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SYNOPSIS: CITIES IN A CONSTANT STATE OF FLUX - A
CHALLENGE TO PLANNING

In recent decades, we have increasingly faced challenges as to how to plan our towns and

cities. In traditional planning thinking, autonomous urban progress has been considered flawed

and colliding with successful planning presumably producing and controlling the city.

However, cities seem to repeatedly avoid such control, and the resulting multifaceted urbanity

manifests as edge cities, sprawl and multi-nodality, self-organizing patterns and processes,

clusters and networks. Overall, it seems that the city has gradually become too complex to be

controlled in respect of both physical form and spatio-functional configurations, and socio-

economic processes. Most importantly, we forget that many of these autonomous processes are

necessary for the viability and renewal of cities – for innovation and creativity in economic,

social, and cultural life. Until recently, the response to such uncontrolled urban progress has

been either to impose stricter controls (Pakarinen 2004), or to seek for adaptation through

incremental implementations (Kuusela and Partanen 2016).  Both methods evade the major

issues of emergent bottom-up progress, either by ignoring the very processes, or their

assessment and considering guidance. Questions about appropriate planning methods and tools

emerge for both guiding and enabling urban systems dynamics, along with the essential

question of fundamental nature of city planning, design and urbanity.

In Chapter 1 of this thesis I suggest that this chimeric urbanity has not emerged for one single

reason - such as flawed planning or autonomous processes alone, but from complex co-

evolutionary interactions between the two, resulting in the extreme complexity of the urban

systems we are witnessing today.  In light  of  this,  I  claim that  such complexity requires,  first,

completely new theoretical views to understand the very nature of the late modern urbanity,

and secondly, a novel set of planning tools and methods to guide it in an appropriate manner.

In Chapter 2 I build a theoretical understanding of such fluctuating dynamic city systems,

following, for example, Michael Batty and Stephen Marshall (2009, 2016) in proposing that the

so-called complexity sciences – and particularly the theory of self-organization as a key
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mechanism of how complex systems organize – and related resilience theory provide a robust

frame for future planning discourse. Complexity refers here to a set of theories originally from

the natural sciences contemplating complicated open systems and applied within variety of

fields including urban research. Resilience theory originates in ecosystem studies, and basically

contemplates the capacity of complex systems to adapt and recover from crises autonomously.

These approaches are able to consider the neglected characteristic of complex urban systems,

such as unpredictability and nonlinear dynamics, thereby enhancing our understanding of

possible planning premises, but also providing actual methods and measurements – such as

scaling, entropy or dynamic states used in the related articles – for complexity planning.

However, adopting such theories from natural sciences to human systems is naturally not

straightforward, and hence in Chapter 3 I build an epistemological basis which enables

adopting the complexity view while maintaining the relationality of human systems.  In the

framework of the proposed "substantial structural realism", in Chapter 4 I answer the research

question, and provide a robust frame for following complexity methodology. Furthermore,

along with introducing “complexity planning methods”, all the articles which form the

substance of this thesis elaborate empirically and in detail the question by scrutinizing

thoroughly (yet not exhaustively) some of the most central ‘complexity planning’ methods.

In the first article (Partanen 2015) I aim at recognizing and measuring self-organization in the

case area Nekala old industrial area using typical measurements of self-organization such as

entropy and scaling. Such methods would assist planning to reveal areas with a high capacity

for renewal presumably facilitating regionally economic, social or cultural life. In the second

article  (Partanen  and  Joutsiniemi  2015)  the  same  case  area  is  scrutinized  more  carefully  to

reveal other self-organizing, unplanned patterns resulting from actors’ interaction, with results

proving that self-organization of activities is a much more diverse and unrecognized

phenomenon than previously assumed, requiring more freedom and delicacy in planning

operations. The third article (Partanen 2016A) introduces a simulation model with which the

planning rules and their impact on the continuity of the systems dynamics is studied, assuming

that complex states, that is, partly predictable, partly chaotic behavior of the model, represent

the system’s ability for renewal. The model is run in two case areas, the previous Nekala area

and Vaasa old garrison area. The planning would benefit from such simulations by pinpointing

what must be controlled by plan for preferable continuous and adaptive dynamics, leaving the

rest intact to operate autonomously. Finally, a self-organizing planning experiment is

introduced in the fourth article (Partanen 2016B), proposing a structured method for a

genuinely bottom-up (beyond participation) way of co-creation of space, based on self-
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organization of information, and considering actual (invisible) processes within the city for

more considerate planning.

Although the methods and analyses applied and presented in this work are fairly well

established in academia, in planning praxis their use is still limited, and hence they provide

relatively novel viewpoints and methodology. In this thesis I present an overview of a potential

methodology for planning, and illustrate in an exploratory manner how complexity could be

applied in urban planning, bridging theory, philosophy and operational analysis. The

implications and limitations of these approaches are elaborated in Chapter 5., Discussion.

In the Epilogue I then discuss what the role of the proposed complexity planning would be in

the context of the planning evolution presented, suggesting that such continuous and

contemplative mode implying methods for plan assessment or evaluation and implication could

form a new paradigm for planning, not completely replacing the existing ones but

complementing the spectrum of planning methods, and probably also enabling the emergence

of lighter, more flexible planning overall.

The title of the thesis refers to a common saying suggesting that something that is operating

well should left intact, or to “leave something alone; avoid attempting to correct, or improve

what is already sufficient (often with an implication that the attempted improvement is risky

and might backfire)” (Wikipedia). In the context of this work, and as regards self-organizing

processes overall, this is even more true: due to their inherent non-linearity, changes in the

well operating system - actor networks, clusters or other processes - or in its environment

might kill them. Rather, we should adopt a new attitude in planning – to understand that urban

processes emerge intrinsically from city life, and learn to nourish the preferable ones while

restricting those considered unfavorable.
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1.  THE FORMATION OF CITIES AS TWOFOLD INTERPLAY
BETWEEN AUTONOMOUS PROGRESS AND PLANNING

The dilemma exists between the apparently ineffective control mechanisms of planning and the

surprising outcomes of urban processes resulting in unpredictable impacts in the form and

functions of the city. This issue was noted decades ago for example by Thomas Sieverts,

François Ascher, and Franz Oswald and Peter Baccini among others. These views emphasize

seemingly random changes that occur in many fields of urban life: turbulence in the (city)

economics, or rapid shifts in basic principles concerning work, retail, recovery and other

routines of daily life often appear unpredictably (Ascher 2007, Baumann 2000, Oswald et al.

2003, Graham and Marvin 2001). For example, surprising location preferences of activities or

the resulting spatial and movement patterns are related to regions’ competitiveness and

typically resist top-down ideals of city and city planning. The variety of social and other

networks, digitalized organizations and institutions and enterprises emerging bottom up render

even more complex the ways we use the city, probably producing completely new spatial

configurations (Batty and Hudson-Smith 2013, Batty 2016). These systems are nested and

closely interlinked: they imply increasingly complex, nonlinear feedback mechanisms between

human systems, and with systems in Nature. Economic, social, cultural, and natural networks

are inseparable. In response to such dynamics, planning has continuously evolved to better

control the emerging issues in cities, ignoring the autonomous nature of urban processes and in

many cases only caused new ones. In many cases urban areas in the West have become overly

complex through a twofold process involving both autonomous progress and planning

attempting to tackle it.

Consequently, in the context of these challenges, in this thesis I am asking a twofold research

question: what kind of a mental, processual model1 would allow the city planning to respect the

urban processes while still guiding the urban systems in a preferable manner? And

particularly, what could be the actual planning tools and methods for implementation of plans

and evaluation the desirability of these in the context of complex urbanity?

1 A model refers here to a simplification of a phenomenon instead of an idealization. This is typical of
quantitative (spatial) research.
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HOW CITIES EMERGE AUTONOMOUSLY

By the 1990s many urban theorists had recognized the autonomous2 nature of urban progress,

for example Sieverts 2003, Oswald et al. 2003, Ascher 2004 and Castells 2011.  In these

theories of the late modern city, characteristics appear rather alien to the traditional (static)

understanding of urbanity. These theories describe cities as dynamic and ever changing,

spatially and functionally fragmented and in many ways incoherent systems, following certain

logical principles and rules whose overall outcome was still hard to predict. In the mid-1990s

the French sociologist François Asher introduced a term aptly describing the urban

characteristics, namely Metapolis, stating that cities can metaphorically be considered as

systems with metabolia3  - constant, life supporting fluctuation of matter, information and

energy through the system - similar to natural organisms4. Conceptually, the view embracing

cities as systems with metabolia is particularly challenging as regards planning, first, due to its

dynamic, constantly changing nature; secondly, for the self-organization of actors and

emergent patterns they produce; and thirdly, to their inherent uncertainty – the unpredictability

of these processes avoiding permanent equilibrium.

Individual decisions as drivers in urbanity
At the core of the concept of Metapolis is urban dynamics. Metapolis is sustained by

continuous dynamic processes which support the system, manifest as flows of goods,

information, and people along the highways and communication networks, and built structures

as physical concentrations of these, channeling the flows, constantly changing and moving,

following the logic of the circulation of the flows (Ascher 2004, 2007, Oswald et al. 2003). The

physical city is in a state of constant flux and constantly transforms as a result of collective

impacts of individual activities such as firms, individuals, institutions, and organizations

seeking their best interests and choosing the best environments for their operation, hence

planning locally - in the framework of larger scale planning and regulation with certain (often

2 Autonomous refers here to independent dynamics within the urban system, which is not subject to
control from outside rather than to the self-governance of a community. In the first sense, autonomous
complex entities or systems are often self-organizing, implying that the (autonomous) order emerges
unintentionally from the agents’ interaction. Conversely, the resulting organizations in self-governing
autonomy are intentional; self-organization may emerge, but it is not planned. See more in e.g.
Partanen&Wallin (2017). Hence, in this thesis, autonomous progress implies no overall
governance/control of the whole, nor of the emerging results.
3 The metabolia discourse is, however, older; the first spatial reference is probably from Burkes in urban
economics in 1925.
4 Note that the reference to organisms is functional, not formal as in planning discourse stressing physical
form in the early 20th century.
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diversified and transitive) interests and aims (Portugali 2012). It is noteworthy that the plan is

not a driver of change as such, and that the same technological innovations and progress which

allegedly played a role in the dispersion of city structure also formed certain planning ideals

encouraging this (Batty 2007, Shane 2011). Furthermore, seemingly random preferences of

actors on the global level also guide the planning decisions in a straightforward manner,

resulting in less strict overall steering, and making a plan in many cases appear just as a license

to build (Kuusela and Partanen 2016).

Apparently, the intrinsic dynamic drivers for change in late modern cities can be considered to

be related to randomness and utilizing available advantages. Furthermore, in such dissipated

mechanisms actors’ location decisions always embrace a certain extent of stochasticity.

Although all actions are basically intentional, no single actor can have the perfect information

of the nested system and its operations as a whole (Batty 2007, Portugali 2012). Even with the

best available information the actors’ location may from another point of view be random. In

addition, they are always affected by the heterogeneity of rational, emotional or other

preferences. It is implied that a qualitatively new, often surprising, pattern may emerge as the

city  is  observed  on  a  higher  scale.   The  role  of  the  flows  also  appears  in  utilizing  the

comparative advantage of the region. It implies superior market potential or higher

accessibility to facilities compared to those of other regions. This process is self-enforcing, and

it could start by coincidence and accelerate through the feedback (Batty 2007). Hence, since

the self-organizing pattern is a cumulative result of myriads of independent actors, it is hardy

controllable on a level of the self-organizing pattern, but the control of each individual would

be equally hard.

Circular processes
The numerous networks of transport and telecommunications channeling urban flows are also

highly interlinked and mobilize resources in each other in a circular way. Urban form and the

social organization of space interact with transportation and storage: Zonings, densities,

centrality, axialities, polarization, functional and social segregation depend on these techniques

and, conversely, generate and direct their development. After the Second World War the

expanding use of private cars and later personal computers and internet have enabled more

individual lifestyle choices, and have also gradually become the norm: a certain level of

mobility and access to the web is required to be part of society (Ascher 2004, 2007, Castells

2011). The collective effect of myriads of individual choices creates surprising self-organizing
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patterns through dissipated decision-making, both in respect of movement and the physical

structure of the city (Batty 2007, Sieverts 2003). As feedback, society is increasingly organized

around these choices and patterns (Ascher 2004). We have become dependent on numerous

gizmo. Individuation means freedom to many, but has another side: people have become

responsible for finding a balance in how they use their space and time themselves – Ascher

points out that choices are to change the place (delocalization) or time (desynchronization)

using tools of mobility and technology, blurring the old concepts of space and time as they

become virtual, increasing enormously the complexity, unpredictability and decreasing

controllability of cities (Castells 2011, Batty and Hudson-Smith 2013, Townsend 2013).

Flexibility  is  the  key  concept  in  business  and  production,  creating  a  crisis  in  regulation.  In  a

24/7 society, with unpredictably changing cycles, we cannot plan in a Fordist manner “just-in-

case”, but “just-in-time” (Portugali 1999). The planning needs more flexibility.

Technological revolutions and the city evolution
The city system has developed in many ways as a result of technological innovations, and the

following applications in communication and transportation technology (Ascher 2007,

O’Sullivan 2007). It is essential that this process is not smooth nor permanently in equilibrium,

but has occurred in jumps, boosting urban renewal and producing qualitatively a completely

different state (Castells 2011, Portugali 1999, Ascher 2004). Embracing the Metapolis

metaphor, it can be considered that the “metabolic rate” of the system jumps to another level as

the efficiency of the network to channel flows increases, and consequently its spatial

requirements also change. This technological progress resulting in a qualitative leap from

industrial to information society, and the coupled development/growth in number of private

cars and megalopolitan road network, along with globalization of economy (enabled by and

enabling these) have changed the metabolia of the city permanently – the qualitative transitions

are irreversible. Changes in urban regions are intrinsically intertwined with progress: actors

constantly seek for material advantage, for example regions with affordable natural resources

or cheap power. These change over time related to the most effective energy sources available,

and the progress in technology, accelerating the progress (Batty 2007). For example, the coal

or water power used to be a great comparative advantage for the industrial cities, but the

advantage was overridden by the internal combustion engine and oil (Shane 2011, Ascher

2007, Batty 2007).  Comparative advantage also changes in time generated by progress in

transportation and communication technology which may change the nature of the most

accessible – and the most beneficial for the actors – locations (Batty 2007). Both advantages
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and their evolutionary nature are implicitly very much related to the competitiveness of regions

(Ascher 2004). Furthermore, both these advantages are in a long perspective unpredictable.

Irreversibility and uncertainty
It  is  necessary  to  stress  again  that  the  changes  resulting  in  Metapolis  are  irreversible:  in  a

nonlinear5 system – progressing in a non-smooth, ruptured manner as cities - the progress

cannot be turned back (Gleick 2011). All changes, plans, and further progress will inevitably

produce totally new urban typologies or forms of behavior. Such uncertainty is a key

characteristic of many dynamic open systems, which is almost ignored in our traditional

planning discourse. Hence, for example in modern, mechanistic-rational thinking the concept

of  danger  is  often  replaced  with  a  concept  of  risk,  implying  the  possibility  to  preempt

unpreferable incidences by mastering the future with the right type of control/policy/structure

in the society (Ascher 2004). In the case of any complex system this is absolutely untrue. Risk

and precautionary principle, the key parameters for planners and policy makers, erroneously

imply the linearity of complex systems, and often lead to outsourcing the responsibility of our

action to decision-makers (Novotny et al. 2010, Ascher 2007).

At the same time our society, the labor markets, and economy are built on a high degree of

mobility and extremely flexible individual juggling with time/space6,  enabling the use of  full

competition potential (Ascher 2007, Bauman 2013). A flexible response to uncertainty is

discovered elsewhere – it is outsourced to individuals. Individuation and a new lifestyle can

hence be considered as a response to the complexification of society, but also as a next step in

the overall emancipation of citizens from collective rules and norms that has been occurring for

decades now, towards a society organized more bottom up. This phenomenon of fragmentation

of common interests and shared experience was contemplated already in the turn of the

millennium in sociology, for example by Zygmund Bauman, Manuel Castells, and François

Ascher. Yet they hardly feature in our planning discourse. Our social groups are weak,

numerous, and transitory, and depend on personal choices and networks more than permanent

social structures or classes. This is very challenging for many systems in our society, which are

built for stability and shared interests, such as representative democracy or planning. The static

masterplan  aiming  at  the  “best  interests  of  the  public”  has  become  a  contradiction  in  terms

5 In mathematics, nonlinearity implies that the output of the function is not proportional to the input –
generally, the relationship between e.g. process and the pattern it produces is not linear and not
necessarily predictable, although it is causal.
6 Ascher suggests that individuals can control their lives using delocalization, that is, adjusting their
location, and desynchronizing, referring to altering the schedules.
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(Taylor 1998). The consensus traditionally implied in participatory activity is impossible as the

there is no shared realm for various, shifting groups. Conflicts will be inevitable or even

necessary in planning, too. Such uncertain configurations need to be accepted as a baseline for

planning the Metapolis realm.

Metapolis as a major urban type throughout scales
In recent decades the emergence of the Metapolis described has been a major trend throughout

the West, not only the major megapolises or metropolitan areas. Metapolis is assuming a

variety of forms reflecting the typical characteristics of each case. This endless variation of

types is typical of cities. Cities can hardly be categories according to a single common feature;

rather, all cities share certain common characteristics with other cities, but none of these are

perceived in all cities (a feature known as family resemblance) (Portugali 1999). It is possible

to consider that middle-sized European cities very different from huge megalopolises like

London or New York share similar features in their “metabolia” (Portugali 1999, Shane 2011),

especially within the context of globally networked markets and economy. Metapolis is

occurring everywhere, since smaller hubs are also eager to use their maximal economic or

competitive potential, and thus they prefer to optimize their connections to the rest of the

system.  The  key  factors  of  the  Metapolis  (built  around  flows  of  people,  information,  and

goods) are related to the connections – ICT and physical mobility (Ascher 2007, Oswald et al.

2003, O’Sullivan 2007). In this thesis the case areas presented in the articles are located in the

middle-sized North European cities of Tampere and Vaasa, each facing Metapolis

characteristics specific to the region.

City remains physical
Although the emergence of the Metapolis is intertwined with transportation and

communication technologies liberating many locations and digitalizing others, this progress

has not challenged metropolitan concentration as such.  Cities are probably not becoming

totally virtual, but the logics and relations of virtual/physical are changing drastically. Digital

tools are right now changing the ways we use the city, and making it even more unpredictable

(Batty and Hudson-Smith 2013, Batty 2016). It is probable that physical access and meeting

will  remain  (and  perhaps  even  increase)  the  priorities  in  urban  locations  and  their

concentrations - the virtuality may even renew the importance of face-to-face experience. New

forms of increasing e-commerce will probably change the locations of some retail functions

instead of replacing it all; places for information and hands-on experience will still have their
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place. Old notions of centrality will be challenged -  geometric centers are no longer the most

accessible locations; instead there will be multiple centers with a variety of roles (Sieverts

2003, Ascher 2004). The result will not be a virtual city, immobility or introversion, but a new

type of mobile telecommunicating city with a new balance between physical and virtual

presence yet to be seen (Townsend 2013, Ascher 2004, Batty and Hudson-Smith 2013, Castells

2011). The need for planning of the spatio-functional city will persist, but planning must

respond to current and emerging changes. The only strategies to be prepared for these coming

manifestations of the digitalizing Metapolis are research, the better to understand them, and

based on that, new, more adaptive and flexible forms of spatial planning for increasing

complexity.

PLANNING EVOLUTION

Above the emphasis on describing the Metapolis has been on the processes, stressing

autonomous progress, dynamics and patterns emerging in the city. However, this is not the

whole truth: the formation of cities also results from prior, constantly changing planning

decisions and ideals. Basically, the planning paradigms in the West have evolved gradually in

150 years from concentrating completely on controlling the physical form towards an

increasingly profound understanding of systems and processes, further embracing social

sciences, humanism, and art, and recently considering negotiation and participation, with an

embryonic understanding of the bottom up processes described. Along with developing

systems thinking, this progress has brought planning from a strictly top-down position towards

a richer and more accurate view of urban management, making the planning more capable of

responding to the challenges of Metapolis (Taylor 1998, de Roo et al. 2012, de Roo and Silva,

2010). It seems that, as Batty and Marshall (2009) point out, overall the rare yet remarkable

addresses promoting evolution, complexity and self-organization of cities along the way,

presented by e.g.  Patrick Geddes (Batty and Marshall 2009), Jacobs (1961) and Alexander

(1965), are gaining more ground backed up by progress in science and urbanism (Figure 1).
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Figure 1. Timeline of city models and planning paradigms according to authors recognizing

complexity or the emergence of Metapolis as a challenge to planning (Batty and Marshall

(2009), Portugali (1999), Shane (2011, 2005) interpreting Lynch (1981).
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Metropolis planning - control through physicalism
Since the first boom of ideal town planning of the Renaissance (Shane 2005, Lynch 1981), it

appeared that the major crises concerning control over cities hit the West in the mid-19th

century. Due to industrialization, the urban structure started to expand heavily beyond the

traditional city core, stretching toward the countryside around former city borders (Ascher

2004, Lynch 1981, Shane 2005). Although the urban core maintained its role as a central place,

in the eyes of the planners this expansion appeared as an alarming anomaly against the

traditional compact city, and the monstrous, pathological growth of formerly healthy urban

tissue (Batty and Marshall 2009, 2016). This megalomaniac growth was enabled by progress in

transportation and communications technology, simultaneously with other revolutionary

changes in society following industrialization. These new forms of social organizations and the

concept of mass production and consumption rendered the urban system dynamics even more

complex, and shifted the urban scale to a completely new level (Ascher 2004, Batty and

Marshall 2009, Shane 2011).  Undeniably, improving the disastrous hygienic, social and other

environmental conditions in cities required urgent actions.  However, many planners focused

on the process of growth, erroneously considering the very phenomenon unnatural and

requiring its prompt taming through a new apparatus, city planning (Batty and Marshall 2016,

2009).

Emerging planning  in its early phases7 concentrated mostly on maneuvers similar to those in

architectural design – the esthetic physical modification of entities, only on a larger scale

(Taylor 1998, Shane 2011). The disciplines of planning and design, as they emerged in the 19th

century, were about the city as a whole. The underlying physicalistic view implied that social

conditions could be improved by altering the physical environment. Here, little attention was

paid to the very processes behind the physical formation – such as economic forces (Batty and

Marshall 2009). With a focus on the optimal form and restricting the growth, the resulting

plans and designs were fairly utopist, imbued with normative ideas and values of how cities

should be, with little or no understanding of what they had actually become – an attitude not

completely absent in more recent planning, either.

As suggested by Batty and Marshall (2009), these brave new ideals of the Metropolis, such as

those of le Corbusier and Howard (Corbusier 1929, Howard 1902), were frequently built on

analogies between cities and natural organisms, simply assuming natural forms to be the

essential features. In these early views the city organism was contemplated as a unified whole,

7 this refer to what Ascher has describes to have taken place first, in renaissance (1st modernization) and
then after industrial revolution (2nd modernization)
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with an optimal form, size and shape (Batty and Marshall 2009). Such planning approaches

were hence strictly top-down oriented. A specialist planner or an architect was considered to

know  the  optimal  attributes  of  the  city,  and  to  be  able  to  design  the  city  as  if  designing  a

machine, with the slightest flavor of natural metaphors. These were often implicit and

sometimes only a figure of speech, but sometimes were pushed too far – suggesting rigid,

unrealistic optimae (Batty and Marshal 2009, Taylor 1998). Concentrating solely on

physicalism8 the  processes  promoting  the  formation  of  the  physical  entity  -  the  urban  form -

were missed, implying idealized impact of human decision making (Batty and Marshall 2009,

Taylor 1998). It was crucial that linkages between physical form and socio-economic processes

were absent, or even sometimes considered logically flawed. For example, many economic

mechanisms and forces were called by Howard (1938) “superstitious” (pp. 488-489), and

referred to by Wright (1932) as “artificial” (p. 8).

Planning the city with systems theories and science
The core city model started to erode in the early years of the 20th century following outward

stretching transportation routes, first railroads in the 19th century  to  be  soon  followed  by  the

anticipation of cars (Shane 2011). However, the center still dominated during this period

(Ascher 2004, 2007, Shane 2005, 2011). After the Second World War, the expansion started to

accelerate seriously along with new design ideals, and enabled by new available energy sources

and means of transportation (Ascher 2004, Shane 2011). Shifts from coal to oil, from rail and

docks, to cars, trucks and airplanes occurred, engulfing the surrounding villages as a part of the

city system. The redistribution of activities following the new rational planning principles

eventually resulted in breaking the hegemony of the center and laid the foundations for the

multi-nodal city (Shane 2011, Taylor 1998). Colliding interests to enhance the quality of urban

environment and accessibility resulted in the ideals tangibly perceived, for example, in the

utopia of the Broadacre city (Shane 2011, Wright 1938).

Consequently, the scale of design grew again, along with the changing scope. The quest for

overall control remained in a rational technocratic sense, and even increased; cities were

considered to require new methods for manipulating, measuring, optimizing, and engineering

their spatial structure in a more efficient manner (Shane 2011, Batty and Marshall 2009). In

planning, control was sought by implying rational hierarchical approaches such as scientific

8 Physicalism: The doctrine that the real world consists simply of the physical world (Oxford
Dictionaries).
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planning embracing many quantitative methods including  location theory, spatial analyses,

and large scale aggregate models; and by management, within which the systems theories 9

gained ground (Batty and Marshall 2009, Portugali 1999, McLoughlin 1969).

Regarding the understanding of urban system, these approaches provided the remarkably

promising new concepts. Cities were considered as systems10  - entities consisting of parts

working together, forming a complex whole, operating as a mechanism or an interconnected

network. Furthermore, these systems were dynamic and interacting, affecting each other’s

dynamics. The systems presumably responded dynamically through certain feedback loops,

also providing means for steering them. Instead of physical malleable entities, cities were

basically seen as dynamic, complex systems – albeit overestimating their simplicity. Although

systems thinking - especially its cybernetic branch - made extensive progress compared to prior

physicalism, understanding of the labile, transient nature of the urban systems and emergent

phenomena across the scales was still limited (Capra 1996, Batty and Marshall 2009, Portugali

1999).  Similarly  to  the  approaches  implying  physicalism,  all  these  systemic  views  aimed  at

returning the cities to an imaginary equilibrium state to which they “naturally” belong. Along

with the systems view and rational planning, the search for the one and only way to build a

good society and a city continued (Batty and Marshall 2009), with implied values emphasizing

non-urban aesthetics, a highly ordered view of urban structure which appeared as zoning and

orderly hierarchy of the parts, and consensus of common interests (Taylor 1998).

Non-spatial city – the planning of processes
At the turn of the 1970s the critique against rational planning started to emerge from many

perspectives. First, emphases on the planning process ignoring implementation (Taylor 1998)

and secondly, ignoring of political economy, market forces steering the urban development,

and social structures called for attention to the participator collaboration (Taylor 1998,

Portugali 1999). Thirdly, humanistic and cognitive views emphasizing the individual

experience and the quality of the space of the city emerged, qualitative as a response to

allegedly inhuman positivist quantitative approaches in planning and geography (Portugali

1999). In addition, both rational or strictly incremental planning was criticized, and new

9 Revolutionary in systems theories was the understanding of cities as interrelated and dynamic systems,
and rejecting the end-state plan.
10 System: an entity consisting of parts working together, forming a (complex) whole operating as a
mechanism or an interconnected network.
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approaches proposed, for example by Etzioni (1967)11. In short, the focus shifted towards the

complexity and diversity of urban social, economic and cultural processes behind the corporeal

city. In addition, new approaches in planning and geography emerged, greatly concerned about

social structures, underlying forces or the lived space, somewhat abandoning the spatial,

visual-morphological aspects of the city, and hence lacking the tools for its management (Batty

and Marshall 2009, Portugali 1999). However, the communicative approach which Taylor

(1998) proposes to have emerged from the implementation critique succeeded in building a

credible discipline, which has even been considered to have become a dominant paradigm in

planning by the turn of the 21st century (Taylor 1998, Innes 2010). Yet the communicative

planning has also been criticized for doing little to the actual top-down rational paradigm, and

only adding a participatory layer to it, remaining incapable of responding to many bottom-up

emerging processes in the city beyond issues related to self-governance (Portugali 2012,

Rauws 2016). This differentiation is not a minor detail since the common interpretation of self-

organization in social sciences as a form of building conscious, deliberate self-governance in

human communities has totally different implications compared to self-organization in

complexity theories regarding urban planning and governance. Here I contemplate the latter,

implying that the emergent outcomes of the urban processes are intrinsically unpredictable and

fairly uncontrollable, due to the incomplete knowledge of each actor (Batty 2007).

Planning of city fragments
By the end of the 1970s’ economic debris caused pressure to re-evaluate the mixed economy of

many Western states, blaming overly burgeoning public services for economic problems and

calling for a liberalist economic policy. Economic performance and freedom of the markets

became one of the crucial factors in the viability of cities and societies (Taylor 1998). This

gave rise to new requirements for the planning praxis, and it was considered that the role of the

planner had to be re-evaluated from the perspective of free markets. According to this zeitgeist,

planning should not have hindered the markets as it was claimed to have done, but instead it

should have enabled and generated their operation (Batty and Marshall 2009, Taylor 1998).

Transition to a post-Fordist production mode caused enormous changes, such as globalized

market and requirement of continuous growth, and in the wake followed a (sometimes brutal)

11 Etzioni (1967) proposed a procedure he called Mixed Scanning to resolve this issue. Mixed scanning is
a hierarchically structured method, combining top-down decision-making with a focus on fundamental
(societal) issues and incremental mode of action from bottom up, implying feedback between the two. It
implies constant revision and evaluation of plans and implementation, and, in spite of the allegedly overly
stable structure of the original model, provides interesting viewpoint on planning which has much in
common with the so-called adaptive planning approaches in ecology discussed in section 4.
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competition of regions (Ascher 2004, Castells 2011). Instead of municipal planning officials,

the key players in the game were now the representatives of free markets. In this respect the

planner had no choice but to negotiate (or even bargain), keeping in mind the common good –

the role which again promoted the participatory/negotiation paradigm in planning (Taylor

1998). These ideals emerged from the praxis, and along with the critique of not being

concerned of substantial issues (Taylor 1998). Simultaneously, approaches with a problem

centered attitude emerged - these projects, for example, concerned ecology, social equality,

participation/democracy, or esthetics of the environment (Shane 2011). Grand theories were

abandoned for a more fragmented and diverse view of city planning (Taylor 1998).

From the perspective of the physical city, the design of the fragments of urban structure

became a trend. It had to be admitted that it was impossible to completely control the city by a

masterplan (Shane 2011). However, the principles of top-down control were not abandoned,

but downscaled to the level of urban fragments, either new ones related to global capitalism

and often initiated by corporations aiming at developing large-scale urban patches 12, or existing

districts, arising, for example, from emerging civic movements for built heritage (Jacobs 1961,

Shane 2011, Taylor 1998). It is noteworthy that a remarkable share of these fragments resulted

from zoning principles prevalent in the prior rational planning mode, located along the traffic

network of the expanding metropolis. Those were the patches of megamalls, sprawling

suburbs, office parks, and industrial sites, all connected by highways. The resulting urbanity

was a bricolage13 on a small scale, a top-down metropolis-model applied in a variety of

patches, in a framework of megalopolis network, with no overall schema. This fragmentation

created inescapable challenges of how to connect the patches (Shane 2011), and

simultaneously finalized the elementary shredded structure of the Metapolis.

Nevertheless, simultaneously the diversity of the resulting urban archipelago enabled more

bottom-up oriented progress of certain fragments, and forms of self-organization. Gradually

these modernistic fragments (megastructures or larger specialized zones) started to provide a

lot of potential space to be utilized for many self-organizing activities and sometimes

heterotopic structures boosting urban renewal (Oswald et al. 2003, Shane 2011, 2005).

Similarly, from the economic perspective, certain evolutionary, self-organizing principles of

decentralized decision-making of actors were proposed, such as those inspired by Friedrich

Hayek (Webster and Lai 2003, Taylor 1998).

12 Such as the iconic examples of Euralille or Postdammerplatz
13 Originally, an art work built of available material
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However, although some of the fragments managed to serve the needs of economic and local

actors, overall this collage city increasingly eluded attempts to be controlled as a whole,

resulting in an “irrational conceit of its own” (Shane 2011 p.249). By the turn of the

millennium cities had become enormously complex as regards both their structure and their

function.  A  city  had  become  a  shapeless,  chaotic  chimera14, obeying its own rules – a

surprisingly behaving, dispersed anti-city.

The move forward:  a call for new theoretical ground

Metapolis challenges our thinking in many ways, requiring us to abandon the modernistic

hierarchical perspective on cities and society. Metapolis cannot be understood or planned using

static and (in a reductionist sense) analytical, rational, linear thinking, but instead systemic,

holistic, and nonlinear views.  To better cope with the unavoidable uncertainty,

unpredictability, and constant change in cities, a philosophical leap from linear, self-assertive

thinking towards a more integrative perception is required, to see the world as a nested network

of networks (Capra 1996). We need to see that all phenomena - human, natural, and even as

“artificial” as cities – are dynamically interlinked in myriads of ways and on many levels

(Capra 1996, Reed and Harvey 1992, Batty 2008, Novotny et al. 2010). In planning, such a

transition requires a profound change of the planners’ mindset, and adopting viewpoints

enabling better understanding and guidance of the key Metapolis challenges: continuous

nonlinear dynamics implying unpredictable, qualitative transitions resulting in a permanent

lack of equilibrium, emergence, and self-organization of the urban system. Overall, despite the

ongoing, gradually changing perspective in planning described above, planning systems have

still basically retained a top-down orientation.  The final step is needed to genuinely embrace

the bottom-up processes – a step towards understanding the self-organization of many

economic and cultural processes. A well-established urban theoretical framework is required

for this.

In recent decades the emergence of so-called complexity sciences of cities (Portugali 1999,

2012, Batty 2004, Batty and Marshall 2009, 2016, de Roo et al. 2012, de Roo and Silva 2010),

along with the related theory of the resilience of complex adaptive systems (Hollings 1996,

Novotny et al. 2010), provide a fairly generalizable theoretical frame for urban studies and

planning, with novel insights into previously unsolvable issues such as uncertainty, trans-scalar

pattern formation, and sudden qualitative shifts in  society and the city.

14 An individual, organ, or part consisting of tissues of diverse genetic constitution (Merriam-Webster
Dictionary)
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2. ‘THEORIES OF COMPLEX SYSTEMS’ AND
‘RESILIENCE THEORY’- AN INTELLECTUAL AND
METHODOLOGICAL FRAMEWORK FOR COMPLEXITY
PLANNING

Although presented as a novel approach in many applied sciences, complexity in fact has its

roots  in  a  long  history  in  the  science  of  systems.  Science  of  systems  refers  to  a  set  of

approaches emerging and established during the 20th century, contemplating somewhat

coherent entities consisting of parts related to each other. These approaches introduced

revolutionary new attitudes and ideas assisting in understanding the dynamics and non-

reducibility of the world. However, this discourse can be considered to be part of an

underlying, more profound philosophical issue, namely a question about wholeness and

integrated understanding of variety of complex phenomena. Fritjof Capra (1995), interpreting

Donna Haraway (1976), suggested that this debate can be considered to date back all the way

to the emergence of the critique against the mechanistic, Cartesian world view promoting the

analytical study of substance (Capra 1996, Haraway 197615). Hence the recent theories of

complex systems can be considered as a culmination point of this line, or a web, of thinking,

integrating the studies of form(ation) and the substance, process and the matter. As Capra

(1995), echoing Haraway (1976), points out, suggesting such holistic views of the Universe

emphasize the inseparability of matter and  form, the “formation” of matter, the continuous

flux of matter through an organism, and that the form is maintained, not static (Capra 1996,

Haraway 1976).

BACKGROUND: THE EVOLUTION OF SYSTEMS THINKING

Emerging systems
According to Capra (1995) and Capra and Luisi (2014), as the extreme qualitative leap

enabling astonishing progress in philosophy, science, and technology took place starting from

the 17th century, the prior Aristotelian holistic views were largely abandoned as mystical

unscientific thinking. In the 19th century huge progress in science led to the establishing of the

mechanistic, analytical world in all science: a firm reductionist belief that living organisms

could be explained by simple physics and chemistry (Capra 1996). The critical voices were

15 Donna Haraway (1976) suggests that a lot of today’s systemic views originate in the thinking of
Aristoteles, Goethe, and Kant
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few, promoting more holistic views from different perspectives - from fine arts and the

Romantic movement in literature (for example Goethe), to philosophy (Leibniz introducing the

system of interrelated monads), and Kant (the concept of self-organization), later accompanied

by “evolution scholars” Malthus and Darwin and the morphologist Georges Cuvier, to be

followed by the 1920s Vitalists (Capra 1996, Batty and Marshall 2009, Capra and Luisi 2014).

Gradually these views started to gain more ground at the turn of the 20 th century, proposing

that reductionism was incapable of reflecting essential aspects of life. A variety of key

characteristics of holistic structures, networks, and operations of systems (later structured

within systems theories) emerged within organismic biology and a related field, ecology,

studying, for example, food cycles and chains in animal communities (Capra 1996, Odum and

Barrett 1971). These approaches focused on organization instead of reductive function,

promoting thinking of systems, configurations, relations, patterns, communities and networks –

unreducible entities. Furthermore, progress in quantum physics paved the way for completely

new ways of considering the relationality of reality - in quantum physics the nature of particles

was discovered to be dependent on the observer (Kumar 2009). This revolutionary finding

introduced the world of interconnections to the hardest of all natural sciences, physics, and

questioned the very foundations of the mechanistic world view (Kumar 2009, Capra 1996).

In cities the early ideas of biological metabolia in organisms – with constant flows of energy

and matter through the system - were mentioned by the mid-1920s (Park et al. 1925, p.211),

and later contemplated as Metacity by  Janice  Pearlman  in  the  1970s  and  the  Dutch  architect

office MVRDV in the 1990s, referring to extremely large urban systems (Shane 2011, Maas

1999). Patrick Geddes, drawing on Darwin’s work, applied evolution to cities, emphasizing

cooperation instead of harsh survivalism in a surprisingly similar fashion to that of the urban

evolutionists of today (Batty and Marshall 2009). However, these views remained in the

background for decades in planning and urban studies (Figure 1).

By the 1930’s, a new scientific understanding in terms of connectedness, relationships and

contexts emerged from this exploration of living systems. Key characteristics were the shift in

attention from the parts to the irreducible whole, arising from the relations between the parts.

Essential properties were those of the whole, destroyed if broken down into isolated elements:

the reductive analyses the mechanistic science was based on became impossible. The whole

was qualitatively different from its parts, stressing the necessity to consider the qualitative

transitions between levels of observation.  The nature of entities as dynamic webs of relations

appeared in progress in network thinking, and implied a new processual character of the

system. The structure of the system as a whole is always a result of the underlying processes,
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organized in multiple loose hierarchies in nature, such as proposed in early emergentism of

Charlie Broad in 1936 (Gustavsson 2014, Capra 1996 p.42).

General Systems Theory
The first structured, theoretical proposals of system characteristics started to emerge in the

1930s, first and foremost as the biologist Ludwig von Bertalanffy aimed at uniting the fairly

dispersed, holistic ideas in the air, building a more general, combinatory theory of living

systems (Capra 1996). He applied elements from the various approaches, for example adopting

and applying older but fast progressing concepts of homeostasis16 and metabolia, and fields of

emerging systems and process thinking. He succeeded in establishing the basics of "the science

of systems", which later led to a more sophisticated development of systemic applications and

methods such as systems engineering, systems analyses and systems dynamics. The

implication was that certain general principles applied to various systems across the scientific

fields, and the aim was to build a formal, exact “science of wholeness” (Capra 1996, p. 47)

which would replace its perceiving yet vague philosophical precedents. Regarding the

evolution of systems thinking and later complexity, major progress in general systems theory

was the introduction of the concept of “open system”, referring to living organisms not obeying

the laws of thermodynamics, implying a continuous flux of matter and energy, and self-

regulation later referred as self-organization (Prigogine 1978)17.

Cybernetics
Simultaneously, distinctive from von Bertalanffy’s approach, fairly similar work related to the

study of holistic entities was carried out by a cross-disciplinary group of scientists combining

systemic ideas from control theory, communication, and engineering, which became known as

cybernetics. Driven by militaristic purposes, the focus was on the study of closed loops and

nets for developing self-regulating (similar to homeostasis in organisms) machines, with

further attention to patterns of organization, aiming at understanding the general organization

of  animals,  machines  and  a  full  description  of  life  including,  for  example,  social  systems

(Capra 1996). The major achievements of cybernetics did not renew the mechanistic models of

living systems (comparison of machine and organisms), yet they were based on a totally new

16 Homeostasis: a relatively stable state of equilibrium or a tendency toward such a state between the
different but interdependent elements or groups of elements of an organism, population, or group.
(Merriam Webster Dictionary)
17 von Bertalanffy is widely credited with the creation of the general systems theory, but it has been
pointed out that strikingly similar ideas were published by the politically suppressed scientist Bogdanov
in 1912 in Russia by the name “tektology”, almost unknown until very recently (Capra 1996).
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systemic attitude. A central, revolutionary concept that had a huge impact on complexity

thinking, was the concept of feedback as  a  mechanism in which initial  cause (input)  from the

first  link  affects  next  element  in  a  loop  so  that  finally  the  last  one  feeds  back  to  the  first

(output) - “Control of the machine not based on its expected but its actual performance”

(Heims 1991, p.19).   The novelty was the idea of recursion – the future state of the system

depended on the preceding one, not an objective, absolute position18.

By the 1970s cybernetics had made many scientific breakthroughs in studies of open living

systems such as brain research and cognitive science. However, it was considered that a certain

stagnation occurred as systems sciences (that is, cybernetics, systems engineering, and systems

management) were increasingly used to solve practical problems, leading to criticized solutions

for example in planning, and alleged to have lost the original innovative thrust (Capra 1996,

Batty and Marshal 2009). However, in addition to remarkable conceptual achievements -

feedback, openness, and cybernetic models of neural processes - cybernetics succeeded in

creating a new way of thinking, language, atmosphere, and concepts, which helped the more

recent advances resulting in complexity sciences (Capra 1996). So-called second order

cybernetics in particular renewed the system’s theoretical thinking, moving from a mechanistic

understanding of systems as machines, towards a more relational view.19

From a complexity perspective, major limitations in earlier systems approaches appear

twofold: a limited understanding of the non-equilibrium nature of open systems, and nonlinear

trans-scalar processes making it impossible to study such phenomena discretely (Batty 2007).

This situation resulted from lacking nonlinear mathematical techniques. It was impossible to

describe the pattern formation in open, complex, emergent systems (Capra 1996, p.79). Only in

1970s did new progress in the mathematics of dynamic systems (May  1976, Gleick 2011), and

later  increased  power  in  computing  made  the  leap  possible  in  the  science  of  systems,  and

formulation of the diverse set of  the theories of complex systems as they are known today

(Batty 2007, Capra 1996).

18 As Capra emphasizes, it was remarkable that now this was made explicit - such implicit mechanisms
had been discussed throughout history, for example regarding self-regulating machines and homeostasis
by Walter Cannon, or circular causality in social sciences. He points out that many metaphors implicitly
embraced recursive cycles (as in thesis/antithesis of Marx of Adam Smith’s invisible hand.  Feedback
represented the generative force for such systems – negative (as in vicious circle) or positive, re-enforcing
mechanisms (Capra 1996).

19 Second order cybernetics provides an interesting intellectual framework for the study of human
systems. However, it is here considered that while developed by the same cybernetic scholars – Mead,
von Forrester, Bateson and others - it forms basically a later phase of cybernetics rather than a
revolutionary novelty (Heylighen and Joslyn 2001), Hence it is considered beyond the scope of this work
focusing on the complexity perspective.
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FRAME ONE: THEORIES OF COMPLEX SYSTEMS

Building on this foundation, so-called complexity sciences or complexity thinking20 provides a

relatively new, yet in many fields already established theoretical ground for a thorough

understanding of the unpredictable and dissipative nature of systems in constant flux.

Basically, complexity refers to a set of distinct theories – “theories of complex (adaptive)

systems” (Holland 1998). Besides the systems thinking tradition, complexity approaches have

emerged within various disciplines. These range from mathematical studies of dynamic

systems, fractality, and chaos, self-organization in biology and chemistry, further to

information theory and scaling in mathematical statistics. Complexity has also been much

influenced by many other disciplines like game theory, network theories and modeling, just to

mention a few (Allen 2012, Casti 1994, Mitchell 2009). They provide unique perspectives and

theories on open systems, all contemplating fairly similar issues related to dissipated decision-

making, self-organizing pattern formation, non-linearity, entropy, fractality or scaling. Hence,

to be precise, no single “complexity theory” exists, but instead a variety of theories of complex

systems, forming a certain general umbrella explaining many previously challenging features

of complex open systems. Although theories of complex systems have their roots firmly in

natural sciences (Haken 1980, Eigen 1971, Prigogine 1978, Gleick 2011), it has been realized

that actually all open complicated systems - for example social systems, ecosystems or cities -

appear  to  follow  fairly  similar  mechanisms  and  logics.  They  are  complex  systems per se.

Recently they have been applied in many fields beyond these, for example social sciences,

geography, economics, psychology and urban dynamics and many more (Casti 1994, Allen

2004, Mitchell 2009, Krugman 1995, Arthur 1994). Complexity thinking provides a promising

theoretical frame and methods for better understanding and managing the Metapolis.

Due to this apparent diversity within complexity views, no consensus on a unified definition

for complexity sciences exists (Mitchell 2009, Manson 2003), but generally speaking, certain

features can be highlighted in the complex systems. The proposed classification below follows

Manson (2001, 2003) and each of these theories/models makes certain assumptions about

system characteristics such as system components, interaction, equilibrium, change, system

boundaries, self-organization, adaptation, and learning (Manson 2003). Furthermore, the

approaches are to an extent overlapping. For example, fractals and power laws return

mathematically to each other. Their applications in the real world, such as the semi-fractality of

trees or rivers, cities or urban dynamics depend heavily on self-organization (Bettencourt

20 "Complexity" refers in the context to a specific characteristics of the system described above, contrary
to the everyday concept referring only to complicatedness of something.
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2007). Impacts of self-organization/emergence are often nonlinear (Batty 2007), and dynamic

states implied in “edge of chaos” behavior implies attractors and phase transitions (Kauffman

1993). Although the following review is not exhaustive it provides a certain general view of

types of complexity (see more for example Mitchell 2009).

First, algorithmic complexity contemplates issues related to the difficulty of solving a

mathematical problem, or describing the system in information theory (Shannon 1948, Manson

2003). Complexity in the system reflects the simplest algorithm producing a certain behavior,

for example in the case of language or remote sensed images, the complexity increases as new

types emerge (be it a land use class, or words) (Manson 2003, Shannon 1948). The apparent

limitation in a social context is that data may be incorrectly equated with knowledge (Manson

2003). Meaning and human experience lies beyond algorithmic expression. To an extent,

Haken and Portugali (2003) elaborated this issue, introducing relative entropy measures as an

extension to Shannon's classical information theory (Haken and Portugali 2003), which is

applied in a related article in this thesis (Partanen 2015). Most notably, here the process of

entropy reducing is explored in a human system – a feature that involves self-organization, and

seemingly conflict with the basic principle of the second axiom of thermodynamics due to the

openness of the complex system implying contestant flow of energy through the system.

Secondly, deterministic complexity covers approaches and theories studying non-linear and

dynamic systems and chaos. Although these may not be applicable to human systems in a

straightforward manner, since open systems, such as cities or weather, are not truly chaotic (for

example structurally not self-similar ad infinitum), they nevertheless share chaotic features.

This class of complex systems provides a valuable perspective on the unpredictability of the

systems, still accepting their deterministic, ordered nature. Such viewpoints are crucially

important for urban studies since a fair share of real world systems are nonlinear (Casti 1995).

Typically, in a nonlinear system output is not directly proportional to input – the relationship is

not linear, nor can it be returned to a series of linear equations (Wong 2013). An illustrative

example is the iconic population dynamics model of May (1976)21,  in  which  a  mapping  of  a

simple second degree function appears as several different dynamic states as the growth rate is

gradually increased, from periods of two, three, and four, to a state of chaos with only a very

limited set of values (ibid). The changes are non-smooth, implying what in mathematical chaos

is called bifurcation – the system jumps to another trajectory22, and remains on that attractor

21 Also called a logistic map
22 Originally from physics: a path, progression, or line of development
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for a while. This progress is deterministic yet unpredictable (Gleick 2011). Consequently, as

regards urban dynamics, it is implied that correlation between cause and effect is often

surprising, sudden, self-enforcing through feedback, and occurs within a narrow window of

opportunity where sensitivity to initial condition is highest (Gleick 2011, Manson 2001). Small

local changes may cause major effects across the scales, or have no impact (Manson 2001,

Batty 2007). Mathematical fractals, whose real-world variations are frequently used in the

study of urbanity (Batty and Longley 1994), are often so-called strange attractors, graphical

representations of deterministic chaos23. . Their value lies in that they help studying processes

behind the formation across the scales (Manson 2001, Batty 2007, 2008).

The third class of complexity is aggregate complexity, implying that a cumulative effect of

dissipated decision-making of many independent, interacting agents gives rise to (seemingly)

non-causal, surprising behavior, responding through feed-back loops (Manson 2001, Manson

2003). The aggregate complexity goes beyond mathematical descriptions of systems, and

embraces dynamic and more holistic  perspective and is  thus of  more interest  for  the study of

urban systems.

At the core is system definition. On the one hand, this implies relationships between

components and components and their environment along with the internal structure of the

system. On the other, in focus is the following dynamics in time. System definition is crucial to

how its dynamics is interpreted. In the context of cities, the question concerns the relationships

between agents in observed economic, ecological, social systems - how they are delineated and

which (energy) flows punctuate them.  For example, these may regard physical flows,

information or energy. These are all relational and depend on the strategic system definitions of

the viewer (see Cilliers 2005). As regards aggregate complexity, the system changes its internal

structure to respond to external energy flows through self-organization. This is essential for the

dynamics of the system. In self-organization, order emerges from local interactions between

disordered components without external guidance (Camazine et al. 2003, Prigogine 1978).

Typical for such systems is that the order is self-enforced by internal mechanisms or persistent

structures.  Systems  are  able  to  “learn”  as  regular  dynamics  strengthen  the  same  set  of

relationships (Manson 2001, Holland 1992, Haken 1980). The system changes its environment

through self-organization to enforce the very same mechanism. This feature is essential in

many ecosystems, since the response of the system (that is, the capacity to enforce novel links)

to perturbations depends on the available, yet previously perhaps vast, connections, and they

23 Systems resembling fractals outside mathematics are strictly speaking not fractals, e.g. not self-similar
ad infinitum, but semi-fractals, and hence do not have mathematically exactly similar properties.
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could be intensified for self-reparation at the time of crises only if they exist. (Manson 2001,

Novotny et al. 2010). Self-organization is often nonlinear or emergent, implying that the

overall, higher level qualitative outcome of the mechanism is not predictable from the initial

state of its components (ibid). Self-organization also builds the evolutionary capacity of the

system: a self-organizing system may embrace dissipative structures which are able to form

internal order from disordered state after perturbations. A disordered system becomes

“enslaved” by the emerging order within it (Manson 2001, Prigogine 1978, Haken 1980).

Hence such a system oscillates between ordered, predictable and disordered chaotic states,

which enables the emergence of a new, qualitative different order (Portugali 1999, ibid).

Furthermore, the concept of self-organizing criticality describes  complex  open  systems  that

have a critical point (that is, close to phase transition) as an attractor: they gravitate to remain

in this state for the higher generative capacity (Bak et al. 1987, Kauffmann 1993)24. This is the

source of complexity in many natural systems, and typical of many ecosystems with high

adaptive capacity.

The key issues, especially in aggregate complexity is agents’ interaction causing trans-

scalar/emergent self-organization and the non-linearity of this process. This makes it

challenging to study these systems spatially. Several self-organization measurements exist,

some of which will be scrutinized in Chapter 5 (evaluative methods). However, micro-

simulation models,  for  example cellular  automata (CA) used as  a  part  of  this  work (Partanen

2016A), provides a method for explicit study of higher level impact of neighborhood actor

interaction. Other relevant micro-simulation methods, such as agent based or neural network

models are beyond the scope of this study.

Cellular automaton as a method of studying self-organization

Basically, cellular automaton is a classical method for studying non-linear emergent features in

self-organizing systems, and their capacity for self-reproduction, the emergence of higher-level

generative patterns, and universal calculation. Cellular automata (CA) are simple, discrete

representations of spatial systems. They operate within a lattice based on simple rules defining

the  state  of  the  cell  (on/off) according to its previous state, and the state of its adjacent

neighbors. Although very simple, CA can produce various dynamic states25 and complicated

24 Dynamic states of a system following Langton (1994) and Wolfram (1984) - static, periodic, chaotic,
and complex, referring to the changing periodic and chaotic states described above – are elaborated in
detail in Chapters 3 and 4, and in Partanen (2016A).
25 That is, static, chaotic, periodic, and complex, (Langton 1990, Wolfram 1984))
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spatial patterns. Artificial CA enables observing self-organizing patterns and dynamics in the

system and the effects of simple interactive rules on general behavior.

CA were originally developed by Stanislav Ulan and John von Neumann in the 1940s using the

Turing machine layout for the lattice of cells. This research sought a self-replicating machine,

which was discovered in the early 1970s as the so-called Game of Life, proving the capability

of a simple artificial system to produce higher-level self-replicating order. In the 1980s Stephen

Wolfram managed to demonstrate with CA how local interactions among components generate

global changes in space and time, succeeding in producing different dynamic states with this

apparatus, resembling Langton’s and Kaufmann’s ideas of complexity as self-organizing

criticality or an edge-of-chaos state (Langton 1990, Kauffman 1993, Wolfram 1983, Wolfram

1994, Bak 1990).

 Wolfram’s work laid the foundations for a discrete theory of CA, and the simulations were

soon applied in natural sciences and mathematics, and later in spatial sciences (Santé et al.

2010, Batty 2007). Since the 1990s two dimensional CA has become an established tool in

urban modeling (e.g.  Allen 2012, Santé et al. 2010, Batty 2007); it can simulate a spatial city

in a simplistic manner, making it easy to observe the dependencies between local rules and

global  outcomes.  Urban  CA  models  are  often  used  as  educational  tools  for  learning  from

patterns and dynamics, but they can be also used as policy testing tools or even for short-term

forecasting, considering the difficulties of prediction of nonlinear systems.  Urban applications

of CA are frequently somewhat relaxed using e.g. a combination of CA and free agents,

neighborhood configurations, more complex rules or multiple cell states, irregular tessellations

or various (growth) constraints (Santé et al. 2010). Modifications may help to solve the

limitations typical  of  CA, for  example,  isolation or  lack of  feedback from a higher  level,  and

improve the resemblance with the real world. It is, however, necessary to keep the

modifications reasonable, to maintain the basic clarity and readability of CA.

Dynamic states, scaling, and fractals: a brief overview

Scaling, fractals, and dynamic states are essential theoretical concepts in complexity sciences,

among  others.  Here  I  selected  them  for  a  closer  look  since  they  provide  fairly  established

methods for complex science for cities, and since scaling and dynamic states are applied in this

work (Partanen 2015 and Partanen 2016A respectively). The concept is elaborated in Chapter 4

(evaluative methods) in the context of cities and planning.
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Dynamic states and entropy

The dynamic state of the system re-emerges from the work of Wolfram, Langton and others

studying mostly artificial computational systems, but applying the findings in natural

computing as well (Langton 1990). According to this approach, a dynamic system can remain

fairly resiliently on a highly organized, predictable (periodic) level, disordered, mathematically

chaotic  state,  or  a  balance  between  the  two.  The  transition  from  one  state  to  another  is  not

smooth, but implies a phase transition, a jump from one to another, manifesting a qualitative

change in the system.

From a computational, evolutionary perspective this transition zone is important: computation

requires capacity for the storage and transmission of information.  Information storage involves

lowering entropy, while transmission involves raising entropy (Langton 1990). For maximal

computing capacity which would enable the system’s evolution, the system must be both, and

this optimal state is located near the transition (Langton 1990, Cruthfield and Young 1988).

Actually many complex real world systems vacillate between chaos and order (Kaufmann

1993, Mitchell 2009, Levin 1998).

The thermodynamic perspective helps to understand some of the reasons for this quest, and

provides measurements to evaluate the state of the system. Thermodynamics is a field studying

basically systems as regards the relationship between temperature and energy, with many

applications across disciplines.

Entropy  is  a  central  concept  in  thermodynamics,  and  also  a  measurement  of  the  system state

(Langton 1990). Since the aim here is to evaluate the complexity and especially the level of

self-organization in CAS as regards self-organization, there appears to be a paradox.  Basically,

according  to  the  second  law of  thermodynamics,  entropy  increases  in  the  systems  over  time.

This is in contrast to the basic understanding of self-organization, which requires entropy to

decrease.

In the classical work of Prigogine (1978) dissipative, evolutionary systems form temporary

self-organizing structures. Extending Prigogine’s approach to non-equilibrium systems,

Schneider and Kay (1994) emphasize the search among open, dissipative structures to balance

the differences in gradients (temperature, energy or material) by self-organizing structures
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(Schneider and Kay 1994). The structures, for example in the case of convection, balance the

gradient very efficiently. They emerge at a certain transition point as the gradient increases,

and disappear as the system becomes overly chaotic. The key is the trans-scalarity of the

system (considering thermodynamics observing dissipation of the whole, and statistical

mechanisms studying the fluctuation of the parts (Kugler et al. 1987)). While overall entropy

may increase, locally in these self-organizing structures it temporarily decreases dramatically

(Langton 1990).

Furthermore,  according  to  Kugler  et  al.  (1987),  the  system  is  bound  to  this  trans-scalar

interaction: it cannot maintain a steady state on both levels simultaneously. While systems

remain on the edge through gradient minimization, they simultaneously stay in this intertwined

circular process, balancing on the dynamic state with competition between higher level order

and fluctuation (Kugler et al. 1987). The range of the generative state is typically very narrow,

indicating sensitivity to initial conditions (Langton 1990, Crutchfield and Young 1990).

Scaling and Fractals

Scaling  or  power  laws  describe  systems  with  certain  nonlinear  relations  between  their

components.  These may be spatial relations or associated with other numerical/temporal

attributes such as sizes or frequencies (Pumain 2004). Scaling implies that systems organize

without overall guidance, with the emerging order exhibiting a certain regularity – often of an

exponential  type -  as the  components, subsystems or their features are ranked from largest to

smallest26. Presumably, certain underlying mechanism(s) are at work making the system follow

the perceived trajectory. Scaling laws are scale invariant: a property adapts throughout scales

(Kello et al., 2010, p.224) similarly to fractals they reflect regularities and dependencies within

the system beyond scales in a dynamic manner.

Fractals are representations of chaotic systems, but they are also very common features in

nature (unlike, for example, normal distributions.) Hills, trees, rivers and coastlines have fractal

characteristics, similarly to cities (Batty and Longley 1994, Liebovitch and Scheurle 2000).

Building on the work of Gaston Julia, Felix Hausdorff and Wacław Sierpiński (Gleick 2011)

among others, fractal mathematics was developed by Benoit Mandelbrot starting from 1950s’,

and expanded due to computerization in 1970s’ (Gleick 2011, Batty and Longley 1994).

26 Mathematically,  the system follows the rule ߙ,	ఈݔߙ(ݔ)ܨ ≠ 0
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Fractals are intertwined with power laws: systems “producing” fractals entail scaling. Order in

both  emerge  from the  same  principle  of  organization  remaining  the  relation  between  the  few

large and multiple small entities across the scales. Generally, a power law can be perceived as a

plot of a fractal system on a double-logarithmic scale (Liebovitch and Scheurle 2000). In

fractal systems, this relationship is often called the fractal dimension, and its value can also be

returned  to  the  slope  in  any  power  law  plot.  Furthermore,  while  fractality  and  scaling  laws

emerge as a result of self-organization across the scales, they suggest that the systems may be

near the edge-of-chaos or phase transition where its generative capacity is highest. Hence, if

the system is scaling/fractal, it indicates that certain self-organizing mechanisms are at work,

holding the system near  instabilities,  that  is,  in  a  complex state  (Kello et  al.,  2010,  Kauffman

1992).

FRAME TWO: RESILIENCE – ANOTHER READING OF

COMPLEX ADAPTIVE SYSTEMS (CAS)

While complexity provides a wide variety of viewpoints to tackle Metapolis, another more

coherent frame might be necessary for building a robust27 frame for planning. Resilience

theory, originally from ecology and explicitly contemplating complex adaptive systems,

provides an applicable mental model describing the overall behavior of the system while

embracing essential complexity features. Resilience theory developed from late 1960s’

simultaneously with so-called complexity theories, contemplating similar, theoretical issues in

socio-ecological systems. Resilience relates to the problems of the understanding and

management of systems, inherently co-evolving, dynamic and unpredictable, with multiple

equilibria and inbuilt, unavoidable phase transitions; irreversible dynamics and self-

organization – that is, of complex adaptive systems per se (Levin 1998, Novotny et al. 2010).

Most importantly, resilience theory emphasizes the exploration of the complex systems’

capacity, on the one hand, to absorb perturbations and stay on a dynamically steady attractor

(analogical to dynamic states elaborated by Longley (1994) and Wolfram (1984)), and on the

other, the capability of the system to reorganize itself after the qualitative transitions the system

inevitably faces. Briefly, resilience reflects the system’s capacity for self-organization in a

27 Robustness refers to the features of a system which make it capable of performing without failure under
a wide range of conditions; such a system is firm yet adaptive and resilient, and tolerates certain levels of
uncertainty (Merriam-Webster Dictionary).
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similar  manner  to  approaches  in  aggregate  complexity  -  that  is,  balancing  on  the  fine  line

between order and disorder.

Today, resilience theory explicitly contemplates complex adaptive systems and implies

analogical features. These include a constant flow of energy through the system; open systems

in constant flux, punctuated with sudden, qualitative, and irreversible transitions triggered by

unpredictable, rare events at vulnerable times; non-linearity and trans-scalarity; large and slow

variables  (system’s stable  state)  control  the small  and fast  ones with feedback regressed from

time  to  time;  and  lack  of  equilibria.  The  system can  be  far  from a  state  of  equilibrium,  have

multiple or no equilibrium. Systems constantly balance between stabilizing (productive,

cyclical, predictable - static states) and destabilizing phases (producing diversity, resilience,

opportunity – chaotic, unpredictable states), sitting on a critical state with excessive generative

opportunities, evolving through extinctions and emergence of new “species” (Kauffmann 1993,

Bak 1996, Pickett et al. 2004).

What makes resilience theory eminently applicable to spatial planning is that, besides

providing coherent extensive concepts and mental models helping to better understand and

encourage self-organization, it provides an applicable framework for managing maneuvers for

planning in CAS28  .

Ecosystems and cities

As resilience is applied concerning human systems, it is usually firmly coupled with ecological

processes (often affected by human actions) and rightfully so due to their apparent role in the

survival of our species. However, since resilience theory explicitly contemplates CAS and is

widely applied in human (social, urban) systems, it is considered applicable to the study of

urban systems focusing on economic and cultural processes with certain conditions – reflecting

the view of “creative destruction”29 in economics (Batty 2016), and various studies concerning

the life cycles of firms and enterprises in business management (Novotny et al. 2010). These

conditions are related to the use of the definition of the concept of a related notion, ecosystem.

28 Contemplating the correlation of CAS and resilience, it is necessary to point out that actually the
question is about so-called ecosystem or evolutionary resilience embracing ideas of constant flux,
emergence, and non-equilibrium. Engineering resilience, in turn, describes linear systems near
equilibrium, emphasizes the system’s ability to absorb perturbation, and implies continuous production
and controllability. In this work resilience refers explicitly to ecosystem resilience (Holling 1996).

29 As Batty (2016) discusses, the creative destruction is a term originally introduced by the economist
Joseph Schumpeter, and is applied today e.g. in business management, ecology, and urban studies.
Creative destruction implies that the progress of the system eventually leads to a collapse, which enables
a new beginning for the actors from bottom up.
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Ecosystems

The theories of resilience and CAS emphasize the relational nature of systems components and

its linkages between agents, subsystems, and their environment (Pickett et al. 2004).  This view

is not only holistic - implying roles of components in the operational whole, but also provides a

generally wider understanding of dynamic multiple nested and interlinked systems of systems

and their environment, ecosystem view (Capra 1996). Hence the concept receives a wider

connotation: in addition to the components of natural systems, it embraces human systems

(social, economic, and cultural) as well. Consequently, the concept of ecosystem provides a

new  reading  of  a  city  in  two  respects.  On  the  one  hand,  cities are ecosystems:  they  are  an

intrinsic part of networks of nested networks of human-natural systems (Capra 1996, Reed and

Harvey 1992, Levin 1998, Pickett et al. 2004). On the other, urban systems are metaphorically

similar to the “traditional” ecosystems in Nature (Levin 1998). Ecosystems are, first, by

definition, assemblages of actors interacting with each other and with their physical

environment within a specified area (Levin 1998, Odum and Barrett 1971). Secondly, they are

characterized by historical dependency, nonlinear dynamics, threshold effects, multiple basins

of attractors and limited predictability – that is, fundamental features of CAS (Folke et al.

2004).

Metaphors  can  transfer  an  idea  or  an  approach  from  one  field  to  another,  thus  assisting  in

mental model building and extending our renewed comprehension of reality (Pickett et al.

2004). Metaphors from Nature stressing process dynamics (not only the form) are not

completely new in the history of urban planning, forming a parallel sidetrack deviating from all

the dominant forms of the top down paradigm. The perspectives of, for example, Patrick

Geddes, Jane Jacobs, and Christopher Alexander, and since the 1980s the mounting scientific

interest in urban complexity (see more, for example, in Batty and Marshall 2009, Allen 2012,

Portugali 1999, Jacobs 1992 (1961), Alexander et al. (1977)) emphasized the inherent

complexity and evolution of cities, processes similar to “natural” systems despite operating

within a human artefact. Within the urban discourse the ecological metaphors have been

established by the 2010s’, promoting cities as dynamic self-organizing systems, recursion of

processes, constant change, and self-regulatory nature of urban processes.

It  is  essential  that  these  approaches  heavily  stress  the  similarities  between  the  systems  and

processes in nature and cities, among them urban evolution, metabolia, self-organization, and

networks (Oswald et al. 2003, Portugali 1999, Batty and Longley 1994, Ascher 2004). This

means that in those mental models the formalistic similarities are not reflected, but the aim is to



Partanen, J: Don’t fix it if it ain’t broke

38 | P a g e

explore similar analogical or functional features in natural and human ecosystems. The central

mechanism defining the future spatial form of the system in these approaches is the circular

function/form or process/pattern loop, a fairly well established concept in ecology implying an

inherent and recursive relationship between actions, processes or dynamics and the resulting

structures, patterns and forms in the dynamic complex adaptive systems. Actor-born processes

produce certain spatial manifestations, but as the actor produces corporeal structure or form, it

soon starts to restrain or define the actor’s future behavior, producing certain inertia and

stabilize the process,  setting it  on a  certain trajectory (Pickett  et  al.  2004,  Batty and Marshall

2009, Levin 1998), similar to dissipative or self-organizing structures.

Echoing ecosystem resilience thinking Batty and Marshall (2009, 2016) have proposed that the

strength of complexity thinking is its ability to provide tools for understanding and managing

this continuous two-fold process. This is expressly true since self-organization, the basic

mechanism responsible for order in many complex systems, is the interaction between the

structure and the process in time per se (Gunderson 2000, p. 430). Hence understanding in

urban studies and planning can be widened by adopting metaphorical concepts like ecosystem

or ecosystem (evolutionary) resilience from ecology. Furthermore, this conceptual shift opens

up new viewpoints and perhaps seminal readings of the city, processes behind their formation

and the spatial characteristics.

Adaptive cycle – self-organizing criticality revisited
Resilience provides powerful models helping to understand the overall dynamics of complex

systems as regards especially their cyclical, nonlinear nature. The groundbreaking, much

applied concept introduced by Crawford S. Holling (1973, 1996), adaptive cycle, delves into

some of the most essential characteristics related to CAS: inevitable (necessary) transitions and

flexible, appropriate precautions for them. It can be considered as another more advanced

reading of the concept of “complex dynamic state”, stressing the evolutionary aspects of the

theory and the autonomous renewal of the system through self-organization.  The strength of

this model is that it helps essentially in expanding the rather general (or in physics, extremely

particular) aspects of shifting dynamic states in complexity thinking towards proposing actual

maneuvers and management of the systems to promote self-organization (Walker and Salt

2012).

Generally, the adaptive cycle describes the dynamics of human/natural CAS as a cyclical

process, experiencing certain phases of progress from establishing, decay, collapse, and

reorganization with slight variations in the order. Eventually the system reverts to the initial
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state to start over again, evolving qualitatively in time. Although this principle was

conceptualized by Holling (1973), implying the idea of the “creative destruction”, Capra

(1995) points out that similar ideas of intrinsic, repeated qualitative renewals of systems

through collapse have also been discussed by Castells and Harvey building on Marx (Castells

2011). The discourse has recently been established in the field of evolutionary economic theory

intertwined with complexity thinking (Boschma and Frenken 2011, Fujita 2007). Conceptually,

all these contemplate disturbances that periodically disrupt the stability of the system, and

release resources for innovation and reorganization. For example, theories of business cycles,

developing production modes, and cultural evolution are examples par excellence of the

creative destruction.

Figure 2. Adaptive cycle.

At the beginning of an adaptive cycle (Figure 2), a two-fold fore loop of  growth  and

stabilization occurs. In the rapid growth phase actors tend to seek and exploit new

opportunities and available resources and niches in the system whose components are typically

weakly regulated. In (urban) economic systems these actors may be innovators and small

entrepreneurs seizing upon opportunity. The rapid growth phase is associated with the

emergence of new “species”: firms, societies, institutions - even nations. Next, as the energy is

stored in the system, material accumulates and the system becomes more and more rigid, losing

its flexibility. The competitive edge moves from the flexible utilization of opportunities to

specialists reducing the impact of variability, reinforcing by investments the existing regime,

networks and order – enslaving the prior system of many competing orders.  In this

conservation phase (K) the  system  is  extremely  stable  -  but  only  within  a  certain  range  of

conditions, and sensitive to either shocks from the environment or turbulence emerging within

the system.
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It  is  essential  that  the  system  –  a  city,  a  company,  an  ecosystem  -  cannot  stay  in  this

conservation phase forever. Unless they are guided to a new growth phase or to reorganization

(with minimal harm), they will eventually collapse, possibly causing economic, social or other

crises. The release may be fast, and the longer the K phase is, the smaller the shock needed to

end it. Connections break and human, social, and capital resources leak out of the system for a

while in this chaotic phase opening all options – at this stage even the smallest actors can shape

the future, new “species”, may find new niches in the absence of the strongest big competitors.

The system comes undone and open to innovations, inventions, and experimentation until it

starts to reorganize, producing again many competing orders and so on.  This back loop or

reorganization loop might be destructive for a short time and feared for its inherent uncertainty

and unpredictability but it also opens up new possibilities, and provides a window of

opportunity  for  the  system  to  change  the  trajectory  –  to  settle  into  a  new  equilibrium  for  a

while.   Certainly  the  new state  will  be  different,  but  it  is  impossible  to  know in  what  sense.

This inherent uncertainty is the key challenge in guiding and managing of CAS (Holling 1973,

1996, Walker and Salt 2012). What was described here briefly is the “classical” adaptive cycle.

However, not all systems necessarily follow this model. The system cannot go from the release

phase straight to the conservation phase, but all other moves are possible: from K to release

phase, or to new growth with minor perturbation.

In the context of system management, it is noteworthy is that the K phase is very often

mistakenly assumed to be the systems’ default state – a seemingly linear, relatively long lasting

phase benefitting from efficiency, optimization, and specialization, causing a misconception of

systems being inherently linear, and on/close to a single equilibrium. The interest in this phase

is understandable since indeed this so-called fore loop or development loop (organization and

conservation) is essential for capital accumulation and the increase of human well-being. In

addition, the fore loop is profoundly slower than the back loop (the releasing phase), and most

of the systems are currently in that phase. The back loop, in turn, is often ignored in

management, neglecting the fact that as the system becomes more mature, different ways of

performing certain tasks disappear and the growth slows down, eventually becoming

increasingly dependent on existing structures and processes, and hence increasingly vulnerable

to  disturbance.   Hence  in  management,  the  aim  of  managing  is  usually  to  avoid  a  late  K  to

facilitate the transition (Walker and Salt 2012).

 What are then the consequences of understanding this cyclical, evolving nature of CAS in the

context of self-organizing cities and their planning? The key lies in the mechanisms of how the

system manages  to  stay  on  a  certain  (predictable)  trajectory  for  the  time  being,  and  how the
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system builds new (coming) dominant order - that is, remains generative, complex or “on the

edge of chaos” (Kauffman 1993, Holland 1992) – essential questions in this thesis. This two-

fold resilience appears  as,  first,  the adaptability of the system, indicating the agents’ capacity

to change responses to changing drivers and processes, building certain inertia and maintaining

the  system on  its  trajectory,  “the  steady  state”  (Folke  et  al.  2004,  Haken  1980,  Walker  et  al.

2004). Secondly, it manifests as the transformability of the system - its continuous capacity to

cross thresholds entering new steady states as one of the potential orders “enslaves” several

competing ones in the chaotic phase (Folke et al. 2004, Haken 1980, Walker et al. 2004). Both

adaptability and transformability actually reflect the system’s ability to self-organize across

scales.

Consequently, we can say that allowing, guiding, and supporting positive self-organizing

mechanisms in CAS, for example cities, strengthens their ability to build wealth and well-being

in the conservation phase on the one hand, and to recover, reorganize, and create new

innovations in the reorganization phase after the (inevitable) release of resources on the other.

However, we still know very little about these generative spatial-functional mechanisms in

cities,  which is  one of  the main motivations of  the research here.  Note that  it  is  necessary to

focus  on  multiple  sources  of  capital  and  skills:  there  is  no  single  mechanism responsible  for

resilient progress overall, but an interlinked variety of them. Strategies adding renewal capacity

and "requisite variety of purposes” are required (Gunderson 2000 p.436) – to remain in the

state in which dynamics of myriads of variables are derived to a single key variable holding the

system dynamically stable (Gao et al. 2015). Hence, to learn and channel self-organization, it is

necessary to explore variety of mechanisms with relevant methods recognizing complexity,

which is the core of the appended articles (Partanen 2015, Partanen and Joutsiniemi 2015,

Partanen 2016A, Partanen 2016B).

Moving from sheer metaphors towards a more practical level, another question emerges –

echoing Carpenter and colleagues asking in the title of their paper “resilience of what to what?”

we want to increase (Carpenter et al. 2001) – resilience implying the capacity to self-organize.

As Carpenter et al. (2001) suggest, undoubtedly it is necessary to study specific mechanisms

for supporting the systems adaptability, that is, increase specified resilience assisting the inertia

of  the  system  (such  a  case  is  contemplated,  for  example,  in  the  related  article  Partanen  and

Joutsiniemi 2015). However, due to the inherent uncertainty of the system, building general

resilience,  that is, enforcing mechanisms holding the system complex, is as important (see for

example articles Partanen 2015 and Partanen 2016A) to respond to changes or crises of a new,

unknown kind (Carpenter et al. 2001, Folke et al. 2010).
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HOW TO KEEP THE SYSTEM COMPLEX: THE DO’S AND THE DON’T’S

In the light of complexity and resilience theories, enhancing the operation of many essential

processes in cities it is more about encouraging their preferable dynamics and mechanisms

instead of producing new ones. The literature and empirical research regarding resilient

systems in evolutionary economics and ecology, along with complexity sciences, and empirical

work  carried  out  within  the  framework  of  this  thesis  and  presented  in  the  appended  articles,

supports  the  view  that  it  is  possible  to  adopt  particular  strategies  for  encouraging   -  or

discouraging - resilience (and self-organization) in complex systems (see for example Walker

and Salt 2012, Levin 1998, Novotny et al. 2010, Shai et al. 2014 , Holling 1996, Boschma and

Frenken 2010, Boschma 2015; Partanen 2015, Partanen 2016, Kuusela and Partanen 2016).

Next, based on this prior work, I propose a two-fold synthesis of appropriate means for the

treatment of resilience, along with maneuvers to be preferably avoided for successful self-

organization. Such means would consist of those concerning the system’s internal structure for

enhancing its resilience, and means of providing “safety valves” for channeling pressure

emerging within the system.

How to build resilience

1. Enhancing self-organizing capacity

To retain resilience in a general sense, the adaptability and transformability of the system must

be supported. Since both are based largely on self-organization, they cannot be forced from

outside, but need to emerge within the system. Particularly, I consider three factors to enhance

them (Walker and Salt 2012, Levin 1998, Novotny et al. 2010): Modularity, functional and

response diversity and tight feedback.

First of all, modularity refers to weakly linked small, tight units. Such a structure is typical of

complex, self-organizing networks (Shai et al. 2014).  Complex networks are beyond the scope

of this study. However, the modularity is implicit: the self-organizing case areas are by default

fairly autonomous enclaves, certain isolated yet porous pockets in the city structure, with

internal linkages and lacking strong hierarchical control from above. These conditions are

further elaborated in the appended articles (Partanen 2015, Partanen and Joutsiniemi 2015,

Partanen 2016A, Partanen 2016B).
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Secondly, functional and response diversity is essential, both implying functional redundancy.

Functional diversity refers generally to a situation in which a lot of “species” occupy the

system, (e.g.  variety of economic and cultural actors (Partanen 2015, Walker and Salt 2012,

Novotny et al. 2010). It clearly correlates with the viability of the city or region. For example,

technologically related industries are more likely to emerge from a wider variety of existing

industries, or from interaction among these (Boschma 2015). Response diversity refers to

functionally similar actors who respond to changes differently (e.g. responses of different types

of urban actors appear as adaption to production modes Partanen 2015) (Walker and Salt 2015,

Novotny et al. 2010). The response diversity of the CAS is analogical to risk insurance or

portfolio investment in financial markets, and critical to the general resilience – keeping the

options  open  (Walker  and  Salt  2012).  A  lack  of  diversity  may  limit  options  and  reduce  the

capacity to respond to disturbances. Increasing efficiency (optimization) inevitably leads to a

reduction in diversity (Walker 2012, p.121).

Holling  (1996)  proposes  that  we  could  adopt  an  idea  of  a soft redundancy typical of many

complicated natural systems. It reflects the overlapping operation of species in joint action in

ecosystems, which do not necessarily aim at optimal performance overall as regards conserving

resources - it is far from optimal.  Instead, the risks and benefits are dispersed throughout the

system to generally achieve a better consistency in the performance of the whole, although

fluctuations within single species may occur.  Self-regulation of variability is promoted by

functional diversity enhancing the robustness of the resilient process by operating where the

opportunities are the greatest – near the edge of instabilities, generating qualitative novelty and

enhancing adaptive capacity (Kauffmann 1993), with the greatest capacity for self-organization

of information. Hence I consider that in the city, the survival and progress of cities could be

supported by encouraging diversity of agents and their nested networks along with this

“complex” dynamic state since, echoing Holling (1996) and Kauffman (1993, 1994),

appropriate guidance in the systems’ internal dynamics at the edge of instabilities generates the

most preferable outcomes.

Thirdly,  tight  feedback  from  the  system  level  back  to  the  actors  is  required,  also  typical  of

complex networks, implying short path lengths and tight clusters. For example, tight

geographical linkages and proximity of similar firms typically play a key role in the early

phase of their organization (Boschma and Frenken 2010). The constant emergence of such

structures  in  time  may  refer  to  the  area’s  capacity  for  renewal  (Partanen  2015,  Partanen  and

Joutsiniemi 2015), simultaneously implying less top-down control (Kuusela and Partanen

2016).
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Excising institutions and local social, cultural and economic networks are important in the

formation and operation of complex nets (Partanen 2016B). Centralized governance and

globalization weakens it, as feedback is delayed in these extended systems and causality

between factors and phenomenon is obscured – the timely higher scale examples could be the

rise of global temperature or extensive population growth. Supporting and even recognizing

these factors in planning is not straightforward; it is plausible that totally new insights into how

the urban systems are guided and managed30 are needed – the current perspective is rather

narrow and often concentrates in optimization.

2. Building safety valves for urban processes – heterotopias and the scale

Another  aspect  of  how to  maintain  the  resilient  trajectory  in  CAS related  to  the  scale  can  be

derived from work of the philosopher Michel Foucault31 (1997), interpreted by David Graham

Shane (2011). This approach, echoing traditional, primitive knowledge of ecosystems’

operations has also been recognized by resilience scholars (Gunderson 2000, Folke and Berkes

1995). Albeit focusing on spatially delineated area or place, this mechanism operates through

multiple scales (Shane 2005).  According to theories contemplating resilience and complex

systems, while cities are in a temporary equilibrium state, their dynamics is fairly predictable.

However, this equilibrium is in practice an “autonomously managed” though specific

mechanism: from time to time certain anomalist enclaves emerge within the city structure, with

rules differing from those prevailing in the city (Portugali 1999, Shane 2005). These temporary

structures channel and order the turbulence occasionally emerging within the system (in cities,

this  may  be  related,  for  example,  to  social  tension  or  economic  pressure).   They  are  of

importance though for the sake of the whole. The logical consistency of the system is possible

only through the exclusion of nonconforming items and processes – those conflicting with the

current regime (Shane 2005, Foucault 1997). These enclaves are necessary for facilitating the

smooth dynamics of the city, and they can be considered either from the perspective of the

system and their autonomous, self-organizing dynamics, or the system management.

Foucault’s (1997) original philosophical concept of heterotopia, elaborated further by Shane

(2005) provides a theoretical lens for contemplating emergence of such areas. Heterotopias

refer to specific, porous yet semi-isolated areas or nodes in the city, used by the actors basically

30  Note that even though I contemplate explicitly planning in this work, as has been repeated in previous
chapters, today the majority of urban issues are yielding control typically intertwined with traditional
planning, and in many cases means and viewpoints that could be labeled under urban management are
necessary. Therefore, in this work these two approaches aiming at guiding to urban progress are
inevitably converging on each other, also on the level of terminology (Ahlava and Edelman 2014).
31 Foucault’s original paper on heterotopias was published in 1967.
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to accommodate change in society. Although some types of heterotopias are specifically built

by those in power, their mere existence can be considered to result from intrinsic urban change,

and many of them embrace generative features, self-organization, their own exceptional rules

and reversed codes compared to the surrounding urbanity (Shane 2005). Thus heterotopias can

be considered to both emerge as a result of transitions in the society, and to represent means of

steering them.

Foucault introduces three types of heterotopias, namely heterotopias of crises - enclaves

voluntarily used for healing and adapting in traditional societies; heterotopias of deviation

based on forced re-education and rehabilitation of those unfit for the modern society, and more

recent heterotopias of illusion. In the postmodern society the heterotopia of illusion forms an

increasingly frequent and salient urban element, providing actors with an illusionary sense of

freedom from the controlling forces of society (Foucault 1997, Shane 2005). Increasingly,

these are nodes specialized in some form of entertaining (often commercially), such as malls or

theme parks (Shane 2005). However, another type is related to the decay of prior heterotopias

of deviance, resulting from transitions in the society and production mode.

These dynamics are intertwined with the emergence of knowledge based society starting from

the 1990s, along with the (ongoing) decline of the welfare society (Shane 2005, 2011, Oswald

et al. 2003). These changes left (and leave) considerable amounts of  urban ‘fallow’ structures -

empty, derelict buildings, areas and infrastructure, which provide excellent potential for

heterotopias of illusion, either through design or self-organization of a variety of diverse

cultural and economic interacting actors ordering space according to their needs (Shane 2011,

Oswald et al. 2003)32. Through the concept of heterotopias, and their role in facilitating urban

processes throughout scales, it becomes meaningful to explore self-organization also in smaller

scales, as is done in this thesis (Partanen 2015, Partanen and Joutsiniemi 2015, Partanen

2016A, Partanen 2016B).

Although heterotopias of illusion often emerge autonomously, they could be used intentionally

as a means of steering the urban dynamics. They are undeniably able to provide a seedbed for

self-organizing actors, adopt to transitions in society and probably also facilitate the adaptation

of the system (Partanen 2015, Partanen and Joutsiniemi 2015), but furthermore, their existence

could also be recognized, permitted and gently supported for the sake of channeling the

pressure for the city to remain resilient. Such steering of non-preferred or unavoidable

processes is actually what Berkes et al. (1995) consider to be a traditional form of guiding

ecosystems  in  primitive  societies.   By  allowing  small  perturbations,  large  ones  may  be

32 Iconic examples of such places could be Camden Market in London, or Cristiania in Copenhagen.
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prevented and the resilience of the overall system is maintained (Gunderson 2000, Berkes et al.

1995).

This very process has unintentionally occurred in Nekala old industrial area, scrutinized in

Partanen (2015) and Partanen and Joutsiniemi (2015). Along with several other districts close

to the city on the southern side of Tampere also originally planned for heavy industry, Nekala

is considered as one of specific “waiting areas” about to be developed in the undefined future,

and thus currently lacking investments and interest from the city administration, consequently

keeping the potential development plans on hold (Kuusela and Partanen 2016). Coincidentally,

this decision has offered the area enough weather shore for unique ecosystem to emerge – but

such a policy could also provide means for intentionally looking away and hence “un-

planning” such areas. Nekala, an example of an evolution from a mono-functional area

produced by modernistic zoning to a diverse, self-organizing enclave, can be considered to

have become a pure heterotopia of illusion. For Pispala (the case area for the fourth appended

article Partanen 2016B) as an informal settlement it originally fell into the category of

heterotopia of crises – according to Shane (2011) manifested as places for people to utilize the

adjacent city voluntarily, but (for now) lacking the ability to adapt to the prevalent city regime.

Despite the gentrification of the area by the 2000s’, and due to its unique history (Partanen

2016B), Pispala still embraces a certain illusion of freedom, and shares many features

associated with endeavors towards autonomy and self-governance resembling those prevalent

in heterotopias of illusion (Shane 2011).

How to reduce resilience: the maneuvers to avoid
Basically, for decades in human-nature systems we have tried to maximize the profit of certain

components in human related systems by strictly controlling others, to derive maximal returns

by optimizing the economic, agricultural or even cultural processes. This may be a good

solution on a short time span, and explicitly so in the conservation phase of the adaptive cycle.

However, conceptually, optimization implies the existence of a certain (semi)permanent

equilibrium. It is assumed that reaching an end state and holding the system there would be

possible and yield maximal benefits, in a state of “eternal K phase” – continuous and stable,

never ending growth. Nonetheless this is an illusion.

In city planning the top-down oriented planning approaches have more or less implied such

illusionary linearity of the city system, considering shifts in equilibrium as “flaws”. Echoing

Walker and Salt (2012), planning basically aims at organizing urban functions in a most



Partanen, J: Don’t fix it if it ain’t broke

47 | P a g e

efficient and optimal manner. This may concern production, proximity, and disturbance of

actions,  social  issues and services,  city  economics or  logistics  in  cities.  It  is  assumed that  the

change is always incremental, linear, and predictable. While these often succeed, they

nevertheless ignore the fact that the system is usually reconfigured by extreme events, not

average conditions. As we speak about sustainability in the context of cities, this has also often

been the case until very recently: We seize the maximally sustainable static state of the

economic, ecological, social or urban system - most likely implying continuous increase in

benefits, forgetting the intrinsic nature of the underlying adaptive cycle (Walker and Salt 2012,

Holling 1996, Novotny et al. 2010).

Here the paradox is that optimization aims at maximal efficiency, not allowing redundancy and

response diversity. It implies intolerance of "useless" or overlapping activities in the system

actually operating as a form of insurance policy of cities for crises. But optimization applied to

only a limited set of interests – a certain industry, firm, institution, cultural facility, maximal

returns or savings in the process -  results in inefficiency. Such action would mean, for

example, supporting heavily only one or a few industries in the city, or investing in a certain

cultural institution ignoring the myriad small self-organizing networks. It leads to the

elimination of the vast redundancies, keeping only the actors and processes considered (with a

limited scope) having direct, linear causal benefits for short-term, often economic, efficiency.

This may push the system onto an undesirable trajectory.  Urban dynamics are far more

complex,  and  there  is  no  optimal  sustainable  state  of  a  complex  adaptive  system  –  not  for

social, ecological or urban system, or for the world. It is an illusion.

The problems emerging from such optimization principles - for example self-organizing urban

processes apparently yielding general planning (Kuusela and Partanen 2016) - the useful

response would be to revise the mental model used, resisting the urge to exert even greater

control over systems. Seeking tighter control may work against itself. The more optimal and

efficient certain components of a system are, the less capable the whole system is likely to be

of responding to sudden, extreme occurrences. The total system becomes more vulnerable to

shocks. Any policy that does not recognize that the systems dynamics requiring resilience is an

intrinsic feature of complex systems will most probably eventually fail. The only way is to

enhance the ability of the system to change. As such, change is neither good nor bad. There are

many possible states for any system - even in extreme cases such as the drastic climate changes

or  the collapse of  society or  economic system, a  new temporary state  will  emerge as  systems

continually strive to adapt to change through an adaptive cycle.  It is just that some states are

more preferable for humans than others (Walker and Salt 2012, Novotny et al. 2012).
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Hence, generally speaking, three possible reactions exist to altering stability domains (that is,

the temporary equilibria): waiting until the system returns to the prior mode (it may not);

adapting to it; or trying to manage the system’s state (Gunderson 2000). In human systems the

last one is the only relevant option since, as said, alternative states may be unpreferable or

unbearable33.  Since the complex urban system does not respond well to control, more tactful

forms of planning and management would be required to be able to guide the uncontrollable

urban system, to avoid the unfavorable states of the system. Consequently, and considering the

intrinsic  features  of  CAS, I  would suggest  that  instead of  static  planning interested in how to

prevent autonomous, non-planned change, a more appropriate course of action would be to

shift the focus towards smooth guidance of change and preparation of uncertainty through

experimentation, locally developed, considering rules and observing of dynamics, to foster

innovation helping to further adapt to change (Portugali et al. 2012, Kuusela and Partanen

2016).

33 Although unfortunately at some point if we react too late, the second option becomes necessary, too.
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3.  EPISTEMOLOGY OF COMPLEXITY
The approach to complexity proposed - coupled with the resilience theory -  is here considered

as a mental model or an interpretation of the world (Manson 2001, 2003), not a strict

description of the world as it is (Manson 2003, Reitsma 2003). Hence it provides a lens through

which we can pursue a new reading of complex cities, revealing many unintuitive features

otherwise hidden, instead of providing plain complexity measurements. Epistemologically, a

fairly strictly positivist attitude is often implied in the objective interpretation of the world,

while the “mental model complexity” embraces a more relativist perspective, yet accepting the

use of complexity metrics and methods within this mental frame (ibid., Lloyd 2001). Hence,

accepting complexity as a mental model, it is necessary to explore under which conditions and

by what means knowledge can be gathered of such counterintuitive, nonlinear phenomena, and

consequently, what would be the essence of the complex reality.

Complexity sciences, and implicitly evolutionary resilience theory, have been considered to

provide an overarching philosophy combining different epistemological grounds in science,

yielding requirements for both objective and subjective positions in knowledge production

(Portugali 1999). Typically, to study human systems, multi-methodology and both quantitative

(requiring certain objectivity, realism) and qualitative (subjective, semi-relativistic) approaches

rising from different epistemological foundations are used. Hence in an epistemological sense

we live in two worlds. On the one hand, in the world of pure rationalistic (scientific) realism

believing in objectivity, and that we can get direct knowledge of absolute reality through

scientific method. On the other, we are part of a world in which there is no absolute reality nor

absolute knowledge, but only a possibility to extract it from a personal or culture specific

perspective accepting that it can never be universal.

Scientific knowledge has been largely considered to be objective, realistic “hard” science, but

during the last century (or even longer) the hegemony of positivist objectivity has been

repeatedly challenged in the philosophy of science, with critique ranging even to physics and

mathematics (Rosen 1996, Capra 1996). Gradually, midway postpositivist approaches have

gained ground, especially in social sciences but also in planning (Allmendinger 2002),

proposing constant reflection of conceptions. These do not abandon the reality but consider it

can only be known imperfectly and probabilistically. Therefore I consider that a postpositivist

view provides a frame for elaborating epistemology with complexity sciences - with their

origins in natural sciences - in mind.
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Complexity can be considered as a unifying mode of thinking on two levels: On the one hand,

on the level of methodology (quantitative and qualitative approaches), and on the other, on the

level of epistemology, i.e., how to produce knowledge of the world. On the methodological

level complexity thinking has been considered to have a potential to bridge the gap between the

two scientific cultures with distinct epistemological grounds (Portugali 1999). Although it

originates in “hard”, quantitative sciences, for example in an urban context, complexity shares

many similar characteristics with approaches in social sciences. First, both take a systemic

view abandoning analytical reduction. Secondly, in social science and complexity thinking the

inherent dynamic progress is irreducible and not smooth; the system progresses via ruptures or

revolutions to a qualitatively novel state. Finally, it has even been suggested, for example by

Portugali  (1999),  that  many  social  scientists  from Giddens  to  Castells  consider  space  to  be  a

social production. This resonates with the prior discussion about the circular causal relation

between the pattern and processes (ibid., Batty and Marshall 2016). According to this view,

space would operate as an order parameter controlling and “enslaving” the parts producing it

(Haken and Portugali 2003, Haken 1980).

Furthermore, complexity thinking may have potential for a new epistemological postpositivist

approach. Cilliers (2005) considers the properties enabling this are inherent characteristics of

complex systems, reaching beyond subjective/objective dichotomy34.  Complex  system  is  by

definition constituted through a large amount of nonlinear interactions, and cannot be separated

from  its  environment.  Therefore,  a  complete  analytical  description  of  it  is  impossible.  The

‘incompressibility’ of the complex system implies that it cannot be simplified – the

representation of a complex system is as complex as the system itself. The nonlinearity of the

system  becomes  an  issue  as  regards  this  compression  -  the  impact  of  eliminated  factors  is

impossible to predict. However, in practice, a certain reduction – comparable to temporarily

closing the system - is often needed to enable any research maneuvers. The system must be

defined, or framed for description - “separated” temporarily from the environment a part of

which it inherently is (Cilliers 2005, Manson 2003).

Since the absolute isolation the system from its environment is impossible, a purely objective

view of an observer is impossible. The limits we draw cannot be objective, but they are

intuitive or strategic decisions of the observer influenced by the individual world view. In the

34 Therefore, according to Cilliers, the relation between knowledge and the network producing it is
dialectic: it is impossible to define first the system (or context) and then the knowledge it produces –
these two emerge within a recursive, interconnected process. Both the nature of knowledge and the
system that produces it are in a constant state of flux. In other words, the system cannot be uncoupled
from its context due to its history. The identity is produced by their unique history, making them also
unique and singular entities (Cilliers 2005).
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complex system knowledge is relational in the way it is constituted in the network within

which it emerges, not atomized objective facts. However, knowledge is not subjective, either -

the knowing subject does not exist prior to the network of knowledge, but is constituted within

the  network:  the  observer  exists  in  relation  to  the  observed  system,  which  emerges  as  it  is

delineated from the unlimited dynamic web (Cilliers 2005).

This postpositivist, relational-rational mid-way position is not easy to maintain as soon as we

start computerizing35.  This  is  a  salient  point  since  computers  have  had  a  remarkable  role  in

development of theories of complex systems – revealing chaotic, fractal, self-organizing

features of systems (de Rosnay 2011, idib). For digital computing, knowledge needs to be

objective and the subject may not intervene in data gathering, storing and manipulating

(Cilliers 2005) leading easily back to “brutal positivism”. This impression can be challenged

though – even in the process of dynamic modeling the model and the modeler can be

considered to be in interaction through strategies, aims and decisions of the modeler and her

reactions to the model behavior (Crooks et al. 2007).

EMERGENCE: SOLVING THE MYSTERY

One of the most essential characteristics for complex systems is the trans-scalar pattern

formation process resulting from interactive parts (dissipative structure, reflecting back to the

parts from the “enslaving” whole) (Haken 1980, Prigogine 1978). Such a process is often

referred to with a concept of emergence36 implying that the whole is qualitatively different

from  the  sum  of  its  parts,  and  irreducible37. The basic, logical nature of emergent structures

becomes apparent as our understanding of them increases: the more we study the interactions

and  patterns  in  these  processes,  the  more  causal  they  appear.  Many  emergent  processes  are

35 I want to emphasize here a distinction between computation - that is, relational adaptive ‘calculation’
between entities, not necessarily digitalized, and computerization, referring to digital processing, storing,
and digital computing of data. This distinction will be elaborated more in coming chapters.
36 Here I want to stress that self-organization and emergence are not synonyms: self-organization
emphasizes the dynamic increasing of order, while emergence focuses on the novelty of macro-level
behavior from micro-level interaction, and irreducibility of the whole (De Wolf and Holvoet 2005, pp.12-
13). The system can self-organize without emergence, or vice versa, or emergence and self-organization
can occur simultaneously (De Wolf and Holvoet 2005), which results often the most interesting cases in
cities.

37 Since  the  introduction  of  the  concept  at  the  beginning  of  the  20th century, some philosophers have
criticized the term for implying a “mystical” moment at which qualitatively new, previously unobservable
features appear to the system as observed on the higher level (“weak emergence”). Tragically, what the
early emergentists wanted to prove was actually quite the opposite, trying to argument against the
mystical “élan vital” theory, claiming that the emergent novelty is actually a very natural consequence of
the system’s dynamic interactions (deLanda 2011).
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today understood in detail and are thus largely demystified.  For example, the emergence of the

qualitatively different, complex pattern of a thunderstorm as a result of convection and leveling

off the temperature gradients38 is today fully understood, indicating that emergence may imply

surprising elements (until they are better understood), not mystical ones (deLanda 2011).

BALANCING BETWEEN OBJECTIVITY AND RELATIONALITY:
SUBSTANTIALLY REAL

Since there are no absolute boundaries in the universe the question is how to derive knowledge

of a  system if  no system exists.  Despite  the non-existence of  boundaries,  we can assume that

certain  relatively  resilient  and  stable  temporary  structures  or  patterns  emerge.  These  can  be

treated as if they had a “limited existence”, as if they almost existed (Richardson 2005). The

level of their limited existence depends on their relational position on the distribution of

boundary (entity) stabilities, a conceptual spectrum describing the stability of patterns in

various types of systems (Figure 3).

Figure 3. Distribution of boundary (entity) stabilities. Source: Richardson (2005).

In the left hand side of the stability spectrum structures or boundaries are relatively stable and

it is safe to say they are real, providing a foundation e.g. for science-based technology. As we

move towards the other end there is increasingly noise, and the borders result more and more

from the interpretation of the observer, and patterns emerge and decay much faster.

(Richardson 2005) Urban and social systems range in between the two extremes, occupied by

patterns relatively stable for observation and research. The boundary definition is in a decisive

38 Gradient is the difference between energy, concentration, temperature etc. levels in the different parts
of the system that acts as an energy storage device.
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role. Borders, temporarily closing the system, are necessary for the meaning without which the

knowledge does not exist. Borders are strategic considerations, but they have

subjective/intersubjective components – they are dependent on the observer. Because of the

conditional and historical nature of a complex structure, constant revision and interpretation of

the system (of both boundaries and strategies) is required.

Consequently, although there is no absolute reality, due to the resilient patterns the world as we

see it can be considered substantially real for scientific treatment, particularly in the (natural)

scientific or mono-methodological area of the spectrum (Figure 3). As the borders are

(re)defined, it is important to realize that borders are not necessarily inclusive but sometimes

enabling such as the eardrum, or ecotones39 in nature.  According to Cilliers (2005), the border

is not even necessarily spatially continuous; it may be fragmented or even virtual, and

dynamic.  In some cases,  the actors  of  such a  complex web are never  far  from the edge – the

system may be folded, or consist only of boundaries (Cilliers 2005). But as the turbulence of

the system increases, the question is how we can produce knowledge with any general use, and

not only about a particular, unique system.

SINGULARITIES AND GENERALIZATION THROUGH PATTERN
ISOMORPHISM

The emergent patterns are dynamically stable only temporarily; using scientific analogy, until

the gradient is cancelled and the pattern decays. They have most probably a tendency to behave

in a certain way, to gravitate into an attractor in a space of all possible actions. Once on these

attractors, the systems are surprisingly resilient against perturbation – if disturbed they soon

return  to  their  prior  trajectory.   Many  of  the  emergent  systems  are  independent  of  the

mechanism: materially completely different systems may settle on the same attractor, i.e., share

similar dynamics (deLanda 2011). These entities deLanda calls (2011) singularities are here

considered in a more general manner, as pocket of probabilities reflecting typical behavior of

the system, not as mathematical attractors.

This form of structural (scientific) realism40 implying the mechanism independence has

consequences. First, we can reflect our observations of reality (referring here to “substantially

39 A border between two ecosystems with often remarkable diversity of species, or unique species
ecosystems
40 A form of scientific realism which relies only on the structure of the scientific theories instead of their
empirical content (avoiding both meta-induction and no-miraculous –arguments, pro and against “pure”
scientific realism) Stanford Encyclopedia of Philosophy.
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real”) against certain formalizations – mathematical formulae, models, statistics, and so on.

The reality can be reflected through these structures, or singularities (deLanda 2011).

Secondly, we can compare systems to each other ignoring their material qualities making

observations based on potential (partial) overlapping singularities (in the space of possibilities).

This enables the extraction of more generalized knowledge of real world systems the dynamics

of which is structurally similar. In an urban context, for example, scaling laws, fractality or

dynamic states (stable, periodic, chaotic, complex), or adaptive cycles form structurally

coherent representations of dynamic systems, and they have been used to estimate the success

of urban dynamics, evolution, and transformation (Bettencourt 2007, Pumain 2012, 2004,

Walker  and  Salt  2012).  We  can  assume  that  a  certain  “law”  (be  it  a  scaling  law  or  fractal

dimension) reflects the maximal capacity of self-organization of the system, and if the system

in reality  follows the same law (with other  words,  gravitates  to  the same attractor)  they share

the generative features.

Since human systems are extremely complex trans-scalar interlinked networks of networks, in

these the interpretations of  both systems and temporary patterns must  be pliable.   Due to the

inherent turbulence in the system certain robust “general laws” may not apply or apply only in

certain cases or conditions (Arcaute et al. 2014, Pumain et al. 2004), or novel patterns and

regularities may emerge (Batty 2006). Formally speaking, due to the independence of the

mechanism,  only  the  “degree  of  freedom”  counts  –  that  is,  how  many  variables  affect  the

dynamics (deLanda 2011). Since very simple systems can produce fairly complex dynamics41 ,

considering very complex systems such as cities we can easily expect that the ratio increases

exponentially (ad infinitum), bringing the issue back to the relationality, interpretation and

system definition and eventually deLanda’s singularities are after all discussed rather

metaphorically.

COMPUTERS AND THE PRODUCTION OF KNOWLEDGE

Computers and increased computing capacity have played a crucial role in the development of

theories  of  complex  systems.  These  systems  or  their  mathematical  formalizations  are  not

necessarily beyond human capacity, but possibility for visualization and simulation have been

key elements of digital computing, helping to discover the universality and revealing

unintuitive features of complex phenomena, and to formulate hypotheses crucially affecting

41 With only two variables, four dynamic classes may emerge (Langton 1994)
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progress in science and the resulting world view (de Rosnay, 2011). Good computer models or

algorithms are not only rooted on relevant theories, but increasingly also assisting in theory

formulation (Crooks et al. 2007). DeRosnay highlights that computers and numerical analyses

have enabled the groundbreaking work of e.g. Lorenz, Mandelbrot, Kauffman and Holland (de

Rosnay  2011)  among  others.  It  is  thus  relevant  to  ask  what  the  role  of  the  computer  is  in

knowledge production (e.g. in case of simulations or genetic algorithms).

The computer, however, is a black box, which Cilliers (2005) considers similar to an abstract

or divine source of which we can never have knowledge. This is not necessarily a problem

since we only need to admit the limits of our understanding (Cilliers 2005). On the other hand,

the computer is comparable to certain other tools for observing phenomena which are far

beyond human cognition. The microscope acting as a tool for observing infinitely small entities

and  the  telescope  for  infinitely  large/remote  entities,  a  computer  can  be  considered  as  a

“macroscope” which helps us to study “infinitely complex” entities. The macroscope does not

produce knowledge as such since - at least if we abandon strict positivism - for data to become

knowledge,  meaning  imparted  by  a  human  is  required.  However,  its  role  is  very  similar  to  a

laboratory experiment: a laboratory test is not reality, but real world phenomena can be tested

in  a  (virtual)  laboratory  by  a  computer  –  “in  silica”  -  to  gain  new insights  into  their  perhaps

otherwise unperceivable aspects based on which we can produce knowledge. This raises

another question about the relationship between simulation and reality (de Rosnay 2011).

SIMULATION AND KNOWLEDGE

Computer-aided micro-simulation has been a central method in the study of self-organizing

systems enabling the observation of dynamic trans-scalar patterns emerging from multiple

lower level interactions (Batty 2007, Cilliers 2005, de Rosnay 2011).  For the first time it was

possible to construct systems from smaller parts instead of analytically breaking them apart.

Computer simulations of complex systems serve as exploratory, educational or theory

constructing tools. At their best, they may reveal general principles of organized complexity,

similarities of structures, optimal zones of evolution, and rules of construction for networks (de

Rosnay 2011).  There are, however, several key challenges in using computer models. These

are related, first, to the abovementioned issues in system definition and agents, and aggregation

of data for building blocks/variables for higher level processes. Secondly, challenges concern

the representation of reality as nonlinear, unpredictable, and incompressible complex systems.
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The first challenge is related to the way model dynamics are represented in terms of agents and

agent interactions. These definitions of an agent and the process(es) it is involved in are

intertwined with the interpretation of the system (borders) and patterns – artificially closing the

webs of the webs of the webs. Since agents are theoretically always aggregations of lower-

level entities, our decisions can unintentionally change the processes they enable. It also

becomes  more  difficult  to  define  relevant  processes  -  these  are  aggregations  of  lower-level

behavior  as  well.  Furthermore,  the  vast  number  of  agents,  attributes,  and  processes  causes

problems with our ability to deal with the resulting exponentiation; sampling is a poor

alternative since it is simplifying, and probably skews the model behavior (Crooks et al. 2007).

However, as stated, once on the attractor, emergent patterns can be considered resilient enough

to form substantially stable entities - this feature enables science in the first place since we do

not need to construct the universe every time from the quarks (Richardson 2005). In addition,

model construction is possible based on these entities constructed of other entities (deLanda

2011). The question of interpretation and coupled subjective/objective –nature of the system is

revisited - it is again all about interpretation and the two-way relationship between model and

the modeler.

Particularly, the second issue refers to the extent to which the model can be verified, e.g. with

another model type, and replicated, which in social sciences is questionable due to difficulties

in controlling for all the variables in a particular situation, but most importantly, the ways the

model can be calibrated (i.e., modified to correspond to reality) and validated (i.e., how well it

achieves the intended goals (Torrens 2011). This raises an important question of how the

model relates to the system it represents (reality).  This is a salient point since the (dissipated)

model structures are often too rich and data needed for complete validation is likely to be too

poor (Crooks et al. 2007, Batty et al. 2006). It is possible to validate the model qualitatively –

to estimate if the visualized output “looks right” (Mandelbrot 1983). In a more quantitative

manner, the validity of the model can be evaluated by running it exhaustively: observing the

complete range of possible outcomes with particular specification - exploring the space of

possibilities (Couclelis 1997, Torrens 2011).

With  this  in  mind,  and  echoing  deLanda,  we  can  say  that  if  the  space  of  possibilities  is

structurally similar (i.e., enables the existence of similar singularities) with the real-world

system, it can probably produce dynamics whose singularities are (partly) overlapping with

singularities in reality, and it can represent the reality as regards the quality of the dynamics but

not necessarily the material details. For example, dynamic states of cellular automata can be

analogical to the types of real complex system dynamics – the complex, generative state can be
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considered analogical to the most preferable, self-organizing state able to create new qualities

and renew itself in a resilient manner. Such a high level of conceptualization should cause the

simulation to remain on a relatively abstract level, as a tool for visualizing and exploring the

(level of isomorphism of) spaces of possibilities of the model and the world. In city planning,

this could mean learning more about the triggers which might push the system to another

attractor, to facilitate the most preferable self-generating dynamics and leave the rest of the

system intact to operate autonomously (Partanen 2016A).

EPISTEMOLOGICAL CONCLUSIONS

Complexity thinking provides guidelines for an epistemological frame capable of

accommodating both objective-realistic aspects, and more relativist, interpretational and

constantly changing world views. The suggested substantial structural realism implies that

although no objective, absolute reality exists, the world is considered substantially real to

study emergent, temporary patterns as if they did exist. However, these need constant revision

due to their turbulent characteristics, and the ambivalent nature of border definition

(increasingly as one moves towards the right end of the stability spectrum (Figure 3)). In

complex cities rich in turbulence this implies that we need to increase our understanding of the

structures, processes, and dynamics of the self-organizing42, emergent processes and patterns in

cities (Partanen 2015, 2016A, Partanen and Joutsiniemi 2015). In urban systems it is likely that

these patterns are fairly instable yet resilient, emerging, and decaying according to their own

logic and therefore general stable knowledge of them is not possible, but constant revision is

needed.

Many of these emergent patterns are mechanism independent and very resilient, and they can

form a relatively stable basis for scientific procedures and computer simulations (Partanen

2016A). Their behavior may be reflected against general singularities, and compared to each

other,  or  with  the  results  of  simulation  with  regard  to  their  potential  gravitation  to  the  same

attractor.

In addition to actual patterns, the “space of possibilities” needs constant revision. Similar to the

system definition, singularities can be considered to emerge from interpretations of

42 Self-organization and emergence are not synonyms: self-organization emphasizes the dynamic increase
in order, while emergence focuses on the qualitative difference of macro-level behavior from micro-level
interaction  (De Wolf and Holvoet 2005, pp.12-13). The system may self-organize without emergence, or
vice versa, or emergence and self-organization may occur simultaneously (De Wolf and Holvoet 2005),
which is often the most interesting case in cities.
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phenomena, against which these phenomena are again reflected. Singularities represent a

generalized reading of the world, providing reflections of how systems might behave under

specific conditions. This suggests that the nature of knowledge of cities is “good enough” and

pluralistic, instead of objective (rational) or idealized (implying consensus). Consequently, in

city planning, it would be absurd to aim at comprehensive control and optimization of the city

based on “objective” truth.
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4.  RESULTS INTERPRETED: PLANNING FOR

COMPLEXITY, A TWO-FOLD APPROACH

From embracing the complexity and resilience views it follows that the most considerate way

to plan as regards complexity is based on understanding the dynamic dependencies between

spatial patterns and the processes responsible for them (Levin 1998, Ndubisi 2002, Gunderson

2000 p.430, Leitão and Ahern 2002, Batty and Marshall 2009). Hence, the responsibility of

planners in this adaptive process would be to discover what the actual self-organizing socio-

economic and cultural processes are in general and/or in a particular case, their frequency and

intensity, and how to build adaptive capacity to respond to the inevitable disturbances and to

remain resilient by enhancing the factors promoting self-organization in these processes 43

(Leitão and Ahern 2002, Partanen and Joutsiniemi 2015, Partanen 2015, Partanen 2016A,

Partanen 2016B).  Shifting the balance from an attempt to control the anticipated outcomes

towards managing the continuity of the unpredictable processes is challenging since we usually

have  very  limited  knowledge  of  these  processes  due  to  their  non-linearity.  It  is  necessary  to

look beyond the precautionary thinking (Ascher 2004), and embrace the uncertainty intrinsic in

the system.

Thus a more adaptive way to guide and manage the city is required, conceiving of each

planning decision “as an experiment, based on the best available knowledge, structured by

reasonable assumptions and monitored over time to gain the 'results' of the experiment”.

(Leitão and Ahern 2002, p.81). However, this should take place in a larger frame assessing and

guiding the overall behavior of the urban system. A challenge that follows from the

requirements of adaptability and transformability (ibid.) is that we need to plan simultaneously

for the routine, the steady-state predictable processes, and for the uncertainty, surprises and

change (Novotny et al. 2010).

Since ecology and landscape planning have long roots in spatial planning related to complex,

networked ecosystems, many rather structured proposals emerge among these disciplines.

Adaptive management is originally an integrated, multidisciplinary approach for natural

resource management introduced by Crawford S. Holling (1978), and applied and developed

later in a variety of ecosystem studies (see for example Walters 1986, McConnaha and Paquet

1996, Rist et al. 2013). It considers constant change, nonlinearity of the system, and that

humans must adjust their actions in response to the change in the system in a constant state of

43 Such as tight feedback, emergent complex networks and diversity/redundancy
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flux. The inherent uncertainty and unpredictability can be tackled only by constant learning as

the system changes. In adaptive management it is acknowledged that policies must satisfy

social goals and measures, but also be flexible for surprises. Policies can be considered more as

hypotheses – they are often more questions than answers, and guiding actions resemble

experiments seeking answers or solutions to them. In a nutshell, the adaptive approach accepts

the intrinsic processes of the system and their interlinkages, highlights uncertainty, and

develops hypotheses concerning system outcome and structured actions to test and evaluate the

ideas by trial and error (Gunderson 2000, Holling 1978). In this context, Gunderson (2000,

p.432) stresses the importance of understanding complex adaptive systems, and developing

means to maintain and restore resilience and self-organizing capacity in these systems.

Presumably, an adaptive management perspective could provide a robust model for pinpointing

essential features for planning of complex cities (Kuusela and Partanen 2016).

Ahern (1999), Novotny et al. (2010) and Leitão and Ahern (2002) have elaborated central

principles for the planning of complex ecosystems, building on earlier spatial planning

approaches contemplating issues common to all CAS. Conceptually, these are considered

applicable in urban ecosystems as well. The main features of adaptive management models are

presented in Table 1 (referring to resilience and complexity, and promoting adaptive

management). The conceptualizations of these prior proposals for a novel application in urban

planning are classified in Table 2 (Kuusela and Partanen 2016).

In the following sections of text, I will elaborate on the conceptual phases in the light of spatial

planning of complex cities. Overall, due to the inherent cyclical nature of (urban) complex

systems, the proposed spatial planning processes are also continuous, and cyclical. A two-fold

structure can be perceived: a certain slow cycle addressing overall goals and aims, analyses,

and processes, mapping, modeling these, and (in the case of an apparently approaching shift in

the stability domain) scenario work (Novotny et al. 2010). This phase aims at an overall

understanding and guidance of the behavior of the system on the global level. The slowness

refers to the relative pace of required updates: goals and strategies are naturally to be updated

regularly following local processes, trends and global progress, but presumably less frequently

than maneuvers in the following “fast” cycle. Essential differences from current top-down

planning are that the focus is explicitly on the continuity of the planning process, and accepting

the limitations in the prediction and control of the autonomous processes. Otherwise,

conceptually, the slow cycle resembles to an extent the present planning process. The

distinguishing feature here is the rapid cycle of implementation and evaluation, which could be

considered somewhat lacking in today’s planning praxis.
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Table 1. Classification of spatial planning procedures in landscape and ecological planning

and management. Source: Leitão and Ahern (2002).
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Table 2: Conceptualizations of potential adaptive planning phases – fast and slow cycles

SLOW conceptual stage Ahern (1999)  Leitão&Aher
n (2002)

Novotny et al. (2010)

1. AIMS
PROCESSES

Goals Focus: Setting
goals

setting goals
exploring/learning
from processes;
trends, drivers

resource
assessments,
identifying spatial
conflicts, spatial
concept design

Analysis

2. STRATEGIES
planning
strategies

"Diagnosis" Strategies for guiding
processes towards
goals

3. SCENARIOS
scenario
development

"Prognosis"
estimation/
"prediction"

Scenarios of possible
futures

FAST
4. EXPERIMENT/
IMPLEMENTATION

Implementation Syntheresis:
Implementati
on &
Monitoring

Adaptive
implementation of
plans.
Experimentation

MONITORING/
EVALUATION

Monitoring Monitoring of key
indicators to yield
new knowledge.
Continuous re-
direction.

PHASE ONE: SPECIFIYNG THE SCOPE OF PLANNING – THE

SLOW CYCLE

The first step, aims and processes,  would  be  to  basically  define  the  system (ibid.)  (Table  2).

This includes analyzing and describing the system in the context of various environmental,

social, and economic dimensions; recognizing the functions, elements and their influence on

the system; and defining the processes. Additionally, it is defined how we benefit from them

culturally, economically or ecologically. This could include, for example, pinpointing

economic structures promoting growth, improving the region’s competitive position, or

producing financial returns; recognizing cultural actors or networks enhancing wellbeing,

social sustainability or economic innovations. Furthermore, it would be necessary to identify

the clusters, patches, and other patterns and their connectivity or proximity, and how to support

or develop these in a desirable manner (Leitão and Ahern 2002, Novotny et al. 2010). This data

could be mapped (GIS), and/or be used as a basis of simulation models.
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Next, based on the above system definition, would come an estimation of the (dynamic) state

of  the  system,  and  how we  want  it  to  be  in  the  future.   Problem identification,  explicit  goals

and objectives would then be determined, be they either political agendas, planners’ goals, or

those emerging within city processes – naturally keeping in mind the inherently experimental

nature of the maneuvers. (Novotny et al. 2010, Leitão and Ahern 2002). Since in this work the

focus is on general resilience, the goal is to enhance self-organization, and explore methods

helping to hold the system(s) on a desired (complex) trajectory – and stay resilient. Goals and

aims circle around this issue, while processes (and patterns) are defined in the context of each

case (Partanen 2015, Partanen and Joutsiniemi 2015, Partanen 2016A).

Secondly for strategies44,  the  essential  question  would  be  by  what  means  we  can  guide  the

processes towards the desired goals defined above. Urban planning is (at its best) inherently

strategic activity. At the core of planning is an attempt to understand and manage the forces

causing the change, and less using the tactics to respond to the changes themselves. Hence,

planning is proactive, not just reactive responses to surprises (Sijmons 1990). Strategic

thinking is required to determine the forces behind the change (the processes), and how to

influence these proactively. The strategies for complex systems need to embrace the

abovementioned factors - diversity and redundancy; (existing) emergent complex actor

networks, and, consequently, enhance adaptive capacity.  I could conclude that strategies

should favor diversity and multi-functionality, which produces functional redundancy, enabling

adaptive capacity enhancing resilience (see also Walker 2006, Folke et al. 2010)

The third step (Table 2), scenarios, links goals and assumptions to spatial changes, and

provides an unconstrained perspective on the future. Novotny et al. (2010) emphasize that

scenarios are vignettes of possible futures, not predictions. Scenarios help in exploring

alternative directions for the system emerging from varying occurrences in the surrounding

world. The aim is to present the spectrum of alternatives. They should include a description of

the prevailing situation, potential future states, drivers of change and means of implementation

not to be utopian. The fundamental questions behind scenarios are “what if” and “if –then”.

Scenarios are most useful if a transition is anticipated - on a stable trajectory constant update is

not necessary (Novotny et al. 2010, Schumacher 1995). The process is cooperative in nature

and participation is implied throughout the system. Actor analyses (e.g. the roles of municipal

or lay planners, specialists, and other stakeholders) in the planning process are not the focus of

44 Strategy is a higher level plan for achieving specific goals while considering the uncertainty. A strategy
is a larger, overall plan that can comprise several tactics. These are more specific, smaller partial plans.
Tactics have often less impact and they are more local than strategies. Tactics may be organized bottom
up, while strategies are top down.
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this conceptualization and are not scrutinized; however, some challenges to cooperative

planning, and a novel method for such a bottom-up approach are described in the appended

article (Partanen 2016B).

PHASE TWO: ADAPTIVE PLANNING - THE FAST CYCLE OF

IMPLEMENTATION AND EVALUATION (IMPEVA)

In this second phase, the cycle would be more rapid to truly respond to the requirement for an

experimental, educational planning mode. Since the impact of implementations cannot be fully

predicted, monitoring and reacting need to be swift for the next correcting maneuver.

Implementations should be small to better enable the evaluation of their results (Allen 2012,

Kato  and  Ahern  2008).   Here,  the  plan  can  be  considered  as  a  hypothesis  of  how  a  certain

policy impacts the actual urban processes (Novotny et al. 2010). As a plan is implemented, it

becomes an experiment through which professionals may gain new knowledge of the

policy/process relation (Kato and Ahern 2008, Allen 2012). Such an adaptive plan is based on

the best available knowledge, structured as an experiment, and monitored to learn how the

system responds within a framework of overall guidance (the slow cycle). Potential failure is

implicit, and the need to respond rapidly (Allen 2012). The implementation-evaluation

(IMPEVA) process (Partanen 2015) also reflects the epistemological nature of CAS – it

provides a model for urban planning for systems with constantly evolving, non-generalizable

knowledge (ibid.).

In cities trans-scalar self-organization is more interesting and problematic due to surprising

emerging properties, reflecting the CAS characteristics as nested networks. Guiding urban

processes thus takes place necessarily on multiple scales. For example, in this research,

emergent properties can be contemplated on the level of actor interactions, pattern formation

on a neighborhood scale, and conceptually on a regional level assuming the role of the waiting

areas (Partanen 2015, 2016A, B; Kuusela and Partanen 2016). It is also possible to embrace the

context of heterotopic structures especially understood as a modernistic urban fallow enclaves

with the potential to facilitate urban evolution, and to promote self-organization (ibid., Shane

2005, 2011). In intrinsically trans-scalar complex systems, implementations should preferably

be local (small scale). However, the monitoring needs to take place in several scales. It should

consider evaluating actor dynamics and interaction; neighborhood scale patterns; and on the
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regional scale, evaluating urban self-organizing processes, trends, and patterns 45. It is necessary

to remember that whatever system definition is used, the system border is dynamic and not

necessarily spatial, but many variations exist.

I could conclude that in the core of the adaptive cyclic planning are

1) learning and understanding the self-organizing processes and factors

presumably affecting them (the slow cycle)

2) smart small implementation as “experiments”,

3) constant monitoring and evaluating (against certain general dynamic

goals/strategies and preferable directions) and

4)  rapid  shifts  especially  between  2)  and  3)  (the  IMPEVA  cycle).   This  rapid

cycle is of more concern in this work since it is absent in traditional planning

praxis with respect to complexity.

Figure 4. The two-fold cyclic planning process: Slow cycle (above) and fast IMPEVA cycle

(below). The cycles interact through feedback. Strategies etc. are updated when necessary,

reflecting urban processes, and they form a frame of action for the IMPEVA cycle.

45 This not explicitly the scope of this work, but enabling of the local processes is.
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Next, it is necessary to explore the actual methods for implementation and evaluation along

with  the  necessary  metrics  for  assessing  the  complexity  of  the  system  (Leitão and Ahern

2002). Such methods should be able to reflect the essential characteristics of complex systems,

that is, dissipated decision-making, (trans-scalar) self-organization and fractality, and

nonlinearity and non-equilibrium nature or uncertainty. These features and the planning

methods applying them are explicitly contemplated in an increasingly established discourse

called complexity planning introduced by deRoo and Silva 2010 and deRoo et al. 2012, and

also discussed, for example, in Partanen 2015.  Next a selection of these methods and their

applicability is scrutinized in relation to the IMPEVA cycle.

COMPLEXITY PLANNING TOOLS

As has been discussed in preceding chapters, planning for complexity differs from traditional

rationalistic planning implying control in that it is based on understanding and guiding

phenomena towards preferable dynamics instead of static control. Planning that enables

complexity thus requires new tools: both measurements capable of assessing complexity in

cities, and methods for guiding bottom-up implementation processes. We should be able to

perceive which  trajectory is preferable, and have means to gently guide the urban dynamics

towards it.

The methods are applicable for both of the two phases – the slow, top-down (emergent) frame

for guiding and assessing overall urban development, and the fast cycle for constant evaluation

of smaller-scale, bottom-up implementations. For example, assessing goals and strategies,

levels of self-organization could be estimated, either regarding real world dynamics or

simulations. Furthermore, invert codes can serve tools for setting overall frames for

neighborhoods or districts.

However, in this thesis I concentrated on exploring these on a smaller scale for I consider the

fast cycle is currently more neglected in urban planning. Hence the experiments in the related

articles (Partanen 2015, Partanen and Joutsiniemi 2015, Partanen 2016A, Partanen 2016B) and

the tools below for implementation and evaluation have their focus on the neighborhood scale,

although the tools naturally also serve the regional scale well.
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Methods related to plan implementation
So-called implementation methods are related to the corporeal aspects of the city, and are thus

located perhaps more towards the physical “design” end of the spatial planning/design

spectrum. Design traditionally implies the idea of the designer’s total control over the

components of the schema, and an optimal solution as a result of a conscious design process.

Since Metropolis planning the limitations of designing the city as a physical whole have been

conceded, but still the city overall consists of myriads of small scale designs and plans

generating the corporeal city in a very physical way (Portugali 2012, Alfasi and Portugali 2007,

Marshall 2012). The cumulative effects of local, intentional designs appear on the level of the

city as a self-organizing chimera, where no one has complete knowledge or control of the

whole. Thus design oriented approaches are very much intertwined with planning, specifically

so regarding a more process-oriented planning which actually comes close to management

(ibid.).

The selected methods of implementation emerge within various traditions in architecture and

(urban) design, and they all relate to reality in a relational, dynamic, and bottom-up/feedback

oriented way, making them applicable as complexity planning tools. In these approaches,

relationality is reflected in the general scope of what I call here the rules. Rules reflect a set of

factors restricting or steering the operation of the system.

 The rules are either defined by the planning actors (based on research on the environment),

emerge within the system (in a self-organizing manner), or both. Rules may or may not change

or  adapt  during  the  operation,  but  in  both  cases  their  emergent  impact  causes  the  system  to

change recursively (either until the computing is halted or the project implemented), or it

provides a frame for autonomous (computational) transformation. It is essential that the rules

concern relations, – a key component in aggregate complexity and self-organization, between

various entities/agents, depending on the case.

The planning maneuvers may manipulate either these descriptive, discovered or emergent rules

on various levels. These could contemplate, for example, prevalent relationships between

buildings, and building and neighborhood level, or in relation to wider networks. It is also

possible to propose new ones, which would form normative rules guiding future

implementations. This distinction sheds light on the role of the methods in general in fast and

slow cycles:  the emphasis  in  a  slow cycle is  on learning from the system dynamics emerging

from the  descriptive  rules,  while  in  the  fast  cycle,  the  normative  rules  are  put  into  action  (or

allowed to operate) as a form or “virtual planning”, and implementation. This classification

follows the threefold model for planning proposed by Alfasi and Portugali (2007): first,
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defining (built) elements; secondly, discovering existing relations (analogical to descriptive

rules); and thirdly, proposing planning guidelines (here normative rules) for the urban code. At

the  core  are  actors  or  components,  and  their  interactive  relations.  These  relations  are

discovered, descriptive rules of the system. To guide the model, or implementation, normative

rules are required: these are either chosen modified relations, or new “artificial” rules guiding

the dynamics and concerning the interaction of components on various scales.

I have classified the implementation-focused, space producing methods as

1) basic blocks or coding approach,

2) algorithmic, evolutionary approaches

3) approaches implying human computing

4) invert coding

5) self-organizing planning approaches, namely self-organizing city games and

liquid planning.

The aim here is to provide a brief overview of these as regards their applicability in complexity

planning, and not an exhaustive literature review. Many of these approaches actually originate

in the design or architecture sphere, but they embrace features (dynamics, relationality or

evolution) which make it possible to learn from these in spatio-corporeal planning as well.

1. Basic blocks, coding, and beyond

In the self-organizing city spatial order emerges as a result of multiple simultaneous

interactions between local scale plans (Alfasi and Portugali 2007, Portugali 2012). Since the

overall general plan is a contradiction in terms, it is noteworthy that planning should build a

spatial, relational code which directs the actors involved in planning. The order of these would

thus be planned (despite the inherent role of “local planning” (Portugali 2012)) by coding

generic components that constitute “basic blocks”, and the main central relationships between

these (Marshall 2012).
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This approach has emerged from the legacy of Pattern Language by Alexander et al. (1977).

Pattern Language is a robust theory about relations, suggesting hundreds of patterns, with rules

for connections with other patterns across the scales. Alexander et al. actually propose a

structured language with fairly strict syntactic and grammatical rules between basic

components; the new approaches are not aiming to build a new language, but to explore a

possible dynamic system of elements or a web of their relations.

The codes concern not only elements of the plan or design, but necessarily the relations

between them on multiple scales, perhaps from building parts to the district scale. The basic

elements, contemplated widely in traditional urban design literature (for example Shane 2005)

might, depending on the case, include streets, roads, squares, buildings, urban blocks, parks,

neighborhoods or city districts, and other discrete elements of the built environment. (Alfasi

and Portugali 2007, Parolek et al. 2008). Despite the intrinsic dynamics in the complex city, it

is usually considered relevant to use existing urban elements – many of these are relatively

permanent configurations (streets, squares or urban blocks). Furthermore, their non-frequent

revision is in any case implied in the cyclical system. As the relationships are emphasized, the

codes could be used in a generative sense, producing constantly evolving urban configurations

and wider patterns (Marshall 2012). Here the basic elements are by no means only formal: they

are the actual spatial (resilient yet turbulent) patterns emerging from everyday urban activities

and processes – flows, concentrations and other elements channeling the flows.46

2. Algorithmic Architecture and Evolutionary Planning

Algorithmic architecture is basically a 1990s philosophical design movement which originally

aimed at formulating a new paradigm contrasting modernism while contesting the traditional,

stable  Euclidian  paradigm  in  architecture,  pure  form,  and  the  supremacy  of  the  architect.  Its

proponents considered the world dynamic and evolutionary, and that architecture is not

separate from it, but should be able to reflect the very nature of the transient realm.

Algorithmic approaches were considered capable of embracing the multiple environmental

factors  or  “forces”,  as  these  are  often  called,  affecting  the  project  formation,  which  was

46 Another rather different application of ideas of “basic block” with grammatical rules is a computer-
aided design approach Shape Grammar. In Shape Grammar the basic blocks are abstract, 2- or 3-
dimensional geometric shapes, with certain rules concerning their transformation - changing the location,
orientation, reflection, or size of a given shape, and operations concerning interactions. Since the
groundbreaking work of Stiny et al. (1980), Shape Grammar has provided a very advanced system of
form giving in architectural and product design, and despite the basic block principles the computerized
applications actually belong to the next category, evolutionary design with slightly different ontological
orientation, however bridging these two.
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considered  to  resemble  the  processes  in  nature  –  emergence  of  structures  of  species  in

evolutionary processes. The forces in this discourse represent a myriad of factors affecting the

project47. The built form emerging from a digitally computed formation process is considered

“autonomous”, based on the forces introduced by designers and stakeholders and the

“grammatical” rules of interaction of basic components (Lynn 1998, Terzidis 2006, Novak

2001, Hensel 2013, deLanda 2011).

In algorithmic architecture, the design project, and even the implementation is not a static

entity, but an integral part of its environment. The algorithmic approach allows not only non-

conservative design solutions, but, more importantly, makes it possible for all-embracing, truly

sustainable, or resilient solutions to emerge. Computerized processes enable, for example,

forms and structures self-sufficient with water, heat or energy. Similarly to urban models, time

is a parameter. Thus these models can serve as platforms for experimenting with form, but also

as educational tools for observing how the “forces” impact on the formation (Terzidis 2006).

The original roots of algorithmic architecture lie not in complexity theories, but in Leibnizian

philosophy and the paradigm of mathematical topological space (Lynn 1998). However, as in

the case of resilience theory, the profound ontological similarities were eventually noticed,

appearing in more recent discourse – for example Michael Weinstock (2004) in his text below

uses concepts explicitly similar to those prevalent in complexity sciences:

“The system—is maintained by the flow of energy and information through the

system. The patter of flow has constant variations, adjusted to maintain

[temporary] equilibrium by feedback from the environment. Natural evolution is

not a single system but distributed, with multiple systems co-evolving in partial

autonomy and with some interaction.”  Weinstock 2004.

The terminology adopted from complexity is often used in a fairly metaphorical manner, but

the essential characteristics in the algorithmic paradigm make it a plausible option for a

complexity planning tool. These characteristics include the interactions between components

and with the environment; dynamic processes; and the potential for evolutionary rules (both

descriptive and normative). The dynamic configuration allows the interplay of multiple forces

in a smooth process guided by the rules, operating recursively as a function of time, resulting in

the emergent outcome. The planner in an algorithmic project could be either a public or private

47 Including, for example, topography, micro- and macroclimate circumstances such as sun and wind,
energy production/consumption, materials, regulations, architectural programs and use, political decision-
making, participation, accessibility or connectivity of elements.
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sector professional planner. The algorithmic methods are, however, promising not only

regarding the adaptive form of top-down planning, but also as methods promoting and enabling

co-creation in architecture and planning with lay and professional planners and designers

(Keskisarja 2016). In this sense these methods come to an extent close to self-organizing

planning methods introduced below, and some of them could be labeled as such.

3. Human computation

Although these algorithmic methods use computation explicitly, computation can be

understood more broadly concerning how urban spatio-corporeal processes operate in general.

Salingaros (2012, 2000) suggests that actually all human endeavors regarding built

environment are “computation” in a specific sense. Computation is responsible for the dynamic

emergence of urban fabric through series of single continuous and interactive adaptations of

built elements, with feedback from the environment, producing an adapted urban form as a

result of restrictions and conditions dictated by human needs. This urban morphogenesis takes

place as a sequence of extended computations iteratively. Each building action adjusts to

unique, current circumstances, considering flows, topography, existing buildings and their

uses, weather patterns, micro-climates; individual needs and cultural habits, privacy or social

connection needed for the use.

This is how traditional settlements have been constructed as late as until 1930s in the West, and

they remain the primary mode of planning in informal settlements in many countries, thus

actually being a very common tradition in building. In the urban morphological tradition these

principles have been recognized and respected, stressing, for example, the typical procedure of

the emergence of a settlement (Caniggia and Maffei 2001).  This is partly intuitive activity – on

one hand, the human mind has a powerful capacity for calculation (Salingaros 2012). On the

other, to a great extent these maneuvers have been carried out spontaneously as in vernacular

architecture, applying existing building types.

Salingaros (2012) points out that the only way to guarantee the operation of the (small scale)

plan is to implement it – to an extent even informal settlements actually manage to operate in

the sense of everyday activities due to this formation through generative computation. This is

not a minor detail, but an essential issue coming to the fore in the proposed IMPEVA thinking.

While sophisticated planning and design instruments are proposed here, the essential nature of

urban ecosystems highlights again the experimental nature of adaptive planning, as has been
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suggested, through trial and error. However, it needs to be noted that the overall guidance and

assessments,  the slow cycle,  are  required to avoid the harmful  emergent  implications of  such

incremental lower level maneuvers.

In Salingaros’ (2012) classification, all types of human settlement reflect certain modes and

levels of computation. These range from non-computational or random approaches of little use

in producing adaptive, vital cities; non-interactive computing with fixed rules (producing e.g.

ideal cities); to interactive computing producing and generating ordered complexity. According

to Salingaros, this sets requirements for algorithmic methods: to serve as a design and planning

method truly embracing complexity, it is not enough just to apply an algorithm, but the

algorithm must be able to evolve, that is, to learn and adapt, similar to human cognition or

neural networks. Non-adaptive methods just lead to formal planning, or unnecessary

randomness of form unrelated to the urban processes, whereas solely computerized (implying

just digital design) methods, no matter how sophisticated configurations or forms they might

produce, do not compare with computed, adaptive and generative plans in the context of

complexity. Salingaros suggests that successful computing makes the city more livable for

people (Salingaros 2012, Alexander 2009).  We could extend this to apply the basic blocks –

approaches: the rules must evolve.

The key is  to  start  to  recognize and appreciate  this  traditional  way cities  come into being.  As

regards planning, we might also need to guide this spontaneous calculation one way or another

– self-organization as a mechanism is value-free and might also lead to undesirable outcomes

like inequality or other socially intolerable situations. Next, two possible methods are presented

in which the above human capacity to “compute” is utilized: “invert coding” and self-

organizing planning.

4. Invert design code

Idea of invert coding is based on a 1990s manifesto FAXMAX by the Dutch architecture office

MVRDV (1998). In this book they wanted to debate about the quality of architectural design

allegedly enslaved by the pursuit of a maximal floor area ratio. They introduce a concept of

datascape – a certain force field consisting of a collection of variables affecting the projects,

fairly  similar  to  the  ‘forces’  in  algorithmic  design.  In  FARMAX  the  selected  datascapes

(emphasizing for example noise, vistas, social mix and so on) are represented as specific border

conditions or even spatial limits, “envelopes” delineating the sphere of maximally built

volumes. The idea is to propose architectural innovations instead of bulk. However,
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conceptually and planning-wise, we can extend the idea of using (in this case) dynamic,

evolving datascapes as certain border conditions, restricting undesired elements, directions,

uses, patterns, and allow the rest of the human computed processes to take place within it.

These datascapes can be corporeal, but also immaterial – suggesting a mix of activities/actors

or level of services (MVRDV 1998).

Normative rules for invert coding would be chosen by the planner, and form the restrictive

envelope and the means by which it  may transform in time.  Descriptive rules  would be those

steering dissipated human computing. Codes would basically be set top-down by a municipal

planner, but they should strongly reflect the local processes and needs through direct and

constant feedback from the ground. Hence they would resemble specific patterns, only

interpreted by a planner.

5. Self-organizing planning

City games

In self-organizing planning the plan/design is produced within a computational, not necessarily

computerized, process -  that is, via calculation and a relation-based dynamic process.

Individual planners (both professionals and expert citizens) would produce urban environment

during a collective process, within which the rules and patterns emerge. (Tan and Portugali

2012, Webster 2010). These rules would reflect the simulated human computing of Salingaros

– yet here individuals calculate the “forces” intuitively, or in interaction with each other. Self-

organizing planning approaches are based on a more sophisticated conceptualization of human

computing, Synergetic Inter-Representation Networks (SIRN) by Haken and Portugali (2003),

providing a more structured conceptualization of human computing in evolutionary design.

This model describes exactly how the information is cognitively processed in the human mind,

within interpersonal (subject to subject) relations, and in the context of eventually collectively

established structures and form, such as a city.

The SIRN thinking in a framework for planning has been illustrated in a theoretical context

under  the  label  of  city  games  (Portugali  2012),  and  later  in  a  more  pragmatic  platform,  in

collaborative design experiments (Tan and Portugali 2012, Tan 2016). Originally, these

approaches extended the idea of collective dynamic urban design first introduced by Alexander

et  al.  (1987).  In  this  work  an  experimental  “game”  in  San  Francisco  carried  out  in  1978  is

described. Alexander et al. (1987) propose that their approach forms a completely new theory
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of design, emphasizing the importance of the process behind the whole city, emerging in time

through collective interactions. This thinking apparently resonates with the key points in the

human computational approach (Alexander et al. 1987, Salingaros 2012, 2000). Originally, and

along with the general trend in studies of urban complexity, these SIRN based self-organizing

gaming methods have been mostly used for exploring and learning various space-producing

mechanisms in cities. Yet recently, a trend concentrating on exploring the potential of

complexity methods as a design and planning tool has emerged (Tan and Portugali 2012)48.

Liquid planning

Liquid Planning (Partanen 2016) is a certain extension of serious games, and it could also be

played as such. However, the strength of it, as it was experienced in the appended article

Partanen (2016) concerning the case of Pispala, was the real planning context: in a way it was a

“reality game” for citizens and stakeholders, based on an actual planning process about to

begin (Partanen 2016). Consequently, participants may have been more committed to the

process, acting according to their “true” profile instead of  one assigned to them, but also have

lot more at stake as the results were likely to really impact the planning decisions concerning

their everyday environment, property rights, and values affecting the “game”. In such

approaches utilizing so-called crowdsourcing it is important to note that in case of demanding

tasks a mere increase in the number of participants does not help –  proper problem

formulation, methods, and hypotheses are required (Ball 2014, Silvertown 2009).

Some complex planning and design projects are undoubtedly demanding. For example, in the

case of Pispala (Partanen 2016), a need for professional steering and assistance was recognized

48 In this classification of complexity planning methods, and as regards self-organizing planning tools, the
notion of gamification is not in focus – self-organization of information and emerging patterns are - but a
relevant one regarding co-creation in planning. Gamification refers to so-called serious games, in which
games are used to commit people to cooperate for specific aim often concerning scientific, technical or
public issues. The game mechanics is thus applied in non-game contexts, and often applied among
industries such as defense, education, scientific exploration, health care, emergency management, city
planning, engineering, and politics (see for example Susi et al. 2007). Computerization has naturally
accelerated gamification, but analogical “serious” board or card games have existed since the 1970’s
(Abt, 1970), and the thinking could also be perceived in the old idea of collecting items attached to
products. Usually the modern serious games motivate participants well due to humans’ natural desires for
socializing, learning, mastery, competition, achievement, status, self-expression, altruism, or closure, and
may be increased by e.g. offering progress or achievements (layers), points or virtual “money” (Susi et al.
2007), As in Tan’s city game, participants may assume certain roles according to which they behave in
the game.
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–  but  this  is  not  necessarily  always  the  case.  This  leads  to  the  key  issue,  also  pointed  out  by

Tan and Portugali (2012) and elaborated via City games. How much do we need to plan and

design top down, and especially, how much can be left intact, to take shape within these

intrinsic, emergent processes of human computation? This is actually the fundamental issue in

all these approaches involving complexity and self-organization. Since many of the self-

organizing mechanisms (small cultural networks, clusters of firms, underground social hubs)

may be very sensitive as regards their internal logics - hence defining, classifying, exploiting,

and nurturing the autonomous processes might work against the good intentions and result in

loving self-organization to death.

It is evidently impossible to provide a general answer to this question. I think the power of this

final category, self-organizing planning, is exactly that they could be used explicitly for

studying this relationship - what type of rules does and does not emerge within the self-

organizing process – and apply this tentative knowledge by trial and error in planning, being

prepared to evaluate the consequences - both as regards the realization of design goals and the

level of complexity - and to react if necessary. Here the evaluation of design goals concerning

perhaps patterns of buildings or activities, urban blocks, routes, ecology or diversity, quality

and usability of environment, can be carried out using conventional assessment methods,

whereas evaluation of the level of complexity and self-organization is not as straightforward

and requires special methods – methods able the measure and replicate systems which are

intrinsically unpredictable, nonlinear and far from equilibrium.  As was elaborated in the

preceding chapters, the ability of an urban system to self-organize is the key to the success of

urban regions, but its monitoring is not basically part of conventional planning praxis, the

complexity evaluation methods are brought into focus here.

Methods related to evaluation:

Monitoring the level of complexity or self-organization
Evaluative methods aim by definition at providing tools and measurements for monitoring

whether the system is in a complex state and/or self-organizing, and the dynamic trajectory it is

on (for  example the increasing or  decreasing of  complexity,  or  whether  its  level  of  fractality,

self-organization or dynamic state is drastically changing). Complexity refers here again to the

aggregate complexity, systems dynamically evolving and sitting “at the edge of instabilities”,

with a high capacity to self-organize. Furthermore, it is good to note that complexity is not

used as a synonym for self-organization.  What is essential here is that if the state of the urban
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system is complex, it provides optimal conditions for self-organization, which in many cases

inevitably occurs – the system balances between chaos and order using this mechanism per se.

Complexity metrics in general are extremely rich (see e.g. Lloyd 2001); here I concentrated on

a limited number of measurements which are already fairly well established in the research of

urban complexity for their capability to explicitly contemplate spatial configurations and/or the

level of urban self-organization. These include measuring methods, such as applications based

on scaling, rank size and fractality, entropy and dynamic states. These methods can be used to

estimate the level of complexity and self-organization in the urban reality, simulated systems

(such as cellular automaton, agent based models), or a plan.

Scaling and fractals

As  discussed  in  Chapter  2,  scaling  refers  to  systems  with  certain  nonlinear,  self-organizing

relations between their components, for example spatial relations, sizes or frequencies (Pumain

2004). Power law structures were already noticed in mathematical statistics at the turn of the

20th century by Auerbach and Gibrat, and popularized by Zipf in the 1940s (Richardson 1970).

It was soon noticed that they apply in many natural but also human systems, including cities.

Scaling is generally applied to a variety of fields, from the study of frequency size statistics and

the frequency-mass distribution of earthquakes and meteors, allometric biological systems,

fractal  networks of  streams and biological  branch structures,  to  time series  of  river  flows and

stock markets (Kaye, 1994; Kello et al., 2010, Pumain 2004).

Fractals, representing chaotic systems, are common features in cities (Batty and Longley 1994,

Liebovitch and Scheurle 2000) The urban applications broke through after the mid-1990s’. –

However, according to Richardson (1970) and Batty and Longley (1994, vii), many of the

basic principles emerge from theories of power laws, scaling, and central place theory or

location theory. Similarly to scaling, fractals emerge bottom-up in a trans-scalar manner, and

imply an underlying mechanism responsible for their organization.

Fractality often relates to geometry, but it can also refer to a process in time (for example larger

fluctuations, and smaller amplitudes), or numbers (Liebovitch and Scheurle 2000). In cities,

fractality is often used for two-dimensional physical form (in relation to underlying processes),

although cities are fractals also, for example, as regards their silhouettes (Batty and Longley

1994, Watanabe 2002). The key is that in cities, fractals explicitly tie the processes to the

dynamic interaction of patterns between entities throughout the scales (Batty and Longley

1994).
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Fractals and power laws are coupled as the mechanisms behind fractals entail scaling. In fractal

systems,  this  relationship  is  often  called  the  fractal  dimension,  and  its  value  can  also  be

returned  to  the  slope  in  any  power  law  plot,  and,  for  example,  in  the  science  of  cities,

considered as an indicator of the level of self-organization of the processes in the system (see

e.g. Bettencourt 2007). Typically, the system is self-organizing with fractal dimension49

between  1-2.   It  has  been  suggested  that  cities  generally  have  a  fractal  dimension

approximately F=1.7 (Encarnação et al. 2012). Naturally this is a rough generalization - not all

parts  of  the  cities  behave  similarly,  and  not  all  cities  or  all  aspects  of  a  certain  city  scale

universally (Arcaute et al. 2015; Cottineau et al. 2015). However, fractality provides an

appropriate tool for estimating the continuity of urban processes in time and on various scales

considering local characteristics and processes.

No  single  reason  can  be  deemed  responsible  for  scaling  or  fractal  behavior.  However,  it  has

been considered that the such city size distributions emerge from evolutionary processes of

mutation, adaptation, cooperation, selection, and competition (Pumain 2004, Bettencourt and

Lobo 2015). Distributed decisions of individuals result in fairly persistent patterns on a global

scale (Batty and Longley 1994).

The accessibility constraints - a collective "rationality" of the actors' balancing their space-time

budget (Pumain 2004, Ascher 2004) - could be a key ordering principle of the spatial structure,

causing competition between areas. This, in turn, may be the mechanism behind the slow

adaptation of urban structure and evolution, and hence the consistency of scaling, implying that

a certain order and rules lie deep in the messiness of the city system. For example, for fractal

forms, many processes seek a dynamically optimal way of using material or filling space

(Batty and Hudson-Smith 2013). Hence perhaps underlying processes are responsible for the

form, be it the erosion of coastlines, agglomeration economics for cities, or the evolution for

living systems. (Batty & Longley 1994). Bettencourt (2013) emphasizes that in fact cities may

be fairly simple – the global behavior probably results from a handful of key socioeconomic

and cost factors related to infrastructure. However, the relations and explanations of these still

remain largely unresolved. The simplicity of complex systems is also discussed in Gao et al.

(2016). These approaches emphasizing the evolutionary nature of the order are reminiscent,

first, of resilience theory – a single slow variable is analogical to the fact that a certain resilient,

globally continuous state (or attractor) is necessary to keep the system from falling into chaotic

states with no order. Secondly, this view is in line with Zipf’s original ideas of “principles of

least effort” behind scaling (Zipf 1949). Humans (and other animals) tend to act economically,

saving their effort; actually self-organizing, “pre-evolutionary” entities do that as well, but not

49 d = Log(N) / Log(1/r)
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consciously (Eigen 1971). It is noteworthy that these mechanisms do not indicate that city

systems aim at optimal equilibrium, but instead they gravitate towards the edge of instabilities,

thus performing dynamic nonlinear "optimization" of their operations (for example, there is no

optimal size for complex cities since it would be a paradoxical permanent equilibrium state).

Although considered as fairly common dynamics in cities and reportedly a good fit for

European and especially US cities (Pumain 2004, Bettencourt 2007, Bettencourt and Lobo

2013), scaling is not universally applicable to cities overall, but depends on chosen

measurement needs to be established through theories and knowledge of cities (Shalizi 2011,

Pumain 2004).

As noted, in urban studies these approaches have been applied both to scaling and fractality.

Typically, for scaling, variants of Zipf’s law have been used for exploring the ranking of cities

according to their sizes in a system of cities, or in a variety of approaches covering different

processes in cities, for example innovation, crime or economic actors (Bettencourt 2007, Batty

2012, Bettencourt and Lobo 2013), or expanding the scope of the study of power law,

scrutinizing various conditions, situations, and measurements for it (Arcaute et al. 2015,

Cottineau 2015). In studies of scaling, urban areas can be classified using metrics such as

population, daily commuting, physical form or production. Strong regularities in the behavior

of power law models have been discovered between population, surface/density, travel time

(Pumain 2004). In turn municipality borders or static physical metrics (such as 200 or 500

meters between buildings) are considered poor measurements due to their arbitrary nature or

increased range of daily interaction (ibid.).

Regarding fractals, physical forms can be scrutinized in many ways as measurements of

patterns (intertwined with processes) in cities or simulations. Fractals are often used to explore

boundaries, networks or population densities, although “classical” measurements in spatial

fractals are borders and so-called box-sizes. Borders follow Mandelbrot’s classical study of

measuring a coastline repeatedly, using each time a “measuring stick” 1/10 of the length of the

previous step (Bettencourt and Lobo 2013, Gleick 2011). Box size dimension can be used to

measure the surface,  and instead of  changing the scale  of  the ruler  the scale  of  observation is

changed (using an arbitrary grid, the number of boxes containing objects in calculated as the

box size is decreased by 1/10 at each step). The fractal dimension represents a relational value

which remains the same throughout the scales.
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Dynamic states and entropy as complexity measurement in the city

The concept of dynamic state refers to the behavior of the dynamic system. These range from

static, to periodic, complex and chaotic. Complexity – the system’s resilient balancing between

ordered, dynamically static state and chaotic state -  has been considered to provide a

somewhat general characteristic for a complex adaptive system. Hence measuring these states

could be considered to provide measurements for the level of complexity in the system

(Langton 1990, Kauffman 1993).

Many natural and also urban systems behave according to such complex dynamics, gravitating

and remaining near the edge of instabilities. This can be considered analogical to systems on a

successful adaptive cycle (Kaufmann 1993, Mitchell 2009, Levin 1998). The system is capable

of self-organizing, growth, until eventually it becomes unstable due to internal or external

causes, and releases the resources and reorganizes again. The system manages to constantly

oscillate “between chaos and order” (Langton 1990, Cruthfield and Young 1988). Such

progress is typical for complex systems, including human systems and cities (Portugali 1999,

Castells 2011 etc.). The type of dynamics can be estimated visually, but more precise

measurements are also available, contemplated for example in Partanen 2016.

Thermodynamics studies systems as regards their temperature and energy levels. However, it

has been applied to many fields concerning energy and material flows through the system, such

as chemical and biological systems, but also to ecosystems and cities (Kugler and Turvey 1987,

Bristow and Kennedy 2015). Thermodynamics may actually provide a complementary

perspective for Metapolis dynamics, describing the evolutionary dynamics of the cities built

around the flows of people, information, and goods (Ascher 2004, ibid.). Furthermore, entropy

as a measure of “dis-organization” in the system provides metrics for evaluating the state of the

system. Basically, an ordered state has low entropy, disordered high (Langton 1990). Although

the emergence of self-organizing structures seems to challenge the second axiom of

thermodynamics, the solution lies in trans-scalar observation (ibid.). The system cannot be in

equilibrium on higher and lower scales simultaneously, but open dissipated systems balance

gradients between these two by local self-organizing structures.

In cities this approaches metaphorically the concept of specific enclaves in a city serving as

safety valves for social tension (Shane 2005, Portugali 1999), or the traditional, primitive

knowledge of guiding ecosystems’ operation through pockets of less control (ibid. Gunderson

2000, Folke and Berkes 1995). Conceptually, these structures appear as the gradient increases,

be it social or economic pressure, and disappears in time (Portugali 1999, Shane 2005).
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The resistance of the system against equilibrium on two levels also has other consequences

related to the adaptive cycle and evolution. The global steady state amplifies lower level

fluctuation, until eventually local fluctuations may amplify, breaking the equilibrium and a new

steady state emerges. This is discussed by Herman Haken and Juval Portugali (Portugali 1999).

Eventually, in steady state potential orders start to compete, one of these wins and enslaves the

other, and a new regime emerges. For example, Manuel Castells suggests that transitions of

production modes follow this logic, along with the evolution of species and businesses in

resilience theory (Novotny et al. 2010), or in the case of creative destruction (Batty 2016).

Hence these self-organizing structures emerge and exist at or near the narrow transition zone

between chaos and order, in which the entropy is essentially between the two extremes. For

urban dynamics (in reality or simulation) entropy may provide a measurement to estimate the

system’s dynamics, perhaps giving guidelines on the level of complexity. Such measurement is

presented in more detail in Partanen (2016A).
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5. DISCUSSION

In this thesis my preliminary aims was to divert the view from traditional, top-down -oriented

and rational (communicative) planning aiming at prediction and control towards a more

thorough understanding of autonomous self-organizing phenomena emerging from bottom up.

Such a view implying a high level of unpredictability is neither stochastic nor uncontrollable.

The change of viewpoint helps to perceive the role of formerly hidden or obscure bottom up

dynamics in urban processes, and to explore planning methods embracing self-organization and

continuous evolution, while aiming at guidance and preventing undesirable outcomes.

At  the  core  of  this  shift  from a  mechanistic  to  a  complex  view of  urbanity  is  to  acknowledge

dynamic relationality in the world: the relationship and interaction between entities, and entities

as such are often equally important. Adopting complexity thinking, which emphasizes dynamics

emerging from interaction, encourages planners’ exploration of such relational principles for

planning applications, often manifest as rules between entities, or an entity and its environment.

Although applications that adopt relational planning principles are still rare in urban planning

praxis,  examples  of  these  can  be  discovered  both  in  academic  thought  experiments  and  in  the

real world. For example, an explicit collection of fundamental policy rules that define the

planning realism is presented in Lehnerer (2010) in a playful manner, concerning the imaginary

island of Averuni. Despite the fictitious touch, this thought experiment - in which some

examples are actually from real cities - highlights how such rules could be applied in real life.

As regards the cases presented in the related articles that form this thesis, for example in the

case of Nekala or Vaasa a relational view would lead to defining the rules on neighborhood

relations and allowing uses, activities or volumes conditional upon neighboring features,

approaching dynamic, computational and conditional rule types, often in the form what-if, or  if-

then. In Pispala (Partanen 2016B) such rules could concern visibility, the envelope of building

heights or vegetation, or limited building protection/diversity with the rest left intact and so on.

Due  to  the  limited  number  of  cases  presented  in  this  thesis,  the  scope  of  selected  rules  and

relations  is  limited.  It  is,  however,  evident  that  the  actual  rules  selected  or  emerging  in  urban

planning process could and should have much more variety. Naturally, in real world planning,

the relationships and interactions (and rules) would cover all aspects of urban life, ranging from

entities related to social and economic equity and democratic principles to other crucial issues

concerning overall health, (deep) ecology, culture and art, human rights, and beyond.
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It is necessary to highlight that despite an emphasis on aspects not usually recognized in

planning praxis such as complexity, self-organization and evolution, I naturally do not advocate

the so-called “naturalization” of cities and their planning, which is often erroneously associated

with a certain (impossible) laissez-faire attitude: there is no causality between the two. Planning

is and must be value-laden activity, and although the use of the metaphors from natural sciences

aims at shifting the perspective to accept the existence of such emergent processes, urban

dynamics must be guided for a  better quality of urban life. The direction of the guidance always

depends on the values and political decision-making in society. In other words, self-

organization is never good nor bad as such. Self-organization may result in destructive or

malfunctioning organizations as well as in culturally or economically beneficial ones. It is a

necessary task for planners and decision-makers to make a distinction between these, to impose

limitations on undesired activities, and allow the desired ones to emerge.

On the other hand, adopting metaphors and recognizing mechanisms in cities, which also

appears elsewhere in the world, is not very different from applying statistics in urban studies.

Human systems differ in many ways from some natural ones, but they also have similarities.

Normal or log-normal distributions are frequently used in the study of biology or population

dynamics across the species (including humans), and, in principle, hardly differ from scaling

laws or other complexity measurements. Naturally, it is necessary to keep in mind the

limitations of any method or measurement we use. Due to the cumulative nature of science, we

aim at an ever better understanding of phenomena (such as scrutinizing the uniqueness of

urbanity regarding scaling) while still operating with the knowledge we currently have.

Therefore, reverting to the Nekala case discussed in two of the related articles (Partanen 2015,

Partanen and Joutsiniemi 2015), the scaling behavior, if revised, could yield different results

with different definitions of activities, or if changing the nature of the agents overall (instead of

activity, e.g. individual, social network, or a structural element like a building), or definition of

the area. This is an aspect that should and could be considered in a complexity planning process,

which would enable constant evaluation and revision of processes and their resulting patterns

and dynamics. Such relationality is actually unavoidable regarding the worldview embracing

complexity and constantly revised strategic system definitions.

Another limitation of this work emerges from the fact that the methods in each case are limited,

and thus enable us to reflect only the features measured. However, in the real world planning

context, for example in the case of Nekala or Vaasa (Partanen 2015, Partanen 2016A), the

results could be revised or triangulated using other, perhaps tradition statistical or qualitative

methods, and lead to the discovery of phenomena or features beyond the scope of the
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explorations presented. These could include social, psychological or emotional aspects, or

subjective experiences like belonging, empowerment or self-governance. Likewise, in the

Pispala case (Partanen 2016B) it could be possible to discover self-organizing mechanisms and

dynamics using statistical methods, or to apply simulation models to explore the impact of

tentative planning rules.

Thirdly,  due to the decidedly explorative nature of  this  thesis,  it  is  probable that  the results  of

the cases are not generalizable as such: cities, districts, and enclaves probably differ

qualitatively from each other to a remarkable degree. However, this work could open the

planners’ eyes to take a look at the bottom up -processes in the city with a wider scope, beyond

sheer participatory activity: self-organization is a much more diverse, unpredictable, and

powerful mechanism than expected, perhaps with a pervasive impact on all aspects of the urban

realm.  We  must  learn  to  perceive  it  in  all  its  variance,  since  it  is  necessary  to  guide  it  with

appropriate tools. Finally, despite the focus on complexity adopted here, the aim of this work is

not to completely replace but rather to complement the existing scope of planning. This will be

elaborated more thoroughly in the Epilogue.
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6. EPILOGUE - COMPLEXITY PLANNING:

A PARADIGM SHIFT

In the well-known concept of paradigm evolution Thomas Kuhn (1962) suggested that science

progresses through revolutions. Although planning is not science, the major shifts in planning

may be referred to as paradigm changes in a looser sense, as dominant characteristics in praxis

and theory - as “normal science” - occasionally transitions to a new mode, as the dominant

mode becomes widely challenged. This appears actually similar to bifurcations in complexity

science, or furcative change (Figure 5); the prior mode remains, but adapts to the present one.

(Kuhn 1962, Taylor 1998, Portugali 1999). As complexity science shows, the future mode

emerges from transition as a qualitatively new state occurs. This process in continuous, but not

smooth.

Figure 5. In furcative transition the former order does not disappear, but adapts to the coming

dominant mode. For example, in changes of production modes, industry has adapted to the

knowledge based society for example by adopting means of automatization and robotization,

instead of having been replaced (Castells 2011, Portugali 1999).

Taylor (1998) proposes that the major paradigm shifts – or furcations – resulting in completely

new attitudes and methods in planning have been the following (Figure 6). First, the transition

from an artistic design-oriented approach concentrating on the physical form of the city in the

1960’s, implying major changes in large scale planning in aspects of 1) physicalism and

morphology replaced by systems in constant flux and art by scientific engineering (from artist

planner to scientific planner); 2) esthetics was replaced by social and economic activities; and

3)  the  focus  shifted  from end  state  to  process.   However,  the  status  of  the  specialist  planner

(first the artist, later the scientist) remained, and was only questioned by the end of the 70’s,
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resulting in the emerging view of a planner as a mediator or facilitator (in advocacy or

communicative planning) and leading to a second paradigm change, as in the 70-80’s the role

of  the  planner  changed  from  that  of  a  specialist  towards  that  of  a  facilitator.  There  are

similarities between many authors’ ideas of the planning evolution with those of Taylor (see

above). Furthermore, several authors, such as Michael Batty, Juval Portugali and David

Graham Shane (Figure 7) consider that we are entering a new paradigm in planning revolving

around the unsolvable issues of the Metapolis and its planning; and, a decade after Taylor, that

theories of complex systems provide a robust theoretical frame for such new planning.

In  this  endeavor,  a  firm  theoretical  ground  is  needed  most:  although  planning  is  a  practical

discipline, theory is necessary. First, namely because planning is practical, impacting people’s

environment and everyday lives, we need a relevant theory to inform it. Practical “common

sense” is not enough. Secondly, planning is about making value judgments (Taylor 1998,

p168). We need analyses and a theory of the qualities of the built environment we want to

support and enhance. In light of the complex, already maturing Metapolis, those qualities may

not perhaps be only traditional esthetic or configurational. Features related to dynamics,

continuity, and supporting the renewal capacity of cities - operational characteristics keeping

the cities alive, in a culturally, socially, ecologically and economically resilient manner should

be brought into focus.

Figure 6. Paradigm changes according to Taylor (1998). For comparison, the emergence of

the complexity planning paradigm according to Batty and Marshall (2009).
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Figure 7: A proposal for planning paradigms and changes following Batty, Portugali, and

Shane. Needs for a new paradigm considering the transformed dynamics and complexity of the

metapolis, its unpredictability, complexity, self-organization and city evolution were discussed

in the mid-late 90’s, for example by Ascher (1995), Taylor (1998, p.165), Portugali 1999).  On

the other hand, progress is from hierarchical, top-down specialist planning toward more

tolerant and adaptive guiding of urban processes and form.

Overall the capability of top down -paradigms to respond to the inherently bottom-up

characteristics of society and urban life has been observed within both academia and praxis

suggesting  that  there  is  a  sea  change  coming  in  planning.  Complexity  plays  a  role  in  two

respects.  On the one hand, it provides an essential theoretical frame (see Taylor 1998). On the

other, along with urban progress, planning has gradually been changing towards a better

understanding of stakeholders and other actors, and the dissipative decision-making typical of

them - as a part of the general individuation and liberation of individuals (Ascher 2004). From

the perspective of the evolutionary, complex city, the progress towards the more emancipatory,

demographic approaches in planning is already under way, but the major paradigm shifts from

top-down approaches to genuinely bottom-up planning are yet to come. For these prior

progress (such as systems thinking and participation/co-operation between stakeholders) has

paved the way. Complexity as a planning paradigm would assist in explaining many features of
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what the city has become, and what planning is to a certain extent already approaching (Figure

8).

Figure 8. Emergence of complexity planning parallel to current mode(s) of planning.

Batty and Marshall (2009, 2016) point out that since the beginning the history of planning has

been drawn from complete emphases on physicalism to a non-physical city, and along, for

example, with Portugali and Shane they consider that now the progress and applications in

complexity have enabled the fruitful combination of the two. We have been building the

science of complex cities for decades, to finally starting to understand how the physical,

corporeal city emerges from social, economic processes, which in their turn, enslave and guide

the very processes which created them in the first place, in a circular causality.
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Abstract	
 Self-organization is a basic mechanism by which complex urban systems organize themselves.

This mechanism emerges from individual agents’ local interactions, often with unpredictable

consequences at the regional level.  These emergent patterns cannot be controlled by traditional

hierarchical methods, but they can be steered and encouraged towards desirable goals.   Self-

organization is still today often used as an allegory for all “unplanned” activity in cities. It is

important to study the actual mechanisms of self-organization in cities to link the theory of self-

organization to planning praxis. This work builds on ongoing work exploring novel complex

planning tools and methods.

Here I explore the key features of open dynamic systems identified in the literature as indicators

of self-organizing capacity. I study their applicability in urban spatial planning, and propose

three measurable characteristics for estimating the self-organization potential of urban activities.

Flow  reflects generic accessibility, and is measured using space syntax. Internal order refers to

autonomously organizing entities, in this case the clustering tendencies of activities. The

enriching rests upon increasing complexity and is measured as changes in degrees of entropy

over time.  The results indicate that first,  the study area meets the criteria for self-organization,

and secondly, these characteristics can be applied to discover nodes of higher potential for self-

organization in a city.

Keywords: self-organization, complexity, urban evolution, innovation, planning

1.	Introduction	

In recent decades, theories of complexity have become perhaps the most explanatory paradigm

in urban discourse (Batty 2007, Portugali 1999). Within this framework, self-organization is the

most important internal mechanism according to which complex systems organize. From the

viewpoint of complexity myriad non-equilibrium states are not flaws in the system but

characteristic to complex systems (Kauffmann 1995, Wolfram 1984). Similarly, self-

organization of cities is very typical in their mature phase. (Caniggia and Maffei 2001, Portugali

1999).  Cities are unpredictable, organized bottom-up, far-from-equilibrium, dynamic and self-

organizing, interlinked, trans-scalar systems. (Batty 2007, Allen 2004, Portugali 1999, Reed and

Harvey 1992). In cities, self-organization explains urban dynamics, and it has a major impact on

the cultural, social and economic life. One re-organization mechanism occurs in local scale

enclaves, affecting overall urban dynamics (Oswald and Baccini 2003, Shane 2005, Portugali

1999).
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Innovations play a crucial role in urban evolution. Innovations entail diversity and  unrestricted

creative processes. Innovations evolve by mutating, imitating and replacing previous

innovations (Jacobs 1984, 1992). On the threshold of cultural economy, the role of innovations

is becoming even more important. (Fujita 2007, Florida 2000). In city planning, understanding

of these self-organizing processes enhances the utilization of the regional innovation capacity.

The ongoing work in building complexity planning praxis (see e.g. de Roo et al. 2012, Portugali

et al. 2012) is still in progress. In addition to proposed planning innovations more effort is

needed to explore the actual self-organizing processes in the city to improve the accuracy of

these planning tools

In this paper I will ask

What is self-organization and what are the basic characteristics defining it? How can they

be applied in the urban context, and especially, how can these indicators help to estimate

the potential for self-organization of activities in an old industrial area?

These questions are studied theoretically and empirically in a seemingly self-organizing area,

Nekala, an old Finnish industrial area in the city of Tampere. This study provides further

empirical evidence of self-organization in the target area, and based on this empiria and the

theoretical work, indicators for estimating potential for self-organization in other similar areas.

2.	Concepts	

2.1	Complexity	and	planning	
Theories of complex adaptive systems imply that numerous interactions of the parts affect the

system’s  behavior  overall  in  unpredictable  ways.  The  complex  system is  characteristically  far

from equilibrium: Chaotic behavior -  irreversibility, sensitivity to initial conditions and a

deterministic yet unpredictable behavior -  are typical of these nonlinear systems. They evolve

in seemingly stochastic series of revolutions; the dynamics of more and less predictable periods

alternate, following the principles of path dependency.  Self-organization is a core mechanism

of these open complex systems.

Today complexity theory provides planning with a paradigm that can integrate in a credible

manner qualitative and quantitative studies, and diverse social-economic dynamics and the
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spatiality of the physical city (Reed and Harvey 1992, Portugali 1999, Batty and Marshall

2009).

The call for complexity planning dates back to the early 60’s,  work of Jacobs (1992) and

Alexander and colleagues (1977). Agent- and CA-based urban models were perhaps first

approaches to comprehend the complexity and the dissipativeness of the spatial city, starting

from Paul Allen’s work 1980’s and followed by expansion of applications in 1990’s (Allen

2004, Batty 2007).

Building the theory of planning in the context of complexity has progressed recently (see e.g. de

Roo and Silva 2010, de Roo et al. 2012), towards developing the actual tools and

planning/design methods (Portugali et al. 2012). Yet, more empirical work is needed to enrich

these approaches. The most prominent lines of thought can be classified within the following

non-exhaustive overlapping and complementary categories, consisting of productive  and

evaluative methods. Productive methods

In rules based planning rules form the predefined border conditions for the actual project, by

defining a context specific framework for a design, relations between certain basic elements or

shapes, or producing actual form. (Alexander et al. 1977, Alfasi and Portugali 2007, Marshall in

Portugali 2012, MVRDV 1998, Duarte 2011, Lynn 1998, Hensel et al. 2004).

In self-organizing and computational planning the plan/design is produced within a

computational process. Individuals produce urban environment during a collective process, with

rules emerging within the process. (Tan and Portugali in Portugali et al. 2012, Webster in de

Roo and Silva 2010).

Revised  “systems dynamics” approaches build on traditional, single-level systems dynamics

thinking, but have a lot of potential combined with agent interaction (He et al. 2006),  and e.g.

adaptive planning –framework (Ahern 2011).

Evaluative and educational methods

Dynamic models reveal how the choices affect the future outcome. These “planning

experiments” implement rule based thinking: the modeler-planner experiments with various

future configurations by altering the “planning rules” (Batty 2007). Evaluative methods analyze

functional features of the city, such as fractality or scaling laws, implying that certain common

complexity measurements reflect the preferable functionality of the city, resulting from dynamic

computation between entities (see e.g. Salingaros 2000, Batty and Longley 1994, Pumain in

Portugali et al.2012).
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Within  this  framework,  we  continue  to  plan  to  make  the  world  a  better  place,  but  with  an

awareness of the limitations of planning, and the nature of evolutionary urban change (Batty and

Marshall in Portugali et al. 2012 p.44; Marshall 2009, p.266) to build an interdisciplinary theory

of cities that links their morphology and their function, and connects the complexity paradigm

to a new planning praxis (Batty and Marshall 2009) Here I study the nature of this evolutionary

change, aiming to enhance our understanding of self-organization.This method is evaluative,

forming the first step towards the modeling experiment and rule based planning.

2.2	Self-organization		
Self-organization refers to the capability of systems to autonomously form an internal order

without external guidance. Typically, self-organization emerges from interplay between bottom-

up processes and multiple scale feedback  forming a complex, nested network of networks. Its

dynamics may be promoted or prevented, or the system may lock in. In the city, the border

conditions (built environment, natural, social, economic environment, regulation, laws etc.)

provide a certain frame for generative processes. Since the modernistic planning paradigm has

ignored the bottom-up processes, the illusion of top-down control collides seriously with

complex reality. Nevertheless, both are needed for successful city evolution.

2.2.1	A	brief	chronological	review	of	self-organization	
The origin of self-organization lies in the tradition of studying non-linear systems dating back to

A. M. Lyapunov’s work at the turn of the 20th century. Growing interest first started to emerge

in the West in the 1950s in the field of control theory, rapidly expanding in the 1960s e to

mathematics, physics, meteorology, and biology. (Keller 2009). Among the most

groundbreaking of these studies are perhaps Eigen’s concept of hypercycle in biology, Haken’s

synergetics approach, Prigogine’s dissipative structures and Varela’s autopoietic systems. They

suggest that unanimous matter in complex, high entropy systems may have certain “pre-

Darwinian”, evolutive features according to which a spontaneous internal order can emerge.

(Eigen 1971, 1977, Haken 1980, Prigogine 1978, Prigogine et al. 1984, Varela et al. 1974).

Due to its origin, complexity thinking was first applied in quantitative studies, but it actually

provides a common ground for “hard” and “soft” disciplines (Reed and Harvey 1992, Portugali

1999, Castells 2000). Today concepts of complexity and self-organization are applied across

disciplines, such as social studies, economics, and technology, in the study of ecological, social



Partanen, J: Don’t fix it if it ain’t broke

104 | P a g e

or urban systems (see more for example Krugman 1996, Velupillai 1986, Odum 1988, Holland

1998, Allen 2004, Portugali 1999, 2011, Batty 2007). In urban studies, many applications were

influenced by pioneering studies, for example Portugali’s work with Haken, and Allen’s co-

operation with Prigogine. (Portugali 1999, Haken and Portugali 2003, Allen 2003). These early

groundbreaking approaches in natural sciences provide reasonably solid ground for the study of

self-organization entirely applicable even today (see e.g. Portugali 1999, 2011; Batty 2007,

2010; Allen 2004).

In mature cities, self-organization is a typical dynamic process, emerging in various ways and

(across the) scales, from global to regional and local (Caniggia and Maffei 2001). Special cases

of local scale self-organization have been documented by e.g. Portugali (1999) and Shane

(2005). Within a dynamically stable city, certain pockets of chaotic behavior occasionally

emerge. They maintain the overall stability and the logical organisation of the city (Portugali

1999, Shane, 2005).

With sensitive management these enclaves  - and the potential, embryonic “fallow” reserve -

can promote innovation, serving as unrestricted breeding grounds for cultural activities and

space for creative encounters (Shane 2005, Oswald and Baccini 2003).

Here  I  build  on  this  theory  of  local,  isolated  but  porous  enclaves  as  a  facilitator  for  urban

dynamics and innovation.  It is good to note, however, that there are challenges in how local

enclaves can be considered to relate to the global system.

3.	Characteristics	of	self-organization	in	pioneering	studies	

For  clarity  of  the  concept,  I  next  explore  the  classical,  widely  applied1 criteria for self-

organization, and expand to the views of more contemporary scholars. These principles form a

basis for applying the theory of self-organization to a specific situation in a city. As a necessary

prerequisite for self-organization in the real world, the system must be open, complex, and far-

from-equilibrium (Prigogine 1978), sustained by a constant flow of energy (Heylighen 2003).

In Eigen’s classification, the self-organization  follows three principles: the system’s ability to

utilize  energy  through  the  system;  its  ability  to  stabilize  certain  structures  at  the  expense  of

others (Eigen 1977, p.547); and its ability for self-reproduction and mutation. These last

properties are analogical to Haken’s slaving principle and multistability. Eigen also considers a

1 (see e.g. Collier 2004; Barton 1994; Heylighen 2003)
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need for a catalyst force and a feedback mechanism. Furthermore, Varela and colleagues

emphasize the importance of interactions between particles, and the higher level pattern

formations Discrete methods can be used to explore whether this is self-organization in a

scientific, not allegorical sense: Self-organizing criticality is a concept indicating that the system

operates on or near the threshold of instability, implying complex, “edge-of-chaos” behavior.

The system evolves to this critical state from bottom up, without external guidance by self-

organization (Bak 1990 p.403). The critical systems typically follow power laws which are of

the type  (Gutenberg-Richter law).  (Bak 1990 p.404) The power law behavior is

considered as evidence for self-organizing criticality, and thus self-organization. Power laws

have been empirically applied in research on many natural (climatology, earthquake studies)

and human (social and economic) systems (Bak 1990, Pelino et al. 2006, Levy 1996). By

evaluating the self-organizing criticality the results can be validated: if they follow the power

law, the system self-organizes in a measurable, scientific sense.

One of the classical indicators for self-organization is the decreasing of entropy in time (see e.g.

Wolfram 1983):  the internal order increases as the particles start to self-organize. Applying

information theory, as the information in a self-organizing system qualitatively increases, the

entropy decreases due to the grouping of information. (Haken and Portugali 2003, Shannon

1948). This is a salient point, since the level of entropy does not necessarily correlate with self-

organization -  entropy is not an objective measure for internal order (Shalizi et al. 2004).

Instead, increase in complexity, defined as “the amount of information needed for optimal

statistical prediction” (Shalizi et al. 2004, p.4.),is a relevant characteristic for self-organization

implying “phase transitions”, bifurcation points where the system’s state shifts.

An important feature resulting from these characteristics is resilience. Rather than an indicator, I

consider  it  a  typical  consequence  of  the  system’s  self-organization.  Cities  consist  of  many

complex, adaptive, trans-scalar interlinked (sub)systems, with dynamic interactions, feedback

and multiple equilibria of processes. Resilience implies successful self-control within this

system of systems. Urban processes are in many senses self-correcting, yet vulnerable, thus

requiring small, considered and well-focused steering maneuvers to maintain this dynamic

balance of the city (see e.g. Holling, 2001, Pickett et al. 2004, Allen 2004).

As a conclusion, self-organization occurs from continuous inter-scalar feedback in open,

complex and far-from-equilibrium systems. Typically, they need a constant flow of energy and

myriad interactive agents. Pattern formation follows the coupled bottom-up/top-down processes
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and  the  systems’  complexity  increases  as  the  self-organization  progresses.  These  systems  are

resilient yet vulnerable, multistable and in constant flux.

4.	Applying	the	Characteristic:	Self-Organizing	Urbanity	

4.1.	Characteristics	of	self-organization	in	the	city	
I propose the five following features as potential indicators of self-organization capacity in

urbanity: Flow, interactors, enriching, internal order, and feedback. The  flow,  the  system’s

enriching and the emerging internal order are determining indicators for local self-

organization,either referring to the actual self-organization of a mature area as in this paper, or

the potential of a certain area for self-organization which should be supported for the viability of

the city. These features are discussed further below. Interactors and feedback are considered to

be more general, necessary conditions for self-organization, whose existence is self-evident in

urban systems.

The connection between the local and the global systems is implied in the concept of energy

flow through the enclave, and in underlying economic forces behind the transitions in

production and the location principles of actors. However, as regards the impact of forces

operating simultaneously in the city the study is limited but within the underlying theoretical

frame I consider this reduction tolerable.

4.1.1	Flow	of	energy	
 Network is a much-used metaphor in urban theories, representing some of the key features of

the complex  city of today. The constant flow of material, goods, people and information is a

necessary condition in the constantly re-forming  urban system (see. e.g. Sieverts 1997, Castells

2000, Oswald and Baccini 2003, Shane 2005). One of the most interesting concepts reflecting

the high degree of simultaneous connectedness of the cities is the rhizome (Deleuze and Guattari

1987). This philosophical schema has often been metaphorically applied in urban studies to

describe any flexible network of people or material, taking various forms, adapting to the local

situation and providing passages for mobile, nomadic actors (see e.g. Shane 2005). In urban

theory, Shane considers the rhizomic structure of the city the main combinatory code,

accommodating both top-down and bottom-up dynamics, and generating the self-organization

of actors in specific self-organizing areas. Constant “flows of energy” are necessary conditions

for self-organization in cities. (Shane 2005, Castells 2000, Oswald and Baccini 2003). The

frequency of the rhizome is important in maximizing the potential for social and economic
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interaction. A high frequency network enables the efficient utilizing of the pool of concentrated

information in urban areas. (Handy and Niemeyer 1997).

4.1.2.	Internal	order	

Agents in the urban system can be defined in various ways and refer to myriad types of actors,

e.g. individuals,, firms, land-uses, land-cover parcels, vehicles or interacting groups of the

former..  For complexity, the agents’ individual dissipative decision-making, and a sufficiently

large number of actors are necessary.

According to aggregate economies, actors have their own micro-scale location preferences

based on competition or synergy, reflecting and reacting to each other’s location choices thereby

interacting on a local scale, leading to agglomeration, analogous to pattern formation in natural

sciences.   Actors  organize  to  utilize  proximity,  to  “reduce  the  friction  referring  e.g.  to  lower

costs and efforts to attract potential users (Fujita 2007,  O’Sullivan 2009)  Here I concentrate on

self-organizing local-scale interactions between agents and potential pattern formation at the

level of a neighborhood.

4.1.3.	Enrichment		

The urban, complex system typically evolves sporadically via ruptures, or bifurcations -

unstable,  chaotic  phases  of  several  competing  states.  A  more  appropriate  concept  for  cities,  a

furcative change, suggests that enslaved orders, such as the prior dominant production modes of

society, remain enriching the system (Figure 1) (Portugali 1999).  The prediction of the future

dominant mode is  impossible. . Thus a diversity of options is required, from which innovations

will emerge, helping the city to evolve. Specifically in the areas with evidence of ability to

adjust to transitions, a diversity of activities is needed for evolution (Jacobs 1984, Hodgson and

Knudsen 2011).
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Figure 1. Furcative tree. The enslaved orders remain as the dominant state “enslaves” others

in bifurcations. The system becomes more complex over time.

The measurement of unpredictability is rather difficult, but information theory and the concept

of increasing complexity provide tools for observing this behavior (Haken and Portugali 2003,

Shalizi et al. 2004): The ability of the system to adapt to changing conditions and to maintain its

dynamic could refer to balancing between chaos and order, or moving deeper into the “furcative

tree”.  The  complexity  of  the  system  -  and  its  unpredictability  -  increases,  referring  to  the

existence of the “critical point” between phases of the system, beyond which entropy production

diminishes (Collier 2004, p. 162). In this paper I explore the potential temporal “phase

transitions” of activities according to their production modes (Portugali 1999, Castells 2000).

4.2.	The	case	

To connect this theoretical perspective to the reality of urban regions, I explore these

characteristics of self-organization in a real urban context: a diverse, local-scale old industrial

area Nekala in the city of Tampere, Finland. This area was planned for heavy industry and the

processing of agricultural products in the 1930’s. Nevertheless, since then the area has

undergone a wide range of transformations, from increasing centrality to an expanding diversity

of activities. The area seems to have a capability for transformation and autonomously adjusting

to the changing environment. Tacit knowledge of such processes raised interest to explore this,

and preliminary exploration revealed features indicative of self-organization, such as clusters of

many activities (e.g. kitchen fitting stores, renovation shops, interior design shops etc.), with

constantly changing emphasizes in time. These local features had not been systematically
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studied before, and to be able to apply this knowledge in planning, they needed to be scrutinized

using appropriate set of indicators. Nekala provides a useful test bed for examining the

indicators derived from the theory –proof of scientific self-organization may be discovered

using indicators, applicable on similar areas.

 Today, Nekala is among the most important employment areas in Tampere region, one of the

largest growth centers in Finland. Its economic viability coupled with self-organization is of

great importance even nationally. The spheres of influence of actors vary from local to regional,

nationwide and even global scale (Närhi 2009). The main issue seems to be how to enable the

actors’ diversity and offer niches for new actors to enable the continuation of “enriching” in the

future.

5. Study	design	and	operation	

Figure.2. Construction of the study

The study is defined by a set of variables that operate on three scales (Figure 2). These are the

system of potential flows at the meta-level, interactors at the micro-level, and systems of

pattern-formation and enriching at the meso-level. These entities have different inter-scalar,

dynamic mechanisms of interactions. High potential flows generate the pattern-formation and

enriching processes; category one actors’ interaction (defined according to the activity type later

in the text).  In  category one the interaction of  actors  may form patterns of internal order, and

category two actors (according to the production mode) produce enriching of the system. The

pattern formation system receives two types of feedback: negative  from  internal  order  to

interactors level as the competition impedes clustering, and positive, as they benefit from



Partanen, J: Don’t fix it if it ain’t broke

110 | P a g e

clustering. The enriching mechanism receives the positive feedback from the interactors’ level

(category two), attracting actors as the potential for variety of choices increases.

5.1	Sampling	and	data	
The variables are urban actors (such as firms, public and other services), with the sample size of

the  overall  number  of  agents  in  the  area.  Statistical  data  on  workplaces  from  the  City  of

Tampere administration (1971-1989) and central government (2008) on workplaces in the

Nekala area are used as material. The data from 2008 are complemented with observations2 to

scrutinize the real spatial distribution of the activities: These small, non-profit type activities are

unlikely to have existed in the area before the two major industries withdrew (1989-2008),

leaving them affordable premises in old buildings. Because the (electronic) data after 1986 has

not been stored by the City of Tampere administration, the data from 1993 used in evaluating

the enriching were collected from a telephone catalog. Compared to other data, the major threat

would have been to miss some actors, but actually the number of actors also increased between

1982 and 1993. The data collected by local and central government is considered reliable. The

road network data is from the City of Tampere administration. I choose 1971, 1982, 1993 and

2008 for observation to perceive the possible changes in production modes.

6.	Methods	

6.1	Measuring	potential	flow:	accessibility	network	analysis 	
The regional connectedness of the network is important for the potential for social and

economic interaction. Since I study the physical activities and their spatial configurations, by

analyzing the physical accessibility network specific characteristics can be identified,

such as pools of high accessibility that may indicate adequate flow facilitating the self-

organization.  Good accessibility and saved travel costs are essential for connecting the

firm to a larger pool of employees and attracting users.

The basic elements of the trip in traditional measures of accessibility (cumulative

opportunities measures, gravity-based, utility-based or space-time accessibility (Handy

and  Niemeyer  1997))   are  the  points  of  departure  and  destination.  They  ignore  the

2 (Närhi 2009)
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complexity of a multi-nodal urban environment. More useful is the concept of relative

accessibility, a space syntax based concept. Computing the depth for every street

segment -the degree of segments separating it from all the other segments - provide a

representation of relative centralities of the network. The resulting accessibility surface

provides relative values for accessibility in every location to every other location,

revealing the potential for flow (Hillier 2007, Joutsiniemi 2010).

 Space syntax investigates relationships between spatial layout and a range of social,

economic and environmental phenomena. The main mechanisms that affect the complex

spatial configuration and self-organization of urban systems are integration,  a  global

hierarchy of depth defined by the configuration of lines representing the circulation of

the city, and the movement economy, the adaptation of self-organizing activities to this

hierarchy. An important implication is the series of spaces between origin and

destination. The grid defines the degree of flow passing every location, implying

superior potential for certain locations (Hillier 2007). Here I applied the method based

on axial space, visibility axes following the actual street network, and depth distance -

sum of the distances from each street  segment to all  the other segments,  providing the

mean depth for every segment. First the axial, linear sight-lines are drawn according to

the road network. Secondly, the mean depths (md) are calculated for each segment.

Finally, the thematic maps are produced to illustrate the relative accessibility of

segments in different scales. In this study accessibility was measured on three different

scales, loosely following the scales proposed by Joutsiniemi, adjusted to a smaller regional

scale: Scales are md 20, 60 and 90 (Figures 3-5), reflecting Hillier’s idea that the movement in

the city is fractal (Hillier 2007). Since different scales attract different actors, and high relative

accessibility implies high potential for self-organization. I assume that multiple scales high

accessibility nodes refer to a marked tendency for self-organization by attracting multiple

activities (Hillier 2007, Joutsiniemi 2010).

6.2	Interactors,	their	enrichment	and	internal	order	

6.2.1	Data	
I use two classifications for the activities: one for the pattern formation tendency of the

activities referring to the relations of the activities to their environment, and the other for
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enriching of the system, contemplating characteristics of the prevailing production. In category

one activities are classified according to the nature of the similarities in their interaction with the

neighborhood; these use types are retail, services, business, small industry, and warehouses.

The study focuses on the activity and its relationship to the immediate neighborhood - the

classification is  fairly simple for  better  observation of  the changes and possible  patterns in  the

system. The second classification of the activities according to their “production mode”

characterizes the industry at issue. The production type categories are agrarian, industrial,

service, information, and cultural economy (Castells 2000, Florida 2000).

6.2.2	Measuring	internal	order	
I  assume that  some of  the activities  in  the area benefit  from proximity to each other  and form

clusters. Activities cluster for various reasons on either the supply or the demand side e.g. to

mutually learn how to improve productivity or to optimize their location. Spinoffs, proximity to

consumers or lumpy demand also generate agglomerations. (Picone et al. 2009).

Typically, the clustering is measured by comparing the location pattern observed to a random

assignment (Picone et al. 2009). In this case, these local factors (the zoning code, geography,

and accessibility) are fairly constant, and the pattern formation most probably follows the

actors’ strategic incentives. Thus in this study these more detailed methods are not applied.

Another measurement for clustering tendency is density of firms/employees per hectare(de

Propris 2005). Here the diversity of the area can be measured relatively well, and the abstract

density without location information, would not represent the spatial configurations of activities

and thus the potential pattern formation.

In  spatial  sciences,  the  spatial  interactions  between  activities  or  parcels  of  land-uses  are  often

implied, especially in approaches using dynamic simulations. Due to the assumed neighborhood

effects, many of these urban simulations are based on CA, which accurately reflects local

interactions and provides applicable definitions for the “neighborhood”. Naturally proximity is

not  the  sole  factor  affecting  the  land  use  dynamics,  but  is  fairly  relevant  in  agglomeration

economies.

Most commonly in these approaches, the entities are defined as cells in an arbitrary grid, whose

neighborhood consists of either four or eight adjacent cells. Alternative definitions, such as

actual real world parcels or vectors, can be used to overcome certain limitations resulting from

the rectangular lattice (Stevens and Dragicevic 2007). Neighborhood can also be extended to

adopt effects from more distant cells (Shi and Pang, 2000).
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The irregular  cell  space best  reflects  many properties  of  the target  area resulting from the fine

resolution (Stevens and Dragicevic 2007). The cells are based on the official site division for

more accurate representation of the spatial interaction resulting from the morphology and due to

the higher resilience of the site to changes over time compared to buildings. The basic entity is a

site, with activities merged down to it. The small scale also implies use of immediate

neighborhood, since in some cases even a one-step extension to the neighborhood would easily

encompass the whole area.

The effective distance for a neighborhood was defined as 24 meters, the traditional block size of

the area and a radius of a most competitive advantage for similar uses.

Within  this  frame,  I  explored  the  clustering  tendency  for  each  activity  separately.  I  compared

the neighborhoods of sites with a certain activity, for example industry (Group 1), to the random

allocated neighborhoods (the probability of any site having industrial neighbors) and a site

without a certain activity (Group 2), for example the probability of a non-industrial site having

industrial neighbors. All the activities on the site (in the “neighboring buildings”) are counted as

neighbors except for one (the activity whose neighborhood is contemplated) (Equation 1.).

Equation 1. Calculating the number of type  , i= 1 to 6, neighbors.  is the count of the

type  activities on the neighboring site,  is the activity whose neighborhood is

contemplated.

Two  uses,  housing  and  business,  are  excluded  due  to  their  marginal  share  in  the  area.  In

addition, including the neighboring housing area with rather strict regulation would have

skewed the results. Yet the business uses seemed also to follow the agglomeration tendency.

6.2.3	Measuring	enrichment	
Next I studied the adaptability and potential existence of “critical points” in the temporal

behavior  of  activities  in  the  area  indicating  renewal  capacity  at  the  transition  phases  .  I  used

production type actors, because they do not change over time, but rather adapt to the production

mode. I used the method originally developed by Shannon and discussed further by Haken and

Portugali (Shannon 1948, Haken and Portugali 2003) to measure the change in information. In

this  approach  the  entities  of  the  city  -  in  this  case  urban  activities  -  are  contemplated  as
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information. Humans perceive the physical city according to the information it embraces in both

the Shannonian "objective" and the semantic "subjective" sense (Haken, Portugali 2003).

Shannonian information is the amount of information in the system calculated in bits.  referring

to the number of possibilities, implying that the pattern contains information about both

observed and potential form. "Semantic”, contextual information, by contrast, depends heavily

on the receiver’s cognitive interpretation of urban elements. (Haken and Portugali 2003,

Shannon 1948). In cities these two types are closely connected. To define the quantitative

information as “bits” the entities need to be categorized according to their common features.

(Haken and Portugali 2003).

The relation between Shannonian and semantic information is dynamic and works through

circular causality. Entering a new type of entity in the system causes an increase in Shannonian

information. Emerging similar cases are grouped by a pattern recognition process. These

singular entities become a category and the amount of information again diminishes. This

moment of decreasing entropy can be considered a "phase transition"; the semantic information

emerges through self-organization (Haken and Portugali 2003).

The classification based on production modes was used to monitor the increasing or decreasing

information in the system, and potentially ensuing furcative changes. I calculated the

Shannonian information in the sense of absolute values (I) and relative values (i) in order to

perceive the total increase of information on the one hand, and the relative increase of

information on the other (Equation 2.).

Equation 2. Shannonian absolute information (I). Z = the number of possibilities.

For calculating the relative values,

as the choice of the indices = j,

p j is given by

N is the total number of activities, and N j the number of activities of the same kind according

to the selection and recognition process. Equation 3 indicates how the relative information i is

given by
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Equation 3. Shannonian relative information (i).

i is independent of the total number of activities, but reflects their variety. (Haken and Portugali

2003, p.393; Shannon 1948).

7.	The	results	

7.1	relative	accessibility	
The results indicate that the target area has relatively high accessibility on all scales (Figures 3-

5, red-orange colors).

Figure 3.Mean depth 20.
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Figure 4.Mean depth 60.

Figure 5. Mean depth 90.

Nekala  is  the  only  such  area  regionally;  -  in  the  diverse  historical  city  center,  high  values  in

mean depth (md) 20 and 90 occur, but medium scale accessibility is lacking; several other areas

achieve two out of three high md values, such as several highway intersections (60 and 90), or
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small-scale residential areas (20 and 60). This type of coinciding centrality could be considered

an indicator for potentially high flows triggering the adaptation and regeneration of the area.

Earlier studies indicate correlation between accessibility scales and different types of industry

(Joutsiniemi 2010, Hillier 2007). This study reveals a relation between multiple agglomerations

of activity types (see below), and coinciding centralities of the network providing sufficient

“energy flow” for self-organization.

7.2	Internal	order:	Pattern	formation	
Comparison of groups with and without certain activities revealed individual, characteristic

distribution for  both data  series.  Group one sites  had a  significantly greater  share of  sites  with

similar neighbors (96%) than the sites without a certain activity (4%) (Figure 6.) and random

assignment (66%).

Figure 6. Number of similar neighbors, sites with certain activity  (group 1) and sites with “no

certain activity” (group 2).

For  example,  the  sites  in  industrial  use  had  more  likely  industrial  neighbors  than  the  sites

without industrial use. Moreover, the share of 0-1 neighbors was greater in sites with no certain

activity (G2), while in G1 the greatest share of sites was of those with more similar neighbors

within all the activities examined (industry, warehouses, services, retail) and time series, which

refers to a high probability of agglomeration and existence of internal order seems evident..

(Figure 7)
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Figure 7. Example: Agglomerations of the use “industry” 2008.

7.3	Increasing	complexity:	longitudinal	study	of	agents	
Comparison between the relative shares of production categories indicates a further decrease in

already somewhat diminished agrarian production from four to one percent; a decline of

traditional industry from 58 to 12 percent, and the service sector first increasing from 35 to 62

percent between 1971 and 1982, but later decreasing to 53 percent by 2008. The emergence of

information technology (from zero to eleven percent) and the expansion of the culture industry

(from two to 14 percent) take place later, between 1982 and 2008 (Table 2.).

1971 1982 1993 2008

AGR 6 4 3 3

IND 79 29 42 32

SERV 48 57 92 142

INFOR 0 0 13 30

CULT 3 2 10 37

MISSING

DATA 0 0 11 24

ALL 136 92 171 268

Table 1. Absolute numbers of activities, 1971-2008.
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1971 1982 1993 2008

AGR 4% 4% 2% 1%

IND 58% 32% 25% 12%

SERV 35% 62% 54% 53%

INFOR 0% 0% 8% 11%

CULT 2% 2% 6% 14%

ALL 100% 100% 94% 91%

Table 2. Percentiles of activities, 1971-2008

7.3.1.	Shannonian	information	

Figure 8 presents the same progress as Shannonian information (I). After the slight decrease

from 16 (1971) to 14 (1982), the values increase dramatically from 14 first to 21 (1993) and

then to 24 (2008) as the number of activities increases from 136 (92) to 268.

Figure 8. Shannonian information, absolute values (I).

The  relative  shares  of  information  (i) reveal how introducing new categories affects entropy.

From 1971 to 1982, only minor changes occur in the amount of information, from 12.29 to

12.40 slightly increasing the amount of relative information. Interestingly, from 1992 to 2008

the amount of information decreases from 16.08 to 15.80, despite an increase in the number of

activity indicating decreasing entropy and self-organization. The major leap from 12.40 to 16.08

takes place between 1982 and 1993; this progress is parallel to the emergence of a new category

that of information technology. This method seems to emphasize the increasing of the values
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when the first value is zero, ignoring the expansion of the culture industry from three actors to

37 between 1971 and 2008 similar to the growth in information technology (from zero to 30).

The method could be criticized for over-emphasizing non-existing values – according to

Equation 2, the log2 0 equals “indefinite”, and thus yields no value. This is a limitation of

applying a strictly mathematical method in a fuzzy real world case - delineating categories is not

always precise (e.g. “cultural activity” vs. “culture industry”), and availability of data can affect

which years can be compared.

The analysis indicates that self-organization starts to occur only between the last two time steps

(figure  9).  This  finding  is  parallel  to  what  Haken  and  Portugali  suggest  –  as  a  new  “type”  is

introduced, the information (i) first increases but soon starts to decrease (Haken and Portugali

2003).

Figure 9. Relative shares of activities by production type.

The results indicate increasing information and decreasing entropy,  and a high capability to

reflect  the  global  “phase  transitions”.  In  the  case  of  Nekala,  the  complexity  increases  in  two

ways. Network of neighborhood relations expands among similar activities and categories of

industries increase: new “species” emerge from transitions of production modes (Figures 1 and

9).

Furcative, critical points seem to exist in the generation of production, referring to  “enslaving”

of earlier modes. The area is neither redeveloped nor deserted, but adapting to its environment.

Perhaps  the  diversity  of  activities  operates  analogically  to  nature:  the  greater  the  variety  of

species, the more viable the system is (Jacobs 1984, 1992). The area adapts to changes in the

environment in a self-organizing manner, apparently enabling the emergence of innovations

which accelerate the city evolution.
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7.4	Validation	
As regards the objectives of this study, a crucial question is whether the method does indeed

measure self-organization. The space syntax is considered only to reveal the potential for

adequate flow for self-organization. The main interest is in the validation of the internal order

and enrichment.

This part was carried out by observing whether resulting data follows certain power law,

indicating that the system is close to the critical point, as the organization of entities results from

interactions between them. A scatterplot was created on logarithmic scales using the combined

data on the neighborhoods of the sites representing the internal order. The plot fitted the least-

squares, but only partially.  The number of small neighborhoods (N<2) in particular was

remarkably low for G1. In addition, in the 2008 data set a couple of extreme values (30-32

neighbors) resulting from the high frequency of activities in the area was also exceptional.

These limitations of the method are noted in the literature: often only the tail of the plot follows

the rank size distribution, and  the extremely high values do not fit into it (Clauset et al 2009).

These  exceptional values are sometimes considered the most interesting – e.g. under-

representation of the sites with the smallest neighborhoods, imply a fairly strong agglomeration

tendency. Complementary methods such as goodness-of-fit and likelihood ratio tests could help

to overcome these limitations (Clauset et al. 2009). Yet due to the metaphorical nature of the

study this type of rough estimation was considered relevant. For comparison, the distributions

with N>0 and N>1 were carried out.

The data  set  G2 fitted the least-squares fairly well:  for  G2  c= -1.9613 and R2 (G2) =0.8899 .

For G1 the fit was even better: c = 2.0083 and R2 (G1) = 0.937 (Figures 10 and 11).

Figure 10. Number of neighborhoods  of various sized G2 sites on a double logarithmic scale.

Also showing the best-fit line to data.
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Figure 11. Number of neighborhoods of various sizes for G1 sites on a double logarithmic

scale. The data sample follows the rank size distribution. Also shows the best-fit line to data.

The mechanism of enrichment was validated using the same method. Due to the very limited

number of observations, these results can only provide guidelines for future studies;  although

the  rank  size  rule  is  plausible  with  absolute  values  of  coefficients  between  1.5  and  3  and

between 0.95-1.0. (Figure 12).

Figure 12. Mechanisms of enrichment on industry, service and culture.

 The results of the validation suggest the potential self-organizing criticality, and may refer to

self-organization. For accuracy, the observations need more thorough investigation.

From the planning’s perspective, border conditions in Nekala seems favorable for self-

organization. Building on empiria and theories of self-organization, the indicators discovered

could also be applied to reveal potentially self-organizing areas with e.g. adequate coinciding

accessibility and perhaps embryonic internal order, but still limited temporal patterns due to
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their age. In case such potential is discovered, planning could better support the generative

process in these areas.

8.	Discussion	
Self-organization can be considered one of the most powerful explanations of how complex

open systems operate.  Within this pre-evolution of unanimous matter order emerges from the

system’s  internal  premises.  The  crucial  question  is  how  we  could  better  understand  this

phenomenon, and integrate such understanding into city management and planning to support

these autonomous processes. Here I propose that internal order, enriching and flow are

appropriate indicators for self-organization in certain generative urban areas, and a method for

discovering and applying these indicators in urban planning. This approach could help to sustain

existing work pools such as Nekala and similar areas, and support the emergence of new ones.

Naturally humans’ ability to plan makes cities crucially different from self-organizing systems

in  nature:   it  reflects  some  aspect  of  human  systems,  but  does  not  entirely  explain  them.  The

considered use of this metaphor provides a richer interpretation of reality, serving as a lens

helping us to focus on issues formerly hidden or obscure.

On a general level, this approach increases our knowledge of self-organizing in cities and may

enhance our operational expertise , enhancing planning praxis to support dynamic, adaptive

urban processes. Such planning approaches could include, for example, a “dynamic” plan, based

on the changing relations between actors instead of static zones or areas. Dynamic simulations

provide relevant tools for exploring the outcomes of such plans.

The limitation is that the analysis is based on certain temporal and spatial configurations, which

in  reality  are  far  more  dynamic,  emerging  from  the  interplay  between  regulation  and  self-

organization on many levels, with complex interactions (Reed and Harvey 1992). Yet since any

representation of reality is based on decisions, in this case I evaluate only one temporal section

of the physical world instead of the myriad underlying processes.

Other implicit location principles besides agglomeration are beyond the scope of this paper.

These factors impact agents’ behavior, but the results of this study nevertheless indicate a

certain tendency to agglomeration between similar activities. These principles should be studied

more thoroughly in the future, and a comparative research needs to be replicated elsewhere.

Such approaches provide a basis for  educational dynamic simulations to learn more about the

processes, to be able to make “good guesses about our future cities” (Haken 1980, p.128).
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Abstract	

Complexity theory has increased our understanding of cities as dynamic, self-organizing

systems. However, the planning practice of today often collides with the complex urban realm,

and is incapable of steering or even recognizing self-organization. Since many self-organization

mechanisms may actually be indispensable to the city, we need a better understanding of them

to develop appropriate planning tools. In this paper the complex nature of self-organization in

the industrial district of Nekala in the Finnish city of Tampere is studied using isovist analyses

for statistical observation to confirm the inner diversity of the spontaneously evolving

phenomenon.  The conclusion section includes some remarks on accommodating self-

organization principles in planning.

Keywords: self-organization, complexity, urban planning, evolution, urban processes

Introduction	

A large share of urban planning practice in Europe and in western societies more generally is

still concentrated on attempts to control urban development in a top-down manner. This view of

the city clashes with the autonomously generating urban realm with myriads of interdependent

actors and mechanisms on many scales which are right out of control.  The problem is addressed

with participatory methods, which, on the one hand, have run into problems of framing and

coordination of contradictory desires and, on the other, a lack of a shared vision of viable

development positions. Theories of complex systems have recently provided an equivalent and

partially competing frame for understanding the city in the light of its intrinsic unpredictability.

The emphasis in this is the dynamic, self-organizing, non-equilibrium, trans-scalar nature of

cities. It has succeeded in articulating in a credible manner the systemic errors and expectations

associated with control, hierarchy and assumed static equilibrium in today’s planning.

Within the western planning discourse self-organization and spontaneous development are

insufficiently understood, in spite of strong evidence of a dominant way in which many

complex systems – including cities – organizes themselves. (Batty 2005, Portugali 1999,

Krugman 1996) Planning seems to fail repeatedly in its efforts to control self-organization and

this manifests itself in many ways: as the unpredictable re-location of industries and retail; shifts
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in economic performance; urban sprawl; surprising traffic behaviour or phenomena such as edge

cities and growth on the urban fringe (see e.g. Sieverts 1993; Garreau, 1991; Bettencourt et al

2007).

The dynamics described here can be found throughout history from cultural evolution to the

progression of modes of production in societies, shifts from agrarian to industrial and more

recently to information society are examples of such non-linear, evolutionary progress (Castells

2000). The feature is typical of human (and other open) systems – and crises are inevitable.

However, today's planning commonly builds on ambitious end-state rationalism and vague

premises of system equilibrium, assuming that it is to some extent possible to reach a permanent

steady state. According to complex theories, however, this is impossible. Multiple dynamic

equilibria of numerous coexisting and networked social, economic, technical etc. systems

dramatically increase the unpredictability of the urban system as a whole in the long run.

However,  forking development  in  cities  is  not  random either,  but  to  a  great  extent  related to a

phenomenon that we call self-organization. Even though we operate within a strictly

circumscribed planning world this is not mere rhetoric.

Despite this, many intrinsically neutral aspects of self-organization are considered - especially

in common planning thinking – negative. The focus then is on the malfunctions e.g. traffic jams,

sprawling  urban  structure  etc.  with  very  little  concern  for  the  fact  that  some  of  these

unavoidable generic processes and systemic externalities may also be beneficial to the city. For

example, regional scale clustering of high-tech industry and more generally the entire

agglomeration tendency is a well-known example of urban self-organization with a positive

impact. The performance of firms is better when located in proximity to similar actors, and

planning should not (and usually does not) prevent it. The clustering tendency has been widely

studied on a regional scale (O’Sullivan, 2009; Marshall, 1890; Porter, 1998; Fujita, 2007) but

far less in the equally relevant local context.

The aim of the paper is to analyse traces of the complexity phenomenon in local level

clustering.  The  study  area  is  the  industrial  district  of  Nekala  in  the  Finnish  city  of  Tampere,

which over a period of 40 years has gone through multiple sequential planning phases with

multiple planning goals. Therefore, even though the change has come about within the legal

planning frame, the overall incremental development is best described as spontaneous.
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Figure 1. Aerial of Nekala

The challenge of organizing the complexity is not a novel idea and academic research on

planning self-organizing complex settlements is ongoing in multiple arenas. However, research

on actual spatial self-organization mechanisms in cities is still rare, hence also our

understanding of the diversity and nature of these processes. To build planning tools to support

positive self-organization for promoting economic viability and avoiding negative development,

we  first  need  to  know  more  about  the  characteristics  and  interlinkages  of  physical  self-

organization mechanisms currently existing in cities. The loosely controlled nature of special,

generative areas with a high capacity for self-organization and a role as facilitators renders

important the documentation of the dynamics of self-organizing enclaves and a thorough

understanding of their impact on the emergence of neighbourhoods. These enclaves are often

old industrial areas, or other decaying areas in transition. Following the natural scientific trail of

complexity studies, a quantitative approach was chosen to explore statistical regularities of self-

organization in our study area using isovist analyses and scaling of cluster formations.

Nekala area forms a clearly distinguishable enclave with a seemingly large capacity for

generative renewal. Former agrarian production and heavy industrial uses in Nekala have

gradually been replaced by an increasing variety of activities: Nekala has adapted to the

dominant modes of society from simple industrial use to a complex mixture of industrial use,

services, information technology and, more recently, cultural uses (Partanen 2015). In contrast

to many similar industrial districts primarily planned for heavy industry, the transitions in

society never caused a vicious spiral of decay as changing manufacturing jobs decreased or

moved from such central areas. Instead, the tendency in Nekala has been towards a constant

chain of renewals, filling up the deserted factories and other properties like a car body factory, a

slaughterhouse, or a cardboard factory, with small actors representing the emerging mode of

production, such as recently a circus school, advertising agency, architect office and several

ICT-services and spaces for music production. However, not all the traditional industries have
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left – several car repair shops, machinery wholesales and building construction companies

(along with a concrete batching plant)  are still operational in Nekala. These different uses seem

to form varying clusters which most probably also change over time (both in regards of the

actor and the location) (Partanen 2015). The diversity of uses and stakeholders in Nekala is

most probably reflected in their arrangement of some key interdependencies between actors

across  industries.  Nekala  industrial  area  is  one  of  the  most  important  workplace  areas  in

Tampere region – the second largest urban agglomeration in Finland. The development of the

area has followed several planning goals and created a multi-layered industrial ecosystem rather

than a well targeted outcome, so it seems likely that some form of self-organization has

occurred in Nekala along with its development process. In order to adjust future plans to support

such autonomous processes, it is necessary to study the spatial arrangements and potential

manifestations of bottom-up processes more closely.

The site plans in Nekala are relatively simple, with only minor variation, hence the expectations

for internal complexity are not obvious. The plans have used two generic principles to allocate

activities: the permitted usage(s) and predefined maximal floor area ratios (FAR). It is also

noteworthy that there is no explicit mechanism in the plan that would directly create any

distinguishable sub-cluster formations.

Our strategy was to explore whether greater density correlates with clusters, number of actors

and FAR on sites.  It  was also probable that  the plot  level  restrictions for  construction and use

played  a  role  in  clustering,  and  the  number  of  permitted  uses  in  the  plan  in  the  clusters  was

compared  to  ascertain  whether  the  clusters  specifically  benefitted  from  less  restricted  sites.

Finally, the effect of age was explored, implying lower quality of facilities and level of rent, on

the uses: certain uses might cluster into older, more affordable buildings. The age distribution of

all the buildings was compared to the ages of buildings clustering separately for retail, services,

warehouses and industry to estimate the effect of age on agglomeration.

The empirical studies presented in this paper are based digital maps and plot structure,

workplace data for the period 1971-2007 and the building year records (from 1900 to 1999) all

collected and archived by the City of Tampere. The locational analyses were carried out using

common desktop GIS software (MapInfo).
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Theoretical	framework	

Self-organization	

By self-organization we mean the ability of complex systems to form organized structures

without overall control, yet receiving feedback from some systemic level. This is often the case

with  regulation  in  cities  based  on  a  plethora  of  rules  at  multiple  levels  without  a  full

understanding of their collective outcome. Urban self-organization builds upon the relationships

and interactions between local agents (such as firms, individuals), producing a variety of actual

dynamic patterns (clusters, networks). Therefore the mechanisms are more evolutionary than

planned acts of coordination.  Interestingly, as also in natural processes, many of these urban

interactions follow certain mathematically measurable principles, such as scaling laws, implying

a dynamic interdependency between entities. (Eigen 1977, Kaye 1994, Kello 2010, Bettencourt

et al., 2007). These processes of self-organization are neither centrally governed nor random:

the actors organize themselves in relation to each other without external guidance (from above).

Self-organization builds upon pioneering studies in mathematics and control theory in the early

20th century. The thinking expanded after the 1960s into biology and physics, and is firmly

rooted in the natural sciences (Keller, 2009; Eigen, 1977; Varela et al., 1974; Prigogine, 1978).

Formally, self-organization is considered to be an actual mechanism through which patterns

emerge from relations among agents and adaptation to a complex system. The emerging patterns

may be dynamic,  as  in  biological  systems,  or  static,  as,  for  example,  in  snowflakes,  and occur

on the same or higher scalar level (Kaye, 1994). In relation to planning, a concept of self-

organization needs an additional remark. Planning, like the majority of human activities aiming

to change the course of future development is intentional and the concept of self-organization

may seem confusing. We claim that, despite this profound intentionality, the overall

development is more or less unpredictable. The intentions of individual actors are micro-scale

manoeuvres with only a minor effect on overall development. Even in the case of so-called

comprehensive planning ideology the overall development has so many external players that the

development is better understood as an emergent, self-organizing whole than as intentionally

planned.

In the literature on complex systems several measurable features are associated with self-

organization, among them so-called deterministic chaos (implying the temporal irreversibility of

processes),  and  also  various  cases  related  to  the  scaling  laws  of  a  system.  Scaling  laws  imply

that certain self-organizing patterns emerge repeatedly across the scales1. They typically occur

in systems near critical points or phase transitions, implying a change in the system’s state and

1 Scaling laws express one variable as a nonlinear function of another raised to a power, ఈݔߙ(ݔ)ܨ ߙ,	 ≠ 0
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reflecting the self-organizing adaptation of agents. (Kello et al., 2010, p.223.). Such scale-

dependent characteristics are found, for example, in frequency size statistics and frequency-

mass distribution applied e.g. in studies on earthquakes and meteors; allometry in biological

systems; fractal drainage networks, occurring in streams and biological branch structures; and

time series in river flows, stock markets or the "random walk", to name a few (Kaye, 1994;

Kello et al., 2010).  Many of these can be mathematically derived to each other (Chen, 2012).

Therefore it can safely be assumed the scaling laws are rather universal principles in nature and

relevant descriptors regardless of the type of system.

The universality of scaling laws was accepted fairly recently, and it has been much debated

whether they are purely coincidental. However, the empirical evidence on scaling is extending

across disciplines. It is becoming conceivable that these laws could form a fundamental

principle of how all complex, self-organizing systems reach dynamic order via interaction and

adaptation, and help integrate distinct scientific disciplines. (Kello et al., 2010, 223; Turcotte et

al., 2002). The key characteristic of scaling laws is that they are scale invariant, meaning that an

observed property is adaptive on all scales (Kello et al., 2010, 224) and, unlike normal

distribution, they succeed in dynamically reflecting regularities and dependencies within the

system spatially and temporally transcending scales. These laws reflect the dynamic self-

organization of actors in the complex system, causing evolutionary mechanisms to arise (Kello

et al., 2010, 223).

From today’s planning perspective it is surprising that many processes also found in cities

follow rules of this kind and introduce an uncanny idea that certain dynamic self-governing

features might also push the development further from the planner’s control. In the urban

planning perspective perhaps the most challenging feature is trans-scalar dynamics – emergent

urban patterns cannot necessarily be predicted even though the agents’ interactions are known in

detail. In the planning discipline this is often circumvented with a strict built-in hierarchy of

plan types (regional plan, general plan, master plan, detail plan). We suggest that some aspects

of these patterns can to a certain extent be measured using mathematically discrete methods.

Rank size distribution, applied later in this study, is one of these scale-dependent characteristics

suggesting a tendency of entities to organize according to their size, typically in an exponential

dependency. The rank size rule implies a specific mechanism of self-organization: the entities

organize in relation to each other rather than an assumed end state equilibrium – a phenomenon

that is difficult to control with a traditional plan due to the vast number and diversity of actors

and the inbuilt (unknown) logics of the planning game.
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Complexity	in	planning	

European planning systems rely by and large on modernistic ideas of a city as a static entity

which, under proper control and regulation, is kept in a state of equilibrium – or at least out of

imbalance and away from system states considered flawed. Only recently have theories of

complex systems proposed that this imbalance is actually an intrinsic, unavoidable feature of a

city. Complexity implies that evolutionary dynamics, manifesting as continuous critical

oscillation between stability and instability – with those inbuilt “flaws” – is actually essential

for cities to remain resilient and survive. (Batty, 2007; Portugali, 1999; Allen, 2004) Complex

urban formations renew themselves through these crises. Furthermore, the observed seemingly

steady state of everyday life is in fact not that static, but rather results from myriads of constant

changes on micro-level only hidden by the moderate predictability of the immediate future.

In our study area certain traces of a self-organizing tendency and agglomeration of activities

seem evident. From the perspective of economic viability we claim that this probably important

mechanism should be acknowledged (and encouraged) by planning and therefore better

understood. To implement  the theoretical framework of complexity and evolution in planning,

our aim is to study local clustering and especially the potential impact of factors affecting it (in

addition to proximity), namely, spatial features, co-existence of (multi-)clusters, building age

and plan, and to explore whether potential new patterns emerge from interaction among these

factors.

Tracing	self-organized	clusters		

The self-organization of activities is best understood as a trans-scalar phenomenon – as

interlinked and networked activities reaching from the neighbourhood corner shop to the global

system of  cities.  Despite  the  essential  fact  in  any  modelling  task  that  many  important  triggers

must be left out, any observed system must be defined in an appropriate manner according to

the scale of the phenomenon studied. Thus in the study of self-organization the borders between

the chosen systems ought to be porous throughout the scales. Large-scale urban clustering has

been widely studied (Marshall, 1890; Porter, 1998; Fujita, 2007), but a smaller observation scale

can  be  even  more  appropriate,  for  example,  if  the  primary  focus  happens  to  be  on  the

evolutionary, e.g. the informal exchange of information promoting creativity, which is one of

the  puzzling  tasks  in  our  study  area  as  well.  Furthermore,  today  the  way  this  clustering  of

economic actors enhances knowledge creation, the innovation process and interactive learning is

becoming more important than the cost efficiency essential on a larger scale (Malmberg and

Maskell, 2002).
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In the ideal planning setting, the fundamental logic of actors to constantly seek for more

preferable locations is often overlooked. Instead of focusing on the appearance and externally

targeted description of district, it is important to distinguish the factors that create the inner

conditions of mutual exchange between stakeholders. Such a factor could be agent configuration

and the proximity to similar actors in it. For this the wisdom must be sought elsewhere than in

planning itself.

Agglomeration economics sheds light on the principles underlying the clustering of activities.

The clustering may occur, first, within one industry to share intermediate inputs, labor pool,

spillovers (called localization economies). Secondly, various actors may be attracted to a wider

city region to benefit from sharing important facilities (e.g. banks), labour pooling and better

labour matching in a self-enforcing process (known as urbanization economies), implying that

firms attract other firms across industries (O’Sullivan, 2009) and resulting in large diverse

cities. Both approaches contemplate the regional, macro-scale dynamics of clustering – actors

observe the environment on a regional scale. Another aspect of agglomeration is competition

attracting similar firms to locate within geographical proximity of one another to benefit from

the same customers. In addition, co-operation becomes significant - arising from mechanisms

related to sharing, learning or matching (Duranton and Puga, 2004) analogical to the

evolutionary concepts of imitation, mutation and adaptation discussed above. The structure of

relations in these mechanisms is not always dependent on geographical proximity alone.

The concept of proximity in an evolutionary context

In evolutionary views concentrating on co-operation facilitating innovations, Boschma and

Frenken (2010) define the concept of proximity in a dynamic actor network to be more

generally related to knowledge dissemination between similar actors. Thus proximity refers to

the linkages between actors not necessarily geographically close to each other. Consequently,

five types of proximity become relevant in these networks: institutional, organizational,

geographical, social and cognitive proximity, implying similarities in the institutional (laws,

regulations) (company’s) organizational structure; spatial vicinity, social connections, and

similarity of the knowledge base (Balland 2009, Boschma and Frenken 2010). Most probably

these types are present in all networks to an extent; however at least one of them is required for

innovation facilitation (Balland 2009).

It is likely that in Nekala many of these are present (due to the national and international

companies in the area alone). We concentrate in this study on geographical proximity:

geographical proximity and the (related) diversity (Boschma and Frenken 2011) is considered to

be  the  most  important  for  the  actors  in  the  growth  phase  (Henderson  et  al  1995,  Neffke  et  al

2011, Boschma and Frenken 2011); as the actors grow, they are likely to flow to more localized,

specialized locations (Duranton and Puga 2001, Holl 2004). There is also certain – yet not fully
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documented  –  proof  of  similar  dynamics  in  the  case  area.  In  mature  (perhaps  even  lock-in)

situations – as is the case with many typical decaying industrial areas -  geographical proximity

plays a less important role, and other network linkages become more relevant (Boschma and

Frenken 2011). As regards Nekala, an increasingly diverse breeding ground, we assume that it

has an ability to constantly renew itself, allow an outflow of mature firms, attract new actors,

and avoid lock-ins. Thus it is justified to propose that geographical proximity (untypically) has

remained important in Nekala, along with geographical aspects of (temporal) organizational and

social structures benefitting from face to face interaction (Balland 2009), especially as regards

the creative industries continuously increasing in Nekala (O’Sullivan 2009).

Micro-scale	factors	

In physical systems factors of the immediate surroundings of any entity determine the behaviour

of that entity to some degree - the actors seek a combination of features and externalities of the

site best suited to their preferences. These micro environmental factors are  also  found  in  the

social environment - the character of the area emerges from the diversity of activities and user

groups and causes adaptation or resistance to change in the neighbourhood (Andrews, 1971).

It is assumed that physical characteristics – quality and the maintenance level of the

environment; topography, site shape and orientation, and spatial characteristics – exert their

influence in close proximity to the site. In its most simple form this can be seen in everyday

activity, where the spatial characteristics related to the visibility of activities in a space affect the

location choice: agents have some preference for activity they can easily see over the unknown,

hidden from immediate perception. The so-called isovist approach, which is based on the

calculation of the visibility field from the point of observation, provides a discrete method for

measuring many aspects of visibility in space, for example the (mean) lengths of the longest

views,  the diameter  or  the area of  the field of  vision,  or  various other  relations between them.

Comparing these measurements in various built-up areas reveals the features typical of a certain

area, block or building (Turner et al., 2001; Batty and Rana, 2004).

Operating environment defined by hard economic factors forms another set of important

information sources for an actor: The property rents and maintenance costs of the property, both

related to the age (or condition) of the building, affect how desirable the site is for the actor.

Furthermore, their economic performance depends on competition and potential co-operation

(based on personal encounters in the space) both with similar and non-similar actors which may

cause neighbourhood scale agglomeration of similar actors, or the attractiveness of a more

diverse environment may produce simultaneous multi-clustering of diverse actors across
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industries (Andrew 1971, O’Sullivan 2009, Fujita 2007). In addition to physical characteristics

and economic factors, the micro-scale institutional environment - laws, regulations, or planning

rules of the site – is also critical for actors’ choices of location. In terms of fit between controls

and actual processes (and self-organization) much depends on the flexibility of these regulation

(Andrews 1971, p.54). Under ordinary circumstances it is assumed that the activity patterns

follow  the  main  lines  of  the  regulation,  but  it  is  not  unusual  for  the  plan   to  be  updated  for

specific project purposes. In incremental planning ideology these flexible but contradictory

adjustments to prevailing planning schemes requiring additional degrees of freedom to host

more complicated process are common, but also steer away from the rationale of comprehensive

long-term planning ideal.

Malmberg and Maskell (2002) note that observed cluster formations rarely conform to standard

industrial classification. Expanding the classification beyond existing groups of firms might also

reveal significant yet unrecognized agglomerations. For us the re-classification of the activities

according to potential spatial interaction via customer behaviour, competition, co-operation and

interaction with the immediate environment in Nekala helped to identify novel types of

agglomeration across firm types. New, more specific clustered activities were retail, services,

industry and warehouses. Therefore, hypothetically, local-scale factors – spatial characteristics,

co-existing networks, site plans and the age of the buildings – affect the locations of these

activities and produce unplanned, self-organizing patterns. The plans themselves did not provide

more than a vague industrial activity definition across the entire area.

Figure 2: Clusters of industry, 1989.

In a  detailed study the activities  in  Nekala were explored using time series  and the number of

similar neighbouring activities was calculated. The clusters with specific activities were

compared to sites  outside the clusters  (e.g.  sites  with retail  and sites  with no retail).  Based on
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this straightforward analysis, clustering seemed to be typical for the area: 96% of actors located

as  a  part  of  the  cluster  of  similar  actors  (Figure  2).   Whether  this  was  a  result  of  self-

organization, the dynamics needed to be compared to a demonstrably generative mechanism, in

this case rank size distribution, revealing that self-organization was indeed evident Figure 3. We

assume that the reasons for this behaviour were attraction based on co-operation and

competition, even though the role of other local factors - the co-existence of clusters, spatial

characteristics, building age or site plan - cannot be ignored.  In the next phase these findings

were analysed further.

Figure 3: Clustered neighbourhoods ranked on a double logarithmic scale follow the rank size

rule.

Co-existing	activity	networks	

All clusters occurred simultaneously and none of these dominated the others, and the activities

changed over time resulting in constant change and re-formation of the clusters. Therefore it

was natural to assume that there was a location-specific mechanism (e.g. attraction or repulsion

of  clusters,  not  only  similar  actors)  behind  it.  This  could  have  been  the  case,  for  example,  if

coexisting/overlapping clusters were remarkably common in the area. Furthermore, perceptible

patterns may occur as a result of this potential dynamics. With these aims in mind, the number

of neighbours of each activity in clusters was compared statistically to the total number of

neighbours of each activity on the adjacent sites. Hypothetically, the resulting variation in mean

and standard deviation would indicate the correlation between co-existing activities in these

adjacent neighbourhoods and clustering of activities, that is, whether clusters are more likely to

emerge on sites with many different actors than on those sites with only a few.
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The study revealed that in Nekala many previously unobserved self-organizing processes came

to the surface. Certain correlations between the factors, such as agglomeration, overlapping

clusters,  visibility  or  plans,  were  obvious  but  –  typically  for  complex  systems  –  the  causal

linkages between the mechanisms and factors would be overly complicated and probably

impossible to track. However, examining the mechanisms in detail provides an instructive

overview of the convoluted nature of self-organization in Nekala study area.

As  regards  the  coexistence  of  clusters,  it  seems  that  in  clusters  the  diversity  of  uses  is

remarkably wider than in general in time series – multi-clusters are fairly common in Nekala.

Moreover, in clusters the diversity of activities has recently been growing contrary to the

general trend in the area: the number of uses on the site and those adjacent to it has stayed low

and exceptionally constant. Since activities in clusters have increased, it seems that there is an

attraction mechanism – or gravitation – that causes new actors to locate in these agglomerations,

increasing the complexity of the cluster. This mechanism is also dynamic in nature: clusters are

not spatially or functionally stable but change, move and transform over time.

Finally, additional differences between clusters and overall area were compared statistically. A

summary of  these is  included in Figure 4.   In  the Nekala study area certain statistical  features

(means and standard deviations) were fairly similar and predictable over time.  The clusters,

however, again behaved somewhat differently from the study area as a whole. The relations

between  the  same  statistics  in  clusters  seemed  to  have  a  specific  profile,  which  changed  over

time.   It is also worth noting that the typical clustering varied over time. Since this is despite the

fact that planning principles and methods have not explicitly changed, it is perhaps not

unreasonable to assume that the cause is changing economic and social preferences (Figure 4).



Partanen, J: Don’t fix it if it ain’t broke

142 | P a g e

Figure 4. Statistical “profiles” of number of neighbours in clusters and all the area.

	

Characteristics	of	open	space		

In order to gain further information on spatial characteristics in cluster formations, the whole

area was explored by comparing the visibility areas using isovist analysis. The observation

points of isovists were chosen randomly 50 meters apart from each other across the area.  The

isovists within clusters were then compared to isovists of the area as a whole, outside the

clusters and a randomly picked set of areas. The aim was to identify potential profiles within the

clusters,  suggesting  that  the  characteristics  of  urban  space  in  this  case  correlate  with  the

agglomerating phenomenon.
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Figure 5. Distribution of ranked isovists, random data

This detailed study of spatial characteristics also revealed some surprising patterns. First of all,

as the visibility areas were ranked from smallest to largest separately for all data, random, and

data  outside  clusters,  the  values  for  each  set  seemed  to  be  related  to  each  other.  A  systematic

profile was discerned which in visual examination resembled the logistic curve commonly

found in various natural phenomena. (Figures 5)  However, the clusters again stood out from the

rest of the area. When ranked in groups of small, mid-sized and large, the visibility areas formed

distinct, linear distributions with distinctive slopes. (Figure 6) In the literature such transitions

are typically found in systems with phase transitions, therefore implying strongly self-

organizing system.  Again, the locations of isovist areas varied in each case, and the biggest or

smallest areas, for example, were not always the same in the comparisons. Therefore it is

possible that visibility has some significance in the location decisions of actors; at least the

findings suggest that the self-organization mechanism is observed only in clusters.  Although it

may at first glance seem irrelevant, to us it suggests that it is possible that the main organization

principle of our study area is based on spatial characteristics and configuration rather than other

normative dimensions of the planning apparatus.
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Figure 6. Distribution of ranked isovists in clusters, with “phase transitions” in the system.

The  relation  between  the  plan  and  clusters  is  fairly  obvious:  in  the  clusters  the  plan  generally

tolerated more uses (3-4) than the rest of the area – and never fewer uses than two. The result is

quite evident and intuitive –the tolerance does not produce clustering, but the clusters emerge

following their own self-organizing logic, in a framework of a preferably tolerant plan.  Also, it

is  important  to  stress  that  the  age  of  the  building  or  density  on  the  site  did  not  correlate  with

clustering.

In this study it is not possible to dig much deeper, but it is possible – even probable – that the

above factors and mechanisms are interconnected. For example, the overlapping clusters may

result from actors seeking certain visibility; a tolerant plan is conducive to cluster formation, but

obviously plays no role in spatial hierarchy, or in the actual agglomeration process.  After all,

the (unplanned) interdependencies of mechanisms are fairly complicated and the plan has only

(accidentally) provided an enabling frame for these countless forms of self-organization.  It

seems that in Nekala it has been enough to let the stakeholders operate under their own premises

in  the  absence  of  major  malfunctions.   This  alone  is  a  valuable  lesson  for  the  planning

discipline.
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Our further remark on efficient planning practice is that planning is not always (if ever today) a

simple, unidirectional process: especially larger projects or somewhat established (but

informally emerging) uses may require updating the plan, and form a certain feedback from

actors to the planning system. This unspoken policy may also be seen as a relevant way in

which the planning institutions with their limited resources respond to the demands of urban

complexity. However, due to the vast amount of work required to constantly improve planning

procedure, the solution is not the most sustainable. In Nekala, it is likely that the plan has been

updated in a more tolerant direction simply by following individual actors’ preferences. In an

institutional sense the so-called communicative turn never took place, but was by-passed with

actor-level degrees of freedom that ensured the mutual benefit.

Discussion		

Theories of complex systems provide perhaps the most explanatory paradigm for cities today.

The new understanding of complex urban systems emphasizes the trans-scalar, dynamic, non-

equilibrium nature, the constant qualitative renewal and evolutionary characteristics of cities.

Self-organization is an essential mechanism of how order emerges in complex cities. However,

in planning discourse self-organization is currently often used only in a metaphorical way. Its

origins in natural science also enable a more discrete measurement and precise study of self-

organization in cities in the interests of more considerate planning theory and practice.

Complexity thinking and evolutionary economics provide a perspective for understanding the

similarities between the dynamics in city economics and in nature. In complex systems,

evolutionary dynamics is essential for systems to remain resilient and survive. Constant shifts

between more and less predictable states – too often considered crises – paradoxically sustain

continuous urban economic and social processes in a larger perspective. (Batty, 2007; Portugali,

1999; Allen, 2004) This emphasizes the role of planning as an enabling and steering rather than

a controlling and regulating device. Supporting the self-organization of individual actors may

promote economic performance and benefit the whole "ecosystem" in cities. It is commonly

accepted that innovation and creativity play a crucial role in this continuous renewal in cities.

They cannot be produced purely by the means of planning or policies, but they can be

stimulated by supporting the existing actors’ self-organized networks.

Planning of today often clashes with this understanding of self-generating urban phenomenon:

self-organization is either not recognized, or considered inferior or simply a flaw in the

controlled, stable and predictable urban system. To us it seems important to understand that,

despite the prevailing view of self-organization resulting from negative phenomena like sprawl,
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dispersed  city  structure  and  traffic  problems,  some  forms  of  self-organization  –  like  the

clustering  contemplated  in  this  paper  –  can  also  be  beneficial  to  the  viability  of  the  city,  and

should not be prevented. Furthermore, as the findings in this paper reveal, these mechanisms

can be more complex, hidden and interlinked than planning probably assumes. Therefore their

reciprocal influence and beyond is likely to be very complicated and difficult to strictly control.

Conclusions		

In  this  paper  Nekala  area,  the  target  of  this  study,  was  shown  to  have  a  very  rich  system  of

internal dynamics below its planned surface. It is probable that this particular combination of

self-organizing mechanism typical of Nekala is what makes the area unique and viable. We

assume that many similar, mature “urban ecosystems” – industrial areas, various centres,

cultural hubs – may have developed their own fingerprints over time. It also seems likely that

generalized forms of strict regulation would most probably have failed in creating similar

dynamics. The results of this study also support this call for tolerance, where the disadvantages

of individual actions are controlled in neighbourhood level interaction rather than in the

planning principles of the larger district. In Nekala the tolerance of the plan was found to

correlate with self-organizing structures, enabling, but hardly producing them.

In this text we have proposed some additional measures that can be used for estimating the

performance of a city or a neighbourhood. These include the evaluation of the fractal dimension

of the neighbourhood.  In practice, a proposed plan can be evaluated against such revealed self-

organizing  mechanisms  or  the  area’s  typical  profile.  In  the  case  of  Nekala,  typical  isovist

profiles for clusters could provide such a generative mechanism, and the comparison could

reveal whether the implementation of the new plan changes the dynamic spatial profile of the

place, and perhaps disrupts the operation of the existing system.

The important message of this study hints towards planning in incremental cycles of small

steps: sequential evaluation and re-implementation of improved operations. It also provides an

additional option for developing planning practice in the form of discrete methods for

evaluating how the system will respond prior to implementation and benefiting the operational

procedures actually taken. As suggested, many self-organizing processes cities resemble similar

natural processes. These mechanisms refer to the systems’ autonomous capacity to seek viable

spatial configurations – the maximally effective or beneficial use of space. The opportunity to

simulate local self-organizing processes suggests that the role of planning is not only in active

interventions aiming at the desired change. Planning also provides information on the
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predictable and unpredictable processes upon which the agents and active micro level actors

may adapt. These development trends may otherwise have gone unnoticed. For a planner this

improved understanding of dynamics offers a novel opportunity to focus only on issues that are

likely to be in conflict and avoid the issues that will evolve to specific direction anyhow.

Therefore this view emphasizes the requirements for small manoeuvres aiming at preventing

less desirable events and based on scientific knowledge, flexibility, and constant evaluation of

system as a fundamental part of this recursive planning procedure, concentrating on observation

and steering instead of controlling and regulation. To gain adequate knowledge of the urban

system, procedures similar to that described in this study might become necessary, aiming at a

more thorough understanding of the identity and unique characteristics of the place. The

emphasis should be on calling for flexibility, adaptability and recursive nature in future

planning. After all, planning is in vain in processes that emerge and complete themselves

without external intervention.
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Abstract: In complex systems, flexibility and adaptability to changes are crucial to the systems’

dynamic stability and evolution. Such resilience requires that the system is able to respond to

disturbances by self-organizing, which implies a certain level of entropy within the system.

Dynamic states (static, cyclical/periodic, complex, and chaotic) reflect this generative capacity,

and correlate with the level of entropy. For planning complex cities, we need to develop methods

to  guide  such  autonomous  progress  in  an  optimal  manner.  A  classical  apparatus,  cellular

automaton (CA), provides such a tool. Applications of CA help us to study temporal dynamics

in self-organizing urban systems. By exploring the dynamic states of the model’s dynamics

resulting from different border conditions it is possible to discover favorable set(s) of rules

conductive to the self-organizing dynamics and enable the system’s recovery at the time of

crises. Level of entropy is a relevant measurement for evaluation of these dynamic states. The

2-D urban cellular automaton model studied here is based on the microeconomic principle that

similar urban activities are attracted to each other, especially in certain self-organizing areas,

and that the local dynamics of these enclaves affect the dynamics of the urban region by

channeling flows of information, goods and people. The results of the modeling experiment

indicate that the border conditions have a major impact on the model’s dynamics generating

various dynamic states of the system. Most importantly, it seemed that the model could simulate

a  favorable,  complex  dynamic  state  with  medium  entropy  level  which  may  refer  to  the

continuous self-organization of the system. The model provides a tool for exploring and

understanding the effects of boundary conditions in the planning process as various scenarios

are tested: resulting dynamics of the system can be explored with such “planning rules” prior to

decisions, helping to identify planning guidelines that will support the future evolution of these

areas.

Keywords: urban models; complexity theory; evolution; cellular automaton; dynamic states;

entropy; planning

1. Introduction

Theories of complex adaptive systems provide a foundation for a better understanding of

cities: cities are complex as regards their trans-scalarity, non-equilibrium nature and inter-

connected actors and networks [1,2]. Self-organization is an essential mechanism in the way

complex cities organize: Cities are built as a result of bottom-up actions by individual actors

within the frame of regulations and laws. Urban self-organization which promotes economic

viability and fosters innovation is a dynamic process per se; the new layer of urbanity emerges on
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the premises of the existing one recursively, implying that the relations and dynamics become

even more important than the entities as such. Hence, the study of the dynamics resulting from

such interaction in urban system becomes essential. Theories of complex systems suggest that the

systems’ constant transitions between more and less predictable, mathematically chaotic phases

enable their evolution [3–5]. Similarly, within resilience theory, the capacity of the system to

absorb disturbances and settle into another qualitative state in time of crises is essential for the

continuity of the system [6]. Both mechanisms are based on self-organization [6,7]. This capacity

is at its greatest near the edge of instabilities, in which the entropy is typically between the two

extremes [3, 8, 9].

Dynamic models such as CA provide popular tools for studying emergent systems with many

interacting parts producing a dynamic, higher level order. In the urban context, modeling such

temporal dynamics could help us to pinpoint how changing the conditions for lower level actions

(for example rules concerning interaction between actors) impacts the global dynamics (the state

of the system and level of complexity). This could lead to a better understanding of which features

of urbanity the plan should restrict, leaving the rest of the system intact enabling the necessary

self-organization [8]. In mathematics and computation dynamic states (static, dynamic) resulting

from variance in the rule sets has been studied widely with one-dimensional CA (e.g., [8, 10-13]),

and they also provide a robust framework for evaluating urban modeling.

Since the 1940s, CA has developed from simple theoretical models into an extensive family

of relaxed spatial models exploring many economic or societal processes. In recent decades, urban

CA applications have expanded, exploring myriads of phenomena, such as urban growth or land

use dynamics (e.g., [14-22]). Many of these models operate on a regional scale. Local scale

applications are still fairly limited and mainly address social dynamics, see for example Schelling

[23] and Portugali [5].

Many studies within the field of agglomeration economics reveal that synergetic or

competitive actors form clusters on various scales (e.g., [24-26]). These studies often suggest that

the dynamic nature of the location principles is worth supporting, especially within the context of

the current innovation economy [27, 28]. These studies concentrate mainly on single industry

agglomerations. The research on clustering of several coexisting industries in a single area is

limited. Such approaches, however, are necessary given that according to many studies certain

special local scale demarcated and self-organizing areas constantly emerge in the city, impacting

on urban dynamics on a regional level and with great potential for cultural and economic life in

the city [5,29-32]. On complex, resilient trajectory, these areas support the cultural and economic

viability of the whole city, hence making it important to explore means of supporting their self-
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organization. Dynamic micro-simulations are a useful tool for exploring which factors should be

encouraged or restricted to support the successful and continuous dynamics.

Therefore, I ask what kind of dynamic states can be simulated with a 2-D cellular automaton

based on real world case of a self-organizing area. As regards the level of entropy, which states

are preferable and how to encourage these in planning?

In this paper I first frame the theoretical foundation for the study and scrutinize previous

research on the cellular automaton, along with its urban applications. Secondly, I introduce a

specific modified CA model for studying dynamic states. The rules of the proposed model are

based on empirical data on the agglomeration of similar activities. The model is relaxed by means

of the irregular cell space and gradually changing, quantitatively and qualitatively defined

transition rules based on probabilities for a better correspondence with reality. With this model, I

explore how the changing weights on the transition rules representing various “planning

decisions” affect the dynamics in a model representing a self-organizing area with a documented

clustering tendency. The aim is to discover sets of rules which would support or impede the self-

organization of the area in order to make better planning decisions.

Thirdly, I elaborate the results—static, periodic and complex states—validating them against

entropy levels proving that complex state is indeed located between the two extremes as regards

the degree of entropy. Finally, I discuss how such a model might assist communication between

stakeholders, planners, and designers in the planning processes. Different scenarios can be

simulated and evaluated to eliminate only the conditions resulting in undesirable outcomes,

leaving enough freedom for the urban evolution.

The performance of the model was explored in the Nekala industrial area and in the Vaasa

old garrison area in Finland. The Vaasa project was implemented as a part of the actual planning

process. The empirical data of the mechanism are mainly from the mature Nekala area, since the

garrison area was only recently released from military use and none but embryonic signs of self-

organizing behavior of the activities were discernible.

2. Theoretical Background

2.1. Urban Models

Urban micro simulation has been used since the 1990s to study bottom-up emerging

phenomena in cities and regions. These applications are often based on interacting cellular
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structures in space (CA), free moving agents (agent based models), networks, or combinations of

these. Considering the intrinsic characteristics of complex systems (constantly shifting between

dynamically stable and chaotic transition phases) these micro-simulations are not able to predict

the future very far (not beyond the qualitative change after tipping points), but their value lies in

educational use: with models we can learn about the dynamics of the system we study, and

especially how the changing weights for rules impact the outcome. For this the model is run

exhaustively, using all potential weights and pinpointing resulting “attractors”—the probabilities

of  the  system’s  state  shifting  to  another  dynamic  state  as  the  weights  are  changed  [33].  (In

mathematics, attractors refer to the system’s probabilities to behave in a certain manner

persistently, e.g., periodically or in a complex manner. The system is stable while on the attractor,

but could be pushed to another one with a substantial effort.) Dynamic urban models operate often

on the regional level, simulating large scale phenomena such as land use, population dynamics or

economics [15, 17], exploring patterns resulting from various conditions between urban actors

[34], or, as in this study, exploring the dynamic states of an urban system [21]. However, relatively

rare smaller scale models (see for example [5]) are also used implying that the local dynamics is

interlinked with higher level dynamics, considering cities as complex nested system of networks

consisting of other sub-network throughout the scales [35].

2.2. The Scale

The fractality and trans-scalarity of cities [36,21] and movement [37] imply intrinsic

dependencies across the scales, also revealing the role of smaller scale phenomena. As regards

the neighborhood interaction, a smaller target scale may support the exploration of features based

on informal information sharing [38]; in a qualitative sense, lower scale nodes, such as economic

or cultural concentrations, can be of great importance on a regional, national or even global scale

[30].

Several urban studies contemplate self-organizing local scale enclaves of such trans-scalar

importance [5, 29, 30]. Developing Foucault’s concept, Shane [30] considers a certain type of

“islands”, the heterotopias of illusion as a dominant element in today’s multi-nodal city. These

areas are self-organizing and flexible formations within porous boundaries, with the ability to

organize society through flexible and norms generated from bottom-up. Oswald and Baccini [31]

introduce the term urban fallow for  areas emerging from sudden changes in society,  such as  a

transition in modes of production, suggesting that areas form important resources in a city, by

forming self-organizing breeding grounds for cultural or economic actors. A certain degree of

freedom is required for maintaining and supporting the adaptability dynamic, and diversity of

these actors [5, 29-31].
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In this study, the scale was adjusted to optimize the observance of the pattern formation—an

increase in scale would not have yielded more information due to the surrounding, stable housing

areas.

2.3. Clustering

Regional-scale clustering is considered an important location principle in agglomeration

economies and has been extensively studied (see e.g., [39, 40, 24, 26]. These studies often explore

the location principles of a single activity.

Similar agglomeration mechanisms have also been observed locally, but systematic studies

of simultaneous clustering of different activity types within one area are limited. A documented

simultaneous agglomeration tendency of several activities revealed less than four percent of

activities outside the clusters in all the time series for 1971, 1986 and 2007, while large

concentrations of activities were also rare [32]. This study was carried out in Nekala old industrial

area in Tampere, Finland. The premises of the model in this paper are based on these results.

2.4. Dynamic Cellular States and Entropy

The dynamics of a city or a simulation plays a crucial role in evaluating the complexity and

self-organization. The type of such trajectory can be evaluated against the concept of dynamic

states. The concept of a dynamic state is based on the work of Wolfram, Langton and others

mostly studying artificial computational systems such as CA [8]. According to this approach, a

dynamic system can remain relatively resiliently on a highly organized, predictable

(cyclical/periodic) level, or fall into a state of disorder and chaos. The transition between the two

implies a certain radical phase transition. The ability to reorganize after this jump is intertwined

with the resilience of the system: the system reorganizes itself to form a qualitatively different

order on a new steady state [66].

Such autonomous computation requires of the system sufficient capacity for the storage and

transmission of information. Information storage involves lowering entropy, while transmission

involves raising it. For maximal computing capacity, the system must be both, and this optimal

state  is  near  the transition point  [8,41].  Actually,  many complex systems appear  to  stay in the

vicinity of this threshold analogical to systems on a successful adaptive cycle of resilient systems.

Therefore, the systems’ level of entropy in a complex dynamic state is by default between the two

extremes.
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The theory of dynamic states has been applied in the real world [8], but mainly studied with

artificial systems: Starting from the 1980s the dynamic states of one-dimensional cellular

automata have been studied in detail in the mathematical and computational sciences [10, 11, 12,

42 ]. Since Wolfram’s classic categorization of the dynamic states of CA in the 1980s, several

classifications have been proposed, aiming at increasingly precise methods of measurement [43,

44]. Wolfram’s classification (Table 1) has been widely applied (see e.g., [12,45]), although more

formalized representations have also been proposed [11].

Table 1. Wolfram’s [10] classification of evolution of dynamic cellular states.

1 Homogeneous State

2 Simple stable or cyclical/periodic structures

3 Chaotic pattern

4 Complex localized structures

Based  on  a  state  predicting  algorithm,  Braga  and  colleagues  [11]  propose  a  more  precise

classification of CA based on pattern growth (Table 2).

Table 2. Classification of the evolution of dynamic cellular states by Braga et al. [11].

1 Patterns disappear after a finite transient

2 All patterns stay limited under iteration of the global transition function

3 At least one pattern grows indefinitely

Since the CA model introduced in this paper is rather relaxed and complex compared to one-

or even two-dimensional formal CA, no such algorithm is used here. The approaches by Braga et

al. [11] and Wolfram [10] provide a frame for interpreting the results: first, with a more (formally)

robust perspective, and secondly, with an analogy to Langton’s classes of system states, referring

to states near a phase transition (Table 3).
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Table 3. Analogies between cellular states and dynamic systems. The periodic and cyclical are

used in this paper interchangeably.

CA Dynamics Dynamic Systems Analogue

A spatially homogeneous state Limit points

A sequence of simple stable/periodic structures Limit cycles

Chaotic behavior Chaotic (strange) attractors

Complicated localized structures Unspecified

Langton used Shannon’s approach to calculate the entropy of the resulting CA patterns,

discovering that complex states appear only with a limited set of intermediate entropy values.

Following Langton, Wuenche [13] proposes a method for classifying the resulting dynamics

according to the degree of entropy in the system, and another simple classification with reference

to this (Table 4).

Table 4. Wuenche’s classification of evolution of dynamic cellular states. Entropy level

increases from ordered to complex and chaotic states—complex having intermediate

state of entropy.

1 Ordered Low degree of entropy in system

2 Complex Intermediate degree of entropy in system

3 Chaotic High degree of entropy in system

Here, I applied these partly overlapping classifications and re-formulated a two-fold

classification of preferable, continuous, dynamic states (complex or periodic/cyclical), and of

stagnating states (infinitely oscillating or completely stagnating states). Langton’s and

Wuenche’s concept of entropy provides a measure of the unpredictability implying the dynamics

applicable in an analogical manner.

2.5. Modifying CA

Cellular automata are much used in urban studies for their spatial, intrinsically dynamic

structure and detailed resolution, and they often outperform other models in representing realistic

land use change. Formal CA is based on simple principles: the dynamics depends on the state of

the cell  (on/off)  and the state  of  neighboring cells  (for  example,  a  cell  is on only if 2–3 of its
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neighbors are on). Traditional CA is able to produce surprisingly diverse dynamics, including

self-replicable structures [46]. However, in an urban context CA needs to be somewhat modified

to better correspond to the urban reality. Moreover, the modifications may help to overcome the

typical challenges to classical CA, i.e., the limited interaction with the outside world, the lack of

feedback from the higher level [47] and the inability of an arbitrary regular grid to represent the

heterogeneity of land uses due to the stochastic location of grid borders [34]. According to Santé

et al. [48], typical relaxations of CA to enable the accommodation of external factors, trans-scalar

feedback, accuracy of land uses, and realistic performance of the model, are irregular cell space,

e.g., real world grids [34], voronoi polygons [49], and graphs [50]; various neighborhood

configurations, e.g., more complex or adaptive transition rules; and growth constraints or irregular

time steps.

The level of modification is a trade-off between realistic representation and preserving the

essential features of CA, depending on the purpose of the model. The accuracy requirements

vary for pure educational or theoretical models, the models roughly exploring policies in

decision-making, and for (short-term) predictive models. The rule of thumb states that

dependencies between transition rules and model dynamics need to be easily perceived despite

the modification (e.g., [51-53]).

3. The Proposed Model

Here, I study the dynamic states of the model in the pattern formation processes on the

neighborhood scale using a modified cellular automaton that operates in GIS environment. I

assume that the self-organization of activities occurring in specific areas with high generative

capacity enhances the innovations and creativity required in all industries today [27, 28]. Self-

organization refers here to individual location choices for activities resulting from their decision-

making in a certain regulatory framework adequately supporting their autonomous choices. I

assume that a complex dynamic state would be preferable, and reflect the system’s adaptability

in time: the system is able to renew itself.

Since I explore the actual complexity of the system implying phase transitions, such a process

cannot be predicted even with a micro-simulation. Instead the model presented here aims at

exploring the shifting points in dynamic states of the model during the simulation. Variety

depends on different weight values in the transformation rules representing planning decisions.

The aim is to learn from the possible interdependencies between rules/border conditions and the

resulting dynamic states what type of attractors emerge within the phase space.
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3.1. The Conceptual Framework

Figure 1 presents the conceptual framework of the model. The system of interacting urban

actors (“agents”, integrated into cells) is represented as variables and their relations. The structure

of the model follows this schema. The main dynamics in the case area result from four types of

temporal interactions between six types of variables. The variables are a cell (agent) (independent

variable (iv)), pattern (dependent variable (dv)), land use (dv), volume (dv), border (intermediate

variable) and plan (iv) (Table 5). The directions of interactions in this approach are top-down

(plan, border), bottom-up (from agent by land use/volume to pattern), feedback (from pattern to

agent), uniform level (between agents). Following the principles of agglomeration economics and

empiria, the actors seek favorable locations in the proximity of similar actors in the area. A static

border resulting from the plan surrounds the area.

Figure 1. Conceptual model. Interactions between variables; temporal (broken lines),

stable (solid lines). Feedback from pattern to actors is implied in decay of overcrowded

clusters—typically of CA, the model does not observe explicitly the global level patterns.

Table 5. Relations and directions of interaction between variables (see also Figure 1).

In this study, the plan is considered static and unresponsive (the “Plan” column is

empty), unlike in some cases in the reality.

Entity Site (Cell) Pattern Use Volume Border Plan

Site bottom up top down top down

Pattern feedback feedback

Use bottom up interaction interaction

Volume bottom up interaction interaction

Border top down top down

Plan top down top down top down top down

The typology of urban actors includes firms, public and other services, grouped into six

categories—housing (U1), retail (U2), services (U3), offices (U4), light industry (U5) and

warehouses (U6)—following an estimated degree of interaction with the environment (Figure 2).

(This classification was used in data processing to group the individual activities instead of using

ready-made classifications.  For  the sake of  simplicity,  precise numerical  values are  not  coded;
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these relations serve as a conceptual mental frame in the modeling experiments, which are based

on the tolerance between adjacent activities.) The actor’s future type and volume depend on those

in the neighborhood. Following the principles of cyclical urban change, the sites transform

gradually within the limits of the building efficiency indicated by the plan.

Figure 2. Degree of interaction between activities and their environment for

classification of activities: U1, housing; U2, retail; U3, services; U4, offices; U5, light

industry; and U6, warehouses. Local Access refers to the local interaction between the

site and its environment—how easy it is to access the site, for example, from the street.

Interference refers to the level of “disturbance” it tolerates—for example, regarding

noise or air quality; and Flow to moving of goods and people to/from the site, implying

global accessibility by car, truck etc. The classifications were made on the basis of these

assumed relationships. (For example, the requirements for housing regarding

disturbance (environmental “interference”) due to noise, smells or heavy traffic differ

from those for retail or warehouses. Similarly, some activities need easy access from

the street with less privacy, while others benefit from being part of the higher-scale

networks, providing constant flows of customers, goods, or material).

The initial state and the input for the model are the actual configuration of activities at the

time of data collection for all simulation runs.

3.2. The Model Configurations

3.2.1. Relaxation

The proposed CA was relaxed in terms of the irregular grid, qualitatively (the type of activity)

and quantitatively (the floor area of each activity) defined cell spaces, and more complex
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transition rules based on probabilities. The rules are modified to overcome the typical limitations

of CA and to better reflect real-world micro-scale economic geography while still remaining

simple and legible. Several limitations still persist: The model interacts with the outer world by

an externally defined growth factor and user interface matrix providing an opportunity to control

desired proximities between actors. However, the model’s interaction with the outside world

during the simulation is lacking. Furthermore, clustering of similar activities until overcrowded

imply the feedback from pattern formation to the individual cell’s level.

3.2.2. The Neighborhood and Cell States

The cell space of the model follows the legal site division. The neighborhood of each cell

contains all  parcels  within a  certain distance of  the central  cell  (Figure 3).  The distance of  the

interaction was set at 24 m, following the traditional block size in the area. One block was

considered the optimal distance for pedestrians, implying benefits for similar activities due to

competition or synergy. A 24-m buffer around the site was used to define the radius.

Figure 3. Legal site division and existing buildings. Source: City of Tampere, Finland.

In the model the floor area of each activity (U1–U6) was integrated into the property of a

cell. The qualitative state of the cell resulted from combining six activities—the number of actors

on each site could range from zero to six, depending on the states of the neighbors and the former

state of the site itself. The quantitative cell states were defined following the utilization rate,

defined as the ratio of the used floor area to the current building right at the site (Equation (1)).

௝ܴ =
	௝,௨ܣܨ∑

൫ ௝݁ 	 × 	 ௝൯ܣ
(1)

where Rj is the utilization rate of the site j, simply presenting how many percentages of permitted

floor area are built on a specific site at the time of observation. ∑FAi,u is the total floor area for
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all  uses (U1–U6) on the site j, and ej is  the floor  area ratio (ratio of  the total  floor  area of  the

building to the size of the site) on the site j. Aj is the total area of the site j.

Each cell was unique as regards form, number and type of neighbors, and quantity and quality

of activities. The floor area ratio followed the current plan, varying between 0.5 and 1.25. Cells

were classified into four categories according to the utilization rate reflecting the share of utilized

building right (see Equation (1)), namely empty, nearly-empty, nearly-full and full (Figure 4).

The quantitative cell state affected the site’s future mode of transformation following the

probabilities presented in the Figure 4 for each case. The utilization rate varied at each iteration.

Figure 4. Modes of cell transformation according to their utilization rates. P-1:

“empty”, FAR = 0–0.1; P-2: “nearly-empty”, FAR = 0.1–0.3; P-3: “nearly-full”, FAR

= 0.3–0.7; P-4: “full”, FAR = 0.7–1. For example, an almost empty cell is likely to be

filled more, but also to be reconstructed—at presumably fairly low demolition costs of

smaller buildings, whereas nearly full sites might be considered the most resistant to

physical changes, but the new additions or uses may occupy these sites easily (see also

Table 6).

The  plan  and  the  surrounding  cells  were  static,  reflecting  the  resistance  to  change  in  the

surrounding residential area resulting from the plan, site and building morphology, and

fragmented land ownership.

3.2.3. Transformation Rules

The basic mechanism behind the transformation rules was the neighborhood’s documented

shifting between agglomeration and deglomeration. Similar activities gravitate close to each

other, until the clustering causes “overpopulation”, leading to the relocation of some of the

activities. For example, a site with a lot of retail and services in its proximity would most probably
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change or be filled with these activities. Other activities with less volume in the surroundings

(e.g., warehouses) are possible on the site with lower probabilities. The emergence of a random

activity  on  the  site  is  small,  yet  exists.  Basically,  the  progress  produces  clusters  of  certain

activities, which disappear as the cluster becomes overpopulated, and the cycle starts again. The

process is observed for each activity separately.

First, to define the site’s mode of transformation, sites were grouped into four categories

according to the current cell state according to their utilization rates (P-1 to P-4, (see Figure 4))

indicating the probability of changes. Next, the categories defined the type of change: The site

may  remain  as  it  is  (RM),  it  may  fill  up  (F)  according  to  the  user  defined  growth  rate  (GR),

activities may change (C) while volume remains the same, or the volume and activities may be

reconstructed (RC) (Figure 5). The premises were that, first, new actors filling the vacant sites are

likely similar to the neighbors. Second, the sites were built to use the building right efficiently,

and, finally, that eventually the buildings would be replaced as the demolition/construction costs

became theoretically profitable (Table 6.). Due to lacking data, exact measurements for real world

correspondence were limited (no data were available on the actual demolition costs or life cycles

of the buildings).

Figure 5. Operational chart of the model.

Table 6. Transformation rule 2: The type of transformation depends on the state of the

site.

State of the
Site Most Probable Procedure The Motive

vacant build a new building to use the building right
nearly-empty

<10%
demolish (fill up)

to use the building right more effectively: low demolition
costs

nearly-full fill up (change)

to use the building right more effectively: demolition
costs above the threshold (It is assumed that there is a
threshold value defining the shifts from one mode of

transformation to another. E.g., a limit when it becomes
more profitable to reconstruct the site, taking into account
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4. Cases and Data

4.1. The Case of Nekala

The model  was built  and tested in a  case area of  the Nekala industrial  area in the city of

Tampere, Finland. This area of approximately 80 sites was planned for heavy industry and the

processing of agricultural products in the late 1930s. Today, the formerly peripheral location has

become relatively central due to urban growth, and the area forms a unique enclave within the

urban fabric surrounded by mostly residential areas. Nekala has a proven capacity for self-

organization, and the ability to adjust itself to the current mode of production, from mainly

industrial to a gradually more complex mixture of service, information technology, and cultural

industry.

4.2. The Case of Vaasa

The second case study for developing the model further was an old garrison area in the

Finnish town of Vaasa, Finland. In this area located within the central area of old Vaasa, the

transition from military use had occurred quite recently. The area consisted of different types of

gradually filled or historically valuable buildings, large empty sites and buildings beyond repair.

A wide range of temporary and permanent actors, such as flea markets, artisans, daycare facilities,

leisure activities and storage facilities, had started to settle in to the affordable old buildings: an

original and vital bottom-up culture had started to emerge in the area.

In Nekala, several indicators for self-organization potential were discovered in addition to

the enclave form: high accessibility, increasing diversity and self-organization of certain actors

[32]. In Vaasa, characteristics indicating similar behavior were perceived, but these were less

marked than in the more mature Nekala.

the demolition costs/m3 and new/old FAR. The
demolition costs could be calculated, see e.g., DiPasquale
and Wheaton [54], p.85. In this theoretical approach, the

classification of the sites is based on estimates.)

full

remain/change/fill/reconstruct,
e.g., 0.6/0.3/0.01/0.99 ( These

values can be changed to fit the
circumstances depending on the

case at issue.)

certain inertia on the full site; however, once the site is
full, it will eventually be developed and reconstructed (no
more space for additions). tendency to change if one use

starts to dominate the neighborhood = high FA
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In Vaasa, the model was used as a communication tool in a planning process. The resulting

implications are discussed below.

4.3. Data

The sample size was the overall number of actors in the area. Statistical data on actors and

digital  maps  were  obtained  from  the  City  of  Tampere  and  the  Town  of  Vaasa.  Numerical

spreadsheet data were combined with location information using GIS.

Due to the fragmentation of the plans, data on specific years were unavailable. Some of the

actors were multi-functional in the database and classified into several categories: the cell might

simultaneously accommodate multiple uses. This reflects the area’s diversity, and provides a

realistic representation of self-organization.

In Nekala, the actual site division was used, but in the Vaasa case the main target area—a

large empty military field—was divided into hypothetical “sites” following the site division of

the existing built area to enable the CA performance.

In Nekala, all non-residential sites were active, whereas in Vaasa sites with historically

valuable buildings were “protected” and static in the model, with the existing, probably most

suitable uses. The surrounding housing area with minor services was also static.

5. Simulation Runs

The first test simulations were run in Nekala with a first, preliminary version of the model

controlled by stable parameters in the code defining the relative shares of activities on the sites.

These values varied according to the number of uses on the site and the site’s current mode of

transformation. The resulting pattern formation process was relatively dynamic, but it was

difficult to observe how changes in the code affected these patterns.

For the Vaasa case a user interface, preference matrix (Table 7) was introduced. Here it was

hypothesized that it could be possible to regulate (and “plan”) on the level of the actors’

interactions, and leaving the global level largely intact. Such an approach would presumably

encourage the existing self-organizing mechanism—small scale clustering. Consequently, weight

values on each matrix row—for example U1 (housing)—were applied to each activity pair—for

example U1 × U1 (housing next to housing). The larger weights and thus more tolerant allocation

logics created more heterogeneous spatial configurations. Heavy weights between similar uses

increased the degree of agglomeration of this activity. In this experiment the weight values ranged
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from one to 20, and they were iterated exhaustively by trial and error, simulating various planning

decisions. For example, with the matrix the “virtual planner” could experiment with how the high

tolerance between housing and all other activities, or low tolerance between housing and

industrial uses impacted the model’s dynamics, building overall scenarios or “possible worlds”

in a bottom-up manner.

Table 7. Preference matrix which serves as a planner’s user interface: the values

increase the likelihood of the two activities being located near to each other. Changing

the values makes it possible to learn from their impact on the model dynamics.

U1 U2 U3 U4 U5 U6

U1 μଵ μଶ μଷ μସ μହ μ଺
U2 μ଻ μ଼ μଽ μଵ଴
U3 μଵଵ μଵଶ μଵଷ
U4 μଵସ μଵହ
U5 μଶ଴
U6

μଵ	 ௧௢	 ௡ = 1…20.

The aim was to explore potential state transitions in the system. Therefore, formal calibration

considering the “ruptures” was not possible. The model was calibrated to fit the conditions using

visual parameter test echoing Clarke et al. [18]. The weight values were static during the

iterations. The time steps were in this case considered hypothetical, since in Vaasa the area’s

transformation was not traceable and even manual calibration was not feasible to adjust the

computing time steps to reality.

As a  result  of  a  negotiation among stakeholders  in  the planning process,  two sets  of  rules

were chosen for simulation. The amount of new housing in the area became a crucial question in

the meetings, along with the diversity of other activities, and the first scenario was to support new

housing (highest matrix values between housing, U1 × U1). The second one was based on lower

weight for housing, implying more mixed uses. However, the static, preserved sites produced a

certain diversity in all cases.

The objective was to observe shifts in dynamics resulting from various weight values for

each activity pair. The lengths of the runs ranged from 100 to 500 iterations, but extremely long

runs (1,000 to 2,000) were also computed for the potential temporal resilience of the dynamics.
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5.1. Performance of the Model

The temporal dynamics and the changes in volumes of activity groups were observed

separately for each activity and simulation. The resulting dynamics varied from run to run,

depending heavily on the initial matrix values. Different classes of dynamics emerged, and they

might occur within a run for different activities simultaneously. For example, the dynamic state

of housing might differ from the state of industry with the same initial values. The emerging

dynamics were classified into two main categories according the end state, and two sub-categories

describing the behavior in more detail (Table 8).

Table 8. Dynamic states of the model. In an oscillating system less complex than

periodic state usually two or three values take turns.

Type 1 Type2

static stagnation Oscillation

dynamic cyclical/periodic complexity

5.1.1. Static States

For the simulations that ended up in a certain end state, two types of static behavior were

perceived. In the first case, the system might progress gradually until one use/volume

configuration became dominant: The system ended up in a permanent end state. This stagnation

might happen simultaneously to one or more activities, and the spatial configuration of sites might

vary. In the second case, a dynamic phase in the beginning led to infinite oscillation between only

a  couple  of  values  on  specific  sites.  The  general  progress  ceased  despite  these  “blinking”  (a

”blinker” refers to a well-known case in CA dynamics, oscillation, in the famous Game of Life—

see more in [46]) cells; the dynamics can likewise be considered static.

These states were the most common findings. They seemed to correlate with unrestricted,

high impact from surrounding housing. In that sense the model appeared to have reflected the

urban reality well, as politically the location and surrounding land use caused pressure towards

housing development. The static state seemed a plausible, yet not desirable, future for the area.

5.1.2. Dynamic States

As the emphasis was shifted in the matrix from interaction between housing and other uses

(U1  ×  Un(1–6))  towards  interaction  between  office/industrial  uses  (U4–U5)  (see  Figure  A1  in

Appendix A), the behavior of the model changed. First, the volumes started to gradually increase

and decrease over time for all activities, resulting in a certain type of coherent yet unpredictable
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pulse  emerging  from  phases  of  higher  and  lower  utilization  rate  on  the  sites.  A  certain  order

seemed to emerge within the system, with measurable cycle length. The changes in the rule set

(matrix values) have a marked influence over the dynamics of these periods: With certain rule

sets (see the optimum configurations in Table 9) the system gravitated towards a periodic, non-

uniform state. The period length was in flux, mostly oscillating between 10 and 12 time steps,

revealing  dynamics  far  more  diverse  than  before.  Some  of  these  cyclical  states  started  with  a

stochastic phase, soon settling onto predictable periods (see, e.g., Simulations 207, 212;

Supplementary material, Figures S3-S8).

Table 9. Optimum rule sets resulting in different dynamic states. The values (1 to 20)

represent the relative attraction between those activities. For example, in rule set 1,

attraction is fairly equal. For Rule set 2, office/industry is stressed. In rule set 3, in

addition to that, the housing is restricted. (Note that the states with rule set 1 and 2 were

remarkably resistant to changing matrix values, for the rule set 3 yielding complex

dynamics the configuration was unique—only one configuration of matrix values

yielded complex dynamics).

emphasis matrix configuration* resulting dynamics

rule set 1.

optimum

example

all uses: values range from

low to moderate (1-8)

6  4  4  4  1  1
4  8  4  2  1  1
8  2  6  4  1  2
8  4  6  4  4  2
6  1  2  4  2  1
1  1  2  1  1  1

stagnating/oscillating
dynamics; oscillation
increased as the
U1xUn1…6 (attraction
between housing and
other activities) values
decreased

rule set 2.

optimum

example

U5xU5 (small industry)

and U4xU4 (services) are

high (µ>10)

other values are moderate

(µ 2-8)

2 4 2 4 1 1
4 4 2 2 1 1
2 2 6 4 1 2
2 4 6 10 16 2
1 1 2 8 12 1
1 1 2 1 1 1

continuous, periodic
(cyclical) dynamics
(for all activities)

rule set 3.

unique

configuration

U1xU1 (housing) is low
(µ=1), and
U4xU4 (services) and
U5xU5 (small industry) are
high (µ>10)
other values:  moderate (µ
2-8)

1 1 2 4 1 1
1 4 4 2 1 1
2 2 6 4 1 2
2 4 6 10 16 2
1 1 2 8 12 1
1 1 2 1 1 1

continuous dynamics:
- For housing (U1)
complex,
- For other uses (U2-6)
periodic (cyclical)
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With a very particular set of matrix values (Table 9) the model’s behavior changed radically

again. The uses except housing remained periodic, but the lengths of the cycles and degree of

predictability seemed to change slightly for different activities. For example, in some cases retail

gravitated to a somewhat mixed state with both periodic and more unpredictable phases. The most

remarkable shift towards a higher degree of complexity was perceived for housing. Similarly, to

the periodic states, the simulation started with a seemingly stochastic phase, soon starting to

gravitate towards a certain cycle often with a length of 10, 11 or 12, or occasionally also any

random value (Supplemetary material, Figures S3-S8). The period might reoccur from two to as

many as 18 times (see e.g., Simulation 190, Figure S9 in Supplementary material). Various cycles

might occur during one simulation. Despite these short, constantly emerging and disappearing

cycles, the overall dynamics of the system was decidedly unpredictable. This oscillation seemed

to continue infinitely even with remarkably long runs (up to 2000 iterations) (see Supplementary

material: Complex behavior, Figures S9-S14).

Within many of these simulation runs another new feature emerged, also only with the same

complex rule set. While the system balanced between more and less ordered states, a very accurate

period of 145 time steps occurred within nearly all runs (see e.g., Simulations 158, 170, 177, 202

in Supplementary material, Figures S11-S14.). Apparently, this period was independent of the

state of the system, and was continuous during both the periodic and less predictable states.

Perhaps the most interesting feature of this regeneration cycle of 145 time steps was its dynamic

stability: in 87% of cases it appeared as the seventeenth cycle, that is, 16 regeneration cycles

emerged between two cycles of 145 (for example, the overall volume of the area might have

peaked after 27, 12, 10, 34, etc. iterations 16 times before the maxim occurred again after 145

iterations (see Supplementary material, for example Figures S11-S14); then the process resumed,

repeatedly). The lengths of the other recurring cycles—for example those of 10 or 12—were all

less predictable. The input for the model stayed the same. There is no reference in the literature

to this  type of  CA dynamics where several  different  nested dynamics co-exist  on many levels.

This finding may indicate an extremely high level of complexity of the system, but remains to be

scrutinized in future studies.

5.2. Validation

These results were visually clearly observable. For validation, I followed the ideas of

Langton [8] and Wuenche [13] for entropy measurement of the patterns. The entropy values for

the results  were calculated for  the whole system after  simulation.  The aim was to discover  the

differences in overall diversity and predictability.
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Six examples of periodic and six of complex behavior were chosen at random from the 60

data sets which passed the visual evaluation test. The entropy for the system was calculated

according to Equation (2).

෍ݏ௝݈݃݋ଶ

ே

௝ୀଵ

௝ݏ (2)

where ௝ݏ  is the relative share ;௔௟௟ of the entitiesݐ/ݐ t is the number of a certain regeneration cycle;

and tall is the number of different cycles in that run. The resulting entropy values are presented in

Table 10. This equation describes the overall entropy of the simulation after the runs are

completed, providing an estimated level of complexity in regards of time steps between changes

in utilization of building right. (For example, for a periodic run 160, the cycle of 10 occurred 72

times out of a total of 178 different cycles. Hence, for run 160, ௝ݏ  = 72:178 = 0.040449 and

consequently, logଶ ௝ݏ  = −1.3058. Thus ௝ݏ logଶ ௝ݏ  = 0.5282. This calculation was carried out for

each cycle (10, 11, 12, 16, 22, etc.) for the total sum, yielding the entropy value of run 160).

Table 10. Degrees of entropy, random samples from complex and periodic/cyclical series,

compared to a stochastic set.

The results indicate a clear dispersion between highly ordered, periodic, and more

unpredictable, complex states. All the entropy values for periodic states were below 2.86, while

for complex states they ranged from 3.80 and 4.90 (Table 8, Figures 6 and 7) (for the graphical

representation of the dynamics of these systems, see Supplementary material, Figures S3-S14).

Since no chaotic state was perceived in this study, a stochastic set was created for purposes of

comparison, indicating the maximum value of entropy in the system. For this set the entropy was

calculated in a hypothetical case using the data set resulting in complexity and calculating its

entropy assuming all values to be unique, occurring only once. As expected, the degree of entropy

for these stochastic comparison groups was high, all of them above 5.70 (Figure 8).
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Figure 6. Entropy values (i) for six data sets visually classified as “complex”; 3.8 > i

> 4.9.

Figure 7. Entropy values (i) for six data sets visually classified as “periodic”; 2.0 > i >

2.85.

Figure 8. Entropy values (i) for six hypothetical classes with maximal stochasticity; i

> 5.5.



Partanen, J: Don’t fix it if it ain’t broke

173 | P a g e

These results indicate that the periodic state is far more ordered than the complex state, but

that the observed complexity was not totally stochastic.

The limitation of this static method of measuring entropy is that it only measures the number

of cycles in total and not their temporal frequencies or the potential altering of the periodic and

unpredictable phases. For example, in Simulation 190 (Supplementary material, Figure S9), a

cycle of 11 forms a period, occurring three times successively between time steps 30 and 32, four

times  between  63  and  66,  and  four  times  again  between  time  steps  51  and  57  implying  the

relatively high order in these phases. Therefore, this feature needed to be evaluated visually, or

by exploring complementary indicators beyond the scope of this study. However, although

Equation  (2)  is  static,  since  it  measures  the  occurrence  of  the  time  steps  (tn+1 − tn) between

changes, it results in a fairly good representation of the overall entropy of the dynamics. The static

states were not included since no measurable period occurred.

5.3. Discussion

This paper  contemplated a  local  scale  relaxed urban CA model.  The research proved that

such a two-dimensional, irregular CA with integrated volume and activity types is capable of

simulating the main classical dynamic states typically studied using 1-D CA: Various static,

periodic and complex states. Furthermore, the validation indicates that, following the core

literature, entropy levels of complex states were indeed between the two extremes (for stochastic

and static), thus pointing out the most preferable dynamics for urban evolution.

In this study the transition of these systems from one dynamic state to another did not occur

abruptly. On the contrary, the process seemed rather continuous and gradual: as the stress in the

matrix was shifted from relations between housing, retail, and services (U1–U3 × U1–U3)

towards office/industrial uses (U4–U5 × U4–U5) (Appendix A Figure A1), the dynamic states

also seemed to shift gradually first from static/oscillating states to periodic states with a stochastic

phase at the beginning towards more complex dynamics. Only one set of matrix values produced

extremely complex behavior (Table 9) referring to high sensitivity to initial conditions.

The results suggest that in order to support the continuous states in this modeling case,

housing needed to be restricted, while office and light industrial uses needed to be encouraged.

The impact of housing on dynamics is not surprising given the volume of the surrounding housing

area. However, the complex dynamics for housing is undoubtedly caused by non-linear processes

and hence could hardly be discovered in a planning process without a microsimulation.

Interestingly, rather high values were also required for offices U4 × U4 and industry U5 × U5 for
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dynamic continuity. No such effect was observed for activities retail and services. It is plausible

that the few static sites in the area formed certain kernels (consisting of retail, services, offices

and light industry), and supported the emergence of these actors, but it does not explain the high

values required for offices and industry. It is possible that such a surprising impact could be

explored further using, for example, complex networks, and emphasizing the number of linkages

between actors and the general topology of the nets. Since the objective was to use the existing

configurations as the initial state for the CA, such complex interconnectedness of these

mechanisms was beyond the scope of this study. The results also highlight the fact that complex

interactions between scale levels are not linear and may be extremely unpredictable. In this sense

the surprising role of offices and light industry was somewhat noticeable, even though in this case

their impact on dynamics in reality is not that self-evident.

In addition, the model corresponds with the reality also in that the static states can be

considered analogical with a traditional, hierarchical planning process, in which the plan

consolidates a certain static position. Implemented in complex cities in a state of flux, this implies

a relevant yet burdensome task of constant, incremental updating of plans. Apparently certain

level of flexibility is needed.

However, this modeling experiment indicates that total freedom would not be preferable.

Even though the total control of the system will most probably lead to stagnation, a certain degree

of guidance is necessary for the process to achieve the most desirable outcome, such as high

diversity promoting the evolution of the city. In this sense, the results support the intuition: the

maneuvers promoting the diversity of activities in the model produced the most dynamic

outcomes.

A couple of limitations concerning the relationship between models and reality overall are

worthy of note. This model is based on real data and used in a real planning case, and the results

appeared intuitively fairly logical. For example, the housing development could indeed become

dominant over other uses. However, the model can at its best predict the future only for a short

time span since in complex systems, the future is predictable only in a stable state. Hence,

applying the complexity framework underlines the intrinsic nature of the world as, first, an

evolutionary system with qualitative transitions impossible to predict, and secondly, its chaotic

characteristics, especially in the proximity of these transitions. The system might change

drastically due to small initial changes, or not react to larger ones and adapt. One relevant option

to respond to this dilemma is, as in this paper, to exhaustively study the dynamics emerging from

the simulations instead of for example spatial outcomes. Even then, the simulation results might

differ  from  reality,  and  hence  in  planning  it  is  necessary  to  evaluate  the  implementations

constantly in trial-and-error manner.
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Furthermore, another limitation follows from the configuration of the model. While

modeling we stand on the fine line between simplicity and complicatedness. The more detailed

the configuration selected for the sake of accuracy, the more difficult it may become to interpret

which rules are responsible for a certain model behavior. Hence, several configurational

limitations also emerge for the model presented in this paper. For simplicity, the model is based

on certain assumptions of agglomeration and regression tendency of activities. In reality, other

mechanisms also impact urban dynamics, such as land/property rent, accessibility, synergy

between non-similar activities or other externalities. In addition, despite the relaxations, the

feedback from the higher level and the outside world was rather limited. In addition, interaction

between activities and their environment was contemplated only conceptually to maintain the

model simple (Figure 2). For a solution providing greater accuracy and more relevant feedback,

possible future studies could therefore include research on other mechanisms of self-organization,

studies on the complex linkages and interdependencies between various interacting actors and

networks operating on various scales, and comparative studies in other areas.

However, despite the limitations, the model introduced in this paper could be utilized as a

good policy-relevant model, which, in Helen Couclelis’ [47] words does not provide instructions

for decision-makers on what to do, but instead, on what not to do. In city planning, this would

mean, first, acknowledging the uncertainty intrinsic in complexity thinking, but secondly,

understanding that urban processes, such as the dynamics that drives location decisions of

activities, occur bottom up and their guidance requires setting guidelines rather than of imposing

controls.

In such an environment, more flexible planning could provide a frame for urban processes,

but the potential impact of the frame must be scrutinized—in this endeavor micro simulations are

useful, along with other “complexity planning tools” such as measurement based on fractality,

scaling or computation [55, 56,,32]. In practice, with micro simulation models it is possible to

model the environmental factors affecting actors, and then by altering the virtual “planning rules”,

for example permitted proximities or other factors, to learn how the guidelines affect the

dynamics. Actual decisions could then be based on these findings in a flexible manner, thus

supporting self-organization, resilience, city evolution, and continuity of autonomous socio-

cultural processes in the city.

Supplementary Materials: The following are available online at www.mdpi.com/link, Video S1:

Complex behavior of the model (housing); Video S2: Periodic behavior of the model (Industrial uses);

Video S3: A “blinker” or static/oscillating behavior. Figure S1: Legend for Video S1 and S3 (housing,
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volumes); Figure S2: Legend for Video S2 (industrial uses, volumes); Figures S3-S15, Graphical

presentation of the model dynamics..
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Appendix A.

Figure A1. Weights  for  proximity  preferences  among  activity  types  resulting  in

different dynamic states: U1, housing; U2, retail; U3, services; U4, offices; U5, light

industry; U6, warehouses. (a) Matrix values for static states; (b) Matrix values for the

complex states.



Partanen, J: Don’t fix it if it ain’t broke

177 | P a g e

References

1. Haken, H. Information and Self-Organization: A Macroscopic Approach to Complex

Systems; Springer: Berlin/Heidelberg, Germany, 2010.

2. Holland, J.H. Emergence—From Chaos to Order; Perseus Books: Cambridge, MA, USA,

1998.

3. Kauffman, S. The Origins of Order: Self-Organization and Selection in Evolution; Oxford

University Press: Oxford, UK, 1993.

4. Kauffman, S. At Home in the Universe: The Search for the Laws of Self-Organization and

Complexity; Oxford University Press: Oxford, UK, 1995.

5. Portugali, J. Self-Organization and the City; Springer: Berlin/Heidelberg, Germany; New

York, NY, USA, 1999.

6. Walker, B.; Salt, D. Resilience Thinking: Sustaining Ecosystems and People in a Changing

World; Island Press: Washington, DC, USA, 2012.

7. Levin, S.A. Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1998,

1, 431–436.

8. Langton, C.G. Studying Artificial Life with Cellular Automata. Physica D 1990, 22, 120–

149.

9. Kugler, P.N.; Turvey, M.T. Information, Natural Law, and the Self-Assembly of Rhythmic

Movement; Routledge: London, UK, 1987; pp. 52–53.

10. Wolfram, S. Universality and Complexity in Cellular Automata. Physica D 1984, 10, 1–35.

11. Braga, G.; Cattaneo, G.; Flocchini, P.; Quaranta, V.C. Pattern growth in elementary cellular

automata. Theor. Comput. Sci. 1995, 145, 1–26.

12. Culik, K., II; Yu, S. Undecidability of CA classification schemes. Complex Syst. 1988, 2,

177–190.

13. Wuenche, A. Classifying Cellular Automata Automatically; finding gliders, filtering, and

relating space-time patterns, attractor basins, and the Z parameter. Complexity 1999, 4, 47–

66.

14. Rienow, A.; Goetzke, R. Supporting SLEUTH-Enhancing a cellular automaton with support

vector machines for urban growth modeling. Comput. Environ. Urban Syst. 2015, 49, 66–

81.

15. White, R.; Uljee, I.; Engelen, G. Integrated modelling of population, employment and land-

use change with a multiple activity-based variable grid cellular automaton. Int. J. Geogr. Inf.

Sci. 2012, 26, 1251–1280.

16. Batty, M.; Xiu, Y.; Sun, Z. Modelling urban dynamics through GIS-based cellular automata.

Comput. Environ. Urban Syst. 1999, 23, 205–233.



Partanen, J: Don’t fix it if it ain’t broke

178 | P a g e

17. Caruso, G.; Peeters, D.; Cavailhès, J.; Rounsevell, M. Spatial configurations in a periurban

city. A cellular automata-based microeconomic model. Reg. Sci. Urban Econ. 2007, 37, 542–

567.

18. Clarke, K.C.; Hoppen, S.; Gaydos, L. Methods and techniques for rigorous calibration of a

cellular automaton model of urban growth. In Proceedings of the Third International

Conference/Workshop on Integrating GIS and Environmental Modeling, Santa Fe, NM,

USA, 21–25 January 1996; pp. 21–25.

19. Li, X.; Yeh, A.G.-O. Modelling sustainable urban development by the integration of

constrained cellular automata and GIS. Int. J. Geogr. Inf. Sci. 2000, 14, 131–152.

20. Portugali, J.; Benenson, I. Artificial planning experience by means of a heuristic cell-space

model: Simulating international migration in the urban process. Environ. Plan. A 1995, 27,

1647–1665.

21. White, R.; Engelen, G. Cellular automata and fractal urban form: A cellular modelling

approach to the evolution of urban land use patterns. Environ. Plan. A 1993, 25, 1175–1199.

22. White, R.; Engelen, G.; Uljee, I. The use of constrained cellular automata for high-resolution

modelling of urban land use dynamics. Environ. Plan. B 1997, 24, 323–343.

23. Schelling, T.C. Dynamic Models of Segregation. J. Math. Soc 1971, 1, 143–186.

24. Fujita, M. Towards the new economic geography in the brain power society. Reg. Sci. Urban

Econ. 2007, 37, 482–490.

25. Manson, S.; O’Sullivan, D. Complexity theory in the study of space and place. Environ.

Plan. A 2006, 38, 677–692.

26. Porter, M. Clusters and the New Economics of Competition Source. Harv. Bus. Rev. 1998,

76, 77–90.

27. Florida, R. The Rise of the Creative Class and How It’s Transforming Work Leisure,

Community and Everyday Life; Basic Books: New York, NY, USA, 2000.

28. Hautamäki, A. Luova Talous ja Kulttuuri Innovaatiopolitiikan Ytimessä; Publications of the

Finnish Ministry of Education and Culture: Helsinki, Finland, 2009.

29. Allen, P. Cities and Regions as Self-Organizing Systems; Taylor & Francis: City, UK, 2004.

30. Shane, D.G. Recombinant Urbanism—Conceptual Modeling in Architecture, Urban Design

and City Theory; John Wiley & Sons Ltd.: London, UK, 2005.

31. Oswald,  F.;  Baccini,  P. Netzstadt—Designing the Urban; Birkhäuser: Basel, Switzerland;

Boston, MA, USA; Berlin, Germany, 2003.

32. Partanen, J. Indicators for self-organization potential in urban context. Environ. Plan. B

2015, 42, 951–971.

33. DeLanda, M. Philosophy and Simulation: The emergence of Synthetic Reason; Bloomsbury

Publishing: New York, NY, USA, 2011.



Partanen, J: Don’t fix it if it ain’t broke

179 | P a g e

34. Stevens, D.; Dragićević, S. A GIS-based irregular cellular automata model of land-use

change. Environ. Plan. B 2007, 34, 708–724.

35. Reed, M.; Harvey, D.L. The new science and the old: Complexity and realism in the social

sciences. J. Theory Soc. Behav. 1992, 22, 353–380.

36. Batty, M.; Longley, P.A. Fractal Cities: A Geometry of Form and Function; Academic Press:

New York NY, USA, 1994.

37. Hillier, B. Space Is the Machine. A Configurational Theory of Architecture, 2007. Available

online: http://discovery.ucl.ac.uk/3881/1/SITM.pdf (accessed on 3 June 2014).

38. Malmberg, A.; Maskell, P. The elusive concept of localization economies: Towards a

knowledge-based theory of spatial clustering. Environ. Plan. A 2002, 34, 429–449.

39. O’Sullivan, A. Urban Economics; McGraw-Hill Irwin: New York, NY, USA, 2009.

40. Marshall, A. Principles of Political Economy; Maxmillan: New York, NY, USA, 1890.

41. Crutchfield, J.P.; Young, K. Computation at the onset of chaos. In The Santa Fe Institute;

Westview: Boulder, CO, USA, 1988.

42. Kurka, P. Languages, equicontinuity and attractors in cellular automata. Ergod. Theory Dyn.

Syst. 1997, 17, 417–433.

43. Gutowitz, H.A. A hierarchical classification of cellular automata. Physica D 1990, 45, 136–

156.

44. Gilman, R.H. Classes of linear automata. Ergod. Theory Dyn. Syst. 1987, 7, 105–118.

45. Sunter, K. Classifying circular cellular automata. Physica D 1990, 45, 386–395.

46. Gardner, M. The fantastic combinations of John Conway’s new solitaire game ‘Life’. Sci.

Am. 1970, 223, 120–123.

47. Couclelis, H. Modeling frameworks, paradigms, and approaches. In Geographic Information

Systems and Environmental Modeling; Clarke, K.C., Parks, B.E., Crane, M.P., Eds.;

Longman & Co.: New York, NY, USA, 2000; pp. 1–15.

48. Santé,  I.;  García,  A.M.;  Miranda,  D.;  Crecente,  R.  Cellular  automata  models  for  the

simulation of real-world urban processes: A review and analysis. Landsc. Urban Plan. 2010,

96, 108–122.

49. Shi, W.Z.; Pang, M.Y.C. Development of Voronoi-based cellular automaton integrated

dynamic model for geographical information systems. Int. J. Geogr. Inf. Sci. 2000, 14, 455–

474.

50. O’Sullivan, D. Exploring spatial process dynamics using irregular cellular automaton

models. Geogr. Anal. 2001, 33, 1–18.

51. Couclelis, H. Cellular worlds: A framework for modeling micro-macro dynamics. Environ.

Plan. A 1985, 17, 585–596.

52. O’Sullivan, D.; Torrens, P.M. Cellular Models of Urban Systems; UCL Center for Advanced

Spatial Planning, Working Paper Series; USA, 2000.



Partanen, J: Don’t fix it if it ain’t broke

180 | P a g e

53. Agarwal, C.; Green, G.M.; Grove, J.M.; Evans, T.P.; Schweik, C.M. A Review and

Assessment of Land-Use Change Models: Dynamics of Space, Time, and Human Choice;

CIPEC Collaborative Report Series; Center for the Study of Institutions, Populations, and

Environmental Change, Indiana University and the USDA Forest Service, USA, 2002.

54. DiPasquale,  D.;  Wheaton.  W. Urban Economics and Real Estate Markets; Prentice Hall:

Upper Saddle River, NJ, USA, 1996.

55. De  Roo,  G.;  Hillier,  J.;  van  Wezemael.  J.  (Eds.) Complexity and Planning: Systems,

Assemblages and Simulations. New Directions in Planning Theory; Ashgate: Farnham, UK,

2012.

56. Batty, M.; Marshall, S. Centenary paper: The evolution of cities: Geddes, Abercrombie and

the new physicalism. Town Plan. Rev. 2009, 80, 551–574.

© 2016 by the authors. Submitted for possible open access publication under the

terms and conditions of the Creative Commons Attribution (CC-BY) license

(http://creativecommons.org/licenses/by/4.0/).

Supplementary material:

Figures S3-14. Graphical presentation of the model dynamics.

In these tables, the time differences between the major shifts in the model (period, time steps

on the y-axis) are ranked in chronological order (from the first to the nth (x-axis)) (This means

that for each simulation, the number of iterations occurring between the volume maxims was

calculated. (That is, the time steps required for the area to gradually fill. After that the progress

started over again—see Videos S1–S3.) These values were then presented graphically in order

from the first to the last. e.g., in B1, the area filled first after 10 time steps, then 12, 10, 12 and so

on.).
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Figure S3. Periodic behavior.

Figure S4. Periodic behavior.

Figure S5. Periodic behavior.
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Figure S6. Periodic behavior.

Figure S7. Periodic behavior.

Figure S8. Periodic behavior.
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Figure S9. Complex behavior.

Figure S10. Complex behavior.

Figure S11. Complex behavior.
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Figure S12. Complex behavior.

Figure S13. Complex behavior.

Figure S14. Complex behavior.
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Abstract: As  the  key  aspects  of  theories  of  complex  systems  have  been  established,  the

premises for academic research on planning and on planning praxis still necessitates the

development of novel planning tools and approaches to address inevitable urban self-organizing

transformations. We have accepted that cities emerge from bottom up. However, planning

methods simulating this  emergence are still  limited.  Progress  has been made in recent  decades

and many systemic, evolutionary, and computing based planning approaches have been

proposed.  The work here builds on these premises.

Network theoretical, computational, and democracy discourses have proposed proxy or liquid

approaches as for genuinely democratic forms of decision-making. More importantly, they

enable information organization from bottom up in a digital platform. This process actually

follows the very principles of self-organization of information in information or cognitive

sciences: entropy decreases as the “bits” of information self-organize into coherent classes.

These principles are also applicable in bottom-up planning. Hence, and to bring this discourse

closer to the planning realm, I compared the conceptualized structures of Liquid Democracy,

SIRN cognitive model and prior self-organizing planning proposals in a bottom-up planning

experiment in Pispala neighborhood, Tampere, Finland. I evaluated its capacity for self-

organization of information and hypothesized that the case provides a frame for a new self-

organizing planning method. Based on this evaluation a structure for a digitalized Liquid

Planning procedure is suggested and discussed.

Keywords: complexity, planning, self-organization, citizen science, liquid methods

1. Introduction

Complexity thinking provides today an established basis for understanding the dynamic,

unpredictable, and dissipative nature of the city.  A set of theories termed complex systems

originally included variety of approaches - from fractality, dynamic systems and chaos in

mathematics, to information theory, self-organization in biology and chemistry, and further to

scaling in mathematical statistics - contemplate open and complex systems. These have been

increasingly applied in many fields beyond natural sciences: economics, social sciences,

psychology and urban dynamics, just to mention a few (Casti 1994, Mitchell 2009, Allen 2004).
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So-called complexity as an explanatory model reportedly provides a new viewpoint on urban

studies and city planning. A new paradigm for planning praxis echoing such understanding is

developing within academia through many proposed applications (deRoo et al. 2012, Portugali

et al. 2012). These complexity planning methods can be classified into 1) methods evaluating

the preferability of proposed plans or actual urban dynamics including modeling and measuring

of dynamic configurations (scaling, fractals) (Batty and Longley 1994, Pumain 2012) and 2)

methods producing the actual plan. These include rule based and evolutionary design, advanced

systems dynamics thinking, and computational (but not necessarily computer-aided) and self-

organizing approaches, which represent perhaps best the bottom-up perspective. In self-

organizing planning the rules emerge within a self-organizing process, enslaving the system and

defining the future maneuvers. Certain “computation” between entities, such as buildings, is

implied against the environment to better adapt to it (Tan and Portugali 2012).

We still need new methods to explore the urban processes and learn how urban actors use the

space to understand the preferable relationship between local (self-organizing) maneuvers and

global (top-down) planning frames: which aspects of urban dynamics the global plan should

restrict to provide enough freedom for optimal progress (de Roo and Silva 2010, de Roo et al.

2012, Portugali et al. 2012, Batty and Hudson-Smith 2013, Batty 2007).  Global planning needs

to carefully consider self-organization with imperfect knowledge and uncertainty of conditions

to facilitate preferable dynamics. The question is how to build such plan. Note that the concept

of self-organization is borrowed from natural science and hence value-free. Society needs a

value judgement to promote social equality, avoid market failures and environmental disasters.

Hence planning should prevent undesirable self-organization, leaving space for positive

economic and social processes to emerge. Border conditions meeting these requirements must

be defined, and rapidly re-evaluated if -unwanted outcomes emerge.

Liquid democracy is a bottom-up organized direct democratic system which is considered to

respond better to the characteristics of today’s “liquid”, ever-changing society (Bauman 2000).

Rather than electing a representative and granting a mandate to decide on future (unknown)

issues, in liquid democracy most issues are decided by referendum or delegating the vote by

topic, not person. Delegation is temporary and can be revoked at any time. The system is

considered to have many benefits, among them transparency, less concentration of power,

involvement, flexibility and consideration of bottom-up features voting for an initiative, not a

representative (Boldi et al. 2009, Ford 20021). The liquid method implies self-organization of

proposals: with no prior agenda, individual contributions are made and grouped by participants

into entities. Such information processing implying entropy reduction is typical of human

1 Online example, http://blog.liquidfeedback.org/mission/ and   http://trac.adhocracy.de//.
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cognition (Haken and Portugali 1996, 2003), and exemplified for example in SIRN city games

(Tan and Portugali in Portugali 2012). The characteristics of these approaches may provide a

frame for evaluating the level of self-organization in a planning case.

Recent technological development enables collecting and processing bottom-up data online,

requiring fewer technological skills,and revitalizing the old traditions of citizen science. With

increasingly powerful devices, open source programs and online communities, laymen can

collect and even process environmental data efficiently, encouraging debate and cooperation

between professional and amateur science (Silvertown 2009, Devish and Veestraeten 2013,

Hand 2010, Sauerman and Franzoni 2015). These methods are also applicable in collecting,

analyzing, sharing and evaluating qualitative and quantitative data for planning, once

appropriately structured and monitored. Positive experience (Hand 2010) implicitly highlights

the cooperative nature of the process and the relevance of professional guidance to guarantee

data quality. Citizen science does not replace but complements conventional science.

A bottom-up planning experiment was carried out in the neighborhood of Tampere, Finland to

pinpoint the central spatial and functional features of the area from bottom up and encourage the

autonomous emergence of essential themes, goals, and rules for planning. The process involved

local stakeholders and planning professionals from the University and the City. Professional

expertise ensured the project standards regarding legal and other restrictions and produced a

variety of analyses, visualizations, and the final report. Themes and proposals appeared to

emerge within the process, suggesting certain self-organization of information. Hence I

hypothesized that the Pispala case structure could provide premises for a new self-organizing

planning approach.

 The case apparently exemplified the above mentioned conceptualization of self-organization of

information. Hence the Pispala case structure was evaluated against this conceptual frame

derived from liquid thinking, self-organizing planning principles, and a human cognition model.

Answers to the following questions were sought: What are the conceptual cornerstones in a

social/cognitive self-organizing process? To what extent are these present in the case of Pispala,

and what would be the basic layout of a digitalized self-organizing planning approach drawn

from these conceptualizations and the case?  Finally, the paper presents a structure for Liquid

Planning and applicable digital bottom-up -tools following the proposed basic structure.
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2. Theoretical background
Theories of complex adaptive systems currently form a credible foundation for understanding

the trans-scalarity, inter-connectedness and non-equilibrium nature of many open natural and

artificial systems (Haken 2010, Holland 1998), including cities. Self-organization resulting from

multiple agent interactions is an essential mechanism in the emergence of complex cities. Cities

are built from bottom-up as a result of local actions by individuals or larger collectives,

agencies, and groups within a top-down frame consisting of laws, regulations and other

limitations. Urban self-organization produces many positive outcomes such as cultural or

economic clusters and networks fostering innovation but only within a certain frame excluding

the factors potentially causing negative externalities (in cities social inequality, lock-in’s,

market failures, downward spirals), still leaving enough space for the emergence of preferable

dynamics.

The key issue is that traditional planning practices have not duly acknowledged urban self-

organization, where actors often adapt to what is locally optimal. For example, studies of fractal

cities have revealed that actors often seek locations in which they fill urban space very

efficiently.  (Batty and Longley 1994, Batty and Hudson-Smith 2013 p.19). Portugali (2012)

uses the term local planning to refer to the variety of individual (building or urban

development) projects which eventually produce the actual city, and (re)form it. Often these

projects follow the city plan only loosely, or the plan is adjusted according to (larger-scale)

projects.  Local and global planning coexist and cooperate, and local planning is often “more

dominant and effective in the overall urban process than global planning” (Portugali 2012, p.

230).  A top-down procedure aims at total control with an illusion of “closing the system” until

the urban project is finished. After a local building project, for example, the project is over once

the plan has been implemented.

However, in the city, once the plan has been implemented the game is just beginning in the form

of myriad bottom-up processes. Local planning is not only a reactive, but a proactive force. Any

global city planning opposing this self-organization will fail. Global planning should not disrupt

the positive local  processes.  At  its  best  global  planning can reflect  the principles  of  bottom-up

organization and let the preferable, fruitful urban evolution proceed by hindering less preferable

factors.  A global plan is necessary, but its success depends on the success of the interplay

between global and local planning. On the one hand, we must make a good global plan for

harnessing positive self-organizing processes for a more viable city. On the other, following

adaptive planning principles in ecosystem thinking, we must keep the maneuvers small,

constantly evaluate the realization of the plan, and react rapidly in case of a negative  outcome

(Batty and Hudson-Smith 2013, Allen 2004, Kato and Ahern 2008)
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Cities  are  changing  in  response  to  the  IT  revolution:  urban  areas  respond  faster  to  new

information, new innovations, to physical changes. The almost ubiquitous use of devices allows

us to capture, share, and create information, resulting in countless ways of producing,

consuming, thinking, innovating, and entertaining. Clearly cities will be used in more diverse

and uncertain ways than before; local planning is gaining more ground in more unpredictable

ways. The effects are ambiguous, especially regarding built environment. Simultaneously the

people are better able to obtain coherent information on their environment to make decisions

ever faster (Lupia and Matsusaka 2004, Batty and Hudson-Smith 2013).

One response to this progress has been the recent development in participation procedures.

Novel methods, such as use of the dynamic models in the planning process (Kieser and Marceau

2011), participatory GIS solutions and (role play) games (computerized and live, individual and

group games) have recently been introduced (see, for example, Castella et al. 2005, Poplin

2012, Susi et al. 2007). Many open source planning participation tools have been developed

within online communities, such as the Google Open Planning Tools group. These applications

are gradually bringing bottom-up knowledge production closer to the actual production of

spatial plans and design, blurring the distinction between the two. Many of these novel tools

have been assigned to the participatory tool box. However, merging the bottom-up features

under the concept of participation appears somewhat limited given the dissipative, emergent,

non-equilibrium nature of cities: the fact that bottom-up processes produce the city is ignored.

Participation is a part of today’s planning system which still emphasizes the role of static global

planning: the planners are basically separated from the planned, largely ignoring the power of

local planning (Portugali 2012). The participation implied in this system is limited to letting

people have their say during the (global, top-down) planning process (Portugali 2012). This

thinking collides seriously with the basic notion of self-organization of local actions and use of

space described above. Although the dissipated nature of society is often recognized in

participatory action, participation only adds a new layer to the old rational planning paradigm.

To actually renew the paradigm a more thorough revaluation is required. I consider complexity

thinking a promising foundation for this paradigm change in planning.

2.1 Complexity planning approaches

Various solutions for new complex planning praxis have been proposed (see for example de

Roo and Silva 2010, de Roo et al. 2012, Portugali et al. 2012) to better respond to the

unpredictability of dynamics in actors’ locations, increased mobility, individuation and

accelerating digitalization characteristic of today’s urban reality (Ascher 1994, Castells 1996,

Graham 2001). These still mostly academic enterprises take one profound step further from the
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participatory addition. The complexity planning evades the idea of overall static control implicit

in traditional planning. These methods are bottom-up, dynamic, allow for self-organization and

emergent patterns, phase transitions, and recognize the limitations in our ability to control the

system. First, they include evaluative methods applying simulations or other methods measuring

relational order in systems (such as fractals or scaling) for the constant appraisal of plans or

urban dynamics. They help to estimate the desirability of dynamic patterns in the system.

Secondly, productive methods are related to the actual production of a spatial functional city,

such as rule based and evolutionary design (implying that entities with chosen local rules

concerning their relations produce designs); computational and self-organizing approaches

(adaptation of entities produces the rules).  Each of these approaches serves a significant

purpose from evaluating an existing city or plan to producing actual spaces or designs (for

further evaluation).

I  concentrate  on  self-organizing  planning,  for  it  presumably  best  reflects  how the  actual  local

processes function behind the (re)formation of the complex corporeal city: they build the “plan”

from bottom up within a dynamic interplay between actors (see e.g. Alexander 1977, Alfasi and

Portugali 2007, Duarte 2011, Lynn 1998, Novak 2001). In self-organizing approaches the

spatial configuration or plan/design emerges within a process based on dynamic, autonomous

and adaptive “computation” and relationships between urban entities, defining for example

tolerable proximity, use or volume of adjacent buildings. Individual (both professional and

local) planners produce urban environment during a collective process from which the rules and

patterns emerge (Tan and Portugali 2012; Webster 2010, Salingaros 2000).

Within this theoretical frame my aim here is to propose a novel self-organizing planning

approach applying digital networks in information processing. For this purpose, I next explore

the potential of a digital social network through the concept of Liquid Democracy  for providing

the self-organizing planning frame. Furthermore, citizen science is introduced as this concept

provides tools for collecting and organizing data in cooperation with professional planners.

Finally, a self-organizing SIRN-model of human cognition is elaborated, as a model of

information processing within human systems, presumably also bottom-up planning. These

provide a conceptual framework for evaluating the self-organization of information in the

planning case.
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2.2 Liquid democracy

The notion of liquid democracy follows the ideas of Zygmunt Baumann introduced in his book

Liquid Modern (2000). Baumann hypothesizes that society has transformed into a “light

society”,  assuming that  elastic  emergent  networks in a  state  of  constant  flux have replaced the

rigid social structure; a “citizen” member of society has become a “person” with changing

preferences and identity constantly reflected in others, with no predefined frame, and burdened

with the demand to define one in a non-stop self-reflecting process (Bauman 2000). In this

liquid, constantly transforming networked society representative democracy responding to the

needs of the rigid society of “solid modernity” with predefined, fixed classes or groups is no

longer an appropriate solution. Increasing digitalization is likely to liquidize the society even

more, but may also provide solutions for novel type of social organization.

Liquid democracy is a proposed bottom-up democratic alternative to representational

democracy. It is claimed to have more capacity to consider the characteristics of today’s society.

Liquid democracy is a direct democracy approach. In the simple form of direct democracy

people  vote  directly  on  issues  without  a  delegate,  resulting  in  a  fairly  cumbersome  system

(Clarke and Foweraker, 2001). Direct democracy methods are considered to create more

efficient government and a healthier relationship between money and power (Lupia and

Matsusaka, 2004). Liquid democracy is lighter and more efficient than pure direct democracy,

but more flexible than representative democracy: instead of voting for a representative for four

years and giving the candidate a mandate to decide on future unknown issues with no option to

revoke the vote, in liquid democracy most issues are decided by direct referendum or delegating

the vote by topic, not person. Delegations are transitory and can be revoked at any time. Liquid

democracy has several advantages: transparency, less concentration of power, involvement and

true participation, flexibility and consideration of bottom-up features and voting for an

initiative, not a representative (Boldi et al. 2009; 2011, Ford 2002). The downsides may include

difficult traceability of the online system for common users and the complexity of the structure,

and group thinking, which can be overcome by value-laden steering, having multiple groups and

outside expertise, and by avoiding isolation of groups (Janis 1972).

2.3. Citizen science –methods

Citizen science is a process involving ordinary people collecting and processing data as a part of

scientific inquiry, including observation, measurement, and computation of phenomena.  Citizen

science projects are expanding mainly in ecology and the environmental sciences, but their roots
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go back centuries (Silvertown 2009). Today technological innovations may revitalize the

tradition of citizen science: new tools and applications demand fewer skills and guarantee

certain standards for the data (Silvertown 2009, Devish and Veestraeten 2013). Technology has

transformed citizen science from monotonous tasks such as species counting to sharing,

uploading and mapping data, and recently enabling even computation and visualization of the

results in real time, for analyzing and representing the data. During this process the relationship

between citizen scientists and professionals is shifting from dependence towards debate

(Bonney 2014, Newman et al. 2012).  Citizen science projects assisting “real” science have

yielded promising results with efficient data processing  (Hand 2010).

It has even been suggested that technological progress will increase the independence of citizen

science, with the assistance of virtual experimentation with the data. GIS-based visualization,

augmented reality tools or simulation models may enable citizen science to adopt certain theory

building and validation mechanisms, resulting in a “co-production” of science (Newman et al.

2012). Despite the benefits of these tools, they should be adopted cautiously; the quality of

results is precarious, and professional steering is needed (Gura 2013). However, guides and

tools are available for planning, testing and evaluating projects, likewise data management and

quality control plans to overcome these problems (see for example citizescience.org) (Bonney

2014).

Devish and Veestraeten (2013) propose that dynamic simulations may be applied as citizen

science tools for validating “results”. However the inherent complexity, chaotic nature and path

dependence of reality limits the validation of simulations themselves, making them educational

tools to learn how the prior decisions affect the outcome. (Zelner 2008, Zelner et al 2012). Thus

using any readymade simulation may be challenging and need prior professional modifications

to improve performance of the model.

Recent ICT development, such as page ranking methods and algorithms, existing online life in

social networks, the family of crowd sourcing and other bottom-up planning support system

tools, and ongoing visualization/virtual cities projects (Yamakawa et al. 2007, Batty 2007)

provide methods suitable for liquid democracy thinking in spatial planning. Along with the

“citizen science” applications, they enable dynamic, often real-time combination, production

and reorganization of data. For instance Boldi and colleagues (2009; 2011), and Yamakawa et

al. (2007) have discussed potential computation structures for proxy voting systems. A two-step

liquid operational method has been developed in a trial program LiquidFeedback2. First,

problem statements and potential directions are formulated in open discussion. Propositions and

2 An independent open source project published under MIT license by the Public Software Group of Berlin, Germany
(http://liquidfeedback.org/).
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claims  are  grouped  by  the  people  themselves  according  to  their  perceived  similarities.  Open

discussion and formulation of issues produce problem statement(s), and potential directions for

solutions in a self-organizing manner. Then comes the actual proxy vote on solutions.

Distributed data collection and (professionally guided) processing methods have considerable

potential in planning, recognizing existing city features and self-organizing processes to be

considered in defining the planning rules.  Liquid and citizen science approaches fit well with

complexity thinking as inherently self-organizing, trans-scalar methods: multiple agents

producing and arranging data, with observable patterns on the higher scale, within a framework

of given rules for this self-organizing process involving layand professional planners. In

planning, the requirements proposed for the citizen science project by Silvertown (2009)

become even more necessary: a well-designed method, explicit assumptions, and a “hypothesis”

should be formulated. This study aims to build such a frame.

2.4. Self-organization and cognition

An important mechanism in this process is grouping or self-organization of information.

Through this essential cognitive procedure humans perceive the city - not only in terms of what

is observed, but also in terms of potential patterns, giving entities simultaneously a contextual,

relative meaning by grouping. (Haken and Portugali 2003). To perceive the city, information

needs to be self-organized. New entities are perceived, information is grouped (as a new

“class”) decreasing entropy, which enables giving it a semantic meaning (Shannon 1948, Haken

and Portugali 2003). This self-organization takes place in a multi-level process called SIRN

(synergetic inter-representation networks) (Haken and Portugali 2003; Portugali 2012). In

SIRN, an “order parameter” emerges from interactions between internal and external

representations. This cognitive process consists of three sub-processes: Intrapersonal,

interpersonal, and combinations of these in the context of a collective “reservoir”, such as the

city. One of the competing interpretations enslaves the cognitive system, manifest as human

action and decisions (Haken and Portugali 1996, Portugali 2012).

I propose that the above liquid process also follows the basic principles of self-organization of

information and decreasing of entropy fundamental in SIRN: the “problem statements” and

individual claims first emerge and self-organize in intra- and interpersonal processes. Once

coherent entities (themes, rules or “plans”) emerge, they develop in the framework of these

“reservoirs”.
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2.5 Conceptualizing self-organization

All these approaches follow a basic structure which is common to self-organizing systems: 1)

entropy: introduction of new elements/entities; 2) self-organization of information: emergence

of a new “group” with a meaning and 3) stability: establishing  the  class  (Table  1).  They  also

imply a  certain self-regulating feed-back loop – the resulting class  enslaves the system, which

impacts the future classifications, or the emergence of a new class, and so on.

1. Entropy 2. Self-organization 3. Stability

S-O of information,
conceptual

New entity type Emergence of a class Stability and
enslaving

Levels in SIRN
model

Intrapersonal Interpersonal Reservoir

Self-organizing planning Single maneuvers Group of entities Emergence of
a rule

Liquid democracy -model Single proposals Grouping of similar
themes

Estabilished
themes, voting

Table 1. Conceptualization of self-organization of information in social processes.

Next, to bring this conceptualization closer to the realm of planning, a bottom-up planning

experiment is introduced and evaluated based on the above classification, aiming at proposing a

Liquid Planning structure, along with suitable, digital bottom-up citizen science tools.

3. The case of Pispala
The project was administered by Tampere City Planning, and financed by the European

Structural Fund (ESF). The consultants were Tampere University of Technology architectural

team (design of the process, GIS analyses, data gathering and mapping, visualization and

interpretation), and a social planner, a moderator responsible for design and chairing of large

collective meetings, and a local coordinator responsible for general information dissemination.

For this case study, the material, such as meeting minutes, maps, (GIS) analyses, group meeting

reports, and presentations produced during the process by Tampere University of Technology

(TUT) specialists and the participating groups was analyzed from the perspective of information

processing.
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3.1 The case characteristics

Pispala is a topographically and architecturally unique neighborhood in Tampere near the city

center (Figure 1). Since the 1890s it has grown independently just outside the former municipal

border of Tampere around the old village of Pispala, with major expansion in the 1920s along

with burgeoning local industry. Yet the population was very diverse. The neighborhood grew in

a very self-organizing manner, with very limited building or other regulations. Border

conditions were mostly limited to available and affordable techniques and materials and the

peculiar topography, a moraine ridge with steep slopes. The process resulted in unique building

codes and morphology, and autonomous infrastructure organization such as water supply, along

with a myriad of small workplaces, factories and shops, but also a rather unruly reputation

implying resistance against authorities.

Figure 1. Location, topography and morphology of the Pispala neighborhood.

In 1937 Pispala merged with the city of Tampere, but the attempts to regulate the area with

strict municipal plans proposing drastic demolition and modernization were unsuccessful,

thereby preserving much of the built heritage and population diversity. Despite the growing

attractiveness of the neighborhood due to its unique identity, atmosphere and topography, the

area gentrified only partially, and the original bottom-up organization largely remained.  Today

over  30  political,  cultural,  economic,  and  other  associations  operate  in  the  area  with  a
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population of approximately 3,500 (PRH 2013, City of Tampere 2013) (Figure 2.). Yet in recent

decades  the  increasing  attraction  of  the  area  along  with  the  old  plan  and  fairly  free

interpretations of regulations have caused housing volumes to increase, with incongruous

contemporary architecture and (ill-considered) demolition of built heritage. At the same time,

several issues, such as more recent limitations on demolition, restrict the utilization of building

rights, and the city’s growing interest in building up the traditional allotment garden area by the

shore,  which  is  one  of  the  very  few public  open  spaces  in  an  otherwise  extremely  dense  built

structure, give rise to widespread resistance. These circumstances have caused a lot of tension

between different groups and seemingly permanent mistrust in the city planning authorities.

Against this fairly complicated background, the area forms a suitable yet challenging laboratory

for a bottom-up planning experiment.

Figure 2. Characteristics of built environment in Pispala: historical layers, topography and

scattered, self-organized dense settlement structure result in typical spatial appearance of the

area.

3.2 The planning experiment

3.2.1 The structure of the project “KaOs” (KaupunginOsat – city districts)

The design of the KaOs project followed the basic design described in Figure 3.
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Figure 3.  Structure and sequential results  of the KaOs project .

Opening: The conference

The process started with a large open conference aiming at mapping the most crucial problems

and other issues, grouping these into entities, and forming interest groups around the emerging

themes. No prior solutions or proposals were offered.

Each participant presented a brief overview of her personal interests in the area and wrote down

the main point using one sentence.  These notes were collected on the wall, and arranged into

groups according to emerging themes by the presenters. Anybody was free to move anyone

else's note, if able on request to explain why. Finally, the notes formed seven categories. Next,

people were invited to join the group(s) best representing their interests. The groups elaborated

the main challenges in the area from the perspective of the chosen theme, and concluded with

tentative directions for future work. Finally, the groups presented their interpretation of the main

challenges and the means to start working on the problem.

The groups consisted of citizens, firms, and many specialists. Most importantly, experts from

the City of Tampere administration (different sectors, such as planning, parks and recreation,

and real estate) were encouraged to participate actively in the groups throughout the process.

The city administration was committed to this core principle of the project plan from the very

beginning. These “city experts” were equal to other group members for freer discussion within

the group. Researchers from the universities in Tampere were voluntarily involved as

participants. The conference was significant in laying foundations for future work, and the

grouped statements formed unique, unconventional themes.  The project timeline is presented in

Figure 4.
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Figure 4. The project timeline.

Groupwork

Next, the groups started to work independently. Their bottom-up emerging methods ranged

from traditional meetings to city walks, lectures, and spontaneous inquiries. Groups were

assisted by consultant architects from TUT producing and collecting spatial planning material

(GIS analyses of the area, combining spatial information and local knowledge produced by the

groups). General help was provided by local the coordinator. This phase formed the core of the

process, producing environmental knowledge for future steps.

In two follow-up meetings the ongoing work was shared among the groups, the TUT specialists

and the Tampere planning office and the next steps were planned. These meeting provided an

overview of the process state, and enabled open discussion across the groups and specialists.

Designing paths

The working groups were invited to a meeting to collaborate on the structured paths for the

future. The TUT architects then collected the saturated claims emerging from the material

produced with and by the local people. Claims concerned what should/not be done, for example

“no special  use [such as  residential  only]  is  defined for  sites  -  housing and other  activities  are

equally supported in the area”, “existing building right remains, voluntary renovation may

increase the legal building right (sqm) on the site”, “in renovation, wind/solar energy will be

obligatory/allowed/restricted”, “outer fringe of the allotment garden may be built on”, or “no

building on the traditional garden area”.
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Each person was asked to choose the claims they agreed with, either existing ones (original or

modified), or their own proposals. The participants used 210 claims in total to articulate their

visions. In more than half (115) of these statements new or altered claims were used. The TUT

experts grouped the claims in cooperation with the participating laymen, first, according to the

emerging subject. These categories were housing, built environment, [allotment] gardens and

the shore area, parks and [urban] woodlands, traffic, and services and workplaces (Figure 5).

The claims were distributed as follows: housing (59), gardens (26), parks (49), traffic (44) and

work (28).

Figure 5. Example of the material from the path creating process. First round of

grouping of statements, emerging themes housing and built structure (left), coastline

and allotment gardening (middle), and services and workplaces (right).

Secondly, proposals were classified according to the level of manoeuvers, for example in

building conservation “protecting the valuable old buildings [following the evaluation of

Tampere city museums]”, “allowing small changes and additions” or “all new architectural

layers are welcome in the continuous urban process” (Figure 5). The resulting draft versions

were discussed with Tampere city planners and other specialists from the municipal sectors for

acceptable, realistic directions. The material was put together by TUT, and served as the basis

for  the final  phase of  the project.  This  phase was essential  in  structuring the variety of  results

produced in groups, to be able to discuss the future directions in a constructive manner, yet

avoiding predefined solutions.
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The final conference and the workshop

The second large conference aimed at elaborating the final versions of the paths and discovering

the preferred directions for future development of the area, and proposing maneuvers enabling

this.  Each group chose a combination of features in the framework of the existing material.

During the process some of the initial proposals were developed further or combined by

regrouping proposals considered similar. The resulting paths were then presented by the groups

and discussed in public.  Preferred options then formed a loose frame for the future path with

weights (Figure 6).

Figure 6. Final phase of the process with the resulting weights of the proposals.

The final material was collected and visualized (photomontages, maps) by the consultant

architects, and published online. The meeting was important not only due to the knowledge

processed, but also in making visible the surprisingly wide spectrum of views.

The material produced in the groups was mostly in narrative form. To represent the findings

spatially, the information was mapped and visualized by the TUT architects. It seems probable

that the (artistic) quality and decisions concerning content and visual style of maps,

photomontage, and schemes had an important role in communication, emphasizing the future

atmosphere of the space and ignoring precise architectural and technical details (examples of
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visual material  in Figures 8. and 9. in the appendix ).The first meeting attracted over 120

participants.  In follow-up meetings there were over 60, and in the final meeting over 80

participants, of whom 37 were active in the final workshop. During the group work

approximately 50 people were active and others followed the process via email lists or internet.

The formal questionnaire was completed by 39 people, and  indicated that the participants were

mostly residents (29) and property owners (29); to a lesser extent representatives of public

associations (12) and local entrepreneurs (only two). Approximately 10 Tampere city employees

worked with the groups.  Ages ranged from 36 to 60 (18), or over 60 (12).  Young people and

families with children were underrepresented.  Genders were fairly equally distributed

(women14/men19).

3.2.2 Top-down vs. bottom-up

To evaluate the self-organization of the Pispala experiment, the top-down (predefined and

emergent) and bottom-up features of the process needed first to be distinguished. Both are

necessary for facilitating self-organization in any system. Although the Pispala process basically

operated from bottom up, certain predefined top-down rules were crucial. They considered the

basic structure of the project, personnel, form and frequency of public meetings, the group

working format, broad questions to be elaborated (interests, existing features and proposals for

future), and the target area. An essential rule required the presence of a specialist in each group,

who provided advice on the relevant laws, regulations and other border conditions to avoid

wasting efforts (such as emergence of un-lawful suggestions). The rest of the process - methods,

informal meetings and communication, composition of groups and their interest groups, and

most importantly, content of work, focuses and interests – was organized from bottom up. From

the information organization perspective the emergent content of analyses and proposals were in

a crucial role yielding core rules within the project in a self-organizing manner.

Comparison of the project structure to the above evaluation frame of self-organization of

information (Table 2.) showed that it followed the basic threefold progress perceived in many

self-organizing systems. This was evident especially in group formation and proposal phase,

and to an extent in the analyses despite the more prominent role of specialists in producing GIS-

analyses and visualization of maps. The emerging themes enslaved the interests (forming

groups) and focus on analyses; analyses outcomes steered the planning problem statements, and

the grouped statements formed a stabilized setting for voting (and potential planning rules).

Hence the basic structure seems applicable for self-organizing Liquid Planning although the role

of specialists needs consideration in a digital process.
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1. Entropy 2. Self-organization 3. Stability

S-O of
information,
conceptual

New entity type Emergence of a class Stability and
enslaving

Levels in
SIRN model

Intrapersonal Interpersonal Reservoir

Self-organizing planning Single
maneuvers

Group of entities Emergence of a
rule

Liquid democracy  model Single proposals Grouping of similar
themes

Estabilished themes
- voting

group
formation

individual
statements

combining statements
– emergence of a
group

final group with
defined (common)
interests

analyses collecting data emergence of
planning problems

reports, thematic
maps

planning
proposals

individual
maneuver
proposals

grouping proposals
into themes

final set of rules,
voting

Table 2. Comparison of self-organizing processes and the Pispala case structure. The self-

organization of information is a common principle.

4. Liquid planning

In light of this evaluation and conceptual premises, I propose the following structure for a liquid

spatial planning process (Figure 7.). First, stating the interests (“entropy creation” 1); secondly,

grouping of the interests (self-organization 1 - emergent themes); third, proposing

potential/preferable futures (“entropy creation” 2); fourth, grouping and combining of these

(self-organization 2 – emergent, grouped proposals); and finally, proxy voting on the popularity

of each of the future views (establishing the rules). The analyses would be carried out in groups

by local actors (representing economic actors, individuals, organizations) under the guidance of
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specialists (for example municipal city or traffic planners), who participate throughout the

process, or hired consultants.

Figure 7: Conceptualization of the liquid process.

The process would start by formulating statement(s) describing the current problem. The

initiative, a loose frame for the work, may be provided by the City (an ongoing (planning)

project),  or  emerge  bottom-up.  In  this  case,  informing  the  city  planners  at  an  early  stage  and

including them throughout the process would be essential for a mandate for the project. The

digital, moderated “shared space” would consist of an online forum, in which registered

volunteers could freely and concisely articulate their main interests. Initially, each could

propose one crucial aspect of the case with no restrictions on the subject. Next, numerous

diverse claims would be grouped by the users and the specialists according to perceived

similarities between them. The web design should enable a) creating and reading the claims b)

grouping and re-grouping them using hashtags or similar proven methods (Crooks et al. 2013),

and c) reviewing the overall structure. Interest groups would emerge through saturation within

the process. Members of one group could contribute to any number of groups while each

specialist would attend in specific group.

Next, the groups would formulate their main concerns and aims regarding the proposed interests

(testable “hypotheses”), producing a coherent problem statement, and a loose work plan. The

thematic nature of the groups would encourage choosing the most appropriate citizen science

technology for the cooperative “research” with specialists, monitoring how people use the
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space, mapping important places, traffic jams, DIY urbanism, vandalism or street art while they

move – or use existing online data. Any (online) freeware could be used (such as GoogleMaps,

MyStreet), while basic tools could be linked to the service. Groups could also select

“analogical” methods (live group meetings or city games, or city walks.).  The data could be

verified and complemented with standard analyses by the city professionals. The tools, methods

and material produced could  be shared and debated online during the process.

The procedure would follow the concept of synchronic design introduced by Marc Angélil

(2004). Instead of aiming at (unrealistic) dualistic, causal progress from analyses to design,

synchronic design solutions emerge in a hermeneutic-heuristic cycle shifting between intuitive

production (of space) and conscious analyses (Angélil 2004). The concept resembles the actual

design process.Analyses produce embryonic ideas, which prompt more questions, and are tested

again, producing more advanced ideas, allowing potential and preferable future views to

emerge.

In the next phase, these emerging ideas would again be formulated as short statements

concerning the spatial city, and combined according to agreed similarities (for example “green

spaces” and “urban gardening”; “pedestrian accessibility” and “sports facilities”). This process

would be analogical with the online project Wikipedia: anyone could combine proposed future

views to form an “article”, and the resulting new proposals could be split, re-combined, or the

manoeuver could be cancelled. Again, the process should produce structured ideas classified by

subject (such as building conservation and history, light traffic solutions, green urban space,

economic and business spaces), and, due to a divergence of views, also according to the level of

manoeuvers (for example title “traffic modes and accessibility” may range from “mixed street

space for pedestrians and cars”, “cars have priority, yet new bike lane needed” to “must stay as

it is”). This procedure would enable the utilization of existing analyses and saturation of

similarities in views, but also a structured way to point out differences between solutions.

Ultimately these could be evaluated using new citizen science tools, 3D visualization

(CommunityViz, Esri CityEngine or GeoWeb 3D); or augmented reality (VuFrame,

GoogleSketchUp), in cooperation with planning professionals in groups. Customized

simulations could also be used, such as collaborative model building techniques (Zelner et al.

2012) in which participants learn about operation and structure of the model to for example

propose modifications to existing open-source urban models (Sleuth, UrbanSims).  This phase

would produce visualized wiki-style articles, perhaps interlinked to an earlier phase or other

material such as dynamic maps and visualizations, or to each other.

At this point the system would be frozen, and a proxy voting procedure on proposed scenarios

could be carried out. Anyone could vote for a solution, or delegate the vote to someone they
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trust, perhaps applying next generation more advanced social networks (Boldi et al. 2009,

2011). Eventually a selection of various future visions would emerge, with weights indicating

their preferability.

5. Discussion

Planning  praxis  responsive  to  the  needs  of  complex  cities  is  in  progress.  Here  I  introduced  a

liquid planning method based on self-organization, and claimed that it could provide such a new

“complexity planning” method producing the necessary planning rules from bottom up. A

general conceptual frame for many self-organizing processes – entropy, self-organization,

stabilization – was derived from generative approaches in self-organizing human systems.

Against this frame, a planning experiment in Pispala was evaluated to estimate whether it did

indeed follow these phases and could be used as a basis for self-organizing “liquid planning”.

Apparently, the Pispala process managed to capture self-organizing patterns emerging from

agent interaction essential in defining the smart planning rules, following the proposed

principles of self-organization through decreasing of entropy and emerging order enslaving the

system.  It  hence  appeared  that  the  structure  of  the  Pispala  experiment  could  be  considered  a

feasible model for an online liquid planning method applying recent technological tools.

Presumably,  in  digital  version   several  positive  features  of  the  Pispala  case  could  be  better

supported and some challenging issues more easily resolved: The physical limitations made the

live project fairly time consuming and expensive (spaces, material, personnel). The project had

fixed deadlines, while liquid planning would enable a more synchronic design process. The

analyses and design tools were limited - an online application could enable more diverse use of

these, and division of the tasks among people (thereby reducing the dependence on material

produced elsewhere).  An online application could also encourage the non-active groups to join

in: families with small children due to more flexible schedules, and young people with greater

interest in online activities (Poplin 2012), enabling “lighter” participation by only following the

process. A proxy voting system might involve more people, or even offer tools for estimating

hypothetical votes calculated on the basis of the social networks of non-active members (Boldi

et al. 2009).

 Notwithstanding the benefits, limitations of the LP are obvious: The Pispala project was valued

especially due to live  personal encounters, which would naturally be lost online. Potential live

meetings in liquid planning raise the issue of those participating only virtually being excluded

Furthermore, the initial process would probably be time and energy consuming for planners, but

could eventually save time during the planning, produce better adjusted, lighter, and more
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precise plans with only essential rules, and reduce the need for massive updates of the plans in

the future. This requires a shift in how the planner’s role is understood: for an appropriate global

plan, her perhaps most demanding task would be to conceptualize and convert the results into

planning rules, whether these are relationships between entities, emerging “basic blocks”, or

more static frames for action. In addition, if the project emerges spontaneously, a mandate (via

qualification and registration) is needed from the city to ensure the resources and availability of

the  specialists/planners.  It  is  also  noteworthy  that  the  population  of  the  case  area,  Pispala,  is

relatively well educated and active. Thus the method must be tested in other neighborhoods or

cities - it may not be universally applicable. Essentially, the role of the city planner remains

largely unresolved at this stage of the project: Despite the fairly equal role of the city planner

and other potential hired experts in the process the city planners’ professional skills are

necessary for moderating and guiding the process, producing material, and visualization. Spatial

planning processes obviously entail responsibilities, skills and knowledge beyond the scope of

the average “citizen planner” (ethical issues concerning the “common good”, urban design

skills, and an understanding of urban processes, information about current and future projects,

personal/professional networks), and also non-sharable data, in Finland, for example, detailed

census.

Along with increasing operational skills, people’s emotional engagement usually increases

(Stebbins 2007). Furthermore, planning is crucially often closely related to perhaps more

serious or emotional concerns (such as property values and the quality of everyday space) than

citizen science in general. Thus in planning the explication of the prior assumptions becomes

even more important (Silvertown 2009). These threats must be carefully studied with a future

prototype liquid planning case. In the Pispala experiment, the TUT team had a fairly prominent

role in the representation and meta-level steering of the process, yet a surprising amount of

expertise emerged within the groups (local architects, researchers).  The actual online trial

version should be tested to evaluate the level of expertise and guidance needed, and whether

manipulation in the system becomes an issue.  Another open question emerged during the

Pispala case: what would be the role of the material produced in a decision-making process?

This  issue remains open,  and should be addressed future in  the in the context  of  city  planning

procedure:the implication is that the quality of the work might not be adequate for planning.

Moreover, to identify further opportunities and problems of the procedure, future research aims

first to thoroughly explore the potential open source tools applicable in a liquid process.

Secondly, a proto-model needs to be built for a genuine liquid planning experiment. This work

is in progress.

In a complex city we need to build better global plans which do not disrupt the desired self-

organizing urban processes emerging from local level, and build flexible global guidelines



Partanen, J: Don’t fix it if it ain’t broke

208 | P a g e

which may help the city system to adapt to sudden changes. The liquid process could provide a

means to pinpoint fundamental features of urban life to create planning rules for such a global

adaptive plan but, understandably, does not provide an universal solution. It might help to set

the border conditions along with other complexity planning methods including, for example,

studies on self-organizing mechanisms and triggers affecting preferable urban dynamics

regarding  economic,  cultural  and  social  processes.  The  potential  impact  of  these  rules  on  city

progress could then be explored using simulations and modeling to rule out undesirable

development. The effects of the implemented plans could also be evaluated using the

appropriate evaluation methods mentioned above to guide urban processes towards desirable

goals and directions, in an adaptive circular process.

A possibility exists that the LP process could become continuous - a certain “local planning

democracy”, co-operating with the city and disseminating information on ongoing local

planning, hopefully providing a smoother way to adapt to unavoidable shifts and ruptures in

urban dynamics.
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APPENDIX

Figure 8. Examples of analyses produced by the TUT team.
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Figure 9. Examples of visualizations produced by the TUT team.
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