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Abstract

With the development of neuroinformatics, a number of largernational
databases of brain imaging data have been built by integratiages collected
from multiple imaging centers or neuroscientific reseanstiiutes. This thesis
aims to develop accurate, robust and automatic brain imaglysis methods
that can be applied to analyze the images contained in the tatabases.

First a fully automatic algorithm, th&daptive Disconnectiomethod, was
developed to segment the brain volume into the left and reginbral hemi-
spheres, the left and right cerebellar hemispheres andrtiestem in three-
dimensional magnetic resonance images. Using the paitiatahtial equa-
tions based shape bottlenecks algorithm cooperating witimf@rmation po-
tential value clustering process, the method detects atsd fmst, the compart-
mental connections between the cerebrum, the cerebellahthenbrainstem
in the white matter domain, and then, the interhemisphenmections of the
extracted cerebrum and cerebellum volumes. The modelipgudial volume
effect is used to locate cerebrum, cerebellum and brainsmmndaries, and
make the interhemispheric connections detectable. Welktiowledge of the
subject orientation in the scanner, thaéaptive Disconnectiomethod can auto-
matically adapt the variations in subject location and redromain morphology
in different images without the aid of stereotaxic registra The method was
evaluated with one simulated realistic database and thireead databases. The
evaluation results showed that the developed method isa@yrate and can
well tolerate the image noises and intensity non-unifoymiihe Adaptive Dis-
connectiormethod was applied to analyses of cerebral structural agtries
in schizophrenia. The obtained results were consistehtpvéviously reported
observations and hypotheses of abnormal brain asymmesghiaophrenia.

Furthermore, an automatic shape analysis method was geeehmsed on
the Adaptive Disconnectiomethod for studying the Yakovlevian torque in
three-dimensional brain magnetic resonance images by neatlg modeling
the interhemispheric fissure shape with polynomial surbaue measuring its
regional averaged and local curvature features. This stuaglgsis method can
produce straightforward quantification and geometriaprietation of local and
regional Yakovlevian torque.
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Chapter 1

Introduction

1.1 Neuroinformatics

The interdisciplinary field of neuroinformatics combinesuroscientific re-
search with information science/technology to develop apgly advanced
tools and approaches for understanding the structure anatidn of the brain
[36]. This new established research field covers three pyiaeas:

1. tools and databases for managing and sharing neuraficidata;

2. methods and tools for analyzing the data;

3. computational models of the nervous system and neureépses.

neuroscientific research aims to understand the strudturetion, and de-

velopment of the nervous system in health and disease. Sui#rstanding
requires the integration of huge amounts of heterogeneodsamplex data
collected at multiple levels of investigation [14]. A numnle neuroscience
databases have been built based on a variety of data tymsasulescriptive
and numerical data, postmortem brain sections or threesbsronal (3D) brain
images. These databases provide information about gemessign, neurons,
macroscopic brain structure, and neurological or psychidisorders. This
thesis concentrates on the databases of 3D brain imagesytogthe macro-
scopic anatomical information of human brain. Presentig, dnatomical in-
formation of human brain is usually noninvasively acquiusthg the magnetic
resonance imaging (MRI). Databasing a large number of MRyewaf hu-
man brain is important to address the normal variation itnbmaorphology in
wide populations, and to find the structural changes related)ing, develop-
ment or mental disorders. For example, the Brain Developr@enperative
Group (including more than ten imaging centers and bionat@dicd neurosci-
entific research institutes) [38] built a large, demograglly balanced brain
MRI/clinical/behavioral database for development resle@an normal brain. In
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this project, six pediatric study centers acquired imadedout 500 children,
and a data coordinating center consolidated these imagemnadther project,
dozens of medical imaging centers and neuroscientific rels@astitutes, coop-
erating together, built an Alzheimer’s Disease Neuroimgdnitiative (ADNI)
database [100], by collecting and integrating MRI and positemission to-
mography (PET) scans of approximately 800 subjects. ThislAdatabase is
applied to identify neuroimaging and other biomarkers efabgnitive changes
associated with mild cognitive impairment and Alzheimelisease.

Besides the two examples, many more large brain imagindpdsés of di-
verse imaging modalities have been built for various bioicednd neurosci-
entific applications. Nevertheless, data only make sengeeioontext of tools
[14]. The problem is raised of how to develop effective methand tools to
analyze these databases. The first requirement is acc@Hgy.¢. the analysis
results need to be able to accurately convey the actualmmnabor functional
information of the studied subjects. The accuracy of anyasmimethod in
practice is always affected by variations (sometimes uwtiptable) in its im-
plementing environment, e.g. data damage, alterationss ¢d functionality,
even though it has been methodologically optimized. Rotasst [21] refers to
the capability to cope well with the variations. From aboxaraples of brain
imaging databases, it can be seen that the images contaitiezldatabases are
often from multi-scanner and multi-center origin, so ti@iimages may greatly
differ in scanning environments, acquisition protocold anage quality. Con-
sequently, the requirement for the robustness of the quoreing brain image
analysis techniques is especially high. Moreover, nefoamatics also aims
to integrate and analyze the experimental data and respltsted in thousands
of publications for improving existing theories about thraib. This requires
that the analysis needs to be reproducible to enable cosgpenetween results
of different studies. Reproducibility [21] refers to theildip of a test or ex-
periment to be accurately reproduced, or replicated, byesom else working
independently.

The third major direction of neuroinformatics, i.e. the ei®pment of com-
putational models of the nervous system and neural progesseut of the
scope of this thesis, thus we will not go to details aboutadlsigect.

1.2 Automatic brain image analysis

Traditionally, brain images are qualitatively analyzedhaisual examination
to locate and identify tumors, stroke or other signs of peotd for diagnosis.
This kind of qualitative analysis is time- and labor-consugn and the pro-



1.2. AUTOMATIC BRAIN IMAGE ANALYSIS 3

duced measurements are subjective. In addition, quaktamalysis is rather
difficult to reproduce. Experiments have shown that any myiradiologist is
unlikely to precisely agree even with himself if asked tolgpathe same scan
a week or two later [7]. Currently, the focus of medical inragbased brain
research is shifting from qualitative analysis to qualtitieeanalysis, which can
produce reproducible and objective measurements. Basé&tgmdatabases,
quantitative analysis can detect more subtle group effacisall longitudinal
changes over time, which might be used as measures of devetdpaging or
disease.

1.2.1 Brainimage segmentation

Before extracting and analyzing the quantitative infoiiorafor quantitative
brain image analysis, image segmentation has to be corttitectielineate the
structures or regions of interest in the image. This wor&yjmusly, was mostly
completed by trained clinicians with manual or semi-mamugthods. This task
is more and more difficult as the size and number of imagesase. Therefore,
the brain image segmentation has a far greater cost compattethe subse-
quent computation and analysis of the structural measuremnehich can be
performed automatically based on the intensity and geacrieformation con-
tained in the image. Thus, the major task to automate the braage analysis
Is to automate the brain image segmentation.

In addition to saving time and labor, automatic image sedatiem pro-
duces more reproducible results compared to manual segtientbecause
automatic methods always work in the same way [151]. Auta@nabf im-
age segmentation also helps reduce errors caused by faligase advantages
of automatic image segmentation make predicting segmentatror or fail-
ure possible, so that the images containing artifacts tnaddead to errors or
failure but can not be compensated for can be discarded smnadv

Automation of brain image segmentation is rather compidand diffi-
cult, because it is not possible using only the informatieailable in the im-
ages. Different brain structures often have the same or siemyjar intensity
values, and the subject morphology varies between diftenelividuals.A pri-
ori anatomical knowledge of the spatial relationships betwditfarent brain
structures has to be taken into account. Using high-levet gnowledge could
simplify the segmentation problem, nevertheless, the ¢exitg of the method
would be increased and the robustness of the method woulddvadked. Usu-
ally, a computerized brain atlas or pre-segmented braiplemis utilized to
assist in automatic brain image segmentation throughateete image regis-
tration. In this way, the final segmentation accuracy wowddensitive to the
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accuracy of the stereotaxic registration, which is affédig several factors,
e.g. the choice of the algorithm and the template image ufedthermore,
employing image registration also would weaken the segatient methods’
robustness, because the available atlas or template maerstitable to the
processed data set. For example, an atlas of adult’s braimafbe applied
to process images of children. In practical applicatior, dlacuracy and ro-
bustness of automatic brain image segmentation methodslsoechallenged
by the image noise and equipment-dependent artifactseteds|of which vary
between different scanners. Therefore, the automationaif lmage segmen-
tation is still one of the most studied topics in brain imagelgsis.

1.2.2 Brain anatomy analysis

After segmenting the brain volume in MRI, the simplest poiity to study
brain anatomy is to analyze the global and regional voluniélseobrain. For
this purpose, the volumes of the studied subjects or the setpt subparts are
computed, and the differences between two groups or thensmithanges in
the longitudinal studies are statistically analyzed. Yioduanalysis can detect
global anatomic properties or variabilities, e.g. atrophgilation. However,
local structural changes may be overlooked, because: twotstes having
equal volumes might have completely different shapes; acdl shape varia-
tion does not necessary result in a detectable volume chaagktionally, the
volume alone is not able to give a thorough description orsthesture. There-
fore, more detailed shape analysis is needed for more deaumderstanding of
the human brain and its changes, and to discover the shapgeheelated to
certain factors of interest. Shape analysis provides cemehtary information
that may improve results in many cases. Shape analysis magrieularly
useful for examining subtle structural changes that do remifast as volume
variation of the whole structure. It should be emphasizedtlshape analysis is
not intended to completely replace volume analysis.

1.3 Obijectives and structure of the thesis

The objective of this thesis is to develop completely autiierD brain MR
image analysis methods, which are able to serve the largbalsts based brain
anatomy studies. First, we developed Ataptive Disconnectiomethod to
segment the brain volume into the left and right hemispheféle cerebrum
(CH), the left and right hemispheres of the cerebellum (QR) he brainstem
(BS) in MRI. This method was applied to study structural asetries of hu-



man brain. Second, based on fhaaptive Disconnectiomethod, an automatic
shape analysis approach was developed to investigate Hul€ggsian torque
of human brain by quantifying the interhemispheric fissuerdng.

The principal brain MRI analysis approaches in the scopkisthesis, such
as skull-stripping, intensity non-uniformity correctioorain tissue classifica-
tion, partial volume modeling, spatial normalization, reanatomical segmen-
tation and brain shape analysis, are introduced in Chapt&ugomatic brain
hemisphere segmentation techniques (to segment the tefigirt hemispheres
of CH, the left and right hemispheres of CB and BS in 3D MRI)rangewed in
Chapter 3. With this review, the challenges and methodo&gestrictions are
discussed. Chapter 4 gives description of Auaptive Disconnectiomethod
and how the problems discussed in the above chapter wetedsehapter
5 focuses on the applications Aflaptive Disconnectiomethod to MRI based
brain asymmetry studies. The major contributions of thesthare summarized
in Chapter 6. The methods and results presented in thisstaesidiscussed in
Chapter 7.
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Chapter 2

Brain MRI analysis

A procedure of automatic quantitative brain image analgsissists of the fol-
lowing principal steps: first, image quality improvementtompress the image
noise and artifacts; second, image segmentation to détiriea structures or
regions of interest; third, spatial normalization withrstgtaxic image registra-
tion; forth, quantitative information extraction and sttital analysis or com-
parison between populations. It should be noted that theegps,sespecially
image segmentation and spatial normalization, could kengad in different
order for different analysis algorithms or for differenv@stigation purposes.
It is also possible to use a single framework to simultanigopioduce joint
solutions for image quality improvement, image segmeniagind spatial nor-
malization, e.g. Ashburner and Friston’s unified segmemadlgorithm [5].
Fig.2.1 illustrates the brain MRI analysis pipeline usedhis thesis. In this
chapter, the brain MRI analysis techniques related to thé& wmposed in this
thesis are introduced.

Quantitative
information

Image
quality

Statistical

Y

Image
2 >

segmentation | normalization

Y

extraction analysis

mprovement

Figure 2.1: Automatic brain MRI analysis pipeline used in this thesis.

2.1 Skull-stripping

Quantitative morphometric studies of brain MRI often regqua preliminary
step to isolate brain from extracranial or 'nonbrain’ tissu This preliminary
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step is commonly referred to as skull-stripping [40]. Numerautomatic skull-
stripping methods have been developed and widely usedhvainécbased on the
signal intensity and signal contrast in the MR image. Tho&tihg based meth-
ods define minimum and maximum values along the axis reptiagevoxel
intensity histogram (e.g. [32]). Multivariate histograare used when a study
collects images with varying contrast. Morphology or reglased methods
(e.g. 3dintracranial in the Analysis of Functional Neuralyes (AFNI) soft-
ware package [27]), cooperated with intensity threshagiaimethods, use con-
nectivity between regions, such as similar intensity valugkull-stripping in
MRI can also be obtained by cooperating morphological nagheith edge
detection [e.g. Brain Surface Extractor (BSE) [113] in theiBSuite soft-
ware package [118]]. Watershed algorithms try to find a loggimum of the
intensity gradient for preflooding of the defined basins tgnsent the image
into brain and nonbrain components (e.g. [50]). Surfacelehbased methods
extract the brain volume through modeling the brain surfaite a smoothed
deformed template [e.g. the FreeSurfer software packdjeB8ain Extraction
Tool (BET) [122]]. A recent Hybrid Watershed method [116]srdeveloped by
incorporating the watershed techniques with the surfacdeibased methods
to locate the brain boundary in MRI.

2.2 Intensity non-uniformity correction

One of the major artifacts affecting the results of automagtiantitative brain
MRI analysis is the intensity non-uniformity (INU), whiclefers to the phe-
nomenon of nonuniform tissue intensities in the images J[124e Fig.2.2).
INU has no anatomical relevance, and for MRI it is due to thaloimed effect
of the imaged subject, the MR pulse sequence and the imagilsg €herefore,
MR physicists correct INU in MRI by improving the image acsjtion protocol

with the prior knowledge about these factors [9].

Differently, image processing specialists correct INU iR Mnages by us-
ing numerous methods based on some assumptions regardirgdhisition
process. Such as, correction algorithms based on the gilaysuatial distribu-
tion rely on the assumption that the variation of INU is saltismooth and
slowly varying across the image and that the ideal image @sqwise con-
stant. In this way, some methods model INU as a smooth sudisiog spline
[31, 73, 160] or polynomial [97, 125, 135] basis functionsddhen the cor-
rection is conducted by dividing the corrupted image by thtedi surfaces.
Some other methods employing low-pass filtering [53, 67, 1@1, 159] or
homomorphic filtering [19, 47, 60] first extract INU as a sigoansisting of
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Figure 2.2: Example of intensity non-uniformity in MR brain image. Thednsities of the
white matter at the left and right sides are notably highantbther white matter area.

low spatial frequency intensity variation and then divide torrupted data by
the extracted INU for correction. Besides in the spatial domINU correc-
tion can also be achieved in other domains [9], such as theidfadomain
[24, 143], the wavelet domain [52, 83], and the probabilignsity functions
domain [81, 90, 98, 120, 123, 142]. In the Fourier domain, lisldorrected by
applying the low-pass gaussian filters. In the wavelet dapthie corrupted
image is first decomposed into a cascade of orthogonal ajppation sub-
spaces containing low-frequency information and detdilspaces containing
high-frequency information for different spatial resaunts. Next, INU is esti-
mated and corrected in the approximation subspaces. Irdtoalpility density
functions domain, INU is considered as a convolution terroatimng the real
intensity distribution and increasing entropy. Thus, IN&hde corrected with
an entropy minimization framework. Moreover, it is alsoywégypical to find a
joint solution to both brain tissue classification and INUreation with statis-
tical methods, e.g. the Expectation-Maximization (EM)dzhgEL39, 140, 147]
or fuzzyc-means clustering [106] based methods.

2.3 Brain tissue classification and partial volume
modeling
Brain tissue classification in 3D MRI is to classify and lab® voxels in a

brain image as belonging to one of the three primary tisspestygray matter
(GM), white matter (WM) and cerebrospinal fluid (CSF), actiong to certain
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criteria. This process is important for multi-modality igeacorrelation, visual-
ization, and quantification, and clinical uses such as tuandrlesion detection
[111]. Brain tissue classification in MRI can be obtainedhgsihresholding
based techniques [61, 70, 82, 127], which attempt to deterrai threshold
value that separates the desired tissue types. Howeveshitiding based ap-
proaches are very sensitive to image noise and artifactsreftly, statistical
classification based algorithms [33, 56, 109, 139, 140, ,14f]ch are more
robust and have rigorous mathematical foundations in sstehtheory, have
been widely applied. In these methods, the probability e fisnctions of tis-
sue intensity for different tissue classes are paramdiricgodeled as one or
more Gaussian mixtures. EM algorithm is often used to esértiee model
parameters, and Markov random field is usually employed tdethihe spatial
interactions between neighboring voxels. Another majasglof brain tissue
classification techniques uses clustering-based metbhagighe fuzzyc-means
clustering algorithms [11, 17, 51, 80, 106]. The clustefiraged methods at-
tempt to classify a voxel to a tissue type by using the notiosirnilarity to the
tissue type.

Most of the above discussed methods produce only hard fitasgin be-
tween GM, WM, and CSF. However, due to the existence of thigghaolume
effect (PVE), i.e. a single voxel can contain multiple tisgypes due to finite
image resolution (see Fig.1 in [Publication Il]), labejia voxel as just a sin-
gle tissue type can not reveal all possible information abwitissue content of
that voxel [137]. This can be problematic in small strucsuoe highly convo-
luted areas of the brain. The fuzeymeans clustering algorithm allows partial
membership in different tissue classes. Thus, it can be tasexdel PVE, e.g.
in [17, 106]. The most commonly used, statistically based@ehof PVE is the
mixel model proposed by Choi et al. in [22]. This mixel modedames that the
intensity value of each voxel in the brain image is a realwrabf a weighted
sum of random variables each of which characterizes a @geditype. Based
on the mixel model or a closely related model without tryingestimate the
weighting parameters, some methods [74, 111, 114] werdajse to classify
the voxels contained in MR brain volumes into not only theeptissue types
but also their mixures (GM/WM, GM/CSF and CSF/backgroufidhis kind of
voxel labeling concerning the partial volume mixtures iBechpartial volume
voxel classification. Estimating the amount of each brasute types contained
in each voxel is called partial volume estimation. It pr@sdnore interesting
information than merely identifying voxels containing P many neurosci-
entific studies, e.g. cortical surface extraction [1, 64tRal volume estimation
methods based on the mixel model [103, 118, 137] obtain #uwifmal content
of each brain tissue type in each voxel by estimating the kg parameter
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with maximume-likelihood estimation.

2.4 Spatial normalization

Spatial normalization of brain images refers to the stevaotimage registra-
tion process to transform individual images to match a steshdrain template.
In quantitative brain MRI analysis, spatial normalizatignoften applied to
compensate for the subject movement, inter-image diftexeim voxel size and
image resolution, or to build reliable spatial correspomds of homologous
areas between individuals. Sometimes to assist brain aratomical segmen-
tation, spatial normalization is also employed to comptnga the variations
in subject’s location and morphology, and consequently &éierthe employed
a priori anatomical knowledge applicable for the segmentationlprnob

In general, there are two kinds of image registration usedpatial nor-
malization: linear and nonlinear registration. A 3D lineegistration, includ-
ing rigid (only rotations and translations) and affine tfanwation (rotations
and translations as well as stretches and shears), can trédeswith a4 x 4
constant transformation matrix as

51 aq

A t «
5| - | @
1 0 0 011 1

wherea = [ay, s, as]? andB =[5, B, 43]7 are the coordinate vectors in the
original and transformed images respectivelys the composition of the rota-
tion, stretch and shear matriceéss the translation vector. Nonlinear registra-
tion (nonrigid or elastic transformation), can not be repréed using constant
matrices. Most applications represent nonlinear transitions in terms of a
local vector displacement field:

Bi = a; + Ti(a), (2.2)

wherei =1, 2 or 3in 3D,T;(«) is the displacement function for thith coordi-
nate with respect to the original coordinates, or as polyabtransformations
in terms of the original coordinates.

A simple possibility to compute the registration parameter spatial nor-
malization is to use volume-matching algorithms, such asTddairach pro-
portional grid normalization [128], which use manuallymdiéed landmarks to
find the best scaling parameters. Current automatic imaafefnimg algorithms
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[132] use a mathematical measure of overall image mismatdlaaninimiza-
tion algorithm with iterative changes in transformatioadind the best set of
transformations to match the image to the template. Thedleaue usually first
optimize linear transformation parameters (translatiostaitions, stretches and
often shears), and then find the best set of nonlinear wagargmeters to fur-
ther match the detail of brain shape [3, 115, 149]. Sulcakhmag methods
[42, 43, 132, 134] attempt an explicit match of sulcal anatdretween sub-
jects. In this type of methods, first a model of the corticafate is extracted
from the image, then the model of the cortical surface isodistl to match it
with the template.

2.5 Neuroanatomical segmentation

Automatic neuroanatomical segmentation of brain imagersefo the delin-
eation of structures or regions of interest in certain btaisue types. This is
a comprehensive issue. Different approachesapdori anatomical knowl-
edge are required for the segmentation of different neatoamical regions.
The methods for segmenting the left and right hemispher&-htthe left and
right hemispheres of CB and BS in 3D MRI (this segmentatioraimed 'brain
hemisphere segmentation’ in the following context), whgthe concentration
of this thesis, will be reviewed in the next chapter in detkiére, the existing
techniques for the segmentation of other neuroanatonticadtares or regions
of interest, such as the cerebral cortical subdivisionssadortical structures
(hippocampus, caudate, putamen and lateral ventriclespreefly introduced.
A popular approach to obtain the segmentation of brain reatmmical
substructures in 3D MR images is to use atlas deformation.ekample, the
automated nonlinear image matching and anatomical lagp@ANIMAL) al-
gorithm [25] labels brain voxels as distinct structures leyodming one MRI
volume to match another previously parcellated MRI tengalaiume. It builds
up the 3D nonlinear deformation field in a piecewise lineahfan, fitting cu-
bical neighborhoods in sequence. The accuracy of atlagrdafmn based
segmentation methods is limited by diverse types of errdnesg errors in-
clude inaccuracies of the atlas used as a starting pointsdr the registration
process, and localized failure of the assumption of the-subject correspon-
dence. Resently, it has been realized that the accuracyasf étformation
based segmentations can be improved by registering a smgtge with mul-
tiple atlases. The multiple-atlas deformation based agmires (e.g. [55, 65])
combine segmentations obtained based on a set of singéestlsing a suit-
able decision fusion algorithm. In this way, the resultingdd segmentation
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can be more accurate than any of the single segmentation@smeerrors tend
to cancel each other out in the combination.

The 3D segmentation problem can also be solved with a maxiapws-
teriori (MAP) framework in which both appearance (voxekinsities) models
and shape (geometry) priors are defined [138]. Often, edlgenerative or a
discriminative model is used for the appearance modelethé shape models
are mostly generative based on either local or global geagm@ince an over-
all target function is defined, different methods, such aesated Conditional
Modes algorithm [41], the variational method [138, 153], EM)7], Markov
Chain Monte Carlo [34, 150], are then applied to find the optisegmenta-
tion.

2.6 Brain shape analysis

Currently, the interest of brain anatomy study has beersteared from the
global or regional volume measurements based analysis te cmnplicated
shape analysis. Based on MRI, global shape indices megsimensphericity
[78], the cross-sectional area [152], surface area andhdépihie object of inter-
est [92] have been applied to reveal information on the disiape variabilities
of human brain. Nevertheless, they do not give informatiornhe location of
the shape changes.

The progress in brain atlases and high-dimensional magpaag enabled
the accurate local computational analysis of the braircaires [133]. Voxel-
based morphometry (VBM) [4] aligns the brain images intogame coordinate
system to obtain the voxel correspondence, and then aalyealistributions
of the brain tissue classes (GM, WM and CSF) in each voxeliwith be-
tween groups. The geometric properties of human brain caanbakyzed with
the deformation-based morphometry (DBM). The voxel-wisg@&spondence
is established using nonlinear registration, and the tiegulleformation fields
are used to analyze the inter-subject brain differences. ddfiormation fields
[131], their parameters [6], or features computed from tbiem divergence,
and Jacobian determinant of the deformation fields [45, p8&}ide informa-
tion on the local shape and volume changes. Techniques basgither VBM
or DBM are usually employed to study the whole brain, and tiedyis is not
focused on any patrticular brain structure.

To acquire measurements of the local shape of brain, theesteggpesen-
tations of brain and its substructures can be modeled wiibriskable surface
meshes [99]. Detailed shape analysis of a particular btaiotsire is conducted
by utilizing the correspondence between the shape repegs®Ts, which is



mostly obtained using high-dimensional mapping [16, 23,68 133]. After
the correspondence is found, the signed distances orehifes of shape mea-
surements between the studied shape and the referencesshipsubject pair
are utilized to quantify the shape difference at each veutexel on surface)
[46, 66, 76, 129].
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Brain hemisphere segmentation

3.1 Introduction

Three primary anatomical subdivisions of human brain are CB and BS.
CH is the largest subdivision of human brain and associatddhigher brain
function such as thinking, language, action, motor, vigiod etc. CB, located
in the inferior posterior portion of the head, associatethwegulation and co-
ordination of movement, posture, and balance of human bB8yis the lower
part of human brain, and provides the main motor and sensolrvation to
the face and neck via the cranial nerves. Due to the anatami¢uanctional
differences, CH, CB and BS are always studied separatelyumascience.
Furthermore, hemisphere segmentation of CH and CB is irapbfor brain
asymmetry studies, which can reveal the evolutionary,diene/, developmen-
tal and pathological information of human brain. Hemisghgggmentation is
also needed to view the medial surface of the cerebral hémisp, because
many important brain structures, such as the medial terhjmiye, cingulum,
and large portions of the frontal, parietal and occipitads, can be only viewed
in the interhemispheric medial surface.

The procedure of brain hemisphere segmentation into tharefright CH,
left and right CB, and BS in MRI consists of two principal steft) extracting
the brain volume, and 2) segmenting the structures of istefBo extract the
brain volume, first, nonbrain tissues are removed from thelevhead MR
image through skull-stripping (see Section 2.1). Nextirbtiasue classification
(see Section 2.3) is conducted to classify the voxels coetain the skull-
stripped volume into GM, WM and CSF. Finally, the brain vokim extracted
as the aggregation of the GM and WM voxels.

The automatic segmentation between the left and right Cidafed right
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CB, and BS in the extracted brain volume can be achieve bygusther the
segmentation-surface-searching or structure-recastgirubased techniques.
The existing techniques are discussed in the following@esin detail.

3.2 Segmentation surface searching

Because normal human brains exhibit an approximate balesgmmetry with
respect to the interhemispheric (longitudinal) fissurettisg the brain, a sim-
ple way to segment the two brain hemispheres is to detecotiggtudinal me-
dian plane of the brain, known as the mid-sagittal plane (M$SP can be
found as either the plane best matching the interhemispfissure [20, 95],
or the plane maximizing the bilateral symmetry [84, 108,]126SP can also
be extracted in MR brain images by using the linear steréotagistration
[18]. Images of different subjects are linearly transfod@ match a symmet-
ric brain template then the longitudinal median plane ofsteeeotaxic space is
the wanted MSP. The validity of the MSP based brain hemigpbegmentation
is based on the assumption of brain symmetry. However, i) ffagnan brain
is never absolutely symmetric, and the interhemisphenimbary is actually a
curved surface. Therefore, MSP is not able to segment the besnispheres
accurately no matter how well it is extracted (see Fig.3.IFhis inherent lim-

Figure 3.1: Brain hemisphere segmentation with MSP (a) and MSS (b) in.MRSP was
generated using the linear stereotaxic registration, M&Sabtained by transforming the MSP
in (a) using nonlinear registration. Both MSP and MSS araaliged as longitudinal lines in
the transverse view. Visible segmentation error for MSHd&lighted in the red circle in (a).

itation of MSP has been qualitatively and quantitativelyndastrated in [Pub-
lication | and I11].
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For more accurate brain hemisphere segmentation, a singyléswo trans-
form MSP into a curved mid-sagittal surface (MSS). Nonlmhegegistration
can be utilized for this purpose: a symmetric brain tempktenlinear regis-
tered into a specific brain image, and then MSP of the tempddtansformed
into MSS using the transformation parameters estimatedamonlinear reg-
istration. The nonlinear registration based MSP transétion was validated
for brain hemisphere segmentation in [Publication Ill].nGmared with MSP,
the transformed MSS could increase the hemisphere segtoardacuracy re-
markably (see Fig.3.1-b).

Like MSP, the nonlinearly transformed MSS is not, in itsalfle to separate
CH, CB and BS. This problem can be solved with registratiarphing-based
methods [75, 89], which nonlinearly transform the comparttroutlines in a
pre-segmented brain template into the images of specifiesisb

The ventricles, interhemispheric fissure and the gaps leetW#l and cere-
bellum+brainstem (CBB) are filled with CSF. Another schemel¢tect sur-
faces separating left and right CH and CBB in MRI is to exti@cthembrane
in the CSF-filled space, which follows the brain surface bo¢not pene-
trate sulci to any great extent (see Fig. 3.2). With imagensity based opti-

Figure 3.2: Membrane through the CSF-filled space separating left gy @H and CBB.

mization criteria, Marais et al. [94] used a constrained m®sface to itera-
tively approximate the brain boundary, and Liang et al. [i#l]zed the graph
cuts algorithm to locate the segmentation surfaces. Anrértigoroblem for
segmentation-surface-searching based techniques i®theactmental uncer-
tainty, i.e. a voxel at the segmentation boundary can belomgore than one
structures.
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3.3 Compartmental structure reconstruction

Another type of brain hemisphere segmentation technicusfirst find seed
voxels corresponding to the wanted hemispheric compaitsyard then recon-
struct their structures (surfaces or volumes) from the seeedls towards the
structure boundaries (CSF-GM interface) (see Fig.3.3e fHgion of WM is

Figure 3.3: Brain compartment segmentation using structure recoetgtrufrom seed vox-
els. Left: initial state (compartmental seeds). Middleteimediate state. Right: final state
(reconstructed compartments).

mostly employed as the seed source. It can be segmentedwatlitting
planes as in FreeSurfer [30] and BrainVoyager [68] softwsaekages: one
sagittal plane across the corpus callosum to separate fthanié right CH,
and one horizontal plane through the midbrain or upper peparsting CH
from CBB. The Constrained Laplacian Anatomic Segmentaiging Proxim-
ity (CLASP) package [64] first extracts the CH volume with erebtaxic CH
mask, then segments the left and right CH in WM with MSP pastinough
the anterior and posterior commissures (AC and PC). The swrglex mor-
phology of the connections between CB and BS can not be asatéy cutting
planes. BrainVisa software package [93] utilized the motpgical erosion to
disconnect the left and right CH and CBB in the WM volume. Heataal.
[54] found the compartmental seeds throughout the brairedtomith fuzzified
anatomical location knowledge of left and right CH, CB and B8&th of these
two algorithms can be extended to segment CBB into CB herargghand BS
in WM area.

With compartmental seeds, the final segmentations arenautdiy recon-
structing the compartment structures. FreeSurfer [30]pdetas this by de-
forming the surfaces of the segmented WM compartments towaihe in-
tensity gradients between GM and CSF (the pial surface)inBogager [68]
reconstructs the cortical surface by shifting each vertexhe WM compart-
ments’ surfaces along its surface normal until its posittomcides with the
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respective intensity contour of GM outer boundary. CLASE] [@eforms the
WM surfaces of the compartments to the cortical surfacegadoraplacian field
between the WM surfaces and the skeletonized CSF fractioacdmpartment
shape reconstruction can also be achieved by reconsgubgnvolumes of the
target compartments. In this way, a generalized Voronajmim is produced,
from which compartmental segmentation can be obtainedttjreBrainVisa
[93] conditionally dilates the eroded WM mask to reconstithe volumes of
the left and right CH and CBB. Hata et al. [54] reconstructetlmes of the
left and right CH, CB and BS from the seed voxels using a regi@wing
algorithm based on the fuzzified compartment boundary imeand intensity
knowledge.

3.4 Challenges and methodological limitations

Both the segmentation-surface-searching based and wg&ueiconstruction
based techniques confront difficulties to identify compeamt boundaries when
they are blurred by PVE. In MR brain images, there exist tiypes of PVE
mixtures: CSF/GM, GM/WM, and CSF/background. These PVEtunes,
especially CSF/GM, blur the boundaries of the compartmehisterest, e.g.
the interface between CH and CB that in practice is a thin G®8B.aThis
boundary blurring caused by PVE decreases the accuracyunidaoy detec-
tion with the boundary intensity based optimization crador segmentation-
surface-searching based techniques; and brings difetthi locating the CSF-
GM interface for restricting the structure reconstructimn the structure-
reconstruction based methods. Currently, the problem ah8ary blurring
caused by PVE has been noticed and addressed in corticatswgktraction
for cortex shape analysis [1, 64]. However, to our knowledZjeASP [64] is
the only approach explicitly model PVE among the existingifhemisphere
segmentation methods, which guides the cortical surfaz@nsgruction with a
skeletonized partial volume CSF surface rather than wigh@8F-GM inter-
face. The skeletonized partial volume CSF surface is obthlry skeletonizing
all the voxels purely or partially containing CSF using a®f&eld connectivity-
preserving medial surface skeletonization algorithm [87]

As discussed in previous chaptampriori anatomical knowledge of the spa-
tial relationships between the compartments of interestbi®e taken into ac-
count for automatic segmentation. However, the automago®ntation based
on thea priori anatomical knowledge could not be directly applied to MRrbra
images in native spaces due to the variations in brain lmeaind morphology
in different images. Therefore stereotaxic registratiasdul spatial normaliza-



tion is needed to address this problem. Segmentationesigearching based
methods [79, 94] use affine transformation to register eed images with a
standard brain template to obtain initial location of théedéed segmentation
surfaces. Structure-reconstruction based methods [3®G84egister subject
volumes into standard Talairach coordinates [128] to tha¢ cutting planes
for initial segmentation in WM area. BrainVisa [93] usesistigition with a
pre-segmented brain template to control the erosion size fUzzy logic based
method [54] needs the subject spatial normalization to renthie applicability
of the fuzzified anatomical location knowledge for the targfeuctures. Al-
though the stereotaxic registration based spatial nozat#din is not the core of
the segmentation algorithms, the final segmentation acgusasensitive to the
accuracy of the stereotaxic registration, which is affette several factors, e.g.
the choice of the algorithm and the template image used. ddereemploying
image registration also reduces the methods’ robustness.

In addition, effective techniques have been developed émocsing [112]
and INU correction (see Section 2.2) in MRI. Neverthelessithage noise
and INU are still potential challenges for automatic bramage segmentation
when they are too severe to correct, because most of thengxstgmenta-
tion approaches and the employed image registration #hgosi are based on
voxel intensities. For example, in [Publication Il1], it #demonstrated that the
nonlinear MSS extraction method and BrainVisa were semstt noise and
INU. Furthermore, most of the existing brain hemispherarsagation meth-
ods are not able to separate BS from CB, because the compighaiogy of
the connections between CB and BS can not simply be addrégsediting
planes, and image intensity can not provide sufficient mftion to locate the
segmentation boundaries between CB and BS.
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Adaptive Disconnection method

In this thesis, we developed a novel automatic brain hersigphegmentation
method, nameddaptive DisconnectiorBased on the partial differential equa-
tions (PDE) based shape bottlenecks algorithm [91], thithatkdetects and
cuts the connections between the left and right CH, the reftraght CB and
BS in 3D brain MRI. Partial volume modeling is used to addtégscompart-
ment boundary blurring caused by PVE, and to make the inteidpderic con-
nections detectable. When the subject orientation in therser is known, this
algorithm can automatically adapt the brain volume in thétveaspace so that
no spatial normalization is needed. In this chapter, thehougilogical details
and evaluations of thadaptive Disconnectiomethod are introduced.

4.1 Shape bottlenecks algorithm

To detect and cut the connections between the left and righttie left and
right CB, and BS in 3D brain volume, we utilized the PDE badeapg bottle-
necks algorithm proposed by Mangin et al. [91]. The essehtteed®DE based
shape bottlenecks algorithm is an application of Laplaegigation. Laplace’s
equation is a second-order PDE for a scalar fietbat is enclosed between
boundaried? andL. The mathematical form of Laplace’s equation in 3D Carte-
sian coordinates is

Aj— 0% 0% 0%
' o * Oy? * 022

where A refers to the Laplace operator. An important property oflae@’s
equation that underlines geometric structure is that laagdeequation describes
a layered set of nested surfaces that make a smooth tranfibim /7 to L
[62]. Due to this property, Laplace’s equation have beesgntly applied to

=0, (4.1)
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extract the pail surface by expanding the GM-WM surface f#] to compute
the cortical thickness [1, 62, 110, 156]. Differently frolmese applications
to cortical surface shape analysis, the PDE based shapensa algorithm
uses Laplace’s equation to detect the shape bottlehebkswveen two parts
of a complex 3D objec® by simulating the steady state of an information
transmission process between them.

Denote the boundary @& by 2. In the PDE based shape bottlenecks algo-
rithm, the simulated information is supposed to be transahirom a boundary
subsetH C () towards another boundary subget- (2 (see Fig. 4.1-a). The
propagated information is quantified as information poééntlues (IPV). The
information sourced and terminall, are defined with the Dirichlet boundary
condition:

Vze H i(z)=h; Vzel i(z)=1, 4.2)

wherez is a voxel in©, i(z) is the IPV atz, h and!l are constant IPVsy > [.

The rest of the boundarly2 — (H + L)) is defined with the Neumann boundary
condition that is much more complicated. Additionally, theormation trans-
mission process inside is assumed to have a conservative flow, and the interior
region of© can be modeled as a Laplace’s equation (Eq.4.1). By digorgti
Eq.4.1, the consistent second order discrete Laplacestiequs obtained for

O interior as

1
S lilr =1Ly, 2) = 2i(z,y,2) +i(r + 1y, 2)]
1{2
s liley = 1.2) = 2i(e,y.2) +i(r.y +1,2)] (4.3)
Yy
1
—|—§ [z(m, y,z— 1) = 2i(z,y,2) +i(z,y,z + 1)} =0,

wherei(x,y, z) isthe IPV at pointz, y, z) € (0—-Q), andd,, J,, 0, correspond
to voxel dimensions i, y andz directions. Solving Eqg.4.3 gives IPV of each
voxel inside©:

1

1
(x,y,2) = x{—ix—l, Z2)+ e+ 1y, 2
(0.2) = gy X\l - Ly +ile+1y,2)

| —

+

%)

5 [z(x,y —1,2)+i(x,y + 1, z)} + % [i(x,y, z—1) (4.4)

+1 :c,y,erl)}},

—

1Shape bottlenecks refer to the bridge-like connectionsédsent different compartments of
a complex object.
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The steady state of the simulated information transmigsioness is acquired
by implementing a successive over relaxation iterativesw[91]. When the
simulated information transmission process convergestvito parts oo will
have high gradients of IPV, and the shape bottlenecks ctingebem will have
median IPVs (see Fig.4.1-b). Simply clustering IPV wouldduce compart-
mental segmentation at the shape bottlenecks (see Fig).4.1-

Low High

Figure 4.1: Example of implementing the PDE based shape bottlenecksithig. (a) initial
state, (b) converged state, (c) voxels clustering witheesm IPV.

The PDE based shape bottlenecks algorithm was implemeatédétect
main shape bottlenecks of brain WM network (corpus callgsé@ and BS)
[91], and AC and PC in the whole brain volume (GM/M) [69]. This auto-
matic shape bottleneck detection approach requires venyisiinitialization to
define the initial status of the simulated information trarssion process. Its
implementation is only based on the geometric configuratiotme processed
object, and no intensity information is needed. Therefare,can utilize the
PDE based shape bottleneck algorithm to automaticallyctlated cut the con-
nections between the left and right CH, the left and right @Bj BS in MR
brain image in the native space.

4.2 Partial volume modeling

Before applying the PDE based shape bottlenecks algorithbrdin hemi-
sphere segmentation, some issues related to PVE need tmberced. The
adjacency areas between CH, CB and BS are very thin CSF areiRl,

the anatomical connections between CH, CB and BS alwaysaneith the
PVE voxels of CSF/GM, so that it is difficult to detect themedtitly. Fortu-
nately, CH, CB and BS have simple connections in the WM+GM/V¢élgion,



24 CHAPTER 4. ADAPTIVE DISCONNECTIONMETHOD

i.e. only BS connected with CH and CB, and no connections &etwCH
and CB. Therefore, before hemisphere segmentation witRbie based shape
bottlenecks algorithm, we can separate CH, CB and BS by aqgptiie PDE
based shape bottlenecks algorithm to detect and cut theecbons between
them in the WM+GM/WM region, then reconstruct their origdimalumes. Be-
cause the PVE between CSF/GM mostly occurs at the bound#riesl, CB
and BS, the region of CSF/GM can be used as the contour tactebi struc-
ture reconstruction (see Fig.4.2). To locate the CSF/GNbregartial volume

CSF/GM

Figure 4.2: Partial volume brain tissue distribution in the sagitta@wiof a MR brain image.
(a) brain volume. (b) partial volume brain tissue labels.

voxel classification is needed. Moreover, after decomppsie brain volume
into CH, CB and BS, a part of CSF/GM voxels have to be discastethat
the brain interhemispheric connections are not be covey&tl3f- contained in
the CSF/GM voxels. This statement was demonstrated in i¢atian 111] and

[158]. Nevertheless, over discarding the CSF/GM voxels$ edlise over re-
moving GM (cortex). The information of tissue proportion@$F/GM in each
voxel is required to control the deleting of CSF/GM voxels.

In this thesis, the partial volume estimation techniqueettgped by Tohka
et al. [137] is employed to acquire both the partial volumeelalassification
and partial volume tissue fraction. From this partial vokuastimation, three
images are produced for the three tissue types (CSF, GM or spectively,
whose elements reflect the proportion of the correspondisge type in each
voxel.
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4.3 The algorithm of Adaptive Disconnection

The Adaptive Disconnectioalgorithm consists of two major steps: brain com-
partmental decomposition into CH, CB and BS; hemispherenseatation for
CH and CB. The overview of algorithm is illustrated in Figr2[Publication
7.

4.3.1 Brain compartmental decomposition

To decompose the brain volume into CH, CB and BS, the WM+GM/Wilgk
is first segmented to obtain the preliminary segmentatiothiem. In [91], BS
was detected as the shape bottleneck between CH and CB in Wiktaas the
detection result was not considered successful becaubke pfésence of pons
in the middle of BS. We conduct the segmentation of the WM+@&M mask
with a two-step procedure rather than directly treating B8 shape bottleneck:
first CH/CBB segmentation at the midbrain, and then CB/BSrn&zdation at
the cerebellar peduncles. The PDE based shape bottlergokistan is applied
twice with different definitions of the information souréeand terminalL. In
CH/CBB segmentation{ andL are, respectively, located at the top and bottom
(superior and inferior) of the WM+GM/WM region. In CB/BS segntation
andL are located at the front and back (anterior and posterideo€BB part.
Both segmentations are completed by classifying the varetbe produced
IPM into two clusters with respect to their IPVs usikgneans clustering.

The original shapes of the compartments are reconstrugtgddwing the
compartmental seeds towards the region of CSF/GM. Ratlar tising the
intensity information, we define a compartment boundangiolp indicator,
Pyoundary, 10 control the growing. For each brain voxethe value ofP,,.d4ry
is computed as

D(z)  J(2)

Y
DJ\/[AX JMAX

Vz € @, Pboundary(z) =2 (45)

whereD and.J are the Euclidean distance franto the image background and
CSF/GM region respectively, and,, 4, x and.Jy,; 4, x are the maximal values of
D andJ throughout the brain domad. The value ofP,,,,q.-, represents how
closez is to the compartment boundaries. The growing criteriorsifolows.
Let z,.., denote a voxel on the boundary of a compartmental seed;, angh..
denote one of the 26 neighbors nf., that is in the target volume and not
labeled. The region, whem,., is, grows by enclosing,..;snsor if

Pboundary<zneighbm") > Pboundary<zseed)- (46)



26 CHAPTER 4. ADAPTIVE DISCONNECTIONMETHOD

The growing procedure is implemented iteratively until thieole target
volume is filled. More detailed description and method eatiin about this
compartmental decomposition is given in [Publication II].

4.3.2 Cerebral and cerebellar hemisphere segmentation

After the compartmental decomposition, all the CSF/GM \®xkeat are used
to restrict the compartment reconstruction remain in treodgosed brain vol-
ume. CSF/GM voxels where the percentage of CSF is greaterattiareshold
value are discarded from the CH or CB volume before the heémigpsegmen-
tation, in order to ensure the hemispheric connectionctdike. To select the
appropriate threshold value, we assessed the effect efeliff threshold value
(70%, 50%, 30% and 10%) on the subsequent hemisphere segimentAn

example is given in Fig.4.3. Although, the differences hesw the results il-

Threshold = 30% Theshold = 10%

Figure 4.3: Hemisphere segmentation with tA&aptive Disconnectiomethod with differ-
ent threshold value for CSF/GM voxel discarding. The mawguédkentified interhemispheric
boundary is illustrated as a red line. The hemisphere segti@mmasks, where the left hemi-
sphere is colored grey and the right hemisphere is coloréwdre overlapped with the origi-
nal image.

lustrated in Fig.4.3 are not huge, using threshold = 70% 66,30 our point
of view, did not ensure that the interhemispheric shapddratks can be de-
tected and segmented accurately. There is nearly no viditiéeence between
the segmentation results of 30% and 10%. In this case, uggmghthreshold
value will preserve more GM in the brain volume. Thereforesstected 30%
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as the threshold value to remove CSF/GM voxels. The follgwiamisphere
segmentation processes for CH and CB volumes are implechessentially

in the same way as the segmentation of the WM+GM/WM mask. Tig o
difference is that thé/ and L are the leftmost and rightmost subsets of the CH
or CB boundary.

4.4 Method evaluation and results

4.4.1 Segmentation performance evaluation

Evaluating the performances of image segmentation metisaddispensable,
since none of them are generally applicable to all imaged, ciffierent ap-
proaches are not equally suitable for a particular apptinaimage segmenta-
tion algorithms can be evaluated either analytically or ieitgdly [157]. The
analytical evaluation directly examines and assessesepmentation algo-
rithms themselves by analyzing their principles and proger However, not
all properties of segmentation algorithms can be obtairyednalytical evalu-
ation, since there is no general theory for image segmentatrurthermore,
analytical evaluation often provides only qualitativeesssments of algorithms.

The empirical evaluation indirectly judges the segmeatatnethods by ap-
plying them to test images and measuring the quality of segatien results.
Empirical evaluations are mainly used to study the accucdgegmentation
results, which is the primary concern in real applicationd & difficult to be
tested with analytical evaluation. The segmentation amurs the degree to
which the segmentation corresponds to the true segmemtatid so the assess-
ment of accuracy of a segmentation requires a referencdathnepresenting
the true segmentation, against which it may be compared].[1Empirical
evaluation enables objective comparison between diffearegmentation algo-
rithms, by generating quantitative accuracy measurements

The ideal test images for empirical evaluation would refleetcharacteris-
tics of segmentation problems encountered in practicentehe can be built
and imaged, and incorporated with the imaging system cteaisiics to in-
crease the realism of the model. This kind of simulated irdupes an im-
portant role to play in quantifying algorithm performandéevertheless, such
data do not fully reflect imaging characteristics of clihicaages, and typi-
cally can not reproduce both the normal and pathologicabamaal variability
observed in clinical data. Therefore, utilizing clinicadtd is also important
for evaluating the segmentation performance on generdlgmts in practice.
The reference standard, sometimes is called gold standagcbond truth, is
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a correctly or ideally segmented image, which is obtainedthfthe same in-
put image with the evaluated segmentation algorithm. Foukited images,
the reference images can be obtained from image generataedure. For
clinical images, manual segmentations generated by ttgphgsicians or ra-
diologists are used as references. In the cases of simulasgges of realistic
brain anatomy, corresponding reference segmentatiomialyscquired based
on manual interaction as well.

The accuracy of a segmentation method can be measured agslefsim-
ilarity to the reference segmentation. A simple way to corafhe evaluated
segmentation against the reference standard is assehsirignits of agree-
ment of volume estimates of the segmented structures [1&jveder, volume
estimates may be quite similar when the segmented striscaweelocated dif-
ferently, have different shapes or have different bousgarMeasurements of
spatial overlap, such as the Dice [35] and Jaccard [58] aiityl coefficients,
are often used in practice. Another popular means to evathatsegmentation
accuracy is to measure the degree of discrepancy from teeerefe segmen-
tation by calculating the percentage of misclassified gixelvoxels (in 3D),
considering image segmentation as a pixel/voxel classditgprocess [155].
A number of other alternative metrics have been proposedtaiothe accu-
racy quantities. An exhaustive review of them is beyond tops of this thesis.
It should be noted that the most appropriate way to carryreitbmparison of
a segmentation to the reference segmentations is so fazar{@45]. Proper
evaluation approach should be selected and adjusted tessdtlre problems
confronted in practical experiments.

4.4.2 Experiments and results

The Adaptive Disconnectiomethod was compared with the linear registration
based MSP extraction algorithm, nonlinear registratioseddaMSS extraction
approach (see Section 3.2), and BrainVisa [93] that is perhsethodologically
the closest to it. Empirical evaluation was conducted toeagthe quantitative
accuracies of the methods. 10 simulated realistic images the BrainWeb
database [26, 71] and 39 clinical images of healthy braoms the LONI Prob-
abilistic Brain Atlas (LPBA40) database [117] were empldys the test data.
The BrainWeb images were of the same simulated realistiggsubnd only
differ in noise and INU levels, so that the evaluation restdir this data set
can reflect the methods’ sensitivities to the image noisellihtd Moreover,
the brain hemisphere segmentations with MSP extractedighrbnear regis-
tration existed in the BrainWeb images already, becaus@nthges had been
correctly affinely registered to Montreal Neurologicaltihge 305 (MNI305)



4.4, METHOD EVALUATION AND RESULTS 29

stereotaxic space [39]. The LPBA40 data set was used toatedloe abilities
of the methods to process images with practical noise aifd@s, and of real
subjects with normally varying morphologies. The segmismmaresults were
guantitatively evaluated against ground-truth manuatreegations. Because,
the brain domains to be segmented by Auaptive Disconnectiomethod or
BrainVisa were not exactly the same with the domains covieyetie employed
ground-truth segmentations. Therefore, measurementsabiasoverlap, e.g.
the Dice [35] and Jaccard [58] similarity coefficients, ward applicable. To
address this problem, we designed a new metric to calculatpercentage of
misclassified voxels by defining the intersection of the diosaovered by the
automatic segmentations and ground-truth segmentatsotigeaevaluation do-
main. The detailed description of the experiments and teswdre presented in
[Publication III].

According to the experimental results, tAdaptive Disconnectiomethod
performed superiorly to all the other evaluated algorithingletail, theAdap-
tive Disconnectionimethod obtained remarkably high accuracies at the occipi-
tal lobe where accurate hemisphere segmentation is difficllle obtained by
the linear or nonlinear registration based methods, becaluhe large normal
brain torque. BrainVisa also achieved high accuracies fambhemisphere
segmentation. Nevertheless, its performance to segmeiir#in hemispheres
at some interhemispheric shape bottlenecks, e.g. corfloswa, was inferior
to theAdaptive Disconnectiomethod, because its segmentation is blind to the
shape bottlenecks themselves. In addition Ataptive Disconnectiomethod
segmented the CH from CBB more precisely than BrainVisa byeting the
compartment boundaries with partial volume informatioge(§ig.9 in [Publi-
cation Ill]). Furthermore, the stability of th&daptive Disconnectiomethod
was reflected by its comparatively stable performance tdhaltest data. The
small variation of the segmentation accuracy for the sitedlaata set demon-
strated that thédaptive Disconnectiomethod is not as sensitive to the noise
and INU as other evaluated methods.

In [Publication 111}, we also applied th@&daptive Disconnectiomethod
to another clinical T1-weighted MRI data set [72] contaghimages of 22
healthy controls and 18 never-medicated patients withzegiirenia, named
Schizophrenia data set in this thesis. This is to evaluafgatformance on im-
ages with diagnosis and produced with different imagingpeaters from the
LPBA40 data set, consequently assess its robustness. Whaesenot ground-
truth segmentations for this data set. Thus, we qualitgteealuated the seg-
mentation results with visual examination. Detailed diggicn of the qualita-
tive evaluation is given in [Publication 1ll] and [158]. Frothe average cases
of segmentation results (see Fig.10 in [Publication lif]zan be seen that the



Adaptive Disconnectiomethod was accurate in decomposing the brain volume
into left and right CH, left and right CB, and BS for the Sctphoenia data set.

Besides the experiments proposed in [Publication Il1],Adaptive Discon-
nectionmethod was further qualitatively assessed with the Intevnal Con-
sortium for Brain Mapping 152 (ICBM152) database [37]. T&ighted MR
images of 152 normal subjects were employed. Excellennbdramisphere
segmentation was also obtained for the entire test daténsaddition, in [Pub-
lication 1], the quantitative evaluation results of thealor compartmental de-
composition algorithm (see Section 4.3.1) enclosed irhidheptive Disconnec-
tion method show that the algorithm can separate BS from CH and @B w
very high accuracy.

TheAdaptive Disconnectiomethod obtained excellent performance to seg-
ment brain volumes in the images of all the four test databas$alifferent
subject groups and with different imaging environments pahmeters. This
demonstrated that th&daptive Disconnectiomethod is very robust. Further-
more, because th&daptive Disconnectioalgorithm is fully automatic, we can
claim that it is reproducible. The computational complgxind the running
time of the algorithm of the proposed method was not seryjocshcerned in
this work, as the former can be overcome with more powerfohmatational
tools and the latter can be dramatically decreased by progmag the algo-
rithm in e.g. C language (we programmed the algorithm in &atl



Chapter 5

Automatic brain asymmetry
analysis

5.1 Introduction

The left and right hemispheres of human brain differ in theatomy and func-
tion. This phenomenon of lateralized difference betweeriwlo hemispheres is
called brain asymmetry. For anatomical brain asymmeteytialth and volume
of the right frontal lobe are often greater than the left, Hredwidth and volume
of the left occipital lobe are often larger than the right,[48, 77]. These right
frontal and left occipital protrusions are known as petaliahich also induce
impressions on the inner skull surface. Another prominenigetric distortion
of the brain hemispheres, known as Yakovlevian torque asttie right frontal
lobe is torqued forward the left, and the left occipital Iabeéends across the
midline (over the right occipital lobe) and skews the in&rtispheric fissure
towards the right [136] (see Fig.5.1). Brain asymmetry @utyht to originate
from evolutionary, developmental, hereditary, expei@mind pathological fac-
tors, and it has also been correlated with asymmetricahetz traits, such as
handedness, auditory perception, motor preferences,easi/ acuity [136].

MRI based brain asymmetry analysis provides methods fopcoen-assisted
diagnosis for mental diseases, e.g. schizophrenia anceife’s disease. By
studying the brain asymmetry in groups of healthy controld patients, the
differences between controls and patients can be modebtbdlgective diag-
nostic information can be provided to physicians. The beaiatomy analysis
approaches introduced in Section 1.2.2 can be applied lgznlbrain asym-
metry within MRI. Specially, interhemispheric point caspmndence needs to
be established for the morphometry or surface based shabhgsenmethods,
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Figure 5.1: Petalia and Yakovlevian torque of human brain.

besides the inter-subject point correspondence. In tlaptedn, the applications
of the Adaptive Disconnectiomethod to automate the MRI based studies of
brain asymmetry is presented.

5.2 Bilateral volumetric asymmetry analysis

Abnormal volumetric CH asymmetries in schizophrenia hagernbreported
based on manual hemisphere segmentation in MRI (e.g. [12, I8 [Pub-
lication Ill], the results of brain hemisphere segmentatiath the Adaptive
Disconnectiormethod of the Schizophrenia data set were utilized to automa
ically analyze the CH volumetric asymmetry in schizophaerimages of two
left-handed and one ambidextrous subjects were excluded tinis analysis.
The analyzed data set thus contained 18 patients (11 malesyales) and 19
healthy controls (12 males, 7 females). The difference betvthe control and
patient populations were statistically compared usingntirgparametric permu-
tation test [49] in terms of the asymmetry index (Al)
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where V; and V;, respectively, are the volumes of the right and left hemi-
spheres. The volume of each cerebral GM or WM hemisphere araputed
by integrating the amount of GM or WM contained in the coraesting hemi-
spheric voxels.

The statistical analysis results are presented in TablgRuhlication III].
In the case of cerebral GM, for males, mean Al was positivebfith patient
and healthy groups, and the absolute value of patients’ M¢amas much
lower than healthy controls’; for females, the sign of patis¢ mean Al was re-
versed from healthy controls’. These indicated a reduceebcal GM volume
asymmetry in male patients, and a reversed cerebral GM vwhAsymmetry in
female patients. According to the results of the permutatest, for females,
Al in cerebral GM of the patient group had significantly diat probability
distribution from the healthy group’(E 0.002). These findings are well in
line with the manual segmentation based study reported3hdftd the neu-
rodevelopmental hypothesis of schizophrenia.

5.3 Bilateral shape asymmetry analysis

Volumetric measurements based brain asymmetry analysi &ble to capture
the local structural differences between the brain henesgsh Detailed shape
analyses for brain asymmetry are required. Using interbeharic reflection,
VBM was applied to investigate voxel-wise differences lestw brain hemi-
spheres in tissue density [146] or tissue volume [8, 48, BK5, 130], DBM
was implemented by nonlinearly co-registering the left agbt CH with each
other for each individual subject. Then the Jacobian detemt of the defor-
mation fields was used to investigate the local interhengisplshape asymme-
try.

To study brain asymmetry with surface based hemispherigeshepresen-
tations, the vertex-wise interhemispheric and inter-sctborrespondences are
first established by using stereotaxic volume or surfacestregion [86, 102,
104, 144]. Next, one hemispheric surfaces is mirrored aydtsP and sub-
tracted the opposite surface with respect to the shape mezasnts at each
vertex. Finally, the deviations from zero are analyzed asattymmetry mea-
surements.

Especially, the method proposed in [104], which is basechetaptive
Disconnectiormethod, was applied to the same Schizophrenia data set used
in Section 5.2 to study the local shape asymmetry of CH inzegtirenia. It
was found that, in schizophrenia, reduction of shape asymnrethe supe-
rior frontal lobe in females and occipital lobe in males, amctease of shape
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asymmetry in the occipital lobe in females.

5.4 Yakovlevian torgue analysis

The general MRI brain asymmetry analyses discussed abous tm the bilat-
eral differences between brain hemispheres. As introdat#te beginning of
this chapter, besides the bilateral interhemispheric asgtmes, the Yakovle-
vian torque, which refers to the bending of the interhemasjghfissure, also
is a prominent geometric distortion caused by brain asymyn&esults from
the bilateral brain asymmetry analyses can somehow refiec¥akovlevian
torque. However, the quantification of the interhemisphésisure bending is
indirect, and the related geometric interpretation isaliffi To my knowledge,
by far, no efforts had been specially spent to analyze thesifip prominent
geometric distortion itself.

5.4.1 Shape analysis for Yakovlevian torque

In [Publication 1V], an automatic shape analysis approaah iwtroduced to an-
alyze the Yakovlevian torque in 3D MRI. In this method, fitkk left and right
CH are extracted and segmented in the brain images in thersgiace utilizing
the Adaptive Disconnectioalgorithm. For inter-subject comparison, the seg-
mented CH hemisphere volumes are linearly registered net¢GBM152 brain
space [37]. Denote the lateral, longitudinal and vertigalaof the image space
as X, Y andZ respectively. Next, a curved interhemispheric medialesgb
capturing the shape of the interhemispheric fissure is féoneach subject by
minimizing an Euclidean distance based energy function:

l’s(y,Z) = argmzin{| Dl(l’,y,Z) - Dr(x,y,z) |} (52)

wherezxs(y, z) is the lateral magnitude ¢fat(y, 2), D,(z,y, z) andD,(x, y, 2)
respectively are the Euclidean distances from a pging, z) on S to the left
and right CH hemisphere volumes. The extracted surfaisethen mathemat-
ically modeled as a polynomial surface, which is a functibito X direction
magnituders for each pair of th&” andZ coordinates values.

ki
Ts(y,z) = Z Z aijyi_jzj, (5.3)

i=0 j=0
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wherezig is the approximation of ¢ determined using least-square fittings
the degree of the two-variable polynomial. The processe®friterhemispheric
surface modeling is illustrated in Fig.1 in [Publication]lV

Curvature features, e.g. principal, Gaussian and mearattups, at each
point of the fitted interhemispheric surface are calculdtased on the x 2
Hessian matrix

H= , (5.4)

to describe the local bending of the interhemispheric fessio describe the
regional bending of the interhemispheric fissure, the natiegl average value
¢ of a curvature featur¢ in a region of interest (ROI) was defined as

0 0 ~ -~
S S8 ST P (5 + (B2) + 1 dyda
&= L y0+; D42 [ os 0z ’ (®-5)
S g T G (G20 1 dyd

wherec; = [y?,yY + 2) x [22,2Y + 2) is a single cell in the projection of the
ROI on the mid-sagittal plane in the ICBM152 spaggand:? are theY” and
Z coordinates of the origin af;; the numerator and denominator, defined with
surface integrals, respectively are the total valug @i the ROI and the total
area of the ROI.

5.4.2 Application

In [Publication 1V], this approach was applied to the Scpiz@nia data set
described in Section 5.2 to investigate the Yakovleviaquerin schizophrenia.

In this application, the extracted medial interhemisphgurfaces of all sub-
jects were fitted with the polynomial surface with degree ,aidd the selected
curvature features were the mean curvattirand curvature in the transverse
plane XY plane)Cxy. The points of interest (POIs) were located with the
projection of the average volume across all studied CH vekion MSP of the
ICBM152 space. The ROIs were extracted by masking the fittediahinter-
hemispheric surfaces with the projection of the atlas of AB®[117] on its
MSP.

For every subject, the accuracy for automatically detgdtie lateral direc-
tion of interhemispheric fissure bending with curvaturddess was evaluated
by comparing the bending direction indicated by the sigrig,adndé..,. in the
occipital region against the bending direction manualbnidfied in the trans-
verse slices of the original image. For all the 37 studiedesuib, the proposed



36 CHAPTER 5. AUTOMATIC BRAIN ASYMMETRY ANALYSIS

method obtained correct detection for 34 subjects Wittand for 36 subjects
with ¢-.,.. Moreover, in all populations, the meanstgfandé. ., in the occip-
ital region were positive, and their absolute values werag$ notably greater
than their counterparts in the frontal region (see TablenIPlblication 1V]).
This indicates that, in average, the interhemispheric ieiseending of right-
handed subject mainly occurs in the occipital region andterally rightward.
This re-confirms the hypothesis of interhemispheric fisbereding caused by
normal Yakovlevian torque [136].

The nonparametric Wilcoxon Rank Sum test [148] was utiliethvesti-
gate the statistical difference between controls and pti@ith schizophrenia
with respect to the curvature features at each POI. It wasddliat for males,
POls with the significant difference between controls arttepgs were mainly
located in the superior frontal region féF andC'xy-, and in the inferior occipi-
tal region forH (see Fig.3 in [Publication IV]).Thetest [154] was employed to
assess the group difference with respect to the integratrdg@e curvature fea-
tures in the ROIs corresponding to the frontal and occipaaés. Significant
difference was found between male controls and patients sahizophrenia
with respect to the integrated average curvatdregp = 0.0084) andéc,,
(p = 0.036) in the frontal region. This finding well matches above resaf the
point-wise analysis.

In addition to the application to the Schizophrenia data thet proposed
automatic shape analysis method was also applied to igedstthe Yakovle-
vian torque of normal brain based on hemisphere segmentagults of the
ICBM152 data set with thA&daptive Disconnectioalgorithm (described at the
end of Section 4.4.2). Segmented images of 110 right-hasdbpkcts were
used. POIls were located with the projection of the ICBM15@rage template
[37] on its MSP. For each subject, the extracted point-wisamcurvatured
was utilized to quantify the local interhemispheric fissbheading, and was re-
gressed against the age and gender factors using a lineat:mod

H ~ by + b1 AG + byGD + e, (56)

where AG andGD respectively are the subject’s age and genderthe error
term. Effects of the coefficients of interest in the lineardelo(Eq.5.6) were
tested using thé-test, and were visualized as eithet-statistic map (in the
case wheréed is univariate) or a Hotelling’d map (in the case wher# is

multivariate). False discovery rate (FDR) control [10] weamployed to cor-
rect the multiple comparisons with FDR level = 0.05. The dffi@map of in-
terhemispheric fissure bending quantified withis given in Figure 5.2. Main
rightward bending can be observed in the occipital, and Ispaations of the
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Figure 5.2: Thresholded interhemispheric fissure bending effect@etgtb,, with b; = b =
0 in Eg.5.6) map (FDR level = 0.05). Nonsignificant points wegéto be zero.

posterior parietal and posterior temporal regions; smaigghtward bending
is showed in the anterior frontal region. Main leftward bieigdis showed in
the inferior frontal and inferior temporal regions; smalieftward bending is
found in the superior temporal region. These findings cpoerd the observa-
tions from the Schizophrenia data set, and further confierhgfpothesis about
the normal Yakovlevian torque [136]. No significant locakag gender effects
were detected.
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Chapter 6

Summary of publications

In [Publication I], a novel automatic method to segment #fednd right brain
hemispheres in 3D MR images was introduced, which is basetthe@®DE
based shape bottlenecks algorithm [91] and a fast and rglausal volume
estimation approach [137]. Quantitative evaluation ofrtrethod with 10 sim-
ulated and qualitative evaluation with 5 real T1-weighteR Mhages were de-
scribed. Superiority of the proposed method to the MSP baseithod was
demonstrated.

In [Publication II], a new method was developed to autonadiijcdecom-
pose human brain MR images into CH, CB and BS. This method alatated
against manual segmentations of 35 T1-weighted MR imadesad demon-
strated to be accurate and robust.

In [Publication IIl], the Adaptive Disconnectiotechnique, for automatic
segmentation of brain volume into the left and right CH, i &nd right CB,
and BS in 3D MRI was proposed. Quantitative evaluation ofrtte¢hod and
competitive methods with the BrainWeb simulated realidtabase [26, 71]
and the LPBA40 database [117] was conducted against grisutidmanual
segmentations. It performed the best among the investigatthods. A
preliminary CH volumetric asymmetry analysis, completgdapplying the
method to a set of clinical MR images of health controls ancenenedicated
patients with schizophrenia, was also presented.

In [Publication V], a novel approach to analyze Yakovlevi@rque by
quantifying the bending of human brain interhemispherisuiie in 3D MRI
was introduced. It was applied to clinical images of heattbytrols and never-
medicated patients with schizophrenia. The hypotheslsafibrmal interhemi-
spheric fissure bending (rightward in the occipital regiom@s quantitatively
demonstrated. Significant abnormal interhemispheric iesbending in male
patients was found.



Author’s contribution

The original ideas of [Publication | and IV] were conceivedthe author and
co-author J. Tohka. The author developed the methods basd¢deodeas.
Based on the general idea of [Publication 1], the author lbgezl the new
method for brain compartmental decomposition in [Pubigatl]. In [Publi-
cation Ill], the author combined the techniques developdé@ublication | and
[l] and further developed the more advanced method. Therawpats in all
the publications were conducted by the author. All the mabions were writ-
ten by the author, following the comments and suggestiams fto-authors.
Co-author J. Hirvonen and J. Hietala provided the Schizaphrdata set and
counseled on the neurophysiology and anatomy to ensurd¢hthateveloped
methods answered to the correct questions and could bd uspfactice.



Chapter 7

Discussion

The development of neuroinformatics promises to exten@rsgvmportant
trends in scientific research into the practice of neuromee One of the most
visible changes is the integration of data into large, maéipnal databases [36].
Specially, many brain MRI databases, e.g. [38, 63, 96, 18&8}e been es-
tablished, which provide large, demographically balanaed representative
samples across wide age range to facilitate the researchroarhbrain struc-
tural changes related to aging, development or mental skseaUnder this
background, accurate and robust automatic brain imagegsisahethods are
required to analyze the images contained in these databésesitomate the
neuroanatomical brain image segmentation is the majolelettk to automate
the brain image analysis [151]. In this thesis, we first depet a novel au-
tomatic brain hemisphere segmentation algorithm for 3D MRé Adaptive
Disconnectiommethod. Next, this method was applied to studies of braucstr
tural asymmetry. We also developed an automatic shapesasatgethod based
on theAdaptive Disconnectiomethod to study the Yakovlevian torque in 3D
MRI. In this chapter, the proposed methods and the relatgerarental results
are discussed.

7.1 Automatic neuroanatomical segmentation

Segmenting the structures or regions of interest in brain MRmpossible
using only the information available in the brain imagescsirthere is not
sufficient differentiation of features in the intensity spa A priori anatom-
ical knowledge of the spatial relationships between dffierbrain structures
has to be taken into account. In Section 2.5, we reviewed tlas defor-
mation based methods [25, 55, 65] and the MAP based statistiethods
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[34, 41, 107, 138, 150, 153] for segmenting the cerebralicarsubdivi-
sions and subcortical structures in 3D MRI. The atlas de&bion based neu-
roanatomical segmentation methods directly applyahgiori neuroanatom-
ical knowledge contained in pre-delineated atlases toym®dhe segmenta-
tion through nonlinear image registration. The stati$ti@uroanatomical seg-
mentation algorithms employ training images, which areallgyproduced by
manual segmentation, to learn the prior statistics. We r@gi@wed the exist-
ing brain hemisphere segmentation methods for 3D MRI in @ref These
methods need spatial normalization with standard brairpkat® to address
the variations in location and normal brain morphology iffedlent images
[30, 54, 64, 68, 79, 94], or with pre-segmented atlas to gthdesegmenta-
tion [75, 89, 93]. These prerequisites will bring difficuttyapplying the meth-
ods to databases of specific populations, when the avaiteble template or
pre-segmented images are not suitable for the databasefktiofhdlly, using
stereotaxic image registration would make the final segatemtaccuracy sen-
sitive to the accuracy of the registration. Differentlyrfrohe discussed existing
techniques, the proposéaiaptive Disconnectiomethod does not require the
above prerequisites. When the subject orientation in tharser is given, the
method is able to automatically adapt the variation of ndbrain morphology
in different images without the aid of stereotaxic registra This gives the
method broader applications than the methods using ratistr as no specific
atlas is required. Although image registration is oftendeekin quantitative
group analyses for spatial normalization or building irgebject correspon-
dences, producing segmentation that is independent fremetistration will
avoid introducing potential errors caused by inaccuraggstation to subse-
quent analyses.

Furthermore, the segmentation procedure of most of théiegisegmenta-
tion approaches uses the intensity information containgfie processed im-
ages. Atlas deformation based [25, 55, 65] and registratiorphing-based
methods [75, 89] use the intensity information to estimhte dptimal regis-
tration between the pre-segmented image and the targeeinSsgmentation-
surface-searching based algorithms [79, 94] utilize imagensity based opti-
mization criteria to locate the segmentation surfaces. gzstmental-structure-
reconstruction based approaches [30, 54, 64, 68] use tasity gradients or
differences between GM and CSF to guide the structure rétmtion. The
segmentation accuracy of the methods depending on imagesity are af-
fected by the presence of image noise and INU. InAkleptive Disconnec-
tion method, the intensity information is only employed in imayeprocess-
ing, thus it can better tolerate the increase of image naigddldU than other
approaches. This has been demonstrated by its stable tqtigatevaluation
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results for the simulated BrainWeb images [26, 71], whiehadrthe same sim-
ulated realistic subject and only differ in levels of noise aNU.

PVE is another important issue needs to be taken into acooantomatic
neuroanatomical segmentation. For brain hemisphere segtion, the GM-
CSF surface is commonly used to guide the segmentation betthe left and
right CH and CBB. The existence of PVE always blurs the GM-G8Face.
To our knowledge, this problem is only addressed by CLASR @dong the
existing brain hemisphere segmentation techniques, whaznstructs the cor-
tical hemispheres’ surfaces using the skeletonized padlame CSF surface
rather than the GM-CSF interface. In tAdaptive Disconnectiomethod, we,
for simplicity, directly utilize the regions of partial vaine CSF/GM to locate
CH, CB and BS boundaries. It has been illustrated that ouhogetan better
tolerate the blurring of anatomical compartment boundahean the techniques
that do not model PVE, such as BrainVisa [93]. Nevertheladsy segmen-
tation errors were still observed near the compartment thaies when some
of the CSF/GM voxels were not exactly located on the bouredarhk potential
solution for this problem can be utilizing a skeletonized=E&®M surface like
in CLASP [64] instead of using the entire CSF/GM region tdniesthe struc-
ture reconstruction. In thAdaptive Disconnectiomethod, PVE modeling is
also applied to discard a certain amount of CSF/GM voxelsrdteioto make
the interhemispheric connections detectable. The impnevé for hemisphere
segmentation accuracy from this operation has been prov@&iblication I11]
and [158]. In this work, the threshold value for controlihg ICSF/GM remov-
ing was set to be constant. It is meaningful, in the futurdind an effective
approach to adaptively determine the threshold value féerént images.

Most of the existing brain hemisphere segmentation metsedment the
brain hemispheres in MRI taking the entire hemispheric blanes into ac-
count. In fact, the brain hemispheres are not connectegwhere. Therefore,
separating the brain hemisphere volumes by disconnedterg bnly at the in-
terhemispheric shape bottlenecks would avoid the segti@mirrors caused
by incorrect detection of the hemispheric boundaries. BytinVisa and the
Adaptive Disconnectiomethod [93] produce the brain hemisphere segmenta-
tion in this way. However, the traditional shape bottlersealgorithm (using
morphological erosion and conditional dilation) utilizedBrainVisa conducts
the disconnection by breaking the volume shape into seppeats without de-
tecting the shape bottlenecks. As showed in Section 4Hdiresults in that
the segmentation performance of BrainVisa is inferior eAkaptive Discon-
nectionmethod that detects and cuts the shape bottlenecks usiR@ptadased
shape bottleneck algorithm [91].

The Adaptive Disconnectiomethod was quantitatively evaluated with the
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BrainWeb simulated image database [26, 71] and the LPBA4faloclini-
cal scan database [117], and qualitatively tested with lihecal Schizophrenia
data set [72] and the ICBM152 normal clinical scan databdasg Because of
the methodological characteristics discussed above, #tbhad obtained high
and stable accuracy and excellent performance to segmaint \wlumes in
the images of different subject groups and with differeraging environments
and parameters. This proves that theaptive Disconnectiomethod is very
robust. Moreover, due to the reproducibility endowed byftheautomaticity,
the segmentation errors of tiAeaptive Disconnectiomethod could be pre-
dicted before applying the method so that the subsequentitateve analysis
errors could be predicted or compensated for with some ppoistprocesses.
For example, in one of the 40 images contained in the LPBA48kdase, the
longitudinal-distributed INU (the lower part of the imagemuch darker than
the upper part) is extremely severe so that the employed BifChot correct
it to an acceptable level. This will lead to that most of theels in CBB that
in fact belong to WM would be classified as belonging to GM oFCSonse-
quently, theAdaptive Disconnectiomethod would not be able to find appro-
priate seed voxels to reconstruct the structures of CB andI'BiS image was
excluded in the experiments. This is the only exception wdronted among
the over 200 testing images used in this work.

7.2 Brain structural asymmetry studies

The study of human brain asymmetry is a significant reseangic in neuro-
science, because it can reveal the evolutionary, hergddavelopmental and
pathological information of human brain and help early d@gjs for men-
tal diseases and imaging based drug development. Manyestindive ob-
served schizophrenia-related reduction or inverse irctral brain asymme-
tries [13, 105, 119, 124]. However, due to lack of sufficieatadbases and ac-
curate and robust analysis methods, several investigiiited to replicate the
findings in schizophrenia [2, 28, 59, 85], or even obtaineaflading findings
[102]. In this thesis, thé&daptive Disconnectiomethod was applied to the
analyses of CH volumetric [Publication 1llI] and shape asyatnes [104]. We
obtained findings that are well in line with the reported malraegmentation
based study [13] and the neurodevelopmental hypothesigaof Bsymmetry.
This demonstrates the ability of thedaptive Disconnectiomethod to auto-
mate the brain asymmetry studies.

In addition, an automatic shape analysis approach wasas@based on
theAdaptive Disconnectiomethod to analyze the Yakovlevian torque by quan-
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tifying the bending of the interhemispheric fissure. Conspawith conven-
tional methods investigating the bilateral structuralet#nce between the brain
hemispheres [8, 48, 88, 130, 146], this approach providepmatogical inter-
pretations of the Yakovlevian torque that are easier to tgtded. In the appli-
cations of the method to the Schizophrenia data set and B 162 database,
the hypothesis of normal interhemispheric fissure bendiag ®onfirmed, and
abnormal Yakovlevian torque was found in male patients withizophrenia
in the frontal and occipital regions. These results show tthia shape anal-
ysis approach is applicable for studying Yakovlevian terdpr either normal
population or patients with mental diseases.

In the experiments of the automatic shape analysis methsmtibed in Sec-
tion 5.4.2, the polynomial surface used to mathematicaligleh the shape of
the interhemispheric fissure is selected as the one wittedegjr4. Because it
is the lowest degree for the curvature features, computseldoan the second
fundamental form of the polynomial surface, to remain nogdir properties. It
is obvious that more details about the longitudinal shapkeinterhemispheric
fissure could be preserved when using the polynomial sigfah higher de-
gree. Nevertheless, these details would bring disturbfam@apturing the prin-
cipal bending tendency of the interhemispheric fissure.sTthe degree of the
polynomial surface should not be very large so that it camti@osh enough. To
find the optimal degree of the polynomial surface is a medulirigture work
to enhance the accuracy of the analysis method. In additienemployed
curvature features were the mean curvature and the cuevisittine transverse
plane, whose magnitudes and directions can be straigrafdiywreflected by
their absolute values and signs. In fact, several otherature features can be
simply computed from the second fundamental form of the patyial surface,
e.g. the Gaussian curvature, maximum and minimum curva{prencipal cur-
vatures) and principal directions. Nevertheless, the ggoainterpretations of
them could be understandable only when they are associatie@ithe other
curvature features. Therefore, simple statistical hypsithtests are not valid
to analyze these features together, more complicated arsheeld techniques,
e.g. pattern recognition or texture analysis, are needed.

7.3 Other potential applications

The applications of thé&daptive Disconnectiomethod are more than to the
brain asymmetry studies proposed in this thesis. Brain figinere segmen-
tation is often needed for various biomedical and neurosidie applications,
because most of brain structures have the bilateral maogland functional
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lateralization. Brain hemisphere segmentation is alsoired to separate brain
lesions in the left and right brain hemispheres [57], andéanmany important
brain structures that can be only viewed in the interhenggphmedial sur-
face. TheAdaptive Disconnectiomethod can be applied to study other smaller
brain anatomic sub-divisions as well, e.g. the ventriceyatem, as long as the
segmentation problem can be addressed by the shape bcktideiection and
cutting.

7.4 Conclusions

The objective of this thesis is to develop accurate, robndtautomatic brain
MRI analysis methods and to validate their abilities to sdarge databases
based brain researches. According to the results of methaldagions and
applications to brain asymmetry studies, it can be concldldat the automatic
3D brain MRI analysis methods developed in this thesis haytedccuracy and
outstanding robustness, and can facilitate automatic ecwrate brain anatomy
studies with large brain imaging databases.
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