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Abstract

This thesis considers the application of low-cost micro-electro-mechanical system
(MEMS) inertial sensors to the motion state estimation and closed-loop motion
control of heavy-duty hydraulic manipulators used in mobile machines. Currently,
the sensor solutions potentially suitable for advanced robotic motion control, condition
monitoring, and fault diagnostics systems suffer from poor performance and limited
availability. This has hindered the ability of Finnish mobile machine manufacturers
to differentiate themselves with innovative products and features on the increasingly
competitive global market. Inertial sensors based on MEMS technology offer an
attractive alternative to existing sensing solutions due to their low cost, low power
requirements, small size, and straightforward surface installation capability. Although
this technology has been widely available for some time now, MEMS inertial sensors
have yet to be successfully applied on mobile machine manipulators on a larger scale,
because the proper motion state estimation models and required signal processing
methods are not generally known or well understood. The various error sources of
the individual inertial measurements and the effects of accelerative motions are major
contributing factors prohibiting the direct use of the sensor readings for feedback in
a robotic motion control system, for example. Thus, the motivation for this thesis
has been to develop a novel hydraulic manipulator motion state estimation approach
based on low-cost MEMS inertial sensors, which can be applied on a large scale to
existing mobile machines, and to provide the necessary real-time measurements for
the aforementioned systems.

At its core, the motion state estimation approach proposed in this thesis is based
on well-known rigid body motion kinematics, which are used to derive recursive
forward kinematics of a generic serial link manipulator. The manipulator forward
kinematics are coupled with complementary filtering, which is a powerful signal
processing method ideally suited for the fusion of relatively low-resolution inertial
measurements. This forms the theoretical basis for producing low-delay, low-noise
smoothed estimates of the manipulator motion states with MEMS inertial sensors.
The proposed motion state estimation model is experimentally verified on a small-
scale test bench, after which it is evaluated as an integral part of the closed-loop



motion control system on a full-size heavy-duty hydraulic manipulator. Comparative
results are obtained using very accurate, high-resolution, and high-cost incremental
encoders as reference sensors on the manipulator joints.

This thesis shows that by combining rigid body motion kinematics with an under-
standing of efficient yet straightforward signal processing methods, even low-cost and
relatively low-resolution components can be used to create an innovative solution for
hydraulic manipulator motion state sensing. This is a clear advantage over traditional
sensor solutions, which are typically difficult to install, prone to failure, and incur
high design and manufacturing costs. The novel technology developed in this thesis is
expected to provide Finnish mobile machine manufacturers a substantial operational
advantage in after-sales services and maintenance markets.
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Chapter 1

Introduction

The recent widespread availability of micro-electro-mechanical system (MEMS) com-
ponents has led to the development of a wide product range of low-cost, light-weight,
low-power miniaturized inertial measurement units. MEMS components combine
surface micromachined polysilicon structures and signal conditioning circuitry on the
same substrate. The size of the mechanisms is measured in the micrometre range,
which leads to a very small component package size. These characteristics have
made MEMS inertial sensors successful in a variety of industries, such as automotive,
consumer electronics and military/aerospace, and for a number of uses, including
aerial vehicle attitude estimation, road vehicle stability systems, motion-enabled user
interfaces for mobile phones and portable devices, gaming and virtual reality systems,
robotic toys, and inclinometers. When considering the field of heavy-duty hydraulic
manipulators used in mobile work machines, which is one of the most significant
industry branches in Finland, there is substantial potential for the application of
MEMS inertial sensors, which is still largely unknown. High quality, rapid responses
to quickly changing market needs, innovative products, and low costs are vital to
successful operations on the increasingly competitive global mobile machine market.
This race leads to a higher density of functionality in products, and it becomes
necessary to integrate different technologies, such as mechanical, electrical and fluid
subsystems, with embedded software. The increased amount of functionality in
the form of machine life-cycle management and service, advanced robotic controls,
fault diagnosis, and condition-based maintenance, has become a major competition
advantage for mobile work machine manufacturers (see e.g. Jardine et al. [1] and
Peng et al. [2]). Thus, the challenge for machine manufacturers is to be distinguished
by these value-adding services and products in the highly competitive industrial
branch.

The thesis has the following motives. Traditionally, the problem of controlling mobile



working machines has essentially been solved on the individual machine level. Skilled
operators have a key role in this scenario since typical non-instrumented machines
are operated by controlling each hydraulic actuator separately via operator visual
feedback. To obtain the optimal operation speed and loading configuration for the
machine, the operator requires an extensive period of practise to become familiar
with the non-intuitive, open-loop control system. This makes the machine operation
prone to human errors which, according to Lovgren [3], cause 73% of all crane-related
accidents. In addition, intelligent machines are expected to provide business-level
services in the near future by collaborating autonomously in teams with humans as a
critical part of a multi-company business process (see e.g. Saarinen et al. [4], Halbach
and Halme [5], Bergkvist et al. [6], and Hallonborg [7]). Current research efforts are
targeted towards autonomously operating mobile machines that rely on a multitude of
sensors to perceive the working environment and allow robotic control of the machine
functions (see e.g. Billingsley et al. [8], Ringdahl [9], Hellstrom et al. [10], Berns et al.
[11]), as well as towards the realisation of safety- and efficiency-boosting systems
(see e.g. Zhang and Hammad [12]). This implies that better instrumented machines
with novel sophisticated functionality are needed. Since the machines are highly
critical to businesses, they should also be monitored and maintained online under the
control of enterprise resource management. Unfortunately, current control systems
fail to satisfy these requirements.

Advanced robotic control and condition monitoring systems fundamentally depend
on multi-sensor instrumentation to be available on the mobile machines. The aim of
the instrumentation is to reveal the state of the machinery. For this information to be
suitable for a closed-loop motion controller, highly accurate real-time measurements
of positions, angles, rates and accelerations are needed. Most importantly, only minor
delays are acceptable. Thus, the performance of the multi-sensor instrumentation
is critical for the performance of the control system. From an applicability point
of view, this multi-sensor instrumentation must be low-cost and easy to install.
Further demands on the components are posed by the harsh environmental working
conditions of mobile machines. The sensors must be prepared to withstand heat, very
low temperatures, heavy impacts and vibrations as well as water and ice. Due to the
mobile nature of the work, an emergency service team will not be quickly available in
case of a sensor malfunction or break-down. Consequently, a long-standing problem
has been the poor availability of easy-to-install robust motion sensors for robotic
control and condition monitoring systems.

A traditionally used solution for measuring hydraulic manipulator motion states is
to use a rotary-type optical incremental encoder or a resolver (Figure 1.1), which
directly measures the angular position of the manipulator joint pins. Velocity and
acceleration, which are the first- and second-order derivatives of motion and are



required for high-performance robotic control of the manipulator, are typically
derived by differentiating the encoder position signal. Since differentiation is a noise
amplifying process, the resulting velocity and acceleration signals have very limited
bandwidth and suffer from quantization noise during slow motions.

For an incremental encoder to be suitable for the harsh environmental working
conditions of mobile machines, it must be enclosed in a metal case with special
surface protection and large, resilient bearings that can endure high axial and radial
loads. Additional special axial seals are needed for hollow-shaft type encoders, and
enhanced electrical insulation is required to prevent damage from possible shaft
currents to the ball bearings and running surfaces. The installation of incremental
encoders on hydraulic manipulators requires a high degree of co-axiality between the
encoder shaft and the manipulator joint pin. The permissible radial shaft movement
during rotation is typically in the sub-millimetre range. Consequently, the hydraulic
manipulator joint structures must be designed to consider the sensor’s high-precision
mounting and shielding requirements. Considering the intended use of a mobile
machine, it is more desirable to be able to design the joint mechanisms purely based
on the required forces and torques set by the application domain. Retrofitting
encoders on existing machines requires designing custom, high-precision mechanisms,
which leads to increased system costs. Moreover, the installation of joint encoders on
existing hydraulic manipulator structures may be considered extremely difficult for
purely practical reasons, as noted by Keskinen et al. [13], or completely infeasible
for certain types of widely-used hydraulic manipulators due to structural support
bars moving over the joint centres during operation (see Cheng et al. [14]).

Figure 1.1: Heidenhain ECN/EQN/ERN 400 series incremental encoder [15].

Alternatively, the rotary and prismatic joint positions of a hydraulic manipulator
can be derived from measured cylinder piston positions. The position reading may
be obtained using a linear potentiometer, a linear variable differential transformer or



a magnetostrictive transducer (see e.g. [16]) installed inside the hydraulic cylinder,
for example. While this type of transducer is feasible e.g. for measuring the position
of a telescopic extension of a forestry crane, which is typically controlled by a single
cylinder, a loader crane might have a telescopic extension link consisting of ten
separate sections that are each controlled by a dedicated cylinder. Furthermore,
the use of this type of sensor requires the complete re-design of the cylinder during
the manufacturing phase and again forces the design to account for a precision
instrument inside a mechanism originally designed to transmit large forces. In the
case of a sensor malfunction, the mobile machine experiences substantial production
down-time since the manipulator structure must be disassembled to replace the
cylinder containing the faulty sensor.

As a key advantage over traditionally used sensor solutions, no mechanical coupling
to rotating joint pins is required with MEMS sensors. An inertial measurement unit
(IMU) can be constructed by combining MEMS accelerometers with angular rate
gyroscopes and optional magnetometers to obtain physical orientation, velocity and
acceleration measurements—all with a single compact sensor module. Despite the
wide availability of MEMS components, observation models and measurement data
processing methods suitable for mobile machine manipulator motion state estimation
and subsequent closed-loop control are not generally known or well understood.
Frequently encountered problems in manipulator motion state estimation with IMUs
relate to large transient errors experienced during accelerative motions as well
as substantial drift observed in the position readings. This can be attributed to
insufficient treatment of the fundamental kinematic principles to ensure correct
complementary nature of inertial readings prior to sensor fusion. This makes several
of the proposed solutions infeasible for transfer onto full-scale systems for long-term
use (see e.g. Giansanti et al. [17], Luinge and Veltink [18], Luinge et al. [19], Quigley
et al. [20] and El-Gohary and McNames [21]). Consequently, current commercial
examples of MEMS inertial sensors applied to heavy-duty mobile machines are limited
to quasi-static situations and open-loop user assisting functions (see e.g. Novatron
Oy [22], Scanlaser Oy [23]).

1.1 Control problem of hydraulic manipulators

The heavy-duty manipulators used on mobile machines are almost exclusively powered
by hydraulic actuators due to their high power-to-weight ratio, high acceleration and
force/torque capability, low cost and flexible mounting options within the manipulator
structure. Since the power to the actuators is transmitted via high-pressure fluid from
a central power unit outside the manipulator, there is no need to mount bulky power



generating components or gear assemblies on the manipulator structure itself, as
would be the case with electrical motors and linear actuators. Thus, the manipulator
structure can be kept relatively light while still being able to handle loads greater
than the manipulator mass itself.

When the hydraulic actuators are brought under the control of an automated closed-
loop motion control system, a hydraulic servo system is formed, which is widely
used for high-performance position, velocity and force control of the manipulator.
However, hydraulic servo systems typically have highly non-linear characteristics due
to, for example, the variable effective bulk modulus and pressure-flow dependency
in turbulent orifice flow. Additionally, the high friction force of the cylinder in
particular has a significant effect on the system damping, making accurate control of
the manipulator difficult.

Although it is a simplification, the inherently non-linear hydro-mechanical system is
typically represented by a linear model for motion control purposes by examining its
Taylor series expansion at a certain operating point. Assuming a linear time-invariant
system and treating all gravitational, inertial, centripetal and frictional terms as
external disturbances, a hydraulic valve and actuator combination can be modelled
with a linear second-order open-loop transfer function between the valve control
input and actuator velocity as

V(s) Ky - w?
H(s) = = 1 = 1.1
(5) U(s) 824 20pwns + w?’ (1)

where V(s) and U(s) are the output velocity and control input, K, is the velocity
gain, ¢,, is the natural damping ratio and w, is the natural frequency of the system
(see e.g. Watton [24]).

A traditional control approach is the linear output feedback controller, which has
a well-established theoretical background in many control engineering books (see
e.g. Dorf and Bishop [25]). The basic structure is illustrated in Figure 1.2, where
C'(s) denotes a feedback controller, X (s) is the reference position input and Y(s)
is the position output. Obtaining an outer unity feedback loop is typically a mere
scaling problem in servo systems. Proportional-integral-derivative (PID) controllers
are effective and still widely used in many applications. The simple proportional
controller is robust against modelling errors and easy tune, which makes it a common
starting point for controller design (see e.g. Jelali and Kroll [26]) for details.

As modern industry operations demand ever-increasing performance from motion
control systems, the PID controller may become insufficient because the dynamics
of a hydraulic positioning servo system are of the third order (see e.g. Astréom and
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Figure 1.2: Output feedback controller for a hydraulic positioning servo system.

Hégglund [27]). The inherent low damping of hydraulic systems limits the gain
margin of the output feedback controller, which in turn limits the obtainable closed-
loop motion control tracking performance. Increasing the controller gains naturally
leads to improved tracking performance; however, an increase in system damping is
required to maintain stability. This problem can be addressed on the system level by
i) over-sizing the hydraulic actuators; ii) introducing additional leakages; or iii) using
additional actuators as passive damping elements. The general trend is to avoid
installing new separate actuators because it increases costs and becomes particularly
extensive for mobile machines due to the required additional installation and control
effort. It is therefore preferable to use the existing actuators in an active role to
achieve an increase in damping (see Rahmfeld and Ivantysynova [28]).

In the domain of linear control theory, closed-loop pole placement is a well-established
approach for improving the performance of a hydraulic servo positioning system.
Pole placement is used, because the locations of the transfer function poles on
the s-plane correspond directly to the eigenvalues of the system, which in turn
define the system response characteristics. Also termed state feedback control, this
control approach requires feedback from the system state variables, which for the
hydraulic servo system in Figure 1.2 imply feedback from velocity, acceleration and
actuator position. Assuming ideal feedbacks on position, velocity and acceleration,
the controller structure allows the placement of the closed-loop transfer function poles
by adjusting the state feedback (controller) gains, which leads to more manipulability
of the system dynamics. A closed-loop position control system with state feedback
control is shown in Figure 1.3.

The control system consists of an inner second-order velocity control loop with
feedback gains K, and K, an outer unity feedback and a gain K, for the position error.
After incorporating the feedback gains K, and K, into the transfer function (1.1),
the inner velocity control loop becomes:

V{(s) Ko w2
H,(s) = _ ga " Wn . 1.2
((5) U(s) 82+ (200w + KaKpuw2)s + (1 + K, K)o (1.2)
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Figure 1.3: State feedback controller

Comparing transfer functions (1.1) and (1.2), it can be seen that the servo system
with state feedback has a new damping ratio:

o 25n + Kaanwn

on 2,/1+ K Ky,

(1.3)

and a new natural frequency:

W, = wpy/1 + Ky K. (1.4)

From (1.3) and (1.4), it can be seen that the system damping increases with the accel-
eration feedback gain K,. The natural frequency of the state feedback control system
increases with the feedback gain K,; however, the damping ratio simultaneously
becomes smaller.

Generally, obtaining full motion state information (position, velocity and acceler-
ation) on a multi-axis system has proven to be problematic, especially regarding
the measurement of relative acceleration between the hydraulic manipulator links.
The traditional approach using incremental encoders is to compute the first- and
second-order time derivatives indirectly by single/double differentiation of the encoder
position signal and to use predictive post-filtering on the differentiated signals. Cal-
culated at high sampling rates, this approach amplifies high-frequency perturbations
and quantization effects on the resulting signals to a large extent. For this reason,
direct acceleration feedback is frequently avoided altogether (see e.g. Han et al.
[29], Muhammad et al. [30], Jabbour et al. [31], Sirouspour and Salcudean [32]) and
alternative state-observer-based methods are used instead, which rely on modelling
of the entire hydro-mechanical system dynamics. The velocity and acceleration are
estimated from system input and position output measurements, which are typically
readily available. However, the required modelling and controller design effort for



these approaches can be considered extensive. When a state observer is used as part
of a hydraulic manipulator closed-loop control system, the stability of the controller
must be proven for both the nominal and uncertain plant models since the highly
non-linear hydraulic manipulator typically works under large load uncertainties (see
e.g. Zhai [33], Pi and Wang [34]). Alternative time derivative estimation techniques,
such as proposed by Merry et al. [35], use time-based encoder pulse counting and
require high-resolution time stamps of encoder pulse count events, which typically
leads to the use of external timer/counter hardware and increases the system cost
further.

Ovaska and Viliviita [36] summarize typical indirect differentiation and filtering
methods for producing low-noise motion derivatives from joint angular velocity or
position measurements. The reviewed methods are often very successful provided
that the sampling rate is low. However, today’s sampling rates (and especially
quantization) noise may reach levels at which these types of filtering techniques
become ineffective in producing usable feedback for closed-loop motion control
applications. Since the quantization step in an angular acceleration signal, which is
directly double-differentiated from position, increases quadratically as the sample
time shortens, the control system may become unstable quickly when the position
change between sample points is very small. An alternative approach published by
Harrison and Stoten [37] provides an estimation method for derivatives of arbitrary
order from velocity or position measurements for a given combination of signal-to-
noise ratio and sampling-to-signal frequency ratio. The provided optimal coefficients
of the discrete derivative minimise the error between the derivative and its Taylor
series expansion representation. For modern control systems, even this type of
velocity and acceleration estimation may limit the controller’s performance.

In addition to the previously described high-performance motion control of the
hydraulic manipulator, motion state feedback is also used with suspended load anti-
sway control systems. A payload suspended from a manipulator exhibits pendulum-
like characteristics with prominent uncontrolled oscillation during acceleration and
deceleration of the manipulator end-effector. This type of system is underactuated
by nature since the position and velocity of the manipulator end-effector can be
controlled while the load swing angle and angular velocity can only be controlled
indirectly. While a highly skilled operator may be able to control the load swaying,
the need for an automated control system lessening the burden of the human operator
is justified. Presently, such assisting control systems are already widely available
for overhead gantry cranes. However, only a few applicable control concepts have
been proposed for more complex articulated multi-link cranes (see e.g. Bak et al.
[38], Kjelland et al. [39, 40]). In the works of Kim et al. [41] and Neupert et al.
[42], which describe full-scale realisations of such operator assisting systems, the



measurement of the load swing angle and angular velocity has been reported as
a main challenge. For this reason, several alternative approaches in load sway
suppression systems use an open-loop technique of input command shaping, in which
the manipulator operator control commands are filtered to remove components that
induce load oscillations. However, if disturbance rejection and accurate positioning
of the load is desired, augmentation of the system with a feedback loop comes into
question (see e.g. Sorensen et al. [43], Garrido et al. [44], Ahmad et al. [45], Vaughan
et al. [46]).

Considering the challenges in realising the discussed motion state feedback systems,
the small size, surface mounting capability and type of inertial measurements provided
by MEMS sensors make them ideally suitable for the task. This implies both
straightforward retrofitting onto existing hydraulic manipulator structures and full
motion state sensing capability of the complete kinematic chain, which may include
e.g. a suspended load to be transported. In particular, the advantages of MEMS
inertial sensors in estimating the joint angular velocities and angular accelerations
are two-fold: i) a MEMS angular rate gyroscope measures the link angular rate
directly; and ii) the link angular acceleration can be derived from accelerometer
readings without noise-amplifying differentiation or lag-inducing post-filtering by
applying well-known rigid body motion kinematics.

1.2 MEMS-based motion sensing

A MEMS accelerometer measures dynamic and constant accelerations with the force
of gravity representing a special case of constant acceleration. If the accelerometer is
fully stationary, i.e. no lateral or vertical accelerations are present, the inclination
angle can be calculated from the measured gravity component. A horizontally
mounted accelerometer with two orthogonal zy axes allows two-degree-of-freedom
(DOF) inclination sensing up to approximately 45 degrees of tilt with respect to
the local gravity direction. Since the axis outputs of the accelerometer follow the
sine and cosine functions as a function of the tilt angle, the output sensitivity in
response to a change in tilt rapidly decreases if the angle becomes higher than 45
degrees, thus prohibiting accurate inclination sensing up to 90 degrees of tilt with
this configuration. Furthermore, the absence of a 2z axis prevents the detection of
an inverted sensor posture. If the dual-axis accelerometer is mounted vertically,
the 1-DOF inclination angle can now be measured throughout a 360 degree range,
since the 90-degree difference in the sensing axes orientation keeps the output
sensitivity constant. Adopting a three-axis zyz accelerometer, the 2-DOF rotation
matrix of the sensor can be estimated throughout a 360-degree range. The 2-DOF
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estimates of the hydraulic manipulator joint angles can now be constructed by
mounting accelerometers on the manipulator links and subtracting the successive link
inclination estimates from each other. However, because the output of a linear MEMS
accelerometer also contains the instantaneous linear accelerations of motion, this type
of straightforward and “traditional” inclination estimation (see e.g. Luczak et al. [47])
gives erroneous readings during accelerative motions. If the accelerometer outputs are
low-pass filtered, ultra low-noise inclination sensing is possible with the disadvantage
of significant phase delay and bandwidth limitations to typically less than 1 Hz.
While this approach may be used for low-bandwidth manipulator link inclination
estimation, it is infeasible for supplying the high-bandwidth low-delay feedback
required for the real-time closed-loop motion control of a hydraulic manipulator.
Moreover, this approach leaves unsolved the problem of link velocity and angular
acceleration estimation, which are of critical importance for high-performance motion
control of hydraulic manipulators.

The MEMS gyroscope measures the angular velocity around one to three orthogonal
axes. The angular velocity is sensed by observing a change induced by the Coriolis
effect on a vibrating proof mass. Integrating the angular rate output of a MEMS
gyroscope gives a reliable short-term estimate of the inclination angle, which is
also robust against acceleration effects. Unfortunately, the output of a gyroscope is
perturbed by a low-frequency bias term, which makes long-term integration of the
rate signal unsuitable for keeping track of the inclination angle. As an improvement
to purely accelerometer-based sensing, “gyro-aided” methods combine accelerometer
readings with gyroscope angular rate data. A widely used solution for the fusion of
MEMS accelerometer and gyroscope data is the classic forward-predicting Kalman
filter, which can be used to combine several redundant noisy measurements to produce
a statistically optimal estimate the underlying system state. The use of the Kalman
filter requires a process model and quantifying the statistical noise characteristics
of the process model and the individual measurement sources. Complementary
filtering is a general term describing estimation techniques that combine several
measurements while simultaneously minimising individual error sources without
knowledge of the exact frequency content of individual error sources. However, for a
class of filtering problems, the assumption that the measurements are corrupted by
stationary white noise produces a stationary Kalman filter that is identical in form to
a complementary filter, which does not require a time-domain statistical description
for the noise corrupting its input signals. The noise variation dependent steady-state
Kalman gains can therefore be viewed as a means of shaping the frequency response
of the (complementary) filter as desired.

To enforce “traditional” gravity-based inclination sensing during accelerative motion,
linear accelerations acting on the accelerometer’s sensing axes must be determined
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and compensated for. Thus, “geometry-aided” inclination sensing refers to a type of
robust motion sensing in which a complete forward kinematics model of the studied
system is constructed. Simplified motion kinematics models allow the compensation
of the acceleration effects on the inclination readings to some degree, but in order
to arrive at a widely applicable approach, the kinematic relationships must be
further investigated and understood. This is especially relevant for high-velocity
manipulators consisting of multiple joints and links. Accelerometers mounted on
the links of such a manipulator will undergo high-acceleration manoeuvres and be
subject to acceleration components, which fall outside the category of random noise
corrupting the accelerometer signals.

1.3 Earlier research on MEMS-based manipula-
tor motion sensing and control

Since the accelerometer-based inclination estimate is susceptible to large errors from
acceleration effects during motion and the integrated gyroscope angle estimate drifts
over time, a properly constructed inclination estimate should account for both of these
facts simultaneously. As an initial improvement to the overall static accuracy of the
accelerometer-based inclination estimate and the amount of gyro drift, the calibration
of MEMS accelerometer and gyroscope bias values as well as the output scale factors
has been considered in works of Frosio et al. [48], Bekkeng [49], Aggarwala et al. [50]
and Amirsadri et al. [51], among others. Although an improvement to the static
inclination estimate accuracy may be obtained, the gyroscope bias drift cannot be
completely eliminated by one-time calibration since the bias is slowly time-varying
and temperature-dependant. Naturally, the problem of motion-induced perturbations
on the accelerometer inclination estimate still remains.

A key disadvantage of purely accelerometer-based rotation estimates are the singu-
larity conditions that arise if the joint axis of rotation becomes parallel to gravity.
For this reason it is more desirable to use the integrated gyroscope angular velocity
for the rotation estimate, since it does not suffer from singularities, and use other
redundant measurement sources for bounding the drift caused by the gyro bias.
This sensor fusion between MEMS accelerometers, gyroscopes and other optional
measurement sources is frequently performed with the classic Kalman filter or with
the non-linear extended Kalman filter (see e.g. Brigante et al. [52], Lee et al. [53], Zhu
and Zhou [54], Zhu et al. [55], Leavitt et al. [56] and Petruska and Meek [57]). The
extended Kalman filter can be used to approximate a non-linear process model,
which is typically the case with motion kinematics, by linearising the process model
with the Taylor series expansion. This, however, brings about the added difficulty of
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guaranteeing the global convergence of the filter; additionally, the filter performance
may be poor if the dynamics are highly non-linear (see e.g. Brown and Hwang
[58]). Furthermore, the underlying assumptions of both the classic and the extended
Kalman filters regarding sensor output linearity and Gaussian statistics may work
well for high-grade, high-cost sensors, but they do not fit as well to low-cost, low-
quality MEMS sensors. In this case, the complementary filter is a computationally
effective alternative that makes no assumptions about the statistics or linearity of
the signals. It has been applied for the fusion of low-cost MEMS sensor data by
Weinberg et al. [59], Kubus et al. [60] and Mahony et al. [61], among others. Recently,
Euston et al. [62] applied complementary filtering for the attitude estimation of a
fixed-wing unmanned aerial vehicle.

Fourati et al. [63] considered estimating 3-DOF rotations by including a MEMS
magnetometer and adopting the quaternion representation since it is known to be
computationally efficient and it avoids the singularities of the Euler angle representa-
tion. While a magnetometer can be used to provide a reliable long-term reference of
the z axis rotation (heading angle), Caruso [64] found it very sensitive to magnetic
disturbances from external sources that cause significant errors to the heading esti-
mate. Although the disturbances can be compensated for to some degree in controlled
and limited conditions, as proposed by Roetenberg et al. [65], a magnetometer can
be considered an unrealistic option for surface mounting onto the large metallic
structures of hydraulic manipulators since they operate in uncontrolled environments
and the constantly changing manipulator geometry of the articulated machine causes
time-varying soft-iron effects to the surrounding magnetic field.

Since the magnetometer is an infeasible option for heavy-duty hydraulic manipula-
tors, the accelerometer-based long-term reference should be adopted. Roan et al.
[66] propose this type of gyro-aided rotation estimation approach for multi-link
manipulators. However, since a kinematic model was not used, the manipulator
motions must be assumed to be slow to prevent significant error accumulation to
the accelerometer-based gyro bias estimate. Consequently, a properly constructed
accelerometer-based long-term reference for bounding the gyro drift should be motion
compensated to be disturbance free. In view of Newtonian mechanics, most of the
relevant kinematic quantities are non-linear functions of angular velocity and angular
acceleration, which are not easy to define without rate gyroscopes (see Cardou
et al. [67]). If simplified motion kinematics models are constructed, such as pro-
posed by Dejnabadi et al. [68] and Wang et al. [69], the motion perturbations on
the accelerometer-based reference can be compensated for to some degree. Cheng
and Oelmann [70] compare several gyro-aided methods for joint angle sensing in
which the motion effects are compensated for using simplified kinematic models with
common-mode and differential rejections of disturbing accelerations. However, to
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arrive at a widely applicable estimation approach, the velocities and accelerations
must be propagated from link to link with a complete multi-body manipulator
forward kinematics model. This type of complete kinematics model was adopted
in the work of El-Gohary and McNames [21]; however, the chosen inertial sensor
fusion method limited the results to an unacceptable level for hydraulic manipulator
closed-loop motion control.

Despite the large amount of research conducted on the various aspects of MEMS-based
motion sensing, there are still relatively few published works solely concerning MEMS-
based closed-loop control of multi-link manipulators. To the author’s knowledge,
the existing works have yet to combine all the previously discussed key points in a
single feasible motion state feedback solution. For example, Quigley et al. [20] note
that a solely accelerometer-based closed-loop motion control system of a multi-link
robotic manipulator quickly becomes unstable in dynamic situations without the use
of stabilizing encoder position measurements. Ghassemi et al. [71] assume transient
accelerations as mere superimposed noise on the accelerometer-based estimates, which
necessitates delay-inducing low-pass filtering of the joint angle readings and leads to
oscillatory behaviour of the control system. Aref et al. [72] apply MEMS sensors and
quaternion-based complementary filtering to estimate and control the boom and fork
angles of a forklift truck. The assumption that a complementary (or Kalman) filter
alone is sufficient to remove the perturbations from the inclination estimate may work
well provided that i) the manipulator is small in size and the angular velocities and
linear link accelerations are low; and ii) transient accelerations are mainly vibrations
on a higher frequency spectrum than the actual motion of the manipulator. However,
in the example of a forest harvester hydraulic manipulator, where the harvester head
moves several meters per second, the linear accelerations exerted on surface-mounted
accelerometers are significant; additionally, the perturbing accelerations occupy the
same frequency band as the motion of the manipulator. Since the complementary
filter applies a low-pass filter on the accelerometer readings, the two acceleration
sources become inseparable. A forward kinematics model of the manipulator is
therefore required to decouple the kinematic quantities before applying any filtering.

1.4 Objectives of the thesis

The main objective of this thesis is to produce a novel method for applying low-
cost MEMS inertial sensors to the motion state sensing and closed-loop control of
heavy-duty hydraulic manipulators. Since the model is to be applied to a variety of
manipulator geometries consisting of an arbitrary amount of rigid links connected by
rotary joints, it must be general in nature. To achieve this, the output characteristics
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of the individual sensors need to be characterised and the measurements from multiple
sensors must be seamlessly combined using signal processing methods to create low-
noise, drift-free, low-delay estimates of link positions, velocities and accelerations.

To facilitate the required multi-sensor fusion, a complete forward kinematics model of
the manipulator system is required in order to compensate for the linear, centripetal
and centrifugal acceleration effects from the accelerometer readings. This kinematic
modelling is a prerequisite for obtaining complementary inertial measurements of
the manipulator motion. By then fusing the motion compensated accelerometer
readings with the gyroscope angular rate data, smoothed high-bandwidth, low-delay
and low-noise estimates of the manipulator motion states may be constructed. Sensor
reading fusion using complementary filtering allows the use of the complementary
good portions of the spectrum of both components while minimising error sources.
Thus, the novel contributions of this thesis relate to the class of “geometry-aided”
motion state estimation methods where the underlying forward kinematics model lays
a theoretically sound foundation for the fusion of redundant inertial measurements.
Table 1.1 provides a comparison of the discussed motion sensing approaches. Note
that the comparison is made here only with respect to the link inclination sensing
properties. If considering the full manipulator motion state estimation problem,
which also includes the link velocity and acceleration state estimates, only the
“geometry-aided” approach can be considered a feasible solution.

Table 1.1: Inclination sensing methods in accelerative angular motion

Estimation method traditional traditional 4+ low-pass filter —gyro-aided geometry-aided

Accuracy low medium medium high
Bandwidth high low high high
Noise level high very low low low

The individual objectives of this thesis are summarized as follows:

e To create a motion state estimation model based on MEMS inertial sensors,
which combines rigid body motion kinematics of hydraulic manipulators with
powerful signal processing methods;

e To show by experimental verification that the performance of the motion state
estimation model is comparable and in certain respects superior to traditional
instrumentation solutions; and

e To demonstrate on a full-scale heavy-duty hydraulic manipulator that a closed-
loop motion control system utilising the surface-mounted low-cost inertial
sensors achieves comparable motion control tracking performance compared to
high-accuracy reference sensors.
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1.5 Research methods and restrictions

The research begins by constructing a theoretical framework allowing the use of
low-cost inertial sensors for multi-link manipulator motion sensing. The theoretical
discussion and results regarding serial-link manipulator rigid body motion kinematics
and complementary filtering of inertial measurements have been kept general without
restrictions on any particular manipulator. The purpose is to allow wider applications
of the results and relevance for future developments. However, the emphasis of this
thesis is on manipulators with rotary joints. Later in the experimental section,
custom-made single- and multi-link test benches are used along with a commercial
HIAB 031 heavy-duty hydraulic manipulator.

The observation model is experimentally verified in an incremental manner beginning
with a single-link case using one MEMS inertial sensor followed by multi-body motion
experiments. The manipulator motion state estimation based on low-cost inertial
sensors is referenced against high-cost, high-accuracy rotary encoder readings. After
model verification, closed-loop motion control experiments are used to evaluate the
performance of low-cost inertial sensing in manipulator motion control. Reference
solutions are obtained here using the same high-accuracy encoder-type sensors.

The effects of temperature have not been included in the inertial sensor models due
to the nearly constant ambient temperature during the experiments. If a wide range
of temperatures is to be expected, the internal temperature reading provided by the
MEMS sensors (see [73]) can be readily used to implement any necessary corrections.

Although MEMS accelerometers and angular rate gyroscopes allow 2-DOF inclination
sensing based on the force of gravity, the experimental validation is restricted to
1-DOF joints in a vertical plane. The limitation on experimental validation is
justified when considering the operation of forest harvesters and other mobile machine
manipulators, for which load lifting and lowering tasks, i.e. vertical manipulator
motions, are frequent and therefore of the most practical interest. Furthermore,
heavy-duty hydraulic manipulators almost exclusively have 1-DOF joints. However,
it should be noted that the underlying observation model itself is not restricted to
1-DOF joints. Thus, the MEMS-based motion sensing and its error propagation is
founded on the exact same principles in a full 3-DOF case.

For completeness, however, a valid magnetometer model is also given (see Section 2.3),
but its use is omitted for the sake of clarity. This is mostly because metallic
structures typical in heavy-duty manipulators disrupt the Earth’s magnetic field,
thereby hindering the full 3-DOF rotation matrix estimation. Neither the kinematic
modelling nor the associated complementary data fusion principles are actuator
specific or limited to hydraulic manipulators.
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1.6 Outline and contributions of the thesis

This thesis is divided into five chapters. The contents of each chapter are summarized
below.

Chapter 1 is an introduction into the field of hydraulic manipulators and how MEMS
inertial sensors relate to their motion state sensing and closed-loop motion control.
The background and motivation for the study are given, followed by the objectives,
research methods, restrictions and contributions of the thesis.

Chapter 2 contains a derivation of forward motion kinematics for serial-link manipu-
lators and details the MEMS-based motion state estimation model, which is closely
tied to complementary filtering of inertial measurements.

Chapter 3 presents the experimental validation of the proposed observation model
in a test bench and application case examples of hydraulic manipulator closed-loop
motion control.

Chapter 4 provides a commentary and an explanation of the results, and discusses
their relevance.

Chapter 5 places the major findings of the research into a larger context and
indicates the conclusions that can be drawn from the results. The chapter ends on
recommendations for future work.

The main contributions of this research are as follows:

e A novel observation model for the full motion state estimation of serial link
hydraulic manipulators based on low-resolution, low-cost MEMS inertial sen-
SOTS;

e Thorough verification and characterisation of the observation model perfor-
mance; and

e Case examples of MEMS-based closed-loop motion control systems for heavy-
duty manipulators, which demonstrate control performance comparable to
high-resolution, high-cost reference sensors.

The author has conducted all the controller design, experiments, and analysis of results
relating to the motion control experiments, which have been reported in Honkakorpi
et al. [74, 75, 76, 77]. The motion state estimation model and the related signal
processing methods have been developed in co-operation with D.Sc. Juho Vihonen
from TUT/DSP. The estimation model has been published with analysis in Vihonen
et al. [78, 79], after which it has been reformulated by the author in accordance with
standard robotics conventions and notations. Researchers Janne Koivumaéaki and
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Erkki Lehto from TUT/THA have contributed notably to the design and manufacture
of the small-scale test bench and the MEMS sensor module. Prof. Jouni Mattila has
acted as the supervisor of this thesis and has provided support, guidance and access
to the necessary laboratory infrastructure for the experimental work.
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Chapter 2

Multi-body motion state
estimation with inertial sensors

In order to apply the inertial sensors to the motion state estimation of a serial-link
hydraulic manipulator system, the velocities and accelerations of the interlinked
mechanical bodies must be propagated through the kinematic chain to enable high-
bandwidth, low-noise and low-delay sensing of the link rotations, angular velocities
and angular accelerations. Thus, it becomes necessary to form generic expressions for
the relevant kinematic quantities in a systematic way to arrive at a widely applicable
approach. The following section provides the necessary serial-link manipulator
forward kinematics, which are derived from widely known generic rigid-body motion
kinematics. In Section 2.2, the novel multi-body observation model is formulated
based on the previously derived manipulator kinematics. The use of MEMS inertial
sensors is integrated with the observation model in Section 2.3, where the key
theoretical findings of the proposed model are also presented. Finally, Section 2.4
discusses the fusion of the inertial measurements with complementary filtering.

2.1 Multi-link manipulator rigid body kinematics

As a starting point, this section presents a general rigid body motion kinematics
model for an open-chain serial manipulator consisting of an arbitrary amount of rigid
links. A more detailed discussion of the derivation of the motion kinematics can be
found in Jazar [80] or Sciavicco and Siciliano [81], among others.

First, consider a rigid body with a fixed local coordinate frame {B} (oxyz) moving
freely in a fixed global coordinate frame {G} (OXY Z) (see Figure 2.1). The position
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vector “rp of a body point P with respect to the reference frame {G} can be

expressed using a unique rotation and translation:

GI'P = GRB BI’p + GdB, (21)

where Prp is the position of P in {B}, “dp denotes the position of the moving
origin o relative to the fixed global origin O and “Rp is a (3 x 3) rotation matrix,
det(R)=1 and RT = R™', describing the relative rotation of the local frame {B}
with respect to {G}.

Figure 2.1: Ridig body point P represented in global and body frame.

Assuming the body frame in Figure 2.1 can rotate and translate freely in the global
frame and the body point P is moving in frame {B}, the global velocity “vp of
point P is derived by differentiating the body point position (2.1), which results in

“vp= “tp =Ry "rp+ “Rp "ip+ “dp
= gwp X “Rp Prp+ Gip+ “dp

=gWwp X grp + gf'p + GdB, (22)

where ¢ wp denotes the instantaneous angular velocity of frame {B} relative to
{G} and Grp is the position of P in frame {B} expressed in the global frame {G}.
Similarly, the acceleration can be derived by differentiating “vp to yield
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. . B S B B
GI'p: agwp X GRB rp+ gwp X GRB r'p+ gwp X GRB rp
G B G B G2
+ "Rp”tp+ "Rp”tfp+ “dp
— G G G
= GanBrp+ Gwa(Gwa rp)—l—QGwa rp

+ Gip+ “dg, (2.3)

where ¢ ap is the instantaneous angular acceleration of { B} with respect to {G}. If
the body point P is fixed in {B}, the linear acceleration simplifies to

Gi:P = goOop X gI'P + gwp X (G wp X grP) + GaB- (2-4)

Now, consider an open-chain serial manipulator consisting of n + 1 rigid links
connected by n 1-DOF prismatic or revolute joints. The base link 0 is immobile and
fixed to the ground while link n is the end-effector link. By rigidly attaching body
coordinate frames {B;} to each link i of the manipulator, the forward kinematics of
the manipulator may be computed to determine the position, orientation, velocity
and acceleration of each link with respect to the base coordinate frame. In general,
the frames {B;} may be chosen arbitrarily as long as they are attached to the links
they refer to. The frame placement adopted in Figure 2.2, however, follows the

Yi—1
By 7 Tiq

Figure 2.2: Characterisation of a serial link manipulator using the Denavit-Hartenberg
(DH) method (link twist «; is omitted for clarity).
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widely adopted Denavit-Hartenberg (DH) standard method [82], in which the body
frame {B,} is attached on link ¢ at joint ¢ + 1. The relations between the link frames
are characterised by joint angle 6;, link length a;, joint distance d; and link twist «;,
which is the angle between the z; and z;_; axes about the x; axis.

Now consider a generic link 7 of the manipulator where, according to the DH method,
the base frame {B;} is attached to the link with its origin along the axis of joint
i + 1, while the frame {B;_} has its origin along the axis of joint ¢, as shown in
Figure 2.3.

Figure 2.3: Characterisation of general link ¢ of a serial manipulator.

According to the coordinate transform (2.1) one may write

Or, = "ri o + Ry fjru (2.5)

where !~ir; denotes the position of frame {B;} with respect to {B;_1} expressed in
frame ¢ — 1. The linear velocity of link ¢ can now be expressed in the global frame

using (2.2), which results in

0., 0. 0 0 -
ri—= I, 1+ ogWi—1 X i—1Ti + i—1¥4, (26)
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where ;% #; denotes the velocity of frame {B;} with respect to frame {B;_;}. The
angular velocity of link i is derived by differentiating the composite rotation °R; =
°R,_1 “"'R;, which can be shown to lead to the recursive formula

owi = gqwi1 + ;W (2.7)
or equivalently
owi=> Yiw; j<i (2.8)
j=1

Depending on the joint type, the angular velocity (2.7) has different expressions. For
a revolute joint, the only rotation is about the z;_; axis, and for a prismatic joint
the orientation of frame {B;} with respect to frame {B;_;} does not change. This
leads to

0.y — owi—1 + 0;Ok;_, if joint ¢ is revolute (2.9)
o dwi_1 if joint 7 is prismatic, '

where 6; is the revolute joint angle DH parameter and 0f;_ is the unit vector of the
joint ¢ axis.

The linear velocity (2.6) may be expressed in a similar manner for different joint
types. For a revolute joint the linear motion ,°#; is due to the rotation of { B;} with
respect to {B;_1} given by

0 0
i—1Ti = i—1Wi X 04T (2.10)

Because the only possible translation for a prismatic joint is along the z; 1 axis, the
linear velocities can be given in view of (2.7) as

(2.11)

0; {Of'i_l + Jw; x 01y if joint ¢ is revolute
ot: —

0% 1 +d; %k 1 + Sw; x ;% r; if joint 4 is prismatic,

where d is the DH parameter of the prismatic joint. The link angular acceleration is
derived by differentiating the velocity (2.9) to yield
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0y — 8cbi_1 + éiol;‘i_l + 8‘*’2‘—1 X éiol%i_l if joint ¢ is revolute (2.12)
0 0w; if joint ¢ is prismatic. '

Similarly, the linear acceleration is obtained by differentiating (2.11), which results
in

oo
=

L+ fs x O+ Jwi X (Jws x 0 r) if joint 7 is revolute
0% 1+ d; ki 1+ 2dJw; x Pk y + Swy x (Jw; x ;% 1) if joint ¢ is prismatic.
(2.13)

Now, if all manipulator joints are revolute, in view of (2.8) the linear acceleration of
frame {B;} can be expressed using relative link velocities and accelerations as

:i:(z]:mlwm Jlrj+zm1wm (Zmlwm ]1rj)>, (2.14)

j=1 “m=1

where &, denotes the angular acceleration of frame { B,,,} with respect to {B,,_1}.

2.2 Multi-body observation model

The derived multi-body manipulator kinematics can now be applied to construct
a “geometry-aided” observation model that can be used to solve the link rotations,
angular velocities and angular accelerations with respect to the inertial reference
frame.

Consider again an open-chain manipulator fixed to a stationary base platform with
n + 1 rigid links connected by n rotary joints. Resembling the previously discussed
DH method, body coordinate frames {B;} of rectangular (zyz) axes are rigidly
attached to the distal end of each link ¢ at joint ¢ + 1. The orientation of the axes
is chosen such that the y axis of frame {B;} intersects the origin of {B;_;}. The
kinematic chain is illustrated in Figure 2.4, and the lengths of the links are denoted
by ;.

Let 'R; denote the (3 x3) body-fixed rotation matrix, det(‘R;) =1 and ‘Rf ='R; !,
relating the orientation of {B;} to the inertial reference frame {I}. If all joint angular
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{1}

X

Figure 2.4: Open chain manipulator rigid body observation model.

velocities are expressed in their respective body-fixed frames, the ¢th link velocity
(2.8) with respect to {/} may be written as!

1—1
wi=wi+ Y R Ry " wnm (2.15)

m=1

denoting that the angular velocity of the ith link, expressed in frame {B;}, consists
of the angular velocity of the ith joint and of a summation of the joint angular
velocities up to i — 1. Now assume a second body-fixed frame {PY} is rigidly attached
on link 7 at a fixed distance from {B;_;1} and rotated to the same orientation as
{B;}, as shown in Figure 2.5. Since the rigid body angular velocity and angular
acceleration of {P?} and {B;} are the same, in view of (2.14) the linear acceleration
of {PY} with respect to {I}, expressed in {B;}, can be given using body-referenced
angular velocities and accelerations as

) i J A J
=Y < SYRIR,, Mot x RIR; e+ S R R,, ™ w,, (2.16)

j=1 “m=1 m=1

J .
% (X R R aom % RER; 2y ),

m=1

IHereafter in this section, sub- and superscripts “I” are omitted for quantities referred to the
inertial reference frame {I}.
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xA/\ / I/ >y

link 7

Figure 2.5: Secondary frame {P?} rigidly attached on the th link with linear acceleration
and angular velocity axial components shown. Note that ‘wpo = ‘w;.

where | ™ w,, is the mth joint angular velocity expressed in frame {B,,} and , ™ a,,
denotes the angular acceleration of joint m given by

me1 O = ) Wi, (2.17)

and the distance between frames, denoted by ; g 1T, is defined as

, 01 0] < q
RS [ / ]Z’T St (2.18)
[0 D; pi] , J =1

2.2.1 Direct algebraic solution of joint angular acceleration

Recall that calculating the differential (2.17) on a real-world system to obtain
the joint angular acceleration causes a considerable density of superimposed high-
frequency perturbations on the resulting angular acceleration as previously discussed
in Section 1.1. Therefore, it is desirable to derive the angular acceleration directly
without noise-amplifying differentiation. This section provides a direct algebraic
solution for the joint angular acceleration, inspired by Padgaonkar et al. [83], based
on linear accelerations and angular velocities.

Assume two further body-fixed frames {P}} and {P?} are rigidly attached on link i
at known distances from {B;_;} in the same orientation as {B;}. For the direct
angular acceleration solution, only three additional linear acceleration components
are required: along the z axis of frame {P}} and along the yz axes of frame {P?},
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Figure 2.6: A configuration of additional body-fixed frames {P}} and {P?} rigidly
attached to the 7th link. Here p7 = 0 for clarity.

which is illustrated in Figure 2.6. In view of (2.4), the linear accelerations of {P7}
expressed in {B;} are

iapj = ’rz + iai X (iI'Pj — iri) + iwi X (zwz X (iI'Pg" — irl-)), j = 0, 1,2, (219)

where #; denotes the linear acceleration of {B;} and (‘rp; — r;) equals the local

position vector in (2.4). The angular acceleration of link ¢ can be given in view of
(2.12) as

iai = iai,1 -+ Z_Zlal —+ iwi,1 X ’wl (220)

Substituting (2.20) into (2.19) and solving for ‘¥; yields

Qs 7 ) ) 7 i ) 7
r, = aP]_- — ( ;1 -+ i_la,- + w;_1 X wl) X ( I'P]_' — I'Z')
2 1

— "w; X (w; x ('tps — '17)). (2.21)

Equating the expression of ; for frames {P%}, {P}} and for {P?}, {P?} results in

ian' — 75apg = ‘o X (irpg - Z‘rpg) + oy x (irpg - Z‘rp?) (2.22)

+ Zwi,l X lwi X (lI'Pg — ZI'p(;) + ’wi X ’wi X (ZI‘P{ — ZI‘P?)? j = 1,2
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By virtue of the placement of the frames illustrated in Figure 2.6, the position vectors
are

| | 01 | d’
erl = ZI'pQ + dzyl s ZI'PZ = ero + 0 s (223)
0 0

where d}' >0 and d;* >0. Now, substituting the respective position vectors (2.23)
into (2.22) and considering the available acceleration axis components at {P;} and
{P?}, the component-wise direct algebraic solution of the joint ¢ angular acceleration
becomes

Q.2 (-7 Y1 i, Ui, z i, Y o1, .z
(GP}_ aP?)/di - Wy Wi T Wi W

7 _(tazZ 142 T2 i, T, 2 i, ,r 1, .,z 7

-1 = (apg apg)/dz’ oW Wi Wi W | — e, (2.24)
iy iy T2 g, i i iy
(apzz— ap?)/di — Wy Wy T Wi Wy

where the superscripts x,y and z denote the respective axis components of the
kinematic quantities and

1—1
‘a1 =Y RIRy ., ou,. (2.25)

m=1

Note that the angular acceleration axis components in (2.24) require prior knowledge
of the angular velocities about the xyz axes, but only three extra linear acceleration
components co-directional with the y and z axis of frame {P?} are needed.

2.3 Motion sensing with inertial sensors

A typical IMU contains a 3-axis accelerometer, a 3-axis gyroscope and often a 3-axis
magnetometer providing heading information. The reference frame of the IMU is
the body-fixed frame {B}, which is central in inertial measurements. The inertial
reference frame in which Newtonian mechanics are used is denoted by {I}, as before.

A gyroscope measures the angular velocity in the body-frame { B} with respect to
the inertial frame {I}. By integrating the angular velocity, the relative orientation
between the frames in {B} with respect to a chosen initial value is obtained.

In practice, the angular rate output of a 3-axis MEMS gyroscope can be characterized
(see e.g. Mahony et al. [61]) by an additive bias term and noise component as
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?QB = +5,) jIB"‘-’B +by+p, € R¥™, (2.26)

where Pwp denotes the true angular rate of { B} with respect to {I} expressed in
the body frame {B}, I is the identity matrix, S, is a scale factor error expressed as
a percentage of w, b, denotes a constant or slowly varying gyro bias and p, denotes
additive measurement noise.

An accelerometer measures the instantaneous linear accelerations v in the body-fixed
frame {B} relative to {/} minus the local gravitational acceleration field gq in {/}.
The linear acceleration output of a 3-axis MEMS accelerometer can be expressed by

Bap = (I+ 8)(Bvs — 'RL ') + by + 1, € R, (2.27)

where S, is a scale factor error, v denotes the true instantaneous linear acceleration,
'Ry describes the rotation of {B} with respect to {I}, b, is a bias term and p,
denotes additive measurement noise. In a static situation, the gravitational field
g=|go|es, where |go|~9.8 m/s? dominates the value of a. Thus, it is common to
use

135 rpr 9.98
[Fag] =~ fipes (2.28)

as a low-frequency estimate of the inertial frame {1} z axis expressed in the body-fixed

frame {B}.

A magnetometer measures the Earth’s magnetic field

Pmp = 'Ry 'm + Pb,, +pu,, € R¥> (2.29)

where m is the Earth’s magnetic field in the inertial frame {I}, Zb,, is a magnetic
disturbance in the body-fixed frame {B} and p,, denotes additive measurement
noise. Since only the direction of the magnetometer output is relevant, the output is
normalised as

B
rmp

(2.30)

V. =
" |Pmg||

to a direction vector. The measurement noise u,, can usually be considered low,
but the local magnetic disturbance ®b,, can be significant, especially in indoor
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environments or if electric motors are operated in the immediate vicinity of the
magnetometer.

The measured vectors (2.28) and (2.30) can be used to estimate the rotation ‘Rp
(see Markley [84]). However, due the difficult characterization multi-sensor measure-
ment error sources, a direct algebraic solution of the rotation would lead to a complex
optimization problem. On the other hand, the operating environment may render
accelerometer and magnetometer readings unusable, due to e.g. magnetic anomalies
and accelerative motions. In this case, resolving the vectorial measurements into a
unique instantaneous algebraic measurement of attitude would become infeasible.
Since accelerometer and magnetometer readings are imprecise, the performance of
the gyroscope of becomes vital.

Consider again Figure 2.5, and assume now that a triaxial MEMS accelerometer and
a triaxial MEMS gyroscope is attached to the origin of {P?} with the sensitive axes
coincident with the axes of {P?}. Given that the base frame {By} is stationary, it is
assumed that Ry=1 and °wo="ay= [0 0 0]T for clarity. Additionally, the z axis
rotation of R; is taken for granted since it is not observable from the accelerometer
readings as previously discussed. To construct a 2-DOF estimate of the true rotation
R; from the accelerometer readings (2.27), a complete definition of (2.16) is required.
For a high-bandwidth low-delay estimate, identifying the gyroscope bias in (2.26)
is also necessary. As a step toward perfecting both at once, the postulated model
is applied in a suboptimal manner since the signals (2.26) and (2.27) may not be
modelled as random processes with fully known spectral characteristics as previously
discussed. Subsequently, the Earth’s angular rate (15 deg/h) is neglected because of
the low MEMS sensitivity and large noise density.

Applying (2.15), an estimate of the angular velocity of the ith joint, as sensed by a
MEMS angular rate gyroscope attached to the origin of { Py}, can be given by

)

i—1
L@ =" +by, — > RIR, O, (2.31)
m=1

where ‘Q; is the ith gyro rate reading as given by (2.26). Here the term lA)gi is
introduced to cancel the bias in ‘Q2;. Conversely, the differentiation

=@ (2.32)

yields a bias-free estimate of the ¢th joint angular acceleration, although it is generally
plagued by high-frequency perturbations as the differentiation amplifies noise. By
replacing the true angular acceleration and angular velocity in (2.16) with (2.31) and



31

(2.32), an algebraic estimate of the instantaneous linear acceleration iy po may be
calculated. The estimate can be characterised as

Fpo = Vpo + by + p, (2.33)

where b/ is a bias term and p! denotes additive noise accumulated from different
sensors, each with its own error characteristics.

For an accelerometer (2.27) located at {P?}, the above now yields

iapg — i€fpg ~—R'g (2.34)

for which the required estimates of angular velocity (2.31) and acceleration (2.32)
can be obtained without complicated transforms as previously discussed.

As a key result, the finding (2.34) states that a 2-DOF estimate of the rotation of
{B;} with respect to the inertial reference frame {I/} can be constructed from the
gravitational field even when the manipulator links are in accelerative motion. This
applies to small angle rotations occurring between successive real-time updates of
the link-wise rotations. In other words, it is assumed that the previous estimate of
R; can be used to update the inclination estimate, i.e. the link rotations occurring
between two samples are small. A sampling rate that is high enough is thereby
required.

Moreover, the angular acceleration estimate using the direct algebraic solution (2.24)
can be characterized in the familiar form as

Z_Zldzz = Z_Zlal + bclv + [J,Ciw (235)

where b is a low-frequency bias term and p’ denotes higher frequency perturbations
accumulated from different sensors. The low-frequency bias in (2.35) can be removed
without unwanted delay with a complementary I-type control design

(2.36)

since the gyro-based estimate (2.32) is bias-free but plagued by high-frequency
perturbations due to the differentiation. Assuming the gyroscopes are low-noise with
identified bias values, computing the angular acceleration algebraically in circular
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motion and omitting all the scale factor errors embedded in (2.35), the true ith joint
angular acceleration is obtained by

. iAo
. . o¢]

In view of the target application domain of heavy-duty hydraulic manipulators, which
have considerable mass of inertia and low natural frequencies of motion, the axial
components of angular velocities in (2.24) do not play a significant role. This leads to
a second key theoretical finding, which states that the perturbation contributions b}
and p! are mostly proportional to the physical distances between the z axis and the
yz axial accelerometers at {P}} and {P?} with respect to the triaxial accelerometer
at {P?}. In practice, however, the sensing ranges, sensor misalignment and linearity
affect the direct sensing (2.24) performance.

2.4 Complementary filtering

A low-delay filtered estimate of the true rotation R; can be solved by combining the
gyroscope readings with measurements from other inertial sensors or information
sources, which typically have low resolutions. These measurements, which contain
mostly high-frequency perturbations, are used as a long-term reference for real-time
identification of the gyroscope bias values to produce smoothed real-time estimates
of R;.

Consider the problem of combining two redundant noisy measurements, accelerometer
and gyroscope readings, of the same rotation in such a way that the individual error
sources are minimised while avoiding any unnecessary delay or distortion in the
filtering process. A classic two-input single-output linear complementary filter with
unity gain simultaneously implements a low-pass and a high-pass filter. As shown in
Figures 2.7(a) and 2.7(b), where F(s) is the Laplace transform of the low-pass filter,
the input z; is the measured rate signal containing low-frequency noise, the input xs
is the algebraic estimate of angle with a high-frequency noise component and ¢ is
the filtered output in the body-fixed frame {B} with respect to the inertial frame
{I}. By choosing

C(s)

F(‘S):m:

(2.38)

the Laplace transform of the complementary filter output in Figure 2.7 is
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Figure 2.7: Complementary filter realizations.
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+ F(s)xa(s).

Although all the filter realisation structures in Figure 2.7 are identical in theory and
the configuration of the separate high- and low-pass filters is useful for understanding
the basic concept of complementary filtering, most practical implementations exploit
the complementary sensitivity structure of a linear feedback system subject to
load disturbance. Thus, the feedback design illustrated in Figure 2.7(c) is chosen
to maximize numerical stability and to ensure that the integrator process remains
bounded by the accelerometer reference value, given that the accelerometer inclination
reference provides a redundant measurement of the same rotation. Here the term C(s)
determines the controller type, which can be chosen according to classical control
design techniques. The simplest choice is the proportional controller, i.e. C(s) = kp,
where the proportional gain kp sets the cross-over frequency of the filters at kp rad/s.
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The frequency is chosen as a trade-off between the low-pass characteristics of x5
and the low-frequency noise characteristics of x;. See Higgins [85] for a detailed
discussion about the relationship between the complementary filter designed in the
frequency domain and the Kalman filter designed in the time domain.

If the gyroscope bias can be assumed constant or slowly time-varying, choosing

C(S) = kp + ; (240)

yields a conventional proportional-integral (PI)-type control design. The filter can
be given in state space form with the dynamics

T+ B + k?p(l’g — gj) (2.41)
= fyp(zs — D). (2.42)

S >
I

Note that this linear proportional-integral type filter is well-suited for 1-DOF joint
rotation angle estimation, which is a general problem in hydraulic manipulator control
systems. For a full 3-DOF realisation, the above can be replaced with the quaternion
representation, which is almost exclusively used in e.g. the attitude calculation of
unmanned aerial vehicles and for expressing rotations and heading in the related
geometry. This is mainly because although the Euler angles are intuitive as such,
they may prove difficult to apply since their representation requires online algebraic
manipulation and they are known to contain singularities.



Chapter 3

Experiments

This chapter presents the results of the experimental work done on the motion
model verification as well as case examples of utilising the estimation model in the
feedback loop of hydraulic manipulator closed-loop control systems. The following
section summarises the initial experiments, in which the performance of a single
MEMS sensor module for the motion sensing and closed-loop control of a single-link
hydraulic boom was examined. In Section 3.2, the multi-body observation model
performance is characterised on a three-link planar test bench, including the use of
multiple MEMS sensors per link (see Figure 2.6). Finally, Section 3.3 summarises
the closed-loop motion control experiments of multi-link hydraulic manipulators,
with case examples of a suspended load anti-sway control system and hydraulic
manipulator state feedback control.

3.1 Initial single-body experiments

In this section, the MEMS-based motion sensing is applied to the closed-loop motion
control of a single-link hydraulic boom. In the experimental setup, the MEMS
sensor module was placed very close to the rotation centre of the single joint, which
keeps the motion acceleration components exerted on the sensor to a minimum.
Thus, the key theoretical result (2.34) regarding the link rotation reconstruction
from sensed gravity components can be directly applied here, assuming negligible
linear acceleration components. The single-axis boom was controlled using the state
feedback controller of Figure 1.3, with the single MEMS sensor module providing the
full motion state feedback. The experimental work published in Honkakorpi et al.
[74, 75] is summarised in the following.

35
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In order to fulfil the requirements for a sensor fit for mobile machine use as previously
discussed in Chapter 1, the MEMS sensor module must be robust and easy to
install. For a straightforward surface installation onto hydraulic manipulators and
interfacing to the control system, additional electronics and a sturdy enclosure are
needed. The MEMS sensor chip used in this study is the model SCC1300-D02 by
Murata [73] (formerly VTI Technologies), measuring 8.5 x 18.7 x 4.5 mm in size.
It contains a digital three-axis £2¢ linear accelerometer integrated with a one x
axis £100 deg/s angular rate gyroscope. The digital output of the accelerometer
has a resolution of 0.56 mg per least significant bit (LSB) which translates into a
best-case inclination resolution of 0.032 deg when parallel to the ground. The MEMS
gyroscope angular rate resolution is 0.02 deg/s. The frequency ranges of the MEMS
components are 30 Hz for the accelerometer and up to 50 Hz for the gyroscope.
Figure 3.1 illustrates the sensor module that has been constructed by combining the
MEMS chip with a 16-bit hybrid signal microcontroller unit (MCU) and a line driver
chip for implementing low-level data operations and controller area network (CAN)
communication. Packaged into a 120 x 40 x 30 mm size dust- and waterproof robust
aluminium enclosure, the module has tolerance against the harsh working conditions
of mobile machines. Further shock and vibration resistance can be attained by filling
the enclosure with epoxy. These characteristics make the sensor module easy to
install and well suited for retrofit-type integration into existing control systems of
mobile machines.

MEMS sensor Hybrid MCU

Figure 3.1: MEMS sensor module (without epoxy filling) with accelerometer and gyro
sensitive axes shown.

The 1-DOF experiments for the closed-loop position control were performed on a
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single-axis hydraulic boom shown in Figure 3.2. A test mass of 500 kg was used on
the cylinder side of the boom during the experiments. A lift cylinder with a size of
¢80/45-545 mm was controlled with a hydraulic closed-loop proportional valve that
had a nominal flow rate of 24 L/min at a nominal pressure of 3.5 MPa (35 bar) per
control notch. With a supply pressure of 21 MPa (210 bar), the cylinder produces a
maximum force of 100 kN. A PowerPC-based dSpace DS1103 system was used as a
real-time control interface to the servo valves and for feedback sampling at a rate of
500 Hz (T = 0.002 s), which was also the controller output update rate. To allow
comparison and verification of the developed MEMS sensor performance, a highly
accurate Heidenhain ROD 486 encoder outputting 5000 sine waves per revolution
was installed directly on the rotating joint pin to provide a position reference. With
each incremental pulse further sub-divided by four in the DS1103, the final encoder
position resolution was 0.00018 deg. Therefore, it can be concluded that compared
to the MEMS sensor, the Heidenhain encoder provides almost 200 times higher
resolution position feedback. Interface to the MEMS sensor module was through the
CAN-bus operating at 1 Mbit/s, which was also used to supply the power to the
module.

MEMS sensor module

CAN

Servovalve

Current amplifier

Figure 3.2: Single-axis test bench experimental setup.

The parameters of the experimental system in Figure 3.2 were experimentally identi-
fied as w,, = 28 rad/s and ¢,, = 0.05. The measured open-loop velocity gain K, was
21 deg/s. These measured values yield a theoretical value for the marginal stability
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limit of the proportional feedback gain at K, = 0.13 1/s. This so-called critical
proportional control gain value (see e.g. Dorf and Bishop [25]) was measured to be
K. = 0.11/s.

Now, consider supplying the required feedback of the boom position (inclination
angle) and its derivatives, namely angular velocity and angular acceleration from the
MEMS sensor mounted on the boom as illustrated in Figure 3.2. As the motion of
the 1-DOF test bench is restricted to a vertical plane and the boom joint is 1-DOF
rotary, the y and z axis outputs of the MEMS accelerometer attached to the boom
can be given as a function of the inclination angle 6:

a’ =~ |go|sin(0) (3.1)
|8o| cos(6)

S
%

when the accelerometer is stationary. Algebraic inclination through a 360-degree
range relative to gravity vertical can then be calculated by applying

0 = arctan(a?, a®), (3.2)

where arctan(-) is the four quadrant inverse tangent function. Note that (3.2) should
not be affected by sensitivity changes due to temperature: the y and z direction
scale factor non-linearities in the accelerometer output (2.27) should be the same.
Although this inclination estimate is valid only when gravity alone acts on the
accelerometer, as previously discussed in Section 1.1, mounting the accelerometer
close to the joint centre limits the effects of motion accelerations on the inclination
estimate. The estimate (3.2) and integrated angular velocity of the gyroscope can now
be considered noisy redundant measurements of the same boom inclination. Because
the bias in the gyroscope output (2.26) contains mostly low-frequency perturbations,
any standalone integration of the angular velocity without high-pass filtering will
be susceptible to drift. Additionally, because in this test setup the accelerometer
output (2.27) contains mostly high-frequency perturbations, any accelerometer-based
inclination estimate should be low-pass filtered. To fuse the accelerometer and
gyroscope measurements in real-time, the complementary filter (2.39) is applied in
discrete-form as

F) R e S
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where ¢t denotes time, 7§ is the sampling time, and b” is the estimated gyro bias. The
first input can be given as

z =0, (3.4)

and the second input as

To estimate the gyro bias values in real-time, kp =0.2 and k;=0.02 were chosen for
the proportional and integral gains. This means that (3.3) implements a Pl-type
complementary filter, in which the inclination estimate (3.2) from the accelerometer
is used only as a long-term reference.

The filter operation is illustrated in Figure 3.3. Note that by placing the sensor
module close to the joint rotation centre, the linear acceleration components are
minimised and the relation (3.2) may be used directly as the input to the low-pass
branch of the complementary filter. The small remaining linear acceleration effects
contribute to the initial reverse direction dip of the accelerometer branch in Figure 3.3.
However, the effect on the overall filter output is negligible. The average steady-state
error of the complementary filter output was found to lie typically within 40.05 deg.
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Figure 3.3: Complementary filter branch contributions (dotted lines) and the filter output
(solid line) versus true position (dashed line).

Recall that directly differentiated angular acceleration estimate (2.32) is plagued
by high-frequency perturbations. To improve its quality, two ideas underlie the
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methodology presented below. The first idea is related to exponential weighting of
measurements. The second is related to robust quantization and further suppression
of higher-frequency noise, which poses a challenge considering the dynamics of the
used hydraulic valve. The servovalve used in the experimental setup has a bandwidth
of 60 Hz. Thus, the valve spool will react to any feedback signal noise within this
bandwidth.

The differentiation of angular velocity is fundamentally of noise-amplifying nature.
As the delay properties of the acceleration signal are also critical, it is of interest
to use higher weights on recent measurements and lower weights on past ones. One
way to relate the weights and measurements is through

gk =Y pillp—i, (3.6)
i=0

where u; denotes the angular velocity measured at time k. If the weights p; are
exponential and given by

pi=71—-7),0<y<1, (3.7)

it is easy to show that the above weighting function can be rewritten in a recursive
manner as (see Roberts [86])

g = (L —7)gr—1 + v u(k), (3.8)

where gg = o is the initial angular velocity typically set to zero. Now the parameter
v acts as a forgetting factor and the recursion, called geometric moving average
(GMA), has weights decreasing as a geometric progression from the most recent point
back to the first. As the value of 7 decreases, the recursion becomes less sensitive
to changes in the input, i.e. its inertia increases. The above makes the GMA an
infinite impulse response filter, which is tuned for noise suppression at the cost of a
small delay. The recursion impulse response is shown in Figure 3.4 for the parameter
value of 0.75. It can be deduced that the filter delay is of class one sampling period.
Generally, this type of filter has a memory length of 1/(1 — ). For v = 0.75, the
four most recent samples contribute significantly to the filter output.

The hydraulic valve dead-zone is a non-linearity that is among the key factors limiting
the static and dynamic performance of a closed-loop control system. However, the
valve used in the experiments has no dead-zone, but rather a small spool underlap,
and as such, even the smallest non-zero values of the angular acceleration signal may
make the boom react. A straightforward approach to addressing the problem is to
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Figure 3.4: Impulse response of the GMA filter for v = 0.75.

create an artificial dead-zone by implementing a quantization of close-to-zero values
inside the controller. That is, all the GMA-filtered angular velocity values in range
of +£0.12 deg/s were set to zero in real-time. The range is application-dependent and
was chosen empirically by monitoring the GMA-filtered signal typical steady-state
variation. The result of this operation is shown in graph (b) of Figure 3.5.

Because robustness was desired, a median filter with a window length of seven
samples was used for extra smoothing of the final differentiated angular acceleration.
The output of the median filter

median{gx, ... ,gx_6} (3.9)

is the middle value after all the samples in the filtering window are sorted numerically.
Figure 3.5(d) illustrates the angular acceleration signal after applying the median
filter. The introduced non-linear filter effectively cancels small high-frequency zero-
centred variation in the angular acceleration feedback and makes the control loop
more stable.

The behaviour and performance of the control system was tested initially using
stepwise control inputs. A step input is a disturbance to the system that ideally
contains all possible excitation frequencies of equal portions according to Fourier
analysis theory. While such excitation is impossible in any real physical system, step
inputs are useful here for examining the stability and possible oscillatory behaviour
of the test bench. The steady-state accuracy of the closed-loop control system can
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Figure 3.5: Derivation of angular acceleration from GMA-filtered angular velocity.

also be determined along with its rise time (90% of final value). The step sizes were
determined to be in the range from 1 degree to 7 degrees.

The controller presented in Figure 1.3 was used for both proportional and state
feedback control. The main aim in the experiments was to shown an increase in
the system damping and control the boom oscillations with acceleration feedback,
which here acts in the role of active inertia dampening the oscillations; see (1.3)
and (1.4). Therefore, velocity feedback was omitted (K, = 0) and only partial state
feedback was implemented. When pure proportional position control was used, the
acceleration feedback gain K, was set to zero. The experiments were conducted
using both encoder and MEMS sensor feedback. In the case of encoder feedback, the
angular velocity was calculated from the encoder position reading with the difference
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operator (2.32). The same procedure illustrated in Figure 3.5 was then used for
generating the angular acceleration feedback.

Initial experiments on open-loop velocity performance were performed with a valve
command input shown in Figure 3.6(a). With no acceleration feedback, the boom
velocity exhibits considerable oscillation during the movement, as could be expected.
The experimental valve command input profile in Figure 3.6(a) approximates a typical
command input of a mobile machine operator in a working situation. That is to say,
it is desired to accelerate the hydraulic actuator quickly to the travelling velocity.
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Figure 3.6: Effect of acceleration feedback on boom velocity.
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The resulting notable velocity oscillation of the boom is shown in Figure 3.6(b). The
velocity response in Figure 3.6(d) was achieved by including acceleration feedback
to the valve control input, which can be observed in the command input shown in
Figure 3.6(c). The response was tuned for maximum damping of velocity oscillations
while keeping the acceleration feedback gain within stability limits. In this case, the
acceleration feedback gain was K, = 0.0008. As it can be seen from Figure 3.6(d),
the use of acceleration feedback yields a substantial reduction of velocity oscillation
especially during the deceleration phase of the movement.

The following figures present the results of closed-loop position control experiments,
in which the feedback source was changed between the encoder and the MEMS
module between experiments. For illustration purposes, the measured position values
in all the figures are taken from the high-accuracy incremental encoder. Figure 3.7
shows the results for two different size step inputs when the proportional controller
gain was K, = 0.05, which is half of the measured critical gain K.,. As can be seen,
the overall dynamic performance with the two different feedback sources is quite
similar. The 90% rise time is approximately 2.1 seconds for the 1-degree and 2.3
seconds for the 5-degree step.
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(a) 1 degree step; K, = 0.05, K, = 0. (b) 5 degree step; K, = 0.05, K, = 0.

Figure 3.7: P-control step responses using encoder feedback (dash-dot) and MEMS-
feedback (solid line).

In state feedback control, the angular acceleration feedback gain K, increases the
damping of the closed-loop system. This allows the use of higher values for the
proportional gain K, leading to more accurate and faster response time without
overshooting, as can be seen from Figure 3.8. For the state feedback experiments,
the proportional gain K, was raised to the value of K,,. A suitable value for K,
was found to be 0.00045. Values higher than this started causing instability in the
control-loop as the boom behaviour became too sensitive to random variations in
the filtered angular acceleration signal. The 90% rise times are approximately 1.5
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Figure 3.8: State feedback control step responses using encoder feedback (dash-dot) and
MEMS-feedback (solid line).

seconds for the 1-degree step and 1.6 seconds for the 5-degree case. This is an average
decrease of some 32% in the rise time, if compared with the case in Figure 3.7.

The steady-state position control errors of all test cases are summarised in Table 3.1.
The error values for each step size are average values of five measurements, from
which a further overall mean value is calculated. The steady-state error is defined as
the difference between the position set point value and true position from encoder.
As it is seen, for both feedback cases the state feedback control produces a smaller
error. Recalling that the encoder has a resolution of 0.00018 degrees and it operates
as a reference, the maximum errors in the table with the encoder feedback source
may be considered as an approximation of the error induced by the control loop.
These errors are £0.006 deg and £0.004 deg in the proportional (P-control) and
state feedback control cases, respectively.

As previously discussed in Section 1.3, the complementary filter alone is sufficient

for the inclination estimation of the boom in this experiment, as the placement of

Table 3.1: Steady-state positioning repeatability (+deg) for the indicated position step
sizes and the overall mean error per control case.

Step size ldeg 3deg bHdeg 7deg mean
P-control, MEMS 0.035 0.15 0.02 0.06 0.066
P-control, encoder 0.002 0.005 0.005 0.006 0.005

State fb. control, MEMS  0.05 0.01 0.03 0.06 0.038
State fb. control, encoder 0.002 0.002 0.003 0.004 0.003
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the MEMS sensor close to the joint centre keeps the transient linear accelerations
low, and the perturbations are mostly caused by vibration. Hence, one can deduce
that the measured MEMS steady-state positioning error, of class £0.06 deg in both
control cases, is almost solely due to the complementary filtering average steady-state
error of class £0.05 deg, which is affected by, for example, linearity and sensitivity
errors of the accelerometer.

To conclude, the implemented MEMS-based state feedback control of the boom
yielded an increase in damping and a corresponding improvement in positioning
performance; the rise time decreased 32%, and the steady-state positioning error
was on average 42% smaller compared to proportional position control. The state
feedback control positioning repeatability was on average about 0.04 deg with a
worst-case value of £0.06 deg. The results also showed that despite the MEMS
sensor’s inherent disadvantage in accuracy, linearity, noise characteristics, and an
almost 200-fold coarser angular resolution, the motion control results with the high-
accuracy encoders are improved only by approximately a factor of 10. This means
that the achievable motion control results are primarily limited only to the MEMS
sensor output linearity and noise specifications.

3.2 Multi-body motion sensing

In order to rigorously test and verify the proposed MEMS-based motion state
estimation model for multi-body systems, a mechanically simple vertical planar three-
link test bench was constructed. With a small-scale test bench, which behaves like
an ideal rigid multi-body assembly, the MEMS components can easily be subjected
to motions which are close to their saturation limits, and the performance of the
motion estimation model can be evaluated under varying conditions. Although
the MEMS components allow 2-DOF' inclination sensing based on the force of
gravity, the planar vertical case is of theoretical and practical interest as previously
discussed in Section 1.5. The experimental results published in the co-authored
publications Vihonen et al. [78]' and [79]? are summarised in the following.

The mechanically simple vertically mounted three-link planar arm is shown in
Figure 3.9. The first two joints are actuated with 70 W graphite brush DC-motors,

In [78], Equation (19) should read z; = Q*

Eq. (18)*

2In [79], Table II second column should read ~Joint 1 Joint 2 Joint 3
2.00 5.41 5.89

0.46 1.12 0.90
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which are controlled by two dedicated digital EPOS 24/5 motor controllers. Coupled
with planetary gear heads, each motor-gear assembly produces an output torque of
about 20 Nm, which is transmitted via toothed belts to the first two joints of the
arm. The third joint was moved freely.

Figure 3.9: Mechanical three-link planar arm comparable to a rigid multi-body assembly.
The MEMS sensor modules are located at 11‘P? =[00.14 0.03]* m, 21'pg =[00.10 0.03]" m,

and 3rpg =[00.13 0.03]T m. The link lengths are l; =I;=0.47 m. Body frames {B;} are
omitted for clarity.

Similarly to the experimental setup in Section 3.1, the dSpace DS1103 real-time
platform was used for the motor control and motion state estimation at a rate of
500 Hz. The reference sensor for the first joint was a SICK DGS66 hollow-shaft
encoder [87], outputting 10000 pulses per revolution. Similar Heidenhain ROD 486
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encoders used in the single-body experiments were installed on the second and third
joints. Thus, the final encoder position resolutions were 0.009 deg for the SICK
encoder and 0.00018 deg for the Heidenhain encoders.

In contrast to the single-body experiments of Section 3.1, the MEMS sensors on
the second and third links are now subject to significant acceleration components
during motion. To obtain smoothed low-delay estimates of the link rotations by
using complementary filtering, estimated linear accelerations are removed from the
accelerometer readings before filtering. That is to say, the complementary filter
(2.39) may be directly generalised in discrete form as

O 0 R ST

2

The first input is given by

z = "OF (3.11)
and the second input by
zo = arctan(‘a — 0, ‘af — 0h0). (3.12)

The motion compensation in (3.12) is required to prevent significant error accumula-
tion in the gyroscope bias estimate. In other words, to ensure proper operation of the
filter (3.10), it is necessary that the filter inputs represent redundant measurements
of the same rotation. As the motion is planar, the rotation matrices R; can be
efficiently updated by writing

1 0 0
Ri~Ri6;)=1] 0 cos(f;) —sin(d;) |. (3.13)
0 sin(d;)  cos(d;)

The algebraic representation of rotation is useful here because, though all the link
inclination estimates (3.2), (3.12), and (3.10) are computed in different ways, any
one of them may be written as

0, =6; +b+p. (3.14)
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Here, b contains mostly low-frequency perturbations, such as accelerometers bias
values; 1 contains mostly high-frequency perturbations, such as component thermal
noise; and #; is the true position of the ith link.

The three MEMS-based link inclination estimates using the standard method (3.2),
motion compensation (3.12), and complementary filtering (3.10) were compared
experimentally. The experiment consisted of a period of sinusoidal swaying motion
mainly generated by the first joint and of a period of random joint motion in the range
of £100 deg/s at most. To later demonstrate the difference between off-the-shelf and
calibrated MEMS components, a calibration procedure was also carried out, in which
the planar arm was used as a turn table to cover the inclination bias values that
could not be expressed as a pure rotation, i.e. by determining the scale factor matrix
and the bias values of the model (2.27). Calibration look-up tables for the MEMS
accelerometer runtime bias compensation were implemented using a 3-degree grid
with linear interpolation for in-between values. To identify experimental averages for
the gyroscope scale factors, the planar arm was also used as a rate table providing
an angular velocity reference from differentiated encoder readings. As a result, the
MEMS rate gyroscopes located at {P{}, { Py}, and {PJ} utilised 1.15%, 0.70%, and
0.85% x-axis calibration scale factors in (2.26), respectively.

Figure 3.10 illustrates the experimental results with reference link inclination angles
0; on the left-hand side, and the differences of the inclination estimates with respect
to the encoders on the right, which were calculated as

A

Table 3.2 provides a comparison of the results between the standard (3.2) and the
motion compensated (3.12) estimates in terms of the peak absolute error (PAE) and
the root-mean-square error (RMSE). As can be expected, the standard estimate
produces large errors, which increase link by link as the distances between the MEMS
accelerometer and rotation axles generating the motion become larger. Conversely,
the motion compensated generalisation (3.12) is mostly dominated by zero-centred
high-frequency perturbations, which are amplified in a similar cascade manner. The
difference with respect to the standard estimate is most clearly seen on the third
link, for which the motion compensated estimate (3.12) yields a 64% smaller RMSE
value.

A comparison of the complementary filtered inclination estimate (3.10) with and
without calibration is given in Table 3.3. As previously discussed, this approach is
in principle only susceptible to inclination-dependent accelerometer bias values and
motion-dependent scale factor non-linearities. The calibration effectively targets these
low-frequency components as shown. Composite input-output non-linearities, such as
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Figure 3.10: A comparison of the different link inclination sensing methods. Note the scales of the error graphs: the
standard estimate (3.2) as well as its motion compensated equivalent (3.12) use the y axis on the left and the two PIl-type
complementary filters (3.10) use the y axis on the right. The superscripts * and ** distinguish between the off-the-shelf
MEMS and the calibrated cases, respectively. See Table 3.2 and 3.3 for more detailed values.
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the total sensitivity and hysteresis rated for the gyroscope (2.26) and accelerometer
(2.27) by the MEMS manufacturer, play a role at high angular rates from +60 to
+100 deg/s. Nonetheless, the complementary filter (3.10) yields a further 5—15-fold
reduction in the peak and root-mean-square estimation errors compared to (3.12)
when calibrated components are used.

Table 3.2: Link position estimate errors using standard (3.2) and motion compensated
(3.12) inclination estimates.

Eq. (3.2) Eq. (3.12)
PAE (deg) RMSE (deg) PAE (deg) RMSE (deg)
Link 1 2.89 0.49 2.00 0.46
Link 2 13.61 2.19 7.23 1.47
Link 3 26.71 4.88 10.93 1.76

Table 3.3: Complementary filtered link position estimate errors using off-the-shelf (3.10)*
and calibrated (3.10)** MEMS components.

Eq. (3.10)* Eq. (3.10)*
PAE (deg) RMSE (deg) PAE (deg) RMSE (deg)
Link 1 0.89 0.29 0.29 0.06
Link 2 0.78 0.23 0.39 0.10
Link 3 0.78 0.25 0.69 0.18

Under the assumption that the links of the assembly behave as rigid bodies, estimates
of the joint positions are given by

(Ei - él - éifl, 1= 1, 2,3, (316)

where the base frame rotation around the x axis is simply included by using the
horizontal position as the reference, i.e. 6o =0 deg. Figure 3.11 illustrates the
resulting joint position errors A¢;, which were obtained from the encoder reference
joint positions ¢; as

Ad; = — di, i =1,2,3. (3.17)

By comparing the cases in Figures 3.10 and 3.11, it can be seen that common-
mode errors of the link inclinations are largely removed by the application of (3.16).
Tables 3.4 and 3.5 provide a summary of the joint sensing errors shown in Figure 3.11.
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Figure 3.11: Joint position errors derived from the link inclinations. In the complementary filter cases using off-the-

shelf (3.10)* and calibrated (3.10)** MEMS components, sensitivity residues of high rates from £60 to £100 deg/s and
inclination-dependent accelerometer bias values in the off-the-shelf case reach notable levels. See Table 3.4 and 3.5 for more

details.
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Here the improvement by using the motion compensated estimate (3.12) is again clear.
However, the complementary filtered inclinations based on (3.10) are in a league
of their own. In view of (3.14), at least three factors guarantee their 10-20-fold
superiority: i) high-frequency perturbations in the algebraic inclination (3.12) are
attenuated by the embedded low-pass filter; ii) the gyroscope bias in (2.26) is removed
by the complementary high-pass filter; and iii) any high-frequency perturbation in
the angular rate (2.31), such as vibration of the test bench, is attenuated by the
integrator in the filter architecture forward path (see Figure 2.7).

Table 3.4: Joint position estimate errors using standard (3.2) and motion compensated
(3.12) inclination estimates.

Eq. (3.2) Eq. (3.12)
PAE (deg) RMSE (deg) PAE (deg) RMSE (deg)
Joint 1 2.89 0.49 2.00 0.46
Joint 2 11.19 1.77 5.41 1.12
Joint 3 21.69 3.04 5.89 0.90

Table 3.5: Complementary filtered joint position estimate errors using off-the-shelf (3.10)*
and calibrated (3.10)** MEMS components.

Eq. (3.10)* Eq. (3.10)*
PAE (deg) RMSE (deg) PAE (deg) RMSE (deg)
Joint 1 0.89 0.29 0.29 0.06
Joint 2 0.55 0.20 0.32 0.09
Joint 3 0.87 0.27 0.65 0.14

The frequency response of the joint position estimate was also identified, as it is
an important characteristic regarding the applicability of the proposed estimation
approach to a closed-loop control system. Figure 3.12 illustrates the amplitude
and phase responses in sinusoidal 1-DOF motion for the complementary filtered
inclination estimate. Only the MEMS at { PY} was used for simplicity. The frequency
f was increased in a linear fashion from 0.1 to 3.3 Hz so that the mechanical arm

was inclined from the gravity vertical by approximately +2 deg; i.e., A= % and
p = —%. The motion of the first joint can be characterised by
0, = Asin(27ft) + 6y (3.18)
0, = A2rf cos(2m ft) (3.19)

0, = —A(27 f)?sin(27 ft). (3.20)
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While the quadratic nature of (3.20) and MEMS scale factor errors might explain
the build-up of marginal non-linearities at higher frequencies, the inclination gain is
close to unity with only a 2—3 sample delay at most. About 1 ms of the delay comes
from the MEMS electronics data acquisition cycle time at a 500 Hz sampling rate.
The response demonstrates that the complementary filtered estimates (3.10) of the
true rotation are stable and well described when associated with fast time-scales.

1.2-
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S
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Figure 3.12: Frequency response of the complementary filter (3.10) in sinusoidal motion
at 500 Hz sampling rate. The frequency of motion ranges from 0.1 to 3.3 Hz. The low delay
response above without unwanted distortion is an important property from the control
perspective.

Next, in order to experimentally verify the proposed angular acceleration direct
algebraic solution (2.24), the same experimental setup of Figure 3.9 was used with
three additional MEMS sensors installed on the links of the planar arm as shown in
Figure 3.13. As the motion is vertically planar, the extra accelerometers at {P?}
in the configuration of Figure 2.6 can be omitted. For ease of comparison, the
experiment consisted of similar sinusoidal and random motions as illustrated on the
left-hand side of Figure 3.10.

The angular acceleration needed for the linear acceleration estimate (2.33) was now
computed using two MEMS sensors per link. For briefness, the performance was
evaluated by only examining the resulting joint position estimate (3.16). Because
the standard inclination estimate (3.2) yields identical results, only the motion
compensated (3.12) and complementary filtered (3.10) inclination estimates are
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Figure 3.13: Three-link planar arm with two MEMS sensors per link. The MEMS sensor
positions are 'rpg = [0 0.14 0.03]" m, 'rpy = [0 0.44 0.03]" m, *rpg = [0 0.10 0.03]" m,
“rp; =0 0.45 0.03]" m, rpg = [0 0.13 0.03]" m, and ®rpy; =[0 0.45 0.03]" m. The link
lengths are I} =13 =0.47 m. Body frames {B;} are omitted for clarity.

examined. For visual reference, Figure 3.14 compares the performance to the
configuration of Figure 3.9 with Table 3.6 summarising the key metrics. As illustrated
in Figure 3.14, the reduction of the motion compensated estimate error is notable. If
compared with the results in Table 3.4, the alternative direct angular acceleration
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sensing reduces the peak and root-mean-square errors of the motion compensated
estimate (3.12) on average by a factor of 2.5. The complementary filter performs
almost identically in comparison with the values in Table 3.5 as expected, as the filter
is in principle only susceptible to inclination-dependant accelerometer bias values
and motion-dependent scale factor non-linearities.

Next, the bias-corrected angular velocity estimate (2.31) was compared to an optimal
zero-bias differentiation designed for real-time control applications (see Harrison and
Stoten [37]). An optimal estimate of the first-order derivative of joint i position
estimate (3.16) with respect to time ¢ is given by

MEMS JOINT POSITION ERROR

3r f .
3.12

(3.12) (3.12)* 10 .10y

: o0
= ‘ " g
\: ° i} Ty 0 t
g <
i <

Aoy (deg)
Agy (deg)

Ags (deg)

Time(s)

Figure 3.14: A comparison of joint position sensing configurations. Note that the motion
compensated estimates (3.12) use the y axis on the left, and the two PI-type complementary
filters (3.10) use the y axis on the right. The superscripts T and * distinguish between the
MEMS configurations illustrated in Figure 3.9 and Figure 3.13, respectively.
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Table 3.6: Joint sensing errors using two MEMS per link. Estimation errors of the motion
compensated (3.12) and complementary filtered position estimates (3.10) are given.

Eq. (3.12) Eq. (3.10)
PAE (deg) RMSE (deg) PAE (deg) RMSE (deg)
Joint 1 1.21 0.30 0.29 0.06
Joint 2 1.40 0.32 0.39 0.10
Joint 3 2.16 0.40 0.74 0.16
. [y -
oi(t) ~ T Z A(k) ¢i(t — kTy), (3.21)
S k=0

where the weights are A=[531 —1 —3 —5|/35. Similarly, for a comparison with the
directly differentiated angular acceleration (2.32) and the algebraic estimate (2.35),
an optimal estimate of the joint i angular acceleration ¢; is obtained by applying a
second-order difference operation to the joint position given by

. 1n1 1n1
di~ 3 Bk )it — kT TQZC )it — kT)), (3.22)
Sk‘O s

where the coefficients are: B=[531 —1 —3 —5]/35and C=[5 —1 —4 —4 —15]/28.

The complementary filtered high-bandwidth positions based on (3.10) were differen-
tiated in the above optimum manner for a comparison. For a visual reference, a set
of three estimates of the third joint angular acceleration is shown in Figure 3.15. A
more detailed comparison is made in Tables 3.7 and 3.8. Because errors arise with
the encoder references at high sampling rates from noise and quantization effects of
derivatives, making accurate reference joint angular accelerations unobtainable, the
tabulated values are calculated at standstill. The reported lags are indicative, but if
the tabulated 1 ms delay of the MEMS electronics cycle time is excluded, the directly
sensed MEMS motion derivatives (2.31) and (2.24) are lag-free. If a further reference
is made with the optimum derivatives in Table 3.8, the results of the direct angular
acceleration sensing (2.24) are clearly the best, and in excellent agreement with the
primary theoretical finding (2.37), particularly if recalling the limited dimensions of
the planar arm.
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Figure 3.15: A plot illustrating double-differentiated encoder position, differentiated MEMS rate gyro (2.32), and MEMS
accelerometer-based direct sensing (2.24) of angular acceleration. Whereas the encoder benchmark has a low noise density
only at a perfect standstill, resolution of the proposed direct angular acceleration sensing (2.24) remains fine at low rates
throughout the experiment.
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Table 3.7: Standstill joint angular velocity errors of bias-corrected gyro (2.31) and optimal
differential of position (3.21).

RMSE (deg/s)

Eq. (2.31) Eq. (3.21)
Joint 1 0.068 0.062
Joint 2 0.081 0.072
Joint 3 0.078 0.073
Lag (ms) 1 5-6

Table 3.8: Standstill joint angular acceleration errors of directly differentiated gyro (2.32),
optimally differentiated position estimate (3.16) & (3.22), optimally differentiated gyro
(2.31) & (3.22), and directly sensed angular acceleration (2.24).

RMSE (deg/s?)
Eq. (2.32) Egs. (3.16) & (3.22) Egs. (2.31) & (3.22) Eq. (2.24)

Joint 1 31.38 13.57 8.64 6.78
Joint 2 35.74 15.78 10.25 8.74
Joint 3 33.50 16.05 9.86 8.38
Lag (ms) 2-3 5-6 5-6 1

Summary of multi-body motion sensing

Based on the experimental results, one may conclude that the proposed observation
model captures the full motion state of the planar arm, making the geometry-aided
link inclination sensing well defined during accelerative motions. However, as shown
by the errors of the motion compensated estimate (3.12) in Figures 3.10 and 3.11,
driving the motion disturbance effects close to a zero-mean random process amplifies
high-frequency perturbations. In this respect, because of the complementary principle,
the PI-type complementary filter (3.10) is very successful in high-bandwidth joint
position reconstruction while keeping assumptions to a minimum. When considering
the target application field of heavy-duty hydraulic manipulators having natural
frequencies below 2 Hz, the complementary filter exceeded the required dynamics
by producing close to ideal inclination responses up to some 3.3 Hz as shown in
Figure 3.12. Although the MEMS may not be able to achieve the accuracy of encoder-
type angular sensors, with orders of magnitude higher resolutions, the joint angle
sensing with less than £1 deg worst-case position error in real-time is well comparable
with previously published works, including the 10—20-fold improvements achieved
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with the complementary filter, as detailed in Tables 3.2—-3.5. Even though the
choice between a gyro-aided 1-DOF and 3-DOF complementary filter is application-
dependent, the typical similarity of a 3-DOF architecture (see Mahony et al. [61])
to that of the complementary filter (3.10) makes the theoretical result (2.34) of
gravity-referenced inclination sensing broadly applicable.

Motivated by the fact that a low-cost angular acceleration sensor with good resolution
for low angular rates is not available at present, the multi-sensor configuration of
Figure 2.6 was applied to the direct sensing of the joint angular accelerations. In
the 1-DOF experimental cases, only one additional accelerometer per link was
required, if compared with the configuration Figure 2.5. Direct comparison to
angular acceleration derived from an encoder position was found infeasible due to
the large amount of superimposed noise and quantization effects in the reference
acceleration. However, the benefit of the directly sensed angular acceleration estimate
is clearly seen in the motion compensated inclination estimate (3.12), in which the
errors were reduced by a factor of 2.5. In other words, this means that the angular
acceleration estimated with the multi-sensor configuration is closer to the actual
link acceleration than a differentiated angular velocity reading. This improvement is
not as pronounced in the resulting complementary filtered joint position estimate,
because the low-pass filter embedded in the complementary filter is very successful in
removing the high-frequency perturbations from the motion compensated inclination
estimate (3.12). As we shall see next, a high-quality angular acceleration estimate
is however of critical importance for a closed-loop motion control system, in which
acceleration feedback is required.
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3.3 Multi-body motion control

As shown in the previous sections, the MEMS-based motion state estimation performs
well with multiple rigid bodies as well as in the closed-loop control of a single-
body system. What remains is to experimentally verify that the proposed motion
state estimation can be used to supply feedback of joint positions, velocities, and
accelerations in a multi-body manipulator motion control system. The following
two sections summarise the experimental results for two motion control application
examples, which were originally published in Honkakorpi et al. [76, 77].

3.3.1 Suspended load anti-sway control system

In this experiment a suspended load anti-sway control system is realised using the
MEMS sensors for the manipulator motion state, suspended load inclination angle,
and angular velocity estimation. The anti-sway control concept uses a semi-active
approach, in which the desired load velocity is set by the manipulator operator
via e.g. joystick input, and the underlying load oscillation damping control system
creates the required manipulator end-effector velocity.

The motion control experiments were performed on a HIAB 031 hydraulic mani-
pulator, which was installed on a rigid base. Figure 3.16 illustrates the MEMS
configuration attached on the links of the manipulator as well as on the suspended
load. The swinging load consisted of a rigid 13 kg arm, 1.7 m in length with a 50
kg load mass mounted on the tip. The fluid flow to the lift and tilt cylinders, both
¢80/45-545 mm in size, were controlled by directly operated NG10-size servo solenoid
valves. The nominal flow rates of the valves controlling the lift and tilt cylinders
were 100 1/min (Ap=3.5 MPa per control notch). The bandwidth of the valves was
100 Hz for a £5% control input. The hydraulic power supply was set to 19.0 MPa
supply pressure. To enable comparison with previous experiments, the same dSpace
DS1103 real-time platform was used for controlling the valves. The Heidenhain
ROD 486 encoders were used as the joint reference sensors. The reference angular
velocities of the manipulator joints and of the suspended load were estimated with
the optimal difference operator (3.21). Note that if the load is suspended from a
cable and swinging in 3D, the sensing system can be modified in a manner described
by Ouyang et al. [88] to sense the two dimensions of the cable swing with a more
complex mechanical assembly. As given in (2.34), the MEMS-based inclination
sensing is suitable for the estimation of two-dimensional cable swinging motion.
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Figure 3.16: MEMS-sensor configuration on the hydraulic manipulator. The MEMS sen-
sor positions are 'r pg = [0 0.21 0.23]" m, *rpg=[00.24 0.22]"m, and *r pg =[0 0.19 0.045] " m.
The link lengths are I3 = 1.60 m and ly= 1.65 m. Body frames {B;} are omitted for clarity.

Now, consider the kinematics representation of the hydraulic manipulator in Fig-
ure 3.17. The positions of the two actuated revolute joints are denoted by ¢; and g¢s.
A third prismatic joint is available, but it is unused, which sets the manipulator into
non-redundant operation mode. The fourth revolute joint with the suspended load is
unactuated. Examining the physical dimensions of the manipulator structure yields
a fixed relationship between the manipulator angles 6;,7 = 1,2 and the actuated joint
angles ¢; as 0; = q; + B;, B = [ —56.43° —155.25° ] (see Beiner and Mattila [89]).
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Figure 3.17: HIAB 031 manipulator kinematics.

The forward kinematics relating the manipulator joint variables q = [¢; ¢2]* to the
end effector position x = [z y|T are obtained as

x = Lycos(qr + B1) + Lacos(q1 + g2+ 51 + Ba) — € (3.23)
y = Lysin(q + 51) + Losin(qr + g2 + 51 + f2) + ¢, (3.24)

where L1 = 1.6 m, Ly = 1.82 m, ¢ = 0.96 m, and e = 0.23 m. Expressed in a more
compact form, the forward kinematics simplify to

x = h(q). (3.25)

The widely known differential kinematics equation relating the manipulator joint
velocities  to the resulting end effector linear velocities X is
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x = J(q)q, (3.26)
where the Jacobian matrix is
oh(q)
J(q) = ———=. 3.27
(@ =" (3:27)

Given a desired end-effector velocity x"¢f, the required joint velocities "¢/ are
conversely given by

q" = Jaq)x", (3.28)

as the manipulator in question is non-redundant and the Jacobian matrix J is square
and directly invertible. To translate the required joint space motion into movement
of the hydraulic cylinders in actuator space, the following transformation from joint
angle to hydraulic cylinder position is applied:

x. = C(q) (3.29)
by defining
Clq) = [Cg 002 ] , (3.30)

where ¢; is a function of the joint angles

ci(q) = \/L% + L — 2Li1 Liz cos(q:) (3.31)

and L11 =1.0 m, L12 = 0.38 m, L21 = 1.13 m and L22 = 0.31 m.

Applying well-known rigid body motion dynamics, a non-linear description of the
suspended load dynamics may be formulated. From the control perspective, it is
however desirable to form a linearised model of the system under control. The state
variable description of the suspended load system is defined as

XsL = [$1 To T3 IE4]T = [fﬂcm Tem @ Q‘s]Ta (3-32)

where ., denotes the horizontal position of the centre of mass, i, denotes its
velocity, ¢ denotes the suspended load angle between gravity vertical, and ¢ its
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angular velocity. By using the small-angle approximation sin ¢ &~ ¢ and cos¢ ~ 1,
and restricting the motion of the manipulator end-effector to the horizontal direction,
the motion state of the suspended load can be represented in state space form as
(see Honkakorpi et al. [76] for details)

j:l = X9
- L? Lepb L?
m'2ZlH-Lcme:a:U—%@"3— 7 T4~ m;} =
x x x (3.33)
T3 = X4
. mPchm b mchm
Ty = — — X4 —
4 [x 3 Ix 4 ]—x )

where L., denotes the distance between the load suspension point and its centre
of mass, , mp is the total mass of the suspended load assemblyb is a coefficient
representing joint friction, Iy is the mass moment of inertia of the load respective to
point x, and the system input u is the horizontal acceleration of the manipulator
end-effector #. In a more compact matrix form, the system dynamics are

}'(SL(t> = AXSL(t) + BuSL(t), (334)
where
01 0 0
00 _mpgLZ,  Lepmb
A: Ix Ix .
00 0 1 (3.35)
m Lem b
00 —megles
B=[0 1-m£km —M]T (3.36)
- Tx Tx :

and uSL:u:a'é.

The objective of the combined control system is to drive the suspended load mass
to the position desired by the human operator without excessive oscillations. The
underlying Cartesian velocity controller drives the manipulator end-effector at a
required reference velocity, which in turn is generated by the load anti-sway controller
based on the human operator inputs.

The structure of the Cartesian velocity controller is presented in Figure 3.18. The
controller reference input is the desired Cartesian velocity x"¢/, which is multiplied
with the Jacobian inverse J~! of the measured joint positions q. The result is the
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desired joint velocity vector ¢"¢/. The desired joint velocities are integrated to give
desired joint positions and transformed through C(q) to desired cylinder positions
x!¢/ giving the input to the cylinder position controller detailed below.

qref qref
et VLN / > C(q)—(x7f

(a — Ja) —T N

Figure 3.18: Manipulator end-effector Cartesian velocity controller.

The structure of the cylinder position controller is shown in Figure 3.19. The feed-
forward branch contains an experimentally identified look-up table based mapping
F from desired cylinder velocity x ¢/ to required valve control output u,. The table
values are obtained as averages from various manipulator postures, which induce
variable loading levels on the cylinders. The use of the feedforward branch improves
the dynamic response of the position controller and lessens the effects of plant
non-linearities. The closed-loop feedback section uses a filtered proportional position
control to correct for any remaining cylinder position error. The time constant 7
was chosen as 7 = 2/w, (see Linjama [90]), where w, ~ 28.3 rad/s is the lowest
natural frequency of the manipulator around the operating point of the experiments.
A suitably chosen time constant prevents undesirable high-frequency excitations of
the manipulator without excessively sacrificing the control bandwidth.
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Figure 3.19: Cylinder position controller.

With the suspended load dynamics represented in state-space form, a state feedback
controller can now be designed, which can be used to drive the system to a desired
state. The state feedback controller gains can be derived using direct pole placement,
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from position control settling time requirements or by using common criteria (e.g.
ITAE) based on various error measurements between the desired and plant system
model response. As the objective of the anti-sway controller is to stabilise the load
while simultaneously driving the centre of mass to a desired position, the state
feedback controller gain solution given by the linear quadratic regulator (LQR) is a
natural choice in this situation. By introducing a position reference input for the
centre of mass x.,,, the LQR controller aims to quadratically minimise the deviation
of the load position from the reference, while driving the other states @, ¢ & to
zero. The use of the weighting matrices R for the control input and @ for the state
deviations keeps the expended control effort limited while allowing for the tuning of
the closed-loop control stiffness. Solving the associated Riccati equation results in a
full state feedback tracking controller with a control law in the typical form:

u=—Kxg, +r=—Kxgy + Na" (3.37)
where 27¢/ is the reference position for the load centre of mass and the scalar N is
chosen such that Kx g7, equals r in steady state. To combine the anti-sway controller
to the Cartesian velocity controller, the acceleration output from (3.37) is integrated
over time to give the desired Cartesian velocity as illustrated in Figure 3.20. The
resulting reference velocity is then given as the reference input for the velocity
controller in Figure 3.18.

Xref ~ + )‘(ref
Xzs{ / cm> N L’@L}/ >

XsL

Figure 3.20: Suspended load Cartesian position controller with anti-sway control.

The Cartesian motion control experiments consisted of horizontal motion between
two coordinate points. To enable repeatable experiments, the user-supplied Cartesian
reference velocities were generated using a second-order polynomial. Figure 3.21
illustrates the resulting uncontrolled swinging of the load when the Cartesian velocity
reference for the manipulator end-effector is directly the user input, i.e. " = x"¢/,
With no sway compensation active, the manipulator end-effector follows the user
input reference, and the uncontrolled position of ., (dashed line) overshoots the
reference position 27¢/ (gray line) by 60%, followed by a slowly decaying oscillation
back to equilibrium.
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The positioning performance using the anti-sway controller with encoder feedback
is represented by the solid black line in Figure 3.21 and correspondingly by the
dash-dot line when using MEMS feedback. The two feedback sources yield almost
identical control performance. The positioning response has an overshoot of only
6% and a settling time of approximately 3 seconds, which clearly demonstrates the
effectiveness of the proposed control concept.

3,

Tem (m)

2 24 48 _ 72 96 12

Time ()
Figure 3.21: Suspended load centre of mass position without control (dashed line) and
with load sway compensation using encoder and MEMS feedback.

As is evident from Figure 3.21, the price paid in oscillation damping is the increased
settling time. To enable a fair comparison of the anti-sway controller performance,
the Cartesian movement was also executed without load sway compensation with
a transition time of 3 seconds. The resulting motion of the load centre of mass is
illustrated in Figure 3.22 with the previously shown responses of the state feedback
controller included for comparison. Even with a slower transition time, the uncon-
trolled position of the suspended load overshoots by 12% and exhibits oscillatory
behaviour.

In general, state feedback control is a very effective approach for stabilising a control
system and realising a rapid dynamic response with increased damping, provided
that the linearised system model is accurate and the state feedbacks are close to ideal.
By giving higher weights in the matrix () for the states, the closed-loop response can
be shaped as desired. In practice, however, the gains of the LQR controller cannot
be set as high as would be desirable due to various error sources present in the
actual system as well as in the state feedback signals. For the experiments presented
above, the diagonal elements of () were set to );; =[5 6 0.1 0.1}, which yielded the
feedback gain vector K = [7.07 11.05 —33.2 —9.4|. Higher values in K quickly
resulted in an unstable system despite being well within numerical stability limits.
The major contributing sources limiting the anti-sway controller performance are
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Figure 3.22: Uncontrolled response with 3-second ramp versus controlled response.

the non-linear friction effects in the joint of the suspended load, the non-ideal state
feedback signals, and the errors in the manipulator end-effector Cartesian velocity
controller.

To summarise, with the MEMS network providing full motion state feedback from
the manipulator joints as well as the suspended load sway angle and angular velocity,
the suspended load could be positioned with a 6% overshoot in position compared
with a 60% overshoot and significant oscillation when no anti-sway control was used.
The control concept was also shown to yield a better positioning response of the
suspended load, even if the load is simply moved at a slower speed. Similar to
the 1-DOF experiments, here the results indicate again that despite the significant
disadvantage of low-cost MEMS sensors in accuracy, linearity, the positioning results
obtained using the high-accuracy encoders are almost identical.
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3.3.2 Hydraulic manipulator state feedback control

As previously discussed, state feedback control is an effective approach for increasing
closed-loop system damping, which leads to a faster, more accurate dynamic response.
By using state feedback in the control of the hydraulic actuators of an articulated
crane, an improvement in the closed-loop positioning performance of the manipulator
end-effector can be achieved. In the previous application, filtered proportional
position control was used for controlling actuators of the hydraulic crane. This
section presents closed-loop control of the hydraulic crane, for which state feedback
control is used instead. The increased closed-loop positioning performance is shown
by comparing state feedback control with standard (non-filtered) proportional control
using Cartesian path tracking experiments. Additionally, a comparison of the control
performance between encoder and MEMS-based motion state feedback is given.

As shown by the experiments of Section 3.2, the direct angular acceleration sensing
using the multi-MEMS configuration of Figure 2.6 yields an improved estimate of the
angular acceleration in comparison with the differentiated gyro rate (2.32). Thus, the
estimate calculated using (2.24) is used to supply the angular acceleration feedback
to the state feedback controller. Figure 3.23 illustrates the HIAB 031 manipulator
installed on a rigid base with a load mass of 475 kg attached to the end of the
manipulator as well as the MEMS sensor configuration. Because the motion is planar,
the additional accelerometers at {P?} (see Figure 2.6) can be omitted. A similar
test setup to Section 3.3.1 concerning the hydraulic valves, cylinder sizes, reference
sensors, and real-time control interface was used.

The state feedback controller shown in Figure 1.3 was applied individually to both
joints of the manipulator. All coupling effects between the joints were treated as
external disturbances to the joint controllers and were subsequently left out of the
scope of the experimental study. Although a state-space-based representation similar
to the previous experiment might be adopted here for individual actuator control,
considering the required extra modelling and measurements of e.g. cylinder chamber
pressures, the controller design based on the linear representation of Figure 1.3 is
equally applicable. Table 3.9 gives the system parameters for the transfer func-
tion (1.1), which were experimentally identified for both joints in the operating
region during the motion control experiments. The natural frequency was identified

Table 3.9: HIAB 031 manipulator system parameters.

wy, (rad/s) 0, () Kyq (rad/s)

Joint 1 18 0.05 1.3
Joint 2 18 0.05 1.9
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Figure 3.23: MEMS sensor configuration on the hydraulic manipulator. The MEMS
sensor positions are 1rP? =1[00.21 0.23]* m, 1rp% =[01.33 0.16]T m, 1rpg =[00.24 0.22]T m,
and 1I'P; =10 1.32 0.145]" m. The link lengths are /; = 1.6 m and Iy = 1.65 m. The mass
is m = 475 m. Body frames {B;} are omitted for clarity.

by observing the period of oscillation when the joints were controlled in open-loop
and brought to a sudden halt. The natural damping ratio was identified from the
decay rate of the oscillation.

As the rated frequency response of the MEMS components extends up to some 50 Hz,
several higher-frequency phenomena such as structural vibrations and pressure
ripple in the fluid propagating from the hydraulic power unit are present in the
accelerometer outputs. Considering the relatively low frequencies of motion of the
hydraulic manipulator under study, these high-frequency effects can be safely filtered
from the angular acceleration feedback signals without causing control loop instability.
For this task the moving average filter with exponentially decaying weights (3.8)
was used, for which the value v = 0.04 was experimentally identified to yield a
suitable compromise between disturbance attenuation and low phase lag. To enable
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comparison, the same filter was also applied to the angular acceleration estimated
from encoder position with the optimal derivative (3.22).

Figure 3.24 illustrates the resulting acceleration feedback signals when using encoders
and MEMS sensors. As can be seen, due to the high sampling rate in relation to
the slow angular speeds of the heavy-duty hydraulic manipulator joints, the angular
acceleration estimated from the encoder position contains significant noise- and
impulse-type perturbations despite the moving average filtering. Additionally, an
artificial dead-zone was introduced to the MEMS acceleration signal as the used
hydraulic valve has a high bandwidth up to 100 Hz for a £5% control input, and thus
the noise floor of the acceleration signal is translated into valve spool movement. The
used angular acceleration dead-zone was set to 4-0.2 rad/s?, which was also applied
to the angular acceleration estimated from encoder position. Recall that these two
techniques, the simple geometric moving average noise suppression filtering and the
introduction of an artificial dead zone, were found robust in the initial experiments
of Section 3.1.

Time (s)

Figure 3.24: Estimated joint angular acceleration & during arbitrary motion using encoder
feedback (grey line) and MEMS feedback (black line).

As the purpose of the experiments was to demonstrate the usability of low-cost MEMS
sensors in hydraulic manipulator motion control, specific controller performance
criteria were not defined. Thus, the state controller gains K, K,, and K, were tuned
iteratively by first finding the position gain value K, for which oscillation begins.
Then the gain K, was increased until the oscillation was removed. After this, the
gain K, could be increased again until the stability limit was reached. However, as
shown in (1.3), the use of velocity feedback gain decreases the system damping, and
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as the aim is to increase the system damping and control the motion oscillations,
the use K, was omitted. The resulting controller gains are given in Table 3.10.
Note that with MEMS-based acceleration feedback, the final value of the feedback
gain K, yems is more than doubled compared to the encoder feedback gain K, epe.
Despite applying the optimal difference operator (3.22) and the moving average filter
with exponentially decreasing weights (3.8), the resulting encoder-based angular
acceleration still contains large disturbances, as indicated by Figure 3.24. The
disturbances limit the maximum stable value of K,epe. In view of (1.3), the values
in Table 3.10 produce new theoretical values for the natural damping ratios with
MEMS feedback as 6y, mems = 0.64 and 0y, mems = 0.39 for the first and second joint
closed-loop transfer function, respectively. With encoder feedback the corresponding
damping ratios were 0, ene = 0.34 and 0y, ene ~ 0.24.

Table 3.10: State feedback controller gains.

Kp K’U Kaenc Kamems

Joint1 15 0.0 0.025 0.05
Joint 2 10 0.0 0.011 0.02

To be able to determine the effectiveness of state feedback control, a proportional
position controller was also implemented, for which the structure is identical to that
of Figure 1.3 with the gains K, and K, set to zero. The maximum stable gain K,
for the proportional control was identified as K, = 5.75, which was used for both
joint controllers and both feedback cases.

The position P, , of the manipulator corresponding to given joint angles ¢; and ¢
can be obtained through the familiar forward kinematics as previously discussed in
Section 3.3.1. Figure 3.25 depicts the manipulator workspace allowed by ¢; and ¢,
along with the Cartesian path used for the closed-loop motion control experiments.
The required manipulator joint angles for the point P, travelling along the
illustrated path are determined using inverse kinematics in a similar fashion to
Section 3.3.1.

The path of the desired point P, ,,) during each line segment along the rectangular
Cartesian path follows the fifth-order polynomial:

za(t) = 18+ rit +rit? 4 it it 4 it (3.38)
ya(t) = rf +rit +r3t* +r§t’ + rit’ + it (3.39)

which is a rest-to-rest type path (see e.g. Jazar [80]). That is to say, there is no
acceleration at the rest points along the path. The polynomial coefficients r{ and
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Figure 3.25: HIAB 031 manipulator theoretical workspace (dotted line), available
workspace with mass m attached (solid line), and driven Cartesian motion path (dashed
line).

r? were calculated to yield a path transition time of t; = 3.25 s between each path
segment. Figure 3.26 illustrates the resulting Cartesian velocities of the driven
path when using proportional (P) control and state feedback control along with the
desired velocity profile of the trajectory. The effect of the acceleration feedback is
especially evident in the last segment of the path, during which the considerable
velocity oscillation is effectively dampened. The path tracking accuracy of the control
schemes can be evaluated using the distance

e = /(w4 — )2+ (ya — y)? (3.40)

as the tracking error measurement, where x, y is the manipulator position calculated
from the encoder joint position readings. The resulting dynamic path following
errors are shown in Figure 3.27. Note that despite the nearly 200-fold advantage of
the encoders in position resolution, the tracking performance using MEMS position
feedback is practically identical. Similarly to state feedback control, the difference in
tracking performance between the high-accuracy encoder and the low-cost MEMS
approach is very small, with the MEMS feedback yielding occasionally even smaller
eITors.

The effectiveness of state feedback control is evident in the Cartesian path tracking
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Figure 3.26: Desired Cartesian path  and y velocity (dotted line) with estimated path
velocities using P-control (left column) and state feedback control (right column). The
feedback source was encoder (grey line) or MEMS (black line).
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Figure 3.27: P-control Cartesian path tracking error e. pc and state feedback control
tracking error e.gpc using encoder feedback (grey line) and MEMS feedback (black line).

error, which was reduced up to 70% with state feedback control. As indicated by the
values in Table 3.10, state feedback allows a considerable increase to the position gain
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K, if compared with proportional position control. This enables a faster dynamic
response and a better positioning accuracy. With MEMS feedback, the damping
ratio of the hydraulic system was improved by a factor of 7—12. Due to the inferior
quality of the encoder motion state feedback leading to smaller usable values of K,
the damping ratio could only be improved by a factor of 5—7 when using encoder
feedback. As a key result, the tracking accuracy of manipulator position control
with the low-cost MEMS motion state estimation approach gives closely comparable
results to those of using expensive high-accuracy encoders.



Chapter 4

Discussion

The exclusive original experimental results have shown conclusively that despite the
disadvantages of low-cost MEMS sensors in resolution, accuracy, and linearity, they
provide a feasible solution to the full motion state sensing of multi-link hydraulic
manipulators, and most notably, that high-cost rotary encoders with orders of
magnitude higher angular resolutions provide only a marginal improvement in closed-
loop control performance. In particular, the ability of MEMS inertial sensors to
provide low-noise and low-delay feedback of angular velocity and acceleration, which is
essential for high-performance manipulator motion control, cannot be easily matched
with traditional encoder-type sensors. It should restated though, that due to the noise
characteristics and motion induced artefacts of raw untreated MEMS inertial sensor
readings, sensor fusion and kinematic modelling are a prerequisite for using MEMS
inertial sensors to supply smoothed, low-delay, and low-noise motion state feedback
for a serial-link manipulator control system. However, the required manipulator-
specific kinematic parameters consist merely of link lengths and the positions of the
MEMS sensors with respect to the joint centres, making the solution easily applicable
to various manipulator types. This also means that the motion state estimation
is not limited to hydraulic manipulators, but is equally applicable to manipulators
with electric or pneumatic actuators, for example. Moreover, because the motion
state estimation does not rely on dynamic modelling, as would be the case with state
observer-type approaches, the solution is invariant to system parameter variation
and changes in the operating point.

The performance characterisation of the MEMS-based motion state estimation model
in a three-link test bench showed sensing errors for all three joints positions well within
41 degree with an RMS value of 0.16 degrees when the components were subjected to
dynamic motions close to their saturation limits. Although a component-dependent
value, the results indicate a high degree of correspondence between the motion state
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estimation model and the kinematics of a multi-link manipulator system, and that
the complementary filter is very successful in combining the redundant noisy inertial
measurements. The results can be seen as a notable improvement to existing works
on MEMS-based motion sensing, of which for example Brigante et al. [52], Wang et al.
[69], Ghassemi et al. [71], and El-Gohary and McNames [21] report peak joint sensing
errors from 2.5 to 10 degrees. Conversely, RMS error values ranging from 1 to 5.5
degrees are reported by Quigley et al. [20], Lee et al. [53], Roan et al. [66], Dejnabadi
et al. [68], and Petruska and Meek [57]. The improved results can be largely explained
by the kinematic modelling underlying the motion compensation of the accelerometer
readings — a process which effectively drives the motion disturbance effects close
to a zero-mean random process. Although the motion compensated accelerometer
readings contain an increased amount of high-frequency perturbations as a result,
together with the gyroscope angular velocity measurements they represent redundant
noisy measurements of the same rotation. The complementary filter is then able
to successfully reconstruct the joint position, while making no assumptions about
the statistics or linearity of its input signals. Conversely, this means that without
kinematic modelling the accelerometer-based inclination references would become
corrupted by motion, and if allowed to enter the complementary filter, would nullify
the principle of complementary readings of the same rotation. In this case the
filter output (position) would give highly erroneous readings and exhibit drift. The
feedback type complementary filter structure adopted in this thesis ensures that
the integrated gyroscope angular velocity does not drift unbounded, given that the
accelerometer inclination reference provides a redundant measurement of the same
rotation. Thus, if only accelerometers are used as a complementary sensor for the
gyroscope, the only limitation is that the joint axis of rotation must not become
parallel to gravity.

As case examples of applicability for control systems, the MEMS-based full motion
state estimation, which contains the first- and second-order time derivatives of
motion, was applied to the state feedback control of a hydraulic single-axis boom
and a three-link manipulator, and to realising a suspended load anti-sway control
system. The preliminary single-axis experiments indicated that the MEMS-based
state feedback control performs in a stable manner and yields an increase in control
performance, which is mainly limited only by the MEMS sensor output linearity and
noise specifications. The state feedback control results on the three-link manipulator
showed only a marginal difference in positioning accuracy between the low-cost
MEMS-sensors and the high-cost, high-accuracy rotary encoders. Similar to the
initial single-axis experiments, clear improvement in control performance was shown,
when acceleration feedback was used. This suggests, that the proposed direct angular
acceleration sensing is a feasible solution for control systems requiring acceleration
feedback, and that it effectively avoids the problems of e.g. noise amplification and
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quantization, which Han et al. [29] and Sirouspour and Salcudean [32], among others,
report as grounds for avoiding acceleration feedback altogether. With the anti-
sway control system, the results showed substantial reduction of uncontrolled load
oscillation with a simultaneous capability for load positioning control. In comparison
with high-cost rotary-type encoders, the control results were almost identical. Notably,
the bias-corrected gyroscope reading provided a direct, differentiation-free solution
for the suspended load angular velocity sensing, which has been reported as a
main hindrance to the realisation of such systems (see e.g. Neupert et al. [42]).
Generally speaking, the combined results point clearly towards the conclusion, that
the restrictions encountered by e.g. Keskinen et al. [13] and Cheng et al. [14] in
applying traditional encoder-type sensors to hydraulic manipulators can be effectively
circumvented.

Although the experimental verification of the motion estimation model was limited
to 1-DOF rotary joint motion, in a full 3-DOF case the MEMS error propagation
is founded on the exact same principles without loss of generality. In other words,
the complementary filtering principle can readily be extended to encompass all three
degrees of rotational freedom (see Mahony et al. [61]). Note, however, that with a
completely generic multi-DOF manipulator system, two fundamental challenges arise.
Firstly, with a typical setup consisting of a low-cost three-axis linear accelerometer
and a three-axis gyroscope, only 2-DOF gravity-referenced attitude sensing of a body
is feasible. This is to say that only two of the three degrees of rotational freedom are
typically defined as, for example, optional sensors such as magnetometers are often of
little use in built environments and in the immediate vicinity of metallic manipulator
structures (see Caruso [64]). However, using a supplementary absolute positioning
system extends the 2-DOF gravity-referenced kinematics to fully defined 3-DOF
rotation estimation by applying the previously discussed data fusion principles.
Whether or not the force of gravity is used as a reference, the performance of
angular rate gyroscopes becomes vital for producing smoothed rotation feedback.
Secondly, estimating the linear motion of manipulator links connected by prismatic
joints is extremely challenging with low-cost inertial sensors. Even though this
area of research is not typically associated with inertial sensors, the possibility of
formulating an inverse problem for estimating an unknown link length from sensed
linear accelerations exists (see Vihonen et al. [91]). Generally speaking, regardless of
the underlying technological solution, resolving the unique instantaneous 3-DOF link
rotation or a prismatic joint position without a direct contact to sliding mechanisms
is fundamentally dependent on the utilisation of an auxiliary reference measurement,
which may come from virtually any type of complementary source.
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Chapter 5

Conclusion

Low-cost, low-power, and relatively low-resolution miniature MEMS inertial sensors
can be successfully applied to the motion state sensing and motion control of heavy-
duty manipulators when the solution is founded on a solid theoretical framework
of motion kinematics and signal processing. The proposed motion state estimation
model has been shown to yield results comparable to traditional high-cost rotary-type
encoders, and to excel in particular in the estimation of the first- and second-order
motion derivatives. The experiments on full-scale heavy-duty hydraulic manipulators
also demonstrate that a closed-loop motion control system based on the proposed
estimation model performs in a stable manner with very similar tracking performance
in comparison with traditional sensing solutions. Due to the generic nature of
the estimation model, it is easy to apply to a variety of manipulator geometries
by adjusting the kinematic parameters. From the control perspective, the results
indicate that the gap between traditional encoder-type and surface-mountable inertial
sensors may well fade away in the near future. In practice, this also strongly suggests
that advanced robotic motion control systems for heavy-duty hydraulic manipulators
may be constructed using low-cost inertial components, if the components are merely
integrated to the manipulator structure in robust enclosures. This is of great practical
relevance, because the design constraints imposed by traditional encoder-type sensors
may now be excluded from manipulator joint design. This allows the focus to shift
back to exerted forces and torques while excluding the needs of external shielding
for axial sensors, for example.

For mobile machine manufacturers the results imply reduced design effort, lower
cost, easy replacement of damaged motion sensors, and increased sensor robustness
against the harsh environmental working conditions of mobile working machines.
More robust sensors decrease the likelihood of experienced production down-time,
and make the introduction of new advanced safety- and productivity-boosting robotic

81



82

features feasible. As a consequence, Finnish mobile machine manufacturers will be
able to realise innovative solutions for advanced robotic control, condition monitoring,
and fault diagnostic systems using low-cost, easy-to-install motion sensors to gain
an advantage on the increasingly competitive global market. Additionally, a partic-
ular benefit of the novel technology is the possibility for developing more intuitive
heavy-duty hydraulic manipulators control systems, which assist the operator while
simultaneously making the manipulator operation less prone to human errors.

In the pursuit of increased productivity and efficient manipulator use, the goal is to
attain optimal operation speed and loading configuration of the manipulator for each
material handling task while maintaining operational safety. Combining low-cost
surface mountable inertial sensors with supplementary ranging/positioning or even
imaging solutions may be the next important step in this direction. The adoption
of these technologies fits particularly well with current research and development
interests, which are strongly geared towards the adaptation of wireless technologies
for manipulator motion state sensing. For instance, a key objective is to phase
out the failure-prone cable assemblies and routings needed for traditional wired
sensors. Further research objectives can be seen in the ever-increasing demands for
energy-efficiency, which ultimately call for the development of energy self-sufficient,
wireless sensing solutions, which rely on various forms of energy-harvesting. As far
as the author believes, this constitutes a foreseeable key research area in the field of
heavy-duty mobile manipulators.
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