for future on-chip systems, packet-switching scheme istmagely applied in current NoC
designs, such as the mentioned HERMES network, SPIN nepaatkXGFT network.

However, there exists switching methods which combine tleracteristics of both circuit
switching and packet switching in NoC designs. For exanthke SOCBUS applies a Packet
Connected Circuit (PCC) [93] method which hybrids circwitshing with packet switching
to transfer data in the network. It uses packet switchingetoup the connection between
network nodes and lock the setup as a circuit for data tressaom. The AEthereal NoC
[23] developed by Philips research laboratories appliépaliped time-division multiplexed
circuit switching scheme in a packet-switched network ideorto acquire contention-free
routing.

3. Different Routing Methods

For the sake of simplicity, deterministic routing methode applied in the most of NoC
designs. For example, the X-Y routing method introducedeictien 2.1 has been applied
in the 2-D mesh HERMES NoC, SoCIN NoC [97], and the networlsented in [60]. In

2.2. Examples of Existing NoC Designs 15

SoCBUS, each node makes the routing decision based on tlipafies address and the
static knowledge of the general direction to each destinatn Octagon NoC, a deterministic
minimal routing method is realized by choosing the outptgation at each node according
to predefined rules.

In [22], three partially adaptive routing methods, westtfinorth-last, and negative-first, are
proposed for 2-D mesh networks. The common idea of thoseadstis that a deterministic
route is followed when certain limits are obeyed, otherwibe routing decision made by a
node can be adaptive according to traffic conditions. Fomgte, with the west-first routing,
a node always tries to transfer packets firstly to the westtion of the source node whenever
itis possible, otherwise, routing direction is adaptivéhte traffic condition. The comparison
between the three partially adaptive methods and X-Y meihatso presented in [22]. The
conclusion is that X-Y routing appears as the better chaiomast situations in HERMES
NoC.

4. Different Flow Control Methods

Wormhole and virtual-channel methods are two most freduersied flow control methods
in NoC designs. Because the wormhole method requires lésdand simpler control, it

is easier to be applied in NoC designs. The widely acceptér:r&al NoC applies wormhole
method in its best-effort router. HERMES, SoCIN, and SPIdoapply wormhole method.
For virtual-channel method, the NoC design presented ihifl&n example. It applies 10K
bits storage for virtual channels at each input controNéttual channels are also applied in
a router design presented in [28] to support different QoS.

5. Different QoS Strategies

As addressed in section 2.1, GS and BE are two types of Qo&dppINoC designs. GS
provides predictability of data transfers, while BE seevitas higher resource utilization.
NOSTRUM [54] is an example of NoC design which provides GSsks looped containers
implemented by virtual circuits to support GS in a mesh neétwdVhile in AEthereal NoC,
both GS and BE services are provided by using a combined G&Bfter structure. The
router includes two parts; one part applies pipelined diwitching to implement its guar-
anteed service, while the other part applies input-queustnivole flow control to provide
best-effort service. Another type of combination of GS aftidgrvices is presented in [28].
The design provides differentiated QoS between GS and BHdyyiag higher priority data
streams to overtake those of lower priority in virtual chalsn

6. Different Implementation Strategies

As the design requirements for a NoC may vary largely dependn the applications, there
is no a universal design which suits for all applicationserifore, some NoC designs, e.g.
SoCIN and Xpipes, realize the network components in a softéwhich can be customized
for a specific application. With the support of specializedign tools, e.g. XpipesCompiler,

16 2. Network-on-Chip Overview

many design parameters, such as topology, network inessfand switch structures, can be
customized to meet the requirements of a specific applitatioing the design stage. Of
course, the changeable design parameters in this type ofldsign can not be arbitrary. For
instance, the topologies supported by SoCIN NoC only inelombsh and torus. However,
these choice limitations are reasonable since it is imptessd predict and meet all possible
application requirements in one design.

7. Different Communication Synchronization Strategies

As addressed in section 2.1, GALS communication schemé&@inced in NoC to deal with
the issue of multiple clock domain data transfer. Thus, elsganous circuit design is applied
in some NoC designs to implement GALS scheme. A NoC desidacc&HAIN [4] is such
an example of an asynchronous NoC. It applies self-timeid kngouild pipelines, multiplex-
ing structures, and steering latches to transfer data waitld$hake protocols. Another GALS
NoC example is MANGO presented in [8] which applies OCP caamplnetwork adapter
block to connect the functional blocks with its asynchranoommunication network. It also
provides both guaranteed and best-effort services byintjjivirtual channels [11]. Nexus
NoC presented in [57] is an example of GALS NoC different frovater-based NoC. It
applies a 16-port asynchronous crossbar structure to anitth-chip data switch.

8. The Proteo NoC Architecture

Finally, the Proteo NoC architecture [85] developed in oapafttment is introduced. Its
name, Proteo, is taken from ancient Greek mythology to esptiee idea of flexibility of
the proposed NoC architecture. Conceptually, as stategbil) fhe Proteo NoC architecture
consists of a library of hardware components, a set of CADstaad a methodology of
usage. The idea of Proteo NoC is to make a NoC instance bg easilquickly built for a
specific application by applying specialized design toold aptimization methodology on
a heterogeneous hardware IP library. A Proteo NoC instaneepiacket-switched network
in which topologies can be customized according to apjtinat Currently, deterministic
routing and virtual cut-through flow control method are &plin a Proteo NoC instance.
Proteo NoC supports Virtual Component Interface (VCI) [@44l Open Core Protocol (OCP)
[75] interface standards for connecting each functionait lto its corresponding network
node.

3. APPLYING GALS SCHEME INTO ON-CHIP NETWORKS

As mentioned in Chapter 2, the number of processing or fanaticomponents in an on-
chip system becomes larger and larger. Currently, a 64-@morehip system, TILE64 [89],
has already been produced. It is believed that a future gnssistem will consist of sea-of-
processors in one chip [80]. Besides the growing number stegy components, the func-
tionalities of system components also become largelymdiffefrom each other. It means that
an on-chip system may include different processors foedkfit computation tasks, varied
hardware accelerators for varied functions, and variotesfaxce controllers for various pe-
ripheral devices. Therefore, these heterogeneous systempanents have different optimal
working clock frequencies according to the tasks that tlheyhandling. When integrating all
the heterogeneous components into an on-chip system,inatindj different clock domains
is a challenge.

3.1 Multi-Clock Challenge and GALS Scheme

From the viewpoint of a chip design, as addressed in [74])|dage high-speed globally
synchronous ASICs, designing the clock distribution nebioees a troublesome task because
of the problems caused by clock skew, by the growing die sinelsshrinking clock periods.
At the same time, the power consumption is increasing trelmesly because the working
clock frequency driven by demanding applications is ggttilgher in the scale of giga-hertz.

Therefore, one solution of the challenges mentioned ab®ve enable different process-
ing or functional system components to work at their own klates. Thus, the following

challenge that a SoC designer needs to handle is how to atéstipe clock independent com-
ponents into one system. In this situation, GALS schemedpgsed to solve the system
integration challenge. The GALS scheme is firstly introdlice[15] to prevent metastability

by stretching local clocks. The basic idea of applying GAlc8esne into on-chip systems
is to partition the system into several independently cdalctomains that communicate with
each other in an asynchronous fashion. The GALS scheme Im#ig of the NoC structures
designed and realized in this work. The method and chalkeafigesigning a GALS on-chip

network will be presented in the following two sections.

18 3. Applying GALS Scheme into On-Chip Networks

Synchronous P Asynchronous Synchronous

| Net%w:ork Node Network Node

! | Functional z |Functional
Host |:| — |:| 2 | Host
10 MHz § E E § % 500 MHz |

 Synchronous || ~ Synchronous

: Netfvxjxork Node Network Node

| Functional | P . 3

' o i | z |Functional}

i2010{(1)\/31;{ E S% Host).

: z P P i

| i [Ji = |%oMB)

Fig. 5. A Method of Applying GALS Scheme in a NoC Design.

3.2 The Synchronization in GALS NoC

In an on-chip system, communication tasks among system aoemps are performed by the
on-chip network. Thus, the issue of realizing GALS schemaniron-chip system equals to
realize GALS scheme in the on-chip network. The method ofyépgp GALS scheme in the
NoC structures developed in this work are illustrated in%=ig~-rom the figure, we can see
that each network node contains an interface block whictksvat the same clock rate as
the system functional block attached to it, while the bloitksgylobal communication among
network nodes apply asynchronous scheme.

Therefore, the data synchronization between synchronodigssynchronous domains is the
main challenge of designing a GALS NoC. The term, synchremmmain, used in this thesis
refers to the group of design blocks which work under theadiioh of clock signals in a SoC,
while, the term of asynchronous domain refers to the grougaxtks which work in a self-
timed manner without any clock signals.

Many synchronization schemes or structures for data teamsimong independent clock do-
mains in a GALS system have been presented. One categoryuibss is to avoid syn-

chronization failure by adjusting the clock signal of thedbsynchronous module or by
generating a controllable clock signal in the synchromizatnterface. For example, the
work presented in [35] develops a stoppable clock strudtubeiild a deterministic wrapper.

The work in [69, 99] presents stretchable clock schemesaaaynchronization failure in

the interface between synchronous and asynchronous dem@ipausible clock scheme is
firstly presented in [96] to manage the data transfers betirgependent clock domains
without synchronization failure. The work presented in, B3 further develops the pausi-
ble clock scheme. The work in [12] presents an asynchronoapper which combines the

3.2. The Synchronization in GALS NoC 19

Asynchronous
or
Independent

clock domain Receiver

Receiving Clock

Fig. 6. Double-Latching Synchronization Scheme.

stretchable and pausible schemes together. This wrappexveéd synchronization failures
caused by metastability in circuits. One common featuréoa$e presented synchronization
schemes is that they all involve specialized clock genamadr control circuits which need
to be implemented in circuit level. Thus, if a GALS NoC desapplies one of those syn-
chronization schemes, the whole design can not be realizRdgister-Transfer Level (RTL)
by using Hardware Description Language (HDL), which in tarakes the NoC design less
implementation flexible and portable. Therefore, this tgpeynchronization scheme is not
applied in the NoC designs presented in this thesis.

Another type of solutions of data synchronization in a GAlyStem is to synchronize the
signals from asynchronous domain with the local clock inrditia@ry timing relationship and
limit synchronization failures within an acceptable levehe most widely applied scheme in
this category is the double-latching scheme as illustrateédg.6. It consists of two serially
connected D-Flip-Flop (D-FF) components to latch the irgpgimals with the reference clock
of the receiver. It is possible that the first D-FF enters imitastable state if input signal
transitions violate the setup or hold timing requirememt tHis situation, the second D-FF
gives a whole clock cycle for the first D-FF to resolve the ratthility before latching its
output. However, in the double-latching scheme, theréestikts the failure possibility if
the first latch can not get rid of metastability state befdre $econd flip-flop samples its
output. Therefore, Mean Time Between Failure (MTBF) isadticed to measure the safety
of a synchronizer. MTBF gives indication about how often acyonization failure occurs.
The performance analysis of double-latching synchrosia@d the equation of calculating
MTBF of a synchronizer are presented in [24,53]. As addeBs§24] and presented in (1),
the MTBF equation consists of the time (t) allowed for symctization, the settling timery

of Flip-Flop (FF), the sampling clock frequencig), the frequency) of data edges which
generates a metastability, and a paramékgy related to the metastability window of the FF.

¢/

MTBF = +——

1)
Besides the double-latching scheme, many other synclatimizschemes or structures have
also been proposed. For instance, a pipeline synchrooiizatiucture is proposed in [82] to
achieve high communication bandwidth while keeping thieifaipossibility arbitrarily low.

20 3. Applying GALS Scheme into On-Chip Networks

Publication [26] presents a speculative synchronizercsire in transistor level to reduce
synchronization latency. Another transistor level syodimer design is presented in [44]
to achieve high performance in a low voltage application[5], a parallel synchronizer
scheme which bases on the double-latching scheme is imteddio reduce synchronization
latency. All those presented synchronizer structuresiredhe design to be implemented
in gate or transistor level. In order to make the entire desiga GALS NoC suit the com-
monly used synchronous design flow, both the synchronousisynthronous designs need
to be modeled by using the commonly used HDL. Therefore, thiblg-latching scheme is
selected to be used in the GALS NoC designs in this thesis.

In the GALS NoC designs presented in this thesis, doubt#iiayy scheme is used for syn-
chronizing the handshake control signals for data trasstther than the data signals them-
selves. For example, when transferring data from asyndusdomain to synchronous do-
main, the asynchronous logic will assert a request signet #ie data to be transferred are
ready. Then the asserted request signal will be synchranizéh the receiving clock do-
main through a double-latching structure as illustrateBiq6. Whereas, the acknowledge
signal that the synchronous domain sends back to the asyrals domain can be received
directly. When data are transferred from synchronous dotea&synchronous domain, the
double-latching scheme is only needed for the synchroramis to receive an acknowledge
signal from the asynchronous domain during a four-phasddfake process. The safety of
applying double-latching scheme has been analyzed in\\81dre it is stated that the MTBF
of most SoC designs is safe far more than enough by simplngette resolving time win-
dow to one clock cycle. Among the published NoC designs, MANSOC is an example
which applies the double-latching scheme to synchronigesyinchronous and asynchronous
domains. In [9], the designer of MANGO NoC claims that thereated MTBF of the im-
plemented double-latching synchronizer is longer thard8@ars. Therefore, the simple and
safe enough double-latching scheme is a reasonable clowiaeFALS NoC design.

3.3 The Asynchronous Design for GALS NoC

In order to realize a GALS NoC design, both synchronous agddsonous designs are
needed. Synchronous design methodology and techniquesbie@n well established and
applied. Many standard design tools and design flows ardajme for synchronous designs.
Whereas, asynchronous design has not been widely applerdtaftas born in 1950s. The
asynchronous designs of the GALS NoCs developed in this wilfkbe presented in this

section.

3.3. The Asynchronous Design for GALS NoC 21

3.3.1 Introduction of Asynchronous Design

As stated in [70], asynchronous design methods can datetbat®0s and to two people
in particular: D.A. Huffman and D.E. Muller. Huffman deveked an asynchronous design
methodology known as fundamental-mode circuits [38] inalithe delay in all circuit ele-
ments and wires is assumed to be known, or at least boundedm&thodology developed
by Muller is Speed-Independent (SI) circuits [67] in whichtg delays are assumed to be
unbounded while the wire delays are negligible.

Almost all the other types of asynchronous design methoddind their roots in those two
fundamental methodologies. For example, Delay-Inseres{Dl) circuit model extends the
assumption of Sl circuits by assuming that both gate and dadays in circuits are un-
bounded. The burst-mode design methodology [73] assuna¢ ity the specified input
bursts which can make circuits leave the current state caur @ta given circuit state, and the
fundamental-mode assumption is applied between transitonong different input bursts.
Ivan Sutherland developed a micropipeline structure [87&m asynchronous alternative of
synchronous elastic pipelines. A micropipeline structtmasists of a bounded-delay data
path controlled by delay-insensitive control logic.

After the birth of asynchronous design in 1950s, it has nenhbes widely adopted as syn-
chronous designs except several academic projects diminfirst several decades, such as
the ILLIAC Il computer [13] developed at University of lllgis in 1960s, the first opera-
tional data-flow computer [21] developed at the UniversityJtah in 1970s, and the first
fully asynchronous microprocessor [61] developed at Galif Institute of Technology in
1980s. As the development of IC design in recent decadeshsymous designs face the
hard challenges of clock distribution, power consumptiamg design complexity. There-
fore, as an alternative to synchronous design, asynchsodesign gains more applications
than before. For instance, Philips developed asynchropagsr chips [79] in 1998 and a
contactless smart-card chip [48] in 2000. A series of assorabus microprocessors called
Amulet [29, 30, 94] have been developed in University of Master from 1994 to 2000. In
2005, products based on an asynchronous NoC design weeasadlby a company called
Silistix [37]. One common motivation of those asynchrondasign applications is to utilize
the advantages of asynchronous design. Several main adesndf asynchronous design are
briefly introduced in the following five paragraphs as the efthis short introduction of
asynchronous design.

(1) Low power consumption.Because asynchronous circuits do not need any clock signals
the power spent on clock switching in a synchronous chipaegded. Additionally, the signal
transitions in asynchronous circuits will automaticaltgs when there is no driven event.
Therefore, asynchronous designs can achieve lower powsuoption.

(2) No clock distribution and clock skew.This advantage is obvious since the lack of clock

22 3. Applying GALS Scheme into On-Chip Networks

req_in
1)
ack_out J c ' » req_out
delay
delay .
| ackin

Fig. 7. The Control Logic of Micropipeline.

signal in asynchronous circuits. Thus, the difficulties lofck distribution and clock skew
faced by synchronous designs are removed from asynchraiesigns.

(3) Average-case performanceln a synchronous design, the operating speed is limited by
the worst-case, called critical path, in the circuits. Hegrein asynchronous circuits, the
operating speed is determined by actual local latenciglsarcircuits rather than the global
worst-case latency. In most of cases, the average-casten€ies are smaller than the worst-
case latency, hence, asynchronous designs can achiesedptating speed performance.

(4) Less Electromagnetic Interference (EMI) radiation. In a synchronous design, flip-flop

transitions follow a certain clock frequency so that thergmepent on signal transitions con-
centrates within the very narrow bands around the clockugagy. Thus, the synchronized
signal switching activities will produce substantial éte@l noise. Whereas, the switch-

ing activities in an asynchronous circuit are correlatembéy because there is no universal
timing pace, hence, they produce a more distributed noisetspn and a lower peak noise
value.

(5) Robust and adaptive. A synchronous circuit is sensitive to the delay variatioagsed
by the variations of clock signal, supply voltage, and opegatemperature related with
the manufacture process and application surrounding. Vilkel®cause the loose timing
requirement, asynchronous circuits can operate correcttier large variations caused by
different manufacture processes and application enviemmtm

3.3.2 The Asynchronous Designs Applied in the GALS NoCs

Although some asynchronous design tools and methods havefdreposed, such as Balsa
[81] and Tangram [90], there is no widely adopted or standaed The asynchronous designs
applied in the GALS NoC structures in this thesis base on él@yeinsensitive control logic
of micropipeline. The structure of micropipeline contragic is illustrated in Fig.7.

The logic components marked with ‘C’ in the figure represbetliasic component of asyn-
chronous circuits called C-element. The truth table of detrent is listed in Table 1. From
Fig.7, we can see that the principle of micropipeline cdritrgic is to use the output from
the next stage to enable or disable the output of the curtagés The components marked

3.3. The Asynchronous Design for GALS NoC 23

Table 1. Truth Table of C-Element.

Inputl | Input2 Output
0 0 0
0 1 No Change
1 0 No Change
1 1 1

with ‘delay’ in Fig.7 illustrate the logic and wire delaysoaly the paths. The asynchronous
design applied in this work bases on the micropipeline abiigic and will be presented in
the following paragraphs.

As illustrated in Fig.5, the GALS NoC designs in this thegiplst asynchronous design in
a part of the network node and the interconnection strustbetween network nodes. The
asynchronous design in the GALS NoCs can be divided into tartspwhich include data
path and control logic. The data path is composed of the égiaters which store or deliver
the data items through a four-phase dual-rail handshakequounder the control of the
micropipeline-based control logic. Hence, the main detigh is to design the control logic.

Two pipeline structures were developed as the control lofjihe asynchronous design. One
type of control pipeline is used for control-centric blocksich as the control block in a
network node which coordinates packet receiving and sgrtdisks. Another type of control
pipeline, called block control pipeline, is used in datéhpeentric blocks, such as packet
receiver and packet sender blocks in a network node. A hydwidrol pipeline structure
which combines the two pipelines mentioned above is ap@gthe control logic of the
asynchronous FIFOs used in the packet buffer blocks of theSGMoCs. Therefore, the
following two paragraphs will present the two main contrigdgdine structures by analyzing
their basic portions.

Two stages of the control pipeline used in control-centiicks are illustrated in Fig.8. In the
figure, we can see that the control pipeline uses micropipalontrol logic as the backbone
and applies a few AND gates as the delay components, heiigstilt delay-insensitive. The
state information of the pipeline is passed through eadestathe pipeline by a four-phase
handshake protocol. If we take the ‘Stage 1’ illustratediqy@as an example, when both the
‘req_from_stage0’ and ‘stagE&nable’ signals are ‘1’, the output of ‘C1’ will be set to logi
‘1’ which indicates that the current active state of the pipeis in the ‘Stage 1'. Then the
output of ‘C1’ can be used as a request signal to trigger th&aldogic in the corresponding
function blocks for a certain communication process.

The structure of block control pipeline is illustrated igE. The main task of this type of
control logic is to generate four-phase request or ackrydesignals for data transfers. Each
stage of the control pipeline is composed of two C-elementhustrated in Fig.9. The ‘C1’
is used to record the rising edge of a request or acknowledgalswhile the ‘C2’ is used

24 3. Applying GALS Scheme into On-Chip Networks

! req_from_stage reqj_td_stage2
stagel enable

stagel leave

! ack to_stage0

: - req/ack

: A2
enablé_from_stage0 .

:
1 ack/req
T

ctr fb to stage0

enable | to_stage2
r————

ctr_fb_from stageﬁ

Fig. 9. Block Control Pipeline.

to record the falling edge of a request or acknowledge sighakrefore, each stage of the
block control pipeline will pass the enable signal to thetrstage only after the four-phase
handshake process on the current stage has been compldtiedugh the presented block
control pipeline structure can only meet Quasi-Delay-petalent (QDI) model because the
input ‘ack/req’ signal is branched to ‘A1’ and ‘A3’, the timg requirement for distributing
the ‘ack/req’ input signal along the isochronic wire forkgjuite loose since the logic delays
in ‘A1’ and ‘C1’ are usually much larger than the logic deldiytioe inverter at the input of
‘A3

By using the presented control pipelines, the asynchrodesgn for the GALS NoCs pro-
posed in this thesis are realized in RTL by using VHSIC Hamwiescription Language
(VHDL) together with the synchronous design. Thus, the GALEC designs are compat-

ible with the commonly used design tools and flow for syncbrtencircuits. This feature
facilitates the portability and flexibility of the NoC desig

4. ADIRECT ON-CHIP NETWORK

As mentioned in section 1.1, the work presented in this shefgirted from implementing
GALS scheme in Proteo NoC architecture. This chapter ptedbe work of designing a
GALS direct on-chip network as an instance of Proteo NoCitecture.

4.1 Network Topology

As stated in [85], Proteo NoC architecture consists of agrgannection IP library and soft-
ware tools which automate the process of designing and agirfgga network instance.
Therefore, the topology of Proteo NoC architecture is opemrxploration during the design
stage. An optimal topology can be generated and utilizednetaork instance of Proteo
NoC for a specific application.

The author of Proteo NoC suggests applying ring-like togiale in an instance of Proteo
NoC. As addressed in [85], this kind of topologies can sifglie analysis and make routing
algorithms straightforward, while attaining a reasondlaeibility. After the further devel-

opment of the automation tools and interconnect IP librdriProteo NoC architecture, the
topologies presented in Chapter 2, such as 2-D mesh, tardscaagon, can also be included.

|:| Functional Host Q Network Node

Fig. 10. Ringlet Topology Example.

26 4. A Direct On-Chip Network

Host 0 (100MHz) Host I (10MHz) | | Host 2 (500 MHz)
Network IF (I) Network IF (T) Network IF (I)
3 Ringl $
Network Node 0 ‘j Network Node 1 ‘j Network Node 2
Ring2
Network Node 5 m Network Node 4 ‘j Network Node 3
¥ s v
Network IF (T) Network IF (I) | | Network IF (T)
Host 5 (50 MHz) Host4 (IMHz) | | Host 3 (250MHz)

Fig. 11. Six-Node Bidirectional Ring Network.

Currently, studying on ring-like topologies can alreadyega clue of the characteristics of
Proteo NoC when a direct network structure is applied. Thegethe GALS NoC design
presented in this chapter applies a bidirectional ring limgpp More complex topologies can
be built by using the ring structure and bridge blocks asrilesd in [85] and illustrated in
Fig.10.

4.2 Network Structure

The bidirectional ring NoC developed in this work is illuestied in Fig.11. It is a six-node
network in which each functional host block is connected thie network through individ-
ual network node block. The interface between a functiowst land a network node can
apply one of the two widely accepted interface standardd, [9Q or OCP [75], to adopt
heterogeneous functional IP blocks in the design librarythis work, Basic VCI (BVCI)
is applied because it is a good compromise between advasatdds and the simplicity of
realization. In the bidirectional ring network, each netkvaode has two output and two
input connections with its two neighbour nodes. From Figwé can see that each func-
tional host works at its own clock rate which may be very ddfa from the clock rates of the
other functional hosts. This setup highlights the necgsdibpplying GALS scheme in an
on-chip network since all functional hosts work at differelock rates. In the context of the
illustrated network, applying GALS scheme means that eachl functional host can work
with its own frequency while the communications betweenvoek nodes are performed in
an asynchronous manner.

4.3 Network Node Design

A ring network belongs to direct network category in whiclele@etwork node is both an
interface block of a functional host in the system and a moobele of switching data in the

4.3. Network Node Design 27

Network Node: Communication Layer 2 ‘
I E Communication Layer 1
' Local Packet
2 ' > Packet
172 L]
£ & Xl Communication Bypass Packet || pistributor
= =3 D | v
= | ¢ = S Controller l
AR dh i Packet Send
sl 5 Z > acket Sender
E Z S Rx Packet Buffer Packet (Tx Packet Buffer)
= ' i
; ‘ 77777 — Receiver ‘ ‘ 777777 ' ‘
LI T I
Synchronous + Asynchronous Packet In Packet Out

Fig. 12. Network Node Structure of the Bidirectional Ring Network.

network. A network node structure developed for the bidioeal ring network is illustrated
in Fig.12. It contains two ‘Communication Layer’ blocks tartdle the two output and two
input links with its neighbour nodes. Although it is desidrfer the bidirectional ring net-
work, it can be easily adapted for other types of topologieadding more ‘Communication
Layer’ blocks. For example, by using four ‘Communicatiornyed blocks, the illustrated
network node structure can be used to set up a mesh netwaekumbtions of each block in
the network node are described in the following paragraplisi®section.

1. ‘Node IF’ Block

This block is the interface block which applies BVCI interéastandard to communicate with
the functional host via the ‘Network IF’ block of the funatial host. The ‘Node IF’ block
acts as an counterpart of the functional host. It means thheihost is the initiator type
according to the BVCI standard, the ‘Node IF’ should be thigaatype and vice versa. The
main tasks of the ‘Node IF’ include receiving data from thadtional host and assembling
the data into packet format. And then, it will deliver the keis to ‘Communication Layer’
blocks via ‘Layer MUX' block. In the process of receiving dathis block takes care of
extracting data from the received data packets and deltherslata to the functional host
according to the BVCl interface standard.

2. ‘Layer MUX’ Block

This block is a multiplexer which sets up data channels betwé&lode IF’ and the two

‘Communication Layer’ blocks. ‘Layer MUX’' can set up one daending channel and
one data receiving channel for the ‘Node IF’ block simul@umy. It means that the two
‘Communication Layer’ blocks can communicate with ‘Nodé # the same time only if

one is used for data sending while the other one is used farrdativing. Otherwise, only
one ‘Communication Layer’ block can communicate with ‘NdBgthrough ‘Layer MUX'.

If one ‘Communication Layer’ block is communicating withade IF’ both for data sending
and receiving simultaneously, then the other one can nobheected to ‘Node IF’ at this

moment.

28 4. A Direct On-Chip Network

3. ‘Communication Layer’ Block

The function of this block is to perform the asynchronous samications with other network
nodes through a handshake protocol. As illustrated in Big:o ‘Communication Layer’
blocks are used for the bidirectional ring topology. Howeweore ‘Communication Layer’
blocks can be included to support other types of topologies.

There are five sub-blocks in a ‘Communication Layer’ blockctory out the data packet
sending or receiving tasks. The ‘Packet Receiver’ sublbisased to receive data packets
from the other network node connected to the current nodbelfiestination of the received
packet is the current node, the packet is called ‘incomingkety, and it will be stored in
‘Rx Packet Buffer’. Otherwise, the received packet is chileypass packet’, and it will
be dispatched into ‘Packet Sender’ block via ‘Packet Distor’ for further transfers. The
data packets which come from the functional host via ‘Nodenil also be sent to ‘Packet
Sender’ block for asynchronous transfer. The ‘Commurica@ontroller’ sub-block is the
controller which takes care of the necessary arbitratiodscantrol tasks of data sending and
receiving processes.

4.4 Front-End Synthesis and Simulation Results

The presented network node design and the six-node bigdinattring network illustrated
in Fig.11 are modeled in RTL by using VHDL and synthesizechwit0.18im standard-cell
library. The ‘functional host’ blocks and their ‘Network’lBlocks are not realized with any
real IP blocks, instead, they are simulated by adding stissignals on each ‘Network Node’
block according to the BVCI standard. Two important aspe€this front-end realization
results, logic gate area cost and data transfer latencprasented in this section.

Table 2. Area Cost of the Bidirectional Ring Network.

Area
Block Name (K equivalent gates)
Target 1.145
Node IF Initiator 2.835
Layer MUX 0.374
Communication Controller 0.665
Packet Distributor 0.577
Packet Sender
(include Tx Packet Buffer) 3.893
Packet Receiver 0.643
Rx Packet Buffer 3.422
'I_'oFaI a!'ea of .the six-node 177.007
bidirectional ring network

4.4. Front-End Synthesis and Simulation Results 29

Table 3. STL Values of the Bidirectional Ring Network.
Latency of sending data Latency of receiving data
to ‘Network Node’ from ‘Network Node'
BVCI Initiator | 8 local clock cycles + 2.5 n$ 8 local clock cycles + 3.2 ns
BVCI Target 4 local clock cycles + 2.5 n$ 4 local clock cycles + 3.1 ns

Node Type

Table 4. ATL Values of the Bidirectional Ring Network.

Packet Length | PLL (ns) | PTL (ns) | PBL (ns) | PSL (ns)
1 data cell 11.7 134 10.7 3.3
2 data cells 15.2 18.7 14.2 3.3
3 data cells 18.6 24.0 17.6 3.3

1. Logic Gate Area Cost

The logic gate area cost of the network node and the six-netieonk are listed in Table 2

with the number of equivalent gates. From the figures in Tablge can see that the Tx/Rx
buffer takes the largest portion in the area cost. Althotnghdrea report is only taking logic
gates into account, these front-end synthesis resultsidieative enough for estimating the
complexity of the design and carrying out comparisons teraditive implementations. An

estimation of the area cost of wires will be presented inisedt.3.3.

2. Data Transfer Latency

Data transfer latency is an important performance indiaaftthe bidirectional ring network.
The latency values of transferring data packets in the sdemetwork are measured during
the gate-level simulations. Because the GALS scheme isagjplthe ring network, the data
transfer latency of the network can be divided into two patgichronous Transfer Latency
(STL) and Asynchronous Transfer Latency (ATL).

The STL refers to the data transfer latency between a fumaitivost and the network node
attached to it. The value of STL depends on the local clockthadype of interface. The
measured STL values during gate-level simulations aredist Table 3. The constant values
in Table 3 are caused by the handshakes in the asynchronmardorhey are independent
of the local clock rate but belong to the synchronous transfecesses. Therefore they are
counted as a part of STL.

The ATL refers to the data transfer latency of transferriagadpackets from one network
node to the neighbour node by using a four-phase handshataept. The ATL value of the
bidirectional ring network consists of four portions: Peckoading Latency (PLL), Packet
Transfer Latency (PTL), Packet Bypass Latency (PBL), arck&aStoring Latency (PSL).
The concept of these four latency portions is illustrateBign 13 with an example that ‘Net-
work Node 0’ sends one packet to ‘Network Node 2’ via ‘Netwhitde 1'. The black arrows

30 4. A Direct On-Chip Network

Network Node 0 Network Node 1 Network Node 2

G),

PLL “pr” el pTL PSL
Fig. 13. ATL Portions of the Bidirectional Ring Network.

in Fig.13 represent the packet transfer direction. Thehfiit portions of the ATL are marked
by grey arrows in Fig.13 and explained in the following paegoins.

(1) Packet Load Latency (PLL). It is the time used to load one packet from a functional
host into ‘Tx Packet Buffer’ block.

(2) Packet Transfer Latency (PTL). This latency refers to the time used to transfer one data
packet from the ‘Packet Sender’ of a network node to the ‘PaBleceiver’ of its adjacent
node using a four-phase handshake protocol.

(3) Packet Bypass Latency (PBL)After a network node receives a packet from another
node, it will check the destination address of the receiaket. If it is a ‘bypass packet’, it
will be delivered into ‘Tx Packet Buffer'. The time spent drig process is called PBL.

(4) Packet Storing Latency (PSL)lt is the time spent on storing one ‘incoming packet’ into
‘Rx Packet Buffer'.

The formula of calculating the ATL of transferring one patckethe ring network is given
in (2). It represents the situation in which the packet trs@e several network nodes before
reaching its destination. N refers to the number of inteliatedhodes between the source
node and destination node of a packet. If a packet is tranesfbetween two adjacent network
nodes, then N is 0. The measured values of each ATL portiolisted in Table 4. The values
are measured in a non-congestion situation which meansithebnflicts between ‘bypass
packet’ transfer and the ‘local packet’ transfer are inelidn the simulation. The listed
latency values only include the logic gate delay of the disguno wire delay is considered.
More accurate latency values could be obtained by incluthiagvire delay after layout.

ATL=PLL+PTLx (N+1)+PBLxN+PSL (2)

By using the listed latency values and (2), we can estimatéatiency range of the six-node
ring network in a non-congestion situation. From Fig.11, @@ see that the worst case
would be a 3-data-cell packet transfer from functional kbt MHz) to host 1 (10 MHz),
and the estimation value is 8534s/ The best case would be a 1-data-cell packet transfer
from the host 2 (500 MHZz) to host 3 (250 MHz), and the estinmatialue is 66s.

5. ACDMA ON-CHIP NETWORK

In 1948, Claude Shannon, a Bell Labs research mathematjmidnished his landmark pa-
per titled ‘A Mathematical Theory of Communication’ [83] amformation theory. Claude
Shannon observed that “the fundamental problem of comratiaitis that of reproducing at
one point either exactly or approximately a message selett@nother point” [83], and gave
the Shannon’s communication capacity equation as prasen(8). In (3), the parametd,,
refers to the bandwidth of the communication channel. Sdssignal power, and N is the
noise power.

C= Bw-logz[l+§} 3)

The equation reveals that the communication channel dgpatates with the channel band-
width and signal-to-noise ratio. Therefore, the commuivcachannel capacity can be in-
creased by two means, increasing the signal-to-noise, ratid/or spreading the channel
bandwidth. The work presented in this chapter concenti@atethe application of channel
bandwidth spreading method in a NoC design.

5.1 Introduction of CDOMA Technique

The Spread Spectrum (SS) technique is based on the idearefasieg channel capacity
by spreading the channel bandwidth. CDMA technique [92]ris of SS techniques that
originate from military secure communication. There are types of mainly used CDMA
techniques, one is called Frequency-Hopping Spread-&pe¢EFHSS), and another is called
Direct-Sequence Spread-Spectrum (DSSS). The principi#l8&S technique is illustrated in
Fig.14. In a FHSS system, each user’s narrow-band signa &mng discrete frequencies
with a certain sequence, and the receiver follows the hgpijpgguencies with the sequence.
It is currently used mainly in military communication.

The principle of the DSSS technique is illustrated in Figadth a two-user system. It applies
a set of orthogonal codes to spread the narrow-band sigoatsdifferent users to wide-band
signals, and then transmits the wide-band signals in the sammunication media with the
same frequency concurrently. At the receiving end, theimaigsignals can be recovered by

32 5. A CDMA On-Chip Network

utilizing the auto-correlation characteristic of orthogbcodes. Therefore, by introducing
orthogonal code domain, different signals can share the &ind frequency simultaneously
in the transmission media. The illustrated system is aldled®irect-Sequence CDMA
(DS-CDMA) and it is widely used in civil communication syste. The main advantages of
CDMA technique are listed in the following six paragraphs:

(1)Data transmission overlapping both in time and frequeng domains. This feature
increases usage efficiency of communication media.

(2)Anti-jam capability. This is because the user-unique orthogonal code for datadamy
is known only by the intended receiver.

(3)Anti-interference capability. This feature is obtained by the fact that the signal dispread
ing can reject strong undesired noise, even stronger tleadesired one.

(4)Low probability of intercept. Because the transmitted signal is masked in the background
noise by spreading the signal uniformly in the frequency dimmit is very difficult to detect
the signal among the noise in the communication channel.

(5)Anti-multipath capability. By using path-delay differences, a CDMA receiver can use
the multipath signals for receiving data.

(6)Multiple access capability. This feature is supported by applying the orthogonal code of
the sender in multiple receivers.

These advantages apply for the traditional use of DS-CDMAn&ue, for the purpose of
on-chip data transfers, advantages (1) and (6) are of sitere

userl user2 user3

,'/, N // N
il dh
fl 2 3 4 frequency
userl user3 user2
/T
[\\\ /] \
ﬂm\ | [I [‘ “\ >
fl 2 3 4 frequency
user3 userl user2
r \‘\ \,“
| F H/D\ [‘ “w»
fl 2 3 f4 frequency

Fig. 14. The Principle of FHSS Technique.

5.2. Motivation of Applying CDMA Technique in NoC 33

user 1 li T /G \

L_ll— Lox_»vpass
S,(t)

‘ (t) Filt
uter
S,(t) d,(t)
spreading code 1 T spreading code .
ﬂ ;
i)
user 2 @J LO\ypass | Y.
d (t) Filter d ()
T S,(1) S, 2
spreading code 2 spreading code 2

Fig. 15. The Principle of DSSS Technique.

5.2 Motivation of Applying CDMA Technique in NoC

In a direct on-chip network, the packet transfer latencyseduby routing data packets via
multiple intermediate network nodes is unavoidable extegitthe destination of a packet is
a neighbour node. Therefore, the packet transfer latergylirect connection NoC may vary
largely when data packets are transferred to differenirtgins or to the same destination
via different routes. The variant data transfer latenciesdirect network have negative effect
for the on-chip network to provide a stable and guarantetaltdansfer service.

One way of solving this problem is to optimize the routinghteicue, such as X-Y rout-
ing [18] and planar-adaptive routing [16], etc., so thattifa@sfer latency caused by packet
routing is minimized or reduced. The research work preskintthis thesis examines another
way of solving the transfer latency variation problem bylgpy the CDMA technique into
on-chip communications. As introduced in section 5.1, tiEV& technique can transfer
data concurrently both in time and frequency domains byrs¢ipg different data streams
in the orthogonal code domain. Therefore, if the data padketn different network nodes
are encoded with a set of orthogonal codes, they can be éraedfin a shared communi-
cation media concurrently without interfering each ottideumely, data packets in a CDMA
network can be transferred to their different destinatioiib ‘one-hop’ transfer. Hence, ap-
plying CDMA technigue can be a promising way of realizing stamt data transfer latency
in an on-chip network.

34 5. A CDMA On-Chip Network

data]—»%7 %—»data 1

spreading code 1 spreading code 1

datan

datan 4>®7
!

spreading code n spreading code n

Fig. 16. The Principle of Digital CDMA NoC.
5.3 Applying CDMA Technique into On-Chip Networks

The CDMA technique applied in this work is the DS-CDMA teduné introduced in section
5.1. The principle of DS-CDMA is illustrated in Fig.15 andethame of DS-CDMA tech-
nigue will be referred as CDMA technique in the rest of thisdils for the sake of simplicity.
The idea of applying the CDMA technique into on-chip comneatipn has already been
presented in several works [47, 84, 88, 95] before this wditkey all apply analog circuits
to implement the CDMA technique, for example, the encoddd dee represented by the
continuous voltage or capacitance value of the circuitausTthe data transfers through the
analog circuits are challenged by the coupling noise, cilkelkv, and the variations of capac-
itance and resistance caused by manufacture processesTld&]efore, a way of applying
the CDMA technique in an on-chip network by using digitakait design is developed in
this work. The basic principle of the digital CDMA on-chiptnerk is illustrated in Fig.16.

It follows the principle of CDMA systems illustrated in Figh. The difference is that the
radio transmission part is replaced by adding the encodgthls together for transferring
through on-chip wires. Several important design issuegalizing the CDMA technique in
an on-chip network will be addressed in the following.

1. Digital CDMA Encoding/Decoding Schemes

In order to avoid the challenges faced by the analog cirouiiémentation, digital encod-
ing and decoding schemes were developed for the CDMA NoCllstrated in Fig.17 and
Fig.18 respectively. In the encoding scheme illustratdéignl7, each data bit from different
senders will be spread into S bits by multiplying it with aquré S-bit spreading code. The
actual encoding operations are realized by XOR logic gdfesh bit of the S-bit encoded
data generated by XOR operations is called a data chip. Teeddta chips from different
senders are arithmetically added together according topbsitions in the S-bit sequences.
In other words, all the first data chips from different sesdme added together, and all the
second data chips from different senders are added togetieso on. Therefore, after the
add operations, we will get S sum values of S-bit encoded dageh sum value is repre-

5.3. Applying CDMA Technique into On-Chip Networks 35

1 1 bit
S bits

sender

spreading codel

of data chips

1 bit ” (S
sender N S bits DM ‘i Arithmetic
U Add

spreading code N

Fig. 17. Digital CDMA Data Encoding Scheme.

Positive Part
S sums Accumulator decoded

.
data bit

—
of data chips Negative Part

Accumulator

—

S bits f

spreading code

Fig. 18. Digital CDMA Data Decoding Scheme.

sented by algoN)-bit number, where N is the number of senders in the netwbikally,
as proposed in [5], binary equivalents of the S sum values@aneferred to the receiving end
one by one.

The digital decoding scheme for applying the CDMA techniiute an on-chip network is
illustrated in Fig.18. The decoding scheme accumulatesabeived sum values into two
separate parts, a positive part and a negative part, aogai@ihe bit value of the spreading
code used for decoding. For example, the received first sium véll be put into the positive
part accumulator if the first bit of the spreading code foratieg is ‘0’, otherwise, it will
be put into the negative part accumulator. The same sefeatid accumulation operations
are also carried out on the other received sum values. |fftemding codes have orthogonal
and balance properties, either the positive part or negaivrt is larger than the other after
accumulating all sum values according to the bit values efsfreading code. Hence, the
original data bit can be decoded by comparing the valueseofvilo accumulators. Namely,
if the positive accumulation value is larger than the negadiccumulation value, the original
data bit is ‘1’; otherwise, the original data bit is ‘0’.

2. Spreading Code Selection

As addressed previously, the presented encoding and aecschiemes require the spreading
codes having both the orthogonal and balance properties. ofthogonal property in the
context of the CDMA NoC means that the normalized auto-t¢ation of the spreading codes
is 1, while the cross-correlation of the spreading codes i@ balance property means that
the number of bit ‘1’ and bit ‘0’ in a spreading code should lmpi@. Several types of
spreading codes have been proposed for CDMA communicatioeh as Walsh code, M-

36 5. A CDMA On-Chip Network

sequence, Gold sequence, and Kasami sequence, etc [25fvEipwnly Walsh code [25]
has the required orthogonal and balance properties. Tdrerethe Walsh code family is
selected as the spreading code library for the proposed CR®IA. In an S-bit (S0, S mod
4 = 0) length Walsh code set, there are S-1 sequences whiehbmdlr the orthogonal and
balance properties. Hence, the proposed CDMA NoC can havesit S-1 network nodes,
in other words, S has to be at least N+1 for a N-node network.

3. Spreading Code Protocol

In a CDMA network, if multiple users apply the same spreadinde to encode their data
to be transferred at the same time, the encoded data witfénéawith each other because of
the loss of orthogonal property among the spreading codgs.situation is called spreading
code conflict, which should be avoided. Spreading code pobis a policy used to decide
how to assign and use the spreading codes in a CDMA networkder do eliminate or
reduce the possible spreading code conflicts. Severaldipgeaode protocols have been
proposed for CDMA packet radio network [56, 86]. Among thpsgposed spreading code
protocols, only Transmitter Based Protocol (T protocof)][@nd Transmitter-Receiver-Based
Protocol (T-R protocol) [56] are conflict-free if the usensthe network send data to each
other randomly. In the T protocol, each user is allocatediguespreading code to encode
and transfer data to others. However, the main drawbaclatsatheceiver can not choose the
proper spreading code for decoding because it can not knawisdending data to it. In the
T-R protocol, two unique spreading codes are assigned touesar in the network, and then
a user will generate a new spreading code from the assigreedpmading codes for its data
encoding. Hence, it suffers from using a large amount ofaging codes and complicated
decoding scheme.

In order to solve this problem, an Arbiter-Based T proto@e!T{ protocol) is developed for
the CDMA on-chip network. In a CDMA network which applies Apfotocol, each user is
assigned with a unique spreading code for data transfer. \Wheer wants to send data to
another user, he will send the destination information efdhta packet to the arbiter before
starting data transmission. Then the arbiter will inforra tequested receiver to prepare the
corresponding spreading code for data decoding accorditigptsender. After the arbiter has
got the acknowledge signal from the receiver, it will sencaeknowledge signal back to the
sender to grant its data transmission. If there are seveestwho want to send data to the
same receiver, the arbiter will grant only one sender at a.tiftherefore, by applying the
A-T protocol, spreading code conflicts in the CDMA NoC can beiaated.

5.4 CDMA NoC Structure

Based on the schemes and protocols presented in secti@anshizll CDMA on-chip network
was developed for study and functional verification. Itsamek structure is illustrated in

5.4. CDMA NoC Structure

37
Host 0 (100MHz) Host 1 (10MHz) Host 2 (500MHz)
Network IF (I) Network IF (T) Network IF (I)
£ £
‘ Network Node 0 ‘ ‘ Network Node 1 ‘ ‘ Network Node 2 ‘
v

‘ CDMA Transmitter & Network Arbiter ‘

\ Network Node 5 ‘ \ Network Node 4 \ ‘ Network Node 3 ‘

v v 3
Network IF (T) Network IF (I) Network IF (T)
Host 5 (50 MHz) Host 4 (1IMHz) Host 3 (250MHz)

Fig. 19. Six-Node CDMA On-Chip Network Structure.

Network Node

| ITx Packet Packet | datajout
Buffer ™ Sender

Rx Packet Packet | datdin
Buffer [|Receiver ™

Functional Host
Network IF

Synchronous: Asynchronous

Fig. 20. The Block Diagram of the Network Node for CDMA NoC.

Fig.19. By comparing it with the bidirectional ring NoC stture illustrated in Fig.11, the
CDMA NoC has two unique blocks named as ‘CDMA Transmitterd aletwork Arbiter’
besides the common ‘network node’ blocks. The function chdaock in the CDMA NoC
will be introduced in the following three subsections.

5.4.1 Network Node

The block diagram of the ‘Network Node’ design of the CDMA NiGllustrated in Fig.20.
The arrows in Fig.20 represent the direction of data pac&et fThe ‘Network IF’ block in
the network node which belongs to the functional host is #erface block for connecting a
functional host with a ‘Network Node’ through VCI or OCP irfizce standard. The function
of each sub-block in the ‘Network Node’ will be describedlie following paragraphs.

(1) Node IF. This block is used to receive data from the ‘Network IF’ blaxflka functional
host through the applied interface standard. The main tatk assemble the received data
into packet format and send the packet to ‘Tx Packet Buftarflisassemble the received
packet from ‘Rx Packet Buffer’ and send the extracted dathegdunctional host.

(2) Tx/Rx Packet Buffer. These two blocks are buffers for sending or receiving datigts.

38 5. A CDMA On-Chip Network

‘Tx Packet Buffer’ is used to store the data packets from ‘<el block, and then deliver the
packets to ‘Packet Sender.” The ‘Rx Packet Buffer’ storesrédteived packets and delivers
them from ‘Packet Receiver’ to ‘Node IF’

(3) Packet Sender. This block will fetch a data packet from ‘Tx Packet Bufferook by
an asynchronous handshake protocol when it finds that tHerkigfnot empty. Then the
destination information of the fetched packet will be esteal and sent to ‘Network Arbiter.’
After ‘Packet Sender’ gets the grant signal from the arhitevill start to send the data packet
to ‘CDMA Transmitter’ block.

(4) Packet ReceiverThis block will wait for the sender information from ‘NetwloArbiter’

to select the proper spreading code for decoding. After pineagling code for decoding is
ready, the receiver will send an acknowledge signal baclkN&work Arbiter’ and wait to
receive and decode the data from ‘CDMA Transmitter, andhtbend the decoded data to
‘Rx Packet Buffer’ in packet format.

5.4.2 Network Arbiter

As addressed in section 5.3, an A-T spreading code proteeqiplied in the CDMA on-chip
network to avoid spreading code conflicts. By applying th& Arotocol, every node needs
to get the grant from the ‘Network Arbiter’ before it can $ter send data packets to the
network. Thus, the ‘Network Arbiter’ block is the core conmemt for implementing the A-T
protocol in the CDMA NoC. Its main functions are describedhia following paragraph.

After receiving a data sending request from a network ndue;Network Arbiter’ needs to
inform the requested receiver node to prepare the propeadjmng code for decoding. When
the ‘Network Arbiter’ gets the acknowledge signal from tleguested receiver node, it will
send a grant signal back to the sender node to enable therdiaséer process. If there are
multiple network nodes requesting to send data to the sastadgon node simultaneously
or at different time, the ‘Network Arbiter’ will apply ‘roudrrobin’ scheme or the “first-come
first-served’ principle, respectively, to guarantee tihatré is only one sender sending data
to one specific receiver at a time. However, if the destimatiodes requested by the sender
nodes are different, these requests from different sewd#rse handled in parallel without
blocking each other. The ‘Network Arbiter’ in the CDMA NoC different from the arbiter
used in a conventional bus. The reason is that the ‘Netwobitén' in the CDMA NoC is
only used to set up spreading codes for receiving and it learttlle requests concurrently
in time domain. In contrary, a conventional bus arbiter isdu® allocate the usage of the
common communication media among the users in the timsidivimanner.

5.4. CDMA NoC Structure 39

time
islot

<—P<—> o
[b0 \bl [b2 | b3 | Packet’A
‘ b0 ‘ bl ‘ b2 ‘ b3 \Packet'B'

\ b0 l bl \ b2 \ b3 | Packet 'C'
» Time

Fig. 21. Bit-Synchronous Transfer Scheme.

5.4.3 CDMA Transmitter

The ‘CDMA Transmitter’ block is the core component to penfothe data encoding and
transfer operations in the CDMA NoC. As introduced in setto4.2, a network node will
start to send data packets to the ‘CDMA Transmitter’ afteyeits the grant signal from the
‘Network Arbiter” When the ‘CDMA Transmitter’ receives tliata to be transferred, it will
encode the data bits with the unique spreading code of thuesede.

Although each network node may send data to the ‘CDMA Tratterhblock independently
and randomly, the ‘CDMA Transmitter’ block applies a bitasjironous transfer scheme
to coordinate the asynchronous data transfer processes. bdsic principle of this bit-
synchronous transfer scheme is that the data from differesés will be encoded and trans-
mitted synchronously in terms of data bits rather than anglckignals. Fig.21 illustrates
the principle of bit-synchronous transfer scheme by an gam which network nodes ‘A
and ‘B’ send data packets to ‘CDMA Transmitter’ simultanglguand node ‘C’ sends a data
packet later than node ‘A and ‘B’. In this situation, the aatacket from node ‘A" will be
encoded and transmitted together with the packet from nBdsynchronously in terms of
each data bit. As the data packet from node ‘C’ arrives atex tahe point, the transmitter
will handle the data bit from ‘Packet C’ together with thealbits from packet ‘A’ and ‘B’ at
the next start point of the time slot for bit encoding and $raiiting processes. The dot-line
frame at the head of the ‘Packet C’ in Fig.21 illustrates tlagivwg duration when the ‘Packet
C’ arrives in the middle of the time slot for handling the poais data bit. The time slot for
handling a data bit is formed by a four-phase handshake ggoce

The main advantage of the presented bit-synchronous scisethat it avoids the interfer-
ences caused by the phase offsets among the orthogonadisigreades when the data bits
from different nodes are encoded and transmitted asynohsiy with each other. Because
the nodes in the network can request data transfer randardlindependently of each other,
‘CDMA Transmitter’ applies the ‘first come, first served’ niamism to ensure that the data
encoding and transmission are performed as soon as thedaia &ransfer request.

40 5. A CDMA On-Chip Network

5.5 Front-End Synthesis and Simulation Results

The CDMA NoC structure illustrated in Fig.19 is modeled inLRising VHDL for func-
tional verification and performance estimation. The ppitebf data encoding and decoding
schemes illustrated in Fig.17 and Fig.18 use an exampleaaepsing and delivering one
data chip of encoded data from the sender to the receiveedirar. Since one original data
bit will be spread into S bits after encoding, the degree ¢d dansfer parallelism between
the ‘CDMA Transmitter’ and ‘Network Node’ blocks affectsetlilata transfer latency of the
CDMA NoC significantly. Namely, increasing the number ofalbits encoded and delivered
via ‘CDMA Transmitter’ at one time can reduce the data trankitency of the CDMA NoC
and vice versa. However, increasing the data processindelivering parallelism will incur
larger area cost. Thus, in order to figure out the trade-dff/ben the data processing par-
allelism and the area cost, the ‘Packet Sender,’ ‘CDMA Tingitter,” and ‘Packet Receiver’
blocks are realized with four different data path widthscéwing to the number of data bits
transferred from the ‘Packet Sender’ in a sender node tdRtheket Receiver’ in the receiver
node through ‘CDMA Transmitter,’ the four data path widthkigh have been applied are
named as 1-, 8-, 16-, and 32-bit schemes.

Except the different data path widths, the CDMA NoC illustdhin Fig.19 has the similar
network configurations as the bidirectional ring NoC ilhased in Fig.11. The six network
nodes work at different clock rates. The network nodes conicatte with each other through
‘CDMA Transmitter’ and ‘Network Arbiter’ blocks. The sprdig codes used in the network
are six 8-bit Walsh codes. The ‘functional host’ blocks ameirt‘Network IF’ blocks are not
realized with any real IP blocks, instead, they are simdldte adding stimulus signals on
each ‘Network Node’ block according to the BVCI standard..A8m standard-cell library
is used in the synthesis. Two aspects of the realizatioritse$ogic gate area cost and data
transfer latency, are presented in the following paraggaph

1. Logic Gate Area Cost

The logic gate area cost of each block in the CDMA NoC and tta ¢d the six-node network
under different data path widths are listed in Table 5. Alidjo these figures only include
the area cost of logic gates, they are indicative enoughtimate the design complexity
and compare of alternative implementations. An estimatibthe area cost of wires will
be presented in section 7.3.3. From Table 5, we can see tleat thle data path width is
increased from 1 to 32 bits in the CDMA NoC, the area cost ofrtéevork becomes 2.4
times larger because more logic are used to perform padatalencoding and decoding. To
be noticed in Table 5 is that the area cost of the 32-bit vereidPacket Sender’ block is
smaller than the costs under other data path widths. Themaashat the data width of the
output of ‘Tx Packet Buffer’ block is 32 bits, thus the ‘Pati8ender’ block needs control
logic to adjust the fetched packet cells to be sent out agegitd the applied data path width

5.5. Front-End Synthesis and Simulation Results 41

Table 5. Area Cost of the Six-Node CDMA Network.

Area Cost (K equivalent gates)
Block Name 1bit | 8-bit | 16:bit | 32-bit

Target 1.600
Node IF — e tor 3.882
Tx/Rx Packet Buffer 6.101

Packet Sender 1.505 1.509 1.513 0.962

Packet Receiver 1.977 7.331 13.718 | 26.488

CDMA Transmitter 0.879 3.970 7.730 15.161
Network Arbiter 0.936

Area cost of the 6-node
CDMA network 113.145 | 148.369 | 191.037 | 272.806

if it is smaller than 32 bits. However, when the path widthnisreased to 32 bits, the output
data width adjusting logic is not needed in the ‘Packet Seidieck.

2. Data Transfer Latency

The data transfer latency of the six-node CDMA NoC consibta/o parts, the synchronous
transfer latency (STL) and asynchronous transfer lateA€i), which have the same names
as the latency components of the ring network presented &pteh4.

Because the same control logic of ‘Node IF’ block design igligg in the two networks,
the STL values of the CDMA NoC are the same with the valuesdish Table 3. The
constant values in Table 3 are caused by the handshakesasyhehronous domain. They
are independent of the local clock rate but belong to the laymous transfer processes.
Therefore, they are included in the STL part.

The ATL of the CDMA NoC has the same meaning with the ATL of timgm™NoC presented
in Chapter 4, however, the ATL of the CDMA NoC has less pogibecause there are no
bypass packets going through a network node due to the ‘opedata transfer scheme.
The concept of the ATL portions of the CDMA NoC is illustratedrig.22 with an example
where ‘Network Node 0’ sends one data packet to ‘Network N&dd he black arrows in
Fig.22 represent the direction of packet transfer. Theetip@tions of the ATL, PLL, PTL,
and PSL, are marked by grey arrows in Fig.22 and will be briefiypduced in the following
paragraphs.

(1) Packet Load Latency (PLL). This is the time used by the ‘Packet Sender’ block in a
network node to fetch a data packet from ‘Tx Packet Buffed parepare to send the packet
out via ‘CDMA Transmitter.’

(2) Packet Transfer Latency (PTL). This latency refers to the time used to transfer one data
packet from the ‘Packet Sender’ of the sender node to thekéRdeceiver’ of the receiver
node via the ‘CDMA Transmitter’ and ‘Network Arbiter’ bloskusing a handshake protocol.

42 5. A CDMA On-Chip Network

Network Node 0 Network Node 2

(o)

i i et
‘PLL: PTL 'PSL

ATL

Fig. 22. ATL Portions of the CDMA NoC.

(3) Packet Storing Latency (PSL).The receiver node needs to spend a certain amount of
time to store the received data packet into ‘Rx Packet Budfiéer it receives a data packet.
This time duration is measured as PSL.

The measured values of ATL portions in the CDMA NoC underadéht data path configu-
rations are listed in Table 6. The ATL value of the CDMA NoC tencalculated by directly
adding the three portions under the same configurationhegeBy using the latency values
listed in Table 3 and 6, we can estimate the latency rangeeo$itithode CDMA network
with 8-bit channel width in a non-congestion situation. mréig.19, we can see that the
worst case would be a 3-data-cell packet transfer from fanat host 4 (1 MHz) to host 1
(10 MHz), and the estimation value is 8547s7The best case would be a 1-data-cell packet
transfer from the host 2 (500 MHz) to host 3 (250 MHz), and ttéeation value is 9417

If the data width is increased to 16 bits, the best-case andtwase estimation values will
change to 8488r&and 75.0s, respectively.

5.6 SystemC Modeling and Performance Estimation

As the complexity of an on-chip system is continuously grayyia system designer needs to
estimate the performance of the on-chip system in an easigdstage. Therefore, as an im-
portant part of an on-chip system, the on-chip communioatetwork needs to be evaluated
in terms of performance and cost in a fast and flexible waydiitiae the design exploration
of the system architecture. Section 5.5 presented a deggoration on different data path
widths of the CDMA network by using RTL realizations. Althgluthe design exploration

Table 6. ATL Values of the CDMA NoC.

ATL Portion ldatacell | 2datacells | 3datacells
PLL (ns) 57 57 5.7
1-bit | 384.6 768.9 1153.7
8-bit 45.9 88.4 130.9
PTL(NS) —6pit [262 49.0 71.8
32-bit | 147 26.0 37.8
PSL (ns) 55 55 55

5.6. SystemC Modeling and Performance Estimation 43

using RTL realizations has the advantage of accuracy, iitnis tonsuming and not efficient
due to the tedious process of synthesis and simulation.efdrey; a fast and flexible method
of evaluating the CDMA network is developed in this work byngsSystemC modeling tech-
nigue. This section will present the SystemC model and tipeance estimation method
of the CDMA network.

5.6.1 Modeling the CDMA NoC with SystemC

SystemC [76] is a C++ class library which has been developedeet the requirement for

system modeling. Since a SystemC model is described by agmoging language, the

abstraction level of the model can be very flexible and thaikition can run at a faster speed
than a RTL model if the SystemC model is built in a higher levidierefore, a transaction-

level SystemC model of the CDMA NoC is developed to faci#itdesign exploration.

Transaction-Level Modeling (TLM) [32] is a modeling styléhigh bases on the features of
channels and interfaces of SystemC 2.1. With TLM style, thmunication processes are
modeled by calling the interface functions of a channel aitknowing the implementation
details of the interface functions in the channel. Thersfoy separating the definition from
the implementation of the interface functions, the systeodehonly needs to concern the
transactions among modules and data flows in the systemwtithe details of the commu-
nication method. The SystemC model of the CDMA NoC is builtading to the block
diagrams illustrated in Fig.19 and Fig.20 in order to keeputhiform hierarchy between dif-
ferent levels of abstractions. Each block in the CDMA NoC sdeled as a channel. The
channels and relationships of interface function callinia ‘Network Node’ are illustrated
in Fig.23. Fig.24 presents the interface functions andrgalielationships among ‘Network
Node, ‘Network Arbiter,” and ‘CDMA Transmitter.’ In Fig.2 and Fig.24, each grey square
at the boundary of a channel represents an interface of lizeinel, and each grey circle at
the boundary of a channel represents an instantiatedacteort of other channels. The ar-
rows in the figures point from the instantiated interfacd pmits original channel interfaces.
For example, as illustrated in Fig.24, the ‘CDMA Transnrittdock communicates with a
‘Network Node’ block by instantiating an interface, callexl_if,’ of the ‘Network Node,
then calling the functions in the ‘ti’ interface to get data from the ‘Network Node’ block.

5.6.2 Performance Estimations

Although a transaction-level SystemC model is good forfiasttionality modeling and sim-
ulation, in comparison with the RTL realization, it has th®gcoming of getting accurate
performance estimation results, such as data transferclatd herefore, a performance es-
timation method which combines the merits from both the &p& model and the RTL

44 5. A CDMA On-Chip Network

Network Node Chnl

Tx Packet tx]if
Buffer Chnl

Rx Packet i x| if
Buffer Chnl

Fig. 23. Channels and Interfaces in the CDMA Network Node.

Node IF Chnl

= tx| if

6 CDMA Transmitter
3 Chnl

5]

Z

%

2 Network Arbiter
X Chnl

Fig. 24. Channels and Interfaces in the CDMA NoC.

realization is developed. It bases on the SystemC modebdZIMA NoC. The method can
be summarized as the following four steps.

Stepl: Model each block of the CDMA NoC as a channel using SystemChaiild the
CDMA NoC model in transaction-level according to the blod&rarchy.

Step2: Realize each block of the CDMA NoC in RTL and do the synthesis gate-level
simulation using the target technology library.

Step3: Record the latency information of the handshake processes@the blocks from
the gate-level simulation, and then back annotate the dgtealues to the corresponding
channels in the SystemC model of the CDMA NoC.

Step4: Estimate the performance of the CDMA NoC under differentfignmations by sim-
ulating the timed SystemC model.

Based on the presented estimation method, the performéditice GDMA NoC under three
different types of configurations, CDMA channel widths, ren of network nodes, and
traffic patterns, are estimated through the simulations ioggen-loop environment. The setup
of the simulation environment is illustrated in Fig.25. Irder to concentrate on simulating
the global asynchronous network other than the local symghus communications in the
CDMA NoC, the ‘Network Node’ block is revised as illustratadFig.25. The ‘Node IF’
is replaced by a ‘Packet Source’ block which generates datkgts according to a specific
traffic pattern. The size of ‘Tx Packet Buffer’ block is setite large enough for storing all
packets generated by the packet source during the simuiatmrder to make the simulation
to be an open-loop simulation, which ensures that the trpffidduced by the source is not

5.6. SystemC Modeling and Performance Estimation 45

Tx Packet» Packet
Source | ™| Buffer Sender
)
‘Packet Count & Timing

\

Network [Rx Packet Packet |
Node Buffer [|Receiver|™

CDMA Transmitter
&
Network Arbiter

Network Node

Fig. 25. Open-Loop Simulation Environment.

influenced by the status of the network. The ‘Rx Packet Bui$eused to store the received
packets. The ‘Packets Count & Timing’ process is added ofTthi&x Packet Buffer’ blocks
for counting and recording the packet transfer informatioring simulations. The simulation
results are presented in the following paragraphs.

1. Different CDMA channel widths

A preliminary data transfer latency estimation of a six-a@DMA NoC with different chan-
nel widths has been presented in section 5.5. However, #temhaion does not include
packet transfer congestions in the simulations. With thet&8yC model and the presented
performance estimation method, an overall data transfends estimation of the six-node
CDMA NoC is performed in transaction level. The traffic pattesed in the simulations is
independent and uniform traffic. It means that the same atrafyrackets is independently
generated at each network node, and the destinations ottierated packets in each node
are uniformly distributed to all the other network nodesclitaode sent 5000 packets to the
network, and the average number of data cells of the packétmi Fig.26 gives the average
ATL of delivering a 32-bit data cell with different channeldths in the CDMA NoC. From
the values illustrated in Fig.26, we can see that the packétaion contentions and CDMA
transfer contentions increase the latency severely in eoisgn with the ATL values listed
in Table 6.

2. Different number of network nodes

Another configuration of the CDMA NoC which has been explaogdusing the SystemC
model is the number of network nodes. The traffic pattern aimergimulation configurations
are the same with the ones used in the simulations of diffefeannel widths except that each
network node sent 500 packets to every other node, thusasiaigethe traffic proportionally
to the network size. The channel width used in the simulatier8 bits. The average ATL
values under different numbers of network nodes are itiistt in Fig.27. From the results,
we can see that the transfer latency increases when the naihbetwork nodes increases
since the probability of contentions increases.

46 5. A CDMA On-Chip Network

B 1_pit # 8-bit “¥ 16-bit 4 32-bit

- 131,451

- 0,985
- 0,129
¥ 0,078
& 0,051

Average ATL of Tx 32 bits data (us)

10% 25% 50% 75% 100%
Network Load

Fig. 26. ATL Estimations with Different Channel Widths.

49 nodes ¥ 12 nodes 4 15 nodes

-¥ 16,781

Average ATL of Tx 32 bits data (us)

10% 25% 50% 75% 100%
Network Load

Fig. 27. ATL Estimations with Different Number of Network Nodes.

3. Different traffic patterns

The performance estimations presented in the two previateggpaphs are all under the uni-
form traffic pattern. In a real application, a hot-spot t@affattern is more likely to appear.
Hence, the performance of the CDMA NoC with different nunsbafrnetwork nodes is esti-
mated under a hot-spot traffic pattern. In the simulatiorg]eé\l is selected as the ‘hot’ node
and the ‘hot’ degree is 0.25, which means that 25% of the gée@ipackets in each node are
transferred to Node 1. The other generated packets aresifilrmly distributed to all the
other nodes besides Node 1. The channel width used in théadions is still 8 bits.

The average ATL values of transferring a 32-bit data celhwitt-spot traffic is illustrated
in Fig.28. In comparison with the latency values illustcate Fig.27, the CDMA NoC has

5.6. SystemC Modeling and Performance Estimation 47

&6 nodes *9nodes ¥ 12 nodes 4 15 nodes

i 22232
-¥- 20,622

- 18,666
- 16,024,

Average ATL of Tx 32 bits data (us)

10% 25% 50% 75% 100%
Network Load

Fig. 28. ATL Estimations with Hot-Spot Traffic Pattern.

similar latency values under hot-spot traffic when the netwoad is smaller than 50%.
Under the heavier network loads, the transfer latenciesrhedarger. It means that the
CDMA NoC is not sensitive to the balance of network load whenrietwork load is light.

The presented SystemC model and performance estimatidrochef the CDMA NoC are
very important for applying it in an on-chip system desigrdese they present a way to
make a fast estimation of the NoC in the early design stage.

48

5. A CDMA On-Chip Network

6. A CROSSBAR ON-CHIP NETWORK

By applying the CDMA technique, the CDMA NoC can provide ridneking concurrent
data transfer service for an on-chip system. However, thB1&DIoC is not the only struc-
ture that can provide such kind of communication services @tossbar structure is another
type of non-blocking concurrent data transfer structureer&fore, in order to examine the
characteristics of the CDMA NoC, a network which appliessstmar structure to switch data
among network nodes was developed for the comparison pewrfdés chapter presents the
structure and front-end realization results of the crassbtwork developed in this work.

6.1 Introduction of Crossbar Structure

Crossbar is a well-known and widely accepted structure éonosing a circuit-switched
network. A four-port crossbar switch structure is illustichin Fig.29 in order to explain the
data transfer principle of crossbar. As illustrated in thygife, an input port in a crossbar
structure can be connected to any output ports by optiowétlsing the switches between
input and output lines. For correct operations, one outpothe connected to at most one
input. Therefore, we can see that the data transfers in tiesloar switch are non-blocking
because a dedicated data channel can be set up from eackoiitgigelected output without
any conflicts with other channels if the selected outputsidferent.

In order to apply the crossbar structure in an on-chip envirent, a method of realizing the
cross points needs to be settled. An on-chip crossbar netieoiSoC designs has already
been presented in [57], the cross points in the network wepéeimented in circuit level with

in0 NN

inl
in2

in3

out0 out1 out2 out3

Fig. 29. An Example of Crossbar Structure.

50 6. A Crossbar On-Chip Network

Node 1 _[Node 2
Node 3 Node 4

Fig. 30. A Four-Node Crossbar Switch Structure.

transistors. Therefore, it does not suit the purpose ofgtésj a crossbar network in RTL
with the same network configuration as the CDMA NoC for corigmars. In this design, the
crossbar structure is realized by using multiplexers. A-foade crossbar switch structure
realized by multiplexers is illustrated in Fig.30 as an eglem From the figure, we can see
that the crossbar structure is realized by using four mekgrs to set up data channels among
network nodes. Each multiplexer is called a channel metigt to emphasize its function of
setting up data channels in the network. The number of chamukiplexers is equal to the
number of network nodes. By applying this structure, thessbar network can be modeled
in the same abstract level as the CDMA network does by using.HD

6.2 Network Structure and Network Node Design

The crossbar network structure developed in this work isstiteted in Fig.31. In order to
compare the crossbhar network with the CDMA network, the gométion of the crossbar
network is kept as same as possible with the CDMA networktitated in Fig.19. The cross-
bar network is also a six-node network which applies GALSesoh. The configurations of
the functional host are same with the CDMA network. The oriffigcence is that the ‘CDMA
Transmitter’ and ‘Network Arbiter’ blocks in the CDMA netwloare replaced by a ‘Crossbar
Switch’ block composed of channel multiplexers. Each cledntultiplexer contains arbitra-
tion logic to control the selection of the output. When mudigata transfer requests from
different network nodes come to a channel multiplexer siamdously, the multiplexer will
record the requests and serve one request at a time. Forgihests that come at different
time, a channel multiplexer will serve the requests by tlrggle of ‘first come, first served.’
After setting up the data channel, a channel multiplexer seihd a grant signal back to the
sender node to enable data transfer processes.

The network node used in the crossbar network has the sauwtuser as the network node
of the CDMA NoC illustrated in Fig.20. The only differencetie functions of the ‘Packet
Sender’ and ‘Packet Receiver’ blocks in the asynchronounsailo of a node. In the crossbar
network, after fetching a packet from the buffer, the ‘Packender’ will assert a request
signal to the channel multiplexer attached to the receigden Then the ‘Packet Sender’ will
wait for the grant signal from the requested channel makigt before it starts to send a data

6.3. Front-End Synthesis and Simulation Results 51

Host 0 (100MHz) | | Host | (10MHz) | | Host 2 (500MHz)

Network IF (M) Network IF (S) Network IF (M)
E3 3 ES
‘ Network Node 0 ‘ ‘ Network Node 1 ‘ ‘ Network Node 2
R e s T T —
i5
o =
2L
8=
o 3
————————— e S S B | ‘

‘ Network Node 5 ‘ ‘ Network Node 4 ‘ ‘ Network Node 3

3 : v

Network IF (3) | [Network IF (M) | | Network IF (5) |
Host 5 (SOMHz) | | Host4 (IMH2) | ‘Host3(250MHz)‘

Fig. 31. Crossbar Network Structure.

packet to the receiver node through the multiplexer. Afteata packet transfer is completed,
the ‘Packet Sender’ needs to clear the request signal im tordelease the requested channel
multiplexer for serving requests from other nodes. The kBaReceiver’ block in the cross-
bar network will wait for the request from the multiplexeobk attached with it. When a
request comes, the ‘Packet Receiver’ block will receiveddiia packet and then deliver it to
‘Rx Packet Buffer’ block.

6.3 Front-End Synthesis and Simulation Results

In order to compare with the CDMA network, the six-node cbhassetwork is also realized
with four different data path widths, 1-bit, 8-bit, 16-bétnd 32-bit, as the CDMA network
realization presented in section 5.5. The ‘functional hbkicks and their ‘Network IF’
blocks are not realized with any real IP blocks, instead; #te simulated by adding stimulus
signals on each ‘Network Node’ block according to the BVGInstard. The same 0.3
standard-cell library is used in the synthesis. Two aspefdtse front-end realization results,
logic gate area cost and data transfer latency, are presientee following paragraphs.

1. Logic Gate Area Cost

The logic gate area costs of each basic component and thes whadsbar network with
different data path widths are listed in Table 7. An estioratf the area cost of wires will
be presented in section 7.3.3. From the table, we can seththghte area costs of ‘Packet
Sender’ and ‘Packet Receiver’ blocks increase slightlymtie data path width increases.
When the data path width is 1 bit, the ‘Packet Receiver’ bloak & larger area caused by
the logic for arranging the received serialized data biis packet format. The reason of the
large area increase of the ‘Channel Multiplexer’ blockshiat tthe logic for setting up data
channels is multiplied when the data path width increases ft-bit to 32-bit.

52

6. A Crossbar On-Chip Network

Table 7. Area Cost of the Six-Node Crossbar Network.

Area Cost (K equivalent gates)
Block Name Ibit | &bt | 16-bit | 32-bit
Target 1.600
Node IF — e tor 3.882
Tx/Rx Packet Buffer 6.101
Packet Sender 1.514 1.518 1.523 1.538
Packet Receiver 0.995 0.906 0.921 0.934
Channel Multiplexer 0.236 0.325 0.437 0.660
Area costofthe 6-node|) o 203 | 105 415 | 107206 | 108.698
crossbar network

Table 8. ATL Values of the Crossbar Network.

ATL Portion ldatacell | 2datacells | 3datacells
PLL (ns) 3.0 3.0 3.0
1-bit 112.5 211.8 354.4
8-bit 17.3 32.7 47.5
PTL(S) gt [106 194 2738
32-bit 7.5 12.7 17.9
PSL (ns) 4.7 4.7 4.7

2. Data Transfer Latency

The data transfer latency of the realized six-node crossitarork has the same components,
STL and ATL, as the CDMA network has. The STL of the crossbawoek has the same
values as the STL of the CDMA network presented in Table 3umzthe same node structure
and the same design of the ‘Node IF’ and ‘Tx/Rx Packet Buffdocks are applied in the
crossbar network realization.

The ATL of the crossbar network has the same portions of the &fthe CDMA network.
The measured latency values during the gate-level sinonladf the crossbar network are
listed in Table 8. These values are measured in a contefigersituation during the sim-
ulation. The PTL values listed in the table decrease routifarly as the data path width
increases from 1 bit to 16 bits. When the data path width iseaeed from 16 bits to 32
bits, the improvement of PTL is not large if the size of a packemall, such as 1-data-cell.
The reason is that the overhead of setting up data chankels &darger portion of the PTL
value when a packet is small. Hence, the overall PTL valuencae reduced linearly be-
cause of the overhead caused by the data channel settingarp tfe table, we can also see
that the overall ATL values of the crossbar network are noy \@ge due to its direct and
non-blocking data transfer scheme.

By using the latency values listed in Table 3 and Table 8, weestimate the latency range of
the six-node crossbar network with 8-bit channel width irba-eongestion situation. From

6.3. Front-End Synthesis and Simulation Results 53

Fig.31, we can see that the worst case would be a 3-dataazdeptransfer from functional
host 4 (1 MHz) to host 1 (10 MHz), and the estimation value i6B&s The best case
would be a 1-data-cell packet transfer from the host 2 (50MHbl host 3 (250 MHz), and
the estimation value is 6208 If the data width is increased to 16 bits, the best-case and
worst-case estimation values will change to 84444nd 55.91s respectively.

54

6. A Crossbar On-Chip Network

7. COMPARISONS

By realizing the ‘one-hop’ non-blocking transfer schentee CDMA NoC can reduce the
variations of data transfer latencies caused by data mutira direct connection network.
However, the price of this feature is the area and performamerhead incurred by introduc-
ing data encoding and decoding operations. Thereforedierdao examine the pros and cons
of the CDMA NoC thoroughly, this chapter presents the comspas between the CDMA
network and the two on-chip networks developed in this wiir& bidirectional ring network
and the crossbar network, in the first three sections. Inateskection of this chapter, perfor-
mance comparisons between the CDMA NoC and other NoC defignsl in publications
are presented.

7.1 Data Transfer Principles

The data transfer principle is the main difference betwber@DMA NoC and the two other
networks. The ring network presented in Chapter 4 and thesber network presented in
Chapter 6 both apply a direct and plain data transfer priacighich means that the data
are transferred in their original form, while the CDMA NoGQrioduces data encoding and
decoding operations for data transfers.

The main advantage of applying CDMA technique is the featfidata transfer concurrency
realized by using data encoding and decoding operatiorthoédh the data transfers in the
ring NoC can also be concurrent if they take place in diffecdrannels among the network
nodes, the data transfer parallelism in the ring networdrigdly limited by the possible traffic
congestions in a channel. The congestions are unavoidabbube a channel between two
network nodes is shared by all the packets which need to passhtannel in a time-division
manner. This character exists in all the networks whichyaglect connections, such as
2-D mesh, torus, and fat-tree. However, in the CDMA and drassetworks, this type of
congestions are avoided because of the feature of nonibtpdkta transfers. The difference
between the CDMA and crossbar networks is that the CDMA netvapplies orthogonal
codes to set up independent data transfer channels, wherzassbar structure uses direct
circuit connections.

Another advantage of applying the CDMA technique is thaait easily realize multicast data

56 7. Comparisons

transfer by requesting multiple receiver nodes to use threesspreading code for receiving.
In the ring network, the multicast transfer can be realizelg by sending multiple copies of
a data packet to its multiple destinations, unless extri isgadded in each network node to
copy the multicast or broadcast packet both to the functioost and to the output link to the
next node. In the crossbar network, the multicast transfarte done by sending multiple
copies of packets to several channel multiplexers. All ekthoperations either increase the
traffic load in the network, or complicate the network impéartation.

The main drawback of applying the CDMA transfer principlehat the data transfer effi-
ciency obtained by concurrent data transfers is comprahtigehe latency introduced by the
data spreading scheme. As presented in section 5.3, onbidat#i be extended to S bits
for CDMA data transfers. As the number of nodes in the NoCeasing, the spreading code
width will increase. Then the transfer latency caused bg dpteading will also increase.

7.2 Network and Node Structures

By comparing the network structures of the ring NoC illustthin Fig.11, the CDMA NoC
illustrated in Fig.19, the crossbar NoC illustrated in Big.the similarity among the three
network structures is the way of applying GALS scheme in gtgvorks. All networks apply
asynchronous scheme in the communications among netwddsramd synchronous scheme
in the local communications between a network node and thetifinal host attached to it.

The main difference observed is that the ring network apptiistributed communication
scheme while the other two networks apply centralized seheithe distributed scheme
means that the data traffic load in the ring network distgbub all the links among network
nodes. The advantage of this distributed scheme is thelsiiglavhereas the disadvantage
is that the data transfer latency between two network nodede largely different because
the data may be delivered through different routes.

In the CDMA network and the crossbar network, all networkesdommunicate each other
through a central block. In the CDMA network, the centraldilégs composed of ‘CDMA
Transmitter’ and ‘Network Arbiter’ blocks, while, in the agsbar network, the ‘Crossbar
Switch’ block is the central one. This centralized schemdifferent from conventional
bus structures since it provides parallel data transfetis otime and space domains by
either applying CDMA technique or setting up parallel chelsnwhereas a bus structure
supplies data transfer service among users in a time-divisianner. The advantage of the
centralized scheme is the ‘one-hop’ concurrent data tearafility obtained by setting up
parallel channels either in code domain or multiple phydinks.

Due to the centralized scheme, the network node designg &EHMA and crossbar network
illustrated in Fig.20 have simpler structure than the desifjthe ring network illustrated in

7.3. Performance 57

Fig.12. In the ring network, every network node needs to take of receiving and forward-
ing the bypass packets. Hence, ‘Communication Contradlied ‘Packet Distributor’ blocks
are included in the network node to handle the packet royingesses. However, these two
blocks are removed in the network nodes of the CDMA and carssbtworks because all
data packets are delivered to their destination nodesthjingithout routing. One drawback
of the node design in the ring network is that more ‘CommutioceLayer’ blocks are needed
in each network node in order to set up more links with otheleisdf the data transfer paral-
lelism needs to be increased or the topology needs to be etlawtpereas, the node structure
in the CDMA and crossbar network does not need to be changhodse situations.

7.3 Performance

The performance comparison of the three networks baseseothtbe six-node networks
illustrated in Fig.11, Fig.19, and Fig.31. Area cost, datasfer latency, number of data
wires, and dynamic power consumption are compared in th@Wfirig subsections.

7.3.1 Area Cost of Logic Gates

For comparison purpose, the logic gate area costs of thedesiigns of the three networks are
illustrated in Fig.32. The portions of each sub-blocks iohreaode design are also illustrated
in the figure. The data presented in the figure base on thes/ased in Table 2, Table 5,
and Table 7 under the 32-bit category. From the figure we carnhst the CDMA network
node has the largest gate area cost when the data path wikhtis 32 bits in all the three
networks. This is due to the large logic for parallel decgdimthe ‘Packet Receiver’ blocks
of the CDMA network. In order to get an overall view of the gatea costs of all the three
networks, Fig.33 illustrates the total gate area costsehttworks with different data path
widths. From the figure we can see that the crossbar netwkels the smallest area costs
with all the situations. The reason is that the crossbarortivas the simplest structure since
it does not include either the data encoding and decodingtipes in the CDMA network or
the data routing operations in the ring network. Howeveheéfarea cost of wires is included,
the area cost of the crossbar network would increase a laiLisedt requires a large number
of connection wires. This will be discussed later in seciidh2 and 7.3.3. When the data
path width increases in the crossbar network, only the ‘PaRlkeceiver’ and ‘Packet Sender’
blocks need to be adjusted a little to suit the different pétlihs. Hence, its overall gate area
cost changes slightly with different data path widths. Téeme situation would also happen
in the ring network if it was realized with different data patidths. The small changes in
the ‘Packet Receiver’ and ‘Packet Sender’ blocks to be cdibipavith different data path
widths would not affect the overall network area in the rirgwork. The gate area cost

58

7. Comparisons

3 M Pk. Distr.
o Bl Comm. Ctr.
'g H Layer MUX
§ 2 7 25 4 PK. Receiver
= B 13 O Pk. Sender
g W o4 A o9 Tx/Rx PK. Buf.
X @13 L 015 [Node IF (Target)
= 078
g 122 oo
68
014 16 16
Ring NoC CDMA NoC Crossbar NoC
Fig. 32. Logic Gate Area Costs of Network Nodes.
[27281
n
Qo
g [191,04 0 1ot
<
g W 14837 [Ring NoC
= B CDMA NoC
> W 10721 W 1087
o Bl m 103 W 10041 B Crossbar NoC
X
@©
19}
<

1-bit 8-bit

16-bit

32-bit

Fig. 33. Total Logic Gate Area Costs of the Three Networks.

of the CDMA network increases almost linearly as the dat& patlth increases. This is
because more logic components are required to performi@lastata encoding and decoding
processes in the CDMA network. With 16- and 32-bit data patfihvg, the CDMA network
loses its area cost advantage in comparison with the ringanket Therefore, in terms of
logic gate area cost, the 8-bit version of the CDMA networlldde an optimal alternative

to replace the ring network.

7.3.2 Number of Data Connection Wires

Unlike the distributed structure applied in the ring netkydhe centralized structure applied
in the CDMA and crossbar networks needs a large amount ofatemaections wires to set

7.3. Performance 59

up parallel data channels among network nodes. Thereftgestibsection presents a com-
parison about this issue between the CDMA and crossbar nietwo

In comparison with the CDMA network, the crossbar network rmaller area cost by setting
up parallel physical connections among nodes. Howevesgetparallel connections cause a
large overhead of the required number of data connectioeswiThe number of data con-
nection wires in a crossbhar network refers to the number tdf déres between ‘Network
Node’ blocks and channel multiplexer blocks. In the CDMAwmertk, this number refers to
the number of data wires between ‘Network Node’ blocks arldM2 Transmitter’ block.

The equation of calculating the number of data wires in tlssivar network is given in (4).
In (4), parameter ‘n’ refers to the number of network nodesl, parameter ‘w’ refers to the
data path width. The first term of (4) represents the datasWireconnecting the data output
port of each node to all the other nodes via channel multgsgkex The second term of (4)
refers to the data wires between the data output port of anghamultiplexer and its attached
network node.

The equation of calculating the number of data wires in thévi@dhetwork is given in (5).
In (5), the meaning of parameters ‘n’ and ‘w’ is the same with parameters in (4). The
parameter ‘s’ refers to the bit length of spreading codese fiiist term in (5) represents
the data wires for connecting data output port of each nétwode with the input port of
‘CDMA Transmitter’ block. The number of data wires from thatd output port of ‘CDMA
Transmitter’ is represented by the second term in (5). InGB&MA network, each data bit
to be transferred will be extended into s bits by the s-bitading code. Each bit of the s-bit
encoded data is called a data chip. The sum value for n dgta fribim n network nodes can
be represented bypg,n bits. Therefore, the ‘CDMA Transmitter’ needs to &séogon bits
to represent all the sum values of s-bit encoded data. Hamoegler to transfer w data bits
at one time, we need- s-logyn data wires as the output of ‘CDMA Transmitter’ block.

Table 9 lists the number of data wires in the crossbar and CDidivorks under different
data path widths. We can see that the crossbar network nemagesamount of data wires
in order to obtain the feature of concurrent data transfehasCDMA network does. This
is a major obstacle to apply the crossbar structure in arhgnsystem because the number
of network nodes in a future SoC will be very large. Thereftine CDMA network has the
advantage of utilizing less data wires to achieve the featfirconcurrency in comparison
with the crossbar network.

Ncrossbarnoc = n'(n—l)'W+n'W=W-n2 4)

NcDbMA noc = N-W+Ww-s-logon 5)

60 7. Comparisons

Table 9. Number of Data Connection Wires.

NOC Tyvpe Number of Data Wires
p n=6, =8 | n=15, s=16 | n=3l, s=32

w=1 36 225 961
w=8 | 288 1,800 7,688
Crossbar NoC ——7e"—r75 3,600 15,376
w=32| 1,152 7,200 30,752

w=1 30 79 191
w=8 | 240 632 1528
COMANOC 76T 280 1,264 3,056
w=32| 960 2528 6,112

7.3.3 Area Cost of Interconnect Wires

As presented in section 7.3.2, both the CDMA and crossbavanks need a large num-
ber of interconnect wires to build the non-blocking datansfar channels among network
nodes. The main portion of the interconnect wires among oritwodes are the data wires.
Therefore, taking the area cost of data wires into accoumnidvoe helpful for getting more
accurate views of the presented NoC designs. The data-miaeeatimations of the presented
six-node CDMA, crossbar, and the bidirectional ring netwarith 32-bit data path width are
presented in the following paragraphs.

According to the logic gate area cost of the six-node CDMAwmoek listed in Table 5 and
the average gate density, 85K gates?, of the 0.18m technology library, we can get that
the gate area of a network node of the CDMA network with 323hta path width is 0B,
which is approximately equivalent to a Orfithx 0.72nmsquare area. Similarly, we can get
that the gate area of ‘CDMA Transmitter’ block is Ori87 which is equivalent to a Orim

x 1.8nmrectangular area. The gate area of ‘Network Arbiter’ blogl0i01mn? which

is equivalent to a Orhmx 0.1Immrectangle. Therefore, if the six-node CDMA network is
placed as the pattern illustrated in Fig.34 (a), we can gapgnoximate 1.8 mx 2.4mmcore
area of the design including some overhead and spacinguBeedl the network nodes need
to be connected to the central located ‘CDMA Transmitted d&tetwork Arbiter’ blocks, we
can assume the average wire length is half of the core dimenshich is (1.6nm+ 2.4mm)

/ 2 = 2mm For those global interconnect wires among blocks, the upptal layers, metal
5 or 6, which have a minimum width and spacing of Qu&vin the 0.18m library should be
used for the sake of better conductance. Therefore, thdiequ estimating the wire area
cost is given in (6). In (6)Nuire refers to the number data wires in a network. Th@rageiS
the average length of the wirédyire andWspaceare the minimum width and spacing of the
interconnect wires defined by the technology library. Hetlemugh the equation given in
(6) and the number of data wires listed in Table 9, we can geafiproximate interconnect
wire area cost of the six-node CDMA network with 32-bit dagdtpwidth is 960 x Bnmx

7.3. Performance 61

0.72 0.47 0.50
Network| Q Network| S e NetWOTK| 2

Node | = Node | s g Node | &
=) =) — g I I
g CDMA Transmitter & | — g Sy -
o Network Arbiter ~ & -
— — = == [

Q
1.7 mm
2.4 mm 1.7 mm

(a) (b) (©)

Fig. 34. Placement of the NoC Designs.

(0.64um + 0.641m) ~ 2.46mnT which is 76.6% of the logic gate area of the CDMA network.

For the six-node crossbar network with 32-bit data path lwidie can get that the logic
gate area of a network node is 0227 according to the value listed in Table 7. This area
is equivalent to a 0.4vimx 0.47mmsquare area. Each channel multiplexer block occupies
0.0Imn? which is equivalent to a Orimx 0.Immsquare. Hence, if the six-node crossbar
network is placed as the pattern illustrated in Fig.34 (8,08n get an approximate inn

x 1.7mmcore area of the design. Similar to the estimation for the GDMtwork, we also
assume the average wire length is half of the core dimensibith is (1.4nm+ 1.7mn) /2

~ 1.6mm Therefore, according to the number of data wires listedahbld 9 and (6), we
can get the approximate wire area cost of the crossbar nefa/@d52 x 1.6nmx (0.64um +
0.64um) ~ 2.36mn? which is 184.4% of the logic gate area of the crossbar network

Wire Area= Nyjre X |—average>< (\Mvire JFV\/spacQ (6)

In a similar way, we can also get the corresponding area figuirthe six-node bidirectional
ring network presented in Chapter 4. According to the valisésd in Table 2, the logic gate
area of a network node in the ring network is Or@& which is equivalent to a OrBm x
0.5mmsquare. If the six-node ring network is placed as the patteisirated in Fig.34 (c),
we can get an approximate ininx 1.7mmcore area of the design. We also take half of
the core dimension as the the average wire length, whichlmh+ 1.7mn) / 2 = 1.4mm
Because the data connection between two network nodesiisdiidnal and the data path
width of each direction is 32 bits, the number of data wirehesix-node ring network is (32
X 2) X 6 = 384. Hence, according to (6), we can get the appraenméerconnect wire area
cost of the ring network is 384 x Iimx (0.64um + 0.641m) ~ 0.69mn? which is 33.2% of
its logic gate area.

Through the presented estimations, we can see that the eimgrk has the smallest inter-
connect wire area cost since its smallest core area and mwhbdata wires. In comparison
with the crossbar network, the advantage of less numbertafwiaes gained by the CDMA

62 7. Comparisons

network is degraded in terms of wire area cost because @frigetl core area. However, one
fact to be noticed is that the difference of number of dat@svbbetween the six-node CDMA
and crossbar network is very small. Therefore, as the nummibeetwork nodes grows, the
difference of the number of wires will greatly increase assented in Table 9. For example,
when there are 15 nodes in a network and the data path widthbigs3 the crossbar network
needs 7,200 data wires while the CDMA network only needs&d#a wires. With the
presented estimation, we can already see that the wire &tlea six-node crossbar network
is almost 2 times larger than its logic gate area. Hence,asuimber of nodes grows, the
overhead of wire area cost of the crossbar network will treshoesly increase.

7.3.4 Data Transfer Latency

The data transfer latency in the three networks consistw@farts, STL and ATL, as pre-
sented in chapters 4, 5 and 6. Because STL values mainly degpethe local clock rates of a
functional host, the comparison presented in this suliseatiainly concerns the ATL values
of the networks.

Because the CDMA and crossbar networks both apply ‘one-bopturrent data transfer
scheme, the ATL of these two networks consists of same patieLL, PTL, and PSL. The
values of ATL in the two networks can be obtained by directiigliag the three portions
together. However, the ATL of the ring network has differpottions and it is a variable
depending on the packet traffic route. The ATL portion calP&L of the ring network does
not exist in the ATL of the other two networks because the gatkets in the CDMA and
crossbar networks are transferred directly from the sonocke to the destination node.

Based on the values listed in Table 4, Table 6, and Table 83%;id¢rig.36, and Fig.37, are

plotted to illustrate the ATL of the three networks with difént data path widths and packet
lengths. The ATL values of the ring network illustrated ir thgures are measured in the
best case which means that packets are transferred betweeadjacent nodes in the ring

network. Thus, PBL values of the ring network are zero.

From the figures, we can see that ATL values of the CDMA netvanektremendously larger
than the values of the crossbar network when the data path vgid bit. The difference is
getting smaller quickly when the data path width is increag®r example, the ATL value of
transferring one-data-cell packet in the crossbar netigoakound 70% less than the value of
the CDMA network when the data path width is 1 bit, whereas figjure is reduced to 41%
when the data path width is increased to 32 bits. The largadsgtin the CDMA network is
mainly caused by the data encoding and decoding operations.

In comparison to the ATL values of the ring network realizathv@2-bit data path width, the
ATL values of the CDMA network are quite close. As illustihia Fig.35, the ATL value of
the CDMA network is even smaller than the best case ATL vafub@ring network when

7.3. Performance 63

0 Ring NoC B CDMA NoC B Crossbar NoC
[l 3958
N
=
o
<<
W 1202
W 57,1
“,0 [374 W s O 28,4. %59 m 152
1-bit 8-bit 16-bit 32-bit
Fig. 35. ATL Values of Tx 1-data-cell Packet.
U Ring NoC B CDMA NoC B Crossbar NoC
B 7801
n
L=
=
<
219,5
W 996
W 404 % O 5720 372 504
1-bit 8-bit 16-bit 32-bit
Fig. 36. ATL Values of Tx 2-data-cell Packet.
U Ring NoC B CDMA NoC M Crossbar NoC
= 11649
»
=
2
<

362,1
W 1421 m s
8-bit 16-bit 32-bit

1-bit

Fig. 37. ATL Values of Tx 3-data-cell Packet.

64 7. Comparisons

Table 10. Equivalent Number of Intermediate Nodes in the Ring NoC.

Packet Length 1-bit 8-bit 16-bit 32-hit
1 data cell N=152| N=1.2| N=04 | N=-0.1
2datacells | N=226| N=19 | N=0.7 | N=0.0
3datacells | N=269| N=23| N=0.9| N=0.1

the transferred packet has one data cell. In order to contpardata transfer latencies of
the ring and CDMA networks clearly, Table 10 lists the eql@aanumber of intermediate
network nodes which would be gone through by a data packbeiriig NoC when the same
packet is transferred in the CDMA network under differertbdaath widths. From Table 10,
we can see that when the data path width is larger than 8 b&sATL value of the CDMA
network is already very close to the best-case value of tigerretwork. Therefore, we can
see that the latency caused by the data encoding and desatlieme in the CDMA network
is compensated by its ‘one-hop’ data transfer capabilitoimparison with the ring network.

7.3.5 Dynamic Power Consumption

Dynamic power consumption values of the three networkslameestimated during the gate
level simulations using the same test stimulus. The medstorsumption values are illus-
trated in Fig.38. From the figure, we can see that the 1-bit @Didtwork should not be
applied due to the largest power consumption in comparisgtimather realizations.

The reason of the large power consumption is that it needhimare switching activities
than the others because of the over-serialized data transhs illustrated in Fig.38, when
the data path width is over 8 bits, the power consumptioneshbf the three networks are
very close to each other, which means that a similar amowwit€hing activities happened

[Ring NoC H CDMA NoC M Crossbar NoC

B 19,340

Dynamic Pow er (mW)

W 655 u 6,563I 6558 B 733 gy 655 Diﬁ.sss

1-bit 8-bit 16-bit 32-bit

Fig. 38. Dynamic Power Consumption Comparison.

7.4. Performance Comparisons with Other NoC Designs 65

Table 11. Theoretical Throughput of the Six-Node CDMA Network.

Packet Length Throughput under D.ifferent Data Pqth Widths (Gbi_ts/s)
1-bit 8-bit 16-bit 32-bit
1 data cell 0.48 3.36 5.13 7.41
2 data cells 0.49 3.86 6.38 10.32
3 data cells 0.49 4.05 6.94 11.76

in all the networks to perform the same data transfers.

Through the presented comparison work, we can see that tih&Qiztwork can not com-
pete with the other two networks in the aspect of area cosiusecof its data encoding and
decoding scheme. However, when the data path width is equakger than 8 bits, the
CDMA network has better asynchronous transfer latencyoperdnce than the ring network.
Although the crossbar network shows smaller logic gate emstiand asynchronous transfer
latency, the CDMA network can still be a good alternativelwf trossbar structure because
it largely reduces the requirement of data connection wires

7.4 Performance Comparisons with Other NoC Designs

The NoC designs found in literature have different struetiand implementations, and their
performance estimations are reported with different forirtserefore, it is difficult to make
fair and thorough comparisons with the presented CDMA Nadlization under the same
conditions. In this section, quantitative comparisonsveen the CDMA NoC realization and
several other types of NoC designs are presented in ordeatoate the presented CDMA
NoC structure in a wider scope.

In order to facilitate comparisons, theoretical throughlues of the six-node CDMA net-
work are listed in Table 11. The values are calculated adegitt the ATL values listed in
Table 6 and the equation given in (7). From (7), we can seethigatalculated throughput
values exclude the synchronous transfer latency betweeiveork node and its attached
functional host. The reason is that these latencies depeigedocal clock rate of the host
instead of the on-chip network. Hence, the throughput \&liséed in Table 11 give one type
of performance estimations of the GALS CDMA NoC. In this gdke number of nodes used
in calculations is 6. The number of data bits depends on thebeu of data cells in a packet.
The size of a data cell is fixed at 32 bits.

(Number of Data Bitsx (Number of Network Nodegs

Throughput= ATL value

()

66 7. Comparisons

1. Comparing with a Synchronous NoC Design

In the category of synchronous NoC designs, Athereal No€ldesd by Philips research
laboratories is a well-known and frequently quoted NoC gieslt consists of routers which
can provide both guaranteed and best-effort services. rAoapto the performance reported
in [23], an Athereal NoC router which has six bidirectionattp was realized with a 0.{ugh
technology library. The data path width is 32 bits accordmthe width of the input queues.
This router has an area of 0.1W&7 after layout and a bandwidth of 16Gbits/s at 500 MHz.
This figure is larger than the throughput value of the CDMA Natfth 32-bit data path
as listed in Table 11. In this comparison, the factor of défe technology libraries for
realizations should be noticed.

2. Comparing with a GALS NoC Design

MANGO NoC is a good example of a NoC design which applies bgticisronous and
asynchronous designs to realize GALS scheme while usirtqhgpschemes to share the data
links among users in the network. Similar with the AthereaCNa router of MANGO NoC
also provides both guaranteed and best-effort servicessimg wirtual channels. A virtual
channel design of MANGO router realized with a Qui8technology library is reported
in [10]. The design has 16-bit data path width and 8 virtuaretels. 537Mflits/s throughput
of the virtual channel is achieved in typical timing casesisTthroughput value equals to
8.59Ghits/s if a flit consists of 16 bits. According to the figsilisted in Table 11, this value
is close to the 10.32 Ghits/s throughput of the CDMA netwohewthe data path is 32 bits
and a packet containing two 32-bit data cells.

3. Comparing with an Asynchronous NoC Design

A NoC design, named CHAIN, which applies pure asynchron@ssgth has been presented
in [4]. The CHAIN network applies routers, arbiters, mulkixers, and pipeline channels to
set up data links between senders and receivers. By imptargenith a 0.1&m technology
library, the CHAIN network can achieve a throughput of 1Gfsitper data link when the
data path width in a link is 1 bit. Wider data paths can be tjlusing parallel data links,
although it will incur extra latencies in route set-up and-¢o+end transfers as reported in [4].
By comparing of the throughput values of the CDMA networkhaiitbit data path width, the
CHAIN network can achieve around two times higher throughpu

4. Comparing with Other CDMA Schemes

As addressed in section 5.3 of Chapter 5, the presented GAMEACNoOC design is not
the only one which applies CDMA technique into on-chip cominations. A CDMA bus
structure which applies analog design to implement CDMAdfars is presented in [88].
The data are encoded and decoded by modulating the volgma 8i the bus. According to
the simulation results reported in [88], its throughput idyo7 OMbits/s even it can support
60 simultaneous transmissions in the bus. Another analogl£Dus which has a better

7.4. Performance Comparisons with Other NoC Designs 67

performance is presented in [84]. The presented realizatitich can contain 16 hosts is
realized with a 0.3fm technology library and has a throughput of 2.5Gbits/s wherdata
path width is 15 bits. This throughput figure is smaller thhe throughput values of the
CDMA NoC even with 8-bit data path width.

Besides analog CDMA buses, another NoC design which alslieagpDMA technique is
presented in [50, 51]. However, it applies fully synchrom@geheme in the network, which
means that the CDMA coding and transfer processes areadalith synchronous design
instead of the asynchronous design used by the CDMA NoC miexéén this thesis. There-
fore, it does not address the multi-clock-domain issue iro@ 8esign. The synchronous
CDMA NoC applies a receiver-based spreading code protobatwis not conflict-free as
addressed in Chapter 5. The decoding scheme applied in tichrenous CDMA NoC in-
volves subtraction and division operations which make item@mmplicated than the scheme
used in the GALS CDMA NoC presented in this thesis. The symmubns CDMA NoC has
been realized with a 0.1 structured ASIC library which is different from the stamtia
cell library used in this work. According to the realizatimesults presented in [51] and the
explanation presented in [50], the seven-node synchroG&MA NoC realization running
at maximum 94.2 MHz has a throughput of 5.28Gbits/s when #te path width is 32 bits.
This figure is less than the throughput values of the GALS CDNBC with 32-bit data path
as listed in Table 11.

Through the presented comparisons, we can see that the GBMAMNOC developed in
this work has no apparent advantages of throughput valuesimparing with the NoC de-
signs which share data links among network nodes in a timisidh manner with all kinds of
routing methods. The reason of the lower throughput of thé/@metwork is that the data
encoding and decoding operations required by CDMA tecleigcur large latency overhead
in data transfer processes. However, this throughput pedaés not obliterate the merit of
the non-blocking and ‘one-hop’ data transfer abilities e CDMA NoC as presented in
Chapter 5. By comparing with other on-chip communicationctires which also apply
CDMA technique, the CDMA NoC presented in this thesis hastebéroughput perfor-
mance by applying the presented GALS scheme and simplifiedestcoding and decoding
schemes.

68

7. Comparisons

8. REALIZING A GALS NOC ON AN FPGA DEVICE

The Non-Recurring Engineering (NRE) cost of chip design arvahufacture continuously
rises as the size of transistors shrinks down. At the 90 nmgsonode, the total development
cost of a single standard-cell chip can be in the range of3R6rillion [17]. Also, the trial
and error process of getting an on-chip system design weidsd a time consuming process.
Therefore, Field-Programmable Gate Array (FPGA) protityps widely accepted as a fast
and cheap way of verifying an IC design before manufactudingven using the FPGA in
the final product for low production volumes.

FPGA device is a chip containing programmable logic bloakd programmable intercon-
nects. The logic blocks in an FPGA chip can be programmed tioime basic logic oper-
ations such as AND, and OR. Therefore, digital circuit designplemented on an FPGA
device can be easily modified in a fast and cheap way. Henomtpping a SoC design on
an FPGA device is a good way of carrying out design explonasiod functional verifica-
tion before turning to ASIC implementation. Currently, tRRGA devices available on the
market are oriented only for realizing synchronous designasing Look-Up-Table (LUT)
structures [14]. Hence, a major challenge in realizing a GAoC design on a LUT-based
FPGA device is how to realize asynchronous designs. Thipteh@resents a solution to
this challenge and the work of prototyping a bidirectionarGALS NoC on a LUT-based
FPGA device.

8.1 Two Key Components for Realizing Asynchronous Designson a
FPGA Device

As presented in section 3.3.2, the control pipelines of #ymehronous circuits used in the
bidirectional ring NoC mainly consist of C-elements. THere, realizing the C-element in
a LUT-based FPGA is the prerequisite for realizing the abyormous design. Besides the C-
element, an asynchronous arbiter is another important ooemg used in the asynchronous
design to allocate the shared resource to only one user iaea for example, ‘Communi-
cation Controller’ block needs an arbiter to decide thdtegithe ‘local packet’ or ‘bypass
packet’ will be put into the ‘Tx Packet Buffer’ first if they ame to the ‘Packet Distribu-
tor’ simultaneously. Thus, the structures of the C-elenaent arbiter developed for FPGA

70 8. Realizing a GALS NoC on an FPGA Device

" C

CLR

w L>

@]
mfp

sys_rst

(@) ®)

Fig. 39. C-element Structures.

realization will be presented in the following subsections

8.1.1 C-element Structure

In order to map C-element on a LUT-based FPGA, an equivaleniriput C-element struc-
ture illustrated in Fig.39(a) has been presented in [36]aft been proved to be logic hazard-
free under the single-bit input change assumption andindrta-input change patterns. The
drawback of this structure is that it needs a netlist-fordescription as a component library
in the design flow to ensure that the feedback path is mappedLdsiT correctly. In order
to avoid the explicit feedback path, another two-input €rant structure is developed in
this work and illustrated in Fig.39(b). It bases on a D-latdhich uses ‘A AND B’ as the
enable (‘EN’) signal and ‘A OR B’ as the reset signal (‘CLRIhe data input port (‘D’) of
the D-latch is tied to logic ‘1’ constantly. The idea of usiagch to map a C-element in LUT
has already been presented in [36] where a RS-latch is sieggeéd/hereas, the C-element
structure based on D-latch in Fig.39(b) is safer than thgesigd RS-latch structure because
it avoids data switching at the data input port ‘D’.

8.1.2 Arbiter Structure

Cross-coupled NAND gates are normally used as the simpibieastructure in an ASIC
implementation. For implementing an arbiter on an FPGA d&vihe built-in Flip-Flop is
suggested to be used in order to minimize metastabilityceffg5]. Therefore, an arbiter
structure which bases on the built-in Flip-Flop of an FPGAide and applies the cross-
coupled NAND structure is developed for realizing the asyonous design of the GALS
NoC. The developed arbiter structure is illustrated in40g.The arbiter is a two-input fixed-
priority arbiter and can be divided into three stages.

The first stage consists of two cross-coupled AND gates, &t ‘A2’, with inverted inputs.
The gate ‘A0’ is used to disable the input ‘r2’ when a conflietleen ‘r1’ and ‘r2’ is detected
at the output of C-element ‘C3'. If the two input requests aid ‘r2’ appear simultaneously
or very close to each other, the LUT implementation of ‘Siageéll enter into an oscillation

8.1. Two Key Components for Realizing Asynchronous Designs orPgBDevice 71

g§r2

P9 Ll
o

The 'delay’ component between The 'delay' component between
'C1'and 'D1' in Stage2 'D1'and 'C4" in Stage3
(b) ©)

Fig. 40. The Arbiter Structure for FPGA Realization.

state instead of the metastability state as the ASIC imphtatien. In this situation, the
second stage of the arbiter is used to filter out the poss#ai#lating outputs from ‘Stagel’.

The ‘Stage?’ illustrated in Fig.40(a) bases on two builBHi-F registers of an FPGA device.
The C-elements, ‘C1’ and ‘C2’, are used to convert the aailh outputs from ‘Stagel’ into
a single 6-1 signal transition which is used as the clock signal to &igthe registers ‘D1’
and ‘D2’ respectively. After passing through ‘Stage2’ oé thrbiter, the oscillation outputs
from ‘Stagel’ may trigger the outputs of both ‘D1’ and ‘D2'tinlogic ‘1’. In this case,
the ‘C3’ will detect this conflict and disable the ‘r2’ requidey the feedback path from the
output of ‘C3’ to the input of ‘A0". The ‘delay’ components iStage2’ which consist of a
C-element chain as illustrated in Fig.40(b) are used torenthat the rising edge from the
outputs of ‘C1’ and ‘C2’ will arrive after the ‘CLR’ signhalsdm ‘A3’ and ‘A4’.

The actual arbitration process takes place in the ‘Stageh#&revanother two built-in D-
FF registers are used. When a request conflict is detecteé autputs of ‘D1’ and ‘D2’,
the ‘XOR'’ logic in ‘Stage3’ will close the arbiter output byisdbling ‘C4’ and ‘C5’. The
arbitration outputs will be enabled only after the output®?’ is cleared by the feedback
from ‘C3'. Therefore, request ‘r1’ has a higher priority imetpresented arbiter. The ‘delay’
components in ‘Stage3’ are used to filter out the possibkelgs from ‘XOR’ when the
output signals of ‘D1’ and ‘D2’ did not reach the inputs of tl©OR’ gate simultaneously in
a request-conflict situation.

72 8. Realizing a GALS NoC on an FPGA Device

8.2 Realizing a Four-Node GALS Ring NoC

By applying the presented C-element and arbiter structtiesarriers of realizing the asyn-
chronous designs on a LUT-based FPGA device are removedrefdohe, both the asyn-
chronous and synchronous designs of the GALS bidirectionglNoC can be fed into the
same design flow for realizing synchronous designs. Theyddepl and the FPGA device
used in this work are Quartusll and Altera StratixIl respety. The realizing method used
in this work is summarized as the following four steps.

Stepl: Describe both synchronous and asynchronous desigimsa hierarchical manner
by using VHDL.

Namely, the C-element structure illustrated in Fig.39ébjniodeled using VHDL as a com-
ponent. Then, any other blocks, such as the arbiter or theatqipelines, use the VHDL

model of the C-element as component instances in their owDlVékescription. In the same
manner, the control pipelines, arbiter, and C-element aesl by a higher level block as
component instances in their VHDL descriptions.

Step2: Define a design partition for each component.

In order to prevent the synthesis tool to mix all the comhaoratl logic from different com-
ponents together, each instance of the C-element andrairbitee design is set as a design
partition by using Quartusll. The higher level componemtslocks are also to be set as sepa-
rate partitions according to the design hierarchy. Durirggynthesis process, each partition
of the design will be synthesized separately from each digeQuartusll. Therefore, the
presented C-element and arbiter structures will be gesebcrrectly.

Step3: Set a LogicLock region for all delay sensitive arbiteand control blocks.

In order to meet the QDI timing requirements of the presefdiiter and block control
pipeline structures, LogicLock technique [1] provided bua@usll is applied during the
placement and routing process. A LogicLock region is setttherbiter and block control
logic pipeline in the design so that the components in th&earhnd the control pipeline
will be automatically placed into one Logic Array Block (LAR] or the adjacent LABs by
Quartusll. Thus, the fast intra-connects inside a LAB amerinconnects [2] between adjacent
LABs can meet the loose timing requirements of the arbitdrtha block control pipeline as
addressed in section 3.3.2.

Step4: Run synthesis, placement, and routing steps withowtdditional constraint files.

After the design partitions and LogicLock regions are setibiyng Quartusll, both the syn-
chronous and asynchronous designs of the GALS NoC can heegan an FPGA device
without any other constraints.

By using the presented realization method, a four-node GBidBectional ring NoC is re-

8.2. Realizing a Four-Node GALS Ring NoC 73

Table 12. ALUTSs Utilization of ‘Network Node’ Blocks.

Utilized
Block Name ALUTS

Node IF (BVCI Slave Type) 146

Node IF (BVCI Master Type) 399

Layer MUX 142

Communication Controller 238

Communication Packet Distributor 451
Layer Packet Sender +Tx Packet Buffer | 2,202

(CL block) Packet Receiver 233
Rx Packet Buffer 1,878
Total (with 2 BVCI Slave Type Network Node | 10,292
CL blocks) BVCI Master Type Network Node | 10,545

alized on a Stratixll EP2S60 device. The whole network ze#i 41,674 Adaptive LUTS
(ALUTS) [2] which is 86.2% of the ALUTs on the device. The amests of ‘Network Node’
block and their sub-blocks in terms of utilized ALUTs arddid in Table 12. The reason of
the large area cost is that each LogicLock region for a basitponent or a delay sensitive
block, such as C-element and arbiter, exclusively occupigguare area even the block can
not fully utilize the LUT resources in that area. Therefosen all LogicLock regions for
basic components and delay sensitive blocks in the designqggjether, they occupy a large
area on the FPGA device.

Through this prototyping practice of a GALS NoC design, wa sae that it is possible to
realize a synchronous-asynchronous mixed design on an fle@ée aimed for synchronous
designs. However, extra care of placing the asynchronomgpaonents is needed and the
utilization of the resources on an FPGA device is not effioiere to the compensation caused
by meeting the timing requirements of asynchronous desighgrefore, an FPGA device
which includes the basic and frequently used asynchronmmponents, such as C-element,
would be very helpful for the FPGA prototyping work of a GAL®® design.

74

8. Realizing a GALS NoC on an FPGA Device

9. CONCLUSIONS

This chapter concludes this thesis by summarizing the a@atpablications included in Part
II, and then describing the main results of the presentedkweinally, directions of future
research are proposed.

9.1 Summary of Publications

Publication [P1]: A Synthesizable RTL Design of Asynchronous FIFQis publication
presents the work of developing an asynchronous FIFO. TTR® ks modeled in RTL using
VHDL and suits the commonly used synchronous design toalsflan. The motivation of
this work is to develop an asynchronous FIFO as a reusablelRTlock for the following
work of designing GALS NoC. The overall structure and an ad bontrol logic of the
asynchronous FIFO are presented. The presented asynobrBifeO is synthesized using
a synchronous design tool and it passes the functionaleetitn in gate-level.

Publication [P2]: Asynchronous Network Node Design for Network-on-Chiporder to
apply GALS scheme in Proteo NoC architecture, a network naueh includes both syn-
chronous and asynchronous designs is developed and mréseiis publication. The syn-
chronous design is applied in the interface block to cartjaeally synchronous communi-
cations with the attached functional host, while the asymbus design is used in the blocks
for performing globally asynchronous data transfers. Tresg@nted network node is real-
ized as a synthesizable IP block in RTL using VHDL. A six-nduildirectional ring on-chip
network composed of the presented network node designlisfdauihe simulation purpose.
The way of applying GALS scheme in Proteo NoC architecturfirsgly presented in this
publication and adopted by the other NoC structures deeeltater on.

Publication [P3]: An On-Chip CDMA Communication NetworKhis is the first publication
of the author to present the idea of applying CDMA technique an on-chip network. The
issues and related methods of applying CDMA technique in @ Nesign, including data
encoding and decoding, spreading code selection, anddpgezode protocol, are presented
in this publication. The structure of the blocks for builgithe CDMA NoC is also pre-
sented. The GALS scheme is applied in the CDMA network byzinig both synchronous
and asynchronous designs. A six-node CDMA NoC is built amtresized. The preliminary

76 9. Conclusions

performance estimations of the area cost and data traaséercy of the six-node network are
presented.

Publication [P4]: Prototyping A Globally Asynchronous Locally Synchronoeswérk-on-
Chip on a Conventional FPGA Device Using Synchronous De3$apis. This publica-
tion presents the work of prototyping a four-node GALS k&dtional ring NoC design on
a LUT-based FPGA device. The issues and related solutiomsatizing a synchronous-
asynchronous mixed NoC design on an FPGA device aimed farthsgnous designs are
presented. The structures of key components, C-elemditerarand the structures of two
control pipelines are presented. The presented structurefor the realizations on a LUT-
based FPGA device. A method of prototyping a GALS NoC desigramw Altera FPGA
device using synchronous design tools is also presentdikipablication.

Publication [P5]: A RTL Asynchronous FIFO Design Using Modified Micropipelifieis is
the second publication of the author to present a generpbgarasynchronous FIFO design.
In this publication, the preliminary FIFO design preseritefP1] is improved largely by re-
placing the ad hoc control logic design with the newly degeldbcontrol pipelines. The pre-
sented control pipelines are based on the control logic afdgipeline and they are more ro-
bust than the control logic presented in [P1] in terms of Weknsitivity. An arbiter structure
and a C-element structure which suit for RTL modeling are al®sented. A synchronous
FIFO design is also developed as a reference to evaluatectfiemance of the presented
asynchronous FIFO. The area cost and power consumptioreafythichronous and asyn-
chronous FIFO designs are estimated and compared accadoding gate-level realizations.
The data transfer latency values extracted from gate-Ewallations of the asynchronous
FIFO are also presented.

Publication [P6]: Comparison of a Ring On-Chip Network and a Code-Divisionthild-
Access On-Chip NetworlRhe main purpose of this work is to thoroughly compare the GAL
ring NoC design presented in [P2] with the GALS CDMA NoC desigesented in [P3] in
order to examine their different characteristics. The efspef the two NoC designs exam-
ined and compared in this publication include network stmes, data transfer principles,
network node structures, and their asynchronous desigasedon the gate-level realiza-
tions of two six-node networks, the performance of the twiwoeks, including area costs
and data transfer latencies, are also compared. At the etinisgfublication, a preliminary
work of SystemC modeling is briefly introduced.

Publication [P7]: Comparing Two Non-Blocking Concurrent Data Switching Sube for
Network-on-Chip Although the CDMA NoC presented in [P3] achieves the featdineon-
blocking data transfers by using CDMA technique, it incutarge overhead caused by in-
troducing data encoding and decoding operations. Anothper of data switching scheme
called crossbar has also the feature of non-blocking datesfers. Therefore, the overhead
of applying CDMA technique in an on-chip network is examirgdcomparing a CDMA

9.2. The Main Results 77

network with a crossbar network in the same network enviremtmThe characteristics of the
CDMA and the crossbar networks are further examined by comgp#he two networks un-
der different data path widths. Based on the synthesistsgsuka costs, power consumption,
data transfer latencies, and the numbers of data wires dfvthaetworks are also compared.

Publication [P8]: Applying CDMA Technique to Network-on-Chiphis publication thor-
oughly presents the work of developing the CDMA NoC. The éssaf applying CDMA
technique in an on-chip network and the design of realizirg4.S CDMA NoC are ad-
dressed with details and examples. The realizations of-amile GALS CDMA network
with different data path widths are presented and compaittdtie six-node GALS bidirec-
tional ring NoC presented in [P6]. By the comparisons, tleaa@ost and power consumption
overhead caused by applying CDMA technigue in an on-chipvowbt are further examined.
The effect of different data path widths on data transfesrley performance in the CDMA
NoC is also examined. In comparison to the bidirectiona) NlwC, the optimal configuration
of the CDMA NoC is clarified.

Publication [P9]: Modeling A Code-Division Multiple-Access Network-on4{Cbising Sys-
temC.This publication presents a SystemC modeling and simulatiork based on the pre-
liminary SystemC modeling work introduced in [P6]. A Systemmodel of the presented
CDMA NoC design is developed in order to facilitate the deségploration of the CDMA
NoC with different configurations in a fast and flexible wayeTpresented SystemC model
uses transaction level modeling approach to model the Asynous handshake processes
of data transfers in the CDMA NoC. By utilizing the RTL reations of the CDMA NoC
presented in [P8], a performance estimation method whiskdan timing back-annotation
is presented to estimate the CDMA NoC performance undeeréifit configurations. Fi-
nally, the performance estimation results of the CDMA NoGhvdifferent channel widths,
different number of network nodes, and different traffidg@ats are presented.

9.2 The Main Results

The work presented in this thesis concentrates on desigmidgrealizing GALS on-chip
networks. The main results are summarized in the followirgspects.

1. Developed asynchronous designs for GALS NoCs

An asynchronous FIFO structure was developed. Althouglasiyachronous FIFO design is
meant to be used in the GALS NoC designs, it is a general parasgnchronous FIFO IP
module for any other applications. In comparison to a symobus FIFO reference, the asyn-
chronous FIFO can save 48.5% logic gate area cost and 45.886riy power consumption.
Besides the asynchronous FIFO design, two control pipelivere developed as the control
logic for the asynchronous designs of the GALS NoCs. All tkealoped asynchronous

78 9. Conclusions

designs in this work suit to be modeled in RTL by using HDL. STfeature facilitates the
asynchronous designs to be realized together with the synobs designs in a GALS NoC
by using the commonly used synchronous design tools andrdésiv.

2. Applying GALS scheme into Proteo NoC architecture

A network node which applies both synchronous and asyncdusdesigns was developed
as an IP module to realize the GALS scheme in the Proteo NoGx-Acgle bidirectional
ring network was set up for evaluating the network node desighe buffers for sending
and receiving data packets occupy around 33% of the netwamtk area in the bidirectional
ring network. According to a standard-cell realizationwé six-node network, the network
node can deliver a 64-bit packet to an adjacent node im884ough a four-phase dual-rail
handshake protocol.

3. Developed a GALS CDMA NoC structure

An on-chip GALS NoC which applies CDMA technique was develdp The main benefit
of applying CDMA technique in on-chip communications is feature of non-blocking and
‘one-hop’ data transfers. This feature is very useful faviiting small-variance data transfer
latency in an on-chip network. A six-node GALS CDMA networkswuilt and realized in
gate-level in order to examine its performance. By comggttire six-node CDMA network
with a six-node ring network, the CDMA network has 54.1% éar¢pgic gate area cost
when they both apply 32-bit data path width. The larger ast m the CDMA network
is mainly caused by the parallel data encoding and decodigig.| However, the reward
for this area overhead is that the asynchronous data tralaséscy in the 32-bit CDMA
network equals to the best case latency in the ring netwoykcdBnparing the performance
of the CDMA network under different data path widths, the CBMetwork has a good
balance between area cost and data transfer latency wheastétpath width is 8 bits or 16
bits. If an application is sensitive to area cost and powesumption, the CDMA network
with 8-bit data path is a good option to replace the bidimwl ring network. If small data
transfer latency is required in the application, the 1628MA network is a better choice. In
comparison with other NoC designs which share data linksrgnmetwork nodes in a time-
division manner, the CDMA NoC has no apparent advantagesrofighput because of the
latency overhead incurred by the data encoding and decpdiogsses. In comparison with
analog CDMA buses and a synchronous CDMA NoC design, the CINWE presented
in this work can achieve better throughput performance bgguthe GALS scheme and
simplified data encoding and decoding schemes. Throughtanati®n of layout with a
0.18um technology, a six-node CDMA network with 32-bit data patiltv has a 3.2hn?
logic gate area and a 2 467 data wire area, and its possible core area on a wafer would be
around 1.6omx 2.4mm

9.2. The Main Results 79

4. Developed a GALS Crossbar Network

In order to examine the overhead of the data encoding andlderoperations in the CDMA
network, another six-node non-blocking network which wsesossbar switch was developed
for comparisons. The crossbar network applies multiplskercture to realize the crossbar
switch in the network. By comparing the crossbar networkwie CDMA network, the data
encoding and decoding logic incurs 39.4% larger logic geda aost in the CDMA network
when the data path width in both networks is set to 8 bits. Imgarison to the crossbar
network, the advantage of the CDMA network is that the nunalbelata connection wires is
much smaller. For example, when the number of nodes is 3Lrtdssbar network requires
30,752 connection wires to achieve concurrent transfdteifiata path is 32 bits, whereas,
this number is reduced to 6,112 in the CDMA network.

5. Realized a GALS NoC design on an FPGA device

A four-node GALS bidirectional ring network was realized @hUT-based FPGA device.
This prototype work exhibits a way of realizing a synchrost@synchronous mixed design on
an FPGA device aimed for synchronous designs. A C-elemehaamrbiter structure which
suit for LUT-based FPGA devices were developed. A methoealizing asynchronous de-
signs on an Altera FPGA device was presented. The realiagdnfade bidirectional ring
network takes 41,674 ALUTs which is 86.2% of the ALUTs on aaSxil EP2S60 FPGA
device. The drawback of the presented realization methdiaislots of unused LUT re-
sources in each LogicLock region can not be utilized in otdeneet the delay requirements
of each asynchronous block. This situation can be impromatié future if an FPGA de-
vice containing the basic components of asynchronous niessyich as the C-element, will
become available.

6. SystemC modeling for design exploration and performancestimation

A SystemC model of the CDMA network was built in transactievdl for design exploration
and performance estimation in an early design stage. Basdxack-annotating the delay
information of a synthesized CDMA network, a method was bged to estimate asyn-
chronous data transfer latencies under different configums by using the SystemC model.
Different data path widths, different number of network esdand different traffic patterns
of the CDMA network were experimented by using the System@ehoThe simulation re-
sults show that the asynchronous data transfer latencgi@BMA network increases as the
number of network nodes increases. The transfer latenoyiradseases when the traffic load
in the CDMA network increases. The developed SystemC matkltize performance esti-
mation method are important for integrating the CDMA NoMiatSoC design exploration
process in transaction level.

The GALS NoC designs developed in this work present a fevirpiedry solutions to address
the on-chip communication issue of on-chip systems. Whewergional bus structures can

80 9. Conclusions

not meet the on-chip communication requirements pushedyupheégrowing on-chip sys-
tems, the GALS NoC structures proposed in this work can bsidered as possible alterna-
tive choices depending on the application requirementhofigh the presented GALS NoC
designs are currently realized with a Qui8 standard-cell technology library, they can be
easily adapted to other technologies because the devel@pe8 NoC designs are modeled
in RTL using VHDL.

9.3 Future Research Directions

Since several disadvantages of the CDMA NoC have been dised\during this work, one
direction of future research can focus on the following atpe

(1) Develop a distributed data encoding and decoding schereler to make the CDMA
NoC structure more scalable.

(2) Find more efficient data encoding or decoding methoddace the data transfer latency
and minimize area cost and power consumption.

(3) Prototyping a larger CDMA NoC design on an FPGA devicevaate its performance.
(4) Comparison of the CDMA NoC to more examples of other Ngidtogies.

Another direction of future work is to improve the preserdsgnchronous designs with other
methodologies so that the performance can be improved mstef delay, area cost, and
power consumption.

[1]
(2]
(3]
[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

BIBLIOGRAPHY

Quartus Il Version 5.1 HandbooRltera, December 2005, Volume 2, pages 1009-1049.
Stratix Il Device HandbogkAltera, December 2005, Volumel, pages 23-47.
AMBA Specification Rev2.8RM, http://www.arm.com/, 1999.

J. Bainbridge and S. Furber, “Chain: a delay-insensitiiip area interconnectEEE
Micro, Volume 22, Issue 5, pages 16—23, September-October 2002.

R. H. Bell, Jr., K. Y. Chang, L. John, and E. E. Swartzlande., “CDMA as a mul-
tiprocessor interconnect strategy,” @onference Record of the Thirty-Fifth Asilomar
Conference on Signals, Systems and Comput@time 2, November 2001, pages
1246-1250.

L. Benini and G. D. Micheli, “Networks on chip:a new paiguh for systems on chip
design,” inProceedings of the Conference and Exhibition on Designoration and
Test in Europe 20Q2March 2002, pages 418-419.

D. Bertozzi and L. Benini, “Xpipes: a network-on-chipcaitecture for gigascale
systems-on-chip,JEEE Circuits and Systems Magazjndlume 4, Issue 2, pages 18—
31, Second Quarter 2004.

T. Bjerregaard, “The MANGO clockless network-on-chiponcepts and implementa-
tion,” Ph.D. dissertation, Technical University of Denikg2005.

T. Bjerregaard, S. Mahadevan, R. G. Olsen, and J. Sp#&sd@CP compliant network
adapter for GALS-based SoC design using the MANGO networktop,” in Proceed-
ings of 2005 International Symposium on System-on-@owember 2005, pages 171—
174.

T. Bjerregaard and J. Sparso, “Virtual channel desfgnguaranteeing bandwidth in
asynchronous network-on-chip,” Proceedings of Norchip Conference 200¢bvem-
ber 2004, pages 269-272.

——, “Arouter architecture for connection-oriented seevguarantees in the MANGO
clockless network-on-chip,” ifPfroceedings of the Conference and Exhibition on De-
sign, Automation and Test in Europe 20@6lume 2, March 2005, pages 1226-1231.

82 Bibliography

[12] D. S. Bormann and P. Y. K. Cheung, “Asynchronous wragdpetheterogeneous sys-
tems,” inProceedings of the 1997 International Conference on Coerfidésign: VLSI
in Computers and Processo@ctober 1997, pages 307-314.

[13] H. C. Brearley, “ILLIAC II: A short description and anteted bibliography,”IEEE
Transactions on Computergolume EC-14, Issue 3, pages 399-403, June 1965.

[14] S. Brown and J. Rose, “Architecture of FPGAs and CPLDsu#rial,” IEEE Design
and Test of Computersolume 13, No. 2, pages 42-57, Summer 1996.

[15] D. Chapiro, “Globally-asynchronous locally-synchous systems,” Ph.D. dissertation,
Stanford University, 1984, report No. STANCS- 84-1026.

[16] A. A. Chien and J. H. Kim, “Planar-adaptive routing: Laxst adaptive networks for
multiprocessors,” ilProceedings of thé9" Annual International Symposium on Com-
puter ArchitectureMay 1992, pages 268-277.

[17] E. Clarke, “FPGAs and structured ASICs: Low-risk SoCr fine masses,” in
Design and Reuse Industry Articlefaugust 2005. URL: http://www.us.design-
reuse.com/articles/article12360.html

[18] W. Dally and C. Seitz, “Deadlock-free message routimgniultiprocessor interconnec-
tion networks,”IEEE Transactions on Computergolume C-36, Issue 5, pages 547—
553, May 1987.

[19] W. J. Dally and B. Towles, “Route packets, not wires: afip interconnection net-
works,” in Proceedings of thag" Conference on Design Automatialune 2001, pages
684-689.

[20] ——, Principles and Practices of Interconnection NetworkElsevier, Inc., December
2003, pages 18, 228, and 234-239.

[21] A. L. Davis, “The architecture and system method of dinA recursively structured
data driven machine,” ifProceedings 06" IEEE/ACM Annual International Sympo-
sium on Computer Architecturdpril 1978, pages 210-215.

[22] A. V. de Mello, L. C. OST, F. G. Moraes, and N. L. V. CalagatEvaluation of routing
algorithms on mesh based NoCs,” Faculdade de Informatic2R8) Brazil, Technical
Report No.040, May 2004.

[23] J. Dielissen, A. Radulescu, K. Goossens, and E. Rijzke@oncepts and implementa-
tion of the Philips network-on-chip,” iRroceedings of IP/SOC Conference for IP-based
SoC Design 2003November 2003.

[24] C. Dike and E. Burton, “Miller and noise effects in a siinenizing flip-flop,” IEEE
Journal of Solid-State Circuitd/olume 34, Issue 6, pages 849-855, June 1999.

Bibliography 83

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

E. H. Dinan and B. Jabbari, “Spreading codes for direquence CDMA and wideband
CDMA cellular networks, 1TEEE Communications Magazinglume 36, Issue 9, pages
48-54, September 1998.

D.J.Kinniment and A.V.Yakovlev, “Low latency synchmaation through speculation,”
in Proceedings ofl4" International Workshop on Integrated Circuit and System De
sign: Power and Timing Modeling, Optimization and SimuatiSeptember 2004.

I. Dobbelaere, M. Horowitz, and A. E. Gamal, “Regeneeafeedback repeaters for
programmable interconnection$ZEE Journal of Solid-State Circuit¥olume 30, Is-
sue 11, pages 1246-1253, November 1995.

T. Felicijan and S. B. Furber, “An asynchronous on-aigtwork router with quality-of-
service (QoS) support,” iRroceedings of IEEE International SOC Confererseptem-
ber 2004, pages 274-277.

S. B. Furber, J. D. Garside, P. Riocreux, S. Temple, B, DaLiu, and N. C. Paver,
“AMULET2e: an asynchronous embedded controllén’Proceedings of the IEEE
Volume 87, Issue 2, pages 243-256, February 1999.

J. D. Garside, W. J. Bainbridge, A. Bardsley, D. M. Cldk A. Edwards, S. B. Furber,
J. Liu, D. W. Lloyd, S. Mohammadi, J. S. Pepper, O. Petlin,&nple, and J. V. Woods,
“AMULET3i - an asynchronous system-on-chip,” Rroceedings of the 2000 Interna-
tional Symposium on Advanced Research in AsynchronousitSiend SystemsI|EEE
Computer Society Press, April 2000, pages 162—-175.

R. Ginosar, “Fourteen ways to fool your synchronizén,’Proceedings of the Ninth
International Symposium on Asynchronous Circuits andeBystMay 2003, pages 89—
96.

T. Grotker, S. Liao, G. Martin, and S. Swa8ystem Design with SystemCKluwer
Academic Publishers, 2002, pages 131-153.

M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Af@be, and T. Yamazaki,
“Synergistic processing in cell’s multicore architecturiEEE Micro, Volume 26, Is-
sue 2, pages 10—-24, March-April 2006.

P. Guerrier and A. Greiner, “A generic architecture éor-chip packet-switched inter-
connections,” inrProceedings of the Conference and Exhibition on DesignprAation
and Test in Europe 200®/arch 2000, pages 250-256.

M. W. Heath, W. P. Burleson, and |. G. Harris, “Synchoiéns: eliminating nondeter-
minism to enable chip-level test of globally-asynchronBo€’s,” inProceedings of the
Conference and Exhibition on Design, Automation and TeBuimpe 2004Volume 1,
February 2004, pages 410-415.

84 Bibliography

[36] Q. T. Ho, J.B. Rigaud, L. Fesquet, M. Renaudin, and Rld®al, “Implementing asyn-
chronous circuits on LUT based FPGAs, Rmoceedings 012" International Confer-
ence on Field-Programmable Logic and Applicatip8geptember 2002, pages 36—46.

[37] Silistix, http://www.silistix.com, 2005.

[38] D. A. Huffman, “The synthesis of sequential switchirigcaits,” Journal of the Franklin
Institute Volume 257, No. 3 and 4, March-April 1954.

[39] CoreConnect Bus ArchitecturlBM, http://www.chips.ibm.com/products/coreconnect,
1999.

[40] Intel High-Performance Consumer Desktop Microprocessreling Intel, July 2006.
URL: http://www.intel.com/pressroom/kits/core2dudipaicroprocessatimeline.pdf

[41] Open Systems Interconnection - Basic Reference MIRIBIIEC 7498-1, 1994.

[42] International Technology Roadmap for Semiconductors Zb@ifion-Executive Sum-
mary, ITRS, 2007, http://www.itrs.net/.

[43] A.Jantsch and H. Tenhunedetworks on Chip Kluwer Academic Publishers, 2003.

[44] J.Zhou, D.J.Kinniment, G. Russell, and A. Yakovlev,rgbust synchronizer circuit,” in
Proceedings of the 2006 Computer Society Annual Symposiu.8| March 2006,
pages 442—-443.

[45] F. Karim, A. Nguyen, and S. Dey, “An interconnect areliure for networking systems
on chips,”IEEE Micro, Volume 22, Issue 5, pages 36—45, September-October 2002.

[46] H. Kariniemi and J. Nurmi, “Reusable XGFT interconnd®t for network-on-chip
implementations,” irProceedings of the International Symposium on Systemkin-C
2004 November 2004, pages 95-102.

[47] T. B. Keat, R. Yoshimura, T. Matsuoka, and K. Taniguchinovel dynamically pro-
grammable arithmetic array using code division multipleess bus,” inProceedings
of the 8" International Conference on Electronics, Circuits and t8gss Volume 2,
September 2001, pages 913-916.

[48] J. Kessels, T. Kramer, G. den Besten, A. Peeters, anthiT“Applying asynchronous
circuits in contactless smart cards,”®noceedings of Sixth International Symposium on
Advanced Research in Asynchronous Circuits and Sys#pnis 2000, pages 36—44.

[49] K. Keutzer, A. R. Newton, J. M. Rabaey, and A. Sangiovarincentelli, “System-level
design: orthogonalization of concerns and platform-bakesign,”IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Syst&@lume 19, Issue 12,
pages 1523-1543, December 2000.

Bibliography 85

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

D. Kim, M. Kim, and G. E. Sobelman, “CDMA-based netwask-chip architecture,”
in Proceedings of the 2004 IEEE Asia-Pacific Conference orutg@and System¥0ol-
ume 1, December 2004, pages 137-140.

——, “Design of a high-performance scalable CDMA router do-chip switched net-
works,” in Proceedings of the International SoC Design Conferenceb2@tober
2005, pages 32-35.

S. Kim, J. Lee, and K. Kim, “A parallel flop synchronizesrfbridging asynchronous
clock domains,” inProceedings of 2004 Asia-Pacific Conference on Advance@r8ys
Integrated Circuits August 2004, pages 184-187.

D. Kinniment, A. Bystrov, and A.Yakovlev, “Synchrortion circuit performance,”
IEEE Journal of Solid-State Circuit¥olume 37, No. 2, pages 202—-209, February 2002.

S. Kumar, A. Jantsch, J. P. Soininen, M. Forsell, M. btltg, J. Oberg, A. K. Tiensyrj,
and A. Hemani, “A network-on-chip architecture and desigrihmdology,” inProceed-

ings of the IEEE Computer Society Annual Symposium on VESL®I) 2002, pages
117-124.

J. A. J. Leijten, J. L. van Meerbergen, A. H. Timmer, andJG. Jess, “Stream com-
munication between real-time tasks in a high-performangkipnocessor,” irProceed-
ings of the Conference and Exhibition on Design, Automadiwch Test in Europe 1998
March 1998, pages 125-131.

D. D. Lin and T. J. Lim, “Subspace-based active usertifieation for a collision-free
slotted ad hoc network]EEE Transactions on Communication®lume 52, Issue 4,
pages 612621, April 2004.

A. Lines, “Nexus: an asynchronous crossbar intercohf@ synchronous system-on-
chip designs,” irProceedings of th&1!" IEEE Symposium on High Performance Inter-
connectsAugust 2003, pages 2-9.

D. Mangano, G. Falconeri, C. Pistritto, and A. ScandurtEffective full-duplex
mesochronous link architecture for network-on-chip dati-ayer,” in Proceedings
of 10" Euromicro Conference on Digital System Design ArchiteetuiMethods and
Tools August 2007, pages 519-526.

D. Mangano, R. Locatelli, A. Scandurra, C. Pistritto, ®bppola, L. Fanucci, F. Vitullo,
and D. Zandri, “Skew insensitive physical links for netwark chip,” in Proceedings of
15t International Conference on Nano-Networks and Worksh6p$,September 2006,
pages 1-5.

86 Bibliography

[60] T. Marescaux, A. Bartic, D. Verkest, S. Vernalde, and_Buwereins, “Interconnection
networks enable fine-grain dynamic multi-tasking on FPGiksProceedings ofl 2"
International Conference on Field-Programmable Logic &blications September
2002, pages 795-805.

[61] A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovic, and P.Hazewindus, “The design
of an asynchronous microprocessohfCM SIGARCH Computer Architecture News
Volume 17, Issue 4, pages 99-110, June 1989.

[62] T. Meincke, A. Hemani, S. Kumar, P. Ellervee, J. Oberg,Olsson, P. Nilsson,
D. Lindgvist, and H. Tenhunen, “Globally asynchronous Iycgynchronous architec-
ture for large high-performance ASICs,”Rroceedings of the 1999 IEEE International
Symposium on Circuits and Systevslume 2, May 1999, pages 512-515.

[63] J. Mekie, S. Chakraborty, and D. K. Sharma, “Evaluatiémpausible clocking for in-
terfacing high speed IP cores in GALS framework, Firoceedings of th& 7" Interna-
tional Conference on VLSI Desigdanuary 2004, pages 559-564.

[64] G. Moore, “Cramming more components onto integrateduits,” Electronics pages
114-117, April 1965.

[65] S.W. Moore and P. Robinson, “Rapid prototyping of d&tied circuits,” inProceedings
of International Conference on Computer Design 1,998tober 1998, pages 360—-365.

[66] F. Moraes, N. Calazans, A. Mello, L. dller, and L. Ost, “HERMES: An infrastruc-
ture for low area overhead packet-switching networks op,thintegration, the VLSI
Journal Volume 38, Issue 1, pages 69-93, October 2004.

[67] D. E. Muller and W. S. Bartky, “A theory of asynchronouscaits,” in Proceedings of
International Symposium on the Theory of Switchingarvard University Press, April
1959, pages 204-243.

[68] J. Muttersbach, T. Villiger, and W. Fichtner, “Praaicesign of globally-asynchronous
locally-synchronous systems,” Rroceedings of Sixth International Symposium on Ad-
vanced Research in Asynchronous Circuits and Systépts 2000, pages 52-59.

[69] J. Muttersbach, T. Villiger, H. Kaeslin, N. Felber, aml. Fichtner, “Globally-
asynchronous locally-synchronous architectures to siynhle design of on-chip sys-
tems,” inProceedings of th" IEEE International ASIC/SOC Conferen@eptember
1999, pages 317-321.

[70] C. J. MyersAsynchronous Circuit Design John Wiley & Sons, Inc., 2001.

[71] A. Nalamalpu, S. Srinivasan, and W. P. Burleson, “Beosftfor driving long onchip
interconnects - design issues, interconnect synthesiscamparison with repeaters,”

Bibliography 87

IEEE Transactions on Computer-Aided Design of Integratedu@s and Systems/ol-
ume 21, Issue 1, pages 50-62, January 2002.

[72] L. M. Ni and P. K. McKinley, “A survey of wormhole routintechniques in direct net-
works,” Computey Volume 26, Issue 2, pages 62—76, February 1993.

[73] S. M. Nowick and D. L. Dill, “Automatic synthesis of lottg-clocked asynchronous
state machines,” ifProceedings of the 1991 IEEE/ACM International Confereane
Computer-Aided DesigiNovember 1991, pages 318-321.

[74] T. Olsson, M. Torkelsson, P. Nilsson, A. Hemani, and Teiltke, “A digitally con-
trolled on-chip clock multiplier for globally asynchronsuocally synchronous sys-
tems,” in Proceedings of the IEEE2"Y Midwest Symposium on Circuits and Systems
Volume 1, August 1999, pages 84-87.

[75] Open Core Protocol Specification 2.0he Open Core Protocol International Partner-
ship, http://ww.ocpip.org, November 2003.

[76] IEEE Standard SystemC Language Reference Ma@ygsdn SystemC Initiative (OSCI),
2005, http://www.systemc.org.

[77] Conventional PCI 3.0Peripheral Component Interconnect Special Interest G(BCI-
SIG), http:/lwww.pcisig.com/, April 2004.

[78] W. D. PetersonyMEbus Handboqlkdth Edition, VITA, 1997.
[79] PCA5007 handshake-technology pager IC data st#gtips Semiconductors, 1999.

[80] C. Rowen,Engineering the Complex SOC: Fast, Flexible Design with figomable
Processors Prentice Hall Professional Technical Reference, Jund 2p@ges 436-
437.

[81] The Balsa Asynchronous Synthesis SysBamool of Computer Science, The University
of Manchester, 2005. URL: http://intranet.cs.man.a@piprojects/tools/balsa/

[82] J. N. Seizovic, “Pipeline synchronization,” Rroceedings of the International Sympo-
sium on Advanced Research in Asynchronous Circuits an@8gst 994 November
1994, pages 87-96.

[83] C.E. Shannon, “A mathematical theory of communicati@ell System Technical Jour-
nal, Volume 27, pages 379-423 and 623—-656, July and October 1948

[84] S. Shimizu, T. Matsuoka, and K. Taniguchi, “Parallesmystems using code-division
multiple access technique,” iRroceedings of the 2003 International Symposium on
Circuits and System&olume 2, May 2003, pages 240-243.

88 Bibliography

[85] D. Sigienza-Tortosa, T. Ahonen, and J. Nurmi, “Issues in the deweént of a practical
NoC: the Proteo conceptfitegration, the VLSI journaMolume 38, Issue 1, pages 95—
105, September 2004.

[86] E. S. Sousa and J. A. Silvester, “Spreading code prtgofr distributed spread-
spectrum packet radio network$2EE Transactions on Communicationdlume 36,
Issue 3, pages 272—-281, March 1988.

[87] I. E. Sutherland, “Micropipelines,Communications of the ACM/olume 32, No. 6,
pages 720-738, June 1989.

[88] M. Takahashi, T. B. Keat, H. lwamura, T. Matsuoka, andTéniguchi, “A study of
robustness and coupling-noise immunity on simultaneotes tdansfer CDMA bus in-
terface,” inProceedings of 2002 International Symposium on Circuits &ystemsvol-
ume 4, May 2002, pages 611-614.

[89] The TILE4™ Processoy Tilera, http://www.tile64.com/, 2007.

[90] K. van Berkel, J. Kessels, M. Roncken, R. Saeijs, and ¢hal}j, “The VLSI-
programming language tangram and its translation into $taatke circuits,” irProceed-
ings of the 1991 European Conference on Design AutomaBiebruary 1991, pages
384-389.

[91] Virtual component interface standardThe Virtual Socket Interface Alliance,
http://lwww.vsi.org, April 2001.

[92] A. J. Viterbi, CDMA: Principles of Spread Spectrum CommunicationsAddison-
Wesley Publishing Company, 1995.

[93] D. Wiklund and D. Liu, “SoCBUS: Switched network on cHigr hard real time sys-
tems,” inProceedings of the International Parallel and DistributBcbcessing Sympo-
sium April 2003, page 8 pp.

[94] J. V. Woods, P. Day, S. B. Furber, J. D. Garside, N. C. Ragad S. Temple,
“AMULET1: An asynchronous ARM microprocessolEEE transactions on Com-
puters Volume 46, No. 4, pages 385—-398, April 1997.

[95] R. Yoshimura, T. B. Keat, T. Ogawa, S. Hatanaka, T. Makstiand K. Taniguchi, “DS-
CDMA wired bus with simple interconnection topology for plel processing system
LSIs,” in Digest of Technical Papers of 2000 IEEE International S@idte Circuits
ConferenceFebruary 2000, pages 370-371.

[96] K. Y. Yun and R. P. Donohue, “Pausible clocking: A firs¢sttoward heterogeneous
systems,” inProceedings of the 1996 International Conference on Coargbesign:
VLSI in Computers and Processp@ctober 1996, pages 118-123.

Bibliography 89

[97]

[98]

[99]

C. A. Zeferino and A. A. Susin, “SoCIN: A parametric andakble network-on-
chip,” in Proceedings of the IEEE Integrated Circuits and System$gDe3ymposium
September 2003, pages 169-174.

H. Zhang, V. George, and J. M. Rabaey, “Low-swing on dignaling techniques: Ef-
fectiveness and robustnes&EE Transactions on Very Large Scale Integration (VLSI)
Systems\Volume 8, Issue 3, pages 264-272, August 1999.

S. Zhuang, W. Li, J. Carlsson, K. Palmkvist, and L. Wamhzar, “Asynchronous data
communication with low power for GALS systems,” Rroceedings of th&™ Inter-
national Conference on Electronics, Circuits and Systevokime 2, September 2002,
pages 753-756.

90

Bibliography

Part Il: Publications

PUBLICATION 1

X. Wang, T. Ahonen, and J. Nurmi, “A Synthesizable RTL Design of Asynchronous FIFO”, in
Proceedings of the 2004 International Symposium on System-on-Chip, (SOC 2004), pages 123-128,
Tampere, Finland, November 2004.

© 2004 IEEE. Reprinted, with permission, from Proceedings of the 2004 International Symposium
on System-on-Chip.

A Synthesizable RTL Design of Asynchronous FIFO

Xin Wang, Tapani Ahonen, Jari Nurmi
Institute of Digital and Computer Systems, Tampere University of Technology
P.O.Box 553, FIN-33101, Tampere,Finland
E-mail: {xin.wang, tapani.ahonen, jari.nurmi}@tut.fi

Abstract

An asynchronous FIFO which avoids data movement
in a micropipeline FIFO is presented and it has been
implemented as a gate-level netlist. The presented
asynchronous FIFO model is constructed by commonly
used Hardware-Description Language and synthesized
using the conventional EDA tools and methods for
synchronous design. The purpose of this work is to
construct a reusable asynchronous FIFO design which
suits the commonly used synchronous design tools and

flow.
1. Introduction

Globally-Asynchronous Locally-Synchronous (GALS)
[1] is a promising paradigm to solve the problem of clock
skew and delay in the deep submicron System-on-Chip
(SoC) design. In the GALS architecture, the blocks in
different clock domains communicate with each other
using asynchronous connections. Asynchronous FIFO is
an important component for the efficient data transfer in
asynchronous communication. Therefore, the
asynchronous FIFO design is necessary for implementing
the GALS structure in a SoC design.

Asynchronous FIFO using micropipeline is presented
in [2]. The main characteristic of a micropipeline FIFO is
that the data will flow through all data cells in the FIFO
before reaching the output port. Therefore, the latency
(the delay from the input of a data item to its presence at
the output [4]) caused by data movement is inevitable. In
[3], an asynchronous FIFO using counter as control logic
is presented, data movement is avoided, but complexity is
high. [4, 5] present similar asynchronous FIFO structures
using token passing (a sender/receiver can
transmit/receive data to/from FIFO only when it has a
token) and a common data bus for data in and out. Using
these structures, the data can be pushed into or popped
from the asynchronous FIFO without data movement
inside the FIFO. Therefore, the latency caused by data
movement in a micropipeline FIFO is eliminated and less
power is consumed. The asynchronous FIFO presented in
this paper also bases on the token passing presented in [4,
5], but the difference is that the presented asynchronous
FIFO model is suitable for HDL modeling in Register-

0-7803-8558-6/04/$20.00 ©2004 IEEE.

Transfer Level (RTL) and implementation using the
conventional synchronous design tools and flow. Current
asynchronous design tools require a significant re-
education of designers, and their capabilities are limited
compared to commonly used synchronous tools [6].
Therefore, if commonly used synchronous design
methods could be used for asynchronous design, the
benefit is that it would facilitate the integration of
synchronous and asynchronous parts of a design.

The paper structure is as follows. In section 2, the
structure of asynchronous FIFO is presented and the
control logic is reviewed in detail. Section 3 describes the
RTL model of the basic elements used in this
synthesizable RTL design of the asynchronous FIFO. The
simulation results are presented in section 4. The
conclusion is drawn in section 5.

2. The Structure of the Asynchronous FIFO
2.1 Top Structure

There are two blocks in the asynchronous FIFO
illustrated in Figure 1 — ‘Control Logic’ Block and ‘Data
Bank’ Block. This asynchronous FIFO works with four-
phase bundled-data handshake protocol [7]. The process
of pushing data into the asynchronous FIFO is explained
as following steps:

e Stepl: The sender sets the request signal (‘push_req’
signal in Figurel) after the data to be sent are ready
(‘Data_In[D-1:0]" in Figurel).

o Step2: The FIFO will set acknowledge signal
(push_ack signal in Figurel) after successfully
obtaining the incoming data.

e Step3: Then the sender responds to push_ack signal by
resetting push_req signal.

o Step4: The FIFO resets the push_ack signal after
push_req has been reset.

The process of popping data from the asynchronous
FIFO is equal to pushing process except that the data is
supplied by the FIFO and obtained by the receiver.

The ‘control logic’ block contains control cells for
every data-cell in ‘Data Bank’ Block. The ‘Control
Signals’ illustrated in Figure 1 are used to control the
actions of pushing and popping data from the data bank.

push_req —*

push_ack «——

Control Logic

y

Control Signals

Data_In [D-1:0]

Data Bank

Data_Out[D-1:0]
e

Figure 1. Block Diagram of the Asynchronous FIFO

celll_push_ack

‘Control Logic’ Block

cell2_push_ack

celN_push_ack

celll_pop_ack

cell2_pop_en

A 4

Control
Cell 2

Control

Cell 1 |cell2_push_en

I celll_pop_ctr

cell2_pop_ack
cell3_pop_en
—>

cell3_push_en
—> - -

cell2_pop_ctr

celIN_pop_ack

==~ —» Control

Cell N

cellN_pop_ctr

cell l_push_CEr

cellZ_push_c‘g

cellN_push_cI

push_ack push_req

Voo

pop_ack pop_req

Figure 2. Block Diagram of the ‘Control Logic’ Block

2.2 The Structure of the ‘Control Logic’ Block

The ‘Control Logic’ block consists of N control cells
illustrated in Figure 2. The number N is the depth of
FIFO referring to the maximum number of data items
that can be stored into the FIFO. Each control cell is
used to control one data cell in the ‘Data Bank’ Block.
In Figure 2, the push/pop_req input signals are fed into
every control cell by default. The basic operating
principle of this ‘Control Logic’ Block is that every
control cell responds to push and pop request signals
only when it has a token (permission) for the
corresponding operation. The token for responding push
operation (push token) is granted to ‘Control Cell 1’
after system reset. Then, the push token will be
transferred to the next control cell after the current
owner of push token completed its operations about
pushing data. When the push token reached the last
control cell, ‘control cell N’, it will return to ‘control
cell 1°. The operating process of pop token, token for
responding pop request, is equal to the process of push
token except that the initial pop token will be granted to
‘control cell 1’ only when the first data cell in ‘Data
Bank’ Block contains a valid data item. With this token
passing principle, the data can be pushed into or popped
from the asynchronous FIFO eliminating data
movement.

The token transfer is implemented by the
‘celli_pop/push_en’ (i=1, 2, 3, ... , N) signals illustrated
in Figure 2. For example, when the ‘cell2_pop_en’
signal is set, it means that the pop token is delivered to
‘control cell 2°. After ‘control cell 2’ has responded to
the current pop request, the ‘cell2_pop_en’ signal will
be reset and the ‘cell3_pop_en’ signal will be set in
order to transfer the pop token to ‘control cell 3°.

The ‘push/pop_ack’ output signals in Figure 2 are
composed by the ‘push/pop_ack’ signals from all
control cells, which is reasonable because only one
control cell will assert its push/pop acknowledge signal
for the current push/pop request. The
‘cellN_push/pop_ctr’ signals in Figure 2 represent the
control signals fed into the ‘Data Bank’ Block.

The detailed structure of ‘control cell 1’ and other
central control cells, which include from ‘control cell 2°
to ‘control cell N-1°, are illustrated together in Figure 3,
because they have almost the same structure. The
dashed line in Figure 3 means those connections are
only valid for ‘control cell 1°. For example, the
‘celli_pop_en’ signal will be replaced by ‘pop_req’
signal when Figure 3 refers to ‘control cell 1°. In Figure
3, the letter ‘i’ used in the signal names refers to the
signal index in different control cells. For example,
‘celli_push_en’ refers to the ‘cell2_push_en’ signal in
‘control cell 2.

A 4

PSR

celli_pop_ack.

pop_req l C3
11
celli pop_e
| > elli+1_pop_en
Cl set _’C@—’

l L2q HO—>
st q e clr_record | rst

L1
(n set Ao) cell1+1_push_eIL

celli_push_en

®

r-p
|
!
|

A 4

push_req ®

A\ 4

.
ca) celli_push_ack >
—/

R celli_push_ctr
.

Figure 3. First and Central Control Cell Block Diagram

pop_req

—> \

cellN_pop_ack

celIN-1_pop_en
Cl

(n

C2

celIN-1_push_erl

)

A 4

»

celIN_pop_ctr
N ap1 L —POP- >
./

J—— cellN_pop_done
AND2 p p |

-/

1)

celIN_push_ack
—

l

push_req

A\ 4

R cellN_push_ctr

o g

Figure 4. ‘Control Cell N’ Block Diagram

The little circles at the input port of C1, AND2 and
AND?3 element represent inverters. In Figure 4, the
detailed structure of last control cell — ‘control cell N’ is
depicted.

Three types of logic elements (Latch, Muller C-

element and AND logic gate) are used in the control cells.

Except the well understood AND logic, it is necessary to
describe the model of Latch and Muller C-element used
here before introducing the operating principle of an
individual control cell.

(1) The truth table of the latch model used here is
given in Table 1. When the value at input port ‘rst’ is set,
the output value at port ‘q” will be reset. When the value
at input port ‘set’ is set, the output value at port ‘q” will
be set. The value at ‘rst’ and ‘set’ ports should not be set
at the same time. The value at output port ‘q’ will be kept
unchanged when the value at ‘rst’ and ‘set’ ports is ‘0’.

The value at port ‘q,’ is always the inverse value at port

[P

q’.
Table 1. Truth Table of Latch Model

rst set q Qn

0 0 no change | no change
1 0 0 1

0 1 1 0

1 1 unstable unstable

(2) Two types of Muller C-element [7] are used in the
control cells — two-input and three-input C-elements. The
operating principles of these C-elements are the same.
The truth table of two-input C-element is given in Table 2
as an example. The output value of C-element would be
set/reset only when all of its input values are set/reset.

If the input signals have different values from each other,
the output value of C-element should not change.

Table 2. Truth Table of two-input C-element

input a input b output q
0 0 0
1 0 no change
0 1 no change
1 1 1

After all logic elements used in the control cells are
introduced, the control process of ‘control logic’ Block
can be examined through the ‘control cell 1’ as the
example in the following steps. An assumption taken here
is that the transition delay (the time duration in which the
output signal becomes stable after the newly coming input
signal became stable) of the latch is larger than the
transition delay of the inverter. This assumption is
reasonable in most cases.

o Stepl: After system reset, all output values of logic
elements in Figure 3 will be reset except that the
‘celli_push_en’ signal will be set.

e Step2: When the ‘push_req’ signal is set, all inputs of
C2 will be set. Therefore, the output value of C2 will
also be set after a certain delay.

o Step3: Then the output value of C2 will cause the value
at ‘q’ port of L1 be set to ‘1°. When the value at ‘q’
port of L1 is set, it means the first data cell in the ‘Data
Bank’ Block contains a valid data item. Otherwise,
there is no valid data item in the first data cell.

o Step4: In this step, the ‘celli_push_en’ will be reset to
indicate that the first control cell already responded to
the first push_req signal and the push token will be
transferred to the next control cell.

o Step5: The ‘celli+1_push_en’ signal is reset after the
output value of C2 is set in step2. This ‘0’ value of
‘celli+1_push_en’ signal means that the current process
of push request is not complete. Thus, the push token
should not be transferred to the next control cell at this
moment. At the same time, ‘celli_push_ack’ and
‘cell_i_push_ctr’ signals which are used to generate
acknowledge signal and enable latching the incoming
data respectively will be set since all inputs of C4 and
AND4 are ‘1°.

o Step6: After the sender has received the acknowledge
signal for the current pushing request, it will reset
‘push_req’ signal.

e Step7: The reset of ‘push_req’ signal will cause all
inputs of C2 become ‘0’. Consequently, the output
value of C2 will be reset.

o Step8: As the output value of C2 is reset, the inputs of
AND?3 will be set. Thus, the ‘celli+1_push_en’ signal

will be set when the next pushing request signal comes.

It means that the push token is transferred to the next

control cell by the asserted ‘celli+1_push_en’ signal.

o Step9: Because the output of C2 and ‘push_req’ signal
became ‘0’, the output of C4 -- ‘celli_push_ack’ signal,
will be reset. The resetting of acknowledge signal
indicates that a four-phase handshake process is
completed.

The control process for a pop-request is similar to that
of a push-request. The L2 in Figure 3 is used to record the
position where the pop token locates by keeping its output
always ‘1’ after the output value of C1 is set. That means
the control cells which has been granted with pop token
will be marked by the ‘1’ value at the output of L2. The
pop token will be transferred to the next control cell
which has no mark value at its L2 latch. When the pop
token returns back to the first control cell, the L2 will be

reset by the asserted ‘clr_record’ signal.

The structure of ‘control cell N’ illustrated in Figure 4
has some differences by comparing with other control
cells depicted in Figure 3. The ‘cellN_pop_done’ signal is
used as one condition to generate ‘clr_record’ signal.
Latch L2 and ‘cellN_push/pop_en’ signals are not needed
in the last control cell because the pop token will be
transferred back to ‘control cell 1’ by resetting the mark
value at the output of L2 in other control cells. Except
these mentioned differences, the control process is same
with the process of the first and the central control cells.

data_in
Data datal_out
—

celll_push_en Cell
—’.

| MUX | data_out

data_in
—p| Data
celIN_push_en Cell
—

dataN_out‘

pop_data_en_vector

Figure 5. Data Bank Block Diagram

2.3The Structure of the Data Bank

The structure of the ‘Data Bank’ Block illustrated in
Figured 5 is composed by a series of latch-array named as
‘Data Cell’ and a multiplexer. The main function of the
‘Data Bank’ Block is to latch the incoming data or output
the requested data by the control signals from the
‘Control Logic’ Block.

The ‘celli_push_en’ (i=1, 2, ... , N) signals coming
from ‘Control Logic’ Block are used as the enable signals
for latching the incoming data. The latches used in ‘Data
Cell’ latch-array are same with the latches used in the
‘Control Logic’ Block. The number of latches in ‘Data
Cell’ latch-array depends on the data width of the
asynchronous FIFO. The ‘pop_data_en_vector’ in Figure
5 is the combination of ‘celli_pop_en’ signals from the
control cells depicted in Figures 3 and 4. It is used as the
control signal of selecting the requested data item in
different data cells.

3. The RTL Modeling

Three elements, AND logic gate, Muller C-element
and latch, are used in this asynchronous FIFO. Unlike the
AND logic gate, the Muller C-element and the latch
model used in this design are not basic elements in the
conventional synchronous design. Therefore, in order to
make this asynchronous FIFO to be constructed by
commonly used HDL description and synchronous design
flow, it is necessary to construct the RTL models using
basic elements in digital circuits for Muller C-element
and the latch model described in section 2.2. D-Latch,
inverter, OR logic gate and AND logic gate are used as
the basic elements in this RTL design.

3.1 The RTL Model of C-element

Figure 6 illustrates a two-input C-element model
suitable for synthesizable HDL modeling. The three-input
C-element model can be obtained by adding the third
input on AND1 gate and OR1 gate respectively.

constant ‘1 f d
D-latch q —»
reset

Sys_r1st

o
\A 4

»
»

Figure 6. The two-input C-element model

The latch used in the two-input C-element model is a
D-Latch with an asynchronous reset port. The value at ‘q’
output port of D-Latch will follow the value at ‘d’ port
when the value at ‘g’ portis ‘1’ (gate is open). If the
value at ‘g’ port becomes ‘0’ (gate is closed), the value at
‘q’ port will be kept unchanged. The ‘reset’ port is used
to reset the value at ‘q’ port, that is, the value at ‘q’ port
will be reset whenever the value at ‘reset’ port is ‘1°. The
operating process of the two-input C-element model can

be observed through Figure 6 directly. During the system
reset (sys_rst = ‘0’), the output value of this C-element at
‘q’ port will be reset to ‘0. If one input signal ‘a’ or ‘b’ is
‘1’ and another is ‘0’, the gate of D-Latch will be closed.
Therefore, the reset value at ‘q’ port will be kept
unchanged. When the values at ‘a’ and ‘b’ are both ‘1°,
the gate of D-Latch will open. Then the constant value ‘1’
at ‘d’ port will be captured by the output port ‘q’ of D-
Latch, thus, the output value of this C-element will be ‘1°.
The output value of C-element will be back to ‘0’ again
only when both input signals ‘a’ and ‘b’ are reset to ‘0°.

3.2 The RTL Model of Latch

The D-Latch described in section 3.1 can also be used
to construct the latch model described in section 2.2. The
latch model used in this design has two input ports ‘rst’
and ‘set’ and one output port ‘q’ (‘qn’ is the inverse of
‘q’). The RTL model of the latch can be obtained by
feeding the ‘set’ input directly into the ‘g’ port of D-
Latch and the ‘rst’ port into the ‘reset’ port of D-Latch.
The ‘d’ port of D-Latch is connected with constant ‘1’ as
illustrated in Figure 6.

With the RTL model depicted in sections 3.1 and 3.2,
the synthesizable model of the asynchronous FIFO can be
constructed with the commonly used hardware
description languages such as VHDL and Verilog. Then,
the synthesizable HDL descriptions will suit the
synchronous design tools naturally in the following steps
of the conventional synchronous design flow.

4. Simulation Results

The asynchronous FIFO has been implemented using
VHDL. A 0.35um technology library was used for
synthesis. The latency of the asynchronous FIFO is
measured as the time between the positive edge of
‘push/pop_req’ signal and the negative edge of the
acknowledge signal. This latency is independent on the
depth of the asynchronous FIFO, because the push/pop
request is performed into/from the respective data cell.
Table 3 summarizes the timing characteristics obtained by
gate-level simulation when data width of asynchronous
FIFO is four bits and FIFO depth is four.

All the values presented in Table 3 are the average
values among the measured values of the four different
data cells in ‘Data Bank’ Block. The terms presented in
Table 3 are explained as following.

e ‘Data Valid Delay’ is measured as the time between the
rising edge of ‘pop_req’ signal and the valid data
appearing on the output of the FIFO.

e ‘Ack Rise Delay’ is measured as the time between the
rising edge of ‘push/pop_req’ signal and the rising
edge of ‘push/pop_ack’ signal.

Table 3 Timing Characteristics of the Asynchronous FIFO

DataValid Ack Rise Req Hold | Ack Fall Delay | Handshake

Delay (ns) Delay (ns) Time (ns) (ns) Cycle (ns)
Push Request - 3.78 0.50 3.34 7.62
Pop Request 2.95 3.51 0.01 3.41 6.93

e ‘Req Hold Time’ is measured as the time between the
rising edge of ‘push/pop_ack’ signal and the falling
edge of ‘push/pop_req’ signal.

e ‘Ack Fall Delay’ is measured as the time between the
falling edge of ‘push/pop_req’ signal and the falling
edge of ‘push/pop_ack’ signal.

e ‘Handshake Cycle’ is measured as the time between
the rising edge of ‘push/pop_req’ signal and the falling
edge of ‘push/pop_ack’ signal.

The timing for pushing and popping data from
different data cells is different. The reason is the different
signal paths and the different types of gates incorporated.
The delay in the asynchronous FIFO mainly depends on
the technology used. According to the timing of
‘Handshake Cycle’, the throughput of the asynchronous
FIFO is about 100 million data items per second when
0.35um technology is used.

5. Conclusions

An asynchronous FIFO structure suitable for HDL
modeling and the conventional synchronous design tools
and flow is presented and the gate-level simulation results
are discussed. An approach of constructing the
asynchronous circuits using HDL descriptions is
presented. The approach is that constructing the RTL
model of the circuits with Muller C-element and latches
firstly, then, modeling the latches and Muller C-elements
using applicable basic element, such as D-Latch, which
can be described by HDL code. The presented RTL
model of Muller C-element and latches can be reused for
other asynchronous design if the RTL models of those
elements are needed.

The drawback of the presented asynchronous FIFO
design is that the RTL model of Muller C-element is not
as efficient as the model constructed in circuit-level. If the
circuit-level model of Muller C-element is available as a
library component, this disadvantage can be conquered.

References

[1] Muttersbach, J.; Villiger, T.; Kaeslin, H.; Felber, N.;
Fichtner, W.; “Globally-asynchronous locally-synchronous
architectures to simplify the design of on-chip systems”;
ASIC/SOC Conference, 1999. Proceedings. Twelfth Annual
IEEE International , 15-18 Sept. 1999; Pages:317 — 321.

[2] LE. Sutherland;”Micropipelines”; Communications of the
ACM, vol. 32, no.6, pp. 720-738, June 1989.

[3] A.V. Yakovlev, A.M. Koelmans, L. Lavagno, “High-Level
Modeling and Design of Asynchronous Interface Logic”, I[EEE
Design and Test of Computers, Spring 1995.

[4] Chelcea, T.; Nowick, S.M.; “Low-latency asynchronous
FIFO's using token rings”; Advanced Research in Asynchronous
Circuits and Systems, 2000. (ASYNC 2000) Proceedings. Sixth
International Symposium, 2-6 April 2000 Pages: 210 — 220

[5]1 K.K. Yi, “The Design of a Self~Timed Low Power FIFO
Using a Word—Slice Structure”, M.Phil Thesis, Univ. of
Manchester, September 1998.

[6] Kondratyev, A.; Lwin, K.; “Design of asynchronous circuits
by synchronous CAD tools”, Design Automation Conference,
2002. Proceedings. 39th , 10-14 June 2002 Pages:411 — 414

[7] Jens Sparso, Steve Furber; “Principles of Asynchronous
Circuit Design-Asystem Perspective”; Page 9~11, 15; Kluwer
Academic Publishers, 2001.

PUBLICATION 2

X. Wang, D. Sigiienza-Tortosa, T. Ahonen, and J. Nurmi, “Asynchronous Network Node Design for
Network-on-Chip”, in Proceedings of the 2005 International Symposium on Signal, Circuits, and
System, (ISSCS 2005), Volume 1, pages 55-58, lasi, Romania, July 2005.

© 2005 IEEE. Reprinted, with permission, from Proceedings of the 2005 International Symposium
on Signal, Circuits, and System.

Asynchronous Network Node Design for
Network-on-Chip

Xin Wang, David Sigiienza-Tortosa, Tapani Ahonen, Jari Nurmi

Institute of Digital and Computer Systems, Tampere University of Technology, Tampere, Finland
{xin.wang, david.siguenza-tortosa, tapani.ahonen, jari.nurmi}@tut.fi

Abstract— A network node for Proteo Network-on-Chip (NoC) has
been developed in order to support Globally-Asynchronous

Locally-Synchronous (GALS) communication in an on-chip system.

The network node presented in this paper was implemented as a
synthesizable Intellectual Property (IP) block in Register-Transfer
Level (RTL) using VHDL. The proposed design applies both
asynchronous and synchronous circuits to make the globally
asynchronous data transfer rate between network nodes
independent of local clocks.

l. INTRODUCTION

A System-on-Chip (SoC) combines multiple functional IP
blocks together to implement complex applications. As the
number of components becomes larger, designing a SoC requires
the introduction of networking concepts to manage the
complexity of the interconnection. Network-on-Chip (NoC)
addresses the issue of constructing an efficient and flexible
on-chip communication infrastructure in the framework of Deep
Sub-Micron (DSM) technology.

Proteo [1] is a packet-switched NoC developed at Tampere
University of Technology. A Proteo NoC instance basically
consists of network nodes and asynchronous links. Each
functional block in the system is connected to a corresponding
network node through an interface which supports VCI [2] and
OCP [3] standards. A synchronous network node IP [4] [5] has
been implemented for constructing Proteo NoCs. Nodes could be
clocked using the same clock signal as the local functional block
uses or introducing an independent network clock. Both schemes
present difficulties in synchronization. In this situation, a
Globally-Asynchronous Locally-Synchronous (GALS) scheme
[6] was proposed as a solution. For a NoC, GALS means that
data transfers between each functional block and its attached
node are synchronous, whereas data transfers between network
nodes are asynchronous. The network node presented in this
paper uses asynchronous circuits to perform global data transfers
and synchronous circuits to deal with local data transfers.

This paper is organized as follows: in Section I, the structure
of the network node is presented. The implementation issues will
be addressed in Section Ill. In Section IV, the synthesis and
simulation results are presented. Finally, conclusions are drawn
in Section V.

Il. NETWORK NODE STRUCTURE

A. Block Description

The network node structure is illustrated in Fig.1. The two
blocks outside of the dash-dot frame represent the functional IP

0-7803-9029-6/05/$20.00 ©2005 IEEE

block (‘Functional Host’) which is connected to the network
node through its VCI or OCP standard interface (‘Standard
Network IF”) block. The arrows in Fig.1 illustrate the data flow.
The function of the blocks in the network node will be described
in the following paragraphs.

1) ‘Node IF’. This block is the interface block which complies
with the VVCI or OCP standards. It acts as the counterpart of the
block named ‘Standard Network IF’ which belongs to the
functional host. If ‘Standard Network IF’ is of the master type,
‘Node IF’ should be of the slave type and vice versa (details can
be found in [2] [3]). The functionality of this block consists of
communicating with the functional host and, through ‘Layer
MUX’, the ‘“Communication Layer’ blocks, and assembling or
extracting data into or from the predefined Proto packet format.

I) ‘Layer MUX’. This block behaves as a multiplexer
connecting ‘Node IF’ with a set of ‘Communication Layer’
blocks. ‘Layer MUX’ can connect ‘Node IF’ with two different
‘Communication Layer’ blocks at the same time if only one of
them is used to send packets and the other one is used to receive
packets. However, the ‘Communication Layer’ block for sending
packets and the ‘Communication Layer’ block for receiving
packets can be the same block at any given time.

I11) “‘Communication Layer’. The function of this block is to
perform the globally asynchronous communication with other
network nodes through a handshake protocol. In Fig. 1, two
‘Communication Layer’ blocks labeled with 1 and 2 respectively
are presented, but the number of ‘Communication Layer’ blocks
can be more than two. Each ‘Communication Layer’ block is
used to connect the network node into a certain network topology.
The function of the sub-blocks that constitute ‘Communication
Layer’ will be explained by describing the communication
process of sending and receiving data packets in the following
paragraphs:

a) Sending a locally generated packet. After ‘Node IF’
obtained the data to be sent from the functional host and
assembled it into a packet, called ‘local packet’, ‘Node IF” will
send a request signal to the selected ‘Communication Layer’.
Then the ‘Communication Controller’ sub-block will check
whether the FIFO array in the ‘Packet Sender’, called *Tx Packet
Buffer’, is full or not. If the buffer is full, ‘local packet’ will be
held by ‘Node IF’ until there is a room available. If the buffer is
not full, *Communication Controller’ will enable the ‘Packet
Distributor’ to push ‘local packet’ into ‘“Tx Packet Buffer’. The
data packets in “Tx Packet Buffer’ will be sent to the adjacent
network node by ‘Packet Sender’ using a handshake protocol
under the control of ‘Communication Controller’.

R it e =
: Network Node | Communication Layer 2 :

i ' Communication Layer 1 i

| : Local Packet i

| ! e i

i ' Packet Distributor i

Func- Stan- | Node Layer p : > Communication Bypass PaCkeE |
tional dard f¢4 IF < MUX 1 Controller i
Host | Net- | | “— i
work | 1 v i

IF | ' Rx Packet Buffer Packet Sender i

i 1 Packet (Tx Packet Buffer) i

|] «— Receiver :

| I I R R R N R R A I (N I A RO .

| 1 [

| — i !

! Synchronous Domain | Asynchronous Domain v !

| Packet In Packet Out [

Figure 1. Network Node Block Diagram and Data Flow

b) Receiving a packet. If ‘Communication Controller’
received the packet-transfer request signal from the network
node connected to the input of the node, it will enable ‘Packet
Receiver’ to obtain the data packet. ‘Packet Receiver” will check
the destination address information, and if it is the current
network node, the ‘incoming packet’ will be delivered to the
FIFO array named ‘Rx Packet Buffer’ after getting the grant
signal from the ‘Communication Controller’. If ‘Packet
Receiver’ found that the destination of the received packet is not
the current network node, the packet is a ‘bypass packet’, and
will be pushed into ‘Tx Packet Buffer’ through ‘Packet
Distributor’ under the control of ‘Communication Controller’. If
either buffer is full when needed, ‘Packet Receiver’ will hold the
packet until there is room available.

B. Packet Transfer Arbitration

Different packet transfer processes may use the same
sub-block in ‘Communication Layer’ during sending or
receiving packets. For example, ‘Packet Distributor’ is a shared
resource for moving ‘local packet’ and ‘bypass packet’ into ‘Tx
Packet Buffer’. Therefore, an arbitration mechanism is needed to
coordinate the packet transfer processes in the ‘Communication
Layer’ block. The basic principle of arbitration is ‘First Come,
First Served’. In case of conflict, the resolution mechanism is
explained below:

1) One conflict may occur if the requests of pushing ‘local
packet’” and pushing ‘bypass packet’ into ‘“Tx Packet Buffer’ are
presented to ‘Communication Controller’ simultaneously. In this
situation, ‘bypass packet” will be sent into “Tx Packet Buffer’
first. Assigning a higher priority to ‘bypass packet’ can reduce
the communication load of network.

1) Another conflict may occur in ‘Packet Sender’ sub-block if
it receives the packet pushing request from ‘Packet Distributor’
and transmission handshake request from the network node
connected to the output of the node simultaneously. In this case,
‘Packet Sender’ will send the packet in “Tx Packet Buffer’ to the

0-7803-9029-6/05/$20.00 ©2005 IEEE

other network node first in order to make room in the buffer for
new packets. This strategy decreases the probability of ‘Tx
Packet Buffer’ being full. Also other conflict handling schemes
[7] [8] have been devised and will be implemented.

In order to implement the GALS scheme in Proteo NoC, the
presented network node applies both synchronous and
asynchronous circuits, delimited by the dash line in Fig.1.

The reason of applying synchronous circuits is that both most
of the functional hosts available and the network interface
standards used in Proteo NoC are synchronous. Therefore, the
network node should work in a synchronous manner and at the
same clock rate when communicating with its functional host in
order to be naturally compatible with it. The blocks in this
domain are implemented in RTL with VHDL.

The blocks in the asynchronous domain interact with each
other and perform the globally asynchronous data transfer using
a handshake protocol. A four-phase bundled data protocol is
used in this implementation. In order to make the asynchronous
design compatible with the commonly used synchronous design
tools and flow, the asynchronous circuits are constructed in RTL
with VHDL. The approach is to construct the asynchronous
circuits using C-elements, latches and combinational logic gates,
and then describe the RTL structure in VHDL. An example of
using this approach to design asynchronous circuits can be found
in [9].

The challenge of combining the synchronous and
asynchronous circuits together is how to avoid synchronization
failure caused by setup or hold-time violation during signal
transfer from asynchronous domain to synchronous domain.
Two principal solutions of this problem have been developed.
One solution is to stretch or pause the clock signal [10, 11, 12].
The other solution is to reduce the probability of synchronization
failure by using multiple receiving flip-flops. The first category
of solutions introduces some special components implemented in

IMPLEMENTATION OF THE NETWORK NODE

56

Host0 (100MHz)

Host1 (10MHz2)

Host2 (1GHz2)

Network IF (M)

Network IF (S)

Network IF (M)

1

Network Node 0

Ring 1.

1

1

Ring 2

Network Node 5

Network Node 1

Network Node 2

A 4

Network Node 4

Network Node 3

'S

Network IF (S) Network IF (M) Network IF (S)
Host5 (50MHz) Host4 (1MHz) Host3 (250MH2z)

Figure 2. Six-Node Bidirectional Ring Network

transistor level, such as stretchable or pausable clock generator
[10, 11] and delay lines [12], therefore, it does not meet the

requirement of implementing the presented network node in RTL.

The synchronization method used in the presented network node
is a double-latching scheme. Hence, synchronization failure may
occur during the double-latching process. However, in this
network node, the synchronization failures only can delay the
data transfer other than ruin it, because the double-latching
scheme is only used for sampling the handshake signals from
asynchronous domain other than the data. For example, if ‘0>1’
transition of a request signal from asynchronous domain failed to
be sampled by the receiving flip-flop, the block in synchronous
domain would not latch the data until it got the request signal
correctly after the receiving flip-flop recovered from the
synchronization failure in following cycles.

Therefore, by designing both the synchronous and
asynchronous circuits using VHDL, the network node is
implemented as a synthesizable IP block which suits the
commonly used synchronous EDA design tools.

IV. SYNTHESIS AND SIMULATION

A. Synthesis Results

The network node has been synthesized using a 0.18um
standard cell technology library. The data depth and data width
of FIFO used in ‘“Tx/Rx Packet Buffer’ is set to 4 and 32 bits
respectively. The area cost (without wire area) for each block of
the network node is listed in Table I. The FIFOs in “Tx/Rx Packet
Buffer’ take around 58% area of the network node.

TABLE I AREA COST OF NETWORK NODE
Blocks of Network Node Area (um?) Percentage of
total area
Node IF (BVCI Slave Type) 13430.8 9.7%
Layer MUX 18346.0 13.3%
Communication Controller 7823.4 5.7 %
Packet Distributor 6783.0 49%
Packet Sender o

(include Tx Packet Buffer) 447406 32.3 %
Packet Receiver 6955.0 5.0 %
Rx Packet Buffer 40255.5 29.1 %
Total 138334.3 100 %

0-7803-9029-6/05/$20.00 ©2005 IEEE

B. Simulation Network Set-up

Fig.2 illustrates the network constructed with the presented
network node for simulation. All the nodes are connected
together in a bidirectional ring topology which consists of one
clockwise ring, marked as ‘Ring 1’, and one anti-clockwise ring,
marked as ‘Ring 2’. The number of data cells (handshake units)
in each packet varies between two and four. The width of each
data cell is 32 bits. In this simulation, three hosts are acting as
masters and the other three as slaves, as denoted by the labels
‘M’ and ‘S’ in the *“Network IF’ blocks. The different hosts work
at different clock frequencies as illustrated in Fig.2. Any master
can send a request to any slave. Request and response packets
travel through the shortest path in the network according to a
simple deterministic hop-by-hop routing mechanism. For
example, requests sent from Host 0 to Host 3 are delivered
through nodes 1 and 2 (‘Ring 1°). The interface standard
modeled in this simulation is the Basic VCI (BVCI).

The data transactions performed in the simulation are listed in
Table 1l. Each data transaction consists of one request packet
from a Master Node to a Slave Node and one corresponding
response packet from the Slave Node to the Master Node.

C. Simulation Results

The simulation is performed in gate level. The data transfer
latency between functional host and network node is measured as
the locally synchronous transfer latency, which depends on the
local clock and the type of interface. The measured values of the

TABLE II. DATA TRANSACTIONS SPECIFICATION
Master Slave Number of Packet Length
Node Node Transactions | Request | Response
Packet Packet
Node 1 1 4 2
Node 0 Node 3 1 3 3
Node 5 3 3,4,3 3,23
Node 1 4 3,4,3,4 | 3,2,3,2
Node 2 Node 3 1
Node 5 1
Node 1 1 4 2
Node 4 Node 3 3 4,3,4 2,3,2
Node 5 1 4

TABLE IlI. SYNCHRONOUS TRANSFER LATENCY
Interface Latency of sending data | Latency of receiving data
Type to ‘Network Node’ from ‘Network Node’

BVCI Master 8 local clock cycles 13 local clock cycles + 2.6 ns
BVCI Slave 4 local clock cycles 9 local clock cycles + 2.6 ns

TABLE IV. ASYNCHRONOUS TRANSFER LATENCY PARAMETERS
Packet Length | PLL (ns) PTL (ns) PBL (ns) PSL (ns)

2 data cells 11.7 9.7 10.7 3.3

3 data cells 15.2 13.1 14.2 33

4 data cells 18.6 16.5 17.6 33

synchronous transfer latency are listed in Table I1l. The constant
value of 2.6 ns in Table Il is caused by the latency of popping
data from ‘Rx Packet Buffer’ in the asynchronous domain, and it
is independent on the local clock rate but belongs to the process
of receiving data from ‘Network Node’.

The latency for globally asynchronous transfers consists of
four parameters: Packet Loading Latency (PLL), Packet Transfer
Latency (PTL), Packet Bypass Latency (PBL), and Packet
Storing Latency (PSL). These latency parameters are measured
in a non-congested situation, which means that the packet
transfer conflicts discussed in Section Il are not included in the
simulation. The concept of the four latency parameters is
illustrated in Fig.3 with an example: ‘Network Node 0’ sends one
packet to ‘Network Node 2’ via ‘Network Node 1’. The black
arrows in Fig.3 represent the packet transfer direction. The
portions of the transfer used to measure the different parameters
of latency are marked by gray arrows in Fig.3 and explained as
below:

1) Packet Load Latency (PLL): It is the time used to load one
‘local packet’ into “Tx Packet Buffer’.

1) Packet Transfer Latency (PTL): This latency refers to the
time used to transfer one data packet from the ‘Packet Sender’ of
a network node to the ‘Packet Receiver’ of an adjacent node
using a four-phase handshake protocol.

II1) Packet Bypass Latency (PBL): After a network node
receives a packet from another node, it will check its destination
address. If it is not targeted to the current node, the ‘bypass
packet’ is transferred into “Tx Packet Buffer’. The time spent on
these operations is called PBL.

1V) Packet Storing Latency (PSL): It is the time it takes to store
one ‘incoming packet’ into ‘Rx Packet Buffer’.

The formula of Asynchronous Transfer Latency (ATL) of one
packet is given in equation (1). It represents the situation in
which the packet traverses several network nodes before
reaching its destination. N refers to the number of intermediate
nodes between the source node and destination node of a packet.
If a packet is transferred between two adjacent network nodes,
then N is 0.

ATL =PLL+PTLx(N +1)+ PBLxN + PSL (1)

The values of asynchronous transfer latency parameters
measured in the 0.18um technology node are listed in Table IV.
The listed latency values only include the logic gate delay of the
circuits, no wire delay is considered. More accurate latency
values could be obtained by adding the wire delay after layout.

0-7803-9029-6/05/$20.00 ©2005 IEEE

Network Node 1

] | |]] |
'PLL PTL ' PBL ' PTL 1PSL

Network Node 0 Network Node 2

Figure 3. Asynchronous Transfer Latency Parameters

In Table 1V, we can see that PLL, PTL, and PBL increase as the
packet length increases. This is because the data cells in a packet
are sent in serial way, so that more data cells need more time for
transferring. The reason that PSL is not affected by the packet
length is that the data cells of ‘incoming packet’ are stored in
parallel in ‘Rx Packet Buffer’.

V. CONCLUSIONS

A network node for Proteo NoC which can support a GALS
communication scheme in on-chip systems was presented. It uses
asynchronous circuits to perform global data transfers between
network nodes, and synchronous circuits to deal with the local
data transfers. Both the asynchronous and synchronous circuits
of this network node were implemented using VHDL to suit the
conventional synchronous design tools. A six-node bidirectional
ring network was constructed and synthesized for simulation at
gate level. Figures for the asynchronous transfer latency between
network nodes are given. The simulation reveals that the latency
of the globally asynchronous transfers of data packets is
independent on the local clock rates at each functional host.

REFERENCES

[1] D. Siguenza-Tortosa and J. Nurmi, “Issues in the Development of a
Practical NoC: the Proteo Concept”, Integration, the VLSI jounal, volume
38, issue 1, 2004.

[2] VSI Alliance. Virtual Component Interface Standard v 2, April 2001
[3] OCP-IP Association. Open Core Protocol Specification, 2001.

[4] 1. Saastamoinen, M. Alho, J. Pirttimaki and J. Nurmi, “Proteo Interconnect
IPs for Networks-on-Chip”, Proceedings of IP Based SoC Design 2002,
Grenoble, France, October , 2002.

[5] M. Alho and J. Nurmi, “Implementation of Interface Router IP for Proteo
Network-on-Chip”, Proceedings of DDECS'03, Poland, April, 2003.

[6] D. M. Chapiro, “Globally-Asynchronous Locally-Synchronous Systems”,
PhD thesis, Stanford University, Oct. 1984

[7] D. Siglienza-Tortosa and J. Nurmi, “Packet Scheduling In Proteo
Network-on-Chip”, Proceedings of IASTED PDCN 2004, Innsbruck,
Austria, February 2004.

[8] D. Siglienza-Tortosa and J. Nurmi, "Packet Scheduling Configuration in
Proteo Network-on-Chip”, Proceedings of IEE CSNDSP,
Newcastle-upon-Tyne, UK, July 2004.

[91 X. Wang, T. Ahonen, and J. Nurmi, “A Synthesizable RTL Design of
Asynchronous FIFO”, Proceedings of 2004 International Symposium on
System-on-Chip, Tampere, Finland, November, 2004.

K. Y. Yun and R. P. Donohue, “Pausible clocking: A first step toward
heterogeneous systems”, Proceedings of International Conf. Computer
Design (ICCD), Austin, USA, Oct. 1996.

[11] J. Muttersbach, T. Villiger, H. Kaeslin, N. Felber, and W. Fichtner,
“Globally-asynchronous locally-synchronous architectures to simplify the
design of on-chip systems”, Proceedings of the 12th Annual IEEE
International ASIC/SOC Conference, Washington, DC, USA, Sep. 1999.

[12] S. Moore, G. Taylor, R. Mullins, and P. Robinson, “Point to point GALS

interconnect”, Proceedings of Eighth International Symposium on

Asynchronous Circuits and Systems, Manchester, UK, April 2002.

[10]

PUBLICATION 3

X. Wang, and J. Nurmi, “An On-Chip CDMA Communication Network”, in Proceedings of the
2005 International Symposium on System-on-Chip, (SOC 2005), pages 155-160, Tampere, Finland,
November 2005.

© 2005 IEEE. Reprinted, with permission, from Proceedings of the 2005 International Symposium
on System-on-Chip.

An On-Chip CDMA Communication Network

Xin Wang, Jari Nurmi
Institute of Digital and Computer Systems, Tampere University of Technology, Tampere, Finland
{xin.wang, jari.nurmi}@tut.fi

Abstract

An on-chip packet-switched communication network
which applies Code-Division Multiple Access (CDMA)
technique has been developed and implemented in
Register-Transfer Level (RTL) using VHDL. In order to
support Globally-Asynchronous Locally-Synchronous
(GALS) communication scheme, the proposed CDMA on-
chip network combines both synchronous and
asynchronous circuits together. In a packet-switched
Network-on-Chip (NoC) which applies point-to-point
connection scheme, the data transfer latency varies
largely if the packets are transferred to different
destinations or to a same destination through different
routes in the network. The proposed CDMA NoC can
make the data transfer latency become a constant value
by multiplexing the data transfers in code domain instead
of in time domain. Therefore, the data transfer latency
can be guaranteed in the proposed CDMA network by
avoiding communication media sharing in time domain.

1. Introduction

As more and more components are integrated into an
on-chip system, the communication issue in the system
becomes complicated. Network-on-Chip is proposed to
solve the on-chip communication issue by separating the
concerns of communication from computation and
constructing an on-chip communication network to
connect the system components together. The NoC
structures which have been proposed can be sorted into
two categories, circuit-switched and packet-switched
network. PROPHID architecture [1] is an example of
circuit-switched network which connects the terminals in
the network by allocating them a set of time or space
slices on the communication links. In packet-switched
category, SPIN [2] and Proteo NoC [3] are the examples.
SPIN network applies fat-tree topology and router blocks
to transfer data packets from source node to destination
node. In Proteo NoC, all functional Intellectual Property
(IP) blocks in a system are connected through network
nodes and hubs. The network topology and connection in
Proteo NoC can be customized and optimized for a
specific application. The circuit-switched network will
face the problem of scalability and parallelism if it is
applied in a future on-chip system which contains

0-7803-9294-9/05/$20.00 ©2005 IEEE

hundreds of functional IP blocks. The packet-switched
network can overcome the shortcomings of circuit-
switched network, however, if it applies point-to-point
connection as in [2] and [3], the packet transfer latency
will be uncertain when data packets are transferred to
different destinations or to a same destination via
different routes in the network.

CDMA as one of spread-spectrum techniques [4] has
been widely used in wireless communication systems
because it has great bandwidth efficiency and multiple
access capabilities. CDMA applies orthogonal codes to
encode the information before transmission in a
communication media, hence, it permits multiple users to
use the communication media parallel in time domain by
separating the different data streams in code domain. The
CDMA NoC proposed in this paper uses the multiple-
access feature of CDMA technique to transfer the data
packets from the source nodes to their destination nodes
directly and in parallel. Namely, the variance of data
transfer latency caused by sharing the communication
media in time domain in a point-to-point connection
network can be eliminated. Therefore, the data transfer
latency in the proposed CDMA NoC can be guaranteed.

In the second section of this paper, the considerations
about applying CDMA technique into an on-chip network
will be discussed. In Section 3, the structure of the
proposed CDMA NoC will be presented. The synthesis
and simulation results of the CDMA NoC will be
addressed in Section 4. Finally, the conclusions are drawn
in Section 5.

2. Applying CDMA Technique in NoC

The principle of CDMA system is to use orthogonal
spreading codes to encode the original data. Then the
encoded data from different data senders are added
together for transmission without messing each other
because of the orthogonality of spreading codes. The
orthogonality means that the normalized auto-correlation
of spreading codes is 1, while the cross-correlation of
spreading codes is 0. Therefore, at the receiving end the
data can be decoded from the received signals by
multiplying the received signals with the corresponding
spreading code. The following paragraphs will discuss the
considerations which have been made for the proposed
CDMA network in this paper.

Data.. 1 ﬁI_D_

Spreading codel

| Suwmnmation of

i -

i H | encoded data

DataNﬁDi L ogo o
Spreading code I

Figure 1. Digital CDMA Encoding Scheme

2.1. Digital Encoding and Decoding Scheme

Several on-chip bus schemes which apply CDMA
technique have been proposed in [5] [6] [7] [8]. Those
schemes are implemented by analog circuits, namely, the
encoded data are represented by the continuous voltage or
capacitance value of the circuits. Therefore, the data
transfers on the analog bus are challenged by the coupling
noise, clock skew, and variations of capacitance and
resistance caused by circuit implementation [8]. In order
to avoid the challenges faced by the analog circuit
implementation, digital circuit implementation is
preferred in the proposed CDMA NoC. The encoding
scheme suitable for digital circuit implementation is
illustrated in Fig.1. The principle, as proposed in [9], is to
transfer the binary equivalent of the summation value of
the encoded data to the receiving end, which is instead of
using the encoded data value to modulate the voltage or
capacitance parameters in the analog CDMA buses. This
encoding scheme can reduce the number of wires for data
transfer. For example, in Fig. 1, if we use one data
transfer wire for each data source, the number of wires for
data transfer will be N, whereas, if the binary summation
value of the data is transferred, we only need log,N wires.

A new decoding scheme suitable for the proposed
CDMA NoC is illustrated in Fig.2. The new decoding
scheme simplifies the decoding scheme presented in [9]
by accumulating the received summation values into two
separated parts, positive part and negative part, according
to the spreading code used for decoding. As illustrated in
Fig.2, the received summation values will be accumulated
into the positive part when the current chip of spreading
code for decoding is 0, otherwise, they will be
accumulated into the negative part. The principle can be
explained as following. If the original data to be encoded
are 1, after the XOR logic in the encoding scheme, they
can only contribute non-zero value to the summation of
encoded data when a chip of spreading code is 0.
Similarly, the O-value original data to be encoded can
only contribute to the summation of encoded data when a
chip of spreading code is 1. Therefore, after accumulating
the summation values according to the bit values of
spreading code, either the positive part or negative part is
larger than the other if the spreading code has orthogonal
and balance property. Hence, the original data can be
decoded by comparing the two accumulation parts.

Positive Part
Sumimation of Accumulator decoded
encoded data W egative Part data
Accumulator
spreading code

Figure 2. Digital CDMA Decoding Scheme
2.2. Spreading Code Selection

As discussed in Section 2.1, the proposed decoding
scheme requires the spreading codes used in the CDMA
NoC should have the orthogonal and balance properties.
The orthogonal property has been explained in the first
paragraph of Section 2. The balance property in this paper
means that the number of bit ‘1’ and bit ‘0’ in a spreading
code should be equal. Many spreading codes have been
proposed for CDMA communication, such as Walsh
code, M-sequence, Gold sequence, and Kasami sequence
etc [10]. However, only Walsh code has both the
orthogonal and balance properties. Therefore, the
proposed CDMA NoC uses Walsh code as the spreading
code in the network. In a L-bit (L>0, L mod 4=0) length
Walsh code set, there are L-1 sequences which have both
orthogonal and balance properties. Hence, the proposed
CDMA NoC can connect L-1 functional hosts at most.

2.3. Spreading Code Protocol

Spreading code protocol is a policy used to decide how
to assign and use the spreading codes in the CDMA
network in order to eliminate or reduce the possible
conflicts during the communication processes. Several
spreading code protocols have been proposed for CDMA
packet radio network [11] [12] and will be shortly
introduced as below.

1) Common Code Protocol (C protocol): All users in
the network use a same spreading code to encode their
data packets to be transferred.

2) Receiver Based Protocol (R protocol): Each user in
the network will be assigned a unique spreading code
which will be used by other users to send data to it.

3) Transmitter Based Protocol (T protocol): The unique
spreading code allocated to each user will be used by the
user itself to transfer data to others.

4) Common-Transmitter-Based Protocol(C-T protocol):
The destination address of a data packet is encoded using
C protocol, whereas, the data portion of a packet is
encoded using T protocol.

5) Receiver-Transmitter-Based Protocol (R-T protocol):
It is same as the C-T protocol except that the destination
address of a data packet is encoded using R protocol.

6) Transmitter-Receiver-Based Protocol (T-R protocol):
Two unique spreading codes will be assigned to each user
in the network, and then a user will generate a new

. -“S.g’mchr Dm{l‘é‘"

Synchronous:.]]
. i " Functional
Functional Totwork Net_lffnrlf Host 2 ;
[I Y 7 CDIMA Node . | spomMHz |
| 1MHz =y Tratismitter PR
T M etwrork P F : 31)
. i j D Arhiter ——— Function .
Functional FSpm—— Net}_aro:rk Hostn
Hostn ':Nocia Minde etivil
.| 200 WMHz |~ -

Figure 3. The Proposed CDMA NoC Structure

spreading code from the assigned two unique codes for
encoding its data packets.

Among these spreading code protocols introduced
above, only T protocol and T-R protocol are collision-free
if the users in the network send data to each other
randomly. Because the T-R protocol has the drawback of
using a large amount of spreading codes and complicated
decoding scheme, T protocol is preferred in the proposed
CDMA NoC. However, if T protocol is applied in the
network, the receiver can not choose the proper spreading
code for decoding because it can not know who is
sending data to it. In order to solve this problem, an
Arbiter-Based T protocol (A-T protocol) is proposed for
the CDMA NoC. In a CDMA network which applies A-T
protocol, each user is allocated with a unique spreading
code for data transfer. When a user wants to send data to
the other user, it will send the destination information of
data to the arbiter before starting data transfer. Then the
arbiter will inform the receiver to prepare the
corresponding spreading code of the sender for data
decoding. After the sender receives the acknowledge
signal from the arbiter, it will start the data transfer by
using its unique spreading code. If there are more than
one user who want to send data to a same receiver, the
arbiter will grant only one sender to send data at a time.
Therefore, transfer conflicts in the proposed CDMA NoC
which uses A-T protocol can be avoided.

3. The Proposed CDMA NoC Structure

The proposed CDMA NoC is a packet-switched
network which consists of ‘Network Node’, ‘CDMA
transmitter’, and ‘Network Arbiter’ blocks as illustrated
in Fig.3. The functional IP blocks (functional hosts) in the
system are connected with the on-chip CDMA network
through individual network node blocks. The CDMA
communications in the network are performed by
‘CDMA Transmitter’ and ‘Network Arbiter’ blocks. VCI
or OCP standard [13] is applied as the interface standard
between a functional host and a network node. As the
different functional hosts may work with different clock
frequencies, coordinating the communications among
different clock domains would be a problem when
integrating all functional hosts into one network.

Packet |dataiout

& Tx Packet .
=i =T I ™ Buffer Sender -
vg - H — :
g |

S|z e
E = | = Fx Packet Packet |dataiin
= | Buffer [™ Receiver[™ :

Metwork Node

Figure 4. Block Diagram of Network Node

Globally-Asynchronous Locally-Synchronous (GALS)
scheme [14] was proposed as a solution for this problem.
The meaning of GALS scheme in the proposed NoC is
that the communications between each functional host
and its network node use local clock frequency, while the
communications between network nodes through the
CDMA network are asynchronous. In order to support
GALS scheme, both synchronous and asynchronous
circuits are used in the proposed design. The three
components of the proposed CDMA NoC will be
presented in Section 3.1 and 3.2 with more details.

3.1. Network Node

The block diagram of ‘Network Node’ is illustrated in
Fig.4 where the arrows represent the flows of data
packets. Because the interface standard, VCI or OCP, and
the functional host both work in synchronous manner, the
‘Node IF’ sub-block applies synchronous design, whereas
the other sub-blocks in ‘Network Node’ use
asynchronous design to implement GALS scheme in the
network. The function of the sub-blocks in ‘Network
Node’ will be described in the following paragraphs.

1) ‘Node IF’. This sub-block is the interface block
which applies the same interface standard, VCI or OCP
standard, as the ‘Network IF’ interface block of
functional host. ‘Node IF’ sub-block is used to assemble
the data from functional host into packet format and send
the packet to ‘Tx Packet Buffer’, or deassemble the
received packet from ‘Rx Packet Buffer’ and send the
extracted data to the functional host.

2) ‘Tx/Rx Packet Buffer’: These two sub-blocks are
buffers which consist of the asynchronous FIFO proposed
in [15]. ‘“Tx Packet Buffer’ is used to store the data
packets from ‘Node IF’ sub-block, and then deliver the
packets to ‘Packet Sender’ sub-block, while the ‘Rx
Packet Buffer’ delivers the packets from ‘Packet
Receiver’ to ‘Node IF’.

3) ‘Packet Sender’: If ‘Tx Packet Buffer’ is not empty,
‘Packet Sender’ will fetch the data packet from the buffer
by asynchronous handshake protocol. Then it will extract
the destination information from the received packet and
send the destination address to ‘Network Arbiter’. After
‘Packet Sender’ gets the grant signal from arbiter, it will

start to send data packet to ‘CDMA Transmitter’.

4) ‘Packet Receiver’. After system reset, this sub-
block will wait the sender information from ‘Network
Arbiter’ to select the spreading code for decoding. After
the spreading code for decoding is set, the receiver will
start to receive and decode the data from ‘CDMA
Transmitter’, and then send the decoded data to ‘Rx
Packet Buffer’ in packet format.

Because the ‘Network Node’ block in the CDMA
network need not handle any bypass packets, the
‘Network Node’ block presented in this paper has less
complexity by comparing with the ‘Network Node’ block
presented in [16] for a point-to-point connection network.
This is another benefit of applying CDMA technique into
an on-chip network.

3.2. CDMA Transmitter and Network Arbiter

The ‘CDMA Transmitter’ block takes care of
receiving data packets from network nodes and encoding
the data to be transferred with the corresponding unique
spreading code of the sender node. Although this block is
implemented by asynchronous circuits, it applies
synchronous CDMA transfer scheme which means that
the data from different nodes will be encoded and
transmitted synchronously. The synchronous CDMA
scheme can avoid the interferences caused by the phase
offsets among the orthogonal spreading codes if the data
from different nodes are encoded and transmitted
asynchronously with each other. The data encoding and
transfer processes for different network nodes are
performed in parallel and independently in ‘CDMA
Transmitter’. However, because the nodes in the proposed
CDMA network can request data transfer randomly,
‘CDMA Transmitter’ applies ‘first come, first served’
mechanism to ensure the data encoding and transfer are
performed in synchronous manner. For example, if
network node ‘A’ and ‘B’ assert data transfer requests to
‘CDMA Transmitter’ simultaneously and node ‘C’ asserts
the request later than ‘A’ and ‘B’, the transmitter will
encode and transfer the data from node ‘A’ and ‘B’ at the
same time, and then will start to do the encoding and
transferring for node ‘C’ after the data transfer for ‘A’
and ‘B’ are completed. The synchronization of encoding
and transferring in ‘CDMA Transmitter’ are controlled by
the four-phase handshake control signals in the
asynchronous circuits.

‘Network Arbiter’ block is the core component to
implement the A-T spreading code protocol proposed in
Section 2.3. Every sender node can not send data packet
to ‘CDMA Transmitter’ until it gets the grant signal from
‘Network Arbiter’. Namely, ‘Network Arbiter’ takes
charge of setting up data transfer channel between sender
node and receiver node. In case that there are more than
one sender node requesting to send data to the same
receiver node, the arbiter will also apply ‘first come, first

served’ principle to guarantee that there is only one
sender sending data to one specific receiver at a time.
The reason of this limitation is that the ‘Packet Receiver’
of ‘Network Node’ block can receive and decode data
from only one sender at a time. However, if different
sender nodes request to send data to different receiver
nodes, these requests will be handled independently and
in parallel. Therefore, the arbitration scheme applied in
‘Network Arbiter’ is distributed arbitration other than the
centralized arbitration applied in the conventional bus.

4. Synthesis and Simulation

In order to support GALS scheme in the proposed
CDMA NoC, only ‘Node IF’ sub-block in network node
uses synchronous circuits, the other components use
asynchronous circuits. Both the synchronous and
asynchronous designs in the proposed CDMA NoC are
implemented in RTL using VHDL in order to suit the
conventional synchronous design tools and flow. The
method of designing asynchronous circuits in RTL using
VHDL was presented in [15]. The basic principle is to
construct the asynchronous circuits with C-element,
latches, and combinational logic gates, and then describe
the RTL structure using VHDL.

4.1. Synthesis Results

The components of the proposed CDMA NoC have
been synthesized using a 0.18um standard cell library.
The data width and buffer depth in ‘Network Node’ are
set to 32 bits and 4 respectively. The area costs (without
wire area) of components of the CDMA NoC are listed in
Table 1. From Table 1 we can see that the “Tx/Rx Packet
Buffer’ takes a large portion in the total design costs.
Therefore, it needs to compromise between buffering
ability and area cost.

4.2. Simulation Network Setup

A network which applies the proposed CDMA NoC
structure is built for simulation purpose. The simulation
network illustrated in Fig.5 contains six network nodes.
Six functional hosts work in different clock domains as
presented in Fig.5. Three hosts act as masters and the
other three act as slaves, as denoted by the labels ‘M’ and

Table 1. Area Cost of CDMA NoC Components

Block Name Area (um?)
Node IF 18825.2
Network Tx/Rx Packet Buffer 71778.3
Node Packet Sender 17707.0
Packet Receiver 23253.0
CDMA Transmitter 10338.3
Network Arbiter 17686.5

Table 2. Data Transaction Specification

Host 0 (100MIHz) Host 1 (10LIHZ) Host 2 (500MHzZ)
Master Slave Number of Packet Length
Hetwork IF (WD Hetwork IF (3 Hetwork IF (ID) Node Node Transactions | Request | Response
E E Packet Packet
| Metwork Hode O | ‘ Hetwork Hode 1 | | Hetwork Mode 2 | Node 1 2 4,3 2,3
3 Node 0 Node 3 2 3,4 3,2
Node 5 3 3,4,3 3,2,3
CDMA Channel
Node 1 4 3,4,3,4 3,2,3,2
¢ # Node 2 Node 3 1 3 3
| Wetwork Node 5 | || M etwork I ode 4 ‘ ‘ Wetwork Node 3 ‘ Node 5 2 4,3 2,3
¥ 3 3 Node 1 2 3,4 3,2
Hetwork IF (30 Hetwork IF (IWD) Hetwork IF (3) Node 4 Node 3 3 4,3,4 2,3,2
Host 5 (50 MHz) Host 4 (1MHz) Host 3 (2500Hz) Node 5 1 4 2

Figure S. Six-Node CDMA On-Chip Network

‘S’ in the ‘Network IF’ blocks. The network nodes are
connected to each other through a ‘CDMA Channel’
composed by ‘CDMA Transmitter’ and ‘Network
Arbiter’ blocks. The spreading codes used in the network
are six 8-bit Walsh codes. The interface standard applied
in the network is Basic VCI (BVCI) [13] standard. The
basic data transfer unit in the simulation network is a data
packet composed of data cells. The number of data cells
in a packet varies from two to four, while the width of
each data cell is fixed at 32 bits. The data transactions
performed in the simulation are listed in Table 2. Each
data transaction consists of one request packet from a
master host to a slave host and one corresponding
response packet from the slave host to the master host.

4.3. Simulation Results

The simulation was performed in gate-level. Because
GALS scheme is applied in the network, the data transfer
latency in the simulation network is separated into two
parts, Synchronous Transfer Latency (STL) and
Asynchronous Transfer Latency (ATL). The STL refers
to the data transfer latency between a functional host and
the network node attached to it. STL depends on the local
clock and the type of interface. The measured values of
STL are listed in Table 3. The constant values in Table 3
are caused by the handshakes in the asynchronous
domain, and they are independent on the local clock rate
but belong to the synchronous transfer processes.

The ATL refers to the data transfer latency of
transferring data packets from one network node to the
other node through the CDMA channel by asynchronous
circuits. The ATL consists of three parameters: Packet
Loading Latency (PLL), Packet Transfer Latency (PTL),
and Packet Storing Latency (PSL). The concept of those
ATL parameters is illustrated in Fig.6 with an example
where ‘Network Node 0’ sends one data packet to
‘Network Node 1°. The black arrows in Fig.6 represent
the packet transfer direction. The portions of the transfer
used to measure the different parameters of latency are
marked by grey arrows in Fig.6 and explained as below:

Table 3. Synchronous Transfer Latency

Interface Latency of sending data to | Latency of receiving data
Type ‘Network Node’ from ‘Network Node’

BVCI Master| 8 local clock cycles +2.5 ns | 8 local clock cycles + 3.2 ns

BVCI Slave

4 local clock cycles +2.5ns | 4 local clock cycles + 3.1 ns

Table 4. Asynchronous Transfer Latency Parameters

Packet Length PLL (ns) PTL (ns) PSL (ns)
2 data cells 5.7 384.6 5.5
3 data cells 5.7 768.9 5.5
4 data cells 5.7 1153.7 55

1) Packet Load Latency (PLL): This is the time used by
‘Packet Sender’ sub-block in network node to fetch one
data packet from ‘Tx Packet Buffer’ and prepare to send
the data packet to ‘CDMA Transmitter’.

2) Packet Transfer Latency (PTL): This latency refers to
the time used to transfer one data packet from the ‘Packet
Sender’ of sending node to the ‘Packet Receiver’ of
receiving node through the CDMA channel using a four-
phase handshake protocol.

3) Packet Storing Latency (PSL): After the receiving
node receives a data packet, it will spend a certain time to
store the received data packet into ‘Rx Packet Buffer’.
This time duration is measured as PSL.

The measured values of ATL parameters are listed in
Table 4. The listed latency values only include the logic
gate delay of the circuits, no wire delay is considered.
More accurate latency values could be obtained by adding
the wire delay after layout. In Table 4, we can see that
PTL increases as the packet length increases. This is
because the data cells in a packet are sent in a serial
manner between ‘CDMA Transmitter’ and ‘Packet
Receiver’, so that more data cells need more transmission
time. The reason that PLL and PSL are not affected by the
packet length is that the data cells in a packet are loaded
or stored in a parallel manner. By comparing with point-
to-point connection on-chip network presented in [16],
the ATL value in the CDMA network is larger although it
is a constant value. For example, according to values in
Table 4, if a 2-data-cell packet is transferred in the

Network Node 0

\PLL} PTL ,PSL}
1 ;:

ATL

Network Node 1

Figure 6. Asynchronous Transfer Latency Parameters

proposed CDMA network, the ATL will equal to the ATL
of transfer a same size packet through 19 intermediate
nodes in the network presented in [16]. The reason of the
large ATL value in the CDMA network is that each bit of
the data to be transferred is spreaded into L bits, where L
is the length of the spreading code, then the encoded data
are transferred serially. However, the data bits are
transferred directly in the point-to-point network in
parallel. Therefore, the ATL value of CDMA network can
be reduced by transferring the encoded bits in parallel.

5. Conclusions

An on-chip communication network which applies
CDMA technique and supports GALS communication
scheme was presented. The proposed CDMA network
uses asynchronous circuits to perform the global data
transfers between network nodes, and synchronous
circuits to deal with the local data transfers between a
functional host and the network node attached to it. Both
the asynchronous and synchronous circuits of the
proposed network are implemented in RTL using VHDL
to suit the synchronous design tools naturally. A six-node
CDMA network was constructed and synthesized for
simulation purpose. The simulation reveals that the data
can be correctly transferred in parallel in time domain by
using CDMA technique in an on-chip communication
network implemented totally by digital circuits. By
comparing with a point-to-point connection network
which shares the communication media in time domain,
the proposed CDMA NoC has a constant data transfer
latency value by sharing the communication media in
code domain.

References

[17J. A. J. Leijten, J. L. van Meerbergen, A. H. Timmer, and J.
A. G. Jess; “PROPHID: A Data-Driven Multi-Processor
Architecture for High- Performance DSP”; Proceedings of the
1997 European Design & Test Conference, Mar. 1997.

[2] P. Guerrier, and A. Greiner; “A Generic Architecture for On-
Chip Packet-Switched Interconnections”; Proceedings of the
Design, Automation and Test in Europe Conference 2000, Mar.
2000.

[3] D. Sigiienza-Tortosa, T. Ahonen, and J. Nurmi; “Issues in
the Development of a Practical NoC: the Proteo Concept”;
Integration, the VLSI jounal, Volume 38, Issue 1; 2004.

[4] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt;
“Spread Spectrum Communicalions”; MD: Computer Science, 3
vols. Rockville, 1984.

[5] R. Yoshimura, T. B. Keat, T. Ogawa, S. Hatanaka, T.
Matsuoka, and K. Taniguchi; “DS-CDMA wired bus with
simple interconnection topology for parallel processing system
LSIs”; Digest of Technical Papers of IEEE International Solid-
State Circuits Conference, 2000; Feb. 2000.

[6] T. B. Keat, R. Yoshimura, T. Matsuoka, and K. Taniguchi;
“A novel dynamically programmable arithmetic array using
code division multiple access bus”; Proceedings of the 8th IEEE
International Conference on Electronics, Circuits and Systems,
2001, Volume 2; Sept. 2001.

[7] S. Shimizu, T. Matsuoka, and K. Taniguchi; “Parallel bus
systems using code-division multiple access technique”;
Proceedings of the 2003 International Symposium on Circuits
and Systems, 2003, Volume 2; May 2003.

[8] M. Takahashi, T. B. Keat, H. Iwamura, T. Matsuoka, and K.
Taniguchi; “A study of robustness and coupling-noise immunity
on simultaneous data transfer CDMA bus interface”;
Proceedings of IEEE International Symposium on Circuits and
Systems, 2002, Volume 4; May 2002.

[91 R. H. Bell, Jr, K. Y. Chang, L. John, and E. E.
Swartzlander, Jr.; “CDMA as a multiprocessor interconnect
strategy”; Conference Record of the Thirty-Fifth Asilomar
Conference on Signals, Systems and Computers, 2001, Volume
2; Nov. 2001.

[10] E. H. Dinan, and B. Jabbari; “Spreading codes for direct
sequence CDMA and wideband CDMA cellular networks”;
IEEE Communications Magazine, Volume 36, Issue 9; Sep.
1998.

[11] E. S. Sousa, and J. A. Silvester; “Spreading code protocols
for distributed spread-spectrum packet radio networks”; /IEEE
Transactions on Communications, Volume 36, Issue 3; Mar.
1988.

[12] D. D. Lin, and T. J. Lim; “Subspace-based active user
identification for a collision-free slotted ad hoc network”; IEEE
Transactions on Communications, Volume 52, Issue 4; Apr.
2004.

[13] VSI Alliance; Virtual Component Interface Standard v 2,
April 2001. OCP-IP Association; Open Core Protocol
Specification; 2001.

[14] D. M. Chapiro; “Globally-Asynchronous Locally-Synchro-
nous Systems”;PhD thesis, Stanford University; Oct. 1984.

[15] X. Wang, T. Ahonen, and J. Nurmi; “A Synthesizable RTL
Design of Asynchronous FIFO”; Proceedings of 2004
International Symposium on System-on-Chip; Finland, Nov.
2004.

[16] X. Wang, D. Sigilienza-Tortosa, T. Ahonen, and J. Nurmi;
“Asynchronous Network Node Design for Network-on-Chip”;
Proceedings of 2005 International Symposium on Signal,
Circuits, and System; Romania, Jul. 2005.

PUBLICATION 4

X. Wang, T. Ahonen, and J. Nurmi, “Prototyping A Globally Asynchronous Locally Synchronous
Network-on-Chip On A Conventional FPGA Device Using Synchronous Design Tools”, in
Proceedings of the 2006 International Conference on Field Programmable Logic and Applications,
(FPL 2006), pages 657-662, Madrid, Spain, August 2006.

© 2006 IEEE. Reprinted, with permission, from Proceedings of the 2006 International Conference
on Field Programmable Logic and Applications.

PROTOTYPING A GLOBALLY ASYNCHRONOUS LOCALLY SYNCHRONOUS NETWORK-ON-CHIP ON A
CONVENTIONAL FPGA DEVICE USING SYNCHRONOUS DESIGN TOOLS

Xin Wang, Tapani Ahonen, Jari Nurmi

Institute of Digital and Computer Systems
Tampere University of Technology
Korkeakoulunkatu 1, Tampere, Finland
email: {xin.wang, tapani.ahonen, jari.nurmi}@tut.fi

ABSTRACT

An FPGA prototype of a four-node globally-asynchronous
locally-synchronous network-on-chip is described. The
network for global communication operates asynchronously
at the link level and synchronously within a node. Two C-
element control pipelines constitute the control logic for the
asynchronous part. C-element and asynchronous arbiter
realizations on FPGA using standard synchronous design
tools are presented.

1. INTRODUCTION

As the complexity of System-on-Chip (SoC) is increasing,
the communications among the large number of
components in a SoC become more and more complicated.
Network-on-Chip (NoC) has been proposed to separate the
concern of communications with the concern of
computations in a SoC, namely, NoC only handle the
communications in an on-chip system. In a complex SoC, it
is very common that different functional components work
with different clock frequencies. Therefore, a NoC scheme
should have the ability to handle the multiple-clock-domain
communication problem. Globally-Asynchronous Locally-
Synchronous (GALS) scheme [1] has been proposed as a
solution of this problem, and many NoC architectures [2-4]
based on GALS scheme have been presented. However,
only ASIC implementations of those proposed GALS NoC
have been reported. As the cost of ASIC implementation is
getting higher, FPGA prototyping supplies a fast and cheap
way of verifying a NoC design.

The FPGA devices available on the market have been
oriented only for prototyping synchronous circuits. This
type of FPGA device will be referred as conventional
FPGA in this paper. Hence, a main challenge of prototyping
a GALS NoC design on a conventional FPGA is how to
prototype asynchronous circuits. There are two approaches
to conquer this challenge. The first approach is to develop a
specific FPGA structure for prototyping asynchronous
circuits. Some specific FPGA structures [5-7] for
asynchronous circuits have been presented. However, those

1-4244-0 312-X/06/$20.00 ©2006 IEEE.

asynchronous FPGA structures exclude synchronous
circuits out of the considerations, and they are not available
on the market. Therefore, we come to the second approach
which is prototyping asynchronous circuits on a
conventional FPGA. Few presented works [8-10] belong to
this approach. In [8], a GALS system which applies
stoppable clock and port-controller to connect different
clock domains is presented, hence, it concerns more about
prototyping particular asynchronous components rather
than asynchronous NoC. The works in [9, 10] presented a
methodology of prototyping a GALS SoC on a
conventional FPGA device. However, the presented
methodology involves a special synthesis tool for
asynchronous circuits and a netlist-format component
library in the design flow. Therefore, in order to suit the
synchronous design tools and flow of conventional FPGA
more smoothly, both the synchronous and asynchronous
circuits in the proposed GALS NoC have been designed
using VHDL. A C-element structure and an asynchronous
arbiter which suit for asynchronous circuits’ prototyping are
presented. The prototyping work in this paper presents a
way of prototyping a synchronous-asynchronous mixed
design onto a conventional FPGA by the commonly used
synchronous design tools and flow.

The paper is organized as follows. Section 2 presents
the GALS NoC structure to be prototyped in this work. The
asynchronous design in a network node and the control
logics for the asynchronous circuits are addressed in
Section 3. In Section 4, the C-clement structure and the
arbiter for prototyping the NoC and the prototyping method
are presented. The conclusion is drawn in Section 5.

2. THE GALS NOC

The prototyped GALS NoC is an asynchronous version of
the Proteo NoC presented in [11]. Proteo NoC [3] is a
packet-switched ~ on-chip ~ communication network
developed for performing the complex communication
tasks in a SoC. In Proteo NoC, each functional Intellectual
Property (IP) block (Functional Host) is connected to the
on-chip network through a corresponding network node.
Then the network is built by connecting the network nodes

Network Node ! | Communication Layer 2
E Communication Layer 1
B ' Local Packet
2| : B Packet Packet
T | 2 : Communication ypass ac et= Distributor
ERIRE Node| | Layer .+ | Controller l
s Z% F ®vux ST
5 g . Rx Packet Buffer Packet Sender
= < : Packet (Tx Packet Buffer)
= s b e || < Receiver
75 s A
. 4 I
: ! v
Synchronous ; Asynchronous Packet In Packet Out

Fig. 1. Network Node Block Diagram

together with any topologies which suit the application
requirements. A Proteo network node [11] which can
support GALS scheme is illustrated in Fig.1. The network
node consists of ‘Node IF’, ‘Layer MUX’, and
‘Communication Layer’ blocks. The two blocks outside of
the network node illustrate how a ‘Functional Host” block is
connected with a network node through a standard network
interface (‘Standard Network IF”) block. In Proteo NoC, the
applied interface standards include VCI [12] and OCP [13].
As illustrated in Fig.1, GALS scheme in the on-chip
network is supported by applying both synchronous and
asynchronous designs in each network node. The
synchronous blocks, ‘Node IF’ and ‘Layer MUX’, are used
to communicate with locally synchronous ‘Functional Host’
in the system, while the asynchronous blocks are used to
perform asynchronous communications among the network
nodes. The bold arrows in Fig.l demonstrate the data
packet flow in a network node. The functions of each block
in a network node are shortly presented in the following
three paragraphs.

1) ‘Node IF". This block is responsible for assembling
the data from ‘Functional Host’ into data packets or
transferring the data packets from network node to
‘Functional Host’ block according to the interface standard
applied in ‘Standard Network IF’ block.

2) ‘Layer MUX'. As the name of this block indicated,
this block behaves as a multiplexer used to connect ‘Node
IF’ block with a certain ‘Communication Layer’ block
during the data transfers between network node and
‘Functional Host’ block.

3) ‘Communication Layer’. The function of this block is
to perform the globally asynchronous communication with
other network nodes through a handshake protocol. As
illustrated in Fig.1, there can be more than one
‘Communication Layer’ block in a network node. With
multiple ‘Communication Layer’ blocks, a network node
can connect with multiple other network nodes in Proteo
NoC. There are four sub-blocks in the ‘Communication
Layer’ block. The ‘Packet Receiver’ sub-block is used to

receive data packets from another network node. If the
destination of the received packet is the current network
node, the packet is called ‘incoming packet’, and it will be
stored in ‘Rx Packet Buffer’. Otherwise, the received
packet is called ‘bypass packet’, and it will be dispatched
into ‘Packet Distributor/Sender’ for further transferring.
The ‘Communication Controller’ sub-block in Fig.1
represents the controller which takes charge of the
necessary arbitrations and communication controls.

A four-node bidirectional ring network which consists
of the network node illustrated in Fig.1 is used for the
prototyping work in this paper. In the four-node network,
two nodes are BVCI slave [12] type and two nodes are
BVCI master [12] type. No any ‘Functional Host” blocks
are included in the prototyping work. Therefore, only a
GALS communication network, not a GALS system, is
considered in this work.

3. ASYNCHRONOUS NETWORK NODE DESIGN

The presented GALS on-chip network in Section 2 is built
by connecting the multiple network nodes illustrated in
Fig.1 together. Therefore, the major challenge of the GALS
NoC design is the asynchronous design in each network
node. The control logic structures and data path used in the
asynchronous blocks of a network node will be addressed in
this section.

The asynchronous design in the network node illustrated
in Fig.1 can be divided into two parts which are data path
and control logic part. The data path represented by the
black arrows in Fig.1 applies four-phase dual-rail protocol
in order to transfer data in a delay-insensitive manner. The
control logics used in a network node include the Finite
State Machine (FSM) in the ‘Communication Controller’
block and the block controls in ‘Packet Receiver’, ‘Packet
Distributor’, and ‘Packet Sender’ blocks illustrated in Fig.1.
The FSM in the ‘Communication Controller’ block takes
care of the processes of receiving, sending or storing data
packets in a network node by triggering the block control

req _in
Cl dela;
..
aickfout '!] F.. Cdelay) TM

M dalav |
delay)
‘ {_delay | ack _in
Fig.2 (a) -
req_from_stage(req| td_stage2

stagel enable stage2 enable| A3 req_to_stage3

stagel leave

stage2 leave

ack_from_stage3

ack from_stage2

Stage 1 Stage 2
Fig.2 (b)

—. req/ack
enable from stageQ l—o
Cl1 ", enable:to_stage2
ack/req “l_/ ack/req C2 120_SHag
=gn)
—< —)

ctr_ fb_to_stage0 ‘ ctr fb_from |stage?

Stage 1
Fig.2 (¢)

Fig.2. Four-phase C-element Control Pipelines

logics in the corresponding function blocks with a four-
phase handshake protocol. The block control logics take
charge of moving the data packets in or out of the
individual blocks through four-phase dual-rail protocol. For
example, the control logic in ‘Packet Sender’ is used to
control the process of storing the incoming packets into the
“Tx Buffer’ or sending out the packets to the other network
node via dual-rail protocol. In order to ensure the control
logics operate correctly, the delay-insensitive (DI) or quasi-
delay-independent (QDI) model is preferred for the control
logic structure. A delay-insensitive control logic for
micropipeline has been presented in [14] and illustrated in
Fig.2(a). The principle of micropipeline control logic is to
use the output from the next stage to enable or disable the
output of current stage. Two C-element control pipelines
based on the micropipeline control logic are designed as the
control logics in the network node.

Two stages of the C-element control pipeline used in
‘Communication Controller’ block to build the FSM are
illustrated in Fig.2(b). Each stage of the pipeline represents
a state element of the FSM. In Fig.2(b), we can see that the
FSM uses micropipeline control logic as the backbone and
applies few AND gates as the delay components illustrated
in Fig.2(a), hence, it is delay-insensitive. The state
information of the FSM is passed through each stage in the
pipeline by a four-phase handshake protocol. If we take the
‘Stage 1’ illustrated in Fig.2(b) as an example, when both
the ‘req from stage0’ and ‘stagl enable’ signals are ‘1’,
the output of ‘C1’ will be set to logic ‘1’ which indicates
that the current state of the FSM is in the ‘Stage 1°. Then
the output of ‘C1’ can be used as a request signal to trigger
the control logics in the corresponding function blocks for a
certain communication process.

The C-element control pipeline structure illustrated in
Fig.2(c) is used in the ‘Packet Receiver’, ‘Packet
Distributor’, and ‘Packet Sender’ blocks as the block
control logic to generate four-phase request or acknowledge
signals for data transfers. Each stage of the control pipeline
is composed by two C-elements as illustrated in Fig.2(c).
The ‘C1’ is used to record the rising edge of a request or
acknowledge signal, while the ‘C2’ is used to record the
falling edge of a request or acknowledge signal. Therefore,
each stage of the block control pipeline will pass the enable
signal to the next stage only after the four-phase handshake
process on the current stage has done. Although the
presented block control pipeline structure can only meet
QDI model because the input ‘ack/req’ signal is branched to
‘A1’ and ‘A3, the timing requirement for distributing the
‘ack/req’ input signal along the isochronic wire forks is
quite loose since the logic delays in ‘A1’ and ‘C1’ are
usually much larger than the logic delay of the inverter at
the input of ‘A3’.

Besides the control logics, asynchronous arbiters are
also needed in the network node to allocate the shared
resource to only one user at a time. For example,
‘Communication Controller’ block needs an arbiter to
decide that either the ‘local packet’ or ‘bypass packet’ will
be transferred by the ‘Packet Sender’ first if they come to
the ‘Packet Distributor’ simultaneously. The arbiter
structure used in this work will be discussed with more
details in Section 4.2.

Another issue about the asynchronous design of the
network node is how to transfer the signals from
asynchronous domain to synchronous domain safely. In this
design, a normal double-latching scheme [15] is applied to
sample the signals from asynchronous domain by the
‘Layer Switch’ block illustrated in Fig.1.

Finally, by applying the presented pipeline control
logics, arbiters, and other data path logics, the
asynchronous design in the network node has been done
and combined with the synchronous design through the
double-latching scheme. Thus, the presented four-node
GALS NoC design is ready for the prototyping work.

4. PROTOTYPING THE GALS NOC ON A
CONVENTIONAL FPGA

Look-Up-Table (LUT) based FPGA device has been widely
used for prototyping synchronous designs because of its
flexible and reprogrammable features. However, if a LUT
based conventional FPGA device is used to prototype
asynchronous circuits, several limitations which have been
addressed in [5, 16] are summarized as follows.

1) LUT cannot guarantee hazard-free because the
routing delays and input change patterns are unpredictable.

2) The timing requirements of asynchronous circuits are
difficult to guarantee in a conventional FPGA.

3) The commonly used arbitration structures in

lll | C

UJL:D

a
w f>

Sys_rst

Fig.3(a) Fig.3(b)

Fig.3. C-element Structure for FPGA

asynchronous circuits are usually designed in transistor
level. Therefore, they are not supported by LUT based
FPGA.

As discussed in Section 1, the LUT based conventional
FPGA is the only choice for prototyping the presented

GALS NoC although some limitations have been addressed.

In order to circumvent the addressed limitations, the C-
element and arbiter structures which suit for this purpose
will be presented in Section 4.1 and Section 4.2. The
method of prototyping the presented four-node GALS NoC
will be addressed in Section 4.3.

4.1. A C-element Structure for FPGAs

The Reed-Miiller C-element is a basic component for
asynchronous circuits, which is normally implemented in
transistor level. In order to map asynchronous circuits on a
conventional FPGA, an equivalent two-input C-element

structure illustrated in Fig.3(a) has been presented in [9, 10].

It has been proved to be logic hazard-free under the single-
bit input change assumption and certain two-input change
patterns. However, it needs a netlist-format description as a
component library in the design flow to ensure the feedback
path illustrated in Fig.3(a) is mapped on a LUT correctly. In
order to avoid the explicit feedback path, another two-input
C-element structure is proposed and illustrated in Fig.3(b).
The C-element illustrated in Fig.3(b) bases on a D-latch
which uses ‘A AND B’ as the enable (‘EN’) signal and ‘A
OR B’ as the reset signal (‘CLR’). The data input port (‘D’)
of the D-latch is attached to logic ‘1’ constantly. Because
the explicit feedback path is avoided in the D-latch-based
C-element structure, the special netlist format component
library in the design flow can be removed. Therefore, the C-
element structure illustrated in Fig.3(b) suits the design
flow of conventional FPGA better. The idea of using latch
to map a C-element in LUT has already been presented in
[9] where a RS-latch is suggested. Whereas, the C-element
structure based on D-latch in Fig.3(b) is more safe than the
suggested RS-latch structure because there is no data
switching at the data input port ‘D’.

In Fig.3(b), we can see that the C-element structure is
hazard-free under one-input change assumption by applying
the ‘AND’ gate and ‘OR’ gate at the ‘EN’ port and ‘CLR’
port respectively. For certain two-input switch patterns,

s ’
. CLR .
valid_1r2 valid_r2
Stage 1 Stage 2 Stage 3

Fig4 (a)

D1 _Q

The 'delay' component between
'D1'and 'C4' in Stage3
Fig.4 (c)

-5

The 'delay’ component between
'Cl'and 'D1' in Stage2
Fig4 (b)

Fig. 4. Asynchronous Arbiter Structure

00— 11 and 11—00, the structure in Fig.3(b) is also hazard-
free. Whereas, the input switch patterns, 01—10 and
10—01, are not allowed because they may produce a logic
error which depends on the wire delay. Because all the C-
elements in the GALS NoC design are used to follow a
request or acknowledge signal of four-phase handshake
protocol, as the control logics illustrated in Fig.2, there are
no 01—10 or 10—01 input switch patterns for the C-
elements in the design. Thus, the proposed C-element
structure is safely to be used in this prototyping work.

4.2. An Asynchronous Arbiter Realization on FPGA

Asynchronous arbiter is a component used to allocate a
shared resource among multiple users to only one user at a
time. For ASIC implementation, cross-coupled NAND
gates are used as the simplest arbiter structure. For
implementing arbiter on a conventional FPGA, the built-in
Flip-Flop is suggested to use in order to minimize the
metastability effects [17]. An asynchronous arbiter structure
which uses the built-in Flip-Flop of conventional FPGA has
been presented in [17]. It uses a clock signal which comes
from the outside of the arbiter block to drive the built-in
Flip-Flop. Hence, it needs an extra clock generation circuit
presented in [17].

In order to take advantage of the simplicity of the cross-
coupled NAND gates arbiter structure and avoid using extra
clock generation circuit, a two-input fixed-priority arbiter
structure is designed and illustrated in Fig.4(a). It applies a
revised cross-coupled NAND gates structure and the built-
in Flip-Flop of a conventional FPGA. The arbiter illustrated
in Fig.4(a) can be divided into three stages.

The first stage consists of two cross-coupled AND gates,
‘A1’ and ‘A2’, with inverted inputs. The ‘A0’ gate is used
to disable the input ‘r2’ when a conflict between ‘rl’ and
‘r2’ is detected at the output of C-element ‘C3°. When the
combinational logics of ‘Stagel’ illustrated in Fig.4(a) are

modeled using VHDL and synthesized by a tool for the
conventional FPGA, they will be implemented by LUTs
instead of the AND gates. Therefore, the feedback delays in
the LUTs for ‘Stagel’ are much larger than the ASIC
implementation which uses standard cells. Hence, when
two input requests ‘rl’ and ‘r2’ appear simultaneously or
very close to each other, the LUT implementation of
‘Stagel’ will enter into an oscillation state instead of the
metastability state as the ASIC implementation. In this
situation, the second stage of the arbiter is used to filter out
the possible oscillation outputs from ‘Stagel’.

The ‘Stage2’ illustrated in Fig.4(a) bases on two built-in
D Flip-Flop (D-FF) registers of a conventional FPGA. The
C-elements, ‘C1’ and ‘C2’, are used to convert the
oscillation outputs from ‘Stagel’ into a single 0—1 signal
transition which is used as the clock signal to trigger the
registers ‘D1’ and ‘D2’ respectively. The ‘A3’ and ‘A4’
gates are used to generate reset signals for ‘D1’ and ‘D2’.
After passing through ‘Stage2’ of the arbiter, the oscillation
outputs from ‘Stagel’ may trigger the outputs of both ‘D1’
and ‘D2’ into logic ‘1°. In this case, the ‘C3’ will detect this
confliction and disable the ‘r2’ request by the feedback path
from the output of ‘C3’ to the input of ‘A0’. The ‘delay’
components in ‘Stage2’ as illustrated in Fig.4(a) are used to
ensure that the rising edge from the outputs of ‘C1° and
‘C2’ will arrive after the ‘CLR’ signals from ‘A3’ and ‘A4’.
An exemplar structure of the ‘delay’ components is
presented in Fig.4(b) where the number of C-element
depends on the timing character of the built-in D-FF.

The actual arbitration process is taken place in the
‘Stage 3° where another two built-in D-FF registers are
used. When a request conflict is detected at the outputs of
‘D1’ and ‘D2’, the ‘XOR’ logic in ‘Stage3’ will close the
arbiter output by disabling ‘C4’ and ‘C5’. The arbitration
outputs will be enabled only after the output of ‘D2’ is
cleared by the feedback from ‘C3’. Therefore, request ‘r1’
has a higher priority in the presented arbiter. The ‘delay’
components in ‘Stage3’ are used to filter out the possible
glitch from ‘XOR’ when the output signals of ‘D1’ and
‘D2’ did not reach the inputs of the ‘XOR’ gate
simultaneously in a request-conflict situation. One
exemplar structure of the ‘delay’ components is illustrated
in Fig.4(c).

Although the presented arbiter works under QDI model
since the isochronic wire forks for distributing ‘rl’ and
‘valid 12’ signals are needed, the timing requirement for
those isochronic forks is loosened a lot by the logic delays
and ‘delay’ components in the design. In the presented
arbiter, the data input ports ‘D’ of the built-in D-FF
registers are attached to logic ‘1’ constantly in order to
enhance the operation stability of the D-FF register. The
presented asynchronous arbiter consumes 45 Adaptive
LUTs (ALUTs) [19] on a StratixIl device when six C-
elements are used in its ‘delay’ components illustrated in
Fig.4(b) and Fig.4(c).

4.3. Prototyping The Four-Node GALS NoC

By applying the presented C-element and arbiter structure,
the asynchronous design of the network node discussed in
Section 3 can be modeled using VHDL in a hierarchy
manner. Namely, the C-element structure presented in
Fig.3(b) is modeled using VHDL as a component. Then,
any other logics, such as the arbiter or the control logics,
use the C-elements as component instances in their own
VHDL files. In a same manner, the control logic, arbiter,
and C-element are used by a higher level asynchronous
block as component instances in their VHDL descriptions.
The synchronous blocks in the network node are also
designed with VHDL. Therefore, both the synchronous and
asynchronous designs in the presented GALS NoC apply a
same design input format which suits the design tools for
conventional FPGA. The design tool and the conventional
FPGA used in this work are QuartusIl and Altera StratixII
respectively.

In order to prevent the synthesis tool to mix all the
combinational logics from different components together,
each instance of the C-element and arbiter in the design is
set as a design partition. The higher level components or
blocks are also be set as a unique partition according to the
design hierarchy. During the synthesis process, each
partition of the design will be synthesized separately from
each other by Quartusll. Therefore, the proposed C-element
and arbiter structures will be generated correctly.

After synthesis the entire design with the hierarchical
partition method, the next issue is to meet the QDI timing
requirements of the proposed arbiter and block control
pipeline structures during the placement and routing
process. LogicLock technique [18] is applied for this
purpose. A LogicLock region is set to each arbiter and
block control logic pipeline in the design so that the
components in a same arbiter or control pipeline will be
automatically placed into one Logic Array Block (LAB)
[19] or the adjacent LABs of StratixIl device by QuartusII.
Thus, the fast intra-connects inside a LAB and inter-
connects between adjacent LABs [19] can meet the loose
timing requirements of the arbiter and the block control
pipeline addressed respectively in Section 4.2 and Section 3.

Finally, the prototyping method with Quartus II can be
summarized as follows.

1) Stepl: Describe both synchronous and asynchronous
parts in the hierarchical manner using VHDL.

2) Step2: Define a design partition for each component.

3) Step3: Set a LogicLock region for all delay sensitive
arbiter and control blocks.

4) Step4: Run synthesis, placement, and routing steps
without additional constraint files.

By using the proposed prototyping method, the four-
node GALS NoC presented in Section 2 are realized on a
StratixII device. The four-phase dual-rail protocol is used in
the asynchronous data transfers between network nodes.
The whole network utilizes 41,674 ALUTSs on the StratixII

Table 1. ALUTSs Utilization of ‘Network Node’ Blocks

Utilized
Sub-blocks ALUTSs
Node IF (BVCI Slave Type) 146
Node IF (BVCI Master Type) 399
Layer MUX 142
Communication Controller 238
Communication Packet Distributor 451
Layer Packet Sender +Tx Packet Buffer 2,202
(CL block) Packet Receiver 233
Rx Packet Buffer 1,878
Total BVCI Slave Type Network Node 10,292
(with 2 CL blocks) "By/CT Master Type Network Node | 10,545

device. The utilized ALUTs by the two different types of
‘Network Node’ blocks and their sub-blocks are listed in
Table 1.

The gate-level simulation reveals that the prototyped
four-node GALS network can deliver a four-cell packet
between two adjacent network nodes with 632.78 ns by a
four-phase dual-rail handshake protocol. Each data cell in a
packet has 32 data bits. Thus, the asynchronous transfer
speed of the prototyped GALS network in a StratixII device
is equivalent to 202.24 kb/s in theory.

5. CONCLUSION

Conventional FPGA devices and design tools are oriented
towards synchronous design. The presented work applied
the synchronous design tools of Quartus II to realize a
synchronous-asynchronous mixed design on a Stratix II
device.

We described a four-node on-chip network prototype
that applies both synchronous and asynchronous designs.
Two C-element control pipelines were designed for the
control of the asynchronous parts. A C-element structure
and an asynchronous arbiter suited for realization on a
conventional FPGA were presented.

6. REFERENCES

[11 D. M. Chapiro, “Globally-Asynchronous Locally-
Synchronous Systems”, PhD thesis, Stanford University, Oct.
1984.

[2] P. Zipf, H. Hinkelmann, A. Ashraf, and M. Glesner,
“Networks-on-chip: A switch architecture and signal
synchronization for GALS system-on-chips”, Proceedings of

the 17th symposium on Integrated circuits and system design,
Sep. 2004.

[31 D. Sigiienza-Tortosa, T. Ahonen, and J. Nurmi, “Issues in
the Development of a Practical NoC: the Proteo Concept”,
Integration, the VLSI jounal, volume 38, issue 1, 2004.

[4] A. Lines,“Nexus: an asynchronous crossbar interconnect for
synchronous system-on-chip designs”,; Proceedings of 11th

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19

—

Symposium on High Performance Interconnects, pp.2-9,
Aug. 2003.

S. Hauck, S. Burns, G. Borriello, and C. Ebeling, “An FPGA
for implementing asynchronous circuits”, /[EEE Design &
Test of Computers, vol. 11, issue 3, pp. 60, Fall 1994.

C. Traver, R. B. Reese, and M. A. Thornton, “Cell designs
for self-timed FPGAs”, Proceedings. 14th Annual IEEE
International ASIC/SOC Conference, pp.175-179, Sep. 2001.

N. Huot, H. Dubreuil, L. Fesquet, and M. Renaudin, “FPGA
architecture ~ for multi-style asynchronous logic”,
Proceedings of Design, Automation and Test in Europe 2005,
vol. 1, pp. 32-33, 2005.

M. Najibi, K. Saleh, M. Naderi, H. Pedram, and M. Sedighi,
“Prototyping globally asynchronous locally synchronous
circuits on commercial synchronous FPGAs”, Proceedings
of 16th IEEE International Workshop on Rapid System
Prototyping, pp.63-69, Jun. 2005.

Q. T. Ho, J. B. Rigaud, L. Fesquet, M. Renaudin, and R.
Rolland, “Implementing Asynchronous Circuits on LUT
Based FPGAs”, Proceedings of 12th International
Conference on Field-Programmable Logic and Applications,
Sep. 2002.

J. Quartana, S. Renane, A. Baixas, L. Fesquet, and M.
Renaudin, “Gals systems prototyping using multiclock fpgas
and asynchronous network-on-chips”, Proceedings of 2005
International Conference on Field Programmable Logic and
Applications, pp. 299-304, Aug. 2005.

X. Wang, D. Sigiienza-Tortosa, T. Ahonen, and J. Nurmi;
“Asynchronous Network Node Design for Network-on-
Chip”, Proceedings of 2005 International Symposium on
Signal, Circuits, and System; Jul. 2005.

VSI Alliance. Virtual Component Interface Standard version
2, April 2001. http://www.vsi.org

OCP-IP Association. Open Core Protocol Specification,
2001. http://www.ocpip.org.

I. E. Sutherland, “Micropipelines”, Communications of the
ACM, vol. 32, no.6, pp. 720-738, Jun. 1989.

J. U. Horstmann, H. W. Eichel, and R. L. Coates,
“Metastability behavior of CMOS ASIC flip-flops in theory
and test”, [EEE Journal of Solid-State Circuits, vol.
24, issuel, pp.146 — 157, Feb. 1989.

R. Payne, “Asynchronous FPGA architectures”, IEE
Proceedings of Computers and Digital Techniques, vol.
143, issue 5, pp.282-286, Sep. 1996.

S. W. Moore, and P. Robinson, “Rapid Prototyping of Self-
Timed Circuits®, International Conference on Computer
Design, pp 360--365, Oct. 1998.

Altera, “Quartus II Version 5.1 Handbook”, vol.2, pp.1009-
1049, Dec. 2005.

Altera, “Stratix II Device Handbook”, vol.1, pp.23-47, Dec.
2005.

PUBLICATION 5

X. Wang, and J. Nurmi, “A RTL Asynchronous FIFO Design Using Modified Micropipeline”, in

Proceedings of the 10™ Biennial Baltic Electronics Conference, (BEC 2006), pages 95-98, Tallinn,
Estonia, October 2006.

© 2006 IEEE. Reprinted, with permission, from Proceedings of the 10" Biennial Baltic Electronics
Conference.

A RTL Asynchronous FIFO Design Using Modified Micropipeline

Xin Wang, Jari Nurmi

Institute of Digital and Computer Systems, Tampere University of Technology
P.O.Box 553, FIN-33101, Tampere, Finland
E-mail: {xin.wang, jari.nurmi}@tut.fi

ABSTRACT: An asynchronous FIFO which applies four-
phase handshake protocol to read or write data has been
designed in Register-Transfer Level (RTL) using VHDL.
The asynchronous FIFO in this paper avoids data movement
in a flow-through FIFO by applying token passing scheme in

its control pipelines and multiplexer in its data register bank.

Two control pipelines which base on micropipeline structure
are proposed and used as the control logic for the
asynchronous FIFO. An asynchronous arbiter and C-
element RTL structures used in the proposed asynchronous
FIFO are also presented.

1 Introduction

Asynchronous FIFO is an important component for
building the packet buffers in a packet-switched on-chip
network which applies Globally-Asynchronous Locally-
Synchronous (GALS) [1] scheme. A network node
structure for building GALS on-chip network has been
presented in [2]. The network node applies asynchronous
handshake protocol for globally data packet transfers.
Therefore, it needs efficient asynchronous FIFOs to buffer
the input or output data packets of the network node.
Although the asynchronous FIFO presented in this paper
is designed under an on-chip network application
background, it is a general purpose asynchronous FIFO
which can be used in other applications.

The asynchronous FIFO designs which have been
presented can be roughly classified into two categories in
terms of data movement. The first category includes the
flow-through FIFOs [3, 4] which base on micropipeline
structure [3]. Those FIFOs make the data flow through all
data cells in the FIFO before reaching the output port.
Thus, the latency is poor although the throughput can be
high. The asynchronous FIFOs in another category use
counter control logic [5], or token passing and common
data bus structure [6, 7] to avoid the data movement
inside the FIFOs. Therefore, the latency caused by data
movement in a flow-through FIFO is eliminated.
However, the compensation is the high complexity of the
control logic. The asynchronous FIFO presented in this
paper belongs to the second category in which the data
would not flow through the data cells, while the control
complexity is lowered by using a modified micropipeline
structure to pass around the read or write token in the
FIFO. Another advantage of the presented FIFO design is

1-4244-0415-0/06/$20.00 ©2006 |IEEE.

that it is designed in RTL by using commonly adopted
hardware description language VHDL. Therefore, it can
be easily integrated with other synchronous RTL designs
to build a large synchronous-asynchronous mixed system,
such as a GALS on-chip network, and it also suits for the
commonly used synchronous design flow and tools.

The following sections of this paper are organized as
follows. In Section 2, the asynchronous FIFO structure
and the modified micropipeline control logic are
presented. Section 3 describes the RTL model of C-
element and the arbiter used in this asynchronous FIFO.
The synthesis and simulation results are presented in
Section 4. Finally, the conclusions are drawn in Section 5.

2 The Asynchronous FIFO Structure

The proposed asynchronous FIFO works with four-phase
handshake protocol. By changing the interface
descriptions, it can support bundled-data and dual-rail
protocols. For the simplicity, an asynchronous FIFO
which uses four-phase bundled-data protocol is illustrated
in Fig.1. There are two main functional blocks in the
FIFO, ‘Control Logic’ block and ‘Data Bank’ block, as
illustrated in Fig.1. The ‘control logic’ block consists of
the control pipelines derived from micropipeline structure.
Each cell in the control pipeline is used to control read or
write operation of a data cell in ‘Data Bank’ Block. The
details of ‘Control Logic’ block and ‘Data Bank’ block
will be presented in Section 2.1 and Section 2.2
respectively.

2.1 The ‘Control Logic’ Block

A micropipeline control logic [3] is illustrated in Fig.2 (a).
The principle of micropipeline control logic is to use

wr_req | Control Logic rd req
T — €
wr_ack ‘ i 1——Control Pipelines-— ‘ d ack
I i i ! — I
data_in ry s data_out
 — ‘ { | Data Cell Array 1} | ‘ —
Data Bank

Fig.1 Asynchronous FIFO Block Diagram

req in .
!‘_F.Cl {_delay }
ack out “ . dela;
M)

delay
‘ delay
Fig.2 (a)

rd_celll en
Cl |—=
rdireq @
eq i)

rd_ctr_fb_to_cell0 rd_ctr_fb_from_cell2

req_out
O S

ack_in

rd_cell2; en

Read Control Cell 1

rd_celll
B

wr_cell 1_7
WI |

wr_cell2_en

Cc4
B
{1

wr_ctr_fb_to_cell0 ‘ wr_ctr_fb_from |cell2

Write Control Cell 1

Fig.2 (b)
Fig.2 Asynchronous FIFO Control Pipelines

the output from the next stage to enable or disable the
output of current stage, therefore, the request event at the
input port will be delivered to the output port in a
pipelined manner. The ‘Control Logic’ block in the
presented FIFO design consists of two control pipelines
which base on the micropipeline control logic. One
pipeline is dedicated to read control while another is for
write control. Each pipeline is composed of a series of
control cells. Fig.2 (b) illustrates two single cells from the
two control pipelines respectively and the signaling
between the two control cells.

By comparing the two structures in Fig.2 (a) and (b),
we can see that the modified control pipelines in Fig.2 (b)
use micropipeline control logic as the backbone and apply
few AND gates as the delays illustrated in Fig.2 (a). Each
cell of the modified control pipelines consists of two C-
elements. The first C-element, ‘C1’ in read control cell
and ‘C3’ in write control cell, is used to record the rising
edge of request signal. The second C-element, ‘C2° and
‘C4’ in Fig.2 (b), is used to record the falling edge of
request signal. Therefore, each cell of the control pipeline
illustrated in Fig.2 (b) will pass the enable signal as a
token to the next cell only after the four-phase handshake
process on the current cell has done. The token signals in
the current control cells, such as ‘rd celll en’ and
‘wr_celll_en’ signals in Fig.2 (b), are used to enable the
corresponding data cell to respond to the current read or
write operation. After the completion of current data
operation, the token will be delivered to the next control
cell. When the read or write token reaches the last cell of
the control pipeline, it will be passed back to the first
control cell if the corresponding data cell is ready for read
or write operation.

The feedback signal from ‘C2’ to ‘A3’ in Fig.2 (b) is
used to synchronize the status information between read
and write control cells. For example, in Fig.2 (b), if the
output of ‘C2’ is ‘1°, it means that the data in the
corresponding data cell has been read. Therefore the

data_in
celll wr en |DataCell 1 >
;’
data out
MUX >

data_in
Data Cell n

h 4

ﬁ
celln wr en
WI

rd_data_en_vector

Fig.3 Data Bank Block Diagram

output of ‘A3’ is set to ‘1’ which indicates that the empty
data cell is enabled for future write operation. The other
two input signals of ‘A3’, ‘rd_celll en’ and ‘rd _req’, are
used to reset the write control cell after the corresponding
data cell has been read, so that the write control cell will
have room for receiving the write token in the next round.

The control pipelines illustrated in Fig.2 (b) require
that the read and write requests should not appear at the
same time. The arbiter used to solve this read/write
conflict problem in the presented FIFO will be discussed
in Section 3.1.

2.2 The ‘Data Bank’ Block

The structure of the ‘Data Bank’ Block illustrated in Fig.3
is composed of a multiplexer and multiple ‘Data Cell’
blocks. Each ‘Data Cell’ block consists of a set of latches.
The number of latches in a ‘Data Cell’ depends on the
data width of the asynchronous FIFO. The main function
of the ‘Data Bank’ Block is to latch the incoming data or
output the requested data by the control signals from the
‘Control Logic’ Block. For example, the ‘celll wr en’
signal comes from the first write control cell is used to
enable write operation on the ‘Data Cell 1’ block in Fig.3.
The ‘rd data en vector’ in Fig.3 is the combination of
read enable signals from the read control pipeline. It is
used to select the corresponding data cell for the current
read operation.

3 RTL Structures of Asynchronous Arbiter
and C-Element

3.1 RTL Structure of Asynchronous Arbiter

As mentioned in Section 2.1, the proposed control
pipelines of the asynchronous FIFO can handle only one
request at a time, therefore, an arbiter is needed to grant
either read or write request to take effect at one time.

For ASIC implementation, cross-coupled NAND gates
illustrated in Fig.4 (b) are used as the simplest arbiter
structure. However, if two requests appear simultaneously,
the NAND structure will enter into metastability state.
Four-input NOR gates illustrated in Fig.4 (b) are
suggested in [8] to filter the metastability because they
have high threshold voltage. However, this scheme needs
to be designed in gate level with certain standard-cell
library. If it is described in RTL using VHDL, the four
inputs of the NOR gates will be simplified by the
synthesis tool because they are from a same signal node.

D Qb rl_out
rlien C-element D1 D3 q
. {CLK CLK
chain
CLR (CLR
;J
rl
rst
D Q—D 2 _out
r2 en C-element D2 D4 Q
cham | CLK
CLR CLR

] jj
rst A8
Fig.4 (a)
C- element chain
1/r2 en

rl_out
Fig4 (c)

2 en

rl/
r2_out
!

Fig.4 (b)
Fig.4 Asynchronous Arbiter Structure

LU e

w f>

Sys_1st
Fig.5 C-element Structure

Therefore, it does not suit our purpose of modeling the
asynchronous FIFO in RTL using VHDL. Hence, an
arbiter structure illustrated in Fig.4 (a) is proposed for the
presented asynchronous FIFO design. The proposed
arbiter applies the cross-coupled AND gates derived from
the cross-coupled NAND structure as the basic structure

and uses double-latching scheme to filter out metastability.

The clock signals for sampling the outputs from the cross-
coupled AND gates are generated by a delay line
composed of a chain of C-elements. The C-element chain
illustrated in Fig.4 (c) uses the input requests as the
trigger signal to generate a clock signal at a certain
frequency until the qualified request is sampled
successfully. The sampling clock cycle depends on the
gate and wire delays in the C-element chain and gives the
cross-coupled AND gates a certain amount of time to
recover from metastability before sampling. An advantage
of using the C-element chain to generate sampling clock
is that the sampling frequency can be easily adjusted
according to the target technology library by changing the
number of C-elements. The mean time between failures
(MTBF) of double-latching scheme can be guaranteed to
be long enough by using low sampling frequency [9].

3.2 RTL Structure of C-Element

The Miiller C-element is a basic component widely used
in the presented asynchronous FIFO. It is normally
implemented in transistor level. In order to model the
presented FIFO totally in RTL using VHDL, a RTL two-
input C-element structure is proposed in Fig.5. The
proposed C-element bases on a D-latch which uses

Table 1. Area and Power Consumptions

Area Dynamic Power
FIFO Types (unt) (mW)
Synchronous 21032.96 3.84
FIFO (100%) (100%)
Asynchronous 10821.63 2.08
FIFO (51.5%) (54.2%)

Table 2 Timing Characteristics of the Asynchronous FIFO

Ack Rise Ack Fall | Handshake
Req Hold
Latency Time (ns) Latency Cycle
(ns)) (ns) (ns)
Write
Request 42 0.1 0.8 5.1
Read
Request 4.5 0.1 09 5.5

‘A AND B’ as the enable (‘EN’) signal and ‘A OR B’ as
the reset signal (‘CLR’). The data input port (‘D’) of the
D-latch is attached to logic ‘1’ constantly. The idea of
using a latch to build a C-element has already been
presented in [10] where a RS-latch is suggested to use.
Whereas, the D-latch C-element structure in Fig.5 is safer
than the suggested RS-latch C-element structure because
it avoids data switching at the data input port ‘D’.

4 Synthesis and Simulation Results
4.1 Synthesis Result

After all the main components, C-element, control
pipelines, and the arbiter, have been built in RTL, the
asynchronous FIFO design presented in Section 2 are
constructed in RTL with VHDL. Thus, the presented
asynchronous FIFO design suits for the synchronous
design flow and tools naturally and can be easily
integrated with other synchronous designs.

For the purpose of comparison, a reference
synchronous FIFO which has very similar structure has
been designed also in RTL using VHDL. The reference
synchronous FIFO has the same top level structure with
the asynchronous FIFO illustrated in Fig.1. The
differences are that the synchronous FIFO applies clocked
four-phase handshake protocol to read or write data, and a
Finite State Machine (FSM) and a few counters are used
as the control logic to record the location of current read
or write token.

Both the presented asynchronous FIFO and the
reference synchronous FIFO have been synthesized by a
same synthesis tool and 0.18 pm technology library. The
data width and FIFO depth for both synchronous and
asynchronous FIFO designs are set to 32 bits and four
cells respectively. In the asynchronous FIFO design, five
C-elements are used in the C-element chain of the arbiter
to generate the sampling clock signal. The area and
dynamic power consumption after synthesis are listed in
Tablel. The dynamic power consumptions listed in
Tablel are the estimated value reported by the synthesis
tool without any switching activity back-annotation.

rd/wr_req 4/—\—

rd/wr_ack

a: Ack Rise Latency c: Ack Fall Latency

b: Req Hold Time d: Handshake Cycle

Fig.6 Asynchronous FIFO Latency Parameters

In Tablel, we can see that the presented asynchronous
FIFO design has smaller dynamic power consumption and
area even though it has a large overhead of the C-element
chain in its arbiter.

4.2 Simulation Result

A gate-level simulation of the synthesized asynchronous
FIFO has been performed by an event-driven simulation
tool. The latency of the asynchronous FIFO is measured
as the time between the rising edge of ‘rd/wr req’ signal
and the falling edge of the acknowledge signal. This
latency is independent on the depth of the asynchronous
FIFO because the data in the presented asynchronous
FIFO are not moved in the FIFO after stored. The
meanings of measured timing parameters of a four-phase
handshake process during the simulation are illustrated in
Fig.6 and the values are listed in Table2. To be noticed is
that the ‘Req Hold Time’ is decided by the environment
other than the FIFO itself. A 0.1 ns delay is used in this
simulation.

According to the timing of ‘Handshake Cycle’ listed
in Table2, the presented asynchronous FIFO can perform
94.3 million 32-bit data read-after-write operations per
second, which is equivalent to 3.01 Gb/s throughput in
theory.

5 Conclusions

A RTL asynchronous FIFO design which suits the
conventional synchronous design flow and tools has been
presented. The presented asynchronous FIFO is mainly
composed of control logic and data bank blocks. The
presented FIFO in this paper avoids data movement in a
flow-through FIFO by applying token passing scheme in
its control pipelines and applying multiplexer in its data
register bank. Two control pipelines which base on
micropipeline structure have been proposed and used in
this design. The RTL structures of asynchronous arbiter
and C-element which suit for VHDL modeling have been
presented. By comparing with a reference synchronous
FIFO design, the proposed asynchronous FIFO has
smaller area and dynamic power consumption. When a
0.18um technology library is used for implementation, the
throughput of the presented asynchronous FIFO can reach
3.01 Gb/s in theory.

References

[1]

[2]

[%]

[10]

D. M. Chapiro, “Globally-Asynchronous Locally-
Synchronous Systems”, PhD thesis, Stanford
University, October 1984.

X. Wang, D. Sigiienza-Tortosa, T. Ahonen, and J.
Nurmi, “Asynchronous Network Node Design for
Network-on-Chip”, Proceedings of 2005
International Symposium on Signal, Circuits, and
System, July 2005.

L.E. Sutherland, “Micropipelines”, Communications
of the ACM, vol. 32, no.6, pp. 720-738, June 1989.
E. Brunvand, “Low latency self-timed flow-through
FIFOs”, Proceedings of Sixteenth Conference on
Advanced Research in VLSI, pp.76 — 90, March
1995.

A.V. Yakovlev, A.M. Koelmans, and L. Lavagno,
“High-Level Modeling and Design of Asynchronous
Interface Logic”, IEEE Design and Test of
Computers, Spring 1995.

T. Chelcea, and S.M. Nowick, “Low-latency
asynchronous FIFO's using token rings”,
Proceedings of Sixth International Symposium on
Advanced Research in Asynchronous Circuits and
Systems, pp. 210 — 220, April 2000.

K.K. Yi, “The Design of a Self~Timed Low Power
FIFO Using a Word—Slice Structure”, M.Phil Thesis,
Univ. of Manchester, September 1998.

J. Kessels and P. Marston, “Designing asynchronous
standby circuits for a low-power pager”,
Proceedings of International Symposium on
Advanced Research in Asynchronous Circuits and
Systems, pp. 268278, April 1997.

J.U. Horstmann, H.W. Eichel, and R.L. Coates,
“Metastability behavior of CMOS ASIC flip-flops
in theory and test”; IEEE Journal of Solid-State
Circuits, Volume: 24 ,Issue: 1 ,pp.146 — 157,
February 1989.

Q. T. Ho, J. B. Rigaud, L. Fesquet, M. Renaudin,
and R. Rolland, “Implementing Asynchronous
Circuits on LUT Based FPGAs”, Proceedings of
12th International Conference on Field-
Programmable Logic and Applications, September
2002.

PUBLICATION 6

X. Wang, and J. Nurmi, “Comparison of a Ring On-Chip Network and a Code-Division Multiple-
Access On-Chip Network”, VLSI Design, Special Issue on Networks-on-Chip, Volume 2007,
Article ID 18372, 14 pages, Hindawi Publishing Corporation, April 2007.

An open access article distributed under the Creative Commons Attribution License. Reprinted,
from VLSI Design, Special Issue on Networks-on-Chip, Hindawi Publishing Corporation.

Hindawi Publishing Corporation

VLSI Design

Volume 2007, Article ID 18372, 14 pages
doi:10.1155/2007/18372

Research Article

Comparison of a Ring On-Chip Network and a Code-Division
Multiple-Access On-Chip Network

Xin Wang and Jari Nurmi

Institute of Digital and Computer Systems, Tampere University of Technology, 33101 Tampere, Finland

Received 5 October 2006; Accepted 6 February 2007

Recommended by Shashi Kumar

Two network-on-chip (NoC) designs are examined and compared in this paper. One design applies a bidirectional ring connec-
tion scheme, while the other design applies a code-division multiple-access (CDMA) connection scheme. Both of the designs apply
globally asynchronous locally synchronous (GALS) scheme in order to deal with the issue of transferring data in a multiple-clock-
domain environment of an on-chip system. The two NoC designs are compared with each other by their network structures, data
transfer principles, network node structures, and their asynchronous designs. Both the synchronous and the asynchronous designs
of the two on-chip networks are realized using a hardware-description language (HDL) in order to make the entire designs suit
the commonly used synchronous design tools and flow. The performance estimation and comparison of the two NoC designs
which are based on the HDL realizations are addressed. By comparing the two NoC designs, the advantages and disadvantages of
applying direct connection and CDMA connection schemes in an on-chip communication network are discussed.

Copyright © 2007 X. Wang and J. Nurmi. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

1. INTRODUCTION

As the technology feature size of integrated circuit fabrica-
tion is continuously shrinking down in the deep submicron
regime, the number of components which can be integrated
into an on-chip system is getting larger and larger. Therefore,
the communications among the large number of compo-
nents in a system-on-chip (SoC) are challenging tasks to deal
with. Network-on-chip addresses this communication issue
in an on-chip system by separating the concerns of commu-
nication from the concerns of computation. It means that the
communication issue in an SoC is abstracted and handled by
an on-chip communication network which hides the detailed
information about how the communications are performed.
Therefore, a system designer can pay more attention on the
functions of system components and system integration by
treating the NoC as a component of an on-chip system.

The NoC structures which have been proposed can be
roughly classified into two categories, circuit-switched net-
work and packet-switched network, in terms of the way of
using the communication media. PROPHID architecture [1]
is an example of a circuit-switched network which connects
the terminals in the network by allocating them a set of time

or space slices on the communication links. Examples in the
packet-switched category are SPIN [2] and Proteo NoC [3].
SPIN network applies fat-tree topology and router blocks to
transfer data packets from source node to destination node.
In Proteo NoC, the components in the system are connected
through network nodes and hubs. The network topology and
connections in Proteo NoC can be customized and optimized
for a specific application. Since an on-chip system can con-
tain hundreds of functional intellectual property (IP) blocks
in the near future, the circuit-switched network will face
the problem of scalability and parallelism in that situation.
Therefore, a packet-switched scheme is a better choice for
future NoC designs because its structure is scalable and its
data transfers are performed in parallel by sharing the com-
munication media among multiple network nodes in a time-
division manner.

As the number of IP blocks in an SoC is increasing, it
is natural that different functional blocks work with differ-
ent clock frequencies in an SoC. Hence, data transfer among
multiple clock domains is another issue that needs to be han-
dled by an on-chip network. A globally asynchronous lo-
cally synchronous (GALS) scheme [4] has been proposed to
solve this problem of SoC designs. For an NoC, GALS means

VLSI Design

that data transfers between each functional IP block and its
attached network node are synchronous, whereas data trans-
fers between network nodes are asynchronous.

From the analysis addressed in the previous two para-
graphs, we can see that the GALS packet-switched scheme is
a promising direction to explore the NoC designs for future
on-chip systems. A common and natural way of composing
a GALS packet-switched on-chip network is to connect two
network nodes with a direct link. This way of connecting net-
work nodes will be referred to as point-to-point (PTP) con-
nection in this paper. Different patterns of the connection
links in the network form different network topologies. For
example, a mesh topology is applied in the NoC design pre-
sented in [5]. In a PTP connection NoC, the routing scheme
and router architecture, such as the router presented in Athe-
real NoC [6], are very important factors for supplying guar-
anteed services because the packet transfer latency may vary
largely when data packets are transferred to different desti-
nations or to the same destination via different routes in the
network.

In order to eliminate the variance of the data transfer la-
tency and complexity incurred by routing in a PTP connec-
tion NoC, a connection scheme which applies code-division
multiple-access technique has been briefly introduced in [7].

By separating the different data from different users in
the code domain, the data transfer latency in the CDMA NoC
is stabilized by enabling multiple users to use the communi-
cation media parallel in time domain.

In order to examine the advantages and disadvantages of
both the PTP connection scheme and the CDMA connection
scheme, a bidirectional ring NoC design and a CDMA NoC
design developed in our institute will be addressed and com-
pared in terms of the network structure, data transfer princi-
ple, network node design, asynchronous design, and perfor-
mance. For the sake of abbreviation, the bidirectional ring
NoC design will be referred to as the PTP NoC in this paper.

The following sections of this paper will be arranged as
follows. The network structures of the PTP NoC design and
the CDMA NoC design will be presented and compared in
Section 2. In Section 3, the data transfer principles of the
two NoC designs will be studied and compared. Then the
different network node structures in the two NoC designs
will be addressed and compared in Section 4. Section 5 will
present the asynchronous designs applied in both the PTP
NoC and the CDMA NoC designs. In Section 6, two simu-
lation networks of the two NoC designs built up for perfor-
mance estimation will be presented. Then the performance
comparison of the two NoC designs will be addressed upon
the simulation results. Finally, the conclusion will be drawn
in Section 7.

2. THE NETWORK STRUCTURES
2.1. The network structures of the two NoC designs

The PTP NoC design examined in this paper is based on a
network node design [8] proposed for implementing GALS
scheme in Proteo NoC. The network structure of the PTP
NoC is illustrated in Figure 1. From Figure 1, we can see that

.~ Synchronous ~_ | | l: //S/ynchronou\s\
/ A | R \
/ i y Functional \
(Fu}rllctlonal Network Network! u}?ssio;a 1
\ ost 1 /node node ! /
. IMHz | = 500MHz | -
AN 7 T | T | NN P
- . Doty e
I [. . o
e L e
/| Functional Network Networ:lg’ Functional | =,
‘l hostn—1 |, inode node, ! host 7)
| 200MHz [r— 10MHz | |
1 L—T
N Synchronou§ p : T \ : N Synchronous/ S
Th- T ! Asynchronous i Teeo T
I

FiGURE 1: The bidirectional ring NoC structure.

_-T T T T - - #“Synchronous
»“Synchronous ~ ’ \\ / Y - \
/ - \ / —1 Functional A

/| Functional T Network |

I Network PR host 2

| host 1 ode CDMA node' | 500\ |/
N 1 MHz 10¢ transmitter S -7

~ _ 7 | . S

~—___-7 and [P

LT~ network i //F —
/| Functional . arbiter Network |+ netion !
! Network 7 host n !
! hostn—1 | e, node 10 MHz)
. [200MHz [0S "\ Svnch J/
"\ Synchronous /! *_Asynchronous s Dynenronots.

> -

FiGure 2: The CDMA NoC structure.

the communication between a “functional host” (functional
IP block) and its network node is synchronous, while the
data transfers among network nodes are preformed in asyn-
chronous manner. For a large network, it may be necessary to
break the entire network into sections and use some bridge
nodes or hub nodes as addressed in [3] to connect the net-
work sections together, whereas these bridges or hubs can be
seen as one type of network nodes. Therefore, as illustrated
in Figure 1, the PTP NoC can be composed simply by con-
necting the network nodes together with direct links.

The network structure of the CDMA NoC design intro-
duced in [7] is illustrated in Figure 2. In the CDMA NoC,
the GALS scheme is applied in the same way as in the PTP
NoC; however, the network nodes in the CDMA NoC are no
longer connected to each other with direct links. A “CDMA
transmitter” and a “network arbiter” blocks are introduced
in the CDMA NoC. All the network nodes need to commu-
nicate with the “CDMA transmitter” and “network arbiter”
blocks directly. The functionality of the “CDMA transmitter”
and “network arbiter” blocks will be addressed thoroughly
in Section 3. With a direct comparison, we can see that the
structure of the CDMA NoC is more complex than the PTP
NoC since extra blocks are introduced in the CDMA NoC.

2.2. Distributed traffic versus centralized traffic

After a direct comparison of the two network structures in
terms of simplicity, we can take a further analysis of the ef-
fects of the two different network structures on the features

X. Wang and J. Nurmi

of the networks. In the PTP NoC as illustrated in Figure 1,
the data traffic load is distributed into the links among the
network nodes. This distributed data traffic scheme has the
merits of flexibility and scalability, whereas the main disad-
vantage of the PTP connection is that the data transfer la-
tency between two network nodes can be largely different
because the data may be transferred through different routes
or because of data traffic congestions in the network. There-
fore, the main concern of designing a PTP NoC is to find
out the optimal topology and use all kinds of routing and
flow-control methods to guarantee a high throughput and
low transfer latency.

In the CDMA NoC illustrated in Figure 2, a centralized
data transfer scheme is applied since all network nodes com-
municate with the “CDMA transmitter” and the “network
arbiter” blocks directly. This centralized data transfer scheme
is different from the conventional bus structures since it can
supply parallel data transfers both in time and space domains
by applying CDMA technique, whereas a bus structure sup-
plies data transfer service among users in a time-division
manner. The advantage of the centralized scheme applied in
the CDMA NoC is that the data transfer latency between net-
work nodes is a stable value. This stable transfer latency is
contributed by the feature of parallel data transfer in time
domain and the universal link distance among all network
nodes. With the stable data transfer latency, the communica-
tion quality in the CDMA NoC will not vary.

3. THE DATA TRANSFER PRINCIPLES

The fundamental reason of the different network structures
between the PTP NoC and the CDMA NoC is the differ-
ent data transfer principles applied in the two NoC designs.
Thus, the data transfer principles of the two NoC designs will
be addressed and compared in this section.

3.1. Data transfer principle in the PTP NoC

As presented in Section 2.1, the PTP NoC is built by con-
necting the network nodes with direct links. The reason of
this simplicity of connecting the network nodes is that the
data are transferred in their original form in the PTP NoC.
The only operation on the data is to encapsulate them into a
packet format. This operation is done by a network node af-
ter getting the data from its attached functional host block.
The packet format used in the PTP NoC is illustrated in
Figure 3. After the data packet is formed, the PTP NoC will
transfer the data bits with their original values to their desti-
nation through the links to the other nodes. Therefore, direct
links between the network nodes in the PTP NoC are enough
to handle the data transfers.

3.2. Data transfer principle in the CDMA NoC

As indicated by the name, the CDMA NoC applies CDMA
technique to perform data transfers in the NoC. The ba-
sic principle of CDMA technique is illustrated in Figure 4.
At the sending end, the data from different senders are en-
coded using a set of orthogonal spreading codes. Then the

3
Destination . Source node ID (Other fields)
node ID (optional for CDMA NoC)
Data cell 1
Data cell 2(optional)
Data cell 3(optional)

FIGURE 3: Packet format specification.

Data 1 —)@— %% Data 1

Spreading code 1 > Spreading code 1
: — .

QT@_ _>(XT)—> Data N

Spreading code N Spreading code N

Data N——>

Figure 4: CDMA technique principle.

encoded data from different senders are added together for
transmission without interfering with each other because of
the orthogonal property of spreading codes. The orthogo-
nal property means that the normalized autocorrelation of
the spreading codes is 1, while the cross-correlation of the
spreading codes is 0. Therefore, at the receiving end, the data
can be decoded from the received sum signals by multiplying
the received signals with the corresponding spreading code
used for encoding. The data packet format applied in the
CDMA NoC is the same format as illustrated in Figure 3. The
issues related with the data encoding/decoding and transfer
principles in the CDMA NoC will be addressed with details
in the following subsections.

3.2.1. Dataencoding and decoding schemes

Some CDMA encoding and decoding schemes for on-chip
communication implemented by analog circuits have been
proposed [9-11]. In those schemes, the encoded data are rep-
resented by the continuous voltage or capacitance value of
the circuits. Therefore, the data transfers in the analog cir-
cuits are challenged by the coupling noise, clock skew, and
the variations of capacitance and resistance caused by circuit
implementation [11]. In order to avoid the challenges faced
by the analog circuit implementation, digital encoding and
decoding schemes are developed for the CDMA NoC and are
illustrated in Figures 5 and 7, respectively. In the presented
encoding scheme, data from different senders are fed into
the encoding function bit by bit. Each data bit will be spread
into Sbits by multiplying it with a unique S-bit spreading
code. The multiplications are performed by XOR logic gates
as illustrated in Figure 5. Each bit of the S-bit encoded data
generated by XOR operations is called a data chip. Then
the data chips which come from different senders are added

VLSI Design

Sender 1 ! b?t Sbits
S bits

. Spreading code 1

of data chips

1 \
Sender N lb?t Sbits Vg .
Sbits \ ! Arithmetic
H add

Spreading code N

FiGurek 5: Digital CDMA encoding scheme.

“«ro ,

1 chip !
0 | p
Data bit from sender 1 0 |_| |_| |_| Lo—---

“10101010 Encoded data bit of sender 1

LTI

Spreading code for sender 1

‘11001100

«n» 0
1 0 Encoded data bit of sender 2

Data bit from sender 2 5 12011201

1“11001100” 1

Spreading code for sender 2

Sums of data chips

(a) (b)

FIGURE 6: Data encoding example.

together arithmetically according to their positions in the S-
bit sequences. Namely, all the first data chips from differ-
ent senders are added together, and all the second data chips
from different senders are added together, and so on. There-
fore, after the add operations, we will get S sum values of S-
bit encoded data. Finally, as proposed in [12], binary equiva-
lents of the S sum values are transferred to the receiving end
one by one. An example of encoding two data bits from two
senders is illustrated in Figure 6 in order to explain the pro-
posed encoding scheme more specifically. Figure 6(a) shows
two original data bits from different senders and two 8-bit
spreading codes. The top two figures in Figure 6(b) illustrate
the results after data encoding (XOR operations) for the orig-
inal data bits. The bottom figure in Figure 6(b) presents the
8 sum values after adding operations. Then the binary equiv-
alents of each sum value will be transferred to the receiving
end. In this case, two binary bits are enough to represent the
three possible decimal sum values, “0,” “1,” and “2.” Hence,
for example, if a decimal sum value “2” needs to be trans-
ferred, we need to transfer two binary digits “10.”

The digital decoding scheme used in the CDMA NoC is
illustrated in Figure 7. The decoding scheme accumulates the
received sum values into two separated parts, a positive part
and a negative part, according to the bit value of the spread-
ing code used for decoding. For instance, as illustrated in
Figure 7, the received first sum value will be put into the pos-

Positive-part
accumulator 1
S sums Decoded
of data chips data bit
Negative-part
accumulator
Sbits T
Spreading code

FiGure 7: Digital CDMA decoding scheme.

itive accumulator if the first bit of the spreading code for de-
coding is “0,” otherwise, it will be put into the negative accu-
mulator.

The same selection and accumulation operations are also
performed on the other received sum values. The principle
of this decoding scheme can be explained as follows. If the
original data bit to be transferred is “1,” after the XOR logic
in the encoding scheme illustrated in Figure 5, it can only
contribute a nonzero value to the sums of data chips when
a bit of spreading code is “0.” Similarly, the 0-value original
data bit can only contribute a nonzero value to the sums of
data chips when a bit of spreading code is “1.” Therefore, af-
ter accumulating the sum values according to the bit values
of the spreading code, either the positive part or negative part
is larger than the other if the spreading codes have orthogo-
nal and balance properties. Hence, the original data bit can
be decoded by comparing the values between the two accu-
mulators. Namely, if the positive accumulation value is larger
than the negative accumulation value, the original data bit is
“1”; otherwise, the original data bit is “0.”

3.2.2. Spreading code selection

As discussed in Section 3.2.1, the presented encoding/decod-
ing scheme requires the spreading codes used in the COMA
NoC to have both the orthogonal and balance properties. The
orthogonal property was explained in the first paragraph of
Section 3.2. The balance property means that the number of
bit “1” and the number of bit “0” in a spreading code should
be equal. Because Walsh code [13] has the required orthogo-
nal and balance properties, it is chosen as the spreading code
for the CDMA NoC. In an S-bit (S = 2V, integer N > 1)
length Walsh code set, there are S-1 sequences which have
both the orthogonal and balance properties. Hence, the pro-
posed CDMA NoC can have at most S-1 nodes connecting
with one “CDMA transmitter” and one “network arbiter”
block as illustrated in Figure 2.

3.2.3. Spreading code protocol

In a CDMA network, if multiple users simultaneously use the
same spreading code to encode their data packets for trans-
mission, the data to be transferred will interfere with each
other because of the loss of orthogonal property among the
spreading codes. This situation is called spreading code con-
flict, which should be avoided. Spreading code protocol is a

X. Wang and J. Nurmi

policy used to decide how to assign and use the spreading
codes in a CDMA network in order to eliminate or re-
duce the possible spreading code conflicts. Several spread-
ing code protocols have been proposed for CDMA packet
radio network [14, 15]. Among these proposed spreading
code protocols, only transmitter-based protocol (T protocol)
and transmitter-receiver-based protocol (T-R protocol) are
conflict-free if the users in the network send data to each
other randomly. The principles of these two spreading code
protocols will be shortly introduced in the following two
paragraphs.

(1) Transmitter-based protocol (T protocol): the unique
spreading code allocated to each user will be used by the user
himself to transfer data to others.

(2) Transmitter-receiver-based protocol (T-R protocol):
two unique spreading codes will be assigned to each user in
the network, and then a user will generate a new spreading
code from the assigned two unique codes for its data encod-
ing.
Because the T-R protocol has the drawback of using a
large amount of spreading codes and complicated decoding
scheme, T protocol is preferred in the CDMA NoC. How-
ever, if T protocol is applied in the network, a receiver can-
not choose the proper spreading code for decoding because
it cannot know who is sending data to it. In order to solve
this problem, an arbiter-based T protocol (A-T protocol) is
proposed for the CDMA NoC. In a CDMA network which
applies A-T protocol, each user is assigned a unique spread-
ing code for data transfer. When a user wants to send data
to another user, he will send the destination information of
the data packet to the arbiter before starting data transmis-
sion. Then the arbiter will inform the requested receiver to
prepare the corresponding spreading code for data decoding
according to the sender. After the arbiter has got the acknowl-
edge signal from the receiver, it will send an acknowledge sig-
nal back to the sender to grant its data transmission. If there
are several users who want to send data to the same receiver,
the arbiter will grant only one sender to send data at a time.
Therefore, by applying the A-T protocol, spreading code con-
flicts in the CDMA NoC can be eliminated.

3.2.4. Parallel data transfer principle

The parallel data transfer principle of the CDMA NoC is
based on the A-T spreading code protocol described in
Section 3.2.3. By applying A-T spreading code protocol, ev-
ery node in the CDMA NoC needs to send the destination
address of the packets to the “network arbiter” as illustrated
in Figure 2. After getting the grant signal from “network ar-
biter,” the sender node will send data packets to the “CDMA
transmitter” block. The data encoding operations and data
transfers are performed in the “CDMA Transmitter” block.
Finally, the data decoding operation will be carried out by
the data receiving network node. Therefore, the data transfer
process in the CDMA NoC can be clarified by describing the
functions in the “network arbiter” and the “CDMA transmit-
ter” block, respectively.

(1) Network arbiter. After receiving a data transfer request
from a network node, “network arbiter” will inform the re-

5
, Time | 1 I
1
1, slot 1 ' | i
1

b0 bl b2 b3 Packet “A”
1 I I 1

b0 bl b2 b3 Packet “B”
o
! ! b0 bl b2 b3 Packet “C”
' ' ' : ' Time

F1GURE 8: Bit-synchronous transfer scheme.

quested receiver node to prepare the proper spreading code
for decoding and send a grant signal back to the sender node.
In case that there are more than one sender nodes request-
ing to send data to the same receiver node simultaneously or
at different times, the arbiter will apply “round-robin” arbi-
tration scheme or the “first-come first-served” principle to
guarantee that there is only one sender sending data to one
specific receiver at a time. The reason for this limitation is
that the “packet receiver” block in a network node can receive
and decode data from only one sender at a time. However,
if different sender nodes request to send data to different re-
ceiver nodes, these requests will not block each other and will
be handled in parallel in the “network arbiter.” The “network
arbiter” in the CDMA NoC is different from the arbiter used
in a conventional bus. This is because the “network arbiter”
here is only used to set up spreading codes for receiving and
it handles the requests in parallel in the time domain. In con-
trary, a conventional bus arbiter is used to allocate the usage
of the common communication media among the users in
the time-division manner.

(2) CDMA transmitter. The sender node will start to send
data packets to the “CDMA transmitter” after it gets the
grant signal from the arbiter. Then the “CDMA transmitter”
will encode the data to be transferred with the correspond-
ing unique spreading code of the sender node. Although the
“CDMA transmitter” block is implemented by asynchronous
circuits, it applies the bit-synchronous transfer scheme. This
means that the data from different nodes will be encoded
and transmitted synchronously in terms of data bits rather
than any clock signals. In Figure 8, the principle of the re-
ferred bit-synchronous transfer is illustrated by a situation
in which network nodes “A” and “B” send data packets to
“CDMA transmitter” simultaneously and node “C” sends a
data packet later than “A” and “B.” In this situation, the data
packet from node “A” will be encoded and transmitted to-
gether with the data packet from node “B” synchronously
in terms of each data bit. As the data packet from node “C”
arrive at a later time point, the transmitter will handle the
data bit from “packet C” together with the data bits from
packets “A” and “B” at the next start point of the time slot
for bit encoding and transmitting processes. The dotted-line
frame at the head of the “packet C” in Figure 8 illustrates
the waiting duration if the “packet C” arrived in the mid-
dle of the time slot for handling the previous data bit. The
time slot for handling a data bit is formed by a four-phase

6 VLSI Design
Network node: Communication layer 2 |
I . N
! Communication layer 1 Local packet
- | Packet
8 — B k
2l é | Communication VPass packet distributor
El = % =l controller \L
o I T
RE SN P
515 = acket sender
Lg) 3 Z1 | E Rx packet buffer Packet (Tx packet buffer)
= A | |____| | | receiver | | | |
v R
| T T
Synchronous ' Asynchronous Packlet in Packet out

FiGURE 9: Network node structure of the PTP NoC.

handshake process. The bit-synchronous scheme can avoid
the interferences caused by the phase offsets among the or-
thogonal spreading codes when the data bits from differ-
ent nodes are encoded and transmitted asynchronously with
each other. Because the nodes in the network can request data
transfer randomly and independently of each other, “CDMA
transmitter” applies the “first-come first-served” mechanism
to ensure that the data encoding and transmission are per-
formed as soon as there is a data transfer request.

3.3. Comparison of the data transfer principles

One advantage of the data transfer principle in the CDMA
NoC is the feature of parallel data transfer. Although the data
transfers in the PTP NoC can also be parallel if they take place
in different links among the network nodes, the parallelism
in the PTP NoC is largely limited by the possible traffic con-
gestions in a link because the data are transferred through
a link between two network nodes in a time-division man-
ner. Another advantage of the CDMA data transfer principle
is that no data routing is needed because of the centralized
data transfer scheme. This feature can supply stable trans-
fer latency in the CDMA NoC, which in turn facilitates the
CDMA NoC to provide a guaranteed service for the on-chip
system.

Another advantage of the CDMA NoC is that it can easily
support multicast data transfers by requesting multiple re-
ceiver nodes to use the same spreading code for receiving. In
the PTP NoC, the multicast transfer can be realized only by
sending multiple copies of a data packet to its multiple desti-
nations, unless extra logic is added in each network node to
copy the multicast packet to both the functional host and the
output link to the next node. This increases the traffic load in
the network, or complicates the network implementation.

By comparing with the data transfer principle in the PTP
NoC, one disadvantage of the CDMA data transfer principle
is its complexity caused by the data encoding and decoding
operations. Another drawback of the CDMA data transfer
principle is that the data transfer efficiency obtained by par-
allel transfers in the time domain is compromised by the la-
tency introduced by the data spreading scheme. As presented
in Section 3.2.1, one data bit will be extended to Sbits for
the CDMA data transfers. The parameter S is the width of

the spreading code applied in the CDMA NoC. As the num-
ber of nodes in the NoC increases, the width of the applied
spreading code will also be increased. Then the data latency
caused by the data spreading will be also increased.

4. THE NETWORK NODE STRUCTURES

“Network node” block is a common type of component
needed in both of the PTP NoC and the CDMA NoC. How-
ever, different data transfer principles in the two NoC designs
imply different structures in the network nodes. This section
will present the network node structure in each of the two
NoCs.

4.1. Network node structure in the PTP NoC

The network node structure of the PTP NoC is illustrated
in Figure 9. The network node consists of “node if,” “layer
MUX,” and “communication layer” blocks. The two blocks
outside of the network node illustrate how a “functional
host” block as presented in Figure 1 is connected with a net-
work node through a network interface (“network if”) block.
In the PTP NoC, the applied interface standards include
VCI [16] and OCP [17]. As illustrated in Figure 9, GALS
scheme in the network is implemented by applying both syn-
chronous and asynchronous designs in each network node.
The synchronous blocks, “node if” and “layer MUX,” are
used to communicate with locally synchronous “functional
host” in the system, while the asynchronous blocks are used
to perform asynchronous communications among the net-
work nodes. The arrows in Figure 9 demonstrate the data
packet flow in a network node. The blocks in the network
node illustrated in Figure 9 will be introduced in the follow-
ing three paragraphs.

(1) Node if. This block is responsible for assembling the
data from “functional host” into data packets or delivering
the data packets from network node to “functional host”
according to the interface standard applied in “network if”
block.

(2) Layer MUX. As the name of this block indicates, this
block behaves as a multiplexer used to connect “node if”
block with a certain “communication layer” block during the
data transfers between network node and “functional host”
block.

X. Wang and J. Nurmi

Network node

1
1
= 1 | Tx packet Packet |Datajout
2| = [! buffer sender
S| = &=
A e
SIEMTI 2 4
g = ! | Rx packet Packet |Datalin
& i buffer receiver
1

Synchronous; Asynchronous

F1GURE 10: Network node structure of the CDMA NoC.

(3) Communication layer. The function of this block is
to perform the globally asynchronous communication with
other network nodes through a handshake protocol. As il-
lustrated in Figure 9, the two “communication layer” blocks
in a network node are used to connect with two other net-
work nodes in the bidirectional ring NoC. More “communi-
cation layer” blocks can be used in a network node to im-
plement other types of topology. There are five subblocks in
a “communication layer” block. The “packet receiver” sub-
block is used to receive data packets from another network
node. If the destination of the received packet is the cur-
rent network node, the packet is called “incoming packet,”
and it will be stored in “Rx packet buffer” Otherwise, the
received packet is called “bypass packet,” and it will be dis-
patched into “packet sender” block via “packet distributor”
for further transferring. The “communication controller”
subblock in Figure 9 represents the controller which takes
care of the necessary arbitrations and communication con-
trol.

4.2. Network node structure in the CDMA NoC

The block diagram of the network node structure of the
CDMA NoC is shown in Figure 10 where the arrows rep-
resent the flows of data packets. In Figure 10, the “network
if” block which belongs to the functional host is an inter-
face block for connecting a functional host with a “network
node.” The GALS scheme is applied in “network node” block
of the CDMA NoC by using synchronous design in the “node
if” subblock and using asynchronous design in the other sub-
blocks. The network interface standards supported in the
CDMA NoC also include the VCI and OCP standards. The
subblocks in the network node will be addressed in the fol-
lowing four paragraphs.

(1) Node if. This block is used to assemble the data from
“functional host” into packets and send the packets to “Tx
packet buffer” or disassemble the received packet from “Rx
packet buffer” and send the extracted data to “functional
host”

(2) Tx/Rx packet buffer. “Tx packet buffer” is used to store
the data packets from “node if,” and then deliver the pack-
ets to “packet sender.” The “Rx packet buffer” stores and de-

livers the received packets from “packet receiver” to “node
if”

(3) Packet sender. If “Tx packet buffer” is not empty,
“packet sender” will fetch a data packet from the buffer
by an asynchronous handshake protocol. Then it will ex-
tract the destination information from the fetched packet
and send the destination address to “network arbiter.” Af-
ter “packet sender” gets the grant signal from the arbiter,
it will start to send data packets to “CDMA transmit-
ter”

(4) Packet receiver. After system reset, this subblock will
wait for the sender information from “network arbiter” to
select the proper spreading code for decoding. After the
spreading code for decoding is ready, the receiver will send
an acknowledge signal back to “network arbiter” and start
to receive data from “CDMA transmitter,” and then send
the decoded data to “Rx packet buffer” in the packet for-
mat.

4.3. Comparison of the network node structures

By comparing with the presented network node in the PTP
NoC, the network node in the CDMA NoC has less com-
plexity. The main reason is that the network node of the
CDMA NoC does not need to handle any bypass packets
or the packet routing issues because of the centralized traf-
fic scheme. Therefore, the “communication controller” block
and the “packet distributor” block in the network node for
the PTP NoC are not needed in the node for the CDMA NoC.
When the data transfer parallelism needs to be increased in
the PTP NoC, more “communication layer” blocks in a net-
work node are needed in order to set up more links with
other nodes, whereas the network node in the CDMA NoC
does not need to change in this situation. One advantage
of both of the network nodes is that they are both replica-
ble because each network node structure in the network is
the same. This advantage makes both the PTP NoC and the
CDMA NoC designs modular.

5. ASYNCHRONOUS DESIGNS

As presented in Section 4, the GALS scheme is applied in
the PTP NoC and in the CDMA NoC by implementing the
global interconnect fabric with asynchronous designs. How-
ever, this is not the only way to implement GALS scheme in
an on-chip network. For example, in “islands of synchronic-
ity” (IoS) methodology presented in [18], the GALS scheme
is implemented in SoC designs by localizing the clock in each
of the functional IP blocks and connecting the isolated clock
“islands,” the functional IPs, with asynchronous communi-
cation links. If the IoS methodology is applied in the pre-
sented PTP NoC and the CDMA NoC, it means that all the
blocks, including network nodes, “CDMA transmitter,” and
“network arbiter,” in the designs need to be synchronous
designs which work with different local clock frequencies.
Then, the communications among the blocks in the NoC de-
signs use asynchronous protocols. The advantage of applying
the ToS methodology is that all the blocks in the design can
be implemented by using standard synchronous design tools
and flow. However, two disadvantages addressed in the fol-
lowing two paragraphs need to be noticed.

VLSI Design

(1) Synchronization cost. The signals need to be synchro-
nized with the local clocks when they cross different clock do-
mains. If the IoS methodology is applied, two synchroniza-
tion operations are needed when data enter into and leave
from the global interconnect fabric during a data transfer
process because the interconnect fabric works with its own
clock rate. If the interconnect fabric is implemented by asyn-
chronous designs, the synchronization step is not needed
when data enter into the global interconnect fabric because
a signal from a synchronous domain can enter into an
asynchronous domain directly. Therefore, synchronization-
related latency and area cost can be reduced 50% if the global
interconnect fabric is implemented by asynchronous designs
directly.

(2) Area and power costs. As presented in Section 4, “Tx/
Rx packet buffer” composed by the asynchronous FIFO pre-
sented in [19] takes a large portion of the network node
structure in both of the NoCs. As addressed in [19], the area
and power costs of the asynchronous FIFO are 51.5% and
54.2% less than a synchronous implementation. Hence, if
all the blocks related with global interconnection are imple-
mented by synchronous designs, the area and power costs of
the “Tx/Rx packet buffer” will be nearly doubled by compar-
ing with the asynchronous implementation.

Therefore, in order to reduce the cost of synchronization,
area, and power, asynchronous designs are applied to imple-
ment the blocks for global interconnections in the PTP NoC
and the CDMA NoC. The asynchronous designs applied in
the two NoC designs will be addressed in this section.

5.1. Asynchronous design in the PTP NoC

The basic component of the PTP NoC is the network node
presented in Section 4.1. As illustrated in Figure 9, the blocks
which apply asynchronous designs in the network node are
the “communication controller,” “packet receiver,” “packet
distributor/sender,” and “packet Rx/Tx buffer” blocks. The
four-phase dual-rail protocol is applied in the asynchronous
designs in order to make the data transfers delay-insensitive.
The control logic used in the asynchronous blocks of the PTP
NoC will be presented in this subsection.

5.1.1. Control logic in the “communication controller”

The “communication controller” block is the main control
block which takes care of data packet receiving, sending, and
storing processes in the network node. Each of the men-
tioned packet handling processes is controlled by a control
pipeline which can be seen as a finite state machine (FSM) in
the “communication controller” block. The control processes
of the FSMs are illustrated in Figure 11 and are explained in
the following three paragraphs.

(1) Packet receiving FSM. As illustrated in Figure 11(a),
there are six states in this FSM. The machine will move from
its initial “rx_idle” state to “rx_pkt” state when “packet re-
ceiver” starts to receive a packet. After the packet receiving is
completed, the FSM will move to “chk_addr” state to check
the destination of the received packet. If the received packet
is “incoming packet,” the FSM will move to “chk_buf” state

| chkaddr |-{ chkbuf | [ocdpl | [=xIp3 |
—
tx_idle
_—
Cotps] (oot]

A

| bp_pkt | | st_pkt |
(a) (b)

tx_bp2

| rd_start || rd_done |

[wr_done ¢ wrstart |

(c)

FIGURE 11: State transfer graphs of the FSMs.

to check the status of “Rx packet buffer.” If the buffer is not
full, the “incoming packet” will be stored in the buffer dur-
ing “st_pkt” state, otherwise, it will be held by “packet re-
ceiver” until there is room available in the buffer. If the re-
ceived packet is “bypass packet,” it will be sent to the net-
work node connected to the output port of current node in
“bp_pkt” state.

(2) Packet sending FSM. This FSM illustrated in Figure
11(b) is responsible for sending two types of data packets into
the “Tx packet buffer” in “packet sender” via “packet dis-
tributor” block. One type of packets is “local packet” which
refers to the packet which comes from the “functional host”
connected with the network node. Another type of packets
is the “bypass packet” explained in Section 4.1. For send-
ing “local packet,” the FSM will be triggered by the signal
from the “node if” block after a “local packet” is ready to be
transferred. Then the FSM will go through “tx_Ip1,” “tx_1p2,”
and “tx_Ip3” states for checking the status of the “Tx packet
buffer,” sending the packet into the buffer, and going back to
“tx_idle” state, respectively. The process of sending a “bypass
packet” into the transfer buffer is similar to the process of
sending “local packet” except that the FSM will go through
“tx_bpl,” “tx_bp2,” and “tx_bp3” states.

(3) Packet storing FSM. This FSM presented in Figure
11(c) is used to store or fetch an “incoming packet” to
or from “Rx packet buffer” block. The process of storing
an “incoming packet” will be triggered by packet receiving
FSM during the “st_pkt” state as illustrated in Figure 11(a).
The packet storing FSM will go through the “wr_start” and
“wr_done” states to complete the storing task. The “rd_start”
and “rd_done” states are for the process of fetching a stored
“incoming packet” from “Rx packet buffer” The fetching
process will be triggered by the “node if” block after getting
flag signal from“communication controller” block.

X. Wang and J. Nurmi 9
req n I —————— e T |
1
ack_out req-out enabile_from_stage0 l‘OD; !
- I
enable_ta_stage2
MDelay |
DLLaYJ ack_in ack d a3 C2 p—:—
I

| req_from_stage0

®
o
~
=
o
12
=
&
ag
[}
(=}

FiGgure 13: Control pipeline structure in the FSMs.

The presented control FSMs in the “communication con-
troller” block are realized by applying the delay-insensitive
micropipeline control logic presented in [20]. The structure
of the micropipeline control logic is illustrated in Figure 12.
The principle of micropipeline control logic is to use the
output from the current stage to enable or disable the in-
put of previous stage. Two stages of the control pipeline used
in “communication controller” block for building the FSMs
are illustrated in Figure 13. Each stage of the pipeline rep-
resents a state element of an FSM. In Figure 13, we can see
that the FSM uses micropipeline control logic as the back-
bone and few AND gates as the delay components illustrated
in Figure 12, hence it is also delay-insensitive. The state in-
formation of the FSM is passed through each stage in the
pipeline by a four-phase handshake protocol. If we take the
“stage 1” illustrated in Figure 13 as an example, when both
the “req_from_stage0” and “stagl_enable” signals are “1,” the
output of “C1” will be set to logic “1” which indicates that
the current state of the FSM is in “stage 1.” Then the output
of “C1” can be used as a request signal to trigger the con-
trol logic in the corresponding function blocks for a certain
communication process.

5.1.2. Control logic in other blocks

Besides the FSMs in the “communication controller” block,
control pipelines exist also in other asynchronous blocks
used to perform the concrete task of moving the data pack-
ets in or out of the individual blocks through a four-phase
dual-rail protocol. The FSMs in the “communication con-
troller” block control the processes of receiving, sending, or
storing data packets by triggering the control pipeline in the
corresponding function blocks. The control pipeline struc-
ture used in the “packet receiver,” “packet distributor,” and
“packet sender” blocks is illustrated in Figure 14. This struc-
ture is derived from the micropipeline control logic and is
used to perform data transfers by interacting with the control
signals coming from the “communication controller” block.
For example, when the pipeline structure is used in “packet

ctr_fb_to_stage0

ctr_fb_from stagez:

F1GUrE 14: Block control pipeline structure.

receiver,” it will receive the packet receiving enable signal
from the “communication controller” block as the enable sig-
nal for the first stage of the pipeline structure. Then, a request
signal will be generated by gate “A2” in the pipeline stage
as illustrated in Figure 14. The generated request signal will
start a handshake process to receive and store a packet. When
the acknowledge signal appears at the input of “A1,” it will
turn the output of “C1” to “1,” which will clear the request
signal via “A2” and enable the “C2” to capture the falling edge
of the acknowledge signal through “A3.” The falling edge of
the “ack” signal means that the required tasks of the current
step have been done and the current handshake process is
completed. Hence, when it appears at the input of “A3,” the
output of “C2” will be triggered to “1” to enable the next
stage to take over the control process of the next operation,
for example, receiving next data packet cell in the “packet re-
ceive” block.

The presented block control pipeline structure can only
meet quasidelay-independent (QDI) model because the in-
put “ack” signal is branched to “A1” and “A3,” however, the
timing requirement for distributing the “ack” input signal
along the isochronic wire forks is quite loose since the logic
delays in “A1” and “C1” are usually much larger than the
logic delay of the inverter at the input of “A3.”

The control pipeline structure illustrated in Figure 14 is
also used in the “Tx/Rx packet buffer” blocks to control the
process of accessing the asynchronous FIFOs presented in
[19].

5.2. Asynchronous design in the CDMA NoC

As illustrated in Figure 2 and addressed in Section 4.2, the
asynchronous blocks in the CDMA NoC include the “CDMA
transmitter,” “network arbiter,” “Tx/Rx packet buffer,” and
“packet receiver/sender” blocks. Since the “CDMA trans-
mitter” and “network arbiter” blocks are data-path centric
blocks, the control logic used in these blocks can be com-
posed by a straightforward C-element pipeline as illustrated
in Figure 15. Each stage in the C-element pipeline is enabled
by the enable signals generated by the data completion detec-
tion circuits. The control token will be passed from one stage
to the next one through each C-element in the pipeline.

The control logic used in the “Tx/Rx packet buffer” and
“packet receiver/sender” blocks of the network node for the
CDMA NoC is similar to the control logic illustrated in
Figure 14 except that the enable conditions of the C-element
are different.

10 VLSI Design
req-in stepl_done o Host 0 (100 MHz) Host 1 (10MHz) | [Host 2 (500 MHz)
step2_done
steplen P step3-done Network IF (M) Network IF (S) Network IF (M)
step2-en step3_en ¢ Ring 1 g ¢
| Network node 0 : Network node 1 Izl Network node 2
FIGURE 15: C-element control pipeline. [fuing 2
Network node 5 Network node 4 Network node 3
Network IF (S) Network IF (M) Network IF (S)
Host 5 (50 MHz) Host 4 (1 MHz) Host 3 (250 MHz)
] D | C F1GURe 17: Six-node PTP NoC simulation network.
A Q
EN
B Host 0 (100 MHz)| | Host 1 (10 MHz) | |Host 2 (500 MHz)
CLR Network IF (M) Network IF (S) Network IF (M)
sys_rst | Network node 0 | | Network node 1 | | Network node 2 ‘

FiGure 16: C-element structure.

5.3. Asynchronous design implementation

Since the synchronous designs in the presented PTP NoC and
the CDMA NoC are done in register-transfer level (RTL) by
using VHDL, it would be convenient for the implementation
if the asynchronous designs apply the same design format.
From the control logic structures described, we can see that
the C-element is a basic component widely used in the asyn-
chronous designs and a C-element is normally implemented
in transistor level. Therefore, modeling the C-element in RTL
is an important task for modeling the asynchronous designs
using VHDL. Hence, an RTL two-input C-element structure
is proposed in Figure 16. The proposed C-element structure
is based on a D-flipflop (D-FF) which uses “A AND B” as
the enable (“EN”) signal and “A OR B” as the reset signal
(“CLR”). The data input port (“D”) of the D-FF is attached
to logic “1” constantly. The idea of using a flipflop to build
a C-element has been presented in [21] where an RS-FF is
suggested to be used; whereas, the D-FF C-element structure
in Figure 16 is more stable because it avoids data switching at
the data input port.

The C-element structure illustrated in Figure 16 is
hazard-free under one-input change assumption by apply-
ing the “AND” gate and “OR” gate at the “EN” port and
“CLR” port, respectively. For certain two-input switch pat-
terns, 00— 11 and 11—00, the structure in Figure 16 is also
hazard-free; whereas, the input switch patterns, 01—10 and
10—01, are not allowed because they may produce a logic
error which depends on the wire delay. Because all the C-
elements in the PTP and the CDMA NoC designs are used to
follow a four-phase handshake protocol, there are no 01—10
or 10—01 input switch patterns for the C-elements in the de-
signs. Thus, the proposed C-element structure can be safely
used in the NoC designs.

T ¢ ¢

| CDMA transmitter and network arbiter |

| Network node 5 J | Network node 4 J | Network node 3 |

Network IF (S)
Host 5 (50 MHz)

Network IF (M)
Host 4 (1 MHz)

Network IF (S)
Host 3 (250 MHz)

F1Gure 18: Six-node CDMA NoC simulation network.

By using the proposed RTL C-element structure, the
asynchronous designs of the two NoCs are modeled in RTL
using VHDL. Since the entire designs are in a uniform VHDL
format, the commonly used synchronous design tools and
flow can be used for implementing the NoC designs.

6. PERFORMANCE ESTIMATION

After the structures and designs of the PTP NoC and the
CDMA NoC have been discussed, the performance of the two
NoC designs will be addressed in this section. The two six-
node simulation networks used for performance estimations
and the estimation results will be presented and discussed in
the following subsections.

6.1. The simulation network setup

In order to estimate the performance, two six-node networks
have been set up for simulation purpose. The simulation net-
work which applies the PTP NoC structure is illustrated in
Figure 17, while the network which applies the CDMA NoC
structure is illustrated in Figure 18. In each of the two sim-
ulation networks, six “functional host” blocks are connected
into the network through six network nodes. The network
nodes are connected to each other through the two different
NoC structures, respectively, for the purpose of comparison.
The interface standard applied in the simulation networks
is BVCI standard [16]. Three hosts act as masters and the
other three act as slaves, as denoted by the labels “M” and “S,”

X. Wang and J. Nurmi

11

TaBLE 1: Area cost of the PTP NoC components.

TasLE 3: Synchronous transfer latency.

Blocks of network node Area (pm?)
Node IF (BVCI slave type) 13430.8
Layer MUX 18346.0
Communication controller 7823.4
Packet distributor 6783.0
Packet sender (include Tx packet buffer) 44740.6
Packet receiver 6955.0
Rx packet buffer 40255.5
Total area of a network node

(includes 2 “communication layer 244891.8
blocks”)

TaBLE 2: Area cost of the CDMA NoC components.

Block name Area (pum?)
Node IF 18825.2
Tx/Rx packet buffer 71778.3
Network node Packet sender 17707.0
Packet receiver 23253.0
Total area of a network node 131563.5
CDMA transmitter 10338.3
Network arbiter 17686.5

respectively, in the “network if” blocks. The master hosts can
generate requests to any slave hosts, while the slave hosts can
generate responses only for the received requests passively.
The functional hosts in the two simulation networks are not
implemented as any concrete designs. They are simulated by
the stimulus which comes from the “network if” block to the
network nodes. Hence, the configurations of the two simula-
tion networks are the same except for the connection struc-
tures.

6.2. The area costs

By using the scheme described in Section 5.3, both the syn-
chronous and asynchronous designs in the simulation net-
works are realized in RTL using VHDL. A 0.18 ym standard
cell library is used for synthesizing the two simulation net-
works. The area costs of the two simulation networks are
listed in Tables 1 and 2, respectively. As listed in Table 2, the
area cost of the “network node” in the CDMA NoC is 53%
smaller than the area of the “network node” block in the PTP
NoC. The reason of this big difference of the area costs is
that there are two “communication layer” blocks contained
in each network node of the PTP NoC in order to set up bidi-
rectional ring links. After including the area costs of “CDMA
transmitter” and “network arbiter” blocks, the total area cost
of the six-node CDMA NoC is 55% smaller than the area cost
of the six-node PTP NoC.

6.3. The data transfer latencies

After the networks were synthesized, gate-level simulations
of the two networks were performed using an event-driven

Latency of sending Latency of receiving
Interface type data to “network data from “network
node” node”
BVCI master 8 local clock cycles + 8 local clock cycles +
2.5ns 3.2ns
BVCI slave 4 local clock cycles + 4 local clock cycles +
2.5ns 3.1ns
Network node 0 Network node 1 Network node 2

D

8]
w
=

F1GURE 19: ATL parameters of the PTP NoC.

simulator. Because the GALS scheme is applied in the two
simulation networks, the data transfer latency of the net-
works can be separated into two parts which include syn-
chronous transfer latency (STL) and asynchronous transfer
latency (ATL). The STL refers to the data transfer latency be-
tween a functional host and the network node attached to
it. STL depends on the local clock and the type of interface.
Since the same “node if” block is applied in both networks,
the STL values for the two simulation networks are the same.
The measured STL values are listed in Table 3. The constant
values in Table 3 are caused by the handshakes in the asyn-
chronous domain. They are independent of the local clock
rate but belong to the synchronous transfer processes. There-
fore they are counted as a part of STL.

The ATL refers to the data transfer latency of transfer-
ring data packets from one network node to the other node
through an NoC structure using asynchronous handshake
protocols. The ATL values in the PTP and CDMA simula-
tion networks consist of different parameters which will be
discussed in the following subsections.

6.3.1. ATL in the PTP NoC

The ATL in the PTP NoC consists of four parameters: packet
loading latency (PLL), packet transfer latency (PTL), packet
bypass latency (PBL), and packet storing latency (PSL).
These latency parameters are measured in a noncongested
situation which means that no conflicts between “bypass
packet” transfer and the “local packet” transfer are included
in the simulation. The concept of the four latency param-
eters is illustrated in Figure 19 with an example that “net-
work node 0” sends one packet to “network node 2” via “net-
work node 1 The black arrows in Figure 19 represent the
packet transfer direction. The portions of the transfer used
to measure the different parameters of latency are marked by
grey arrows in Figure 19 and are explained in the next four

12 VLSI Design
TaBLE 4: Measured ATL values of the PTP NoC. TABLE 5: Measured ATL values of the CDMA NoC.
Packet length | PLL (ns) PTL (ns) PBL (ns) PSL (ns) Packet length PLL (ns) PTL (ns) PSL (ns)
2 data cells 11.7 9.7 10.7 3.3 2 data cells 5.7 384.6 5.5
3 data cells 15.2 13.1 14.2 3.3 3 data cells 5.7 768.9 5.5
4 data cells 18.6 16.5 17.6 3.3 4 data cells 5.7 1153.7 5.5
Network node 0 Network node 1 'Fhe c.lifferent parameters of ATL- are marked })y grey arrows
in Figure 20 and are explained in the following three para-
graphs.
i | (1) Packet load latency (PLL). This is the time used by the
. i i . “packet sender” block in a “network node” to fetch one data
:éPLLE i« PTL >:£PSL;E packet from “Tx packet buffer” and prepare to send the data
Lo L packet to “CDMA transmitter.”
i ATL [(2) Packet transfer latency (PTL). This latency refers to
the time used to transfer one data packet from the “packet
FIGURE 20: ATL parameters of the CDMA NoC. sender” of the sender node to the “packet receiver” of the
receiver node through the CDMA channel using a handshake
protocol.
paragraphs, (3) Packet storing latency (PSL). After the receiver node

ATL = PLL+PTLX(N + 1) + PBLXN +PSL. (1)

(1) Packet load latency (PLL). It is the time used to load
one “local packet” into “Tx packet buffer.”

(2) Packet transfer latency (PTL). This latency refers to
the time used to transfer one data packet from the “packet
sender” of a network node to the “packet receiver” of an ad-
jacent node using a handshake protocol.

(3) Packet bypass latency (PBL). After a network node re-
ceives a packet from another node, it will check its destina-
tion address. If it is a “bypass packet,” it will be delivered into
“Tx packet buffer.” The time spent on this process is called
PBL.

(4) Packet storing latency (PSL). It is the time spent on
storing one “incoming packet” into “Rx packet buffer”

The formula of calculating the ATL of transferring one
packet in the PTP NoC is given in (1). It represents the sit-
uation in which the packet traverses several network nodes
before reaching its destination. N refers to the number of in-
termediate nodes between the source node and destination
node of a packet. If a packet is transferred between two adja-
cent network nodes, then N is 0. The values of ATL param-
eters measured in the simulation are listed in Table 4. The
listed latency values only include the logic gate delay of the
circuits, no wire delay is considered. More accurate latency
values could be obtained by including the wire delay after
layout.

6.3.2. ATL in the CDMA NoC

The ATL in the CDMA NoC consists of three parameters:
packet loading latency (PLL), packet transfer latency (PTL),
and packet storing latency (PSL). The concept of those ATL
parameters is illustrated in Figure 20 with an example where
“network node 0” sends one data packet to “network node
1> The black arrows in Figure 20 represent the packet trans-
fer direction. The portions of the transfer used to measure

receives a data packet, it will spend a certain amount of time
to store the received data packet into “Rx packet buffer.” This
time duration is measured as PSL.

The measured values of ATL parameters of the CODMA
NoC are listed in Table 5. The listed latency values only in-
clude the logic gate delay of the circuits, no wire delay is
considered. In Table 5, we can see that PTL increases as the
packet length increases. This is because the data cells in a
packet are sent in a serial manner in the CDMA NoC. Thus,
more data cells need more transmission time. The PLL and
PSL values are not affected by the packet length. The reason is
that the data cells in a packet are loaded or stored in a parallel
manner.

6.3.3. Comparing the ATL values

From the simulation results presented in Sections 6.3.1 and
6.3.2, we can see that the ATL value in the six-node CDMA
NoC is a stable value for a certain data packet length, whereas
the ATL value in the PTP NoC is a variable depending on the
packet traffic route. The ATL parameter “PBL” of the PTP
NoC does not exist in the ATL of the CDMA NoC because
the data packets in the CDMA NoC are transferred directly
from their source nodes to their destination nodes. The sta-
ble ATL value is an advantage of the CDMA NoC since it is
very helpful for supplying guaranteed transfer latency ser-
vice in the network. However, by comparing with the ATL
value of the PTP NoC, the ATL value of the CDMA NoC
is much larger. For example, according to values listed in
Table 5, ATL of transferring a two-cell packet in the CDMA
NoC is 395.8 nanoseconds. This value equals the ATL value
of transferring the same size packet through 17 intermediate
nodes in the PTP NoC according to (1) and Table 4. The rea-
son for the large ATL value in the CDMA NoC is that each
original data bit is extended into Sbits by an S-bit spreading
code during the obligatory data spreading process for CDMA
transmission, and the encoded data are transferred bit by bit
in the current realization of the CDMA NoC; whereas, in the

X. Wang and J. Nurmi

PTP NoC, the data bits are transferred cell by cell without
any encoding, namely 32 original data bits are transferred at
one time. Therefore, the ATL value of CDMA NoC can be
reduced by transferring the encoded bits in parallel.

6.4. SystemC modeling for further estimation

The data transfer latency estimations made in Section 6.3 are
based on two six-node simulation networks. However, in dif-
ferent applications, the number of nodes in an NoC can be
different. Therefore, data transfer latency estimations under
different numbers of network nodes of the two NoC designs
would be helpful for further evaluation.

As discussed in Section 6.3.1, the data transfer latency of
the PTP NoC is mainly affected by the number of intermedi-
ate network nodes which a packet passes through during the
transfer. Therefore, by using the transfer latency values ex-
tracted from the six-node RTL simulation network, the ATL
values of the PTP NoC with different numbers of network
nodes can be estimated by using (1). For the CDMA NoC,
the ATL values with different network node numbers are dif-
ficult to get from the six-node simulation network presented
in Section 6.3 due to the lack of scalability in the CDMA
NoC. Since the data transfer latency estimation presented in
Section 6.3 is based on the RTL simulation network realized
by using VHDL, any changes in the simulation network will
incur a time-consuming synthesis and simulation design cy-
cle. Therefore, a flexible and fast simulation model of the
CDMA NoC is preferred for further ATL performance esti-
mations of the CDMA NoC.

SystemC [22] is a C++ class library which can be used
to model system-level designs. Since a SystemC model is to-
tally described by a software programming language, the ab-
straction level of the system model can be very flexible and
the simulation can run at a faster speed than an RTL model.
Thus, a SystemC model of the CDMA NoC is built for the
flexible and fast simulation purpose.

The SystemC model of the CDMA NoC is built in trans-
action level by modelling each block of the CDMA NoC as a
channel [22]. The asynchronous communications among the
blocks are modelled by calling each others’ channel interface
functions in the SystemC model. In order to estimate the ATL
values of the CDMA NoC via the transaction-level SystemC
model, a set of latency values listed in Table 6 is extracted
from the gate-level simulation of the RTL six-node CDMA
network presented in Section 6.3. By back-annotating the
transfer latency values to the corresponding channels in the
SystemC model, the ATL estimations of the CDMA NoC with
different numbers of network nodes can be obtained through
simulating the SystemC model in transaction level. The ob-
tained ATL estimation values from the SystemC model sim-
ulations are listed in Table 7. From Table 7, we can see that
the transfer latency of the CDMA NoC increases as the num-
ber of network nodes increases. The main reason of the la-
tency increasing is that the data encoding latency in “CDMA
transmitter” block is getting larger when the number of net-
work nodes increased. Another reason is that the width of the
orthogonal codes used for encoding increases as the num-
ber of nodes increased in the network. Thus, the spreading

13
TaBLE 6: Extracted transfer latency values.
Blocks Processes Latency
Tx/Rx packet buffer Rez?d 109 ns
Write 11.5ns
Send a 2-cell packet to
Packet sender “CDMA transmitter” 99.2 ns
Load decoding PN code 1.2ns
Packet receiver Receive a 2-cell packet from
« e » 192.0ns
CDMA transmitter
Network arbiter Arbitration 4.3ns
CDMA transmitter Data encoding 2.9ns

TABLE 7: ATL estimation values of the CDMA NoC with different
numbers of nodes.

Namberofnodes | digeode [Lo
3 4 362.7 ns
8 411.8ns
12 16 510.0 ns
24 32 706.4 ns

code loading latency in “packet receiver” block would be in-
creased as a consequence. Because the back-annotated Sys-
temC model of the CDMA NoC only uses a limited number
of extracted latency values presented in Table 6, the ATL val-
ues listed in Table 7 only can give a quick glimpse on the la-
tency situations when the number of network nodes in the
CDMA NoC is changed. The accurate latency information
needs to be obtained through real circuit implementations.

7. CONCLUSION

A PTP connection NoC and a CDMA connection NoC were
examined and compared in this paper. Both of the presented
NoC designs are packet-switched networks and support the
GALS communication scheme. The two NoC designs are
compared in terms of NoC structures, data transfer princi-
ples, network node designs, asynchronous designs, and the
performances. The features of the two NoC structures are
summarized in the following five paragraphs.

(1) NoC structures. The PTP NoC applies direct links
among the network nodes and a distributed traffic scheme
for the data communication. The CDMA NoC applies a cen-
tralized connection scheme and provides parallel data trans-
fers in time domain.

(2) Data transfer principles. The PTP NoC transfers data
packets in their original form among the links in the net-
work. The CDMA NoC applies CDMA technique to share the
centralized communication channel among all the network
nodes both in time and space domains. The data streams
from different network nodes in the CDMA NoC are sep-
arated from each other by encoding them with a set of or-
thogonal codes.

14

VLSI Design

(3) Network node designs. The network node structure
in the PTP NoC is more complex than the structure of the
network node in the CDMA NoC. The communication con-
trol tasks in the CDMA NoC network node are less than the
tasks in the PTP NoC network node. The complexity caused
by packet routing processes in the network node of the PTP
NoC is avoided in the network node of the CDMA NoC.

(4) Asynchronous designs. The asynchronous designs ap-
plied in the PTP and CDMA NoCs are similar to each other.
The four-phase dual-rail protocol is applied in both NoC de-
signs. The control logic used in the asynchronous designs of
the two NoC designs is based on the micropipeline control
logic. Both the synchronous and asynchronous designs in the
two NoC designs are realized in RTL using VHDL.

(5) Performance estimations. Two simulation networks
which apply the PTP NoC structure and the CDMA NoC
structure, respectively, have been synthesized using a 0.18 ym
standard cell library. The area cost of the CDMA simulation
network is 55% smaller than the PTP simulation network.
When the number of network nodes is certain, the ATL value
of the CDMA NoC is a stable value for the same-size pack-
ets. However, the ATL value of the PTP NoC is smaller than
the value of the CDMA NoC when no data transfer conges-
tions are considered in the PTP NoC. One reason of the large
ATL in the CDMA NoC is that the applied data spreading
technique produces a large amount of encoded data bits for
transmission. Another reason is that the encoded data are de-
livered bit by bit in the CDMA NoC, whereas the PTP NoC
transfers 32 data bits at one time. Therefore, the ATL value
of the CDMA NoC can be improved largely by increasing the
number of data bits delivered at one time.

REFERENCES

[1] J. A.]. Leijten, J. L. van Meerbergen, A. H. Timmer, and J. A. G.
Jess, “PROPHID: a data-driven multi-processor architecture
for high performance DSP,” in Proceedings of European Design
and Test Conference, p. 611, Paris, France, March 1997.

[2] P. Guerrier and A. Greiner, “A generic architecture for on-chip
packet-switched interconnections,” in Proceedings of the De-
sign, Automation and Test in Europe Conference (DATE °00),
pp- 250-256, Paris, France, March 2000.

[3] D. Sigiienza-Tortosa, T. Ahonen, and J. Nurmi, “Issues in the
development of a practical NoC: the Proteo concept,” Integra-
tion, the VLSI Journal, vol. 38, no. 1, pp. 95-105, 2004.

[4] J. Muttersbach, T. Villiger, H. Kaeslin, N. Felber, and W.
Fichtner, “Globally-asynchronous locally-synchronous archi-
tectures to simplify the design of on-chip systems,” in Proceed-
ings of the 12th Annual IEEE International ASIC/SOC Confer-
ence, pp. 317-321, Washington, DC, USA, September 1999.

[5] C. A. Zeferino, F. G. M. E. Santo, and A. A. Susin, “ParlS: a
parameterizable interconnect switch for networks-on-chip,” in
Proceedings of the 17th Symposium on Integrated Cicuits and
Systems Design (SBCCI ’04), pp. 204-209, Pernambuco, Brazil,
September 2004.

[6] K. Goossens, J. Dielissen, and A. Radulescu, “Athereal net-
work on chip: concepts, architectures, and implementations,”
IEEE Design and Test of Computers, vol. 22, no. 5, pp. 414-421,
2005.

[7] X. Wang and J. Nurmi, “An on-chip CDMA communica-
tion network,” in Proceedings of International Symposium on

System-on-Chip, pp. 155-160, Tampere, Finland, November
2005.

[8] X. Wang, D. Siglienza-Tortosa, T. Ahonen, and J. Nurmi,
“Asynchronous network node design for Network-on-Chip,”
in Proceedings of International Symposium on Signals, Circuits
and Systems (ISSCS ’05), vol. 1, pp. 55-58, lasi, Romania, July
2005.

[9] B.-K. Tan, R. Yoshimura, T. Matsuoka, and K. Taniguchi, “A
novel dynamically programmable arithmetic array using code
division multiple access bus,” in Proceedings of the 8th IEEE
International Conference on Electronics, Circuits and Systems
(ICECS ’01), vol. 2, pp. 913-916, Malta, September 2001.

[10] S. Shimizu, T. Matsuoka, and K. Taniguchi, “Parallel bus sys-

tems using code-division multiple access technique,” in Pro-

ceedings of IEEE International Symposium on Circuits and Sys-

tems, vol. 2, pp. 240-243, Bangkok, Thailand, May 2003.

M. Takahashi, B.-K. Tan, H. Iwamura, T. Matsuoka, and K.

Taniguchi, “A study of robustness and coupling-noise immu-

nity on simultaneous data transfer CDMA bus interface,” in

Proceedings of IEEE International Symposium on Circuits and

Systems, vol. 4, pp. 611-614, Phoenix, Ariz, USA, May 2002.

R. H. Bell Jr,, C. Y. Kang, L. John, and E. E. Swartzlander Jr.,

“CDMA as a multiprocessor interconnect strategy,” in Proceed-

ings of the 35th Asilomar Conference on Signals, Systems and

Computers, vol. 2, pp. 1246—1250, Pacific Grove, Calif, USA,

November 2001.

[13] E. H. Dinan and B. Jabbari, “Spreading codes for direct se-
quence CDMA and wideband CDMA cellular networks,” IEEE
Communications Magazine, vol. 36, no. 9, pp. 48-54, 1998.

[14] E. S. Sousa and J. A. Silvester, “Spreading code protocols
for distributed spread-spectrum packet radio networks,” IEEE
Transactions on Communications, vol. 36, no. 3, pp. 272-281,
1988.

[15] D. D. Lin and T. J. Lim, “Subspace-based active user identifi-
cation for a collision-free slotted ad hoc network,” IEEE Trans-
actions on Communications, vol. 52, no. 4, pp. 612621, 2004.

[16] VSI Alliance, “Virtual Component Interface Standard version
2, April 2001, http://www.vsi.org/.

[17] OCP-IP Association, “Open Core Protocol Specification,”
2001, http://www.ocpip.org/.

[18] A. P. Niranjan and P. Wiscombe, “Islands of synchronicity,
a design methodology for SoC design,” in Proceedings of De-
sign, Automation and Test in Europe Conference and Exhibition
(DATE *04), vol. 3, pp. 64—69, Paris, France, February 2004.

[19] X. Wang and J. Nurmi, “A RTL asynchronous FIFO design us-
ing modified micropipeline,” in Proceedings of the 10th Bien-
nial Baltic Electronics Conference (BEC °06), Tallinn, Estonia,
October 2006.

[20] I. E. Sutherland, “Micropipelines,” Communications of the
ACM, vol. 32, no. 6, pp. 720-738, 1989.

[21] Q. T. Ho, J. B. Rigaud, L. Fesquet, M. Renaudin, and R. Rol-
land, “Implementing asynchronous circuits on LUT based
FPGAs,” in Proceedings of the 12th International Conference
on Field-Programmable Logic and Applications (FPL ’02),
vol. 2438 of Lecture Notes in Computer Science, pp. 36—46,
Montpellier, France, September 2002.

[22] IEEE Standard SystemC Language Reference Manual, http://
www.systemc.org/.

(11

(12

http://www.vsi.org/
http://www.ocpip.org/
http://www.systemc.org/
http://www.systemc.org/

PUBLICATION 7

X. Wang, and J. Nurmi, “Comparing Two Non-Blocking Concurrent Data Switching Schemes for
Network-on-Chip”, in Proceedings of the 2007 International Conference on Computer as a tool,
(EUROCON 2007), pages 2587-2592, Warsaw, Poland, September 2007.

© 2007 IEEE. Reprinted, with permission, from Proceedings of the 2007 International Conference
on Computer as a tool.

EUROCON 2007 The International Conference on “Computer as a Tool”

Warsaw, September 9-12

Comparing Two Non-Blocking Concurrent Data
Switching Schemes for Network-on-Chip

Xin Wang®, and Jari Nurmi®

* Tampere University of Technology, 33101 Tampere, Finland
E-mail: {xin.wang, jari.nurmi}@tut.fi

Abstract— Based on a previously developed Code-Division
Multiple-Access (CDMA) Network-on-Chip (NoC) structure,
this paper examines the overhead cost of data encoding and
decoding operations in the CDMA data switching scheme by
comparing it with another non-blocking concurrent data
switching scheme, crossbar, in the same six-node on-chip
network environment. Different data path configurations
are explored in the realizations of the six-node network in
order to further examine the characteristics of the CDMA
NoC. The crossbar structure is realized by parallel
multiplexers. The two different realizations of the six-node
network which apply the CDMA scheme and crossbar
scheme separately are realized in Register-Transfer Level
(RTL) by using Hardware Description Language (HDL).
Based on the RTL realizations, area and power costs, data
transfer latencies, and the number of data wires of the two
schemes is compared.

Keywords—Code-Division
Network-on-Chip

Multiple-Access, Crossbar,

I. INTRODUCTION

Driven by the complexity of System-on-Chip (SoC)
applications, more and more components are integrated
into an on-chip system. Thus, the communication among
the large number of components is a challenging task to
deal with. In this situation, Network-on-Chip is proposed
to handle the communications in an on-chip system.
Namely, the concerns of communication are separated
from computation by applying a dedicated on-chip
communication network in a SoC design. The published
NoC structures can be classified into two categories,
circuit-switched network and packet-switched network,
according to data switching schemes. The circuit-switched
network, such as PROPHID [1], connects the terminals in
the network by allocating them a set of time or space
slices on the communication links. The packet-switched
networks, e.g. Athereal [2] and Proteo [3], share the
communication links among all the terminals in space and
time domains by encapsulating data into packet format
and delivering them through routers or switch nodes.

For performing the data transfers among a large amount
of components in the future SoC, the packet-switched
scheme is a more promising choice than circuit-switched
scheme in terms of scalability and parallelism. However,
routing issue is a main challenge of a packet-switched
NoC because it affects the packet transfer latency in the
network severely. One type of solutions is to optimize the
routing scheme to equalize and improve data transfer
latencies when data packets are transferred to their
destinations via different routes. Another type of solutions
is to avoid the routing issue by applying non-blocking
concurrent data switching scheme which means that data
transfers which have different destinations can be

performed concurrently without blocking each other. In
this paper, the costs and performance of applying two
non-blocking concurrent data switching schemes in a NoC
design are presented and compared.

A CDMA scheme [4] has been proposed to implement
the non-blocking concurrent data switching scheme in a
NoC design. CDMA technique applies a set of orthogonal
codes to encode the data from different users before
transmission in a shared communication media. Hence, it
permits multiple users to use the communication media
concurrently by separating the different data from
different users in the code domain. The CDMA scheme
presented in [4] uses the feature of multiple access of
CDMA technique to transfer the data packets from
different sources to their destinations directly and
concurrently. The main overhead of the CDMA NoC
structure is the complexity and data transfer latency
caused by data encoding and decoding operations.
Another type of non-blocking concurrent data transfer
scheme is crossbar which avoids data encoding and
decoding operations while keeping the feature of
concurrent data transfers. Therefore, in order to examine
the overhead of applying CDMA technique in a NoC, a
crossbar structure realized by parallel multiplexers is
presented and compared with the CDMA NoC.
Furthermore, in this paper, the characteristics of the
CDMA NoC are further examined by realizing the NoC
with different data path configurations.

The rest of this paper is arranged as follows. Section II
will compare the CDMA data switching scheme with the
crossbar scheme in terms of data transfer principles and
network structures. The realizations of the six-node
CDMA NoC and crossbar NoC with different data path
configurations will be presented in Section III. Section IV
will present and compare the simulation results based on
the RTL realizations of the six-node network. Finally, the
conclusions will be drawn in Section V.

II. COMPARING THE CDMA AND CROSSBAR DATA
SWITCHING SCHEMES

In this section, data transfer principles of the CDMA
data switching scheme and the crossbar scheme will be
compared firstly. Then the NoC structures which apply the
two data switching schemes will be compared.

A. Data Transfer Principles

As the name indicated, the CDMA data switching
scheme applies the Code-Division Multiple-Access
communication technique [5] to transfer data among
multiple users concurrently. The principle of CDMA data
transfer is illustrated in Fig.1. Each data stream from
different users is encoded with a unique orthogonal
spreading code at the sending end. Then the encoded data

1-4244-0813-X/07/$20.00 2007 IEEE.

2587

Receiving End

ffffffffffffffffffffffffffffffffff

data 1

fffffffffffffffffffffffffffffffffff

‘data 1%%7

spreading code 1

spreading code 1 |

—P%—Pdatan

idata n4>®7

spreading code n

Fig. 1. CDMA Data Transfer Principle

from different users are added together for transmission in
a shared communication media without interfering with
each other because of the orthogonal property of the
spreading code. The orthogonal property means that the
normalized autocorrelation value of the spreading codes is
1, while the normalized cross-correlation value is 0. At the
receiving end, each data stream from different users can
be decoded from the received sum signals by using the
same spreading code for encoding as illustrated in Fig.1.

Crossbar is a well-known structure for building a
circuit-switched network. The data transfer principle of
crossbar is illustrated in Fig.2 with a four-port switch. In
the crossbar structure, an input can be connected to any
outputs by optionally closing the switches between input
and output lines. For correct operation, one output can be
connected to at most one input.

From the introduced data transfer principles, we can see
that the data transfers in the CDMA scheme and the
crossbar scheme are non-blocking and concurrent because
a dedicated data transfer channel can be set up from each
input to its selected output without any conflicts with
other channels if the selected outputs are different. Hence,
the crossbar scheme is a good reference to evaluate the
overhead of applying the CDMA scheme in a NoC.

B. Applying the CDMA Scheme and Crossbar Scheme
In a NoC

In order to adapt the CDMA scheme and crossbar
scheme into a NoC design, all the operations or structures
in the schemes need to suit the commonly used digital
circuit design. The following two paragraphs describe the
methods of implementing the CDMA and crossbar
schemes for NoC designs.

The key operations in the CDMA scheme are data
encoding and decoding. The detailed information of
implementing the encoding and decoding operations for a
NoC design has been presented in [4] and briefly
summarized as follows. The encoding operations are
performed by XOR logic gates in the design, while the
decoding operations are carried out by accumulating the
received sum values into two separate parts according to
the bit value of the spreading code used for decoding.
Then the original data value can be restored by comparing
the values in the two accumulators.

In order to realize the crossbar scheme in a NoC design,
multiplexers can be used to set up the switches between
input ports and output ports. An example structure of
realizing crossbar among four nodes is illustrated in Fig.3.
It uses four 3:1 multiplexers to build the required data
switching channels. The control signal of each multiplexer
is generated by the arbitration result of the input requests.

in0
in 1 ~_
N
in2 ~_
N N

in3
~

out0 outl out2 out3

Fig. 2. Four-Port Crossbar Structure

Node 1 _[
_[

Node 2

j_
o

Four-Node Crossbar Realized by Multiplexers

Node 3

Fig. 3.

C. NoC Structures

The NoC structure which can apply either CDMA
scheme or crossbar scheme is illustrated in Fig.4. If the
CDMA scheme is applied, the NoC structure contains
‘Network Node’, ‘CDMA Transmitter’, and ‘Network
Arbiter’ blocks. If the crossbar scheme is applied, we need
to replace the ‘CDMA Transmitter’ and ‘Network Arbiter’
blocks with ‘Crossbar Switch’ block as illustrated in Fig.4.

‘Network Node’ block is used to connect the functional
Intellectual Property (IP) blocks (‘Functional Host’) into
the on-chip network. The structure and function of the
‘Network Node’ blocks for the CDMA NoC and the
crossbar NoC will be presented in Section II D.

The function of ‘CDMA Transmitter’ and ‘Network
Arbiter’ blocks in the CDMA NoC which have been
presented in [4] will be briefly summarized in the
following paragraph.

‘Network Arbiter’ takes care of informing the requested
receiver node to prepare the proper spreading code for
decoding, and then sending a grant signal back to the
sender node. After getting the grant signal, the sender
node will start to send data packets to ‘CDMA
Transmitter’. In case that there are more than one sender
node requesting to send data to the same receiver node,
the arbiter will apply the “first come, first served’ principle
to guarantee that only one sender is sending data to one
specific receiver at a time. If different sender nodes
request to send data to different receiver nodes, these
requests would not interfere with each other and will be
handled in parallel in the ‘Network Arbiter’. The main
task of the ‘CDMA Transmitter’ block is to receive data
packets from different network nodes and encode the data
with the corresponding unique spreading code of the
sender node. Because the nodes in the network can request
data transfer randomly and independently of each other,
‘CDMA Transmitter’ also applies the ‘first come, first
served’ mechanism to ensure that the data encoding and
transmission are performed as soon as a data transfer
request appears.

In the crossbar NoC, ‘Crossbar Switch’ block consists
of multiple channel multiplexers to set up data channels
between certain network nodes according to data transfer
requests. The number of channel multiplexers in the
‘Crossbar Switch’ block is equal to the number of

2588

Synchronous

: Syﬂchr(;ﬁbus\ -
Functional CDMA INetwork Functional
: Host 1 Network | Transmitter Node Host 2
| 1 MHz No;le & —— 500 MHZV
= | Network
Arbiter . -
Y " Functional
' Fuﬁgstorr;al Network c borS b Ng:?g K1 Hostm
: [rossbar Switc Y
200 MHz “;Node“ 10 MHz
Synchronous ; . Asynchronous ' Synchronous

Fig. 4. The CDMA and Crossbar NoC Structure

network nodes in the NoC. Each channel multiplexer
contains arbitration logic to control the selection of the
output. When multiple data transfer requests from
different network nodes come to a channel multiplexer
simultaneously, the multiplexer will record the requests
and serve one request at a time. For the requests that come
at different times, a channel multiplexer will serve the
requests by the principle of ‘first come, first served’. After
setting up the data channel, a channel multiplexer will
send a grant signal back to the sender node to enable the
data transfer process.

Since the crossbar NoC is exempted from data encoding
and decoding operations in the CDMA NoC, it has
simpler structure than the CDMA NoC. Although the
CDMA and crossbar data switching schemes are non-
blocking, the NoC which applies either of these two data
switching schemes is not non-blocking network because
of the buffers introduced in the ‘Network Node’ blocks.

D. ‘Network Node’ Structures

The structure of ‘Network Node’ blocks for the CDMA
NoC and the crossbar NoC are same except the different
functions in ‘Packet Receiver’ and ‘Packet Sender’ sub-
blocks. The block diagram of a ‘Network Node’ block is
illustrated in Fig.5. It consists of ‘Node IF’, ‘Tx/Rx
Buffer’, ‘Packet Sender’, and ‘Packet Receiver’ sub-
blocks. As illustrated in Fig.5, the ‘Network IF’ block
which belongs to the functional host is an interface block
for connecting a functional host with a ‘Network Node’.
Because the different functional hosts may work at
different clock frequencies as illustrated in Fig.4,
Globally-Asynchronous Locally- Synchronous (GALS)
scheme [6] scheme is applied in the network node by
using synchronous design in the ‘Node IF’ block and
using asynchronous design in the other blocks. VCI [7] or
OCP [8] interface standards can be applied to transfer data
between ‘Network IF’ and ‘Node IF’. The function of the
sub-blocks in a ‘Network Node’ will be described in the
following four paragraphs.

1) ‘Node IF’. This block is used to assemble the data
from the functional host into packet format and send the
packet to ‘Tx Packet Buffer’, or disassemble the received
packet from ‘Rx Packet Buffer’ and send data to the
functional host.

2) ‘Tx/Rx Packet Buffer’. These two blocks are the
buffers which consist of the asynchronous FIFO presented
in [9]. ‘Tx Packet Buffer’ is used to store the data packets
for transfer. The ‘Rx Packet Buffer’ stores and delivers the
received packets from ‘Packet Receiver’ to “Node IF’.

3) ‘Packet Sender’. In the CDMA NoC, when ‘Tx
Packet Buffer’ is not empty, ‘Packet Sender’ will fetch a
data packet from the buffer. Then it will extract the

Network Node

E | Tx Packet+ Packet | data 2”
T = ' | Buffer Sender
= | H# - :
g1 ¢] !
S|z 3| | |
E z “ < [Rx Packet | Packet datgin
= | Buffer [|Receiver™

Synchronous Asynchronous

Fig. 5. The Network Node Block Diagram

destination information from the packet and send the
destination address to ‘Network Arbiter’. After ‘Packet
Sender’ gets the grant signal from the arbiter, it will start
to send the data packet to ‘CDMA Transmitter’. In the
crossbar NoC, after fetching a packet from the buffer, the
‘Packet Sender’ will assert a request signal to the channel
multiplexer attached to the receiver node. After ‘Packet
Sender’ gets the grant signal from the requested channel
multiplexer, it will start to send the data packet to the
receiver node through the multiplexer. After a data packet
transfer is completed, the ‘Packet Sender’ needs to clear
the request signal in order to release the requested channel
multiplexer for serving requests from other nodes.

4) ‘Packet Receiver’. In the CDMA NoC, this block
will wait for the sender information from ‘Network
Arbiter’ to select the proper spreading code for decoding.
After the spreading code for decoding is ready, the
receiver will start to receive and decode the data from
‘CDMA Transmitter’, and then send the decoded data to
‘Rx Packet Buffer’ in packet format. In the crossbar NoC,
this block will wait for the request from the multiplexer
block attached with it. When the request comes, the
‘Packet Receiver’ block will first receive the data packet
and then deliver it to ‘Rx Packet Buffer’ block.

III. REALIZATIONS OF A SIX-NODE NOC

In order to compare the performance of the CDMA and
crossbar data switching schemes in a NoC surrounding, a
six-node network is built for simulation purpose. This
simulation network has the same configurations with the
network presented in [4] except that different data path
configurations of the network are explored in this work to
further examine the characteristics of the CDMA NoC.
The different realizations of the six-node simulation
network will be addressed and compared in this section.

A. Simulation Network Setup

The six-node simulation network is illustrated in Fig.6.
Each functional host works in different clock frequencies.
The interface standard applied in the network is Basic VCI
(BVCI) [7] standard. Three hosts act as initiators and the
other three act as targets, as denoted by the labels ‘I’ and
‘T’ respectively in the ‘Network IF’ blocks. The initiator
hosts can generate requests to any target hosts, while the
target hosts can generate responses only for the received
requests passively. The basic data unit transferred in the
network is a data packet composed of one header cell and
several data cells. The number of data cells in a packet
varies from one to three, while the width of each packet
cell is fixed at 32 bits. As illustrated in Fig.6, the
interconnection structure in the network is either ‘CDMA
Transmitter’ and ‘Network Arbiter’ blocks or the
‘Crossbar Switch’ block. For the CDMA scheme

2589

Host 0 (100MHz) | | Host 1 (I0MHz) | | Host 2 (S00MHz)

Table I. Area Cost of CDMA NoC Components

Area (um®)
Network IF (I) Network IF (T) Network IF (I) 1-bit 8-bit | 16-bit | 32-bit
£ E E Node | Target 18825.2
‘ Network Node 0 ‘ ‘ Network Node 1 ‘ ‘ Network Node 2 ‘ IF Initiator 45674.5
Tx/Rx Packet 717783
? 3 - Buffer)
‘ CDMA Transmitter & Network Arbiter / Crossbar Switch ‘ Packet Sender 17707.0 17756.2 17805.3 11321.3
¢ ¢ ¢ Packet Receiver 23253.0 86241.3 161390.6 | 311623.7
CDMA
Network Node 5 ‘ Network Node 4 ‘ Network Node 3 ‘ Transmitter 10338.3 46710.8 909353 | 178368.5
v v v Mook 11014.1
Network IF (T) l Network IF (I) Network IF (T) Arbiter
Host 5 (50 MHz) l Host 4 (1IMHz) Host 3 (250MHz) Table II. Area Cost of Crossbar NoC Components
Area (um®)
Fig. 6. Six-Node Simulation Network 1-bit 8-bit 16-bit 32-bit
ot : : Node | Target 18825.2
realization, the spreading codes used in the network are F i 156715
six 8-bit Walsh codes. For the crossbar scheme realization, R P:;ll(aefr :
the ‘Crossbar Switch’ block is composed by six X Buffer 71778.3
multiplexers similar with the example illustrated in Fig.3. Packet Sender | 178135 T 178626 | 179118 | 180920
. Packet Receiver 11710.5 10653.7 10833.9 10989.6
B. Data Path Configuration . . Channcl MUX_| 2773.0 | 38216 | 51364 | 77619
The CDMA NoC presented in [4] delivers one data bit]
from the sender to the receiver at one time. Namely, the Table L1 Total Area Cost of The Two Six-Node NoC
data path was set to 1-bit. In the CDMA NoC, since one . 'Area () . .
original data bit will be spread into S bits after encoding, 1-bit 8-bit 16-bit 32-bit
the degree of data transfer parallelism between the CDMA 13311181 | 17455186 | 20474915 12094823
‘CDMA Transmitter’ and ‘Packet Sender/Receiver’ NoC
blocks affects the data transfer latency largely. Therefore, Cr}‘\’lssgar 12516844 | 12519383 | 1261252.6 1278799.9
increasing the number of data bits encoded and delivered 0

via ‘CDMA Transmitter’ at one time can reduce the data
transfer latency in the CDMA NoC. However, increasing
the data processing and delivering parallelism will incur
larger area cost. Therefore, in order to figure out the trade-
off character between the data path width and the area cost,
four different data path widths are explored in both the
CDMA NoC and the crossbar NoC realizations.
According to the number of data bit transferred from a
‘Packet Sender’ to a ‘Packet Receiver’ through ‘CDMA
Transmitter’ in the CDMA NoC or through ‘Crossbar
Switch’ in the crossbar NoC, the data path configurations
are named as 1-bit, 8-bit, 16-bit, and 32-bit schemes.

C. Area Costs

Both the synchronous and asynchronous designs in the
network illustrated in Fig.6 are realized in RTL using
VHDL in order to suit the conventional synchronous
design tools and flow. The same 0.18um standard cell
library used to synthesize the realizations of CDMA and
crossbar NoCs. The data width and buffer depth in a
‘Network Node’ block are set to 32 bits and 4 respectively.
The logic-gate area costs of the components in the CDMA
and crossbar networks under different data path
configurations are listed in Table I and Table II
respectively. Since the designs of ‘Node IF’ and ‘Tx/Rx
Packet Buffer’ blocks are same in the two NoC
realizations, the area costs of these two blocks are same in
both realizations. The big difference appears in the area
cost of ‘Packet Receiver’ block. The ‘Packet Receiver’
block in the crossbar NoC is much smaller than the one in
the CDMA NoC because it does not have any data
decoding circuits. Because there is no data encoding in the
crossbar NoC, the area cost of one single channel
multiplexer is much smaller than the total area of the
‘CDMA Transmitter’ and ‘Network Arbiter’ blocks in the

CDMA NoC. However, in the crossbar NoC, each node
needs a channel multiplexer block. Thus, the area cost of
all the multiplexers will increase linearly when the
number of nodes increases in the crossbar NoC.

The total area costs of the two six-node network
realizations under different data path configurations are
listed in Table III. We can see that the area cost of the
CDMA NoC becomes 2.4 times larger when the data path
width increases from 1-bit to 32-bit. Whereas, the areca
cost of the crossbar NoC only increases 2.2% in the same
situation. Therefore, introducing CDMA technique incurs
a large area overhead in the six-node simulation network.

D. Number of Data Wires

By avoiding data encoding and decoding schemes in the
CDMA NoC, the crossbar NoC has smaller area cost by
setting up direct connections from each input to each
output. However, these direct connections cause a large
overhead of the number of data wires in the crossbar NoC.
This sub-section will address and compare the number of
data wires in the CDMA NoC and crossbar NoC.

The number of data wires in the crossbar NoC refers to
the number of data wires between ‘Network Node’ blocks
and channel multiplexer blocks. The equation for
calculating the number of data wires in the crossbar NoC
is given in (1). In (1), parameter ‘n’ refers to the number
of network nodes in the NoC, and parameter ‘w’ refers to
the data path width. The first term of (1) represents the
data wires for connecting the data output port of each
node to all the other nodes via channel multiplexers in the
network. The second term of (1) refers to the data wires
between the data output port of a channel multiplexer and
its attached network node.

2590

Table IV. Number of Data Wires

Table V. Data Transaction Specification

Number of Data Wires
n=6,s=8 | n=15,s=16 | n=31, s=32
w=1 36 225 961
Crossbar w=_§ 288 1800 7688
NoC w=16 576 3600 15376
w =32 1152 7200 30752
w=1 30 79 191
CDMA w=28 240 632 1528
NoC w=16 480 1264 3056
w =232 960 2528 6112
crmsbarinoc:n.(n_l)'w-’_n'wzw'”z (1)
chmai)w‘,:n'W+W'S'10g2n (2)

In the CDMA NoC, the number of data wires refers to
the number of data wires between ‘Network Node’ blocks
and ‘CDMA Transmitter” block. The equation for
calculating the number of data wires in the CDMA NoC is
given in (2). In (2), the meaning of parameters ‘n’ and ‘w’
is same with the parameters in (1). The parameter ‘s’
refers to the bit width of spreading codes used in the
CDMA NoC. The first term in (2) represents the data
wires for connecting data output port of each network
node with data input port of ‘CDMA Transmitter’ block.
The number of data wires from the data output port of
‘CDMA Transmitter’ is represented by the second term in
(2). In the CDMA NoC, each data bit to be transferred will
be extended into s bits by the s-bit spreading code after
data encoding step. Each bit of the s-bit encoded data is
called a data chip. Then each data chip from different
network nodes will be added together in the ‘CDMA
Transmitter’ block. The sum value for n data chips from n
network nodes can be represented by log,n bits. Therefore,
the ‘CDMA Transmitter’ need to use s-log,n bits to
represent the all the sum values of s-bit encoded data.
Hence, for transferring w bits data at one time, we need
w-s-logon data wires as the output of ‘CDMA Transmitter’
block.

Table IV lists the numbers of data wires for the crossbar
NoC and the CDMA NoC with different number of
network nodes and data path widths. From Table IV, we
can see that the presented crossbar NoC structure will
incur a huge amount of data wires in order to obtain the
feature of concurrent data transfer as the CDMA NoC
does. This large number of data wires of the crossbar NoC
is a strong weakness for its application in an on-chip
system because the number of network nodes in a future
SoC will be very large. Therefore, the CDMA NoC has
the advantage of utilizing less data wires to achieve
concurrent data transfer feature by comparing with the
crossbar NoC.

IV. SIMULATION RESULTS

The simulation is performed in gate-level after the RTL
realizations of the simulation network were synthesized.
The functional hosts which are not realized with any
designs are simulated by adding stimulus signals on each
‘Network IF’ block according to the BVCI standard. The
data transactions performed in the simulation are listed in
Table V. Each data transaction consists of one request
packet from an initiator host to a target host and one
corresponding response packet from the target host to the

Initiator | Target Number of Packet Length (cell)
Node Node Transactions | Request | Response
Packet Packet
Node 1 2 4,3 2,3
Node 0 Node 3 2 3,4 3,2
Node 5 1 4 2
Node 1 1 4 2
Node 2 Node 3 1 3 3
Node 5 2 4,3 2,3
Node 1 2 3,4 3,2
Node 4 Node 3 1 3 3
Node 5 1 4 2
Table VI. Synchronous Transfer Latency
Interface | Latency of sending data | Latency of receiving data
Type to ‘Network Node’ from ‘Network Node’
BVCI 8 local clock cycles 8 local clock cycles
Initiator +2.5ns +3.2ns
BVCI 4 local clock cycles 4 local clock cycles
Target +2.5ns +3.1ns

initiator host. The following paragraphs in this section will
present and compare the data transfer latency and power
consumption figures of the CDMA NoC and crossbar
NoC obtained from the gate-level simulation.

Because the GALS scheme is applied in the network,
the data transfer latency in the simulation network is
separated into two parts, Synchronous Transfer Latency
(STL) and Asynchronous Transfer Latency (ATL). The
STL refers to the data transfer latency between a
functional host and the network node attached to it. STL
depends on the local clock and the type of interface. The
measured STL values are listed in Table VI. The constant
values in Table VI are caused by the handshakes in the
asynchronous domain. They are independent of the local
clock rate but belong to the synchronous transfer
processes. Therefore they are counted as a part of STL.
Because the ‘Node IF’ block and “Tx/Rx Packet Buffer’
block of the crossbar NoC are same as the blocks in the
CDMA NoC, the STL values are also same with the
values of the CDMA NoC.

The ATL refers to the data transfer latency of
transferring data packets from one network node to the
other node using asynchronous four-phase handshake
protocol in the simulation network. The ATL of the
CDMA NoC and the crossbar NoC consists of three
portions: Packet Loading Latency (PLL), Packet Transfer
Latency (PTL), and Packet Storing Latency (PSL). The
concept of those ATL portions is illustrated in Fig.7 with
an example where ‘Network Node 1’ sends data packets to
‘Network Node 2°. The black arrows in Fig.7 represent the
packet transfer direction, whereas the three portions of the
ATL are marked by grey arrows in Fig.7 and explained in
the following three paragraphs.

1) Packet Load Latency (PLL). This is the time used by
the ‘Packet Sender’ block in a ‘Network Node’ to fetch
one data packet from ‘Tx Packet Buffer’ and prepare to
assert a request signal to the corresponding channel
multiplexer in the crossbar NoC or to the ‘Network
Arbiter’ in the CDMA NoC.

2) Packet Transfer Latency (PTL). This latency refers
to the time used to transfer one data packet from the
‘Packet Sender’ of the sender node to the ‘Packet
Receiver’ of the receiver node through ‘Crossbar Switch’
or ‘CDMA Transmitter’ using a handshake protocol.

2591

Network Node 1 Network Node 2

'PLL: PTL 'PSL
-

Fig. 7. Asynchronous Transfer Latency

3) Packet Storing Latency (PSL). After the receiver
node receives a data packet, it will spend a certain amount
of time to store the received data packet in ‘Rx Packet
Buffer’. This time duration is measured as PSL.

The values of ATL portions of the CDMA NoC and the
crossbar NoC measured in the simulations are listed in
Table VII and Table VIII respectively. From the listed
figures, we can see that PTL increases as the packet length
increases. This is because the data cells in a packet are
sent in a serial manner. Thus, more data cells need more
transmission time. The PLL and PSL values are not
affected by the packet length because the data cells in a
packet are loaded or stored in a parallel manner. From
Table VII and Table VIII, we also can see that the PLL
and PSL values are reduced in the crossbar NoC because
of the less complexity in its ‘Packet Sender’ and ‘Packet
Receiver’ blocks. The PTL values of the crossbar NoC are
smaller than the PTL values of the CDMA NoC because
the latency caused by data encoding and decoding
schemes is exempted from the crossbar NoC. However,
the differences are getting smaller when the data path
width increases. For example, the PTL values of the
crossbar NoC is around 30% of the PTL values of the
CDMA NoC when the data path is 1 bit, whereas, this
figure changes to 49% when the data path width is
increased to 32 bits.

Power costs of the two NoC designs are also estimated
during the simulations by back annotating the switching
activities to the gate-level netlists. The estimated dynamic
power costs of the two NoCs with different data path
widths are listed in Table IX. From the table, we can see
that the CDMA NoC consumes more dynamic power than
the crossbar NoC due to the data encoding and decoding
schemes. When the data path width is 8-bit, the CDMA
NoC has similar power cost with the crossbar NoC.
Therefore, 8-bit CDMA NoC is a good choice in terms of
power consumption.

V. CONCLUSIONS

Two non-blocking concurrent data switching schemes,
CDMA scheme and crossbar scheme, for on-chip
networks are presented and compared in this paper. Both
data switching schemes are examined and compared in the
same six-node network environment. The crossbar
structure is realized by using one multiplexer for each
node in the network to set up concurrent data transfer
channels. By comparing the two data switching schemes
in the same network environment, the overhead of data
encoding and decoding operations in the CDMA NoC are
examined. Different data path configurations are also
explored in the network realizations in order to further
examine the characteristics of the CDMA NoC.

According to the realization and simulation results, the
six-node crossbar NoC has a smaller area than the

Table VII. ATL Portion Values of the CDMA NoC

1 data cell 2 data cells 3 data cells

PLL (ns) 5.7 5.7 5.7

1-bit 384.6 768.9 1153.7

8-bit 459 88.4 130.9

PTL (ns)

16-bit 26.2 49.0 71.8

32-bit 14.7 26.0 37.8
PSL (ns) 5.5 5.5 5.5

Table VIII. ATL Portion Values of the Crossbar NoC

1 data cell 2 data cells 3 data cells
PLL (ns) 3.0 3.0 3.0
1-bit 112.5 211.8 354.4
PTL (ns) 8-bit 17.3 32.7 47.5
16-bit 10.6 19.4 27.8
32-bit 7.5 12.7 17.9
PSL (ns) 4.7 4.7 4.7
Table IX. Dynamic Power Costs of the Two NoC Designs
Dynamic Power Costs (mW)
1-bit 8-bit 16-bit 32-bit
CDMA NoC 19.340 6.563 7.331 7.332
Crossbar NoC 6.559 6.558 6.558 6.558

six-node CDMA NoC with four different data path widths.
The asynchronous data transfer latency values in the
CDMA NoC is reduced nearly 30 times when the data
path width is increased from 1-bit to 32-bit. In the realized
six-node simulation network, the overhead of data
encoding and decoding operations in the CDMA NoC
causes around 50% larger asynchronous data transfer
latency by comparing with the figures in the crossbar NoC.
However, the crossbar structure suffers from the drawback
of requiring a huge number of data wires in the NoC when
the number of network nodes is large. The CDMA NoC
can reduce the number of data wires while keeping the
feature of concurrent data transfers. When the data path
width is set to 8-bit, the six-node CDMA NoC has similar
dynamic power cost and area cost with the crossbar NoC.
Hence, 8-bit CDMA NoC is a good option for applying
the CDMA scheme in a NoC design.

REFERENCES

[1] J. A.J. Leijten, J. L. van Meerbergen, A. H. Timmer, and J. A. G.
Jess, “PROPHID: A Data-Driven Multi-Processor Architecture for
High- Performance DSP,” Proceedings of the 1997 European
Design & Test Conference, Mar. 1997.

[2] K. Goossens, J. Dielissen, and A. Radulescu, “Zthereal network
on chip: concepts, architectures, and implementations”, [EEE
Design & Test of Computers, Volume 22, Issue 5, Sept.-Oct. 2005.

[3] D. Sigiienza-Tortosa, T. Ahonen, and J. Nurmi, “Issues in the
Development of a Practical NoC: the Proteo Concept,” Integration,
the VLSI jounal, Volume 38, Issue 1; 2004.

[4] X. Wang, and J. Nurmi, “An On-Chip CDMA Communication
Network™”, Proceedings of 2005 International Symposium on
System-on-Chip, Nov. 2005.

[5] A. J. Vitertbi, CDMA: Principles of Spread Spectrum
Communications, Addison-Wesley Publishing Company, 1995.

[6] D. M. Chapiro, “Globally-Asynchronous Locally-Synchronous
Systems,”PhD thesis, Stanford University; Oct. 1984.

[7]1 VSI Alliance, Virtual Component Interface Standard v 2. April
2001.

[8] OCP-IP Association; Open Core Protocol Specification; 2001.

[91 X. Wang, and J. Nurmi, “A RTL Asynchronous FIFO Design
Using Modified Micropipeline”, Proceedings of 10" Biennial
Baltic Electronics Conference, Oct. 2006.

2592

PUBLICATION 8

X. Wang, T. Ahonen, and J. Nurmi, “Applying CDMA Technique to Network-on-Chip”, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, Volume 15, Number 10, pages

1091-1100, October 2007.

© 2007 IEEE. Reprinted, with permission, from [EEE Transactions on Very Large Scale
Integration (VLSI) Systems.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 10, OCTOBER 2007

1091

Applying CDMA Technique to Network-on-Chip

Xin Wang, Tapani Ahonen, and Jari Nurmi

Abstract—The issues of applying the code-division multiple
access (CDMA) technique to an on-chip packet switched commu-
nication network are discussed in this paper. A packet switched
network-on-chip (NoC) that applies the CDMA technique is re-
alized in register-transfer level (RTL) using VHDL. The realized
CDMA NoC supports the globally-asynchronous locally-syn-
chronous (GALS) communication scheme by applying both
synchronous and asynchronous designs. In a packet switched
NoC, which applies a point-to-point connection scheme, e.g., a
ring topology NoC, data transfer latency varies largely if the
packets are transferred to different destinations or to the same
destination through different routes in the network. The CDMA
NoC can eliminate the data transfer latency variations by sharing
the data communication media among multiple users concur-
rently. A six-node GALS CDMA on-chip network is modeled and
simulated. The characteristics of the CDMA NoC are examined
by comparing them with the characteristics of an on-chip bidirec-
tional ring topology network. The simulation results reveal that
the data transfer latency in the CDMA NoC is a constant value for
a certain length of packet and is equivalent to the best case data
transfer latency in the bidirectional ring network when data path
width is set to 32 bits.

Index Terms—Code-division multiple access (CDMA), inte-
grated circuit (IC) design, network-on-chip (NoC).

1. INTRODUCTION

S MORE and more components are integrated into an

on-chip system, communication issues become compli-
cated. Network-on-chip (NoC) is proposed to solve the on-chip
communication problem by separating the concerns of com-
munication from computation. The idea of NoC is to construct
an on-chip communication network to perform data trans-
fers among a large number of system components. The NoC
structures that have been proposed can be roughly sorted into
two categories, circuit switched network and packet switched
network, according to their data switching modes. SoCBUS
architecture [1], a mesh on-chip network, is an example of a
circuit switched network that uses packet connected circuit
scheme to allocate time or space slices on the switch links
among the terminals in the network. ZAthereal NoC [2] and
Proteo NoC [3] are examples of the packet switched category.
ZAthereal NoC applies the combined guaranteed service and
best-effort routers to transfer data packets in the network.
In Proteo NoC, the components in the system are connected
through network nodes and hubs. The network topology and
data links in Proteo NoC can be customized and optimized for
a specific application. Circuit-switched networks will face the
problem of scalability and parallelism if they are applied in a

Manuscript received May 30, 2006; revised April 15, 2007.

The authors are with the Institute of Digital and Computer Systems, Tampere
University of Technology, 33101 Tampere, Finland (e-mail: xin.wang @tut.fi;
tapani.ahonen @tut.fi; jari.nurmi @tut.fi).

Digital Object Identifier 10.1109/TVLSIL.2007.903914

future on-chip system which contains hundreds of functional
intellectual property (IP) blocks. The packet switched network
can overcome the shortcomings of the circuit switched network
by dividing data streams into packets and routing packets to
their destinations node by node. However, in a packet switched
network that applies multihop point-to-point (PTP) connection
scheme as in [2] and [3], the packet transfer latency will vary
largely when data packets are transferred to different desti-
nations or to the same destination via different routes in the
network. Hence, the upper bound of the packet transfer latency
is determined by the worst case scenario.

In order to eliminate variance of data transfer latency and
complexity incurred by routing issues in a PTP connected NoC,
an on-chip network which applies a code-division multiple ac-
cess (CDMA) technique is introduced in this paper. As one
of the spread-spectrum techniques, the CDMA technique [4]
has been widely used in wireless communication systems be-
cause it has great bandwidth efficiency and multiple access ca-
pability. The CDMA technique applies a set of orthogonal codes
to encode the data from different users before transmission in
a shared communication media. Therefore, it permits multiple
users to use the communication media concurrently by sepa-
rating data from different users in the code domain. Hence, the
CDMA NoC proposed in this paper can transfer data packets
from different sources to their destinations directly and con-
currently. Consequently, the large variance of data transfer la-
tencies in a PTP connected NoC is eliminated in the CDMA
NoC. The constant data transfer latency in the CDMA NoC is
helpful for providing a guaranteed communication service for
an on-chip system.

The rest of this paper is arranged as follows. In Section II,
issues with applying CDMA technique into an on-chip network
will be discussed. Section III presents the structure of the
CDMA NoC. The realization of the basic components in the
CDMA NoC is presented in Section IV. A six-node CDMA
NoC is presented in Section V in order to examine characteris-
tics of the CDMA NoC by comparing it with a PTP connected
NoC. Finally, conclusions are drawn in Section VI.

II. APPLYING CDMA TECHNIQUE TO NOC

The principle of the CDMA technique is illustrated in Fig. 1.
At the sending end, the data from different senders are encoded
using a set of orthogonal spreading codes. The encoded data
from different senders are added together for transmission
without interfering with each other because of the orthogonal
property of spreading codes. The orthogonal property means
that the normalized autocorrelation value and the cross-cor-
relation value of spreading codes are 1 and O, respectively.
Autocorrelation of spreading codes refers to the sum of the
products of a spreading code with itself, while cross-correlation
refers to the sum of the products of two different spreading

1063-8210/$25.00 © 2007 IEEE

1092

data 1—» data 1

spreading code 15 spreading code 1

datan — datan

spreading code n

spreading code n

Fig. 1. CDMA technique principle.

} >Sbits

spreading codel

sender] L2

S bits

1 bit S bits
sender N@D_

spreading code N

of data chips

Fig. 2. Digital CDMA encoding scheme.

codes. Because of the orthogonal property, at the receiving
end, the data can be decoded from the received sum signals by
multiplying the received signals with the spreading code used
for encoding. The following three subsections will discuss the
issues related to apply the CDMA technique in an NoC.

A. Digital Encoding and Decoding Scheme

Several on-chip bus schemes that apply the CDMA technique
have been presented in [5]—[8]. Those schemes are implemented
by analog circuits, namely, the encoded data are represented
by the continuous voltage or capacitance value of the circuits.
Therefore, the data transfers in the analog bus are challenged
by the coupling noise, clock skew, and the variations of capac-
itance and resistance caused by circuit implementation [8]. In
order to avoid the challenges faced by the analog circuit imple-
mentation, digital encoding and decoding schemes developed
for the CDMA NoC are illustrated in Figs. 2 and 4, respectively.
In the encoding scheme illustrated in Fig. 2, data from different
senders fed into the encoder bit by bit. Each data bit will be
spread into S bits by XOR logic operations with a unique S-bit
spreading code as illustrated in Fig. 2. Each bit of the S-bit en-
coded data generated by XOR operations is called a data chip.
Then, the data chips which come from different senders are
added together arithmetically according to their bit positions in
the S-bit sequences. Namely, all the first data chips from dif-
ferent senders are added together and all the second data chips
from different senders are added together, and so on. Therefore,
after the add operations, we will get S sum values of S-bit en-
coded data. Finally, as proposed in [9], binary equivalents of the
S sum values are transferred to the receiving end. An example of
encoding two data bits from two senders is illustrated in Fig. 3 in
order to illustrate the proposed encoding scheme in more detail.
Fig. 3(a) illustrates two original data bits from different senders
and two 8-bit spreading codes. The top two figures in Fig. 3(b)
illustrate the results after data encoding (XOR operations) for the
original data bits. The bottom figure in Fig. 3(b) presents the

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 10, OCTOBER 2007

"

S =

data bit from senderl
0101010

oL

spreading code of senderl

encoded data bit of senderl

11001100

—

0
0 encoded data bit of sender2

1T2011 201
:
1
0 ﬂﬂ

sums of data chips
(a) (b)

Fig. 3. Data encoding example.

data bit from sender2

171001100

S -

spreading code of sender2

Positive Part
Accumulator

Compare |

of data chips data bit

Negative Part
Accumulator

s biss §
spreading code

Fig. 4. Digital CDMA decoding scheme.

eight sum values after add operations. Then the binary equiva-
lents of each sum value will be transferred to the receiving end.
In this case, two binary bits are enough to represent the three
possible different decimal sum values, “0,” “1,” and “2.” For
example, if a decimal sum value “2” needs to be transferred, we
need to transfer two binary digits “10.”

The digital decoding scheme applied in the CDMA NoC is
depicted in Fig. 4. The decoding scheme accumulates the re-
ceived sum values into two separate parts, a positive part and a
negative part, according to the bit value of the spreading code
used for decoding. For instance, as illustrated in Fig. 4, the re-
ceived first sum value will be put into the positive accumulator if
the first bit of the spreading code for decoding is “0,” otherwise,
it will be put into the negative accumulator. The same selection
and accumulation operations are also performed on the other re-
ceived sum values. The principle of this decoding scheme can be
explained as follows. If the original data bit to be transferred is
“1,” after the XOR operations in the encoding scheme illustrated
in Fig. 2, it can only contribute nonzero value to the sums of data
chips when a bit of spreading code is “0.” Similarly, the 0-value
original data bit can only contribute nonzero value to the sums
of data chips when a bit of spreading code is “1.” Therefore,
after accumulating the sum values according to the bit values
of the spreading code, either the positive part or negative part is
larger than the other if the spreading codes are orthogonal and
balance. Hence, the original data bit can be decoded by com-
paring the values between the two accumulators. Namely, if the
value of the positive accumulator is larger than the value in the
negative accumulator, the original data bit is “1”’; otherwise, the
original data bit is “0.”

WANG et al.: APPLYING CDMA TECHNIQUE TO NoC

B. Spreading Code Selection

As discussed in Section II-A, the proposed decoding scheme
requires the spreading codes used in the CDMA NoC to have
both the orthogonal and balance properties. The orthogonal
property has been explained in the first paragraph of Section II.
The balance property means that the number of bit “1” and
bit “0” in a spreading code should be equal. Several types of
spreading codes have been proposed for CDMA communica-
tion, such as Walsh code, M-sequence, Gold sequence, and
Kasami sequence, etc. [10]. However, only Walsh code [10]
has the required orthogonal and balance properties. Therefore,
Walsh code family is chosen as the spreading code library
for the CDMA NoC. In an S-bit (S = 2%, integer N > 1)
length Walsh code set, there are S — 1 sequences that have both
the orthogonal and balance properties. Hence, the proposed
CDMA NoC can have at most S — 1 network nodes. The
length of applied Walsh code set should be kept as small as
possible according to the number network nodes. The purpose
is to reduce the number of data chips generated during data
encoding operations as illustrated in Fig. 2. For example, if
there are six nodes in the CDMA NoC, the 8-bit Walsh code set
should be used instead of a longer Walsh code set.

C. Spreading Code Protocol

In a CDMA network, if multiple users use the same spreading
code to encode their data packets for transmission simultane-
ously, the data to be transferred will interfere with each other
because of the loss of orthogonal property among the spreading
codes. This situation is called spreading code conflict, which
should be avoided. Spreading code protocol is a policy used to
decide how to assign and use the spreading codes in a CDMA
network in order to eliminate or reduce the possible spreading
code conflicts during the communication processes. Several
spreading code protocols have been presented for CDMA
packet radio network [11], [12] and will be shortly introduced
in the following six paragraphs.

1) Common Code Protocol (C protocol): All users in the net-
work use the same spreading code to encode their data
packets to be transferred.

2) Receiver-Based Protocol (R protocol): Each user in the net-
work is assigned a unique spreading code used by the other
users who want to send data to that user.

3) Transmitter-Based Protocol (T protocol): The unique
spreading code allocated to each user is used by the user
himself to transfer data to others.

4) Common-Transmitter-Based Protocol (C-T protocol): The
destination address portion of a data packet is encoded
using C protocol, whereas, the data portion of a packet is
encoded using T protocol.

5) Receiver-Transmitter-Based Protocol (R-T protocol): 1t is
the same as the C-T protocol except that the destination ad-
dress portion of a data packet is encoded using R protocol.

6) Transmitter-Receiver-Based Protocol (T-R protocol): Two
unique spreading codes are assigned to each user in the net-
work, and then a user will generate a new spreading code
from the assigned two unique codes for its data encoding.

1093
’,«»"S’jf‘ﬁchrohrdﬁs‘-\ P SFynchljonolus
. N —— unctional :
[| Functional MQetwork | CDMA Newor | Hosta |
Node Transmitter p ~{ 500 MHz | .~
| 1MHz —— i e g
T and I '
Network I’/IvFunctional
| Functional Network Arbiter Network Host n
Hostn-l | "o Node | 19 mu
.| 200MHz € BN sl I
“Synchronous Asynchronous Synchronous

Fig. 5. Proposed CDMA NoC structure.

Among the introduced spreading code protocols, only T pro-
tocol and T-R protocol are conflict-free if the users in the net-
work send data to each other randomly. Because the T-R pro-
tocol has the drawback of using a large amount of spreading
codes and complicated decoding scheme, T protocol is preferred
in the CDMA NoC. However, if T protocol is applied in the net-
work, a receiver cannot choose the proper spreading code for
decoding because it cannot know who is sending data to it. In
order to solve this problem, an arbiter-based T protocol (A-T
protocol) is developed for the CDMA NoC. In a CDMA NoC
which applies A-T protocol, each user is assigned with a unique
spreading code for data transfer. When a user wants to send
data to another user, he will send the destination information of
the data packet to the arbiter before starting data transmission.
Then, the arbiter will inform the requested receiver to prepare
the corresponding spreading code for data decoding according
to the sender. After the arbiter has got the acknowledge signal
from the receiver, it will send an acknowledge signal back to the
sender to grant its data transmission. If there is more than one
user who wants to send data to the same receiver, the arbiter will
grant only one sender to send data at a time. Therefore, by ap-
plying the proposed A-T protocol, spreading code conflicts in
the CDMA NoC can be eliminated.

III. CDMA NOC STRUCTURE

The proposed CDMA NoC is a packet switched network
that consists of “Network Node,” “CDMA Transmitter,” and
“Network Arbiter” blocks as illustrated in Fig. 5. The functional
IP blocks (functional hosts) are connected to the CDMA NoC
through individual “Network Node” blocks. The CDMA com-
munications in the network are performed by “CDMA Trans-
mitter” and “Network Arbiter” blocks. Because the different
functional hosts may work at different clock frequencies as illus-
trated in Fig. 5, coordinating the data transfers among different
clock domains would be a problem. A globally-asynchronous
locally-synchronous (GALS) scheme [13] has been proposed
as a solution for this problem. Applying the GALS scheme to
the CDMA NoC means that the communications between each
functional host and its network node use local clock frequency,
while the communications between network nodes through the
CDMA network are asynchronous. In order to support the GALS
scheme, both synchronous and asynchronous circuits are applied
in the design. The three types of components in the CDMA
NoC will be presented in the following three subsections.

1094

Network Node
2 : [Tx Packet Packet | datajout
3 ; |'
T | B >| Buffer [™) Sender
= | E
| 8 :
S| B : .
3t 2 i [Rx Packet Packet | datalin
E Buffer [®|Receiver
[

Synchronous | Asynchronous

Fig. 6. Block diagram of the network node in CDMA NoC.

A. Network Node

The block diagram of the “Network Node” in the CDMA
NoC is illustrated in Fig. 6, where the arrows represent the flows
of data packets. In Fig. 6, the “Network IF” block, which be-
longs to the functional host, is an interface block for connecting
a functional host with a “Network Node” through VCI [14] or
OCP interface standard [15]. GALS scheme is realized in “Net-
work Node” block by using synchronous design in the “Node
IF” subblock and using asynchronous design in the other sub-
blocks. The function of the subblocks in a “Network Node” will
be described in the following four paragraphs.

1) Node IF: This block is used to receive data from the
“Network IF” block of a functional host through the
applied VCI or OCP standard. Then it will assemble the
received data into packet format and send the packet to
“Tx Packet Buffer,” or disassemble the received packet
from “Rx Packet Buffer” and send the extracted data to
the functional host.

2) Tx/Rx Packet Buffer: These two blocks are buffers that
consist of the asynchronous first-input—first-output (FIFO)
presented in [16]. “Tx Packet Buffer” is used to store the
data packets from ‘“Node IF” block, and then deliver the
packets to “Packet Sender” block. The “Rx Packet Buffer”
stores and delivers the received packets from “Packet Re-
ceiver” to “Node IF.”

3) Packet Sender: If “Tx Packet Buffer” is not empty, “Packet
Sender” will fetch a data packet from the buffer by an asyn-
chronous handshake protocol. Then it will extract the des-
tination information from the fetched packet and send the
destination address to “Network Arbiter.” After “Packet
Sender” gets the grant signal from the arbiter, it will start
to send the data packet to “CDMA Transmitter.”

4) Packet Receiver: After system reset, this block will wait
for the sender information from “Network Arbiter” to
select the proper spreading code for decoding. After the
spreading code for decoding is ready, the receiver will
send an acknowledge signal back to “Network Arbiter”
and wait to receive and decode the data from “CDMA
Transmitter,” and then send the decoded data to “Rx Packet
Buffer” in packet format.

B. Network Arbiter

“Network Arbiter” block is the core component to imple-
ment the A-T spreading code protocol presented in Section II-C.
By applying A-T spreading code protocol, every sender node
cannot start to send data packets to “CDMA Transmitter” until

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 10, OCTOBER 2007

time
i slot :

<—N—N—N—>
| b0 | bl | b2 [b3 |Packet ‘Al
|b0 | bl | b2 | b3 |Packet B'

Y 1 bl | b2 | b3 | Packet'C'
» Time

Fig. 7. Bit-synchronous transfer scheme.

it gets the grant signal from “Network Arbiter.” “Network Ar-
biter” takes charge of informing the requested receiver node to
prepare the proper spreading code for decoding and sending a
grant signal back to the sender node. In the case that there are
more than one sender nodes requesting to send data to the same
receiver node simultaneously or at different times, the arbiter
will apply a “round-robin” arbitration scheme or the “first-come
first-served” principle, respectively, to guarantee that there is
only one sender sending data to one specific receiver at a time.
However, if different sender nodes request to send data to dif-
ferent receiver nodes, these requests would not block each other
and will be handled in parallel in the “Network Arbiter.” The
“Network Arbiter” in the CDMA NoC is different from the ar-
biter used in a conventional bus. The reason is that the “Net-
work Arbiter” here is only used to set up spreading codes for
receiving and it handles the requests in parallel in the time do-
main. However, a conventional bus arbiter is used to allocate the
usage of the common communication media among the users in
the time-division manner.

C. CDMA Transmitter

The “CDMA Transmitter” block takes care of receiving
data packets from network nodes and encoding the data to be
transferred with the corresponding unique spreading code of
the sender node. Although this block is realized using asyn-
chronous circuits, it applies a bit-synchronous transfer scheme.
It means that the data from different nodes will be encoded
and transmitted synchronously in terms of data bits rather
than any clock signals. In Fig. 7, the principle of the referred
bit-synchronous transfer scheme is illustrated by a situation
that network nodes “A” and “B” send data packets to “CDMA
Transmitter” simultaneously and node “C” sends a data packet
later than “A” and “B.” In this situation, the data packet from
node “A” will be encoded and transmitted together with the
data packet from node “B” synchronously in terms of each data
bit. When the data packet from node “C” arrives at a later time
point, the transmitter will handle the data bit of “Packet C”
together with the data bits of packet “A” and “B” at the next
start point of the time slot for bit encoding and transmitting
processes. The dot-line frame at the head of the “Packet C” in
Fig. 7 is used to illustrate the waiting duration if the “Packet C”
arrived in the middle of the time slot for handling the previous
data bit. The time slot for handling a data bit is formed by a
four-phase handshake process. The bit-synchronous transfer
scheme can avoid the interferences caused by the phase offsets
among the orthogonal spreading codes if the data bits from dif-
ferent nodes are encoded and transmitted asynchronously with
each other. Because the nodes in the network can request data
transfer randomly and independently of each other, “CDMA

WANG et al.: APPLYING CDMA TECHNIQUE TO NoC

req_in stepl_done
step2_done . step3_done
stepl_en step2_en c3

step3_en

Fig. 8. C-element control pipeline.

req_in
C1 (“delay)
ack out a . delay Jos req_out
aelaz
[{_delay } ack in

Fig. 9. Micropipeline control logic.

Transmitter” applies the “first come, first served” mechanism to
ensure that the data encoding and transmission are performed
as soon as there is data transfer request.

IV. REALIZATION

Two issues related with realizing the CDMA NoC are ad-
dressed in this section. One issue is about asynchronous design

realization. Another is the configuration of the data path in the
CDMA NoC.

A. Asynchronous Design

As illustrated in Fig. 5 and addressed in Section III-A, the
asynchronous blocks in the CDMA NoC include the “CDMA
Transmitter,” “Network Arbiter,” “Tx/Rx Packet Buffer,” and
“Packet Receiver/Sender” blocks. The important part of the
asynchronous design of these blocks is the control logic. Since
the “CDMA Transmitter” and “Network Arbiter” blocks are
data-path centric blocks, the control logic used in these blocks
is composed by a straightforward C-element pipeline as illus-
trated in Fig. 8. Each stage in the C-element pipeline is enabled
by the enable signals generated from data completion detection
circuits. The control token will be passed from one stage to
the next one through each C-element in the pipeline. The
control logic used in the “Tx/Rx Packet Buffer” and “Packet
Receiver/Sender” blocks bases on the micropipeline control
logic presented in [17] and illustrated in Fig. 9. The principle
of micropipeline control logic is to use the output from the
current stage to enable or disable the input of previous stage.
The “delay” components illustrated in Fig. 9 are realized by
logic gates of generating or receiving four-phase handshake
signals for control tasks in the asynchronous blocks in the
CDMA NoC. An example with more details about applying
micropipeline control logics to asynchronous designs can be
found in [18].

In order to suit the conventional synchronous design tools
and other synchronous designs in the CDMA NoC, all the asyn-
chronous blocks of the CDMA NoC are realized in RTL using
VHDL together with the synchronous blocks. The basic prin-
ciple is to model the basic components, C-element, latches, and
combinational logic gates, in RTL using VHDL, and then build
the asynchronous circuits using these RTL component models
in a hierarchical way.

1095
TABLE 1
AREA COST OF CDMA NoC COMPONENTS
‘a Path Width Area (K equivalent gates)
Block Name 1-bit 8-bit 16-bit 32-bit
Node Target 1.600
IF Initiator 3.882
Tx/Rx Packet Buffer 6.101
Packet Sender 1.505 1.509 1.513 0.962
Packet Receiver 1.977 7.331 13.718 26.488
(100.0%) (370.9%) (694.1%) (1340%)
. 0.879 3.970 7.730 15.161
CDMA Transmitter |~ 75 0oy | (451.8%) | (879.6% | (1725%)
Network Arbiter 0.936

B. Data Path Configuration

Figs. 2 and 4 illustrate the principle of data encoding and
decoding schemes used in the CDMA NoC by an example
of processing and delivering one data chip of encoded data
from the sender to the receiver at one time. Since one original
data bit will be spread into S bits after encoding, the degree
of data transfer parallelism between the “CDMA Transmitter”
and “Packet Sender/Receiver” blocks affects the data transfer
latency in the CDMA NoC largely. Namely, increasing the
number of data bit encoded and delivered via “CDMA Trans-
mitter” at one time can reduce the data transfer latency in the
CDMA NoC and vice versa. However, increasing the data
processing and delivering parallelism will incur larger area
cost. Hence, in order to figure the tradeoff character between
the parallelism and the area cost, the “Packet Sender,” “CDMA
Transmitter,” and “Packet Receiver” blocks have been realized
with four different data path configurations. According to the
number of data bit transferred from a “Packet Sender” to a
“Packet Receiver” through “CDMA Transmitter,” the configu-
rations are named as 1-, 8-, 16-, and 32-bit schemes.

C. Synthesis Results

The components of the CDMA NoC are synthesized using
a 0.18-pm standard cell library. The Basic VCI (BVCI) inter-
face standard [14] is applied in the realization of “Node IF”
block. The data width and buffer depth in the “Tx/Rx Packet
Buffer” blocks are set to 32 bits and 4 packets, respectively. In
order to facilitate the simulation work later on, six network node
and 8-bit Walsh codes are applied for synthesizing the “CDMA
Transmitter,” “Network Arbiter,” and “Packet Sender/Receiver”
blocks. The area cost of the components of the CDMA NoC
under different data path configurations are listed in Table I. The
area cost figures in Table I are presented as the number of equiv-
alent gates. 85 K gates/mm? is used to calculate the number of
equivalent gates for the 0.18-um standard cell library.

From Table I we can see that when the data path width is in-
creased from 1 to 32 bits, the area cost of “Packet Receiver” and
“CDMA Transmitter” becomes 13 and 17 times larger. The area
increase is due to the duplications of the encoding and decoding
logic in the “CDMA Transmitter” and “Packet Receiver” blocks
for increasing the data path width. By comparing the ratio of
increased data path width, the increased area cost of the com-
ponents is reasonable. To be noticed in Table I is that the area
cost of the 32-bit version of “Packet Sender” block is smaller

1096

Host 0 (100MHz)

Host 1 (10MHz)

Host 2 (500MHz)

Network IF (I)

Network IF (T)

Network IF (I)

Network Node 0 | I Network Node 1 ‘ | Network Node 2 ‘

v
| CDMA Transmitter & Network Arbiter I
v s v
| Network Node 5 ‘ ‘ Network Node 4 ‘ ‘ Network Node 3 l
Network IF (T) Network IF (I) Network IF (T)
Host 5 (50 MHz) Host 4 (1IMHz) Host 3 (250MHz)
Fig. 10. Six-node CDMA NoC simulation network.
Destination Source Node ID other fields
Node ID | (optional for CDMA NoC) (optional)
Data Cell 1
Data Cell 2 (optional)
Data Cell 3 (optional)

Fig. 11. Data packet format specification.

than others. The reason is that the data width of the output of
“Tx Packet Buffer” block is 32 bits, thus the “Packet Sender”
block need some control logic to adjust the fetched packet cells
to be sent out according to the data path width if it is smaller
than 32 bits. However, when the data path width is increased to
32 bits, the output data width adjusting logic is not needed in the
“Packet Sender” block. The initiator type “Node IF” has larger
area than the target type because it needs a buffer to store the
header cell of received packets for supporting split-transaction
feature in the BVCI standard.

V. COMPARING WITH A PTP NoC

In order to examine the characteristics and performance of
the CDMA NoC thoroughly, a simulation network that applies
the CDMA NoC scheme is built and compared with a PTP NoC
presented in [19].

A. Simulation Network Setup

The simulation network that applies the CDMA NoC is illus-
trated in Fig. 10. It contains six network nodes which work in
different clock frequencies as illustrated in Fig. 10. The BVCI
interface standard is applied in the network. Three hosts act as
initiators and the other three act as targets, as denoted by the la-
bels “I” and “T,” respectively, in the “Network IF” blocks. The
initiator hosts can generate requests to any target hosts, while
the target hosts can generate responses only for the received re-
quests passively. The network nodes are connected to each other
through “CDMA Transmitter” and “Network Arbiter” blocks.
The spreading codes used in the network are six 8-bit Walsh
codes. The basic data unit transferred in the network is data
packets composed by one header cell and several data cells as
illustrated in Fig. 11. The number of data cells in a packet varies
from one to three, while the width of each packet cell is fixed
at 32 bits. The “functional host” blocks and their “Network IF”

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 10, OCTOBER 2007

Host 0 (100MHz) Host 1 (10MHz) Host 2 (500 MHz)
Network IF (I) Network IF (T) Network IF (I)
3 Ringl 3
Network Node 0 Network Node 1 ’j Network Node 2
Ring?2.

Network Node 5 _ Network Node 4 Network Node 3
$? ¥
Network IF (T) Network IF (I) Network IF (T)
Host 5 (50 MHz) Host 4 (1MHz) Host 3 (250MHz)

Fig. 12. Six-node PTP NoC simulation network.

blocks are not realized with any real IP blocks; they are simu-
lated by adding stimulus signals on each “Network Node” block
according to the BVCI standard. A four-phase dual-rail hand-
shake protocol is applied in the CDMA network to transfer data
between network nodes. The PTP network illustrated in Fig. 12
has the same mentioned network configurations as the CDMA
network except that the network nodes in the PTP network are
connected with each other through bidirectional ring topology.
Therefore, the characteristics of the CDMA NoC can be exam-
ined more clearly by comparing the two networks in different
aspects in the following four subsections.

B. Comparison of Data Transfer Principles

In the PTP connected network illustrated in Fig. 12, the data
traffic load is distributed into the links among the network nodes.
This distributed traffic scheme has the benefits of flexibility
and scalability, whereas the main disadvantage is that the data
transfer latency between two network nodes can be largely dif-
ferent when data are transferred to different destinations or to
the same destination via different routes.

Although data transfers in the PTP network can be parallel
if they take place in different links among the network nodes,
concurrent data transfers over a single link is impossible in the
PTP NoC because a link between two network nodes is shared
in a time-division manner. Therefore, by applying CDMA tech-
nique, the main advantage of the CDMA NoC is the feature of
concurrent data transfers. Hence, the data transfer latency in the
CDMA NoC is a constant value which in turn helps the CDMA
NoC to provide a guaranteed service for the on-chip system.

Another advantage of the CDMA NoC is that it can easily
support multicast data transfers by requesting multiple receiver
nodes to use the same spreading code for receiving. In the PTP
NoC, the multicast transfer can be realized only by sending mul-
tiple copies of a data packet to its multiple destinations, unless
extra logic is added in each network node to copy the multicast
packet to both the functional host and the output link to the next
node. This would increase the traffic load in the PTP network,
or complicate the network implementation. One more benefit
of applying the CDMA NoC is that the header cell in a packet
needs not to be transferred in the network after a sending node
gets the grant signal from the “Network Arbiter” since the re-
ceiving node already knew the sender information through the
A-T protocol presented in Section II-C. However, in the PTP
NoC, the header cell in a packet needs to be transferred in the
network for packet routing.

WANG et al.: APPLYING CDMA TECHNIQUE TO NoC

1097

Fig. 13. Network node structure of the PTP NoC.
TABLE II
DATA TRANSACTION SPECIFICATION
Initiator Target Number. of Re:l?ecsl:et Llekzg;)l:mse
Node Node Transactions Packet Packet
Node 1 2 4.3 2,3
Node 0 Node 3 2 3,4 3,2
Node 5 1 4 2
Node 1 1 4 2
Node 2 Node 3 1 3 3
Node 5 2 4,3 2,3
Node 1 2 3,4 3,2
Node 4 Node 3 1 3
Node 5 1 4 2

C. Comparison of Network Node Structures

The network node structure of the PTP NoC presented in [19]
is illustrated in Fig. 13. It contains two same “Communication
Layer” blocks for supporting the bidirectional ring topology. By
comparing with the network node illustrated in Fig. 6, the net-
work node of the CDMA NoC has less complexity. The main
reason is that the network node of the CDMA NoC does not need
to handle any bypass packets or the packet routing issues be-
cause of its one-hop data transfer scheme. Therefore, the “Com-
munication Controller” and “Packet Distributor” blocks illus-
trated in Fig. 13 are not needed in the node of the CDMA NoC.
Since the CDMA NoC applies centralized traffic scheme, its
network node does not need multiple “Communication Layer”
blocks and “Layer MUX” block in the node of the PTP NoC
illustrated in Fig. 13. When the data transfer parallelism needs
to be increased in the PTP NoC, more “Communication Layer”
blocks in a network node are needed in order to set up more
links with other nodes, whereas the network node structure in
the CDMA NoC does not need to change in this situation be-
cause of the parallel data transfer scheme.

D. Comparison of Data Transfer Latencies

The CDMA network illustrated in Fig. 10 and the PTP
NoC illustrated in Fig. 12 are both synthesized using the
same 0.18-pm technology library. Gate-level simulations are
performed on both simulation networks. The data transactions
performed during the simulations are listed in Table II. Each
data transaction consists of one request packet from an initiator
host to a target host and one corresponding response packet
from the target host to the initiator host.

Because the GALS scheme is applied both in the CDMA
network and the PTP network, the data transfer latency in the

Network Node: Communication Layer 2 I TABLE III
' —— SYNCHRONOUS TRANSFER LATENCY
¢ | |Communication Layer 1 Local Packet
v ocal Packe
2 H g Packet Latency of sending data to | Latency of receiving data
é B [<APH Communication Bypass Packet || pigributor Node Type . Y 8 ,)i g N
= g R Controller Network Node from ‘Network Node
R . I BVCI
£ 5|9 n +
g § E ' R Packet Buffor ot T];af:iiﬁf'ﬁffrfe/; Initiator 8 local clock cycles + 2.5 ns | 8 local clock cycles + 3.2 ns
H
= ' i BVCI
e L] I ¢ Receiver | | ------ | Target 4 local clock cycles + 2.5 ns | 4 local clock cycles + 3.1 ns
5 ¥
Synchronous \ Asynchronous Packet Input Packet Output

Network Node 0 Network Node 2

‘PLLi PTL PSL
e — —

ATL
Fig. 14. ATL portions of the CDMA NoC.

two simulation networks can be separated into two parts, syn-
chronous transfer latency (STL) and asynchronous transfer la-
tency (ATL). The STL refers to the data transfer latency between
a functional host and the network node attached to it. STL de-
pends on the local clock and the type of interface. The measured
STL values of the CDMA network are listed in Table III. The
constant values in Table III are caused by the handshakes in the
asynchronous domain. They are independent of the local clock
rate but belong to the synchronous transfer processes. There-
fore, they are counted as a part of STL. From Table III, we can
see that an initiator type of network node takes more clock cy-
cles for local data transfers. The reason is that the initiator node
needs to store or read the header cell to or from a buffer as men-
tioned in Section IV-C. Since the same “Node IF” block design
is applied in both simulation networks, the STL of the PTP net-
work has the same value as listed in Table III.

The ATL refers to the data transfer latency of transferring
data packets from one network node to the other node through
a NoC structure using asynchronous handshake protocols. The
ATL values in the PTP and CDMA networks consist of different
portions which will be discussed separately in the following
subsections.

1) ATL in the CDMA NoC: The ATL of the CDMA net-
work consists of three portions: packet loading latency (PLL),
packet transfer latency (PTL), and packet storing latency (PSL).
The concept of those ATL portions is illustrated in Fig. 14 with
an example where “Network Node 0” sends one data packet
to “Network Node 2.” The black arrows in Fig. 14 represent
the packet transfer direction. The different portions of ATL are
marked by grey arrows in Fig. 14 and explained in the following
three paragraphs.

a) PLL: This is the time used by the “Packet Sender” block to
fetch a data packet from “Tx Packet Buffer” and prepare
to send the packet to “CDMA Transmitter.”

b) PTL: This latency refers to the time used to transfer one
data packet from the “Packet Sender” of the sender node
to the “Packet Receiver” of the receiver node through
the “CDMA Transmitter” and “Network Arbiter” blocks
using a handshake protocol.

c) PSL: After the receiver node receives a data packet, it
will spend a certain amount of time to store the received

1098

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 10, OCTOBER 2007

TABLE IV
ATL PORTION VALUES OF THE CDMA NoC
1 data cell 2 data cells 3 data cells
PLL (ns) 5.7 5.7 5.7
1-bit 384.6 768.9 1153.7
PTL (ns) 8—blt. 459 88.4 130.9
16-bit 26.2 49.0 71.8
32-bit 14.7 26.0 37.8
PSL (ns) 5.5 5.5 5.5

Network Node 0 Network Node 1 Network Node 2

P

PLL: PTL ':

PBL

! PTL (PSL;

o

ATL

Fig. 15. ATL portions of the PTP NoC.

TABLE V

ATL PORTION VALUES OF THE PTP NoC

Packet Length PLL (ns) PTL (ns) PBL (ns) PSL (ns)
1 data cell 11.7 13.4 10.7 33
2 data cells 15.2 18.7 14.2 33
3 data cells 18.6 24.0 17.6 33

data packet into “Rx Packet Buffer.” This time duration is
measured as PSL.

The measured values of ATL portions of the CDMA NoC
under different data path configurations are listed in Table IV.
The ATL value of the CDMA NoC can be calculated by directly
adding the three portions under the same configuration.

2) ATL in the PTP NoC: The concept of the ATL portions
of the PTP NoC is illustrated in Fig. 15 with an example that
“Network Node 0 sends one packet to “Network Node 2” via
“Network Node 1.” The black and grey arrows in Fig. 15 repre-
sent the same meanings as the arrows in Fig. 14. The meaning
of ATL portions will be explained briefly in the following four
paragraphs.

a) PLL:1tis the time used to load one “local packet” into “Tx

packet buffer” in the “Packet Sender” block as illustrated
in Fig. 13.

b) PTL: This latency refers to the time used to transfer one

data packet from the “Packet Sender”

ATL =PLL+PTL x (N +1)+PBL x N +PSL (1)

of a network node to the “Packet Receiver” of an adjacent
node using a handshake protocol.

¢) PBL: After a network node receives a packet from another
node, it will check its destination address. If it is a “bypass
packet,” it will be delivered into “Tx Packet Buffer.” The
time spent on this process is called PBL.

d) PSL:Itis the time spent on storing one “incoming packet”
into “Rx Packet Buffer” block.

The ATL portion values of the PTP NoC are listed in Table V.

The formula of calculating the ATL of transferring one packet in

TABLE VI
EQUIVALENT NUMBER OF INTERMEDIATE NODES IN THE PTP NoC
1-bit 8-bit 16-bit 32-bit
1 data cell N=15.2 N=1.2 N=0.4 N=-0.1
2 data cells N=22.6 N=1.9 N=0.7 N=0.0
3 data cells N=26.9 N=2.3 N=0.9 N=0.1

the PTP NoC is given in (1). N refers to the number of interme-
diate nodes between the source node and destination node of a
packet. If a packet is transferred between two adjacent network
nodes, then N is 0.

3) Comparing the ATL Values: In Tables IV and V, we can
see that PTL values of the CDMA NoC and the PTP NoC in-
creases as the packet length increases. This is because the data
cells in a packet are sent in a serial manner in the two networks.
Thus, more data cells need more transmission time. Whereas,
the PLL and PSL values of the CDMA NoC and the PTP NoC
are nearly not affected by the packet length. The reason is that
the data cells in a packet are loaded or stored in a parallel manner
in both networks.

The main difference between the ATL values of the two NoCs
is that the ATL value of the CDMA NoC is a constant value for
a certain data packet length, whereas the ATL value in the PTP
NoC is a variable depending on the packet traffic route. The ATL
portion PBL of the PTP NoC does not exist in the ATL of the
CDMA NoC because the data packets in the CDMA NoC are
transferred directly from their source nodes to their destination
nodes. The stable ATL value is an advantage of the CDMA NoC
since it is very helpful for providing guaranteed service in the
network.

The PTL values listed in Table IV show that the data path
width configuration affects the ATL of the CDMA NoC in a
linear manner. For instance, the PTL value of transferring a
three-data-cell packet is reduced around 30 times when the data
path width is increased from 1 to 32 bits. Since the data path
width in the PTP network illustrated in Fig. 12 is realized as
32 bits, only the ATL value of the CDMA NoC with 32-bit
data path width is comparable with the ATL value of the PTP
NoC. However, in order to compare the data transfer latency
characteristics of the two NoCs thoroughly, Table VI lists the
equivalent number of intermediate network nodes which would
be gone through by a data packet in the PTP NoC when the
same size packet is transferred in the CDMA NoC under dif-
ferent data path configurations. From Table VI, we can see that
when the data path widths in the CDMA NoC and the PTP NoC
are both 32 bits, the ATL of delivering a two-data-cell packet
in the CDMA NoC is equivalent to transferring the same packet
between two adjacent network nodes in the PTP NoC, which
means that the ATL of the CDMA NoC equals to the best case
ATL value in the PTP NoC. When transferring a one-data-cell
packet, the ATL in the CDMA NoC is even smaller than the
best case ATL in the PTP NoC as denoted by the negative value
of N in Table VI. The latency caused by the data encoding
and decoding scheme in the CDMA NoC is compensated by
its one-hop data transfer scheme. Hence, the CDMA NoC can
transfer data packets with the equivalent best case ATL of the
PTP NoC when the data path width is set to 32 bits.

WANG et al.: APPLYING CDMA TECHNIQUE TO NoC

TABLE VII
AREA AND POWER COSTS OF THE TWO NETWORKS
Six-Node Simulation Network
Noc | Data .
Type P?th Ar.ea Dynamic Ener.gy cost of
Width | (K equivalent Power Delivering 32
gates) (mw) bits (pJ)
1-bit 113.145 19.340 12.5168
CDMA 8-bit 148.369 6.563 3.7428
NoC 16-bit 191.037 7.331 4.0868
32-bit 272.806 7.332 4.0873
PIP 1 32bis 177.007 7.324 47401
NoC

E. Comparison of Area and Power Costs

The two simulation networks illustrated in Figs. 10 and 12 are
synthesized using a 0.18-pm technology library. The area costs
of the two simulation networks with different data path widths
are listed in Table VII for comparison purpose. According to
the data transactions performed in the gate level simulations and
listed in Table II, the dynamic power costs during simulations
and the energy costs of transferring 32 data bits in the CDMA
NoC and the PTP NoC are also listed in Table VII.

From the figures in Table VII, we can see that when the data
path width is increased from 1 to 32 bits in the CDMA NoC, the
area cost of the CDMA network becomes 2.4 times larger be-
cause more logic are used to perform parallel data encoding and
decoding. With 16- and 32-bit data path widths, the CDMA NoC
loses its area cost advantage by comparing with the PTP NoC.

In terms of the dynamic power costs listed in Table VII, a 1-bit
CDMA NoC should not be applied due to the much larger power
consumption by comparing with the CDMA NoCs under other
data path width configurations and the PTP NoC. The reason
of the large power cost of the 1-bit CDMA NoC is that the
1-bit CDMA NoC needs much more switching activities than
the other versions of the CDMA NoC due to the over-serial-
ized data transfer scheme. To be noticed in Table VII is that
the 16- and 32-bit CDMA NoCs have almost the same power
consumptions. The reason is that the power consumption in-
crease caused by the data path width increasing is compensated
by reducing the control logic for data output adjust operations
in each “Packet Sender” in the 32-bit CDMA NoC as explained
in Section IV-C. By comparing the dynamic power costs and
the energy costs of transferring 32 bits in Table VII, we can see
that the PTP NoC has similar dynamic power cost with the 16-
and 32-bit CDMA NoCs, while the energy figures are slightly
larger than the figures in the two CDMA NoCs. This is because
the PTP NoC takes more time to perform the data transactions
listed in Table II due to its multiple hop data routing scheme.
However, the CDMA NoC can perform the same data transac-
tions with shorter time since its one-hop concurrent data transfer
scheme. Therefore, the average energy spent on transferring 32
data bits in the CDMA NoC, except the 1-bit CDMA NoC, is
smaller than the energy cost in the PTP NoC.

VI. CONCLUSION

An on-chip packet switched communication network that
applies the CDMA technique and supports the GALS commu-
nication scheme was presented. The presented CDMA NoC

1099

uses an asynchronous scheme to perform the global data trans-
fers between network nodes, and uses synchronous scheme
to deal with the local data transfers between a functional host
and the network node attached to it. A CDMA encoding and
decoding scheme which suits digital-circuit implementation
was presented. The main advantage of the presented CDMA
NoC is that it can perform data transfer concurrently by ap-
plying CDMA technique in the network. Therefore, the large
data transfer latency variance caused by the packet routing in a
PTP NoC is eliminated in the CDMA NoC. The constant data
transfer latency in the CDMA NoC is helpful for providing
guaranteed communication services to an on-chip system.
Another advantage of the CDMA NoC is that it can perform
multicast data transfers easily by utilizing the multiple access
feature of CDMA technique.

Both the asynchronous and synchronous circuits of the
CDMA NoC with different data path widths are realized in
RTL using VHDL in order to suit the conventional synchronous
design flow and tools. Two six-node on-chip networks were
constructed to compare the CDMA NoC with a PTP NoC. One
network applies the CDMA NoC, while the other applies a
bidirectional ring PTP NoC. The two networks were simulated
and compared against each other. The simulation results reveal
that when the data path width of the two simulation networks is
set to 32 bits, the asynchronous transfer latency in the CDMA
NoC is equivalent to the best case data transfer latency in the
PTP NoC. The best case data transfer in the PTP NoC means that
packets are transferred between two adjacent nodes. It indicates
that the data transfers between any network nodes in the CDMA
NoC can be performed as quickly as transferring the same data
packets between two adjacent nodes in the PTP NoC.

By considering the tradeoff between transfer latency perfor-
mance listed in Table VI and the costs listed in Table VII, a 16-bit
CDMA NoC is a good option for replacing the PTP NoC in an
on-chip system where universal data transfer latency is a desired
requirement. With a 16-bit data path width, the data transfer la-
tency of the CDMA NoC is close to the best case transfer latency
in the PTP NoC while the area and dynamic power costs remain
similar. If the area and power costs have higher priority, the 8-bit
CDMA NoC can be applied because its area is 16.2% smaller
than the PTP NoC while its energy cost of transferring 32 bits
is 21.0% smaller than the cost in the PTP NoC.

REFERENCES

[1] D. Wiklund and D. Liu, “SoCBUS: Switched network on chip for
hard real time systems,” in Proc. Int. Parallel Distrib. Process. Symp.
(IPDPS), 2003, p. 8.

[2] K. Goossens, J. Dielissen, and A. Radulescu, “ZAthereal network on
chip: Concepts, architectures, and implementations,” IEEE Des. Test
Comput., vol. 22, no. 5, pp. 414-421, Sep./Oct. 2005.

[3] D. Sigiienza-Tortosa, T. Ahonen, and J. Nurmi, “Issues in the develop-
ment of a practical NoC: The proteo concept,” Integr., VLSI J., vol. 38,
no. 1, pp. 95-105, 2004.

[4] A. J. Viterbi, CDMA: Principles of Spread Spectrum Communica-
tions. Reading, MA: Addison-Wesley, 1995.

[51 R. Yoshimura, T. B. Keat, T. Ogawa, S. Hatanaka, T. Matsuoka, and

K. Taniguchi, “DS-CDMA wired bus with simple interconnection

topology for parallel processing system LSIs,” in Dig. Tech. Papers

IEEE Int. Solid-State Circuits Conf., 2000, pp. 370-371.

T. B. Keat, R. Yoshimura, T. Matsuoka, and K. Taniguchi, “A novel

dynamically programmable arithmetic array using code division mul-

tiple access bus,” in Proc. 8th IEEE Int. Conf. Electron., Circuits Syst.,

2001, pp. 913-916.

[6

—

1100

[7] S.Shimizu, T. Matsuoka, and K. Taniguchi, “Parallel bus systems using
code-division multiple access technique,” in Proc. Int. Symp. Circuits
Syst., 2003, pp. 240-243.

[8] M. Takahashi, T. B. Keat, H. Iwamura, T. Matsuoka, and K. Taniguchi,
“A study of robustness and coupling-noise immunity on simultaneous
data transfer CDMA bus interface,” in Proc. IEEE Int. Symp. Circuits
Syst., 2002, pp. 611-614.

[9] R. H. Bell, Jr., K. Y. Chang, L. John, and E. E. Swartzlander, Jr.,
“CDMA as a multiprocessor interconnect strategy,” in Conf. Record
35th Asilomar Conf. Signals, Syst. Comput., 2001, pp. 1246-1250.

[10] E. H. Dinan and B. Jabbari, “Spreading codes for direct sequence
CDMA and wideband CDMA cellular networks,” IEEE Commun.
Mag., vol. 36, no. 9, pp. 48-54, Sep. 1998.

[11] E. S. Sousa and J. A. Silvester, “Spreading code protocols for
distributed spread-spectrum packet radio networks,” [EEE Trans.
Commun., vol. 36, no. 3, pp. 272-281, Mar. 1988.

[12] D.D.Lin and T. J. Lim, “Subspace-based active user identification for
a collision-free slotted ad hoc network,” IEEE Trans. Commun., vol.
52, no. 4, pp. 612-621, Apr. 2004.

[13] D. M. Chapiro, “Globally-asynchronous locally-synchronous sys-
tems,” Ph.D. dissertation, Dept. Comput. Sci., Stanford University,
Stanford, CA, 1984.

[14] VSI Alliance, Wakefield, MA, “Virtual component interface standard
version 2,” 2001. [Online]. Available: http://www.vsi.org/

[15] OCP-International Partnership. Beaverton, OR, “Open core protocol
specification,” 2001. [Online]. Available: http://www.ocpip.org/

[16] X. Wang and J. Nurmi, “A RTL asynchronous FIFO design using
modified micropipeline,” in Proc. 10th Biennial Baltic Electron. Conf.
(BEC), 2006, pp. 1-4.

[17] 1. E. Sutherland, “Micropipelines,” Commun. ACM, vol. 32, no. 6, pp.
720-738, 1989.

[18] X. Wang, T. Ahonen, and J. Nurmi, “Prototyping a globally asyn-
chronous locally synchronous network-on-chip on a conventional
FPGA device using synchronous design tools,” in Proc. Int. Conf.
Field Program. Logic Appl., 2006, pp. 1-6.

[19] X. Wang, D. Sigiienza-Tortosa, T. Ahonen, and J. Nurmi, “Asyn-
chronous network node design for network-on-chip,” in Proc. Int.
Symp. Signal, Circuits, Syst., 2005, pp. 55-58.

Xin Wang received the M.Sc. degree in electronic
circuits and systems from Northwestern Polytech-
nical University, Xi’an, China in 2002.

Currently, he is a Researcher with the Institute of
Digital and Computer Systems, Tampere University
of Technology, Tampere, Finland. His research inter-
ests are focused on on-chip communication networks
and asynchronous circuits design.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 10, OCTOBER 2007

Tapani Ahonen received the M.Sc. degree in elec-
trical engineering and the Ph.D. degree in informa-
tion technology from Tampere University of Tech-
nology, Tampere, Finland.

He is a Senior Research Scientist with Tampere
University of Technology. His research interests are
focused on varying aspects of system-on-chip design.

Jari Nurmi is received the Ph.D. degree from Tam-
pere University of Technology (TUT), Tampere, Fin-
land, in 1994.

He is a Professor of digital and computer sys-
tems with TUT. He has held various research,
education, and management positions at TUT and
in the industry since 1987. His current research
interests include system-on-chip integration, on-chip
communication, embedded and application-specific
processor architectures, and circuit implementations
of digital communication, positioning, and DSP
systems. He is leading a group of about 25 researchers at TUT. He is the author
or coauthor of about 160 international papers, the editor of Processor Design:
System-on-Chip Computing for ASICs and FPGAs (Springer, 2007), coeditor
of Interconnect-Centric Design For Advanced SoC and NoC (Kluwer, 2004),
and has supervised more than 90 M.Sc., Licentiate, and Doctoral theses.

Dr. Nurmi is currently the general chairman of the annual International Sym-
posium on System-on-Chip (SoC) and of its predecessor SoC Seminar in Tam-
pere since 1999 and a board member of SoC, FPL, and NORCHIP conference
series. He was the head of the national TELESOC graduate school 2001-2005.
He is a senior member in the IEEE Signal Processing Society, the Circuits and
Systems Society, the Computer Society, the Solid-State Circuits Society, and
the Communications Society. In 2004, he was a corecipient of the Nokia Ed-
ucational Award, the recipient of the Tampere Congress Award in 2005, and
the Academy of Finland Senior Scientist research grant for the academic year
2007-2008.

PUBLICATION 9
X. Wang, and J. Nurmi, “Modeling A Code-Division Multiple-Access Network-on-Chip Using
SystemC”, in Proceedings of 25™ Norchip Conference, (NORCHIP 2007), Aalborg, Denmark,
November 2007.

© 2007 IEEE. Reprinted, with permission, from Proceedings of 25" Norchip Conference.

Modeling A Code-Division Multiple-Access Network-on-Chip Using SystemC

Xin Wang, and Jari Nurmi
Tampere University of Technology, 33101 Tampere, Finland
E-mail: {xin.wang, jari.nurmi}@tut.fi

Abstract- A SystemC model of A Code-Division Multiple-
Access (CDMA) Network-on-Chip (NoC) is presented in this
paper. The CDMA NoC modeled in this paper is a Globally-
Asynchronous Locally-Synchronous (GALS) on-chip
communication network which applies CDMA technique to
transfer data among different network nodes concurrently. The
presented SystemC model uses Transaction-Level Modeling
(TLM) approach to model the asynchronous handshake
processes for data transfers in the CDMA NoC. A performance-
estimation method which bases on timing back-annotation is
also presented for exploring the CDMA NoC performance under
different configurations in a fast and efficient way. Finally, the
performance estimation results of the CDMA NoC with different
configurations and traffic patterns are presented.

L INTRODUCTION

As the number of components integrated into an on-chip
system is increasing, the communications among the large
number of components become more and more complicated.
Network-on-Chip has been proposed as a promising solution
for the complex on-chip communication issue. A NoC
scheme which applies CDMA technique has been presented
in [1]. As a different approach from the point-to-point (PTP)
connection NoC such as SPIN [2] and Zthereal [3], the
CDMA NoC uses a set of orthogonal pseudo-noise codes to
separate the data streams from different network nodes in
code domain, therefore, the different data streams can be
transferred concurrently in time domain. Hence, the CDMA
NoC can supply an invariable data transfer latency
independent on the data transfer routes and network topology.

Before applying a NoC scheme into an on-chip system, the
designer needs to estimate the NoC performance under
different system configurations in an early design stage.
Therefore, a high level system model which can run much
faster and be more flexible than Register-Transfer Level
(RTL) model is needed. SystemC [4], a C++ class library, has

been developed to meet this requirement for system modeling.

Since a SystemC model is totally described by a software
programming language, the abstraction level of the system
model can be very flexible and the simulation can run at a
faster speed than a RTL model. Several works about
modelling on-chip communication architecture in transaction
level using SystemC have been published. [5] and [6] concern
more about system design methodologies using SystemC.
The work in [7] presented a transaction-level interface model
which translates interface functions into signal level for
verifying blocks designed by a Hardware-Description
Language (HDL). The issue of modeling a GALS NoC
structure using SystemC is presented in [8]. It uses sc_fifo
primitive to model the asynchronous logics of the NoC,
therefore, it encounters the problem of memory effect of
sc_fifo primitive and has difficulty to model an active-
input/passive-output channel [8]. The SystemC modeling
work presented in this paper avoids the problems met in [8]

1-4244-1517-9/07/$25.00 (C)2007 IEEE

by abstracting each asynchronous block of the CDMA NoC
as a channel and using interface functions to model
asynchronous communication processes. By using the
proposed SystemC model, a performance-estimation method
for evaluating the performance of the CDMA NoC under
different configurations is also presented in this paper.

The following sections of this paper are arranged as
follows. Section 2 will briefly introduce the CDMA NoC
structure. Section 3 presents the SystemC model of the
CDMA NoC using TLM approach. The performance-
estimation of the CDMA NoC under different configurations
will be presented in Section 4. Finally, the conclusions are
drawn in Section 5.

II. THE GALS CDMA NOC STRUCTURE

The on-chip CDMA network used in this modeling work
has been presented in [1]. It applies both GALS scheme [9]
and CDMA technique [10] to deliver the data packets for an
on-chip system. By applying the GALS scheme, it solves the
problem of data transfers among different clock domains. By
applying CDMA technique, the different data streams from
different functional components in the system are separated in
code domain to achieve concurrent data transfers in time
domain. By comparing with a PTP connection on-chip
network, such as a GALS bidirectional ring NoC [11], the
CDMA NoC has the advantage of supplying a constant data
transfer latency which is independent on data transfer routes
and network topology. Since the details of the CDMA NoC
have been presented in [1] already, the following part of this
section will briefly go over the basic information of the NoC.
In Fig.1, we can see the structure of the CDMA NoC in which
each functional component (‘functional host’) is connected to
the network through a ‘Network Node’ block. The network
nodes transfer data to each others through a backbone
structure which consists of ‘Network Arbiter’ and ‘CDMA
Transmitter’ blocks. The dotted circles and the clock
frequencies marked in Fig.1 are used to illustrate how the
GALS scheme is applied in the CDMA NoC. The function of
each block in the NoC will be briefly introduced by the
following subsections.

A. Network Node

The block diagram of ‘Network Node’ is illustrated in
Fig.2 where the arrows represent the flows of data packets.
The ‘Network IF’ block in Fig.2, which belongs to the
functional host, is an interface block between a functional
host and a ‘Network Node’. Only ‘Node IF’ block in a
‘Network Node’ applies synchronous design since the
interface standard, VCI [12] or OCP [13], used in the
interface is synchronous. The function of the other blocks in
‘Network Node’ will be briefly described in the following
four paragraphs.

_Synchronous ;

,'Synchronéﬁs‘ \
. L — Functional
Fu;[lgtslto? al Netwbrk let w(;)rk Host 2
‘ Node CDMA 0de " | 500 MHz
~| IMHz — Transmitter | e —
’ ’ and o
. _ Network : - ’F B kl‘
Kl . Arbiter —— unctiona
Functional Network Network Host m
Hostn Nod Node 10 MH
200 MHz | ode T z
Synchronous’ Asynchronous +Synchronous

Fig. 1. The GALS CDMA NoC Structure

1) ‘Node IF’: This is an interface block which applies VCI
or OCP standard to assemble the data from the functional host
into packet format and send the packet to ‘Tx Packet Buffer’,
or to disassemble the received packet from ‘Rx Packet
Buffer’ and send the extracted data to the functional host.

2) ‘Tx/Rx Packet Buffer’: These two blocks are buffers
used to store the data packets to be transferred or to store the
received data packets from ‘Packet Receiver’.

3) ‘Packet Sender’: 1f ‘Tx Packet Buffer’ is not empty,
‘Packet Sender’ will fetch a data packet from the buffer. Then,
it will extract the destination information from the fetched
packet and send the destination address to ‘Network Arbiter’.
After ‘Packet Sender’ gets the grant signal from the arbiter, it
will start to send data packets to the destination node through
‘CDMA Transmitter’.

4) ‘Packet Receiver’: This block waits the request from
‘Network Arbiter’ to load the proper spreading code for
decoding. After it is ready, the receiver will start to receive
and decode the data from ‘CDMA Transmitter’, and then
send the decoded data to ‘Rx Packet Buffer’ in packet format.

B. CDMA Transmitter and Network Arbiter

Each ‘Network Node’ can start to send data to the ‘CDMA
Transmitter’ block only after it received grant signal from
‘Network Arbiter’. Then the ‘CDMA Transmitter’ will
encode the data with the corresponding unique spreading
code of the sender node and send the encoded data to
destination nodes. ‘First come, first served’ mechanism is
applied to ensure that the data encoding and sending are
performed as soon as there is data transfer request. The data
from different nodes will be encoded and delivered in the unit
of channel width. For instance, if the channel width is 8 bits,
8-bit data sections from different network nodes will be
handled by ‘CDMA Transmitter’ at a time. If a node requests
to send data to ‘CDMA Transmitter’ before the completion of
the current data encoding and transfer process, the sender
node has to wait until the next round of data handling starts in
‘CDMA Transmitter’. This situation is called CDMA transfer
contention.

‘Network Arbiter’ takes charge of informing the
destination nodes to prepare the proper decoding code and
arbitrating the data transfer requests from different sender
nodes if they are requesting the same destination node. In the
case that there are more than one sender nodes requesting to
send data to the same destination node simultaneously or at
different times, the arbiter will apply ‘round-robin’ arbitration
scheme or the ‘first-come first-served’ principle, respectively,
to guarantee that there is only one sender sending data to one

1-4244-1517-9/07/$25.00 (C)2007 IEEE

Z Tx Packet Packet |datajout

T o | Buffer Sender |

EESE |

S E™E

2|2 z Rx Packet| | Packet |dataiin

=] r— .

iz Buffer Receiver |
Network Node

,,,

Fig. 2. Block Diagram of ‘Network Node’

specific receiver at a time. However, if different nodes
request to send data to different destination nodes, these
requests would not interfere with each other and will be
handled concurrently in ‘Network Arbiter’.

I1I. SYSTEMC MODEL OF THE CDMA NoC

Transaction-Level Modeling (TLM) [14] is a modeling
style which bases on the features about channels and
interfaces of SystemC 2.1. In TLM, the communication
transactions are modeled by calling the interface functions
defined in the interfaces of channels. The interface functions
are implemented in the channels. Therefore, by separating the
definition from the implementation of the interface functions,
the system model only needs to care about the transactions
among modules and the data flow in the system without the
details of the communication method. The processes of
calling an interface function of a channel includes call and
return steps, which is very similar to the request and
acknowledge steps in an asynchronous handshake protocol.
Thus, TLM method is used to model the asynchronous data
transfers in the CDMA NoC by modeling the handshake
processes as the interface functions of a channel. The details
about the transaction-level SystemC model of the CDMA
NoC will be presented in the following subsections.

A. The Channels and Interfaces in the SystemC Model of the
CDMA NoC

The data packets are delivered from one block to the other
in the CDMA NoC through an asynchronous handshake
protocol. Therefore, the SystemC model of the CDMA NoC
also follows the block hierarchy illustrated in Fig.1 and Fig.2
in order to keep the uniform hierarchy between different
levels of abstractions. Each block in the CDMA NoC is
modelled as a channel. The interface functions and the
relationships among the channels are illustrated in Fig.3.
Fig.3 (a) illustrates the channels and interface function calling
relationships within a ‘Network Node’, while, Fig.3 (b)
presents the relationships among ‘Network Node’, ‘Network
Arbiter’, and ‘CDMA Transmitter’. In Fig.3, each grey square
at the boundaries of a channel represents an interface of that
channel, and each grey circle at the boundaries of a channel
represents an instantiated interface port of other channels.
The arrows in Fig.3 point from the instantiated interface port
to its original interfaces of channels. For example, the
‘CDMA Transmitter’ block communicates with a ‘Network
Node’ block by instantiating an interface, called ‘tx_if’, of the
‘Network Node’, then calling the functions in the ‘tx_if’
interface to get data. The interface functions contained in

Network Node Chnl

tx | if

Tx Packet
Buffer Chnl

Packet Sender
Chnl

-
Rx Packet Packet Receive
Buffer Chnl Chnl

(@)

rx| if

Node IF Chnl
o0

—
e
-
)

CDMA Transmitter
Chnl

Network Arbiter
Chnl

Network Node Chnl

3]

(b)

Fig. 3 Channels and Interfaces Diagram of the CDMA
NoC SystemC Model

each interface in the NoC model are listed in Table I and
described in the following seven paragraphs.

1) read()/write(): These two functions are used to read or
write data packets from or to a ‘Tx/Rx Packet Buffer’.

2) get status(): This function is used to get the stored
number of packets in a buffer.

3) cdma_tx_ack(): This function of ‘CDMA Transmitter’
channel is used to send acknowledge to the ‘Packet Sender’
channel as the end of current data transfer.

4) load _rx_pn_code(): The ‘Network Arbiter’ will call this
function to let a receiver node load the right spreading code
for decoding.

5) rx_from_noc():°CDMA Transmitter’ uses this function
to send data to a ‘Network Node’ channel.

6) cdma_tx_req(): This function is used by a ‘Network
Node’ to send data to ‘CDMA Transmitter’ channel.

7) tx_arb_req(): Each ‘Network Node’ will call this
function to request arbitration from the ‘Network Arbiter’.

B. Modeling the Parallel Request/Arbitration Processes

The main challenge of modeling the CDMA NoC is to
model the parallel data transfer and arbitration processes
carried out in hardware blocks, ‘CDMA Transmitter’ or
‘Network Arbiter’ blocks as described in Section II-B, with
SystemC software model. In hardware design, there are
dedicated circuits for each ‘Network Node’ to handle the
requests so that the handling processes are performed in
parallel. However, in the software model, a design method of
modelling the parallel handling processes needs to be applied
since the simulation kernel of SystemC only can run one
process at a time [4]. The parallel process modelling method
applied in this work is illustrated in Fig.4 with an example
from ‘CDMA Transmitter’ channel. In Fig.4, we can see that
all ‘Network Node’ send their requests to ‘CDMA
Transmitter’ via the generic interface function ‘cdma tx
req()’. In order to let more requests get through the calling of
‘cdma tx req()’, a separate SC THREAD process,
cdma_tx_proc(), is used to handle the received requests after
waiting for a certain amount of time. This method works

1-4244-1517-9/07/$25.00 (C)2007 IEEE

Table 1. Interface Functions in Each Channel

Channels Interface Functions
read()
Tx/Rx Packet Buffer Chnl write()

get status()

Packet Sender Chnl cdma tx ack()
. load rx pn code
Packet Receiver Chnl X PO 0
rx_from noc()
CDMA Transmitter Chnl cdma tx_req()
Network Arbiter Chnl tx_arb req()
Network CDMA_Transmitter Channel
Node Interface Functions cdma tx sc_thread
| ™ cdma_tx_req(...){ cdma_tx_proc(...){
o v wait(tx_req);
Network tx_req.notify ; wait(a_certain_time);
Node \ \

Fig. 4 Modeling Parallel Request/Arbitration Processes

since a SC_THREAD process will be suspended when it runs
to a wait() function. Thus, the simulation kernel gets chance
to run more request function call processes before starting the
request handling process. In this way, multiple request
handling processes are performed in parallel.

The same method is also applied in ‘Network Arbiter’ to
realize the arbitration process by using a generic interface
function for ‘Network Node’ to send requests.
Simultaneously appeared requests for the same destination
node will be arbitrated by the simulation kernel automatically
since only one request process will be chosen to run at a time.
The other failed requests will be kept until they are granted.
The requests for different destination nodes will be handled
one by one in the ‘Network Arbiter’ channel.

IV. PERFORMANCE ESTIMATION OF THE CDMA NoC

Based on the SystemC model of the CDMA NoC presented
in Section III and the RTL realization presented in [15], a
performance estimation method which combines the
flexibility of SystemC model and the accuracy of RTL
realization of the CDMA NoC is proposed as the following
steps.

Stepl: Model each block of the CDMA NoC as a channel
and build the CDMA NoC model according to the block
hierarchy.

Step2: Realize each block of the CDMA NoC in RTL and
do the synthesis and gate-level simulation using the target
technology library.

Step3: Record the latency information of the handshake
processes among the blocks from the RTL simulation, and
then back annotate the latency information to the correspond-
ing channels in the SystemC model of the CDMA NoC.

Step4: Estimate the performance of the CDMA NoC under
different configurations by simulating the timed SystemC
model of the CDMA NoC.

A. Simulation Environment Setup
The setup of the simulation environment for the CDMA
SystemC model is illustrated in Fig.5. In order to concentrate

Packet Tx Packet» Packet _
Source | ™| Buffer Sender o 5

[} PR
‘Packet Count & Timing‘ £ 2
: &
Network Rx Packet Packet : R ¢
Node Buffer Receiver S S
- [5]
z NS 2

Network Node >

Fig. 5 Simulation Environment Setup

Table II. The Extracted Latency Values from RTL
Realization

Communication Processes Latency
Read/Write Tx Packet Buffer 10.9/11.5 ns
Store a packet into Rx Packet Buffer 5.5ns
) 1-bit 384.6 ns
STdeZ,btlts‘ Ic)iatzli(fi(ﬁn ‘Pack?t S-bit 459 ns
ender’ to ‘Packet Receiver .
(with different channel widths) [{20218
32-bit 14.7 ns
Arbitration retry after contention 24 s

the simulation work on the asynchronous global network
itself other than the local synchronous interface which
depends on the type of applied interface standard in the
CDMA NoC, the ‘Network Node’ block is revised as
illustrated in Fig.5. The ‘Node IF’ is replaced by a ‘Packet
Source’ block which generates data packets according to a
specific traffic pattern. The size of ‘Tx Packet Buffer’ block
is set to be large enough for storing all packets from the
packet source during the simulation in order to make the
simulation to be an open-loop simulation, which ensures that
the traffic produced by the source is not influenced by the
network. The ‘Rx Packet Buffer’ is used to store the received
packets. The ‘Packets Count and Timing’ process is added on
the ‘Tx/Rx Packet Buffer’ blocks for counting and recording
the packet transfer information during simulations.

B. Performance Estimation Results

Three kinds of configuration parameters, COMA channel
widths, numbers of network node, and traffic patterns, are
explored during the simulations. The latency information
used in the simulations are extracted from the RTL realization
presented in [15] and listed in Table II.

Firstly, the different CDMA channel widths, which refer to
the number of data bits encoded and transferred at a time via
‘CDMA Transmitter’, are explored in the 6 nodes CDMA
network. The traffic pattern used in the simulations is
independent and uniform traffic which means that the same
amount of packets are independently generated at each
network node. The destinations of the generated packets in
each node are uniformly distributed to all the other network
nodes. Each node has sent 5000 packets to the network, and
the average number of data cells in the packets is 2. Fig.6
gives the average Asynchronous Transfer Latency (ATL) of
delivering a 32 bits data cell with different channel widths in
the CDMA NoC. By comparing with the latency values

1-4244-1517-9/07/$25.00 (C)2007 IEEE

[—e—1-bit —=—8-bit —+—16-hit —<32-bit

451. 00

M 605. 3T 9289 11
2610. 9178 9545985715
56\\%42& 68
JT7502 478.35
49.40 51.17

Average Tx Latency of 32 bits
data (ns)

100 % 75 % 25 % 10 %

netwggk%load

Fig. 6 Latencies with Different Channel Widths

——9 network nodes —®— 12 network nodes

—— 15 network nodes

—=167.81
% o 164.83
142.87

—=—73.40
29327 a99.79

—a99.49 —&—4.18=-2 61
—+—21.88 —=—3.19 <+ 1.91

Average Tx Latency
of 32 bits data
(100 ns)

——48. 29

100 % 75 % 50 % 25 % 10 %

network load

Fig. 7 Latencies with Different Numbers of Nodes

——6 network nodes —=—9 network nodes
—— 12 network nodes —<— 15 network nodes
B ——222.32
o 4 206.22
<
S e
%%’”@+.36\6 —e- 5456 —+—14.27 4 o .
= v —<—160. - —=—22.25 ' —— L
ﬁE% 72'74+f)0,m —=—2.30 —
Se1 }\;\\\%4487 00 a6l
i —a—Ju. ——4.20
g 9549 : —>—3.25
<
100 % 75 % 50 % 25 % 10 %
network load

Fig. 8 Latencies of Hot-Spot Traffic

presented in [15], we can see that the packet arbitration
contentions and CDMA transfer contentions increase the
latency severely.

Secondly, the different numbers of network nodes are
tested in the SystemC simulations since it can be done much
easier than the RTL realization and simulation. The traffic
pattern and other simulation configurations are same with the
ones used in the simulations of different channel widths
except that each network node sends 500 packets to each
other nodes. The channel width used in the simulations is 8-
bit. The average ATL values under different numbers of
network nodes are illustrated in Fig.7. From the results, we
can see that the transfer latency increases when the number of
network nodes increases since the probability of contentions
increases.

Thirdly, a hot-spot traffic pattern which is more likely
appears in real applications is simulated in the CDMA
networks with different numbers of network nodes. Node 1 is

selected as the ‘hot’ node and the ‘hot’ degree is 0.25 which
means that 25% of the generated packets in each node are
transferred to Node 1. The other packets are still uniformly
distributed to all other nodes besides Node 1. The average
ATL values of transferring a 32 bits data cell with hot-spot
traffic is illustrated in Fig.8. By comparing with the transfer
latency values illustrated in Fig.7, the CDMA NoC has
similar latency values under hot-spot traffic when the network
load is smaller than 50%. For the heavier network loads, the
transfer latencies become larger. It means that the CDMA
NoC is not sensitive to the balance of network load when the
network load is light.

V. CONCLUSIONS

A SystemC modelling work for a GALS CDMA NoC is
presented in this paper. The SystemC model is built in
transaction level by modelling each block of the CDMA NoC
as a channel. The asynchronous handshake processes for data
transfers in the NoC are modelled by the interface function
calls between channels. Based on the presented SystemC
model and the previously developed RTL realization of the
CDMA NoC, a performance estimation method is presented.
With the estimation method, the performances of the CDMA
NoC under different configurations have been simulated. The
different configurations which have been explored during
simulations include channel width, number of network nodes,
and traffic patterns. The simulation results give a fast
estimation of the transfer latency of the CDMA NoC under
different channel widths when contentions are included.
According to the simulation results, when the number of
nodes increased in the CDMA NoC, the transfer latency will
increase linearly since the possibility of contention increases.
Finally, a hot-spot traffic pattern is also been simulated, the
results reveal that the CDMA NoC is not sensitive to the
network load balance when the network load is lighter than
50%.

With the presented performance-estimation method, a
system designer can evaluate the performance of the CDMA
NoC wunder different configurations in a manner which

1-4244-1517-9/07/$25.00 (C)2007 IEEE

combines the fastness of TLM SystemC model and the
accuracy of RTL realization.

REFERENCES

[1] X. Wang, J. Nurmi, “An On-Chip CDMA Communication Network”,
Proc. of 2005 International Symposium on System-on-Chip, Nov. 2005.

[2] P. Guerrier, A. Greiner, “A Generic Architecture for On-Chip Packet-
Switched Interconnections,” Proceedings of the Design, Automation
and Test in Europe Conference 2000, Mar. 2000.

[3] K. Goossens, J. Dielissen, and A. Radulescu, “Zthereal network on
chip: concepts, architectures, and implementations,” IEEE Design &
Test of Computers, Volume 22, Issue 5, Sep.-Oct. 2005.

[4] Open SystemC Initiative (OSCI), “IEEE Standard SystemC Language
Reference Manual”, http://www.systemc.org

[51 A. Wieferink, T. Kogel, R. Leupers, G. Ascheid, H. Meyr, G. Braun, A.
Nohl, “A system level processor/communication co-exploration
methodology for multi-processor system-on-chip platforms”, Proc. of
Design, Automation and Test in Europe Conference and Exhibition
2004, Vol. 2, Feb. 2004, pp. 1256 - 1261.

[6] W. Klingauf, R. Gunzel, “Rapid prototyping with SystemC and
transaction level modeling”, Proc. of IEEE International Conference on
Field-Programmable Technology 2005, Dec. 2005, pp. 285 — 286.

[71 S. Xu, H. Pollitt-Smith, “A TLM platform for system-on-chip
simulation and verification”, Proc. of IEEE VLSI-TSA International
Symposium on VLSI Design, Automation and Test 2005, Apr. 2005, pp.
220 —-221.

[8] E. Beigne, F. Clermidy, P. Vivet, A. Clouard, M. Renaudin, “An
asynchronous NOC architecture providing low latency service and its
multi-level design framework™, Proc. of 11th IEEE International
Symposium on Asynchronous Circuits and Systems, Mar. 2005, pp. 54
-63

[9] D. M. Chapiro, “Globally-Asynchronous Locally-Synchronous
Systems”, PhD thesis, Stanford University, Oct. 1984.

[10] M. K. Simon, J. K. Omura, R. A. Scholtz, B. K. Levitt, “Spread
Spectrum Communicalions”, MD: Computer Science, Vol. 3, Rockville,
1984.

[11] X. Wang, and J. Nurmi, “Comparison of a Ring On-Chip Network and a
Code-Division Multiple-Access On-Chip Network,” VLSI Design, Apr.
2007.

[12] VSI Alliance, “Virtual Component Interface Standard v2”, Apr. 2001.

[13] OCP-IP Association, “Open Core Protocol Specification”, 2001.

[14] T. Grotker, S. Liao, G. Martin, S. Swan, “System Design with
SystemC”, Kluwer Academic Publishers, 2002, pp.131-153

[15] X. Wang, and J. Nurmi, “Comparing Two Non-Blocking Concurrent
Data Switching Schemes for Network-on-Chip,” Proc. of International
Conference on ‘Computer as a Tool” (Eurocon 2007), Sept. 2007.

	compilation_of_pubs.pdf
	compilation_of_pubs.pdf
	publication1.pdf
	publication1.pdf
	A Synthesizable RTL Design of Asynchronous FIFO_published.pdf
	A Synthesizable RTL Design of Asynchronous FIFO_published.pdf
	Index
	SOC 2004 Home Page
	Conference Info
	Welcome Message
	Invited Presentations
	Committees
	Sponsors

	Sessions
	Tuesday, 16 November 2004
	TueAmOR2-Keynote
	TueAmOR3-Industry 1
	TueAmOR4-Invited 1
	TuePmOR1-Industry 2
	TuePmOR4-Routing HW for NoC

	Wednesday, 17 November 2004
	WedAmOR1-Networks on Chip
	WedAmOR3-Invited 3
	WedAmOR4-System-Level Issues
	WedPmOR2-Blocks for SoC
	WedPmOR3-Invited 4

	Thursday, 18 November 2004
	ThuAmOR1-SoC-Mobinet Special Session
	ThuAmPO1-Poster Session: SoC-Mobinet and Related Work
	ThuPmOR1-Invited 5
	ThuPmOR2-IEE award winner session
	ThuPmPO1-Poster Session
	ThuPmOR3-Invited 6

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	V
	W
	Z

	Papers
	All Papers
	Papers by Session
	Papers by Topics

	Topics
	Analysis and early estimation techniques, technology ro ...
	Application-specific processors and architectures
	Configurable and reconfigurable architectures
	Design flow and methodology
	Embedded processor hardware
	Engineering education to qualify for SoC
	Low-power techniques
	Multiprocessor SoC
	Network-on-Chip
	On-chip communication and interconnects
	Physical design issues
	Platform architectures
	Reuse techniques
	SoC applications
	System-level integration
	Tools and languages for SoC design
	Verification, debugging, testing and testability

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Xin Wang
	Tapani Ahonen
	Jari Nurmi

	publication3.pdf
	Index
	SOC 2005 Home Page
	Conference Info
	Welcome Message
	Invited Presentations
	Committees
	Sponsors

	Sessions
	Tutorial
	MonTut-Tutorial

	Tuesday, 15 November 2005
	TueAmOR2-Invited1
	TueAmOR3-Industry1 and Coffee
	TuePmOR1-Invited2
	TuePmOR2-Processors
	TuePmOR3-Invited3
	TuePmOR4-Industry2 and Coffee
	TuePMOR5-Invited4

	Wednesday, 16 November 2005
	WedAmOR1-Configurable and reconfigurable technologies
	WedAmOR2-Industry3 and Coffee
	WedAmOR3-Invited5
	WedAmOR4-Exploring New Directions
	WedPmOR1-Design Flow
	WedPmOR2-High-Performance Systems
	WedPmOR3-Invited6

	Thursday, 17 November 2005
	ThuAmOR1-4S Special Session
	ThuAmPO1-Poster1 and Coffee
	ThuAmOR2-Invited7
	ThuPmOR1-SoC Applications
	ThuPmOR2-Invited8
	ThuPmPO1-Poster2 and Coffee
	ThuPmOR3-Invited9

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	Y
	Z

	Papers
	All Papers
	Papers by Session
	Papers by Topics

	Topics
	Alternative computing paradigms
	Analysis and early estimation techniques, technology ro ...
	Application-specific processors and architectures
	Configurable and reconfigurable architectures
	Design flow and methodology
	Embedded processor hardware
	Embedded software tools and techniques, e.g. retargetab ...
	Engineering education to qualify for SoC
	Low-power techniques
	Multiprocessor SoC
	Network-on-Chip
	On-chip communication and interconnects
	Physical design issues
	Platform architectures
	Reuse techniques
	SoC applications
	System-level integration
	Tools and languages for SoC design
	Verification, debugging, testing and testability

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Xin Wang
	Jari Nurmi

	publication6.pdf
	S1065514X07183728_published_version.pdf
	S1065514X07183728_published_version.pdf
	INTRODUCTION
	The Network Structures
	The network structures of the two NoC designs
	Distributed traffic versus centralized traffic

	The Data Transfer Principles
	Data transfer principle in the PTP NoC
	Data transfer principle in the CDMA NoC
	Data encoding and decoding schemes
	Spreading code selection
	Spreading code protocol
	Parallel data transfer principle

	Comparison of the data transfer principles

	The Network Node Structures
	Network node structure in the PTP NoC
	Network node structure in the CDMA NoC
	Comparison of the network node structures

	Asynchronous Designs
	Asynchronous design in the PTP NoC
	Control logic in the ``communication controller''
	Control logic in other blocks

	Asynchronous design in the CDMA NoC
	Asynchronous design implementation

	Performance Estimation
	The simulation network setup
	The area costs
	The data transfer latencies
	ATL in the PTP NoC
	ATL in the CDMA NoC
	Comparing the ATL values

	SystemC modeling for further estimation

	Conclusion
	REFERENCES

	publication7.pdf
	Main Menu
	ToC
	Sessions Schedule
	Author Index
	Go Back
	Search

