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Abstract 

In the era of globalization, the spread of infectious diseases is a serious concern. The 

emergence of drug resistant bacteria and healthcare associated infections in particular, 

poses a great danger to human health. Self-disinfecting surfaces may play a significant 

role in controlling the spread of pathogenic diseases. Photodynamic antimicrobial chem-

otherapy (PACT) can be a very efficient way of inactivation of drug resistant bacteria and 

biofilms. However, making a self-disinfecting surface based on PACT principles requires 

novel photosensitizers, which can efficiently generate reactive oxygen species, and are 

stable and accessible. In this thesis, attempts are undertaken to synthesize novel pho-

tosensitizers based on peryleneimides and phthalocyanines. We propose a novel effi-

cient method for the direct and regioselective amination of peryleneimides. The substi-

tution occurs with high yields exclusively at 1,6- and 7,12-positions of the bay region of 

perylenediimide and perylenemonoimide diester. We also report the synthesis of novel 

cationic peryleneimides, which can be potentially used as photosensitizers in PACT. 

Phthalocyanines are known to be efficient photosensitizers. In this thesis we present the 

synthesis of novel pyridinyl-substituted phthalocyanine and its tetracationic derivatives. 

As a unique synthetic approach, pyridinyl groups are connected to α-phthalo positions of 

the macrocycle via direct C-C bonds. Prototype self-disinfecting materials are prepared 

by impregnating filter paper with the synthesized dyes. Binding of the dyes occurs via 

electrostatic interactions and does not require any special chemical modification. A fast 

and simple setup for the evaluation of antimicrobial efficacies of dyed papers is proposed. 

The setup employs bioluminescent bacteria and allows for a fast screening of a large 

number of dyes. According to the screening results, tetracationic phthalocyanines are 

the most efficient antimicrobial photosensitizers. The antimicrobial efficacies of phthalo-

cyanine derivatives are evaluated quantitatively with the help of colony forming unit (CFU) 

counting method. The papers impregnated with as little as 80 mg/m2 of cationic zinc 

phthalocyanine exhibit 2.7 and 3.4 log reduction in CFU against Escherichia coli (E. coli) 

and Acinetobacter baylyi (A. baylyi), respectively after illumination with the light intensity 

18 mW/cm2 in a solar simulator. Similar antimicrobial efficacies are achieved under illu-

mination with consumer light emitting diode (LED) lights. Phthalocyanine-impregnated 

papers show very good stability. Incubation of the dye-impregnated papers in phosphate-

buffered saline demonstrates superior binding ability of phthalocyanine, with basically no 

detectable leaching of the dye. Photostability of the dyed paper is also high. Continuous 

illumination with 42 mW/cm2 LED light for 64 h decreases the absorptance of dyed pa-

pers only by 10%. 
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1. Introduction 

The rapid spread of infectious diseases due to the increased human mobility poses a serious risk to 

the human health.1–3 This is evident from the recent outbreaks of deadly diseases such as SARS, 

H1N1 flu, MERS and Ebola hemorrhagic fever that claimed many lives.4–9 Another major concern is 

Nosocomial or Healthcare Associated Infections (HAIs) that lead to serious morbidity and mortality 

among the patients across the world. HAIs cause longer hospital stay and bring a financial burden 

to both patients and hospitals.10–14 Recent data published by European surveillance system indicated 

that in 2015, 8.3% of patients (11788 out of 141 955) admitted to intensive care unit (ICU) were 

affected by at least one HAI.15 HAIs are primarily caused by the microbial contamination of the sur-

faces or medical devices.16–18 The contamination eventually leads to the formation of biofilms, which 

facilitates microbial proliferation. The biofilm infections are extremely resistant to antibiotics treat-

ment and require considerable efforts for their eradication.19 The emergence of antibiotic resistant 

bacteria such as ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella 

pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter strains) in-

creased the risk of HAIs several times.20–23 For example, methicillin-resistant S. aureus (MRSA) can 

cause infections in bones, artificial joints, surgical wounds, in the bloodstream, heart valves and 

lungs and often leads to life-threatening complications.24–28 The prevalence of deadly hospital ac-

quired MRSA infections in developed countries like Canada between 1995 and 2014 is shown in 

Figure 1.1.29 The extent of the spread of HAIs in underdeveloped and developing countries is much 

higher.30  

 

Figure 1.1: Infection rate of hospital acquired MRSA in Canada.29 

Self-disinfecting materials in the form of fabrics, facemasks, filters and paints or coatings play a key 

role in controlling the transmission of pathogenic microorganisms.31–35 Generally, these materials 

utilizes the chemotherapeutic effects of antibiotics or employs inorganic substances such as silver, 

copper and their oxides to reduce the microbial growth. However, for the effective functioning of 

these materials, the direct contact with the microbes is required.36–41 Moreover, these materials in-

duce resistance in bacteria thereby diminishing the effectiveness.42,43 Release of the active compo-

nents into the environment is also a serious drawback of using the antibiotic-based self-disinfecting 

materials.44–46  
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An alternate method to circumvent the above-mentioned drawbacks is to fabricate self-disinfecting 

materials based on the principle of photodynamic antimicrobial chemotherapy (PACT).47,48 The path-

ogenic microorganism are inactivated using reactive oxygen species (ROS) such as singlet oxygen, 

superoxide, hydroxyl radical produced by a dye (photosensitizer) upon light irradiation. The method 

is quite efficient and does not require a direct contact with microbes for inactivation. In addition, 

PACT is efficient against multi-drug resistant cultures and biofilms and does not induce resistance 

in pathogens.49–52 Moreover, the applications of PACT can also be extended to prepare filters and 

membranes for air and water sanitization as singlet oxygen can diffuse through air and water.53,54  

Two important factors essentially required for the successful implementation of photoactivated self-

disinfecting surface are (i) photosensitizers that can efficiently generate singlet oxygen; (ii) inexpen-

sive and commercially available light sources. The main objective of our research work was to de-

velop a prototype a self-disinfecting material using a novel photosensitizer that can be activated 

under consumer LED lamp.  

In this research work, efforts to develop novel photosensitizers based on perylene diimides (PDIs) 

and phthalocyanines were undertaken. Even though, PDIs are an industrially important class of or-

ganic chromophores, their role in PACT is very limited due to their low quantum yields in generation 

of singlet oxygen.55 The quantum yield however can be improved by appropriate functionalization of 

PDIs. The Publications I and II used in the compilation of the thesis deal with the functionalization of 

PDIs. Synthesis of novel cationic PDIs and the preparation of prototype self-disinfecting surface by 

impregnating cationic PDIs into paper were not included in the publications and are presented in the 

thesis itself. In addition, a fast method to compare the antimicrobial efficacies of self-disinfecting 

surfaces using bioluminescent Gram-negative bacteria E.coli and A. baylyi is also described.  

Synthesis of novel cationic phthalocyanine derivatives and the evaluation of the antimicrobial effica-

cies of phthalocyanine-impregnated papers were the subject of the Publication III. The Publication 

IV assesses the feasibility of using consumer LED lamp in the photoinactivation of microbes. More-

over, important parameters such as photostability and the stability against leaching of the dye-im-

pregnated papers were also studied in this publication. 
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2. Background 

In 1900 Oskar Raab was the first to report the ability of acridine orange to inactivate Paramecium 

caudatum under light.56,57 The term “photodynamic reaction” was used by his supervisor Hv 

Tappeiner to describe the process of inactivation of microbes by dyes in the presence of light. He 

also demonstrated the involvement of oxygen in the process.58 The concept of photodynamic reac-

tion was later successfully applied to the treatment of cancer and tumors and came to be known as 

Photodynamic Therapy (PDT).56 Photodynamic antimicrobial chemotherapy (PACT) follows the 

same principle as that of PDT focusing on the treatment of infections caused by the pathogenic 

microbes.47  The relevance of PACT, which was superseded by antibiotics since the discovery of 

penicillin, has increased recently with the emergence of multidrug resistant bacteria. It was demon-

strated that PACT is able to inactivate multidrug resistant pathogens and biofilms.59  

2.1. Mechanism of PACT  

PACT involves the inactivation of pathogenic microbes by the oxidative stress induced with the help 

of reactive oxygen species (ROS) such as singlet oxygen.60 Molecular oxygen has three electronic 

states: a triplet ground state (3Σ-
g) and two singlet excited states (1Δg  and  

1Σ+
g ) as shown in Figure 

2.1. Due to the spin forbidden transition from the excited singlet state 1Δg to ground triplet state 3Σ-
g , 

the 1Δg is a long-lived species whereas the spin-allowed transition 1Σ+
g  

1Δg  makes the singlet ex-

cited 1Σ+
g short-lived.61 Due to the metastability of 1Δg state, the lifetime of oxygen in the singlet ex-

cited state is rather short, namely 86 ms in air and 3.5 μs in water, respectively.53 Singlet oxygen 

has more oxidizing power than ground state oxygen. It is highly electrophilic and could oxidize phe-

nols, sulphides, and amines.61  

 

Figure 2.1: Potential energy curves for electronic states of molecular oxygen.61  
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Generation of singlet oxygen during the PACT process is commonly accepted to occur as follows. 

The dye (photosensitizer) is being excited to its singlet excited state by illumination with an appro-

priate wavelength. From there, the dye undergoes intersystem crossing to generate the triplet excited 

state. Since the lifetime of the triplet excited state is longer than that of the singlet excited state, it 

can undergo further a reaction in two ways, namely Type I (electron transfer) and Type II (energy 

transfer). Type I photo process involves a hydrogen atom abstraction or an electron transfer between 

the triplet state of the photosensitizer and the substrate molecule resulting in the formation of free 

radicals such as hydroxyl radicals, superoxide radical anions, etc. Type II mechanism generates the 

singlet oxygen (1Δg) by interaction of the triplet excited state with molecular oxygen. The process is 

explained in Jablonski diagram (Figure 2.2).62  

 

Figure 2.2: Jablonski diagram explaining the formation of singlet oxygen.62 

Singlet oxygen plays a major role in photooxidative damage to the microbial cells and in the destruc-

tion of molecules involved in the maintenance and structure of microbial cell walls. 47 Hydroxyl radical 

and superoxide radical resulting from Type I mechanism also can interact with biomolecules produc-

ing hydrogen peroxide in situ, thus leading to their degradation.60,63  

Microbes do have some defensive mechanisms against oxidative stress induced by PACT. Enzymes 

such as catalase, peroxidase or superoxide dismutase are able to neutralize ROS. However, these 

mechanisms were found to be inefficient against photodynamic action. The reason is that ROS have 

so short lifetime, high reactivity and so limited diffusion, that intercellular defence mechanisms could 

not have enough time to effectively neutralize the localized outburst of oxygen species at the outer 

membrane. Moreover, simultaneous photodamage at multiple sites of microbes make them less 

likely to survive.60   
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2.2. Criteria of photosensitizers 

As it was explained in the previous paragraph, photosensitizers generate ROS which induce oxida-

tive stress in pathogenic microorganisms. An ideal candidate should meet the following criteria:64–66  

 High singlet oxygen quantum yield 

 Photostability 

 Broad absorption wavelength and high extinction coefficient (>20000 M-1cm-1). 

 Antimicrobial action over a wide range of microorganisms such as bacteria, fungi and para-

sites 

 High binding affinity for microorganism 

 Low binding affinity for mammalian cells 

 Low toxicity and low mutagenicity 

 No dark toxicity 

 Absorbance in the “Therapeutic window” 600-1000 nm 

Antimicrobial efficiency of different photosensitizers varies greatly and depends not only on the sin-

glet oxygen quantum yield, but also on other factors. According to the specification of American 

Society of Microbiology (ASM), the term “antimicrobial” or “antibacterial” can be used if a substance 

demonstrates an efficacy of 3 log reduction in CFU against microorganisms.67 Studies have shown 

that the cell wall’s structure of various pathogens such as Gram-positive and Gram-negative bacteria 

and fungi can affect the susceptibility towards PACT. Gram-positive bacteria were found to be sus-

ceptible towards anionic and neutral photosensitizers, whereas Gram-negative bacteria were better 

inactivated by positively charged photosensitizers.68,69 Factors such as molecular weight, structure 

and pH of the photosensitizers influence the susceptibility toward PACT. At different pH, the charge 

on the functional groups of the photosensitizers could change thereby affecting the PACT.70 The 

influence of molecular weight and structure was demonstrated by the difference in activity between 

porphyrin-based photosensitizer TMPyP (5,10,15,20-tetrakis(1-methyl-4-pyridinyl)-porphyrin tetra-

(p-toluenesulfonate)) and 7-perinaphthenone-based photosensitizer SAPYR(2-((4-pyridinyl)methyl)-

1H-phenalen-1-one chloride). Even though, TMpyP has 4.8 times higher singlet oxygen quantum 

yield than SAPYR, it was not able to inactivate Enterococcus faecalis biofilms, which were prone to 

SAPYR treatment. This was explained by the high molecular weight and large structure of TMpyP, 

which limited its diffusion through the extracellular matrix of biofilms thereby lowering its activity.71  

The important classes of photosensitizers used for PACT are: 1) phenothiazines such as methylene 

blue, new methylene blue and toluidine blue O; 2) porphyrins and phthalocyanines; 3) fullerenes; 4) 

curcumin; 5) boron-dipyrromethenes (BODIPYs); 6) ruthenium complexes; 7) rose Bengal (Figure 

2.3).48,62,65 Recently, other classes of stable industrial dyes such as perylene diimides are being 

under development as new photosensitizer for PACT application. In the following sections, chemistry 

of perylene diimide and phthalocyanine dyes will be discussed in detail.  



18 

 

 

Figure 2.3: Important classes of photosensitizers used for PACT. 

2.3. Perylene diimides 

Perylene-3,4,9,10-tetracarboxylic acid diimide derivatives (commonly known as perylene diimides, 

PDIs) are an important class of organic dyes that have been utilized in industry for many decades. 

However, the use of PDIs in photodynamic therapy, particularly in PACT is largely unexplored. This 

is mainly because the triplet excited state of unsubstituted PDIs is poorly populated by photoexcita-

tion.55 The low triplet excitation, in turn significantly decreases the ability of PDI to generate singlet 

oxygen thereby hindering its usage for PACT applications. However, the photochemistry of perylene 

imides can change dramatically upon chemical modification, and an appropriate substitution can 

make PDIs efficient photosensitizers. In this section, general methods for the synthesis and func-

tionalization of PDIs will be described. In addition, strategies to enhance the formation of triplet-

excited state in PDIs thereby improving their capability to generate singlet oxygen will be reviewed.    

Ever since the discovery by Kardos in 1913, PDIs were used as industrial colorants both as dyes 

and as pigments in paints, fibres and automobile industry because of their high chemical-, thermal- 
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and photo-stability.72 PDIs also have high fluorescence quantum yield, high photochemical stability, 

relatively high molar absorptions, excellent redox properties and strong electron-accepting nature.73–

75 As it was mentioned, the properties of PDIs could be altered by appropriate functionalization de-

pending on the requirements of the application. Notably, PDIs have found use in wide range of ad-

vanced applications such as sensors, laser dyes, n-type semiconductors, organic field effect tran-

sistors, electrophotography, fluorescent light collectors, organic photovoltaics and optical power lim-

iters.76–81   

2.3.1. Preparation of PDI derivatives 

 

2.3.1.1. Imidization 

PDI derivatives are generally prepared by the condensation reaction between perylene-3,4,9,10-

tetracarboxylic dianhydride (PTCDA) and a suitable amine.82 Industrially relevant PDIs such as Pig-

ment Red 179 and Pigment Red 149 are shown in Figure 2.4.74,82  

 

Figure 2.4: Chemical structures of PTCDA, PDI and commercially available PDIs. 

Generally, substitution at imide position does not affect the electronic and optical properties of PDI.75 

However, it has much larger role in deciding the properties such as aggregation, solubility and mo-

lecular packing in the solid state.82,83 Depending on the type of substituents at the imide position, 

solubility of PDI can be controlled and tweaked for a particular solvent. For example, PDIs with rea-

sonable solubility in non-polar organic solvents were synthesized by Langhals and co-workers using 

“swallowtail” substituents at PDI imide positions (Figure 2.5).83 These bulky groups are protruding 

out of plane of the chromophore thereby disrupting the face-to-face π-π stacking of PDIs.  
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Figure 2.5: PDI with swallowtail substituent.  

Symmetrically N,N’-substituted PDIs were prepared with high yields by the condensation reaction of 

unsubstituted PTCDA with aliphatic or aromatic amines in molten imidazole or quinoline in the pres-

ence of anhydrous zinc acetate.82,84 Alternatively, dibromo- or tetrachloro-substituted PTCDA were 

converted into corresponding PDIs with high yields by the reaction with primary amines in hot alco-

hols, in acetic or propionic acid, or in an alcohol/water mixture (Scheme 2.1).85,86 

  

Scheme 2.1: Synthetic routes for the preparation of symmetrical PDI. 

On the other hand, preparation of asymmetrical diimides of perylene with different substituents at 

imide nitrogens required a complex multi-step synthesis. Usually, a symmetrical diimide was partially 

hydrolysed to obtain perylene monoimide monoanhydride compound. The resultant mixed imide-

anhydride was imidized with a second amine to yield asymmetrical PDI.84 Attempts for a direct syn-

thesis of perylene monoimide monoanhydride from PTCDA always resulted in the formation of sym-

metrical PDI as the predominant product. This is the reason why the partial hydrolysis of symmetrical 

PDI was established as a preferred route for the synthesis of asymmetrical PDI. Another possible 
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method is the partial hydrolysis of PTCDA into mixed anhydride-dicarboxylate salt. Successive im-

idization of anhydride-dicarboxylate salt provides desired asymmetrical PDI (Scheme 2.2).74,84 

 

Scheme 2.2: Synthetic methods for the preparation of asymmetrical PDIs. 

PDIs which are soluble in aqueous solutions can also be prepared by imidization reaction. Hydro-

philic substituents such as quaternary ammonium salts, carboxylate salts, phosphate residues, pol-

yglycerol dendrons, and cyclodextrin moieties were incorporated at the imide site thus making 

perylene imides water-soluble (Scheme 2.3).87–91   

 

Scheme 2.3: Synthesis of water soluble PDI. 
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2.3.1.2. Modification at perylene core 

Substitution at the imide position has negligible influence on the redox potential and absorption prop-

erties of PDI, since the imide substituents are not electronically connected to the perylene core.75 

However, modification at the PDI macrocycle itself alters these properties significantly. This provides 

a unique opportunity to tune the functional properties of PDI by core substitution, while maintaining 

its self-assembly properties or an ability for anchoring through imide substituents. Moreover, PDI 

core substitutions with appropriate groups also improve the solubility by several orders.74 The func-

tional positions in PDI core are shown in Figure 2.6. 

  

Figure 2.6: Structure of perylene core showing bay- , ortho- and peri- positions. 

Most commonly, the functionalization of PDI core is done by modifying the peri- and bay-positions. 

However, functionalization of ortho positions were also reported.92 One important breakthrough in 

PDI core modification is the bay region bromination with further substitution, developed by Frank 

Wuerthner.75,86 The bromination reaction yielded predominantly 1,7- dibromo PDI in high yields. PDIs 

with different electronic and optical properties were synthesized by exchanging the bromo substitu-

ents in bay region with various nucleophiles.93–96 Moreover, various aryl-, heteroaryl-, and alkenyl 

functionalized PDIs were synthesized starting from dibromo-PDIs via Suzuki and Stille metal-cata-

lysed cross-coupling reactions (Scheme 2.4).97–99 Direct core substitution of PDIs at bay positions 

without the use of bromine substitutions has also been reported recently.100   
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Scheme 2.4: Some common methods for the bay-functionalization of PDIs. 

Substitution at ortho positions of the PDI core is done by direct C-H bond functionalization. Nakazono 

and co-workers synthesized ortho-substituted tetraaryl PDIs from unsubstituted PDI using this ap-

proach (Scheme 2.5).92,101 Similarly, the modifications at ortho positions using bromine, chlorine, 

cyano, alkyl and various aryl substituents were also reported by different groups.92,101–103 Ortho-sub-

stitution of PDIs with alkyl groups significantly improves the solubility and emission in the solid state. 

Moreover, ortho-substitution with appropriate aryl groups significantly enhances the formation of the 

triplet excited state. Examples of ortho-substitution can be seen in the following section.  
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Scheme 2.5: Synthesis of ortho-substituted PDI. 

2.3.2. Strategies to improve the formation of triplet excited state in PDIs 

Effectiveness of PACT depends strongly on the ability of photosensitizers to generate reactive oxy-

gen species such as singlet oxygen, hydroxyl radical etc. Efficient formation of a long-lived triplet 

excited state is an essential requirement for the production of ROS. The low formation of triplet 

excited state of PDIs by photoexcitation is the main reason behind the poor usage of PDIs in PACT 

applications.55 However, there are different strategies to enhance the formation of PDI triplet state 

and some important methods are discussed in this section.  

The most straightforward way to increase the triplet state formation of PDIs is to induce a strong 

spin-orbit coupling (SOC) by attaching “heavy atoms” to the molecule. These “heavy atoms” can be 

either large halogens such as Br and I, or transition metals such as Pt, Ru, Ir etc. This chemical 

modification is quite efficient. It was shown that perylene imides, which incorporate metals Pt, Ru 

and Ir in the structure, do demonstrate a high singlet oxygen quantum yield (Figure 2.7).104–107 
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Figure 2.7: Structure of transition metal incorporated PDIs that generate singlet oxygen. 

Alternatively, different methods were developed for heavy-atom-free PDIs that can efficiently gener-

ate triplet excited state. One such approach is to attach a spin converter such as fullerene  to PDIs. 

Buckminsterfullerene C60 has very high yield of intersystem crossing (ΦISC ≈ 1).108 PDI-C60 dyads that 

can generate singlet oxygen in high quantum yields were reported by Zhao and co-workers (Figure 

2.8).109 

 

Figure 2.8: Structure of PDI-C60 dyads capable of generating singlet oxygen. 

Substitution of bay positions with compounds such as pyrene and indole improves the overall singlet 

oxygen quantum yield of PDIs. Dinçalp and coworkers used this strategy to synthesize novel PDIs 

as shown in Figure 2.9.110 Singlet oxygen quantum yield for pyrene substituted PDI was found to be 

0.93 and that for indole substituted PDI to be 0.33.  
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Figure 2.9: Pyrene and indole substituted PDIs. 

Another method to improve the triplet state generation by perylene imides is to induce a twist in the 

perylene core. The distortion in core enhances the spin-orbital coupling resulting in higher intersys-

tem crossing. PDIs with fused bay region substituents have a significant planar distortion in the core 

and hence are capable of generating singlet oxygen.111–113 The examples of core twisted PDIs with 

high singlet oxygen quantum yields are shown in Figure 2.10. 

 

Figure 2.10: Structure of core twisted PDI showing high singlet oxygen quantum yield. 

Efficient triplet state generation in heavy-atom-free PDIs can also be achieved without introducing a 

distortion in the molecular skeleton. Recent reports shows that planar PDIs with four substituents at 

ortho positions can efficiently form the triplet excited state.92 The substituents such as phenylethynyl 
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group that can extend the π-congujation framework of PDI core improve the triplet excited state 

formation (Figure 2.11).114 Similarly, PDIs with p-methoxyphenyl and p-methylthioxyphenyl substitu-

ents demonstrated a high singlet oxygen quantum yield of 0.50 and 0.80 respectively by enhancing 

spin orbital coupling (Figure 2.11).115 

 

Figure 2.11: Structure of ortho-substituted PDIs capable of generating singlet oxygen. 

Very efficient and fast generation of the triplet state is reported for PDIs modified by thionation of 

imide carboxyl groups. PDIs can be thionated without significant synthetic efforts and the products 

can be readily isolated by a column chromatography. Successive oxygen-sulfur substitution gives 

rise to five thionated PDI derivatives, which display a red shift in the absorption spectrum proportional 

to the degree of thionation. However, the rate of formation of the triplet state is not affected by the 

degree of thionation. The five thionated derivatives of PDI are shown in Figure 2.12.116 

 

Figure 2.12: Structure of thionated derivatives of PDIs. 

2.4. Phthalocyanines 

Formation of phthalocyanine as a deep blue solid substance was first reported by Braun and Tcher-

niac in 1908.117 However, only after its serendipitous discovery by the employees of Scottish Dyes 
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in 1928, the structure of phthalocyanine was elucidated by Linstead.118,119 Phthalocyanine is a planar 

macrocyclic compound with 18 π electrons delocalized over the aromatic rings. It consists of four 

isoindole units connected together at their 1,3 positions through aza bridges. The deep blue-green 

colour of the compound is the result of its strong absorption in visible region of the solar spectrum, 

mostly around 620-700 nm.120  Significant modification in the electronic and optical properties of 

phthalocyanines could be easily achieved by replacing two hydrogen atoms in the central cavity of 

the phthalocyanine’s core with different metals, and/or by linking appropriate substituents at axial or 

peripherial positions of the macrocycle.121–124 The basic structure of free-base and metal phthalocy-

anines along with potential sites for the modifications are shown in Figure 2.13. Phthalocyanines are 

highly versatile compounds that find application in various fields such as dyeing industry, photody-

namic therapy, organic electronics etc.120–124  

  

Figure 2.13: Structure of free base and metal phthalocyanine along with potential sites for substitu-

tion. 

2.4.1. Synthesis of phthalocyanines 

Phthalocyanines were synthesized by a metal-template assisted cyclotetramerization of aromatic 

ortho-dicarboxylic acid derivatives such as phthalic acid, phthalonitriles, phthalic anhydrides, 

phthalimides, phthalamides, diiminoisoindolines and o-cyanobenzamides (Figure 2.14).124 The most 

common precursor for the synthesis of phthalocyanine in the laboratory scale is phthalonitrile. 

Phthalocyanines synthesized using phthalonitriles are characterized by clean tetramerization reac-

tion, high purity and improved yields. As an extra benefit, many different synthetic routes are availa-

ble for the preparation of phthalonitriles, which broadens their synthetic utility. However, their use is 

restricted to advanced technological applications where quality is preferred over the cost as phtha-

lonitriles are expensive compounds.124 Therefore, inexpensive phthalic acid is favoured for the large-

scale industrial production of phthalocyanine.  The preferred solvents for the phthalocyanine synthe-

sis are high-boiling liquids such as chlorobenzene, quinolone and nitrobenzene, or high-boiling al-

cohols. In the case of alcohols, strong organic bases such as diazabicycloundecene (DBU), piperi-

dine or cyclohexylamine are used in the reaction to assist the formation of alkoxyisoindoline units 

which rapidly undergo cyclotetramerization reaction. Most phthalocyanines synthesized industrially 

are metal phthalocyanines. Free base phthalocyanines are generally prepared by the demetalation 
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of phthalocyanine complexes of alkali and alkaline earth metals such as Li, Na and Mg.  Alternatively, 

free-base phthalocyanines are also synthesized by reacting phthalonitriles with hydrogen in dioxane 

or with ammonia in 2-N,N-dimethylaminoethanol.124,125 

 

Figure 2.14: Main precursors for phthalocyanine synthesis. 

2.4.2. Mechanism of phthalocyanine’s formation 

Phthalonitrile undergoes a metal-assisted stepwise polymerization and ring closure reaction to form 

a macrocycle. The resultant macrocycle is characterized by its high thermodynamic stability and 

added aromaticity, which is the driving force behind the tetramerization. The mechanism proposed 

by Christie and co-workers for the formation of copper phthalocyanine (CuPc) suggests that the 

metal coordination activates one of the cyano group, which subsequently undergoes a nucleophile 

attack.126 The nucleophilic attack initiates a cyclization reaction to form an isoindolenine intermediate 

which acts as a nucleophile and carries out a further attack on another molecule of phthalonitrile. 

The steps are repeated until the tetramerization reaction yields phthalocyanine (Figure 2.15).  
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Figure 2.15: Mechanism proposed by Christie et al for the tetramerization reaction.126 

2.4.3. Modifications 

Unsubstituted phthalocyanines are highly hydrophobic substances; they tend to form aggregates 

and are notoriously insoluble. Insolubility makes them unsuitable for such applications in organic 

electronics, optical devices and photodynamic therapy, where individual unclustered molecules are 

required to perform a function.123,124 Solubility and aggregation properties of phthalocynines can be 

controlled by their chemical modification.124,127 One of the simplest, most common and efficient ways 

is to change the central atom and its axial ligands.128 Another option is to control the peripheral 

substitution of the macrocycle core. Phthalocyanines can undergo substitution at both α and β 
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phthalo positions located at the periphery of the molecule (Figure 2.16). The appropriate substitution 

can significantly alter the physical, chemical and electronic properties of phthalocyanines. For ex-

ample, substitution of α position with an electron rich group 16 elements such as S, Se and Te shifts 

the Q band to longer wavelength.129 Peripheral substitution of phthalocyanines can be achieved by 

two basic methods.124 The first method utilizes direct aromatic electrophilic substitution of the pre-

existing phthalocyanine core as well as cycloaddition reactions. However, this method lack the con-

trol over the degree of substitution on phthalocyanine resulting in the formation of complex isomeric 

mixtures. The second basic method involves the use of already substituted phthalocyanines precur-

sors such as substituted phthalonitriles, phthalic acids, phthalic anhydrides etc. The phthalocyanines 

synthesized using this approach have a better control over the degree of substitution, a criterion that 

is highly desirable for high-tech applications and photodynamic therapy.124  

  

Figure 2.16: Structure of phthalocyanine showing α and β phthalo positions and axial substitution. 

2.4.4. Constitutional isomers 

Cyclotetramerization reaction using monosubstituted phthalonitriles leads to the formation of four 

constitutional isomers of phthalocyanines. Accroding to the statistical distribution these structural 

isomers are found to be in the ratio D2h:Cs:C2v:C4h = 12.5:50:25:12.5 (Figure 2.17).130 Pure individual 

isomers generally exhibit interesting properties that the mixture of all four isomers cannot demon-

strate.131 

  

Figure 2.17: Four constitutional isomers of α- substituted metal phthalocyanine. 

The separation and isolation of individual isomers is extremely laborious and difficult and requires 

chromatographic methods such as HPLC or MPLC.127 Therefore, some approaches were developed 
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which allowed the formation of only one single isomer, exclusively or at least predominantly.  The 

two proven methods for the selective synthesis are Statistical approach and Directed approach.123 

In the statistical approach, the selectivity of reaction towards a chosen isomer is improved by chang-

ing the substitution pattern of the precursor and by tuning the reaction conditions. For example, 

phthalocyanines synthesized from 4-substituted phthalonitrile bearing bulky alkoxy and thio moieties 

(Figure 2.18) yielded all the four constitutional isomers in the statistical ratio irrespective of the reac-

tion conditions. However, when the substituent was located at 3-position of phthalonitrile, the isomer 

formation became dependent on the two factors, namely the temperature and the alcoholate used.130 

Leznoff and coworkers demonstrated that synthesis of phthalocyanines at low temperature (50 °C) 

and using Li/octanol as a base, favours the selective formation of C4h isomer.132 Similarly, Kasuga 

and coworkers reported the formation of C4h isomer with various 3-alkoxy substituted phthalonitriles 

at 80 °C and using Li/pentanol as a base. However, the phthalocyanine formation was not observed 

at temperatures below 80 °C.133 This result shows that in the selective synthesis of phthalocyanine 

isomers, there is a considerable variation between the use of lithium pentonalte and lithium octano-

late.  

 

Figure 2.18: Structure of α and β substituted phthalocyanines prepared respectively from 3- and 4-

substituted phthalonitriles.  
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charge distribution between two cyano groups is predominant in the case of 3-substituted phthalo-

nitrile, which favours the selective formation of C4h isomer. However, in the case of 4-substituted 

phthalonitrile, charge distribution is same on both cyano groups and therefore the reaction favours 

the statistical distribution of the four isomers.  

The second mechanism operates in the presence of metal templates such as Zn, Ni or Cu. Four 

phthalonitrile units coordinates with the metal either before or during the cyclotetramerization reac-

tion in a polar solvent. In this mechanism, there is no selectivity induced in the 3- or 4-substituted 

phthalonitriles and therefore the reaction favours the statistical distribution of all possible isomers.130 

In the directed approach to the synthesis of monoisomeric phthalocyanines, the precursors are de-

signed in such a way that cyclotetramerization reaction yields only one constitutional isomer.123 Us-

ing this approach, Kobayashi and coworkers prepared D2h constitutional isomer by employing phtha-

lonitrile dimers linked at their 4-positions with optically active 2,2’-dihydroxy-1,1’-binaphthyl (Figure 

2.19a).134 Similarly, Leznoff and co-workers synthesized D2h isomer using phthalonitrile dimer linked 

at their 3-position with 2,2-disubstituted propan-1,3-diol spacer (Figure 2.19b).135 

   

Figure 2.19: Structure of D2h phthalocyanine isomers synthesized using directed approach. 

2.5. Photoactive self-disinfecting materials and surfaces 

The role of surfaces as potential sources of microbial infections is widely acknowledged. Self-disin-

fecting surfaces which utilize the concept of PACT can address this problem to a large extend. How-

ever, for successful implementation a reliable method for the immobilization of the photosensitizers 

on the surface is required. Successful immobilization of photosensitizers on materials such as films, 

paints, fabrics, filters, etc. are reported in the literature.48,62 The methods which are usually employed 

for the incorporation of photosensitizers onto surface are solvent facilitated dipping (swell-encapsu-

lation-shrink approach), coating (deposition of a photosensitizer mixed with cellulose acetate), cova-

lent attachment, vat dyeing, electrostatic interactions (layer by layer deposition), electrospinning 

(from a dye-doped polymer solution).136–143  

For example, efficient photoinactivation was reported with urinary catheter devices made from meth-

ylene blue (MB), toluidine blue (TBO) and gold nanoparticles-encapsulated medical grade polymer 

prepared by swell-encapsulation-shrink approach.136 Inactivation rate of 2.8 log and 4.3 log reduction 
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in the growth of Staphylococcus aureus (S. aureus) was reported using MB- and TBO-impregnated 

polymers respectively after 24 h illumination with white light. 

Antimicrobial activity of low symmetry phthalocyanine complexes such as Ge, Ti and Sn complexes 

of monocarboxy phthalocyanine, MCPc, zinc complexes of monocysteinyl phthalocyanine 

(ZnMCsPc), monophenoxy-carboxyphthalocyanine (ZnMPCPc) and symmetrically substituted 

phthalocyanines such as zinc tetraphenylcarboxyphthalocyanine, ZnTPCPc, unsubstituted zinc 

phthalocyanine (ZnPc) incorporated into electrospun polystyrene polymer fibers were investigated 

against S. aureus.142 The study revealed that low symmetry phthalocyanine complexes exhibited 

photo bactericidal effect whereas symmetrical ZnTPCPc and ZnPc did not show any activity. Simi-

larly, polyamide nanofiber membranes with incorporated zinc(II) (4)-tetra[2-thioquinoline]phthalocy-

anine (ZnTTQPc) were prepared by the electrospinning method.143 The polymer was able to gener-

ate singlet oxygen efficiently, which would make it useful as an antimicrobial surface. Furthermore, 

since the leaching of phthalocyanine was not detected during the stability tests, it was proposed that 

the material could be used as a water filtration membrane.  

Modified polystyrene nanofiber impregnated with tetracationic porphyrin (TMpyP) through electro-

static interactions demonstrated significant antibacterial activity against E. coli under illumination.140 

Similarly, photobactericidal films prepared by the electrostatic interaction of TMpyP and regenerated 

cellulose exhibited photoinactivation against E. coli, Proteus vulgaris (P. vulgaris) and S. aureus.141 

When compared to the noncovalent systems, covalent grafting allows permanent attachment of pho-

tosensitizers to the polymer substrate without losing the antibacterial properties over a long period. 

However, the protocol requires chemical modification of either substrate or photosensitizer. Ringot 

et al prepared photobacterial cotton fabrics by covalently attaching neutral aminoporphyrin (TPP-

NH2), anionic sulfonated aminoporphyrin(TPPS-NH2) and cationic trans-pyridinium aminoporphyrin 

(trans-MePy+-NH2) to the cellulose surface using 1,3,5-triazine linker.138 The singlet oxygen quantum 

yields are 0.65, 0.59 and 0.82 for neutral, anionic and cationic porphyrins respectively. The photo-

sensitizer grafted fabrics demonstrated phototoxicity against Gram-positive bacteria S. aureus with 

inactivation rate 93.7%, 37%, and 100% for neutral, anionic and cationic porphyrins respectively. 

However, all three photosensitizers failed to exhibit phototoxicity against Gram-negative bacteria E. 

coli. A compilation of antimicrobial efficacies of different porphyins and phthalocyanines immobilized 

on solid substrates against various microbes is presented in Table 2.1. 

Overall, the immobilization of photosensitizer on a solid substrate enhances the development of 

novel self-disinfecting materials that reduces the spread of pathogenic microorganisms. Immobiliza-

tion of photosensitizers allows several cycles of photoinactivation of microbes without losing its effi-

ciency. Reliable immobilization technique prevents the attached molecules from leaching thereby 

preventing the risk of pollution of the surroundings.48 
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Table 2.1: Compilation of antimicrobial efficacies of porphyrins and phthalocyanines on surface. 
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Table 2.1 (Continuation) 
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3. Research objectives 

The ultimate aim of this research was to develop a novel self-disinfecting material based on the 

principle of PACT. This material could find applications for example in textiles, coatings and filters 

for air and water sanitization. Successful implementation of the project required the synthesis of an 

efficient photosensitizer that can generate singlet oxygen in high quantum yields.  

Generally, PDI-based photosensitizers are not employed in photodynamic therapy due to their low 

singlet oxygen quantum yield. One of the objectives of this work is to improve the singlet oxygen 

quantum yield of PDIs. Bay region functionalization of PDI using appropriate substituents could mod-

ify its properties. Methods for direct bay region modification of PDI should be investigated. Perylene 

imides with anchoring groups such as anhydrides and dicarboxylic acids, useful for the immobiliza-

tion of dye onto the substrate, should be synthesized.  

Synthesis of novel phthalocyanines which can generate singlet oxygen in high quantum yield is an-

other objective of this research work. Synthesized phthalocyanines should be stable against bleach-

ing and should provide high antimicrobial efficacy.  

Cationic dyes are known to be efficient against both Gram-positive and Gram-negative bacteria. The 

presence of positive charge is useful in immobilizing the dyes onto the substrates through electro-

static interactions. Synthesis of cationic PDIs and phthalocyanines should be carried out and their 

singlet oxygen quantum yields and antimicrobial efficacies should be evaluated.  

Antimicrobial tests are very time-consuming. A fast and efficient method to determine the antimicro-

bial efficacies of the surfaces for a large array of dyes should be developed. Finally, the possibility 

of using consumer LED lamp as a source of illumination for the photoinactivation of microbes should 

be confirmed.  
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4. Materials and Methods 

All commercial reagents and solvents were purchased from TCI Europe, SigmaAldrich Co. or from 

VWR and were used without further purifications unless otherwise mentioned. The progress of the 

reactions was monitored by thin layer chromatography (TLC) using aluminium plates coated with 

silica gel 60 F254 or neutral aluminium oxide 60 F254 (Merck). Purification of the products was carried 

out either by column chromatography on Silica gel 60 or Silica gel 100 (Merck) or on preparative 

TLC plates coated with silica gel 60 F254 or neutral aluminium oxide 60 F254. 

Prototype photoactive antimicrobial surfaces were prepared using qualitative filter paper 413 (me-

dium filtration rate, particle retention 5-13 μm) purchased from VWR (cat. No. 516-0813). The filter 

paper (3.5 cm x 3.5 cm) pieces were soaked in an aqueous solution containing 0.1 mg of a dye and 

dried in the air. The dyed papers were stored in a plastic bag in a locker. 

4.1. Characterization of substances 

NMR spectra were recorded on Varian Mercury 300 MHz spectrometer using tetramethylsilane (TMS) 

as internal standard. Two-dimensional NMR measurements such as COSY, gHSQC, gHMBC were 

indispensable tools in assigning the structure of compounds accurately, particularly for the regioiso-

mers of perylene imides. 

High-resolution mass spectrometry (HRMS) measurements were done with Waters LCT Premier XE 

ESI-TOF benchtop mass spectrometer. Centering, calibration and lock-mass correction with Leucine 

Enkephaline as a reference compound were applied to the raw data to obtain the accurate mass. 

HRMS proved to be very useful for monitoring the formation of tetracationic dyes.  

UV-Vis absorption spectra of solutions were recorded using Shimadzu UV-3600 UV-VIS-NIR spec-

trophotometer. Transmittance and reflectance spectra of dyed papers were recorded using the inte-

grating sphere attachment ISR-3100. The absorptance a, which is the fraction of incident light ab-

sorbed by the paper was calculated according to equation a = 1 - T - R, where R is reflectance and 

T transmittance of the sample at given wavelength. The emission spectra were recorded on a 

Fluorolog Yobin Yvon-SPEX spectrofluorometer. 

4.2. Light sources 

The illumination source for photoinactivation of microbes were a solar simulator Luzchem and a 

consumer LED lamp. In the case of solar simulator, the UV and IR radiations were cut off using a 

combination of KG3 band pass filter (315-750 nm transmittance) and YG-17 filter (transmittance > 

485 nm).The overall light intensity was regulated by adjusting the distance between the lamp and 

the microtitre plate. Intensity of the lamp emission was measured by Coherent LM10 power meter. 

Commercially available LED lamp OSRAM Star PAR16 80 W 575 lm GU10 was used as another 
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illumination source. Light intensity and spectral profile of the LED lamp were recorded with AvaSpec-

2048 fibre optics spectrometer.  

4.3. Antimicrobial test 

All the solutions, culture mediums, vials and pipette tips used for microbial tests were sterilized be-

fore the experiments and all the operations were conducted inside the laminar hood to prevent con-

tamination.  

Microbial strains, E. coli MG1655 (E. coli Genetic Resources at Yale) and A. baylyi ADP1 (ATCC 

33305) were used in determining antimicrobial efficacy. Microbial strains were inoculated in 5 mL of 

Lysogeny broth (LB) medium (10 g/l tryptone, 5 g/l yeast extract, 5 g/l NaCl) containing 1 % glucose 

and cultivated at 30 °C and 300 rpm in a temperature-controlled incubator shaker (IKA® KS 4000 i 

control). After overnight cultivation, 100 μL of the culture was diluted with 4.9 mL of LB medium 

containing 1 % glucose and cultivated for 3 h at 30 °C and 300 rpm in the temperature controlled 

incubator shaker (IKA® KS 4000 i control). The optical density of culture was recorded at 600 nm. 

The microbial solution was centrifuged for 5 min at 6500 rpm and the LB medium was decanted out 

from the vial. The residual microbes were suspended in 5 mL of PBS (phosphate-buffered saline) 

buffer. 

Two sets (original and duplicate) of circular discs were cut from phthalocyanine-impregnated paper 

and control paper and placed in the wells of a microplate. Aliquots of 25 µL of microbial solution were 

pipetted over the disks. The microplate was covered with a transparent lid and was illuminated with 

an appropriate light source. Another microplate with the two sets of dyed and blank paper disks was 

used as a dark control. Aliquots of 25 µL of microbial solution were pipetted over each disk, the 

microplate was wrapped in aluminum foil and stored inside the laminar hood at room temperature. 

After 1 h of illumination or incubation, microbes were extracted from wells with 975 μL of PBS buffer 

and serial dilutions (up to 10-6) were made from each extract. The dilutions were plated on LA agar 

plates (15 g/l agar, 10 g/l tryptone, 5 g/l yeast extract, 5 g/l NaCl, 0.2 % glucose) and incubated at 

30 °C overnight in a laboratory incubator (Termaks). The colonies grown on the agar plates were 

counted and CFUs per milliliter were calculated to determine the antimicrobial efficacy. The scheme 

describing the procedure to determine the antimicrobial efficacy by CFU counting is presented in 

Figure 4.1. (Publications III and IV) 
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Figure 4.1: Scheme for the antimicrobial efficacy by CFU counting. (Publication IV) 
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5. Results and discussion 

5.1. Synthesis of perylenes 

As mentioned in the previous chapter, photochemical properties of PDIs can be modified by appro-

priate functionalization. We have synthesized different perylene monoimides and diimides and stud-

ied their singlet oxygen quantum yields. Functionalization was carried out either to modify PDI’s 

solubility or photochemical properties, or to introduce anchoring groups that would assure the immo-

bilization of the photosensitizer on a substrate. Amination of perylene imides is an important substi-

tution reaction as it can alter the redox properties and solubility and shifts the absorption to longer 

wavelengths.96 Introduction of an amine group to PDI is also beneficial since the amines can be later 

converted into quaternary salts and provide cationic dyes for the photodynamic therapy. 

5.1.1. Regioselective 1,6-amination of perylenes. 

Generally, the bay region amination of perylene dimides is a multistep synthesis.75,85,86,96 The first 

reaction is the bromination of PTCDA using liquid bromine in concentrated H2SO4, which yields a 

mixture of mono-, di-, and tribromo PTCDA. Dibrominated product is the major component, however 

the reaction conditions can be tweaked up to tetrabromination. Imidiation of dibromo PTCDA and 

subsequent replacement of bay region bromines with amino groups such as pyrrolidine produce a 

mixture of two regioisomers, namely 1,6-dipyrrolidinyl 5 and 1,7-dipyrrolidinyl 6 PDIs. 1,7-Substituted 

isomer 6 forms in a higher proportion.86 Though efficient, the method involves many purification steps, 

and isolation of pure regioisomers is cumbersome (Scheme 5.1). 
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Scheme 5.1: General synthesis of 1,6-dipyrrolidinyl 5 and 1,7-dipyrrolidinyl 6 PDIs. 

The electrochemical and optical properties exhibited by 1,6- and 1,7-regioisomers are significantly 

different. For example, absorption maximum of 1,6-isomer 5 is at 680 nm with molar extinction coef-

ficient 25000 L mol-1 cm-1 whereas that of 1,7-isomer 6 is at 698 nm with molar extinction coefficient 

39960 L mol-1 cm-1 (Figure 5.1). Moreover, the absorption spectrum of 1,6-regioisomer 5 extends 

over a wide region of visible wavelengths when compared to that of 1,7-isomer 6. This broader ab-

sorption band of 1,6-isomer 5 is particularly beneficial when utilizing the molecule for a light-triggered 

function. Since the general methods of substitution of perylene imides chiefly produce 1,7-regioiso-

mers, in the present work we have undertaken attempts for the selective synthesis of 1,6-regioiso-

mers.  

 

Figure 5.1: UV-Vis absorption spectra of 1,6-dipyrrolidinyl 5 and 1,7-dipyrrolidinyl 6 PDIs. 
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We have developed a direct bay region amination reaction for perylene diimides that yielded exclu-

sively 1,6-regiosiomer. The method does not require the bromine substitution, and hence unsubsti-

tuted PDIs 3 can be used for the amination reaction. The synthetic route is shown in Scheme 

5.2.(Publication I) 

 

Scheme 5.2: Synthesis of mono pyrrolidinyl PDI 4 and 1,6-dipyrrolidinyl PDI 5. 

The starting compound, unsubstituted dioctyl PDI 3, was synthesized by the reaction of commercially 

available PTCDA with octyl amine in imidazole at elevated temperature.  As other unsubstituted 

perylene imides, it is a deep red crystalline substance, and its solutions are usually red as well. 

However, we have noticed that when PDI 3 was incubated in a sealed vial in pyrrolidine at 60 ⁰C 

under inert atmosphere, the solution became dark blue. We suggested that the change of the color 

was due to formation of a radical anion of PDI. The presence of this intermediate with distinct ab-

sorption maxima at 720 and 800 nm was evident from UV-Visible absorption spectra (Figure 5.2).150–

154  

 

Figure 5.2: UV-Vis absorption spectra of starting material unsubstituted PDI 3 and reaction interme-

diate radical anion. 
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To be able to detect the anion radical, the absorption measurements were run in a sealed absorption 

cuvette equipped with a septum and thoroughly purged with argon. The chemical and electrochem-

ical formation of radical anions of PDIs was already reported in literature and the UV-Vis spectrum 

of PDI 3 radical anion matched very well with that of reported ones. When the vial with this dark-blue 

solution was opened, the red color of original PDI was partly restored. To our surprise, a blue product 

was observed simultaneously, which was indentified as a pyrrolidinyl-substituted perylene diimide. 

We also noticed that the yield of the blue product was negligible if the residence time of PDI in 

pyrrolidine was short, and gradually increased with increase of the incubation time. As an explanation 

of such an unusual direct amination of the perylene core, we assumed a multistep mechanism with 

several reversible stages. At first, interaction of a strong base such as pyrrolidine with the electro-

negative PDI π-system triggered an electron transfer (ET) process, and a radical anion of PDI formed, 

which was evident from the UV-Vis spectrum.153 Formation of the radical anion in aprotic solvents 

under inert atmosphere was a reversible process, and upon exposing the blue solution of PDI radical 

anion to air, the radical anion disappeared and the absorption bands corresponding to the starting 

material (PDI 3) restored. However, together with those a new broad absorption of monopyyrolidinyl 

PDI 4 appeared in the reaction. We proposed an explanation that with time the radical anion of 

perylene reacted with the molecule of pyrrolidine solvent and formed a PDI-pyrrolidine intermediate. 

When the vial was opened, this intermediate underwent a subsequent oxidation with oxygen from 

the air and produced the pyrrolidinated substance. (Publication I) 

The tentative mechanism for the formation of mono pyrrolidinyl PDI is shown in Figure 5.3. We as-

sumed that the use of a strong oxidant such as pyridinium dichromate (PDC) instead of air would 

improve the yield of pyrrolidinated product. To our delight, with such a modification we obtained 

monopyrrolidnyl PDI 4 in 70 % yield.  

 

Figure 5.3: Tentative mechanism for the formation of mono pyrrolidinyl PDI. 

Even more interesting results were obtained with modifications of the oxidant system. Pyrrolidination 

of PDI 3 through in situ oxidation using KMnO4/AgNO3 produced only one regioisomer, namely 1,6-

dipyrrolidyl PDI 5 with high yield (Scheme 5.2).The monopyrrolidinyl substituted PDI 4 was isolated 
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by column chromatography and the structure was confirmed by the NMR spectroscopy. Monosub-

stitution actually happened at one of the bay positions of the PDI thus giving rise to two types of 

peaks in the aromatic region, namely two doublets and one singlet (Figure 5.4). The ortho-proton 

located next to the pyrrolidinated position of PDI could not couple with any other protons thus giving 

singlet signal at δ = 8.48 ppm. The doublet signal at δ = 7.48 ppm originates from another proton of 

the same bay, which is strongly shielded by the pyrrolidine group. This interpretation was derived 

from 13C and 2D NMR measurements such as COSY, HSQC and HMBC. (Publication I)   

 

Figure 5.4: 1H NMR spectrum for monopyrrolidinyl PDI 4. 

The proton NMR spectrum of compound 5 has two doublet signals at δ = 8.66 ppm and δ = 7.87 

ppm and one singlet signal at δ = 8.34 ppm with the integrals of 2 protons each. The pattern of singlet 

and doublet peaks in the aromatic area can be used to distinguish between 1,6- and 1,7-isomers. In 

the case of 1,7-isomer, these aromatic signals appear in the order of singlet, doublet and doublet 

while for 1,6-isomer, the order of signals in aromatic region is doublet, singlet and doublet as shown 

in Figure 5.5. Moreover, the structure was also confirmed by 13C and 2D NMR measurements. (Pub-

lication I) 
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Figure 5.5: 1H NMR spectrum for 1,6-dipyrrolidinyl PDI 5. 

The absorption spectra of unsubstituted perylene diimide, monopyrrolidinyl PDI and 1,6-dipyrrolidinyl 

PDI are shown in Figure 5.6. The mono-pyrrolidinyl PDI exhibits a broad absorption peak with a 

maximum at 672 nm. (Publication I) 

 

Figure 5.6: UV-Vis absorption spectra of unsubstituted PDI 3, monopyrrolidinyl PDI 4 and 1,6-dipyr-

rolidinyl PDI 5. 
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Figure 5.7: Chemical structure of perylene tetracarboxylic ester 7 and perylene monoanhydride 

diester 8. 

Perylene monoimide diester 9 was synthesized from monoanhydride 8 and octylamine in imidazole 

at higher temperature. Monoahydride 8 was prepared from PTCDA according to the literature pro-

cedure. Pyrrolidination of PMI diester 9 using KMnO4/AgNO3 oxidation resulted in a mixture of mono-

pyrrolidinated 10 and dipyrrolidinated 11 PMIs with 60 % and 20 % yields, respectively (Scheme 5.3). 

(Publication I) 

 

Scheme 5.3: Synthesis of monopyrrolidinyl and 7,12-dipyrrolidinyl PMIs. 
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Figure 5.8: 1H NMR spectrum for monopyrrolidinyl PDI 10. 

Similarly, proton NMR spectrum (Figure 5.9) of 7,12-disubstituted PMI 11 follows the same pattern 

of appearance of doublet and singlet signals in aromatic region as that of di-substituted PDI, with 

two hydrogens for each peak. The singlet signal at δ = 7.82 ppm showed correlation with carbonyl 

carbon (δ = 168.48 ppm) of butyl ester in gHMBC measurement. Again, the identity of carbonyl 

carbon was established by its correlation with α-butoxy protons at δ = 4.33 ppm. (Publication I) 

 

Figure 5.9: 1H NMR spectrum for 7,12-dipyrrolidinyl PDI 11. 
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the wavelength of maximum absorption blue shifted to 642 nm with respect to PDI (Figure 5.10). 
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Figure 5.10: UV-Vis absorption spectra of unsubstituted PMI 9, intermediate PMI radical anion, 

monopyrrolidinyl PMI 10 and 7,12-dipyrrolidinyl PMI 11. 

5.1.2. Synthesis of perylene imide dyes with anchoring groups 

Surface immobilization of perylene imide dyes is possible only if appropriate anchoring groups are 

available. Perylene imides with carboxylic acid anchoring group could be immobilized on different 

surfaces such as polymers, films, coatings etc. either by electrostatic interactions or by a covalent 

bond formation.155–157 Direct attempts to synthesize dicarboxylic acid by hydrolysis of ester groups 

always ended up in the anhydride formation. Therefore, PMI diesters 10 and 11 were hydrolysed 

using p-toluenesulfonic acid (p-TSOH) to PMI monoanhydrides 12 and 13 in 93 % and 75 % yields, 

respectively. The anhydride group could be used directly as an anchoring group for immobilization 

of PMIs on oxide surfaces such as ZnO or TiO2.157–159 PMI dicarboxylic acids could be synthesized 

from PMI monoanydrides by heating with 2 equiv. of KOH in tBuOH at elevated temperature. The 

anhydride cycle opens at this reflux temperature, resulting in the formation of dicarboxylic acids. PMI 

monoanydrides 12 and 13 were converted into corresponding dicarboxylic acids 14 and 15 with 70 % 

and 76 % yields, respectively (Scheme 5.4). (Publication II) 
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Scheme 5.4: Synthesis of PMI monoanhydrides (12, 13) and corresponding dicarboxylic acids (14, 

15). 

The UV-Vis absorption measurements of PMI monoanhydrides and PMI dicarboxylic acids (Figure 

5.11) were carried out in ethanol. The absorption spectra of the compounds are similar to those of 

corresponding PMI diesters. However, the molar extinction coefficients for the PMI monoanhydrides 

and dicarboxylic acids were found to be higher than the corresponding diesters. The molar extinction 

coefficients for PMI monoanhydrides were 31665 L mol-1 cm-1 and 27600 L mol-1 cm-1 for 12 and 13 

respectively. PMI dicarboxylic acids 14 and 15 have molar extinction coefficients 31900 L mol-1 cm-

1 and 29700 L mol-1 cm-1 respectively, while that for PMI diesters 10 and 11 were 22847 and 22777 

L mol-1 cm-1 respectively. (Publication II) 

 

Figure 5.11: UV-Vis absorption spectra of PMI monoanhydrides (12, 13) and dicarboxylic acids (14, 

15).  
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5.1.3. Synthesis of cationic perylene diimide dyes 

As a first step towards the usage of perylene imide dyes for photoinactivation of microbes, quantum 

yield of singlet oxygen formation from the synthesized perylene imides were determined. These 

measurements were conducted at Humboldt University of Berlin, in the group of Professor Beate 

Roeder. Time-resolved singlet oxygen measurements of the substances showed rather small singlet 

oxygen signals. The singlet oxygen quantum yields were calculated using Pheophorbide A (φΔ = 

56 %) as a standard and are compiled in the Table 5.1. 

 

 

 

 

 

 

 

As can be seen from the table, the only potential candidate for PACT was the PMI dicarboxylic acid 

15. For the other compounds, the low values for singlet oxygen quantum yields made them unsuita-

ble for photoantimicrobial applications. Therefore, we changed the synthetic strategy and we at-

tempted to prepare another set of PDIs substituted at bay regions and at imide tail. We planned to 

prepare substances, which can be later converted to cationic salts. Cationic groups were chosen, as 

they are known to be effective against both Gram-positive and Gram-negative bacteria.68,69 Hence, 

PDIs with pyridine groups linked directly or through oxy- or thio-bridge on the bay region were syn-

thesized. In addition to this, 1,6-dipyrrolidinyl PDI with amine groups at end position of imide tails 

was also prepared. 

The novel cationic perylene dimide 17 was synthesized by following the synthetic route as summa-

rized in Scheme 5.5. Coupling of a regioisomeric mixture of dibromo PDI 2 with mercaptopyridine 

resulted in the formation of 1,6- and 1,7-regioisomers of compound 16  in 55 % yield.  Attempts to 

separate the isomers during the purification process were not successful and therefore the mixture 

was used as such for the next step. Methylation of 16 with methyl iodide yielded cationic bis(mer-

capto(N-methyl pyridinyl)) PDI 17 in 78 % yield. 

Table 5.1: Singlet oxygen quantum yield for different  PDIs and PMIs. 

Compounds Singlet oxygen quantum yield (φΔ) 

5 4 % 

6 < 1 % 

13 4 % 

14 < 1 % 

15 13 % 
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Scheme 5.5: Synthesis of cationic bis(mercapto(N-methyl pyridinyl)) PDI 17 (mixture of 1,7 and 1,6-

isomers, only 1,7-regioisomer is shown for clarity). 

Novel perylenedimide 20 with cationic groups at imide tails was prepared as shown on the Scheme 

5.6. The compound 18 was prepared by the procedure described by Langhal et al.82 Direct amination 

on bay regions using AgNO3/KMnO4 in pyrrolidine resulted in the formation of 1,6-bis pyrrolidine PDI 

19. The methylation of compound 19 in acetonitrile produced cationic PDI 20. 

 

Scheme 5.6: Synthesis of cationic dipyrrolidinyl PDI 20. 

Novel perylene diimide 22 with pyridinyl groups at the bay region was also synthesized. Suzuki cou-

pling between regioisomeric mixture of dibromo PDI 2 and pyridine boronic acid produced a mixture 

of 1,6- and 1,7-isomers of 22 with 20 % yield.  In order to improve the yield, pyridine boronic acid 

was converted into boronate ester 21 by reacting with neopentyl glycol. The reaction could be 

achieved by the removal of water generated during the reaction either by using molecular sieves or 

by azeotropic distillation. Boronate ester 21 precipitated upon cooling and its separation from the 

molecular sieves was difficult. Therefore, azeotropic distillation was preferred in the synthesis and 

allowed to obtain boronate ester 21 in 80 % yield. With the use of boronate ester, the yield of 1,6- 

and 1,7-isomers of PDI 22 from Suzuki coupling improved from 20 to 45 %. The 1,7-regioisomer of 
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22 was isolated by column chromatography. Novel cationic 1,7-PDI 23 was synthesized in 88 % 

yield by reacting 1,7-isomer of PDI 22 with methyl iodide (Scheme 5.7). 

 

Scheme 5.7: Synthesis of cationic 1,7-dipyridinyl PDI 23. 

The cationic PDIs (17, 20 and 23) were dissolved in ethanol and UV-Visible absorption spectra were 

measured (Figure 5.12). The molar extinction coefficient of the 17 was calculated using Beer-Lam-

bert law and found to be 30000 L mol-1 cm-1 at maximum absorption wavelength 524 nm. Similarly 

PDI 20 exhibited broad absorption peak with maximum at 693 nm and molar extinction coefficient 

14182 L mol-1 cm-1, while for PDI 23 the extinction coefficient was 24363 L mol-1 cm-1 at maximum 

absorption wavelength 539 nm. 

 

Figure 5.12: UV-Vis absorption spectra of cationic PDIs 17, 20 and 23. 
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The efficiency of the dye to generate singlet oxygen could be determined by photochemical method 

using 1,3-diphenylisobenzofuran (DPBF). DPBF reacts with singlet oxygen to form o-dibenzoyl ben-

zene (DBB) (Scheme 5.8). Thus, the efficiencies for the generation of singlet oxygen of different 

dyes could be qualitatively compared by monitoring the disappearance of DPBF in the presence of 

dyes.160,161  

 

Scheme 8: Reaction for the quenching of singlet oxygen by DPBF. 

The percentage decrease in the absorbance of DPBF at 411 nm in the presence of different dyes 

was calculated. The compound 17 was found to decrease 98 % of DPBF absorbance in 3 minutes, 

while compound 20 reduce 88 % of DPBF absorbance in 5 minutes and compound 23 lowered only 

40 % of DPBF absorbance in 5 minutes. The graph (Figure 5.13) shows the decrease of efficiency 

in the order compound 17 > compound 20 > compound 23. 

   

Figure 5.13: The graph showing the efficiency of cationic PDIs. 

O O
O

O

+ 
g

O
O

O

O
O O2

2 +

DPBF Endoperoxide

Endoperoxide DBB

2



57 

 

The graph for compound 17 revealed the disappearance of DPBF after 3 minutes. The constant 

value (2 %) seen in the graph is not from DPBF concentration. This is actually the absorbance of the 

dye at 411 nm remained in the solution after the photo oxidation of DPBF. 

Time-resolved measurements of the singlet oxygen production of the compounds by luminescence 

method were done by our collaborator at Humboldt University of Berlin (group of Professor Beate 

Roeder) and gave matching results for the efficiency of singlet oxygen generation. The results are 

listed in Table 5.2.   

 

 

 

 

 

 

Bay region modification of PDI dyes using pyridine moiety through thio-bridge increased the singlet 

oxygen quantum yield. However, the values were still too small to expect good antimicrobial effica-

cies. Different modifications to increase the formation of triplet states in PDIs that in turn could in-

crease the singlet oxygen quantum yield were already mentioned in the previous chapter. However, 

their implementation would be quite laborious, and we therefore decided to change the core of the 

photosensitizer and proceed with phthalocyanines for a while. 

5.2. Synthesis of phthalocyanine photosensitizers. 

Synthesis of novel phthalocyanine with direct C-C bond between α-phthalo position and pyridine unit 

will be described under this section. It should be noted that phthalocyanines with direct C-C- bond 

at α-position are rather rare.128,129,162–166 Most substitutions of phthalocyanines described in the liter-

ature are at β-positions and are either through oxy- or thio- linkage. This is also true for amino- and 

pyridinyl-substituted phthalocyanines. No pyridine substitution of phthalocyanines through direct C-

C bond at α-phthalo position was reported before.145,167 

Synthesis of phthalocyanines from monosubstituted precursors was always burdened by the for-

mation of regioisomers. Generally, C4h isomer formation was favoured for tetrasubstituted phthalo-

cyanines, synthesized in the presence of lithium alcoholates from phthalonitrile with a bulky group at 

3-position. The presence of bulky groups such as aryl 3-position of phthalonitrile restricted the for-

mation of other sterically constrained isomers.  Moreover, in order to obtain C4h isomer in a major 

proportion, the aryl group linked through direct C-C bond at 3-position of phthalonitrile was preferred 

Table 5.2: Singlet oxygen quantum yield for cationic PDIs. 

Compounds Singlet oxygen quantum yield (φΔ) 

17 19 % 

20 12 % 

23 5 % 
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over aryloxy group. The aryloxy group would not stay in the plane of phthalocyanine macrocycle 

during tetramerization reaction because of the sp3-hybridization of oxygen atom thereby allowing the 

formation of other isomers. On the other hand, straight and rigid aryl substituents favoured the for-

mation of C4h isomer.168 Thus, it was safe to assume that the C4h phthalocyanine isomer’s formation 

would be favoured when pyridine is attached to 3-position of phthalonitrile through direct C-C bond. 

Tetramerization reaction should be performed in the presence of Li alcoholates at moderate temper-

ature. It must be however noticed that the formation of other isomers in minor amounts would still be 

possible in this case.  

Novel pyridinyl-substiututed phthalocyanine was synthesized from 3-pyridinyl phthalonitrile 26 ac-

cording to Scheme 5.9. 3-Hydroxy phthalonitrile 24 was prepared from commerically available 3-

nitrophthalonitrile according to the literature procedure and later converted to triflate salt 25 for Su-

zuki coupling with pyridine boronate ester 21.168 Phthalonitrile 26 can be tetramerized to free base 

phthalocyanine 27 or directly to phthalocyanine zinc complex 28. In the first case, Zn(II) complex 28 

was prepared by metalation of phthalocyanine 27 using zinc acetate in a mixture of chloroform and 

methanol with 85 % yield. The direct synthesis of 28 using anhydrous zinc acetate and DMAE is 

characterized by a very high yield (> 90 %) and proceeds as a single step reaction, which is very 

important for industrial scale applications. However, the direct synthesis of phthalocyanine using 

Zn(OAc)2 at higher temperature might lead to the formation of higher proportion of constitutional 

isomers. Cationic salts 29 and 30 were synthesized from free base phthalocyanine 27 and phthalo-

cyanine Zn(II) complex 28 respectively by reaction with methyl iodide in DMF. (Publication III) 

 

Scheme 5.9: Synthesis of pyridinyl-substituted phthalocyanines 27, 28, 29 and 30. 
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Formation of tetracationic phthalocyanine was confirmed by the high-resolution mass spectrometry 

data. The 0.25 Da separation between the peaks in MS signals confirmed the tetracationic charge 

of the molecule (Figure 5.14).  

 

Figure 5.14: High-resolution mass spectra for tetracationic phthalocyanines 29 and 30. 

UV-Visible absorption spectra of the phthalocyanines were measured in chloroform and DMF ac-

cording to their solubility (Figure 5.15). The spectra were rather broad probably because of the ag-

gregation of the molecules which was also observed in the NMR spectra. The free base phthalocy-

anines 27 exhibited very high molar extinction coefficient of 100000 L mol-1 cm-1 at absorption max-

imum 715 nm. Its corresponding zinc phthalocyanine 28 has absorption maximum at 695 nm with 

the extinction coefficient 113077 L mol-1 cm-1. Zinc insertion into phthalocyanine 27 closes the split-

ting of Q-band peaks. The free base phthalocyanine consists of two type of isoindole nitrogens, one 

carrying hydrogen atoms and other involved in iminic type functions. Thus, the electronic transitions 

responsible for Q-band are polarized in x or y directions, giving rise to the split Q-band.  The insertion 

of zinc into the macrocycle give a thermodynamically stable delocalized phthalocyanine dianion with 

higher symmetry and as a result only one absorption peak is observed in the Q-band.169,170 Free 

base cationic phthalocyanine 29 displayed a broad peak with absorption maximum at 702 nm and 

extinction coefficient 141250 L mol-1 cm-1. Phthalocyanine 30 exhibited absorption peak with maxi-

mum absorption at 692 nm and extinction coefficient 128500 L mol-1 cm-1. (Publication III) 
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Figure 5.15: UV-Vis absorption spectra of phthalocyanines 27, 28, 29 and 30. 

Singlet oxygen quantum yields for cationic phthalocyanines 29 and 30 in water were measured by 

the group of Professor Beate Roeder at Humboldt University of Berlin using luminescence method. 

The quantum yield of singlet oxygen for phthalocyanine 30 was calculated to be 30 ± 20 % by com-

paring the phosphorescence signal intensity at 1270 nm of with that of TMPyP as reference com-

pound with quantum yield 74 %. The observed signal had a low signal-to-noise ratio, and the stand-

ard bi-exponential model for singlet oxygen luminescence was hard to apply. Hence, quantum yield 

was determined with the error of the fitting procedure of the NIR luminescence signals that intro-

duced large variation in the result. The value for singlet oxygen quantum yield for phthalocyanine 30 

was reasonably good, considering that water is known to quench the singlet oxygen. On other hand, 

phthalocyanine 29 did not produce any signal for singlet oxygen in water. (Publication III) 

5.3. Antimicrobial studies 

Successful implementation of PACT depends on many factors such as the ability of a photosensitizer 

to generate singlet oxygen, immobilization of photosensitizer on a substrate and an accessible and 

economical light source. Photosensitizers could be reliably grafted onto a substrate by covalent 

bonding. However, immobilization of photosensitizers by covalent bonds is a laborious and challeng-

ing process. Such immobilization requires considerable synthetic work to modify both the substrate 

and photosensitizer and needs to use a linker between them. The other immobilization methods 

could be e.g. incorporation of photosensitizers into polymer matrix during electrospinning of polymer 

fiber, or binding of the dye through electrostatic interactions or by swell-encapsulation-shrink pro-

cesses. We observed that cationic photosensitizers bound strongly to filter papers just by soaking 

the paper into a solution of photosensitizer. The filter papers used in laboratory are essentially pure 

cellulose and these materials have “highly hydrophilic and slight anionic character with a low nega-

tive surface charge density”.171,172 The cationic dyes therefore probably bind to the filter paper 

through electrostatic interactions thereby giving it a stable colour. The filter paper impregnated with 

dyes were stable under light and dyes did not wash out into water even after sonication. Filter paper 

was chosen as a substrate for testing the prototype photoactive antimicrobial materials owing to the 

simple procedure of immobilization of cationic photosensitizers. (Publications III and IV) 
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5.3.1. Screening test for the efficiency of dyes 

Comparison of the antimicrobial efficacies of many different photosensitizers is a laborious and time 

consuming process. Therefore, a simple and fast method for screening of the antimicrobial efficacies 

using bioluminescent bacteria as reporter cells was developed. The efficiency of photodynamic in-

activation of the microbes was estimated from the measurements of the bioluminescence. The in-

tensity of bioluminescence arising from the bacteria on a surface is directly related to the metabolic 

status of bacteria. When a dye effectively inactivates bioluminescent bacteria, a sharp decrease in 

signal intensity is observed. Antimicrobial tests were conducted using two Gram-negative bacteria, 

Escheria coli (E. coli) and Acinetiobacter baylyi (A. baylyi) ADP1 strains carrying bacterial luciferase 

genes. Gram-negative bacteria were selected particularly because they are more difficult to inacti-

vate when compared to Gram-positive bacteria.68,69 The bioluminescence signal arising from the 

surface of filter paper soaked with bioluminescent microbes was measured before and after the illu-

mination.  

Photodynamic antimicrobial efficacies of cationic perylene dyes were evaluated at first. Small square 

pieces (area 0.49 cm2) were cut from the filter paper impregnated with cationic PDI dyes and pasted 

on an LA agar plate in a 3 x 3 grid as shown in Figure 5.16.  Each column contained 3 paper pieces 

with dyes 17, 20 and 23. Using a dark screen with a square hole in the center, one column of dyes 

was protected from light while the other two columns of dyes were left accessible for the light. The 

whole set up was placed inside the solar simulator and was illuminated for 1 h with the light intensity 

18 mW/cm2. In order to eliminate the effects of UV and infrared radiations on the growth of microbes, 

optical filters were used to cut off these wavelengths.  

 

Figure 5.16: Schematic diagram of the setup for screening the antimicrobial dyes.  

Photodynamic inactivation of microbes after 1 hour of illumination was negligibly low. Even though, 

a difference in intensity between samples and cell control was observed, the result were not con-

vincing enough. The intensity of the signals in the illuminated and dark regions remained almost 

same, except for the dye 20 (Figure 5.17).  Interestingly, PDI 23 with the lowest singlet oxygen 

quantum yield decreased the bioluminescence similarly as the other two PDIs. 
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Figure 5.17: Bioluminescence from dark and illuminated PDI-dyed samples. 

A slightly modified set up was used to improve the reproducibility of measurements during the eval-

uation of antimicrobial efficacies of filter papers dyed with phthalocyanines. Previously for the PDI 

dyes, square shaped papers were used for testing. In a new setup, paper discs of identical size were 

cut with the help of a hole puncher, since a slight difference in the size of the papers would strongly 

affect the total counted luminescence intensity. Moreover, the blank control filter papers both in the 

dark and illuminated regions were added to increase the credibility of the results. The modified setup 

is shown in Figure 5.18. 

 

Figure 5.18: Schematic diagram of the modified setup for screening the dyes. (Publication III; repro-

duced with the permission from Elsevier) 

The surfaces with cationic phthalocyanines 29 and 30 demonstrated antimicrobial efficacy higher 

than the neutral compounds against bioluminescent E. coli. Moreover, cationic zinc derivative 30 

had shown higher efficacy than free base phthalocyanine 29. The bioluminescence from the paper 
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dyed with 30 incubated in the dark region of the plate was also found to be low. This decrease might 

not be originated from the dark toxicity of the compound. Probably, the exposure to stray light could 

trigger photo inactivation of microbes, since incubation was done in the same plate. The results are 

shown in Figure 5.19. (Publication III) 

 

Figure 5.19: (a) Bioluminescent images of E. coli (carrying pBAV1C-T5-lux plasmid) on surface, be-

fore and after light exposure. (i) background image, (ii) before illumination, (iii) after illumination; (b) 

graph showing the antibacterial activity of the phthalocyanines after illumination. (Publication III; re-

produced with the permission from Elsevier) 

Antimicrobial tests using filter paper soaked with bioluminescent A. baylyi were also conducted. Dyes 

28, 29 and 30 demonstrated significant photoinactivation of microbes (Figure 5.20). Cationic phthal-

ocyanines and zinc complex 30 in particular had shown higher activity. In this experiments signals 

from the dyed paper kept in the dark region were also absent due to the stray light exposure. The 

screening tests of surfaces impregnated with phthalocyanine dyes concluded that tetracationic de-

rivatives and particularly zinc derivative 30 were more efficient than the neutral ones. The extra cat-

ionic charges of the molecule might had played an important role in binding the Gram-negative bac-

teria to the photosensitizer molecules thereby ensuring a better photodynamic inactivation. (Publi-

cation III) 
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Figure 5.20: (a) Bioluminescent images of A. baylyi ADP1 (carrying plasmid pBAV1C-T5-lux) on 

surface, before and after light exposure. (i) background image, (ii) before illumination, (iii) after illu-

mination; (b) graph showing the antibacterial activity of the phthalocyanines after illumination. (Pub-

lication III; reproduced with the permission from Elsevier) 

5.3.2. Antimicrobial efficacy by CFU counting 

The screening tests using bioluminescent bacteria demonstrated that the surface impregnated with 

tetracationic phthalocyanine 30 was the most potent material for further studies. Antimicrobial effi-

cacy of filter paper impregnated with phthalocyanine 30 was quantitatively determined by CFU count-

ing using wild type microbes. In order to control the growth of microbes during the illumination ex-

periments and upon serial dilutions, the LB medium was replaced with PBS buffer before the depo-

sition on the filter paper.  

From the previous experiments, phthalocyanine 30 was found to be highly phototoxic towards both 

E. coli and A. baylyi. Since the inactivation experiments were conducted on the surface, the number 

of colonies from control samples were large, and the dye exhibited very high photoinactivation of 

microbes even at low concentrations, the half maximal inhibitory concentration (IC50) value for the 

dye was not calculated. Instead, the minimal inhibitory dye loading at given light dose was estimated. 

Filter papers with different dye loading were prepared by soaking the filter papers into water solutions 

with different concentrations of dye 30 (Figure 5.21). The antimicrobial test using these papers were 

conducted using A. baylyi, and the number of colonies from the microbial extracts from each paper 

was counted to determine an optimum dye loading. (Publication III)   
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Figure 5.21: Filter papers impregnated with different concentrations of dye 30. (Publication III; repro-

duced with the permission from Elsevier) 

The papers with microbes were illuminated for 1 hour, the microbes were extracted with PBS buffer 

and plated onto LA agar plates. For papers with the dye load higher than 0.008 mg/cm2, no colonies 

of bacteria could be found on LA plates incubated overnight. This implies that papers with higher 

dye loads were highly phototoxic, and the smallest dye load would be sufficient and necessary for 

quantitative testing of the antimicrobial efficacy. The results of these tests are compiled in Table 5.3.  

Hence, the filter paper with the dye load 0.008 mg/cm2 was used for further antimicrobial tests. The 

optical densities of the microbial solutions measured before the deposition on the filter paper were 

0.2 and 0.1 for E. coli and A. baylyi respectively. The higher number of colonies of E.coli compared 

to A. baylyi grown after the plating agrees with the optical measurements. The filter paper impreg-

nated with phthalocyanine 30 demonstrated photoinactivation of 2.7 log reduction in CFU against 

E.coli and 3.4 log reduction in CFU against A. baylyi with the light intensity 18 mW/cm2 (Figure 5.22).  

Table 5.3: Photoinactivation of A. baylyi under illumination. (Publication III; reproduced with the 

permission from Elsevier) 

Dye loading Number of colonies Number of colonies 

 

1st dilution 2nd dilution 

0.08 mg/cm2 0 0 

0.04 mg/cm2 0 0 

0.02 mg/cm2 0 0 

0.008 mg/cm2 20 1 

Control Too many to count Too many to count 
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Figure 5.22: Antimicrobial efficacy of filter paper dyed with phthalocyanine 30 against E. coli and A. 

baylyi. (Publication III; reproduced with the permission from Elsevier) 

5.3.3. Antimicrobial efficacy using consumer LED lamp 

The successful implementation of PACT in everyday life requires an accessible and economical light 

source. However, our previous experiments were conducted using a solar simulator, which is incon-

venient in practical applications. Therefore, as a next step of our research the photoinactivation of 

microbes was assessed using commercially available lighting system such as consumer LED lamp. 

The antimicrobial efficacy of paper impregnated with cationic zinc phthalocyanine 30 illuminated with 

a consumer LED lamp was calculated and evaluated against the paper dyed with an already known 

tetracationic photosensitizer, Zn(II) tetrakis(methylpyridinyl iodonium) porhyrin 31 (Figure 5.23).173,174 

During this study, important parameters such as photostability of the dye-impregnated paper and 

stability against leaching were also evaluated.  
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Figure 5.23: Chemical structure of Zn(II) tetrakis(methylpyridyl iodonium) porphyrin. 

5.3.3.1. Lamp profile and light dose calculation 

Selection and comparison of consumer bulbs for photodynamic therapy are rather difficult as the 

spectral data are not generally available. Therefore, the spectrum of LED lamp was measured prior 

to the experiments. The wavelength range of lamp emission was found to span from 400 nm to 750 

nm with a maximum at 594 nm (Figure 5.24a). To make the photoinactivation experiments more 

precise, the power density of the lamp was also measured at different illumination distances. The 

absorptance profiles of the papers impregnated with phthalocyanine and porphyrin were recorded. 

Porphyrin-dyed paper exhibited a maximum absorption at 430 nm while phthalocyanine-dyed paper 

had a maximum absorption at 696 nm. The absorptance profiles of dyes were recalculated since, 

the both dyed papers absorbed at different wavelength, neither the lamp emission profile was uni-

form. Recalculated light absorptance at certain wavelength was determined using the equation 

I()=L()a()/100, where I() is the absorbed light dose, L() is the relative light intensity of the lamp, 

and a() is the absorptance value as measured with the integrating sphere. The recalculated spectra 

are shown in Figure 5.24b. The ratio of the area under the recalculated spectra for respective dyes 

to the total area of the lamp spectrum gives the absorbed light power densities for porphyrin and 

phthalocyanine dyed papers. The absorbed light power density for porphyrin-dyed paper was found 

to be 1.2 times higher than that of phthalocyanine-dyed material. Thus for the lamp intensity 35 

mW/cm2, the calculated light doses were 45 J/cm2 and 37 J/cm2 for porphyrin and phthalocyanine, 

respectively. This variation in the light doses was taken into account while setting up the illumination 

conditions for the phototreatment. Hence, for porphyrin-impregnated paper, the total light intensity 

of the lamp would be decreased to 29 mW/cm2 to equal the light dose of phthalocyanine-impregnated 

paper. (Publication IV) 
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Figure 5.24: (a) The lamp spectrum and absorptance of zinc phthalocyanine and porphyrin impreg-

nated papers (b) light dose calculated for phthalocyanine- and porphyrin-impregnated papers. (Pub-

lication IV) 

5.3.3.2. Photostabilty and leaching test of dyed filter papers 

The photostability of the filter papers impregnated with phthalocyanine 30 and porphyrin 31 was 

tested. The reflectance and transmittance measurements were used to calculate the absorptance of 

papers (Figure 5.25). The difference in the absorptance values before and after the illumination in 

air was used as the criterion. The absorption profile of phthalocyanine-dyed paper remained un-

changed even after 64 hours of continuous illumination. The calculated absorptance at 696 nm be-

fore the illumination was 81.88 % and after illumination it was 71.30 %. The photodegradation for 

the phthalocyanine 30 impregnated on paper was calculated from the difference in the absorptance 

values, and it was found to be 12.9 %. In the case of the paper dyed with porphyrin 31, the peaks 

around 520 nm and 590 nm disappeared almost completely after the exposure to light. The absorp-

tance of the main peak around 430 nm for porphyrin-impregnated paper before illumination was 

90.50 % and after illumination it was 81.28 %. Hence, the difference in the values give the photo-

degradation of porphyrin-dyed paper as high as 10.18 %, however with obvious degradation of the 

spectrum. These results demonstrated superior photostability of phthalocyanine-impregnated pa-

pers even after 64 h of continuous illumination with light intensity of 42 mW/cm2. (Publication IV) 
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Figure 5.25: Absorptance of dye-impregnated papers before and after irradiation. (Publication IV) 

Leaching of the dyes was tested by incubation of the dyed papers in PBS buffer with pH 7.4. The 

UV-Vis absorption spectra of the PBS extracts were measured to determine the amount of dye 

leached out from paper. The fluorescence measurements of the extracts were also done in order to 

detect the minute concentrations of dye that could not be observed by absorption measurements. 

The PBS extract of porphyrin paper had shown a strong absorption peak at 422 nm that confirmed 

the leaching of porphyrin 31 into the solution.  A broad intense emission peak with the maximum 

around 720 nm was also observed during the emission measurement of the PBS extract excited at 

422 nm. UV-Vis absorption measurement of the PBS extract of phthalocyanine paper did not show 

any peak even after 20 h of incubation at room temperature (Figure 5.26a). However, in the emission 

measurements, upon excitation at 694 nm, the extract produced a faint signal (Figure 5.26b) which 

indicated that only negligible amount of phthalocyanine 30 was extracted into buffer. It must be un-

derlined that such a strong binding ability of cationic phthalocyanine 30 is much beneficial for prac-

tical applications. (Publication IV) 

 

Figure 5.26. (a) Absorbance measurements (b) emission measurements of PBS extracts of dye-

impregnated papers. (Publication IV) 
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5.3.3.3. Comparison of antimicrobial efficacy by CFU counting 

The total light intensity of the LED lamp was set at 35 mW/cm2 for the paper dyed with phthalocyanine 

30. From the absorbance profile it can be calculated that the phthalocyanine-dyed paper would be 

exposed to the absorbed light dose of 37 J/cm2 after 1 hour of illumination. In order to obtain the 

same light dose for paper dyed with porphyrin 31, the total light intensity of LED lamp was reduced 

to 29 mW/cm2, which would give the absorbed light dose 37 J/cm2. At this intensity, the microbes 

were found to be completely inactivated after 1 h of illumination. Such high efficacy can be explained 

by the leakage of immobilized porphyrin into PBS buffer, which created a considerable concentration 

of the photosensitizer in the solution thereby enhancing the inactivation of microbes. Therefore, in 

order to obtain a countable number of colonies of bacteria after illumination, the total light intensity 

of LED lamp was reduced to 4 mW/cm2. The absorbed light dose was calculated to be 5.04 J/cm2. 

Under these conditions, the antimicrobial efficacy of paper dyed with porphyrin 31 was 1.66 and 2.01 

log reduction in CFU against E. coli and A. baylyi respectively. (Publication IV) 

 

Figure 5.27: Antimicrobial efficacy of dye-impregnated papers against E. coli and A. baylyi after 1 h 

of light exposure. (Publication IV) 

The paper dyed with phthalocyanine 30 demonstrated excellent antimicrobial efficacy of 3.72 and 

4.01 log reduction in CFU units against E.coli and A.baylyi, respectively after 1 hour of illumination 

with the light dose 37 J/cm2 (Figure 5.27). Comparison of the result with Table 2.1 shows that the 

photoinactivation achieved by cationic zinc phthalocyanine 30 is comparable to that of other efficient 

porphyrinoid photosensitizers on surfaces reported in the literature.  However, in our studies we used 

obviously a smaller load of the photosensitizer. High photostability, strong binding ability and signif-
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icant photoinactivation of Gram-negative bacteria makes cationic zinc phthalocyanine 30 a right can-

didate for further photoantimicrobial studies using different microbes. Furthermore, studies using 

phthalocyanine 30 impregnated on different polymer substrates other than filter paper would also be 

conducted. Our results proved that consumer LED bulb can be used for the photodynamic inactiva-

tion of microbes. Use of consumer LED lamp as an illumination source dramatically enhances the 

applicability of PACT in everyday life, where an accessible and inexpensive illumination device is 

required.  
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6. Conclusions 

A novel method for the direct amination of the bay region of perylene imides was developed. The 

method was found to be highly regioselective and produced 1,6- or 7,12-substituted perylene 

diimides and perylene monoimides, respectively as the major products. The reaction proceeded 

through a radical anion intermediate. The presence of imide cycle was crucial for the reaction to 

happen. Synthesis of novel 7-pyrrolidnyl and 7,12-bispyrrolidinyl perylene imides with the anhydride 

and dicarboxylic acid anchoring groups for immobilization on substrates was also developed. Three 

different perylene diimides with cationic groups were synthezised and immobilized on filter paper to 

study the photoantimicrobial effect.  

Synthesis of novel phthalocyanine with pyridinyl substituents at α-positions via direct C-C bond and 

preparation of its zinc complexes and cationic derivatives was developed. Tetracationic zinc phthal-

ocyanine was found to be the most efficient photosensitizer with the singlet oxygen quantum yield of 

30±20 % in water.  

A fast and simple screening setup for testing the photodynamic antimicrobial substances using bio-

luminescent bacteria E. coli and A. baylyi. was elaborated, and the synthesized dyes were screened 

for their antimicrobial activity. Tetracationic Zn(II) phthalocyanine was found to be the most efficient 

antimicrobial substance, and the quantitative measurements of the photodynamic effect were under-

taken. The paper impregnated with the dye concentration as low as 80 mg/m2 of tetra cationic zinc 

phthalocyanine demonstrated significant antimicrobial efficacy after 1 h illumination with 18 mW/m2 

light in a solar simulator. The paper impregnated with the dye achieved photoinactivation of 2.7 log 

CFU reduction against E. coli and 3.4 log CFU reduction against A. baylyi, respectively.  

The possibility of using an economical and easily accessible light source was established after eval-

uating the antimicrobial efficacies of papers impregnated with tetracationic zinc phthalocyanine and 

tetracationic zinc porphyrin. Both dyed papers exhibited excellent photoinactivation of microbes upon 

illumination with consumer LED lamp. The paper impregnated with tetracationic zinc phthalocyanine 

demonstrated 3.72 and 4.01 log reduction in CFU against E. coli and A. baylyi respectively after 1h 

of illumination with consumer LED at 35 mW/cm2. Phthalocyanine-impregnated paper exhibited very 

high stability in the leaching test. The bleaching studies revealed that phthalocyanine-impregnated 

paper have very good photostability, with no significant degradation even after 64 h of continuous 

exposure to the light.  

6.1. Future Perspectives 

The phthalocyanine-impregnated paper served as a prototype substrate for testing the antimicrobial 

activity against antibiotic-resistant bacteria. The antimicrobial efficacy of the phthalocyanine-impreg-

nated paper should be evaluated against the known antimicrobial materials such as silver- or copper-

impregnated surfaces. Further improvements in the antimicrobial efficacy of pyridinyl phthalocyanine 
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could be achieved by changing the central metal atom with different elements. For example, intro-

duction of elements such as phosphorous, silicon will alter the photochemical properties of phthalo-

cyanines significantly. Moreover, the possibility of using the axial ligands of these elements as an-

choring groups is an additional advantage for the immobilization on surfaces. The use of different 

metals such as aluminum and iron as central metal could also alter the properties of phthalocyanines. 

Efficiency of PDIs to generate singlet oxygen in high quantum yields could be improved by ortho-

substitution and thionation reactions. These reactions could be performed without considerable syn-

thetic effort. Another important method that could improve the efficiency of PDIs to generate singlet 

oxygen is by attaching to fullerenes. Comprehensive set of toxicity tests including genotoxicity, skin 

irritation and eye irritation of the developed photosensitizers should also be done before develop-

ment of commercial self-disinfecting surfaces. 

The newly developed photosensitizers impregnated into various solid substrates could be developed 

in future into self-disinfecting fibers and cloths, paints, films, filters for air and water sanitization and 

other photoactive antimicrobial materials. Another area of application is the development of photo-

active antimicrobial biomedical surfaces such as hydrogel and adhesive bandages. Along with the 

efforts to develop novel photosensitizers, significant research should be dedicated to develop stable 

and efficient methods to incorporate photosensitizers on to substrates. Leaching of photosensitizers 

from the surface loses the antimicrobial efficiency of the modified surface thereby defeating the very 

purpose of self-disinfecting surfaces. With the use of inexpensive consumer LED light sources, the 

implementation of PACT into everyday life could be accelerated. Prospective customers are hospi-

tals, healthcare industries, paint manufactures, manufacturers of air and water purification systems. 
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1H NMR spectrum of compound 16 
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13C NMR Spectrum of compound 16 
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COSY spectrum of compound 16
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gHMBC spectrum of compound 16
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gHSQC spectrum of compound 16
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MS spectrum of compound 17 
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13C NMR Spectrum of compound 17
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COSY spectrum of compound 17
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gHMBC spectrum of compound 17 
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gHSQC spectrum of compound 17 
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MS spectrum of compound 19 
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1H NMR spectrum of compound 19 
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13C NMR Spectrum of compound 19 
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COSY spectrum of compound 19
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gHMBC spectrum of compound 19 
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gHSQC spectrum of compound 19 
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MS spectrum of compound 20 
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1H NMR spectrum of compound 20 
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13C NMR Spectrum of compound 20 
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COSY spectrum of compound 20 
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gHMBC spectrum of compound 20 
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MS spectrum of compound 22 
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1H NMR spectrum of compound 22 
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13C NMR Spectrum of compound 22 
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COSY spectrum of compound 22
lg0250-4-3 cosy.fid.esp
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gHMBC spectrum of compound 22
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gHSQC spectrum of compound 22
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MS spectrum of compound 23 
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1H NMR spectrum of compound 23 
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13C NMR Spectrum of compound 23 
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COSY spectrum of compound 23 
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gHSBC spectrum of compound 23
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Perylenediimides (PDIs) and perylenemonoimide diesters
(PMIs) can be selectively substituted at the 1,6- or 7,12- posi-
tions of the bay region, respectively, by direct amination re-
actions. The reactions proceed by the formation of a perylene
radical anion and its subsequent oxidation, and the yields
range from 20–97%. The amination can be tuned to obtain

Introduction

Since their discovery, perylenetetracarboxylic diimides
(PDIs) have attracted the interest of industry and academia.
Good thermal and photostability, high fluorescence quan-
tum yields, high molar absorption, and excellent redox
properties are a few characteristics that have inspired
chemists to focus their attention on these versatile organic
molecules.[1,2] PDIs have been utilized extensively in a
variety of high-tech applications such as photovoltaics,[3]

field-effect transistors,[4] biosensors,[5] organic solar cells,[3b]

organic light-emitting diodes,[6] optical switches,[7] and mo-
lecular wires.[8] PDIs have also been used in several other
applications, such as artificial photosynthetic systems,[9]

with controlled supramolecular architectures through their
high tendency for π–π stacking.[10] Similarly, perylenemono-
imides (PMIs) are useful precursors for asymmetric
perylene dyes. Their syntheses from commercially available
perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) as
well as their halogenation and substitution have been de-
scribed.[11] PMI dyes had been used in molecular photonic
switches and light-harvesting studies.[12] The major hurdle
in the use of perylenemonoimide dyes had been their poor
solubility in organic solvents. Various approaches such as
the introduction of alkylated N-aryl groups or aryloxy sub-
stituents at the perimeter of perylene have been used to im-
prove solubility.[11c] The solubility of PMI dyes can be in-
creased dramatically by the introduction of a diester moiety
to the perimeter of the molecule.[13] The incorporation of a
diester moiety not only resolves the solubility issue but also
makes the dyes more versatile. For example, the diester

[a] Department of Chemistry and Bioengineering, Tampere
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either mono- or disubstituted perylenes by varying the oxi-
dants involved. The presence of the imide cycle is crucial for
the transformation, although the amination occurs regio-
selectively at the bay-region positions distant from the imide
cycle.

moiety can later be hydrolyzed through an acidic hydrolysis
to form a second anhydride group,[14] which can be used to
prepare new asymmetric PDIs with two different N-substi-
tuted groups.[11e] The diester groups can also be hydrolyzed
to dicarboxylic acids, which can in turn be used to prepare
self-assembled monolayers (SAMs) for organic solar cells.

Similarly, despite the established significance and poten-
tial of PTCDA, a lack of solubility in organic solvents has
kept its usage somewhat restricted. In a BASF patent
(1997), Böhm et al. reported a procedure for the 1,7-di-
bromination, imidation, and subsequent replacement of
“bay–region” bromine atoms with alkyne or phenoxy
groups.[15] This method was extensively used in many labs
to synthesize bay-functionalized PDIs until 2004 when
Wuerthner et al. pointed out the presence of a regioisomeric
impurity, namely, the 1,6-isomer, in ca. 20–25%.[16] Later,
many research groups isolated and characterized 1,6- and
1,7-regioisomers of dipiperidinyl-, diphenoxy-, and dipyr-
rolidinyl-substituted PDIs[17a,17b] and demonstrated that the
1,6- and 1,7-isomers might have significantly different
photochemical properties.[17c–17f]

Much effort has been paid to the isolation of individual
isomers, mostly 1,7-substituted, but no approaches to the
synthesis of isomerically pure PDIs were proposed.[18a–18j]

Furthermore, as there was no method to synthesize prefer-
entially the 1,6-isomers of peryleneimides, the knowledge of
their properties and potential applications was poor. This
situation changed dramatically in 2013 when the direct
amination of PDIs was reported.[19a] Very recently, Rauch
et al. reported the synthesis of a regioisomerically pure 1,6-
isomer by a Cu-catalyzed amination.[19b] However, these
two reports are somewhat controversial in terms of their
reaction mechanisms and product structures.

Herein, we report the controlled highly regioselective
amination of perylene mono- and diimides; isomerically
pure 7-pyrrolidinyl and 1,6-dipyrrolidinyl derivatives are
synthesized, and the substitution reaction can either be cat-
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alyzed by metal complexes or run catalyst-free. Depending
on the substrates and the desired product (mono- or disub-
stituted), the reaction can be performed either at room tem-
perature with KMnO4 or atmospheric oxygen as an in situ
oxidant or as a one-pot, two-step process with subsequent
oxidation by pyridinium dichromate (PDC). In either case,
the method is highly attractive as it does not require any
halogen (or other) leaving group for the substitution to
occur, and the reaction conditions are mild. Unlike the pre-
viously reported work, in our case, the substitution occurs
at the bay region instead of the 2,5-positions of perylene[19a]

and can also proceed without catalyst.[19b]

Results and Discussion

Synthesis of Precursors

The precursors 1, 1�, and 4 were synthesized from com-
mercially available PTCDA by slight modification of pro-
cedures reported previously.[18g,20] The treatment of
PTCDA with imidazole and the desired amine at elevated
temperature yielded the N-alkylated PDIs 1 and 1� in good
yields. The perylene tetraester (PTE) 2 was obtained by
esterification of PTCDA with an alkanol and alkyl halide in
a homogeneous solution.[18g] The PTE was then selectively
hydrolyzed by p-toluenesulfonic acid (pTsOH) to yield the
monoanhydride–diester 3 as a precipitate, which upon imid-
ization with n-octylamine and imidazole produced the PMI
diester 4 as a dark red solid in 68 % yield.[18g,20] The crucial
step in the synthesis of 4 was the selective hydrolysis with
pTsOH, as even a slight excess of pTsOH, the wrong reac-
tion temperature, or an inappropriate solvent resulted in the
formation of PTCDA. A mixture of toluene and hexane
(5:1 v/v), 1.2 equiv. of pTsOH, and a reaction temperature
of 100 °C were the optimal conditions, which prevented the
second hydrolysis.
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Amination of PDIs

While studying different substitution reactions, we
noticed that a solution of dioctyl PDI 1 in neat pyrrolidine
under argon slowly turned from red to blue upon heating.
After the vial was opened and the solution was exposed to
air, the color changed rapidly from blue to reddish, and
green monopyrrolidine PDI 5a was recovered from the reac-
tion mixture along with the starting material 1. Our
attempts to isolate “the blue intermediate” for NMR spec-
troscopy analysis were unsuccessful, as the compound
proved to be very air sensitive. However, in situ detection
by UV/Vis spectroscopy was possible. A small amount of
PDI in thoroughly argon-purged pyrrolidine was heated at
60 °C in a sealed cuvette, and the gradual changes in the
absorption spectra were recorded. As can be seen in Fig-
ure 1, the two peaks of PDI 1 at λ = 450 and 550 nm
decreased with time and were completely gone after 5 h.
Instead, the newly formed compound had distinct absorp-
tion maxima at λ = 720 and 800 nm. A very similar absorp-
tion profile was reported for the chemically and electro-
chemically generated perylenediimide radical anion by dif-
ferent groups.[21a–21d] After exposure of the solution to air,
the bands at λ = 720 an 800 nm disappeared, the bands
at λ = 450 and 550 nm were partly restored, and a broad
absorbance of monopyrrolidyl PDI 5a appeared in the spec-
trum. This observation allowed us to suggest that the reac-
tion proceeds by a radical anion pathway with separate
stages for the formation of the intermediate and its oxid-
ation to the final product.

To the best of our knowledge, the direct amination of an
unsubstituted aromatic core is not very common in organic
chemistry. Similar reactions on smaller aromatic rings are
described as “oxidative amination” and have received
limited attention.[22a,22b] In the work of Verbeeck et al.,[22a]

the amination is thought to proceed by a two-step
mechanism: σH-adduct formation followed by an oxidative
rearomatization. For the direct aminations of perylenes at
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Figure 1. (a) Absorption profile for radical anion formation and oxidation of dioctyl PDI 1 in pyrrolidine. (black dashes: 0 h, short dark
gray dashes: 1 h, dark gray dash dot dot: 5 h, black dots: 48 h, black solid line: vial opened). (b) Absorption of unsubstituted 1 (black
solid line), monopyrrolidyl 5a (gray dashes), and dipyrrolidyl 5b (dark gray dots) dioctyl PDIs.

the bay region reported by Langhals and Rauch, two dif-
ferent reaction mechanisms have been proposed, namely, a
Chichibabin-like[19a] reaction resulting in a perisubstitution
of PDI or a Cu-catalyzed radical cycle, which produces bay-
substituted derivatives.[19b]

First, we decided to test the catalyst-free reaction
(Scheme 1) by preparation of an intermediate under an
inert atmosphere and subsequent oxidation. PDI 1 was
heated in pyrrolidine under an inert atmosphere for 5 h at
60 °C, and a subsequent oxidation with pyridinium di-
chromate (PDC) gave 20–70% yield of 5a. The formation
of product 5a proves that the reaction proceeds through
the radical anion. However, the disubstituted compound 5b
appeared only in a trace amount in this case.

Scheme 1. Amination of dioctyl PDI 1 without catalyst.

The radical anion generated was highly sensitive to air,
and as a result the yield of the reaction varied greatly.
Hence, the amination of the aromatic ring of PDI 1 through
in situ oxidation with various oxidizing agents was ex-
plored. To our delight, pyrrolidination of dioctyl PDI 1
with KMnO4/AgNO3 as the oxidant, as reported Verbeeck
et al.,[22] proceeded regioselectively to afford exclusively the
1,6-dipyrrolidinyl isomer 5b in 65% yield (Scheme 2). The
yield and the substitution sites are in good agreement with
the results published by Rauch et al.[19b] However, in our
case, the substitution occurred without CuII catalysis and
heating.

www.eurjoc.org © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Eur. J. Org. Chem. 2015, 584–590586

Scheme 2. Regioselective amination of PDIs.

The effect of the oxidizing agent was studied next. When
PDC was used as the in situ oxidant, the yield of monopyr-
rolidyl PDI 5a was 41%, and a mixture of 1,6- and 1,7-
dipyrrolidyl PDIs was also isolated in 25 % total yield.
When a combination of PDC/AgNO3 was used for in situ
oxidation, the formation of dipyrrolidyl PDI 5b was greatly
enhanced, and the yields reached 60% for the 1,6-isomer
and 22% for the 1,7-isomer. The monopyrrolidyl PDI 5a
was obtained only in 15 % yield in this case. However, the
reaction times were as long as 6 and 4 d, respectively.
Surprisingly, the use of CuCl2 in the amination of PDI 1
with pyrrolidine yielded only a trace amount of dipyrrolidyl
PDI 5b after overnight stirring at room temperature. It
should also be noted that we have compared the NMR
spectra of the synthesized compounds with the spectra of
those prepared by the traditional bromination–pyrrolidin-
ation method[17a,17b] and we have not observed perisubsti-
tuted compounds, as described by Langhals.[19a]

According to our observations, the reactivity of PDIs
with different amido substituents in amination reactions,
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which was also reported by Rauhe et al.,[19b] is mostly
guided by the solubility. Thus, a mixture of PDI 1 with
piperidine produced only a trace amount of the product
even after prolonged stirring at room or elevated tempera-
tures owing to the poor solubility of 1 in piperidine. In con-
trast, the reaction of much more soluble PDI 1� with pyr-
rolidine or piperidine and KMnO4/AgNO3 proceeded
smoothly toward the disubstituted products 5b� and 6b�. A
complete set of reactions with KMnO4/AgNO3 and dif-
ferent substrates and nucleophiles is shown in Table 1. The
products were isolated by preparative TLC, and the yields
are given relative to the starting materials 1 and 1�. It
should be noted that the removal of the residual PTCDA
from 1 and 1� is not an easy task owing to its poor solu-
bility, and the apparent yields might be affected by that.

Table 1. Reactions of PDIs.

[a] Mixture of 1,6- and 1,7-dipyrrolidyl PDI. [b] Observed by TLC
and confirmed by MS. Mostly starting material remained in the
reaction.

Amination of PMIs

We decided to screen the applicability of the reaction to
other perylene derivatives. To our surprise, the presence of
the imide cycle played a crucial role in the amination of
perylenes. The reactions of perylenetetracarboxylic ester 2
and perylene monoanhydride diester 3[18g] under similar re-
action condition failed to produce the desired products, and
mostly unreacted starting compounds were recovered.

The most interesting results were obtained for the
perylenemonoimide diester (PMI diester) 4, as shown in
Scheme 3. When 4 was subjected to pyrrolidination, the re-
action produced a mixture of mono- and dipyrrolidinated
products in 60 and 20% yield, respectively. However, most
surprisingly, the substitution occurred exclusively at the bay
7- and 12-positions of the aromatic ring, which are distant
from the imide cycle. This conclusion was unambiguously
derived from the NMR spectroscopic data. The gradient
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HMBC (gHMBC) spectra of 7a and 7b (see Supporting In-
formation, S24 and S28) show that the singlets of protons
8-H and 11-H at δ = 7.82 ppm (disubstituted compound 7b)
and 8-H at 8.0 ppm (compound 7a) correlate to the C-9�
and C-10� carbonyl carbon atoms at δ = 169 and 168 ppm,
respectively. The latter two were identified by their cross-
peaks with the α-butoxy protons at δ = 4.33 ppm. Simulta-
neously, the doublet of 2-H and 5-H correlates to the carb-
onyl atoms of the imide cycle, which were in turn identified
by their cross-peaks with the α-amido methylene group of
the octyl tail.

Scheme 3. Regioselective amination of PMI diester.

The described reaction is truly unique as it offers regio-
directed substitution of perylene derivatives. The amination
of PMI diester 4 with piperidine as a nucleophile works
similarly and results in the formation of the mono- and di-
substituted PMI diester derivatives 8a and 8b in 64 and
31 % yield, respectively. The regiospecificity of the substitu-
tion was also preserved in this case, as confirmed by NMR
spectroscopy analysis. The reaction of PMI diester 4 was
screened under different conditions and with different oxi-
dants, and the results are summarized in Table 2. Unlike the

Table 2. PMI reactions and yield.

[a] The major spot was identified as 7a by TLC. A trace amount
of 7b also formed.
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Figure 2. (a) Absorption profile for the progress of reaction of PMI diester 4 in pyrrolidine under an argon atmosphere (black dashes:
0 h, dark gray dots: 4 h, gray solid line: 20 h, gray dash dot dot: 21 h, dark gray dashes: 23 h, black solid line: vial opened). (b) Absorption
of unsubstituted 4 (solid black), monopyrrolidyl 7a (dot black), and dipyrroliydyl 7b (dash black) PMI diesters.

reaction with the PDI, this reaction proceeds much faster
in the presence of CuCl2. Under copper catalysis, the reac-
tion can either be stopped at a monosubstitution step or
pushed further to the disubstituted product simply by
controlling the reaction time. On the other hand, in the
presence of PDC and AgNO3 under argon, the reaction
also led to the monosubstituted product 7a in good yield
and gave practically no disubstitution.

The absorption spectra for the reaction of PMI diester 4
and pyrrolidine under argon and the absorption spectra of
the products after the exposure of the reaction mixture to
ambient air are shown in Figure 2. The spectrum of the
intermediate is similar to that observed for the diimide radi-
cal anion intermediate (Figure 1) and shows a distinct ab-
sorption in the near-IR region. Therefore, we suggest that
the reaction also proceeds via a radical anion intermediate.
The process does not necessarily require a catalyst, at least
to obtain monosubstituted compounds (Table 2, Entry 3).
However, the catalyst is needed for the preparation of di-
substituted molecules in reasonable yields. The Cu-cata-
lyzed reaction did not show the anion radical species by
UV/Vis spectroscopy, most probably because of their fast
oxidation upon formation.[19b] Silver nitrate alone may also
serve as a catalyst for the amination. The results of the
amination of PMI diester 4 are shown in Table 2.

Conclusions

We have found that the direct amination of perylene-
imides proceeds as a stepwise substitution via a perylene
radical anion and its subsequent oxidation. The substitu-
tion predominantly occurs regioselectively at the 1,6- and
7,12-positions of the bay region for perylenediimide and
perylenemonoimide diester, respectively. The imide cycle di-
rects the substitution to the distant position of the bay re-
gion; however, the presence of the imide is essential for the
reaction to occur. The substitution occurs as a one-pot re-
action with yields of 20–97% and can be controlled to pro-
duce selected products (mono or disubstituted perylenes) by
variation of the oxidant.
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Experimental Section
General: All commercially available reagents and solvents were pur-
chased either from Sigma–Aldrich or from VWR and used without
further purifications unless otherwise mentioned. The products
were purified either by column chromatography with silica gel 60
(Merck) mesh size 40–63 μm or by preparative TLC with neutral
aluminium oxide 60 F254 plates (Merck). The NMR spectra were
recorded with a Varian Mercury 300 MHz spectrometer with
tetramethylsilane (TMS) as the internal standard. HRMS measure-
ments were performed with a Waters LCT Premier XE ESI-TOF
bench-top mass spectrometer. Lock-mass correction (leucine
enkephalin as reference compound), centering, and calibration
were applied to the raw data to obtain accurate masses.

General Procedure for the Direct Amination of Peryleneimides: Sil-
ver nitrate (1–10 equiv.) was added to a stirred solution of perylene-
imide (1 equiv.) in the amine (1.5–5 mL), and the mixture was
stirred for 10 min. Powdered KMnO4 (1–10 equiv.) was added to
this reaction mixture in portions over a period of 30 min, and stir-
ring was continued for another 16 h. On completion, the reaction
mixture was concentrated under reduced pressure, and the residue
was dissolved in chloroform (20 mL). The organic phase was
washed with water (2 � 50 mL) and dried with Na2SO4, and the
solvents were evaporated. The crude product was purified by TLC
(neutral aluminum oxide 60 F254 TLC plates with dichloromethane
as eluent) to yield the pure compound.

2,9-Dioctylisoquinolino[4�,5�,6�:6,5,10]anthra[2,1,9-def]isoquinoline-
1,3,8,10(2H,9H)-tetrone (1) and 2,9-Bis(2,5-di-tert-butylphenyl)-
isoquinolino[4� ,5� ,6� :6,5,10]anthra[2,1,9-def ] isoquinoline-
1,3,8,10(2H,9H)-tetrone (1�): Compounds 1 and 1� were prepared
from perylenetetracarboxylic anhydride (PTCDA) according to the
literature procedure described by Langhals.[20]

Tetrabutyl Perylene-3,4,9,10-tetracarboxylate (2) and Dibutyl 1,3-
Dioxo-1H,3H-benzo[5,10]anthra[2,1,9-def]isochromene-8,9-dicarb-
oxylate (3): These compounds were prepared from perylenetetra-
carboxylic anhydride (PTCDA) according to the procedure de-
scribed by Wang et al.[18g]

Dibutyl 2-Octyl-1,3-dioxo-2,3-dihydro-1H-benzo[5,10]anthra[2,1,9-
def]isoquinoline-8,9-dicarboxylate (4): A mixture of 3 (0.193 mmol,
101 mg), imidazole (1.0 g), and n-octylamine (1.15 mmol, 191 μL)
was stirred at 140 °C for 4 h. On completion, the reaction mixture
was cooled to 60 °C, and ethanol (5 mL) was added. The mixture
was neutralized by the dropwise addition of HCl (2 m) and ex-
tracted with toluene (three times). The organic phase was washed
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with water (twice), dried with Na2SO4, and concentrated. The
crude product was purified through silica gel with dichloromethane
as the eluent to yield 4 (83 mg, 68%) as a dark red solid. 1H NMR
(300 MHz, CDCl3, TMS): δ = 8.36–8.39 (d, J = 7.92 Hz, 2 H), 8.13
(t, J = 8.50 Hz, 4 H), 7.95–7.97 (d, J = 7.92 Hz, 2 H), 4.36 (t, J =
6.74 Hz, 4 H), 4.16 (t, J = 7.62 Hz, 2 H), 1.67–1.94 (m, 6 H), 1.20–
1.64 (m, 15 H), 1.02 (t, J = 7.33 Hz, 6 H), 0.88 (s, 3 H) ppm. 13C
NMR (75 MHz, CDCl3, TMS): δ = 168.44, 163.58, 135.24, 132.04,
132.00, 131.27, 130.39, 129.24, 129.03, 128.99, 122.59, 125.83,
122.16, 121.77, 65.81, 56.56, 40.80, 32.08, 30.86, 29.60, 29.51,
28.37, 27.45, 22.89, 19.51, 14.36, 14.06, 9.60, 0.23 ppm. HRMS
(ESI-TOF): calcd. for C40H43NO6 [M]+ 633.3085; found 633.3068.

2,9-Dioctyl-5-(pyrrolidin-1-yl)isoquinolino[4�,5�,6�:6,5,10]anthra-
[2,1,9-def]isoquinoline-1,3,8,10(2H,9H)-tetrone (5a): Pyrrolidine
(20 mL) was bubbled with argon for 5 min, and 1 (0.0138 mmol,
8.5 mg) was added. The resultant mixture was again purged with
argon for 1 min and heated at 60 °C for 5 h. A pyridinium dichro-
mate solution (0.138 mmol, 5.3 mg dissolved in pyrrolidine and
purged with argon for 5 min) was added to the reaction mixture,
which was then stirred for 5 min. The reaction was quenched with
water (20 mL), extracted with chloroform (three times), dried with
Na2SO4, and concentrated. The crude product was purified by TLC
(neutral aluminum oxide 60 F254 TLC plates with dichloromethane
as eluent) to yield 5a as a green solid (7.2 mg, 70%). 1H NMR
(300 MHz, CDCl3, TMS): δ = 8.57–8.64 (m, 2 H), 8.29–8.49 (m, 4
H), 7.39–7.57 (m, 1 H), 4.09–4.31 (m, 4 H), 3.58–3.83 (m, 2 H),
2.74 (br s, 2 H), 1.88–2.23 (m, 4 H), 1.65–1.86 (m, 4 H), 1.23–1.52
(m, 21 H), 0.88 (t, J = 6.74 Hz, 6 H) ppm. 13C NMR (75 MHz,
CDCl3, TMS): δ = 163.87, 163.81, 163.71, 163.65, 148.40, 135.42,
135.18, 132.59, 130.95, 130.68, 128.93, 128.59, 127.11, 124.19,
126.56, 123.68, 122.98, 122.56, 122.33, 121.62, 120.41, 118.96,
115.83, 52.42, 40.67, 40.58, 31.86, 31.85, 29.42, 29.37, 29.28, 29.25,
28.18, 27.24, 27.18, 25.78, 22.66, 14.12 ppm. HRMS (ESI-TOF):
calcd. for C44H49N3O4 [M]+ 683.3718; found 683.3740.

2,9-Dioctyl-5,13-di(pyrrolidin-1-yl)isoquinolino[4�,5�,6�:6,5,10]-
anthra[2,1,9-def]isoquinoline-1,3,8,10(2H,9H)-tetrone (5b): The
compound was prepared by following the general procedure for the
direct amination of peryleneimides. Compound 1 (0.0325 mmol,
20 mg) was stirred with silver nitrate (0.0516 mmol, 8.7 mg) in pyr-
rolidine (5 mL). Powdered KMnO4 (0.0516 mmol, 8.2 mg) was
added to the reaction mixture, which was then stirred for 24 h to
afford 5b (65%, 15.8 mg) as a dark blue solid. 1H NMR (300 MHz,
CDCl3, TMS): δ = 8.68 (d, J = 7.92 Hz, 2 H), 8.34 (s, 2 H), 7.86
(d, J = 8.21 Hz, 2 H), 4.13–4.36 (m, 4 H), 3.56–3.91 (m, 4 H), 2.77
(br s, 3 H), 1.87–2.23 (m, 8 H), 1.67–1.86 (m, 4 H), 1.13–1.53 (m,
30 H), 0.87 (t, J = 6.74 Hz, 9 H) ppm. 13C NMR (75 MHz, CDCl3,
TMS): δ = 164.65, 164.35, 150.24, 135.94, 131.28, 130.45, 128.73,
128.47, 123.52, 123.11, 117.99, 117.80, 117.19, 117.10, 52.40, 40.87,
40.69, 32.09, 32.06, 29.93, 29.68, 29.59, 29.49, 29.46, 28.49, 28.44,
27.49, 27.38, 25.90, 22.89, 14.34 ppm. HRMS (ESI-TOF): calcd.
for C48H56N4O4 [M]+ 752.4296; found 752.4291.

2,9-Bis(2,5-di-tert-butylphenyl)-5,13-di(pyrrolidin-1-yl)isoquinolino-
[4�,5�,6�:6,5,10]anthra[2,1,9-def]isoquinoline-1,3,8,10(2H,9H)-tetrone
(5b�): The general procedure for the direct amination was followed
by stirring 1� (0.026 mmol, 20 mg), AgNO3 (0.26 mmol, 44 mg),
and powdered KMnO4 (0.26 mmol, 41 mg) in pyrrolidine (3 mL)
for 24 h at room temperature to give 5b� (69 %, 16.3 mg) as a dark
blue solid. 1H NMR (300 MHz, CDCl3, TMS): δ = 8.76 (d, J =
8.21 Hz, 2 H), 8.41 (s, 2 H), 7.92 (dd, J = 8.21 Hz, 2 H), 7.63–7.59
(m, 2 H), 7.49–7.44 (m, 2 H), 7.03–7.00 (m, 2 H), 3.77 (br, 3 H),
2.86 (br, 3 H), 2.05 (br, 8 H), 1.36–1.33 (m, 36 H) ppm. 13C NMR
(75 MHz, CDCl3, TMS): δ = 165.38, 165.17, 150.08, 150.03,
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150.01, 149.95, 143.88, 143.86, 136.05, 136.03, 133.59, 133.56,
132.96, 132.93, 131.45, 130.93, 130.67, 128.87, 128.83, 128.73,
128.68, 127.79, 127.67, 126.19, 126.01, 123.34, 123.24, 118.08,
117.93, 117.36, 117.12, 52.21, 35.58, 35.56, 34.23, 31.86, 31.83,
31.25, 31.23, 29.69, 25.72 ppm. HRMS (ESI-TOF): calcd. for
C60H64N4O4 [M]+ 904.4922; found 904.4949.

2,9-Bis(2,5-di-tert-butylphenyl)-5,13-di(piperidin-1-yl)isoquinolino-
[4�,5�,6�:6,5,10]anthra[2,1,9-def]isoquinoline-1,3,8,10(2H,9H)-tetrone
(6b�): The general procedure for the direct amination was followed
by stirring 1� (0.013 mmol, 10 mg), AgNO3 (0.13 mmol, 22 mg),
and powdered KMnO4 (0.13 mmol, 21 mg) in piperidine (1.5 mL)
for 24 h at room temperature to give 6b� (60%, 7.3 mg) as a dark
blue solid. 1H NMR (300 MHz, CDCl3, TMS): δ = 9.81 (d, J =
8.50 Hz, 2 H), 8.68 (d, J = 8.50 Hz, 2 H), 8.46 (s, 2 H), 7.62–7.59
(m, 2 H), 7.49–7.44 (m, 2 H), 7.02–6.98 (m, 2 H), 3.48–3.38 (m, 4
H), 2.98–2.87 (m, 4 H), 1.92–1.74 (m, 12 H), 1.35–1.32 (m, 36 H)
ppm. 13C NMR (75 MHz, CDCl3, TMS): δ = 164.80, 164.69,
153.45, 150.09, 150.01, 143.91, 143.82, 136.42, 136.39, 133.21,
132.74, 132.09, 131.17, 129.35, 128.77, 128.72, 128.30, 127.74,
127.58, 126.26, 126.15, 123.87, 123.57, 123.46, 122.86, 121.16,
120.58, 53.20, 53.08, 35.56, 34.25, 33.70, 31.93, 31.83, 31.25, 31.23,
30.16, 29.71, 29.37, 26.70, 25.87, 23.77, 22.70 ppm. HRMS (ESI-
TOF): calcd. for C62H68N4O4 [M]+ 932.5235; found 932.5287.

Dibutyl 2-Octyl-1,3-dioxo-6-(pyrrolidin-1-yl)-2,3-dihydro-1H-benzo-
[5,10]anthra[2,1,9-def]isoquinoline-8,9-dicarboxylate (7a) and Di-
butyl 2-Octyl-1,3-dioxo-6,11-di(pyrrolidin-1-yl)-2,3-dihydro-1H-
benzo[5,10]anthra[2,1,9-def]isoquinoline-8,9-dicarboxylate (7b): The
general procedure for the direct amination was followed by stirring
4 (0.0946 mmol, 60 mg), AgNO3 (0.945 mmol, 160 mg), and pow-
dered KMnO4 (0.945 mmol, 150 mg) in pyrrolidine (1.5 mL) for
24 h at room temperature to give 7a (40 mg, 60%) and 7b (14.2 mg,
20%) as dark solids.

Data for 7a: 1H NMR (300 MHz, CDCl3, TMS): δ = 8.68–8.49 (m,
2 H), 8.46–8.27 (m, 2 H), 8.00 (s, 1 H), 7.95 (d, J = 8.05 Hz,1 H),
7.15 (d, J = 8.05 Hz, 1 H), 4.44–4.29 (m, 4 H), 4.26–4.16 (m, 2 H),
3.83–3.67 (m, 2 H), 3.67–3.61 (m, 2 H), 2.87–2.65 (m, 2 H), 2.18–
2.00 (m, 2 H), 2.00–1.88 (m, 2 H), 1.87–1.69 (m, 6 H), 1.60–1.39
(m, 8 H), 1.39–1.21 (m, 10 H), 1.02 (t, J = 7.24 Hz, 3 H), 0.98 (t,
J = 7.24 Hz, 3 H), 0.91–0.84 (m, 3 H) ppm. 13C NMR (75 MHz,
CDCl3, TMS): δ = 169.07, 168.10, 164.29, 164.16, 147.91, 136.52,
131.43, 131.26, 131.15, 131.02, 130.46, 129.26, 127.03, 126.17,
123.47, 122.69, 121.96, 120.73, 119.60, 117.58, 111.76, 70.77, 65.72,
65.66, 52.73, 40.68, 32.09, 30.92, 30.82, 29,92, 29.66, 29.50, 28.43,
27.48, 25.93, 22.89, 19.50, 19.48, 14.34, 14.06, 14.04 ppm. HRMS
(ESI-TOF): calcd. for C44H50N2O6 [M]+ 702.3663; found 702.3704.

Data for 7b: 1H NMR (300 MHz, CDCl3, TMS): δ = 8.65 (t, J =
7.92 Hz, 2 H), 7.83 (s, 2 H), 7.51 (t, J = 7.92 Hz, 2 H), 4.33 (t, J =
7.04 Hz, 4 H), 4.24 (t, J = 7.33 Hz, 2 H), 3.90–3.50 (m, 4 H), 3.02–
2.52 (m, 4 H), 1.84–1.71 (m, 6 H), 1.55–1.40 (m, 8 H), 0.99 (t, J =
7.33 Hz, 6 H), 0.93–0.79 (m, 3 H) ppm. 13C NMR (75 MHz,
CDCl3, TMS): δ = 168.65, 164.57, 149.95, 136.62, 132.95, 131.30,
130.34, 128.61, 128.46, 122.89, 116.45, 116.34, 115.89, 112.60,
65.63, 52.61, 40.61, 32.11, 30.88, 29.93, 29.70, 29.51, 28.52, 27.51,
25.97, 22.89, 19.49, 14.35, 14.07 ppm. HRMS (ESI-TOF): calcd.
for C48H57N3O6 [M]+ 771.4242; found 771.4203.

Dibutyl 2-Octyl-1,3-dioxo-6-(piperidin-1-yl)-2,3-dihydro-1H-benzo-
[5,10]anthra[2,1,9-def]isoquinoline-8,9-dicarboxylate (8a) and Di-
butyl 2-Octyl-1,3-dioxo-6,11-di(piperidin-1-yl)-2,3-dihydro-1H-
benzo[5,10]anthra[2,1,9-def]isoquinoline-8,9-dicarboxylate (8b): The
general procedure for the direct amination was followed by stirring
4 (0.0.032 mmol, 20.5 mg), AgNO3 (0.32 mmol, 53 mg), and pow-
dered KMnO4 (0.32 mmol, 50 mg) in piperidine (3 mL) for 24 h at
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room temperature to give 8a (15 mg, 64%) and 8b (8 mg, 31%) as
dark solids.

Data for 8a: 1H NMR (300 MHz, CDCl3, TMS): δ = 9.29 (d, J =
8.21 Hz, 2 H), 8.54–8.46 (m, 2 H), 8.29 (d, J = 7.92 Hz, 2 H), 8.00
(s, 1 H), 7.94 (d, J = 7.92 Hz, 1 H), 4.38–4.31 (m, 4 H), 4.22 (t, J
= 7.33 Hz, 2 H), 3.41–3.37 (m, 2 H), 2.97–2.89 (m, 2 H), 1.85–1.71
(m, 11 H), 1.57–1.25 (m, 20 H), 1.03–0.07 (m, 6 H), 0.90–0.85 (m,
3 H) ppm. 13C NMR (75 MHz, CDCl3, TMS): δ = 168.91, 168.32,
164.16, 163.83, 151.31, 137.11, 136.16, 131.90, 131.74, 131.71,
131.57, 131.53, 131.17, 129.26, 129.06, 127.71, 126.89, 124.44,
124.27, 123.53, 123.17, 121.39, 120.51, 119.82, 118.4, 65.75, 65.68,
52.80, 40.70, 32.08, 30.90, 30.80, 29.93, 29.63, 29.48, 28.42, 27.45,
25.93, 24.08, 22.88, 19.49, 14.33, 14.05 ppm. HRMS (ESI-TOF):
calcd. for C45H52N2O6Na [M + Na]+ 739.3718; found 739.3747.

Data for 8b: 1H NMR (300 MHz, CDCl3, TMS): δ = 9.39 (d, J =
8.21 Hz, 2 H), 8.58 (d, J = 8.21 Hz, 2 H), 7.85 (s, 2 H), 4.34 (t, J
= 7.04 Hz, 4 H), 4.23 (t, J = 7.62 Hz, 2 H), 3.35–3.31 (m, 4 H),
2.90–2.82 (m, 4 H), 1.82–1.72 (m, 16 H), 1.51–1.43 (m, 7 H),1.28–
1.25 (m, 15 H), 1.01 (t, J = 7.33 Hz, 6 H), 0.90–0.85 (m, 4 H) ppm.
13C NMR (75 MHz, CDCl3, TMS): δ = 168.66, 164.15, 152.31,
137.36, 134.14, 131.66, 131.02, 129.02, 128.2, 123.12, 121.22,
119.77, 119.4, 119.06, 65.66, 53.06, 40.63, 32.09, 30.82, 29.92,
29.65, 29.48, 28.47, 27.48, 25.99, 24.16, 22.88, 19.47, 14.33, 14.03
ppm. HRMS (ESI-TOF): calcd. for C50H61N3O6 [M]+ 799.4555;
found 799.4553.

Supporting Information (see footnote on the first page of this arti-
cle): NMR spectra of all the compounds synthesized for the current
work.

Acknowledgments

The authors gratefully acknowledge the financial support from the
Academy of Finland.

[1] a) C. Huang, S. Barlow, S. R. Marder, J. Org. Chem. 2011, 76,
2386–2407, and references cited therein; b) A. Ajayaghosh, S. J.
George, A. P. H. Schenning, Top. Curr. Chem. 2005, 258, 83–
118; c) F. Wuerthner, Chem. Commun. 2004, 1564–1579, and
references cited therein; d) B. A. Jones, M. J. Ahrens, M. H.
Yoon, A. Facchetti, T. J. Marks, M. R. Wasielewski, Angew.
Chem. Int. Ed. 2004, 43, 6363–6366; Angew. Chem. 2004, 116,
6523; e) C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Ma-
ter. 2002, 14, 99–177.

[2] M. R. Wasielewski, J. Org. Chem. 2006, 71, 5051.
[3] a) C. W. Tang, Appl. Phys. Lett. 1986, 48, 183–185; b) L.

Schmidt-Mende, A. Fechtenkotter, K. Mullen, E. Moons, R.
Friend, J. Mackenzie, Science 2001, 293, 1119–1122.

[4] Z. Chen, M. G. Debije, T. Debaerdemaeker, P. Osswald, F.
Wuerthner, ChemPhysChem 2004, 5, 137–140.

[5] B. Wang, C. Yu, Angew. Chem. Int. Ed. 2010, 49, 1485–1488;
Angew. Chem. 2010, 122, 1527.

[6] M. A. Angadi, D. Gosztola, M. R. Wasielewski, Mater. Sci.
Eng. B 1999, 63, 191–194.

[7] M. P. O’neil, M. P. Niemczyk, W. A. Svec, D. Gosztola, G. L.
Gaines III, M. R. Wasielewski, Science 1992, 257, 63–65.

[8] J. A. A. W. Elemans, R. Van Hameren, R. J. M. Nolte, A. E.
Rowan, Adv. Mater. 2006, 18, 1251–1266.

[9] M. S. Rodrigues-Morgade, T. Torres, C. Atienza-Castellanos,
D. M. Guldi, J. Am. Chem. Soc. 2006, 128, 15145–15154.

[10] F. Wuerthner, T. E. Kaiser, C. R. Saha-Möller, Angew. Chem.
Int. Ed. 2011, 50, 3376–3410; Angew. Chem. 2011, 123, 3436.

[11] a) L. Feiler, H. Langhals, K. Polborn, Liebigs Ann. 1995, 1229–
1244; b) H. Quante, K. Mullen, Angew. Chem. Int. Ed. Engl.

www.eurjoc.org © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Eur. J. Org. Chem. 2015, 584–590590

1995, 34, 1323–1235; Angew. Chem. 1995, 107, 1487; c) F. O.
Holtrup, G. R. J. Muller, H. Quante, S. De Feyter, F. C.
De Schryver, K. Mullen, Chem. Eur. J. 1997, 3, 219–225; d)
G. R. J. Muller, C. Meiners, V. Enkelmann, Y. Geerts, K.
Mullen, J. Mater. Chem. 1998, 8, 61–64; e) S. Sengupta, R. K.
Dubey, R. W. M. Hoek, S. P. P. van Eeden, D. D. Gunbas, F. C.
Grozema, E. J. R. Sudhölter, W. F. Jager, J. Org. Chem. 2014,
79, 6655–6662.

[12] a) S. I. Yang, R. K. Lammi, S. Prathapan, M. A. Miller, J. Seth,
J. R. Diers, D. F. Bocian, J. S. Lindsey, D. Holten, J. Mater.
Chem. 2001, 11, 2420–2430; b) C. Kirmaier, S. I. Yang, S. Pra-
thapan, M. A. Miller, J. R. Diers, D. F. Bocian, J. S. Lindsey,
D. Holten, Res. Chem. Intermed. 2002, 28, 719–740; c) D.
Gosztola, M. P. Niemczyk, M. R. Wasielewski, J. Am. Chem.
Soc. 1998, 120, 5118–5119; d) M. J. Fuller, M. R. Wasielewski,
J. Phys. Chem. B 2001, 105, 7216–7219; e) E. M. Just, M. R.
Wasielewski, Superlattices Microstruct. 2000, 28, 317–328; f)
R. T. Hayes, M. R. Wasielewski, D. Gosztola, J. Am. Chem.
Soc. 2000, 122, 5563–5567; g) A. S. Lukas, Y. Zhao, S. E.
Miller, M. R. Wasielewski, J. Phys. Chem. B 2002, 106, 1299–
1306.

[13] X. Mo, H. Z. Chen, M. M. Shi, M. Wang, Chem. Phys. Lett.
2006, 417, 457–460.

[14] S. Asir, A. S. Demir, H. Icil, Dyes Pigm. 2010, 84, 1–13.
[15] A. Böhm, H. Arms, G. Henning, P. Blaschka (BASF AG), DE

19547209 A1, 1997.
[16] F. Wuerthner, V. Stepanenko, Z. Chen, C. R. Saha-Möller, N.

Kocher, D. Stalke, J. Org. Chem. 2004, 69, 7933–7939.
[17] a) R. K. Dubey, A. Efimov, H. Lemmetyinen, Chem. Mater.

2011, 23, 778–788; b) H. Y. Tsai, C. W. Chang, K. Y. Chen, Tet-
rahedron Lett. 2014, 55, 884–888; c) H. Y. Tsai, K. Y. Chen, J.
Lumin. 2014, 149, 103–111; d) R. K. Dubey, M. Niemi, K. Kau-
nisto, A. Efimov, N. V. Tkachenko, H. Lemmetyinen, Chem.
Eur. J. 2013, 19, 6791–6806; e) A. Keerthi, S. Valiyaveettil, J.
Phys. Chem. B 2012, 116, 4603–4614; f) N. V. Handa, K. D.
Mendoza, L. D. Shirtcliff, Org. Lett. 2011, 13, 4724–4727.

[18] a) A. G. Slater, E. S. Davies, S. P. Argent, W. Lewis, A. J. Blake,
J. McMaster, N. R. Champness, J. Org. Chem. 2013, 78, 2853–
2862; b) S. Nagarajan, C. Barthes, N. K. Girdhar, T. T. Dang,
A. Gourdon, Tetrahedron 2012, 68, 9371–9375; c) T. Fukamin-
ato, T. Doi, N. Tamaoki, K. Okuno, Y. Ishibashi, H. Miyasaka,
M. Irie, J. Am. Chem. Soc. 2011, 133, 4984–4990; d) Á. J. Jimé-
nez, M. J. Lin, C. Burschka, J. Becker, V. Settels, B. Engels, F.
Würthner, Chem. Sci. 2014, 5, 608–619; e) T. Heek, F.
Würthner, R. Haag, Chem. Eur. J. 2013, 19, 10911–10921; f)
M. H. Luo, K. Y. Chen, Dyes Pigm. 2013, 99, 456–464; g) R.
Wang, Z. Shi, C. Zhang, A. Zhang, J. Chen, W. Guo, Z. Sun,
Dyes Pigm. 2013, 98, 450–458; h) M. J. Lin, Á. J. Jiménez, C.
Burschka, F. Würthner, Chem. Commun. 2012, 48, 12050–
12052; i) M. Bagui, T. Dutta, H. Zhong, S. Li, S. Chakraborty,
A. Keightley, Z. Peng, Tetrahedron 2012, 68, 2806–2818; j) L.
Perrin, P. Hudhomme, Eur. J. Org. Chem. 2011, 28, 5427–5440.

[19] a) H. Langhals, S. Christian, A. Hofer, J. Org. Chem. 2013, 78,
9883–9891; b) G. Rauch, S. Höger, Chem. Commun. 2014, 50,
5659–5661.

[20] H. Langhals, Heterocycles 1995, 40, 477–500.
[21] a) D. Gosztola, M. P. Niemczyk, W. Svec, A. S. Lukas, M. R.

Wasielewski, J. Phys. Chem. A 2000, 104, 6545–6551; b) S.
Brochsztain, R. O. Marcon, Langmuir 2007, 23, 11972–11976;
c) M. D. Miguel, M. Alvaro, H. Garcia, F. J. C. Guirao, F. F.
Lazaro, A. S. Santos, J. Photochem. Photobiol. A: Chem. 2012,
231, 28–32; d) F. S. Goodson, D. K. Panda, S. Ray, A. Mitra,
S. Guha, S. Saha, Org. Biomol. Chem. 2013, 11, 4797–4803.

[22] a) S. Verbeeck, W. A. Herrebout, A. A. Gulevskaya, B. A.
Van der Veken, B. U. W. Maes, J. Org. Chem. 2010, 75, 5126–
5133; b) F. Doria, M. di Antonio, M. Benotti, D. Verga, M.
Freccero, J. Org. Chem. 2009, 74, 8616–8625.

Received: October 13, 2014
Published Online: December 12, 2014



 

 

II   

 

 

SYNTHESIS AND STUDY OF ELECTROCHEMICAL AND OP-

TICAL PROPERTIES OF SUBSTITUTED PERYLENEMO-

NOIMIDES IN SOLUTIONS AND ON SOLID SURFACES 

 

 

 

by 
 

Zafar Ahmed, Lijo George, Arto Hiltunen, Helge Lemmetyinen, Terttu Hukka 
and Alexander Efimov 

J. Mater. Chem. A, 2015, 3, 13332–13339 
Reproduced with kind permission from The Royal Society of Chemistry (RSC). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Synthesis and study of electrochemical and optical
properties of substituted perylenemonoimides in
solutions and on solid surfaces†

Zafar Ahmed, Lijo George, Arto Hiltunen, Helge Lemmetyinen, Terttu Hukka
and Alexander Efimov*

A new and efficient methodology towards the synthesis of 7-pyrrolidinyl and 7,12-bispyrrolidinyl

perylenemonoimide monoanhydrides (PMI monoanhydrides) and their corresponding dicarboxylic acids

is devised. The high yields (70–96%) and facile synthesis of PMI monoanhydrides, as compared to

traditional methodologies, make the method attractive and versatile. The reported 7,12-bispyrrolidinyl

PMI monoanhydrides are a new family of peryleneimides, where both the bay-substituents are located

towards the anhydride cycle. The electrochemical and optical properties of target molecules and their

precursors were investigated using UV-Vis spectroscopy and differential pulse voltammetry. Atomic

charges and electronic properties were calculated using density functional theory (DFT). In addition,

self-assembling monolayers of the PMI monoanhydrides and their corresponding diacids were

successfully formed over ZnO and TiO2 films. The results of the current study indicate that these

molecules are potentially good candidates for various applications in the fields of organic electronics

and solar cells.

Introduction

Perylene dyes are one of the most versatile and robust chro-
mophores known to be thermally and photophysically stable.
Their discovery almost a century ago has not limited the interest
of chemists in developing new synthetic methods for improving
their applications.1a,b Initially used as vat dyes,2 their applica-
tions gradually spread to several high-tech elds like sensitizers
in organic solar cells,3 photovoltaics,4 biosensors,5 articial
photosynthesis,6 and several other optical devices.7

The functionalization of the perylene core at peri-, bay- and
ortho-positions greatly inuences the solubility, and electronic
and morphological properties of the dyes.8 The substitution at
the peri-position and its effect on the morphology, solubility
and chrystallochromic properties of PDI dyes have been repor-
ted.9 Similarly, the functionalization at the bay-position via
halogenation,10 Pd coupling,11 and catalytic or catalyst free
oxidation12 has also been published. The alkylation,13 aryla-
tion,14 borylation15 and halogenation16 at ortho-positions are
well documented.

Since the substitution pattern greatly inuences the chem-
ical and physical properties of perylene dyes, it is crucial to keep
these properties in mind while devising the molecules for

specic applications. For example, it is known that when per-
ylene derivatives are used as sensitizers in DSSCs, the molecule
should have an anchoring group through which it can bind to
the substrate surface and the presence of electron donating
groups on the perylene core increases the photoconversion
efficiency.17–19 All these molecules carry either aryloxy or thio-
phenolic substituents in the bay-region. In their work, Imahori
et al. have reported the synthesis and application of electron
donating 1,7-substituted perylene tetracarboxylic acid deriva-
tives.20 Recently, Sengupta and co-workers have described the
synthesis of 1,7-dibromo perylene monoimide anhydride.21 All
these synthetic strategies are heavily dependent on the presence
of good leaving groups at the bay-positions. This results in
either an isomeric mixture of 1,7- and 1,6-substitued products
or involves tedious purication steps and yield losses.21,22

Additionally, selective conversion of imide to anhydride
through saponication produces low yields and a mixture of
mono and bisanhydride.23a,b

Despite established knowledge about differences in the
properties of isomeric perylene diimides,22f,24 efforts have been
mostly focused on the synthesis or purication of 1,7-
substituted isomers of PDIs.22a,b,25 This has resulted in poor
knowledge about the properties and potential applications of
1,6-isomers. Only very recently, the synthesis of the 1,6-isomer
of perylene imide has been reported.12a,b So far, only the 1,7-
isomer of the PMI anhydride or its derivatives have been studied
as sensitizers in DSSCs15 leaving 7,12-substituted perylene
monoimides with an anchoring group virtually unknown.
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We have recently published, rst of this kind, the synthesis
of isomerically pure 7- and 7,12-aminated perylene monoimide
diesters (PMI diesters), both under catalytic and catalyst free
conditions.12a Herein, we report further extension of our
methodology towards the synthesis of novel 7- and 7,12-
substituted perylene derivatives having strong electron
donating groups in the bay-region and anchoring groups at peri-
positions. The electrochemical and photophysical properties of
these compounds were studied both experimentally and
computationally in detail and self-assembling monolayers
(SAMs) were prepared over ZnO lms and TiO2 nanoparticles.
The results of our studies suggest that these compounds can be
good candidates for their potential use as sensitizers in DSSCs
and related applications.

Results and discussion
Synthesis

We have recently reported the synthesis of precursors 1–3 in 47–
96% yields.12a A treatment of perylene-3,4,9,10-tetracarboxylic
acid bisanhydride (PTCDA) with an alkanol and alkyl halide in a
homogeneous solution produced perylene tetraester (PTE).26

Selective hydrolysis and subsequent imidization with octyl-
amine resulted in the formation of perylene monoimide diester
PMI (diester) 1.12a The regioselective amination of PMI 1 at 7-, or
7,12-positions was performed under catalytic or catalyst free
conditions.

With precursors in hand, the hydrolysis of these PMI diesters
to dicarboxylic acids was attempted under different conditions.
Ester hydrolysis has been reported under acidic, basic and
neutral conditions.27 The most widely used method for the said
purpose is the basic hydrolysis carried out in the presence of
aqueous hydroxides and co-solvents at different temperatures.
Khurana et al. have reported the facile hydrolysis of esters with
potassium hydroxide in methanol at ambient temperature.28

However, a treatment of PMI diester 2 with KOH in methanol
failed to produce the desired diacid product. Similarly, the use
of trimethylsilyl iodide (TMSI) in various solvents resulted in
either partial hydrolysis or decarboxylation of diesters. The
same problem was encountered while attempting ester cleavage
using sulfuric acid at elevated temperatures. A prolonged
treatment of PMI diesters with KOH in a mixture of
THF : EtOH : H2O at room temperature or at 50 �C again
resulted in a monoacid along with several other spots on TLC.
Therefore, we decided to use the procedure described by Ter-
unuma et al.29 PMI diester 1 was heated at reux for 24 hours

with a 6 M aqueous solution of KOH in a 2 : 1 mixture of
THF : EtOH. The removal of solvents and treatment with 3 M
HCl gave the desired PMI diacid 5 in 96% yield (Scheme 1).

However, when 7-, or 7,12-pyrrolidyl PMI diesters 2 and 3
were subjected to similar reaction conditions, it was observed
that the pyrrolidinyl substituents at the bay-positions greatly
inuenced the dealkylation process. For example, even a longer
reaction time did not fully convert the starting material to
diacid products. The reaction mixtures contained by-products,
which proved to be challenging to separate from the desired
compounds. The close vicinity of the two carboxylic groups
resulted in the formation of an anhydride during purication
with an acidic mixture of organic solvents. In addition,
decomposition of product spots was also observed on the
HPTLC plates.

Keeping all the above mentioned limitations in mind, an
alternate approach toward the desired diacids was needed and a
ring closing–opening method was adopted. Acid hydrolysis of
PMI diesters 2 and 3 with p-toluenesulfonic acid in toluene at
elevated temperature21 yielded novel 7- and 7,12-substituted
PMI monohydrides 6 and 7 in 93 and 75% yields, respectively.

It is well established that this anhydride moiety opens up on
adsorption over TiO2, providing strong chemical interactions
with TiO2 surfaces and effective electronic coupling.30 This
property of the anhydride moiety makes it an excellent
anchoring group for sensitizers in DSSCs. The same dicarbox-
ylate functionality was achieved when compounds 6 and 7 were
heated at 100 �C with 2 equiv. of KOH in tBuOH. The desired
diacids 8 and 9 were obtained in 70 and 76% yields, respectively
(Scheme 2).

Theoretical calculations

In order to clarify the possible reasons for the selectivity of
substitution, we have performed the quantum chemical calcu-
lations. In our previous paper we suggested that the reaction
goes through an anion radical intermediate, and the specicity
of the substitution is guided by the charge distribution pattern
in the PMI anion radical.12a The atomic charges were calculated
using two different levels of theory. The calculations predict
that the negative charge is mostly localized on the ester side of

Scheme 1 Synthesis of PMI anhydride 4 and diacid 5.
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both the neutral and radical anion species of 1 and 2 and
especially on the four carbon atoms: d, 7, 8 and 9 or 10, 11, 12
and f (see Scheme 2, comp. 1). This makes the ester side rings
prone to electrophilic attack by the pyrrolidine moiety. Calcu-
lations predict that for ester 2, once the radical anion has
formed, carbon 12 becomes the most electronegative in the bay-
region (�0.366, at both levels of theory; compared with �0.261
or�0.259 for carbon 1). This makes carbon 12more attractive to
the approaching electrophile (Fig. 1).

The required level of theory for the quantum chemical
calculations has been veried by predicting HOMO/LUMO
energies for compounds 1–3. The theoretical values are in good
agreement with the experimental data (�3.6/�5.9 vs. �3.6/�6.1
for 1, �3.1/�5.2 vs. �3.1/�5.5 for 2, and �3.3/�5.0 vs. �2.8/
�5.2 for 3). More details on calculations can be found in
the ESI.†

Absorption/emission studies

The UV-vis absorption and emission spectra of compounds 1–3
and 5–9 are shown in Fig. 2. The spectra of perylene monoimide
diesters 1–3 were recorded in CHCl3 while for the correspond-
ing PMI anhydrides 6, 7 and diacids 5, 8 and 9, measurements
were made in ethanol.

It is very informative and evident to note the effect of the
pyrrolidinyl substituents at the 7- and 12-positions. In the case
of unsubstituted PMI diester 1, two distinct absorption bands at
506 nm and 476 nm are visible (Fig. 2a, comp. 1). One pyrroli-
dinyl substituent at the 7-position shis the absorption
maximum towards ca. 620 nm, and a second absorption band
appears at 410 nm (Fig. 2a, comp. 2). In the case of di-substi-
tution, i.e. 7,12-pyrrolidinyl PMI diester 3, the absorption region
becomes wider with a maximum at 642 nm and a second
absorption band at 528 nm. These features allow us to conclude
that the enhanced interaction between the pyrrolidinyl
substituents and the perylene core greatly inuences the optical
properties of the compounds. It is visible from the spectra that
the substituted PMI anhydrides 6 and 7 (Fig. 2c) and their
corresponding carboxylic acids 8 and 9 (Fig. 2e) retain the
absorptive features of their corresponding PMI diesters 2 and 3
(Fig. 2a). They absorb light in the visible region and cover a large
part of the spectrum from 475 up to 750 nm. Though
substituted PMI diesters, anhydrides and carboxylic acids show
similar absorption bands in the visible region, the PMI anhy-
drides 6 and 7 and acids 8 and 9 have molar extinction coeffi-
cients almost two folds higher than those of the diesters 2 and 3
at low energy (Fig. 2).

The emission properties of the substituted PMI diesters,
anhydrides, and diacids are almost identical, showing the

Scheme 2 Synthesis of PMI anhydrides and acids.

Fig. 1 MK charges of a radical anion of 2 calculated at the M062X/6-
311++G(d,p)//M062X/6-311++G(d,p) level of theory.
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emission maxima around 700 nm. The normalized emission
spectra of PMI diesters 1–3, anhydrides 6 and 7 and diacid 5, 8
and 9 are shown in Fig. 2b, d and f.

Electrochemical properties

Several properties and eld of applications of peryleneimides
and their derivatives depend on the energies of the frontier
orbitals, HOMO and LUMO. These energies and relative donor–
acceptor capabilities of perylenemonoimide diesters 1–3, PMI
monoimide anhydride 6, and diacid 5 were investigated by
differential pulse voltammetry (DPV) in benzonitrile containing
0.1 M tetrabutylammonium tetrauoroborate as a supporting
electrolyte. The obtained redox potentials (V vs. ferrocene) are
shown in Table 1 while the calculated HOMO–LUMO energy
levels are plotted in Fig. 4 (along with the data for TiO2 (ref. 31)
and fullerene32 for comparison). The IV curves can be found in
the ESI, pages S9–S13.†

The unsubstituted PMI diester 1 and the 12-pyrrolidinyl PMI
diester 2 exhibit very similar redox characteristics. Similarly,
both compounds show a single one-step irreversible oxidation,
where the oxidation peak was detected at around +1.1 V and
+0.45 V, respectively. The higher value of the oxidation potential
for compound 1 (Fig. 3) compared to the 12-substituted PMI
diester 2means that the unsubstituted PMI diester 1 is a weaker
electron donor compared to 2.

Similarly, the 7,12-pyrrolidinyl PMI diester 3 undergoes a
two-step reduction and a single-step oxidation. The reduction
occurs at around�1.5 V and�1.8 V, whereas the oxidation peak
appears at +0.25 V. The oxidation potentials of the 7-pyrrolidinyl
PMI diester 2 and 7,12-pyrrolidinyl diester 3 are quite similar.
The unsubstituted PMI diacid 5, on the other hand, undergoes a
three-step reversible reduction, reecting the rst, second and
third one-electron reductive processes. The reversible reduc-
tions occur at �0.9 V, �1.2 V, and �1.5 V. The diacid 5 shows
two irreversible oxidation peaks at higher oxidation potentials
of 1.52 and 1.73 V (spectra in the ESI†). The voltammograms of
the 12-pyrrolidinyl PMI monoanhydride 6 show two reversible
reductions at �1.1 V and �1.3 V. For the oxidative potentials, it
shows two reversible oxidation peaks around 0.6 V and 1.0 V.

Self-assembling monolayers

Commercially available indium-tin-oxide (ITO) coated glass
substrates were used to prepare ZnO layers using zinc acetate
and were fabricated according to the literature procedure.33 Self-
assembling monolayers (SAMs) were prepared in a single step.
The substrate plates were annealed at 150 �C for 1.5 hours,

Fig. 2 Absorption (a, c, and e), and emission (b, d, and f) spectra of PMI diesters 1–3 in CHCl3, anhydrides 6, 7, and acids 5, 8, 9 in ethanol. Abs. of
5* is normalised due to poor solubility.

Table 1 Redox potentials (V vs. ferrocene) of PMIs obtained by DPV
and HOMO and LUMO (eV) calculated against vacuum

Com E1red E2red E1ox E2ox HOMO LUMO

1 �1.2 �1.5 1.1 — �5.9 �3.6
2 �1.4 �1.6 0.4 — �5.2 �3.4
3 �1.5 �1.8 0.25 — �5.0 �3.3
5 �0.9 �1.2 1.1 1.3 �5.9 �3.9
6 �1.1 �1.3 0.6 1.0 �5.4 �3.7

This journal is © The Royal Society of Chemistry 2015 J. Mater. Chem. A, 2015, 3, 13332–13339 | 13335
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cooled, and immersed in 0.1 mM solutions of PMI diacid 5,
7,12-pyrrolidinyl PMI monoanhydride 7, and 7,12-pyrrolidinyl
PMI dicarboxylic acid 9 in ethanol. Aer 60 minutes, the plates
were taken out, thoroughly washed with ethanol, dried and the
absorption spectra were measured. The spectra for SAMs were
obtained by subtracting the absorbance of clean substrates
from that of SAMs.

The absorption spectra of SAMs of both diacids 5 and 9 and
7,12-substituted anhydride 7 (Fig. 5) differ from those in solu-
tion form (Fig. 2b and c). Particularly interesting are the
absorption features of 7,12-substituted PMI anhydride 7 and its
corresponding diacid 9. In solution, 7,12-substituted PMI
anhydride 7 shows two major absorption bands at 652 nm and
555 nm plus a weak band at ca. 453 nm (Fig. 2b). On solid
substrates, the major absorption bands shi towards the blue
region and a new band in the higher energy region (ca. 364) nm
appears (Fig. 5). Similarly 7,12-substituted PMI diacid 9, in
solution, exhibits two absorption bands at 545 nm and 652 nm
together with a shoulder at 612 nm. Aer immobilization on a
solid substrate, diacid 9 shows blue shied absorptions at 588
nm and 514 nm together with a high energy region absorption
band at 364 nm. It's important to note that the absorption
shape of SAMs of both the 7,12-substituted PMI anhydride 7
and its corresponding diacid 9 are essentially imitations of each
other. This can be explained by their mode of binding to the

substrate surface. The dicarboxylic acid 9 reacts strongly with
the ZnO surface and forms the desired monolayer. Whereas in
the case of 7,12-substituted PMI anhydride 7, the anhydride
moiety does the anchoring role via ring opening and the
resultant dicarboxylate groups bind to the substrate surface, as
proved by absorption.32

SAM layer formation was also studied on TiO2 as a substrate.
Annealed TiO2-coated glass plates were immersed in 0.1 mM
solutions of PMI diacids 5, 8, and 9, and 7,12-substituted PMI
anhydride 7. In the case of compounds 7, 8 and 9, the plates
were taken out aer 3 hours, washed, dried and absorption
spectra were recorded. For the PMI diacid 5, the deposition time
was 24 hours due to its poor solubility and therefore a low
concentration of the deposition solution. The absorption
spectra showed the formation of monolayers (Fig. 6).

All in all, the formation of monolayers was fast, efficient and
simple. Due to the asymmetric structure of PMIs, namely the
7,12-substitution, the formed layers have an intrinsically
anisotropic structure, which might have a benecial effect in
photovoltaic applications. Also, it should be noted that a
versatility of substitution in the bay-region and distant from the
imide side, along with the two possibilities for an anchor
(anhydride or bis-acid) makes the proposed PMI template an
attractive target for future studies in self-assembled molecular
lms.

Fig. 5 Absorption spectra of SAMs of PMI diacid 5, monoanhydride 7,
and dicarboxylic acid 9 on ITO/ZnO plates.

Fig. 6 Absorption spectra of SAMs of PMI diacids 5, 8, and 9 and PMI
anhydride 7 over glass/TiO2 plates.Fig. 4 HOMO and LUMO levels of PMIs against TiO2 and fullerene.

Fig. 3 DPV curve of compound 1 vs. ferrocene.
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Conclusions

A new and facile route towards the synthesis of novel 7- and
7,12-bispyrrolidinyl PMI monoanhydride and their dicarboxylic
acids is developed. The traditional synthesis of the PMI mon-
oanhydrides heavily depends upon selective saponication of
PDIs resulting in low yields due to the absence of selectivity.
Our methodology is free of selective saponication and thus
good to excellent yields for the substituted PMI mono-
anhydrides are obtained in a few steps. These substituted PMI
monoanhydrides are easily transformed into either corre-
sponding dicarboxylic acids or unsymmetrical PDIs by intro-
ducing a second imide functionality on the anhydride cycle.
Also, this is the rst report of this kind of synthesis, where PMI
monoanhydrides carry both the amine substituents at 7,12-
positions, distant from the imide cycle. The investigation of
their optical and electrochemical properties indicates that
these kinds of perylene derivatives can be applied in various
elds of materials chemistry and device preparations. The
immobilization studies of the PMI monoanhydrides and
diacids clearly indicate their usefulness as building blocks for
SAMs. The presence of the electron donating pyrrolidine
substituents in the bay-region and the presence of the
anchoring groups in the form of anhydride/carboxylic acids
make them attractive candidates for DSSCs and other types of
solar cells.

Experimental section
General

All commercially available reagents and solvents were
purchased either from Sigma Aldrich Co. or from VWR and were
used without further purication unless otherwise mentioned.
Purication of the products was carried out either by column
chromatography on silica gel 60 (Merck) mesh size 40–63 mm or
on preparative TLC plates (Merck) coated with neutral
aluminum oxide 60 F254. NMR spectra were recorded using a
Varian Mercury 300 MHz spectrometer using TMS as the
internal standard. HRMS measurements were done with a
Waters LCT Premier XE ESI-TOF bench top mass spectrometer.
Lock-mass correction (leucine enkephaline as the reference
compound), centering and calibration were applied to the raw
data to obtain the accurate mass.

Computational methods

Density functional theory (DFT) was applied in all calculations
using the Gaussian 09 (Revision D.01) suite of programs.34 The
n-octyl and n-butyl side chains of the molecules 1, 2 and 3 were
replaced by methyl (CH3) groups in the modelling of the
molecular structures. The geometries were optimized and
electronic properties were calculated using the B3LYP and
M062X functionals and the 6-311++G(d,p) basis set. The atomic
charges were computed using the same levels of theories by the
Merz–Kollman method35,36 for the neutral and radical ion
models of 1 and 2.

Synthesis of precursors 1, 2 and 3

Synthesis and characterization of precursors 1, 2 and 3 have
been reported in our previous article.12a

General procedure for synthesis of PMI anhydrides

Perylene monoimide diesters 1, 2 or 3 (1.0 equiv.) and p-tolue-
nesulfonic acid (5.0 equiv.) were taken in toluene (33 mL
mmol�1 PMI diester). The resultant mixture was stirred at 90 �C
for 18 hours (in the case of precursor 1, only 4 hours). Aer
cooling to room temperature, the solvent was evaporated. The
crude was dissolved in CHCl3 and washed with water (2�). The
organic phase was dried over Na2SO4, ltered and concentrated
on a rotary evaporator. The residue was taken in methanol and
reuxed for 2 hours. The precipitates were ltered and washed
with methanol to obtain pure products.

Synthesis of 2-octyl-1,3-dioxo-2,3-dihydro-1H-benzo[10,5]-
anthra[2,1,9-def]isoquinoline-8,9-dicarboxylic acid 5. PMI
diester 1 (0.157 mmol, 100 mg) was taken in a 2.53 mL mixture
of THF : EtOH (2 : 1 v/v). To this mixture, 0.835 mL of aq. KOH
(6 M) was added and the resultant mixture was heated at 80 �C
for 24 hours. The reaction mixture was cooled to room
temperature and solvents were removed on a rotary evaporator.
The pH was adjusted to ca. 4 by adding 3MHCl over an ice bath.
The precipitates were ltered and dried. The desired PMI diacid
5 was obtained as a red solid (80 mg, 97%).

Data for 5: 1H NMR (300 MHz, DMSO): d ¼ 8.69 (d, J ¼ 8.21
Hz, 2H), 8.63 (d, J ¼ 7.92 Hz, 2H), 8.45 (d, J ¼ 8.21 Hz, 2H), 4.04
(t, J¼ 7.33 Hz, 2H), 1.69–1.57 (m, 2H), 1.39–1.18 (m, 10H), 0.86–
0.81 (m, 3H) ppm. Due to poor solubility, 13C NMR data could
not be recorded. MS (ESI-TOF): [M+] calcd for C32H27NO6

+,
520.1777; found, 520.1760.

9-Octyl-5-(pyrrolidin-1-yl)-1H-isochromeno[60,50,40:10,5,6]
anthra[2,1,9-def]isoquinoline-1,3,8,10(9H)-tetraone 6. Starting
from 7-pyrrolidinyl PMI diester 2 (0.096 mmol, 68 mg) and p-
TsOH$H2O (0.483mmol, 91mg), 7-pyrrolidinyl PMI anhydride 6
was obtained as blue solids (51 mg, 91%).

Data for 6: 1H NMR (300 MHz, CDCl3, TMS): d ¼ 8.62 (t, J ¼
8.21 Hz, 2H), 8.45–8.33 (m, 4H), 7.47 (d, J¼ 8.21, 1H), 4.19 (t, J¼
7.62, 2H), 3.74 (br, 2H), 2.75 (br, 2H), 2.12–2.02 (m, 4H), 1.74–
1.70 (m, 2H), 1.44–1.25 (m, 6H), 0.89–0.84 (m, 3H) ppm. 13C
NMR (75 MHz, CDCl3, TMS): d ¼ 163.80, 163.69, 148.32, 134.95,
134.71, 134.35, 131.18, 131.00, 129.06, 128.55, 127.62, 125.35,
124.86, 124.68, 123.99, 122.54, 121.34, 119.91, 118.89, 118.26,
117.19, 52.83, 40.82, 32.05, 29.91, 29.59, 29, 45, 28.38, 27.41,
25.98, 22.86, 14.30 ppm. MS (ESI-TOF): [M+] calcd for
C36H32N2O5

+, 572.2350; found, 572.2311.
9-Octyl-5,13-di(pyrrolidin-1-yl)-1H-isochromeno[60,50,40:10,-

5,6]anthra[2,1,9-def]isoquinoline-1,3,8,10(9H)-tetraone 7. Star-
ting from 7,12-pyrrolidinyl PMI diester 3 (0.216 mmol, 167 mg)
and p-TsOH$H2O (1.08 mmol, 205 mg), 7,12-pyrrolidinyl PMI
anhydride 7 was obtained as a dark blue solid (105 mg, 75%).

Data for 7: 1H NMR (300 MHz, CDCl3, TMS): d ¼ 8.70 (d, J ¼
7.92 Hz, 2H), 8.30 (s, 2H), 7.80 (d, J ¼ 8.21 Hz, 2H), 4.24 (t, J ¼
7.62 Hz, 2H), 3.70 (br, 4H), 2.74 (br, 4H), 1.83–1.73 (m, 2H),
1.49–1.25 (m, 10H), 0.90–0.85 (m, 3H) ppm. 13C NMR (75 MHz,
CDCl3, TMS): d ¼ 164.21, 161.30, 150.01, 135.29, 131.44, 130.41,
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129.15, 128.33, 123.89, 119.37, 118.79, 118.60, 117.95, 52.57,
40.74, 32.09, 29.67, 29.48, 28, 47, 27.47, 25.91, 22.89, 14.34 ppm.
MS (ESI-TOF): [M+] calcd for C40H39N3O5

+, 641.2897; found,
641.2890.

2-Octyl-1,3-dioxo-6-(pyrrolidin-1-yl)-2,3-dihydro-1H-benzo-
[10,5]anthra[2,1,9-def]isoquinoline-8,9-dicarboxylic acid 8. 7-
Pyrrolidinyl PMI anhydride 6 (0.050 mmol, 29 mg) and KOH
(0.101 mmol, 6 mg) were taken in 3 mL of tBuOH. The reaction
mixture was heated at 100 �C for 3 hours. Aer cooling to room
temperature, the pH of the mixture was adjusted to ca. 6–6.5 by
adding aqueous NH4Cl. Precipitates were formed which were
ltered and dried to yield the desired product as a blue solid (23
mg, 76%).

Data for 8: 1H NMR (300 MHz, CD3OD): d ¼ 8.58 (d, J ¼ 8.21
Hz, 1H), 8.52–8.46 (m, 3H), 7.97 (s, 1H), 7.90 (d, J¼ 7.92 Hz, 1H),
7.11 (d, J ¼ 7.92 Hz, 1H), 4.19 (t, J ¼ 7.92 Hz, 2H), 3.81 (br, 2H),
2.81 (br, 2H), 1.77–1.72 (m, 2H), 1.43–1.31 (m, 10H), 0.93–0.87
(m, 3H) ppm. Due to poor solubility, 13C NMR data could not be
recorded. MS (ESI-TOF): [M+] calcd for C36H34N2O6

+, 641.2897;
found, 641.2890.

2-Octyl-1,3-dioxo-6,11-di(pyrrolidin-1-yl)-2,3-dihydro-1H-
benzo[10,5]anthra[2,1,9-def]isoquinoline-8,9-dicarboxylic acid
9. 7,12-Pyrrolidinyl PMI anhydride 7 (0.109 mml, 70 mg) and
KOH (0.201 mmol, 12 mg) were taken in 6 mL of tBuOH. The
reaction mixture was heated at 100 �C for 3 hours. Aer cooling
to room temperature, the pH of the mixture was adjusted to ca.
6–6.5 by adding aqueous NH4Cl. Precipitates were formed
which were ltered and dried to yield the desired product as a
blue solid (55 mg, 76%).

Data for 9: 1H NMR (300 MHz, CD3OD): d ¼ 8.52 (d, J ¼ 7.92
Hz, 2H), 8.30 (s, 2H), 7.54 (d, J ¼ 8.21 Hz, 2H), 4.21 (t, J ¼ 7.92
Hz, 2H), 3.74 (br, 4H), 2.75 (br, 4H), 1.79–1.66 (m, 2H), 1.41–1.29
(m, 10H), 0.92–0.88 (m, 3H) ppm. 13C NMR (75 MHz, CD3OD): d
¼ 164.57, 150.86, 137.70, 137.68, 137.66, 132.20, 130.17, 129.76,
122.02, 121.99, 114.82, 114.14, 111.20, 52.10, 39.98, 31.83,
29.30, 29.19, 27.98, 27.06, 25.48, 22.54, 13.26 ppm. MS (ESI-
TOF): [M+] calcd for C40H41N3O6

+, 659.3008; found, 659.2996.
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223305; (b) F. Gaser and E. Hädicke, Liebigs Ann. Chem., 1980,
1980, 1994–2011; (c) E. Hädicke and F. Graser, Acta
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a b s t r a c t

We have synthesized novel phthalocyanine with four pyridyl substituents connected to a-phthalo-po-
sitions via direct C-C bond. The Zn complex and tetracationic derivatives of phthalocyanine were also
synthesized and the dyes were impregnated into filter paper to prepare photoactive antimicrobial sur-
face. The photodynamic antimicrobial efficacy of the dyed paper samples was evaluated by a simple and
fast setup using bioluminescent microbes. Escherichia coli and Acinetobacter baylyi ADP1 strains carrying
bacterial luciferase genes were used in the screening experiment. The most efficient compound, tetra-
cationic zinc derivative 8, was investigated further. The compound was highly water soluble, had high
molar absorptivity and exhibited good adhesion to the filter paper without leaching into the solution.
The singlet oxygen quantum yield of tetracationic zinc derivative 8 in water was found out to be
30 ± 20%. According to the cell viability assay test performed on E. coliwild type in solution, the molecule
had similar or better photo toxicity as the reference photosensitizer, tetrakis (1-methyl-pyridinium-4-yl)
porphyrin (TMPyP). Antimicrobial efficacy of the dye 8 on photoactive surface was studied by live cell
assessment through colony forming unit (CFU) counting. The colored surface demonstrated 3 log
reduction in CFU against E. coli and A. baylyi ADP1 just after 1 h of illumination with the white light of
low intensity.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

One of the major challenges of the 21st century is how to pre-
vent the spread of life threatening epidemics. Nosocomial or
Healthcare associated infections (HAI) account for the major source
of transmission of infectious disease. Contaminated surfaces play a
significant role in the spread of microbes. The contamination leads
to the formation of biofilms, which facilitate microbial proliferation
[1e6]. Together with the emergence of drug resistant bacteria, the
risk is multiplied several times [7e13]. The so called “ESKAPE”-
pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and
Enterobacter strains) survive almost any individual antibiotic
treatment [14]. Hence, in order to control the transmission of the
pathogenic microorganism, new approaches are required.

One such approach is photodynamic antimicrobial chemo-
therapy (PACT), which has been found to be effective against drug

resistant bacteria and biofilms [15e19]. The term “photodynamic
reaction” was introduced by Hv Tappeiner for inactivation of mi-
crobes by dyes in the presence of light; he also demonstrated the
involvement of oxygen in the process [20,21]. Inactivation is ach-
ieved via the oxidative action of singlet oxygen produced by an
organic dye upon light irradiation. Since the singlet oxygen can
diffuse in liquids and air, as well as through cell wall [22,23], its
applications are extended in the preparation of photoactive self-
disinfecting surfaces such as coatings, films, polymers, paints for
controlling microbial contamination [24e33], and to water sani-
tation [34]. Whether or not an organic dye is suitable for the pur-
pose, depends first of all on the quantum yield of singlet oxygen
generation, on extinction coefficient, photo- and thermal stability
and appropriate wavelength absorptions. Additional properties,
such as dark toxicity, redox potentials of excited states, lipophilicity
and ionization degree must also be taken into consideration while
selecting the photosensitizer [35e39].

Many organic dyes such as methylene blue, toluidine blue O,
acridine, rose bengal, and various macrocyclic structures are
capable of generating singlet oxygen [23,40,41]. In particular* Corresponding author.
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porphyrins, such as haematoporphyrin and protoporphyrin and
their various derivatives are excellent photosensitizers for treat-
ment of microbes and malignant cells [42,43]. Complexes of
phthalocyanines and napthalocyanines also exhibit considerable
photobiological activity against tumors [44]. The level of photo
toxicity is strongly related to the size, charge, and hydrophobicity
balance of the dye molecule [16,39]. It was found that cationic
photosensitizers have higher activity than anionic or neutral ones
against both Gram-negative and Gram-positive bacteria [45e48].
Such difference can be explained by the fact that even though
photosensitizers are not required to penetrate into the cells, the
electrostatic interaction between cationic dye and poly-anionic
lipopolysaccharide layer of the cell wall structure of the bacteria
may result in its destabilization and thus facilitates the subsequent
photosensitization [33,49,50]. On the other hand, testing the pho-
tosensitizers is a long and time-consuming procedure. To the best
of our knowledge, there is no fast and simple procedure for
screening of potential photoactive molecules; this fact considerable
restricts their development.

Inspired by the above observations, we synthesized novel tet-
rakis(a-phthalo-pyridyl) substituted phthalocyanine, its zinc com-
plex and their tetracationic salts, which can serve as a potent
photosensitizer for antimicrobial treatment. In our present work, a
photoactive self-disinfecting surface was prepared by immobilizing
the photosensitizer on to the filter paper by a simple technique. The
surface hence prepared was found to be stable without any leach-
ing into water. We also propose a simple and fast method to eval-
uate the antimicrobial efficacy of the surface using bioluminescent
microbes. In addition, photo inactivation of the surface was also
confirmed by conventional CFU counting method using two
different microbes. However, we have also tested the phototoxic
action of the dye in solutions.

2. Materials and methods

2.1. General methods

Reagents and solvents were purchased from TCI Europe, Sigma
Aldrich Co. or from VWR and were used without further purifica-
tions unless otherwise mentioned. Purification of the products was
carried out either by column chromatography on Silica gel 60 or
Silica gel 100 (Merck) or on preparative TLC plates (Merck) coated
with neutral aluminum oxide 60 F254. NMR spectra were recorded
using Varian Mercury 300 MHz spectrometer using TMS as internal
standard. HRMS measurements were done with Waters LCT Pre-
mier XE ESI-TOF bench top mass spectrometer. Lock-mass correc-
tion (leucine enkephaline as a reference compound), centering and
calibration were applied to the raw data to obtain accurate mass.
UV-Vis absorption spectra were recorded using Shimazu
spectrophotometer.

2.2. Synthesis

The compounds 3-hydroxyphthalonitrile 1, 2,3-dicyanophenyl
trifluoromethanesulfonate 2 and 4-(5,5-dimethyl-1,3,2-
dioxaborinan-2-yl) pyridine 3 were synthesized according to the
literature procedure [51,52]. The synthetic route for compounds
2e8 were described in Scheme 1.

2.2.1. Synthesis of 3-(pyridin-4-yl) phthalonitrile 4
Pyridine boronate ester 3 (120 mg, 0.628 mmol), triflate

phthalonitrile 2 (174 mg, 0.628 mmol), PdCl2(dppf)$DCM (26 mg,
0.0314 mmol), K3PO4 (400 mg, 1.884 mmol) was dissolved in a
mixture of 7.5 ml water and 7.5 ml of toluene, and was heated at
vigorous stirring at 90 �C for 2 h. The reaction mixture was

extracted with CHCl3 and washed with brine, and dried over
anhydrous Na2SO4. The solvent was evaporated under reduced
pressure to yield 105mg of a crude product. The pure product 4was
isolated by re-precipitating from CHCl3/hexane. Yield 75 mg, 60%.

MS (ESI-TOF): [MþH]þ calcd for C13H7N3
þ, 206.0718; found,

206.0719.1H NMR (300 MHz, CDCl3, TMS): d ¼ 8.83 (d, J ¼ 5.86 Hz,
2 H), 7.93e7.77 (m, 3 H), 7.50 (d, J¼ 5.86 Hz, 2 H); 13C NMR (75MHz,
CDCl3, 25 �C, TMS): d ¼ 150.65, 144.35, 143.77, 133.72, 133.26,
123.03, 117.81, 115.24, 114.54 ppm.

2.2.2. Synthesis of 1, 8, 15, 22-tetra(pyridin-4-yl)-29H,31H-
phthalocyanine 5

Freshly cut lithium shots (57 mg, 8.212 mmol) were dissolved in
n-butanol (5.7 ml) at 90 �C under argon atmosphere. The reaction
mixture was allowed to cool to room temperature and pyridine
phthalonitrile 2 (80 mg, 0.3898 mmol) was added to the above
solution under argon atmosphere. The mixture was stirred at 90 �C
for 18 h. The product was extracted with CHCl3 and washed with
water several times until the pH of the aqueous layer was neutral.
The organic layer was evaporated under reduced pressure to get a
crude residue. The residue was washed with acetonitrile and pu-
rified by column chromatography (neutral alumina, 1% EtOH in
CHCl3) to yield free base phthalocyanine 5 (40 mg, 50%).

MS (ESI-TOF): [MþH]þ calcd for C52H30N12
þ , 823.2795; found,

823.2832.1H NMR (300 MHz, CDCl3, TMS): d ¼ 9.01e8.95 (m, 5 H),
8.86e8.84 (m, 2 H), 8.60e8.59 (m, 6 H), 8.55e8.53 (m, 1 H),
8.35e8.33 (m, 1 H), 8.28e8.26 (m, 2 H), 8.11e8.08 (m, 1 H),
8.02e7.96 (m, 3 H), 7.86e7.80 (m, 8 H), 7.67e7.61 (m, 5 H),
7.57e7.51 (m, 7 H), 7.44e7.42 (m, 2 H), 1.65 (br, 1 H), 2.21 (br, 1 H).
UV/Vis (CHCl3): l ( 3) ¼ 715 (100000), 680 nm (87037), 650 nm
(31481), 615 nm (20370 L mol�1cm�1).

2.2.3. Synthesis [1,8,15,22-tetra(pyridin-4-yl)-29H,31H-
phthalocyaninato(2-)-k4N29,N30,N31,N32]zinc 6

Tetrapyridinyl phthalocyanine free base 5 (12 mg, 0.0146 mmol)
was dissolved in CHCl3 (1.5 ml) and ZnOAc$2H2O (12 mg,
0.0547mmol) in 120 ml H2Owas added into it. The reactionmixture
was stirred at 60 �C for 2 h. The product was extracted with CHCl3
(20 ml) and washed with water (25 ml x 3), dried over anhydrous
Na2SO4 and evaporated under reduced pressure to yield crude
residue. The product was purified with column chromatography.
(Neutral alumina,10% EtOH in CHCl3) and later washed with diethyl
ether and acetonitrile to yield a pure compound 6 (11 mg, 85%).

MS (ESI-TOF): [MþH]þ calcd for C52H28N12Znþ, 885.1929; found,
885.1970.1H NMR (300 MHz, DMSO D6, TMS): d ¼ 9.52e9.50 (m,
1 H), 9.10e9.06 (m, 2 H), 8.62 (br, 8 H), 8.45 (br, 2 H), 8.31 (br, 2 H),
8.16e8.14 (m, 1 H), 7.78e7.58 (m, 19 H). UV/Vis (CHCl3): l ( 3) ¼ 695
(113077), 634 nm (24615 L mol�1cm�1).

2.2.4. Synthesis of [1,8,15,22-tetra(pyridin-4-yl)-29H,31H-
phthalocyaninato(2-)-k4N29,N30,N31,N32]zinc 6 (direct method)

A mixture of pyridine phthalonitrile 4 (77 mg, 0.3752 mmol)
and anhydrous zinc acetate (84.67 mg, 0.4615 mmol) in dimethy-
laminoethanol (DMAE, 810 ml) was heated at reflux at 140 �C for
12 h. The reactionmixturewas cooled to room temperature and the
product was precipitated by adding a mixture of MeOH/H2O (9:1).
The green solid was filtered and washed with methanol to yield the
product 6 (80 mg, 96%).

MS (ESI-TOF): [MþH]þ calcd for C52H28N12Znþ, 885.1929; found,
885.1904.

2.2.5. Synthesis of 4,40,400,4000-(29H,31H-phthalocyanine-1,8,15,22-
tetrayl)tetrakis(1-methylpyridinium) tetraiodide 7

Phthalocyanine 5 (15 mg, 0.0182 mmol) was dissolved in DMF
(3 ml) and methyl iodide (1 ml, 16.0642 mmol) was added into
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solution. The reaction mixture was stirred at 45 �C for 18 h. The
reaction mixture was cooled in an ice bath and product was
precipitated with diethyl ether (15 ml). The solid was filtered,
washed with diethyl ether several times and later with acetone/
diethyl ether to yield pure product 7 (14.8 mg, 58.32%).

MS (ESI-TOF): [M�4I]4þ calcd for C56H38N12
4þ, 220.5914; found,

220.5889; [M�3I]3þ calcd for C56H39IN12
3þ, 336.4233; found,

336.4204.1H NMR (300 MHz, DMSO D6, TMS): d ¼ 9.69e9.55 (m,
5 H), 9.14e9.07 (m, 8 H), 8.77e8.69 (m, 6 H), 8.46e8.32 (m, 9 H),
4.88e4.61 (m, 12 H). UV/Vis (DMF): l ( 3) ¼ 702 (141250), 635 nm
(28750 L mol1cm�1).

2.2.6. Synthesis of {4,40,400,4000-(29H,31H-phthalocyanine-1,8,15,22-
tetrayl-k4N29,N30,N31,N32)tetrakis[1-methylpyridiniumato(2-)]}
zinc(4þ) tetraiodide 8

Tetrapyridyl phthalocyanine zinc 6 (20 mg, 0.0225 mmol) was
dissolved in DMF (3 ml), and methyl iodide (1 ml, 16.0642 mmol)
was added to solution. The reaction mixture was stirred at 45 �C for
18 h. The reaction mixture was cooled in an ice bath and product
was precipitated by adding diethyl ether (15 ml). The solid was
filtered and washed several times with diethyl ether and later with
mixture of acetone/H2O (1:1) to yield the product 8 (15mg, 45.71%).

MS (ESI-TOF): [M � 4I]4þ calcd for C56H36N12Zn4þ, 236.0698;
found, 236.0692; [M � 3I]3þ calcd for C56H37IN12Zn3þ, 357.0612;
found, 357.0617.1H NMR (300 MHz, DMSO D6, TMS): d ¼ 9.77e9.70
(m, 1 H), 9.95e9.54 (m, 5 H), 9.21e9.04 (m, 8 H), 8.76 (br, 3 H), 8.62
(br, 2 H), 8.46e8.35 (m, 6 H), 8.25e8.19 (m, 1 H), 4.85e4.59 (m,
12 H). UV/Vis (DMF): l ( 3) ¼ 692 (128500), 625 nm
(22000 L mol�1cm�1).

2.3. Singlet oxygen measurement

Singlet oxygen kinetics were monitored in aqueous solution via
time-correlated multi-photon counting (TCMPC) at 1270 ± 15 nm,
the characteristic singlet oxygen luminescence wavelength. For
sample excitation, a LMD-405D diode laser (Omikron-Laserage,
Rodgau-Dudenhofen, Germany) was used: excitation wavelength
405 nm, pulse width 120 ns, channel width 20 ns, average power
1.2 W, duration of measurement 60 s. A TCMPC-1270 Singlet Oxy-
gen Luminescence Detection System by SHB Analytics (Berlin,
Germany) was used for luminescence signal detection. Singlet ox-
ygen quantum yields were determined indirectly from fitting the
luminescence signal and using TMPyP, optical density adjusted for
the excitation wavelength, as reference. [41] Fits of the data were
conducted following the standard bi-exponential model for singlet
oxygen kinetics and an additional mono-exponential phosphores-
cence term for TMPyP [53]. The goodness of the fit is indicated by
the reduced c2 -test.

2.4. Antimicrobial tests

2.4.1. Screening test on dyed paper
The efficiency of dyes was screened by conducting antimicrobial

test with bioluminescent bacterial strains Escherichia coli (XL1-
Blue, Stratagene, USA) pBAV1C-T5-lux and Acinetobacter baylyi
ADP1 (DSM 24193) carrying plasmid pBAV1C-T5-lux, The plasmid
was constructed by replacing gfp with lux in pBAV1C-T5-GFP [54].
The lux operon was cloned from the pBAV1K-T5-lux plasmid, kind
gift from Ichiro Matsumura (Addgene plasmid # 55800) [55] using
standard BioBrick cloning. Whatman 1 filter papers (area

Scheme 1. Synthetic route for the preparation of pyridine substituted phthalocyanine.
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12.25 cm2) were soaked in solutions of dyes 5e8 (0.9 mg dye in
200 ml solvent) and allowed to dry out. After drying, three discs
0.5 cm in diameter were cut from each dyed paper and pasted on
the LA agar gel plate (15 g/l agar, 10 g/l tryptone, 5 g/l yeast extract,
5 g/l NaCl, 0.2 % glucose, 25 mg/ml chloramphenicol) in a 3 � 4 grid.
As shown in Fig. 1, each column contains 4 disks with dyes 5e8,
while the rows contain disks of the same dye. A dark screen with a
square hole was placed over the agar plate in such a way that, one
column of the four dyes was under the dark area while the two
other columns would be accessible for light. Blank control samples
were prepared by cutting neat uncoloured filter papers of the same
size and placing them in the dark and illuminated areas of LA agar
plate. Background luminescence arising from the setup was recor-
ded (Xenogen IVIS Lumina, Caliper Life Sciences, USA). Microbial
strains were inoculated in 5 ml of LB medium (10 g/l tryptone, 5 g/l
yeast extract, 5 g/l NaCl) containing 0.5% glucose and 25 mg/ml of
chloramphenicol and incubated at 30 �C 300 rpm. After overnight
cultivation, 100 ml of the culture was diluted with 5 ml of LB me-
dium containing 0.5% glucose and 25 mg/ml of chloramphenicol and
incubated for 3 h at 30 �C 300 rpm. Microbial solution thus pre-
pared, was pipetted over the paper discs (5 ml per disk). To check
the influence of filter paper on the bioluminescence of bacteria the
microbial solution was pipetted as well straight on the agar in the
dark region of the plate. Luminescence of the plate with microbes
deposited was recorded by IVIS and the plate was subjected to
illumination. The whole plate was placed inside solar simulator
(Luzchem, Canada) and the light intensity was adjusted to
18 mW,cm�2 by lifting the plate up/down. Two filters [KG3 band
pass with 315e750 nm transmittance and YG-17 filter with
transmittance > 485 nm] were placed over the square hole to
remove the infrared and UV radiation. After 1 h of illumination, the
luminescence was measured again, and the antimicrobial efficacy
of dyes was compared.

2.4.2. Cell viability assay
For relative cell viability tests a resazurin assay was used [56].

Two different sample sets with E. coli wild type (ATCC 25922) cell
suspension in PBS (approx. 4 � 108 cfu/ml) were incubated for 2 h
under standard ambient temperature in the dark and under low
white-light illumination conditions (fluence rate of
8 ± 2 mW cm�2). First set: 200 ml cell suspension on M9-minimal-
agar substrate in 24-well-plates. Second set: 1 ml cell suspension
without any agar in 24-well-plates. A photosensitizer

concentration of 5 mM was used. After addition of the resazurin
reactant (for each well 900 ml of 0.05 g/l Resazurin sodium salt,
Sigma-Aldrich, Germany) all samples were incubated for another
4 h in the dark under gentle stirring. The relative viability was then
determined from resorufin fluorescence using a VICTOR3 plate
reader, PerkinElmer Inc., USA. Per sample, three wells were used
measuring each well nine times.

2.4.3. Determination of optimal dye loading on filter paper
The filter papers with different dye loading of were prepared in

the following way. First four solutions of phthalocyanine 8 (1 mg,
0.5 mg, 0.25 mg and 0.1 mg) in 200 ml milli Q water was prepared in
4 different vials. Whatman 1 filter paper of size 3.5 cm � 3.5 cm
(12.25 cm2) soaked in the solution containing 1 mg dye gives
0.081 mg/cm2 dye loading. The filter paper of same size soaked in
0.5 mg dye solution gives loading of 0.04 mg/cm2. Similarly,
0.25 mg dye solution and 0.1 mg dye solution gives dye loading of
0.02 mg/cm2 and 0.008 mg/cm2 respectively. A filter paper of same
size without dye was kept as a control.

Antimicrobial efficiency of the filter papers was confirmed by
live cell assessment through CFU counts using microbe Acineto-
bacter baylyi ADP1 (ATCC 33305). Microbial strainwas inoculated in
a solution of 5 ml of LB medium and supplemented with 1% glucose
at 30 �C and 300 rpm overnight. The overnight-cultivated solution
(100 ml) was diluted with 5 ml of LB medium and 1% glucose and
shaken (300 rpm) at 30 �C for 3 h. The optical density of culture was
measured at 600 nm. The microbial solution was centrifuged for
5 min at 6500 rpm and the LB medium was decanted out from the
vial. The residual microbes were suspended in 5 ml of PBS (phos-
phate-buffered saline) buffer. Circular discs (cut from filter papers
of different dye loading and control paper) were placed in the wells
of a microplate andmicrobial solution (25 ml) was pipetted over the
disks. The microplate was illuminated in the solar simulator for 1 h.
UV and IR radiations were cut off using a combination of KG3 band
pass filter (315e750 nm transmittance) and YG-17 filter
(transmittance > 485 nm) and the overall light intensity kept at
18mW cm�2. After 1 h of illumination, themicrobes were extracted
fromwells with 975 ml of LB medium and serial dilutions (up to two
times) were made from each extract. The dilutions were then
plated on LA agar plates (15 g/l agar, 10 g/l tryptone, 5 g/l yeast
extract, 5 g/l NaCl, 0.2 % glucose) and incubated at 30 �C overnight.
The number of colonies grown on the agar plate were counted and
CFUs per milliliter were calculated from it and the filter paper with
optimal dye loading was determined from it.

2.4.4. Determination of antimicrobial efficacy of dyed-filter paper
The E. coli MG1655 (E. coli Genetic Resources at Yale) and Aci-

netobacter baylyi ADP1 (ATCC 33305) strains were used in deter-
mining antimicrobial efficacy. The cultivations and resuspensions
were carried out as described above. Two sets of paper discs
(original and duplicate), with phthalocyanine 8 and an uncoloured
blank control, were placed in the wells of a microplate and mi-
crobial solution (25 ml) was pipetted over the disks. The microplate
was illuminated in the solar simulator for 1 h. UV and IR radiations
were cut off using a combination of KG3 band pass filter
(315e750 nm transmittance) and YG-17 filter
(transmittance > 485 nm) and the overall light intensity kept at
18 mW cm�2. Dark control samples were prepared by depositing
microbial medium over dyed and uncoloured disks and keeping the
microplate in dark for 1 h at room temperature inside the laminar
hood. After 1 h of illumination or incubation, the microbes were
extracted fromwells with 975 ml of LB medium (10 g/l tryptone, 5 g/
l yeast extract, 5 g/l NaCl) and serial dilutions (up to 10�6) were
made from each extract. The dilutions were then plated on LA agar
plates (15 g/l agar, 10 g/l tryptone, 5 g/l yeast extract, 5 g/l NaCl, 0.2Fig. 1. Schematic diagram of the setup for screening dyes.
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% glucose) and incubated at 30 �C overnight. The number of col-
onies grown on the agar plate was counted and CFUs per milliliter
were calculated to determine the antimicrobial efficacy.

3. Results and discussion

3.1. Synthesis

Photodyanamic antimicrobial activities of pyridine substituted
phthalocyanines are already known [57,58]. However most of these
compounds describe substitution in beta-phthalo position via oxy
or thio-bridge. In the present work, we give a first example of direct
C-C link between the a-phthalo position and pyridine unit. Novel
pyridine-containing phthalocyanine and its zinc complex were
synthesized according to Scheme 1. The triflate phthalonitrile 2was
prepared from 3- hydroxy phthalonitrile 1 which in turn synthe-
sized from commercially available 3-nitro phthalonitrile by
following the literature procedures reported elsewhere [51,52]
Pyridine phthalonitrile 4 was prepared with 80% yield by
coupling pyridine boronate ester 3 and triflate phthalonitrile 2. It
should be mentioned that the coupling reaction between
commercially available pyridine boronic acid and triflate phthalo-
nitrile 2 did not produce reasonable yield of pyridine phthalonitrile.
Therefore, pyridine boronic acid was converted into boronate ester
3 by reacting with neopentyl glycol. When the reaction was
accomplished in the presence of molecular sieves, the ester 3
precipitated in 1,4- dioxane at room temperature and its separation
from the molecular sieves was difficult. Therefore, we used the
azeotropic distillation in the synthesis and obtained boronic ester 3
with high yield (ca. 80%). Free base phthalocyanine 5 was prepared
by the tetramerization of pyridine phthalonitrile 4 with 50% yield.
The zinc complex 6 was synthesized by reacting free base
phththalocyanine 5 with zinc acetate in a mixture of chloroform
and methanol with a yield of around 85%. Nontheless, direct syn-
thesis of zinc complex 6 produced better overall yield than con-
verting free base phthalocyanine 5 [58].

The free base 5 and phthalocyanines zinc complex 6 were
converted into cationic salts 7 and 8 respectively by methylation
with iodomethane in DMF. High-resolution MS spectrometry was
used to identify the molecules. The 0.25 Da separation between the
peaks in the MS signals confirmed the tetra cationic charge of the
molecule. However, since the substance was a mixture of
regioisomers, NMR spectra were rather broad and difficult to
interpret (see SI).

UV-visible absorption spectra were measured in chloroform (for
5 and 6) and DMF (7 and 8) and shown in Fig. 2. The Q band peak for

free base phthalocyanine 5 was split into two when compared to
corresponding zinc phthalocyanine 6 [59]. However, broadening of
the peaks after methylation for the free base cationic phthalocya-
nine 7 indicates the aggregation.

Overall, we synthesized a novel phthalocyanine with pyridyl
substitutuentsat a phthalo positions through direct C-C linkage.
Cationic tetra salts were found to be soluble inwater, ethanol, could
be easily precipitated into a solid, and gave a clear mass-spectrum,
which suggests good degree of quaternization. Integrals of 1H-NMR
signals support a good purity of the obtained salt, though the sig-
nals are broad indeed.

3.2. Singlet oxygen quantum yield

Quantitative measurement of singlet oxygen for cationic zinc
phthalocyanine 8 was done in water (shown in Fig. 3). The singlet
oxygen quantum yield of phthalocyanine 8 was calculated to be
30 ± 20% by comparing the phosphorescence signal intensity at
1270 nm of with that of TMPyP as referencewith a quantumyield of
74% [41]. This value was reasonably good since water was known to
quench the singlet oxygen [60]. However, cationic pyridine free
base phthalocyanine 7 did not produce any signal for singlet oxygen
in water. Most probable reason may be the aggregation of the
molecule in water as previously explained in the discussion of UV-
visible absorption spectra.

3.3. Screening of dyes' efficiency

In our search for surfaces with photodynamic antimicrobial ef-
fect, we decided to identify the most efficient dye from the set of
synthesized phthalocyanines, by comparing its antimicrobial
capability on a solid support. In particular, the dyes 7 and 8 were
highly soluble in water and readily adsorbed to the filter paper to
form stable and permanent color. The leaching of the dyes to the
medium was tested in by sonicating a piece of the filter paper
impregnated with cationic phthalocyanines (7 and 8) in 3 ml of
milli Q water for 30min. The UV visible absorption measurement of
the resultant water sample did not show any indication of the dye
in the water nor the color of the filter paper faded out after 30 min
of sonication. Moreover, even an overnight incubation of filter pa-
per in milli Q water at room temperature did not induce leaching of
the dye into water. Leaching was observed only after acidifying the
extraction water down to pH 2. In this case, phthalocyanine tetra
salts were obviously extracted into water, however not completely.

As we had four dyes to test, we needed a simple and rapid way of

Fig. 2. UV-visible absorption spectra of phthalocyanines.

Fig. 3. Time resolved singlet oxygen measurement of TMPyP and cationic zinc
phthalocyanine 8. The optical density of TMPyP is adjusted for the excitation wave-
length at 405 nm. Pearson residuals illustrate the goodness of the fit (reduced chi-
squared below 1.04 for both fits). No distinct signal for cationic free base phthalocy-
anine 7 could be observed.
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evaluation of the phototoxic effect. One possibility to identify the
efficient photosensitizer was to use bioluminescent bacteria as
reporter cells. The bioluminescence-based screening method has
been applied in multiple studies [61] as it allows a growth-
independent and sensitive monitoring of toxic effects of different
agents on the cells. The intensity of bioluminescence arising from
the bacteria on a surface is directly related to themetabolic status of
the bioluminescent bacteria [58]. In other words, when an efficient
dye effectively inactivates bioluminescent microbes, we expect a
sharp decrease in the signal intensity. The bioluminescence arising
from surface of filter paper soaked with bioluminescent E. coli cell
solution was recorded before and after illumination as shown in
Fig. 4a. As expected, surfaces with cationic derivatives 7 and 8were
more effective against E. coli. Moreover, cationic zinc derivative 8
had shown higher efficacy than free base phthalocyanine 7. It
should be noted that the bioluminescense from the paper with dye
8 incubated in the dark region of the plate was also reduced.
However, this decrease may not necessarily arise from the dark
toxicity of the substance, but rather can be attributed to the photo
toxicity induced by the stray light, since the incubationwas done in
the same plate.

Similar test was conducted using filter paper soaked with more
resistant bacteria - bioluminescent Acinetobacter baylyi ADP1 car-
rying plasmid pBAV1C-T5-lux. In this case, the phthalocyanines (6,
7 and 8) showed much activity (Fig. 5). However, the cationic zinc
derivative was far more efficient in inactivation of microbes. This
time also the signal from the filter paper incubated in the dark
region was absent probably due to the stray light exposure. These
experiments concluded that tetra cationic derivates of pyridine
phthalocyanines (7 and 8) are more efficient dyes compared to the
neutral ones. The extra cationic charges of the molecules might had
played an important role in binding the gram negative bacteria
towards the surface of the filter paper there by ensuring a better
photodynamic inactivation.

3.4. Cell viability assay

In order to understand the antimicrobial efficacy of the

photosensitizers directly in a medium without substrate support,
the cell viability assay of both cationic derivatives (7 and 8) were
tested in M9-agar medium and PBS suspension. The results
concluded that cationic zinc phthalocyanine 8 was highly photo-
toxic towards E. coli wild type upon 2 h of illumination. The anti-
microbial efficacy of the compoundwas found to be superior to that
of the reference photosensitizer tetrakis(methylpyridinum iodide)
porphyrin TMPyP. However, the free base cationic phthalocyanine 7
had comparable phototoxicity to that of reference photosensitizer.
The results are presented in Fig. 6.

3.5. Live cell assessment through colony forming unit (CFU)
counting

All the above-mentioned tests pointed out that cationic zinc
derivative 8 was best among the set of phthalocyanines synthe-
sized. Therefore, antimicrobial efficacy of the filter paper impreg-
nated with phthalocyanine 8 was determined by CFU counting. In
order to control the growth of microbes during the illumination
experiment and on serial dilution, the LB medium was replaced
with PBS before the deposition on the filter paper. It must be
mentioned that the paper impregnated with the photosensitizer 8
was highly toxic towards both E. coli and A. baylyi. If the dye loading
was higher than 0.008mg/cm2, no any single bacterial colony could
be found on LA plates plated with the microbial extracts from the
illuminated filter papers even after overnight incubation (Table 1).

Hence, the filter paper with dye loading 0.008 mg/cm2 was
found to be optimal for activity testing and was used for further
experiments. The optical densities of the microbial solutions
measured before deposition on the filter paper was 0.2 and 0.1 for
E. coli and A. baylyi respectively. Thus, the higher number of col-
onies of E. coli compared to A. baylyi grown after plating agree with
the absorbance values. We have found that photo inactivation
against E. coli was as high as 2.7 log reduction in CFU, whereas the
phototoxic effect against A. baylyi demonstrated 3.4 log reduction
in CFU (Fig. 7).

These values are very well comparable with the best results
reported in literature for the dyes immobilized on similar surfaces.

Fig. 4. (a) Bioluminescent images of E. coli (carrying pBAV1C-T5-lux plasmid) on surface, before and after illumination (clock wise direction: background image, before illumination,
after illumination). (b) Graph showing the antibacterial activity of the phthalocyanine after illumination for 1 h with light of intensity 18 mW cm�2 and wavelength 485e750 nm.
The data and graphs for back ground luminescence and before illumination were shown in supplementary information.
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Ringot et al. prepared photoactive cotton fabrics by covalently
grafting anionic, neutral, and cationic amino porphyrins on cotton
fabric via 1,3,5-triazine linker (dye load 18 mg/g of substrate).
When subjected to light irradiation of 0.16 mW/cm2 for 24 h (total
light dose 13.8 J/cm2), the cationic fabric exhibited 100% photo
inactivation against gram-positive bacteria (Staphylococcus aureus)
while did not show any activity against gram-negative bacteria
(E.coli) [62]. Porphyrin-grafted filter paper through 1,3,5-triazine
linker was prepared by Mbakidi et al. The substrate demonstrated
antimicrobial activity of 4 and 2 log decrease in CFU against both

S.aureus and E.coli respectively under same illumination condition
as mentioned above [63]. In these experiments the dye load was
19 mg/g of substrate (0.03 mmol/mg, MW ¼ 672). Similarly Car-
penter et al. was able to achieve photo inactivation of 4 log CFU
reduction against different types of bacterial strains using
porphyrin linked covalently to cellulose paper with the dye load ca.
8 mg/g (12.4 nmol/mg, MW ¼ 672), and with the illumination in-
tensity of 65 ± 5 mW/cm2 for 30 min (total light dose 117 J/cm2)
[64]. In our case, similar activity was achieved with the white light
dose 64.8 J/cm2 (1 h at 18 mW/cm2)and the dye load of 1.2 mg/g of
substrate (0.008 mg/cm2, paper density 68.8 g/m2, Fig. S16) pre-
pared by a simple method without any complex chemical
modifications.

4. Conclusions

Novel phthalocyanine with pyridine substitution at a-position,
its zinc complexes and cationic derivatives were synthesized in
high yield. The dyes exhibited good dyeing ability on filter paper,
good stability against leaching, and good photostability. We have
elaborated a fast and simple screening setup for testing the

Fig. 5. (a) Bioluminescent images of Acinetobacter baylyi ADP1 (carrying plasmid pBAV1C-T5-lux) on surface, before and after illumination (clock wise direction: background image,
before illumination, after illumination). (b) Graph showing the antibacterial activity of the phthalocyanine after illumination for 1 h with light of intensity 18 mW cm�2 and
wavelength 485e750 nm. The data and graphs for back ground luminescence and before illumination were shown in supplementary information.
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Fig. 6. Relative cell viability was measured on M9-Agar (minimal medium for E. coli) and directly in PBS suspension. The values are normalized with the reference (bacteria without
any photosensitizers) fluorescence. The photosensitizer concentration is 5 mM. Error bars result from standard deviation and error propagation. Phototox.: illuminated samples, dark
ctrl.: dark controls.

Table 1
Photoinactivation of A. baylyi under illumination.

Dye loading Number of Colonies Number of colonies

1st dilution 2nd dilution

0.08 mg/cm2 0 0
0.04 mg/cm2 0 0
0.02 mg/cm2 0 0
0.008 mg/cm2 20 1
Control Too many to count Too many to count
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photodynamic antimicrobial substances using bioluminescent
bacteria E. coli and A. baylyi. We applied the method to study the
antimicrobial efficacy of self-disinfecting surfaces prepared from
the dyes. The tetracationic derivatives were found to be the most
efficient. Cell viability assay in M9 agar medium and PBS suspen-
sion clearly demonstrated the superior photo toxicity of cationic
zinc derivative of pyridine phthalocyanine 8. Finally, the antimi-
crobial activity using the filter paper dyed with the photosensitizer
8 was studied by CFU counting method. We have achieved 2.7 log
CFU reduction against E. coli and 3.4 log CFU reduction against
A. baylyi, respectively, which is comparable with the best results
reported to date.

Further study using different metal complexes of pyridine
phthalocyanine and substrates for immobilization of the photo-
sensitizer are under progress.
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A B S T R A C T

The properties and antimicrobial efficacies of zinc complexes of tetrakis(N-methylpyridinium-4-yl) tetraiodide
porphyrin and tetrakis(N-methylpyridinium-4-yl) tetraiodide phthalocyanine impregnated to paper were eval-
uated. Photo-inactivation of microbes using inexpensive consumer light-emitting diode lamp was assessed on
surface of dyed papers. Antimicrobial experiments of phthalocyanine-dyed paper by live cell assessment through
colony forming units counting demonstrated 3.72 and 4.01 log reduction against Escherichia coli (E. coli) and
Acinetobacter baylyi (A. baylyi) respectively after 1 h of illumination with 35mW/cm2 light. The porphyrin-dyed
paper exhibited 1.66 and 2.01 log reduction in colony forming units against E. coli and A. baylyi respectively
after 1 h exposure with 4mW/cm2 light. Both dyed papers were photo-stable after 64 h of continuous exposure
with 42mW/cm2 light, while phthalocyanine-dyed paper exhibited superior leaching stability in phosphate-
buffered saline.

1. Introduction

Light-activated antimicrobial substances are gaining new mo-
mentum and attract more and more attention of researchers. State of
the art is covered in a recent series of excellent reviews, which de-
monstrate that significant success has been achieved in photodynamic
treatment of bacteria [1–4], fungi [4–7], and biofilms [8]. Considerable
application field is dentistry and treatment of carious infections in
particular [9,10]. Applicability of Photodynamic antimicrobial che-
motherapy (PACT) is not limited with the above-mentioned examples
[4,11,12], but extends from fish farming [13] to blood sterilization
[14].

Most commonly, the derivatives of phenothiazine, porphyrin and
phthalocyanine are used as photosensitizers for PACT [15]. Regarding
the latter two, porphyrinoid ligand is usually employed to chelate an
inorganic ion, which improves dramatically the efficiency of photo-
dynamic action. The choice between porphyrin and phthalocyanine li-
gand is a matter of debate, with both macrocycles having their ad-
vantages. However, it is commonly accepted that the ligand should bear
cationic species, preferably quaternized amino groups, which renders
the molecule much more active against microorganisms compare to
neutral or anionic substances [16]. Among the most popular, zinc(II)
ions [1,17–26] along with silicon [27–29] and aluminium [9] com-
plexes have demonstrated best efficacies.

Photosensitizers are mostly used in form of solutions against

planktonic microbes or biofilms. Examples of photoactive surfaces with
chromophores immobilized on solid a support are however quite rare
[30]. Immobilization requires significant synthetic efforts since both
the substrate and the chromophore should be modified to create a
covalent link between them. This in turn requires synthesis of asym-
metric porphyrinoids, which is laborious and proceeds with lower
yields. Indeed, there are very good examples of substances with high
activity, however their preparation is challenging [26,29,31,32].

As has been mentioned by Cieplik et al. [8], comparing different
reports to each other is very difficult a task because of very different
concentrations, microbial strains, and cultivation and illumination
conditions employed by different groups. One of the least standardized
parameters is the choice of light source. In recent publications, some
have used quartz lamps, near-infrared (NIR) lamps, halogen lamps,
slide projector lamps [18,26,28,29,31,33–36], or special photodynamic
therapy (PDT) light sources [21,22,37]. Another popular option is to
employ the laser light, mostly from diode lasers with the wavelength
selected close to the absorption maxima of the photosensitizer
(650–720 nm) [17,23,38,39]. Third option is to employ special light-
emitting diode (LED) lights [61] or non-coherent red light-emitting
diodes, which represent a less expensive alternative to lasers
[2,20,31,34,40–43].

When a new photosensitizer needs to be compared against already
existing benchmark substance, the lack of commonly accepted standard
conditions leads to a complication. However, the situation has
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improved with recent reports, which present the data about the light
dose instead of just the wavelength range and light power of the source.
Typical light doses are varied between 20 and 70 J/cm2, and sometimes
can be very modest 10 J/cm2 in antifungal action [44] or even 6 J/cm2

in successful antibacterial treatment [17].
It is also important to remember that photodynamic treatment is

inherently dependent on the light source, and implementing PACT in
everyday life would not be possible without providing an accessible,
economical and long-lasting illumination device. Speaking about PACT
as a way of disinfection of large surfaces e.g. in public places, house-
holds or air/water filter systems, one need to find an affordable source
of irradiation which can be used in consumer scale.

In this work, a comparison between two Zn(II) porphyrinoid li-
gands, a well known tetrakis(N-methylpyridinium-4-yl) tetraiodide
porphyrin and novel, recently synthesized tetrakis(N-methylpyr-
idinium-4-yl) tetraiodide phthalocyanine is presented. Both the sub-
stances can be easily immobilized on a cellulose substrate (filter paper)
and have demonstrated significant antimicrobial activity against model
microorganisms E. coli and A. baylyi upon illumination with inexpensive
consumer LED lamp. Moreover, phthalocyanine has shown superior
stability against leaching and photobleaching.

2. Materials and methods

2.1. General methods

All commercial reagents and solvents were purchased from TCI
Europe, SigmaAldrich Co. or from VWR and were used without further
purifications unless otherwise mentioned. Purification of the products
was carried out either by column chromatography on Silica gel 60 or
Silica gel 100 (Merck). NMR spectra were recorded using Varian
Mercury 300MHz spectrometer using TMS as internal standard. High-
resolution mass spectrometry (HRMS) measurements were done with
Waters LCT Premier XE electronspray ionization time-of-flight (ESI-
TOF) bench top mass spectrometer. Lock-mass correction (leucine en-
kephaline as a reference compound), centering and calibration were
applied to the raw data to obtain accurate mass. UV–Vis absorption
spectra were recorded using Shimadzu UV-2501PC spectrophotometer
and emission spectra were recorded on a Fluorolog Yobin Yvon-SPEX
spectrofluorometer. All solutions, culture mediums, vials and pipette
tips used for microbial tests were sterilized before the experiments and
all operations were conducted inside the laminar hood to prevent any
contamination. Qualitative filter paper 413 (medium filtration rate,
particle retention 5–13 μm) used for preparation of photoantimicrobial
surfaces was purchased from VWR (cat. No. 516-0813).

2.2. Photosensitizers and light source

Two photosensitizers used for the experiments were Zn(II) tetrakis
(N-methylpyridinium-4-yl) tetraiodide phthalocyanine (ZnPc) and Zn
(II) tetrakis(N-methylpyridinium-4-yl) tetraiodide porhyrin (ZnPf)[45]
(Fig. 1). The synthesis and characterization of ZnPc were discussed in
our previous work [24]. Phthalocyanine papers used for antimicrobial
test were prepared by soaking filter paper (3.5 cm×3.5 cm) in the
aqeous solution containing 0.1mg ZnPc. Porphyrin ZnPf was synthe-
sized in-house according to the literature procedure reported else-
where. Porphyrin papers were prepared by following the above-men-
tioned procedure using ZnPf. The light absorption of the papers was
examined with Shimadzu UV-3600 UV-VIS-NIR spectrophotometer
using an integrating sphere attachment (ISR-3100). Transmittance (T)
and reflectance (R) spectra of papers were recorded. From these two,
the absorptance a, which is the fraction of incident light absorbed by
sample was calculated according to equation a=1− T− R, where R is
reflectance and T transmittance of the sample at given wavelength.
Commercially available indoor lighting LED lamp (LED lamp OSRAM
Star PAR16 80W 575 lm GU10) was used as an illumination source. The

spectrum of the LED lamp was recorded with AvaSpec-2048 fiber optics
spectrometer. Intensity of the lamp emission was measured using Co-
herent LM10 power meter.

2.3. Determination of antimicrobial efficacy of dyed paper

Microbial strains, E. coli MG1655 (E. coli Genetic Resources at Yale)
and A. baylyi ADP1 (ATCC 33305) were used in determining anti-
microbial efficacy. Microbial strains were inoculated in 5mL of
Lysogeny broth (LB) medium (10 g/L tryptone, 5 g/L yeast extract, 5 g/
L NaCl) containing 1% glucose and cultivated at 30 °C and at 300 rpm in
temperature-controlled incubator shaker (IKA® KS 4000 i control).
After overnight cultivation, 100 μL of the culture was diluted with
4.9 mL of LB medium containing 1% glucose and cultivated for 3 h at
30 °C and at 300 rpm in temperature controlled incubator shaker (IKA®
KS 4000 i control). The optical density of culture was recorded at
600 nm. The microbial solution was centrifuged for 5min at 6500 rpm
and the LB medium was decanted out from the vial. The residual mi-
crobes were suspended in 5mL of phosphate-buffered saline (PBS)
buffer. Two sets (original and duplicate) of circular discs (5 mm in
diameter) were cut from phthalocyanine-dyed paper and control paper
and placed in the wells of a microplate. 25 μL of microbial solution was
pipetted over the disks. The microplate was covered with a transparent
lid and was illuminated with LED lamp for 1 h with a light intensity of
35mW/cm2. Dark control samples and their duplicates were prepared
by depositing 25 μL of microbial medium over dyed and uncolored
paper disks in a separate microplate, which was incubated in dark for
1 h at room temperature inside the laminar hood. After 1 h of illumi-
nation or incubation, the microbes were extracted from wells with
975 μL of PBS buffer and serial dilutions (up to 10−6) were made from
each extract. The dilutions were then plated on LA agar plates (15 g/L
agar, 10 g/L tryptone, 5 g/L yeast extract, 5 g/L NaCl, 0.2% glucose)
and incubated at 30 °C overnight in a laboratory incubator (Termaks).
The number of colonies grown on the agar plates was counted and
colony forming units (CFUs) per milliliter were calculated to determine
the antimicrobial efficacy. The same procedure was used to estimate the
antimicrobial efficacy for porphyrin paper. The scheme presenting the
procedure is shown in Fig. 2.

2.4. Leaching test of phthalocyanine and porphyrin papers

28mg of each dyed paper was soaked in 4mL of PBS buffer in a
glass vial for 1 h at room temperature. Absorbance and emission of PBS
buffer from each vial was measured after 1 h to check the leaching of
dyes from papers.

2.5. Photostablity of phthalocyanine and porphyrin papers

Phthalocyanine and porphyrin papers were illuminated for 64 h
using LED lamp with the intensity of 42mW/cm2. Absorptance of the
papers was measured before and after the illumination and difference in
the values were used to calculate the photostability of dye on paper.

3. Results and discussion

In our previous work, we have demonstrated that the paper dyed
with Zn(II) tetrakis(N-methylpyridinium-4-yl) tetraiodide phthalocya-
nine (ZnPc) had antimicrobial efficacy of 2.7 and 3.4 log reduction in
CFU against E. coli and A. baylyi respectively after 1 h of illumination
with light intensity 18mW/cm2 [24]. However, these experiments were
conducted using a solar simulator, which is not suitable for practical
applications. In order to implement PACT in everyday life, a simple and
affordable illumination source should be found. Use of commercially
available indoor lighting system such as consumer LED lamp would be
much beneficial for this purpose. In the present study, the phototoxic
effect of paper impregnated with ZnPc illuminated using a consumer
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LED lamp is reported and compared against the paper dyed with well-
known zinc porphyrin photosensitizer ZnPf [46]. Important parameters
such as photostability and stability against leaching are also compared.

3.1. Dyeing of paper

The filter papers used in laboratory are pure cellulose, which is
described in the literature as being “very hydrophilic and slightly an-
ionic with low negative surface charge density” [47]. It is established
that cellulose is able to strongly bind cationic molecules and polymers
with positively charged fragments, even from water solutions [47–49].
In our experiments, when the filter paper was immersed in an aqueous
solution of cationic dye, the chromophore was fully absorbed by paper
in a few minutes, leaving behind the colourless water. Thus, we suggest
that electrostatic interactions bind porphyrinoid tetracations onto the
paper thereby giving it a stable colour. Due to the low amount of dye
used for the immobilization with respect to weight of the paper (0.12 wt
%) and the non-transparent character of the samples, the most reliable
way to monitor the dye impregnation was the UV–Vis absorption
measurements using integrating sphere.

3.2. Lamp profile and absorbance of the dyes

Even though light-emitting diodes are largely used in photodynamic
therapy, the use of consumer LED lamps remains very limited.
However, accessible and economical light source is a keystone in suc-
cessful implementation of PACT. Typically, no spectral data are avail-
able for consumer bulbs, which makes their selection and comparison
difficult. For the work, a “warm white” OSRAM LED lamp was selected,
and its emitted spectrum was measured prior to the experiments. The
wavelength of lamp emission spans from 400 to about 750 nm with a
maximum at 594 nm (Fig. 3a). In order to correctly quantify the pho-
toinactivation results the power density of the lamp was also measured
at different illumination distances. Total light intensities were found to
be 4mW/cm2 at a distance 28 cm, 8mW/cm2 at 20 cm, 15mW/cm2 at
14 cm and 35mW/cm2 at distance 9 cm away from the lamp front
window.

The absorptance of phthalocyanine- and porphyrin-dyed papers
were calculated from reflectance (R) and transmittance (T) spectra
measured using integrating sphere (IS) detector. The absorptance pro-
files were similar to the absorbance spectra in solutions, though with
some changes in relative intensities. Wavelengths corresponding to the
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Fig. 1. Cationic phthalocyanine and porphyrin used in the study.

Fig. 2. Scheme to determine antimicrobial efficacy by CFU counting.
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maximum absorption are 430 nm for porphyrin and 696 nm for
phthalocyanine, respectively. Since the two dyes absorb differently at
different wavelengths and the lamp profile is not flat either, the dyes'
absorptance profiles were recalculated according to the eq. I(λ)= L
(λ)× a(λ) / 100, where I(λ) is the recalculated light absorptance at
certain wavelength, L(λ) is the relative light intensity of the lamp, and a
(λ) is the absorptance value as measured with the integrating sphere.
The resulting spectra are present in Fig. 3b. The absorbed light power
densities for porphyrin and phthalocyanine were calculated from the
ratio between the area under recalculated spectra for respective dyes to
the total area of the lamp spectrum. The absorbed light power density
for porphyrin was found to be 1.2 times greater than that of phthalo-
cyanine. Hence for the lamp intensity 35mW/cm2, the light doses
calculated were 45 J/cm2 and 37 J/cm2 for porphyrin and phthalo-
cyanine respectively. This difference in light doses was taken into
consideration while setting the illumination conditions for photo-
inactivation. Thus for porphyrin paper the total light intensity of the
lamp would be decreased to 29mW/cm2 to match the light doses.

3.3. Photostability of papers

The photostability of photosensitizers is a very important factor for
practical application. Therefore, the photostability of phthalocyanine
and porphyrin papers was measured from the difference in the ab-
sorptance values before and after the illumination in air. The absorp-
tance of papers were calculated from the reflectance and transmittance
measurements (Fig. 4). The absorptance of phthalocyanine paper (at
696 nm) before the illumination was 81.88% and after illumination was
71.30%. Therefore, the photodegradation of the ZnPc dye on paper was
12.9% while, the shape of the spectra remained same even after 64 h of
illumination. For porphyrin, the absorptance of the main peak around
430 nm before illumination was 90.50% and after illumination was
81.28%. Hence, the photodegradation of porphyrin paper calculated
was 10.18%. However, peaks around 520 nm and 590 nm almost dis-
appeared after exposure to light. These results show that there was no
significant photodegradation of phthalocyanine on paper even after
64 h of continuous illumination with light intensity of 42 mW/cm2. The
porphyrin dye also preserved its absorbance quite well, though the
changes in the shape of the spectrum were noticeable.

3.4. Leaching test

In order to check the leaching of dyes, the dyed papers were in-
cubated in a 4mL volume of PBS buffer at pH 7.4. The amount of the
zinc complexes extracted into the PBS buffer was determined by

measuring the UV–Vis absorption spectra of the extract. The fluores-
cence spectra of the extracts were recorded in order to detect the
minute concentrations of extracted dyes, which could not be reliably
observed by absorption measurements. The PBS extract of porphyrin
paper had shown a strong absorption peak at 422 nm that confirmed the
leaching of porphyrin into the solution. The emission spectrum of PBS
extract of porphyrin paper excited at 422 nm displayed a broad intense
peak with maximum around 720 nm. Remarkably, the PBS extract of
phthalocyanine paper did not show any absorption peak corresponding
to the dye in UV–Vis spectrum even after 20 h of incubation at room
temperature (Fig. 5a). In emission measurements, upon excitation at
694 nm it produced a signal, however very faint. (Fig. 5b). Obviously,
the amount of extracted zinc phthalocyanine was negligible. Such a
strong binding ability of ZnPc is a beneficial property, which is very
important for practical applications.

3.5. Antimicrobial efficacy by colony forming unit (CFU) counting

In general, incorporation of metals such as Zn [50,51], Al [52,53],
Si [54–56], Pb [57], In [34,51,58], Pd [59] into porphyrinoid core
improves the phototoxicity of the compounds towards microbes. Skwor
et al. [46] reported 2.6 log CFUs reduction in methicillin-resistant
strains of S. aureus (MRSA) by using ZnPf with light dose 2.5 J/cm2.
The activity of the corresponding free base porphyrin was however

Fig. 3. (a) The lamp profile and absorptance of zinc phthalocyanine and porphyrin papers (b) light dose calculated for phthalocyanine and porphyrin papers.

Fig. 4. Absorptance of dyed papers before and after illumination for 64 h.
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lower. Higher phototoxicity of cationic zinc phthalocyanine towards
microbes was also reported in our previous work [24].

For the immobilization of photosensitizers on polymer matrix, few
strategies are commonly employed. One method is a covalent attach-
ment of photosensitizer to polymer [60–65]. Other methods rely on
incorporation of photosensitizers into polymer matrix during electro-
spinning of polymer fiber [57,66–72], or employ binding of the dye
through electrostatic interactions [73–75]. Cationic zinc porphyrin
covalently bonded to cellulose nanocrystals exhibited 1–2 log reduction
in E. coli CFUs with 20 μM dye concentration and light dose 108 J/cm2

[65]. Cationic zinc porphyrin embedded into polyacrylonitrile nano-
fiber (10 wt% with respect to the mass of polymer) prepared by elec-
trospinning has shown 6 log photoinactivation against E. coli when
exposed to light dose of 118 J/cm2 [72]. Polystyrene nanofibers with
embedded tetracationic lead phthalocyanine exhibited significant
photo inactivation against E. coli [57]. Porphyrin-nanofiber material
prepared by electrostatic interaction of tetracationic porphyrin
(TMPyP) and modified polystyrene (molar ratio TMPyP/
SO3−=2.5×10−3) demonstrated phototoxicity towards E. coli after
illumination for 2min with a 400W solar simulator [74]. Similar results
were reported on the inactivation E. coli with cationic porphyrin TMPyP
(dye concentration 180mg/m2) attached electrostatically to re-
generated cellulose upon 24 h of illumination [75].

In our previous publication, a strong dependence of the efficiency of
antimicrobial surface on the dye load was observed. The inactivation
rate for ZnPc dye loads 800mg/m2, 400mg/m2 and 200mg/m2 was so
high that it could not be calculated reliably. Simply, there were no
microbes survived after 1 h of illumination. The only dye load which
allowed to obtain reliable and reproducible inactivation rate was
80mg/m2, at which some surviving colonies still could be observed,
counted and compared to dark controls [24].

In the present study, 80mg/m2 load was selected as a starting point
for experiments. The antimicrobial effects of our phthalocyanine and
porphyrin papers against Gram-negative microbial strains such as E. coli
and A. baylyi were evaluated. For zinc phthalocyanine paper, the total
light intensity of the lamp was set at 35 mW/cm2. Hence ZnPc paper
would be exposed to light intensity 10.3 mW/cm2 (calculated from area
under the spectrum for phthalocyanine with that of lamp spectrum) and
light dose of 37 J/cm2 after 1 h of illumination.

For the illumination of porphyrin paper, total light intensity of lamp
was set at 29mW/cm2 to obtain the same light dose as that of phtha-
locyanine paper. Hence calculated intensity of light for porphyrin from
the area under the spectrum is 10.3 mW/cm2 and light dose 37 J/cm2.
However, the tested microbes could not survive on porphyrin papers
after 1 h of illumination with this intensity. The reason is the extraction

of porphyrin from paper into PBS buffer as observed in the leaching
studies. This in turn increased the concentration of photosensitizer in
liquid and its accessibility for bacteria, thereby enhancing inactivation
of microbes. In order to obtain a countable number of colonies of
bacteria after illumination, the total light intensity of lamp had to be
reduced to 4mW/cm2 (absorbed light power density calculated from
the area under the spectrum for porphyrin paper= 1.4 mW/cm2, light
dose= 5.04 J/cm2). With this light dose, porphyrin-dyed paper de-
monstrated 1.66 and 2.01 log reduction of CFU against E. coli and A.
baylyi, respectively.

The paper dyed with tetracationic phthalocyanine ZnPc exhibited
3.72 and 4.01 log reduction in CFU units against E. coli and A. baylyi,
respectively after 1 h of illumination. Such a high efficiency proves that
the photodynamic effect can be achieved with a consumer LED bulb.
The results are shown in Fig. 6. It must be underlined, that no dark
toxicity of the dye was observed during the experiments. Light activity
of the dye ZnPc is high indeed, and it compares very well to the effi-
cacies published in literature. As advantages of our approach, we can
underline high photostability, strong binding capacity and significant
photoinactivation of microbes.

In this work, filter paper was selected as a substrate to prepare the
photoactive self-disinfecting surface because it can easily immobilize
tetracationic phthalocyanine via electrostatic interactions. Further
studies using polymer substrates other than filter paper should be done
in future. This would greatly expand the range of possible PACT ma-
terials.

4. Conclusions

We have recently synthesized Zn(II) tetrakis(N-methylpyridinium-4-
yl) tetraiodide phthalocyanine which binds onto a paper substrate
strongly and efficiently from water solution via simple dipping proce-
dure. Even at the dye load as low as 80mg/m2 this novel phthalocya-
nine has strong phototoxicity against Gram negative bacteria E. coli and
A. baylyi. Phthalocyanine-impregnated paper has very good photo-
stability with no significant degradation after 64 h of continuous ex-
posure to the light. The phthalocyanine-dyed paper also demonstrated
remarkable stability in the leaching tests in PBS buffer.

We have shown that a consumer LED lamp can serve as an eco-
nomical and efficient light source for photodynamic inactivation of
microbes. These results give a promising direction for implementing
PACT in real life applications. More studies using antibiotic-resistant
pathogens are under progress and will be reported in due time.

Fig. 5. (a) Absorbance measurements (b) emission measurements of PBS extracts.
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