TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

Minna Lanz

Logical and Semantic Foundations of Knowledge
Representation for Assembly and Manufacturing
Processes

Tampereen teknillinen yliopisto. Julkaisu 903
Tampere University of Technology. Publication 903

Minna Lanz

Logical and Semantic Foundations of Knowledge
Representation for Assembly and Manufacturing
Processes

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Festia Building, Auditorium Pieni Sali 1,
at Tampere University of Technology, on the 6™ of July 2010, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2010

ISBN 978-952-15-2393-9 (printed)
ISBN 978-952-15-2410-3 (PDF)
ISSN 1459-2045

Abstract

Partly due to the increase in global competition, the nature of manufactur-
ing paradigms in Europe has been undergoing continuous change in recent
decades. Pressures from the market are forcing companies to evolve into
new entities of development and innovation. The trend of outsourcing to
lower-wage countries, global market situation and geographically dispersed
operations are imposing new challenges on manufacturing companies to be-
come collaborative elements in the scheme of the supply chain. It is no new
news to anyone that problems are arising when manufacturing experts are
situated in Europe, design teams are spread around the globe and the oper-
ations are performed somewhere in Asia.

In order to keep up with the competitors the knowledge of the product itself,
possible production facilities, and suitable processes has to be shared amongst
the teams with ever-increasing speed.The emergence of highly computerised
design and control systems is changing the fundamental assumptions of how
product and production should be planned and controlled. Centralised con-
trol and decision-making systems based on hierarchical control structures and
tightly-coupled system interfaces are giving way to globally distributed net-
works that both enable and require localised and fast adaptation to changes.

There are two problems identified in this thesis that are closely related to
the decision-making systems and knowledge share among those. The first
problem is the amount of information stored inside companies information
systems and its lack of meaning. Especially in the design of products and
production systems the proprietary design models are converted from one
model to another numerous times. Because of the lack of interoperability
between systems, only the basic geometry is exchanged and the rest of the
information may or may not be transferred manually to the new design. The
discontinuous knowledge flow often results in several different and contra-
dictory models of the same design. This also leads to a situation where the
re-use of knowledge becomes a slightly hazardous task, since before the ex-

111

isting knowledge is used someone must verify that all of the disconnected
pieces are valid.

The second problem emerges when the product knowledge is used as a set
of requirements for the design of the production system. In order for the
production to be launched as soon as possible, the production plan is usually
verified with a decision support system. However, since decision support sys-
tems, either on the design level or the actual production control level, rely
on the input knowledge, the lack of it naturally undermines the reliability
of the decision making. This is one of the greatest technological barriers to
the implementation of the greatly desired complex and adaptive production
environment, since without the meaning of the models that are used the rea-
soning becomes almost impossible.

As several other challenges to implementing an integrated collaborative and
dynamically adaptive production environment exist, only two challenges are
taken into focus in this thesis. Both challenges have multiple facets, but they
do share a common need: a formal rigorous knowledge representation. The
approach introduced here aims to create a common knowledge representation
between the product, process, and system domains. The aim is not to model
everything that can be included in a knowledge representation but to model
the common core components and their relations.

The approach in this thesis starts from a feature-based modelling and analysis
method and utilises the detailed product knowledge as the core of the knowl-
edge representation. The process-, and system-level knowledge is represented
with the necessary detail and the amount of it that is needed that are suit-
able for a given situation. The thesis introduces a knowledge representation
(KR) for combining design information from several different sources into one
reference architecture, which can be accessed via a common interface. The
chosen approach is tested by means of three separate cases, which validate
the KR from different perspectives. The first case study will evaluate the fea-
sibility of utilising geometric and non-geometric features as the prerequisites
for process modelling. The second case study evaluates the integrity and
expressiveness of the KR by integrating the input from several commercial
clients into one representation. The third case study evaluates the KR in a
real production environment, where the KR will provide the knowledge for
a holonic manufacturing system and save the events and device parameters
into the history of the product that is realised after the operations are com-
pleted.

v

Preface

The purpose of this thesis is to provide a description of one approach to
adding meaning to the models used in and between the design and manufac-
turing environments. The thesis focuses on the reasons behind the chosen
approach and its results in the form of three separate case studies.

The literature offers multiple solutions for knowledge representations in de-
sign and manufacturing environments. Most of those representations focus
on specific areas such as product knowledge representations, process descrip-
tions, or hardware-level knowledge representations. This work adds input to
the holistic approach, in which some of the previous approaches are combined
and developed further to fit the needs of the problem areas. Naturally, this
approach does not intend to solve all of the problems related to the field of
complex systems, but to provide a novel step for future developments.

vi

Acknowledgements

The doctorate is a journey. For parts of it one walks alone and for parts of
it one has company to discuss the best route. For me this journey has been
a true learning experience ranging from exhilarating boosts of motivation to
sometimes mind-boggling levels of frustration, nonetheless, the journey was
never boring.

One person can very rarely complete this kind of fundamental yet practical
work single handedly. I would like to hereby express my sincere gratitude to
my fellow researchers at the Tampere University of Technology (TUT) and
at the National Institute of Standards and Technology (NIST) who had the
time and patience to discuss and sometimes to argue and debate the possible
and impossible options with me during my research. I cannot possibly list
all those who contributed to the work. So, I thank You all, even if I only
name a few of you here.

I would like to express my utmost gratitude for professor Erno Keskinen’s
Graduate School and Department of Production Engineering for this oppor-
tunity, challenge and freedom to choose a topic that allowed me to explore,
learn and grow at my own pace.

I want to thank my supervisor professor Reijo Tuokko for his confidence in
my efforts and the success of this work. I am grateful to my external eval-
uators professor Michel Cotsaftis from Ecole Centrale d’Electronique (ECE)
France and Dr. Albert Jones from NIST for good comments and interesting
discussions. Your feedback has been a truly great source of motivation to-
wards the final phases of the work.

My sincere thanks go to Ricardo Velez for creating the beginning and to Fer-

nando Garcia, Eeva Jarvenpédé, Roberto Rodriguez, Timo Kallela, and Pasi
Luostarinen - you are the best team one can hope to be part of.

Vil

I want to thank my mother Johanna for love and support during these past
years and Kimmo for reminding me about the facts of engineering - yes,
pushing with a rope rarely works.

Lastly I want to thank my beloved husband Atte Joutsen for simply being

there for me, supporting me when the motivation took a dive and rejoicing
with me when a challenge was met.

Minna Lanz
Tampere, 2nd of June 2010

viil

1X

Contents

Abstract iii
Preface \%
Acknowledgements vii
Contents X
List of Figures xii
List of Tables XV
Abbreviations and Acronyms Xix
Logical Operators xxiii
1 Introduction 1
1.1 Business-Level Problems 3
1.2 Technical-Level Problems 6
2 Research Objective 11
2.1 Formulation of the Research Objective 11
2.2 Hypothesis.o 13
2.3 Research Methodology 13
2.4 Limitations 15
3 Structure of the thesis 17
4 Generic Literature Review 19
4.1 Introduction to Literature 19
4.2 Overview of the Connectivity between Product Models, Pro-
cess Structure, and System Requirements 20
4.3 Product Models 23

x1

4.3.1 Feature-based Modelling for Definition of Elementary

Product Information 23
4.3.2 Product models for data exchange 25
4.3.3 Assembly Process Requirements through Assembly Fea-
tures 27
4.4 Process and System Models 29
45 Knowledgeo 32
4.5.1 Knowledge Representations 35
4.5.2 Tools and Languages Sharing the Knowledge 39
4.5.3 Knowledge-Based Systems 40
5 Proposed Methodology 51
5.1 Step 1 - Establishing Correct Requirements 52
5.2 Step 2 - Definition of Connection Between Domains 53
5.3 Step 3 - Generation of a Conceptual Model 63
5.4 Step 4 - Creation of a Knowledge Representation 67
5.4.1 Core Ontology - Product Definition 75
5.4.2 Core Ontology - Process Definition 78
5.4.3 Core Ontology - System Definition 81
5.5 Step 5 - Evaluation of the KR on the basis of the Set Require-
ments 84
6 Implementation 87
6.1 Knowledge Base 87
6.2 Product, Process, and System Knowledge Acquisition 93
6.2.1 An Interface to the Core Ontology and Access to the KB 93
6.2.2 Knowledge Base Web Client 96
7 Case Studies 99
7.1 Case Study 1 - Feature Recognition 101
7.2 Case Study 2 - Semantic Mapping between Different Systems . 107
7.3 Case Study 3 - Ontologies and KB for Proposed Holonic Man-
ufacturing Systemo 115
7.4 Impact of the Case Studies on the KR 119
8 Conclusions 121
9 Summary of Contributions 125
10 Future Work 127
Bibliography 131

xi1

List of Figures

1.1

1.2

1.3

2.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

4.9

5.1
5.2
2.3
5.4
2.9
2.6
5.7

2.8

Product design, process planning, and production were previ-
ously closer to each other than today
Distribution of product design, process planning, and produc-
tion around the globe oL
Arrow of Progress, modified from [56]

Definition of the two main problem areas that share common
needs

Integrated Assembly Model from [54]
UML diagram of the CPM and OAM, modified from [53] . . .
Assembly process-related features [42,65]
Basic concepts of PSL: Activity, Occurrence, and Successor [4]
ONTOMAS product, process, and system domains [45]
Manufacturing Ontology in the ADACOR Architecture [5]
Structure of Manufacturing Entities, Services, and Systems,
adapted from Lanz et. al, [40]
Knowledge representations of an entity, modified from Nylund
[49] and Lanz [41]
Connections and Relations in the DiMS framework, modified
from [49]

Product, Process, and System Connectivity Graph
Assembly Activity Levels in the form of a taxonomy
ASD model - Direct Connection
ASD model - Indirect Connection
ASD model - Sub-assembly
ASD model - Mating Conditions
Assembly State Decomposition model of the product view and

acase product
ASDM product and corresponding activity graph from the

case product Lo

31

5.9
5.10
5.11

5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24

6.1
6.2
6.3
6.4

6.5
6.6
6.7
6.8

7.1

7.2
7.3
7.4
7.5
7.6

7.7
7.8

7.9

ASD model of the Activity View - Prior Activity 60
ASD model of the Activity View - Repetitive Activity 61
Manufacturing State Decomposition Model of the part view

and a case product 62
Product-Process-System Model 65
Product and Resource viewpoints 66
Connection of the Object, Activity, and Resource (Area) levels 68
Resource(Actor) classes L 71
Resource(Device) classes L 72
Feature classes oo L. 72
Product Definition in the Core Ontology 75
Geometric Feature Class and its sub-classes 7
Non-geometric Feature Class and its sub-classes 7
Process Definition in the Core Ontology 78
System Definition in the Core Ontology 81
Structure of the Device Class 82
A view of Protégé and the product, process, and system domains 86
The KB and the clients 88
The KB and the surrounding manufacturing systems 89
Conceptual structure of the KB 90
Ontology Querying Services for product, process and system

knowledge Lo 90
Ontology Management Services 91
[lustration of the query process 94
Get() functions of the interface 95
Knowledge Base’s Web Client 97
Summary of the case studies performed in order to evaluate

the expressiveness and feasibility of the KR 100
Features connected to manufacturing costs 101
Manufacturing Process Levels 102
Pro-FMA 104
Pro-FMA Process Editor 106
Sequence graph of connection between Pro-FMA and Knowl-

edge Base 106
Knowledge exchange between clients 107
Ontologies and KB as knowledge exchange media in PiSA ad-

vanced design, planning and optimization toolset 109
Extract of potential connections between classes of CAMe-

LEAN and the Knowledge Base 110

Xiv

7.10

7.11

7.12

7.13
7.14

10.1

CoreOntology as a source for populating the simulation envi-
ronment oL oL
Ontologies and KB as knowledge exchange media in the PiSA
advanced design, planning, and optimisation toolset
Resources descriped in the CAMeLEAN design environment
and connection to the Core Ontology
Reference Architecture, System Description and Workflow
Communication of holonic entities in the laboratory demon-
stration [B5] Lo

Options for process flow based on the product features, device
capabilities and other production parameters

XV

XVl

List of Tables

5.1 Core Ontology:
5.2 Core Ontology:
5.3 Core Ontology:
5.4 Core Ontology:
5.5 Core Ontology:
5.6 Core Ontology:
5.7 Core Ontology:
5.8 Core Ontology:
5.9 Core Ontology:
5.10 Core Ontology:
5.11 Core Ontology:
5.12 Core Ontology:

Class Product 76
Class SubAssembly 76
ClassPart 76
Class Activity 79
Class Process 80
Clags Task 80
Class Operation 80
Class Action 81
Class Resource 82
Class Area 82
Class Actor 83
Class Device 83

XVvil

Xviii

Xix

Abbreviations and Acronyms

ADACOR

Al

ASDM
BMS
BOM
CAD
CAM
CAPP
CAx
CMSD
CoreOnto
DAML-OIL

DB
DiMS
DL
DOLCE

eBOM
ER
FOL
FrMS
FRS
GFP
HMS
IEC

ISO
JADE
JSON
KB

ADAptive holonic COntrol aRchitecture for distributed
manufacturing systems

Artificial Intelligence

Assembly State Decomposition Model

Bionic Manufacturing System

Bill of Material

Computer Aided Design

Computer Aided Manufacturing

Computer Aided Process Planning

Computer Aided X

Core Manufacturing Simulation Data

Domain Ontology inside the Knowledge Base
DARPA Agent Markup Language - Ontology
Interchange Language

Database

Distributed Manufacturing System
Description logics

Descriptive Ontology for Linguistic and Cognitive
Engineering

engineering Bill of Material

Entity Relationships

First Order Logic

Fractal Manufacturing System

Frame Representation systems

Generic Frame Protocol

Holonic Manufacturing System

International standard for Enterprise-Control system
integration

International Organization for Standardization
Java Agent Development Framework
JavaScript Object Notation

Knowledge Base

XX

KBS

KIF

KR

KRF
mBOM
MSDM
OEM
ONTOMAS
OWL

PL
Pro-FMA
PPS model
PSL

RDF
STEP
SOAP
SPARQL
SQL
UML
VRML
W3C
X3D
XML

Knowledge-based System

Knowledge Interchange Format

Knowledge Representation

Knowledge Representation Formulation (method)
manufacturing Bill of Material

Manufacturing State Decomposition Model
Original Equipment Manufacturer

Ontology for the design of Modular Assembly Systems
Web Ontology Language

Procedural Language

Feature Recognition tool
Product-Process-System Model

Process Specification Language

Resource Description Framework

Standard for Exchange of Product model data
Simple Object Access Protocol

SPARQL Protocol and RDF Query Language
Structured Query Language

Universal Modeling Language

Virtual Reality Modeling Language

WWW community

eXtensive 3D, successor of VRML format
eXtensive Mark-up Language

poel

xxil

Logical Operators

T LA <>w<

for all

there exist
and

or

not

partOf

if

if and only if

xxiil

XXiv

Chapter 1

Introduction

The global economy has caused product design, process planning, and pro-
duction to be more and more distributed around the world. Previously the
product design, process planning, and manufacturing were located close to-
gether and the knowledge exchange between the design domains was on pa-
per, as illustrated in Figure 1.1.

As the distribution of design, planning, and operations took place, close col-
laboration became more difficult. Today design teams are located on every
continent and the design process is going on around the clock; see Figure 1.2.
In such a geographically and temporally divided environment, effective and
proficient collaboration between design and manufacturing teams and the
factory floor is crucial in maintaining product quality, production efficiency,
and organisational competency.

Global competition has changed the nature of manufacturing paradigms in re-
cent decades. Turbulent production environments, short product life-cycles,
and the frequent introduction of new products require more adaptive sys-

Formalized knowledge exchange

k j
Product design,
Process planning and Product ~ Process ~ SyStem
Production site are in (what) (how) (where)

the same location 3

Documentation in paper

Figure 1.1: Product design, process planning, and production were previously
closer to each other than today

step

Unformalized knowledge exchange ,_-— T vem
o iges ™.,
- T
o A
- -
d
Product Process System
(what) (how) (where)
Product design, B /ﬂ\ 4
Process planning and e xs = 4 PDF J
Production site are not emaft—-—.__ .-~ ml ™ /
. i ™,
in the same location N dfx

Figure 1.2: Distribution of product design, process planning, and production
around the globe

tems that can rapidly respond to the required changes, whether the changes
are based on product design changes or changes in the production it self.
The emergence of highly computerised design and control systems is chang-
ing the fundamental assumptions of how production should be planned and
controlled. Centralised systems based upon the need to share data by point-
of-need acquisition are giving way to global distributed design and production
networks that both enable and require localised and fast adaptation to pro-
duction changes. Because of the resulting greater complexity of heterogenous
interacting components, the production system can no longer be guided and
controlled only on the basis of the sole capability of a human operator pre-
dicting the future state of a dynamic system on the basis of static models of
its initial state [10,12,13,58|.

European industry has started to acknowledge that traditional approaches
are reaching the limits of their technological and computational feasibility.
Complexity science offers the tools to confront these challenges head on by
emphasising a shift from purely logic-based rational design to a distributed
design approach harnessing the capacity of self-organisation that is adapted
to the natural complexity and changeability of the real world, both natural
and man-made [10,12,13].

The adaptivity, proactivity, and self-organisation of production entities can-
not be reached without new intelligent information systems' that are capa-

!The new intelligent information systems refer to tomorrow’s systems that can, semi-
automatically or even automatically, utilise the information saved into current I'T-systems

ble of utilising and reasoning with the information saved into the current
information and design systems used in various phases during the product
life-cycle. The development of these kinds of systems presents a very ambi-
tious challenge, not only because of the underlying logic, but also because
of the knowledge acquisition. The reasoning within these systems relies on
the information obtained from the current I'T systems. In order to perform
reasoning, the intelligent system has to query information from other sys-
tems. Again, in order to do that, the control system needs to know what
kind of information resides inside the design systems providing the required
information [31].

In order to develop production systems into proactive and adaptive smart
factories [10], there is a need to look to the grassroots level, because the re-
quirements tend to be somewhat high for the information systems available
on the market today. The main problem is that the models and documents
created with various systems are meaningless regarding their knowledge con-
tent for systems other than their authoring system. Where are the intelligent
information systems supposed to get the knowledge they need to perform au-
tomatic reasoning” How can the reasoning be done if there is no knowledge
or even information available?

1.1 Business-Level Problems

At the moment, the industrial world has produced numerous design systems
for different processes. Currently, companies are storing almost all of the
information they create via computers. Servers are saving, replicating, and
archiving the collected information non-stop. The amount of stored informa-
tion today is, to put it simply, huge [14].

The storing of the information or size of the models? are no longer seen as
grand challenges. The problem today is the meaning of the stored informa-
tion. The design knowledge remains locked in the authoring system. In a
large-scale company there can be up to hundreds of different design support
systems, versions, and ad hoc applications built on top of those which are

for example in order to perform dynamic production planning and reconfiguration or to au-
tomatically design production systems by mapping the product and process requirements
to the capabilities provided by the system components.

2The term 'model’ is used to refer any product, process, or resource representation
created using CAx systems.

used to create the information of the current product, process, and/or pro-
duction systems. All of the systems use their proprietary data structures and
vaguely described semantics. This leads to challenges in sharing information,
since none of these are truly able to share data beyond geometric visualisa-
tions.

This leads to several problems from the knowledge management point of
view. The first problem is that the communication and cooperation between
departments’ "design domains" becomes time-consuming. Current modelling
systems and data transfer standards do not support design collaboration ef-
fectively in terms of the capture, formulation, exchange, and integration of
design information and knowledge within the design and manufacturing cy-
cle. In most cases, in order to exchange information the models have to be
created over and over again to be suitable for use in another design domain.
The actual exchange of design information is not done via models, but rather
with other design documents such as MS Word, MS Excel, or email [31].

The second problem is that with every remake and update the model actu-
ally loses information. This happens because the second tier does not require
all of the information created in the first phase and when there is a remake
only what the second tier sees as important information is saved. Depending
on the purpose of the design task to be solved, the entity being modelled
is viewed from different viewpoints or aspects. For example, if one wants
to analyse the manufacturability of a product, the designer is interested in
different aspects from those considered by someone who is analysing the func-
tionality or appearance of the product. The entity being modelled is the same
- the product - but the viewpoint is completely different and, therefore, the
model is also different. Because of this fact, during the product development
process, an incredible number of different plans, models, and other documen-
tation are created. Moreover, these models do not have any real connection
to each other, even though some of the information, 3D geometry for ex-
ample, is the same and the changes made on the geometry level will affect
both of the models.The result is that there are multiple sources contributing
specific knowledge to several isolated models and revisions instead of to a
"master mode"l, which is the main model each party uses and to which it
contributes results.

Jarvenpad et. al. [31] stated on the basis of a field study in a large global
company that the phases in product and process design - roughly divided into
product design, process planning, and production system design - are closely
related. The phases utilise the requirements from each other. But the doc-

4

umentation created during these design phases, and their many sub-phases,
is hardly connected. The next phase in the product development process
usually creates its documentation from scratch or by manually copy-pasting
from other documentation. This leads to a serious problem with updating
the models and documents.

The updating affects only those very models or documents that are being
updated, while those created on the basis of them become obsolete. One ex-
ample of such a "snapshot" design approach is making the assembly process
plans or work instructions with MS Excel or such and taking several snap-
shots of the CAD model, authored, for example, in CATIA. The resulting
process plan is like a comic book, which is not dynamic, and the usability
and efficiency of the plan are greatly affected by the viewpoints from where
the snapshots are taken [31]. As soon as the CAD model is updated, the
assembly process plan or work instruction documentation becomes obsolete,
because these two models do not have any integration. However, in reality
these obsolete documents continue their existence and in many cases are used
as the main knowledge source for part of the design team.

The third problem, which follows from these two, is the re-use of the knowl-
edge. At the moment, the re-use of existing information is quite impossible
because of the several models that are meaningless and, in most cases, con-
tradictory to the corresponding design documentation. For example, the
production planning knows that there are several stations, robots, and grip-
pers that can be re-used in the production of the next product family. They
are also aware that these need only minor modification. However, despite
the amount of stored information and number of existing devices, there is
no up-to-date complete and easily available information on the interfaces,
life-cycle data, and dimensions of the station and its components. The new
stations or lines are therefore designed by starting with a new design project
and an empty factory floor.

There is great potential for the re-use of the models and corresponding phys-
ical components. But once again the problem is that there is no formal
definition, such as an ontology, which would explain what the system is,
what its capabilities are, how long it has operated, and, moreover, what the
virtual model used to describe it is.

The fourth knowledge management-related problem shifts the knowledge
management and representation problem to a process design problem. Since
the design and production phases of the manufacturing process are the next

tiers in the knowledge flow, the knowledge management problems directly af-
fect the efficiency of process design and manufacturing. The fourth problem
is actually the utilisation of knowledge that has been created as a basis for
semiautomatic reasoning about manufacturing system design and production
control. Reasoning based on non-existent knowledge is somewhat impossible.

Because of the problems discussed above, decision support systems are at
best unreliable and rely heavily on their users’ expert knowledge. This is
one of the greatest technological barriers to the implementation of a complex
and adaptive production environment?, since without the meaning of the
knowledge or as a result of the lack of suitable models the reasoning becomes
virtually impossible. There are several other barriers to achieving an inte-
grated collaborative and dynamically adaptive production environment as
well, but from the information-sharing point of view the greatest is the lack
of formal knowledge representations. This often forces the experts to manu-
ally transfer information between otherwise automatable functions, with the
concomitant introduction of errors, ambiguity, and misinterpretation. This
also leaves production planning and control systems unable to share the in-
formation with the required speed and accuracy. It can be argued that the
problem with decision making is somewhat solved, unfortunately at consid-
erable expense, as a result of highly customised information mapping using
translations and ad hoc implementations knit together. The result is often an
unstable structure of mainly shallow (meaningless) information and a system
that does not meet the requirements set by the industry.

1.2 Technical-Level Problems

There exist curious mixture of international and national standards and mod-
els that are making the unambiguous knowledge exchange difficult, error
prone and time consuming. This underlines the need for a clear, unam-
biguous, and standardised interoperability infrastructure. As Ray and Jones
stated [57], such an infrastructure still does not exist.

However, there are three approaches that have been used to create such a
knowledge exchange infrastructure. The first approach is the point-to-point

3The interest of this thesis lies in next-generation manufacturing systems that are
recognised as dynamic and evolving systems. These systems are envisioned as being highly
adaptive entities where the adaptation relies on the knowledge representation of these
systems.

customised solution, where dedicated interfaces are created between the de-
sign tools. In the long run, as versions change, the maintenance of each of
the interfaces becomes expensive. The second approach is the one-size-fits-
all solution decided by the proprietary interface of the OEM for design and
planning and knowledge exchange between parties. While this is very cost-
efficient for the OEM, it causes nightmarish expense for their partners who
are working with several OEMs. Moreover, the global outsourcing has also
made this approach practically impossible to implement and maintain over
a longer period of time. The third solution is a neutral and open reference
architecture based on published standards or internationally accepted mod-
els. Naturally, this architecture has to have well-defined meanings associated
with the information entities of the model. Without explicit, rigorous defi-
nitions of the meaning of those entities, there is a great danger of continuing
along the path of misunderstandings.

To represent the meaning of models, in recent years, industrial standards
have been defined in a more computer-readable form, most notably since
the emergence of eXtensive Mark Up (XML)-based formats and computing
power. As a language, XML has a number of advantages for developers and
implementers, because these specifications can be compiled by computers,
databases can be built automatically, and certain kinds of testing can be
performed more easily. According to the observations by Ray [56], along the
way XML markups have been used as a substitute for modelling the infor-
mation - a dangerous shortcut that only works in communities that already
share a common understanding and representation of the meaning and us-
age of terms. A far better approach to integration is to adopt one of the
emerging semantic technologies, such as Web Ontology Language (OWL), or
first-order logic [56].

This evolution of representational power toward formal semantics, and the
systems integration capabilities that could follow, are shown in Figure 1.3.
The lowest level in the figure shows the current state of the art, where the
XML-based standards are utilised with relative ease within the IT sector,
but not fully utilised in more conservative industry sectors. The second step,
formal semantics, offers the generation of standardised representation that is
formal enough to be parsed with computers. The third step is self-describing
systems, where the systems can provide formal descriptions of their content
and interfaces. This requires a formal semantic definition language that is
rigorous enough to support logical inference.

The fourth level that Ray [56] proposes is self-integrating systems. These

7

Self-integrating Systems
Self-describing Systems

Explicit and Formal Semantics

T

Common Models of Data _

Figure 1.3: Arrow of Progress, modified from [56]

systems are intelligent enough to be able to ask others for a description of
their interfaces and, on the basis of the information thus acquired, adjust
their own interfaces to be able to exchange information.

However, because of the clear separation of design domains and the lack of
integrated knowledge representation, the utilisation of XML tends to stay
inside the domain boundaries. The boundaries of design domains are, histor-
ically, the boundaries of each design system. Modern design systems could
utilise XML as a generic representation language; however, its use is limited
to communication inside specified software suites or generating cartoon-type
design documents. But they cannot deliver the meaning which might exist
inside the design system itself outside that system. So far there have been
very few design system vendors who have adopted XML-based representa-
tions as a means of facilitating loose integration with other systems.

From the product knowledge representation perspective there exist several
feasible approaches for proposing a partial solution for the first problem area
introduced in the previous subchapter. Scientifically-oriented interest groups,
in cooperation with academia and industry, have produced numerous differ-
ent internationally recognised standards, de facto standards and software
suite-specific international models. For product knowledge representation
there are the well-known product knowledge-sharing formats such as the

Standard for the Exchange of Product Model Data (STEP) and its exten-
sions.

For process and system descriptions there are also different standards ad-
dressing the needs of those domains, such as Process Specification Language
(PSL) and Core Manufacturing Simulation Data (CMSD). However, these
standards - as well as they are defined - can be seen as ’“islands of standards’,
since there are no models for representing all of these domains under one ar-
chitecture. In most of the implementations, there are overlaps between stan-
dardised models, but again they are not interconnected. A second note has
to be made; the standards have evolved over the years and have become very
complex sets of extensions, dedicated to one viewpoint and serving mainly
that specified viewpoint. Different implementations of standards linked to
each other exist, but very often these form a framework for an expert system,
where the actual reasoning and design rationale are embedded into the model
itself. Additionally, the specified yet detailed models are often too specialised
for one domain to be used elsewhere.

However, the extensions seem to ruin the whole idea of standards, because
with each extension from a different implementer from a different point of
view, the standard loses its role and strength. New standards or the com-
bination of existing standards for exchanging both the geometric and non-
geometric product and process definition data are desperately needed. In
order for the standard to be efficient and reach its goals, it has to be re-
spected and followed by as many users as possible. Still, for one model to
rise above others does not seem to be possible because of the impressive
number of different models [31].

10

Chapter 2

Research Objective

2.1 Formulation of the Research Objective

The common ground for the business problems discussed in Chapter 1 is the
lack of meaningful, sufficiently rigorous, and formalised knowledge represen-
tation (KR) that is capable of expressing the details of the design as well
as serving as a link and explanation for external material. It is understood
that the KR that is developed cannot include all the design information of
all models, but it must be able to provide metadata on those entities which
cannot be included into the inner structure of the KR. These kinds of entities
include proprietary formats that are not feasible to open on the geometric
feature level, and offline or online programs related to the models.

In order to provide such a KR, this thesis formalises a generic knowledge
representation that defines the possible connection between product, process,
and system. The structure of the intended knowledge representation (KR)
is formed on the basis of:

1. the requirements set by the knowledge management challenge between
different design tools, and

2. the requirements set by the adaptive and complex production environ-
ment, illustrated in Figure 2.1.

It is important for a generic, scalable, and yet expressive KR that it provides
the necessary number of relations between classes. The requirements for a
generic model comes from the semantic interoperability challenges between
and within domains. Since the development is also intended for human inter-
pretation, the class structure needs to be relatively easy to understand and

11

t Area 1: Knowle_dge management between design tools

aptive operations environment

r

Figure 2.1: Definition of the two main problem areas that share common
needs

to support the design language of the engineers. The KR does not provide
reasoning on the basis of the content. The surrounding system, be it the de-
sign environment or adaptive production system, will focus on the reasoning
at different levels of abstraction, while the KR will remain neutral for these
reasoning procedures. This allows the KR to be used as a common interface
between different systems.

The intended knowledge representation must provide a semantic meaning for
the terms "product’, 'process’, and ’system’. In this thesis the term product’
is defined as a representation of a physical object that has one or many parts
assembled together and forms a stable set of part(s). The term ’feature’
is any given geometric or non-geometric product, part, or resource property
that has a meaning for design, assembly, or manufacturing purposes, and can
be saved into a computerised system. The process is any activity related to
the manufacture or assembly of the product. The term ’system’ describes the
set of resources needed to carry out the manufacturing or assembly processes.
The term 'model’, whether combined with the aforementioned terms or used
as a single term, is a computerised representation of a product, process, or
system. The thesis considers term ’knowledge’ to be most complex form of

12

content with context that can be saved into a computerised system.

The research objectives of the thesis are the following.

1. To develop and create a method for representing the product structure
and the corresponding process representation.

2. To extend the representation into the product feature level and repre-
sent the processes that occur on the feature level.

3. To develop a model for representing product-, process-, and system-
specific knowledge on the basis of the relations between the product
level and the feature level.

4. To formalise the model thus developed into the form of a knowledge
representation that allows knowledge inference to be applied.

2.2 Hypothesis

The proposed hypothesis is as follows.

The integration of the product, process, and system domains using a for-
mal knowledge representation increases the knowledge content of a model by
including the contextual description of the environment and its temporal as-
pects, as well as allowing inference to be applied on the model across the
traditionally separated domains.

Formal knowledge representation such as ontology will structure the product,
process, and system knowledge in such a way that inference with the captured
knowledge becomes feasible. The use and re-use of the acquired knowledge will
become more efficient as a result of the reduced number of re-design steps and
unnecessary data conversions needed. The model’s validity is increased by
reducing the manual data transfer between tools and this enables the model
to preserve its validity.

2.3 Research Methodology

The thesis starts with the assumption of the existence of relationships be-
tween the three design domains: the product, process, and system design

13

domains as Rampersad [54] has proposed. The characteristics of the prod-
uct pre-describe the set of processes needed to manufacture and/or assemble
the product. The description of the product defines the constraints for the
suitable processes. The processes pre-define the system requirements and
constrain the set of systems capable of carrying out the processes that are
needed. The cross-domain integration is deepened with the inclusion of se-
mantic feature-based modelling methods adopted from [3,18,69| and theory
of assembly-features from van Holland [28].

The research strategy starts with addressing the research problem. The sec-
ond step is to summarise the relevant background material from the research
efforts made in past. Since the scope of the thesis lies in the between of prod-
uct design domain’s and process planning domain’s interfaces, and it aims
to solve a knowledge management problem, the literature review is knitted
tightly around corresponding fields. The main focus is on the formulation
of the knowledge representation and in order to prevent the unnecessary ex-
pansion of the thesis the most important and most relevant references are
collected. However, it is recognised that many other approaches exist, which
are not discussed in this thesis.

The methodology for creating the knowledge representation starts from the
definition of connectivity between the domains. The developed Knowledge
Representation Formulation (KRF) methodology consist of five steps.

e Step 1 - Establishing Correct Requirements: this step aims to set out
the requirements for the knowledge representation in the chosen do-
main.

e Step 2 - Definition of Connection Between Domains: the second step
analyses the connectivity between the domains and proposes appropri-
ate relations.

e Step 3 - Formulation Conceptual Model: the third step will gather the
connectivities proposed in Step 2 in one conceptual model.

e Step 4 - Creation of a Knowledge Representation: in the fourth step
the conceptual model is formalised.

e Step 5 - Evaluation of the KR on the basis of the Set Requirements: the
fifth step evaluates the soundness and expressiveness of the knowledge
representation that has been developed according to the requirements
set.

14

Since no suitable method exists for creating connections between product
and process models or feature and process models, two methods were devel-
oped. For defining the connectivity between products and the corresponding
processes, a graph-based method, the Assembly State Decomposition Model
(ASDM), was established. For representing feature-level information and
the corresponding processes, a Manufacturing State Decomposition Model
(MSDM) was created. To represent detailed product information, a feature-
based modelling approach was used to add deeper meaning to product mod-
els. The third step of the knowledge representation formulation methodology
utilised the Unified Modelling Language (UML) to define the connections
between domains. The fourth step was to generate an ontology in the Web
Ontology Language based on the Description Logics (OWL DL) to serve as a
knowledge representation, and the final step was to evaluate the knowledge
representation thus formed against the set requirements.

Other ongoing research projects at Tampere University of Technology (TUT)
have provided a feasible platform to test and evaluate the knowledge repre-
sentation that was created. In order to implement the KR a Knowledge Base
(KB) was formed. The KB environment, along with the KR, is utilised in
three different case studies. From the perspective of the thesis the goal is to
evaluate the expressiveness and soundness of the knowledge representation
that was formed. The first case study evaluates the inclusion of features and
the connection to the processes and system. The second case study tests the
role of the KR as a standard knowledge interface between several commercial
and academy-built design tools. The final case study evaluates the feasibil-
ity of the KR in a live production environment, where the KR provides the
required information on products and processes for an adaptive holonic man-
ufacturing system and saves the operational values of the product that are
realised as the product history. The conclusion will provide a summary of
the results of the used methodology and the case studies.

2.4 Limitations

As the focus of this thesis touches on multiple different research areas, some
constraints need to be expressed. First, the thesis represents the KR as a
feasible solution that will meet the requirements in the three cases. The aim
of this thesis is not to optimise the knowledge representation, but to make
it work. Second, the thesis does not take into account the actual product
design phases or the production control side. Third, the aim of this thesis

15

is not to create a new standard or an extension to old ones for representing
product, process, or system information or a combination of those.

The focus is on demonstrating the existence of relationships between these
domains and providing a formal KR for that. The fourth note to be made
is that the literature review will only summarise the past research activities
relating directly to the solution presented here and to the similar solutions
that other researchers have proposed. It should be noted that multiple other
implementations and methods exist, but those will surely be discussed in
other theses.

Most of the knowledge representations in the manufacturing domain focus
on specific areas, such as product knowledge representations, process descrip-
tions, or hardware-level knowledge representations. The research work done
in this thesis adds input to the holistic approach, while most of the previ-
ous approaches are combined and developed further to fit the needs of the
problem areas, such as production control and process planning. Naturally,
this approach does not intend to solve all of the problems that arise while
dealing with complex systems, but to provide solid foundations for future
developments.

16

Chapter 3

Structure of the thesis

The structure of the thesis is as follows. The literature review presented
in Chapter 4 covers the main research efforts in the fields of manufacturing
knowledge representation, formal models, and knowledge-based approaches,
which all play an important role in the formulation of the Knowledge Rep-
resentation. As the starting point of the thesis lies in the interface between
product design and the planning of manufacturing operations, the theory of
product concept design itself is left aside.

Chapter 5, Proposed Methodology, introduces the Knowledge Representation
Formulation (KRF) methodology for generating and evaluating a suitable
cross-domain knowledge representation. Chapter 5 also introduces intermedi-
ate methods for creating relationships between two domains on different levels
of abstraction. The Assembly State Decomposition Model (ASDM), Man-
ufacturing State Decomposition Model (MSDM), and the Product-Process-
System (PPS) model are introduced and, finally, the knowledge representa-
tion, the Core Ontology, is formed and evaluated.

Chapter 6 - Implementation - is dedicated to a brief description of the imple-
mentation of a Knowledge Base (KB) environment. The implementation of
the KB is not part of the contribution of the thesis, but it provides a feasible
test environment for the knowledge representation.

Chapter 7 will introduce the proof of concept in the form of three separate
case studies that all utilise the same knowledge representation and imple-
mentation. These cases have been demonstrated during national and inter-
national projects. The cases are introduced from the knowledge representa-
tion perspective and aim to test the KR that was formed, the Core Ontology,

17

from different points of view.

The conclusion and evaluation of the research done for this thesis is given
in Chapter 8 - Conclusions. Chapter 9, Contributions, will summarise the
contributions to science and research projects that this thesis has to offer.
Chapter 10, Future Work, will outline new implementation ideas and plans
where the Core Ontology could be used. Additionally, the future work will
discuss some extensions to the Core Ontology that might be implemented
later on.

18

Chapter 4

(Generic Literature Review

4.1 Introduction to Literature

The structure of the literature review is formed in such a manner that in
the first part the product, process, and system domain' integration method
is introduced. The literature offers much unstructured information concern-
ing the separate product, process, and system domains, referred to as design
domains later on in the text, but the connection between these domains has
hardly been discussed. For this reason there is insufficient insight concerning
the relations between the various design domains and levels in each domain.

According to Rampersad [54], a solid understanding of the interaction be-
tween product, process, and system design is of prime importance in the
analysis and design of manufacturing and assembly systems, as well as prod-
uct development and process planning. This integration method, defined by
Rampersad [54], outlines the basic connections between the domains from
the assembly system design perspective. The integration method is based
on an idea proposed by Rampersad [54] and extended by Lohse [45]. The
method in itself does not define the connections below the product/part level
to processes or systems.

The second part of the literature review introduces the beyond-the-geometry
information modelling. The methods for adding the geometric and non-
geometric information to the product and process models can take place
with feature-based modelling and analysis. Several existing theorems will be

IThe product answers the question of what, the process aims to answer the question
of how, and the system domain defines where and by whom.

19

briefly introduced in this part of the literature review.

The third part of the literature review will introduce a selection of graph-
based assembly process planning theories and process and resource descrip-
tion models. None of these models or theories alone provides the holistic
knowledge representation that is needed to answer the problem defined in
this thesis, but they provide a solid background from their areas.

The final part of the literature review will introduce domain-neutral knowl-
edge modelling and reasoning methods, which provide a partly theoretical
and partly technical background for solving the technical problem of this
thesis. This part of the literature review briefly introduces the languages
and technologies used in the formulation of the KR. In the last part of the
literature review a few examples of existing knowledge representations, tech-
nologies, and objectives are introduced.

4.2 Overview of the Connectivity between Prod-
uct Models, Process Structure, and System
Requirements

The literature in the assembly-related domain is often ambiguous, since the
word ’assembly’ is used to describe the static product, as well as the assembly
process. To avoid any misinterpretation of the term, an assembly is "a static
combination of parts forming a (sub)product”. The activity of combining the
parts together is referred to as an assembly process, also defined by literature
references as the "putting together of components to make a product” [45].
A system is "a group of interacting elements forming a complex whole or
entity”.

According to Lohse’s definition [45], an assembly system can therefore be
defined as a group of interacting elements composed to put together compo-
nents in order to form a product. From this definition it is possible to derive
that an assembly system involves three distinct aspects: the product being
assembled, the process of assembling the product, and the actual physical
system that carries out that process.

In his research Rampersad [54| divided the overall assembly system require-
ments into three categories; product, assembly process, and assembly system,

20

Figure 4.1: Integrated Assembly Model from [54]

and formed the Integrated Assembly Model. Each consists of three elements,
which are set into three levels of abstraction (i.e. levels of complexity). The
levels are illustrated in Figure 4.1. This classification corresponds to the
steps in the system design process.

The classification corresponds to the steps that are taken during the design
of an assembly system. The relationships between the variables are indicated
by means of arrows. The thick arrows designate a stronger relationship than
the thin arrows. As is apparent from the figure, the interactions between the
variables on the same level of abstraction are the strongest, as well as those
between the various elements per variable [54].

According to Rampersad [54], a product family entails a collection of product
variants which show far-reaching similarities in their characteristics. As a
result of this, the present generation of automated /semi-automated assembly
systems is, in general, not suited to the assembly of strongly differing product
families.

In his Integrated Assembly Model the product variable consisted of the three
elements:

e Product Assortment: all the product variants to be assembled

21

e Product Structure: classification of the product sub-assemblies and
components, as well as the representation of the relationships between
them; the product structure defines the relationships between the parts

e Product Components: parts of a (sub)assembly or a product.

The Assembly Process section of the model contains the following:

o Assembly Strategy: the high-level choices made from alternative meth-
ods in order to increase the controllability of the assembly process.

o Assembly Structure: the sequence of the individual assembly opera-
tions and the relationships between them, aimed at bringing together
product parts as composite units.

o Assembly Operations: a collection of individual assembly operations,
including feeding, handling, composing, checking, adjusting, and spe-
cial processes. Each of these operations is subdivided into sub-operations
[54].

The third section of the model, Assembly System, contains the following
layers:

e System Layout: the arranged positioning of concrete system compo-
nents in the space within the assembly system: the location of the com-
ponents and the relationships between them are determined in detail
for this purpose. The system layout results from the system structure.

o System Structure: the collection of system components that are mutu-
ally related to each other. The location of the system components is
determined globally for this purpose.

e System Components: the combination of the sub-systems of the assem-
bly system that fulfil functions needed in the system [54].

Rampersad [54] concentrated on the theoretical model to show the connec-
tivity among these three domains. Lohse [45] continued developing the in-
tegrated assembly model by concentrating on the connectivity of assembly
processes and available assembly systems. However, the connection between
products and processes is still in the stage of theoretical development and
product knowledge is not used as a basis for assembly process or systems
reasoning.

22

4.3 Product Models

The following subchapter will introduce selected ways to model the elemen-
tary relations inside the product models by utilising a feature-based mod-
elling method to represent the models. They will form the theoretical foun-
dation for the required KR.

4.3.1 Feature-based Modelling for Definition of Elemen-
tary Product Information

The feature-based model was developed in order to fill the gap between de-
tailed geometry information expressed in CAD files, the elementary relations,
expressed in engineering Bill of Material (eBOM)s and manufacturing Bill
of Material (mBOM)s, and abstract functional information (other design
documentation). Features include both the geometric and functional charac-
teristics of the product data. By including features into the product model,
the model can be represented on a higher level of abstraction than just a
pure geometric model [18,28].

The CAD, CAM, and CAx systems usually lack a complete specification of
feature semantics or they have ill-defined semantics. Consequently, those
options do not link functions to the final geometry in a proper way. Design
systems do not utilise or save the necessary information on how certain ge-
ometric solutions were used. There are extensions available for CAD and
CAM systems that do store information about features into the product
model. But they fail to adequately maintain the meaning of the features
throughout the modelling process or fail to transport the feature information
to the downstream to process or system design software [3,18,69].

Bidarra and Bronsvoort [3] introduced a semantic feature-based modelling
and defined this approach as being a declarative feature modelling approach
that has characteristics such as:

e cach feature must possess a well-defined meaning or semantics;
e semantics are classified in special feature classes, which are structured
descriptions of all the properties of a given feature, defining a certain

template for all its instances;

e users can define their own feature classes, e.g. by inheriting them from

23

an existing feature class and adding the desired constraints to them,
and

e the whole modelling process is uniformly carried out in terms of fea-
tures and their entities, as well as constraints.

In semantic feature modelling, all the properties of features, such as geomet-
ric parameters, values, and validity conditions, are declared by constraints.
The main advantage is the freedom in the type of constraints that can be
specified and therefore edited and maintained with ease. In addition, the use
of various constraints for validity conditions in generic feature classes allows
the specification of many semantic aspects for the instances of each class |[3].

As a summary, the assembly features are defined in four different ways:
e clementary relations between components;

e clementary relations between components extended with some assembly
information;

e a collection of elementary relations and matching form features, and

e an association between two form features present in different parts.

There are several definitions of assembly features, ranging from definitions
of mating conditions to characteristics and requirements defining assembly
processes. DeFazio [21] defined an assembly feature as any geometric or
non-geometric attribute of a discrete part relating to mating conditions and
whose presence or dimensions are relevant to the function, manufacture, en-
gineering analysis, and use of the product or part. Sondhi and Turner [62]
stated that the assembly features can be used for the specification of re-
lationships on a higher level of abstraction. They proposed that assembly
features as a higher-level interface could capture assembly relationships at
the functional level, thus removing from the designer the burden of identi-
fying the underlying elementary relationships. Shah [61] and his colleagues
defined an assembly feature as an association between two form features in
different parts. Deneux [18| continued by defining an assembly feature as a
generic solution referring to two groups of parts that need to be related by a
relationship so as to solve a design problem.

24

Sung [19] introduced the notion of assembly features that are composed
of three adjacency relationships: Contact Adjacency, Internal Spatial Ad-
jacency, and External Spatial Adjacency. Contact Adjacency is similar to
the connection features used in the research done by Bronsvoort and Van
Holland [28]. Internal Spatial Adjacency is similar to the handling features
used by Bronsvoort and Van Holland [28,29]. External Spatial Adjacency
shows spatially opposing faces separated by empty space [19,28,29].

4.3.2 Product models for data exchange

Once the modelling of features became a standard characteristic of modern
CAD systems, a new need arose. In order to share the features found between
different modelling tools, several standard representations were formed. One
of the most common formats that promised to share feature-level informa-
tion was STEP (Standard for Exchange of Product data), which is the Inter-
national Organisation for Standardisation (ISO) standard aimed at neutral
product data exchange.

The implementable data specification of STEP is represented by Applica-
tion Protocols (APs). The most widely-used APs are AP203 and AP214, for
exchanging CAD files, and AP239, for product life-cycle support (PLCS).
Originally STEP was developed in EXPRESS as a network of concepts. Ac-
cording to Krima et. al. [35], since EXPRESS is not based on formal seman-
tics, the quality checking of these models is difficult. In order to overcome
the constraints of the old STEP format and EXPRESS, an OWL-DL-based
representation of STEP, ontoSTEP, was developed.

During the years different organisations saw that the core of STEP was not
enough for their purposes and soon several different extensions were intro-
duced. Unfortunately this led to a situation where the extensions were not
embraced by the CAD system vendors, and thus only shallow product data
could be transferred between different systems. ontoSTEP naturally cannot
include more information than STEP models, but it can translate those into
a more open format to be shared among different users.

Several new techniques exist for capturing "beyond geometry”-level prod-
uct information. Those new developments include the Core Product Model
(CPM), illustrated in Figure 4.2, designed at the National Institute of Stan-
dards and Technology (NIST). The CPM aims to provide a basic product
model that is not tied to any vendor software and is open and non-proprietary,

25

CoreP roductModel
/\

Core Product Model

Artifact subAliactOf

EntityAssociation
1 Y "o+ *subAditact
Of = sy Of
+hasForm t+hasFunction +hhsOutputFlow
{u-} ealurar ur {;»}l p “‘Iw .
0. | g 0.+ |0.* 0. |0
coonety | [wimssa L, [o :
 —
1.0 1.7 .
+ ¥ H 3l | materalOF 1
+geometryOfForm
Open Assembly Model —
grom Core =] Connector |
——
DesignRationale 43
! Fealure

{frorn Rationale)
LW Part (from CoreProductModel)
EntityA ssociation
(frorn CoreProductModel) OAM Feature
1 1
A iteFeatura I
! |

|AssembryAsamlaﬁm | mn'l:l?ame Featurs ” Cor
1 1
| | | il]
_| A ﬁ> A Py r‘ AssemblyFeature AssemblyFeatureAssoci
i i A iation ationRepresentation
¥
[l; I 1
[Positionori || Connection || RelativeMotion | | ParametricAsse
{ it it j pmblyC
~ —
1 L 1
! FixedC . ! |I [b i !|I IntermittentConnection I| Kir air
| I L JL I |

Figure 4.2: UML diagram of the CPM and OAM, modified from [53]

26

generic, independent of any product development process, and capable of
capturing the engineering context that is most commonly shared in product
development activities [22,53].

While the CPM concentrated on single products, the Open Assembly Model
(OAM) introduced the function, form, and behaviour of the assembly and
defines both a system-level conceptual model and the associated hierarchical
relationships. The main idea of the OAM is to provide a standard rep-
resentation and exchange protocol for assembly and system-level tolerance
information. Figure 4.2 shows the main schema of the OAM below the de-
scription of CPM. For the data structure representation, the OAM uses data
structures adopted from STEP [35,53]. Figure 4.2 shows the structure of the
OAM [22,53].

The OAM, together with the definitions of the CPM, gives a neutral yet
detailed combination to represent product-specific knowledge defined on the
feature level. However, the models lack process-related information, which
could be tied to the product features.

4.3.3 Assembly Process Requirements through Assem-
bly Features

Before production can begin, the product must first enter the engineering
phase, which is a stage between modelling and producing the product. In
this phase, the production and assembly process plans are described. The
key for automated assembly process planning lies in the use of product model
information for assembly analysis and assembly process planning.

In the design and modelling of the assembly process, features can also be
seen as information carriers for assembly-specific information. This assembly-
specific information includes, for example, degrees of freedom, interfaces be-
tween parts, subassemblies, and assemblies, and fit information. Assembly-
specific feature information focuses on the relations between the components
[28]. Feature-based assembly follows on naturally from feature-based mod-
elling and can be used to add assembly-specific details to the models.

Assembly features, as discussed here, were originally only used to make the

modelling effort easier. The information stored in the models was not used
for any deeper analysis of manufacturing or assembly process planning. All

27

Connection Features: involved
geometric forms, insertion positions,
insertion path, final positions and
contact interfaces

Handling features: feeding, Non-Geometric attributes;
picking, gripping, handling, Knowledge of processes and
fitting, positioning tooling
Product Structure, Geometric product
Precedence relations model; geometrical
feature information

Assembly
Representation

Figure 4.3: Assembly process-related features [42,65]

of these definitions focus mainly on the relationships between two or more
components. Understanding the relationships between components is essen-
tial, but is not enough for assembly process representation [28,69].

As mentioned by several authors [28,42, 65|, product knowledge is the com-
bination of product-specific information, such as functionality, colour, and
product variants, and the corresponding product model. This knowledge in-
cludes geometric and non-geometric information. In the design and modelling
of manufacturing processes, features can be seen as the foundation elements,
which can be used for the analysis and knowledge acquisition of the product.

Focusing on, for example, the assembly, the geometric features include all the
geometric information of the product. Geometric features are, for example,
pads, pockets, holes, chamfers, and rounding. Non-geometric information
is, for example, tolerances, material, density, and surface roughness [28§].
Figure 4.3 summarises the information required for assembly representation
and emphasises the connection between the product information and process
requirements.

Assembly features are made during design and manufacturing, so they are, or
correspond to, manufacturing features; however, not all manufacturing fea-
tures become assembly features. Furthermore, assembly features carry differ-
ent design intent and information in their object data and methods [28,29,61].

28

Bronsvoort [29] and van Holland [28| defined assembly process features as
features with significance for assembly processes and stated that they are sub-
divided into connection features and handling features. van Holland stated
that the assembly-process features link information about the assembly pro-
cess itself and the geometry, that is, both abstract and detailed geometric
information together. Therefore, they are used to fill the gap between ab-
stract and geometric models.

4.4 Process and System Models

The following subchapter will introduce different methods to tackle process
information and process flow descriptions. System models as proposed by
Rampersad [54] do not exist, but there are a few models for describing the
connection of resources to processes. The taxonomic representations of man-
ufacturing systems are not included in this literature review, since those are
too strongly related to a specific physical resource to be generalised.

The assembly sequence is the most basic requirement of the assembly plan
for the product. Traditionally it has played a key role in determining the
important characteristics of the assembly tasks and of the finished product.
In general, the process of generating the optimal assembly sequences are il-
lustrated as a graph [72].

The theory of assembly sequence planning was formed at the beginning of
the 1980s. Many of the early assembly reasoning systems were interactive
ones, querying the user for geometric reasoning information and generating
assembly sequences from the answers. Bourjault (1984) launched the field
of algorithmic determination of all feasible assembly sequences for a rigid
mechanical item [17,36,72].

As a continuation of Borjault’s work, Lee |33] expanded the research field by
introducing the mating conditions of components. Their methodology was
divided into two steps: each component in an assembly is located at a specific
vertex of the hierarchical tree, and an assembly procedure is generated from
the hierarchical tree with the help of inference checking [17,33, 36].

De Mello and Sanderson [17| developed their approach for analysing the

assembly-sequence plan further via AND/OR graph representation. The
AND/OR graph provides a compact representation of assembly plans and is

29

equivalent to a directed graph of assembly states. The precedence relations
that capture the domain-specific ordering constraints between connections
and assembly states and connections were developed.

The connection-state precedence relations require some independence as-
sumptions among assembly operations. They can be generated by enumerat-
ing state sequences using the AND/OR graph and simplified by using stan-
dard Boolean simplification routines. The connection-connection precedence
relationships required more restrictive assumptions and could be generated
more easily from the AND/OR graph, but they were more difficult to sim-
plify. The precedence relationship provided an implicit representation of
assembly sequences when they are used locally to test for a feasible next step
in sequence generation, but the AND/OR graph is an explicit representation
of complete and correct sequences.

Later, De Mello and Sanderson [17] introduced relational model graphs for
defining assembly sequences. The principal focus in their research back in
the '90s was the formalisation of assembly sequence plan representations, the
proof of equivalence of different representations, and the implementation of
algorithms to generate and transform them to plan representations. Dur-
ing the ’90s a lot of research was conducted concerning the development of
heuristic assembly sequence planning methodologies and planners. Yokota
and Brough added the hierarchical object representation into the field of as-
sembly sequence planning [72].

Zhao and Masood [72| stated that the determination of feasible choices for
the assembly sequence can be a difficult process, for two reasons. First, the
number of valid sequences can be large, even for a small part count: and it
can rise staggeringly with increasing part counts. Secondly, seemingly minor
design changes can modify the available choices of assembly sequences dras-
tically.

The assembly sequence planning provides the order all of the possible solu-
tions for the sequence of operations. It is a reasoning step. For representing
the results in a form of language there exists several options.

For modelling the optimal process steps and connection of processes and re-
sources, several different representations have been developed. Most of these
models are implemented as stand-alone tools or ad hoc implementations,
though a few standard representations do exist. One of those standard-
ised process models is Process Specification Language (PSL). PSL facilitates

30

+occurrence_of |—| +subactivity

Occurrence Activity
- 1 2.7
{ Mo bwo successors of an
occurrence may be
+successor of the same
activity. }
. ™
.‘\
PrimitiveOccurrence P ril‘nitiVBAl:ti\!ﬂ)f
0.1 -~
™ {Primitve
ocCcumences are
occumences of
primitive activities }

+subactivity_occurrence

{aiu::ﬂ;ﬂ:i:;u:;i:sm { Subactivity occumences are of activities that a
the occurrence tree.) T subactivities of the activity of their complex
) OCCUmence. }
b "
{ Complex cccurences are —
[ComplexOccurrancs f ----------- occumences of complex activifies) [-esseees——ccaseas ComplexActivity

Figure 4.4: Basic concepts of PSL: Activity, Occurrence, and Successor [4]

a complete exchange of process information among manufacturing systems
such as scheduling, process modelling, process planning, production planning,
process simulation, project management, workflow, and business process re-
engineering [4,27].

PSL consists of a core ontology of basic objects that exist in the domain, a
partially ordered set of extensions that axiomatise additional primitive pro-
cess concepts, and a multitude of definitional extensions that provide a rich
terminology for describing process knowledge. The PSL ontology in Figure
4.4 is a set of theories used by first-order logic queries [4,27].

In addition to PSL, another generic process and system representation method,
Core Manufacturing Simulations Data (CMSD), was also developed. CMSD
is intended to be a transfer language for conveying data from different design
systems in a simulation environment. It describes the entities in the man-
ufacturing domain on a high level and the relationships between them that
are necessary to create manufacturing simulations. CMSD facilitates the ex-
change of information between simulation and other manufacturing software
applications. The major categories in CMSD are organisation, calendar, re-
source, skill definition, setup definition, part, BOM, inventory, process plan,
work schedule, revision, distribution definition, reference, and unit defaults

31

32, 59.

The CMSD model is divided into two representations, one in UML and the
other, which is identical, as a series of XML schemas. The UML version is
intended for humans to understand the complex interrelationships and in-
heritance, while the XML one is a machine-interpretable format. The layout
portion of the CMSD specification is not intended to be a new CAD for-
mat. CMSD operates on a higher level of process definition and simulation,
where high-fidelity geometric representation of the manufacturing entities is
not utilised [59].

4.5 Knowledge

The previous sub-chapters briefly introduced the field of product information,
assembly process, and sequence planning. The information discussed was on
a very concrete level and led to actual engineering solutions. However, in
order to cover the necessary literature field the next chapter will introduce a
more philosophical and I'T-oriented view of the background needed for this
thesis. The following subchapter will give a brief introduction to the world
of knowledge formulation and reasoning that can be used for Computer-
Aided decision making. At the beginning of this part a range of different
knowledge-based systems (KBS) and higher-level paradigms using systems
are introduced. Once the field is covered, the literature review continues
with examples of knowledge modelling methods, languages used for formalis-
ing the knowledge representations, and concepts for reasoning the knowledge.
The aim is to familiarise the reader with the different options of knowledge
modelling which could have been used in solving the technical problem of
this thesis.

It has been recognised for over 50 years that the information rate will grow
rapidly without end, and yet our brains will remain in roughly the same state
of development as they were when cavemen communicated with scowls and
barks. Of course, technology has solved many problems regarding knowl-
edge warehousing, but the real problem relating to the meaning of data and
knowledge retrieval and reasoning unfortunately remains unsolved [14].

To make hidden knowledge accessible to a computer, knowledge-based and

object-oriented systems are built around declarative languages whose form
of expression is closer to human languages. Such systems help programmers

32

and knowledge engineers reflect on the treasures contained in the knowledge’
and express it in a form that both humans and computers can understand

[63].

According to Sowa [63] knowledge representation is a multidisciplinary sub-
ject that applies theories and techniques from three other fields: logic, ontol-
ogy, and computation. Without logic, a knowledge representation is vague,
with no criteria for determining whether statements are redundant or contra-
dictory. Without an ontology, the terms and symbols are badly defined, con-
fused, and confusing. And without computable models, the logic and ontology
cannot be implemented in computer programs. Knowledge representation is
the application of logic and ontology to the task of constructing computable
models for some domain [63].

The definition proposed by Awad and Ghaziri [1] stated that knowledge can
be divided into three levels: data, information, and knowledge. Data are
defined as unstructured facts, which in IT terms are usually considered as
just raw bits, bytes, values, or characters. Information is structured data
and attributes which can be communicated, but which may only have their
meaning locked inside proprietary software. Knowledge is seen as informa-
tion that has meaning in more than only one type of software and can be
used to achieve some results. Examples of these are an information model
describing any computerised model or issues or 3D visualisation models, re-
gardless of the information content of the model.

According to Davis [16], a knowledge representation is most fundamentally
a surrogate, a substitute for the thing itself. The aim of a knowledge repre-
sentation is to provide as good a mock-up of reality as is feasible. Depending
on the language and inference method chosen, the surrogate is more or less
accurate. Viewing representations as surrogates leads naturally to two im-
portant questions: what it is a surrogate for and how close the surrogate is
to the real thing.

For knowledge representation to be accessible, surrounding technical solu-
tions have been built. The indented knowledge is planned to be captured
in knowledge bases rather than conventional databases. Knowledge-based
systems utilise the knowledge saved in the system. The principal difference
between a knowledge-based system (KBS) and a conventional program lies in
their structure. In a conventional program, domain knowledge is intimately
intertwined with software for controlling the application of that knowledge.
In a knowledge-based system, the two roles are explicitly separated. In the

33

simplest case there are two modules; the knowledge module is called the
knowledge base and the control module is called the inference engine. In
more complex systems, the inference engine itself may be a knowledge-based
system containing meta-knowledge, i.e., knowledge of how to apply the do-
main knowledge [30].

Today the KBS systems are structured in such a manner that the problems
of integrating the data are evident.

Information archives are document-based. For a collective gathering of
facts, a document-centric view is too coarse to be useful.

Typical document management systems rely almost exclusively on in-
formation retrieval techniques that are inaccurate.

Implications can only be made transparent if background knowledge
is used, but systems today rarely support background, i.e. contextual,
knowledge.

Different people might contribute knowledge.

Different people might require different views of the same basic piece
of information [64].

A KB system that covers such knowledge about the outside world should:

support the collective gathering of information on the level of facts
rather than documents;

integrate the gathering task smoothly into the common research pro-
cess;

allow one to combine facts intelligently;
check new facts against the available background knowledge;

allow multiple-view access to the knowledge through a single entry
portal, and

allow to route derived facts back into the common workplace environ-
ment [64].

34

KBs serve multiple roles. It can be said that they are repositories of shared
knowledge. Interoperability and reuse of components and declarative knowl-
edge are crucial to the further development of knowledge-based software.
Unfortunately, it is hard to get components to interoperate and even harder
to reuse other people’s work. These difficulties are often a result of incom-
patibilities in the knowledge models, the precise definitions of declarative
knowledge structures, assumed by the various components [25].

4.5.1 Knowledge Representations
Logic and Formal Structures

Even though the previous subchapters have concentrated on describing the
content, for this thesis it is necessary also to look at model-independent
reasoning. The technical verification of this thesis uses a Description Logic
(DL) inference engine for processing the knowledge inside the Knowledge
Base (KB) that is implemented. In order to provide a wider view of the pos-
sibilities, other reasoning methods and knowledge representation types are
briefly described as well. It has to be noted that while reasoning relates to
the scope of the thesis, the contribution is rather small, yet important, and
in the form of technical requirements.

Logic-based Representation

Logic-based representation relies on sound mathematical foundations. Log-
ical reasoning methods are generally divided into three classes: deduction,
induction, and abduction. In a Peircean logic system, the logic of abduc-
tion and deduction contribute to our conceptual understanding of a phe-
nomenon, while the logic of induction adds quantitative details to ones con-
ceptual knowledge. Although Peirce justified the validity of induction as a
self-corrective process, he asserted that neither induction nor deduction can
help to unveil the internal structure of meaning [71].

According to Yu [71], during the stage of abduction, the goal is to explore the
data, find a pattern, and suggest a plausible hypothesis; deduction involves
refining the hypothesis on the basis of other plausible premises, and induc-
tion is the empirical substantiation. In other words abduction is more a form
of critical thinking than formal logic, while the deductive reasoning moves
from a general premise to a more specific conclusion, and inductive reasoning

35

moves from specific premises to a general conclusion both based on formalism.

These methods of reasoning will produce different kinds of results. In a
deductive argument with valid reasoning the conclusion contains no more
information than is contained in the premises. Therefore, deductive reasoning
does not increase one’s knowledge base, and so is said to be non-ampliative.
A logic allows the axiomatisation of the domain information and the drawing
of conclusions from that information [2,63].

Propositional Logic

The simplest form of logic is propositional logic, involving the manipulation of
propositions. A proposition is a statement that can have two values: TRUE
or FALSE. Propositional variables (and propositions) can be connected by
logical operators or logical connectives. The commonly used logical connec-
tives are: AND, OR, NOT, IMPLIES, and EQUIVALENCE. Another form
of logic, predicate calculus, extends propositional logic in such a way that a
wide range of real-world knowledge can be represented |2, 63].

Predicate Logic - First-Order Logics

The system of first-order logic (FOL) is the most widely studied today, be-
cause of its applicability to the foundations of mathematics and because of
its desirable proof-theoretic properties. First-order logic is a predicate logic
and is distinguished from propositional logic by its use of quantifiers; each
interpretation of FOL includes a domain of discourse over which the quanti-
fiers range. A predicate resembles a function that returns either True or False.

As an example: by considering the following sentences: "Robot is a Device”,
"Lathe is a Device”. In propositional logic these are treated as two unrelated
propositions, denoted, for example, by p and q. In first-order logic, however,
the sentences can be expressed in a more parallel manner using the predicate
Device(a), which asserts that the object represented by "a" is a device. Thus
if "a" represents Robot then Device(a) asserts the first proposition, p; if a
represents Lathe then Device(a) asserts the second proposition, q. A key
aspect of first-order logic is visible here: the string "Device” is a syntactic
entity which is given semantic meaning by declaring that Device(a) holds
exactly when a is a device. An assignment of semantic meaning is called an
interpretation. First-order logic allows reasoning about properties that are

36

shared by many objects, through the use of variables [63].

Description Logics

Description Logics (DLs) is the most recent name for a family of knowledge-
processing formalisms that represent the knowledge of an application domain
by defining the relevant concepts of the domain (its terminology), and then
using these concepts to specify the properties of objects and individuals oc-
curring in the domain (the world description) [2].

Because Description Logics are a KR formalism, it is expected that a KR
system always provides an answer in reasonable time and these procedures
should return both positive and negative answers. The guarantee of an an-
swer in finite time need not imply that the answer is given in reasonable time;
investigating the computational complexity of a given DL with decidable in-
ference problems is an important issue. The decidability and complexity of
the inference problems depend on the expressive power of the DL at hand.
On the one hand, very expressive DLs are likely to have inference problems
of high complexity, or they may even be undecidable. On the other hand,
very weak DLs (with efficient reasoning procedures) may not be sufficiently
expressive to represent the important concepts of a given application [2].

DL-based inference engines are implementable in a wide range of applications
and can provide reasoning with database schemas and queries. DL inference
engines are perhaps best known as the basis for widely used ontology lan-
guages such as OIL (Ontology Inference Language), DAML (Darpa Agent
Modelling Language)+OIL, and OWL (Web Ontology Language). In gen-
eral, DL as a concept provides formal underpinning for these languages and
also as an inference engine for computational services for ontology manage-
ment tools and applications [67].

There are several methods to describe the knowledge for exchange and/or
strictly for knowledge inference. These include Rule-based Representation,
Semantic Networks, and Frame-based representations. According to Hop-
good [30], in most cases the rules are shallow by nature, representing a
shallow amount of knowledge, namely information or data. Rule-based rep-
resentation has been used in various expert systems. But since the interest
of this thesis is in the domain of knowledge representation, the focus is more
on representing knowledge rather than going straight to inference with it.

37

Ontologies for Formalising Knowledge

The efforts to realise the semantic web have been accelerating the research
on the development of ontologies, since ontologies are considered as catalysts
for knowledge sharing and mediation in heterogenous environments. One of
the first modern definitions of an ontology was given by Neches et. al. [47],
who defined an ontology as follows: "an ontology defines the basic terms and
relations comprising the vocabulary of a topic area, as well as the rules for
combining terms and relations to define extensions to the vocabulary”. This
descriptive definition identifies basic terms and relations between terms, iden-
tifies rules to combine terms, and provides the definitions of such terms and
relations. According to Neches’s definition, an ontology includes not only the
terms that are explicitly defined in it, but also the knowledge that can be
inferred from it [46].

A few years later, Gruber [26] defined an ontology as "an explicit specification
of a conceptualisation”. This definition became the most quoted in literature
and by the ontology community. On the basis of Gruber’s definition, many
definitions of what an ontology is were proposed. Borst [6] modified Gruber’s
definition slightly : "ontologies are defined as a formal specification of a
shared conceptualisation". Gruber’s and Borst’s definitions were merged
and explained by Studer et. al. [64] as follows: "Conceptualisation refers to
an abstract model of some phenomenon in the world by having identified the
relevant concepts of that phenomenon.” Fernandez et al. [46] compared and
divided the types of ontologies in the following manner:

e Knowledge Representation Ontology: the representation primitives for
a given knowledge paradigm

e General/Common Ontology: a generic type of ontology, which can be
used /re-used across different domains

o Upper-level Ontology: defines a set of concepts for a framework, which
can be specialised for different domains

e Domain Ontology: a domain-specific ontology, where the domain is
well-known by the community using it

e Task Ontology: is a specialisation of a upper-level ontology, but can
still be used as a generic level across the domains

e Domain Task Ontology: defines a set of tasks in a chosen domain

38

e Method Ontology: provides a problem-solving or reasoning methods for
achieving given tasks

e Application Ontology: defines an application specific ontology

Ontologies, in general, could be modelled utilising different knowledge mod-
elling techniques and they could be implemented using several languages.
Depending on the implementation language, ontologies are classified as:

e highly informal (expressed in natural language)
e semi-informal (expressed in a structured form of natural language)
e semi-formal (expressed in an artificial and formally defined language)

e rigorously formal (expressed with precise terms and formal seman-
tics) [51]

4.5.2 Tools and Languages Sharing the Knowledge

The relationship between the knowledge modelling components (concepts,
roles, etc.) and the knowledge representation (KR) techniques are used to
formally include concepts of First-Order Logic (FOL), Description Logics
(DL), Frames, and conceptual graphs and the languages utilised to construct
ontologies within a given KR technique. In other words, an ontology can be
built according to a specific KR technique and it could be implemented in
several languages used by the specific KR technique [51].

KIF, GFP, and Ontolingua

Previously ontologies were mainly built using AI modelling techniques based
on frames and first-order logic and expressed with modelling tools such as
Ontolingua and Knowledge Interchange Format (KIF). A few years later the
Generic Frame Protocol for manipulating knowledge expressed in an implicit
representation formalism called the GFP Knowledge Model was developed.
The GFP Knowledge Model supports an object-oriented representation of
knowledge and provides a set of representational constructs commonly found
in Frame Representation Systems (FRSs). In order to provide a precise and
succinct description of the GFP Knowledge Model, the Knowledge Inter-
change Format (KIF) was used as a formal specification language [9,51].

39

The original Ontolingua, as [26] defined it, was designed to support the de-
sign and specification of ontologies with a clear logical semantics. In order
to accomplish this, Gruber extended the KIF definition sublanguage to pro-
vide additional idioms that occurs in ontologies and added a Frame Ontology
to enable ontologies to be specified in a pseudo-object-oriented style using
relations and functions such as Class, Subclass-of, Slot, Slot-Value-Type, Slot-
cardinality and Facet |23|. The development done by Fikes et al. [23] in 1997,
extended Ontolingua to allow its users to state explicit inclusion relationships
between ontologies and implicitly created axioms.

Web Ontology Language

W3C standard for representing an ontology in 2004. OWL is intended to
be used when the information contained in documents needs to be processed
by applications, as opposed to situations where the content only needs to be
presented to humans. An OWL ontology may include descriptions of classes,
properties, and their instances. Given such an ontology, the formal semantics
of OWL specify how to derive its logical consequences, i.e. facts not literally
present in the ontology, but entailed by the semantics. These entailments
may be based on a single document or multiple distributed documents that
have been combined using defined OWL mechanisms. OWL is a revision of
the DAML~+OIL web ontology language, which is built upon the RDF(S).
OWL ontologies are written either in XML or with the triples notation for
RDF. OWL is divided into three layers: OWL Lite, OWL DL, and OWL
Full [51,70].

e OWL Lite is used to create only class taxonomies and simple con-
straints.

e OWL DL as already stated, provides maximum expressiveness, while
ensuring that all valid conclusions can be inferred (computational com-
pleteness) and that inferences are deterministic.

e OWL Full includes the complete vocabulary, thus providing more flex-
ibility. However, OWL Full provides no guarantee of computational
completeness and determinism [70].

4.5.3 Knowledge-Based Systems

In the early ’80s, medical expert system applications dominated the scene,
primarily because of the diagnostic nature of these applications and the rela-
tive ease of developing such systems [44]. By the end of the ’80s the problems

40

the expert systems were being given had become more complex. It was also
the time when the development of systems for commercial sectors began.
Hopgood [30] concluded that an expert system is a knowledge-based system
that acts as a specialist consultant; it is often proposed that an expert sys-
tem must offer certain capabilities that mirror those of a human consultant.
In particular, it is often claimed that an expert system must be capable of
justifying its current line of inquiry and explaining its reasoning in arriving
at a conclusion.

Unfortunately, the initial attempts frequently met with limited success. The
reasons for the initial failures were, first, the fact that the early applications
of expert systems over-challenged the technology, leading to poor results.
The second reason for their failure was the sheer size and complexity of the
problems they were expected to deal with; completing these in reasonable
time was impossible. The limitations of such an expert system are easily ex-
posed by presenting it with a situation outside its narrow area of expertise.
When confronted with a set of data with no explicit rules, the system cannot
respond or, worse still, may give wrong answers. Other important deficiency
of inference of expert systems is the shalloweness of the reasoning procedure
and results that can be derived from it. Because the knowledge bypasses the
causal links between an observation and a deduction, the system has no un-
derstanding of its knowledge. For this reason the expert systems were mainly
used for diagnosis, interpretation, and prescription [30,44].

According to Hopgood [30], in achieving modest success research in the field
of artificial intelligence, together with other branches of computer science, has
resulted in the development of several useful computing tools. These tools or
methods have a range of potential applications and those can be roughly di-
vided into knowledge-based systems, computational intelligence, and hybrid
systems. Caglyan [7] and Hopgood [30] divided knowledge-based systems into
categories; expert and rule-based systems, object-oriented, and frame-based
systems, and intelligent agents. Computational intelligence includes neural
networks, genetic algorithms, and other optimisation algorithms. Techniques
for handling uncertainty, such as fuzzy logic, fit into both categories. The fol-
lowing subchapters will outline different agent- and holon-based approaches
used in the field of manufacturing for to reason with knowledge.

41

Agent-based Systems: ONTOMAS and inference

In his research Lohse [45] focused on the connection between assembly pro-
cesses and modular assembly systems. The challenge in his work was to
create a common environment where domain experts can collaborate effec-
tively while taking advantage of the best practices of their diverse domains.
The approach taken in this research started by taking advantage of the higher
levels of standardisation inherent in the modular assembly system paradigm,
which is considered to be one of the fundamental enabling factors in achieving
a high level of adaptation. In order to address the adaptation by modular-
isation, a new ontology-based framework was developed. The ONTOMAS
(Ontology for the design of Modular Assembly Systems) framework is based
on engineering ontology principles structuring the domain using formalisms
for aggregation, topology, taxonomies, and system theory principles.

Lohse [45] divided the domains according to Rampersad [54] into three do-
mains: the product, process, and system domains. The product (and project)
domain ontology is mainly focused on capturing the user requirements of an
assembly system. The product definition stands at the core of the user re-
quirements. The required relationships, so-called liaisons, between the com-
ponent parts are of specific interest for the definition of an assembly system.
The product model is created from the assembly system perspective and
does not include feature-level information. The main focus of the research
was the connection between processes and modular assembly systems. Since
the domain was limited to the modular systems there was no need to utilise
detailed product knowledge as a starting point.

The assembly process domain ontology defines the core of the assembly sys-
tem requirements. The process model is used to define the temporal order in
which the individual components of the product can be put together through
activities and their temporal relationships. The processes were divided into
three semantic layers: tasks, operations and actions. The assembly system
domain defines the resource-related concepts that are used, or can be used,
to facilitate assembly processes. The central concept is the equipment which
can be connected to form system solutions. Fixed hierarchical levels were de-
fined and incorporated into an equipment classification on the meta-level [45].

Lohse proposed a hierarchical taxonomy for providing a structure for re-
quired assembly equipment classification. The proposed assembly equipment
taxonomy is based in the first instance on their functional capabilities and
in the second instance on their implementation principle, which is expressed

42

Target Capability

Relationship Relationship|
Product Domain Process Domain Equipment Domain
— (I
' \ f ! ...-‘ Assembly System |
e R L]
‘L—T‘ :\ _*E: >>1——| Assembly Cell |

| Assembly | "T" - \'\x | Assembly Workstation |

> Oparatlun Equipment Unit |

, [peton | _————
\ II | Equipment Element |

Cnmpunent

Figure 4.5: ONTOMAS product, process, and system domains [45]

through their behaviour. The equipment taxonomy was a high-level taxon-
omy that aimed more at structuring the domain in the general sense and not
so much at providing very detailed classifications for the different equipment
domains, which should be left to the domain experts in any case. The ad-
vantage with a taxonomic approach is that more specific domain concepts
can always be included by extending existing more generic concepts.

For structuring the defined knowledge into three levels a CommonKADS
methodology [52] was used. The three levels were Task Knowledge, Do-
main Knowledge, and Inference Knowledge. The Framework Programme 6
project EUPASS extended the knowledge levels from CommonKADS to fit
to the theoretical integrated assembly model created by Rampersad [54] and
developed further by Lohse [45].

o The Task Knowledge level defines the design tasks required for achiev-
ing specific design goals and the actors involved. Task knowledge is
described on different levels of abstraction that define a hierarchy from
general tasks to more specific tasks. The lowest level includes all the
tasks which cannot be divided meaningfully into subtasks. Those are
entirely built for members of the inference knowledge level. Each task
has one or more task methods that define their sub-activities and in
which order they need to be performed. Actors are then mapped into
sufficient tasks [45, 52].

e The Domain Knowledge level defines all the concepts, relationships,

43

attributes, and rules which are used by the inference level activities.
Concepts are defined as a set of attributes. Concepts are defined as a
set of attributes. Relationships are either concepts in their own right
or are defined through the attributes of other non-relationship con-
cepts. Rules are defined through their antecedents, consequences and
the causality between them. The constraints of the model are specified
as first-order-logic axioms [45, 52].

o The Inference Knowledge level defines the inferences, decisions, and
communication acts required for performing the design tasks on the
task knowledge level. Inferences are defined through the type of their
dynamic input and output knowledge and a set of rules that are used
to infer the output from the input. Decisions are specialised inferences
that have dynamic input knowledge and infer a yes-or-no decision on
the basis of a set of static rules, defined by the decision criteria [45,52].

Agent-based Systems: P2 Ontology and inference

It was stated in the Framework Programme 6 project PABADIS’PROMISE
[51] that the increased number of combinations and the consequent complex-
ity of the manufacturing system highlight the role of the prime importance
of the communication between the different entities, such as agents, and cre-
ates the necessity of thoroughly structuring the information which will be
exchanged. Accordingly, the information has to be structured in such a way
that first, all agents can share the same understanding, and second, the data
necessary for an agent to perform its mission can be tailored to fit its limited
storage capacity.

The interoperable integration of enterprise-level systems with manufacturing-
level systems is not an easy task, mainly because of the plethora of different
systems, tools, terminologies, and business logics. The prevailing MES solu-
tions are too industry-specific and process-centric. Standardisation seems to
play a crucial role within this environment. Since a lot of data flow exists
between the enterprise and the production systems and applications, con-
siderable difficulties arise during their supervision and control, mainly as a
result of origin and content ambiguity. If the production data is not valid,
the performance of manufacturing systems becomes weak [51].

The approach taken in this project was to form the P2 model and P2 ontology
to be formal and to provide unambiguous definition of all the components

44

and of their interactions with each other in an enterprise/industrial environ-
ment in order to establish a common language for exchanging and describing
all the complex information that is related to the lower levels of an industry.
The PABADIS’PROMISE project resulted an ontology, the P2 Ontology, for
describing manufacturing resources, processes and corresponding products.
The P2 Ontology represents the knowledge of a domain in a formal way that
can be machine-understandable (XML/RDF format).

In a way the PABADIS’PROMISE resulted in a reference architecture that
utilised standards such as IEC/ISO 62264 with the IEC 61499 Function Block
and the ISO 10303 STEP in conjunction with the P2 Ontology. This ap-
proach provided a generic solution to the vertical interoperability problem
from the enterprise level to the manufacturing level.

The focus of the project was on factory control and production scheduling
in a multi-agent environment. They identified similar challenges to those
mentioned in the introduction to this work. However, in their approach the
product data conversions were performed semi-automatically, while the pro-
duction planning was agent-based.

Holonic Manufacturing System: ADACOR

In order to improve agility and flexibility, nowadays distributed approaches
are used in developing manufacturing control applications. These are built
upon autonomous and cooperative entities, such as those based on multiagent
and holonic systems. A Holonic Manufacturing System (HMS) translates to
the manufacturing world the concepts developed by Koestler [34] for living
organisms and social organisations. The HMS paradigm addresses the agile
reaction to disturbances at the shop floor level in volatile environments and
it is built upon a set of autonomous and cooperative holons, each one being
a representation of a manufacturing component, i.e., a physical resource such
as a robot, CNC centre and conveyor, or a logical entity, such as orders.

In their research Borgo et. al. [5] defined and developed the foundations for
a core ontology for manufacturing. The aim of their approach was to con-
sider aspects of the manufacturing domain in order to build a core ontology
for this domain that guarantees: (1) integration with a well-organised and
accepted foundational ontology; (2) accessibility to agents in the manufac-
turing domain, and (3) suitability for product and process modelling, as well

45

1
1.- roduct

disturbance type work order |« production order P
0.r 1
1 0.x 0.* raw material 4
0.~ 1
disturbance |0-" 1| resource]
operation 1—0 process plan
setup

tool producer transporter mover gripper

1.* 1 0.* 0.* 0.* 1 1.r
i
property |-

1.*

Figure 4.6: Manufacturing Ontology in the ADACOR Architecture [5]

as for information sharing, exchange, and retrieval.

According to Borgo [5], the adoption of an established foundation ontology,
DOLCE (Descriptive Ontology for Linguistic and Cognitive Engineering),
was used to improve the consistency of the overall system. Their research
resulted in an ontology named ADACOR (ADAptive holonic COntrol aR-
chitecture for distributed manufacturing systems) for a multi-agent-based
production paradigm. The ADACOR ontology defined its own proprietary
manufacturing ontology, expressed in an object-oriented frame-based man-
ner. The ontology includes the basic classes for representing processes, re-
sources, and orders in a manufacturing environment; see Figure 4.6.

Holonic Manufacturing System - DiMS

As mentioned previously, manufacturing systems in use are under constant
pressure to improve and re-organise. The need for improvement and change
comes from the business, product development, and manufacturing domains
and is generally related to new value offerings, capacity adjustments, cost ef-
ficiency, or technology. At the same time, innovative ideas and new concepts
are emerging and new technologies are being developed. Fast adaptation to
the opportunities arising from innovative business models, products and pro-

46

.»*" Service Requester

-~ / Undating,
! Learning Receipt
5;3?;:2 L Analyzing * INFORMATION
\SKILLS Data collection . ggi?éﬁf o
= ACTIONS Analyzing = HISTORY

\)
. i Learning Receipt
TTeea h
el Uvda\'mg

*«. Service Provider

Business
ittt . Domain

Communication

Digital

Information
Knowledge

Service

Real Virtual
Physical Model

Communication

Scheduling

(a) Manufacturing entity (b) Manufacturing service (c) Manufacturing system

Figure 4.7: Structure of Manufacturing Entities, Services, and Systems,
adapted from Lanz et. al, [40]

duction models, and technologies and their synergies is the key competitive
issue.

Emerging new manufacturing paradigms such as Bionic Manufacturing Sys-
tems (BMS), Holonic Manufacturing Systems (HMS) and Fractal Manufac-
turing Systems (FrMS) have recognised the distributed and evolutionary na-
ture of manufacturing processes within an industrial context [68]. Man-
ufacturing systems can be seen from this viewpoint as emerging through
an evolutionary synthesis process simultaneously with business and product
models, rather than being planned according to a known set of parameters.
Nylund and Salminen [48,49] have developed a Distributed Manufacturing
System concept (DiMS) as a synthesis of new ideas. DiMS is based on a
holonic architecture. The core of self-configuring manufacturing system, such
as DiIMS, is in its internal service negotiation process between the Business,
R&D, and Manufacturing domains, as illustrated on the right-hand-side in
Figure 4.7.

As the concept operates on the basis of the information embedded in ser-
vices, it is also vital to ensure the existence and quality of the services of-
fered. As service holons are communicating entities in a constantly evolving
self-organising system, their formal structure has to support emergent prop-
erties, i.e. to have internal change logic [48,49|.

In one hand the holons are representations of actual physical devices that

have been enhanced with intelligent reasoning and communication interfaces,
on the other hand the order holons are purely software agents setting things

47

ﬂJigitaI Entity \ / Virtual Entity \ / Real Entity \

Digital representation Virtual representation Real representation
of an Entity of an Entity of an Entity
{Product, Process {Product, Process {Product, Process
System} System} System}

A = %‘
S W

Figure 4.8: Knowledge representations of an entity, modified from Nylund
[49] and Lanz [41]

into motion. An order consists of a fractal holarchy ? representing sales and
product information and equivalent test manufacturing model. Operative
manufacturing takes place as order holons manufactures itself and aftermar-
ket information remains as order holon gets history holon status [48,49].

The DiMS concept aims to eliminate waste - of time, material, or resources -
by validating the digital model in the simulation environment and treating it
as a hypothesis, which will be proven true or false in the real manufacturing
environment. The manufacturing plan itself is also considered to be in the
state of hypothesis when the manufacturing context is changed. The hypoth-
esis approach forces the manufacturing system to re-evaluate its performance
and focus on continuous improvement, since the context is considered to be
dynamic. In order to represent the product-process system entities’ knowl-
edge content, the model must be extendable for the digital representation of
an entity and its simulation and a physical representation of it, as illustrated
in Figure 4.8.

The Digital Entity is the representation of the digital information of the en-
tity [48]. Figure 4.8 illustrates the different domains used to describe the
contents and the context of the entity. The Virtual Entity is a category
for the validation of the knowledge of the Digital Entity by different levels of

2Holarchy is a group of holons connected together in order to provide required capability
or a combination of a capability.

48

Production Development

Virtual Test Manufacturing

!

Real Test Manufacturing

Service Request

Product Development

=)

| New
[Feature Recognition]

Now Validation Existing \

ProductFeature
Method

T

[Neerature]———»[NewService H New Method] :

T T 1
1 I

Existng | ~ ~ T TTTTTTopTTTTTTTTTTTTTTTTTTTTTTTTT
Service Knowledge Base

f [Features][l\/lethods]

Capabilities

Manufacturing
Method

Existing
Feature

Figure 4.9: Connections and Relations in the DiMS framework, modified
from [49]

simulations. The simulation is used, for example, for obtaining possible man-
ufacturing scenarios, the verification of assembly movements, the reachability
of the robots and devices that are used, and the validation of planned pro-
cessing times. The best option, defined by the user, is sent back to KB as a
validated process and with the resource information of the digital model. The
simulation model is connected to the Digital Entity via references. Figure
4.9 illustrates the connections and relationships inside the DiMS framework.

Summary of the Literature Review

The structure of the literature review is formed in such a manner that a prod-
uct, process, and system domain integration method is introduced first. The
integration method is based on the idea proposed by [54] and implemented
with modifications by Lohse [45]. The method in itself does not define the
below-product /part-level connections to processes or systems. For represent-
ing these there exist the feature-based modelling and analysis methods from

49

van der Net [69] and van Holland [28], which were introduced in the second
part of the literature review.

Third part of the literature review introduced graph-based assembly process
planning theories from Zhao [72] and Sandersson and de Mello [17], and
process and resource description models as explained by Gruninger [27] and
Bock [4] and Riddick [59].

The fourth part of the literature review gave an introduction to the formula-
tion of knowledge representation and logics. Ontological modelling was also
described briefly, and finally, knowledge-based production paradigms - expert
systems, agent-based systems [45,51], and holon-based [5,49] manufacturing
paradigms and their implementations focusing on the knowledge representa-
tions used - were introduced.

As can be seen from the literature review, most of the solutions that have
been used in various domains have only been implemented in somewhat nar-
row areas. For example, formal knowledge representations or standards rep-
resenting connections between the product, process, and system domains do
not exist. The KRs represented in the final part of the literature review all
focus on describing the manufacturing domain, i.e. how the processes can
be linked to the resources. However, the input knowledge is missing. The
characteristics of a product impose requirements on the overall system ca-
pabilities that fulfil the process needs. Currently no model exists that could
combine product characteristics with the capabilities of a system component.

20

Chapter 5

Proposed Methodology

Chapter Five will describe the core of the thesis. In this chapter the initial
problem is formulated into a business problem and in order to propose a solu-
tion the business problem is formulated into a technical problem. Figure 1.2
illustrated the current situation, with a distributed design, process planning,
and production scheme with highly informal knowledge exchange. The thesis
proposes a methodology and a model to solve the technical problem concern-
ing the product, process, and system information modelling, integration, and
exchange. The result of the methodology is the knowledge representation.
The steps for the Knowledge Representation Formulation (KRF) Methodol-
ogy are the following:

e Step 1 - Establishing Correct Requirements

e Step 2 - Definition of Connection Between Domains

Step 3 - Formulation of a Conceptual Model

Step 4 - Creation of a Knowledge Representation

Step 5 - Evaluation of the KR on basis of the Set Requirements

The chapter will first introduce definition criteria for establishing the correct
requirements. The second step of the methodology is to establish relation-
ships between the product and process domains. Then the content infor-
mation of the product models and the resource descriptions are deepened
with a feature-based modelling approach. The feature-based modelling will
provide the necessary content description for the virtual models. The third
step formulates the connections under one concept model. The fourth step
is to formulate the knowledge representation and the fifth step will evaluate

ol

the soundness and expressiveness of the knowledge representation that is de-
veloped on the basis of the first step. In each of the steps there will first
be a description of the method and goals of the step and then of the actual
implementation of the step.

5.1 Step 1 - Establishing Correct Requirements

The first step in the methodology presented in this chapter deals with the
definition of correct requirements. Defining requirements to establish spec-
ifications is the first step in the development of a knowledge-based system.
Unfortunately, in many cases, the definition of semantics and requirements
based on commonly understood semantics is not done well enough. This
causes problems when ambiguities in requirements surface later in the life-
cycle, and more time and money is spent on fixing these ambiguities. There-
fore, it is necessary for the requirements to be established in a systematic
way in order to ensure their accuracy and completeness [66].

The difficulty arises from the fact that establishing requirements is a tough
abstraction problem and often the preplanned implementation gets mixed
with the requirements. In addition, it requires people with both communica-
tion and technical skills to do the definition in the first place. As requirements
are often weak about what a system should not do, this poses potential prob-
lems in the development of dependable systems, where these requirements are
necessary to ensure that the system does not enter an undefined state [66].

According to Tran [66], the first step is to form a common understanding.
There is no point in trying to establish exact specifications if the designers
and end users cannot agree on what the requirements are. A simple case
is where ambiguousness in the design specification allows multiple different
interpretations. For example, the requirement states that there is a need to
create a means that would transport a small patch from location A to location
B. Possible interpretations of this requirement include building a conveyor,
an automated guided vehicle, a forklift or a crane, among other possibilities.
Although each of these transportation devices satisfies the requirement, they
are certainly very different.

Ambiguity can be caused by missing requirements, ambiguous words, or ele-

ments that have been introduced. The above requirement does not state how
fast the patch should be transported from location A to location B. Taking

52

a forklift would certainly be cheaper than building and operating a conveyor
or crane. There are also missing requirements, such as the meaning of "a
small patch size" in the above requirement, which is an example of ambigu-
ous words. What exactly does "small” imply? A few products in a tray, a
few trays, or a set of trays grouped together? The requirement states that
a means should be created, not a transportation device designed. This is an
example of elements that have been introduced when an incorrect meaning
has slipped into the discussion. It is important to eliminate or at least re-
duce ambiguities as early as possible, because their cost increases along the
progress [66].

The requirements for the knowledge representation are:

e the model will represent a selected domain, which is manufacturing and
assembly process modelling;

e semantics are defined in such a way that the meaning of each structure
in the knowledge representation is clear and there is no ambiguity in
terminology;

e the precision of terms and definitions is in agreement with the proper-
ties of the structures used;

e the proposed knowledge representation is interpretable by humans and
machines;

e the proposed knowledge representation is suitable for reasoning, and

e the proposed knowledge representation must be suitable for use in a
dynamically adaptive operating environment where the product char-
acteristics impose requirements on the resource capabilities.

5.2 Step 2 - Definition of Connection Between
Domains

Step 2 of the methodology will deal with the definition of the connections
between the product, process, and system domains. As defined in Chapter
3, the term ’product’ represents the digital and virtual (visualisation) model
of a product. ’Process’ describes the actions taken in order to manufacture
or assemble it. The term ’feature’ describes any geometric or non-geometric
properties of a part, product or resource. The domain system is dedicated

23

to describing physical resources that include the operators, machines, areas
of action, and software blocks connected to the machines.

The rise of virtual factory theorems and requirements for more accurate digi-
tal representations of both products and process capabilities have created the
need for a product-process definition. There have been ideological efforts to
combine product assembly requirements with process planning. The efforts
have been more methodological than actual implementations. However, de-
spite the efforts, the meaning of the product-specific features has been lost on
the assembly and manufacturing process side. The reasoning of the technical
solutions about the assembly or manufacturing processes has, in most cases,
been too specialised for broader use. The other drawback has been the sole
concentration on the connection between processes and system instead of
the connection between the product requirements and needed manufacturing
capabilities.

Feature-based Modeling and Analysis

As a starting point, the definitions used for feature-based modelling and fea-
ture classification must be clarified. A feature is any geometric or functional
element or property of an object that is useful in understanding its function,
behaviour, or performance. Features combine geometric and non-geometric
information together. In mechanical engineering, different geometric features
can be distinguished: protrusions, slots, ribs, and pockets are typical exam-
ples of frequently used and recognised ones [36].

e Geometric Product Modelling: features are elements used in generat-
ing, analysing, or evaluating designs

e Design of Manufacturing: features represent shapes and technological
attributes associated with manufacturing operations and tools

e Design of Assembly Processes: features represent shapes and techno-
logical attributes associated with assembly tasks, processes, operations,
and tools

Feature-based modelling and analysis is used to add meaning to the product
data. Features can be either geometric, such as edges, faces, holes, pockets,
slots, ribs, and pads, or non-geometric product information, such as toler-
ances, material, density, handling requirements, and process descriptions. As

o4

Constraints

Product |—FPre-Descrbes | Procegs

Sets
Requirements

Constraints

Figure 5.1: Product, Process, and System Connectivity Graph

explained by Lanz in [36], the product model will include features from both
of the categories.

Product, Process, and System Connectivity

In order to combine the product characteristics with the assembly process
needs, the Assembly-State Decomposition Model (ASDM) was developed.
The ASD model, as presented by Lanz et al [36,42|, continues from the
AND/OR graph theory by concentrating on the description of the minimal
number of assembly processes required. The ASDM acts as a missing link be-
tween feature-based assembly process planning and assembly graph theory.
However, the ASDM does not describe activities at the feature level. For
describing manufacturing-related activities at the geometric feature level,
the Manufacturing State Decomposition Model (MSDM) was created. The
MSDM continues as a stand-alone model separate from the ASDM.

Figure 5.1 shows the conceptualisation of the connectivity between the differ-
ent domains. It can be seen that the characteristics of a product predescribe
a set of processes needed to manufacture and/or assemble the product. The
description of the product pre-describes the processes. The processes pre-
describe the system requirements and constrain the set of systems. The
system domain includes the defined resources and functions related to spe-
cific resource types, such as scripts or function blocks. A direct mapping
between the three different domains allows an immediate action in any of
the processes on the basis of the requirements of the other two. The charac-
teristics of products and systems are defined via geometric and non-geometric

95

features, which are described through a domain ontology.

The terminology used for modelling with the ASDM is as follows:

e Assembly - an assembly consists of a number of components. A com-
ponent can be either a part or a sub-assembly.

e Assembly Action - a single action, such as translation, rotation, or the
application of a force that can change the state of the targeted object
(product, assembly, part) - see Figure 5.2.

e Assembly task - combined and more complicated movements such as
move along a trajectory, grasp, release, and join - also in Figure 5.2.

e Assembly operation - a series of operations, such as insert, screw, clue
and press-fit, that contributes to the formation of the product by bring-
ing together parts and assemblies - see Figure 5.2.

e Assembly phase - an assembly phase is defined as the assembly state
in which different assembly operations can be performed on the initial
configuration of the product (stable assembly, initial sub-assembly, or
base part) with the condition that only one operation can be performed
upon one part.

e Base part - the base part is the first part in the assembly sequence.
The base part influences the main assembly direction. Together with
the fixture it determines stability properties.

e Mating conditions - a mating condition is the requirement of a part for
accepting other parts. The mating condition can be either geometric
or functional. It defines the way parts have to be assembled and hence
defines the assembly processes - see Figure 5.6

e Part - a part is the elementary component of an assembly.

e Stable assembly - there are several types of stability. The part can be
analysed for stability in the feeding process and in the feeding position,
and for stability of the grasp during the move or mount trajectory. The
partial assembly can be analysed for stability in the assembly position,
during the mount process, and during transport.

e Sub-assembly - a stable assembly that contains two or more parts.

o6

Activity: Assembly

Process _ 1 1.* Task 1 /1..* Operation _1 1..* Action
O O O

o o

@)

Assembly Moving — Screwing 1

ba : .
craspng | ||+ Guing

Testing Releasing - Inserting M

¥

Packaging Joining >

Press Fitting

L

—{ Translation J

al
»[Welding]ff—b{ Rotation J

Logistics

Adjusting

i

N

v

Figure 5.2: Assembly Activity Levels in the form of a taxonomy

e Transition - a transition is the event of changing from one assembly
phase to the next one [36,42].

The diagrams that compose the product model are as follows:

e Direct connection between parts - this is represented by an arrow point-
ing in the assembly direction. In Figure 5.3, part 1 is assembled directly
to part 2.

Part 1

Direct connection —

A 4

Part

Figure 5.3: ASD model - Direct Connection

57

Part 1

Indirect connection ——»

Part A Part B

Part C

Y

Part

Figure 5.4: ASD model - Indirect Connection

Part A[~— PartB

A

Part 2

Figure 5.5: ASD model - Sub-assembly

‘ Feature 1 ‘ ‘ Feature 2 ‘ ‘ Feature X ‘ ‘ Feature Y ‘

A 4

Mating
Conditions

Figure 5.6: ASD model - Mating Conditions

o8

Leb [Phase 5 |

Plastic Layer

Black Clip
 J
Rubber _ Base Element ‘ Mibrator H Plastic Clip H Rutber Clip H COniOff Switch | Cornection Phas
Black Clip I T Plug
Plastic Py ’_?—
Connection Plug fi MiBrsioe E et : Basa Blomert Phase 1
Battery 1 I
(not shown) Cover i i
Bottom 1 |
i o |

Subassembly of the vibrator

Figure 5.7: Assembly State Decomposition model of the product view and a
case product

e Indirect connection between parts - this is represented by a point em-
bedded in the part block. In the figure 5.4, part 1 is directly assembled
onto part 2; however, precedence constraints state that parts A, B, and
C should be assembled prior to part 1.

e Sub-assemblies - these are represented by a direct connection between
parts in the same assembly phase; see Figure 5.5. The assembly direc-
tion of the sub-assembly can be defined in the same manner as with
any other assembly. A connection between parts can be bi-directional
when a base part is not properly defined. This offers some flexibility,
but increases the difficulty of the decision-making process in the assem-
bly planning.

The physical connection between parts is defined through feature recogni-
tion. Features are defined as any geometric or functional element or prop-
erty of an object that is useful for understanding its function, behaviour, or
performance. Figure 5.6 shows a schematic representation of the connection
between two parts on the basis of feature information and mating conditions.

A case product that utilises the rules of the ASDM is shown in Figure 5.7.
On the basis of the assembly modelling methodology and the mating con-

29

((Activity 13] [Activity 14 |
v Yy ¥
[Parto | [Part10] [Part11 |
w
[|
[Activity 8] [Activity 10] [Activity 11]
| |
¥ ¥ ¥] ¥ Activity 8
[Part2 | _Part3 || Pata || Pats | Pate |

Activity 7

((Activity2] [Activity 3] {_Activity4 | [Activiys | [Activitys]

Part 15

a) ASDM Product View b) ASDM Process View

-

Figure 5.8: ASDM product and corresponding activity graph from the case
product

Figure 5.9: ASD model of the Activity View - Prior Activity

dition analysis performed in the product model, an activity view of the as-
sembly process can be formed. Figure 5.8 shows the product view on the
left-hand side of the figure and the process view of the same case product on
the right-hand side of the figure. The process representation also includes
special diagrams to represent specific situations in assembly. They are as
follows:

e Prior Activity - a prior activity is represented with an arrow from the
side of one activity to the other, representing the directional flow of
the activities. The current case product shows this diagram for the
vibrator assembly, and is a direct connection between process 2 and
the prior activity box; see Figure 5.9.

e Repetitive Activity - when an activity is repetitive and can be per-
formed in the same assembly phase, such as screwing six screws into a

60

Activity A — Activity A
Activity A
Activity A

Figure 5.10: ASD model of the Activity View - Repetitive Activity

plate [36,42], see Figure 5.10.

For the Manufacturing State Decomposition Model (MSDM), which is a sis-
ter model to the ASD model, the activities are connected to a geometric
feature level as illustrated in Figure 5.11. In this case the primitive features,
such as a round hole and rectangle, are combined into more advanced fea-
ture sets such as a rounded hole. Rounded holes consist of two primitive
types: rectangles and round holes. In the case of sheet metal, the tools are,
for example, a round hole and a rectangle. By combining these primitive
features the feature can be nibbled or cut straight away with a laser. Figure
5.11 shows repetitive activities on the manufacturing feature set level. How-
ever, the feature sets such as the rounded hole can also be divided into single
primitive features, each connected to a single punch operation.

e Part - the base part upon which the features are inflicted
e Primitive Feature - a rectangular pocket or round hole

e Manufacturing Feature Set - a combination of primitive geometric fea-
tures and non-geometric features

e Manufacturing Task - a combined and more complicated movement
such as drilling, machining, punching, and laser cutting

e Manufacturing Operation - a series of operations, such as hole cutting
or edge cutting

e Manufacturing Action - a single action, such as translation or rotation

e Manufacturing Phase - a phase is defined as the state in which different
manufacturing operations can be performed on the initial part with
the condition that one or more operations are performed upon one
manufacturing feature.

61

Pocket Rect 2, 4kpl

Hole D20

[Pocket Rounded, 2kpl |

Process 6
Process 5

Pocket Rect 1, 2kpl

Hole D4, 29kpl

“y

[Pocket Rect 1, 2kpl | [Pocket Rect 2, 4kpl | [Process 1] [Process2 |

Sheet plate

Pocket Rounded, 2kpl

Figure 5.11: Manufacturing State Decomposition Model of the part view and
a case product

e Transition - a transition is the event of changing from one manufactur-
ing phase to the next one [36,42].

For the manufacturing state decomposition model (MSDM), the process de-
scriptions are the same as for the ASDM; however, they are, naturally, on a
different conceptual level. The ASDM provides an understanding of product
structure, rules, constraints, and assembly-specific information in relation to
the product model. The MSDM provides the connection between the man-
ufacturing feature level and processes connected to single features or sets of
features. In the case of the ASDM, the definition of activities defines the
requirements for the system. However, in the case of discrete part manufac-
turing, the requirements are clearer. For example, a rounded hole in a sheet
metal product, which is a manufacturing feature set, requires cutting. The
machine types that are capable of completing the required actions are a laser
or punching machine. The type of material used and its thickness, repre-
sented as non-geometric features, define the requirements even more closely.
So, in other words, the product and system are connected through processes.

5.3 Step 3 - Generation of a Conceptual Model

Step 3 will focus on creating a conceptual model based on the ASDM and
MSDM. The goal is to connect these two different models under one generic
Product-Process-System model.

There are several obstacles or barriers that make knowledge capture and
management rather difficult. One is the vast amount of heterogeneous infor-
mation being captured. The other one is the description of the information.
Traditional methods of capturing knowledge from information fail when ap-
plied to large, highly complex, and interconnected bodies of semantic infor-
mation [58|. The formal practice of information modelling as a discipline
supports the wider field of systems analysis, which encompasses both in-
formation and activity modelling. Ray and Wallace [58] defined two main
principles of modelling such information systems as early as in 1995.

e First requirement: the most important step in the modelling of informa-
tion structure is consensus building. The modelling method must sup-
port human communication and interpretation of the resulting model.

e Second requirement: for large and complex models the representation
must be machine-interpretable and thus valid.

Starting with the theoretical background, a product model is understood as
a representation of product-specific information which describes a particular
product or a product family. A product model is a representation of product
information. Product information describes a particular product or a prod-
uct family. The computerised representation of product knowledge requires
a formal representation, which defines the form and types of content, and a
corresponding product model, which contains information specific to a par-
ticular product.

The product model typically contains a combination of single parts, where
different instances can be of the same type. Some of the parts are not always
directly assembled into the main product; the existence of sub-assemblies is
allowed. Single parts and sub-assemblies are expected to be stable, and they
can be assembled into the main assembly [28,36].

The traditional modelling inside the CAD environment is restricted mainly

to the product model. This means that process and system information can-
not be added into the CAD file. However, the ontological representation,

63

introduced later on, instead of restricting the product-process connection
and additional knowledge, allows the possibility of adding process and sys-
tem information and provides a means for semantic reasoning and knowledge
discovery.

In the conceptual PPS (Product-Process-System) knowledge model, intro-
duced in |37, 38|, the assembly-specific feature information is divided into
four semantic layers: Features, Feature Sets, Assembly Features and Assem-
bly Feature Sets. A feature can be a certain face or an edge. Feature sets
are more complex combinations of recognised and meaningful faces. The
assembly features include the assembly process requirements [36,38]. Con-
sequently, the assembly feature sets are complex feature sets defining a set
of assembly requirements. This hierarchical, feature-class representation can
help in the definition of the structure of a knowledge representation in rela-
tion to process and system knowledge. The feature sets that are recognised
are used as a basis for the reasoning and parsing of the knowledge.

The conceptual PPS knowledge model, illustrated in Figure 5.12, defines
how the Process Model, Reasoning Machine, Reasoning Results and Product
Model are integrated. At the conceptual level the product-specific infor-
mation is connected into the processes through the two classes: Reasoning
Machine and Reasoning Results [38].

The main focus for the knowledge representation is the product and the
actions that occur upon it. This viewpoint is called a product-centric view.
Another viewpoint for the model is the resource-centric viewpoint, illustrated
in Figure 5.13. The knowledge for the resource can be very vague and it can
be temporally based on data acquisition and aggregation from a physical
machine via performance logs or it can have a very detailed description of its
characteristics and a corresponding visualisation. The resource-centric view
utilises the Object domain to represent the structural aspects of a resource.
The geometric and non-geometric features, as well as the life-cycle states,
also need to be modelled for each resource.

The characteristics of the normal Product-centric viewpoint are:

e System is defined as resources connected to product through activity
classes.

e Activities describe what happens between parts or for forming a feature.

64

Ayjeuonsund
B0 ved
SIUBIBIO L
1ood
[EuER on
BUnjEs IUEBUIDaHUoN
BINIES4DIRSU035)
3
K<
I~
aIneaq
ved

legaimesy

M - aa1A80 AJ Suitoew 1189
o
joqoy cory A_I uonels
jool © | oy] : - sun
aoinosay
i : uewny Riojoe4
' way _
[epoLsisig
UL
sanyfguassy
- uonessdo | | <H uangoy uopaYqns
S
suonpuonBunew
T
__ auyaebuiuoseay]
|
I
|||||| 1
HSEL

aunjeadfqusssy

1aganeEs Alquassy

|apopIonpod

7 s)nsay Buluoseay

c

_‘ Aoy *
I

55800.1d

3

_ |8pOJ SS80014

Figure 5.12: Product-Process-System Model
65

r

©

m

Point of
View

p P ___Congtraints__

R \CoreOntology} T N
- | - | . Proc:uct Pra-Describes PFO(:JESS
w I “ K 7 = I S ‘ gzt:}m{nenh Oa /,"JCnnstrﬂims

- - “-» System
KB and Knowledge
Representation Resource
Point of

W

o
Figure 5.13: Product and Resource viewpoints

e Product is described as planned and/or manufactured.

The characteristics of the Resource-centric view are:

e The characteristics of Resources are described through the product and
resource domains of the ontology.

e Activities describe what happens between parts inside of a system form-
ing a set of functionalities.

e Groups of functionalities form the capability of a resource.
e Resource is capable of performing a task or activity multiple times.

e System is described as an initial state, current state, and any state
(prediction based on the operational log).

66

5.4 Step 4 - Creation of a Knowledge Repre-
sentation

This step will formalise the conceptual model into a Knowledge Representa-
tion (KR) that structures the relevant knowledge. The relations on different
levels of abstraction are taken into account. In order to be a useful solution,
the KR must represent the Product-Process-System model introduced in the
previous step; i.e., it must be able to capture the connections between the
product, process, and system domains.

The following section will define the necessary conditions between the classes.
Since the technical problem is more a classification problem than an inference
problem, only the most important axioms are modelled here. However, as the
KR is designed to be the foundation element of an intelligent manufacturing
environment it must include semantics for inference. Other notes must also
be made. There is no time index in the KR, since in this domain it is rarely
modelled or considered to exist. For example, the stages of modification of
a part in relation to time are not modelled, i.e. part A is part A during the
modification and it is not modelled as raw material evolving into the physical
part A.

The connection between the Object, Activity, and Resource layers is shown
in Figure 5.14. The Object class contains three subclasses: Product, Sub-
Assembly, and Part. The Part is partOf SubAssembly and partOf Product.

The class Part is the smallest entity under the super-class Object, where the
x represents a concept in the class Part and y any other concept, and the
Axiom for the class Part is following:

Va(Partz — —Jy(y < x)) (5.1)

The class Product is the largest entity under the super class Object, where
the x represents a concept in the class Product and y any other concept, and
the Axiom for the Class Product is the following:

Va(Productr — —Jy(z < y)) (5.2)

67

/ Object \ / Activity \ / Resource{Area} \

Product o Process ol it it Factory
A \ ‘ \
partOf partOf ‘ partOf
SubAssembly [e-o———» Task - ' = Line
|
Y Y | Y
partOf partOf : partOf
|
Part e Operation e Cell
|
K / y ! y
T partOf : partOf
|
artOf . : .
P Action . Station

GeometricFeature \ / \ j

Figure 5.14: Connection of the Object, Activity, and Resource (Area) levels

Since Parts and SubAssemblies can exist in a SubAssembly, where the x
represents a concept in the class SubAssembly and y any other concept, the
axioms for the class SubAssembly are:

Va(SubAssemblyx — Jy(y < z)) (5.3)

Va(SubAssemblyx — Jy(x < y)) (5.4)

For all Object there must be defined instance from the classes Part or Sub-
Assembly or Product:

Va(Objectr <+ Partz V SubAssemblyx vV Productx) (5.5)

On the basis of the axioms, it is defined that there cannot be a Part that is
a Subassembly or a Product that is a SubAssembly:

—3z(Partz A SubAssemblyx) (5.6)

68

where the z represents a concept in the corresponding class.

—3Jx(Productz N\ SubAssemblyzx) (5.7)

where the z represents a concept in the corresponding class.

The GeometricFeature class has a connection through the class Feature to
the class Object. On the conceptual level a part (model) can be divided
into smaller units, such as edges and faces. However, since features can be
connected to Products and SubAssemblies as well, and to Resources, the class
is not part of the Object class. The GeometricFeature class is a dependent
entity that cannot exist without the Object class, i.e. a GeometricFeature is
nothing in itself.

Va3y(GeometricFeaturexr — Objecty) (5.8)

where the z represents a concept in the class GeometricFeature and y a con-
cept in the class Object.

Similar structures exist for Activities as for Objects. The Process class is the
highest class in the Activity. Under Tasks are partOf Processes; Operations

are partOf Tasks and Actions are partOf Tasks. The following axioms de-
scribe these relations.

The Action class is the lowest class in Activity:

Va(Actionz — —Jy(y < x)) (5.9)

The Process class is the highest class in Activity:

Va(Processr — =3y(z < y)) (5.10)

69

For all instances of Activity there must be a defined instance from the Process
or Task or Operation or Activity classes:

Va(Activityx <> Processx V Taskxz V Operationz V Activityz) — (5.11)

For Resource(Area) entities the axioms are following:
The Station class is the lowest class in Resource(Area), where the z represents
a concept in the class Station and y any other concept:

Va(Stationr — —3Jy(y < x)) (5.12)

The Factory class is the highest class in Area, where the x represents a
concept in the class Factory and y any other concept:

Va(Factoryr — =3y(z < y)) (5.13)

For all instances of an Area there must be a defined instance from the Factory
or Line or Cell or Station classes, where z represents any concept from the
corresponding class:

Vr(Areax <> Factoryx V Linex V Cellx V Stationx) (5.14)

The rest of the Resource class structures are illustrated in Figure 5.15. The
axiom for an Actor is as follows, where z represents any concept from the
corresponding class:

Va(Actorz <» Devicer V Humanx V Softwarex) (5.15)

Figure 5.16 illustrates the structure of the Device classification. The axiom
for the Device class is as follows, where z represents a concept from the
corresponding class:

Vx(Devicex <» ComplexDevicex V Simple Devicex) (5.16)

70

Resource{Actor}
Actor
Y
isA isA isA
Human Device Software

Figure 5.15: Resource(Actor) classes

These classes are purely for classifying what exists on a factory floor. For ex-
ample, a robot unit as a Complex Device consists of ComplexDevice(Robot)
and ComplexDevice(Gripper) and SimpleDevice(Tool), where z represents
any concept from the corresponding class, is as follows:

Complex Device(Robotunit)

Robot(z) + Gripper(x) + Gripper Finger(z) + Gripper Finger(y)

The GeometricFeature class is different from the other hierarchical class
structures since it includes isA and partOf relationships. As defined above,
the Vertex class is the most atomic structure in this class structure. An edge
is formed when there are two vertices forming a stable structure. Since these
classes come from the visualisation, the edge is defined with at least two
vertices.

For creating a face at least three vertices that are connected with three edges
must exist. Face-FExtended is defined only for the needs of the feature recog-
nition tool. The Face-Extendeds are faces that can include holes and pockets.
The Face-Extendeds can remain in a datum or they can be described as math-
ematical surfaces. The Complex class is reserved for the recognised features,
such as primitive features and undefined features. The primitive features are
considered to be Cylinder, Box, and Triangle. If a form that is not recognised
as primitive is found, it will be saved to the OddShape class.

71

/ Resource{Device} \

Device

isA | isA
SimpleDevice ComplexDevice
\
isA
Tool

isA isA isA isA

Fixture MovingDevice StoragingDevice ModifyingDevice

. 4

Figure 5.16: Resource(Device) classes

/Thing(Feature) \

Feature

A

iSA ‘ isA

Geometric Non-Geometric
Feature Feature

isA isA [isA | isA [isA

Face Box Triangle Cylinder OddShape

partOf isA

Edge FaceExtended

partof

Vertex

Figure 5.17: Feature classes

72

Figure 5.17 illustrates the structure of the Feature class.

The Vertex class is the smallest entity under the Geometric Feature class
and the axiom for the Vertex class is as follows:

Va(Vertexr — —3Jy(y < x)) (5.17)

where the x represents a concept in the class Vertex and y any other concept.

The Face class is the largest entity under the super-class GeometricFeature,
where the z represents a concept in the class Face and y any other concept,
and the axiom for the Class Face is as follows:

Vr(Facex — —Jy(x < y)) (5.18)

Since Edges and Vertices can exist in an Edge, where the z represents a
concept in the class Edge and y any other concept, the axioms for an Edge
are such as:

Va(Edgex — Jy(y < z)) (5.19)

Ve (Edger — Jy(z < y)) (5.20)

For all instances of a GeometricFeature there must be a defined instance from
the Edge or Vertex or Face or Complex classes:

Va(GeometricFeaturex <» Vertexx V Edgex V Facex V Complex) (5.21)

where the z represents a concept in the corresponding class.

The knowledge representation aims to formalise and capture the meaning of
entities. Previously, ontological modelling aimed at providing a knowledge
representation, which allows inferences to be to be applied upon the content.
However, in recent years, according to Gruber [26] and, later on, Cech [8],the
ontology design actions should also take into account the interoperability
criteria, extending the design requirements as follows:

73

Clarity: the ontology should effectively communicate the intended mean-
ing of defined terms. Definitions should be objective and documented
with natural language.

e Coherence:the ontology should approve only inferences that are consis-
tent with the definitions.

o Fatendability: the ontology should be designed to anticipate the uses
of the shared vocabulary. The user should be able to define new terms
for special uses based on the existing vocabulary in such a way that
the re-visioning of the ontology is not needed.

o Minimal encoding bias: the conceptualisation should be specified at
the knowledge level without depending on a particular symbol-level
encoding. Encoding bias should be minimised, because knowledge-
sharing agents may be implemented in different representation systems
an styles of representation.

o Minimal ontological commitment: the ontology should require the mini-
mal ontological commitment sufficient to support the intended knowledge-
sharing activities. The ontology should make as few claims as possible
about the world being modelled.

Several types of ontology languages exist, each having slightly different knowl-
edge representation expressivenesses and reasoning mechanisms. The selec-
tion of an ontology language is not an easy task. As stated previously in [51],
artificial intelligence-based languages such as KIF and Ontolingua and on-
tology markup languages (RDF(S), DAML-+OIL, OWL) are better suited to
representing and implementing ontologies than UML and ER diagrams.

For exchanging ontologies between applications, languages based on XML
are easily read and managed since standard libraries for the treatment of
XML are available. Among the above-named markup languages, OWL DL is
one candidate for ontology expression since it provides expressiveness while
ensuring that all valid conclusions can be inferred and that inferences are de-
terministic [51]. However, the light weight ontology language such as OWL
DL, is still a compromise between expressiveness and implementation, since
it does not provide all of the needed logical expressions in its vocabulary. For

example a basic concept such as the partOf relation does not exist in OWL
as in FOL.

74

feometricFeaturd,

hasPriritives*isa

Triangle| [0ddShape| |Cylinder

hasWertexXisa isa

Convex Conclave /j]onGeomemcFea(ur sFeatures™

isa sa isa

Fnergv\merface Pechanlcal\merface{ l,ag\cal\merface MaterialType %urface'rrea[men* +1atena\Pcs(prcces

isa sa isa

casuredyalued

%Iectrica\\merface Ii”neumauc\merfac% |—1ydrauhclmerface

Figure 5.18: Product Definition in the Core Ontology

The purpose of the ontology is to provide a generic description of three
different domains that are traditionally separated (but in most cases over-
lapping) and combine the common terminology under one domain ontology.
The three domains are introduced separately for the sake of the reader’s ease
of understanding. The connections between the domains are explained in
each section. For modelling the ontology an ontology modelling tool, Pro-
tégé 3.4. [24], was used.

5.4.1 Core Ontology - Product Definition

The product section! in the Core Ontology, introduced in Figure 5.18, is
used for describing and modelling the product-specific information inside the
knowledge base. The product ontology supports variable types of product
structures with rich meta-information. Additional information, if needed, is
presented as non-geometric features of the object and life-cycle-related infor-
mation.

IThe term ’product’ is used here for describing this particular ontology domain. How-
ever, in order to solve technical modelling issues, the superclass of this domain is Object.
This allows a part to be modelled without defining its place in a subassembly or in a
product.

I6)

Definition for the Classes

In the product ontology, illustrated in Figure 5.18, the Part and Sub-Assembly
classes all have a connection to the Product classes, as illustrated in Table 5.1.

Table 5.1: Core Ontology: Class Product
Product
modelUrlt - String
hasFailureMode | Instance(s) | FailureMode
refersToActivity | Instance(s) | Activity
providesSkill Instance(s) | -
hasAssembly Instance(s) | -

Table 5.2: Core Ontology: Class SubAssembly

SubAssembly
hasFeatures | Instance(s) | NongeometricFeature
hasParts Instance(s) | -

Table 5.3: Core Ontology: Class Part
Part

hasTask | Instance(s) | Task

isMadeOf | Instance(s) | Raw

In order to represent the required detailed information of the product, the
Feature class was established. The Feature class has two sub-classes: Geo-
metric Feature and Non-Geometric Feature. The Product class is separated
from the Feature class, but has a connection through it to the Geometric
and Non-Geometric Feature classes. This structure will allow more freedom
to describe the different detail levels of the current product compared with
a traditional strictly hierarchical presentation of product structures.

If there is a need to add deeper meaning to the product or the actual mean-
ingful features to the part/product model, it is done via Geometric Features.
As the product model is exported from one CAD system to another CAD or
simulation system, most of the geometric features are lost. In the worst-case
scenario, even the boundary representation information is lost. An example

76

CeeometricFeature

asOperat\or{Imstance"’ Operation
lsa
Complex
ype ‘ String™® .
isa isa
o Face
hasPrimitives|Instance™
Edge
sa hasPrimitiv% sa \'ia \.sﬁ asPrirmitives
Edge]] Face
Triangle Box Cylinder| |OddShape
has\fertex||nstance* Wartex has\f’ertex||nstance* Wertex
7)
isa sa astertax® - hasVertex™ sa
Yertex FaceExtended
Conclave -
coordmate‘ Floar* HasToIerance|Instance‘To\erance

Figure 5.19: Geometric Feature Class and its sub-classes

of this information loss is a round hole when virtual reality modelling lan-
guage (VRML) is utilised as a visualisation language. While it renders it as
a round one, a closer inspection might reveal that instead of a cylindrical
hole there is a cloud of points. Depending on the capabilities of system B, it
may or may not understand that this particular cloud of points is actually a
representation of a round hole.

The feature recognition tool that was utilised, explained in more detail in
Section 7, Case 1, Pro-FMA, parses the product model and re-creates the
lost features. The value of the diameter of a hole is saved under the Non-

MNonGeometricFeature

onGeometricFeature hasFeatures™
Instance™
FeatureSet
isa /a isa h&a isa isa
Other

asFeatures|

Tolerance
FeatureType[string*| | Behaviour |
Interface narme ‘ String Material Functionality|
name ‘ String 4ausesWearMechans\r*lns(ance“‘}\/\learMechamsml
value ‘ Any
value ‘ Any
isa sa isa

nargy_nterface };09ICE_\H(EWEC4 Pechamca_\n(erfac%

+neumat\c_\merfac<{ Fectr\cal_lmerfsce

}—Wdrau\ic_lmerfac%

Figure 5.20: Non-geometric Feature Class and its sub-classes

7

Cperation Cperation™

sOperationQf? asOperatioNAction“i ActionGf*
-
Task TaskOf“’ Action)asAction*
@Task@]‘*

Process @‘ésProcess* Object

i PerformedOnProduc%a hlasTask™

Product

isa \5\3

Assembly jsa | Part
isa %Made@f“’
Bubassambly Raw

Figure 5.21: Process Definition in the Core Ontology

Geometric Feature class.

The product ontology also contains information about the life-cycle phases of
the product. The life-cycle phase information will define whether or not the
part or the product is allowed to be used in an assembly or machining sim-
ulation. The product ontology is connected to the system ontology through
processes but also through device classes. The structure of a certain device
can partly be described in detail with the product ontology.

5.4.2 Core Ontology - Process Definition

Manufacturing and assembly processes 2 are described with a process ontol-
ogy, see Figure 5.21. The process ontology is the key operator when combin-
ing the product and the system knowledge.

The process ontology is the key operator when the product and the system

2The term ’process’ is used here for describing this particular ontology domain. How-
ever, in order to solve technical modelling issues, the superclass of this domain is Activity.
This allows operations and tasks to be modelled without defining the term’s superclass.

78

knowledge are being combined. The process ontology defines the activities
required to realise the product. However, during the conceptual process mod-
elling the resources might not be known. The activity class is the root class
in this domain. Processes are defined, for instance, as as Part Manufactur-
ing, Assembly, Testing and Packaging.

In the case of the assembly process, the tasks are such as move, retrieve,
release, and join. If the assembly task belongs to the joining class then the
operations can be, for example, screw, glue, insert and press-fit. The Action
class is reserved for the most basic functions, which are rotate and translate
and combinations thereof, as defined earlier by Rampersad [54] and further
modified by Lohse [38,43,45].

Compared to the architecture represented in Figure 4.6, the ADACOR archi-
tecture, the approach in this process ontology is different. The idea in this
thesis” approach is not to express the classes with details such as class Setup
in ADACOR. The setup actions in the Core Ontology are described through
Task classes, where the content describes the actions taken into account. The
idea with the Core Ontology is to describe actions and connected resources in
such a way that the resource capabilities describe more than the action itself.

The process ontology, illustrated in Figure 5.21, provides shallow definitions
of the types of interaction between actors and products.

Definition for the Classes

Activity, in Table 5.4, is the superclass for the process definitions.

Table 5.4: Core Ontology: Class Activity

Activity
isPerformedOnProduct | Instance(s) | Product
requiresCapability Instance(s) | Capability
ActivitySeqPrevious Instance(s) | Activity
Activity SeqNext Instance(s) | Activity
requiresResource Instance(s) | Resource

The Process class, illustrated in Table 5.5, is the actual definition for the
processes used in the realisation of a product. As previously defined, the
processes have four main classes, as presented in Figure 5.2, which form a

79

hierarchical structure. The processes are higher-level activities such as part
manufacturing, assembly, packaging, and testing. It has to be noted that
this division is not the result of pure reasoning but more like a guideline for
understanding the levels of content.

Table 5.5: Core Ontology: Class Process

Process
isPerformedOnProduct | Instance (s) | Product
hasProcess Instance(s) | Process
hasTask Instance(s) | Task
isProcess Instance(s) | Process

Below the Process class is the class for Tasks. Task are defined as being
parts of the process, such as drilling, milling for part manufacturing, and, for
example, joining for assembly processes.

Table 5.6: Core Ontology: Class Task

Task
hasTask Instance(s) | Task
hasOperation | Instance(s) | Operation
isTaskOf Instance(s) | Process
isTaskOf Instance(s) | Task

The class for Operations is a subset of the Task class. The operations are for
assembly processes such as snap-fitting, press-fitting, screwing, gluing, and
welding or for manufacturing-side operations such as laser cutting or punch-
ing.

Table 5.7: Core Ontology: Class Operation

Operation
hasOperation | Instance(s) | Operation
isAction Instance(s) | Action
isOperationOf | Instance(s) | Task

The lowest-level class is called as Action. This class is reserved for the move-
ments of the devices.

30

Software

isa Fixture

MovingDavice

unson® ~fruns® E&a

SWApplication
[

StorageDavice Mo difyingDevice

SimpleDevice

EE:S 5a

FunctionBlocks]

hlasStations™

Figure 5.22: System Definition in the Core Ontology

5.4.3 Core Ontology - System Definition

The third ontology section describes the resources as illustrated in Figure
5.22. The system ontology is used to describe the manufacturing environ-
ment and its characteristics. It defines the resources assigned to the processes.
It includes the life-cycles of the production equipment and system-specific
programs. The life-cycles are device-specific parameters defining the charac-
teristics of the device, such as the mean time between repairs and the mean
time between failures. The system ontology defines the capabilities of an
actor; see Table 5.11, where a device has a functionality, but a human has a
skill or skills. The production equipment, devices, and the related software
are partly defined via the product ontology, since the product ontology pro-
vides a means for defining non-geometric properties.

The Resource class, in Table 5.9, is the superclass for all of the different
resources.

Table 5.8: Core Ontology: Class Action

Action
hasAction | Instance(s) | Action
isActionOf | Instance(s) | Operation

81

Device

hasDevices 0.* Inputinterface

YF

CompositeDevice X X
1 SimpleDevice
——> Outputinterface
AN
Fixture MovingDevice || ModifyingDevice StorageDevice Tool

Figure 5.23: Structure of the Device Class

For the system ontology, the Area class represents the production facility.
Under the area there are classes for describing the production facility on four
levels of detail: Factory, Line, Cell, and Station. These classes are not neces-
sarily the only candidates for classes, but were left in the structure because
the classification follows the way in which resources are expressed in natural
language in industry.

For describing the type of resource, the Actor class was inserted into the Core

Table 5.9: Core Ontology: Class Resource

Resource
hasFunctionality Instance(s) | -
hasLifecyclePhases | Instance(s) | LifecyclePhase
isLocatedIn Instance(s) | Area
isInLifecyclePhase | Instance Area

Table 5.10: Core Ontology: Class Area
Area
hasResources | Instance(s) | Resource

82

Ontology. The Actor class, in Table 5.11, has three semantically different ac-
tor types. In the current stage of the development an actor is a Human, a
Software, or a Device.The class device includes all of the tools, devices, in
Table 5.12 and the software applications needed to operate the device.

The devices are divided into SimpleDevices and CompositeDevices, illustrated
in Figure 5.23. The Composite Device class is further divided into Fizture,
Modifying Device, Storage Device, and Mouving Device. The Simple Device
class has a subclass, Tool, that is the most atomic entity of a physical device
resource. These sub-layers were implemented simply for human interpreta-
tion and the classification of different device categories on the basis of the
primarily intended functionality of each device combination.

Again, comparing the chosen KR to previously expressed knowledge repre-
sentations such as ADACOR - Figure 4.6 - and ONTOMAS - Figure 4.5 -
approach taken here does not try to classify the devices on the basis of a
traditional hierarchy. The main aim is to describe the resources in Figure
5.23 as devices, based on the capabilities of single or combined devices. For
example, the gripper is described by its capability to grasp and hold on the
class level and with more details via individual properties. The combination
of capabilities is similar to the approach taken in Lohse’s [45] ONTOMAS
model, i.e. each capability has inputs and outputs.

Table 5.11: Core Ontology: Class Actor

Actor
actorType String -
hasCapability | Instance(s) | Capability

Table 5.12: Core Ontology: Class Device

Device
providesSkill | Instance(s) | -
runs Instance(s) | WSApplication

33

5.5 Step 5 - Evaluation of the KR on the basis
of the Set Requirements

The requirements for the knowledge representation were defined in the first
step:

e the semantics are defined in such a way that the meaning of each struc-
ture in the knowledge representation is clear and there is no ambiguity
in terminology;

e the terms and definitions are precise;

e the proposed knowledge representation is interpretable by both humans
and machines;

e the proposed knowledge representation is suitable for reasoning, and

e the proposed knowledge representation must be suitable for use in a
dynamically adaptive operating environment where the product char-
acteristics set the requirements for the resource capabilities.

The domain is defined as being in the domain of part manufacturing and
product assembly process modelling. Continuous processes and the pro-
duction of raw material were excluded from this modelling method. The
conceptual Product-Process-System model did experience some ambiguities
with the terminology. However, the ambiguities were eliminated when the
ontology was being modelled. The definitions are unambiguous and the nec-
essary number of relations between the classes is defined. The ontology itself
is generic enough for modelling both assembly processes and manufacturing
operations.

The ASDM and MSDM product, feature, and activity graphs can be mod-
elled into the ontology with precedence rules. The product and processes
can be modelled on different levels of abstraction. However, the guideline,
which is provided in the form of a taxonomy, may not in itself provide enough
guidance for instance modelling; nevertheless, it is assumed that the designer
possesses basic knowledge in the field of production engineering.

The KR is human- and machine-interpretable. For human interpretation
natural language explanations are provided as notations for each class. The

ontologies were built utilising the Protégé 3.4 OWL-DL tool [24], illustrated

84

in Figure 5.24. OWL-DL is based on the description logics and allows the
definition of the domain concepts mostly according to a predefined formal-
ism. OWL-DL provides enough expressiveness for most of the axioms, while
retaining computational completeness and decidability, which facilitate the
reasoning procedures for consistency validation. However, since the OWL
lacks some definitions, such as partOf relation, some shortcuts in the imple-
mentation phase were necessary. It is understood that OWL DL might be
too light-weight for defining more formal ontologies.

Graphviz [20], as an addition to the Protégé OWL DL ontology tool, allows
the rendering of ontology graphs that can help human operators to validate
the structure for it to represent the desired view of the domains. The struc-
ture allows simple queries to be tested inside Protégé.

85

urewoq
woaisAg

joaL _ _s_uo_mE_EE_

¢ ¢
atsage s ca_pwo__a.uq_);m_vl _—
e T

L LI EUn, -
——

Jgaed

Aao1amg aamanBume arnmeBRIoS

E

domd

aommaBuAlE oE_

FAnINIY

L

By

29 p

MEY

ATEPERS

urewoq [o

:_mEon_a/. ._
Jonpoid

053y ajdlne) 3anosagsadinbas M

SRR S

Aypgrdeasaanbas B A
nwl o Ausnayeouspadead B

wnpa
anfEalEl npouguopadiouags Il A

Auapay)
Aqsanfea)el snojadugbasiynny Il A

Aay @

woszsenzalE) xanbashiuny Bl A

Dy mapm

§$8900ld el

E
/@E PR

WAIO P 1
Auadoay

0 #% &0

»IOHSELS| VVQ

Auanoy | @ sseD d0d4

Aquessy @ 4
wnpod @ A

aseyda13621
adneay @ A
nsssaaodd @
iigionues @
s @ A
Jedueied @
o weied @
Ayreuonaund @

uoheiado @
uonay @
Ay
gt v

9 3

&

AYJRIRIH pRIRSSY

ozA @ 133044 404

L1 HIWONAXNI SSWIDENS

SUliDd = | SENpIAIDUL 4 | SNISCOL] B | S3SSEIIMO 0 (MOOINGAI0I) EIEpEIN @

a

el

A R

7

DE+ BAC

di@H mopul sjool apel WD efeld wpT Ad

Tue

Figure 5.24: A view of Protégé and the product, process, and system domains

86

Chapter 6

Implementation

This chapter will introduce the implementation of an environment where
the Core Ontology is implemented. The aim of the chapter is to introduce
technical solutions for building a knowledge base environment where the rea-
soning and queries are provided upon the knowledge representation that was
developed. The Knowledge Base (KB) serves a platform in which the Core
Ontology that was developed and its structure and relations can be validated.
Chapter Seven will validate the ontology and knowledge base with real case
implementations from ongoing projects !.

6.1 Knowledge Base

According to Grosso et al. [25], a knowledge management system should be
a neutral system which is independent of any specific applications. This is
indispensable in order to fulfil the objective of seamless interaction between
different design support systems. The KB system encapsulates all the spe-
cific parts of a control system in order to provide a neutral interface with the
application software. The KB system software, which provides the function-
ality needed to support the openness for the application software, is located
on top of the platform. Knowledge acquisition is also accessed by humans, as
part of a job that does not require previous experience of knowledge-based
systems [25].

The KB has three main goals. The first goal is to act, in a simple case, as

IThe implementation of the KB environment is part of ongoing academic research
projects developed in the Department of Production Engineering at Tampere University
of Technology, see [37,38].

87

POSTGRE SQL

1
1
1
1
1
1
Jena / Pellet :
1
1
1
1
1
1
1
1
1
1

Figure 6.1: The KB and the clients

a PDM (Product Data Management) vault. The second goal is to provide
a standardised interface between different design support system clients, as
illustrated in Figure 6.1. The clients are able to share the information more
efficiently when the native formats are mapped into the proposed knowledge
model, the Core Ontology. For the clients the only requirement is to pro-
vide the interface to the KB. As mentioned in the introduction, the clients
contribute their native knowledge to the common knowledge model while
revising and validating the overlapping knowledge from the surrounding sys-
tems connected to the KB.

The third goal for the KB is to serve as a globally accessible data storage
unit for the design plans and virtual manufacturing. This differs from a PDM
system in that once the production has been completed the production con-
trol unit will save the real product-specific process values into the digital
representation of the product, i.e. the product model; see Figure 6.2.

The conceptual architecture of the knowledge base consists of four access lay-
ers, illustrated in Figure 6.3. These layers are intended to create controllable
groups, or software modules, according to the responsibilities of each.

The three knowledge domains defined by ontologies, the product, process,
and system domains, are implemented into the KB environment. This struc-
ture is flexible enough to accept the inclusion of other knowledge domains,
such as logistics, supply chain management, order management, and others.

The storage of information for each concept or entity is implemented with

XML-based files: XML for data management and X3D (eXtensive 3D, a
successor to VRML) for visualisation.This allows the knowledge base to be

38

) Digital, virtual and real:
Measured values (F Product descriptions
mean, F max, AE mean, RDF/OWL (DL)
AE max, g max, and g

sdev) /x DB*
p 3 Resource
- behavior log
Resource
status ypdate
by requést

,,,,, B o :
Resot_Jr(_:e . Process times (measured)
descriptions Process plan (hypothesis) Process plan (reality)

Figure 6.2: The KB and the surrounding manufacturing systems

distributed in case there is a need for the collaborative design of products
and systems.

The Service Interface in the architecture description - Figure 6.3 - provides
the necessary interfaces that allow the clients access to the knowledge stored
in the KB. The services provided in this layer are Ontology Services, Ontology
Query Services, and XML Services. These focus on the retrieval of informa-
tion from the KB. The Ontology Querying Services were divided into three
groups - Product, Process, and System services - to reflect the ideological
structure of the Core Ontology, illustrated in Figure 6.4. The fourth group
in the Ontology Querying Services is called the Model Service Group, which
is intended for file-saving and retrieval operations in the KB environment.

The originally planned X3D and VRML services were planned as a group of
services which would handle the specific formats for integrating these into the
KB. However, the deeper analysis performed during the development showed
that the X3D and VRML content also needed to be included into the Core
Ontology. This inclusion was performed through feature-based analysis with
Pro-FMA introduced in the chapter on Cases, which parses the VRML files
into X3D and adds basic meaning and values into the surfaces and features
that are found and a reference to the corresponding visualisation file (X3D).
The Model Service Group handles the references, wether or not those files

89

J

Clients Service Service Ontology
Interface Layer Access
Layer

[X3D Services J X3D Mapper

Ontology
Manager Core

Reasoning
Machine

[VRML Services] VRML Mapper

| J
[]
[XML Mapper]
[|

Database Connection manager

4 DIAC [XML Services]
KB client Query Ontology| Ontology -
Services Manager
Ontology
Services

Knowledge Base

Figure 6.3: Conceptual structure of the KB

Product Ontology Querying P
Yo Barith rocess Ontology Querying tom Oritology Gu
Web Service i w..,;‘,:h. L] Model
Web Service

+ getAlFeatures « getActions + geiCeliinformation
* gelAlParts « getActivitySeqNext » gelCells + getModel
+ getDifferentOtherType * getActivitySeqPrevious « gelFaclories « saveModel
o getFaceExtended + getActivitySequence * getProductionLines
+ gelFeature » getAllProcesses s getStation|nformation
+ getFeatureSet « getAllTasks ¢+ getStations
s getGeometricFeatureByName * getindividuallnformation
+ getObjectinformation SRS
+ gelOther * getProcess
i * getTasks
» getProducts
+ getResources
+ getSubAssemblies
o getUr
+ getVertex
« getVertexCoordinates
¢ IsinstanceClassOf
» isProduct

Figure 6.4: Ontology
knowledge

Querying Services for product, process and system

90

Ontology Managment
Web Service

+ getType
refreshThumbs
resourceExists
saveRDF
setProperty
updateNode

LR)

Figure 6.5: Ontology Management Services

have deeper meaning inside the Core Ontology.

The Service Layer was originally dedicated to serve as an access layer be-
tween the mappers for the different formats in the KB and Ontology Manager.
The mapper is the part of the KB that presets the data to the application
that requested it in the format required by that application. The current
implementation has two mappers, an XML mapper and a JSON (Java Script
Object Notation) mapper. The purpose of these mappers is to facilitate the
exchange of data between different web applications. The JSON mapper was
found to be especially good for the web applications developed in JavaScript,
since the KB stores the data in triplets; each of the triplets has a subject,
verb, and object. The Ontology Manager is responsible for the modification
of the content of the Core Ontology, i.e. the triplet values.

The examples of the services used for management are as follows:
e value update of triplet(s);

e deletion of triplet(s);

insertion of triplet(s);

querying if a resource exists, and

querying if the type of an individual exist.

One of the most important services in this group is the function that allows
the information to be exported from another application into the KB. By
using this web service, a client application can save data directly to the KB
with only one format-based restriction; it must obey the RDF /XML specifi-
cation proposed by W3C.

91

The Ontology Access Layer is the final layer in this architecture. Its main
purpose is to facilitate the communication between the architecture and the
Structured Query Language (SQL) database. It provides reasoning and con-
flict avoidance. The reasoning is performed in two different ways in the
KB. The most fundamental reasoning is provided through the Core Ontol-
ogy. The classes have properties and relationships to the surrounding classes,
thus forming a basic set of relations and restrictions between stored contents.
For example, the Product classis related to the subclass Part and the rela-
tion is a "Product has Part(s)". Every time new data stored in the KB, new
instances are created and relationships between contents are created. Since
the number of classes and properties and the relationships between them is
constant and not modifiable by the users, the KB can define what the rela-
tionship between "separate" contents is. This is defined as the most basic
level of reasoning in this architecture.

The second type of reasoning provided by the KB is reasoning based on a
dedicated reasoner, Pellet [11]. Pellet allows the creation of rules for defining
additional relations, or constraints, between classes and facilitates the gen-
eration of more complex queries with a relatively simple request. Currently
there are only a few queries implemented with Pellet, but the chapter on
Future Work will identify more to come.

The third function of this layer is to provide conflict avoidance. The original
plan of the KB environment was to design it as a distributed system, where
the multiple partners would access the system from different places at the
same time. This would naturally have required protocols for conflict avoid-
ance. Because of the use case scenarios provided by the Piirre2.0 - Chapter
7, Case 1- and PiSA - Chapter 7, Case 2 - projects, the distribution of the
KB environment was categorised as a low priority and left as a "possible
distant future developments" plan. Currently, the conflict avoidance module
is focused on the optimum use of the framework in order to speed up the
queries and reliability of the KB.

The technical implementation of the KB is a combination of several existing
technologies:

e Apache 2 web services engine
e Jena semantic web framework
e Pellet reasoner

e Postgre (SQL) database

92

e Core Ontology created with Protégé OWL DL ontology tool

6.2 Product, Process, and System Knowledge
Acquisition

The query process starts when a client application requests certain infor-
mation from the KB. In order to access the KB, a Web Services interface
must be available through an internet connection. At first a client sends a
request to the Web Service interface; see Figure 6.6. If the request is valid,
the web service then calls an instance of the Ontology Manager to handle
the request. If the request is invalid, a response indicating a communication
error or failure is sent to the client. The Ontology Manager creates a query
on the basis of the request that has been received and passes it forward to
the Reasoning Machine.

The Reasoning Machine interacts with the ontology model, which is stored
in the Postgre database, in order to find results that match the query. After
checking the ontology the Reasoning Machine returns all the results found
to the Ontology Manager. The Ontology Manager then decomposes the re-
turned set of results and copies each result to an array. When all the results
are included in the array, the array is sent to the Format Mapper.

The Format Mapper gets the array of results and converts it to the desired
format, XML or JSON, depending on the request. This converted data are
returned to the Web Services, such as WDSL (Web Services Description Lan-
guage), which, finally, is in charge of sending back the response to the client.

6.2.1 An Interface to the Core Ontology and Access to
the KB

The knowledge stored in the KB can be accessed through designated mid-
dleware using interfaces. Figure 6.7lists the get() functions that are defined
at the moment. For the clients who wish to utilise this environment, an au-
tomatically updated list of available services is provided through a website.

The common interface of the KB for all clients has the function of provid-

ing communication between the knowledge base and the client. The clients
need to provide their own parser for saving or querying the KB. An example

93

Client Query

application /

A

A 4

Respose

Web Services

Formatted response
Requested data

A 4

Query response and

Ontology desired format

Manager

|\Query data:

A 4
A 4

Format Mapper

A 4 Access
ontology

Reasoning Machine

Ontology
Storage
RDB

Resultset of the query

Figure 6.6: Illustration of the query process

of this could be an interface reading XML files sent through HTTP or an
interface providing output as native binary format and taking Web Service
requests as input. Alternatively, even a COM interface could be supported,
thus providing tighter integration with the clients.

For the clients it is also a requirement that they follow the generic guide-
lines, represented in Chapter 5, for saving their specific information to the
KB. The KB interface, together with the client’s interface, provides seamless
translation from the scope of a specific domain to the scope of the knowledge
model and vice versa. This is required in order for the knowledge base not to
grow into an uncontrollable mass of redundant data, but instead to maintain
a semantic database containing rules for translating terminology and seman-
tics.

For the clients it is a set requirement that they follow the generic guidelines,
represented in Chapter 5, for saving their specific information to the KB. The
KB interface, together with the client’s interface, provides seamless transla-
tion from the scope of a specific domain to the scope of the knowledge model
and vice versa. This is required in order for the KB not to grow into an

94

Function

getProducts()
getSubAssemblies(parent)
getParts(parent)

getType(object)

getParam(object, key)
getObjectResource(object)
getActivities(object)
getRequiredResources(activity)
getRequiredSkill(activity)
getProcesses()
getNextActivity(activity)
getPreviousActivity(actitity)
getChildActivities(activity)
getParentActivity(activity)
getActivityTargets(activity)
getResources()

getActivities()
getRequiredResources(resource)
getRequiredSkill(resource)
getPosition(resource)
getLayout(resource)
getFeatureSets(part)
getFeatures(featureset)
getFeatures(festure)
getFactories()

getNextPosition(resource)
getPreviousPosition(resource)
getFeatureType(feature)
getLifecycleEngines()
getLifecycleEngine(object)
getLifecyclePhases(lifecycleengine)
getLifecyclePhase(object)

getNextLifecyclePhase(lifecyclephase)
getPreviousLifecyclePhase(lifecyclephase)
getDocuments(object, lifecyclephase)

getDocument(document)
getGeometry(part)
getGeometry(featureset)
getGeometry(feature)
getPartAsXML(partid)
setParam(object, key, value)
setPartAsXML(partid, xmldata)

Description

Returns all the products in the Knowledge Base.
Returns all the subassembilies directly under the par¢
Returns all the products in the Knowledge Base.
Returns the type of the object entered. The object cz
Returns a paremeter identified by key-variable and o
Returns the resource object of the assembly object.
Return all the activities related to object / featureset,
Returns resources required.

Returns skills required.

Returns the top level activities. E.g. Manufacturing o
Returns the next activity in a sequence. If no next de
Returns the previous activity in a sequence. If no pre
Return collection of all child activities of entered acti
Returns the parent activity of entered activity.
Returns the objects that activity target, e.g. part in m
Lists all the resources in KB.

Lists all the activities in KB.

Returns collection of resources required to use the r
Returns collection of skills required to use the resout
Returns the position of the resource in production lin
Returns sub-area-resources of selected location res:
Returns all the featuresets of the part.

Returns all the features in featuresSet.

Returns all the features related to feature.

Returns all the factories in Knowledge Base.

Returns the next area-position in the layout, e.g. cell
Returns the previous area-positon in the layout.
Returns the type of the feature.

Return cellection of lifecycle engines in Knowledge E
Return the lifecycle engine requested.

Returns collection of lifecycle phases that are in reqL
Return the current lifecycle phase of the object.
Returns the next lifecycle phase in lifecycle engine.
Returns the previous lifecycle phase in lifecycle engil
Returns collection of documents related to object in
Returns a single document.

Returns a geometry of a single part.

Returns a geometry of a single featureset.

Returns a geometry of a single feature.

Returns a part from knowledge base in PRO-Fma fo
Set parameter of object to requested value.

Saves a part and its parameters to knowledge base

Figure 6.7: Get() functions of the interface

95

uncontrollable mass of redundant data, but instead to maintain a semantic
database containing rules for translating terminology and semantics. Most
of the reasoning is done inside the clients, but in the future some reasoning
processes can be implemented in the knowledge base interface. These rea-
soning services inside a client include, for example, a scheduling agent inside
a simulation tool that utilises simple queries first to access the knowledge
inside this KB.

In this approach the knowledge stored in the KB is accessed through a Web
Services interface using SOAP. The Web Services interface is composed of
two kinds of methods, as mentioned earlier: fundamental methods and rea-
soning methods. The fundamental methods have the function of retrieving
or posting information to the KB. The retrieval methods request data from
the KB. These requests are responded to with information about an object
or several objects in the desired format (XML, JSON, etc). As an example a
client application can request a list of products available in the KB in XML
format. If the request cannot be met, the response of the Web Service will
be "no data available".

Posting methods are meant to receive data sent by clients to be stored in the
KB. This method can propose an update to actual information on the in-
stance level or totally new data to be added to the KB. The posting method
does not modify the basic class structure. A confirmation message that a
successful transaction has taken place is sent to the client at the end of the
operation. The reasoning methods are meant to support the client’s activities
by giving access to already-reasoned information. These methods are mainly
for retrieving information and will be defined further in the near future.

The advantage of a Web Services interface is that the client does not need
to be tightly attached to the KB. If a client is interested in any of the Web
Services offered by the KB, it just has to request the list of services via the
web. A WSDL (Web Services Description Language) XML document, where
all the interface methods and parameters are also available, is available on-
line; this allows client applications to be developed fast and accurately.

6.2.2 Knowledge Base Web Client

In order to inspect the knowledge stored in the KB, a viewing client was
developed; see Figure 6.8. As mentioned earlier, the client uses Web Ser-
vices to get the product information. The client automatically queries and

96

Figure 6.8: Knowledge Base’s Web Client

divides the information into product-, process-, and system-specific knowl-
edge sets. By selecting the product ontology, the user will see the product
structure, sub-assembly, and parts, and on the right-hand side he/she can
immediately see the activities related to each part or subassembly or product.

For example, if the user browses the part structure, the client will run the
search query for the operations that have possibly been saved. By selecting
from the client’s right-hand side and clicking the operation that is shown,
the client will query whether or not a dedicated resource for completing the
operation exists. If the user is interested only in the activities he/she can
click the process domain from the client’s left-hand side area and the client
will retrieve a process, task, operation, and action list for the user.

At the moment a functionality for reading and modifying existing informa-
tion is being implemented. In future this client will also be able to modify
the stored information and create new instances. In order to allow the user
to explore the data stored in the KB, each instance set can be retrieved for
inspection.

97

98

Chapter 7

Case Studies

The case studies evaluate the feasibility of the chosen modelling approach.
The Knowledge Representation (KR) is evaluated from several points of view:

e the expressiveness of the model;

e how the details can be modelled;

e how the higher level of abstraction lis handled with the KR;
e how the relations perform for reasoning purposes;

e whether the KR supports knowledge mapping between different infor-
mation models, and

e whether the KR supports knowledge acquisition from the operating
environment.

Figure 7.1 summarises the case studies and aims to evaluate the KR. The
selected case studies evaluate different viewpoints. The first case study fo-
cuses on the detail level. The geometrical and non-geometrical features are
handled with the KR, meaning that the product model is modelled on the
feature level, including the position of the face vertices and the corresponding
visualisation. The second case study evaluates knowledge mapping between
selected tools. The tools include process planning, simulation, and factory
floor control design tools. The main idea is to utilise the KR as the master
model that is updated by the clients. The third case study evaluates the KR
from the system point of view. The product model includes the geometric
and non-geometric values that are utilised for defining the operations, mainly
drilling. Once the manufacturing of the part is completed, the operational
values are collected and saved for the part history.

99

Gse 1: Feature Recogmtlon Ae aim of case one was to evalua&

= = the formed knowledge

e representation from the
manufacturing process perspective.
MSDM model for product and
process hierarchy

Geometrical and Non-geometrical
features and connections to the
processes

KR in RDF and visualization in X3D
(KR is capable to represent 2D and

BEEE L Q} geometn) /

Case 2: Integration of Design
Toolset ﬁ

he main aim of the case 2 was to\
evaluate the KR in system level

Knowledge share between different
tools (commercial tools) via common
Knowledge Representation (Core
Ontology)

Resource descriptions (simplified
level)

Process planning, simulation and
control as contributors/users

Each client has middleware to

w'sure the correct input form //

Case 3: Adaptive Operations \\
The case 3 evaluated the KR from the

Environment operational environments viewpoint by
adding the operational requirements to
the model

Reasoning is based on the knowledge
representation (Core Ontology)

Resource properties are described
through CoreOntology

Different Manufacturing Scenarios are
saved to KB (digital, virtual and real)

- JvTemr— The model is updated along the way via

-~ Keal operational parameters //

ETIII L RTRLL

Figure 7.1: Summary of the case studies performed in order to evaluate the
expressiveness and feasibility of the KR

100

SOA Based

Control Architecture

- Ontologies for more

complete product models

3D models X3D+RDF - Knowledge Parsing
- vrml to X3D - Knowledge Reasoning
- FeatureRecognition
- metadata

S a— :
:> Distributed

Knowledge
Base

Cost Estimation GUI
|

Product-Process
- RDF

- Process info to features
- preliminary system
requirements
- metadata
Cost Model

- Manufacturing technology
- Material options

- Resource allocation

- Learning Curves

Figure 7.2: Features connected to manufacturing costs

7.1 Case Study 1 - Feature Recognition

The aim of Case Study One is to evaluate the knowledge representation that
is formed from the manufacturing process perspective. The manufacturing
features are recognised and the preliminary processes are connected to them.
The proposed knowledge representation must be able to save the feature in-
formation and provide relations at the correct level of abstraction.

Piirre2.0 project’s description and needs for a formal KR

The case described here belongs to the project called Piirre2.0 - Utilisation
of features in the cost analysis of the manufacture of sheet metal products.
Technically, the project aims to improve the knowledge of the manufacturing
methodologies of the designer of the sheet metal products, improve the sheet
metal manufacturing processes, and facilitate knowledge sharing via open
formats and knowledge reasoning. The business goals of the project were to
improve the sheet metal product manufacturing know-how, share the know-
how inside the company, and the overall competence of Finnish industry.

In order to fulfil the project’s technical requirements, the product feature

101

/

Activity: Part Manufacturing

Process _ 1" 1.* Task 1 1..* Operation _1 ﬁ.* Action
O O O O O

Q

Assembly Drilling

Fa

Manufacturing Turning

Testing Milling

Punching > Edge L— Translation

Logistics | Laser Cutting » Center %
— Bending

Marking

[

Packaging

#» Rotation

i

gl

il

Ly

Figure 7.3: Manufacturing Process Levels

recognition, feature classification, and manufacturing state decomposition
models are incorporated. Product knowledge is seen as a combination of
product-specific information, such as functionality, material and topology,
and the corresponding product model. This knowledge includes geometric
and non-geometric information, which is represented through features. The
features are the foundation elements of the knowledge representation, which
can be used for analysis and knowledge acquisition. An approach to deriv-
ing the essential manufacturing-specific knowledge from the product model is
proposed for use for cost allocation, process planning, and production system
definition.

The scope of the project is illustrated in Figure 7.2. On the basis of the
classification and identification of possible manufacturing features and cor-
responding processes, the system requirements and automation levels can
be defined. On the cost modelling side, the chosen system, batch size, and
learning curves will affect the total costs of a product. By combining the
feature-based analysis with advanced cost modelling, there is a possibility
of tracing the costs according to the features that are designed. The Core

102

Ontology is used as the common knowledge exchange format and the KB as
the platform for facilitating the knowledge share; see Figure 7.2.

Manufacturing Features, Corresponding Processes, and the Core
Ontology

As the feature-based model was developed in order to fill the gap between
detailed geometry information, the elementary relations, and abstract func-
tional information. Features in the 3D design are divided into geometric and
non-geometric features that have an impact on the processes used to manu-
facture the desired product forms. For example, the tolerance requirements
can affect the tool selection and, further on, the selection of actual manufac-
turing systems.

Manufacturing processes are described with a manufacturing taxonomy; see
Figure 7.3. The taxonomy illustrates the levels of operations in the KR that
is used. It has to be noted that at the moment there is no validity check in
the ontology that would follow the taxonomy proposed here. However, the
parsers used between a design tool and the Knowledge Base KB) follow this
guideline. The process ontology is the key operator when the product and
the system knowledge are being combined. Activities are defined on the basis
of the theoretical background as Part Manufacturing, Assembly, Testing, and
Packaging.

In the model used here, the manufacturing-specific feature information is di-
vided into four layers: Features, Feature Sets, Manufacturing Features, and
Manufacturing Feature Sets. The features and feature sets are results of the
reasoning and recognition based on pre-defined features. The manufacturing
features and feature sets are application-specific reasoning results, for exam-
ple the group of four similar holes in the sheet metal product.

A feature can be a certain face or an edge. The feature sets are more com-
plex combinations of recognised and meaningful faces. The manufacturing
features include processing and system requirements, which in this case are
preliminary requirements for the tooling that are based on the dimensional
values of the features and grouping of the similar features into process groups.

103

& guiMainDi; @ m D f — & (= (Charged) Tue 1156 Q
alals Java - profma,/trunk/profmav2/src/gui/FeatureEditor.java - Eclipse SDK - /Users/minni/Documents/PROJEKTIT !

»] | S—
I e 0-Q | SHE-|®7] 5|0 e & A

T8 rackage Expl 5~ Ts Hrarchy] = D[reawregitoriava 51~ = 59)(Z owine 5, =15) E l; .
A S || ng Dir

5 v mCurSelected - (TreeNodeBas oy 2 oy
= if(mCurSelected == null) HO00
n [

J

Fprofma

return;

¥
if(mCurSelected. getData()
i1

X300ata twp - wlurSele
aThis.mRenderListener.

private stat
private Stri

{ "Pa
private Vector<Obje
= public int getColumCount()

return (nColumnlomes eng

}

te int getRonCount()

Feature(FaceExteded(2, 8, 1300.8, [Verte
Feoture(FoceExteded(5, @, 624.289465754750ey N
Feature(Facefxteded(6, @, 200.0, [Vertex(él, Vect(d.0, 50.8, 20.
Feature(FaceExteded(1l, 9, 100.9, [Vertex(SO, Vect(d

—

Figure 7.4: Pro-FMA

Feature Recognition tool, Pro-FMA

In order to add meaning to the models as described earlier, a feature recog-
nition software suite was developed in the Piirre2.0 project. Pro-FMA is
a tool for re-generating the features lost during the export process from a
CAD system. Previously, some ad hoc developments were planned to be
implemented inside a specific CAD system. However, it turned out to be
too much work for too few achievements. Better results are achieved when a
platform-independent Java application is used. This allows more freedom not
only from the operating system, but also from a CAD system, since no mat-
ter what the system, the quality of information is still low. For exporting 3D
geometry from a CAD system, VRML (virtual reality modelling language)
is used. VRML provides the lowest possible 3D geometry. Depending on the
authoring system used, the conversion result might just be a group of discon-
nected faces and vertices. The VRML file is parsed into X3D (eXtensive 3D,
a successor to VRML) and geometric features such as holes are defined [39).

Figure 7.4 shows the GUI (Graphical User Interface) of the feature recogni-
tion tool. On the right-hand side of the figure, the pre-defined features are
listed. In the bottom right-hand corner, the feature-specific non-geometrical
parameters, such as dimensions and tolerances, are shown.

There are some special features that are interesting from the perspective of

104

the manufacturing of the sheet metal product. These must be recognised and
categorised as such. In the current implementation, there are seven different
kinds of predefined features: cylinder, box, filled rectangle, semi-cone, coun-
tersunk, counter-drilled, and half-cylinder. The Core Ontology has a class
structure for saving the recognised feature information as parametric infor-
mation, such as type of feature, and dimensional properties that are found,
including diameter, height, width, and length. Properties that have numer-
ical values are categorised under the non-geometric feature class. Pro-FMA
uses heuristics based on vertex positions, connecting edges, and the number
of edges to classify the features that are found. If a feature does not fit into
any of the predefined classifications, it is defined as a complex shape feature.
For more information on the feature recognition process, see Lanz et. al. [39].

Most of the predefined features are parameterised in such a way that the
topology matters and not the distances between edges or vertices. If the fea-
ture is not recognised by its topology, then the user should add the necessary
parameters.

The manufacturing processes are described through the Manufacturing State
Decomposition Model (MSDM), introduced in Chapter 5. The MSDM cap-
tures the preliminary process definitions for the features that are found. For
the sheet metal processes for material removal (by cutting, punching, or by
laser) or bending, the reasoning of the process requirements is not too com-
plex. The reasoning becomes complicated once the batch size is known and
products are nested and organised into queues. However, the aim of this case
is not to go that far.

Pro-FMA and Connection to the KB

The connection with the knowledge base takes place through the middle-
ware, which offers services and functions that third-party programs such as
Pro-FMA can use. Using these functions, Pro-FMA inserts features and
and corresponding parameters into the knowledge base and also retrieves the
knowledge in the same manner.

Pro-FMA inserts data by generating an RDF file that follows the ontology
specification that has been defined for this purpose. The SaveRDF() function
is invoked to save the data; see Figure 7.6. The parameters, the RDF data,
are sent with SOAP to the middleware, which translates the RDF informa-
tion into the KB language. The KB uses a traditional relational database

105

»

Features
Cvlinde"OO@OOOOOOOOOOOOOOOOOO_
Ginder COO®OCCOODOCUODODOOO00O0 Process
Gylinder GO O O®COOOO0OOOOOOOOOOO
Glinder COCC®OCOOOO0OO000OOOO0O0
Glinder COOCC®OCOOOOCOO000OOOO00
Gliinder COOCO®OOOOCDDOO00OOOOO0D0
Gliinder COOCOCOC@®OOOCDDO00OOOO0D0
Glinder COOQCOO®OOO0DO00OO000D
Ll i [[

Parameter name

Figure 7.5: Pro-FMA Process Editor

Pro-fma Middleware Knowledgebase Database managmeant system

This Is done with SCQL

GetVertex (S0OAF) I

-: Intermidiate Language call :
: .1| Get individual cum[{lunent of the vertex
! ! Value of the component i
! L e
: Wertex e 7
___________ S
SOAP return value k“\ 1 [,

For each of the components
Wrapup the resultin a

wiml result message

PGS PR

Figure 7.6: Sequence graph of connection between Pro-FMA and Knowledge
Base

106

5
L =
M@ﬁ . /F‘*
}

Interfaces all to all Interface one to all

Figure 7.7: Knowledge exchange between clients

at its core and during the final step the KB uses SQL to actually save the
information to the DB system.

Summary of the Case Study 1

The aim of the case was to test how the recognised features can be saved as
instances into the KR. The file is saved in two parts: RDF for describing the
meaning of the model and X3D (eXtensive 3D) for visualisation purposes.
The case evaluated the expressiveness of the KR and it was found that the
feature level is sufficient for expressing detail-level information. It has to be
noted that the KR itself does not generate the meaning for established man-
ufacturing sets, such as four similar holes. The higher semantical meaning
must be defined in a reasoning tool, such as Pro-FMA, and the result can
then be saved into the ontology.

7.2 Case Study 2 - Semantic Mapping between
Different Systems

The second case study aims to evaluate the definitions of the core compo-
nents of the knowledge representation. In this case, there are several different
design tools that share very few semantics with each other. However, they

107

do need to exchange and verify shared data. This case was performed as a
part of the Framework Programme 6 IP-PiSA: Flexible Assembly Systems
through Workplace sharing and Time-sharing Human-Machine Cooperation
project.

Interoperability was the ultimate goal of design and planning systems. It
enables the sharing and exchange of product data, information, and, finally,
knowledge to take place amongst various software tools within a product de-
velopment and production planning environment. With the definition of the
common representation, this thesis also aims to introduce one solution for
enhancing the collaboration between different design systems. The solution
is a common ontology and semantic mappings between existing information
structures. Figure 7.7 illustrates the current integration method and the pro-
posed method for the exchange of design information.

As mentioned in the Introduction, the knowledge is exchanged between two
or more systems by dedicated interfaces, or the information is stripped into
basic geometry, or, in the worst case, transferred manually. When the com-
pany’s design tool platform includes up to a hundred different design tools
and software packages, point-to-point integration between all of the systems
becomes quite impossible. The amount of re-designed models increases and
the amount of manual work becomes too much for a designer to handle and
thus makes him/her error-prone. This leads to a situation where the design
is done with strongly filtered snapshot information.

The right-hand side of Figure 7.7 illustrates the other option for information
exchange by utilising a common information model accessed through one in-
terface. In this way, all of the overlapping design systems can contribute and
retrieve their knowledge into a common knowledge model. In this case the fo-
cus is on the contribution of knowledge, rather than filtering and re-creating
it. The systems here naturally cannot utilise all of the information fully,
but they can use what they need and consider the remaining information as
metadata. Metadata can be accessed and interpreted by humans as well.

The second case study inspects and tests the ontologies that were developed
as a knowledge exchange medium between the design systems, as illustrated
in Figure 7.8. In this case, the process plan of the case product is first cre-
ated in the process planning tool, CAMeLEAN from Ranal Group Ltd. The
second client using and verifying the process plans is a simulation tool, 3D
Create from Visual Components. The simulation environment will retrieve
the process plan and the resources that are needed from the KB, and the pro-

108

Resources
Processes
Product

Resources
Processes
Product

Process
Times

Resources
Processes
Product

Device
specific
FBs

Resources
Processes

Figure 7.8: Ontologies and KB as knowledge exchange media in PiSA ad-
vanced design, planning and optimization toolset

cessing times and resource selection are validated. The verified or updated
process time will be uploaded to the KR. The third partner is a control de-
sign tool, which utilises the resource descriptions defined by CAMeLEAN and
verified by 3D Create. The following sections will go through each client’s
connection to the KB.

Knowledge Mapping between CAMeLEAN and Core Ontology

Knowledge Mapping between CAMeLEAN and the Core Ontology The plan-
ning of manufacturing processes is dedicated to the processes on the shop
floor. Process planning software describes the processes at a work station
and balances all the processes between the work stations of a complete pro-
duction line. The processes generate or manipulate parts of the final product
or the product itself. They have cycle times, predecessors, successors, and

109

& .25

% 15 @
owlThing
v IActlvm,- :
Action
Operation -
roce
Task]
» @ Capability model s
[2 FaillureModeDomain
b O Feature | I I gl
LifecyclePhase ||pr°cess chActivity I
v Object
v . Pmiur.t o i cComponentRevision
s8embly Ilproduct -—I |
ﬂsemhly I ComponentRevisionPCLi nhl
Part
m —
v IR eeeeeee : inteplan cResource 7
v Actor I,,,,,,‘,,,_
v @ Device : resource tl } cResourceRevision l
v CompositeDevice
Fiture cResnurcchvlslunPCLmk ‘
MaodifyingDevice
MovingDevice

StorageDevice r 1
> SimpleDevice 1 system)
Human !
Station
> Area
> Software
Property
»> WearMechanism

engine = { lifecycle }

Figure 7.9: Extract of potential connections between classes of CAMeLEAN
and the Knowledge Base

assigned resources [50].

Similarly to the parts of the product, resources also have geometric and non-
geometric attributes. Examples of non-geometric attributes are life-cycle
states and costs. Depending on the needs of the individual company, addi-
tional attributes should be includable. Humans, who work in and along with
these processes, are only seen as a special type of resource. The activities of
the shop-floor humans in the process plan are related to the cycle times of
the manufacturing processes. Process planning software deals mainly with
the non-geometric data and uses internal or external viewers or CAD soft-
ware for the visualisation of the geometric data. Therefore, the path for the
location of the geometric data of each process planning object is another im-
portant non-geometric attribute for all of those objects which own geometric

data [50].

CAMeLEAN runs on an XML database, which allows a loose connection to
the KB be implemented. Each of the objects is created as an independent
file and one to many links are created among these files. Each object file is
also a human-readable XML file, but is zip-compressed [38].

110

The connection between CAMeLEAN and the KB is the most important part
in this case study, since CAMeLEAN is the first tool to contribute instances
to the KB. An XML parser was created to translate the CAMeLEAN data
structures into the form of the Core Ontology. The operational steps for the
parser are the following:

e parse through directory structure,

e decompress the zml files with zlib to xml files,
e parse file with XML dom parser,

e build dependency tree from xml files,

e add values to the nodes, and

e save data to the KB in the form of RDF.

Figure 7.9 shows a few example links between the Core Ontology and poten-
tial similar classes in CAMeLEAN. The classes in the green and yellow areas
are the main content of the Process Plan in CAMeLEAN. The classes of the
lifecycle engine are related to those, but not shown in Figure 7.9 [38|.

Different from the classes in the yellow area, the classes in the green area
posses 2D-geometric attributes, which are necessary to build PERT diagrams
of the Process Plan. These require additional classes for representing 2D-
geometry; however, those are not shown in Figure 7.9.

Knowledge Exchange Between 3Dcreate and KB

The second step in this case study is to link the Core Ontology straight to the
simulation tool that is used. The idea is to utilise the ontological product
and process definitions to populate the simulation environment automati-
cally. Currently, the client, illustrated in Figure 7.10, is implemented inside
the Visual Component’s 3D Create simulation environment. The client can
access the KB directly and query whether or not the product description has
reference parts or visual components connected to the ontology. If the prod-
ucts and parts exist and they have a corresponding visualisation, they can
be retrieved to the simulation environment. The process plan is simulated
inside 3D Create and validated processing times are updated to the KB. If
there have been changes to the layout or resources used, the corrected models

111

Resource Loader

= O & uments and Settingsiroberto.rdz\Desktop\PISA Demo\D

Products Activities

J VW-Docr-product +| | VW-DoorGrp-10555
VW-Door-Weld-20-310
VW-Daor-Weld-12-346

Get Subassemblies i Sl

[v#-Daor-assembiy 1 [v] [___Get Resources

Get Patts Resources
VW-Door-Handing_Robot-A-732
VW-Door-Arcweld_Robot-A-764
Parls VW-Door-Spotweid_Robot-A749
VWDoor DT A [w] | VW-Door Handing RoborA720

Get Activilies

[Load Model [Dowosd][Upicad]

Status
File Ioaded

I —
Modsls (43 ftems) =
=))
Name T/~
" pun_kuistin Gen

-‘ puntone_anteriore_cx_wil Gen
8, puntone_arteriore_sc i Gen
4 traspottatore_aud020wt Gen
System Ontology B Tum unt with 2output p... Gen
mcsss Ontology ¥ TumTable Gen
Y vemarol_aud020wi Gen A
ey

O view Scipter ey

File “Tumn unit #2:FythanScript, line 25, in OnRun [~
v Weld Gun Gen| AttributeError: ‘NoneType’ object has no attribute Name®

MM 45-2.0: Action 'Grasp’ executed (Ok}

e

ﬂ WeldGun Todl NM 45-2.0: Action Release’ executed (Ok, released to node container)
Simulation auto-halted, Please reset simulation to start over.
L‘: Click or drag to select compenents; hold shift~ctrl to toggle select. o)
<l (215 &
O vowe WSl Gl b e L ee e

Figure 7.10: CoreOntology as a source for populating the simulation envi-
ronment

or values can be uploaded to the KB.

Knowledge Exchange Between 4DIAC and KB

The Framework for Distributed Industrial Automation and Control (4DIAC)
is being integrated with the PiSA SP3 toolchain for programming the various
control devices within the production process. The control programs devel-
oped with the 4DIAC-IDE (Development Environment) use Function Blocks
as the main building blocks [60]. Within the PISA project, the 4DIAC-IDE
is connected to the KB and stores Function Block Types within the KB, as
can be seen in Figure 7.11.

Function Block Types (FBT) are library instances of functional elements.
Within the 4DIAC-IDE the developer can instantiate these FBTs and use

112

*.FBT Function Bladk Types

knowledge Bass
401AC- I0E

£

* FHT Function Block Types

Figure 7.11: Ontologies and KB as knowledge exchange media in the PiSA
advanced design, planning, and optimisation toolset

these instances to develop the control program for the hardware that is con-
trolled. By storing all the FBT files that are available within the 4DIAC-IDE
in the KB, a complete library is created that can be accessed by different
users/developers. FBTs can be functional elements for all kinds of opera-
tions, such as mathematical operations, motion control, GUI development,
and Human-Machine Interfaces. By sorting them according to their func-
tionality and saving them into the KB, the developers get a better overview
of what kind of functionality is being offered by the FBTs [60].

Required Knowledge Exchange Between 4DIAC and CAMeLEAN

The interaction between CAMeLEAN and 4DIAC takes place via the Knowl-
edge Base (KB). CAMeLEAN depicts the planning for the manufacturing
process, including the hardware components used within the process. As
illustrated in Figure 7.12, CAMeLEAN can define multiple different kinds of
resources, such as robots, conveyors, and operators. From the 4DIAC point
of view the resource information that is required is the definition of the con-
veyors and/or end tools used in the process plan.

These resources are stored within CAMeLEAN into the class named cRe-
sources. cResources are parsed via a dedicated XML parser, which translates
the CAMeLEAN internal data structures into the form of an ontology and
saves it to the KB in RDF format. By connecting to the Knowledge Base,
4DIAC can read out the hardware elements that are necessary within the

113

Betal version : 2006 09 06 414

92905 9.

Figure 7.12: Resources descriped in the CAMeLEAN design environment
and connection to the Core Ontology

manufacturing process and present them in the 4DIAC-IDE environment [60].

Summary of the Case Study 2

This case study dealt with three design and planning systems, which have
very different understandings of semantics and/or values. Even when oper-
ating in the same field, personal /regional aspects of the same concepts can
cause conflicts in transferring knowledge. Naturally, if an ontology is assessed
by different users, they usually assign different beliefs to the concepts of the
ontology, which are based on their interpretation of the view on the world
represented by this ontology. Hence, the conflict of beliefs can result in a
conflict of interpretation and thus of the semantics of the ontology [15].

One of the possible solutions, as demonstrated here, is a defined domain
ontology where ontological modelling provides simplification and categorisa-
tion of the knowledge into a more typified but still flexible form. Each of
the actors may still preserve their perception of the knowledge but by using
common terms and rules to model the knowledge in the transfer process,
more advantages can be achieved.

The client-independent knowledge, which is still readable and understand-
able by the clients, can be archived by using semantic mapping, in which the
semantic models of the clients’ exported data structures are transformed into
a generalised knowledge representation such as the Core Ontology.

114

There is a risk involved within semantical mapping between different design
systems, because it is virtually impossible to map and convert all the terms
and details of each semantic model to another one. The complete transfor-
mation of one knowledge model to another requires much flexibility from the
mapping process, but can be reached within some limitations and by realising
that modelling everything is not required in order to increase productivity.

In conclusion, mapping all the information available is not needed, and wisely
used interfacing provides a very general but flexible knowledge representation
without compromising its validity. Knowledge stored in this kind of model is
not required to be ’complete’ or even fully compliant with the existing knowl-
edge. The case implementation resulted in a system where the KB is used
as a reference architecture. The knowledge that can be mapped is mapped
and the rest is considered as metadata and links to proprietary formats.

7.3 Case Study 3 - Ontologies and KB for Pro-
posed Holonic Manufacturing System

The third case study evaluates the expressiveness and soundness of a knowl-
edge representation and its overall performance in a holonic manufactur-
ing environment. By utilising the DiMS concept from Nylund and Salmi-
nen [48,49], combined with the information architecture, a laboratory demon-
stration was conducted. The DIMS concept aims at setting up a holonic
manufacturing environment.

The holonic concept is a possible way to facilitate a balance between the nec-
essary logical rules and a global abstract description of the entities that pro-
vide the capability of communication with and between the system elements.
The DiMS concept provides guidelines for the overall control architecture,
while the knowledge representation that was developed and the Knowledge
Base that was implemented were used as the core of the demonstration. The
knowledge representation defined the basic communication interfaces for the
holarchy and defined what information would be exchanged.

The second goal for the KR and KB was to test the feasibility of connecting
different actors under the same reference architecture and to update the KR
with simulated data such as processing times and real manufacturing values.
The holonic entities in this case were a robot unit (a drill attached to a Fanuc

115

Measured values (F Digital, virtual and real:
mean, F max, AE mean, AE kg) Product descriptions

max, g max, andgsdev) RDF/OWL (DL)
DB*

Resource
behavior log

Resource status CAD Manufacturing
Resources
update by Process times Feature
request Process plan Recognition Method
N . Descriptions
(hypothesis) Process times } v
| Features | | Methods
k8 ﬁ !
Resourc
descriptions Service Request
jmmmmmmmm—m—————t
c / Existing :
_g Robot Cell ': Service ',n—— Knowledge Base [+
r e) Seeessssssss—— T
New Service
RealTest | | Virtual Test
£ m Manufacturing Manufacturing
=1

PR g SR S Sp—" L.
5 ruure || camens || rober || Vet | PO 1| v seommene | | |

/ Rejected ;' New
/ Service [/ Capability

Figure 7.13: Reference Architecture, System Description and Workflow

200iB parallel kinematics robot and the Safety Eye System from Pilz, a fix-
ture unit (fixture and camera), an operator, and order software as holonic
entities, illustrated in Figure 7.13.

The product knowledge of each part, in demonstration part A (a cylindri-
cal object with two holes) and part B (a similar cylindrical object with four
holes), were analysed with Pro-FMA. Pro-FMA defined the types and char-
acteristics of the features that were found and their locations, as well as
describing the sequence for creating the holes. The knowledge of the part
was first sent to the simulation environment, 3DCreate, where the virtual
manufacturing was conducted on the basis of the available resources, such
as a human operator capable of transferring material and ready parts and a
device combination capable of performing the required drilling operation.

The second entity, the fixture unit, consisted of a camera and a fixture unit
for ensuring that the part was fixed and in the right position before the man-
ufacturing process could be started. The connections of the software and
hardware entities are illustrated on the left-hand side of Figure 7.13 and the

116

Process plan

request
Process plan o
@
Process 3
Responce information o on®
~ ?.35?
ra .
- \\ @) Robot DiMS
wabsarvice
Communication
Resiful
7 T e
(Status / Service _
request Responce request Information

Status Responce request
Workpiece Rabot . - Process
|
Robod
(e
a Status

— request\

H W st .
is

Status

Figure 7.14: Communication of holonic entities in the laboratory demonstra-
tion [55]

steps taken in the process are illustrated on the right-hand side of Figure 7.13.

The taxonomy of the real robot cell is presented in Figure 7.13. The robot
cell is a resource entity at the level of a manufacturing stage. The cell is
divided at the manufacturing unit level into a fixture unit, a robot unit, and
a human operator. The real part of the robot cell consists of the robot it-
self, a Safety Eye, and a machining spindle. The robot is a Fanuc F-200iB
six-degrees-of-freedom servo-driven parallel link robot. The robot itself lacks
the ability to announce some aspects of the required data, so the intelligence
of the robot was augmented using a force and moment sensor.

The data from the sensor are stored in the KB, where the state of the robot
is monitored against an acceptable value range. If the data from the sensor
reach a certain limit, the robot will perform a predefined task, which can be,
for example, stopping the ongoing process and announcing its changed state

117

(in this case an error) to the surrounding system via the KB.

The robot’s operational work sequences were preprogrammed with Labview
as subroutines. The drilling procedure was connected to a feature represen-
tation of the part stored in KB. The service request, named the Order Holon
(OH) in the flowchart shown in Figure 7.13, started the whole process by re-
questing a new manufacturing processes for the demo part via web services.
If the process description did not exist for the part, the user was notified that
the process definition was missing. If the OH did find the process attached
to the part description, the KB returned the process description to the Order
Item Holon (OIH), which forwarded the message to the Labview interface.
Labview operated in this demonstration as an interface for the robot holon
(RRH) [40,55].

The communication of the holonic manufacturing system was based on web
services, as illustrated in Figure 7.14. The robot holon carried out the drilling
procedure and the sensors attached to the drill collected and sent the ma-
chining values: identification (ID) of part and process, force (F) from the
force sensor, Acoustic Emission (AE), and acceleration (g) dedicated to each
feature (or a process sequence back) to the controlling interface and the con-
trolling interface returned the operational values back to the KB.

Summary of the Case Study 3

The aim was to utilise the knowledge created in a heterogeneous environment
and contributed to a reference architecture maintained by the KB as a basis
for automatic process generation and the simulation of assembly systems on
different levels of abstraction. The approach also aimed to explore the pos-
sibilities of utilising the product-, process-, and system-related knowledge in
an environment where different design and execution systems are contribut-
ing and retrieving information on different levels of abstraction.

The current status of the knowledge representation allows: (1) the meaning
of the content to be combined with proprietary/closed formats by offering
references and content description for the models, and (2) this architecture
to be used in a holon-based manufacturing environment. The model itself
can capture the information of the context during the time of operation.The
demonstration highlighted the importance of a reference model as a connect-
ing medium between different tools, varying from the product design to the

118

simulations, and to the execution of the manufacturing processes.

7.4 Impact of the Case Studies on the KR

The cases each tested the feasibility of the KR. Case 1, which utilised the
KR as the main format for publishing the results of feature recognition to
the KB, tested the Object domain and its connections to the Feature class.
On the basis of this case it was found out that some of the classes may need
more definition.

The implementation of Case 2 evaluated the meaning of the classes and re-
lations compared to the vocabulary the surrounding clients used. For the
most part the KR worked as required; however, the connection between pro-
prietary files and the ontology is still under discussion. The case also showed
that a resource library needs to be modelled in order to reduce copying in-
formation from one set of instances to another. It also gave requirements
for how the capabilities should be modelled. On the basis of the feedback,
a new application was created for creating new resources and maintaining
their characteristics. The tool also allows the generation of capabilities for
devices according to the KR specified here.

The third case study evaluated the KR from the manufacturing system point
of view. As the KR is able to capture the machining values per product, this
suggest that in the future the operational values must also be collected for
a device. This requires possible extensions towards device classes. These
extensions were under development during the publication of this thesis.

119

120

Chapter 8

Conclusions

Design and manufacturing operations are global and companies are depen-
dent upon the efficient and effective exchange of knowledge within the com-
pany and among its suppliers. Even though the OEMs are trying to dictate
the selection of design tools, the reality is often such that the suppliers and
partners are forced to keep several similar design tools. This often leads to
problems of knowledge exchange and interoperability between numerous de-
sign tools, since once out of the authoring system the model loses most of the
saved design details, the meaning of the entities’ information content, and
connections to the original model.

The objectives of the thesis were:

1. to develop and create a method for representing product structure and
the corresponding process representation;

2. to extend the representation to the product feature level and represent
the processes that occur on the feature level;

3. to develop a model for representing product-, process-, and system-
specific knowledge on the basis of the relations between the product
level and the feature level, and

4. to formalise the model thus developed into the form of a knowledge

representation that allows knowledge inference to be applied.

This thesis proposed a rigorous model which can provide well-defined mean-
ing for entities in the integration of a design and manufacturing environment.
The Assembly State Decomposition Model (ASDM) showed the connectivity

121

between the products and processes. The Manufacturing State Decomposi-
tion Model (MSDM) defined the connection between manufacturing features
and operations. The Product-Process-System (PPS) model illustrated that
the combination of the product-, process-, and system-related information is
possible on the conceptual level.

On the basis of the relations defined in the PPS model, the knowledge rep-
resentation was created. The knowledge representation formalised in FOL.
In order to implement the KR, the Core Ontology was created. For mod-
elling the classes and the relations between them, a Protégé OWL DL version
3.4 ontology modelling tool, was used. For visualisation, a shareware tool,
Graphviz, was used.

The cases where the knowledge representation that was implemented was
used showed that the Core Ontology is generic yet expressive enough and
possesses enough rigidity to be used as a standardised knowledge exchange
interface between the design tools and that it can be used in a dynamic
manufacturing environment as a common knowledge exchange interface and
a knowledge-capturing repository. It was seen that the common knowledge
architecture served its purpose by reducing the number of interfaces needed
in the holonic manufacturing environment. While the amount of interaction
between entities still remains large, each of those systems will utilise the
knowledge representation introduced here for retrieving information that is
needed and saving the results of reasoning performed and actions taken.

The thesis proposes a novel approach to how the process planning and
manufacturing-related knowledge can be structured, enhanced, and exchanged
among different systems. The ontological approach represented here proved
that:

1. product features can be used for pre-defining the required processes
and setting requirements for manufacturing systems, and

2. the knowledge can be viewed from production time perspective.

However, the result of this thesis is not aimed at producing a standard which
commercial suppliers, vendors, or companies could implement immediately.

Numerous potential standards, de facto standards, and models defined inside
certain interest groups exist which can convey product-, process-, or system-

related information, such as ontoSTEP, OAM (Open Assembly Model), PSL

122

(Process Specification Language), and CMSD (Core Manufacturing Simula-
tion Data). Each of these can capture much larger quantity of domain-specific
knowledge. By adopting the standardised representations into the formalised
model represented here, the amount of knowledge that is captured can be
increased and yet the KR can still keep its generic nature.

123

124

Chapter 9

Summary of Contributions

Even though multiple elegant and standardised solutions for capturing, struc-
turing, and inferring the product, process, and system information of a chosen
domain exist, they are separate models with significant overlaps with each
other. There are no platform-independent methods or tools available at the
moment for modelling integrated product, process, and system knowledge.

Likewise, there are no systems on the market that have the capability to link
processes, behaviours, or functions to manufacturing and assembly features
as an independent system and a re-usable tool. Partly for this reason, nei-
ther a tested nor an implemented reasoning tool between product and process
knowledge exists (other than software-specific expert systems dedicated to a
specialised domain).

The defined Knowledge Representation Formulation (KRF) methodology
shows that product-, process-, and system-specific knowledge is linked and
can be modelled in a feasible way. The intermediate steps of the KRF
methodology showed in detail how the domain-specific knowledge areas can
be linked with each other. For this two graph-based methods, the Assembly
State Decomposition Model (ASDM) and Manufacturing State Decomposi-
tion Model (MSDM), were developed. These methods do not only serve for
the formulation of a conceptual knowledge representation model, such as PPS
in Figure 5.14, but can be used as stand-alone methods for process design
purposes.

As another contribution, this thesis provides a methodology, the Knowledge

Representation Formulation (KRF) methodology, for creating a knowledge
representation for integrating separate domains.

125

The thesis showed that process specific knowledge can be linked to the ge-
ometric features of the product, as explained in Chapter 5, Step 2, and in
Case Study 1. Unlike the ontologies presented in other research projects,
this ontology included the product features as the third important knowl-
edge domain. In the end it is the product features that set the requirements
for the processes and systems and not the other way around, though links
backwards exist as well.

The effect of assembly-specific features, as well as manufacturing features,
can be reasoned about and propagated between different kinds of modelling
and analysis tools in such a way that the knowledge content of the model is
still preserved.

The implementation supports the claim that different clients and different
data structures can be interconnected via a generic domain ontology. The
ontology can explain the structures of a model by going into single features
or it can describe the content of a model in the manner of a reference ar-
chitecture. It also showed that comparing the conventional methods, which
do not include the utilisation of product information in feature level, to this
approach, the manual knowledge input decreased over the time.

The knowledge representation, the Core Ontology, and the implementation
of the Knowledge Base (KB) environment showed that if the knowledge is
mapped to a generic format, the validation of the content becomes faster and
easier. Since the design support tools do not need to create all-to-all inter-
faces among each other, the amount of re-modelling decreases. The knowl-
edge representation was also able to keep the level of information content
over a time period instead of succumbing to the original design-by-snapshot
methodology. As a contribution to the research projects, it can also be con-
cluded that the model supports the re-use of models in such a way that the
implementation of this kind of knowledge representation becomes feasible.

126

Chapter 10
Future Work

Technical developments in recent years have produced stand-alone systems
where performance is routinely reached. This solid background has allowed
the extension of these systems into networks of components, which gather
very heterogenous elements, each in charge of a part of the holistic action of
the system. Because of the desired increase in efficiency, these components
need to be more and more integrated to the design phase in the sense that
their mutual interactions are extremely strong and have a considerable effect
on the final system’s output. The types of interactions are changing into a
complex network of possibilities within certain limits instead of a steady and
predefined process flow. This situation is relatively new and causes pressures
for defining the role of intended interaction [10,12,13|.

According to Chavalarias et al. [10], there is no doubt that one of the main
characteristics of complex and adaptive production platforms in the future
will be the ever-increasing utilisation of ICT. Computing power has opened
up the possibility of storing huge datasets and performing massive calcula-
tions on those sets and eventually filtering the usable information for the
system’s use. However, while the industrial world has seen the possible ad-
vantages, the implementations fall short as a result of the changes to the
whole production paradigm that are required, going from preplanned hierar-
chical systems to adaptive and self-organising complex systems.

The continuation of the work represented here in the near future consists of
building the knowledge representation so that it is more representative and
extended in order to capture more of the filtered information fed from dif-
ferent downstream applications, as illustrated in Figure 6.2. It is envisioned
that a formal knowledge representation will be developed that allows for the
integration of static and mobile manufacturing entities with advanced capa-

127

Option 1 Cell1 ——— =

Option 2 Cell1 F—

.
™ Cellg
T .
1
| Requi -

quired Production
I il
1

Option 3 Cell1 —

Figure 10.1: Options for process flow based on the product features, device
capabilities and other production parameters

bilities and described behaviours for an adaptive and self-organising produc-
tion environment. The primary knowledge framework must provide a means
to support the aims of monitoring resource conditions and the use of energy
per work piece, and serve as a generic yet time-based storage unit for pro-
duction knowledge. This platform will eventually be the knowledge platform
where the "intelligent" reasoning will be done.

In order to enhance the processes inside the virtual factory or real factory,
the fastest, cheapest, and most energy-efficient production method needs
to be calculated on the basis of the real production parameters. The de-
fined multi-criteria have to include the aspects of resource utilisation levels,
device reliabilities, energy consumption, and other sustainability-related fac-
tors, the adjustment of which relates to the costs of the operations. The
process flow changes dynamically, depending on the parameters defined in
the multi-criteria and on the dynamic production environment as illustrated
in Figure 10.1.

The generation of process plans according to the scheduling and known work-
flow do need the description of resource characteristics that identify what re-

128

source combinations can be used to fulfil the process requirements set by the
product. This leads to challenges in the creation of a feasible knowledge rep-
resentation of various system components and the rules for combining those.
During the finalisation phase of this thesis, some work towards expressing
system interfaces in order to combine devices together was being done.

In future more of the real working conditions will be saved to the production
history of the part, as well as the operational history of the single resource. By
saving this information, the backtracking of the systems’ conditions, energy
consumption, or design features of the parts becomes feasible. In addition,
the current use state of the tool and other characteristics of machinery can
be saved and used to improve the process efficiency, pinpointing the possible
quality problems related to the features of the part or single machines and
the overall improvement of various processes.

The version of the Core Ontology used here was very generic by nature and
the future work consists, among others, of developing more detailed resource
models to capture capabilities, geometrical properties, and other metadata
relevant to that particular resource. The models need to be improved in
such a manner that they can capture and convey the operational parame-
ters of each resource into the simulation environment, where the different
production scenarios can be tested before being applied on the factory floor.
Possible models exist, such as Core Manufacturing Simulation Data (CMSD)
from Riddick and Lee [59], for representing the basic process and resource
information, but in order to fulfil the requirements of the holon-based man-
ufacturing framework there is a need for the development of new models or
extensions of the existing ones. The other option is the PSL [4,27] which
also allows the process description, but in the form of a formal ontology.

129

130

Bibliography

1]

2l

13l

4]

[5]

6]

17l

8]

19]

[10]

E. AWAD AND H. GHAZIRI, Knowledge management, Prentice Hall, 1st
edition ed., 2004.

F. BAADER AND W. NUTT, Basic description logics, in In the De-
scription Logic Handbook - Theory, Implementation and Applications,
F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, eds., Cambridge University Press, 2002, p. 574.

R. BIDARRA AND W. BRONSVOORT, Semantic feature modeling, in
Computer Aided Design, vol. 32, Elsevier, 2000, pp. 201-225.

C. BOoCK AND M. GRUNINGER, Psl: A semantic domain for flowmodels,
Software System Modelling, 4 (2005), pp. 209-231.

S. BORGO AND P. LEIT, Foundations for a core ontology of manufac-
turing, Integrated Series in Information Systems, 14 (2007), pp. 751-775.

W. BoRrsT, Construction of Engineering Ontologies, PhD thesis, Uni-
versity of Tweenty, Enschede, NL, 2005.

A. CAGLYAN AND C. HARRISON, Agent Sourcebook - A complete Guide

to Desktop, Internet and Intranet Agents, Wiley Computer Publications,
1997.

P. CecH, Ontology as an integrating element in an information-
knowledge infrastructure, in International Conference on Multimedia and
ICT in Education, 2009, p. 5.

V. CHAUDRI, A. FARQUHAR, R. FIKES, P. KARP, AND J. RICE, The
generic frame protocol 2.0, July 1997.

D. CHAVALARIAS, K. ABERER, E. AURELL, O. BABAOGLU, C. BAR-
RETT, P. BESSIERE, P. BOURGINE, G. CALDARELLI, .. CARDELLI,
J. KAsti, M. COTSAFTIS, ET AL., Complex systems: Challenges and

131

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

opportunities, an orientation paper for complex systems research in fp7,
European Comisssion, 2006.

CLARK AND PARSIA, Pellet: Owl 2 reasoner for java, 2010.

M. COTSAFTIS, From trajectory control to task control - emergence of
self-organization in complex systems, Emergent Properties in Natural
and Artificial Dynamical Systems, (2006), pp. 3-22.

M. COTSAFTIS, A passage to complex systems, in Complex Systems
and Self-organization Modelling, C. Bertelle, G. H. E. Duchamp, and
H. Kadri-Dahmani, eds., Springer, 2009, p. 236.

M. DACONTA, L. OBRST, AND K. SMITH, The Semantic Web - A
Guide to the Future of XML, Web Services, and Knowledge Manage-
ment, Wiley Publishing, 2003.

A. DAEMI AND J. CALMET, Assessing conflicts in ontologies, WSEAS
Transactions on Information Science and Applications, 5 (2004),
pp. 1289-1294.

R. Davis, H. SHORE, AND P. SzoLoviTs, What is a knowledge repre-
sentation?, Al Magazine, 14 (1993), pp. 17-33.

L. H. bE MELLO AND A. C. SANDERSON, A correct and complete
algorithm for the generation of mechanical assembly sequences, IEEE
Transactions on Robotics and Automation, 7 (1999), pp. 228-240.

D. DENEUX, Introduction to assembly features: An illustrated synthesis
methodology, Journal of Intelligent Manufacturing, 10 (1999), pp. 23-39.

H. DuLrLAH, E. BOHEZ, AND M. IRFAN, Assembly features: definition,
classification, and usefulness in sequence planning, International Journal
of Industrial and Systems Engineering, 4 (2009), pp. 111-132.

J. ELLSON, E. GANSNER, Y. HU, AND A. BILGIN, Graphviz - graph
wvisualization software, 2010.

T. D. FAz1o, A prototype of feature-based design for assembly, in Ad-
vances in Design Automation, ASME, 1997, pp. 9-16.

S. FENVES, S. Fourou, C. BoCK, AND R. SRIRAM, Cpm: A core

model for product data, nistr publication, National Institute of Standards
and Technology, 2005.

132

23]

[24]

[25]

26]

27]

28]

[29]

130]

31]

32]

3]

[34]

R. FIKES, A. FARQUHAR, AND J. RICE, Tools for assembling modular
ontologies in ontolingua, tech. rep., Knowledge Systems, Al Laboratory,

1997.

S. C. FOR BIOMEDICAL INFORMATICS RESEARCH, Protégé owl dl on-
tology editor version 3.4.

W. GROSSO, J. GENNARI, R. FERGERSON, AND M. MUSEN, When
knowledge models collide (how it happens and what to do), tech. rep.,
Stanford Medical Informatics, Stanford University Stanford, 1998.

T. GRUBER, A translation approach to portable ontology specification,
Knowledge Acquisition, 5 (1993), pp. 199-220.

M. GRUNINGER AND J. KOPENA, Planning and the process specifica-

tion language, in Workshop on the Role of Ontologies in Planning and
Scheduling, ICAPS, 2005, pp. 22—29.

W. HOLLAND, Assembly Features in Modeling and Planning, PhD the-
sis, Delft University of Technology, NL, 1997.

W. HOLLAND AND W. BRONSVOORT, Assembly features in modeling

and planning, Robotics and Computer Integrated manufacturing, 16
(2000), pp. 277-294.

A. HorpGoOOD, Intelligent Systems for Engineers and Scientists, CRC
Press, 2nd edition ed., 2000.

E. JARVENPAA, M. LANZ, J. MELA, AND R. TUOKKO, Studying the
information sources and flows in a company supporting the development
of new intelligent systems, in proceedings of Flexible Automation and
Intelligent Manufacturing, 2010.

M. JOHANSSON, B. JOHANSSON, A. SKOOGH, S. LEONG, F. RIDDICK,
Y. LEE, G. SHAO, AND P. KLINGSTAM, A test implementation of the

core manufacturing simulation data specification, in Winter Simulation
Conference, 2007, pp. 1673-1681.

H. Ko AND K. LEE, Automatic assembling procedure generation from
mating conditions, Computer Aided Design, 19 (1987), pp. 3-10.

A. KOESTLER, The Ghost in the Machine, Penguin, 1967.

133

[35]

[36]

[37]

38

[39]

[40]

[41]

42]

[43]

[44]

S. KriMA, R. BARBAU, X. FIORENTINI, S. RACHURI, AND R. SRI-
RAM, Ontostep: Owl-dl ontology for step, tech. rep., National Institute
of Standards and Technology, 2009.

M. LANZ, An approach to feature-based modelling and analysis for the
final assembly, Master’s thesis, Tampere University of Technology, Jan-
uary 2005.

M. Lanz, T. KALLELA, E. JARVENPAA, AND R. TUOKKO, Ontologies
as an interface between different design support systems, in International
Conference on Neural Networks or Artificial Intelligence Series, WSEAS,
2008, pp. 202-207.

M. LaNz, T. KALLELA, G. VELEZ, AND R. TUOKKO, Product, process
and system ontologies and knowledge base for managing knowledge be-

tween different clients, in International Conference Distributed Human-
Machine Systems, IEEE SMC, 2008, pp. 508-513.

M. LANZ, P. LUOSTARINEN, AND P. ANDERSSON, Feature recognition
as a basis for the cost allocation and decision making toolset, in 20th
International Conference on Production Research, 2009.

M. Lanz, H. NyYLUND, A. RANTA, P. LUOSTARINEN, AND
R. TUOKKO, Set-up and and first steps on capturing of realistic re-
source characteristics of an intelligent manufacturing environment, in
Flexible Automation and Intelligent Manufacturing (FAIM), 2010.

M. LANZ AND R. TUOKKO, Generic reference architecture for digital,
virtual and real representations of manufacturing systems, in Indo-US
Workshop on Designing Sustainable Products, Services and manufac-
turing Systems, S. Rachuri, ed., National Institute of Standards and
Technology, 2009.

M. LANz, R. VELEZ, AND R. TUOKKO, Feature-based modeling and
analysis for knowledge-intensive concurrent engineering in final assem-
bly, in Computer Aided Industrial Design and Concurrent Design, 2005.

J. LASTRA, Reference Mechatronic Architecture fro Actor-based Assem-
bly Systems, PhD thesis, Tampere University of Technology, 2004.

C. LEONDES, Ezpert Systems - The Technology of Knowledge Manage-

ment and Decision Making for the 21st Century, vol. 1, Academic Press,
2002.

134

[45]

|46]

147]

48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

N. LoHSE, Towards an Ontology Framework for The Integrated Design
of Modular Assembly Systems, PhD thesis, University of Notthingham,
May 2006.

M. F. LOPEZ, Overview of methodologies for building ontologies, in Pro-
ceedings of the IJCAI-99 workshop on Ontologies and Problem-Solving
Methods (KRR5), August 1999.

R. NEcHES, R. Fikgs, T. FININ, T. GRUBER, T. SENATOR, AND
W. SWARTOUT, Enabling technology for knowledge sharing, Al Maga-
zine, 12 (1991), pp. 36-56.

H. NYLunD, M. HOKKANEN, K. SALMINEN, AND P. ANDERSSON,
Lifecycle of digital manufacturing supporting design and development
of adaptive manufacturing systems, in 12th Annual International Con-

ference on Industrial Engineering — Theory, Applications and Practice,
2007, pp. 544-549.

H. NYLUND, K. SALMINEN, AND P. ANDERSSON, Digital virtual holons
- an approach to digital manufacturing systems, in 41st CIRP Conference
on Manufacturing Systems, 2008, pp. 103—-106.

R. V. OSUNA, Pisa sp3 task 3.1.4 conceptual toolset definition, project
report, Visual Components, 2007.

PABADIS’PROMISE, DS3.1. development of manufacturing ontology,
project deliverable, The PABADIS’PROMISE consortium, 2006.

E.-I. PROJECT, Commonkads, 2006.

S. RAcHURI, Y.-U. HAN, S. Fourou, S. FENG, U. Roy, F. WANG,
R. SRIRAM, AND K. LYONS, A model for capturing product assem-
bly information, Computing and Information Science in Engineering, 6

(2006).

H. K. RAMPERSAD, Integrated and Simultaneous Design for Robotic
Assembly, Wiley Series in Product Development, 1994.

A. RANTA, K. IKKALA, K. SALMINEN, M. HLACEK, AND L. VASEK,
Tampere manufacturing summit 2009 demonstraatio - loppuraportti,
project report, Tampere University of Technology, 2009.

S. RAY, Tackling the semantic interoperability of modern manufacturing
systems, in Proceedings of the Second Semantic Technologies for eGov
Conference, 2004.

135

[57]

[58]

[59]

[60]

[61]

62]

[63]

[64]

|65]

[66]
67]

[68]

S. RAY AND A. JONES, Manufacturing interoperability, Journal of In-
telligent Manufacturing, 17 (2006), pp. 681-688.

S. RAY AND S. WALLACE, A production management information

model for discrete manufacturing, Production Planning and Control,
(1995), pp. 65-79.

F. RIDDICK AND Y. LEE, Representing layout information in the cmsd

specification, in Proceedings of IEEE Winter Simulation Conference,
2008, pp. 1777-1784.

R. RODRIGUEZ, M. LANZ, AND M. ROOKER, Fpb6 pisa sp3 task 3.4.1

implementation of the knowledge base, project report, Tampere Univer-
sity of Technology, 2009.

J. SHAH AND R. TADEPALLI, Feaure-based assembly modeling, in Pro-

ceedings of ASME International Computers in Engineering Conference,
1992, pp. 253-260.

R. SONDHI AND J. TURNER, Representing tolerance and assembly infor-
mation in a feature-based design environment, in Proceedings of ASME
Design Automation Conference, vol. 32-1, 1991, pp. 101-108.

J. SowA, Knowledge Representation: Logical, philosophical, and com-
putational foundations, Brooks Cole Publishing Co., 2000.

R. STUDER, V. BENJAMIN, AND D. FENSEL, Knowledge engineering:

principles and methods, Data and Knowledge Engineering, 25 (1998),
pp- 161-197.

T. TALLINEN, R. V. OsuNA, J. LASTRA, AND R. TUOKKO, Product
model representation concept for the purpose of assembly process mod-

eling, in Proceeding of the International Symposium on Assembly and
Task Planning, 2003.

E. TRAN, Requirements and specifications.

D. TSARKOV AND I. HORROCKS, Ordering heuristics for description
logic reasoning, in Proceedings of the 19th International Joint Confer-
ence on Artificial Intelligence, 2005.

P. VALCKENAERS, H. VAN BRUSSEL, .. BONGAERTS, AND J. WYNS,

Holonic manufacturing execution systems, CIRP Annals - Manufactur-
ing Technology, 54 (1994), pp. 427-432.

136

[69] A. VAN DER NET, Designing and Manufacturing Assemblies, PhD the-
sis, Eindhoven University of Technology, 1998.

[70] W3C, Owl web ontology language overview.

[71] C. H. Yu, Abduction? deduction? induction? is there a logic of ex-
ploratory data analysis?, 1994.

[72] J. ZHAO AND S. MASOOD, An intelligent computer-aided assembly pro-
cess planning system, International Journal of Advanced Manufacturing
Technology, 15 (1999), pp. 332-337.

137

138

