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Abstract  

The level of automation and wireless communication has increased in heavy machinery 

recently. This requires utilizing new devices and communication solutions in heavy 

machinery applications which involve demanding operating conditions and challenging 

life-cycle management. Therefore, the applied devices have to be robust and hardware 

architectures flexible, consisting of generic modules. In research and development 

projects devices that have various communication interfaces and insufficient 

mechanical and electrical robustness need to be applied. Although this thesis has its 

main focus on machines utilized as research platforms, many of the challenges are 

similar with commercial machines. 

The applicability of typical solutions for data transfer is discussed. Controller area 

network with a standardized higher level protocol is proposed to be applied where data 

signalling rates above 1 Mb/s are not required. The main benefits are the availability of 

robust, generic devices and well-established software tools for configuration 

management. Ethernet can be utilized to network equipment with high data rates, 

typically used for perception. Although deterministic industrial Ethernet protocols would 

fulfil most requirements, the conventional internet protocol suite is likely to be applied 

due to device availability. 

Sometimes sensors and other devices without a suitable communication interface need 

to be applied. In addition, device-related real-time processing or accurate 

synchronization of hardware signals may be required. A small circuit board with a 

microcontroller can be utilized as a generic embedded module for building robust, small 

and cost-efficient prototype devices that have a controller area network interface. 

Although various microcontroller boards are commercially available, designing one for 

heavy machinery applications, in particular, has benefits in robustness, size, interfaces, 

and flexible software development. The design of such a generic embedded module is 

presented. 

The device-specific challenges of building an automated machine are discussed. 

Unexpected switch-off of embedded computers has to be prevented by the control 

system to avoid file system errors. Moreover, the control system has to protect the 

batteries against deep discharge when the engine is not running. With many devices, 

protective enclosures with heating or cooling are required. 

The electronic control systems of two automated machines utilized as research 

platforms are presented and discussed as examples. The hardware architectures of the 



 

 

control systems are presented, following the proposed communication solutions as far 

as is feasible. Several applications of the generic embedded module within the control 

systems are described. Several research topics have been covered utilizing the 

automated machines. In this thesis, a cost-efficient operator-assisting functionality of 

an excavator is presented and discussed in detail. 

The results of this thesis give not only research institutes but also machine 

manufacturers and their subcontractors an opportunity to streamline the prototyping of 

automated heavy machinery. 
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1 Introduction 

 

The constant development in heavy machinery aims at higher efficiency, easier and more 

comfortable operation and lower maintenance costs. These goals can be reached by increasing 

the level of automation and implementing sophisticated operator-assisting functions. These 

functions have already been introduced in many fields of heavy machinery. There are even 

autonomously navigating and operating machines available for certain applications. According to 

Prescott, the development is likely to continue and cover more and more fields of heavy 

machinery. This is predicted to have a substantial effect on the market, eventually. [90] Meanwhile, 

utilizing another disruptive technology, the Industrial Internet, or the Internet of Things, also 

requires similar equipment to be installed on manually operated machines. 

1.1 Background 

Traditionally, the control systems of hydraulic heavy machinery have consisted of mechanical and 

hydraulic components. With machines like these, design, production, maintenance and spare parts 

service can be straightforward. Even several decades after the original machine was built, spare 

parts can be manufactured according to original drawings by a number of subcontractors. 

As the level of automation is increased, electronic devices are required. The machines are typically 

still designed to have life cycles of decades. Because electronic components typically have much 

shorter life cycles, there are new challenges in design, production, maintenance and spare parts 

service. These challenges are even greater when the control system has devices that are not 

widely used in heavy machinery, have neither standardized nor well-established interfaces and 

may be available from only one manufacturer. These devices may have originally been developed 

for the office environment, service robotics, factory automation or land surveying, for example. 
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Regardless of the level of automation, it is common that several machines are operated at the 

same working site. These machines can perform individual tasks or co-operate. In either case, 

multi-machine environments set new requirements for control systems of automated heavy 

machinery to maintain efficiency and safety. 

In this thesis, the design perspectives and challenges concerning control systems of automated 

heavy machinery are examined. The applicability of various devices and communication 

technology related to automated functionality is discussed considering modularity and robustness. 

The challenges related to different bus and network technologies and different types of devices are 

reviewed. Two examples of an on-board control system of automated heavy machinery for multi-

machine environment are presented and discussed. 

1.2 Scope of thesis 

The control systems of automated heavy machinery discussed in this thesis are primarily for 

research and development but also applicable to commercial future machinery to a great extent. 

The discussion applies to autonomous machines but also more common applications where the 

control system performs operator-assisting functions, remote monitoring or data logging. 

The term ‘mobile machinery’ is used in this thesis to describe wheeled and tracked heavy 

machinery, typically equipped with either a fixed tool or a removable attachment. The discussion in 

this thesis applies to mobile machines, in particular. 

The mobile machines that are presented as examples of automated heavy machinery in Chapter 6 

and Chapter 7 are designed and built for research and development. They are operated in closed 

environments under immediate human supervision. The machine safety required of commercial 

machinery by legislation is not considered in this thesis. 

Although the machines of the presented automated machinery cases are research platforms, they 

have much in common with commercial mobile machines. This applies to operating environment, 

maintenance and upgrades, for example. Therefore, many of the results are also applicable to 

designing the control systems of commercial automated mobile machines. 

1.3 Related research 

There has been active publishing in the field of automated mobile machines since the 1990s. The 

machines that are discussed in most publications have been built as proof-of-concepts or for use 

as research platforms. Control system architecture and hardware are, however, usually neither 
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described nor discussed in detail and the emphasis is often on control algorithms and 

performance. The automated machines that are most comprehensively discussed in the literature, 

and therefore covered by this section, are developed for cargo handling, agriculture, mining and 

earth-moving applications. This section also covers research on automated off-road capable 

vehicles with advanced sensing and computing, often targeted at military applications. 

1.3.1 Systems integration and management over machine life cycle 

Saha proposes several methods to improve the life cycle manageability of electronic control 

systems. These apply to hydraulic mobile machines with conventional digital and analogue inputs 

and outputs, especially. The methods include extending the scale of controller area networks 

(CAN) with switches and splitting the electronic hardware platform into a logical and a physical 

platform. Then the logical architecture, that is, the functionality of the control system, could be 

implemented and maintained in hardware description languages (HDL), independent of the 

physical platform. [99] 

To enable this, in-system reconfigurable mixed-signal hardware is required. Saha also 

demonstrates that a physical platform like this can be designed and built. The example platform 

has a field-programmable analogue integrated circuit (IC) which is used to implement 

reconfigurable analogue-to-digital converters (ADC). [99] 

Uusisalo compares distributed and centralized computation in small, remote-controlled wheel 

loaders. Two machines developed to be used as research platforms are used as examples. It is 

concluded that although distributed computation has the benefits of modularity and flexibility, a 

complex application may also require some centralized computation. An approach where the 

simple control tasks of an automated machine are computed by the devices of the actuator layer is 

suggested. [121] 

1.3.2 Electronic control systems in automated cargo handling 

Durrant-Whyte describes an autonomous guided vehicle (AGV) that has been developed for 

transporting cargo containers in a port environment. The AGV has a hydrostatic power 

transmission with a constant speed diesel engine, a variable-displacement pump and variable-

displacement hub motors. Steering is also realized with hydraulics. The low-level control of the 

hydraulic system is implemented using proprietary control units that can perform proportional-

integral-derivative (PID) control. Since the platform does not have a suspension system, the 

protective central computer housing is suspended. Pose estimation, i.e. solving the position and 

orientation, and obstacle detection is done with two horizontally scanning radars, one mounted on 

each end of the AGV. The steering angles and angular velocities of the wheels are measured with 

encoders. The computing platform is presented in Figure 1. [27] 
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The platform is modular at IC level, consisting of 11 transputers [110]. Furthermore, there is a 

digital signal processor (DSP) for both radars and an on-board computer for hosting the transputer 

network, monitoring the vehicle and accessing the wireless link. The transputers that are labelled 

T420 only perform integer arithmetic in the hardware, while the T805s have floating-point units 

(FPU). A special-purpose interface card with 42 measurement channels is used to measure 

hydraulic pressures, oil temperature, bumper limit switches, top-deck load and diesel speed for 

safety and condition monitoring. This functionality is independent of the rest of the control system. 

Moreover, every transputer has a separate status output that triggers an emergency stop if a 

software or hardware fault occurs. Transputer technology is chosen because it enables flexible 

input-output (I/O) configurations and there is software support for parallel processing on single and 

multiple processors. Durrant-Whyte states that the chosen transputer architecture makes both 

hardware and software development very efficient. Unfortunately, the project also demonstrates 

the short and unpredictable production life-cycles of ICs: transputers became obsolete soon after 

the results of the project were published. [27] 

 

Figure 1. Modular computing platform of the AGV, adapted from [27]. 

More complex automated machines have also been developed for cargo handling. Durrant-Whyte 

et al. present an automated eight-wheeled straddle carrier, AutoStrad. The machine (Figure 2) is 

based on a manually operated straddle carrier. Both straddle legs of the prototype machine have a 

diesel engine with a semi-automatic gear box. The machine has hydraulic all-wheel steering and 

load lifting. The four wheels of each straddle leg are mechanically linked to produce symmetric 

steering. The actuators and sensors are connected to a programmable logic controller (PLC) via 

CAN. The PLC monitors and regulates vehicle health based on hydraulic pressures and oil 

temperature, for example. The functional architecture of the control system is rather similar to the 

previously described AGV, but the hardware of the control system is different. The system controls 

the engines, gear boxes, steering, brakes, hoist and lights of the machine. [28] 
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Figure 2. An automated straddle carrier, AutoStrad. [28] 

A high-integrity navigation system is implemented with a horizontally scanning radar, four wheel 

encoders, one encoder in the steering system of each straddle leg, a real-time kinematic (RTK) 

global navigation satellite system (GNSS) receiver and an inertial measurement unit (IMU). 

AutoStrad also has four horizontally scanning lidars, one at each end of each straddle leg, for 

obstacle detection. Next to each lidar is a mechanical bumper with a limit switch. The system has a 

receiver for a heart-beat radio signal and another radio link for receiving tasks and plans from the 

base station. Although the computing platform, sensor interfaces and on-board networking are not 

described in detail, it is mentioned that a separately housed computer operates the on-board safety 

system. After thorough testing of the first prototype, four AutoStrads were built for testing fleet 

operation. The hardware of the control system was redesigned, and machine-level control 

functionality was implemented by the manufacturer of the original straddle carrier. Nevertheless, 

the system design was not changed from the first prototype of AutoStrad. Finally, the commercial 

version of AutoStrad was designed to have a series hybrid drivetrain and on-board networking 

based exclusively on CAN. [28] 

Teller et al. have developed an automated forklift that can be operated safely and flexibly alongside 

humans both outdoors and indoors. Although the control system is intended for short proof-of-

concept demonstrations in gentle environmental conditions, the hardware architecture containing 

several real-time sensors with high data rates makes the project relevant to this study. The forklift 

is modified from a commercial manually operated machine. A photograph of the forklift is 
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presented in Figure 3. Although the original forklift has many of its functions electrically controlled, 

mechanisms with electrical servo motors had to be designed and built for steering and braking. 

The computation required for automated functionality is performed on four networked quad-core 

laptop computers, three on them located on top of the machine. [105] 

 

Figure 3. Proof-of-concept of an automated forklift. [105] 

A GNSS receiver with an integrated IMU is included and wheel encoders are installed into the front 

wheels. A sensor with CAN interface is added for measuring the tilt angle of the fork. Encoders are 

used to measure the height and lateral position of the fork. A total of 15 scanning lidars are used to 

measure objects around the forklift. Six of them are mounted low, angled 5° downward, one facing 

forward under the chassis. Five lidars are located on top of the forklift, scanning more steeply 

downward. Two of the lidars are installed on the fork for pallet detection, and another two scanning 

vertically forward on the sides of the forklift. [105] 

Four beamforming microphones are used to detect shouted warnings. Four cameras are used to 

form a 360° view around the forklift for a remote operator. Speakers, a skirt of light-emitting diodes 

(LED) and LED matrix displays are added to signal to humans whether the system has detected 

them, and what actions the forklift is about to perform. Many of the lidars and LEDs are visible in 
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Figure 3. Each sensor is connected directly to one of the four laptop computers. A fifth laptop 

computer is used as a diagnostics display for the local operator. A wireless access point (AP) 

provides remote access. A PLC monitors heartbeat signals from higher level software run on the 

laptop computers and performs low-level control. [105] 

1.3.3 Electronic control systems in automated mining 

Marshall et al. have developed a system for automated hauling with an underground mining vehicle 

with articulated-frame steering (AFS). The system was tested with two machines originally built for 

manual operation. Both have a modular control system that is distributed over CAN. The system 

consists of ruggedized operator panels, display modules, I/O modules and proprietary 

computational modules that tolerate the demanding mining environment. The computational 

modules have a real-time operating system. [76] 

To enable automated functionality, the machines were equipped with extra sensors and embedded 

computers. On one of the machines, an Intel Pentium III–based computer operating at 700 MHz, 

was added. On the other one, an Intel Pentium M–based computer at 1.5 GHz was used. On both 

machines, two horizontally scanning lidars were installed: one for each travel direction. The lidars 

have RS-485 interface, which is not available in either of the embedded computers. RS-485-

Universal-Serial-Bus (USB) adapters are therefore used. The AFS angle is measured with an 

encoder that has a CANopen interface. Another encoder consisting of a toothed wheel and 

inductive sensors is mounted on the drive shaft. One of the machines with the extra sensors is 

presented in Figure 4. [76] 

 

Figure 4. An automated mining machine with additional sensors. [76] 

1.3.4 Electronic control systems in automated agriculture 

Automated functions in agricultural applications are a common research topic. Commercial 

systems for farm tractors are also available. Recent research has aimed at improving the 

performance of automated steering when the tractor is towing an implement that affects the yaw 
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dynamics of the tractor. Derrick developed adaptive algorithms for automated steering control. The 

algorithms were tested with a farm tractor which has hydraulic power steering. The steering valve 

can be commanded over CAN. Furthermore, the tractor has a differential GNSS receiver that is 

designed for agricultural use, supplied by the tractor manufacturer. In addition, automotive inertial 

sensors are installed to measure yaw rate and a linear potentiometer is installed to measure 

steering angle. [25] 

An embedded computer with PC/104-based modular hardware and a QNX real-time operating 

system is used for implementing the controllers in real time. The computer has two expansion 

boards: one for CAN communication with the steering valve, the other for measuring analogue 

signals from the IMUs and the linear potentiometer. The embedded computer is located in an 

enclosure that protects against mechanical shocks and vibration. The GNSS receiver is connected 

to the computer with a V.24/V.28 serial link. [25] 

The CAN-based communication between a tractor and an implement is specified in a well-

established standard ISO 11783. Backman studied how a decentralized and generic combined 

navigation system of a tractor and an implement can be realized using standardized 

communication. A system for combined navigation was developed and tested. The hardware 

architecture of the navigation system is presented in Figure 5. A combined seed drill was used as 

an implement. The system was tested in two field tests with two different tractors towing the seed 

drill. Both tractors accept steering curvature commands according to ISO 11783, and one of them 

also supports speed control. [10] 

The drawbar of the seed drill is modified by adding an articulated joint that can be hydraulically 

steered. The steering cylinder is controlled by an auxiliary valve of the tractor. An inductive non-

contact sensor has been added to measure the angle of the controlled joint. An angular 

potentiometer is used to measure the freely moving joint between the tractor and the seed drill. 

The signals of these sensors are transmitted to the ISO 11783 network. A measurement system is 

installed on the roof of the tractor for pose estimation. It consists of an RTK-GNSS receiver with 

Virtual Reference Station (VRS) service, an IMU, optionally a separate fibre optic gyroscope, and a 

microcontroller board that merges the data and transmits it over the ISO 11783 network using 

NMEA 2000–compliant messages as specified by National Marine Electronics Association. The 

GNSS receiver and the sensors have V.24/V.28-based serial communication with the 

microcontroller. In addition, the wheel encoders and the ground speed radar of the tractor are used 

for pose estimation. [10] 
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Figure 5. Hardware architecture of tractor-implement navigation system. [10] 

A vertically downwards scanning lidar is installed on the seed drill to detect the adjacent swathe left 

in the field by the previous drive. A similar lidar, installed horizontally scanning, is mounted in front 

of the tractor for obstacle detection. The lidars are equipped with IEEE 802.11–based wireless 

interface. The computing of the guidance system is performed by an Intel Core 2 Duo–based 

desktop computer with a CAN-USB adapter and an IEEE 802.11 wireless interface. Although the 

communication between the tractor and the implement can be realized over ISO 11783, some 

proprietary messages are required. Backman proposes ISO 11783 to be updated to define the 

communication in these cases. [10] 

1.3.5 Electronic control systems of automated off-road vehicles 

Green has researched path planning for automated off-road vehicles in unstructured environments. 

The algorithms are tested with a rugged amphibious vehicle, although the tests are performed only 

on land. The skid-steered vehicle has eight wheels driven by a petrol engine, a variable ratio 

torque converter and a manual gearbox with differential. The skid-steering is realized with separate 

hydraulic brakes for both sides. An electronic control system for automated operation is retrofitted 

on the commercial vehicle. An extra alternator and a deep-cycle-tolerant 24 V battery system were 

installed because the original 12 V system does not supply sufficient electrical power for the 

retrofitted control system, especially when operating the engine at low speeds. [42] 
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Figure 6. Hardware architecture of retrofitted control system for off-road vehicle. [42] 

The hardware architecture of the retrofitted system is presented in Figure 6. The sensors have a 

grey and actuators a white background in Figure 6. The angular velocities of the engine, torque 

converter output and wheels on both sides are measured with encoders. Sensors for measuring 

position and pressure of each brake actuator are installed, as well as limit switches. Limit switches 

are also mounted on the gear selection mechanism. A GNSS receiver with an integrated IMU is 

used for global pose estimation. Electrical servo motors and controllers are used for throttle and 

choke control. The electrical actuation of brakes and gear selection are not described. There is one 

computer for navigation and another for low-level vehicle control. The vehicle control computer has 

an expansion board for analogue I/O. The sensors and actuators are connected to the expansion 

board, apart from the electrical servo controllers that communicate with the computer via a 

V.24/V.28 serial link. There is also an emergency stop system that can override the actuator 

control signals from the vehicle control computer with a separate hardware signal. The computers 

are connected with Ethernet, CAN and a V.24/V.28 serial link. In addition to the retrofitted system, 

extra sensor, actuator and computing modules can be installed. The modules need to tolerate the 

power supply from the 24 V system, have CAN or Ethernet communication and support the 

emergency stop functionality when applicable. To map the terrain for path planning tests, Green 

uses a module that consists of three horizontally scanning lidars. [42]  

Kelly et al. research the performance of an autonomous vehicle in different challenging test 

environments. Two generations of automated off-road vehicles are developed. The vehicles are 
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based on human-operated all-terrain vehicles that are modified to be electrically controlled. The 

second generation of vehicles included an auxiliary generator for supplying the sensors and 

computers. Pose estimation is performed based on encoders measuring steering angle and 

angular velocity of the engine, a differential RTK-GNSS receiver, ground speed radar, linear 

potentiometer measuring suspension travel and an IMU. The perception system consists of several 

single-plane lidars, two stereo camera systems and several separate cameras, some of them 

thermal. In addition, the vehicle has a pressure-sensitive bumper. Some of the lidars are rotated by 

an electric motor. With slip rings for power and communication, they are able to rotate 

continuously. One of the rotated lidars is mounted on a controlled mast, enabling negative 

obstacles to be detected from a distance. In addition to the colour and thermal cameras used for 

terrain classification, there are several cameras for direct teleoperation. The vehicles are able to 

supplement on-board sensing by launching an automated helicopter and receiving aerial lidar and 

camera data. A second generation vehicle with sensors and antennas is shown in Figure 7. [66] 

The computing system consists of several Intel Pentium or compatible computers, each with a 

dedicated purpose: sensor and wireless interface (excluding stereo and teleoperation cameras), 

planning and hardware-accelerated stereo camera processing, teleoperation camera interface, top 

camera and lidar processing, and low-level sensor interface with actuator control. All the 

computers are clocked at 1–2.4 GHz and communicate over Ethernet at 1 Gb/s (1000BASE-T). A 

separate pulse-per-second (PPS) signal is connected to all the computers. The signal causes an 

interrupt that is used to synchronize the real-time clocks of the computers, which enables precise 

pose tagging and fusion of sensor data. [66] 

 

Figure 7. Sensor and antenna locations on automated off-road vehicle. [66] 
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1.3.6 Automated excavation 

Various research projects have been targeted at automated excavation and several arrangements 

have been patented. Caywood et al. filed an application as early as 1965, describing a hydraulic-

mechanical solution. [18]  

Singh has conducted surveys on research over the recent decades. Singh discusses the 

development of automation in earthmoving considering sensing, modelling, planning and control. 

The focus in sensing is mainly on lidars. Actuator and soil-tool interface modelling are discussed. 

Dig and dump planning are considered. Free-space motion control as well as digging control is 

covered. [102] 

Hemami and Hassani have prepared an overview of autonomous loading. A typical truck loading 

scenario is considered and the functional requirements are listed. Although navigation and 

obstacle avoidance are mentioned, the main focus is on excavation. The challenges related to soil-

tool interface are debated and relevant previous research is summarized. [48] 

Cannon describes an automated excavator that is developed for truck loading. The excavator is 

able to observe the shape of the surrounding soil to decide where to dig. Furthermore, the trucks to 

be loaded are detected and the dump position on a truck is automatically chosen. The excavator is 

able to move in case the dig and dump locations are different. The excavator reaches roughly the 

operating speed of an expert human operator. Although human assistance is needed, the 

excavator may operate several hours independently. The original machine is modified to support 

electrical control of the hydraulic system. Therefore, the swing, boom, stick, bucket and track 

movements are controlled by the electronic control system. Angular resolver sensors are mounted 

at each joint. Pressure sensors are installed to measure the actuator force of each hydraulic 

actuator. Perception is performed by two scanning lidars mounted on the roof of the excavator. 

There are controlled platforms that are used to point the lidars. The computer for automated 

functions consists of an array of four processors. Cannon has the main focus on dig planning. The 

developed planner is a perception-based system that exploits models of excavator dynamics and 

soil-tool interaction. [15] 

Ha et al. present an experimental automated excavator. A commercial small excavator is modified 

for electrohydraulic operation. According to Le et al., the machine has eight hydraulically controlled 

movements: tracks, cab swing, boom swing, boom, stick, bucket and backfill blade. Mechanically 

controlled valves have been replaced by electrohydraulic servo valves. Additional hydraulic 

components required by the servo valve are added. The servo valves are equipped with spool 

position sensors. Actuator pressure sensors are installed on the hydraulic system, and load pins on 

the excavator joints. Rotary absolute encoders are fitted to joints with timing belts. Encoder 

installations are protected by steel guards. Closed loop control of the actuators is performed by 

proprietary digital control modules. An industrial computer with a Windows NT operating system is 
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installed on the machine for higher level control. Furthermore, the computer can be used to host a 

transputer network for parallel processing. The industrial computer communicates with the digital 

control modules over CAN. Two short-range lidars are used to scan the terrain on both sides of the 

bucket. The operator’s cab has been removed. The electrical system of the excavator is used to 

power the electronic control system. [44][68] 

A digging controller with robust sliding mode control and a task planner with hierarchical-

behavioural approach are developed. Experiments with loading and trenching are performed with 

the excavator. The results are close to the performance of human operators, especially when the 

soil is not very hard. [44] 

Maeda et al. have used the same excavator to experiment with iterative trenching, without utilizing 

a model of the soil-tool interface or actuator force measurements. Cartesian impedance control is 

applied. The reference trajectories are generated based on a penetrate-drag strategy. Feedforward 

actions are pre-calculated using the free-motion inverse dynamics of the boom, stick and bucket. A 

variable structure observer is implemented for disturbance compensation. The results are 

presented with and without disturbance compensation. It is concluded that the proposed iterative 

control will converge towards the reference trajectory in more demanding conditions if disturbance 

compensation is applied. [75] 

1.3.7 DARPA challenges 

Several automated off-road vehicles with path-following and obstacle avoidance capabilities have 

been developed for the Grand Challenges organized by the Defense Advanced Research Projects 

Agency. Later, the focus has been on automated driving with other traffic and pedestrians present 

in the DARPA Urban Challenge. Although most of these vehicles cannot be considered 

experimental mobile machines, there are similarities in the design objectives of the control 

systems: demanding environmental conditions, sensor types and on-board communication can be 

close to automated mobile machinery. Moreover, the research and development work in these 

projects may be done by dozens of people at different locations, and further work may continue 

over a decade with the same vehicle platform. Therefore, modular and flexible hardware and 

software solutions are often desirable in these projects. 

Braid et al. developed the control system for an automated off-road military truck, TerraMax. The 

truck has six wheels, all-wheel drive and all-wheel steering. The computers and networking 

equipment are installed in a suspended rack under the passenger seat. A display, keyboard and 

mouse for on-board testing and development are mounted on the dashboard of the truck. The 

sensors are fixed to the roll cage with adjustable mounts that tolerate shocks and vibration. A 

cleaning system is installed to enable automatic washing and drying of the sensor lenses. An 

electrically actuated proportional pressure control valve is used to control the brakes. The throttle is 

controlled by generating a pulse-width-modulated (PWM) voltage signal for the original engine 
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control unit. Gear selection is already electrically actuated in the original truck. An electrical servo 

motor is mounted in parallel with the steering wheel. The original truck has a dual-input steering 

gearbox which makes parallel installation straightforward. [12] 

The hardware architecture of the control system is presented in Figure 8. The system is distributed 

over Ethernet at 100 Mb/s (100BASE-TX). A conventional internet protocol suite is used. 

Computing is distributed over several embedded computers. One of the computers has an I/O 

expansion board for gearbox and throttle control. Two differential GNSS receivers with integrated 

IMUs are used in pose estimation for redundancy. A wheel odometry signal is connected to the 

GNSS units to improve read-reckoning performance during poor satellite reception. One of them is 

configured to perform differential calculation with a satellite-based augmentation system (SBAS); 

the other receives differential corrections via a V.24/V.28 serial link from a third, agricultural GNSS 

receiver with a subscribed OmniStar correction service. Obstacle detection is performed by three 

cameras and four scanning lidars: two single-plane and two quad-plane models. Only one of the 

quad-plane lidars is used at a time, the other is for backup. The single-plane lidars communicate 

over V.24/V.28 serial link; the quad-plane models have external electronic control units with 

Ethernet interface. The cameras have an IEEE 1394 interface and they are arranged into a 

trinocular vision system. [12] 

 

Figure 8. Hardware architecture of control system of TerraMax. [12] 



31 

 

Urmson et al. present the development of two automated military vehicles: Sandstorm and 

H1ghlander. In addition to embedded computers, the control systems include several embedded 

modules of one or more microcontrollers that run a real-time operating system each. The modules 

are connected with automotive grade data links. Hardware-related functions are developed in C 

and assembler but MATLAB/Simulink with automated code generation is used to implement control 

routines. The original alternators of the vehicles are removed. Because the maximum power 

consumption of the electrical system also exceeds the ratings of the replacement generators, both 

vehicles have microcontroller modules controlling the generators and the voltage converters based 

on loading conditions. There is a separate radio link for remote emergency stop. [116]  

Sandstorm is customised exclusively for automated operation: the roof and passenger 

compartment are removed. Sensors and computers are installed on a suspended platform for 

protection. The movement of the suspended platform in relation to the vehicle frame is not 

measured, which affects path-following performance, for example. A separate small diesel engine 

and a 24 V generator are installed to supply electrical power instead of the original alternator of the 

vehicle. Heat management of the electronics is realized by installing an extra evaporator inside the 

electronics cabinet. The compressor of the cooling system is driven by the main engine. A large 

gearwheel is mounted behind the steering wheel for electrically actuated steering. The gearwheel 

is paired with an electric motor. The actual steering angle is measured by a sensor at the output of 

the power steering gearbox. A multi-turn angular sensor is included in the electric motor for 

redundancy. A microcontroller module performs close loop control of the steering angle. Since the 

original engine has a mechanically controlled injection pump, an automotive throttle actuator is 

modified and fitted on the engine. The actuator consists of an electric motor with an integrated 

position sensor. A microcontroller module is used to control the actuator angle. The brake pedal is 

actuated by an electric motor with a reduction gear. Torque-based control is realized with a 

microcontroller module. [116] 

The electrical system of the H1hglander is replaced by the system of a later model of the same 

vehicle to make transmission and engine control accessible in the software. Although a suspended 

enclosure is installed for the embedded computers, the sensors of the H1ghlander are mounted 

without extra suspension. A 340 V switch-reluctance generator supplies an electric air conditioning 

compressor and step-down voltage converters for 24 V and 12 V devices. The original steering 

system has been replaced by an electro-hydraulic system: A hydraulic rotary actuator is controlled 

by an electrically actuated proportional valve with integrated closed-loop spool position controller. 

The hydraulic power is generated by a fixed-displacement pump. A rotary sensor is mounted on 

the shaft of the rotary actuator. The position of one of the cylinders of the rotary actuator is 

measured for redundancy. A microcontroller module performs closed-loop control of the steering 

angle. The engine control unit of the updated electrical system has CAN communication. The 

brake master cylinder is actuated by an electric motor with a reduction gear. A microcontroller 

module performs torque-based close-loop control. [85][116] 
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The perception and computing system is similar in both vehicles: one horizontally scanning long-

range lidar is mounted on an actively controlled gimbal. This is done because the pitch and roll 

angles of an off-road vehicle change rapidly during drive and cause distorted range 

measurements. In addition to stabilizing the lidar, the active control makes it possible to point the 

lidar at different areas of interest. The stabilized lidar is used with two short-range lidars for terrain 

characterization. Another two short-range lidars are used for detecting positive obstacles. To 

improve perception performance through dust, a horizontally scanning radar is also installed. A 

dual-antenna GNSS receiver with an integrated IMU and data fusion is used for pose estimation. 

The pose estimation algorithm also uses odometry data. A camera with IEEE 1394 interface is 

installed for documentation. The computing is distributed over Ethernet (1000BASE-T) between 11 

computers. Seven of them are built of modular CompactPCI hardware with Pentium M processors. 

The remaining four consist of modular PC/104 hardware based on Pentium III processors. All the 

computers have an operating system based on Fedora Linux kernel and communicate over the 

internet protocol suite. The communication with microcontroller modules that control steering and 

velocity is realized with CAN. The hardware architecture is presented in Figure 9. [85][116][125] 

 

Figure 9. Hardware architecture of Sandstorm, adapted from [125]. 

Short range LIDAR 1–3

Ethernet 

RS-485

Parallel

RS-232

RS-422

CAN

Pentium M

Pentium M

Pentium M

Pentium M

Pentium M

Pentium M

Long range LIDAR

Short range LIDAR 4–6

Gimbal

Velocity control

Steering control

Itanium

Radar

Pentium M

PC/104

PC/104

PC/104

INS/GPS

Gigabit switch

PLC 1

PLC 2

PLC 3

PC/104



33 

 

In 2007, DARPA organized the Urban Challenge which is the most recent DARPA competition 

where hardware architectures of control systems were developed for autonomous vehicles. The 

most obvious update in control system hardware compared to the Grand Challenges is probably in 

the perception equipment for detecting other vehicles, pedestrians, road markings, etc. The 

sensors are generally the same as in the Grand Challenges, but there are more of them. As a 

result, more software development and higher computing performance are required. Furthermore, 

all the networking and hardware architectures of the Grand Challenge vehicles are not flexible 

enough for adding this new equipment. 

Leonard et al. equipped a vehicle with a perception system of 12 single-plane lidars, 15 automotive 

radars, 5 cameras and a 64-plane lidar. The aim was that all sensors communicate over Ethernet, 

preferably with user datagram protocol (UDP) multicast to minimize network load. Unfortunately, 

most of the sensors do not have an Ethernet interface. A serial server is used to collect the serial 

data from the single-plane lidars and transmit it over Ethernet using the internet protocol suite. The 

radars have a fixed automotive firmware and each requires a dedicated CAN. Several adapters are 

used to interface these 15 CANs into Ethernet. The cameras are connected to a computer that 

transmits compressed image data over Ethernet to other computers. The computing is realized 

with a modular blade server system. Considering the overall power consumption of the control 

system, there is no suitable alternator with sufficient power rating. Therefore, a separate engine-

generator unit and uninterruptible power supplies (UPS) are used. [72] 

Urmson et al. developed a perception system with six single-plane lidars, a 64-plane lidar, two 

automotive lidars, two quad-plane lidars, five automotive radars and two cameras with a high 

dynamic range. Most of the sensors have a fixed mounting. Some of the lidars are pointed down 

for detecting lane markings, as road paint is generally more reflective than road surface. An 

automotive lidar and radar are mounted on a controlled pod on both sides of the vehicle. A 

differential GNSS receiver with integrated IMU, wheel odometry input and data fusion is installed 

for coarse pose estimation. Devices for low-level actuator control are supplied by the original 12 V 

system of the vehicle. For sensors and computing, an auxiliary 24 V alternator, battery pack and 

several voltage converters with power management functionality are installed. An interface for 

external power supply is included. Circuit protection and power distribution are arranged to ensure 

that no single protective device opening its circuit will produce a complete gap in the coverage area 

of the perception system. The original cooling system of the vehicle is used for thermal control. 

Computing is performed by ten Core2Duo-based computers at 2.16 Ghz with 2 GB of random 

access memory (RAM), a 4 GB flash drive and a dual Ethernet interface supporting 1000BASE-T. 

Two 500 GB hard disk drives are included for data logging. The computers are CompactPCI 

modules installed in a common chassis. The computers are synchronized with a customized PPS 

adaptor board and communicate using the internet protocol suite. [117][118] 
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1.3.8 Summary 

The publications presented above describe several electronic control systems of automated 

machines and vehicles. The level of automation ranges from automated steering to machines 

capable of operating independently several hours. A typical system has lidars and cameras for 

perception, a GNSS receiver and an IMU for pose estimation and several computers. These 

devices typically communicate over Ethernet, and interface with low-level controllers via CAN and 

V.24/V.28 serial communication. The reasons for choosing the data transfer solutions and 

hardware architectures are typically not discussed in detail. 

The life-cycle manageability of the presented control systems of automated mobile machinery is 

not discussed in literature. The presented research on life-cycle manageability, on the other hand, 

is focused on control systems with conventional I/O and does not cover the sensors and computers 

required in automated mobile machinery. 

1.4 Research questions 

The aim of this thesis is to find out how the electronic hardware of the control systems of future 

automated mobile machinery has to be designed. This objective is formulated into the following 

research questions: 

What are the limitations of applying different communication technologies? 

There are different communication technologies that may be applied to a control system. What are 

the limits in network throughput and segment length? What are the differences in deterministic 

communication delay, cost-efficiency, and electrical and mechanical robustness? Which 

technologies are feasible in respect of life-cycle manageability? 

What are the essential device-related design aspects concerning sensing, actuation, 

computing and electrical power supply in contrast to designing manually operated 

machinery? 

Utilizing state-of-the-art sensors and computers in mobile machine applications is not 

straightforward. How to realize the electrical power supply for devices that cannot be supplied 

directly from the battery system of a mobile machine? Which device types require extra protection 

against environmental conditions? Which communication technologies to utilize when 

communicating with different device types, taking life-cycle manageability into account? 
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How to interface devices that cannot be connected directly to mobile PLCs or I/O modules? 

Research and development projects involve interfacing new devices into existing control systems. 

These devices have interfaces that are not present in the control system at all, or not in a sensible 

location regarding the architecture of the control system. In addition, utilizing these devices may 

require harder real-time calculation than possible in the control system. How to interface a device 

like this into the control system of a mobile machine? How to minimize the prototyping work when 

utilizing customised microcontroller-based devices as interfaces? 

1.5 Scientific contribution 

The scientific contribution of this thesis in relation to previously conducted research on mobile 

machinery is presented in Figure 10. The previous research on life-cycle manageability of control 

systems is partially applicable to automated mobile machinery but does not cover the extra 

sensors and computers required for automated operation. The published research on automated 

mobile machines, on the other hand, is concentrated on describing the performance of the 

developed automated functionality. Although hardware architectures or lists of utilized devices are 

published, the development process of the hardware architecture of the control system is not 

discussed in detail. Life-cycle manageability, in particular, is not discussed, probably since the 

developed systems are not intended for long-term operation. 

 

Figure 10. Contribution of this thesis in relation to previous research. 
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The scientific contribution of this thesis is the following: 

Feasibility assessment of different digital networks and buses for automated mobile 

machinery 

The feasibility assessment is done in Chapter 3. The key characteristics are compared in Table 2 

and a proposed arrangement to utilize different data transfer solutions is presented in Figure 13. 

Compilation of hardware-specific challenges and design aspects in the electronic control 

systems of automated mobile machinery 

The challenges and design aspects are discussed in Chapter 4. In particular, a proposed workflow 

for specifying the voltage of a battery system is presented in Figure 15 and a proposed reference 

hardware architecture of an automated mobile machine is presented in Figure 20.  

Design of a generic embedded module for interfacing prototype devices with a distributed 

control system 

The design process of the embedded module is presented in Chapter 5. In addition to designing 

and implementing the embedded module, applying the module on devices presented in Chapter 6 

and Chapter 7 are contribution of the author, apart from developing the real-time algorithm for 

wheel odometry. 

Demonstration of the above contributions in two experimental automated machines 

Designing and implementing the control systems presented in Chapter 6 and Chapter 7 are partial 

contribution of the author. The excavator control module, in particular, and its control software 

demonstrated in Chapter 7 are developed and experiments conducted by the author. Comparison 

of the control systems with the proposed reference hardware architecture is presented in the end 

of Chapter 6 and Chapter 7. 

1.6 Outline of thesis 

In Chapter 2, the requirements for control systems of automated mobile machinery are presented. 

The characteristics of mobile machinery, the required sensor and actuator interfaces, 

communication, and properties of multi-machine environments are discussed. 

The feasibility of different solutions for data transfer is discussed in Chapter 3. These include the 

typical buses and networks an automated machine has on-board. 



37 

 

In Chapter 4, the challenges linked to different types of devices required in automated machinery 

are discussed. Devices for embedded computing, pose estimation and perception are included. 

A generic microcontroller module that can be used to interface new sensors and actuators with the 

control system is presented in Chapter 5. The design criteria, features and construction of the 

module and application-specific use are presented. 

In Chapter 6, a wheel loader with automated path following is presented as an example. The 

control system architecture and individual devices are described. Meeting the requirements for 

control systems of automated mobile machinery is discussed. 

The control system of a small remotely operated skid steered wheel loader with an automated 

excavator is discussed as another example in Chapter 7. The architecture of the control system 

hardware is presented. The implementation of operator-assisting functionality is described and test 

results are shown.  

Finally, conclusions are drawn. Guidelines for designing the control systems of automated mobile 

machinery are proposed. 





 

 

2 Application-related requirements for electronic control 

systems 

 

Automated mobile machinery has special requirements for electronic control systems that pose 

design challenges. In this chapter, these requirements are presented. The requirements are 

divided into ones that derive from long life cycles and demanding operating conditions of mobile 

machines, ones that are related to automated functions and ones that are specific to multi-machine 

environments. 

2.1 Mobile machinery 

Mobile machines have longer life cycles than electronic components. Therefore, a machine is likely 

to have its electronic control system at least partially updated or upgraded at some point. In 

addition to changing spare parts, new functionality is added to old machines. To reduce the costs 

of these changes, the control system has to consist of generic modules that are straightforward to 

replace. The spare part stock can be kept smaller if one generic module can be configured to 

perform different tasks. The architecture of the control system also has to be flexible so that the 

control system can be extended by adding new devices.  

Mobile machines often operate in demanding conditions: extreme temperatures, dust, snow and 

high-pressure water are not uncommon. Not only do the machines work on rough terrain but heavy 

vibration and shocks are also generated by the on-board mechanisms and engine. Although some 

sensitive devices may be located inside a cabin, in general, dust and water proof enclosures, 

robust construction and thermal management are required. The electrical devices that are neither 

cleaned with a pressure washer nor sunk into water still require a minimum degree of protection of 

IP55 as specified in IEC 60529 [23]. The devices need to operate over an ambient temperature 
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range of −20 °C to 50 °C, at minimum. For devices mounted next to an engine or exposed to direct 

sunlight this is not sufficient. In addition, single electronic components inside an enclosure may 

need to operate at up to 125 °C due to the heat generated inside the enclosure. On the other hand, 

extreme winter applications may require operating temperatures as low as −40 °C. 

Mobile machines are used for diverse tasks. Excavators and wheel loaders, for example, have 

several optional tool attachments. Machines are operated in closed environments but also driven in 

public traffic. The control system must not limit this flexibility, even if automated functionality is 

added. If a machine is designed to be fully automated or remotely operated, the operator’s seat 

and cabin can be left out. However, the option to drive or operate an automated machine manually 

from the operator’s seat is often desired. This is the case, for example, if a machine is driven on 

public roads between closed working sites, or automated functionality is forbidden on some sites. 

Manual driving may also be needed for maintenance. 

2.2 Automated functions and remote operation 

Manually operated machines have diesel engines, working hydraulics, and steering and braking 

systems that can be used to implement automated functionality. They also have several sensors 

that can be used. All requirements for actuators, sensors and data transfer are, however, usually 

not met in manually operated machines. 

2.2.1 Requirements for actuation and sensing 

To enable remote and automated control, an automated machine needs to have electrically 

controlled functionality. Depending on which functions are automated, some functionality may 

remain mechanically or hydraulically controlled. For example, automated driving requires 

electrically controlled acceleration, braking, steering and gear selection, but working actions may 

still have mechanical control levers. 

Automated functionality often requires sensors that are not present in manually operated 

machines. Measured quantities are, for example, the positions of work mechanisms, hydraulic load 

pressures and centre link angle in an AFS machine. In some applications limit switches are 

sufficient, but usually actual sensors are needed. For automated drive, the angular velocities of 

wheels, global position and orientation of the machine and inertial signals typically need to be 

measured. Depending on the level of automation, also different types of cameras, radars, lidars or 

ultrasonic sensors are required. 
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2.2.2 Requirements for on-board data transfer 

The control system of an automated machine implements several closed-loop controllers, which 

increases the number and transmission rate of sensor signals compared to a manually operated 

machine. In addition, sensors with high output data rate are utilized. Approximated payload data 

rates of different device types are listed in Table 1. Devices that do not involve cyclic data transfer 

are omitted. 

Table 1. Data rates of device types. 

Device 
Size of one 

measurement cycle 
Rate [Hz] Data rate 

Diesel engine, 

target rotation speed 
12 b 50 600 b/s 

Proportional valve, 

target spool position 
16 b 50 800 b/s 

GNSS receiver, RTK 

latitude & longitude 
96 b 10 960 b/s 

Joystick, 

3 axes 
30 b 50 1.5 kb/s 

Wheel odometry, 

single wheel 
16 b 100 1.6 kb/s 

Linear or angular 

position sensor 
16 b 200 3.2 kb/s 

Pressure sensor 10 b 500 5 kb/s 

IMU,  

6 degrees of freedom 
96 b 200 19.2 kb/s 

Monitoring camera, 

320 by 240 pixels, 

H.264 compression [5] 

– 10 192 kb/s 

Single-plane lidar, 

270° scan at 0.25° 

interval, distance only 

17.3 kb 25 432 kb/s 

Machine vision 

camera, 

1920 by 1080 pixels, 

8-bit Bayer pattern 

16.6 Mb 10 166 Mb/s 
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In this thesis, a typical control system of an automated mobile machine is assumed to have ten 

pressure sensors, six proportional valves, two joysticks, and six linear or angular sensors. 

Uncompressed digital video and two lidars are utilized for perception while compressed video is 

transmitted for direct teleoperation. A GNSS receiver, an IMU, and wheel odometry of four wheels 

are used in pose estimation. The data transfer of these devices, including overhead, must not 

cause more than 50 % network load on-board, leaving bandwidth for distributed computation and 

devices to be added in further development. 

2.2.3 Requirements for wireless data transfer 

Remotely operated mobile machines need wireless data transfer to receive control signals from the 

remote operator. This is clear in the case of direct teleoperation as described by Sheridan [101]. 

However, even machines with a high level of autonomy communicate with a supervisor, 

exchanging mission or task information. The requirements for wireless data transfer depend 

heavily on the application. 

In direct teleoperation control signals are transmitted in real time. Therefore, the delay of wireless 

communication has to be minimal. In this thesis, the maximum acceptable delay including the 

transmission of a control command and reception of a visual feedback is 100 ms. If a video stream 

is not transmitted from the machine to the operator, the required data rate of the wireless 

communication is low. This can be the case if the operator is able to see the machine directly or 

the working site has a low-latency camera system for direct teleoperation. A wheel loader, for 

example, can be operated with four 5-bit control values transmitted every 100 ms, requiring 

simplex communication with a throughput of 200 b/s. It is also possible that instead of a real-time 

video stream, the machine transmits sensor data, and the machine and its environment are 

visualised to the operator with computer-generated graphics. It is, however, often safer and more 

convenient to use on-board cameras. The minimum acceptable video quality in this thesis is 

considered to be 320 by 240 pixels at 10 frames per second. Utilizing H.264-compliant video 

compression, a video stream of the minimum quality has a data rate of 192 kb/s maximum. [5] In 

direct teleoperation, lost data does not need to be retransmitted when new data is available. This 

applies to both control signals and video stream. 

Depending on the level of autonomy, an automated machine may require a new subtask from the 

operator or external control system every second or a new mission every week. In any case, more 

delays in communication can be tolerated than when the machine is remotely operated. Lost data 

has to be retransmitted as transmission is usually not a continuous stream. However, if the 

automated machine transmits video or other sensor data for real-time supervision, the 

requirements regarding retransmission, delay and data rate are similar to direct teleoperation. 

In this thesis, the control system must enable direct teleoperation over a wireless connection 

meeting the minimum specification above. In addition, task data is transmitted. The wireless 
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technology has to have sufficient data rate for video transfer at the minimum quality described 

above. Wireless APs may be installed in the working area if required by the chosen wireless 

technology. 

2.3 Multi-machine environment 

It is most straightforward to implement automated machines that operate alone in a closed 

environment. There are, however, applications that require other machines, automated or manual, 

to be operated in the same area. The presence of other machines sets new requirements and 

restrictions for the control system of an automated machine. 

On-site wireless communication may be intensive even without automated machinery. It is likely 

that one communication channel has to be shared between the machines. Therefore, the available 

data rate of wireless communication is divided. Moreover, with communication protocols, the 

overall ratio between payload and overhead data gets worse as the number of transceivers is 

increased. A common communication channel is also required if the machines have to 

communicate directly with each other. 

A fleet of automated machines may perform coordinated tasks or missions. For this, an automated 

machine has to have wireless communication and embedded computing that are compatible with 

the fleet management system. This compatibility may, for example, require an on-board embedded 

computer to have a specific operating system. 

When a single automated machine operates in a closed environment with no dynamic obstacles, 

collision prevention is straightforward to implement. In a multi-machine environment, however, the 

situation is more difficult. One solution is that all the machines receive subtasks from a fleet 

management system that makes sure no two machines go too near each other. When machines 

perform longer tasks automatically, this is no longer feasible. Instead, the machines need to 

communicate their position to other nearby machines and adapt their operation accordingly. This 

means that also manually operated machines need to have positioning and communication 

equipment. Working sites also have dynamic obstacles like manually operated machines without 

positioning equipment or unmapped objects moved by manual machines. In this case the 

automated machines need to have sensors to detect these obstacles. 

In this thesis, the minimum requirement is that two automated machines may be operated in a 

closed environment simultaneously. There is no need to detect other machines or obstacles by on-

board sensors. However, the hardware architecture of the control system must enable perception 

sensors to be installed later. 





 

 

3 Feasibility of typical data transfer solutions 

 

There are several ways to transfer measurement and control signals in hydraulic mobile machines. 

Keeping the control system architecture modular, robust and generic can prove difficult even with 

manually operated machines. The problem becomes more complex when the functions of a 

machine are automated and it is operating in a multi-machine environment. This requires sensor 

and computation devices that have not been used in mobile machines before. Furthermore, as 

these devices are not targeted at mobile machine applications, they have limited compatibility with 

typical control system I/O, buses and networks. 

In this chapter, the challenges related to these means of data transfer are discussed. 

3.1 Non-digital interfaces 

Most sensors first convert the measured quantity into an analogue electric signal, typically voltage. 

More advanced operations such as signal processing, amplification, conversion and digital 

interfaces may follow. Many sensors and actuators are available with an analogue or a digital 

interface. Because the analogue versions have lower pricing, digital versions are used in 

commercial systems only when the benefits are clear.  

A digital interface is usually slower to develop than the analogue version. Therefore, when a new 

device is introduced onto the market, the version with analogue output is sometimes released first. 

Furthermore, some devices are targeted at completely analogue processing. Especially with high-

frequency signals, digital processing may not be reasonable. 

Unlike digital interfaces, an analogue signal does not include any information on the relation 

between the measured physical quantity and the electric signal. Therefore, gains and offsets need 
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to be defined for all analogue signals. These may differ even between two similar devices from the 

same manufacturing batch. Regarding modularity, this is a key problem common to all analogue 

interfaces. 

Interference is a common problem with analogue signals. In a mobile machine, the electric power 

supply is typically an alternator with a battery. The alternator is an AC generator with a rectifier. 

Therefore, the output voltage has a ripple with a frequency that is proportional to the rotation speed 

of the engine. The battery does not attenuate the alternator ripple completely but it remains a 

significant source of interference through both conducting and radiation. Other potential sources of 

ripple are switching mode converters. There are also inductive loads such as mobile hydraulic 

valves and electric motors that generate interference when they are switched. 

A separate conductor is used for each analogue signal in a control system. This results in high 

cable costs and increases the probability of a cable or connector fault as the number of signals 

becomes higher. Each conductor is also a potential source of interference for the signals of the 

neighbouring conductors. 

Analogue sensor signals are typically connected to an ADC of an I/O module or a mobile PLC. 

Depending on the properties of the analogue signal, there are several design considerations: 

amplification, anti-aliasing filter, ADC resolution, sampling frequency and digital signal processing. 

Similar parameters need to be decided when analogue actuator signals are produced by digital-to-

analogue converters (DAC). 

3.1.1 Continuous analogue signals 

Voltage signals are the most difficult type of analogue signals regarding interference. Therefore, 

they only have to be carried over short distances in a mobile machine. Designing a cost-effective 

generic voltage input or output circuit is difficult due to several commonly used voltage ranges. 

Moreover, as mobile machine control systems mainly consist of single supply devices, the ranges 

that include negative voltage values are challenging to process. 

Measuring a resistance includes transferring a voltage signal. Therefore, simple resistive sensors 

have the same problems as devices communicating by voltage signal. In addition, resistive 

sensors may require biasing or bridge circuits. 

In general, current signals are more tolerant of interference. Most devices use an established 

current range of 4 to 20 mA. This makes a generic approach easier. Moreover, a sensor may 

operate with two conductors as no separate ground conductor is needed. Compared to voltage 

signals, this can reduce cabling substantially. 
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3.1.2 Pulse signals 

Voltage pulses that carry signals in either frequency or pulse width are quite convenient in the 

sense of interference. They can be connected to conventional digital I/O. However, for high 

frequencies or accurate pulse widths a dedicated pulse I/O with hardware timer or counter, or both, 

is needed. Pulse signals are often transmitted by open-collector circuits. Therefore, external pull-up 

or pull-down resistors are required, depending on the circuit. Rating these resistors depends on the 

type of the output transistor, supply voltage, maximum pulse frequency and accuracy 

requirements. Moreover, mobile I/O modules typically have no convenient way of installing external 

resistors. This may result in the need for separate enclosures or connector blocks for resistors. 

Because of this, most pulse signal devices are not easily interchangeable. On the other hand, a 

single product may be configurable for several operating voltages. 

A special case of pulse frequency signals are quadrature signals. A quadrature interface has two 

square wave signals that have −90° or 90° phase difference. These signals are typically used for 

calculating angular or linear movement: Each edge of either signal corresponds to a small change 

in rotation or displacement and the sign of phase difference indicates the direction of the change. 

Quadrature outputs are typically push-pull-type. Therefore, there is no need for external resistors. 

On the other hand, quadrature devices often operate at a fixed signal voltage level, which is not 

directly connectable to a typical mobile I/O device. A similar interface can also be implemented 

with sinusoidal signals. 

3.2 Digital buses and networks 

Digital communication has undisputable advantages compared to analogue signals: digital signals 

have a strong tolerance of interference and noise, it is possible to transfer several control signals 

and configuration data in one conductor, and transmission errors can be detected and corrected, 

for example. When arranged as a network, digital communication enables efficient distributed 

control and minimizes cabling. 

A device with a digital interface has an embedded microprocessor (typically as the core of a 

microcontroller) unless both functionality and communication interface are simple. This makes the 

devices more expensive. On the other hand, as the computation of a system can be distributed, 

the main controller can be less expensive. The key problem with microprocessors, however, is 

their relatively short life cycle. There are different compilers, software development tools and 

hardware programming and debugging interfaces for each family of processors or microcontrollers. 

As workstation hardware and operating systems tend to become obsolete within a few years, 

maintaining configuration tools for older devices is often challenging. 
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Digital communication can be optimized for data rate, transfer delay, distance, cost or reliability. 

The solution is always a trade-off between some of these design parameters. Since one bus or 

network cannot be optimal for everything, there are dozens of standardized and established ways 

of digital communication. Furthermore, the rapid development of electronics and industrial 

competition constantly produce new digital buses and networks. Updated specifications are 

backwards compatible, in general, but the rapid introduction of entirely new buses and networks 

tends to make the older ones obsolete. 

In addition to physical specifications, a communication protocol has to be defined. Depending on 

the system, different levels of the Open Systems Interconnection (OSI) model [55] are 

implemented. There are typically several competing higher layer protocols for each physical layer. 

Some of these protocols conflict with each other and therefore require separate physical layers. 

Considering design, production and maintenance of mobile machines, it would be ideal to have the 

same digital interface for all devices. Due to application-specific optimization, many devices only 

have the interface that best suits the device type. Therefore, actual mobile machines with 

advanced automation include several digital buses and networks. 

3.2.1 ISO 11898 (Controller Area Network) 

CAN was originally developed for automotive applications. Since the control systems and operating 

conditions of cars and mobile machines are alike in many ways, CAN is nowadays the most 

common network in the distributed control of mobile machinery. 

CAN cabling can be implemented at low cost as the only key parameter is a characteristic 

impedance of 120 Ω [96]. For most operating environments, unshielded twisted pair copper cable 

is sufficient. Care has to be taken, however, to minimize mismatches in characteristic impedance 

all over the network. Typical mismatch problems are related to connectors and termination. 

CAN controller ICs implement the data link layer of the OSI model according to [96]. Most CAN 

controller ICs have a configurable data signalling rate up to 1 Mb/s. However, not all devices can 

take full advantage of this feature: An application layer protocol or the functionality of the device 

may require a certain rate. Moreover, the device may have a limited message processing capacity, 

which either restricts the maximum data signalling rate or tolerates only low bus loads at high data 

signalling rates. Because all the devices of a CAN need to have the same data signalling rate, this 

limitation alone may require dividing the devices of a system into several CANs. To utilize high bus 

loads, careful message scheduling is required [43]. 

The main limitation with CAN is the maximum data signalling rate of 1 Mb/s. Therefore, in a control 

system with several closed loops the data transfer capacity of CAN is often insufficient. Another 

problem in some control applications is that the common CAN protocols are not deterministic: a 

message with a higher priority may cause extra communication delay at any time. This can be 
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avoided to some extent by careful node configuration and synchronous message transmission. [16] 

A deterministic time-triggered communication has been specified [98], but not widely implemented 

so far. 

When CAN is operated at 1 Mb/s, the maximum bus length is only 25–40 m [16][97]. Since the bus 

topology requires short stubs, the trunk may become surprisingly long. An example of this is 

illustrated in Figure 11. Moreover, these distances can be reached with late bit sampling points, 

only. The chosen application layer protocol specifies the sampling point and thus maximum 

tolerance for the oscillator. For example, CANopen specification for sampling point is 75–87.5 % of 

nominal bit time [16]. For size or cost optimization, a system can be designed with devices that 

have more inaccurate oscillators. To enable sufficient resynchronization jumps in such conditions, 

the sampling point is set earlier, which results in maximum bus lengths shorter than specified [95]. 

In general, this is not good procedure because all the devices of the bus would have to be able to 

resynchronize to these inaccurately timed transmissions, and compatibility with most application 

layer protocols is thereby lost. The number of devices has a considerable effect on the bus length 

as well: devices need to be spaced sparsely enough to keep the mismatch of the bus characteristic 

impedance low [22]. If minor extra delays can be tolerated, some of the limitations can be avoided 

by grouping devices into separate buses and using CAN switches [99]. 

 

Figure 11. Example bus layout of CAN. 

There are several application layer protocols that cannot usually be used in the same physical 

network. SAE J1939 is the only CAN protocol generally supported by heavy duty diesel engine 

manufacturers. Because J1939 was originally developed for trucks, it does not cover the 

communication of a machine, in general. Therefore, machines with such an engine often have one 

CAN for J1939 devices and another for controlling the hydraulic system, for example. 
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Some of the application layer protocols are designed to be more flexible. CANopen and Common 

Industrial Protocol (CIP) are the most common general-purpose CAN protocols. CANopen 

specifications are maintained by CAN in Automation (CiA). In addition to general protocol 

specification, CiA has defined profiles for several device types and applications. The specifications 

also cover system management process and interfaces between CANopen software tools. [87] 

Therefore, CANopen devices can be replaced with a similar product from another manufacturer 

rather easily. Conformance tests are not mandatory, which has contributed to extending the 

CANopen product range. On the other hand, some of the devices that have not been tested for 

conformance do not fully meet CANopen specifications.  

CIP is the application layer protocol of DeviceNet which is managed by ODVA, Inc. The 

manufacturers of DeviceNet equipment are closely linked to ODVA to maintain product 

conformance. This, in contrast, makes developing new products more difficult. Most DeviceNet 

products are targeted at industrial automation. 

Because a CAN frame is simple and networks of only a few devices are common, implementing 

light system-specific protocols is often fast and easy. However, considering the life cycle of mobile 

machines, a commonly used protocol makes maintaining and extending the control system more 

efficient. Because most application layer protocols have minimal overhead and flexible options for 

timing, system-specific protocols have no performance benefit. 

Although CAN is the current industry standard in mobile machine control systems, it is likely to be 

eventually replaced with a faster network. CANopen and CIP are already available as deterministic 

real-time protocols on Ethernet, for example. [36][83] Moreover, a specification for CAN with 

flexible data rate (CAN FD) has been released recently. CAN FD networks can be built using the 

same cabling as CAN. Messages are sent using the same arbitration phase as CAN, with the 

same data signalling rates of up to 1 Mb/s. For data phase, however, the data rate can be higher, 

up to 8 Mb/s, and the number of data bytes can be as high as 64. With these measures, it is 

possible to achieve a much higher actual throughput. Moreover, as the length of the CAN FD bus 

trunk is only limited by the data signalling rate of the arbitration phase, it is possible to choose the 

two data rates so that both the actual throughput and the bus length are increased. If the flexible 

data rate is not used, CAN FD hardware is compatible with CAN. [32][46] Because CAN FD 

specification is rather new and there are new challenges regarding the physical implementation 

[47], there are no commercial transceivers supporting the highest flexible data rates yet [32]. 

Since classic CAN controllers would reject messages with flexible data rate, these controllers need 

to be disabled during flexible data rate communication. Therefore, systems with both classic CAN 

and CAN FD devices can have faster and more advanced firmware updates, testing and 

debugging features, etc. but there is no improvement in throughput during normal operation. It is, 

however, likely that standardization will change the behaviour of new classic CAN devices in the 

near future: CAN FD messages will be ignored instead of being flagged invalid [32][71]. This will 
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enable transmitting of real-time signals over CAN FD in mixed systems. To make the transition to 

CAN FD easier, Lennartsson and Olsson propose an ‘enhanced format’ that interleaves extra data 

bits inside classic CAN frames. These frames would appear valid to all CAN controllers since the 

extra data bits are transmitted within a nominal bit time, sufficiently before the bit sampling point. 

[71]  

3.2.2 IEEE 802.3 (Ethernet) 

Ethernet is the most actively developed and supported local area network (LAN) technology. The 

development started in the 1970s and the first Ethernet standard was published in 1985 by the 

Institute of Electrical and Electronics Engineers (IEEE). The first implementations used a thick 

coaxial cable as the physical medium. Several new physical layers have been standardized since, 

but most specifications have remained valid. [57] In addition to ongoing strong development and 

standardization, Ethernet has an extremely strong position in the office, consumer and industrial 

markets. IEEE standards for Ethernet cover the physical and the data link layer of the OSI model 

[56][57]. Since Ethernet was originally developed for the office environment, there are features that 

are not optimal for industrial applications, not to mention mobile machines.  

Nowadays, the physical layer of Ethernet is often implemented according to 100BASE-TX or 

1000BASE-T specifications of [57]. The eight position eight contact (8P8C) modular connector that 

is used in these specifications has limited strain relief and poor protection against dust and water 

[20]. Although many manufacturers refer to this connector as registered jack 45 (RJ45), actual 

RJ45S and RJ45M specifications contain wiring configuration for telecommunication, using a 

keyed version of the 8P8C connector [82].  

For 10BASE-T and 100BASE-TX there is an optional, properly protected industrial connector: a 

4-pole M12 with D-coding. ‘Coding’ refers to mechanical keying that prevents the common A-coded 

4-pole M12 sensor connectors from being accidentally mated with the D-coded M12 Ethernet 

connectors, for example. The 8-pole A-coded version of the same connector is used for 

1000BASE-T. Even 10 Gigabit Ethernet is supported by several manufacturers with X-coded 

8-pole M12 connectors that are actually not included in the M12 specification of the International 

Electrotechnical Commission (IEC). Because of this, some manufacturers prefer to call these 

CAT6A M12 connectors instead. [21][51, pp. 216–217][104, pp. 78–80] These connectors are not 

specified for Ethernet by IEEE, but especially the 4-pole version is strongly supported by several 

manufacturers of high protection rating Ethernet devices. 

The 8P8C modular connector is, however, often the only option in an industrial device, probably 

due to strong standardization and low cost. With devices like this, an extra enclosure is needed if 

there is no dust and waterproof control cabinet available for installation. The connector type can be 

changed from 8P8C into M12 on the enclosure panel with an adapter, see Figure 12 

[70, p. 45][100, p. 240][103, pp. 94–95]. However, even inside the extra enclosure, conventional 
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8P8C connectors are still vulnerable because of the mechanical vibrations and shocks of the 

machine. There are robust 8P8C products, but both the plug and the receptacle need to be of the 

same product series [14, pp. 46–51][103][104], they are more expensive and require more space 

than M12 connectors. Although there is a standard that specifies robust 8P8C connectors for 

industrial networks [54], various manufacturer-specific connectors are widely used. Most robust 

8P8C receptacles, however, accept the regular 8P8C jack, which makes testing and configuration 

in clean and dry locations easier as no special cables are needed. 

 

Figure 12. Adapters between M12 and 8P8C for panel installation [103, p. 94]. 

Excluding obsolete coaxial cable implementations, Ethernet typically has a star topology with a 

switch or a hub in the centre. A daisy chain is also possible if all the devices have two physical 

Ethernet ports. Regardless of the topology, the physical layer of Ethernet is more expensive to 

implement than CAN, for example. 

At the moment there are not many Ethernet devices available for motion control of mobile 

machines. However, considering embedded computers, wireless communication modules and 

various advanced sensor systems, Ethernet is often the only reasonable option. 

3.2.2.1 Internet protocol suite 

The internet protocol suite (often called TCP/IP) is the most common set of protocols used in 

Ethernet systems. Although the internet protocol suite is a layered set of protocols, it does not 

strictly comply with the OSI model. Most of the suite is divided into application layer, transport 

layer, internet layer and link layer protocols. [94] These layers do not have strict definitions. Part of 

the data link layer of the OSI model is covered by the link layer of the internet protocol suite. One 

of the key protocols of the link layer is address resolution protocol (ARP) which finds an Ethernet 

address for a destination internet address. The pairs of Ethernet and internet addresses are stored 

into a translation table which is typically cleared at shutdown. Therefore, after boot-up, ARP 

communication takes place before the first transmission to each destination address. [35] 

The main protocol of the internet layer is called internet protocol (IP). Its main functions are 

addressing and fragmentation of data packets from higher layers. IP has a header checksum which 

makes sure the packet is addressed and fragmented correctly. The data of the packet, however, is 



53 

 

not checked for errors in this layer. IP has no mechanisms for acknowledgment, retransmission or 

flow control, either. [60] 

Most application level protocols are based on transmission control protocol (TCP) [109] which 

corresponds to a transport layer protocol in the OSI model. As a connection-oriented protocol, it 

has features that are not needed in control applications. A more suitable option is another transport 

layer protocol, UDP. A lost or duplicated packet is not detected by UDP. [119] In a small, properly 

configured on-board network transmission, errors are unlikely and typically originate from a 

hardware fault. Therefore, a separate detection of fault situations is usually implemented. 

3.2.2.2 Industrial Ethernet 

Neither Ethernet specifications nor internet protocol suite definitions are deterministic: although 

frame collisions can be avoided by using switches instead of hubs, the communication delay 

cannot be predicted if the transmissions of several devices overlap. There are several competing 

solutions that implement a deterministic industrial Ethernet. Some of these, however, require 

modified Ethernet hardware. Some specifications are entirely based on proprietary network 

controllers; others work with IEEE 802.3 compliant controllers but achieve improved accuracy if 

modified controllers are used. Fortunately, the modified controllers required for accuracy 

enhancement are often IEEE 1588 compliant and used to implement hardware-assisted precision 

time protocol (PTP) that enables clock synchronization in sub-microsecond range. It is also 

possible to implement PTP with conventional IEEE 802.3 compliant network controllers and 

achieve synchronization accuracy of 20 μs, for example. [39] Some of the specifications that are 

implemented with standard Ethernet hardware are based on UDP, but most of them replace the 

entire internet protocol suite with a real-time protocol stack. Conventional internet protocols are, 

however, supported as the real-time protocol stacks have separate time slots for non-real-time 

communication. [37][38][45] 

Many automation devices, nevertheless, still have only a standard Ethernet interface and support 

only the regular internet protocol suite. Therefore, it should be easy to add standard Ethernet 

devices into an industrial Ethernet system. Unfortunately, this is usually not the case. The networks 

that use non-standard hardware require a special bridge between the industrial and standard parts 

of the network. A bridge is also needed with an IEEE 802.3 compliant industrial Ethernet if the 

firmware of the standard Ethernet devices in the system cannot be updated. 

Most industrial Ethernet devices are not designed to tolerate the operating conditions of mobile 

machines. However, as the level of automation is increasing, industrial Ethernet may well replace 

CAN in mobile machinery applications. Due to relatively long machine lifecycles and small 

production volumes, the industrial Ethernet protocols that are based on standard Ethernet 

hardware seem most applicable. For example, in CANopen-dominated applications POWERLINK 

is a likely successor, having the same application layer protocol [36]. If minimal cycle time and 
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maximum protocol efficiency are required, EtherCAT may be preferred. Pickel et al. experimented 

on both POWERLINK and EtherCAT, and successfully demonstrated EtherCAT communication 

between a tractor and an implement. [88] 

3.2.3 V.24-based serial link 

V.24 and V.28 recommendations specify a serial link that was originally designed to interface a 

teletypewriter with a modem. The interface is often referred to as RS-232, according to the 

American national standard. For compatibility reasons, a V.24/V.28 compatible serial port was 

included in practically every personal computer till it was replaced by USB. The V.24/V.28 interface 

is light to process and the hardware is low-cost. Therefore, it is still common in embedded devices. 

The serial interface is controlled by a universal asynchronous receiver/transmitter (UART). 

UARTs do not have addressing or error detection apart from rarely used simple bit parity check. 

Therefore, proprietary serial protocols are common. There are also several well-established 

protocol specifications for certain applications. 

A V.24/V.28 serial link has a point-to-point topology. Therefore, a computer typically has a 

separate serial port for each V.24/V.28 device in the system. Maximum cable length depends 

mainly on the total capacitance of the cable. V.28 specifies single-ended signalling which is 

sensitive to interference. Therefore, especially long cables have to be shielded. 

V.24/V.28 devices have quite low data rates. The V.28 recommendation covers data signalling 

rates only up to 20 kb/s [31], but devices supporting up to 115.2 kb/s are common nowadays. In 

any case, the maximum data signalling rate has to be checked for each device separately. 

A point-to-point serial link can also use differential signalling according to V.11 specification [30], 

also referred to as RS-422. The specification enables longer cables and higher data signalling 

rates. Similar transceivers can also form a half-duplex multi-point network as specified by 

ISO/IEC 8482 [59], or RS-485, if the transmitters can be switched off. This type of serial bus is 

common in traditional industrial automation. 

3.2.4 Local Interconnect Network 

To complement automotive networking with CAN, for example, a low-cost technology called Local 

Interconnect Network (LIN) has been developed. In addition to protocol definition, LIN specification 

covers a work flow concept with configuration and node capability languages. An application 

programming interface (API) is also specified. 

LIN can be implemented with the same UARTs that are used in V.24/V.28 serial links, only the bus 

driver/receiver circuitry is simpler. One common single-ended bus signal is used, making the 

cabling simple but also more sensitive to interference. LIN has a maximum data signalling rate of 
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20 kb/s, which limits its applicability. The maximum length of the bus is 40 m with a topology similar 

to CAN. [73] Using hubs, the length and topology could be extended [99].  

Another limitation is that a LIN always has one master and up to 16 slaves. Although slaves can 

receive each other’s frames directly, all the frame transfers are initiated by the master according to 

a schedule table. The header includes a sync byte that enables the use of inaccurate oscillators in 

the LIN slave devices. Thanks to master-initiated communication, a LIN can be configured to be 

deterministic. Because of these mechanisms the total overhead is, unfortunately, more than four 

bytes per frame. In addition, the LIN specification allows rather long inter-byte space, resulting in 

long frame slots in the schedule table. 

Let us consider the actual throughput of a LIN system with slaves that are 8-bit sensors, 

transmitting frames that have one data byte. The actual throughput, Rt, can be calculated 

according to (1). 

𝑅𝑡 =
𝑇𝑑

𝑇𝑓𝑠
𝑅𝑏 , (1) 

where Td is the length of sensor data, Tfs the length of a frame slot and Rb the data signalling rate. 

A frame header transmitted by the master is always 34 bits long, not taking into account possible 

inter-byte space. The slave then transmits one byte of data and a checksum byte. Bytes are 

transmitted similarly to UART communication, with one start and one stop bit. Thus, the response 

from the slave takes 20 nominal bit times. The nominal length of a frame with 1 byte of data is 

therefore 54 bits. The maximum length of a frame with inter-byte space is specified to be 140 % of 

the nominal transmission time, including bit timing tolerance. If the jitter in master task timing is not 

significant, each frame slot has to be at least 75.6 nominal bit times. [73] 

Substituting Td = 8 and Tfs = 75.6 to (1), we get 

𝑅𝑡 =
8

75.6
𝑅𝑏 ≈ 0.11𝑅𝑏 . (2) 

Most networks have similar efficiencies when a frame carries minimal payload data because 

addressing and error checking typically form a fixed overhead. However, the problem is 

emphasized with LIN because Rb is low. Therefore, at the full data signalling rate of 20 kb/s, the 

network of 8-bit sensors would have a maximum throughput of only 2.1 kb/s.  

Since LIN is targeted to be a low-cost technology for automotive manufacturers, commercially 

available LIN products are mainly automotive ICs, not robust I/O modules. However, slave I/O ICs 

can be used to develop simple generic I/O modules that can be configured according to the LIN 

work flow [79][111][112]. 
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3.2.5 IEEE 1394 

IEEE 1394 is a high-performance serial bus for computer peripherals, for example. Depending on 

interface generation, an IEEE 1394 interface uses a data signalling rate of up to 3.93 Gb/s. The 

interface is often called FireWire, according to the brand name of Apple Inc., the original developer. 

The specification includes different physical transfer mediums, but the most common is short-haul 

copper cable. It typically has a maximum length of 4.5 m, although longer cables are possible in 

simple network layouts. [49] 

A short-haul IEEE 1394 network with more than two devices has to be daisy-chained or branched, 

using devices that have more than one port. In addition, since the cable shielding specification is 

quite complex, the hardware cost of a network easily becomes high. [49] The IEEE 1394 

specification is targeted at indoor applications. There is no well-established industrial connector 

outside the specification, either. Therefore, protected and robust plugs and receptacles no not 

mate, in general, unless they are of the same product series. 

If data signalling rates above 393.216 Mb/s are used, a 9-pin Beta or bilingual connector is 

required. Unfortunately, there are no protected variants of these connectors commercially 

available. In mobile machinery applications this means that both ends of a commercial Beta cable 

are likely to be routed through a sealed cable gland. Since the 9-pin connectors are rather bulky 

(diagonal typically 14–15 mm) in relation to typical Beta cable diameter (less than 7 mm) [49], most 

cable gland manufacturers do not have a gland with a suitable clamping range. It is also possible 

to choose the cable glands according to cable diameter and install one or both of the connectors 

after routing the cable. Unfortunately, installing the 9-pin connectors requires soldering or crimping. 

A solution like this is not flexible or convenient considering assembly or maintenance. Another 

option is to choose the cable gland according to connector diagonal and increase the diameter of 

the cable to ensure proper sealing. This can be done by applying heat shrink tubing that has a high 

shrink ratio, for example. Furthermore, the 9-pin cable may be fitted through solid tubing that has a 

sufficient diameter. Using cable glands, the solid tubing forms a sealed channel between the 

enclosures. Whichever the solution, extra effort is required. 

An IEEE 1394 interface is not included in a typical embedded computer. A separate adapter board 

is therefore needed. Although an IEEE 1394 interface can be implemented with low-cost 

components, industrial grade adapter boards for embedded computers tend to be considerably 

more expensive. 

3.2.6 Universal Serial Bus 

USB was designed for interfacing peripherals with a personal computer. The latest version of the 

specification, USB 3.1, has a maximum data signalling rate of 10 Gb/s. At the moment, however, 

most devices only support USB 2.0, which has a maximum data signalling rate of 480 Mb/s. The 



57 

 

USB network has a tiered star topology, which requires a host that is connected to devices directly 

or via hubs. The devices do not communicate with each other but only with the host. 

USB 3.0 has more complicated cable and connector specifications than USB 2.0. Neither 

specification states the maximum length of a cable, but only a limit for signal propagation delay and 

insertion loss. With typical cables, these result in a maximum length of a couple of metres. 

[113][114] In mobile machinery applications, USB has connector limitations similar to IEEE 1394. 

3.3 Comparison of key parameters 

Key parameters of the presented bus and network technologies are compiled in Table 2. The 

number of plus signs in the application programming interface (API) column is intended to give a 

relative impression of the extent of software support. The rating is based on driver or API 

availability for different operating systems likely to be used in automated mobile machinery, the 

estimated effort of writing a driver or API for unsupported operating systems, and the complexity of 

writing software using the API. It is also considered to be a clear advantage if the APIs of different 

vendors comply with a standardized or otherwise well-established specification. All of this applies 

to the communication interface itself but also the connected devices. The availability of different 

protocol stacks is also considered. 

The ‘device availability’ column lists devices that are available with the network or bus interface in 

question. The lists are not exhaustive, but reflect the device types that are commonly used in 

automated mobile machines. 
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Table 2. Comparison of on-board data transfer solutions. 

 

Max data 

signalling 

rate 

Max 

segment 

length 

Physical 

topology 
API Device availability 

CAN 1 Mb/s 

25 m 

(CANopen 

at 1 Mb/s) 

bus,  

active star 
++ 

power train, PLC, general I/O, 

sensors, GNSS receivers, 

motion control, advanced 

automotive sensors 

Ethernet 
1 Gb/s 

(typical) 
100 m active star +++ 

machine vision cameras, 

surveillance cameras, laser 

scanners, IEEE 802.11 

devices, GNSS receivers, 

mass storage, PLC, general 

I/O, motion control, advanced 

sensors 

V.24/V.28 

serial 

115200 kb/s 

(typical) 

15 m 

(typical) 

point-to-

point 
+++ 

GNSS receivers, radio 

modems, laser scanners, 

advanced sensors 

LIN 20 kb/s 40 m 
bus, 

active star 
++ cabin controls, general I/O 

IEEE 1394 
983.04 Mb/s 

(typical) 

4.5 m 

(typical) 

active star, 

daisy chain 
+ 

machine vision cameras,  

mass storage 

USB 
480 Mb/s 

(typical) 

5 m 

(typical) 
active star + 

mass storage, web cameras, 

machine vision cameras,  

GNSS receivers 

3.4 Wireless data transfer 

Wireless data transfer is required for direct teleoperation but also for communicating with an 

automatically operating machine. There are several wireless technologies that can be applied to 

mobile machinery. Some solutions include network functionality; others are intended for simple 

point-to-point applications. For some wireless technologies there is support for internet protocol 

suite or other advanced protocols; for others transceiver registers may have to be accessed 

directly. 



59 

 

Wireless transceivers are optimized for data signalling rate, range, reliability or communication 

delay. Some have configurable reception sensitivity and transmission power. Transceivers have 

integrated error detection, forward error correction or retransmission mechanisms. Some devices 

are targeted at mobile machinery applications; others require protective enclosures or modified 

power supplies. Some technologies are available as ICs or prototyping boards, only. 

3.4.1 IEEE 802.11 

IEEE 802.11–based wireless networks have high data signalling rates, reasonable ranges and are 

supported by various protocols. There are standalone client modules that typically connect to on-

board Ethernet as well as wireless adapters that are installed to on-board computers. In general, 

wireless adapters can be configured more freely by software. On the other hand, standalone 

wireless modules are independent of the operating systems of on-board computers, 

straightforward to configure and to replace. 2.4 GHz versions of IEEE 802.11–based transceivers 

are, unfortunately, popular in numerous applications, making the frequency band unreliable in 

some working sites. Furthermore, there can be other devices besides the IEEE 802.11–compatible 

transmitting in the 2.4 GHz frequency band. 

The range of an IEEE 802.11–based wireless network is affected by several factors. If there is a 

line of sight between the antennas of the machine and the wireless AP, ranges over 200 m are 

possible but network throughput can be heavily decreased already at 100 m [62]. The situation 

gets worse when the line of sight is lost. Therefore, several 802.11–based APs may be required to 

cover the working site of an automated machine. 

Depending on application, fast roaming, or handoff, between APs may be needed. A procedure for 

fast roaming with encrypted IEEE 802.11 communication has been standardized by IEEE in 2008 

[58] but proprietary solutions still exist. Different methods for vehicle use are compared by Kwak et 

al. As the AP is selected by the mobile node, the handoff performance depends mainly on the on-

board hardware. Wireless adapters may support fast handoff directly or with updated driver 

software. Some proposed schemes even include using an on-board localization system to assist in 

fast handoff. [67] 

Vernersson et al. have compared general-purpose and vehicular versions of IEEE 802.11 

communication in a quarry environment, a likely application of an automated mobile machine. 

Although the vehicular IEEE 802.11p equipment has a lower data signalling rate, it provides higher 

range and reliability in the tests. [122] Furthermore, Demmel et al. demonstrate how the speed of 

the vehicle affects maximum range, communication delay and packet loss in IEEE 802.11p 

communication. The results imply the performance is affected very little when travelling at 50 km/h, 

for example. [24] 
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3.4.2 Radio modems 

When a point-to-point wireless connection, high reliability or long range is required, a radio modem 

may be preferred over IEEE 802.11–based networking. Radio modems typically have a V.24/V.28 

serial interface that enables connection to various simple embedded devices and PLCs. Moreover, 

radio modems are available with various carrier frequencies to avoid interference with other 

wireless traffic. Unfortunately, there are very limited license-exempt frequencies available and 

many of them have tight limits for transmission power and duty cycle [93]. Therefore, it is possible 

that a license is required to meet application or location specific requirements. 

Although different models of radio modems typically have compatible serial interfaces, the wireless 

communication is often proprietary. Therefore, both radio modems of a point-to-point link may need 

to be similar. Although the radio modems can be interfaced with simple devices, some 

configuration work is required. Typically, the transmitter power has to be selected as well as 

receiver sensitivity. A cyclic redundancy check (CRC) algorithm may be implemented to reject 

received invalid data. Other optional features include addressing, forward error correction and 

networking functionality. 

3.4.3 Embedded wireless transceivers 

If short-range wireless communication is needed at minimal size or cost, an embedded transceiver 

module or IC may be used. With these devices, some circuit board design and a protective 

enclosure are required. Although there are modules and ICs that implement IEEE 802.11, 

Bluetooth, ZigBee and other standardized wireless communication, also proprietary transceivers 

exist. In addition to size and cost optimization, an embedded wireless module may be chosen to 

experiment with state-of-the-art technology: Embedded modules are often the first products that 

are commercially available when a new communication technology is released. The recently 

introduced IEEE 802.15.4-2011–based ultra-wide-band (UWB) modules are a good example [91]. 

As the embedded wireless modules are designed to be interfaced with a microcontroller, a serial 

peripheral interface (SPI), Inter-IC (I2C) or UART is typically used. If the wireless module does not 

have an integrated antenna, the antenna signal has to be routed to an external antenna. Care has 

to be taken to maintain the characteristic impedance of the antenna terminal in circuit board 

design, in wiring inside the enclosure and in a possible panel connector. Especially with ICs, an 

impedance matching circuit is often needed to match an external antenna to the antenna terminal 

of the IC. If the module has an integrated antenna, the enclosure material and model have to be 

chosen carefully to minimize attenuation of the radio signal. 

To interface a wireless module with the on-board control system of a machine, embedded software 

is needed. The requirements for the software depend heavily on the application and the features of 
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the wireless module: sometimes simple data routing between CAN and SPI is sufficient; 

sometimes all the functions of a wireless network layer need to be implemented. 

3.4.4 Mobile Internet access 

In addition to voice calls and messaging, mobile networks provide Internet access. The main 

benefit in mobile machinery applications is that the mobile data terminal is able to communicate 

over the Internet without any local wireless AP. Therefore, no setup work is required for 

communication when a machine is moved to a new site, as long as the site is within the coverage 

of a mobile network.  

Unfortunately, the network throughput can be less than 10 kb/s and communication delay can be 

several seconds if only general packet radio service (GPRS) is available. Moreover, the 

performance varies depending on other mobile communication and cell distance. The change can 

be considerable at handoff from one cell to another. [11] Fourth generation (4G) technologies 

enable much better performance, network throughput of several Mb/s and a communication delay 

of less than 30 ms. Nevertheless, the handoffs between cells can still have a considerable effect. 

[126] 

3.5 Applying data transfer to automated mobile machine 

A proposed utilization of the presented data transfer solutions in the control system of an 

automated mobile machine is presented in Figure 13. For distributing the computing of low-level 

controllers, CAN and Ethernet are the only feasible solutions with sufficient flexibility, robustness, 

and real-time performance. For mobile machine applications there are diesel engines, sensors, 

hydraulic valves and pumps, etc. available with an integrated CAN interface. Connecting similar 

devices to Ethernet has to be done through generic I/O modules with analogue, pulse, and on-off 

signals. With Ethernet, however, a much higher network throughput can be achieved. This makes it 

possible to distribute the entire computing and I/O of the low-level control system over a single 

Ethernet instead of several CANs. 

Several embedded computers are required for navigation, perception and other high-level 

controllers. Ethernet is the most feasible network technology for communication between these 

computers due to performance, software support, and cost. Ethernet is also the most utilized 

solution for communication between embedded computers in the related research discussed in 

Chapter 1. To meet the data rate requirements listed in Table 1, at least 1000BASE-T has to be 

selected. Ethernet is a common interface in machine vision cameras, lidars, GNSS receivers and 

other sensors related to perception and navigation. Utilizing other digital buses is, however, 

mandatory when experimenting with specific sensor products.  
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Figure 13. Proposed utilization of data transfer solutions. 

 

Computing of low-level control

Computing of navigation, perception, high-level control

Sensors for 

perception, 

localization

CAN / Ethernet

IEEE1394

V.24/V.28 serial

LIN

Mass storageUSB

Wireless

Wireless

Ethernet

CAN / Ethernet

Ethernet

Ethernet / 

V.24/V.28 serial 

/ USB

Ethernet / CAN / 

V.24/V.28 serial

Sensors, 

actuators

Analogue

Pulse

CAN

Ethernet

On-off



 

 

4 Device-related design aspects 

In this chapter, the design challenges related to typical devices in the electronic control systems of 

automated mobile machinery are presented and discussed. 

4.1 Electrical power supply 

The electric power to an electronic control system is usually supplied by the same battery and 

alternator that supply power to the starter and lights of the machine, at a minimum. As the electrical 

system in a typical manually operated machine has become more complex, more performance is 

also required of the batteries and alternators. Nevertheless, even the electric power supply of a 

modern manually operated machine may not be directly suitable for a control system that enables 

automated functionality. 

4.1.1 Alternator 

The control system of an automated machine has typically more electrical loads than its manually 

operated equivalent. Therefore, the maximum output power of a specific alternator will be reached 

more easily. This typically occurs after the electrical system has been operated without the engine 

running, discharging the battery. With an automated machine, this can be very common. The 

control system may wait for communication from fleet management, for example. In research and 

development machines this is even more common due to firmware updates, data logging, sensor 

system calibration, diagnostics, amongst others. 

Exceeding the rated current of an alternator will decrease its life. The longer the overcurrent 

condition lasts and the more often it occurs, the more it will wear the alternator. Therefore, when 

choosing an alternator for an automated machine, it has to be taken into account that the battery 

may be notably discharged at an average start. Moreover, since the output current of an alternator 

is limited by its rotation speed, the entire output current of an undersized alternator may be 
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consumed by the electrical loads in the system when the engine is idling, preventing the battery 

from being charged. Therefore, not only the nominal or maximum output current but also the output 

current when the engine is idling has to be considered when selecting an alternator. 

4.1.2 Battery type 

As mentioned above, the control system of an automated machine is operated for various reasons 

when the engine is not running. This has to be taken into account when defining the required 

capacity of the battery. For machines used in research and development, it is reasonable to have 

connectors for an external power supply to enable long tests without extreme oversizing of the 

battery. 

The type of battery has to be chosen carefully. If the entire control system is not switched off when 

the engine is stalled, it has to be considered whether a battery that tolerates deep discharge is 

required. Moreover, the battery voltage should not drop below the supply voltage range of the 

control system during glowing and starting the engine. This is most likely to be a problem in 

12 V systems, where traditional applications have permitted the range of battery voltage to reach 

quite low. For example, the lowest voltage of a 12 V starter battery in a standardized cold cranking 

test is specified to be 8.4 V [69]. Through reasons of size and cost, it is possible that the desired 

cranking performance or tolerance of deep discharge is not met. If the battery is not chosen 

according to these aspects, the characteristics of the chosen battery have to be taken into account 

when designing the control system. 

Both problems can be solved at system level or by choosing every component according to the 

characteristics of the battery. At system level, deep discharge can be prevented by using a 

protective device that triggers an alarm when the battery voltage drops too low. If the alarm is 

ignored, power is eventually switched off. Likewise, the drop in the battery voltage due to starting 

can be tolerated by using a separate battery or capacitor that supplies power during cranking or 

until the voltage of the main battery circuit has returned to an acceptable level. 

The two arrangements for deep discharge protection are presented in Figure 14. The upper 

diagram shows a system with an external protector that can be a separate standalone device. It is 

also possible to implement this functionality with a PLC that has suitable I/O. The same PLC can 

also perform other functions in the control system. This can decrease overall hardware costs, but 

what is more important, using a generic PLC can also improve life-cycle manageability. It is, 

however, critical that the PLC has minimal power consumption when the deep discharge protection 

becomes active.  

Devices 1 and 2 are signalled before the battery is disconnected and perform a coordinated 

shutdown or a transition into a low-power mode. There are also devices that do not have a low-

power mode and tolerate a sudden loss of power. Device 3 is an example of such a device and 
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therefore requires no prior indication from the protector. The lower diagram shows a system with 

devices that have internal protection circuitry against deep discharge. Since each protection circuit 

operates independently, it has to be confirmed that the devices can be shut down in any order 

without causing undesired, or even dangerous, operation. 

 

Figure 14. Two arrangements for deep discharge protection. 

If all the devices of the control system accept a wide supply voltage range and have internal deep 

discharge protection, almost any battery type is suitable, even without external circuitry. 

Unfortunately, this is usually not the case. Regardless of whether the system level solutions 

described above are utilized, controlling the power states of the electrical devices have to be 

considered. The control system could, for example, command applicable sensors and actuators to 

a low-power mode by default when the engine is stalled. The devices that are sensitive to cranking 

could be treated similarly when the engine is started. If some of these devices are needed during 

cranking, they can be supplied by a boost type voltage regulator. With these measures, the battery 

life and operating time without the engine running are maximized. Moreover, the separate power 

supply to be used during cranking can be minimized, if needed at all. 

4.1.3 Nominal battery voltage and DC/DC conversion 

The nominal voltage of the battery system also has to be specified. Depending on the type and 

size of the machine, the electrical system of the manually controlled equivalent may be the only 

reasonable starting point. There may be essential electrical actuators or sensors that are only 
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available for a 12 V system, for example. In general, 24 V is a widely supported supply voltage in 

both automation and mobile machines, apart from small machines with a 12 V system. The use of 

automotive components also promotes a 12 V system. 

A possible process of specifying the battery system voltage is presented in Figure 15, assuming 

the selection has to be made between 12 V and 24 V. The process aims at minimizing the size and 

cost of the system as well as conversion losses. First, the devices of the control system are 

classified by supply voltage. Since the actual voltage of a battery varies between the low cranking 

voltage of a partially discharged battery and the maximum output voltage of the alternator, many 

devices that are not intended for mobile machinery or automotive applications cannot be powered 

directly from the battery. Devices like this need to be supplied by a separate voltage regulating 

direct-current-to-direct-current (DC/DC) converter. In the flow chart these devices are classified 

with the opposite voltage: 12 V unregulated with 24 V regulated and vice versa. This is done 

because a non-isolating DC/DC converter that has either a step-up or a step-down function is 

smaller, simpler and has a lower cost than a converter that performs both functions. This more 

complex converter type is required if a regulated 24 V supply is converted from a battery voltage of 

24 V, for example. On the other hand, if an isolating DC/DC converter is used, there is no extra 

cost for having the output voltage within the input voltage range. In this case, the devices that 

require a regulated supply can be left out when making the decision about the nominal voltage of 

the battery system. 

Depending on the application, isolating DC/DC converters may be required to protect sensitive 

equipment from different ground potentials, for example. To create an isolated section, the signal 

paths that cross the boundary of the section have to be isolated as well. Another reason for 

choosing an isolated converter is that DC/DC converters with sufficient mechanical and electrical 

robustness are not always available as non-isolated versions. In this case, the ground terminals of 

the input and the output side of the isolating DC/DC converter can be tied together if a common 

ground is required. 

Some devices have a wide supply voltage range: 6–40 V, for example. Although the range of the 

supply voltage can reach rather high, most devices have internal circuitry that has a lower, 

regulated operating voltage. If the internal regulated power supply for this circuitry is implemented 

with a linear voltage regulator, the efficiency of the device decreases as the supply voltage is 

increased. Performance or maximum operating temperature may therefore be higher if the external 

supply voltage is lower. Even the efficiency of switched-mode voltage regulators depends on input 

voltage. 

If there is no clear supply voltage dependence in performance, devices with a wide supply voltage 

range can be classified into class A or class B. The same applies to devices that are available as 

different versions with different nominal supply voltages. The flowchart in Figure 15 tests whether a 

majority of the electrical load can be concentrated to a single battery with either nominal voltage. 
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‘Combined maximum power’ refers to the peak power consumption of all the devices of a class. 

This is not equal to the sum of the device-specific peak power consumptions unless the devices 

may actually operate simultaneously at full power. ‘Combined average power’, on the other hand, 

is the average power consumption of all the devices of a class which is equal to the sum of the 

device-specific average power consumptions. 

 

Figure 15. Workflow for specifying battery system voltage. 
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‘Dual voltage’ in Figure 15 refers to a battery system that has two separate power supplies. This 

can be implemented with two alternators, one supplying a 12 V system, the other supplying a 24 V 

system. It is also feasible to have one alternator, one battery and a heavy-duty DC/DC converter 

instead if the total power consumption is sufficiently low. In this case, the converter can be a simple 

voltage doubling or dividing power supply without voltage regulation, unless most power is 

consumed by devices that require a regulated power supply. Dual-alternator systems are not 

common in commercial machines as these systems require more maintenance and more space. 

However, the solution is reasonable in a machine utilized as a research platform where various 

devices need to be tested and the delivery time or price of a high-power device with an optimal 

supply voltage is not acceptable. 

In most cases, it is possible to concentrate the electrical load to a single battery. For example, if 

the result is a 12 V battery system, the devices of class B are likely to have a low combined 

maximum and average power. A power distribution system like this is presented in Figure 16. In 

this case, the voltage regulating DC/DC converter can be specified to also supply 24 V devices that 

do not necessarily require a regulated power supply. If there are devices that require a regulated 

12 V supply, another voltage regulator is needed. It can be powered either from a 12 V battery or 

regulated 24 V supply. If the converter is supplied by the battery, a more complex 12 V-to-12 V 

converter is required. On the other hand, if there are two DC/DC converters in series, the overall 

efficiency is lower and the total output current required of the 12 V-to-24 V converter is higher. 

 

Figure 16. Example of power distribution. 
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4.1.4 Switch-off 

As described above, the power consumption of the electronic control system has to be minimized 

when the engine is not running. Even more important is that the battery is not discharged when the 

control system is switched off. This can be done by controlling a battery isolator relay directly with 

the ignition lock or a main switch. Some devices, however, do not tolerate sudden loss of power 

supply. This sensitivity is typically related to storing data during operation. For example, a write 

operation to a flash memory must not be interrupted to ensure data consistency. Unfortunately, 

flash memory has to be erased in most cases before the write cycle, and erasure is only possible 

by pages. Therefore, modifying a single byte requires erasing and rewriting several bytes. For 

example, the worst-case duration of the write sequence to internal data flash with a Freescale 

56F8323 microcontroller is over 25 ms, consisting of a 512-byte page erasure and 256 consecutive 

16-bit write operations. [1][2] 

Since the flash write sequence is rather short and does not consume much power, the problem can 

be avoided at device level by monitoring the external supply voltage and preventing write cycles to 

flash if the voltage falls too low [33]. If this happens in the middle of the write cycle, the internal 

capacitors of the device have sufficient energy stored for completing the cycle. 

Not all sensitive devices have a built-in mechanism for surviving the sudden loss of power. Some 

cannot react as rapidly as simple microcontroller devices. Embedded computers with full-scale 

operating systems perform shutdown scripts to prevent file system errors and to ensure proper 

boot-up next time. Running these scripts sometimes takes several minutes. In this case, the 

energy needed for completing a shutdown script cannot be stored in a reasonably sized capacitor. 

One solution is to use a UPS that continues to supply power from its battery when the main battery 

is disconnected. There are UPS devices with both internal and external batteries. A UPS monitors 

the external supply voltage and the charge level of its battery. When either of these drops below a 

set limit, the devices supplied by the UPS are signalled. It is therefore not mandatory to start the 

shutdown process immediately when the main battery is disconnected. The protected equipment 

can, for example, monitor a set time whether the main power is restored. 

UPSs are available as computer expansion boards and separate devices [84][115][120]. A UPS 

expansion board is feasible when a single embedded computer is the only sensitive device in the 

control system. Moreover, in research use one embedded computer may be moved between 

different control systems and test setups. In this case, it is a clear advantage if the computer has 

an internal UPS. When several devices are to be protected, a separate UPS is a feasible, modular 

solution. To minimize hardware and maintenance costs, it is also possible to protect sensitive 

devices without an extra UPS battery. Different solutions are presented in Figure 17. 
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Figure 17. Three solutions to protect sensitive devices from sudden loss of power. 

The top diagram in Figure 17 shows power distribution with a UPS. In this case, the UPS is a 

separate device that has an external battery. The ‘power status’ is a digital bus that communicates 

at least three states: main battery connected, running on UPS battery, and UPS battery almost fully 

discharged. In the middle diagram, a delayed main relay is utilized. The power management 

module, which is either a separate device or one of the PLCs of the control system, monitors the 

position of the main switch. The module outputs a ‘power status’ signal that typically has two 

main 

battery

UPS

Device 1

UPS battery

Device 2

+12V unprotected

+12V

power status

Device 1 Device 2

+12V

power status

Power 

manager

+12V stand-by

+12V+12V unprotected (power status)

+12V stand-by

Device 1 Device 2

Device 3

Device 3

Device 3

main 

switch

main relay



71 

 

states: normal operation and initiate shutdown. The latter becomes active when the main switch is 

opened. After a set time, the main relay is opened. In this case, the stand-by power consumption of 

the power management module has to be extremely low as the module is never disconnected from 

the battery. Moreover, the module has to recover from its low-power state when the main switch is 

closed again. The bottom diagram is simple but sets special requirements for sensitive devices: in 

this case, the sensitive devices themselves need to have minimal stand-by power consumption. 

Moreover, they need to switch to the low-power state reliably. The shutdown is now controlled 

directly by the main switch: when the power supply to unprotected devices is disconnected, the 

shutdown process has to be initiated. For embedded computers, there are automotive power 

supply modules that fulfil these requirements and switch to a low-power mode after a set time, 

even if the shutdown process of the embedded computer fails [74]. 

It is possible to utilize a device without a low-power state as the power management module with 

the circuit presented in Figure 18. In this case, all the devices, including the power manager 

module, are powered through the main relay. To switch the system on, a double-pole main switch 

is utilized: one of the poles controls the main relay in parallel with the power manager module. The 

other pole signals the power manager to initiate shutdown when the main switch is opened. With 

this approach, the power management functionality may even be distributed between several 

devices of the control system as long as the implementation is reliable. All the diagrams of Figure 

17 and Figure 18 include a ‘device 3’ as an example of how a device that tolerates sudden loss of 

power is connected. When utilizing a power manager, the ‘device 3’ consumes power, while the 

sensitive devices perform a shutdown process. If this power consumption is significant, an extra 

pole of the main switch can be utilized for controlling the power supply to ‘device 3’ directly. 

 

Figure 18. Arrangement with power management module without low-power state. 
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4.2 PLCs and I/O modules 

Mobile PLCs and modular I/O systems have replaced mechanical pilot controls in many manually 

operated machines. As stated in Chapter 2, an automated machine needs to have electrically 

controlled functionality. This can be implemented with similar PLCs and I/O modules such as 

modern manually operated machinery. There are, however, some extra requirements: typically, the 

control system of an automated machine has more sensors and more closed loop control. Even if 

the number of sensors is not increased, higher sampling rates and resolutions may be required 

from ADCs. There is typically more on-board communication between PLCs, I/O modules, sensors 

and actuators. Furthermore, the allowed communication delay may be smaller, and more accurate 

synchronization of events may be required. To meet the requirements, the devices may need to be 

grouped into several physical networks. 

4.2.1 I/O modules 

As the number of sensors, actuators and networks is increased, more analogue and digital I/Os are 

needed and more complex hardware architectures required. It also has to be considered that the 

control system may need to be extended during the life cycle of the machine. The benefits of a 

modular solution and a standardized design and management process are therefore emphasized. 

Modular I/O systems are typically based on slave devices that may perform simple signal 

processing in addition to basic I/O functionality. Depending on the physical construction of the 

machine, these I/O modules are physically distributed across the machine or located centrally in a 

cabinet. If a protective cabinet is used, the I/O modules can have a lower degree of protection and 

the number of commercially available modules, physical networks and protocols is therefore much 

higher. On the other hand, the wire harness becomes complex if most sensors and actuators are 

not next to the cabinet. 

Since an automated machine may contain devices that are not intended for mobile machinery 

applications, the I/O interface on some of these devices differs from conventional sensors and 

actuators. Typically, mobile I/O modules are optimized for robustness: inputs have low 

impedances, low sampling rates and high decision levels. Outputs have low impedances and 

voltage levels close to the supply voltage. Push-pull outputs are available, but a typical on-off 

output has either a low-side or a high-side driver. Analogue inputs typically have measuring ranges 

for positive current and voltage signals, only. 

For example, a sensor may have an on-off or pulse output that is implemented with a 5 V push-pull 

circuit. Because of the high decision levels, 5 V may be interpreted as the logical low state. In a 

similar way, a device may have an on-off input with a pull-down resistor and a specified maximum 

voltage of 6 V. Because of the output voltage level of around 14 or 28 V, a typical I/O module 
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cannot control a device like this directly. Even if the I/O module has a low-side driver without an 

internal pull-up resistor to the high supply voltage, an external pull-up to 5 V, for example, has to 

be implemented. The use of generic I/O modules in the control system of an automated machine 

may therefore require several signal converters, amplifiers or simple external circuits with resistors, 

transistors and zener diodes. Especially with the physically distributed approach, these converters 

and circuitry require several extra enclosures. 

I/O modules typically have a microcontroller for implementing a network interface. The same 

microcontroller may perform digital filtering for inputs, for example. If the microcontroller has a low 

computing capacity, it may not be able to process all the communication under high network loads. 

Each I/O module type considered for a control system therefore has to be tested with high data 

rates and network loads before deciding whether it is suitable. 

4.2.2 Mobile PLCs 

Although an automated machine may require embedded computers for calculating the algorithms 

of automated functionality, it is often not practicable to have the computers communicating directly 

with all the I/O modules. As communication with the I/O modules consists of small data packets 

that are transmitted at short intervals, computing capacity would be consumed by network traffic 

processing. The logical functionality of a manually operated machine is implemented with a mobile 

PLC, instead. The same PLCs can also be used in automated machines. Since PLCs often have 

several interfaces for CAN and other networks, they can communicate with other PLCs, slave I/O 

modules, other networked devices, and the embedded computers. 

As PLCs are suitable for real-time control at short control steps, and some even have an FPU, they 

are an appropriate platform for calculating low-level functions. These include position control of 

hydraulic actuators and AFS angle, and travel velocity control by controlling the diesel engine and 

the components of the power train. A PLC may also be used to synchronize events. Although 

PLCs are available from many vendors, most of the devices can be programmed with IEC 61131-3 

compliant software development tools. 

4.3 Computing automated functions 

It is reasonable to calculate on board at least some of the algorithms that are required for 

automated functionality. This applies, in particular, to real-time calculation and processing of high-

bandwidth sensor data. Although some PLCs have sufficient computing capacity for simple 

automated functions, typically, embedded computers are required. Some sensors also require 

complex driver software or physical interfaces that are only available for embedded computers with 

an expansion bus. 
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Depending on the application, several embedded computers may be required. For example, real-

time processing of high resolution images may consume all the available performance of a 

dedicated computer. Especially in experimental systems, several computers also enable efficient 

simultaneous development of different subsystems. Furthermore, several different operating 

systems may be needed on-board. The need can be related to different real-time requirements, 

driver support, available software libraries, and preferred tools for software development and 

testing [124]. 

In general, embedded computers are compatible with laptop and desktop computers: the same 

processor families, expansion buses, operating systems and even some peripheral devices are 

used. The dimensions or expansion bus connectors are, however, different. Several specifications 

for different physical platforms have been released with different emphasis on cost, size, 

mechanical robustness and performance [29][34][78][89]. The expansion boards of desktop or 

laptop computers are therefore not mechanically compatible with many of these specifications 

[29][34][89]. Therefore, the selection of the physical platform has to be made by considering the 

available expansion boards, as well. 

4.3.1 Power supply and thermal design 

Desktop computers have a well-established power supply specification according to Advanced 

Technology eXtended (ATX) documentation [8, pp. 19–22]. The ATX power connector is also one 

of the recommended connectors in the Embedded Platform for Industrial Computing (EPIC) 

specification, for example [34, p. 16]. The ATX power connector, however, is rather large and the 

required power supply is rather complex with several regulated voltage outputs. Although there are 

automotive versions of ATX power supplies available [74], an embedded computer may have a 

simpler power connector; some even operate from a single-voltage supply. As the power supply 

specifications are not strict, there are several different solutions between manufacturers and 

models. In addition to supplying the embedded computer itself, the expansion boards and other 

peripherals need to be considered: the total power consumption may increase considerably with 

these devices installed. Moreover, even if the computer itself operates from a single-voltage 

supply, it does not necessarily generate all the regulated supply voltages for the expansion buses. 

Although embedded computers have lower power consumption than desktop computers, thermal 

design may still be a challenge. Embedded computers are often available as conduction cooled 

versions. Without a fan it is easier to make the enclosure of the computer water and dust proof. 

Nevertheless, a fan or other additional cooling is required if the installation location of the computer 

does not enable sufficient thermal conduction or the ambient temperature is too high. This is even 

more likely with high-performance embedded computers. It may therefore be feasible to distribute 

the computing over several lower-performance computers that can be cooled by thermal 

conduction. If a fan is used, air filtering is often required to achieve a sufficient degree of protection 

for the enclosure, unfortunately increasing the need of maintenance.  
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4.3.2 Mass storage 

Although some embedded computers include soldered flash memory, external mass storage is 

often needed. In machinery applications, flash-based solid state drives (SSD) are a feasible option, 

tolerating mechanical shocks and vibration. In addition to conventional buses for internal mass 

storage, an embedded computer typically has a socket for a flash memory card. Furthermore, 

practically all embedded computers support USB mass storage. In many cases it is possible to 

boot the computer from a memory card or a USB flash drive, removing the need for an actual SSD 

entirely. 

Commercial grade memory cards and USB flash drives are not designed to tolerate the operating 

conditions of mobile machinery. In addition, the reliability and endurance of commercial grade flash 

ICs may be insufficient. Even industrial grade memory cards and USB flash drives perform as a 

system drive slower than devices that are actually designed to be system drives. SSDs are 

available for system drive use with optimized internal cache RAM and with industrial grade ICs, for 

example. Nevertheless, there are differences in wear-levelling solutions and system drive 

performance between SSD models, as well. In case neither the operating system nor the 

applications write data on the system drive, the effect of write speed and write cycle endurance 

may be ignored. This can, however, limit the flexibility of the system. 

4.3.3 Remote access 

Since embedded computers are compatible with conventional peripherals, it is typically possible to 

install an operating system and application software by plugging in applicable USB devices and a 

display. This approach, however, is typically not convenient for accessing the computer after it has 

been installed on a machine. Access may be needed for updating the operating system or 

application software, testing, starting on-board data logging or downloading logged data. On some 

systems, the applications are even compiled on-board. 

If the computer has a network interface, remote access software can be used. In this case, a 

network patch cable is connected either directly to the computer or to a network switch. If there is a 

wireless connection, a remote accessing computer can be located more freely. In case there is no 

remote access software available for the operating system, the files on local mass storage can be 

managed by booting the computer to another operating system that enables remote access. This is 

possible over a network or by plugging in an external system drive. To enable this, the boot 

sequence of the basic input output system (BIOS) has to be set up accordingly. 

On some operating systems, remote access is possible through a V.24/V.28 serial link. Because of 

the modest data rate, it is appropriate to use a simple text-based terminal and transfer only sub-

megabyte files. In this case, it may be feasible to transfer larger files with removable mass storage, 

typically a USB flash disk. If there is a need to change the BIOS settings, the V.24/V.28 serial link 
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may be the only option in addition to keyboard and display, especially if the operating system does 

not start or permit remote access. 

In research applications, it is likely that remote access is needed frequently. Depending on the 

installation location of a computer, some of the physical interfaces discussed above should be 

made easily accessible, even if they are not used in normal operation. If the enclosure of the 

computer has to be opened to reach the connectors, it also limits the environmental conditions 

where maintenance can be done. Panel connectors with a sufficient degree of protection are 

therefore reasonable, although they are often bulky and sometimes lead to choosing a larger 

enclosure. Furthermore, the panel connectors typically need a dust cap to maintain protection 

when they are not mated. 

4.4 Pose estimation 

Regardless of the application of an automated machine, it is common that the machine is intended 

to travel without a human operator on board. To implement path following, the machine has to 

perform pose estimation, that is, estimate its position and orientation in relation to a reference 

frame. Since the reference frame, bandwidth, reliability and accuracy vary between sensor types, 

data fusion from several devices is typically applied. 

4.4.1 Global navigation satellite system receivers 

A GNSS receiver enables the global position of a machine to be estimated practically anywhere in 

the world without any local infrastructure. The antenna of the GNSS receiver, however, has to have 

a line of sight to several satellites, which limits the number of feasible applications. Nevertheless, if 

the signals from a sufficient number of satellites can be received only occasionally, a GNSS 

receiver can still be used together with other pose estimation sensors. At the moment, there are 

two operational global systems, the Global Positioning System (GPS) system operated by the U.S. 

Air Force and Global Navigation Satellite System (GLONASS) operated by the Russian Aerospace 

Defence Forces. 

Probably due to the long history of GNSS applications in well-standardized maritime electronics, 

practically all GNSS receivers are able to output NMEA 0183–compliant messages, typically over a 

V.24/V.28 serial interface. If this interface is used, replacing a GNSS receiver can be 

straightforward. Since the NMEA 0183 interface has a rather low data signalling rate and inefficient 

message format, GNSS receiver manufacturers have developed proprietary binary protocols, 

especially for RTK use. Receivers also have faster and more reliable interfaces for communication: 

A SAE J1939–based NMEA 2000 interface is a well-established way of implementing CAN 

communication into a GNSS receiver. Several protocols, mainly proprietary, also exist for Ethernet 
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communication. NMEA has released plans to extend NMEA 2000 with an NMEA OneNet 

specification which could become the universal protocol for GNSS communication over the internet 

protocol suite [61]. 

In addition to outputting position data, differential GNSS receivers are also able to receive the data 

for differential corrections. The correction data is typically transmitted over a V.24/V.28 serial link 

with a protocol specified by the Radio Technical Commission for Maritime Services (RTCM). There 

are different versions of the RTCM protocol and a typical GNSS receiver firmware only supports 

some of them. The required protocol version typically depends on whether the GNSS receiver is an 

RTK device or a code-differential receiver. If the correction service is provided via the Internet, the 

data is usually transmitted as Networked Transport of RTCM via Internet Protocol (Ntrip). A 

differential GNSS receiver with an Ethernet interface therefore often has Ntrip client functionality. 

Due to satellite orbit and clock errors and spatially and temporally variable satellite-to-earth 

communication delay, a GNSS receiver achieves only an accuracy of several metres unless these 

error sources are compensated. Most of the effect of the communication delay can be cancelled by 

dual-band reception because the ionospheric delay depends on carrier frequency. Dual-band 

receivers are more expensive, however, and still need to compensate for orbit and clock errors. 

Since the total error varies with time and receiver location, a fixed reference receiver can be set up 

near the site as a base station to cancel the error. Some GNSS receivers have an internal wireless 

module for receiving the differential corrections from a local base station. However, not all internal 

radios are compatible and they may have insufficient range. External radio modems can be applied 

in these cases as most differential GNSS receivers accept the correction data via V.24/V.28 serial 

port. It is also possible to use a modem for mobile networks for point-to-point communication or 

even Ntrip over mobile Internet. 

The accuracy of the differential GNSS declines as the distance to the base station is increased. 

Depending on the required positioning accuracy, however, the acceptable distance may be more 

than a hundred kilometres. It is therefore not always feasible to have a dedicated base station for 

each site. If a base station is made available to several GNSS rovers at different sites, the 

correction data is typically transmitted over Ntrip. Code-differential correction data is also 

broadcast on marine radio beacon frequencies by base stations in many coastal areas, which may 

be utilized in some sites with a compatible receiver. 

Due to the nature of ionospheric delay, it is possible to meet the performance of a local base 

station by estimating the local correction data based on several, more distant base stations. 

Several overlapping grids of base stations with various densities have been implemented 

worldwide: some publicly, others privately maintained. There are regional, nationwide, continental 

and worldwide grids that provide the differential correction service. The communication from the 

grid servers to the GNSS receiver can be implemented on Ntrip, over mobile network modems or 

via satellite. The differential corrections via satellite are broadcast one-way. Two-way 



78 

 

communication over mobile networks, on the other hand, often includes transmitting the position of 

the rover to the server, typically in a NMEA 0183–compatible format. This makes it possible to 

optimize the differential corrections for the neighbourhood of the rover, resulting in improved 

accuracy. The satellite-broadcast corrections either leave the location-dependent ionospheric 

effect to be estimated by dual-band reception or provide a list of corrections for different areas of 

the grid. The area division does not necessarily follow the locations of the physical base stations. 

Publicly maintained coarse satellite-based augmentation systems (SBAS) can be utilized free of 

charge and are supported by most GNSS receivers, while sub-metre and more accurate services 

typically require a paid subscription and a receiver compatible with the particular service. 

4.4.2 Odometry 

Velocity measurements are often an essential part of pose estimation, producing uninterrupted 

high-bandwidth data. There are several sensor types for measuring either actual ground velocity or 

the angular velocities of the wheels. A ground speed radar can be used to measure the actual 

speed reliably in most conditions. A radar communicates over CAN or a V.24-based serial link, but 

pulse signal outputs are also common, being compatible with traditional wheel odometry sensors. 

A ground speed radar is, however, more expensive than wheel odometry sensors. Furthermore, a 

radar has to be mounted so that the conical beam towards the ground is entirely unobstructed. In 

some applications this is not possible considering the mechanical construction of the machines and 

protection of the radar. The simplest radar interfaces also output only the magnitude of the speed 

without indication of whether the machine is moving forwards or backwards. Visual odometry, on 

the other hand, may be used to estimate the velocity in six degrees of freedom (6DOF). The 

performance, however, depends on the texture of the site. Other aspects of implementing machine 

vision in mobile machinery applications are covered by a subchapter below. 

Wheel odometry can be implemented cost efficiently and accurately, especially if the effect of 

wheel slippage can be taken into account in data fusion. Simple Hall effect sensors can be applied. 

Depending on the construction of the drive train and performance and reliability requirements, 

several sensors may be needed. If a toothed wheel and discrete Hall effect sensors are used, two 

sensors need to be mounted at a proper distance from each other to generate incremental signals 

for direction indication. In addition to using a separate toothed wheel, it is possible to choose 

various components of the drive train with internal sensors for measuring the angular velocity. The 

signal may be available over CAN, but typically the electrical interface is similar to having one or 

two discrete Hall effect sensors. 

The number of pulses per wheel revolution depends on the accuracy requirement. For example, if 

one pulse per 2 cm of travel is generated, the frequency of the pulses is 500 Hz when travelling at 

10 m/s. If the signal is measured with a conventional on-off input and processed in software, the 

input state has to be read at more than 1 kHz to detect every pulse. With a typical mobile PLC it is 

not possible to run user application at sub-millisecond intervals. A dedicated pulse frequency input 
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is therefore required, also available in I/O modules. A quadrature input for incremental signals, 

however, is not as common as a simple frequency or pulse counter input. Moreover, several 

wheels may need to be measured. The measurement may need to adapt to both low and high 

angular velocities and therefore be able to not only count pulses but also measure cycle time. To 

improve data fusion accuracy, calculation may need to be synchronized with other measurements 

related to pose estimation. Thus, conventional mobile PLCs and I/O modules are sometimes 

insufficient for wheel odometry, especially when typical software development tools and default 

firmware are utilized. 

4.4.3 Inertial measurements 

To estimate the orientation of a machine and improve the location estimate, inertial measurements 

are applied. An inertial sensor is either an accelerometer for measuring linear acceleration or a 

gyroscope for measuring angular velocity. An IMU typically consists of several inertial sensors 

arranged at perpendicular axes, often both accelerometers and gyroscopes. Depending on the 

application, up to three perpendicular accelerometers and three perpendicular gyroscopes are 

needed. If several discrete inertial sensors are used, attention has to be paid to measurement 

synchronization, communication, mechanical alignment and calibration. 

Although tactical-grade IMUs are sometimes used in research projects, they are expensive for 

mobile machinery applications. IMUs based on micro electrical mechanical systems (MEMS) are 

applied instead. There are devices with CAN communication, wide supply voltage range and 

protective enclosure, often targeted at automotive applications. Since automotive applications of 

MEMS IMUs are often related to drive stability control, the sensor configuration may be insufficient 

for pose estimation. While integrated mixed-signal circuitry makes these devices accurate and 

easy to calibrate, there are limitations in supported communication protocols and available output 

signals. Unless an IMU has sufficiently configurable real-time data processing, external processing 

is required. If the IMU has analogue outputs, a mobile I/O module or PLC can be used to measure 

the signals. In many cases, however, there are limitations related to conversion frequency, digital 

filtering, or real-time performance of networking. For optimal pose estimation performance, the 

inertial measurements must be accurately synchronized with other data. 

4.5 Measuring configuration state 

A machine typically has several controlled mechanisms, often actuated by hydraulic cylinders. The 

positions of these mechanisms need to be measured if closed-loop position control is required. 

Furthermore, the measurements may be needed to improve the accuracy of other sensors. In the 

case of a steering joint, the measurement can be used to improve pose estimation performance 
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[41]. In applications where sensors are mounted on a suspended rig, it may be feasible to measure 

the pose of the rig in relation to the machine frame. 

Many mechanisms have a controlled joint angle. Sometimes it is possible to mount a rotary sensor 

directly on top of the joint. A machine, however, may have rather large gaps at joints allowing radial 

movement. This is not tolerated by a typical rotary sensor and protective arrangements are 

needed. Moreover, installation on top of a joint exposes the sensor to shocks, scraping and other 

mechanical stress. When designing the mechanical structure of an automated joint, a rotary sensor 

can be fitted inside the joint pin. In retrofit systems, this is typically not possible. It may be 

appropriate to locate the sensor away from the joint, instead. The rotary movement of the joint can 

be transmitted by a belt, for example. The orientation of a link can also be measured with inertial 

MEMS sensors. The key benefits of this approach include high mechanical endurance and the 

possibility to choose mounting location rather freely. On the other hand, sensor fusion of 

accelerometers and gyroscopes, and kinematic modelling of the mechanism are required to meet 

the performance of traditional solutions. [51] 

Another option for determining the angle of a joint is to measure the distance between two points 

on the adjacent links. These points are often chosen near the brackets of the actuating hydraulic 

cylinder, providing protection to the sensor arrangement and simplifying calculation. A linear 

displacement sensor may even be integrated into the hydraulic cylinder, although in retrofit 

systems external sensors are common. Similar arrangements are needed when prismatic joints are 

measured. Cable actuated rotary sensors as well as sensors with a linear push rod are applied. 

Some sensor technologies are, however, not suitable for mobile machinery applications: the 

vibration of a machine heavily limits the life a conventional potentiometer, for example, if it causes 

the sliding contact to oscillate. With incremental sensors, on the other hand, the problem is that 

moving a mechanism for initializing the sensor is not always possible. 

The sensors may be installed distant from PLCs and computers, on complex boom structures, for 

example. Therefore, the benefits of network communication in tolerance of interference and simple 

cabling are clear. If there are several sensors close to each other, analogue signalling and a 

networked I/O module may be applied. In many cases, however, it is feasible to choose a sensor 

with a suitable network interface. Regardless of the type of the sensor, mechanical protection has 

to be taken into account, considering both installation location and possible additional protective 

structures. Nevertheless, the sensor also has to be accessible for service with reasonable effort. 

4.6 Laser scanning 

Scanning lidars are common in robotics, providing accurate ranging to various surface materials. 

Typical applications include obstacle detection, pose estimation, and simultaneous localization and 
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mapping. Some lidar models are targeted at outdoor and even automotive applications. These 

lidars have signal processing optimized for tolerating undesirable reflections from rain, snow and 

fog, for example. Furthermore, they often have an internal heater for operation at low ambient 

temperatures. There are, however, extra challenges when utilizing lidars in mobile machinery 

applications: When the heater is active, the power consumption of a lidar is increased heavily. The 

light emitted by a lidar is reflected by dense dust and smoke. It is, however, possible to decrease 

the effect by signal processing. [86] Nevertheless, a lidar should be mounted so that these 

obstructions are minimized during operation.  

In mobile machinery applications, on-board lidar measurements are distorted by the movement of 

the machine, especially without accurate pose estimation. Even if the distortion can be cancelled, 

the movement of the machine makes a fixed single-plane lidar scan unintentional directions: 

entering or exiting a slope, for example, results in scanning too high or too low for reliable obstacle 

detection, as presented in Figure 19. There are several solutions to this problem, however. Several 

single-plane lidars may be aligned for improved coverage [42][72][105]. In this case, the 

measurements of each lidar should be synchronized or have accurate time stamps. A more 

integrated approach is to use a quad-plane lidar [12]. A single-plane lidar may be actively aimed by 

a controlled pod [15] or a more advanced gimbal with active stabilization [116]. It is even possible 

to extend the coverage of a single-plane lidar by continuous rotation [66] or oscillation [13][92]. If 

the lidar has no fixed mounting, the ranging data has to be synchronized with the actual orientation 

of the lidar. Integrated multi-plane lidars are also available for extended coverage. So far, the most 

extreme solution is a 64-plane scanning lidar [72][118]. Several of the listed solutions have external 

moving parts and rather limited operating conditions, which makes applying them to mobile 

machinery applications more difficult. 

 

Figure 19. Challenges in obstacle detection with fixed single-plane lidar. 

Most of the scanning lidars support Ethernet communication over internet protocol suite, typically 

UDP. It is therefore important to make sure that other communication does not cause significant 

delays, especially if the lidar data is used in sensor fusion. Communication over a V.24-based 

serial link is also common. If the data rate is low, the communication delay needs to be taken into 

account in calculation. Furthermore, each lidar may require a dedicated serial port. If the lidar has 
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an active aiming system, the complexity of communication and functional integration is increased 

with additional sensors, actuators and controllers. 

4.7 Cameras 

Well implemented camera systems provide information for remote operation and monitoring. 

Furthermore, machine vision can be utilized in mobile machinery applications. There are cameras 

targeted at mobile machinery for reversing and work area monitoring, for example. For machine 

vision and remote operation, on the other hand, special arrangements are often required. 

4.7.1 Machine vision 

Typical cameras utilized in machine vision applications have high-performance image sensors and 

replaceable lenses for optimizing focus and framing, for example. The cameras typically 

communicate over IEEE 1394, Ethernet or USB. There are also digital interfaces targeted 

especially at machine vision and other video applications, such as Camera Link, CoaXPress and 

Serial Digital Interface (SDI). These specifications include higher layer protocol definitions, 

improving compatibility between camera models. On the other hand, these digital video interfaces 

require an adapter that is not included in embedded computers. There are also well-established 

higher level protocols for general-purpose interfaces, such as GigE Vision for Ethernet. 

Depending on application, the timing accuracy requirement between cameras may be high. This is 

the case in depth perception by stereographic imaging, for example. In some cases, the accuracy 

achievable via software triggering is not sufficient. Many cameras support triggering by hardware 

inputs, and produce a strobe output for triggering a slave camera or an external flash. 

Unfortunately, these on-off inputs and outputs are implemented with various circuits and signal 

levels that typically require external circuitry between cameras for buffering and biasing. Industrial 

machine vision cameras are typically designed to have a regulated supply voltage and therefore 

require a DC/DC converter in mobile machinery applications. 

Since regulating the lighting conditions in outdoor applications is not typically feasible, a camera 

has to adapt to dark and bright ambient lighting. For this purpose, auto iris lenses may be applied. 

Unfortunately, auto iris control is not common feature in machine vision cameras. To improve 

performance in dark conditions, infrared or visible lighting is also used. A camera with a high 

dynamic range image sensor may be utilized to improve detection of objects when there are both 

dark and bright areas in the field of view. 

If a machine vision camera is used in a mobile machinery application, usually due to performance 

requirements, additional protection is mandatory for tolerating the operating conditions. An 

enclosure is often required for protection against dust and water. Moreover, heating may be 
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required to maintain temperature and humidity within camera specifications and to keep the front 

window clear. The accumulation of dust and dirt on the front window has to be considered when 

selecting the installation location to maximize the cleaning interval. A mounting that attenuates 

mechanical shocks and vibration may be needed. A suspension, on the other hand, decreases 

performance as the camera is no longer aligned with the machine frame. In addition to protecting 

the camera, locking the mechanical adjustments of the lens has to be considered. 

4.7.2 Remote operation 

While automated functionality may rely on other perception sensors, a camera is often the most 

convenient solution for remote monitoring and teleoperation. Many of the requirements for a 

camera are, in this case, similar to machine vision applications. Image quality, however, may be 

lower in many cases as long as the camera adjusts to the expected lighting conditions and has a 

sufficient field of view. Another critical characteristic is a minimal transmission delay, especially in 

direct teleoperation. Some cameras with integrated digital encoding are therefore not fast enough 

for comfortable and safe remote operation. 

The monitoring cameras that are targeted at mobile machinery applications can be applied to 

remote operation, which simplifies mechanical and electrical installation. However, these cameras 

typically output an analogue video signal. Although there are wireless transmitters for signals like 

this, it is typically feasible to utilize the digital wireless communications of the control system. For 

this, an Ethernet video server can be applied. There are automotive grade video servers for single 

or multiple cameras as well as analogue frame grabber boards for embedded computers. Although 

implementing the video server on an embedded computer among other functionality seems cost-

efficient, the frame grabber expansion board may be more expensive than a standalone video 

server. It is also possible that running the video server application uses much of the computing 

performance. Moreover, the separate solution has better life-cycle manageability due to the limited 

driver support of embedded computer expansion boards. 

Real-time video often consumes most of the available wireless data transfer capacity, especially if 

several on-board cameras are used simultaneously to cover the monitored area. Therefore, the 

specifications of video frame rate, resolution and encoding method need to be considered together 

with specifications for wireless communication. Alignment and synchronization of cameras is not as 

critical as with machine vision. However, if the image data of several cameras is fused into one 

video, these aspects need to be taken into account. A special case is stereoscopic video, where 

camera alignment and baseline are critical in producing a tolerable view for the remote operator. 

Although some of the alignment errors can be compensated by image processing, it results in 

increased delay and decreased image quality. 
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4.8 Emergency stop 

Since an automated machine may be operated without an operator on board, there has to be a 

reliable wireless system for signalling emergency to the on-board control system to prevent 

accidents. The system has to be independent of the rest of the control system and rather simple 

considering verification and risk analysis. The safe reaction to the emergency signal depends on 

application. In this thesis, the discussion is limited to situations where stalling the engine and 

activating the brakes is considered safe. Depending on how a site or a machine is monitored, one 

or more handheld button units or a site-wide infrastructure may be needed. When testing new 

sensors and software with research machinery, an additional run/wait function makes testing more 

fluent. Moreover, an automated machine may be operated manually on-board for maintenance or 

transport. In these cases, operation without the wireless emergency stop system may be desired, 

which has to be taken into account in specification. 

On a multi-machine site, an emergency stop may be global, machine specific or zone specific. The 

emergency stop system may implement one or more of these. The more emergency stop types are 

implemented, the more complex, and more difficult to verify, the emergency stop system becomes. 

The same applies to zone-specific emergency stop if a machine operates in more than one zone. 

Another challenge is posed if the number of simultaneously used button units in the system needs 

to be flexible. 

There are commercial wireless emergency stop systems available. They are rather expensive and 

typically targeted at simple applications. Where these off-the-shelf systems are sufficient, they may 

still reduce the overall cost as less verification work is needed. However, customized I/O, software 

or communication protocols are often needed, which results in more complex verification. Whether 

the system is customized or off the shelf, using a dedicated radio channel is critical. If this aspect is 

neglected, other radio signals may block the emergency communication. If this occurs, the 

emergency stop system has to stop the monitored machines. These unintentional stops have to be 

minimized as they decrease productivity and, in extreme cases, may result in unauthorized 

bypassing of the emergency stop system. 

Considering modularity, emergency stop systems have the benefit of being independent of the rest 

of the control system. This simplifies life-cycle manageability, in particular with solutions where the 

emergency stop system is implemented on a dedicated physical platform. I/O of the on-board unit 

has to be considered. The simpler interface the unit has, the more likely an off-the-shelf 

replacement system will be available. Nevertheless, when designing the on-board emergency stop 

circuit with commercial equipment, it has to be considered whether the control system needs to 

distinguish the emergency stop from an intentional shutdown. 
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4.9 Reference hardware architecture 

A reference hardware architecture is presented in Figure 20, integrating the device types 

discussed in this chapter by utilizing the data transfer solutions presented in Figure 13. The low-

level control system is distributed over CAN with CANopen protocol. CAN is preferred to Ethernet 

for better device availability in mobile machinery applications. CANopen, in particular, is chosen for 

flexibility, device availability, and standardized configuration management process. The data 

signalling rate of 1 Mb/s meets the data rate requirements listed in Table 1 since the cameras and 

lidars with high data rate are not part of the low-level control system. Another CAN is reserved for 

J1939 communication which is the industry standard interface in heavy duty diesel engines. 

 

Figure 20. Reference hardware architecture. 
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In this reference hardware architecture, it is assumed that it is safe and sufficient to stall the diesel 

engine at emergency stop. The status of the emergency stop is, however, also signalled via 

CANopen. Joysticks, sensors, and hydraulic components with CANopen interface are applied. 

However, there are some exceptions: If a group of pressure sensors is installed into a manifold, it 

is feasible to choose sensors with analogue output and measure the signals with a CANopen I/O 

module located next to the manifold. The change in wire harness complexity is not significant. The 

communication becomes more efficient as several signals are transmitted in a single CAN 

message. The more sensors there are, the more cost-efficient this solution becomes since an 

analogue pressure sensor has lower cost than one with a CANopen interface. Because the 

CANopen interface generally increases the size of a pressure sensor, utilizing an analogue sensor 

is also feasible if the installation space for the pressure sensors is limited. Hydraulic on-off valves 

are also controlled by an I/O module because on-off valves with CANopen interface are not widely 

available. 

A wheel odometry module and an IMU are placed in the low-level control system although they are 

pose estimation sensors for the high-level control system. This decision is made because the 

odometry data can also be applied in low-level speed control. To optimize the synchronization of 

the IMU and odometry data, they are connected to the same network. In addition, the installation 

locations of these sensors are close to the devices of the low-level control system. The sensor 

signals from four wheels are processed by the wheel odometry module before transmitting the 

odometry data over CAN. The odometry data of all wheels is thus synchronized and optimal 

odometry algorithms are applicable. Moreover, the steering angle signal is available on the same 

CAN from one of the CANopen position sensors and can be synchronized with the other pose 

estimation signals. 

The high-level control system is distributed over Ethernet as proposed in Figure 13 since all the 

included device types are available with an Ethernet interface. To enable machine vision as 

defined in Table 1, 1000BASE-T is chosen. Conventional internet protocol suite is applied since 

camera and lidar protocols are typically based on UDP. The separate CAN-Ethernet bridge 

improves life-cycle manageability since neither an embedded computer with a CAN interface nor a 

mobile PLC with an Ethernet interface is required. 

Utilizing CANopen, J1939 and Ethernet with internet protocol suite in the control system enables 

diverse future modifications and extensions: Replacement devices are widely available. Moreover, 

future automotive and industrial sensors, actuators, PLCs and embedded computers can be added 

by extending the original networks either directly or by standardized I/O modules. Connecting 

similar equipment to embedded computers through expansion boards would lead to higher 

dependency on software and driver support and board availability from a smaller number of 

vendors. 

 



 

 

5 Generic embedded module 

Since automated applications require new types of devices for sensing, actuation and 

communication, the devices have inputs, outputs or communication interfaces that cannot be 

connected to mobile PLCs or I/O modules. This applies to state-of-the-art technologies, in 

particular, but also devices that are not originally targeted at mobile machinery applications. 

Although some devices may be connected directly to an embedded computer, it is not feasible 

considering real-time performance or the aim for modularity and flexibility. The low-level control 

system of the reference hardware architecture presented in Figure 20 has three devices that 

involve these challenges: State-of-the-art inertial sensors or IMUs are not available with a 

CANopen interface. Optimal performance of wheel odometry requires a programmable device 

capable of sub-millisecond processing of four incremental sensor inputs. Emergency stop PLC 

needs to communicate through a radio modem. Implementing efficient half-duplex communication 

requires processing of a V.24/V.28 serial port at sub-millisecond accuracy. 

In this chapter, the problems are approached by developing a generic microcontroller board with 

analogue and digital communication. With this board, CAN and serial port communications can be 

implemented and sensor-related data processing can be performed. Furthermore, it is possible to 

use the board for measurements and control with accurate timing. To utilize the microcontroller 

board in a control system, another board with simple application-specific circuitry and an enclosure 

with suitable connectors are applied. The design criteria, features and use of the boards are 

presented first. Then, practical experiences of applying the module are discussed. Although the 

main focus is on control systems of experimental machines, applicability to commercial machine 

control systems is also considered. 

Commercially available boards with similar features are targeted at education, research and 

hobbyists. Therefore, a commercial solution may require several boards [40]. Typical evaluation 

boards of microcontroller manufacturers may have sufficient hardware included but the size of the 

boards is often too large for on-board applications. Moreover, the demanding operating conditions 

of mobile machinery are not considered in the design of these boards.  



88 

 

There are also commercial embedded modules with various protocol stacks based on CAN or 

Ethernet. These modules speed up the development of devices as there is no need to implement 

the software or circuitry related to the communication interface. Unfortunately, the modules may 

have limited software configurability and support only simple I/O interfaces to sensors and 

actuators. Therefore, in addition to the embedded communication module, a separate 

microcontroller is often needed to process application-related data or interface an embedded 

sensor. [17][81] 

5.1 Board design 

Design criteria for the microcontroller board were specified. Tolerating the operating conditions of 

mobile machinery was considered essential. Therefore, the operating temperature range of the 

board has to be at least from −20 °C to 85 °C. In addition, the board must have a robust 

mechanical structure that withstands shocks and vibration present in mobile machinery. In mobile 

machinery applications the board has to be protected against dust and water by aluminium or 

plastic enclosures with a degree of protection of at least IP55, as defined in Chapter 2. 

The low-level control system of the reference hardware architecture presented in Figure 20 is 

distributed over CAN, which is a typical solution in automated mobile machines. Therefore, a CAN 

interface is mandatory. An asynchronous V.24/V.28 serial port is required for radio modem 

communication, for example. Ethernet connectivity would extend the applicability of the board but 

also make the board larger and more complex. An Ethernet interface is therefore considered 

optional. Furthermore; sensor, converter and driver ICs have synchronous serial interfaces. An SPI 

is therefore mandatory unless the performance of the microcontroller enables SPI implementation 

in software. 

Many sensors are available only with analogue signal outputs. The microcontroller board must 

therefore have analogue voltage inputs. The input range has to be at least 0–2 V to avoid noise 

problems. Moreover, the input range must not exceed 0–5 V. It is then possible to measure the 

common voltage and current ranges without losing ADC resolution by choosing suitable external 

resistors. The ADC must have a resolution of at least 10 bits. Since the natural frequencies in 

mobile machinery are quite low, a conversion frequency of 10 kHz is considered sufficient. The 

board may also be used to produce control signals for actuators. Therefore, hardware-generated 

PWM outputs are mandatory unless the performance of the microcontroller enables PWM 

generation in software. 

Applications include integrated digital circuits, different types of switches, indicators, relays and on-

off valves. For these devices, general-purpose inputs and outputs (GPIO) are needed. Preferably, 

logic levels of both 3.3 V and 5 V should be supported. Some pins on a microcontroller package 
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can usually be configured for two or more different functions. This flexibility must not be restricted 

by the design of the microcontroller board. 

Since the board has to be universal and easy to use, it has to operate from a single positive 

voltage supply. Moreover, the connectors of the microcontroller board need to enable mating with 

simple application-specific boards, preferably even a stripboard or breadboard. The microcontroller 

board also has to include the minimum external components required by the microcontroller. 

The microcontroller on the board has to perform at least simple digital filtering and other sensor-

related data processing in real time. Simultaneously, the microcontroller has to be able to process 

CAN traffic up to 1 Mb/s at maximum bus load without losing messages. To meet the minimal 

functionality, there has to be at least 4 KB of non-volatile program memory and 512 bytes of RAM. 

Non-volatile data memory has to be available for storing at least 256 bytes of application 

parameters such as filter coefficients, scaling factors, and communication settings. 

The software development tools have to include at least a C compiler, in-circuit debugging features 

and a programming interface. A well-established high-level development environment such as 

MATLAB/Simulink or an IEC 61131-3 compliant environment such as CODESYS would support 

life-cycle efficiency by minimizing hardware-dependency of the application software. The C 

compiler, however, is required when low-level I/O access and minimal processing overhead are 

needed. The tools have to be convenient to use, reasonably priced and reliable. The hardware of 

the programming interface has to be commonly used and available or at least easy to design and 

build. 

5.1.1 Life-cycle manageability 

Applying any microcontroller to mobile machine applications has challenges regarding different life 

cycles: The microcontroller ICs available at present are different from the ones that will be 

available one mobile-machine life cycle later. The software development tools for obsolete 

microcontrollers will not be supported. The compatibility of these legacy development tools with 

new operating systems, which also have shorter life cycles than mobile machinery, is therefore 

uncertain. 

Since the life cycles in mobile machinery can be a lot longer than those of an operating system of a 

computer, the development tools must be actively supported and upgraded by the manufacturer. 

Considering the development tool support alone, it is important to assess the production prospects 

of different microcontroller models. Some development tools or development frameworks are 

available for several microcontroller models of different manufacturers. In this case, the possible 

future transition to another microcontroller model will be more straightforward considering software 

development and maintenance. 
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As stated above, the chosen microcontroller model will eventually become obsolete. Therefore, it 

has to be possible to re-design a pin-compatible microcontroller board using a new microcontroller. 

Most likely, it will not be a problem to find a microcontroller with similar or better computing 

performance. It is even possible to utilize a field-programmable gate array (FPGA) configured to 

operate as a microcontroller. With electrical characteristics of the microcontroller signals and types 

of the board connectors, however, the situation is not that simple. This has to be taken into account 

when deciding which signals of the microcontroller to make available and which board-to-board 

connectors to use. Long-term production prospects of connectors need to be assessed. In addition, 

complex microcontroller I/O without strong support prospects has to be avoided. In particular, this 

applies to I/O with unconventional electrical characteristics and the digital buses difficult to 

implement in software. 

5.1.2 Microcontroller board 

A microcontroller was selected based on the requirements and experience from different 

microcontroller families and manufacturers in machine control applications. A 56F8323 16-bit 

digital signal controller from Freescale Semiconductor was chosen. The core frequency of the 

microcontroller is 60 MHz. Its data arithmetic logic unit includes a multiply-accumulator unit for 

integer arithmetic. With pipelining, the microcontroller can perform a multiplication or multiply-

accumulation of two 16-bit integers on every core clock cycle. [26] Although with a typical program 

the efficiency of the pipeline is not ideal, in many matrix operations the core architecture of the 

56F8323 is efficient. This makes the microcontroller suitable for digital filtering, for example. The 

microcontroller does not have a floating point unit, however, which has to be taken into account in 

software development. 

The features of the 56F8323 are presented in Figure 21. The microcontroller has a CAN controller, 

a 6-channel PWM controller, two 12-bit ADCs with 4 channels each, a quadrature decoder for 

incremental pulse signals, two logic level serial ports and two SPIs. Any of these, apart from the 

ADC inputs, can be disabled and the corresponding pins can then be configured for GPIO. The 

microcontroller also has an input for external interrupts. The 56F8323 has a supply voltage of 3.3 V 

but its logic-level inputs tolerate more than 5 V. Logic-level outputs tolerate external pull-up to 5 V. 

[2] 
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Figure 21. Features of a 56F8323 microcontroller. [3] 

For flexibility and easy prototyping, the board was planned to fit a normal dual inline package (DIP) 

socket. The 40-pin variant would have been optimal regarding the number of pins. The available 

board space, however, was insufficient. Moreover, an option for a more secure fastening was 

considered necessary. Therefore, the row spacing of the pins was designed to be 25.4 mm instead 

of the 15.2 mm of the DIP specification [19]. A mating socket can be made of two separate 20-pin 

single inline package (SIP) sockets. For single prototype applications, it is also possible to split a 

40-pin DIP socket. 2.5 mm holes were added to the corners of the board for additional fastening. 

The outline of the board was designed to be 30 mm by 60 mm. An assembled, industrially 

produced board is shown in Figure 22. 

 

Figure 22. An assembled microcontroller board. 
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A block diagram of the microcontroller board is presented in Figure 23. Since the microcontroller 

operates from a power supply of 3.3 V but other circuitry on the board requires 5 V, the power 

supply of the microcontroller is generated with a linear regulator. A voltage supervisory circuit holds 

the microcontroller in reset state if the regulated voltage drops below normal range. 

 

Figure 23. Block diagram of microcontroller board. 

CAN and V.24/V.28 communication were considered essential in several applications. Therefore, 

transceivers for these interfaces were included in the microcontroller board. The 56F8323 includes 

an on-chip relaxation oscillator which can be used to generate the system clock. The accuracy of 

the internal relaxation oscillator, however, does not meet the requirements of CAN protocols that 

specify a late sampling point for maximum bus length (CANopen and J1939, for example). Some 

applications also require more accurate timing. Therefore, an external frequency reference can be 

used. Because of size optimization, a high-accuracy ceramic resonator was preferred to quartz 

crystal. 

To maximize available GPIO, both transceivers and the ceramic resonator can be left out if they 

are not used. Solder pads for zero-ohm resistors were included for bypassing the omitted 

transceivers. Since the 56F8323 has only well-established digital interfaces, PWM outputs, GPIO, 

and analogue voltage inputs, all vacant signal pins of the microcontroller were connected directly to 

the board-to-board connectors, as illustrated in Figure 23. 
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The microcontroller has an IEEE 1149.1–compliant interface for programming and in-circuit 

debugging. The interface is commonly referred to as JTAG according to the original developer, 

Joint Action Test Group. An Enhanced On-Chip Emulation (EOnCE) module that can be accessed 

through JTAG is included in the microcontroller for debugging in real time. An 8-pin header is 

placed on the microcontroller board for accessing the JTAG/EOnCE interface. Software 

development is done with CodeWarrior development tools. The latest versions are based on the 

Eclipse open development platform, which has also been adopted by several other microcontroller 

manufacturers. 

5.1.3 Application-specific board 

Using the microcontroller board in a control system requires another board which has at least a 

power supply and wire terminals. Depending on the application, the motherboards can include 

different components. In this thesis, these motherboards are referred to as application-specific 

boards. A key benefit of having a separate microcontroller board is that the application-specific 

board can be simple. 

In most cases, the electric power supply is the battery and alternator of the machine. Therefore, 

the application-specific board typically includes a regulated power supply that tolerates battery 

voltage at input and outputs 5 V to the microcontroller board, at least. The application-specific 

board may also have components that require a regulated 5 V power supply. If the power 

consumption of these components is less than 200 mW and the machine has a 12 V battery, the 

power supply can be a conventional linear voltage regulator. Otherwise, a switched-mode voltage 

regulator has to be used or special care taken to ensure proper heat dissipation.  

Minimum configuration also includes a socket for the microcontroller board and wire terminals for 

the power supply and desired signals. The application-specific board is shaped and drilled so that it 

can be fixed into an enclosure. A typical arrangement with an enclosure and a panel connector is 

shown in Figure 24. If the number of components is small and none of them are surface-mount 

devices, the application-specific board can be made using stripboard. 

 

Figure 24. A typical arrangement with an application-specific board. 
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Since the microcontroller board has only logic level inputs, an application-specific board has 

protective or biasing input circuitry. Analogue inputs may also have amplifiers and external filtering 

circuitry. Logic level outputs may control power driving transistors. An application-specific board 

may also include board-mounted embedded sensors, transceivers, converters or mass-storage 

devices. 

5.2 Discussion 

The microcontroller board has proven to suit research applications, which is demonstrated by 

several applications presented in Chapter 6 and Chapter 7. The effort required in implementing an 

application has been reasonable: devices with simple I/O have been designed, built into protective 

enclosures and programmed, all by one person in less than one week. Utilizing the microcontroller 

board has made application-specific boards simple to design and quick and easy to build. The 

software development with CodeWarrior has also been efficient, due to reusing source code and 

utilizing the integrated Processor Expert tools, including automatic code generation. The 

automatically generated code, however, sometimes requires manual corrections. Since the 

microcontroller software is written in C, it can also be ported to other microcontrollers. 

Updating the software of a microcontroller board requires connecting a programming cable to the 

JTAG header of the board. Because the devices are sometimes installed in hard-to-reach 

locations, software updates via CAN would be useful. This would require programming a small 

CAN bootloader firmware in all the microcontrollers. The extra effort would, however, make 

updating more comfortable and save time in the long run. On the other hand, efficient in-circuit 

debugging would probably not be possible over CAN. It is also possible to update the software by 

replacing the entire microcontroller board with one containing the new software. 

The dimensions of the microcontroller board have been small enough for all the applications. The 

minimum enclosure size is typically limited by the panel connectors required to maintain the 

minimum degree of protection specified in Chapter 2. Therefore, there has been no need to choose 

a larger enclosure because of the microcontroller board. 

A compatible board can be designed using future microcontrollers. New microcontrollers tend to 

require less and less board area. On the other hand, for pin compatibility, it may become 

necessary to re-design the board also for a larger device. However, by using four-layer board and 

surface-mount pin rows, the microcontroller IC can cover a much larger area than the 56F8323. 

Because the board suits diverse applications, it was feasible to have a batch of them industrially 

produced. Therefore, the electronic components on the microcontroller boards are correctly placed 

and soldered. Probably due to the industrial production, the microcontroller board has proven to be 

reliable. 
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Although all the applications of the microcontroller board have been related to academic research, 

a similar approach could also make commercial control system development more efficient. A 

similar microcontroller board could be used in prototyping new sensors, for example. The 

microcontroller family chosen in this case is also quite popular in commercial machine control and 

measurement modules. 

Many of the research applications where the microcontroller board has been applied could have 

been implemented with small commercial microcontroller modules. Most of these modules do not, 

however, include a CAN controller. An Arduino module with the CAN shield [40] would have been a 

possible solution, although larger, more expensive and possibly mechanically less reliable. On the 

other hand, the variety of expansion boards (shields) makes the Arduino a good option. In some of 

the applications, a product like the CANopen Chip F40 [17] could have been used, but for most 

cases, the fixed software would have been a problem. 

 





 

 

6 Case 1: Automated wheel loader 

An automated wheel loader with a flexible electronic control system was developed to be used as a 

generic research platform. In this chapter, the design and implementation of the electronic control 

system are presented. Research applications utilizing the machine and meeting the requirements 

of modularity, flexibility and robustness are discussed. 

The machine is used in research and demonstration of automated path following, short-range 

remote control and digital working hydraulics [9]. The control system also needs to support 

operation as a member of a fleet of automated machines. In addition, different optimizations of the 

power train control are to be researched with the wheel loader. Moreover, the control system has 

to support modifications of the hydraulic system. Overall, the control system has to be flexible in 

terms of updating control algorithms and adding or replacing devices. 

6.1 Mechanical construction 

Although the frame of the machine is from a commercial loader, the engine and the hydraulic 

system have been replaced. The machine has a mass of 3500 kg, a 100 kW common rail diesel 

engine and AFS with two hydraulic cylinders. Since pure drive-by-wire is needed, the steering 

cylinders are controlled by an electrically actuated proportional valve. The front attachment can be 

changed. Most of the tests and demonstrations have been conducted with a pallet fork installed, as 

shown in Figure 25.  

The machine has a closed-loop hydrostatic transmission with a variable-displacement pump and 

four parallel fixed-displacement hub motors. The working hydraulics circuit has been implemented 

with digital hydraulics. There are 20 seat type on-off valves for both lift and tilt, 5 in parallel for each 

control edge. [9] 
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Figure 25. Automated wheel loader. 

6.2 Control system architecture 

For robustness, flexibility and product range, CAN with CANopen was chosen as the main network 

technology. To enable future extensions with sensors and multiple embedded computers 

communicating at high data rates, Ethernet with internet protocol suite was also included. 

Furthermore, on-board Ethernet makes it possible to utilize well-established wireless standalone 

solutions. In addition, CAN with SAE J1939 and V.24/V.28-compatible serial communication with 

navigation-related protocols were applied where neither CANopen nor Ethernet were available. 

The layout of the control system is presented in Figure 26. The devices are divided into three 

levels based on function. The bottom level in the diagram consists of sensors and actuators, and 

possible sensor or actuator specific real-time signal processing. In addition, a joystick, a display 

and modules for wireless communication are considered to be on the bottom level. The middle 

level includes the hardware for real-time control of steering, velocity and working hydraulics. The 

target values for the middle level are generated either directly by the on-board or remote operator 

over the equipment on the bottom level, or by the embedded computer for automated functionality 

on the top level of the diagram. 
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Figure 26. Control system layout. 

As many components of the hydraulic system as possible were chosen to have integrated 

electronics with a CANopen interface. The CAN devices are grouped into four buses. Since the 

only SAE J1939 devices are the diesel engine and the joystick, they are connected to the same 

bus. The CANopen devices are divided into three buses based mainly on device functionality to 

balance the bus loads. 

Some of the CANopen devices are designed, built and programmed at the department since no 

applicable commercial products are available. These include the digital hydraulic valve drivers and 

the modules for remote control, emergency stop and wheel odometry. All of these deploy the 

generic embedded module presented in Chapter 5. 

6.3 Main PLC 

The main mobile PLC of the control system was specified to have several CAN interfaces and 

versatile I/O for conventional hydraulic valves, analogue current and voltage signals and switches. 

Moreover, extra I/O was considered essential for convenient future testing of sensors and 

actuators. For further flexibility, data processing performance was targeted to be high among the 
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conventional mobile PLCs. Standardized or well-established software development tools were also 

required. 

BODAS RC36-20/30 from Bosch Rexroth was considered to meet the specifications. The PLC has 

four CAN interfaces, several analogue voltage and current inputs, on-off inputs, frequency inputs, 

and outputs for proportional and on-off valves. The microprocessor core has a multiply-

accumulator unit and an FPU. The clock frequency of the core is 150 MHz and most arithmetic 

instructions can be repeated at least every third core clock cycle. Software development can be 

done with BODAS-design, which is based on CODESYS tools and is IEC 61131-3 compliant. 

Furthermore, C development tools are available in case the flexibility or performance of BODAS-

design is not sufficient for an application. Since the PLC is targeted at mobile machinery 

applications, the issues related to mechanical and electrical robustness are minimized. 

In addition to CAN communication, the PLC is used to measure analogue signals from pressure 

and temperature transducers, and control the pump of the working hydraulics via an electrically 

actuated proportional pressure relief valve. Auxiliary functions of the PLC include parking brake 

and front attachment lock control. The PLC performs power management, velocity and steering 

control, and data routing to the embedded computer for automated functionality. 

6.4 Power train and steering 

To meet the velocity and traction performance of commercial machinery with similar structure, the 

diesel engine was required to have a maximum power output of 100 kW. For convenient electrical 

control and modularity, a CAN interface was preferred for setting target engine speed. Hydrostatic 

transmission with an electrically controlled variable-displacement pump and four hub motors was 

considered a suitable generic solution for testing different control strategies and hydraulic circuits. 

For steer-by-wire functionality, an electrically actuated mobile proportional valve was specified to 

control the AFS cylinders. To simplify control system layout and increase modularity, hydraulic 

components with CANopen interface were preferred. 

A 44 CWA diesel engine from Agco Power was selected. The engine has a SAE J1939 interface 

for control over CAN. There is also a dedicated on-off input for enabling and stalling the engine. 

The engine complies with Stage III A and Tier 3 emission requirements. A variable-displacement 

pump from A4VG-series by Bosch Rexroth was selected. The pump has an internal proportional 

valve for displacement control. The control valve is electrically actuated and controlled by 

integrated electronics. There is a CANopen compatible interface for setting the target displacement 

and other parameters as well as reading diagnostic data including signals of internal sensors. A 

dedicated on-off input can be used to set the pump at zero displacement in case of emergency. 
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Hub motors from MCR5-series by Bosch Rexroth were selected. The motors have a parking brake, 

a reduced-displacement mode and two Hall effect sensors generating an incremental output for 

measuring angular velocity. The parking brake and reduced-displacement mode are hydraulically 

actuated and controlled by external on-off valves. These valves are controlled by the main PLC. 

A sandwich type mobile proportional valve from M4-series by Bosch Rexroth was selected for 

steering and auxiliary hydraulics control. Both spools of the valve have integrated control 

electronics with a CANopen interface. In addition, there are on-off safety valves for enabling the 

main spools. The coils of the safety valves are directly controlled by the main PLC. A pin-shaped 

angular resolver was fitted inside the AFS joint to enable closed-loop steering control. The resolver 

has a CANopen interface. 

6.5 Digital hydraulic boom and bucket control 

One of the topics to be researched with the wheel loader is applying digital hydraulics to mobile 

machinery. There are four digital flow control units (DFCU) controlling the lift cylinder and another 

four controlling the tilt cylinder. Each DFCU consists of five parallel on-off valves with different 

orifice sizes. Therefore, each DFCU has 31 nonzero states resulting in practically proportional 

volume flow control. For electronic pressure compensation, advanced operating modes and test 

measurements, pressure sensors were included in all actuator ports. Supply pressure was also 

measured. [52] 

To minimize unwanted pressure transients during state transitions, the closing and opening times 

of the on-off valves have to be accurately synchronized. This can be achieved with special valve 

driver circuitry. [77] Since the working hydraulics circuit requires 20 special on-off outputs, no 

commercial valve driver was available. A 20-channel valve driver was designed and connected to 

CAN with the generic embedded module. 20 logic-level outputs from the microcontroller board 

were used to control the on-off output circuits. Pressure sensor signals were also measured by the 

microcontroller board. To have enough logic-level outputs, the serial transceiver was left out. The 

microcontroller was programmed to transmit pressure values and read valve control patterns via 

CAN. 

In addition to the main PLC, the middle level of the control system has a separate controller for 

controlling the digital working hydraulics. Because complex experimental control algorithms were to 

be tested, dSPACE MicroAutoBox hardware was selected. The dSPACE MicroAutoBox is targeted 

at control system prototyping in automotive applications. The research-oriented MATLAB/Simulink 

environment can be directly used to develop the control algorithms. Moreover, it is possible to 

monitor the controller, log data and adjust parameters online. To enable automated loading and 

other sophisticated control functions, potentiometers were installed to measure the lift and tilt 
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angles of the working hydraulics. These analogue sensors were connected directly to the ADC 

inputs of the MicroAutoBox. Two separate CAN interfaces of the MicroAutoBox are utilized: one for 

communication with the valve drivers, another for communication with the main PLC. 

6.6 Computing automated functions 

Although it is possible to utilize the MicroAutoBox in automated functionality research to a certain 

extent, a separate embedded computer was considered superior in flexibility and cost-

effectiveness. CAN and Ethernet communications were specified to be mandatory. To enable new 

interfaces to be added, a well-established mechanically robust bus for embedded expansion 

boards was seen as valuable. MATLAB/Simulink with xPC Target was considered an optimal 

development platform for real-time software for the first research projects and demonstrations. 

Therefore, the embedded computer and its expansion boards were required to be supported by 

xPC Target. Based on experience of xPC Target in a laboratory environment, a single-core 

Pentium processor operating at over 1 GHz clock frequency and with 2 MB of L2 cache was 

considered to have sufficient performance for the first path-following application. 

A Pentium M–based LittleBoard 800 with a 1.4 GHz clock frequency was selected. The chosen 

model can be operated without a cooling fan over a wide range of ambient temperatures. The 

computer complies with Embedded Board, eXpandable (EBX) specification [29] with a PC/104-

Plus expansion bus. There are two Ethernet interfaces, one of them implemented with a controller 

supported by the xPC Target. A PC/104 expansion board with two CAN interfaces was installed. 

Unfortunately, very few CAN expansion boards are supported by the xPC Target. A PCAN-PC/104 

from PEAK-System Technik was chosen due to previous experience in developing an xPC Target 

driver for an expansion board from the same product series. Since the source code of Linux drivers 

was available and the board is based on widely used CAN controller ICs, the extra effort required 

by the driver development was reasonable. 

The LittleBoard 800 can be powered from a regulated 5 V supply. Depending on the boards 

installed in the PC/104-Plus bus, additional regulated supply voltages may be required. 

Fortunately, the same 5 V power supply is sufficient for the PCAN-PC/104. A DC/DC converter 

with a wide input voltage range was installed inside the same enclosure with the computer. 

M12 panel connectors for Ethernet and the two CANs were also installed on the enclosure. 

Another M12 connector was included for accessing BIOS through a V.24/V.28 serial port. 

Moreover, the serial port can be used to connect various embedded sensors to be tested on-board. 

The computer has a parallel ATA controller for conventional hard drives and SSDs. In addition, 

USB mass storage or a CompactFlash memory card may be utilized. Any of these can be used as 

a system drive. Since neither the xPC Target real-time kernel nor the application requires writing 

on the system drive, an industrial grade CompactFlash memory card was chosen. 
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Since the real-time kernel for standalone xPC Target models has to be invoked from an MS-DOS 

compatible operating system, FreeDOS was installed on the CompactFlash card. The standalone 

xPC Target models can also be stored on this system drive. Although it is possible to invoke the 

real-time kernel and specify a standalone model file at FreeDOS command line, it is more 

convenient to have the model started as soon as the operating system has booted, without any 

manual action. However, changing which model file is run requires modifying a batch file on the 

system drive. This, in addition to managing the model files on the system drive, is not possible 

once the xPC Target real-time kernel has been invoked.  

Since there is no consistent support for remote access and networking in MS-DOS compatible 

systems, it was considered most convenient to utilize live USB with GNU/Linux for remote 

accessing of the CompactFlash. To enable live USB, the boot sequence of the BIOS was set to 

give the first priority to USB drives, before the CompactFlash. A panel connector for USB with 

sufficient protection was installed on the enclosure. A mating cable was fitted with a panel feed-

through on the dashboard for easy access. In addition to enabling live USB, this arrangement 

makes it possible to run an alternative xPC Target model from a USB drive. 

For development and testing of xPC Target models, the real-time kernel may run a loader model, 

enabling the application models to be loaded from a host laptop. Since the loader model supports 

communication over Ethernet utilizing internet protocol suite, it is possible to have the host laptop 

connected on-board or over the site-wide wireless network. 

6.7 Pose estimation sensors 

One of the first applications to be demonstrated with the wheel loader was specified to be 

automated path following. Horizontal position error was specified to be less than 0.5 m most of the 

time to be able to follow a typical road and perform reasonably in various earthmoving tasks, for 

example. Demonstrations were planned to be conducted at various closed locations without other 

traffic or dynamic obstacles. The setup work at a new site was to be minimized. The sites were 

assumed to be rather flat, possibly without any landmarks, and mostly have a line of sight to 

navigation satellites. Therefore, a GNSS receiver and wheel odometry, possibly with inertial 

measurements, were considered to be a sufficient sensor combination. Since there is no sensor for 

solving the initial orientation of the machine, a short path has to be driven to enable orientation 

estimation from successive position estimates. 

6.7.1 GNSS receiver 

Based on the accuracy requirement, a code-differential receiver was considered sufficient. An 

interface for various external sources of correction data was required. A Trimble SPS351 
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differential GPS (DGPS) receiver with a Trimble GA530 antenna was selected. In addition to 

receiving GPS satellite signals, SBAS correction data is also received. This includes the European 

Geostationary Navigation Overlay Service (EGNOS). Furthermore, the receiver and the antenna 

are compatible with the correction data transmitted on marine radio beacon frequencies. The 

receiver and antenna are targeted at marine applications in demanding environmental conditions. 

Therefore, no additional protection is required. The receiver has diverse options for 

communication. Internet protocol suite over Ethernet was chosen for transmitting the position data 

to the embedded computer since processing the UDP packets is straightforward within the xPC 

Target models. Moreover, the on-board Ethernet switch had a spare port, making the hardware 

installation straightforward. 

Initial tests showed that although there was a marine beacon transmitter located at a distance of 

125 km, its signal could not be received reliably. To make the machine independent of the working 

site, a commercial grid-based correction service (Trimble VRS DGPS) was selected. The position 

data of the DGPS receiver is transmitted to the Ntrip server over mobile Internet every 10 seconds. 

An optimal set of correction data for the current working area is then received from the server 

every second. For this communication, an embedded mobile Internet module with Ntrip client 

functionality was installed. The module has a V.24/V.28 compliant serial port for communication 

with the DGPS receiver. The receiver outputs position data according to NMEA 0183 and receives 

the correction data according to the RTCM specification. The DGPS receiver also has Ntrip client 

functionality. This, however, requires that there is Internet access from the on-board Ethernet. 

Utilizing the separate module as the Ntrip client enables correction data to be received almost 

anywhere without on-site wireless Internet access. Moreover, with the external module it is 

possible to keep the embedded computer and the DGPS receiver entirely separated from the 

Internet for improved security. The module can also be used as a modem for receiving the 

correction data through a traditional circuit-switched connection. 

6.7.2 Wheel odometry 

Since the applications of the wheel loader include power train optimization and testing different 

pose estimation arrangements, it was considered necessary to measure the angular velocities of 

all the wheels. An encoder was installed on each wheel, outputting incremental signals. The 

velocities of 0–40 km/h with direction indication were to be measured at maximal accuracy over the 

velocity range, synchronized with the AFS angle measurement. Therefore, a special odometry 

algorithm and real-time input processing were needed. 

A simple application-specific board was designed to be used with the generic embedded module. 

Only a power supply and voltage dividers with transient protection to adapt the sensor signals to 

the logic-level inputs of the microcontroller board were included on the board. The microcontroller 

was programmed to read the inputs every 500 μs and continuously calculate the angular velocity of 
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each wheel, then transmit the result via CAN when requested by the higher level controller. The 

request is done by transmitting a SYNC message as described in CANopen specification [16]. 

6.8 Short-range remote control 

Remote control of mobile machines is one of the research topics tested and demonstrated with the 

wheel loader. For flexibility, a general-purpose radio modem link is used. A compatible handheld 

remote control and communication protocol are presented by Uusisalo [121, pp. 42–57]. Although 

mobile PLCs and I/O modules are available with a serial port, accessing the registers of the serial 

port from the control application in real time is typically not convenient. Therefore, a CANopen 

compatible remote control interface was designed utilizing the generic embedded module. Another 

benefit is that remote control functionality can then be added to other machines by installing similar 

devices. 

In this case, both CAN and serial port transceivers were mounted on the microcontroller board. 

The application-specific board consisted of power supply for the microcontroller board, another 

power supply for the short-range radio modem, and connectors. The software reads data from the 

serial port every 200 μs, transmits a response packet after a complete control packet is received, 

and transmits the control values via CAN. The response to the remote controller can include force 

feedback data in addition to conventional status information. 

6.9 Site-wide wireless communication 

A separate general-purpose IEEE 802.11 compliant wireless module with Ethernet interface was 

selected for secure high-performance wireless communication. A standalone module was preferred 

since it is independent of the operating system of the embedded computer. Moreover, replacing 

the wireless solution in future is straightforward. The module is targeted at vehicle applications. 

Therefore, neither electrical nor mechanical installation requires extra arrangements. The wireless 

module includes a 2-port Ethernet switch with M12 connectors. Therefore, no additional switch is 

required with the current equipment. The ports were connected to the embedded computer and the 

DGPS receiver as presented in Figure 26. 

The networking configuration was performed via a web browser interface quickly and easily. The 

wireless module was configured to act as a wireless client, establishing an encrypted connection to 

the on-site wireless network. The network has no Internet access, simplifying security issues. 

Instead of a wireless client, the wireless module can be configured to operate as an AP. This 

removes the need for fixed on-site wireless infrastructure in simple applications. 
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6.10 Emergency stop 

Automated travel tests were planned to be conducted without an operator on board. Therefore, a 

system with a dedicated wireless link was designed for independent emergency stop functionality. 

The system was designed utilizing the generic embedded module to make the devices small and 

convenient to update. The generic embedded module is used in two different modules: a relay 

module and a button module. The relay module is installed on the machine, controlling the 

emergency stop signal that disables the outputs of the main PLC, stalls the engine and activates 

the brakes. The handheld button module consists of the microcontroller board, an application-

specific board with button inputs, a battery pack and a robust radio modem. 

The application-specific board of the relay module is similar to the one in the remote control 

module. In addition, the board has a transistor that drives the emergency stop relay that is in series 

with the conventional emergency stop buttons of the machine. There is also an input for a bypass 

switch, which disables the wireless emergency stop. The actual switch has two pairs of contacts. 

One pair is used to bypass the relay. The other pair signals the microcontroller board if the bypass 

is enabled. 

The emergency stop button in the button module is also a double-pole switch. While one pair of 

contacts shuts off the power supply to the microcontroller and the radio modem, the other signals 

the emergency stop to the microcontroller board. In the button module, the application-specific 

board has an electrolytic capacitor that powers the button module for approximately 200 ms after 

the emergency stop button has been pressed. After initial tests, it was noted that an additional 

run/wait function would streamline testing. Therefore, another button with momentary action was 

installed. In addition to the button inputs, the board has a voltage regulator, a connector for the 

radio modem and outputs for LED indicators. 

The software of the relay module transmits a repeating bit pattern to the button unit. If the button 

unit does not reply with a correctly manipulated pattern within the period of the microcontroller 

watchdog, the relay is de-energized, resulting in an emergency stop. The states of the emergency 

stop button and the run/wait button are transmitted in the response packet from the button module. 

When the emergency stop button is pressed, the energy stored in the shutdown capacitor is 

sufficient for transmitting two or three response packets. Therefore, the relay module can trigger 

the emergency stop before watchdog time-out. The status of the emergency stop, the run/wait 

button and the bypass switch are transmitted over CAN to the main control system. The status of 

the bypass switch is also transmitted to the button module to be shown with the LEDs. 

The radio modem communication is synchronized to packets transmitted by the button module. 

The communication protocol supports a system of up to two relay modules. There are two time-

slots for the relay modules after the button module has completed its transmission. Therefore, both 
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relay modules have an individual delay before starting their transmission. The protocol could be 

extended to three machines without notable delay. However, if the number of machines is 

increased, it is likely that several supervisors and several button modules are required, leading to 

fundamental modifications of the emergency stop system. 

6.11 Electrical power supply 

Almost all the devices of the electrical system have a range of supply voltage compatible with a 

24 V battery system. It was also estimated that a 24 V system is more likely to be supported by the 

equipment to be installed in future projects than a 12 V system. Since the electrical system of a 

research machine is frequently operated without the engine running, a starter battery type that 

tolerates deep discharge was selected. Two 12 V batteries were connected in series, resulting in a 

24 V system with a capacity of 75 Ah, sufficient to power the electrical system for several hours 

without the engine running.  

A 28 V alternator with a nominal output current of 60 A at 6000 rpm had been mounted on the 

engine for prior tests. The transmission ratio between the alternator and the engine is 2.6. 

Therefore, the alternator is rotating at 2600 rpm when the engine is idling at 1000 rpm. The 

maximum output current of the alternator at 2600 rpm is approximately 38 A. The maximum 

continuous consumption of the electrical loads without actuating any hydraulic valves is estimated 

in Table 3, assuming the alternator output voltage is 28 V. Therefore, the total of 360 W 

corresponds to 13 A. This indicates that at least 66 % of the alternator output is always available 

for charging the batteries when the engine is idling. It has to be noted, however, that unlike a 

typical machine, the wheel loader has no lights. A commercial equivalent of the machine has work 

lights and headlights rated at 330 W in total. 

Only the embedded module used as the Ntrip client requires a 12 V power supply. Since no 

optional devices were easily available, a small DC/DC converter was needed. A 20 W model was 

selected, having 13 W of extra capacity over the consumption of the embedded module. The 

converter was installed into a protective enclosure with M12 connectors, enabling the converter to 

be used with possible future low-power devices requiring a 12 V power supply. It was, however, 

noted in initial tests that the linear voltage regulators of the remote control module and the 

emergency stop relay module overheat when supplied by the 24 V battery system. To solve the 

problem, these devices, which were fortunately located next to the DC/DC converter, were 

connected to the extra 12 V output. 

No arrangements were needed considering switch-off because there are no sensitive devices in 

the control system. However, if the operating system of the embedded computer is changed, the 
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need has to be reassessed. The same applies if applications that write data on the system drive 

are run. 

Table 3. Maximum continuous electrical power consumption when machine is idle. 

Device Maximum continuous power [W] 

Engine electronics 140 

Parking brake control valve 30 

Motor displacement reduction valve 30 

Hydrostatic drive pump 25 

Steering valve 25 

Embedded computer 20 

Cabin display 12 

Working hydraulics controller 12 

Digital hydraulic valve drivers 10 

Main relays 10 

IEEE 802.11 wireless module 8 

Main PLC (without external load) 7 

Emergency stop relay module (with modem) 6 

Wheel encoders 6 

DGPS receiver 5 

Ntrip module 4 

Embedded odometry module 4 

Remote control module (with modem) 3 

AFS resolver 2 

Joystick 1 

Total 360 

6.12 Discussion 

Since the machine was built in 2009, it has been utilized in several research projects and 

technology demonstrations. Ahopelto et al. have used the machine in power management 

research, experimenting with operation at minimal rotation speed of the engine [7]. Huova et al. 
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have developed energy efficient multi-actuator control with digital working hydraulic circuit [52]. 

Tikkanen has experimented with the energy efficiency of displacement controlled working 

hydraulics [108]. In addition, automated path following, short-range remote control and digital 

working hydraulics have been demonstrated with the wheel loader at several industrial and 

academic events. Since the first demonstrations, several hardware changes have been made to 

the original control system as required by various research projects. It is therefore possible to 

assess the actual flexibility of the control system. 

6.12.1 Control system modifications 

To measure the volume flow of the working hydraulic circuit for closed loop displacement control, a 

volume counter was installed [108]. The sensor outputs incremental signals that enable detecting 

of the direction of the volume flow. The controller development was done utilizing the 

MicroAutoBox. Therefore, the sensor was connected to spare inputs on the MicroAutoBox. The 

pressure controller of the variable-displacement pump of the working hydraulic circuit was also 

replaced to achieve straightforward displacement control. A fast proportional directional control 

valve was installed, instead, to control the displacement of the pump. The valve was connected to 

a current-controlled PWM output at the main PLC. 

Eventually, the performance of the Pentium M–based LittleBoard 800 computer was considered to 

prevent testing of the most advanced controllers. Moreover, multicore support of the xPC Target 

real-time kernel had been improved. Therefore, the LittleBoard 800 was replaced with a Core i7–

based dual-core Hurricane-QM57 with a core clock frequency of 2.53 GHz. The computer complies 

with EPIC Express specification [34], having smaller dimensions than the EBX-compliant [29] 

LittleBoard 800. However, the Hurricane-QM57 requires an ATX-style power supply with multiple 

regulated voltages, and has horizontal 8P8C connectors for Ethernet. Therefore, a slightly larger 

enclosure had to be selected. The conduction cooled EPIC Express board is equipped with a 

board-sized heat spreader which was used for mounting the board. Both computers can be 

expanded with PCI-104 boards, but PC/104 support is not included in EPIC Express [34]. 

Therefore, a quad-channel PCI-104 version of the CAN expansion board was installed. 

Fortunately, it was straightforward to also modify the previously developed xPC Target driver to 

support this version. Serial port was left out because it had been minimally utilized and would have 

required an expansion board or a USB adapter. 

Since the dSPACE MicroAutoBox is relatively expensive, it was removed from the machine to be 

applied to another research platform after the most intense development of the digital hydraulic 

controller was completed. Because of the upgraded performance of the embedded computer, the 

digital hydraulic controller was implemented utilizing it. The angular potentiometers were 

connected to spare I/O of the main PLC. CAN 4 was connected to the embedded computer for 

communicating with the valve drivers. CAN 3 was connected to the spare CAN of the embedded 

computer, improving data logging capability. Moreover, having all the CANs available enables 
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computation to be more flexibly divided between the main PLC and the embedded computer if 

required in future. It is, for example, possible to use the main PLC only as I/O extension to the 

embedded computer. 

However, having the digital hydraulic controller implemented on the embedded computer has its 

drawbacks: other software development utilizing the embedded computer may prevent the working 

hydraulics from being operated. Removing the embedded computer for maintenance naturally 

disables the working hydraulics, as well. It has been planned, therefore, that a simplified controller 

would be implemented on the main PLC to be used as a backup. This would, however, require 

CAN 4 to be also connected to the main PLC. Simple proportional controllers could be 

implemented with the generic embedded module also inside the valve drivers. In that case, the 

access to CAN 4 would be required for transmitting target velocities or flow values from the main 

PLC to the valve drivers. 

Running the digital hydraulic controller on the embedded computer has endorsed safer methods 

for developing the xPC Target models: the default standalone model on the system drive of the 

embedded computer has to be reliable and stable, especially concerning the controller for the 

working hydraulics. Testing new controllers has to be done with a host laptop by running the loader 

model on the embedded computer from a USB drive. Furthermore, the new standalone models 

have to be tested thoroughly from a USB drive before changing the default standalone model on 

the system drive. 

It was not possible to connect the volume counter sensor to the main PLC because there are no 

compatible inputs for incremental signals. Therefore, a module very similar to the one utilized in 

wheel odometry was developed utilizing the generic embedded module. The signals were 

connected to the quadrature decoder inputs of the microcontroller board. The microcontroller was 

programmed to read the difference register of the quadrature counter every 5 ms and transmit both 

the raw value and a low-pass filtered value over CAN. The volume counter module was connected 

to CAN 4 for communication with the embedded computer. This was convenient as the valve 

drivers of the working hydraulics communicate over the same CAN.  

The layout of the control system after the described modifications is presented in Figure 27. 

Comparing to Figure 26, it can be seen that the original arrangement of one Ethernet and four 

CANs has been maintained. 
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Figure 27. Control system layout after modifications. 

6.12.2 Meeting requirements 

The hardware architecture of the control system has proven flexible, robust and research-friendly. 

Since most of the utilized devices are targeted at demanding operating conditions, they have 

caused very few reliability problems. All the devices cover the minimum operating temperature 

range specified in Chapter 2. The specified minimum degree of protection, IP55, however, is not 

met by the Ntrip module. It was installed inside the cabin because it had not been tested according 

to IEC 60529 [23] and the degree of protection was estimated to be no more than IP34. The 

original enclosure could also have been changed. The embedded computers and devices based 

on the generic embedded module were installed in protective enclosures with panel connectors. 

The enclosures and connectors were chosen to meet IP65, at minimum. Although the assembled 

enclosures were not tested according to IEC 60529, the installation guidelines of connector and 

enclosure manufacturers were followed to maintain the degree of protection. Some reliability 

problems were experienced related to heat management of the linear voltage regulators, as 

mentioned above. In addition, a sensor fault in wheel odometry caused an excessive sensor supply 

current to flow through the application-specific board of the wheel odometry module. Unfortunately, 

the fuse protection of the module had not been rated properly, and the excessive current damaged 

the board. 

In general, the arrangement of the control system follows the reference hardware architecture 

presented in Figure 20. The low-level control system, however, is distributed over three CANopen 
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networks instead of one, and the data rates are lower than the proposed 1 Mb/s. This solution 

increases flexibility and improves compatibility with the CANopen slave devices that have limited 

message or data rates. The joystick was ordered with a J1939 interface instead of CANopen due 

to a shorter delivery time. Analogue temperature, pressure and position sensors, auxiliary on-off 

valves and cabin buttons are connected to the I/O of the main PLC instead of separate CANopen 

I/O modules. This is not optimal considering life-cycle manageability since a replacement PLC 

needs to have similar I/O to minimize software modifications. Utilizing the three CAN interfaces of 

the PLC also has a negative effect as the higher number of used CAN interfaces decreases the 

number of potential replacement PLCs. A separate CAN switch would improve the situation. 

The high-level control system is distributed over Ethernet at 100 Mb/s instead of the proposed 

1 Gb/s. Therefore, adding machine vision, as estimated in Table 1, requires an upgrade to 

1000BASE-T. However, no devices need to be replaced: The embedded computer supports 

1000BASE-T, and the rest of the current 100BASE-TX network can be connected to one of the 

ports of a 1000BASE-T switch. The CAN-Ethernet bridge proposed in Figure 20 is replaced by the 

quad-channel CAN expansion board of the embedded computer in Figure 27. This solution is 

smaller, has a lower hardware cost and minimal communication delays. However, replacing the 

embedded computer, its operating system or the expansion board are challenges considering life-

cycle manageability due to driver support and expansion board availability. 

The modifications that have been carried out (Figure 26 and Figure 27) have not required any 

heavy redesign. Having several CANopen-compliant busses enables flexible I/O, sensor and 

actuator extensions utilizing vendor-independent devices with uniform methods for configuration 

management. Furthermore, it is possible to add multiple mobile PLCs to distribute computation 

over CANopen. Where the size, real-time performance or I/O interfaces of commercial CANopen 

devices are not sufficient, utilizing the generic embedded module presented in Chapter 5 is an 

efficient method. New embedded computers and advanced sensor and actuator systems can be 

connected to the on-board Ethernet. An external switch, however, is required since there are no 

spare Ethernet ports. 

There are commercially available replacements for most of the devices utilizing the generic 

embedded module. Some devices, however, need more than one commercial device for 

replacement. For example, the valve drivers of digital hydraulics could be replaced with CANopen 

I/O modules or mobile PLCs with 20 on-off outputs. An external output stage would be required, 

however, to implement fast current switching. Another option is to utilize devices that have both 

high side and low side driving outputs. In this case, several I/O modules would be applied to 

replace each 20-channel valve driver. Careful scheduling analysis would be needed to ensure a 

deterministic communication delay to these I/O modules. The emergency stop system could be 

replaced with a commercial one, but the CANopen interface would have to be implemented with a 

mobile PLC, for example. 
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The flexibility of the hardware architecture has been further indicated in the development of similar 

systems on other wheel loaders: A smaller AFS machine with distributed low level computation [6] 

has been equipped with embedded computers, a GNSS receiver, wheel odometry and emergency 

stop modules. In addition, advanced sensors like lidars and machine vision cameras are connected 

via Ethernet. The flexibility of the architecture also enabled rapid development of automated path-

following and digital working hydraulics on another wheel loader for industrial demonstration. The 

frame of the wheel loader is similar to the one presented in this chapter, but in this case the original 

mechanical parts of drive train and steering were preserved. The machine was ready for 

demonstration six months after the functional requirements were specified. 

The control systems presented in Chapter 1 have computers, sensors and communication similar 

to the control system presented above. The hardware architectures, however, are different, and do 

not meet the requirements presented in Chapter 2. The systems that do meet the data rates listed 

in Table 1 do not tolerate the specified operating conditions or have poor life-cycle manageability. 

This is due to proprietary communication over internet protocol suite even in the low-level control 

system and utilization of various expansion boards in embedded computers. 

 





 

 

7 Case 2: Automated excavation 

A small commercial skid-steered wheel loader was modified for short-range remote control in 

previous research [123]. Three similar machines were built for various research projects and 

technology demonstrations. The electronic control system was implemented with a robust 

commercial embedded computer with display and distributed I/O modules. The control system of 

two of the machines was then extended to support multi-machine operation, lidar-based path 

following and stereoscopic real-time video for remote operation. Moreover, a commercial backhoe 

excavator attachment was modified and interfaced with the control system. 

In this chapter, the functional requirements for the control system are listed and the implemented 

control system of the wheel loader and the excavator attachment is described. The research 

applications of the machines are discussed and automated emptying of the excavator bucket 

presented in detail. Meeting the functional requirements as well as the general requirements of 

modularity, flexibility and robustness are discussed. 

7.1 Functional objectives 

The control system has to support operation in a fleet of several machines. The machine may be 

controlled manually either on-board or remotely. The remote operator may stand next to the 

machine or be located in another city. In addition to real-time video, load information has to be 

available for the remote operator. 

To enable automated excavation, the excavator attachment has to perform closed loop control of 

the joint angles. Moreover, to maintain the flexibility of the original machine, the modifications must 

not make installing and removing the excavator more difficult. 
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7.2 Construction of wheel loader 

The wheel loader and the excavator attachment suit research use well: although the machine is 

compact, the mechanical and hydraulic structures have similarities to larger machines (Figure 28). 

The wheel loader is modified from a commercial machine of the Avant Tecno 300 series. The 

machine is skid steered and has a throttle controlled hydrostatic power transmission with four hub 

motors. The maximum output power of the diesel engine is 15 kW. There is a variety of 

attachments available for the machine. 

 

Figure 28. Modified wheel loader with excavator attachment. 

The original machine has mechanically operated valves which have been replaced by an 

electronically controlled stackable mobile proportional valve. The valve has six spools: two for 

travel and one each for boom, bucket, telescope and auxiliary hydraulics outlet. The valve has a 

load sensing port for measuring the maximum load pressure of the actuator ports. A pressure 

transducer with current output was installed in this port. In addition, there are on-off valves for 
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toggling between one and two pumps as well as locking the boom and bucket. An electrically 

actuated pressure relief valve is used to control the supply pressure according to load sensing. The 

rotation speed of the engine is controlled by an electrical actuator instead of the original 

mechanical accelerator cable. There are quick couplings for the auxiliary hydraulics. A multipole 

connector for electric supply and CAN has been added. Therefore, it is possible to extend the 

CANopen-based control system to attachments. 

7.3 Construction of excavator 

The excavator attachment, shown in Figure 28, is modified from Avant Backhoe 205. It has four 

hydraulic cylinders for slew, boom, stick, and bucket movements. The original mechanically 

operated valves have been replaced like the ones of the wheel loader. An excavator control 

module has been designed utilizing the generic embedded module. The control module can be 

configured to compensate the typical nonlinear characteristics of proportional valves, for example. 

[63] 

The proportional valve has integrated current amplifiers. The amplifiers are controlled with a 

voltage signal. The range of the signal is proportional to the battery voltage. The amplifiers have 

low-pass filters at control signal inputs, enabling PWM signals to be used. The valve also has a 

measurement port for maximum load pressure. Similar to the valve on the wheel loader, a pressure 

transmitter with current output was installed in this load sensing port. 

7.4 Control system of wheel loader 

The layout of the control system of the small wheel loader utilized with the excavator attachment is 

presented in Figure 29. To meet the requirements of Chapter 2, the control system is distributed 

over CAN and Ethernet, utilizing CANopen and internet protocol suite, as proposed in the 

reference hardware architecture in Figure 20. For reasons of size, cost and device availability at 

the time of building the machine, sensors and actuators with analogue interfaces were applied 

instead of CANopen versions. The data signalling rate of CAN is 250 kb/s instead of the proposed 

1 Mb/s. The initial tests revealed that the utilized CANopen I/O modules were not able to process 

bursts of several messages at data rates of 500 kb/s and above. On the other hand, the utilization 

of I/O modules instead of separate CANopen sensors and actuators results in less protocol 

overhead and, therefore, a lower network load. The Ethernet also has a data rate lower than 

proposed by the reference hardware architecture. 100 Mb/s was considered sufficient since the 

machine vision cameras are connected to a dedicated image processing computer via IEEE 1394. 
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Figure 29. Control system layout. 

For manual operation on board, the machine has a steering wheel, a joystick and a gas pedal, all 

outputting a voltage signal. The signals are measured by two generic CANopen slave I/O modules. 

In addition, the outputs of the hydraulic pressure transmitters, wheel odometry sensors and the 

position sensor of the engine actuator are connected to the I/O modules. The modules control the 

hydraulic valves directly and the engine actuator through a separate H-bridge board. Because the 

control system of the machine was originally designed for direct teleoperation, the odometry 

sensors were not intended for closed-loop velocity control. Therefore, the odometry sensors do not 

indicate the direction of travel, and the conventional pulse counter inputs of the CANopen I/O 

modules were considered sufficient. 

For flexibility and small size, a separate CANopen compatible module was designed and built for 

controlling the starter, the glow plugs and the stop solenoid. Since the design of the generic 

embedded module was not finished at the time, another prototyping microcontroller board with 

some similar features was used. The same software development tools and programming 

hardware were utilized. However, the applied microcontroller board has a larger size, inconsistent 

board-to-board connector arrangement, lower performance and no option to install a V.24/V.28 

transceiver or bypass the CAN transceiver. Since the applied board was not designed for long-term 

utilization, there are no more compatible spare boards available. However, the generic embedded 
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module has the I/O and performance to replace the utilized microcontroller board. The application-

specific board, however, would need to be redesigned to match the board-to-board connectors of 

the generic embedded module. 

The low-level motion controllers and CANopen master functionality were implemented on an 

embedded computer running simple embedded GNU/Linux. The DM586 computer also has a 

bright monochrome display for presenting sensor signals and adjusting control parameters. The 

motherboard has interfaces for CAN, V.24/V.28 serial and Ethernet. There is soldered flash that 

can be used as a system drive. The software was developed and compiled on a laptop running a 

binary-compatible distribution of GNU/Linux. 

A radio modem for short-range remote control was connected to the serial port of the DM586. The 

DM586 was programmed to choose the target values for velocity, steering and working hydraulics 

between three possible sources: the on-board operator, the short-range remote operator or via 

CANopen from another embedded computer. In addition, the DM586 can route target values to the 

excavator control module. 

A Pentium M–based LittleBoard 800 embedded computer was included for implementing 

automated functionality and routing data for multi-machine operation and direct long-range 

teleoperation. The computer was equipped with two expansion boards on the PC/104-Plus bus: 

one for CAN, the other for IEEE 802.11 wireless networking. The computer was configured to run 

GNU/Linux from a CompactFlash memory card. 

Another LittleBoard 800 with GNU/Linux was utilized for processing stereoscopic images. A 

PCI-104 expansion board for IEEE 1394 was installed for communication with the two machine 

vision cameras. In addition, robust video cameras with analogue output were utilized for remote 

monitoring. A video server was included for transmitting the analogue video content over the 

IEEE 802.11 wireless connection. No separate Ethernet switch was required for connecting the 

video equipment since the LittleBoard 800 has two integrated Ethernet adapters. 

The bottom right corner of Figure 29 shows also the CAN devices installed on the excavator 

attachment. If the excavator is removed from the wheel loader, a bus terminating cap has to be 

mated with the CAN connector to maintain proper termination. 

7.5 Excavator control module 

An excavator control module was designed and built utilizing the generic embedded module. The 

application-specific board was designed to have input circuitry for the load sensing pressure 

transmitter and a linear potentiometer for slew cylinder measurement. Transistors were included 

for shifting the voltage level of PWM outputs for valve control.  
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A linear voltage regulator was considered sufficient since the wheel loader has a 12 V battery 

system and the current consumption of the excavator control module is less than 100 mA. Wire 

terminals were included for all the sensors, valves, power supply and CAN. The excavator control 

module was mounted on top of the proportional valve, minimizing the length of valve control 

cables. 

7.6 Joint angle measurement 

The excavator control module was first programmed to perform simple closed loop control of the 

slew cylinder. For this, a sealed long-life linear potentiometer was mounted parallel to the slew 

cylinder. [64] Because the results were encouraging, more sensors were added [65]. In addition to 

the slew cylinder sensor, there are three inclinometers measuring the absolute positions of the 

main boom, stick boom, and bucket. The arrangement is shown in Figure 30 where the boom, 

stick, and bucket inclinometers are marked with numbers 1, 2, and 3, respectively. The 

inclinometer module has been developed at the Department of Intelligent Hydraulics and 

Automation utilizing the same microcontroller and software development tools as with the generic 

embedded module [50].  

The inclinometers have MEMS accelerometers which have a limited bandwidth. This is not, 

however, considered a problem in this application. The inclinometers also have MEMS gyroscopes 

that can be enabled in case the bandwidth has to be extended. The inclinometers have a 

CANopen compatible interface so they are simply connected using 4-pole cables that supply power 

and communications. 

 

Figure 30. Inclinometer installations on excavator. 
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Because there is no inclinometer installed on either the wheel loader or the excavator frame, the 

actual joint angle of the base boom cannot be calculated as the difference between two sensor 

signals. It is, however, possible to use inclinometer 1 alone for relative measurement of the base 

boom angle, assuming the wheel loader stays at rest. Moreover, it is possible to cancel the offset 

every time the wheel loader has been moved by lifting the base boom into a known angle. 

Nevertheless, lifting the entire machine during operation, for example by pushing the excavator 

bucket against the ground, generates an error that is not straightforward to detect. 

7.7 Video 

Video cameras were installed for demonstrating direct teleoperation of the excavator without line of 

sight to the machine. Taking into account the operating conditions of a wheel loader, two robust 

cameras targeted at machinery applications were selected. One of the cameras was mounted high 

on the wheel loader to view the working area of the excavator. The other was mounted on the stick 

boom of the excavator, showing the bucket. The installed cameras are shown in Figure 31: the one 

viewing the working area is on the left under the large plastic enclosure, the one on the stick boom 

on the right. The bucket camera was installed to give a detailed view for the remote operator, but 

also to test the functionality and durability of the camera at an extremely demanding mounting 

location. Both cameras are supplied directly from the battery system. Because one of the cameras 

was mounted on the excavator, an extra connector was added in the camera cable to be 

disconnected when removing the excavator.  

 

Figure 31. Cameras on wheel loader and excavator stick boom. 

Since the cameras output an analogue video signal and IEEE 802.11 wireless networking was 

considered most feasible for video transfer, a 4-channel Ethernet video server with internet 
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protocol suite was installed on the wheel loader. The server was located inside a compartment for 

protection against dust and rain. The video server was configured to use Motion JPEG 

compression for minimal processing delay. The first tests and demonstrations were carried out 

when the embedded computers shown in Figure 29 had not yet been installed. Therefore, an 

outdoor IEEE 802.11 wireless AP was mounted on the wheel loader. 

In further research conducted by the Department of Automation and Systems Technology at Aalto 

University, stereo vision was applied. [106] Two machine vision cameras and lenses were installed 

inside a protective enclosure shown in Figure 31 on the left. The lenses have set screws to lock the 

adjustable zoom and focus. Since both cameras are fixed into one enclosure, it is possible to move 

the entire stereoscopic system between research platforms without repeating stereo calibration. 

Due to previously developed software and experience, cameras with IEEE 1394 interface were 

selected instead of 1000BASE-T Ethernet. Since real-time image processing is computationally 

demanding, a dedicated LittleBoard 800 computer with a 3-channel IEEE 1394 adapter was 

installed inside the same enclosure. In this way it was also possible to avoid problems related to 

maximum length of IEEE 1394 cables and utilize commercial Beta connectors. Moreover, it is 

straightforward to install hardware synchronization circuitry between the cameras if needed. 

7.8 Electrical power supply 

To be able to utilize the original starter and engine controls, the 12 V electrical system of the 

commercial machine was preserved. Most of the devices of the control system can be supplied 

directly from the battery system. However, it was noticed in initial tests that the battery has to be 

almost fully charged when starting the engine to prevent the computers and I/O modules from 

resetting. In addition to occasional file system errors, the rebooting caused another problem: since 

the rotation speed of the diesel engine is controlled by one of the computers, a reboot during 

engine start often resulted in the engine not starting at all. Therefore, a small auxiliary battery was 

connected through a Schottky diode as presented in Figure 32. 

 

Figure 32. Electrical system with auxiliary battery. 
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The IEEE 802.11 AP utilized initially for video transfer is a Power over Ethernet (PoE) device. 

Because a suitable PoE power injector for vehicle use was not available, an automotive DC/DC 

converter with a 48 V output was utilized. The converter was installed inside the side compartment 

due to insufficient degree of protection. The entire control system was planned to be operated for 

testing, development or calibration without the engine running. Because fitting a large battery in the 

small wheel loader was not feasible, a connector was installed for external power supply. 

7.9 Automated excavation functions 

As the first step in developing automated excavator control, a simple closed loop controller for slew 

movement was used. The operator was able to store the desired trajectory points and command 

the slew cylinder to follow them. [64] The concept was then extended to all four cylinders, which 

enables automatic emptying and return of the bucket, for example [65]. 

A block diagram of the excavator controller is shown in Figure 33. The presented controller 

software is run by the excavator control module of Figure 29. The joystick positions and commands 

for closed-loop control are received from the DM586 embedded computer of the wheel loader in 

CANopen Process Data Objects (PDO). In addition, the angular position PDOs transmitted by the 

inclinometers are received. The valve control signals are produced with PWM outputs of the 

excavator control module. In addition to closed-loop control, the valves can be open-loop controlled 

according to the joystick positions. The signals are processed according to parameters that can be 

set using the CANopen interface. The excavator control module was programmed to estimate the 

required volume flow and request it from the DM586 embedded computer of the wheel loader in a 

PDO. Furthermore, the load sensing pressure of the proportional valve is transmitted to the DM586 

embedded computer in another PDO. To make the slew cylinder position available to the entire 

control system, the excavator control module may also transmit the cylinder position in a PDO.  

Because the inclinometers measure the angle relative to gravity vector, the controller calculates 

the difference between two inclinometers over a joint to obtain the joint angle according to (3) and 

(4). 

 𝜃𝑏𝑢𝑐𝑘𝑒𝑡 = 𝜃3 − 𝜃2 (3) 

 𝜃𝑠𝑡𝑖𝑐𝑘 = 𝜃2 − 𝜃1 (4) 

Since there are only three inclinometers, the angle of the base boom is obtained directly from the 

signal of the inclinometer 1. As stated above, this may cause an offset. However, if the wheel 

loader keeps steady, the offset is not a problem considering this controller because the trajectory 

points have the same offset when they are stored. 
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Figure 33. Excavator controller block diagram. 

Because the inclinometers are based on accelerometers, there is some disturbance in the angle 

signals as the machine vibrates or the bucket is hit against the ground. Therefore, the maximum 

angular velocity of the signals is limited to 200 °/s. The effect of the rate limiter on the bucket angle 

is shown in Figure 34. 

 

Figure 34. Effect of rate limiter on bucket angle signal. 
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Up to 15 trajectory points can be stored during open loop control. When commanded, the controller 

will move the excavator into one of the trajectory points. The position controller has an individual 

proportional controller for each cylinder. This typically results in a slightly curved bucket trajectory. 

There is, thus, no path-following controller. Therefore, the trajectory points have to be selected so 

that the order of the joint movements is insignificant. Total error is calculated from the relative 

position errors of cylinders that are assumed uncorrelated, eslew, eboom, estick and ebucket, according to 

(5). 

𝑒𝑡𝑜𝑡 = √𝑒𝑠𝑙𝑒𝑤
2 + 𝑒𝑏𝑜𝑜𝑚

2 + 𝑒𝑠𝑡𝑖𝑐𝑘
2 + 𝑒𝑏𝑢𝑐𝑘𝑒𝑡

2  (5) 

If the total error stays below a set limit a set settling time, the controller will switch back to open 

loop control. The parameters were set to 3 % total relative error and 500 ms settling time. These 

limits were experimentally found suitable for the excavation application, resulting in steady-state 

position error of less than 10 cm. 

7.10 Tests of automated excavation 

The performance of the excavator control module was tested in a ditch-digging scenario where the 

control system helps the operator empty the soil from the bucket in a pile. 

7.10.1 Test setup 

The control system of the wheel loader was configured to send a ‘store position’ command when a 

display button on the DM586 is pressed. A button on the joystick was configured to trigger a ‘move 

to target’ command to be transmitted. The index of the stored position was set to cycle from 1 to 3 

for both commands, which enabled bucket emptying and return functionality: 

1. over digging point, ready to fill bucket 

2. soil in bucket, boom over emptying position 

3. stick boom and bucket extended at emptying position 

These stored positions are illustrated in Figure 35. 

 

Figure 35. Stored excavator positions for automated bucket emptying and return. 
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A fourth trajectory point could be introduced if the soil is dug so deep that the base boom has to be 

lifted before slewing over the emptying position. Nevertheless, the three trajectory points are 

sufficient to prove that the concept works. 

Because the hydraulic system of the wheel loader has a fixed-displacement pump, the control 

system of the wheel loader was also programmed to control the diesel engine according to the 

volume flow request from the excavator. The gain parameters of the proportional controllers were 

tuned experimentally. Because the modified excavator frame is not very steadily supported, the 

controller gains have to be quite small to prevent the wheel loader from moving on the ground.  

7.10.2 Results 

The system was tested by first doing an excavation cycle manually and storing the required 

trajectory points. Figure 36 shows the joint angle signals during the manual excavation cycle. The 

vertical dash lines show the three trajectory points that were stored. 

Between the stored points 1 and 2 the bucket is first filled using the bucket and stick cylinders and 

then moved over the emptying position using the boom and slew cylinders. Between the stored 

points 2 and 3 the bucket is emptied using the stick and bucket cylinders. 

 

Figure 36. Manual excavation cycle. 
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Figure 37 shows an excavation cycle that includes the automatic emptying and return of the 

bucket. The grey background indicates manual control. The vertical dash lines indicate the instant 

when a ‘move to target’ command is sent, and the fixed lines indicate when the target is reached. 

Target number 3 is actually not reached at all because the operator sends the command ‘move to 

target 1’ as soon as the bucket has emptied at 19.5 s.  

 

Figure 37. Excavation cycle with automatic emptying. 

In this case, the control system is simply cycling the three target positions. Considering bucket 

emptying in particular, the control system could change to target 3 (bucket emptying) automatically 

as soon as target 2 (over emptying position) is reached. In Figure 37 the excavator is idle 1.7 s 

after reaching target 2 because of waiting for input from the operator. Moreover, the control system 

could simply wait a short time at target 3 to let the soil fall off the bucket and then return to target 1. 

Based on the tests, conventional mobile proportional valves and low-cost inclinometers can 

perform closed-loop position control for operator assistance. The performance and I/O features of 

the generic embedded module were also sufficient. The control software can be quite simple, but 

there are several parameters to configure. Although the functionality of the developed system is 

simple compared to the automated excavation systems presented in Chapter 1, also the required 

hardware is simple and low-cost. Moreover, the developed controller demonstrates the versatility of 

the generic embedded module. Based on the results, the position controller can make excavation 

work easier. The presented system could improve the efficiency of novice operators, in particular.  
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7.11 Discussion 

In addition to automated excavation, several research topics have been covered utilizing the 

modified small wheel loaders and the excavator attachment. The research has been conducted in 

co-operation between the Department of Intelligent Hydraulics and Automation at Tampere 

University of Technology and the Department of Automation and Systems Technology at Aalto 

University in the Finnish Centre of Excellence in Generic Intelligent Machines Research. 

Myrsky describes modular software implementation of automated functionality and communication 

over the Internet [80]. Hölttä et al. utilize the small wheel loaders in a case study on user interface 

framework for control of multi-robot systems [53]. Terho has utilized the stereo camera system in 

stereoscopic teleoperation as well as calculating 3D geometry of the surroundings of the machine 

[106][107]. Uusisalo has researched the effect of short-range remote control and vibrotactile 

feedback on performance and user experience with the excavator attachment [121]. Furthermore, 

the small wheel loaders and the excavator attachment have been used in several technology 

demonstrations for industrial and academic audiences. 

7.11.1 Control system modifications 

The flexibility of the control system was tested in practice as the control system was extended and 

modified for different research topics. As mentioned above, the video streams transmitted by the 

Axis 241Q video server were initially routed through an IEEE 802.11 wireless AP. As the 

LittleBoard 800 embedded computer with an IEEE 802.11 expansion board was installed, it was 

straightforward to connect the Ethernet cable to a spare Ethernet port on the computer instead of 

the AP. Furthermore, GNU/Linux enables flexible routing and encryption of the data. On the other 

hand, more system maintenance is required. Therefore, applying an embedded computer running 

GNU/Linux for wireless networking alone is not feasible. 

The stereoscopic system was designed at the Department of Automation and Systems Technology 

at Aalto University. The system was aimed to be easy to move between different machines and 

other research installations. Since both cameras and the image processing computer are installed 

inside the enclosure, all communication with the system is conducted via Ethernet. In addition, 

power supply from the battery system had to be connected. The stereoscopic system was 

successfully changed between machines during the research. However, the DC/DC converter that 

had been originally installed inside the enclosure had to be replaced because it did not have a wide 

supply voltage range and was compatible only with 24 V battery systems. 

7.11.2 Meeting requirements 

The CANopen-based system with distributed I/O proved to be a flexible platform for adding 

automated functionality: the wheel loader and the excavator are fully controllable by the 
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LittleBoard 800 embedded computer over CAN. In addition to communicating with the DM586, the 

LittleBoard 800 is also able to read sensor data directly from the messages sent by the I/O 

modules. Moreover, with the CAN-based system installing the excavator attachment requires 

connecting only two cables: one for CAN and electrical power, the other for the camera on the stick 

boom. 

The data transfer requirements of Chapter 2 are met. However, the arrangement of the 

stereoscopic system, as explained above, does not follow the reference hardware architecture 

proposed in Figure 20. Utilizing Ethernet cameras instead, there would be no need to maintain an 

embedded computer with a dual IEEE 1394 interface. The presented system with IEEE 1394, 

however, makes 100BASE-TX Ethernet sufficient for the rest of the high-level control system. 

Similar improvement in life-cycle manageability would be achieved if the CAN expansion board of 

the other embedded computer were replaced with a separate CAN-Ethernet bridge and the 

IEEE 802.11 connectivity were realized with an external module as proposed in Figure 20. 

Some devices of the control system do not meet the operating conditions required in Chapter 2: 

Although the machine vision cameras are installed inside an IP55 enclosure, they do not have a 

sufficient range of operating temperature. The same applies to the AXIS 241Q video server and 

the DC/DC converter supplying the IEEE 802.11 AP. Nevertheless, the applied enclosures and 

mounting locations seem to have protected the equipment during the research applications. For 

long-term research in demanding conditions, additional sealing, heating and possibly mechanical 

suspension of some of the enclosures has to be applied. Some reliability problems have been 

experienced, mainly related to file system errors due to unexpected switch-off of the embedded 

computers. Therefore, one of the methods presented in subchapter 4.1.4 has to be applied. 

Comparing the control system presented above to the systems presented in Chapter 1, the key 

difference is the utilization of CANopen in the low-level control system. The generic CANopen 

devices and the well-defined system management process improve life-cycle manageability. The 

smaller number of expansion boards in the embedded computers also has a positive effect. 
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8 Conclusions 

Considering the first research question, there are several possible solutions for on-board 

networking of a machine. The applicability of any communication technology, however, has 

limitations. USB and IEEE 1394 are not widely available in robust sensors, actuators and I/O 

modules, have short segment length and physical topologies that require switches or hubs. 

Moreover, developing software for USB or IEEE 1394 devices is not as straightforward as with the 

other networks and buses discussed. There are no well-established industrial connectors. LIN and 

V.24/V.28 serial communication have a low network throughput and limited availability of devices.  

Although the network throughput of CAN is not sufficient for all advanced sensors, a CAN-based 

general-purpose protocol is a good choice for most devices of an electronic control system of a 

mobile machine for cost and availability reasons. Moreover, this enables the control systems of 

manual and automated machines to be developed and maintained side by side. In addition to CAN, 

automated functionality usually requires a network with a high data rate, Ethernet being the only 

practical solution. For configuration and maintenance, an ideal combination of technologies would 

be CANopen and POWERLINK or DeviceNet and Ethernet/IP.  

Since industrial Ethernet protocols are not widely supported by GNSS receivers, laser scanners, 

machine vision cameras etc., a standard Ethernet with conventional internet protocol suite is 

almost mandatory. Special attention needs to be paid to scheduling analysis and connector 

solutions. In addition, specific devices require V.24/V.28 serial ports or an IEEE 1394 interface. 

However, GNSS receivers, lidars and machine vision cameras, for example, have recently become 

widely available also with Ethernet interface. Although USB has severe limitations in mobile 

machinery applications, it is a feasible option for interfacing mass storage, especially removable 

flash drives. 

Addressing to the second research question, the essential device-related design aspects concern 

the power supply, embedded computing and advanced sensing. The electronic control system for 

automated operation may increase the loading of the electrical system compared to a manually 
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operated machine. On the other hand, an automated machine may not need as many lights, as 

much seat heating, etc. It is often possible to utilize similar alternators. With research equipment, in 

particular, managing the power consumption of the control system when the engine is not running 

is more critical. 

Embedded computers typically require intelligent management of the electrical power supply to 

prevent file system errors due to unexpected switch-off. With high-performance computers, thermal 

management is also challenging. Robust expansion boards are relatively expensive. Minimizing 

the number of different types of bus and network interfaces and utilizing the most common ones 

improves life-cycle manageability. 

Equipment for advanced perception typically requires additional protection: machine vision 

cameras require protective, temperature controlled enclosures. On the other hand, applying 

advanced lidar systems to mobile machinery is restricted due to external moving parts.  

A small generic microcontroller board may be utilized in intelligent sensor and actuator interfaces, 

being an answer to the third research question. Several embedded devices for mobile machinery 

applications were designed utilizing the developed microcontroller board. The approach was found 

to be flexible and efficient. The same approach could be suitable for commercial prototyping 

projects and control system development. Using a generic plug-in microcontroller board is a life-

cycle-efficient solution because maintenance and software updates can be continued even after 

the original microcontroller model and software development tools have become obsolete. 

Although the presented microcontroller board is especially targeted at mobile machinery 

applications, some of the benefits can also be achieved with commercial microcontroller modules. 
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