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Abstract

With the development of neuroinformatics, a number of largeinternational
databases of brain imaging data have been built by integrating images collected
from multiple imaging centers or neuroscientific research institutes. This thesis
aims to develop accurate, robust and automatic brain image analysis methods
that can be applied to analyze the images contained in the large databases.

First a fully automatic algorithm, theAdaptive Disconnectionmethod, was
developed to segment the brain volume into the left and rightcerebral hemi-
spheres, the left and right cerebellar hemispheres and the brainstem in three-
dimensional magnetic resonance images. Using the partial differential equa-
tions based shape bottlenecks algorithm cooperating with an information po-
tential value clustering process, the method detects and cuts, first, the compart-
mental connections between the cerebrum, the cerebellum and the brainstem
in the white matter domain, and then, the interhemispheric connections of the
extracted cerebrum and cerebellum volumes. The modeling ofpartial volume
effect is used to locate cerebrum, cerebellum and brainstemboundaries, and
make the interhemispheric connections detectable. With the knowledge of the
subject orientation in the scanner, theAdaptive Disconnectionmethod can auto-
matically adapt the variations in subject location and normal brain morphology
in different images without the aid of stereotaxic registration. The method was
evaluated with one simulated realistic database and three clinical databases. The
evaluation results showed that the developed method is veryaccurate and can
well tolerate the image noises and intensity non-uniformity. TheAdaptive Dis-
connectionmethod was applied to analyses of cerebral structural asymmetries
in schizophrenia. The obtained results were consistent with previously reported
observations and hypotheses of abnormal brain asymmetry inschizophrenia.

Furthermore, an automatic shape analysis method was developed based on
the Adaptive Disconnectionmethod for studying the Yakovlevian torque in
three-dimensional brain magnetic resonance images by numerically modeling
the interhemispheric fissure shape with polynomial surfaceand measuring its
regional averaged and local curvature features. This shapeanalysis method can
produce straightforward quantification and geometric interpretation of local and
regional Yakovlevian torque.
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René Westerhausen, PhD
Department of Biological and medical Psychology
University of Bergen

iv



Contents

Abstract i

Preface iii

List of publications vii

List of abbreviations viii

1 Introduction 1
1.1 Neuroinformatics . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Automatic brain image analysis . . . . . . . . . . . . . . . . . 2

1.2.1 Brain image segmentation . . . . . . . . . . . . . . . 3
1.2.2 Brain anatomy analysis . . . . . . . . . . . . . . . . . 4

1.3 Objectives and structure of the thesis . . . . . . . . . . . . . . 4

2 Brain MRI analysis 7
2.1 Skull-stripping . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Intensity non-uniformity correction . . . . . . . . . . . . . . . 8
2.3 Brain tissue classification and partial volume modeling. . . . 9
2.4 Spatial normalization . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Neuroanatomical segmentation . . . . . . . . . . . . . . . . . 12
2.6 Brain shape analysis . . . . . . . . . . . . . . . . . . . . . . 13

3 Brain hemisphere segmentation 15
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Segmentation surface searching . . . . . . . . . . . . . . . . . 16
3.3 Compartmental structure reconstruction . . . . . . . . . . . .18
3.4 Challenges and methodological limitations . . . . . . . . . .. 19



4 Adaptive Disconnection method 21
4.1 Shape bottlenecks algorithm . . . . . . . . . . . . . . . . . . 21
4.2 Partial volume modeling . . . . . . . . . . . . . . . . . . . . 23
4.3 The algorithm ofAdaptive Disconnection. . . . . . . . . . . 25

4.3.1 Brain compartmental decomposition . . . . . . . . . . 25
4.3.2 Cerebral and cerebellar hemisphere segmentation . . .26

4.4 Method evaluation and results . . . . . . . . . . . . . . . . . 27
4.4.1 Segmentation performance evaluation . . . . . . . . . 27
4.4.2 Experiments and results . . . . . . . . . . . . . . . . 28

5 Automatic brain asymmetry analysis 31
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Bilateral volumetric asymmetry analysis . . . . . . . . . . . .32
5.3 Bilateral shape asymmetry analysis . . . . . . . . . . . . . . . 33
5.4 Yakovlevian torque analysis . . . . . . . . . . . . . . . . . . 34

5.4.1 Shape analysis for Yakovlevian torque . . . . . . . . 34
5.4.2 Application . . . . . . . . . . . . . . . . . . . . . . . 35

6 Summary of publications 39

7 Discussion 41
7.1 Automatic neuroanatomical segmentation . . . . . . . . . . . 41
7.2 Brain structural asymmetry studies . . . . . . . . . . . . . . . 44
7.3 Other potential applications . . . . . . . . . . . . . . . . . . . 45
7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography 47

Publications 63

vi



List of publications

This thesis is based on the following publications. These are referred to in the
text as [Publication x], where x is a roman numeral.

Publication-I L. Zhao, J. Tohka, and U. Ruotsalainen. Accurate 3D left-right
brain hemisphere segmentation in MR images based on shape bottlenecks
and partial volume estimation. In B.K. Ersboll and K.S. Pedersen, edi-
tors,Proc. of 15th Scandinavian Conference on Image Analysis, SCIA07,
Lecture Notes in Computer Science 4522, pages 581 - 590, Aalborg, Den-
mark, Springer Verlag, June 2007.

Publication-II L. Zhao and J. Tohka. Automatic compartmental decomposition
for 3D MR images of human brain.Proc. of 30th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society,
EMBC08, pages 3888-3891, Vancouver, Canada, August 2008.

Publication-III L. Zhao, U. Ruotsalainen, J. Hirvonen, J. Hietala and J. Tohka.
Automatic cerebral and cerebellar hemisphere segmentation in 3D MRI:
adaptive disconnection algorithm.Medical Image Analysis, volume 14,
number 3, pages 360 - 372, 2010.

Publication-IV L. Zhao, J. Hietala and J. Tohka. Shape analysis of human
brain interhemispheric fissure bending in MRI.Proc. of 12th Interna-
tional Conference on Medical Image Computing and Computer Assisted
Intervention, MICCAI09, Lecture Notes in Computer Science5762, pages
216 - 223, London, United Kingdom, Springer Verlag, September 2009.

vii



List of abbreviations

3D Three-dimensional
AC Anterior commissure
ADFI Alzheimer’s Disease Neuroimaging Initiative
AFNI Analysis of Functional NeuroImages
AI Asymmetry index
ANIMAL Automated non-linear image matching and anatomicallabeling
BET Brain Extraction Tool
BS Brainstem
BSE Brain Surface Extractor
CB Cerebellum
CBB Cerebellum+brainstem
CH Cerebrum
CLASP Constrained Laplacian Anatomic Segmentation using Proximity
CSF Cerebrospinal fluid
DBM Deformation-based morphometry
EM Expectation maximization
FDR False discovery rate
GM Gray matter
ICBM International Consortium for Brain Mapping
INU Intensity non-uniformity
LPBA LONI Probabilistic Brain Atlas
IPV Information potential value
MAP Maximum a posteriori
MNI Montreal Neurological Institute
MRI Magnetic resonance imaging
MSP Mid-sagittal plane
MSS Mid-sagittal surface
PC Posterior commissure
PDE Partial differential equation
PET Positron emission tomography
POI Point of interest
PVE Partial volume effect
ROI Region of interest
VBM Voxel-based morphometry
WM White matter

viii



Chapter 1

Introduction

1.1 Neuroinformatics

The interdisciplinary field of neuroinformatics combines neuroscientific re-
search with information science/technology to develop andapply advanced
tools and approaches for understanding the structure and function of the brain
[36]. This new established research field covers three primary areas:

1. tools and databases for managing and sharing neuroscientific data;
2. methods and tools for analyzing the data;
3. computational models of the nervous system and neural processes.

neuroscientific research aims to understand the structure,function, and de-
velopment of the nervous system in health and disease. Such understanding
requires the integration of huge amounts of heterogeneous and complex data
collected at multiple levels of investigation [14]. A number of neuroscience
databases have been built based on a variety of data types, such as descriptive
and numerical data, postmortem brain sections or three-dimensional (3D) brain
images. These databases provide information about gene expression, neurons,
macroscopic brain structure, and neurological or psychiatric disorders. This
thesis concentrates on the databases of 3D brain images conveying the macro-
scopic anatomical information of human brain. Presently, the anatomical in-
formation of human brain is usually noninvasively acquiredusing the magnetic
resonance imaging (MRI). Databasing a large number of MR images of hu-
man brain is important to address the normal variation in brain morphology in
wide populations, and to find the structural changes relatedto aging, develop-
ment or mental disorders. For example, the Brain Development Cooperative
Group (including more than ten imaging centers and biomedical and neurosci-
entific research institutes) [38] built a large, demographically balanced brain
MRI/clinical/behavioral database for development research on normal brain. In
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this project, six pediatric study centers acquired images of about 500 children,
and a data coordinating center consolidated these images. In another project,
dozens of medical imaging centers and neuroscientific research institutes, coop-
erating together, built an Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database [100], by collecting and integrating MRI and positron emission to-
mography (PET) scans of approximately 800 subjects. This ADNI database is
applied to identify neuroimaging and other biomarkers of the cognitive changes
associated with mild cognitive impairment and Alzheimer’sdisease.

Besides the two examples, many more large brain imaging databases of di-
verse imaging modalities have been built for various biomedical and neurosci-
entific applications. Nevertheless, data only make sense inthe context of tools
[14]. The problem is raised of how to develop effective methods and tools to
analyze these databases. The first requirement is accuracy [21], i.e. the analysis
results need to be able to accurately convey the actual anatomical or functional
information of the studied subjects. The accuracy of an analysis method in
practice is always affected by variations (sometimes unpredictable) in its im-
plementing environment, e.g. data damage, alteration or loss of functionality,
even though it has been methodologically optimized. Robustness [21] refers to
the capability to cope well with the variations. From above examples of brain
imaging databases, it can be seen that the images contained in the databases are
often from multi-scanner and multi-center origin, so that the images may greatly
differ in scanning environments, acquisition protocols and image quality. Con-
sequently, the requirement for the robustness of the corresponding brain image
analysis techniques is especially high. Moreover, neuroinformatics also aims
to integrate and analyze the experimental data and results reported in thousands
of publications for improving existing theories about the brain. This requires
that the analysis needs to be reproducible to enable comparison between results
of different studies. Reproducibility [21] refers to the ability of a test or ex-
periment to be accurately reproduced, or replicated, by someone else working
independently.

The third major direction of neuroinformatics, i.e. the development of com-
putational models of the nervous system and neural processes, is out of the
scope of this thesis, thus we will not go to details about thisaspect.

1.2 Automatic brain image analysis

Traditionally, brain images are qualitatively analyzed with visual examination
to locate and identify tumors, stroke or other signs of problems for diagnosis.
This kind of qualitative analysis is time- and labor-consuming, and the pro-
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duced measurements are subjective. In addition, qualitative analysis is rather
difficult to reproduce. Experiments have shown that any given radiologist is
unlikely to precisely agree even with himself if asked to analyze the same scan
a week or two later [7]. Currently, the focus of medical imaging based brain
research is shifting from qualitative analysis to quantitative analysis, which can
produce reproducible and objective measurements. Based onlarge databases,
quantitative analysis can detect more subtle group effectsor small longitudinal
changes over time, which might be used as measures of development, aging or
disease.

1.2.1 Brain image segmentation

Before extracting and analyzing the quantitative information for quantitative
brain image analysis, image segmentation has to be conducted to delineate the
structures or regions of interest in the image. This work, previously, was mostly
completed by trained clinicians with manual or semi-manualmethods. This task
is more and more difficult as the size and number of images increase. Therefore,
the brain image segmentation has a far greater cost comparedwith the subse-
quent computation and analysis of the structural measurements, which can be
performed automatically based on the intensity and geometric information con-
tained in the image. Thus, the major task to automate the brain image analysis
is to automate the brain image segmentation.

In addition to saving time and labor, automatic image segmentation pro-
duces more reproducible results compared to manual segmentation, because
automatic methods always work in the same way [151]. Automation of im-
age segmentation also helps reduce errors caused by fatigue. These advantages
of automatic image segmentation make predicting segmentation error or fail-
ure possible, so that the images containing artifacts that could lead to errors or
failure but can not be compensated for can be discarded in advance.

Automation of brain image segmentation is rather complicated and diffi-
cult, because it is not possible using only the information available in the im-
ages. Different brain structures often have the same or verysimilar intensity
values, and the subject morphology varies between different individuals.A pri-
ori anatomical knowledge of the spatial relationships betweendifferent brain
structures has to be taken into account. Using high-level prior knowledge could
simplify the segmentation problem, nevertheless, the complexity of the method
would be increased and the robustness of the method would be degraded. Usu-
ally, a computerized brain atlas or pre-segmented brain template is utilized to
assist in automatic brain image segmentation through stereotaxic image regis-
tration. In this way, the final segmentation accuracy would be sensitive to the
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accuracy of the stereotaxic registration, which is affected by several factors,
e.g. the choice of the algorithm and the template image used.Furthermore,
employing image registration also would weaken the segmentation methods’
robustness, because the available atlas or template may notbe suitable to the
processed data set. For example, an atlas of adult’s brain can not be applied
to process images of children. In practical application, the accuracy and ro-
bustness of automatic brain image segmentation methods arealso challenged
by the image noise and equipment-dependent artifacts, the levels of which vary
between different scanners. Therefore, the automation of brain image segmen-
tation is still one of the most studied topics in brain image analysis.

1.2.2 Brain anatomy analysis

After segmenting the brain volume in MRI, the simplest possibility to study
brain anatomy is to analyze the global and regional volumes of the brain. For
this purpose, the volumes of the studied subjects or the segmented subparts are
computed, and the differences between two groups or the volume changes in
the longitudinal studies are statistically analyzed. Volume analysis can detect
global anatomic properties or variabilities, e.g. atrophyor dilation. However,
local structural changes may be overlooked, because: two structures having
equal volumes might have completely different shapes; and local shape varia-
tion does not necessary result in a detectable volume change. Additionally, the
volume alone is not able to give a thorough description on thestructure. There-
fore, more detailed shape analysis is needed for more accurate understanding of
the human brain and its changes, and to discover the shape changes related to
certain factors of interest. Shape analysis provides complementary information
that may improve results in many cases. Shape analysis may beparticularly
useful for examining subtle structural changes that do not manifest as volume
variation of the whole structure. It should be emphasized that shape analysis is
not intended to completely replace volume analysis.

1.3 Objectives and structure of the thesis

The objective of this thesis is to develop completely automatic 3D brain MR
image analysis methods, which are able to serve the large databases based brain
anatomy studies. First, we developed anAdaptive Disconnectionmethod to
segment the brain volume into the left and right hemispheresof the cerebrum
(CH), the left and right hemispheres of the cerebellum (CB) and the brainstem
(BS) in MRI. This method was applied to study structural asymmetries of hu-



man brain. Second, based on theAdaptive Disconnectionmethod, an automatic
shape analysis approach was developed to investigate the Yakovlevian torque
of human brain by quantifying the interhemispheric fissure bending.

The principal brain MRI analysis approaches in the scope of this thesis, such
as skull-stripping, intensity non-uniformity correction, brain tissue classifica-
tion, partial volume modeling, spatial normalization, neuroanatomical segmen-
tation and brain shape analysis, are introduced in Chapter 2. Automatic brain
hemisphere segmentation techniques (to segment the left and right hemispheres
of CH, the left and right hemispheres of CB and BS in 3D MRI) arereviewed in
Chapter 3. With this review, the challenges and methodological restrictions are
discussed. Chapter 4 gives description of theAdaptive Disconnectionmethod
and how the problems discussed in the above chapter were settled. Chapter
5 focuses on the applications ofAdaptive Disconnectionmethod to MRI based
brain asymmetry studies. The major contributions of this thesis are summarized
in Chapter 6. The methods and results presented in this thesis are discussed in
Chapter 7.
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Chapter 2

Brain MRI analysis

A procedure of automatic quantitative brain image analysisconsists of the fol-
lowing principal steps: first, image quality improvement tocompress the image
noise and artifacts; second, image segmentation to delineate the structures or
regions of interest; third, spatial normalization with stereotaxic image registra-
tion; forth, quantitative information extraction and statistical analysis or com-
parison between populations. It should be noted that these steps, especially
image segmentation and spatial normalization, could be arranged in different
order for different analysis algorithms or for different investigation purposes.
It is also possible to use a single framework to simultaneously produce joint
solutions for image quality improvement, image segmentation and spatial nor-
malization, e.g. Ashburner and Friston’s unified segmentation algorithm [5].
Fig.2.1 illustrates the brain MRI analysis pipeline used inthis thesis. In this
chapter, the brain MRI analysis techniques related to the work proposed in this
thesis are introduced.

Figure 2.1: Automatic brain MRI analysis pipeline used in this thesis.

2.1 Skull-stripping

Quantitative morphometric studies of brain MRI often require a preliminary
step to isolate brain from extracranial or ’nonbrain’ tissues. This preliminary
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step is commonly referred to as skull-stripping [40]. Numerous automatic skull-
stripping methods have been developed and widely used, which are based on the
signal intensity and signal contrast in the MR image. Thresholding based meth-
ods define minimum and maximum values along the axis representing voxel
intensity histogram (e.g. [32]). Multivariate histogramsare used when a study
collects images with varying contrast. Morphology or region-based methods
(e.g. 3dIntracranial in the Analysis of Functional NeuroImages (AFNI) soft-
ware package [27]), cooperated with intensity thresholding methods, use con-
nectivity between regions, such as similar intensity values. Skull-stripping in
MRI can also be obtained by cooperating morphological methods with edge
detection [e.g. Brain Surface Extractor (BSE) [113] in the BrainSuite soft-
ware package [118]]. Watershed algorithms try to find a localoptimum of the
intensity gradient for preflooding of the defined basins to segment the image
into brain and nonbrain components (e.g. [50]). Surface-model-based methods
extract the brain volume through modeling the brain surfacewith a smoothed
deformed template [e.g. the FreeSurfer software package [30], Brain Extraction
Tool (BET) [122]]. A recent Hybrid Watershed method [116] was developed by
incorporating the watershed techniques with the surface-model-based methods
to locate the brain boundary in MRI.

2.2 Intensity non-uniformity correction

One of the major artifacts affecting the results of automatic quantitative brain
MRI analysis is the intensity non-uniformity (INU), which refers to the phe-
nomenon of nonuniform tissue intensities in the images [121] (see Fig.2.2).
INU has no anatomical relevance, and for MRI it is due to the combined effect
of the imaged subject, the MR pulse sequence and the imaging coils. Therefore,
MR physicists correct INU in MRI by improving the image acquisition protocol
with the prior knowledge about these factors [9].

Differently, image processing specialists correct INU in MR images by us-
ing numerous methods based on some assumptions regarding the acquisition
process. Such as, correction algorithms based on the grayscale spatial distribu-
tion rely on the assumption that the variation of INU is spatially smooth and
slowly varying across the image and that the ideal image is piecewise con-
stant. In this way, some methods model INU as a smooth surfaceusing spline
[31, 73, 160] or polynomial [97, 125, 135] basis functions, and then the cor-
rection is conducted by dividing the corrupted image by the fitted surfaces.
Some other methods employing low-pass filtering [53, 67, 101, 141, 159] or
homomorphic filtering [19, 47, 60] first extract INU as a signal consisting of
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Figure 2.2: Example of intensity non-uniformity in MR brain image. The intensities of the
white matter at the left and right sides are notably higher than other white matter area.

low spatial frequency intensity variation and then divide the corrupted data by
the extracted INU for correction. Besides in the spatial domain, INU correc-
tion can also be achieved in other domains [9], such as the Fourier domain
[24, 143], the wavelet domain [52, 83], and the probability density functions
domain [81, 90, 98, 120, 123, 142]. In the Fourier domain, INUis corrected by
applying the low-pass gaussian filters. In the wavelet domain, the corrupted
image is first decomposed into a cascade of orthogonal approximation sub-
spaces containing low-frequency information and detail subspaces containing
high-frequency information for different spatial resolutions. Next, INU is esti-
mated and corrected in the approximation subspaces. In the probability density
functions domain, INU is considered as a convolution term smoothing the real
intensity distribution and increasing entropy. Thus, INU can be corrected with
an entropy minimization framework. Moreover, it is also very typical to find a
joint solution to both brain tissue classification and INU correction with statis-
tical methods, e.g. the Expectation-Maximization (EM) based [139, 140, 147]
or fuzzyc-means clustering [106] based methods.

2.3 Brain tissue classification and partial volume
modeling

Brain tissue classification in 3D MRI is to classify and labelthe voxels in a
brain image as belonging to one of the three primary tissue types: gray matter
(GM), white matter (WM) and cerebrospinal fluid (CSF), according to certain



10 CHAPTER 2. BRAIN MRI ANALYSIS

criteria. This process is important for multi-modality image correlation, visual-
ization, and quantification, and clinical uses such as tumorand lesion detection
[111]. Brain tissue classification in MRI can be obtained using thresholding
based techniques [61, 70, 82, 127], which attempt to determine a threshold
value that separates the desired tissue types. However, thresholding based ap-
proaches are very sensitive to image noise and artifacts. Currently, statistical
classification based algorithms [33, 56, 109, 139, 140, 147], which are more
robust and have rigorous mathematical foundations in stochastic theory, have
been widely applied. In these methods, the probability density functions of tis-
sue intensity for different tissue classes are parametrically modeled as one or
more Gaussian mixtures. EM algorithm is often used to estimate the model
parameters, and Markov random field is usually employed to model the spatial
interactions between neighboring voxels. Another major class of brain tissue
classification techniques uses clustering-based methods,e.g. the fuzzyc-means
clustering algorithms [11, 17, 51, 80, 106]. The clustering-based methods at-
tempt to classify a voxel to a tissue type by using the notion of similarity to the
tissue type.

Most of the above discussed methods produce only hard classification be-
tween GM, WM, and CSF. However, due to the existence of the partial volume
effect (PVE), i.e. a single voxel can contain multiple tissue types due to finite
image resolution (see Fig.1 in [Publication III]), labeling a voxel as just a sin-
gle tissue type can not reveal all possible information about the tissue content of
that voxel [137]. This can be problematic in small structures or highly convo-
luted areas of the brain. The fuzzyc-means clustering algorithm allows partial
membership in different tissue classes. Thus, it can be usedto model PVE, e.g.
in [17, 106]. The most commonly used, statistically based model of PVE is the
mixel model proposed by Choi et al. in [22]. This mixel model assumes that the
intensity value of each voxel in the brain image is a realization of a weighted
sum of random variables each of which characterizes a pure tissue type. Based
on the mixel model or a closely related model without trying to estimate the
weighting parameters, some methods [74, 111, 114] were developed to classify
the voxels contained in MR brain volumes into not only the pure tissue types
but also their mixures (GM/WM, GM/CSF and CSF/background).This kind of
voxel labeling concerning the partial volume mixtures is called partial volume
voxel classification. Estimating the amount of each brain tissue types contained
in each voxel is called partial volume estimation. It provides more interesting
information than merely identifying voxels containing PVEfor many neurosci-
entific studies, e.g. cortical surface extraction [1, 64]. Partial volume estimation
methods based on the mixel model [103, 118, 137] obtain the fractional content
of each brain tissue type in each voxel by estimating the weighting parameter
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with maximum-likelihood estimation.

2.4 Spatial normalization

Spatial normalization of brain images refers to the stereotaxic image registra-
tion process to transform individual images to match a standard brain template.
In quantitative brain MRI analysis, spatial normalizationis often applied to
compensate for the subject movement, inter-image differences in voxel size and
image resolution, or to build reliable spatial correspondences of homologous
areas between individuals. Sometimes to assist brain neuroanatomical segmen-
tation, spatial normalization is also employed to compensate for the variations
in subject’s location and morphology, and consequently to make the employed
a priori anatomical knowledge applicable for the segmentation problem.

In general, there are two kinds of image registration used for spatial nor-
malization: linear and nonlinear registration. A 3D linearregistration, includ-
ing rigid (only rotations and translations) and affine transformation (rotations
and translations as well as stretches and shears), can be described with a4 × 4
constant transformation matrix as
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whereα = [α1, α2, α3]
T andβ = [β1, β2, β3]

T are the coordinate vectors in the
original and transformed images respectively,A is the composition of the rota-
tion, stretch and shear matrices,t is the translation vector. Nonlinear registra-
tion (nonrigid or elastic transformation), can not be represented using constant
matrices. Most applications represent nonlinear transformations in terms of a
local vector displacement field:

βi = αi + Ti(α), (2.2)

wherei = 1, 2 or 3 in 3D,Ti(α) is the displacement function for theith coordi-
nate with respect to the original coordinates, or as polynomial transformations
in terms of the original coordinates.

A simple possibility to compute the registration parameters for spatial nor-
malization is to use volume-matching algorithms, such as the Talairach pro-
portional grid normalization [128], which use manually identified landmarks to
find the best scaling parameters. Current automatic image-matching algorithms
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[132] use a mathematical measure of overall image mismatch and a minimiza-
tion algorithm with iterative changes in transformations to find the best set of
transformations to match the image to the template. These methods usually first
optimize linear transformation parameters (translations, rotations, stretches and
often shears), and then find the best set of nonlinear warpingparameters to fur-
ther match the detail of brain shape [3, 115, 149]. Sulcal-matching methods
[42, 43, 132, 134] attempt an explicit match of sulcal anatomy between sub-
jects. In this type of methods, first a model of the cortical surface is extracted
from the image, then the model of the cortical surface is distorted to match it
with the template.

2.5 Neuroanatomical segmentation

Automatic neuroanatomical segmentation of brain image refers to the delin-
eation of structures or regions of interest in certain braintissue types. This is
a comprehensive issue. Different approaches anda priori anatomical knowl-
edge are required for the segmentation of different neuroanatomical regions.
The methods for segmenting the left and right hemispheres ofCH, the left and
right hemispheres of CB and BS in 3D MRI (this segmentation isnamed ’brain
hemisphere segmentation’ in the following context), whichis the concentration
of this thesis, will be reviewed in the next chapter in detail. Here, the existing
techniques for the segmentation of other neuroanatomical structures or regions
of interest, such as the cerebral cortical subdivisions andsubcortical structures
(hippocampus, caudate, putamen and lateral ventricles), are briefly introduced.

A popular approach to obtain the segmentation of brain neuroanatomical
substructures in 3D MR images is to use atlas deformation. For example, the
automated nonlinear image matching and anatomical labeling (ANIMAL) al-
gorithm [25] labels brain voxels as distinct structures by deforming one MRI
volume to match another previously parcellated MRI template volume. It builds
up the 3D nonlinear deformation field in a piecewise linear fashion, fitting cu-
bical neighborhoods in sequence. The accuracy of atlas deformation based
segmentation methods is limited by diverse types of error. These errors in-
clude inaccuracies of the atlas used as a starting point, errors in the registration
process, and localized failure of the assumption of the inter-subject correspon-
dence. Resently, it has been realized that the accuracy of atlas deformation
based segmentations can be improved by registering a singleimage with mul-
tiple atlases. The multiple-atlas deformation based approaches (e.g. [55, 65])
combine segmentations obtained based on a set of single atlases using a suit-
able decision fusion algorithm. In this way, the resulting fused segmentation
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can be more accurate than any of the single segmentation as random errors tend
to cancel each other out in the combination.

The 3D segmentation problem can also be solved with a maximuma pos-
teriori (MAP) framework in which both appearance (voxel intensities) models
and shape (geometry) priors are defined [138]. Often, eithera generative or a
discriminative model is used for the appearance model, while the shape models
are mostly generative based on either local or global geometry. Once an over-
all target function is defined, different methods, such as Iterated Conditional
Modes algorithm [41], the variational method [138, 153], EM[107], Markov
Chain Monte Carlo [34, 150], are then applied to find the optimal segmenta-
tion.

2.6 Brain shape analysis

Currently, the interest of brain anatomy study has been transferred from the
global or regional volume measurements based analysis to more complicated
shape analysis. Based on MRI, global shape indices measuring the sphericity
[78], the cross-sectional area [152], surface area and depth of the object of inter-
est [92] have been applied to reveal information on the global shape variabilities
of human brain. Nevertheless, they do not give information on the location of
the shape changes.

The progress in brain atlases and high-dimensional mappinghave enabled
the accurate local computational analysis of the brain structures [133]. Voxel-
based morphometry (VBM) [4] aligns the brain images into thesame coordinate
system to obtain the voxel correspondence, and then analyzes the distributions
of the brain tissue classes (GM, WM and CSF) in each voxel within or be-
tween groups. The geometric properties of human brain can beanalyzed with
the deformation-based morphometry (DBM). The voxel-wise correspondence
is established using nonlinear registration, and the resulting deformation fields
are used to analyze the inter-subject brain differences. The deformation fields
[131], their parameters [6], or features computed from the norm, divergence,
and Jacobian determinant of the deformation fields [45, 130]provide informa-
tion on the local shape and volume changes. Techniques basedon either VBM
or DBM are usually employed to study the whole brain, and the analysis is not
focused on any particular brain structure.

To acquire measurements of the local shape of brain, the shape represen-
tations of brain and its substructures can be modeled with deformable surface
meshes [99]. Detailed shape analysis of a particular brain structure is conducted
by utilizing the correspondence between the shape representations, which is



mostly obtained using high-dimensional mapping [16, 23, 29, 66, 133]. After
the correspondence is found, the signed distances or differences of shape mea-
surements between the studied shape and the reference shapeor the subject pair
are utilized to quantify the shape difference at each vertex(voxel on surface)
[46, 66, 76, 129].



Chapter 3

Brain hemisphere segmentation

3.1 Introduction

Three primary anatomical subdivisions of human brain are CH, CB and BS.
CH is the largest subdivision of human brain and associated with higher brain
function such as thinking, language, action, motor, visionand etc. CB, located
in the inferior posterior portion of the head, associated with regulation and co-
ordination of movement, posture, and balance of human body.BS is the lower
part of human brain, and provides the main motor and sensory innervation to
the face and neck via the cranial nerves. Due to the anatomic and functional
differences, CH, CB and BS are always studied separately in neuroscience.
Furthermore, hemisphere segmentation of CH and CB is important for brain
asymmetry studies, which can reveal the evolutionary, hereditary, developmen-
tal and pathological information of human brain. Hemisphere segmentation is
also needed to view the medial surface of the cerebral hemispheres, because
many important brain structures, such as the medial temporal lobe, cingulum,
and large portions of the frontal, parietal and occipital lobes, can be only viewed
in the interhemispheric medial surface.

The procedure of brain hemisphere segmentation into the left and right CH,
left and right CB, and BS in MRI consists of two principal steps: 1) extracting
the brain volume, and 2) segmenting the structures of interest. To extract the
brain volume, first, nonbrain tissues are removed from the whole head MR
image through skull-stripping (see Section 2.1). Next, brain tissue classification
(see Section 2.3) is conducted to classify the voxels contained in the skull-
stripped volume into GM, WM and CSF. Finally, the brain volume is extracted
as the aggregation of the GM and WM voxels.

The automatic segmentation between the left and right CH, left and right
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CB, and BS in the extracted brain volume can be achieve by using either the
segmentation-surface-searching or structure-reconstruction based techniques.
The existing techniques are discussed in the following sections in detail.

3.2 Segmentation surface searching

Because normal human brains exhibit an approximate bilateral symmetry with
respect to the interhemispheric (longitudinal) fissure bisecting the brain, a sim-
ple way to segment the two brain hemispheres is to detect the longitudinal me-
dian plane of the brain, known as the mid-sagittal plane (MSP). MSP can be
found as either the plane best matching the interhemispheric fissure [20, 95],
or the plane maximizing the bilateral symmetry [84, 108, 126]. MSP can also
be extracted in MR brain images by using the linear stereotaxic registration
[18]. Images of different subjects are linearly transformed to match a symmet-
ric brain template then the longitudinal median plane of thestereotaxic space is
the wanted MSP. The validity of the MSP based brain hemisphere segmentation
is based on the assumption of brain symmetry. However, in fact, human brain
is never absolutely symmetric, and the interhemispheric boundary is actually a
curved surface. Therefore, MSP is not able to segment the brain hemispheres
accurately no matter how well it is extracted (see Fig.3.1-a). This inherent lim-

Figure 3.1: Brain hemisphere segmentation with MSP (a) and MSS (b) in MRI. MSP was
generated using the linear stereotaxic registration, MSS was obtained by transforming the MSP
in (a) using nonlinear registration. Both MSP and MSS are visualized as longitudinal lines in
the transverse view. Visible segmentation error for MSP is highlighted in the red circle in (a).

itation of MSP has been qualitatively and quantitatively demonstrated in [Pub-
lication I and III].
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For more accurate brain hemisphere segmentation, a simple way is to trans-
form MSP into a curved mid-sagittal surface (MSS). Nonlinearly registration
can be utilized for this purpose: a symmetric brain templateis nonlinear regis-
tered into a specific brain image, and then MSP of the templateis transformed
into MSS using the transformation parameters estimated in the nonlinear reg-
istration. The nonlinear registration based MSP transformation was validated
for brain hemisphere segmentation in [Publication III]. Compared with MSP,
the transformed MSS could increase the hemisphere segmentation accuracy re-
markably (see Fig.3.1-b).

Like MSP, the nonlinearly transformed MSS is not, in itself,able to separate
CH, CB and BS. This problem can be solved with registration-morphing-based
methods [75, 89], which nonlinearly transform the compartment outlines in a
pre-segmented brain template into the images of specific subjects.

The ventricles, interhemispheric fissure and the gaps between CH and cere-
bellum+brainstem (CBB) are filled with CSF. Another scheme to detect sur-
faces separating left and right CH and CBB in MRI is to extracta membrane
in the CSF-filled space, which follows the brain surface but does not pene-
trate sulci to any great extent (see Fig. 3.2). With image intensity based opti-

Figure 3.2: Membrane through the CSF-filled space separating left and right CH and CBB.

mization criteria, Marais et al. [94] used a constrained mesh surface to itera-
tively approximate the brain boundary, and Liang et al. [79]utilized the graph
cuts algorithm to locate the segmentation surfaces. An inherent problem for
segmentation-surface-searching based techniques is the compartmental uncer-
tainty, i.e. a voxel at the segmentation boundary can belongto more than one
structures.
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3.3 Compartmental structure reconstruction

Another type of brain hemisphere segmentation techniques is to first find seed
voxels corresponding to the wanted hemispheric compartments and then recon-
struct their structures (surfaces or volumes) from the seedvoxels towards the
structure boundaries (CSF-GM interface) (see Fig.3.3). The region of WM is

Figure 3.3: Brain compartment segmentation using structure reconstruction from seed vox-
els. Left: initial state (compartmental seeds). Middle: intermediate state. Right: final state
(reconstructed compartments).

mostly employed as the seed source. It can be segmented with two cutting
planes as in FreeSurfer [30] and BrainVoyager [68] softwarepackages: one
sagittal plane across the corpus callosum to separate the left and right CH,
and one horizontal plane through the midbrain or upper pons separating CH
from CBB. The Constrained Laplacian Anatomic Segmentationusing Proxim-
ity (CLASP) package [64] first extracts the CH volume with a stereotaxic CH
mask, then segments the left and right CH in WM with MSP passing through
the anterior and posterior commissures (AC and PC). The morecomplex mor-
phology of the connections between CB and BS can not be addressed by cutting
planes. BrainVisa software package [93] utilized the morphological erosion to
disconnect the left and right CH and CBB in the WM volume. Hataet al.
[54] found the compartmental seeds throughout the brain domain with fuzzified
anatomical location knowledge of left and right CH, CB and BS. Both of these
two algorithms can be extended to segment CBB into CB hemispheres and BS
in WM area.

With compartmental seeds, the final segmentations are obtained by recon-
structing the compartment structures. FreeSurfer [30] completes this by de-
forming the surfaces of the segmented WM compartments to follow the in-
tensity gradients between GM and CSF (the pial surface). BrainVoyager [68]
reconstructs the cortical surface by shifting each vertex on the WM compart-
ments’ surfaces along its surface normal until its positioncoincides with the
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respective intensity contour of GM outer boundary. CLASP [64] deforms the
WM surfaces of the compartments to the cortical surface along a Laplacian field
between the WM surfaces and the skeletonized CSF fraction. The compartment
shape reconstruction can also be achieved by reconstructing the volumes of the
target compartments. In this way, a generalized Voronoı̈ diagram is produced,
from which compartmental segmentation can be obtained directly. BrainVisa
[93] conditionally dilates the eroded WM mask to reconstruct the volumes of
the left and right CH and CBB. Hata et al. [54] reconstructed volumes of the
left and right CH, CB and BS from the seed voxels using a regiongrowing
algorithm based on the fuzzified compartment boundary location and intensity
knowledge.

3.4 Challenges and methodological limitations

Both the segmentation-surface-searching based and structure-reconstruction
based techniques confront difficulties to identify compartment boundaries when
they are blurred by PVE. In MR brain images, there exist threetypes of PVE
mixtures: CSF/GM, GM/WM, and CSF/background. These PVE mixtures,
especially CSF/GM, blur the boundaries of the compartmentsof interest, e.g.
the interface between CH and CB that in practice is a thin CSF area. This
boundary blurring caused by PVE decreases the accuracy of boundary detec-
tion with the boundary intensity based optimization criteria for segmentation-
surface-searching based techniques; and brings difficulties to locating the CSF-
GM interface for restricting the structure reconstructionfor the structure-
reconstruction based methods. Currently, the problem of boundary blurring
caused by PVE has been noticed and addressed in cortical surface extraction
for cortex shape analysis [1, 64]. However, to our knowledge, CLASP [64] is
the only approach explicitly model PVE among the existing brain hemisphere
segmentation methods, which guides the cortical surface reconstruction with a
skeletonized partial volume CSF surface rather than with the CSF-GM inter-
face. The skeletonized partial volume CSF surface is obtained by skeletonizing
all the voxels purely or partially containing CSF using a 2-subfield connectivity-
preserving medial surface skeletonization algorithm [87].

As discussed in previous chapter,a priori anatomical knowledge of the spa-
tial relationships between the compartments of interest has to be taken into ac-
count for automatic segmentation. However, the automatic segmentation based
on thea priori anatomical knowledge could not be directly applied to MR brain
images in native spaces due to the variations in brain location and morphology
in different images. Therefore stereotaxic registration based spatial normaliza-



tion is needed to address this problem. Segmentation-surface-searching based
methods [79, 94] use affine transformation to register processed images with a
standard brain template to obtain initial location of the detected segmentation
surfaces. Structure-reconstruction based methods [30, 64, 68] register subject
volumes into standard Talairach coordinates [128] to locate the cutting planes
for initial segmentation in WM area. BrainVisa [93] uses registration with a
pre-segmented brain template to control the erosion size. The fuzzy logic based
method [54] needs the subject spatial normalization to ensure the applicability
of the fuzzified anatomical location knowledge for the target structures. Al-
though the stereotaxic registration based spatial normalization is not the core of
the segmentation algorithms, the final segmentation accuracy is sensitive to the
accuracy of the stereotaxic registration, which is affected by several factors, e.g.
the choice of the algorithm and the template image used. Moreover, employing
image registration also reduces the methods’ robustness.

In addition, effective techniques have been developed for denoising [112]
and INU correction (see Section 2.2) in MRI. Nevertheless the image noise
and INU are still potential challenges for automatic brain image segmentation
when they are too severe to correct, because most of the existing segmenta-
tion approaches and the employed image registration algorithms are based on
voxel intensities. For example, in [Publication III], it was demonstrated that the
nonlinear MSS extraction method and BrainVisa were sensitive to noise and
INU. Furthermore, most of the existing brain hemisphere segmentation meth-
ods are not able to separate BS from CB, because the complex morphology of
the connections between CB and BS can not simply be addressedby cutting
planes, and image intensity can not provide sufficient information to locate the
segmentation boundaries between CB and BS.
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Adaptive Disconnection method

In this thesis, we developed a novel automatic brain hemisphere segmentation
method, namedAdaptive Disconnection. Based on the partial differential equa-
tions (PDE) based shape bottlenecks algorithm [91], this method detects and
cuts the connections between the left and right CH, the left and right CB and
BS in 3D brain MRI. Partial volume modeling is used to addressthe compart-
ment boundary blurring caused by PVE, and to make the interhemispheric con-
nections detectable. When the subject orientation in the scanner is known, this
algorithm can automatically adapt the brain volume in the native space so that
no spatial normalization is needed. In this chapter, the methodological details
and evaluations of theAdaptive Disconnectionmethod are introduced.

4.1 Shape bottlenecks algorithm

To detect and cut the connections between the left and right CH, the left and
right CB, and BS in 3D brain volume, we utilized the PDE based shape bottle-
necks algorithm proposed by Mangin et al. [91]. The essence of the PDE based
shape bottlenecks algorithm is an application of Laplace’sequation. Laplace’s
equation is a second-order PDE for a scalar fieldi that is enclosed between
boundariesH andL. The mathematical form of Laplace’s equation in 3D Carte-
sian coordinates is

△i =
∂2i

∂x2
+

∂2i

∂y2
+

∂2i

∂z2
= 0, (4.1)

where△ refers to the Laplace operator. An important property of Laplace’s
equation that underlines geometric structure is that Laplace’s equation describes
a layered set of nested surfaces that make a smooth transition from H to L

[62]. Due to this property, Laplace’s equation have been presently applied to
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extract the pail surface by expanding the GM-WM surface [64]and to compute
the cortical thickness [1, 62, 110, 156]. Differently from these applications
to cortical surface shape analysis, the PDE based shape bottleneck algorithm
uses Laplace’s equation to detect the shape bottlenecks1 between two parts
of a complex 3D objectΘ by simulating the steady state of an information
transmission process between them.

Denote the boundary ofΘ by Ω. In the PDE based shape bottlenecks algo-
rithm, the simulated information is supposed to be transmitted from a boundary
subsetH ⊂ Ω towards another boundary subsetL ⊂ Ω (see Fig. 4.1-a). The
propagated information is quantified as information potential values (IPV). The
information sourceH and terminalL are defined with the Dirichlet boundary
condition:

∀z ∈ H i(z) = h ; ∀z ∈ L i(z) = l , (4.2)

wherez is a voxel inΘ, i(z) is the IPV atz, h andl are constant IPVs,h > l.
The rest of the boundary(Ω− (H +L)) is defined with the Neumann boundary
condition that is much more complicated. Additionally, theinformation trans-
mission process insideΘ is assumed to have a conservative flow, and the interior
region ofΘ can be modeled as a Laplace’s equation (Eq.4.1). By discretizing
Eq.4.1, the consistent second order discrete Laplace’s equation is obtained for
Θ interior as

1

δ2x

[

i(x− 1, y, z)− 2i(x, y, z) + i(x+ 1, y, z)
]

+
1

δ2y

[

i(x, y − 1, z)− 2i(x, y, z) + i(x, y + 1, z)
]

(4.3)

+
1

δ2z

[

i(x, y, z − 1)− 2i(x, y, z) + i(x, y, z + 1)
]

= 0,

wherei(x, y, z) is the IPV at point(x, y, z) ∈ (Θ−Ω), andδx, δy, δz correspond
to voxel dimensions inx, y andz directions. Solving Eq.4.3 gives IPV of each
voxel insideΘ:

i(x, y, z) =
1

2( 1

δ2x
+ 1

δ2y
+ 1

δ2z
)
×
{ 1

δ2x

[

i(x− 1, y, z) + i(x+ 1, y, z)]

+
1

δ2y

[

i(x, y − 1, z) + i(x, y + 1, z)
]

+
1

δ2z

[

i(x, y, z − 1) (4.4)

+ i(x, y, z + 1)
]

}

,

1Shape bottlenecks refer to the bridge-like connections between different compartments of
a complex object.
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The steady state of the simulated information transmissionprocess is acquired
by implementing a successive over relaxation iterative scheme [91]. When the
simulated information transmission process converges, the two parts ofΘ will
have high gradients of IPV, and the shape bottlenecks connecting them will have
median IPVs (see Fig.4.1-b). Simply clustering IPV would produce compart-
mental segmentation at the shape bottlenecks (see Fig.4.1-c).

Figure 4.1: Example of implementing the PDE based shape bottlenecks algorithm. (a) initial
state, (b) converged state, (c) voxels clustering with respect to IPV.

The PDE based shape bottlenecks algorithm was implemented to detect
main shape bottlenecks of brain WM network (corpus callosum, AC and BS)
[91], and AC and PC in the whole brain volume (GM∪WM) [69]. This auto-
matic shape bottleneck detection approach requires very simple initialization to
define the initial status of the simulated information transmission process. Its
implementation is only based on the geometric configurationof the processed
object, and no intensity information is needed. Therefore,we can utilize the
PDE based shape bottleneck algorithm to automatically detect and cut the con-
nections between the left and right CH, the left and right CB,and BS in MR
brain image in the native space.

4.2 Partial volume modeling

Before applying the PDE based shape bottlenecks algorithm to brain hemi-
sphere segmentation, some issues related to PVE need to be concerned. The
adjacency areas between CH, CB and BS are very thin CSF area. In MRI,
the anatomical connections between CH, CB and BS always merge with the
PVE voxels of CSF/GM, so that it is difficult to detect them directly. Fortu-
nately, CH, CB and BS have simple connections in the WM+GM/WMregion,
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i.e. only BS connected with CH and CB, and no connections between CH
and CB. Therefore, before hemisphere segmentation with thePDE based shape
bottlenecks algorithm, we can separate CH, CB and BS by applying the PDE
based shape bottlenecks algorithm to detect and cut the connections between
them in the WM+GM/WM region, then reconstruct their original volumes. Be-
cause the PVE between CSF/GM mostly occurs at the boundariesof CH, CB
and BS, the region of CSF/GM can be used as the contour to restrict the struc-
ture reconstruction (see Fig.4.2). To locate the CSF/GM region, partial volume

Figure 4.2: Partial volume brain tissue distribution in the sagittal view of a MR brain image.
(a) brain volume. (b) partial volume brain tissue labels.

voxel classification is needed. Moreover, after decomposing the brain volume
into CH, CB and BS, a part of CSF/GM voxels have to be discardedso that
the brain interhemispheric connections are not be covered by CSF contained in
the CSF/GM voxels. This statement was demonstrated in [Publication III] and
[158]. Nevertheless, over discarding the CSF/GM voxels will cause over re-
moving GM (cortex). The information of tissue proportion ofCSF/GM in each
voxel is required to control the deleting of CSF/GM voxels.

In this thesis, the partial volume estimation technique developed by Tohka
et al. [137] is employed to acquire both the partial volume voxel classification
and partial volume tissue fraction. From this partial volume estimation, three
images are produced for the three tissue types (CSF, GM or WM)respectively,
whose elements reflect the proportion of the corresponding tissue type in each
voxel.
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4.3 The algorithm of Adaptive Disconnection

TheAdaptive Disconnectionalgorithm consists of two major steps: brain com-
partmental decomposition into CH, CB and BS; hemisphere segmentation for
CH and CB. The overview of algorithm is illustrated in Fig.2 in [Publication
III].

4.3.1 Brain compartmental decomposition

To decompose the brain volume into CH, CB and BS, the WM+GM/WMmask
is first segmented to obtain the preliminary segmentation for them. In [91], BS
was detected as the shape bottleneck between CH and CB in WM. Whereas the
detection result was not considered successful because of the presence of pons
in the middle of BS. We conduct the segmentation of the WM+GM/WM mask
with a two-step procedure rather than directly treating BS as a shape bottleneck:
first CH/CBB segmentation at the midbrain, and then CB/BS segmentation at
the cerebellar peduncles. The PDE based shape bottlenecks algorithm is applied
twice with different definitions of the information sourceH and terminalL. In
CH/CBB segmentation,H andL are, respectively, located at the top and bottom
(superior and inferior) of the WM+GM/WM region. In CB/BS segmentation,H
andL are located at the front and back (anterior and posterior) ofthe CBB part.
Both segmentations are completed by classifying the voxelsin the produced
IPM into two clusters with respect to their IPVs usingk-means clustering.

The original shapes of the compartments are reconstructed by growing the
compartmental seeds towards the region of CSF/GM. Rather than using the
intensity information, we define a compartment boundary closing indicator,
Pboundary, to control the growing. For each brain voxelz, the value ofPboundary

is computed as

∀z ∈ Θ, Pboundary(z) = 2−
D(z)
DMAX

−
J(z)
JMAX

, (4.5)

whereD andJ are the Euclidean distance fromz to the image background and
CSF/GM region respectively, andDMAX andJMAX are the maximal values of
D andJ throughout the brain domainΘ. The value ofPboundary represents how
closez is to the compartment boundaries. The growing criterion is as follows.
Let zseed denote a voxel on the boundary of a compartmental seed, andzneighbor
denote one of the 26 neighbors ofzseed that is in the target volume and not
labeled. The region, wherezseed is, grows by enclosingzneighbor if

Pboundary(zneighbor) > Pboundary(zseed). (4.6)
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The growing procedure is implemented iteratively until thewhole target
volume is filled. More detailed description and method evaluation about this
compartmental decomposition is given in [Publication II].

4.3.2 Cerebral and cerebellar hemisphere segmentation

After the compartmental decomposition, all the CSF/GM voxels that are used
to restrict the compartment reconstruction remain in the decomposed brain vol-
ume. CSF/GM voxels where the percentage of CSF is greater than a threshold
value are discarded from the CH or CB volume before the hemisphere segmen-
tation, in order to ensure the hemispheric connections detectable. To select the
appropriate threshold value, we assessed the effect of different threshold value
(70%, 50%, 30% and 10%) on the subsequent hemisphere segmentation. An
example is given in Fig.4.3. Although, the differences between the results il-

Figure 4.3: Hemisphere segmentation with theAdaptive Disconnectionmethod with differ-
ent threshold value for CSF/GM voxel discarding. The manually identified interhemispheric
boundary is illustrated as a red line. The hemisphere segmentation masks, where the left hemi-
sphere is colored grey and the right hemisphere is colored white, are overlapped with the origi-
nal image.

lustrated in Fig.4.3 are not huge, using threshold = 70% or 50%, to our point
of view, did not ensure that the interhemispheric shape bottlenecks can be de-
tected and segmented accurately. There is nearly no visibledifference between
the segmentation results of 30% and 10%. In this case, using higher threshold
value will preserve more GM in the brain volume. Therefore weselected 30%
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as the threshold value to remove CSF/GM voxels. The following hemisphere
segmentation processes for CH and CB volumes are implemented essentially
in the same way as the segmentation of the WM+GM/WM mask. The only
difference is that theH andL are the leftmost and rightmost subsets of the CH
or CB boundary.

4.4 Method evaluation and results

4.4.1 Segmentation performance evaluation

Evaluating the performances of image segmentation methodsis indispensable,
since none of them are generally applicable to all images, and different ap-
proaches are not equally suitable for a particular application. Image segmenta-
tion algorithms can be evaluated either analytically or empirically [157]. The
analytical evaluation directly examines and assesses the segmentation algo-
rithms themselves by analyzing their principles and properties. However, not
all properties of segmentation algorithms can be obtained by analytical evalu-
ation, since there is no general theory for image segmentation. Furthermore,
analytical evaluation often provides only qualitative assessments of algorithms.

The empirical evaluation indirectly judges the segmentation methods by ap-
plying them to test images and measuring the quality of segmentation results.
Empirical evaluations are mainly used to study the accuracyof segmentation
results, which is the primary concern in real applications and is difficult to be
tested with analytical evaluation. The segmentation accuracy is the degree to
which the segmentation corresponds to the true segmentation, and so the assess-
ment of accuracy of a segmentation requires a reference standard representing
the true segmentation, against which it may be compared [145]. Empirical
evaluation enables objective comparison between different segmentation algo-
rithms, by generating quantitative accuracy measurements.

The ideal test images for empirical evaluation would reflectthe characteris-
tics of segmentation problems encountered in practice. Phantoms can be built
and imaged, and incorporated with the imaging system characteristics to in-
crease the realism of the model. This kind of simulated images has an im-
portant role to play in quantifying algorithm performance.Nevertheless, such
data do not fully reflect imaging characteristics of clinical images, and typi-
cally can not reproduce both the normal and pathological anatomical variability
observed in clinical data. Therefore, utilizing clinical data is also important
for evaluating the segmentation performance on general problems in practice.
The reference standard, sometimes is called gold standard or ground truth, is
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a correctly or ideally segmented image, which is obtained from the same in-
put image with the evaluated segmentation algorithm. For simulated images,
the reference images can be obtained from image generation procedure. For
clinical images, manual segmentations generated by trained physicians or ra-
diologists are used as references. In the cases of simulatedimages of realistic
brain anatomy, corresponding reference segmentation is usually acquired based
on manual interaction as well.

The accuracy of a segmentation method can be measured as degrees of sim-
ilarity to the reference segmentation. A simple way to compare the evaluated
segmentation against the reference standard is assessing the limits of agree-
ment of volume estimates of the segmented structures [15]. However, volume
estimates may be quite similar when the segmented structures are located dif-
ferently, have different shapes or have different boundaries. Measurements of
spatial overlap, such as the Dice [35] and Jaccard [58] similarity coefficients,
are often used in practice. Another popular means to evaluate the segmentation
accuracy is to measure the degree of discrepancy from the reference segmen-
tation by calculating the percentage of misclassified pixels or voxels (in 3D),
considering image segmentation as a pixel/voxel classification process [155].
A number of other alternative metrics have been proposed to obtain the accu-
racy quantities. An exhaustive review of them is beyond the scope of this thesis.
It should be noted that the most appropriate way to carry out the comparison of
a segmentation to the reference segmentations is so far unclear [145]. Proper
evaluation approach should be selected and adjusted to address the problems
confronted in practical experiments.

4.4.2 Experiments and results

TheAdaptive Disconnectionmethod was compared with the linear registration
based MSP extraction algorithm, nonlinear registration based MSS extraction
approach (see Section 3.2), and BrainVisa [93] that is perhaps methodologically
the closest to it. Empirical evaluation was conducted to achieve the quantitative
accuracies of the methods. 10 simulated realistic images from the BrainWeb
database [26, 71] and 39 clinical images of healthy brains from the LONI Prob-
abilistic Brain Atlas (LPBA40) database [117] were employed as the test data.
The BrainWeb images were of the same simulated realistic subject and only
differ in noise and INU levels, so that the evaluation results for this data set
can reflect the methods’ sensitivities to the image noise andINU. Moreover,
the brain hemisphere segmentations with MSP extracted through linear regis-
tration existed in the BrainWeb images already, because theimages had been
correctly affinely registered to Montreal Neurological Institute 305 (MNI305)



4.4. METHOD EVALUATION AND RESULTS 29

stereotaxic space [39]. The LPBA40 data set was used to evaluate the abilities
of the methods to process images with practical noise and artifacts, and of real
subjects with normally varying morphologies. The segmentation results were
quantitatively evaluated against ground-truth manual segmentations. Because,
the brain domains to be segmented by theAdaptive Disconnectionmethod or
BrainVisa were not exactly the same with the domains coveredby the employed
ground-truth segmentations. Therefore, measurements of spatial overlap, e.g.
the Dice [35] and Jaccard [58] similarity coefficients, werenot applicable. To
address this problem, we designed a new metric to calculate the percentage of
misclassified voxels by defining the intersection of the domains covered by the
automatic segmentations and ground-truth segmentations as the evaluation do-
main. The detailed description of the experiments and results were presented in
[Publication III].

According to the experimental results, theAdaptive Disconnectionmethod
performed superiorly to all the other evaluated algorithms. In detail, theAdap-
tive Disconnectionmethod obtained remarkably high accuracies at the occipi-
tal lobe where accurate hemisphere segmentation is difficult to be obtained by
the linear or nonlinear registration based methods, because of the large normal
brain torque. BrainVisa also achieved high accuracies for brain hemisphere
segmentation. Nevertheless, its performance to segment the brain hemispheres
at some interhemispheric shape bottlenecks, e.g. corpus callosum, was inferior
to theAdaptive Disconnectionmethod, because its segmentation is blind to the
shape bottlenecks themselves. In addition, theAdaptive Disconnectionmethod
segmented the CH from CBB more precisely than BrainVisa by modeling the
compartment boundaries with partial volume information (see Fig.9 in [Publi-
cation III]). Furthermore, the stability of theAdaptive Disconnectionmethod
was reflected by its comparatively stable performance for all the test data. The
small variation of the segmentation accuracy for the simulated data set demon-
strated that theAdaptive Disconnectionmethod is not as sensitive to the noise
and INU as other evaluated methods.

In [Publication III], we also applied theAdaptive Disconnectionmethod
to another clinical T1-weighted MRI data set [72] containing images of 22
healthy controls and 18 never-medicated patients with schizophrenia, named
Schizophrenia data set in this thesis. This is to evaluate its performance on im-
ages with diagnosis and produced with different imaging parameters from the
LPBA40 data set, consequently assess its robustness. Therewere not ground-
truth segmentations for this data set. Thus, we qualitatively evaluated the seg-
mentation results with visual examination. Detailed description of the qualita-
tive evaluation is given in [Publication III] and [158]. From the average cases
of segmentation results (see Fig.10 in [Publication III]),it can be seen that the



Adaptive Disconnectionmethod was accurate in decomposing the brain volume
into left and right CH, left and right CB, and BS for the Schizophrenia data set.

Besides the experiments proposed in [Publication III], theAdaptive Discon-
nectionmethod was further qualitatively assessed with the International Con-
sortium for Brain Mapping 152 (ICBM152) database [37]. T1-weighted MR
images of 152 normal subjects were employed. Excellent brain hemisphere
segmentation was also obtained for the entire test data set.In addition, in [Pub-
lication II], the quantitative evaluation results of the brain compartmental de-
composition algorithm (see Section 4.3.1) enclosed in theAdaptive Disconnec-
tion method show that the algorithm can separate BS from CH and CB with
very high accuracy.

TheAdaptive Disconnectionmethod obtained excellent performance to seg-
ment brain volumes in the images of all the four test databases of different
subject groups and with different imaging environments andparameters. This
demonstrated that theAdaptive Disconnectionmethod is very robust. Further-
more, because theAdaptive Disconnectionalgorithm is fully automatic, we can
claim that it is reproducible. The computational complexity and the running
time of the algorithm of the proposed method was not seriously concerned in
this work, as the former can be overcome with more powerful computational
tools and the latter can be dramatically decreased by programming the algo-
rithm in e.g. C language (we programmed the algorithm in Matlab).



Chapter 5

Automatic brain asymmetry
analysis

5.1 Introduction

The left and right hemispheres of human brain differ in theiranatomy and func-
tion. This phenomenon of lateralized difference between the two hemispheres is
called brain asymmetry. For anatomical brain asymmetry, the width and volume
of the right frontal lobe are often greater than the left, andthe width and volume
of the left occipital lobe are often larger than the right [13, 44, 77]. These right
frontal and left occipital protrusions are known as petalias, which also induce
impressions on the inner skull surface. Another prominent geometric distortion
of the brain hemispheres, known as Yakovlevian torque, is that the right frontal
lobe is torqued forward the left, and the left occipital lobeextends across the
midline (over the right occipital lobe) and skews the interhemispheric fissure
towards the right [136] (see Fig.5.1). Brain asymmetry is thought to originate
from evolutionary, developmental, hereditary, experiential and pathological fac-
tors, and it has also been correlated with asymmetrical behavioral traits, such as
handedness, auditory perception, motor preferences, and sensory acuity [136].

MRI based brain asymmetry analysis provides methods for computer-assisted
diagnosis for mental diseases, e.g. schizophrenia and Alzheimer’s disease. By
studying the brain asymmetry in groups of healthy controls and patients, the
differences between controls and patients can be modeled and objective diag-
nostic information can be provided to physicians. The brainanatomy analysis
approaches introduced in Section 1.2.2 can be applied to analyze brain asym-
metry within MRI. Specially, interhemispheric point correspondence needs to
be established for the morphometry or surface based shape analysis methods,
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Figure 5.1: Petalia and Yakovlevian torque of human brain.

besides the inter-subject point correspondence. In this chapter, the applications
of the Adaptive Disconnectionmethod to automate the MRI based studies of
brain asymmetry is presented.

5.2 Bilateral volumetric asymmetry analysis

Abnormal volumetric CH asymmetries in schizophrenia have been reported
based on manual hemisphere segmentation in MRI (e.g. [12, 13]). In [Pub-
lication III], the results of brain hemisphere segmentation with the Adaptive
Disconnectionmethod of the Schizophrenia data set were utilized to automat-
ically analyze the CH volumetric asymmetry in schizophrenia. Images of two
left-handed and one ambidextrous subjects were excluded from this analysis.
The analyzed data set thus contained 18 patients (11 males, 7females) and 19
healthy controls (12 males, 7 females). The difference between the control and
patient populations were statistically compared using thenonparametric permu-
tation test [49] in terms of the asymmetry index (AI)

AI =
VR − VL

1

2
(VR + VL)

, (5.1)
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whereVR andVL, respectively, are the volumes of the right and left hemi-
spheres. The volume of each cerebral GM or WM hemisphere was computed
by integrating the amount of GM or WM contained in the corresponding hemi-
spheric voxels.

The statistical analysis results are presented in Table 1 in[Publication III].
In the case of cerebral GM, for males, mean AI was positive forboth patient
and healthy groups, and the absolute value of patients’ meanAI was much
lower than healthy controls’; for females, the sign of patients’ mean AI was re-
versed from healthy controls’. These indicated a reduced cerebral GM volume
asymmetry in male patients, and a reversed cerebral GM volume asymmetry in
female patients. According to the results of the permutation test, for females,
AI in cerebral GM of the patient group had significantly different probability
distribution from the healthy group’s (p = 0.002). These findings are well in
line with the manual segmentation based study reported in [13] and the neu-
rodevelopmental hypothesis of schizophrenia.

5.3 Bilateral shape asymmetry analysis

Volumetric measurements based brain asymmetry analysis isnot able to capture
the local structural differences between the brain hemispheres. Detailed shape
analyses for brain asymmetry are required. Using interhemispheric reflection,
VBM was applied to investigate voxel-wise differences between brain hemi-
spheres in tissue density [146] or tissue volume [8, 48, 88].In [45, 130], DBM
was implemented by nonlinearly co-registering the left andright CH with each
other for each individual subject. Then the Jacobian determinant of the defor-
mation fields was used to investigate the local interhemispheric shape asymme-
try.

To study brain asymmetry with surface based hemispheric shape represen-
tations, the vertex-wise interhemispheric and inter-subject correspondences are
first established by using stereotaxic volume or surface registration [86, 102,
104, 144]. Next, one hemispheric surfaces is mirrored against MSP and sub-
tracted the opposite surface with respect to the shape measurements at each
vertex. Finally, the deviations from zero are analyzed as the asymmetry mea-
surements.

Especially, the method proposed in [104], which is based on the Adaptive
Disconnectionmethod, was applied to the same Schizophrenia data set used
in Section 5.2 to study the local shape asymmetry of CH in schizophrenia. It
was found that, in schizophrenia, reduction of shape asymmetry in the supe-
rior frontal lobe in females and occipital lobe in males, andincrease of shape
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asymmetry in the occipital lobe in females.

5.4 Yakovlevian torque analysis

The general MRI brain asymmetry analyses discussed above focus on the bilat-
eral differences between brain hemispheres. As introducedat the beginning of
this chapter, besides the bilateral interhemispheric asymmetries, the Yakovle-
vian torque, which refers to the bending of the interhemispheric fissure, also
is a prominent geometric distortion caused by brain asymmetry. Results from
the bilateral brain asymmetry analyses can somehow reflect the Yakovlevian
torque. However, the quantification of the interhemispheric fissure bending is
indirect, and the related geometric interpretation is difficult. To my knowledge,
by far, no efforts had been specially spent to analyze this specific prominent
geometric distortion itself.

5.4.1 Shape analysis for Yakovlevian torque

In [Publication IV], an automatic shape analysis approach was introduced to an-
alyze the Yakovlevian torque in 3D MRI. In this method, first,the left and right
CH are extracted and segmented in the brain images in the native space utilizing
the Adaptive Disconnectionalgorithm. For inter-subject comparison, the seg-
mented CH hemisphere volumes are linearly registered into the ICBM152 brain
space [37]. Denote the lateral, longitudinal and vertical axes of the image space
asX, Y andZ respectively. Next, a curved interhemispheric medial surfaceS
capturing the shape of the interhemispheric fissure is foundfor each subject by
minimizing an Euclidean distance based energy function:

xS(y, z) = argmin
x

{| Dl(x, y, z)−Dr(x, y, z) |}. (5.2)

wherexS(y, z) is the lateral magnitude ofS at(y, z),Dl(x, y, z) andDr(x, y, z)
respectively are the Euclidean distances from a point(x, y, z) on S to the left
and right CH hemisphere volumes. The extracted surfaceS is then mathemat-
ically modeled as a polynomial surface, which is a function of its X direction
magnitudexS for each pair of theY andZ coordinates values.

x̂S(y, z) =

k
∑

i=0

i
∑

j=0

aijy
i−jzj , (5.3)
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wherex̂S is the approximation ofxS determined using least-square fitting,k is
the degree of the two-variable polynomial. The process of the interhemispheric
surface modeling is illustrated in Fig.1 in [Publication IV].

Curvature features, e.g. principal, Gaussian and mean curvatures, at each
point of the fitted interhemispheric surface are calculatedbased on the2 × 2
Hessian matrix

H =







∂2x̂S

∂y2
∂2x̂S

∂y∂z

∂2x̂S

∂y∂z

∂2x̂S

∂z2






, (5.4)

to describe the local bending of the interhemispheric fissure. To describe the
regional bending of the interhemispheric fissure, the integrated average value
ξf of a curvature featuref in a region of interest (ROI) was defined as

ξf =

∑

ci

∫ y0i +2

y0i

∫ z0i +2

z0i
f(y, z)

√

(∂x̂S

∂y
)2 + (∂x̂S

∂z
)2 + 1 dydz

∑

ci

∫ y0i +2

y0i

∫ z0i +2

z0i

√

(∂x̂S

∂y
)2 + (∂x̂S

∂z
)2 + 1 dydz

, (5.5)

whereci = [y0i , y
0
i + 2) × [z0i , z

0
i + 2) is a single cell in the projection of the

ROI on the mid-sagittal plane in the ICBM152 space;y0i andz0i are theY and
Z coordinates of the origin ofci; the numerator and denominator, defined with
surface integrals, respectively are the total value off in the ROI and the total
area of the ROI.

5.4.2 Application

In [Publication IV], this approach was applied to the Schizophrenia data set
described in Section 5.2 to investigate the Yakovlevian torque in schizophrenia.

In this application, the extracted medial interhemispheric surfaces of all sub-
jects were fitted with the polynomial surface with degree of 4, and the selected
curvature features were the mean curvatureH and curvature in the transverse
plane (XY plane)CXY . The points of interest (POIs) were located with the
projection of the average volume across all studied CH volumes on MSP of the
ICBM152 space. The ROIs were extracted by masking the fitted medial inter-
hemispheric surfaces with the projection of the atlas of LPBA40 [117] on its
MSP.

For every subject, the accuracy for automatically detecting the lateral direc-
tion of interhemispheric fissure bending with curvature features was evaluated
by comparing the bending direction indicated by the signs ofξH andξCXY

in the
occipital region against the bending direction manually identified in the trans-
verse slices of the original image. For all the 37 studied subjects, the proposed
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method obtained correct detection for 34 subjects withξH and for 36 subjects
with ξCXY

. Moreover, in all populations, the means ofξH andξCXY
in the occip-

ital region were positive, and their absolute values were always notably greater
than their counterparts in the frontal region (see Table 1 [in Publication IV]).
This indicates that, in average, the interhemispheric fissure bending of right-
handed subject mainly occurs in the occipital region and is laterally rightward.
This re-confirms the hypothesis of interhemispheric fissurebending caused by
normal Yakovlevian torque [136].

The nonparametric Wilcoxon Rank Sum test [148] was utilizedto investi-
gate the statistical difference between controls and patients with schizophrenia
with respect to the curvature features at each POI. It was found that for males,
POIs with the significant difference between controls and patients were mainly
located in the superior frontal region forH andCXY , and in the inferior occipi-
tal region forH (see Fig.3 in [Publication IV]).Thet-test [154] was employed to
assess the group difference with respect to the integrated average curvature fea-
tures in the ROIs corresponding to the frontal and occipitallobes. Significant
difference was found between male controls and patients with schizophrenia
with respect to the integrated average curvaturesξH (p = 0.0084) and ξCXY

(p = 0.036) in the frontal region. This finding well matches above results of the
point-wise analysis.

In addition to the application to the Schizophrenia data set, the proposed
automatic shape analysis method was also applied to investigate the Yakovle-
vian torque of normal brain based on hemisphere segmentation results of the
ICBM152 data set with theAdaptive Disconnectionalgorithm (described at the
end of Section 4.4.2). Segmented images of 110 right-handedsubjects were
used. POIs were located with the projection of the ICBM152 average template
[37] on its MSP. For each subject, the extracted point-wise mean curvatureH
was utilized to quantify the local interhemispheric fissurebending, and was re-
gressed against the age and gender factors using a linear model:

H ∼ b0 + b1AG+ b2GD + ǫ, (5.6)

whereAG andGD respectively are the subject’s age and gender,ǫ is the error
term. Effects of the coefficients of interest in the linear model (Eq.5.6) were
tested using thet-test, and were visualized as either at-statistic map (in the
case whereH is univariate) or a Hotelling’sT map (in the case whereH is
multivariate). False discovery rate (FDR) control [10] wasemployed to cor-
rect the multiple comparisons with FDR level = 0.05. The effect map of in-
terhemispheric fissure bending quantified withH is given in Figure 5.2. Main
rightward bending can be observed in the occipital, and small portions of the



Figure 5.2: Thresholded interhemispheric fissure bending effect (interceptb0, with b1 = b2 =

0 in Eq.5.6) map (FDR level = 0.05). Nonsignificant points wereset to be zero.

posterior parietal and posterior temporal regions; smaller rightward bending
is showed in the anterior frontal region. Main leftward bending is showed in
the inferior frontal and inferior temporal regions; smaller leftward bending is
found in the superior temporal region. These findings correspond the observa-
tions from the Schizophrenia data set, and further confirm the hypothesis about
the normal Yakovlevian torque [136]. No significant local age or gender effects
were detected.
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Chapter 6

Summary of publications

In [Publication I], a novel automatic method to segment the left and right brain
hemispheres in 3D MR images was introduced, which is based onthe PDE
based shape bottlenecks algorithm [91] and a fast and robustpartial volume
estimation approach [137]. Quantitative evaluation of themethod with 10 sim-
ulated and qualitative evaluation with 5 real T1-weighted MR images were de-
scribed. Superiority of the proposed method to the MSP basedmethod was
demonstrated.

In [Publication II], a new method was developed to automatically decom-
pose human brain MR images into CH, CB and BS. This method was validated
against manual segmentations of 35 T1-weighted MR images. It was demon-
strated to be accurate and robust.

In [Publication III], theAdaptive Disconnectiontechnique, for automatic
segmentation of brain volume into the left and right CH, the left and right CB,
and BS in 3D MRI was proposed. Quantitative evaluation of themethod and
competitive methods with the BrainWeb simulated realisticdatabase [26, 71]
and the LPBA40 database [117] was conducted against ground-truth manual
segmentations. It performed the best among the investigated methods. A
preliminary CH volumetric asymmetry analysis, completed by applying the
method to a set of clinical MR images of health controls and never-medicated
patients with schizophrenia, was also presented.

In [Publication IV], a novel approach to analyze Yakovlevian torque by
quantifying the bending of human brain interhemispheric fissure in 3D MRI
was introduced. It was applied to clinical images of healthycontrols and never-
medicated patients with schizophrenia. The hypothesis of the normal interhemi-
spheric fissure bending (rightward in the occipital region)was quantitatively
demonstrated. Significant abnormal interhemispheric fissure bending in male
patients was found.



Author’s contribution

The original ideas of [Publication I and IV] were conceived by the author and
co-author J. Tohka. The author developed the methods based on the ideas.
Based on the general idea of [Publication I], the author developed the new
method for brain compartmental decomposition in [Publication II]. In [Publi-
cation III], the author combined the techniques developed in [Publication I and
II] and further developed the more advanced method. The experiments in all
the publications were conducted by the author. All the publications were writ-
ten by the author, following the comments and suggestions from co-authors.
Co-author J. Hirvonen and J. Hietala provided the Schizophrenia data set and
counseled on the neurophysiology and anatomy to ensure thatthe developed
methods answered to the correct questions and could be useful in practice.



Chapter 7

Discussion

The development of neuroinformatics promises to extend several important
trends in scientific research into the practice of neuroscience. One of the most
visible changes is the integration of data into large, international databases [36].
Specially, many brain MRI databases, e.g. [38, 63, 96, 100],have been es-
tablished, which provide large, demographically balancedand representative
samples across wide age range to facilitate the research on human brain struc-
tural changes related to aging, development or mental diseases. Under this
background, accurate and robust automatic brain image analysis methods are
required to analyze the images contained in these databases. To automate the
neuroanatomical brain image segmentation is the major bottleneck to automate
the brain image analysis [151]. In this thesis, we first developed a novel au-
tomatic brain hemisphere segmentation algorithm for 3D MRI: the Adaptive
Disconnectionmethod. Next, this method was applied to studies of brain struc-
tural asymmetry. We also developed an automatic shape analysis method based
on theAdaptive Disconnectionmethod to study the Yakovlevian torque in 3D
MRI. In this chapter, the proposed methods and the related experimental results
are discussed.

7.1 Automatic neuroanatomical segmentation

Segmenting the structures or regions of interest in brain MRI is impossible
using only the information available in the brain images since there is not
sufficient differentiation of features in the intensity space. A priori anatom-
ical knowledge of the spatial relationships between different brain structures
has to be taken into account. In Section 2.5, we reviewed the atlas defor-
mation based methods [25, 55, 65] and the MAP based statistical methods
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[34, 41, 107, 138, 150, 153] for segmenting the cerebral cortical subdivi-
sions and subcortical structures in 3D MRI. The atlas deformation based neu-
roanatomical segmentation methods directly apply thea priori neuroanatom-
ical knowledge contained in pre-delineated atlases to produce the segmenta-
tion through nonlinear image registration. The statistical neuroanatomical seg-
mentation algorithms employ training images, which are usually produced by
manual segmentation, to learn the prior statistics. We alsoreviewed the exist-
ing brain hemisphere segmentation methods for 3D MRI in Chapter 3. These
methods need spatial normalization with standard brain template to address
the variations in location and normal brain morphology in different images
[30, 54, 64, 68, 79, 94], or with pre-segmented atlas to guidethe segmenta-
tion [75, 89, 93]. These prerequisites will bring difficultyto applying the meth-
ods to databases of specific populations, when the availablebrain template or
pre-segmented images are not suitable for the databases. Additionally, using
stereotaxic image registration would make the final segmentation accuracy sen-
sitive to the accuracy of the registration. Differently from the discussed existing
techniques, the proposedAdaptive Disconnectionmethod does not require the
above prerequisites. When the subject orientation in the scanner is given, the
method is able to automatically adapt the variation of normal brain morphology
in different images without the aid of stereotaxic registration. This gives the
method broader applications than the methods using registration, as no specific
atlas is required. Although image registration is often needed in quantitative
group analyses for spatial normalization or building inter-subject correspon-
dences, producing segmentation that is independent from the registration will
avoid introducing potential errors caused by inaccurate registration to subse-
quent analyses.

Furthermore, the segmentation procedure of most of the existing segmenta-
tion approaches uses the intensity information contained in the processed im-
ages. Atlas deformation based [25, 55, 65] and registration-morphing-based
methods [75, 89] use the intensity information to estimate the optimal regis-
tration between the pre-segmented image and the target image. Segmentation-
surface-searching based algorithms [79, 94] utilize imageintensity based opti-
mization criteria to locate the segmentation surfaces. Compartmental-structure-
reconstruction based approaches [30, 54, 64, 68] use the intensity gradients or
differences between GM and CSF to guide the structure reconstruction. The
segmentation accuracy of the methods depending on image intensity are af-
fected by the presence of image noise and INU. In theAdaptive Disconnec-
tion method, the intensity information is only employed in imagepreprocess-
ing, thus it can better tolerate the increase of image noise and INU than other
approaches. This has been demonstrated by its stable quantitative evaluation



7.1. AUTOMATIC NEUROANATOMICAL SEGMENTATION 43

results for the simulated BrainWeb images [26, 71], which are of the same sim-
ulated realistic subject and only differ in levels of noise and INU.

PVE is another important issue needs to be taken into accountin automatic
neuroanatomical segmentation. For brain hemisphere segmentation, the GM-
CSF surface is commonly used to guide the segmentation between the left and
right CH and CBB. The existence of PVE always blurs the GM-CSFsurface.
To our knowledge, this problem is only addressed by CLASP [64] among the
existing brain hemisphere segmentation techniques, whichreconstructs the cor-
tical hemispheres’ surfaces using the skeletonized partial volume CSF surface
rather than the GM-CSF interface. In theAdaptive Disconnectionmethod, we,
for simplicity, directly utilize the regions of partial volume CSF/GM to locate
CH, CB and BS boundaries. It has been illustrated that our method can better
tolerate the blurring of anatomical compartment boundaries than the techniques
that do not model PVE, such as BrainVisa [93]. Nevertheless,a few segmen-
tation errors were still observed near the compartment boundaries when some
of the CSF/GM voxels were not exactly located on the boundaries. A potential
solution for this problem can be utilizing a skeletonized CSF/GM surface like
in CLASP [64] instead of using the entire CSF/GM region to restrict the struc-
ture reconstruction. In theAdaptive Disconnectionmethod, PVE modeling is
also applied to discard a certain amount of CSF/GM voxels in order to make
the interhemispheric connections detectable. The improvement for hemisphere
segmentation accuracy from this operation has been proved in [Publication III]
and [158]. In this work, the threshold value for controling the CSF/GM remov-
ing was set to be constant. It is meaningful, in the future, tofind an effective
approach to adaptively determine the threshold value for different images.

Most of the existing brain hemisphere segmentation methodssegment the
brain hemispheres in MRI taking the entire hemispheric boundaries into ac-
count. In fact, the brain hemispheres are not connected everywhere. Therefore,
separating the brain hemisphere volumes by disconnecting them only at the in-
terhemispheric shape bottlenecks would avoid the segmentation errors caused
by incorrect detection of the hemispheric boundaries. BothBrainVisa and the
Adaptive Disconnectionmethod [93] produce the brain hemisphere segmenta-
tion in this way. However, the traditional shape bottlenecks algorithm (using
morphological erosion and conditional dilation) utilizedin BrainVisa conducts
the disconnection by breaking the volume shape into separate parts without de-
tecting the shape bottlenecks. As showed in Section 4.4.2, this results in that
the segmentation performance of BrainVisa is inferior to the Adaptive Discon-
nectionmethod that detects and cuts the shape bottlenecks using thePDE based
shape bottleneck algorithm [91].

TheAdaptive Disconnectionmethod was quantitatively evaluated with the
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BrainWeb simulated image database [26, 71] and the LPBA40 normal clini-
cal scan database [117], and qualitatively tested with the clinical Schizophrenia
data set [72] and the ICBM152 normal clinical scan database [37]. Because of
the methodological characteristics discussed above, the method obtained high
and stable accuracy and excellent performance to segment brain volumes in
the images of different subject groups and with different imaging environments
and parameters. This proves that theAdaptive Disconnectionmethod is very
robust. Moreover, due to the reproducibility endowed by thefull automaticity,
the segmentation errors of theAdaptive Disconnectionmethod could be pre-
dicted before applying the method so that the subsequent quantitative analysis
errors could be predicted or compensated for with some specific postprocesses.
For example, in one of the 40 images contained in the LPBA40 database, the
longitudinal-distributed INU (the lower part of the image is much darker than
the upper part) is extremely severe so that the employed BFC can not correct
it to an acceptable level. This will lead to that most of the voxels in CBB that
in fact belong to WM would be classified as belonging to GM or CSF. Conse-
quently, theAdaptive Disconnectionmethod would not be able to find appro-
priate seed voxels to reconstruct the structures of CB and BS. This image was
excluded in the experiments. This is the only exception we confronted among
the over 200 testing images used in this work.

7.2 Brain structural asymmetry studies

The study of human brain asymmetry is a significant research topic in neuro-
science, because it can reveal the evolutionary, hereditary, developmental and
pathological information of human brain and help early diagnosis for men-
tal diseases and imaging based drug development. Many studies have ob-
served schizophrenia-related reduction or inverse in structural brain asymme-
tries [13, 105, 119, 124]. However, due to lack of sufficient databases and ac-
curate and robust analysis methods, several investigatorsfailed to replicate the
findings in schizophrenia [2, 28, 59, 85], or even obtained conflicting findings
[102]. In this thesis, theAdaptive Disconnectionmethod was applied to the
analyses of CH volumetric [Publication III] and shape asymmetries [104]. We
obtained findings that are well in line with the reported manual segmentation
based study [13] and the neurodevelopmental hypothesis of brain asymmetry.
This demonstrates the ability of theAdaptive Disconnectionmethod to auto-
mate the brain asymmetry studies.

In addition, an automatic shape analysis approach was developed based on
theAdaptive Disconnectionmethod to analyze the Yakovlevian torque by quan-
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tifying the bending of the interhemispheric fissure. Compared with conven-
tional methods investigating the bilateral structural difference between the brain
hemispheres [8, 48, 88, 130, 146], this approach provides morphological inter-
pretations of the Yakovlevian torque that are easier to understand. In the appli-
cations of the method to the Schizophrenia data set and the ICBM152 database,
the hypothesis of normal interhemispheric fissure bending was confirmed, and
abnormal Yakovlevian torque was found in male patients withschizophrenia
in the frontal and occipital regions. These results show that this shape anal-
ysis approach is applicable for studying Yakovlevian torque for either normal
population or patients with mental diseases.

In the experiments of the automatic shape analysis method described in Sec-
tion 5.4.2, the polynomial surface used to mathematically model the shape of
the interhemispheric fissure is selected as the one with degree of 4. Because it
is the lowest degree for the curvature features, computed based on the second
fundamental form of the polynomial surface, to remain nonlinear properties. It
is obvious that more details about the longitudinal shape ofthe interhemispheric
fissure could be preserved when using the polynomial surfaces with higher de-
gree. Nevertheless, these details would bring disturbancefor capturing the prin-
cipal bending tendency of the interhemispheric fissure. Thus the degree of the
polynomial surface should not be very large so that it can be smooth enough. To
find the optimal degree of the polynomial surface is a meaningful future work
to enhance the accuracy of the analysis method. In addition,the employed
curvature features were the mean curvature and the curvature in the transverse
plane, whose magnitudes and directions can be straightforwardly reflected by
their absolute values and signs. In fact, several other curvature features can be
simply computed from the second fundamental form of the polynomial surface,
e.g. the Gaussian curvature, maximum and minimum curvatures (principal cur-
vatures) and principal directions. Nevertheless, the geometric interpretations of
them could be understandable only when they are associated with all the other
curvature features. Therefore, simple statistical hypothesis tests are not valid
to analyze these features together, more complicated and advanced techniques,
e.g. pattern recognition or texture analysis, are needed.

7.3 Other potential applications

The applications of theAdaptive Disconnectionmethod are more than to the
brain asymmetry studies proposed in this thesis. Brain hemisphere segmen-
tation is often needed for various biomedical and neuroscientific applications,
because most of brain structures have the bilateral morphology and functional
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lateralization. Brain hemisphere segmentation is also required to separate brain
lesions in the left and right brain hemispheres [57], and to view many important
brain structures that can be only viewed in the interhemispheric medial sur-
face. TheAdaptive Disconnectionmethod can be applied to study other smaller
brain anatomic sub-divisions as well, e.g. the ventricularsystem, as long as the
segmentation problem can be addressed by the shape bottleneck detection and
cutting.

7.4 Conclusions

The objective of this thesis is to develop accurate, robust and automatic brain
MRI analysis methods and to validate their abilities to serve large databases
based brain researches. According to the results of method evaluations and
applications to brain asymmetry studies, it can be concluded that the automatic
3D brain MRI analysis methods developed in this thesis have high accuracy and
outstanding robustness, and can facilitate automatic and accurate brain anatomy
studies with large brain imaging databases.
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