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Abstract

In the particular application of data echo cancellation we have a signal environment which

violates basic assumptions inherent in adaptive estimation theory. First, the training

signal is noise dominated (by the far end signal), and second, the noise statistics are non-

Gaussian. The second fact tends to suggest that least squares optimisation is not optimal

for this case. Previous work has shown that considerable performance enhancement is

possible by the use of high order metrics (of order greater than 3). However, the exact

metric to be applied depends on the channel dispersion. Therefore the logical solution is

to use an adaptive error metric which changes dependent on the actual error statistics.

As in the case of variable step-size algorithms, the optimum cost function adaptation

algorithm requires complete knowledge of the signal and system statistics and thus it

cannot be implemented in most practical conditions. In the first part of this thesis, the

solution for this kind of situation is examined. The main goal is to derive a stochastic

gradient algorithm for the case of data echo cancellation in which the error exponent is

adjusted using the value of the error.

Two main classes of cost function adaptation approaches are derived: nonrecursive and

recursive. Nonrecursive adaptation of cost function can be distinguished by the fact that

the error exponent is updated every iteration using only direct relationships between an

approximation of the error and the power of the cost function. Alternatively, in recursive

cost function adaptation, we do not need anymore to estimate the actual error of the

system, the updated error exponent is computed recursively.

The idea behind the first approach relies on adjusting the error exponent parameter

during the adaptation by enforcing same value of gradients for two consecutive error

exponents. Two different type of algorithms are proposed: the staircase and the smooth

CFA (Cost Function Adaptation) algorithms, and it is shown that they behave with

comparable results.

Then the gradient approach is derived by enforcing the same direction of the gradient

as in the case of non-quadratic algorithms. As a special case the linear adaptation of the

power of the cost function results.
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In the recursive cost function adaptation case, the new error exponent is computed

from the previous one using a customary LMS (Least Mean Square) recursive equation.

This method improves the sensitivity of the power of the cost function with respect to the

noisy error, while the other benefits of the CFA algorithms in terms of the convergence

speed and residual error remain.

The second part of the thesis deals with a special form of Hilbert transform, known

as Bode gain-phase relationships. Here the interest is to develop formulae for phase

approximations by gain samples, equally separated in logarithmic domain. Our approach

consists of the following steps:

First we discuss the most important theoretical results related to our specific subject.

Sampling in logarithmic domain is pointed out as a more general rule, not necessarily

only for the presented case.

Then we establish new relationship for computing the phase of the minimum-phase

functions from the gain derivatives, as a first advance to approach phase by gain samples.

As a beginning, we show that for a given frequency the phase could be obtained from

the odd derivatives of the neperian gain, evaluated for this frequency. Then we select a

finite number of terms of the main formula and we derive an approximation of phase. We

show that the approximations derived can be improved by taking into account the Gibbs

phenomenon and the Feher kernel.

Finally we derive a completely novel relationship for approximating the phase values

from the gain samples, in nepers, equally spaced in the logarithmic frequency domain. A

general approximation formula is proved, then two quadrature formulae are obtained using

Newton-Cotes and Simpson rules. Numerical examples are also provided to emphasize

the achievements of the method.
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ŷ(k) the transpose vector of synthetic echo signal

f(k) attenuated far-end signal
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Chapter 1

Introduction

1.1 Overview of the Thesis

Telecommunications is a growing and changing industry which has proved to be fertile

ground for the application of signal processing [28]. The rapid growth in data commu-

nications has created a need for adaptive filtering to overcome impairments inherent in

existing telephony networks. Although other structures and algorithms have been in-

vestigated for telecommunications applications, they are of less importance compared to

transversal filters adjusted using stochastic gradient algorithms and its variants [20]. In

the particular application of data echo cancellation a Hilbert transformer is very often

used in implementation in order to generate the complex error signal [82]. The present

dissertation deals with aspects concerning these two theoretic problems: stochastic gra-

dient algorithms and Hilbert transform, and for each of these topics we assign a part of

the thesis.

The first part of this work is dedicated to the introduction and development of the

cost function adaptation for data echo cancellation. In this framework the adaptive Least

Mean Square (LMS) algorithm has received a great deal of attention during the last

decades, and it has been used in many applications due to its simplicity and relatively

well-behaved performance. However, the convergence speed to optimal filter coefficients

is relatively slow. This can be a drawback in the case of the digital echo cancellation,

where one of the goals is to reduce the adaptation time, during which transmission of

useful data is not possible.

Chapter 2 gives background on main adaptive filtering techniques used in data echo

cancellation. First quadratic and nonquadratic algorithms are discussed, then the most

important variable step-size algorithms are recalled. A short description of combined

1
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LMS and Least Mean Fourth (LMF) methods follows, and the important Cost Function

Adaptation (CFA) issue is pointed out in details. Before describing the already proposed

CFA algorithms, an a priori comparative study between variable step-size methods and

cost function adaptation algorithms is developed. Modelling of the echo canceller and of

the signals ends this Chapter.

Chapter 3 considers the important family of nonrecursive cost function adaptation

algorithms. The idea behind the first approach (Section 3.1) relies on adjusting the error

exponent parameter during the adaptation by enforcing same value of gradients for two

consecutive error exponents. Two different types of algorithms are proposed: the staircase

and the smooth CFA algorithms, and it is shown that they behave with comparable results.

The second main method (Section 3.2) is called the gradient approach. It was derived by

enforcing the same direction of the gradient as in the case of non-quadratic algorithms.

As a special case the linear adaptation of power of the cost function results.

Chapter 4 deals with recursive cost function approaches. The derivation of this type

of algorithm does not use an estimator of the instantaneous error as the previous CFA

algorithms did. In the RCFA (Recursive Cost Function Adaptation) case, the new error

exponent is computing from the previous one using an usual LMS recursive equation.

The proposed method improves the sensitivity of the power of the cost function with

respect to the noisy error, while the other benefits of the CFA algorithms in terms of the

convergence speed and residual error remain.

Chapter 5 analyses the convergence and steady-state properties of the proposed al-

gorithms, and closed-form expressions for the step-size bounds and misadjustment are

obtained.

Chapter 6 ends the first part of the thesis by pointing out two close related techniques

to cost function adaptation family. First the convex variable step-size algorithm is in-

troduced, for which the convexity of the resulting cost function is guaranteed. Then a

threshold technique using quadratic algorithms is proposed. It is based on a comparison

of an error estimate with some selected thresholds, and after that to decide whether LMS

or LMF should be applied.

The second part of the thesis approaches phase approximation using logarithmic gain.

This a special case of a more general topic. A large number of scientific problems deals

with Hilbert transform and their sampled derivations. In certain applications the do-

main is restricted, or other specific conditions are imposed. Nevertheless, some particular

problems are encountered almost in every situation. A critical issue is related to the

singularities involved in the Hilbert transform computation, since we are confronted with

an improper integral. If the integral cannot be evaluated in closed form, as it is the case
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with discrete input data, numerical integration is in general complicated. Another incon-

venience is related to the properties of algorithms when there is noise present. As it is

known, the Hilbert transform can behave as an unbounded operator. Our approach to

develop phase approximations by gain samples consists of the following three steps.

Chapter 7 discusses the most important theoretical results related to our specific

subject. The phase retrieval problem is recalled, then the old fashion Bode gain-phase

relations are reconsidered for our purposes. Sampling in logarithmic domain is pointed

out as a more general rule, not necessarily only for the presented case. The issue addressed

is described, and a systolic implementation for this problem is proposed.

Chapter 8 establishes new relationship for computing the phase of the minimum-phase

functions from the gain derivatives, as a first step to approach phase by gain samples.

As a beginning, we show that for a given frequency the phase could be obtained from

the odd derivatives of the neperian gain, evaluated for this frequency. Then we select a

finite number of terms of the main formula and we derive an approximation of phase. We

compute this approximation for first-order and second-order systems, and we emphasize

the issue of higher-oder derivatives majorants. We show that the approximations derived

can be improved by taking into account the Gibbs phenomenon and the Feher kernel.

Finally we use finite differences in order to substitute the higher derivatives involved in

the proposed approaches.

Chapter 9 derives completely new relationships for approximating the phase values

from the gain samples, in nepers, equally spaced in the logarithmic frequency domain.

First a general approximation formula is proved, then two quadrature formulae are derived

using Newton-Cotes and Simpson rules. Finally some numerical examples are provided.

Some concluding remarks and several considerations for the future developments are

also given.

1.2 Author’s Contribution

The author’s contribution to the existing theory is mainly in Chapters 3-6, 8, 9. To the

author’s knowledge no work has been done before in cost function adaptation, at least in

the signal processing area and for the case of adaptive filters. In addition to that, various

novel approaches to phase approximations are developed. The structure of the thesis is

constructed to follow easily these results.

The main contribution of this thesis is in the following points:

1. Derivation of stationary cost function adaptation approaches: the staircase and
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smooth CFA algorithms; topics within Section 3.1 have been published at Fourth

IMA Int. Conf. Math. for Sign. Proc. [21] and presented at ICASSP’98 [22].

2. The gradient approach; this part has been submitted for publication in IEE.Proc.-

Vis.Image Signal Process. [60], and the linear cost function adaptation has been

published in IEEE DSP’98 [59].

3. The recursive cost function adaptation, presented at ICASSP’99 [61].

4. Several closed formulae for CFA convergence and steady-state analysis, accepted at

ISCAS 2000 [62].

5. Derivation of the convex variable step-size method.

6. The threshold LMS and LMF technique, presented at Cost#254 Workshop [65] and

ECCTD’99 [57].

7. A gain derivatives series formula for phase, published partially at ICECS’96 [63]

and in details at ICECS’98 [64].

8. The Feher kernel effect in phase approximation, published at ICECS’98 [64].

9. A phase approximation from gain samples, published at ISCAS’99 [66].

The author has done the basic derivation, experimental and writing work in all these

publications. Except [63, 64] where Prof. Ioan Gavrea also contributed, the author

fulfilled the publications task with the supervisors. Other results related with one part or

another of the thesis deal with median algorithms [12, 13, 14, 37, 58], non-minimum 1-D

phase retrieval [11, 57], and curves fitting [80].
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Cost Function Adaptation for Data

Echo Cancellation
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Chapter 2

Adaptive Algorithms for Data Echo

Cancellation

For a digital echo canceller it is desirable to reduce the adaptation time, during which the

transmission of useful data is not possible. Least Mean Square is a non-optimal algorithm

in this case as the signals involved are statistically non-Gaussian. Walach and Widrow

[81] investigated the use of an error power of 4, while other research established algorithms

with arbitrary integer [52] or non-quadratic error power [71]. This dissertation suggests

that continuous and automatic, adaptation of the error exponent gives a more satisfactory

result. The family of CFA stochastic gradient algorithm proposed allows an increase in

convergence rate and an improvement of residual error.

2.1 Data Echo Cancellation

In full-duplex transmission over telephone lines, hybrid couplers are typically used to di-

vide the transmissions in different directions. Due to impedance mismatch at the hybrids,

the resulting echoes interfere with the information-bearing signals [85]. An echo canceller

is employed to generate an accurate replica of the echoes and subtract them from the

received signal. Although basically voice and data echo cancellers are similar, there are

some important differences imposed by the type of the signals involved. Unlike voice echo

cancellers, the data echo canceller is usually located at each end of the circuit. In addition

due to its placing at the data equipment, in the case of data transmission the filter is split

into two adjustable transversal filters separated by a bulk delay. The third difference is

in the properties of the signals used, speech and digital data. The statistical properties

of the speech signals are complicated and difficult to quantify, whereas data signals have

7
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much simpler statistical properties. Finally, in the case of human speech a small amount

of echo or an echo with a small delay can be tolerated, but digital data transmission is a

different case where even a small amount of echo with a very short delay is intolerable. In

this last case an important goal is a short adaptation time, during which the transmission

of useful data is not possible.

Two techniques dominate this area, namely, the LMS algorithm and the recursive least

squares (RLS) algorithm [1]. The RLS algorithm converges faster than LMS, but it is

computationally complex compared to the LMS algorithm especially in the presence of

multiple echoes and long bulk delays. In the case of data modems, the LMS algorithm is

known to track remarkably well the variations of a slowly time-varying model. However,

the conventional LMS algorithm is slow-converging during initialization. One solution to

this problem is to use different adaptation techniques during initialization and the steady

state.

2.2 Adaptive Algorithms

2.2.1 Quadratic and nonquadratic cost functions

Among various stochastic gradient adaptation algorithms based on different cost func-

tions Jr = E[|e(k)|r], the least mean square (r = 2) algorithm is the most popular

and widely used because of its simplicity and robustness to numerical error accumula-

tion. Since its introduction [83], the LMS algorithm has been the focus of many stud-

ies, leading to its implementation in many applications. However, LMS has two main

disadvantages: a sensitivity to impulse interference and a relatively slow convergence.

As a result, researchers have looked for alternative means to improve its performance.

Order-statistics operators [6] improve in a significant way the LMS behaviour in noise

environments [12, 13, 14, 33, 58, 69, 86]. Many other adaptive algorithms based upon

non-mean-square error cost functions can also be chosen to increase the speed of con-

vergence. Walach and Widrow have studied the error minimization in the mean fourth,

mean sixth etc. sense (r = 2p, p ∈ N), as other alternative cost functions. As a special

case the LMF algorithm results [81]. More recently, adaptive filtering algorithms that

are based on positive integer error exponent LMP (Least Mean P-Power Algorithm) are

proposed and their convergence properties have been investigated [52]1. Unfortunately,

1We note that the LMP algorithm with P < 2 was used before in the case of α-stable processes [72].
The least squares cost function cannot be defined for such signals because the variance of the error is not
finite [5].
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these higher-order algorithms have stability problems and they are relatively sensitive to

noise due to the very large gradient terms which result for higher-order representation of

errors. Other research studies established algorithms with arbitrary non-quadratic error

power r (NQSGr) [71], and their results indicated that the error exponent r (2 < r < 3)

improves stability. In the case of NQSGr the simulations indicate also that a reduction

in convergence time can be achieved compared with the LMS algorithm. The powers of

the cost function which are in general greater than 3 do not significantly increase the

convergence rates. There is a range of exponent r for which convergence rates are less

sensitive to the variations of r.

Based on the cost function Jr = E[|e(k)|r], the general form of the stochastic gradient

algorithm with exponent r can be computed using the simple recursive relation below:

ĥ(k + 1) = ĥ(k) + µr|e(k)|r−2e(k)x(k). (2.1)

A review of Equation (2.1) for general case (e(k) ∈ C, and r ∈ R) is included in Appendix

2.4.

2.2.2 Variable step-size algorithms

The convergence speed and misadjustment of the LMS algorithm are both dependent

on to the step-size µ, so a trade-off between these characteristics exists. The variable

step-size algorithms, children of LMS family, use a step-size µ(k) which is larger at the

beginning of adaptation for fast convergence and is smaller at the end of adaptation for

smaller misadjustment.

There is a large literature on variable step-size methods. A number of references deal

with algorithms that vary the step-size as 1/k slowly decreasing to zero over time, but such

a procedure is unfortunately not suitable for a transmission system [45]. The popular gear-

shifting approach [85] is based on using large step-size values when the algorithm is far

from the optimal solution, and small step-sizes values near the optimum. Other variable

step (VS) adaptive filtering algorithm controls the step-size by examining the polarity of

successive samples of the estimation errors [44]. If there is a given number of consecutive

sign changes, the algorithm decreases the step-size by an appropriate amount, whereas

if there is another certain number of consecutive sign changes, the algorithm increases

the step-size. Based on the fluctuation of the prediction squared error, another proposed

alternative is the variable step-size algorithm (VSS) [42]. A different technique [46, 74],

usually called gradient adaptive step (GAS) employs gradient adaptation for the step-sizes

as well as for the coefficients.
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Figure 2.1: The time-varying step-size and the magnitude of the error

Except this last stochastic algorithm, none of the above mentioned variable step-size

algorithms assures that the step-size is optimum at any time instant along the convergence

process [40]. Moreover, they are based on some linguistic rules on step-size adjustment

translated into numerical formulae. An overall weakness of the variable step-size algo-

rithms is that they require the user to select additional constants and initial step-size

to control the adaptive behaviour of the step-size sequence. In addition, these methods

need steps to be taken to anticipate the step-sizes from exceeding their maximum and

minimum limits [29].

We may also consider the higher-order algorithms as the LMS algorithm with time-

varying step-size [52]:

µ(k) =
µr|e(k)|r−2

2
. (2.2)

Figure 2.1 illustrates the relation between the normalised step-size µ(k)/µ and the error

magnitude. It is easy to see that the time-varying step-size decays as error decreases for

r < 2, which suggests that these error exponents should not be applied. Furthermore,

caution should be taken when we use higher powers for large errors. All the plots cross
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the LMS line almost in the same point, around -5 dB:

|e|dB(r) =
6.02 − rdB

r − 2
.

2.2.3 Combined LMS and LMF methods

From the very beginning, it was shown that the LMF algorithm, under some circumstances

will have a substantially lower weight noise than the LMS algorithm, if both are set to

have the same time constants for the weight relaxation process [81]. Though LMF can

outperform LMS in certain situations, it is restrained by the difficulty of setting a stable

step-size parameter. As a consequence, recent researches were concentrated in differently

composed LMS and LMF techniques. Most of them used a time-varying combination of

the LMF and LMS cost functions. A mixed-norm LMMN (Least-Mean Mixed Norm)

cost function of this type was first proposed in [15], where a constant mixing parameter

was used. The resulting cost function is convex, perhaps the only one for which this

property is obvious to prove. In [51] the mixing-parameter was adaptively adjusted and

the authors claimed an adding flexibility of their LMS+F algorithm. A switched error

norm was proposed in [73], and the mixed controlled norm LMS-LMF algorithm [89] was

suggested for long cancellers2. In [44], the authors used the LMS with large step-size

and the LMF with small step-size, together with a positive threshold in the gradient

expression, resulting the Combined LMS/F algorithm. Recently [57, 65] a joined LMS

and LMF threshold technique for data echo cancellation has been proposed (Section 6.2).

As a general characteristic all these novel algorithms improve the performances of the

quadratic algorithms in their appropriate application, but more or less difficulties appear

when we skip to another situation. The issue of parameter selection encountered in the

case of variable step-size methods is still challenging. To the author’s knowledge, except

for LMMN [43, 78] no detailed convergence and steady-analysis has been performed.

2.2.4 The CFA issue

In the particular application of data echo cancellation we have a signal environment

which violates basic assumptions inherent in adaptive estimation theory. First, the train-

ing signal is noise dominated (by the far-end signal) and second, the noise statistics are

non-Gaussian. The second fact tends to suggest that least squares optimisation is not

optimal for this case. Previous work [70, 71] has shown that considerable performance en-

hancement is possible by the use of high order metrics (of order greater than 3). However,

2In this particular application, two other techniques were reported [88, 90].
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the exact metric to be applied depends on the channel dispersion. Therefore the logical

solution is to use an adaptive error metric which changes dependent on the actual error

statistics [18]. However, as in the case of variable step-size algorithms [25], the optimum

CFA algorithm requires complete knowledge of the signal and system statistics and thus

it cannot be implemented in most practical conditions. In this thesis, the solution for this

kind of situation is examined. The main goal of our task is to derive a stochastic gradient

algorithm for the case of data echo cancellation in which the error exponent r is adjusted

using the value of the error e(k) [19], i.e. to find a relation of the form

r(k + 1) = r(k) + αF [r(k), e(k)], (2.3)

where α is a constant and F is a function to be found. The weights would be updated

following formula (2.1) with r = r(k). It is supposed also that the algorithm will converge

on a steady-state cost function Jr = E[|e(k)|r(k)].

For the sake of clarity we shall consider in this dissertation two different types of

error exponent updates. First we discuss adjustments without memory. In this case we

have nonrecursive cost function adaptation (Chapter 3). Thus relationship (2.3) becomes

r(k + 1) ≡ F [e(k)]. Alternatively, the recursive cost function adaptation case is detailed

in Chapter 4, where the adaptation of the cost function is with memory.

It will be shown that the adaptation of cost function is a promising alternative, since

continuous and automatic adjustment of the error exponent gives a more satisfactory

result compared to the LMS and the LMF algorithms. The new family of stochastic

gradient algorithms allows an increase in convergence rate and, at the same time, an

improvement of the residual error [21, 22, 59, 61].

2.2.5 Cost function adaptation versus variable step-size

Before proceeding further we have to point out that dealing with variable error expo-

nents seems more difficult than using variable step-sizes. A first reason is given by the

nonlinearity of the exponential operator, compared with step-size linearity involvement.

Moreover, the multiplications by a constant of the step-size or of the error exponent

have completely different result and significance. Also we have to note the specific point

|e(k)| = 1. In this case the cost functions Jr = E[|e(k)|r] are always one, despite of the

type and magnitude of the other signals involved in adaptation process, and this value

does not depend on the error exponent3. All these suggests the difficulties we can expect

when this point is reached during our adaptation. In addition, the criteria controlling the

3Further reflections on this issue can be found in [15, 71].
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error exponent update r(k + 1) ≡ F [|e(k)|] directly obtained from instantaneous error,

contain also the measurement noise, so in this case the performances of the algorithms

will be quite sensitive to the noise disturbance.

The goal is to obtain as much as possible benefits in the desired framework by com-

bining different cost functions. However we should not expect more than their best per-

formances. For instance, LMF outperforms LMS by larger initial gradients and lower

residual error, but these are generally associated with decrease in the degree of stability

and convergence speed.

An important aspect derives from the comparison of algorithms. We need to specify

clearly the criteria we shall use when we compare them. It is also important the type

of step-size we are dealing with during error exponent adaptation: we can consider algo-

rithms where the step-size is always constant, or the step-size is that optimal one for the

corresponding error exponent and the given criteria.

In this thesis we are mainly interested in convergence speed, where the convergence

level is achieved 20 dB below the far-end signal, and we consider only constant step-size

CFA algorithms, except Section 6.1.

Thus, in almost all situations, during error exponent adaptation, it is desirable to

start with a large power r(0) and to stop with a small power r(∞). In order to exploit

both the tracking capabilities and noisy stability of the LMS algorithm, and the initial

faster convergence of LMF, a good choice4 is r(0) = 4, and r(∞) = 2. However, in some

applications r(∞) = 1 is desired, which gives better behaviour in impulsive environments.

2.2.6 Cost function adaptation algorithms

The first cost function adaptation algorithm was introduced in [21]. The derivation of this

CFA stochastic gradient algorithm follows the principle of minimum disturbance [35, 84].

The result is in fact a piecewise non-quadratic algorithm and the power of the cost function

is updated using the relationship:

r(k + 1) ≡ F [|e(k)|] =
REdB

|e(k)|dB

,

where REdB is an arbitrary constant and |e(k)|dB is the error modulus, measured in dB.

The weights were computed using the simple recursive relation (2.1) as in the case of

4There is another important reason for the CFA algorithm to have an error exponent adaptation time
short, and also for its steady-state to follow LMS [39]: The bounds of the step-size provided for the LMF
and NQSG algorithms in [71, 81] compared with that one for the LMS [85] indicate that the algorithm
based on cost functions with r 6= 2 can be more sensitive to attenuated far-end signals than the LMS.
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non-quadratic algorithms, where r = r(k):

ĥ(k + 1) = ĥ(k) + µr(k)x(k)|e(k)|r(k)−1sgn[e(k)], (2.4)

as we took into account only real signals. However the error exponent had to be updated

in terms of a well-behaved estimator of the instantaneous error, otherwise instability can

occur. At the beginning two types of error mappings have been tried: the running aver-

age of the modulus of the instantaneous error and the log running average of the squared

instantaneous error. The first CFA algorithms implemented were the decreasing stair-

case power-error algorithm (with only integer or square roots powers) and the decreasing

smooth power-error algorithm. We found that there is no big differences between these

approaches, including the divergence appearances [21].

The next step was to reduce this effect, and we tried to distinguish the causes of

instabilities. Beside bounding the error exponents like the variable step-size methods

for step-size, we were also looking for an error estimate as smooth as possible, in order

to reduce the error exponent update sensitivity to the noisy error. We found that the

normalised tap-error vector norm behaves quite well [22]. The obtained error assessment is

smooth, convenient to compute, but sometimes it is difficult to find in practical situations.

Nevertheless, we established that both higher order error exponents, and noisy error

estimate contribute to missconvergence. Another new feeling was that we need more

degrees of freedom in choosing the error exponent update, as we noticed that best results

were achieved when the error exponent update and adaptation periods are closed. The

cancellation of the posterior error output [22] or the stationarity of gradients (Section 3.1)

do not provide enough parameters sometimes.

A more general case was pointed out in [59], where the power updating rule:

r(k + 1) ≡ F [|e(k)|] =
r(0)

|e(k)|dB
β−1

,

was derived by enforcing the same direction of the instantaneous gradient as in the case

of non-quadratic algorithms. If β = 1, then r(k + 1) = r(0), and we retrieve LMS, LMF

and NQSGr. A detailed analysis of this algorithm is provided in [60].

The LCFA (Linear Cost Function Adaptation) algorithm is a special case of this

family. The error exponent is adjusted in such manner that it is linearly decreasing

during the time of adaptation. A new error mapping was implemented [59]. This was

done using the technique of the peak detector in classical amplitude modulation. We pass

the logarithmic modulus of the instantaneous error through a first order recursive digital

filter, the equivalent of the low-pass RC filter. If the noisy error is processed as mentioned
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Figure 2.2: Simplified block diagram of simulation setup.

above, and under some circumstances, the logarithmic output is linear decreasing, and

also the error exponent is linear decreasing.

Other efforts were concentrated in adaptation of cost function in a recursive way [61].

The derivation of the new algorithm does not use an estimator of the instantaneous error

as the previous cost function adaptation algorithms did. In the RCFA case, the new error

exponent is computed from the previous one using an usual LMS recursive equation. We

found that this method improves the sensitivity of the error exponent with respect to the

noisy error, while the other benefits of the CFA algorithms in terms of the convergence

speed and residual error remain.

2.3 Modelling

The setup for the data echo canceller is shown in Figure 2.2. The adaptive FIR filter

is trying to make a copy ŷ(k), of the echo-path output y(k), using the signal x(k) as an

input, based upon a measurement of the signal that remains after subtracting ŷ(k) from

the received signal y(k) + f(k) [17]. Thus our framework is described by the following

signals and equations:

• x(k) is the input sequence (near-end signal);

• y(k) is actual echo path output sequence;
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• ŷ(k) is the synthetic echo signal;

• f(k) is the far-end signal;

• e(k) is the resulting error:

e(k) = y(k) + f(k) − ŷ(k). (2.5)

At the kth time sample, the adaptive and the echo-path filter have impulse responses

given by

ĥ(k) = [ĥ(0), ĥ(1), . . ., ĥ(N − 1)]t, h(k) = [h(0), h(1), . . ., h(N − 1)]t,

where N is the number of filter coefficients. We denote by x(k) the transpose of the input

observations vector

x(k) = [x(k), x(k − 1), . . ., x(k − N + 1)]t,

and by ∆h(k) = ĥ(k) − h(k) the tap-error vector. The outputs of the two filters can be

written as

y(k) =
N−1∑
n=0

h(n) · x(k − n) = ht(k)x(k), ŷ(k) =
N−1∑
n=0

ĥ(n) · x(k − n) = ĥ
t
(k)x(k).

(2.6)

Therefore

e(k) = f(k) − ∆ht(k)x(k). (2.7)

Two types of echo path have been used. The first one consists of channels that are

single pole single zero digital filters, with the impulse response series truncated [71]. The

transfer function of the echo path is of the form:

H(z) =
N−1∑
j=0

pjz−j,

where p ∈ (0, 1). The feedback coefficient p of the echo path filter is chosen in such a

way that the lower level of the impulse response will be attenuated by A dB at the N -

th sample. The second type of echo path model is numerically generated as in [70], by

sampling a diagram of an actual telephone network connection. The impulse responses

for a first type channel (p = 0.80025, A = −60, N = 32) and for the second echo-path

(real hybrid) are shown in Figure 2.3.
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Figure 2.3: Impulse responses for the two sample echo path of channel models:

(i) the single pole single zero digital filter (p = 0.80025, A = −60, N = 32);

(ii) the real hybrid (N = 32) .

In our simulations the near-end sequence {x(k)} is modeled by a non-Gaussian ran-

dom bipolar sequence from the set {1,−1}, and the far-end signal is generated by an

independent random bipolar sequence from the set {a,−a}, where a is the attenuation of

the far-end signal. The presence of Gaussian interference is done by adding to the far-end

signal of a zero-mean Gaussian density with variance σ. We performed some experiments

with added dispersion to the attenuation. In this case the far-end signal is modelled by

passing the signal through a transversal digital filter.

As we are searching for optimized cost functions with different error exponents during

adaptation, the performance measure selected should not include directly a certain power

of the instantaneous error. Taking into account the framework addressed, we choose the

normalised form of the tap-error vector [70, 71]:

p(k) =
‖ĥ(k) − h(k)‖

‖h(k)‖ . (2.8)
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2.4 Appendix

In the following we shall derive relationship (2.1) for computing the gradient of the general

form of the stochastic gradient algorithm if e(k) ∈ C, and r ∈ R. Let us first consider the

function f : C → R+, defined by f(z) = |z|r, and z = x + jy, with x, y ∈ R. We have

∂f

∂x
= rx(x2 + y2)

r

2
−1

,
∂f

∂y
= ry(x2 + y2)

r

2
−1

,

and where they exist, it results that

f ′(z) =
∂f

∂x
+ j

∂f

∂y
= r|z|r−2 · z. (2.9)

This is true for every r ∈ R, unless x = y = 0, where we distinguish three cases:

• r < 1. It is easy to show that

lim
x=y→0

∂f

∂x
= lim

x=y→0

∂f

∂y
= ∞;

• r = 1. For every m ∈ R we obtain

lim
x=my→0

∂f

∂x
= r(m2 + 1);

• r > 1. Finally we have

lim
x,y→0

∂f

∂x
= lim

x=y→0

∂f

∂y
= 0.

It follows that f ′(z) exists for all z ∈ C iff r > 1.

Now, in order to derive an adaptive algorithm to adjust filter parameters based on the

least mean r-power error metric, we choose the steepest descent algorithm

ĥ(k + 1) = ĥ(k) − µ
∂Jr

∂ĥ
= ĥ(k) − µ

∂{E[|e(k)|r]}
∂ĥ

.

From Equation (2.9) and taking account of

∂e(k)

∂ĥ
=

∂

∂ĥ
(f(k) − ∆ht(k)x(k)) = −x(k),

we obtain
∂Jr

∂ĥ
= E[−r|e(k)|r−2e(k)x(k)]. (2.10)

We replaced the ensemble averaged value by the instantaneous value and in a correspond-

ing fashion we use the instantaneous estimate in place of the gradient of the ensemble

averaged [35]. Thus formula (2.1) holds for every r > 1.



Chapter 3

Nonrecursive Cost Function

Adaptation

A family of stochastic gradient algorithms and their behaviour in the data echo cancella-

tion work platform are presented in this Chapter. The cost function adaptation algorithms

use an error exponent update strategy based on an absolute error mapping, which is up-

dated at every iteration. The quadratic and nonquadratic cost functions are special cases

of the new family. Several possible realizations are introduced using these approaches.

The idea behind the first approach (Section 3.1) relies on adjusting the error exponent

parameter during the adaptation by enforcing the same value of gradient for two con-

secutive error exponents. The update expression is identically with that derived in [22],

obtained using the stationary gradient approach.

Its extension is the second main method (Section 3.2). In this special situation we

have the gradient approach. It is derived by enforcing the same direction of the gradient

as in the case of non-quadratic algorithms. As a special case the linear adaptation of

power of the cost function results [59].

For all these methods first the derivation of algorithms is presented, then the influence

of different parameters is discussed. The noisy error problem is pointed out and several

solutions are proposed. Finally the simulation outcomes confirm the effectiveness of the

proposed family of algorithms. The results obtained for different values of parameters,

types of signals and echo-path models have demonstrated the reliability of the proposed

method, their benefits over the quadratic algorithms and the comparable performances

to the variable step-size methods.

The convergence and steady-state analysis of the proposed algorithms has been car-

ried out and closed-form expressions for the step-size bounds and misadjustment will be

19
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provided in Chapter 5.

3.1 The Stationary Approaches

3.1.1 Method

In addition to the weights update equation, the CFA algorithms need an extra update

equation for the error exponent. As we are searching for r(k) depending only on the

system error, a problem is whether we should update the error exponent before or after

the estimated filter coefficients. This dilemma can be solved by enforcing the same value

of the gradient for the given error and the two consecutive error exponents:

r(k)|e(k)|r(k)−2 = r(k + 1)|e(k)|r(k+1)−2. (3.1)

In practical situations the system identification error cannot be evaluated exactly, as

the instantaneous error contains the measurement noise. Although Equation (3.1) can

be implemented directly (Examples 1 and 2), special average techniques can be useful

in order to obtain a satisfactory CFA adaptation (Section 3.1.2). Thus, regardless of the

implementation detail, the proposed CFA algorithm is basically driven by two well-known

principles as follows.

• The updated filter estimate should be disturbed in a minimal fashion (The principle

of minimal disturbance [35, 84]).

• The adjustment of r(k) must be done using finite-time average characteristics ē(k)

rather than the instantaneous values of the error e(k) [85].

The proposed CFA algorithms try to satisfy these two principles as simply and directly

as possible. We start the kth iteration keeping the error exponent constant. We then

apply NQSGr(k), the non-quadratic algorithm with power r(k). The error e(k) results

and the estimated filter coefficient vector is computed using (2.1) with r = r(k). At the

same time we are searching for the new power r(k + 1) of the cost function, keeping the

gradient unchanged. This finishes the kth iteration. The resulting algorithm is a piecewise

non-quadratic algorithm, direct and simple to understand.

3.1.2 The staircase CFA algorithm

Previous works [70, 71, 73] consider algorithms with gradient switched during convergence,

consisting of applying the fixed error exponent algorithm (r > 2) and switching to the
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LMS when the absolute value of the error e(k) reaches or crosses the limits of ±1. These

methods were developed in order to handle the instability which arises, by reducing for

a while the gradient. Combining these achievements with the previous comments, we

consider the staircase CFA algorithm defined by the following:

1) The weights are computed with Equation (2.1);

2) The power r = r(k) is updated by:

r(k + 1) ≡ F [e(k)] =




R1, if E1 ≤ |e(k)| ≤ EM ,

R2, if E2 ≤ |e(k)| ≤ E1,

...

RP , if EP ≤ |e(k)| ≤ EP−1,

2, otherwise.

(3.2)

where Ri, EM and Ei (i = 1, 2, . . . , P ) are positive constants for error exponents, respec-

tively for error magnitudes. To be noticed that we can consider only integer or square

root powers in order to reduce the computational effort [21], though other values are

also possible. To find Ei, we naturally derive the gradients for every constant and the

neighbouring error exponents, then set them equal:

R1E1
R1−1 = R2E

R2−1
1 ;

R2E
R2−1
2 = R3E2

R3−1;

. . .

2EP = RP ERP−1
P .

(3.3)

It results:

ln Ei = − ln Ri+1 − ln Ri

Ri+1 − Ri

, i = 1, 2, . . . , P, (3.4)

where RP+1 = 2. Note that the Ei constants do not depend on far-end signals levels or

parameters of the echo-path. From Equations (3.2) and (3.4), we have

E1 ≥ E2 ≥ . . . ≥ EP ,

R1 ≥ R2 ≥ . . . ≥ RP .
(3.5)

In the following an experiment will justify the benefits of a smooth estimate of the error’s

modulus.

Example 1 .

In this simulation example the proposed algorithm is applied to data echo cancellation

of the first echo-path channel (p = 0.80025, A = −60, N = 32), where the input signals

are binary (Section 2.3). Every learning curve was obtained doing 20 averages.
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First an implementation of the LMS algorithm was simulated. For each of the following

levels of attenuated far-end signal: adB = −15,−20,−25,−30, an optimum step-size was

found. This value gives the minimum number of iterations in such a way that convergence

level is 20 dB below the far-end signal.

Then the staircase CFA algorithm (P = 3, R1 = 4, R2 = 3, R3 = 2.5, EM = 1,

E1 = 0.75, E2 = 0.6944, E3 = 0.64) as described in Equation (3.2), i.e. using the

instantaneous error for updating the error exponent, was completed with the same optimal

procedure as for the LMS.

Finally another three finite-time averages of the error modulus (Section 2.3), assessed

every W = 128 iterations, with same L = 16 samples length have been replaced the

instantaneous error in the right-hand side of the Equation (3.2). These are the mean, the

mean-square and the median. The initializations of the averages are so that r(k) = R1,

k = 1, 2, . . . , W − 1.

For all these examples the results show that the adaptation time reduces when the

far-end signal level decreases. Also the CFA algorithm outperforms systematically LMS,

but in different manner. Therefore, in all cases, we normalise the convergence speed of

CFA and LMS algorithms for the corresponding conditions, and these ratios are shown

in Figure 3.1. The top curve suggests that using directly Equation (3.2) we gain 1-8 %

reduction in adaptation time, but if we average the right-hand side of Equation (3.2), the

results are more promising (9-22%), with emphasis at high noise levels.

Thus we show that the smoothness and error tracking capabilities of the term in the

right-hand side of Equation (3.2) clearly affects the convergence speed of the staircase

CFA algorithm. This issue is important in the case of the smooth CFA algorithm, where

the error term interferes both in the endpoints of intervals and error exponent update

expression.

3.1.3 Derivation of the smooth CFA algorithm

For the beginning we reconsider from Equation (3.1) the equality of the two gradients, as-

sessed for the same instantaneous error, but for two different consecutive error exponents.

We distinguish two cases:

• |e(k)| ≥ 1; in this case we have r(k + 1) = r(k) (Appendix 3.3).

• |e(k)| < 1; the resulted Equation in r(k + 1) unknown is transcendental.

In order to solve this Equation, we use the assumption of a smoothed error exponent:

|r(k + 1) − r(k)| ¿ r(k), r(k + 1). (3.6)



3.1 The Stationary Approaches 23

−30 −25 −20 −15
0.75

0.8

0.85

0.9

0.95

1

FAR−END SIGNAL LEVEL

N
U

M
B

E
R

 O
F

 IT
E

R
A

T
IO

N
S

 R
A

T
IO

Figure 3.1: Ratio between the minimum numbers of iterations of the staircase CFA al-

gorithm and LMS, when in right-hand side of Equation (3.2) we have modulus of the

instantaneous error (·−), its mean (◦−), mean-square (¤−), and median (♦−) finite-

time averages.

Using [7]:

ln(1 + x) ≈ x, for all real |x| ¿ 1, (3.7)

we conclude that:

ln |e(k)| =
ln r(k) − ln r(k + 1)

r(k + 1) − r(k)
=

ln

[
1 +

r(k) − r(k + 1)

r(k + 1)

]
r(k + 1) − r(k)

≈ − 1

r(k + 1)
, (3.8)

so a solution of the new error exponent might be

r(k + 1) ≈ − 1

ln |e(k)| = − 8.68

|e(k)|dB

, (3.9)

where |e(k)|dB is the error modulus measured in dB.

Remark 1 . The above proof is valid only at points where condition (3.6) holds.

Combining this with Equation (3.9), we obtain that

||e(k + 1)|dB − |e(k)|dB| ¿ ||e(k)|dB|, ||e(k + 1)|dB|. (3.10)
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This shows us clearly that the term in the right-hand side of Equation (3.9) should be

also smooth, therefore a possibility is to average the modulus of the instantaneous error.

Remark 2. The staircase CFA relation between error exponents and Ei constants (3.4)

is the left-hand part of (3.8).

From this equality, we obtain r(k) ≈ r(k + 1), if |e(k)| ≈ 1. This recommends no error

exponent adaptation should occur, for |e(k)| ≤ E0 < 1, where R0 and E0 are positive

constants such that R0 > 2 and ln E0 ≈ −1/R0.

Remark 3 . We can substitute in our approach the exponent r(k) by Cr(k), where C is

an arbitrary positive constant.

This will change the cost function expression, the right-hand side of the weights (2.1)

and error exponent update (3.9) relationships by the corresponding constant. Finally we

retrieve the result from [22], but using a different approach1.

It follows that the smooth CFA algorithm is defined by the following:

1) The weights are computed with Equation (2.1);

2) The power r = r(k) of the cost function is updated by:

r(k + 1) ≡ F [e(k)] =




R0, if E0 ≤ |e(k)| ≤ EM ,

R0|E0|dB

|e(k)|dB
, if E∞ ≤ |e(k)| < E0,

R∞, if |e(k)| < E∞,

2, otherwise,

(3.11)

where R∞ (R∞ < R0) and E∞ are positive constants.

Remark 4 . EM ≥ 1

Now we recall Equations (3.2) and (3.11). Instead of switching to the LMS when the

absolute value of the error reaches and crosses the limit 1 as in [70, 71, 73], this can be

done when the error modulus meets another constant. For instance this constant EM

can be obtained directly comparing the LMS maximum step-size µmax with the maximum

value of the variable step-size of the CFA algorithm given by (2.2). From Equations (3.5)

and (3.11) we have

EM =

(
2µmax

µR

) 1
R−2

, (3.12)

1In [22] we derived the stationary approach by nulling the gradient of the cost function Jr = E[|e(k)|r],
where the power r is a function only of the instantaneous error.
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µ
for different error exponents.

where R = R1 for the staircase CFA algorithm and R = R0 for the smooth CFA algorithm.

The variation of the constant EM in dB, as a function of the step-size ratio µmax/µ, for

different values of error exponent R is presented in Figure 3.2. It is apparent that for

R = 4 not many switchings to maximum step-size of the LMS are needed, however this

amount increases toward R = 10. With this consideration in mind, we can select the

constant EM given by Equation (3.12) in the following simulations.

Note that the proposed CFA algorithms can use a step-size bigger than the LMF. Ac-

tually the step-size can be increased close to the maximum step-size of the LMS algorithm

for small lengths of the time-average of the error, since we skip to the power two, when we

cross the ±EM limits of the error. But if we increase the length of the time-average, the

maximum-step size will decrease correspondingly as we have to consider the introduced

delay, and the occurrence of possible instabilities. This situation warns us that if we use

in such cases the constant EM in (3.2) and (3.11) it is better to decrease the value given

by (3.12).
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3.1.4 Discussion

This section shows some different aspects of the implementation of the smooth CFA algo-

rithm. The first one considers the necessity of the R∞ and E∞ (E∞ > 0) final parameters

in Equation (3.11), then the influence of initial constants in algorithm behaviour is dis-

cussed, providing that a smooth estimator of the error is available. In this context we

provide a short comparison between CFA and quadratic algorithms.

For the beginning, as an illustration of the problems generated by the simultaneous

presence of small errors and exponents, we consider the following example.

Example 2 . The trade-off between instantaneous error and error exponent

Let the channel be the same as in Example 1, with one difference. We consider for

simplification only one level adB = −15 of attenuated far-end signal. A direct implemen-

tation of (3.11) was performed, where r0 = 4, EM = 1, E0 = 0.75, E∞ = 0 and using

the step-size found as the optimal for LMS. The normalised tap-error vector norm for

one simulation experiment is shown in Figure 3.3, and it is apparent that the algorithm

behaves similarly as though it is perturbed by an impulsive noise. Indeed, this might

be the case. To have a look deep insight of the function, we use a narrow window on

the same plot, in addition to those of the instantaneous error and error exponent update

(Figure 3.4). We can see in Figure 3.4(a) a triplet of very small error, close to zero, and

they lead to the next small error exponents, less than 0.5, shown in Figure 3.4(c). Thus

the next gradient becomes suddenly large, and acts as an impulse as we can see in Fig-

ure 3.4(b). This always happens when a couple of very small errors appear, but the effect

is more obvious if the number of small errors is bigger. However, this number cannot

be too large, since after an impulse in gradient, the system goes far from the minimum.

Afterwards this do not affect the system too much, since for large errors |e(k)| ≥ 1, the

gradient is reduced by forcing r(k) = 2. It still reappears for successive small errors.

We can avoid this situation. One possibility is to low bound the error modulus and the

error exponent, and the necessity of the E∞ and R∞ extra parameters results. Another

possible way to improve the performances is to use time-averaging of the error modulus

when we update the error exponent. Thus the error exponent will also be smoothed and

the reduction in convergence speed is also present (Section 3.1.3).

Proceeding further, from Equation (3.8) and Remark 3 we get that during the error

exponent adaptation the product r(k +1)|e(k)|dB is constant [22]. This suggests to study

the behaviour of the proposed smooth CFA algorithm, with different initial constants,

provided that a smooth estimate of the error modulus is available. Indeed, we consider
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Figure 3.3: Learning curve of the smooth CFA algorithm given by Equation (3.11), where

no time-average was used.

the normalised form of tap-error [21] and it is twice used in this simulation example, as

a performance measure and in order to compute the error estimate in the error exponent

update.

Example 3 . The initial conditions settlement

The CFA’s starting power was r(0) = 4 and it is kept unchanged till k = K corresponding

to p(k) less than a given value p(K). For k > K the error exponent adaptation rule is

done by:

r(k + 1) = r(0) · log[a2 + ‖ĥ(K)‖2p2(K)]

log[a2 + ‖ĥ(k)‖2p2(k)]
. (3.13)

Derivation of this formula is given in the Appendix 3.3. We select for this experiment

the same data echo cancellation simulation framework of the first channel with the param-

eters p = 0.80025, A = −60, N = 32 (Section 2.3). Figure 3.5 shows the relation (3.13)

for p(K)dB, from 0 to -20 dB, where ”CFAxx” is the corresponding plot for p(K)dB = −xx

dB. Once again, it is clear that an earlier start of error exponent update can affect the
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as in Figure 3.3.

convergence. For instance, following the curve CFA0, the decreasing of the error exponent

will increase the normalised tap-error vector norm. This is not surprisingly since |ē(K)|dB

is positive (Section 3.1.3). Moreover, condition (5.1) is not verified. Also r(∞) could be
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Figure 3.5: Error exponent update and the normalised tap-error norm (Example 3).

less than one (CFA5). As we have already pointed out, this situation forces small errors

back to bigger errors, increasing the residual error, thus worsening the steady-state of the

algorithm. For CFA10, CFA15 and CFA20 this is not anymore valid, since we have

r(∞) = lim
p(k)→0

r(0) · log[a2 + ‖ĥ(K)‖2p2(K)]

log[a2 + ‖ĥ(k)‖2p2(k)]
= r(0) · log[a2 + ‖ĥ(K)‖2p2(K)]

2log a
> 1.

A set of simulations was performed with the same step size [52] for all the algorithms

(µ = 825 · 10−6). The input signals are generated as in Section 2.3 and the level of

the attenuated far-end signal power is -15 dB. The convergence performances of LMS,

LMF, CFA5, CFA10, CFA15 and CFA20 algorithms are illustrated in Fig. 3.6. The

learning curves obtained are the average of 20 runs. Now we can see how CFA algorithms

behave qualitatively in comparison with quadratic algorithms. A late start reduces the

variation of the exponent (CFA20) and in this case we expect performance close to LMF.

Alternatively, an earlier start affects the convergence and residual error. It seems that

CFA11.5 which exploits all the range of exponents between 4 and 2, has the error exponent

update period equal with the adaptation time and steady-state like LMS, behaves the

best, as we have 23% improvement in convergence speed compared with LMS. From this

result, we can state that the best performances of the staircase CFA with noisy finite-time

averaging (Figure 3.1) and smooth CFA when a smooth estimate of the error modulus is
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Figure 3.6: Learning curves of the quadratic and CFA algorithms (same step size).

available, are quite similar.

We can conclude that from the initial conditions we can foresee the behaviour of

the CFA algorithm, including the performances such as the adaptation time and of the

steady-state error. Moreover, the error exponent must be constant for a while during

convergence, thus the effective error exponent update is less than the adaptation period.

Example 4 . A short comparison between CFA and quadratic algorithms

Performances of the proposed CFAxx approaches were evaluated through a series of ex-

periments and compared with quadratic algorithms. A few types of graphical outcomes

are presented in this section. Now the echo canceller is modelled by the first echo path

channel, with p = 0.75, A = −122, N = 32 (Section 2.3). The level of the attenuated

far-end signal is kept -15 dB.

The first set of simulations uses the same step size for all the algorithms [52], in our

case µ = 75 · 10−5. This ensures the convergence of all the algorithms: CFAxx, LMS,

LMF. Figure 3.7 is the 3D representation of the trajectories for a sample of LMS, LMF
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and CFA10. Now it is clear that during adaptation the CFA algorithm changes the error

exponent, after a period while it is constant.

The second procedure for distinguishing the performances of proposed algorithms is to

compare convergence rates for a given steady-state cancellation level [71]. The curves for

LMS and CFA10 algorithms are shown in Figure 3.8, and they were obtained doing 100

averages. The results presented show us that CFA10 reaches the steady state convergence

level before LMS does.

Finally Figure 3.9. compares the proposed CFA algorithm and the quadratic algo-

rithms from the point of view of steady-state cancellation levels for a given maximum

number of iterations. The results were obtained by averaging 25 times the learning curves

for step-sizes in the range (3 · 10−5,10−3). For bigger step-sizes, we established that the

LMF algorithm diverges. These plots display the performances over the step-size, for a

number of iterations which is equal with 100, 500, 1000, 5000, and respectively 10000. It

follows that the proposed time-varying error exponent algorithms permits a trade-off be-

tween convergence speed and cancellation level in the steady-state, at the cost of increased

computational complexity.
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Figure 3.8: Learning curves of the LMS and CFA algorithms (optimum step-size).

3.1.5 Simulations

Now our goal is to investigate several performances of the proposed algorithms via com-

puter simulations. First we compare the two offsprings of the CFA algorithm: the staircase

and the smooth variant. The reference of the comparison is the LMS algorithm. Then the

effect of algorithms parameters (finite-time averages and error exponents) is considered.

Finally different parts of the signal and system model are changed, and their influences

are discussed. In this Section the initializations of the smooth CFA algorithm are R0,

R∞, and we always select E0 = exp(−1/R0), and E∞ = exp(−1/R∞) (Section 3.1.3).

The following three finite-time averages have been used in the right-hand side of Equa-

tions (3.2) and (3.11): the mean, the mean square and the median of the modulus of

instantaneous error. The length of the rectangular window is L. The guess of window

length L needs special attention to statistical averages, and to follow statistical variations.

Providing that we avoid the extremal cases, for large windows, there is a delay in following

the error modifications and the computational effort is bigger. For very small windows the

noise effect is also important (Section 3.1.4). In both cases instability may occur. More-
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Figure 3.9: Performances of the algorithms versus step-size for different number of itera-

tions: 100 (−·), 500 (−◦), 1000 (−+), 5000 (−2), and respectively 10000 (−¦).

over, in implementation we have to consider the initializations of the finite-time averages.

Apart from [21], these finite-time averages are not assessed in every iteration, only once

every W iterations2. In this way we reduce the computational time, the approximation of

2For this reason in the following we call the parameter W as the sampling period of the time-average.
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Figure 3.10: Example 1 and Figure 3.1 revisited for staircase (a), and smooth CFA (b).

the error is smooth, and the error exponent is piecewise. We can see that this formulation

of the algorithm includes both smooth (W = 1) and staircase (W > 1) CFA algorithms, if

the parameter W is properly selected. Actually we need the logarithm of the time-average

in order to update the error exponent, and in some cases the succession of average and

logarithm operators can produce different results.

The first set of simulations reconsiders Example 1 (EM = 3, ē0 = 1), and we use the

same procedure and performances. For the staircase CFA algorithm (L = 128, W = 128)

with the same parameters as in Example 1, results shown in Figure 3.1 and Figure 3.10(a)

indicate that for low levels of noise the increase of the window length from L = 16 to

L = 128 improves the convergence speed, but this effect is not present for high levels of

noise. However, for high levels of noise and large windows the mean-square time-average

seems to work better than the mean. This result is retrieved in the case of smooth CFA

algorithm, where Figure 3.10(b) illustrates the same experiment (L = 128). We remark

that in almost all cases the mean-square time-average behaves the best, though there is

no very important difference when we change the type of time-average.

We can conclude that there is no significant change between staircase and smooth CFA

algorithms from the convergence speed point of view, and they always surpass the LMS

algorithm performance from this point of view. The steady-state behaviour is similar

for staircase and smooth CFA algorithms, providing that we have the same final error
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Figure 3.11: Sample period of the staircase CFA and convergence speed for −15 dB (◦−),

−20 dB (¤−), −25 dB (♦−) and −30 dB (∗−) noise level.

exponent r(∞).

Example 5 . Sample period and window length of the finite-time averages

The first parameter modification we discuss is the sample period of the finite-time average

for the staircase CFA algorithm, since for the smooth CFA this is not necesary as we

change the error exponent every iteration. Our experiment considers the mean-square

as average (L = 32), the first channel as echo-path model, and four levels of attenuated

far-end signal: adB = −15,−20,−25,−30. The staircase CFA algorithm has the following

parameters: P = 3, R1 = 4, R2 = 3, R3 = 2.5, EM = 3, E1 = 0.75, E2 = 0.6944,

E3 = 0.64 and µ = 825 · 10−6. The averages of 20 runs were used to find the convergence

rate needed to achieve 20 dB below the far-end signal level. The results are shown in

Figure 3.11, and they suggest the sample period of few dozens of iterations as a good

trade-off between computation load and convergence speed.

Next we fix the sample period to W = 32 and modify the window length. The

rest of the parameters remain the same and the achievements are illustrated in Fig-

ure 3.12(a). Then the same investigation was carried on for the smooth CFA algorithm

(Figure 3.12(b)), where we have the same parameters, plus R0 = 4, R∞ = 2. We found
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Figure 3.12: Window length of the staircase (a) and smooth (b) CFA, and convergence

speed for −15 dB (◦−), −20 dB (¤−), −25 dB (♦−) and −30 dB (∗−) noise level.

in our experiments that the results are not very sensitive to window length variation. In

almost all situations both CFA algorithms behave rather similarly. However, we recom-

mend to choose a window length close to the echo path filter length, if this information

is available.

Example 6 . Initial and final error exponents influence

The next experiment addresses the influence of the initial, and final error exponent.

We consider the smooth CFA algorithm with the same parameters as in Section 5, but

here we have EM = 1, and L = 32. From Figure 3.13 for adB = −15, and Figure 3.14

for adB = −20, it is suggesting that the final error exponent modifies considerably the

residual error of the CFA algorithm. Despite this, initial error exponent does not change

dramatically the convergence speed. This can be explain by the fact that higher order

error exponent (r(k) > 4.5) produce higher gradients which are very sensitive to stability

issues. We can avoid this by reducing the step-size, but the final result does not justify

this, as we obtain poorer results than by fourth power.

Example 7 . Experiments with added dispersion

We fulfilled some experiments consisting in simulations performed with added dispersion

to the attenuation. We select the first channel model for echo-path and the attenuation
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Figure 3.13: Smooth CFA with different final error exponent (adB = −15).
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Figure 3.14: Smooth CFA with different final error exponent (adB = −20).

filter, and the following parameters L = 8, µ = 8 · 10−4, W = 128, adB = −15. The

adaptation process is the same as before, however the steady-state behaviour seems dif-
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Figure 3.15: Smooth CFA with attenuated dispersion.

ferent. Thus in the following we are preocupied only for this. Figure 3.15 shows a zoom

(k = 4000, 4001, . . . , 5000) after we reach the convergence level. We consider remarkable

to present the time-average, error exponent and learning curve of the smooth CFA algo-

rithm. The error exponent can change after adaptation, but this happens only for few

instants. Actually if we increase the window length, the error exponent remains always

constant and we get in steady-state the LMS. This is the case for the staircase CFA

algorithm, where the error exponent equals two in steady-state.

Example 8 . Real hybrid system identification

The smooth CFA algorithm (EM = 1, ē0 = E∞, L = 256) is applied here to the
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Figure 3.16: Performances versus number of iterations for the smooth CFA algorithm in

the case of a real hybrid.

cancellation of the echo produced by a real hybrid of length N = 32 [70]. First the

evolution of the normalised tap-error norm, the error exponent update and the finite-

time average modification are illustrated in Figure 3.16. Then Figure 3.17 shows that

for a binary input as before, the smooth CFA algorithm behaves better than the LMS

algorithm. For the same step-size (µ = 0.0025) which gives the same residual error as

we have R∞ = 2 in both cases, the convergence speed is faster for Smooth CFA. Both

algorithms work in same conditions. It is also presented the effect on residual error, if the

attenuated far-end signal contains a Gaussian additive noise with variance σ = 0.1.



40 Nonrecursive Cost Function Adaptation

0 500 1000 1500
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

NUMBER OF ITERATIONS

N
O

R
M

A
LI

S
E

D
 T

A
P

−
E

R
R

O
R

 V
E

C
T

O
R

 N
O

R
M

 (
dB

)

(i)

(ii)

(iii)

Figure 3.17: Smooth CFA with binary far-end signal (i), smooth CFA with binary far-end

signal and Gaussian additive noise (ii), LMS with binary far-end signal (iii).

Example 9 . Abrupt changes in system

The last experiment consists in tracking the first channel, where the noise is the subject

of an attenuation of -15 dB. At the 5001 iteration, the echo-path has a sign change. In this

framework we present a comparison between the proposed CFA and VS [32] algorithms.

The staircase CFA has the following parameters: L = W = 8, µ = 8.25 · 10−4, EM =
√

3

and the rest of thresholds are the same as in Example 1. For the VS algorithm we choose

µmin = 8.25 · 10−4, µmax = 8.25 · 10−3, m0 = m1 = 3, and α = 1.01.

Figure 3.18 shows two different aspects of their behaviour. In the first part of the dia-

gram it is suggested that the VS algorithm performs better in the stationary case, but the

second half clearly proves that the introduced CFA algorithm manages in non-stationary

case better than the VS algorithm. The distinct starting gradients differentiate the VS

and CFA algorithms in stationary case, but CFA takes advantage of higher gradients after

the abrupt change in the system.
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Figure 3.18: Non-stationary behaviour of the staircase CFA algorithm and variable step-

size algorithm: VS (——), and CFA ( ).

3.2 The Gradient Approach

3.2.1 Method

In this Section our method is based on the analysis of the gradient of the cost function

Jr = E[|e(k)|r], where the power is a function only of the instantaneous error3: r =

F [e(k)]. In order to derive the CFA algorithm, we first compute

∂Jr

∂ĥ
=

∂{E[|e(k)|r]}
∂ĥ

(3.14)

with respect to each element of the general impulse response. Differentiating (3.14) we

obtain
∂Jr

∂ĥ
= E[

∂

∂ĥ
(|e(k)|r)] = E[

∂

∂e(k)
(|e(k)|r) · ∂e(k)

∂ĥ
].

3Our theoretical approach makes the exponent r a function of the instantaneous error. For practical
reasons, as in Section 3.1, the employed relation will be of the form r(k + 1) ≡ F [ē(k)], where ē(k) is a
time-average of the instantaneous error.
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From Appendix 3.3 we have

∂

∂e(k)
(|e(k)|r) = |e(k)|r−2

{
e(k) · r + |e(k)|2 ln |e(k)| dr

d|e(k)|
}

, (3.15)

and using
∂e(k)

∂ĥ
=

∂

∂ĥ
(f(k) − ∆ht(k)x(k)) = −x(k), (3.16)

we obtain

∂Jr

∂ĥ
= E[−|e(k)|r−2{e(k) · r + |e(k)|2 ln |e(k)| dr

d[e(k)]
} · x(k)]. (3.17)

The major change in the gradient expression, compared to the LMS or the LMF case

is the appearance of the CFA kernel

K(r, e, k) = e(k) · r + |e(k)|2 ln |e(k)| dr

d[e(k)]
.

With this notation, Equation (3.17) can also be written as

∂Jr

∂ĥ
= −E[K(r, e, k) · |e(k)|r−2 · x(k)], (3.18)

or in matrix form

∂Jr

∂ĥ
= −E




K(r, e, k) · |e(k)|r−2 · x(k)

K(r, e, k) · |e(k)|r−2 · x(k − 1)
...

K(r, e, k) · |e(k)|r−2 · x(k − N + 1)


 .

As we do not know the signal statistics required by the previous equation, we shall use

a training sequence, which in the case of a data echo canceller can be the data sequence

itself. The coefficients of the adaptive filter are computed via the method of steepest

descent [35] of the new cost function Jr(k) = E[|e(k)|r(k)]. The gradient given by Equation

(3.18) at kth time instant becomes the noisy or the stochastic gradient, after removing

the statistical expectation. At each step we change the current vector by an amount

proportional to the negative of the gradient vector:

ĥ(k + 1) = ĥ(k) − µ × ∂Jr

∂ĥ
. (3.19)

Thus the proposed gradient update:

ĥ(k + 1) = ĥ(k) + µ·K(r, e, k) · |e(k)|r−2 · x(k) (3.20)
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holds for every r > 1. As we do not know yet the shape of the desired cost function, we

shall use at every kth iteration gradients that preserves collinearity and direction of the

corresponding constant metric algorithms NQSGr(k), where r(k) > 1. For that reason

we reconsider the CFA kernel, and we will force the equality of K(r, e, k) by a positive

constant4 times the product instantaneous error - exponent error:

e(k)r + |e(k)|2 ln |e(k)| dr

d[e(k)]
= βe(k)r, (3.21)

where β is called the CFA constant and it has been introduced mainly for two reasons: to

control the error exponent adaptation process and to assure that the resulting gradient

direction points towards the inside of the bowl of the corresponding constant metric

algorithms.

We distinguish the following cases:

• β = 0; in this case there is no adaptation.

• 0 < β < 1; we expect smaller gradients than the constant metric algorithms.

• β = 1; we retrieve LMS (r(k) = 2), LMF (r(k) = 4), NQSGr (2 < r < 3), LMP

(r(k) = constant = r ∈ N).

• β > 1; the error surface has steeper gradients than the constant metric algorithms.

For us the most interesting case is the last one. The solution of Equation (3.21) is

obtained in Appendix 3.3 and the proposed cost function adaptation algorithm might

follow the mapping

r(k + 1) ≡ F [e(k)] = r(0)
∣∣∣ |e(0)|dB

|e(k)|dB

∣∣∣β−1

, (3.22)

where the gradient update should be computed with5:

ĥ(k + 1) = ĥ(k) + µβr(k)|e(k)|r(k)−2e(k)x(k). (3.23)

We recall also from [85] the following:

Remark 5 . The adjustment of r(k) must be done using finite-time average character-

istics ē(k) rather than the instantaneous values of the error e(k).

4For a negative constant the resulted gradient direction is not pointing towards the inside of the bowl.
5Apparently the effect of the CFA constant is only the multiplication of the error surfaces gradients

using an error norm of |e(k)|r. Actually the parameter β has a more important interference in Equation
(3.23) through the error exponent r.
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This will be more clear than in the case of stationary approaches, if we focus once again

on Equation (3.22). The sensitivity [16] of the error exponent r(k + 1) with respect to

the magnitude of error |e(k)|dB is given by

S
r(k+1)
|e(k)|dB

=
|e(k)|dB

r(k + 1)
· ∂r(k + 1)

∂|e(k)|dB

= β − 1. (3.24)

Note that if β is equal to one, and this is the case for LMS, LMF and NQSGr, it is obvious

that there is no sensitivity of the error exponent with respect to the error. If β ≈ 1 the

influence is smaller. It results that the CFA will iterate in small steps, that is, for a long

time. If β increases, the CFA effect is more important.

Therefore (3.24) suggests that every decade change in the magnitude of the error will

change the error exponent correspondingly by β − 1 units. Thus a direct implementation

of the relationship (3.22) could lead to divergence and suggests the introduction of a

smooth estimate. However,

Remark 6. The guess of ēk needs a special attention to statistical averages and to follow

statistical variations.

This will be recalled in Section 3.2.2.

As a consequence of these aspects, the error exponent might be updated by:

r(k + 1) ≡ F [e(k)] =




r(0), if k ≤ K,

r(K)
∣∣∣ |ē(K)|dB

|ē(k)|dB

∣∣∣β−1

, if k > K,
(3.25)

where K is a positive integer required by the delay of computing the finite-time average

ē(k). From the relationship (3.25), it follows that r(0) = r(K), and for k > K the values

|ē(k)|dB and |ē(K)|dB, should have the same sign. It follows that we have to keep the

error exponent constant until we obtain an integer K for which |ē(K)|dB < 0. Moreover,

unless the term on the right-hand side of (3.25) can be assessed, the range of the error

exponent should be bounded to avoid instability. In order to obtain the convergence of

the algorithm, a condition is the convergence of the sequence {r(k)}. One possibility is to

design a monotonic time-average during the adaptation time6. For this reason enforcing

the monotonicity of the sequence can be used, though other less restrictive criterion can

guarantee the convergence.

6If the relation between r(k) and k during the convergence period is linear [59], the LCFA algorithm
results (Section 3.2.5).
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3.2.2 Error and exponent update

We now reconsider the CFA algorithm given by Equations (3.23) and (3.25), and we shall

concentrate on the mechanism of computing the error exponent r(k) taking into account

the noisy characteristics of the error. The problem we address now is how to obtain an

error estimate, which is as noise free as possible, and monotonically decreasing during

adaptation, to be used in the implementation of the CFA algorithm. In [21] the error

estimate was computed in several different ways. First the running average of the modulus

of the instantaneous error and the log running average of the squared instantaneous error

were used. A small window means a noisy estimate, a large window introduces delay.

Better performances from the stability point of view have been obtained if this estimate

is computed only once at every W iterations (Section 3.1). Another estimate [22] was

obtained via the normalised tap-error vector norm.

We propose a different solution for this problem [59], which will be used mainly in the

simulations of this Section. The idea is to employ the technique of the envelope detector

in classical amplitude modulation. We shall pass the modulus of the instantaneous error

through a first order recursive digital filter, the equivalent of the low-pass RC filter. Let

L (L À 1) be its time constant7, and ê(0) the initial error estimate, normalised to the

maximum of the driving signals. From the transfer function in s of the analogue filter

[31], we obtain the linear difference equation of the recursive digital filter:

0 < ê(0) < 1,

ê(k) = L
L+1

· ê(k − 1) + 1
L+1

· |e(k)|, k ≥ 1,

ēdB(k) = 20 · log10(ê(k)), k ≥ 1.

Clearly we have 0 < ê(k) < 1 for any k ∈ N, if e(k) is also normalised, and we can start

the CFA algorithm from the beginning. Note that if |e(k)| ≥ a for all k ∈ N, then so is

|ê(k)|. Moreover, if limn→∞ |e(k)| exists, then limn→∞ ê(k) exists and they are equal. It

follows that we have
r(∞)

r(0)
=

∣∣∣ |ê(0)|dB

|ê(∞)|dB

∣∣∣β−1

, (3.26)

which suggests the design process of the error mapping8.

7In the case of envelope detector, the time constant is bounded by the carrier period and respectively
the period correspondingly to message bandwidth [34]. In our case the time constant of the recursive
digital filter should be between the quasi-period of zero crossings and the quasi-period of the envelope of
the instantaneous error.

8Note that if β À 1, then |ê(0)|dB ≈ |ê(∞)|dB . Also if β ≈ 1, then ||ê(0)|dB | ¿ ||ê(∞)|dB |.
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3.2.3 Parameter selection

Next we define the parameters of the adaptation algorithm. The recursive digital filter

used in our simulations is of special interest.

The initial error estimator ê(0) will be selected equal to the attenuation a, because we

expect that in the steady-state the error is given mainly by the far-end signal. Another

assumption this choice was based on is that the new initialisation will be started after the

previous one attains its steady state.

The appropriate time-constant L of the recursive filter can be guessed using the fact

that the period of adaptation should be almost equal with the decay period of the error

estimator.

Thus we proceed in the following manner:

• First we take the error records of the LMS and LMF simulations, and compute the

output of the recursive filter ê(k) with ê(0) = a for different L.

Figure 3.19 shows the graphically result of such an experiment for the LMS algorithm

(µ = 0.009), and the first echo path channel (N = 32, A = −60, adB = −15) and the

time-constant L = 100. The normalised tap-error norm and its 20 times average are

presented in Figure 3.19(a), and Figure 3.19(b) respectively. It is clear now that the error

estimator starts from value a, attains a maximum value êmax, then decreases to a again.

This is illustrated in Figure 3.19(c). In this case, as the period of adaptation is longer

than the sum of the increasing and decreasing time of the output of the recursive filter, we

will need to increase the time-constant of the filter in order to obtain a faster adaptation.

Another important issue is the relation between the filter time-constant L and the

maximum output êmax. Taking 20 averages of the output error estimator curve, for

different time-constant L and noise level a, the result is similar to that from Figure 3.19(d).

Thus we can obtain the average of the maximum value of the error estimator êLMS
max for

LMS (Table 3.1), and êLMF
max for LMF (Table 3.2). We require this value for our CFA

algorithm, and we suggest

• to take êmax as the geometric mean of êLMS
max and êLMF

max .

This will help us

• to guess the parameter β

from relationship (3.26) between the minimum rmin and the maximum rmax error expo-

nents, rewritten as following
rmin

rmax

=
∣∣∣ |êmax|dB

|êmin|dB

∣∣∣β−1

, (3.27)
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Figure 3.19: The normalised tap error norm for one LMS run (a) and 20 times average

LMS runs (b), the error estimator (c) and its 20 times average (d).

where, usually rmin = 2, rmax = 4, and êmin = a.

3.2.4 Simulation results

In this Section we present a wide range of experimental results to confirm the theoretical

achievements of previous Sections. Simulations demonstrate the performance of the pro-

posed CFA algorithm in comparison with the standard LMS and LMF algorithms, and

the variable step-sizes algorithms proposed in [32, 46]. The error exponent update was

implemented as follows:

ê(0) = a, r(0) = r(1) = 2;

for all k ≥ 1 : ê(k) = (1 − 1
L+1

) · ê(k − 1) + 1
L+1

· |e(k)|, r(k + 1) = r(0)
[

log10 |ê(0)|
log10 |ê(k)|

]β−1

.
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L a = −15 dB a = −20 dB a = −25 dB a = −30 dB

100 1.01444 0.97740 0.93051 0.97059

200 0.81536 0.78735 0.77736 0.77596

300 0.72905 0.69481 0.67314 0.67779

400 0.65906 0.63000 0.61487 0.60922

500 0.60399 0.57175 0.55808 0.54122

600 0.56890 0.53035 0.50823 0.50059

700 0.53525 0.49918 0.47375 0.45939

800 0.51028 0.46336 0.44299 0.43097

900 0.48424 0.44122 0.41911 0.40318

1000 0.46483 0.41758 0.39546 0.38467

1100 0.44652 0.39990 0.37016 0.36320

1200 0.43220 0.38677 0.36053 0.34456

1300 0.41861 0.36461 0.34338 0.32853

1400 0.40388 0.35596 0.33058 0.31732

1500 0.39500 0.34231 0.31894 0.30121

1600 0.38778 0.33606 0.31025 0.29088

1700 0.37562 0.32454 0.29618 0.28031

1800 0.36758 0.31467 0.28476 0.27419

1900 0.36252 0.30493 0.28093 0.26404

2000 0.35406 0.29945 0.26999 0.25425

Table 3.1: The maximum value of the error estimator êmax for the first channel and

µ = 0.9 with LMS simulation

If L + 1 is an integer power of 2, the implementation of the recursive digital filter is

simplified since the divisions are reduced to shifts. Also the error exponent update is

simple, if β − 1 is integer. Note that in all the following experiments we did not bound

the power of the cost function.

The first example presented is the behaviour of the proposed CFA algorithm when

the echo-path has a sign change. Then a set of simulations will show how the proposed

algorithm works when different parameters are modified. We always change only one

parameter, and the resulting parameters are not anymore exactly those derived from

Equation (3.27), Table 3.1, and Table 3.2. The learning curves obtained for normalised

tap-error norm are the average of 20 independent runs. We also present for every type

of experiment one sample of the error exponent update. A short comparison with LMS,

LMF and variable step-sizes algorithms is also included. In all cases the echo path channel



3.2 The Gradient Approach 49

L a = −15 dB a = −20 dB a = −25 dB a = −30 dB

100 0.57036 0.54255 0.51159 0.52769

200 0.46009 0.42537 0.40676 0.38127

300 0.40847 0.36982 0.35117 0.31896

400 0.35913 0.31944 0.29961 0.29818

500 0.33267 0.29061 0.27430 0.26680

600 0.32737 0.28424 0.25453 0.24781

700 0.30331 0.25862 0.24558 0.23723

800 0.29607 0.24971 0.22361 0.21490

900 0.28928 0.24044 0.21733 0.21108

1000 0.28575 0.23721 0.21003 0.20377

1100 0.27605 0.22714 0.20233 0.19648

1200 0.26803 0.21848 0.19525 0.18429

1300 0.26590 0.21446 0.18781 0.17831

1400 0.25851 0.20874 0.18447 0.17626

1500 0.25522 0.20372 0.17931 0.16730

1600 0.25309 0.20048 0.17449 0.16312

1700 0.25125 0.19714 0.17250 0.15901

1800 0.25011 0.19636 0.16837 0.15511

1900 0.24184 0.18858 0.16508 0.15127

2000 0.24095 0.18687 0.15848 0.14889

Table 3.2: The maximum value of the error estimator êmax for the first channel and

µ = 0.9 with LMF simulation

is single pole single zero digital filter.

Example 10 . The gradient approach of CFA algorithm in a non-stationary situation

First we are interested in the behaviour of the gradient CFA algorithm in a non-stationary

case. The experiment consists in tracking the channel used before in parameter selection

(the attenuated level is -60 dB after the 32nd sample), where the noise is subject of

an attenuation of -15 dB. At the 5001 iteration, the echo-path has a sign change. The

parameters of the CFA algorithm and of the recursive filter filter are L = 1023 and β = 2,

and this choice reduces the exponent error update to a simple implementation, as we have

r(k) = −1.5/log10 |ê(k)|, for all k ≥ 1. The step-size of the CFA algorithm was kept at

µ = 0.009.

Figure 3.20 shows clearly that the proposed CFA algorithm is applicable to non-
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Figure 3.20: Several characteristics of the CFA algorithm versus number of iterations. The

framework was for the first channel, in case of a far-end signal subject of an attenuation

of -15 dB, for L = 1023 and β = 2.

stationary situations. Moreover, we can compare the period of the error exponent update

with the adaptation time, and the duration of the recursive filter output. Also the first

maximum of the recursive filter output is closer to the geometric mean of corresponding

values from Table 3.1 and Table 3.2, for L = 1000 and L = 1100.

Example 11 . The effect of the algorithm and channel parameters
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Figure 3.21: The learning curves and the error exponent update for different time-

constants of the recursive filter: L = 255 (——), L = 511 (· − · − ·), L = 1023 (· · · · · ·),
L = 2047 (−−−−), L = 4095 ( ).

The first adjustment we tried was to vary the recursive filter time-constant such that

L + 1 = 2m,m = 8, 9, 10, 11, 12. The results of this experiment are shown in Figure 3.21.

A reduction of the parameter L increases the peak and decreases the period of the error
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Figure 3.22: The learning curves and the error exponent update for different CFA con-

stants: β = 1.25 (——), β = 1.5 (· − · − ·), β = 2 (· · · · · ·), β = 3 (− − −−), β = 4

( ).

exponent update. As a consequence the CFA algorithm converges faster. If we decrease

the time-constant of the recursive filter further, the CFA algorithm could diverge. Alter-

natively, if we increase the L parameter, the output of the recursive filter will be smoothed

and the behaviour of the CFA algorithm will be close to that of LMS.

The CFA constant β has greater affect on the quality and the speed of the adaptation
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Figure 3.23: The performances for different step-sizes of the CFA algorithm: µ = 0.0005

(——), µ = 0.0007 (· − · − ·), µ = 0.0009 (· · · · · ·), µ = 0.0011 (− − −−), µ = 0.0013

( ).

as can be seen in Figure 3.22. For our purposes we select the following error exponent

update constants: β − 1 = 1
4
, 1

2
, 1, 2, 3 (which gives the simplest implementations, as we

have integer or square roots in the error exponent update). Now it is clear that increasing

the constant β of the CFA algorithm, we increase the peak of the error exponent update.

If the time-constant of the recursive filter is kept constant, the period of adaptation will
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Figure 3.24: The learning curves and the error exponent update for different noise levels:

adB = −15 (——), adB = −20 (· − · − ·), adB = −25 (· · · · · ·), adB = −30 (−−−−).

increase. However, another combination β ↔ L could lead to better results. We can say

that decreasing L, and increasing β, the results are qualitatively almost the same.

The step-size of the algorithm also modifies the evolution of adaptation (Figure 3.23).

An interesting fact is that in some cases the learning curve attains a lower level during

adaptation than in the steady state (e.g. µ = 0.0013, where the performance is -35 dB

around 2000-2500 iterations, and the steady-state is about -33 dB). This can be explained

by the variation of the error exponent during adaptation and steady-state, and as a result

their correspondent residual errors differ.
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Figure 3.25: The learning curves and the error exponent update for different levels of

attenuations at the 32nd sample: A = −60 (——), A = −80 (· − · − ·), A = −100

(· · · · · ·), A = −120 (−−−−).

Figure 3.24 illustrates the convergence performance of the CFA algorithm when the

level of the noise in the far-end signal is changed. The shape of the error exponent

update is similar, however the results of adaptation differ greatly. Now it is clear that the



56 Nonrecursive Cost Function Adaptation

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−40

−30

−20

−10

0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−40

−30

−20

−10

0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−40

−30

−20

−10

0

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−40

−30

−20

−10

0

Figure 3.26: Normalised tap-error norm (dB) versus number of iterations of the CFA

algorithm for different dispersion filters: A = −60 (——), A = −80 (· − · − ·), A = −100

(· · · · · ·), A = −120 (−−−−).

parameter selection is related to the far-end signal characteristics. These plots show that

the important fact which provides a faster convergence is the optimal length of the error

exponent update, though its peak could also have a contribution.

From Figure 3.25 it appears that the algorithm is not very sensitive to the alteration

of the single pole parameter of the channel. For our simulations we select four echo path

single pole single zero filters corresponding to an attenuated level of −60, −80, −100 and

−120 dB, at the 32nd sample. For all of these, the speed of convergence and residual

error are almost the same.
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Figure 3.27: The learning curves and the error exponent update for different dispersion

filters: A = −60 (——), A = −80 (· − · − ·), A = −100 (· · · · · ·), A = −120 (−−−−).

Finally, simulations with added dispersion are shown (Figure 3.27). The far-end dis-

persion filters were selected identical with the above mentioned echo-path channels. The

noise in the error exponent and residual error (Figure 3.26) is larger now. The CFA

algorithm is able to track the channel and far-end signal changes.
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Figure 3.28: Simulation results for the case when the far-end signal level is at -15 dB as

compared with that of the near-end signal, for LMS (- ¤), LMF (- ¦) and CFA (- ◦):
the fastest convergence for different values β (a) and L (b), respectively their optimum

step-sizes: (c) and (d).

Example 12 . A comparison of CFA and quadratic algorithms

The first procedure for distinguishing the performances of the proposed algorithms is

to compare convergence rates for a given convergence level. The results presented in this

dissertation are for the case where the steady-state were achieved 20 dB below the far-end

signal level, which is at -15 dB. For some algorithms we cannot achieve this convergence

level, as they become unstable. However, for their maximum step-size we get a lower

convergence level, and the convergence time is measured when learning curves cross the

-35 dB level. Each of the learning curves were obtained using an ensemble of 20 averages,

and the results (number of iterations needed for -35 dB convergence level, and respectively

their optimum step-sizes) are shown in Figure 3.28, where for our purposes we select the

values of the CFA and recursive filter constants the same as in previous experiments.
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Figure 3.29: Performances of the LMS, LMF and CFA algorithms versus step-size for a

given number of iterations: 100 (- ·), 500 (- ◦), 1000 (- +), 5000 (- ¤), and 10000 (- ¦).

Then Figure 3.29 compares the proposed CFA and the quadratic algorithms from the

point of view of the residual error for a given number of iterations, where the performances

over 20 trials are presented. Note that the CFA algorithm is not sensitive to step-size

increase unlike the LMF or other higher-order algorithms. It can also be seen that in some

cases we can achieve a better performance with less iterations, and this can be explained

in terms of the previous discussion on the influence of the step-size.

As a conclusion, the gradient approach of CFA algorithm offers an attractive imple-

mentation compared to the LMS and LMF, due to the superiority in almost all of the cases

of the speed of convergence and residual error. The CFA drawback is increased compu-

tational complexity as we use sometimes non-integer gradients and additional operations

for error exponent update.
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Figure 3.30: The variable step-size VS (——), GAS (· · · · · ·), and CFA ( ) algorithms

in the stationary case.

Example 13 . Cost function adaptation versus variable step-size

We shall focus now on the comparison of the proposed CFA algorithm with the follow-

ing standard variable step-sizes algorithms: VS [32] and GAS [46]. Parameters of these

algorithms are selected to produce a comparable level of convergence, to assure stability,

and if there is a choice, we follow the recommended values in their corresponding publica-

tion. For the VS algorithm we choose µmin = 8.25 ·10−4, µmax = 8.25 ·10−3, m0 = m1 = 3,

and αV S = 1.01. For the GAS algorithm, we choose ρ = 2 ·10−8, and µ(0) = 8.25 ·10−4 to

obtain a comparable misadjustment value with the other algorithms. The CFA algorithm

has the same step-size parameter µ = 8.25 · 10−4, and we select β = 1.5, L = 300.

The framework used for comparison is the same as in Section 5.1, and we provide the

results of two tests. The first one is from the point of view of the convergence speed where

the learning curves are averaged over 20 trials, and the second one gives the algorithms’

evolution for an abrupt sign change in the unknown channel transfer function. It can

be seen from Figure 3.30 that the different starting gradients differentiate the VS, GAS

and CFA algorithms in the stationary case9. Alternatively, Figure 3.31 shows that the

9Actually the initial gradients for VS algorithm are several times bigger than of the GAS and CFA.
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Figure 3.31: The non-stationary behaviour of the CFA and variable step-size algorithms:

VS (——), GAS (· · · · · ·), and CFA ( ).

gradient approach of CFA behaves better in the non-stationary case than these variable

step-size algorithms.

3.2.5 The linear CFA algorithm

The input process used to adapt is white (successive samples are uncorrelated) in the case

of echo cancellation of data signals [36]. All eigenvalues of the autocorrelation matrix are

therefore equal, and the eigenvectors are the columns of the identity matrix. In this case

the output mean-square error exhibits exponential convergence to its asymptotic value,

which is twice the minimum value. If the instantaneous error is processed as the input of

a suitable low-pass filter, the output, in our case the estimate of the error, can be near of

the form:

ê(k) = E0e
− k

τ0 .

We did not bound the error exponent for the CFA algorithm, though such strategy is possible and can
give bigger gradients as a result.
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In this way we have a linear decreasing logaritmic error estimator:

ˆ|e|dB(k) = |E0|dB − 8.68

τ0

k.

Now we can write Equation (3.22) as:

r(k + 1) = REdB
1−β ·

(
|E0|dB − 8.68

τ0

k

)β−1

,

where the parameters r(0) and |ê(0)|dB were absorbed into the constant REdB. Assuming

that |E0|dBτ0 À 8.68, this can be done easily since τ À 100, and using the approximation

[16]:

(1 + b)c ∼= 1 + b · c, b ¿ 1,

then the following error exponent update results:

r(k + 1) = REdB
1−β|E0|dB − 8.68REdB

1−β(1 − β)

τ0

k.

This means that for a suitable choice of the parameters τ0, |E0|dB and β, the relation

between r(k) and k during the adaptation time is linear [59]. The LCFA algorithm results:

1) The weights are computed with Equation (2.1);

2) The power r = r(k) is updated by:

r(k + 1) = max(rmin, r(0) − ∆r · k),

where

r(0) = REdB
1−β|E0|dB,

∆r =
8.68REdB

1−β(1 − β)

τ0

.

We tested the LCFA algorithm and we present the results for two different echo path

channels, both single pole single zero digital filter. The first one is a N = 72 tap linear

time-varying FIR adaptive filter whose coefficients are updated regularly by the adap-

tation algorithm. The channel considered has one pole at 0.8232 (A = −120). The

attenuation of the far-end signal sequence corresponds to −20 dB. The parameter of the

recursive digital filter was L = 2500. The step size µ was chosen as 5 · 10−4 for all the

LMS, LMF, LCFA algorithms, in order to assure convergence of the LMF algorithm. The

convergence performance of all three algorithms is illustrated in Figure 3.32, where we

have four plots. The top-left-side plot shows the behaviour of the LMS versus the LCFA

algorithm, whereas the bottom-left-side plots makes the same comparison for the LMF
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Figure 3.32: Learning curves (a) of the LCFA(-) and LMS (- -), a sample of this type

of LCFA learning curve (b), learning curves (c) of the LCFA(-) and LMF (-.), and error

exponent update (d) for the sample shown at (b).

algorithm. All these plots were obtained with 20 runs. The right-hand side of the figures

presents the plots of a sample of the LCFA algorithm: on the top the normalised tap-error

vector norm evolution and beneath, the evolution of the power of the cost function during

adaptation. Figure 3.33 presents how the error estimator works, by showing all the signals

involved, from the instantaneous error to the error exponent update.

The second set of results considered a echo path channel with the pole at 0.8. The

number of filter coefficients was N = 40. The level of the attenuated far-end signal was

-20 dB. Figure 3.34 shows the 3D representation of the LCFA, LMS and LMF algorithms.

Clearly, if we choose properly the time constant of the low-pass filter, then the results

are better than LMS and LMF. For instance, if L = 2000, the LCFA (β = 2, µ = 0.0005)

is faster than LMS1 (µ = 0.0005), even the LMS2 (µ = 0.001) where the step-size is

the double of LCFA. LCFA is also faster than LMF (µ = 0.0005). The learning curves
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Figure 3.33: The LCFA algorithm: the error e(k) (a), its absolute value |e(k)| (b), error

estimate |ê(k)| (c), its dB’s value |ê(k)|dB (d), and linear power update r(k) (e).

(Figure 3.35) obtained are the average of 50 runs.

3.3 Appendixes

First case derivation of smooth CFA algorithm

Consider the function g : (0, +∞) → (0, +∞), g(x) = xdx−2.

For d > 1, g is strictly increasing, for it is the product of two positive strictly increasing

functions: x → x and x → dx−2.

For d = 1, g(x) = x is also strictly increasing.

Thus function g is injection and from g(x) = g(y), follows that x = y.
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Figure 3.34: The 3D representation of the LCFA, LMS and LMF algorithms.

Proof of Equation (3.13)

Let {f(k)} and {x(k)} be two independent bipolar sequences, from the sets {a,−a} and

{1,−1}, respectively (f 2(k) = a2, x2(k) = 1), then the error satisfies

e2(k) = (f(k) +
N−1∑
n=0

(ĥ(n) − h(n)) · x(k − n))2

= f 2(k) +
N−1∑

i=0,j=0

∆h(i)∆h(j)x(k − i)x(k − j) + 2f(k)
N−1∑
n=0

∆h(n)x(k − n).

If i 6= j, then E[x(k − i), x(k − j)] = E[f(k), x(k − n)] = 0, hence

E[e2(k)] = a2 + E[
N−1∑
n=0

(ĥ(n) − h(n))2],

therefore an estimate is

|ê(k)|dB = 10 log(E[e2(k)]) = 10 log(a2 + E[(ĥ(k) − h(k))2]),

and we choose

ē(k) = 10 log(a2 + ‖ĥ(k)‖2p2(k)).
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Figure 3.35: Learning curves for LCFA (i), LMS2 (ii), LMS1 (iii) and LMF (iv).

Proof of Equation (3.15)

Consider the function f : C → R+, defined by f(z) = |z|F (z), where F : C → R, and

suppose the function F has derivative in the given domain of definition. Then the function

g : C \ {0} → R, g(z) = ln f(z) also has derivative in this domain, and

g′(z) = [F (z) ln |z|]′ = F ′(z) ln |z| + F (z)[ln |z|]′ = F ′(z) ln |z| + F (z) · z

|z|2 ;

Hence the function f also has derivative in the indicated domain, and

f ′(z) = f(z)g′(z) = |z|F (z)−2[zF (z) + |z|2 ln |z|F ′(z)].

For z = 0 we can follow Appendix 2.4 and it results, that f ′(z) = 0, iff F (z) > 1, for all

z ∈ C.
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Solution of Equation (3.21)

Let z = e(k) be, and from Equation (3.21) we obtain

|z|2 ln |z|dr

dz
= (β − 1)zr.

For z 6= 0, and |z| 6= 1, we have two cases:

(i) β = 1, then r = constant;

(ii) β 6= 1. In this case
r′

r
=

(β − 1)z

|z|2 ln |z| ,

thus

r = [θ ln |z|](β−1)sgn(ln |z|).

For z = 0, and |z| = 1, there should be a trade off between continuity of r, and its finite,

non-zero values10.

10Perhaps it is interesting to note that we can develop another approach for which these discontinuities
disappear, by selecting in the right-hand side of Equation (3.21) of other expressions, for instance (1 +
r(k) ln |e(k)|)|e(k)|, suggested by the gradient from Section 4.2. The resulting approach we got has a
mathematical beauty rather than a physical interpretation. Moreover, the resulting gradient expression
is more complicated than in the case of stationary and gradient approaches. It seems that such an
approach is not attractive in data echo cancellation. However it might be useful in certain applications.
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Chapter 4

Recursive Cost Function Adaptation

The goal of this Chapter is to introduce an approach for recursive cost function adaptation.

The derivation of the new algorithm does not use an estimator of the instantaneous

error as the previous CFA algorithms did. In the RCFA case, the new error exponent

is computed from the previous one using usual LMS recursive equation. The proposed

method improves the sensitivity of the power of the cost function with respect to the noisy

error, while the other benefits of the CFA algorithms in terms of the convergence speed and

residual error remain. In Section 4.1 the heuristic approach is developed. The properties

of the new algorithm will be compared, using computer simulations, to standard LMS,

LMF. The effect of the parameters involved in the design are also discussed following a

short analysis of the error exponent adaptive subsystem. Finally the idea of an analytic

approach, similar with the variable gradient step-size technique [46] is considered.

4.1 The Heuristic Approach

The simplified block diagram of the main adaptive system EPIS (Echo-Path Identification

System) is shown in Figure 2.2, where the adaptive FIR filter is trying to make a copy ŷ(k),

of the echo-path output y(k), using the signal x(k) as an input, based on a measurement

of the signal that remains after subtracting ŷ(k) from the received signal y(k)+f(k). For

the beginning we consider that in this framework the LMS algorithm is acting:

ĥ(k + 1) = ĥ(k) + 2µe(k)x(k),

where µ is the step-size of the echo-path identification system. From the Equation (2.7)

we have

ĥ(k + 1) = ĥ(k) + 2µ[f(k) − ∆ht(k)x(k)]x(k). (4.1)

69
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If the channel is slowly varying, which is a very common assumption in adaptive filtering,

then we can subtract the echo-path filter coefficients vector from both sides of the Equation

(4.1). It follows

∆h(k + 1) ≈ ∆h(k) + 2µ[f(k) − ∆ht(k)x(k)]x(k). (4.2)

Now we return to CFA framework, and in the following the Equation (2.1) will be

used in order to update the EPIS coefficients. Our interest is to determine the formula

between the instantaneous error e(k) of the adaptive filter and the new error exponent

r(k + 1) which is to be used to update the adaptive filter coefficients with the Equation

(2.4). Unlike Chapter 3 where a direct relationship was obtained, now the goal is to find

something similar to (4.2). Our approach is based on the idea that there should be a

desired error exponent function rk at every instant k, which gives the best performance

for the actual error of the system. As we do not know rk, at least we can try to estimate

it, based on the available measurements and certain information.

4.1.1 Concept of the heuristic approach

Suppose that we do not know the ”unknown desired” error exponent rk+1. On this

assumption we can use the LMS algorithm and compute an ”estimate of the new error

exponent” r(k + 1). For this reason we need the ”near-end signal”, and this will be the

instantaneous error e(k), because r(k) is expected to be a function of e(k) (Section 2.2.4).

We need also the ”attenuated far-end signal”. It must have similar statistical properties as

the ”near-end signal”. From the available signals we select the input observation sample

x(k), which is subject to an attenuation ϕ(k). The attenuation might be constant or

not, whether we use some appropriate averages of the attenuated far-end signal f(k), or

simply f(k). A graphical representation of these relationships is shown in Figure 4.1.

Remark 7 . The attenuation ϕ(k) is necessary.

The difference between r(k) and rk should be very small (|r(k) − rk| ¿ 1), at least

after adaptation, but the data signal x(k) is not so small (|x(k)| ' 1).

Thus we have the useful equations:

∆r(k) = r(k) − rk,

ε(k) = r(k) + ϕ(k)x(k) − rk = ϕ(k)x(k) − ∆r(k)e(k),

r(k + 1) = r(k) + 2ρe(k)ε(k),

(4.3)
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Figure 4.1: Error exponent identification setup.

where ε(k) is the error signal and ρ is the step-size of the EEAS (Error Exponent Adap-

tation Subsystem) subsystem.

Now the equations (4.3) can give us the estimated error exponent, and in this way r(k)

can be used to update the weights with the relationship (2.1) with r = r(k). It follows

that the heuristic approach of the RCFA algorithm is defined by the following:

1) The weights are computed with Equation (2.1);

2) The power r = r(k) is updated by Equations (4.3).

The proposed algorithm introduces a new parameter ρ and sequence rk.

The EEAS step-size contributes in a different manner to the stability of the subsystem

as we are used in other adaptive filtering tasks. Actually the increase of ρ does not

necessarily provide divergence, as it could give a faster decrease of the estimated error

exponent. Indeed, we emphasize that

Property 1 . One of the cost function adaptation merits is that we deal with higher-

order exponents only for short periods.

The higher-error exponents could easily lead to instabilities, and this happens always

after a certain number of iterations. If we can deal with these type of algorithms only for

a while, we can avoid this type of problem, and take advantage of the higher gradients.

However, in some cases it is clear that the step-size of EEAS subsystem must be bounded

(Section 4.1.2).
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Clearly, the choice of ”unknown desired” error exponent sequence is more disputable.

First we have to mention the necessity of rk, otherwise the EEAS system could diverge.

If no targeted error exponent is present, the EEAS system can easily reach different high

or low error exponents according to the input data. This differentiate RCFA from GAS

variable step-size technique. There the modification of the step-size by a factor of two is

not so dramatic as for the error exponent in the cost function adaptation case.

A second issue is that this sequence is what we would like to know. Actually it is for

EEAS subsystem the same as Wiener filter for mean-square optimisation problem. As we

usually do not have knowledge of this information, we suggest to try the following:

1. A constant rk.

2. A rough approximation of rk.

3. A nonrecursive cost function adaptation approach (Chapter 3).

In the first case, the choice of the constant error exponent can be justified by some

additional information about the type of involved signals [30]. If this is not available,

we suggest to select rk = 2, and the LMS will act in steady-state. Another modality is

to implement rough approximation of rk, as it will be used later in Example 17, when

we present the non-stationary behaviour of RCFA algorithm. Perhaps a better solution

is an assessment of rk given by a nonrecursive CFA, but this alternative increases the

computational complexity of the overall algorithm.

4.1.2 A short analysis of the EEAS subsystem

Consider once again that the ”unknown desired” error exponent is slowly varying rk+1 '
rk, and subtract them from both sides of the last of the (4.3) relationships. We have

r(k + 1) − rk+1 = r(k) − rk + 2ρe(k)ε(k).

From the first two of the (4.3) relationships we obtain

∆r(k + 1) = ∆r(k) + 2ρe(k)ε(k) = ∆r(k) + 2ρe(k)[ϕ(k)x(k) − ∆r(k)e(k)]

= 2ρϕ(k)x(k)e(k) + ∆r(k)[1 − 2ρe2(k)].

Applying previous recursion P times with respect to k, we conclude that

∆r(P + 1) = α(P ) + β(P )α(P − 1) + β(P )β(P − 1)α(P − 2) + · · ·
+β(P )β(P − 1) · · · β(1)α(0) + β(P )β(P − 1) · · · β(1)β(0)∆r(0),
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where

α(k) = 2ρe(k)ϕ(k)x(k), β(k) = 1 − 2ρe2(k).

For the error exponent adaptation subsystem to converge it is necessary that the

product
∞∏

k=0

[1 − 2ρe2(k)]

also converges. This is equivalent [45] with the convergence of the series

∞∑
k=0

e2(k),

if limk→∞ e(k) = 0. If this last condition does not happen, then the following had to be

true:

lim sup
k→∞

|e(k)| <
1√
ρ
. (4.4)

In this case the estimated error exponent is convergent and thus bounded1, and for

the stability of the overall adaptive system we can follow the general treatment developed

in Chapter 5.

As a rule, we have noticed in our simulations that the RCFA algorithm has a better

stability than the LMF and other CFA algorithms. We believe that the initial fast decrease

of the estimated error exponent is one of the contributing factors (Section 4.1.3). We did

not find remarkable differences between recursive and nonrecursive approaches from the

convergence speed point of view.

4.1.3 Experimental results

Now we proceed with several examples. In order to test the proposed algorithm, we first

consider a channel of the first type, with one zero at the origin and one pole at 0.8. The

number of filter coefficients is N = 40. The level a of the attenuated far-end signal is

given by adB = −20. The step-size of the main adaptive filter is chosen µ = 5 · 10−4.

The performance measure is the normalised form of the tap-error vector norm given by

(2.8), and the learning curves obtained are the average of 20 runs. For the beginning

the unknown error exponent rk is a constant function, and the initial estimated error

exponent is r(0) = 4. The attenuation ϕ(k) is constant and equal with the level of

attenuated far-end signal (ϕ(k) = a).

1The error exponent can be roughly bounded, in the way that the variable step-size techniques are
doing for the step-size, but this was not our option when we developed the CFA approaches.
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Figure 4.2: The learning curves of the RCFA (i), LMS (ii) and LMF (iii) algorithms.

Example 14 . A short comparison of RCFA with LMS and LMF

Figure 4.2 shows a comparison between LMS, LMF and RCFA (ρ = 0.001, rk = 1)

algorithms, from the convergence speed and steady-state point of view, where all the

algorithms have the same step-size [52]. If r(∞) = 2, then it can be noticed that RCFA

has a faster convergence than both algorithms, and the steady-state properties are the

same as for the LMS algorithm.

In this experiment the error exponent reaches 2, then it slowly decreases to 1. We

can stop this evolution by low bounding the error exponent, and in this way we obtain a

better residual error. Instead of using this strategy, we prefer to continue the cost function

adaptation and do not intervene in the error exponent adaptation process.

Perhaps it is better to remind here the special CFA effect of changing the levels in

steady-state, encountered also in Example 11:
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Figure 4.3: RCFA learning curves and EEAS step-sizes: ρ = 6 · 10−4 (i), ρ = 8 · 10−4 (ii),

ρ = 10 · 10−4 (iii), ρ = 12 · 10−4 (iv), ρ = 14 · 10−4 (v).

Property 2. The CFA algorithm reaches first a lower (apparent) steady-state level cor-

responding to a certain error exponent, but because the error exponent sequence is still

slightly decreasing, the (apparent) steady-state level increases.

Example 15 . EEAS parameters influence in RCFA performances

Figure 4.3 (for learning curves) and Figure 4.4 (for estimated error exponent r(k))

illustrate the performances of the RCFA algorithms, if the EEAS step-size changes. For

a small step-size (ρ = 0.0006), the estimated error exponent decreases slowly, and as

a consequence the respective RCFA algorithm behaves closer to LMF at the beginning,

and after that with NQSGr (r ≈ 2.5). For ρ = 0.0014, the corresponding RCFA has a

faster convergence, but the steady-state is worse than for the LMS algorithm as we have

r(∞) = 1.4.
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Figure 4.4: Estimated error exponent and EEAS step-sizes: ρ = 6 · 10−4 (i), ρ = 8 · 10−4

(ii), ρ = 10 · 10−4 (iii), ρ = 12 · 10−4 (iv), ρ = 14 · 10−4 (v).

The same type of comparison was done from the unknown error exponent rk point

of view. The choice of the constant function rk affects both the convergence rate and

the steady-state (Figure 4.5). Also the estimated error exponent r(k) is changed (Figure

4.6).

By modifying the initial error exponent r(0), the performances of the system are quite

affected as we can see in Figure 4.7. The time constant of the EEAS system is almost the

same, but its steady-state is reached at different instants of time. As a consequence the

behaviour of the algorithm differs greatly.

Example 16 . EPIS parameters and RCFA properties

In the first experiment we modify the noise levels, keeping the rest of parameters fixed

(rk = 1.9, µ = 75 ·10−5, ρ = 0.0025, N = 40, p = 0.8, r(0) = 4). Figure 4.8 shows that the
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Figure 4.5: Learning curves of RCFA for different desired error exponents: rk = 1.2 (i),

rk = 1.4 (ii), rk = 1.6 (iii), rk = 1.8 (iv), rk = 2 (v).

steady-state performances are completely different for the four levels selected, and this

was what we actually expected. However for a long part of adaptation time the adaptive

filter performs quite the same. Figure 4.9 presents the behaviour of the estimated error

exponent when the level of attenuated far-end signal is changed. When the instantaneous

error is noisy, the EEAS subsystem converges slower.

Property 2 is illustrated in Figure 4.10, where the effect of step-size of the EPIS system

is illustrated. We note that the estimated error exponent perceives the modification of

the step-size through the instantaneous error signal.

These experiments clearly show that a trade-off should be done between the parameters

involved in the design of this complex adaptive filter, i.e. ρ, rk, and respectively µ. The

plots presenting the estimated error exponent suggest also that it is not very sensitive

to noisy error during adaptation and steady-state, in the sense that the decrease of the

estimated error exponent is smooth and almost monotonic.



78 Recursive Cost Function Adaptation

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1.5

2

2.5

3

3.5

4

(v)

(iv)

(iii)

(ii)

(i)

NUMBER OF ITERATIONS

E
S

T
IM

A
T

E
D

 E
R

R
O

R
 E

X
P

O
N

E
N

T

Figure 4.6: Estimated error exponent for different desired error exponents: rk = 1.2 (i),

rk = 1.4 (ii), rk = 1.6 (iii), rk = 1.8 (iv), rk = 2 (v).

Example 17 . Abrupt change in the system

The last experiment of this Section is to track the second channel which is the real

hybrid, where at 2501 iteration the echo-path has a sign change. The level of noise was

−20 dB. The step-size of EEAS subsystem is ρ = 0.5, and for the ”unknown desired”

error exponent sequence rk we implement a rough approximation. It consists in selecting

rk = 2 close to the end of adaptation period, and rk = 2.5 far from optimum. The

decision whether we are in one of these two cases is taken by counting the number of recent

iterations where the instantaneous error is less than a given value. In our simulations we

considered that we reach the steady state if for 8 consecutive iterations the modulus of

the error is less than the maximum peak-to-peak of noise signal.

The outcome is shown in Figure 4.11, and it shows that RCFA behaves well in data

echo-cancellation of a real hybrid and also in non-stationary situations.
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Figure 4.7: Performances of the RCFA algorithm for different initial estimated error

exponents: r(0) = 3 (——), r(0) = 4 (· · · · · ·), r(0) = 5 (· − · − ·).

4.2 A Note on The Analytic Approach

A stochastic gradient adaptive filter with gradient adaptive step-size was proposed in

[46, 74]. Despite other variable step-size methods, rather heuristic techniques, the GAS
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Figure 4.8: Learning curves for different noise levels: adB = −30 (i), adB = −25 (ii),

adB = −20 (iii), adB = −15 (iv).

algorithm changes the time-varying step-size in such a way that the change is propor-

tional to the negative of the gradient of the squared estimation error with respect to the

convergence parameter.

In the following we would like to see if we can follow this idea and to derive another

recursive cost function adaptation technique based on the same optimality principle. The

proposed method should try to adapt the error exponent sequence using a gradient de-

scendent algorithm so as to reduce the squared estimation error at each instant of time.

We start by computing the recursion formula as in [46]:

r(k + 1) = r(k) − %
∂e2(k + 1)

∂r(k)
= r(k) − %

∂e2(k + 1)

∂ĥ(k)
· ∂ĥ(k)

∂r(k)
, (4.5)

where % is a small positive constant that controls the adaptive behaviour of the error

exponent sequence.
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Figure 4.9: Estimated error exponent for different noise levels.

By using (3.16), and taking into account that from (2.1) we have

∂ĥ(k)

∂r(k)
= µ[1 + r(k) ln |e(k)|]|e(k)|r(k)−2e(k)x(k), (4.6)

it results

r(k + 1) = r(k) + 2%µe(k + 1)[1 + r(k) ln |e(k)|]|e(k)|r(k)−2e(k)xt(k)x(k + 1), (4.7)

which is a similar relationship as for gradient step-size in GAS technique [46].

Equation (4.7) might provide a formula for an analytic approach. It seems that the

update equation is more complicated in comparison with the above mentioned approaches.

The presence of ln |e(k)| factor can create some problems when error is closed or equal to

zero, unless the error exponent is greater than two. Also the error exponent can not be

adapted, if xt(k)x(k + 1) = 0, as in the case of GAS algorithm [46].
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All these difficulties suggest that the analytic approach as it was pointed out in this

Section is not very suitable for data echo cancellation applications, though it might provide

interest in other fields.



Chapter 5

Cost Function Adaptation

Convergence

A general convergence and steady-state analysis of the proposed cost function adaptation

algorithms is carried out in this Chapter, and closed-form expressions for the step-size

bounds, time-constants and misadjustment are obtained. The theoretical achievements

are also compared with computer simulations results.

5.1 Convergence and Steady-State Analysis

Both the stationary and gradient CFA approaches have been obtained by using an update

of the form r(k + 1) ≡ F [|e(k)|]. The results can be improved (Sections 3.1.2 and 3.1.4)

by replacing the instantaneous values with finite-time averages. Also in the heuristic

approach of RCFA, the EEAS subsystem can be designed to converge (Section 4.1.2). In

all these cases, the error exponent sequence can be bounded:

0 < r− ≤ r(k) ≤ r+.

In these specific conditions we will develop the next convergence analysis. In the

following we assume that:

• {x(k)}, {f(k)}, and {∆h(k)} are independent real bipolar sequences;

• the autocorrelation matrix φxx of the input sequence x(k) is positive definite;

• the echo path is stationary.

85
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If we consider only real signals, the gradient update is given by Equation (2.4), provid-

ing that in the case of the gradient approach the constant β is absorbed into the constant

µ.

5.1.1 Convergence in the mean

First we are interested in finding the conditions for the convergence of the mean of the

tap-error vector. We will show that E[∆h(k)] → 0, in the case of small deviations of ĥ(k)

from h(k):

|xt(k)∆h(k)| ¿ |f(k)| (5.1)

From Equation (2.4) we get

∆h(k + 1) = ∆h(k) + µr(k)x(k)|e(k)|r(k)−1sgn[e(k)].

and using (2.7), we have

∆h(k + 1) = ∆h(k) + µr(k)x(k)|f(k) − xt(k)∆h(k)|r(k)−1sgn[f(k) − xt(k)∆h(k)].

According to our previous assumptions:

∆h(k + 1) ∼= ∆h(k) + µr(k)x(k)|f(k) − xt(k)∆h(k)|r(k)−1sgn[f(k)]. (5.2)

A little manipulation of Equation (5.2) gives:

∆h(k + 1) ∼= ∆h(k) + µr(k)x(k)|f(k)|r(k)−1

(
1 − xt(k)∆h(k)

f(k)

)r(k)−1

sgn[f(k)].

Applying the binomial theorem [7], and then ignoring the higher order terms:

∆h(k + 1) ∼= ∆h(k) + µr(k)x(k)|f(k)|r(k)−1
[
1 − (r(k) − 1)x

t(k)∆h(k)
f(k)

]
sgn[f(k)]

∼= ∆h(k) + µr(k)x(k)sgn[f(k)]|f(k)|r(k)−1 − µr(k)(r(k) − 1)|f(k)|r(k)−2φxx∆h(k).

After taking mathematical expectations on both sides, as E[x(k)] = 0, the middle term

on the right hand side of previous relationship will vanish, and we conclude that:

E[∆h(k + 1)] = (I − µφxxE[r(k)(r(k) − 1)|f(k)|r(k)−2])E[∆h(k)]. (5.3)

We denote by

∆ = I − µφxxE[r(k)(r(k) − 1)|f(k)|r(k)−2],
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or in canonical form as,

∆ = A




δ1 0
. . .

0 δN


 At, (5.4)

where AAt = I, then (5.3) will become

E[∆h(k + 1)] = ∆E[∆h(k)].

Let λ be the maximum eigenvalue of φxx. We can choose µ in such a way that all the

leading diagonal elements of ∆ (δi, i = 1, . . . , N), will have absolute values less than 1:

δ ≡ sup|δi| < 1, i = 1, . . . , N,

We get:

0 < µ <
1

E[r(k)(r(k) − 1)|f(k)|r(k)−2]λ
. (5.5)

In this case, for the L2 norm of E[∆h(k)] we have the following

E[∆ht(k + 1)]E[∆h(k + 1)] = E[∆ht(k)]A




δ2
1 0

. . .

0 δ2
N


 AtE[∆h(k)]

≤ δ2E[∆ht(k)]E[∆h(k)],

and the adaptation process will lead to the convergence.

The condition set in Equation (5.5) might be difficult to check in practice. We can,

however, bound the maximal eigenvalue of a positive definite matrix by its trace [20]:

tr(φxx) = NE[x2
k],

and so we can obtain an easily applied sufficient condition of the mean of the tap-error

vector of the cost function adaptation algorithm:

0 < µ <
1

NE[r(k)(r(k) − 1)|f(k)|r(k)−2]E[x2
k]

. (5.6)

In the following we will calculate the upper bound on the step-size µ using Equa-

tion (5.5). In addition to previous assumptions, we consider that the error exponent is

uniform linearly decreasing during adaptation, and as a consequence its probability den-

sity function is uniform between [rmin, rmax]. In this case, taking into account that the

far-end signal is considered as a bipolar sequence, and |f(k)| = a,∀k ∈ N, then we have:
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E[r(k)(r(k) − 1)|f(k)|r(k)−2] =
1

rmax − rmin

∫ rmax

rmin

x(x − 1)ax−2dx

=
1

rmax − rmin

[
rmax(rmax − 1)

armax−2

ln a
− (2rmax − 1)

armax−2

(ln a)2
+ 2

armax−2

(ln a)3

−rmin(rmin − 1)
armin−2

ln a
+ (2rmin − 1)

armin−2

(ln a)2
− 2

armin−2

(ln a)3

]
.

(5.7)

The calculated value of the upper bound on µ given by Equations (5.6) and (5.7) will

be compared in Section 5.2 with those obtained by experiment.

Remark 8 . The measurement noise effect

It is of interest to remark that the upper bound of the step-size from the right-hand

side of Equation (5.5) is not independent of the measurement noise, and this is reminiscent

of the LMF and NQSG algorithms too [71, 81]. However, by cost function adaptation we

can reduce this effect by reaching r(k) = 2 as soon as possible.

Remark 9 . Sub-unitary error exponents and CFA stability

From Equation (5.5) one concludes that if r(k) < 1 outside a finite interval, then the

CFA algorithm could divergence for any value of the variable step-size. Indeed, since

the term within the expectation brackets is negative, the right-hand side of (5.5) can be

negative, therefore we have no permitted values for the step-size. According to Section

3.1.4, this is not possible for the proposed stationary CFA algorithms, because the error

exponent equals two for large errors. Also, in the implementation of the rest of the

proposed CFA algorithms, we avoid sub-unitary error exponents.

5.1.2 Convergence in the mean square

For the convergence of the variance of ∆h(k), we will derive a range based on the same

assumption of small deviations from the solution [81], i.e., ∆h(k) ≈ 0. We shall use the

same strategy in the vicinity of the solution as used before for the convergence of the

mean, neglecting all terms which depend on ∆h(k) to the power higher than two. From

(2.4) we have

∆h(k + 1) = ∆h(k) + µr(k)|e(k)|r(k)−1sgn[e(k)]x(k)

∆ht(k + 1) = ∆ht(k) + µr(k)|e(k)|r(k)−1sgn[e(k)]xt(k),
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and

∆ht(k + 1)∆h(k + 1) = ∆ht(k)∆h(k) + µr(k)|e(k)|r(k)−1sgn[e(k)][∆ht(k)x(k)+

xt(k)∆h(k)] + µ2r2(k)|e(k)|2r(k)−2xt(k)x(k).
(5.8)

Using the relation ∆ht(k)x(k) = xt(k)∆h(k), we have

∆ht(k + 1)∆h(k + 1) = ∆ht(k)∆h(k) + 2µr(k)|e(k)|r(k)−1sgn[e(k)]∆ht(k)x(k)

+µ2r2(k)|e(k)|2r(k)−2xt(k)x(k).

In the following we shall use the above mentioned condition |xt(k)∆h(k)| ¿ |f(k)|, and

the formula1:

(1 + ξ)n ∼= 1 + n · ξ +
n(n − 1)

2
· ξ2, |ξ| ¿ 1. (5.9)

The expression

|e(k)|Q = |f(k) − ∆ht(k)x(k)|Q = |f(k)|Q
[
1 − ∆ht(k)x(k)

f(k)

]Q

,

is approximated as

|e(k)|Q ∼= |f(k)|Q
[
1 − Q · ∆ht

(k)x(k)
f(k)

+ Q(Q−1)
2

·
(

∆ht
(k)x(k)
f(k)

)2
]

∼= |f(k)|Q − Q · ∆ht(k)x(k)|f(k)|Q−1sgn[f(k)] + Q(Q−1)
2

· (∆ht(k)x(k)
)2 |f(k)|Q−2,

(5.10)

then after inserting (5.10) in (5.8), and using sgn[e(k)] ∼= sgn[f(k)], we obtain

∆ht(k + 1)∆h(k + 1) = ∆ht(k)∆h(k) + 2µr(k)|f(k)|r(k)−1sgn[f(k)]∆ht(k)x(k)

−2µr(k)[r(k) − 1]|f(k)|r(k)−2[∆ht(k)x(k)]2

+µr(k)[r(k) − 1][r(k) − 2]|f(k)|r(k)−3sgn[f(k)]
[
∆ht(k)x(k)

]3

+µ2r2(k)|f(k)|2r(k)−2xt(k)x(k)

−2µ2r2(k)[r(k) − 1]|f(k)|2r(k)−3sgn[f(k)][∆ht(k)x(k)]xt(k)x(k)

+µ2r2(k)[r(k) − 1][2r(k) − 3]|f(k)|2r(k)−4 [
∆ht(k)x(k)

]2
xt(k)x(k).

(5.11)

1By Taylor’s formula [7], we have

(1 + ξ)n − 1 − nξ − n(n − 1)
2

ξ2 =
n(n − 1)(n − 2)

6
ξ3(1 + θξ)n−3, 0 < θ < 1.

By our assumptions |ξ| ¿ 1 and 1 + θξ ∼= 1, so that Equation (5.9) is true.
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Now we assume that the ∆h(k) is given. We take also the expectations of both sides of

Equation (5.11) over all possible ∆h(k). The terms on the right hand side which include

odd powers of ∆ht(k)x(k) will vanish under expectation due to the term sgn[f(k)]. Hence

E[∆ht(k + 1)∆h(k + 1)] = ∆ht(k)∆h(k)

−2µE[r(k)(r(k) − 1)|f(k)|r(k)−2]∆ht(k)E[x(k)xt(k)]∆h(k)

+µ2E[r2(k)|f(k)|2r(k)−2]E[xt(k)x(k)]

+µ2E[r2(k)(r(k) − 1)(2r(k) − 3)|f(k)|2r(k)−4]∆ht(k)E[xt(k)x(k)x(k)xt(k)]∆h(k),

or

E[∆ht(k + 1)∆h(k + 1)] = ∆ht(k)Γ∆h(k) + µ2E[r2(k)|f(k)|2r(k)−2]E[xt(k)x(k)]

where

Γ = I − 2µE[r(k)(r(k) − 1)|f(k)|r(k)−2]E[x(k)xt(k)]

+µ2E[r2(k)(r(k) − 1)(2r(k) − 3)|f(k)|2r(k)−4]E[xt(k)x(k)x(k)xt(k)].

It is now clear that the convergence properties depend entirely on the nature of the matrix

Γ. In fact, the algorithm will converge if and only if the magnitudes of its eigenvalues are

less than one. Now we will need an additional approximation (N À 1):

xt(k)x(k) ∼= NE[x2(k)].

We have

Γ = I − µ
{

2E[r(k)(r(k) − 1)|f(k)|r(k)−2]

−µ E[r2(k)(r(k) − 1)(2r(k) − 3)|f(k)|2r(k)−4]NE[x2(k)]
}

φxx.

Since the autocorrelation matrix φxx is positive definite, all eigenvalues of Γ will have

absolute values smaller than one if and only if

0 < µ <
2E[r(k)(r(k) − 1)|f(k)|r(k)−2]

E[r2(k)(r(k) − 1)(2r(k) − 3)|f(k)|2r(k)−4]NE[x2(k)]
(5.12)

and
1 − λµ

{
2E[r(k)(r(k) − 1)|f(k)|r(k)−2]

−µ E[r2(k)(r(k) − 1)(2r(k) − 3)|f(k)|2r(k)−4]NE[x2(k)]
}

> −1.

These conditions will be satisfied, if we properly choose µ.
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Remark 10 .

By using the same assumptions as when we computed Equation (5.7), we get the following

expression for the expectation from the denominator of the Equation (5.12):

E[r2(k)(r(k) − 1)(2r(k) − 3)|f(k)|2r(k)−4]

=
1

rmax − rmin

∫ rmax

rmin

x2(x − 1)(2x − 3)a2x−4dx

=
1

rmax − rmin

4∑
k=0

P (k)(x)
a2x−4

(2 ln a)k+1

∣∣rmax
rmin

,

(5.13)

where P (x) = x2(x − 1)(2x − 3). With this result we can compute another upper bound

on the step-size µ.

5.1.3 Time constants

Now we proceed with the assessment of every time constant, i.e. the time taken by the

corresponding mode of convergence to reach 36.8% of its initial value. Again we assume

that the current estimate of the adaptive filter coefficients ĥ(k) is in the vicinity of the

target filter taps h(k), so that the approximation of Equation (5.3) holds. For the above

we also assume that the vectors ∆h(k) and x(k) are independent of each other. From

Equations (5.3) and (5.4) we deduce that generally there will be N different2 relaxation

time constants of the filter taps

Ti =
1

µE[r(k)(r(k) − 1)|f(k)|r(k)−2]λi

, (5.14)

where λi are the eigenvalues of the autocorrelation matrix φxx of the input signal.

5.1.4 Steady-state analysis

The last step in our analysis of the adaptive process will be the evaluation of the misad-

justment. Since the misadjustment is defined only for the adaptive processes in steady

state (after adaptive transients have died out), we can assume that the error vector ∆h(k)

is small, close to zero. Therefore we can use once more the basic expression given in Sec-

tion 5.1.2, where the terms multiplied by sgn[f(k)] will vanish when we take expectations

2They might be very closed each other (Section 3.2.5).
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of both sides. Hence:

E[∆h(k + 1)∆ht(k + 1)] = E[∆h(k)∆ht(k)]

−µE[r(k)(r(k) − 1)|f(k)|r(k)−2(x(k)xt(k)∆h(k)∆ht(k) + ∆h(k)∆ht(k)x(k)xt(k))]

+µ2E[r2(k)|f(k)|2r(k)−2x(k)xt(k)]

+µ2E[r2(k)(r(k) − 1)(2r(k) − 3)|f(k)|2r(k)−4x(k)xt(k)∆h(k)∆ht(k)x(k)xt(k)].
(5.15)

Now we shall neglect the fourth term on the right hand side of Equation (5.15) since for

any small µ it will be small relative to the second term. Moreover, assuming that the

algorithm has converged and is in steady state, we have

E[∆h(k + 1)∆ht(k + 1)] = E[∆h(k)∆ht(k)]

then we get:

−µE[r(k)(r(k) − 1)|f(k)|r(k)−2(x(k)xt(k)∆h(k)∆ht(k) + ∆h(k)∆ht(k)x(k)xt(k))]

+µ2E[r2(k)|f(k)|2r(k)−2x(k)xt(k)] = 0,
(5.16)

and using the assumption of the independence of the far-end sequence, near-end sequence

and tap-error sequence, Equation (5.16) has a unique solution [4]:

E[∆h(k)∆ht(k)] =
µE[r2(k)|f(k)|2r(k)−2]

2E[r(k)(r(k) − 1)|f(k)|r(k)−2]
I.

The power of the additional noise at the system output due to noise weights can be

approximated by:

E[
(
∆ht(k)x(k)

)2
] =

µNE[r2(k)|f(k)|2r(k)−2]E[x2(k)]

2E[r(k)(r(k) − 1)|f(k)|r(k)−2]
,

where we have neglected all the cross-terms given by the near-end and tap-error sequences.

We shall now use the definition of the misadjustment as a ratio between the power of the

error sequence due to the weight noise and the Wiener error sequence power. We obtain

the final expression for the misadjustment:

M =
µNE[r2(k)|f(k)|2r(k)−2]E[x2(k)]

2E[f 2(k)]E[r(k)(r(k) − 1)|f(k)|r(k)−2]

=
E[r2(k)|f(k)|2r(k)−2]

2E[|f(k)|2]E[r(k)(r(k) − 1)|f(k)|r(k)−2]2

N∑
i=1

1

Ti
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CFA-xx rmax rmin

CFA-05 4 1.2037

CFA-10 4 1.8126

CFA-15 4 2.6604

CFA-20 4 3.3426

Table 5.1: Initial (maximum) and final (minimum) error exponents.

Suppose now that the error exponent sequence is convergent, i.e. there exists a value

of r(∞) so that limk→∞ r(k) = r(∞), r− ≤ r(∞) ≤ r+. When k → ∞, the steady-state

is identical with NQSGr(∞) and the final misadjustment is given by

M =
E

[
|f(k)|2r(∞)−2

]
2(r(∞) − 1)2E [|f(k)|2] E

[
|f(k)|r(∞)−2

]2 ·
N∑

i=1

1

Ti

.

If |f(k)| is constant, as it is the case of Example 3, then we have

M =
1

2[r(∞) − 1]2
·

N∑
i=1

1

Ti

. (5.17)

5.2 Simulation Results

There is a general difficulty if we want to compare the values obtained in this analysis

with those given by the simulations. Our assumption was that the system is near the

optimum, where the error exponent should be also close to r(∞). But for almost all

the algorithms we have developed and the experiments we have done, the error exponent

during adaptation is at a considerable distance from r(∞). The following example will

emphasize these aspects.

Example 18 . Example 3 revisited

Several CFAxx approaches have been introduced in Example 3. In the same framework,

now we shall present other algorithms performances. First in Figure 5.1 we illustrate the

error exponent update, as it is obtained from simulations. Thus we can see that except

CFA05, where the assumption of a smoothed error exponent (Section 3.1.3) might not

be respected, the final error exponent is very close to the values suggested by Figure 3.5.

These measured maximum and minimum error exponents are presented in Table 5.1.
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Figure 5.1: Error exponent update (Example 3) for different CFAxx initializations con-

stants.

Figure 5.2 shows the behaviour of the mean-square error for the same experiment,

obtained by averaging 50 runs. The time-constants differ from an approach to other, but

the difference is quite small. However, we can realize that CFA05 approach (curve (d))

has the lowest convergence speed, and this is an effect of the short error exponent update

period, and also of the small final error exponent.

The computed and measured values of the time constants are shown in Table 5.2, and

they are obtained using Equation (5.14), and respectively the results from Figure 5.2. It

is easy to see that the differences between measured and computed values depend on the

distance between r(0) and r(∞).

We compute the misadjusment by inserting the previous computed and measured time

constants, and final error exponents in Equation (5.17). The measured misadjustment

was obtained directly from definition [35] and by using the results shown in Figure 5.2.
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Figure 5.2: Mean-square error for CFA20 (a), CFA15 (b), CFA10 (c), and CFA05 (d)

approaches.

The obtained values are provided in Table 5.3, and except for CFA05 the computed and

measured misadjustment are quite close.

Finally, the maximum computed and measured step-sizes are presented in Table 5.4.

First we use Equations (5.6) and (5.12) to calculate the maximum step-size. Then the

measured step-size was obtained by averaging 20 times the learning curves for every

increasing µ until divergence occurs.
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CFA-xx Ti computed Ti measured

CFA-05 838 333

CFA-10 713 311

CFA-15 639 311

CFA-20 462 311

Table 5.2: Computed and measured time-constants.

CFA-xx M measured M computed with Ti computed M computed with Ti measured

CFA-05 0.4596 0.1205 1.1580

CFA-10 0.0340 0.0303 0.0779

CFA-15 0.0091 0.0054 0.0187

CFA-20 0.0063 0.0014 0.0094

Table 5.3: Computed and measured misadjustment.

The big difference between µmax computed and µmax measured could be the result of

several factors:

1. The assumption that we are near the optimum.

2. The approximations made in the analysis while obtaining the expression for the

calculation of µmax computed.

3. The insufficient number of averagings and the selected convergence level to detect

the divergence which have to be increased according to hump effect [58].

We conclude that from qualitative point of view the convergence and steady-state analysis

provided in this Chapter emphasized the general assertions used in previous Chapters.

CFA-xx µmax from Equation (5.6) µmax from Equation (5.12) µmax measured

CFA-05 0.0216 0.0485 0.0016

CFA-10 0.0184 0.0352 0.0015

CFA-15 0.0165 0.0445 0.0011

CFA-20 0.0119 0.0668 0.0007

Table 5.4: Computed and measured maximum step-sizes.



Chapter 6

Related Techniques

The first part of the chapter introduces the Convex Variable Step-Size (CVSS) algorithm.

The convexity of the resulting cost function is guaranteed. Simulations presented show

that with the proposed algorithm we obtain similar results as with VSS [42] algorithm.

Then a threshold technique with quadratic algorithms is discussed. The idea is to decide

whether for the next step we apply LMS or LMF, based on a comparison of an error

estimate with some selected thresholds.

6.1 Convex Variable Step-Size

The convexity of the employed cost function was an important goal in adaptive filtering

problems, as in this case every minimum is a global minimum [35]. Thus any optimum

weight vector the adaptive algorithm converges to is globally optimal [52]. Most of the

combined LMS and LMF methods used a time-varying combination of the LMF and LMS

cost functions. The resulting cost function is not anymore convex, or at least this property

is not obvious. Perhaps the one for which this quality is easy to prove is the mixed-norm

LMMN (Least-Mean Mixed Norm) cost function [15], where a constant mixing parameter

was used. This is also true for the variable step-size algorithms, where heuristic methods

have been found useful in practice, even they cannot claim any sort of optimality in their

performance [26]. An often encountered example is the variable step-size (VSS) adaptive

filtering algorithm, which is based on the fluctuation of the prediction squared error [42].

An overall weakness of the variable step-size algorithms is that the convexity of the cost

function cannot be anymore guaranteed. For instance, we may consider the least mean

P-algorithms as the LMS algorithm with time-varying step-size [52] given by (2.2), but for

0 < P < 1 the corresponding cost function JP = E[|e(k)|P ] is not anymore convex. Thus

97
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we have doubts that the variable step-size techniques provide unavoidably convex cost

functions, and also seems very difficult to show this at least in the case of heuristic variable

step-size methods. In this Section our goal is to derive such a variable step-size method

for which the convexity of cost function is proved. First we recall some theoretical aspects

of convex functions. Then the algorithm is derived, and finally experimental results are

shown. For the beginning we recall a known result [47] (pp.18):

Theorem 1 . Let be a function F : R → R, which is differentiable and its derivative is

a nondecreasing function on R. In this case, F is a convex function.

Example 19 .

F : R → R, F (x) =




Ax2 − A2 − C2

4B
, if |x| > E1,

Bx4 +
C2

4B
, if E0 ≤ |x| ≤ E1,

Cx2, if |x| < E0,

(6.1)

where A,B,C are positive constants, A > C, and the constants E0, and E1 are such that

E0 =

√
C

2B
, E1 =

√
A

2B
. (6.2)

F is continuous and differentiable, and its derivative is given by

∂F

∂x
=




2Ax, if |x| > E1,

4Bx3, if E0 ≤ |x| ≤ E1,

2Cx, if |x| < E0.

This derivative is nondecreasing and continuous (Figure 6.1), thus F is convex.

Now we are going back to the general case when F is convex, and in the following

we study the cost function J = E{F [e(k)]}. Following [52], for every ∆h1, ∆h2, and

λ ∈ [0, 1], we have

F [f − xt(λ∆h1 + (1 − λ)∆h2)] ≤ λF (f − xt∆h1) + (1 − λ)F (f − xt∆h2).

Multiply both side of previous equation by the joint probability density function of f and

x, integrate with respect to them, and after we take the expected values of both sides,

we obtain that

J{λ∆h1 + (1 − λ)∆h2)} ≤ λJ{∆h1} + (1 − λ)J{∆h2},
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Figure 6.1: Derivative of the function given by (6.1).

i.e. the cost function J = E{F [e(k)]} is a convex function over RN .

Proceeding further, we consider the following even-symmetric error criterion in instan-

taneous form:

JCV SS[e(k)] = F [e(k)] =




Ae2(k) − A2 − C2

4B
, if |e(k)| > E1,

Be4(k) +
C2

4B
, if E0 ≤ |e(k)| ≤ E1,

Ce2(k), if |e(k| < E0,

(6.3)

where the constants are as before.

First we note that this type of cost function belongs to the class examined in [27], where

general expressions for the mean and the mean-square convergence of the filter coefficients

have been derived. Then, from above results the proposed cost function JCV SS[e(k)] is

convex. The convex variable step-size algorithm results (µ is the fixed step-size of the
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algorithm):

ĥ(k + 1) = ĥ(k) − µ∇JCV SS

= ĥ(k) − 2µ
∂

∂e(k)
{JCV SS[e(k)]} ∂e(k)

∂ĥ(k)

= ĥ(k) + 2µ(k)e(k)x(k),

where:

µ(k) =




Aµ, if |e(k)| > E1,

2Bµe2(k), if E0 ≤ |e(k)| ≤ E1,

Cµ, if |e(k| < E0.

As in other variable step-size methods we have three regions: in two of them LMS acts

with different gradients, and the middle one is where the LMF is applied. This last region,

and the selection of the constants E0 and E1 will differentiate our algorithm from other

variable step-size methods.

The proposed variable step-size algorithm has several benefits compared to the previ-

ous ones:

1. Convex cost function;

2. A simple implementation:

• The selection of additional constants and initial step-size to control adaptive

behaviour of the step-size sequence is clear and easy to handle according to the

application;

• The amount of computation load is reduced or is identical.

• We do not need steps to be taken to anticipate the step-sizes from exceeding

their maximum and minimum limits; the same comparison for error seems

effortless.

3. The algorithm analysis is a subject already approached as it belongs to the general

class discussed in [27], and does not cause major difficulties.

As a drawback, the CVSS algorithm can perform worse than some variable step-size

algorithms, if the period when LMF acts, i.e. middle term of (6.3), is very long. This is the

case of a big constant E0, or a big ratio A/C. However, in this case, in the middle region

instead of LMF another non-quadratic algorithm [71] could improve the performances.

As we shall see in the following example, this artifice is not so often necessarily.
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Example 20 . Constant E0 influence in CVSS algorithm’s behaviour

We took into consideration for this example three channels: first two of them are echo path

of the first model (single pole single zero digital filter), and the third is the real hybrid.

Also the levels of attenuated far-end signal are a = −15 dB, a = −20 dB, a = −25 dB, and

a = −30 dB. For every one of this we found the step-sizes (Table 6.1) µmin (for which the

convergence level was 20 dB below far-end signal level was reached) and µmax. It seems

that the obtained values are not very sensitive to noise levels. Then we compute the ratio

A/C = µmax/µmin. Given E0, from (6.2), and taking C = 1, the other constants results.

We performed 20 averages of learning curves for these parameters, and we measure the

number of iterations needed to reach the convergence level in every case. The results are

shown in Tables 6.2, 6.3, and 6.4.

We remark a sort of dispersion of results, which can be explained by the fact, that

here the variable step-size is not fixed, and this affects the residual error. In spite of

this, it comes out that except for the extremal values, for a wide range of values E0, the

performances are quite the same.

Example 21 . A short comparison between CVSS and VSS algorithms

First we tested the LMS algorithm in the designated framework, in our case the real

hybrid. For adB = −15 we found that the maximum step-size for which instability we

did not detect was µmax = 0.01. The required convergence level of the echo canceller

is at -20 dB below the far-end signal, and we reached this level when the step-size was

µmin = 0.00275.

The VSS implementation follows from recommendations in [42], with α = 0.97, γ =

48 · 10−5.

For CVSS algorithm we took µ = µmin, and we get the ratio A/C = µmax/µmin = 3.64.

If C = 1, then A = 3.64. If we take E0 = 0.5, then from (6.2) we obtain B = C/(2E2
0) = 2,

and E1 = E0 ·
√

A/C = 0.95.

µ Table 6.2 Table 6.3 Table 6.4

maximum 0.01 0.005 0.01

minimum 0.000825 0.0005 0.00275

Table 6.1: Step-sizes used in simulations of Example 20.
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E0 a = −15 dB a = −20 dB a = −25 dB a = −30 dB

0.30 1305 2068 2626 2988

0.31 1777 2082 2909 2710

0.32 1258 2215 2974 2891

0.33 1817 2104 2655 3293

0.34 1432 2417 2758 3044

0.35 2017 2136 2894 3193

0.36 1966 2610 3142 3209

0.37 1738 2440 2755 3192

0.38 1675 2165 2809 2975

0.39 1878 2776 3030 3030

0.40 1669 2396 3012 3128

0.41 1922 2123 3091 3191

0.42 1673 2669 2607 3337

0.43 1963 2278 2599 3385

0.44 2024 2029 3024 3348

0.45 1796 2353 2878 3099

0.46 2391 2489 2720 3304

0.47 1744 2310 2697 3005

0.48 2047 2278 3190 3604

0.49 2244 2600 2936 3071

0.50 1951 2716 2986 3485

0.51 2040 2740 2875 2977

0.52 2329 2232 2598 3011

0.53 1846 2500 2855 3108

0.54 2190 2511 2853 3237

0.55 1834 2349 3075 3057

0.56 2303 2548 2786 3086

0.57 2195 2515 2938 2944

0.58 2097 2781 2953 3483

0.59 2067 2810 2979 3330

0.60 2562 2789 3152 3344

0.61 2283 2664 2887 3491

0.62 2134 2797 2934 3647

0.63 2135 2851 3110 3416

0.64 2063 3003 3184 3569

0.65 2166 2759 3200 3370

Table 6.2: Number of iterations needed to reach the convergence level of CVSS for first

echo path with p = 0.80025, A = −60, N = 32, for different constants E0.
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E0 a = −15 dB a = −20 dB a = −25 dB a = −30 dB

0.30 2726 3763 4339 5178

0.31 2745 4129 4133 4991

0.32 2276 3631 4788 5025

0.33 2459 3414 4390 5392

0.34 2722 3796 4050 5250

0.35 2744 3691 4141 4992

0.36 2896 3947 4562 5683

0.37 2392 4125 4959 5884

0.38 2910 4158 5223 5174

0.39 2807 3787 4790 5093

0.40 2770 3832 4909 5741

0.41 2959 3952 4450 5562

0.42 3092 4238 4886 5144

0.43 3007 3849 4881 5127

0.44 3407 4037 4907 5223

0.45 3086 3775 4874 6159

0.46 3106 4009 4714 5651

0.47 4287 4253 5051 5278

0.48 3431 4530 4617 5626

0.49 3664 4576 5151 5746

0.50 3168 5075 5404 5386

0.51 3651 4461 5507 5660

0.52 3524 4352 5108 5636

0.53 3329 4150 4912 5823

0.54 3537 4161 4906 5560

0.55 3474 4316 5042 5891

0.56 3857 4448 4847 5436

0.57 3668 4377 4917 5806

0.58 3744 4248 6172 5884

0.59 4054 5006 5093 6068

0.60 3823 4136 4892 5698

0.61 3919 4268 4866 5441

0.62 3604 4234 4634 5785

0.63 3925 4241 5234 5736

0.64 3601 4638 5292 6539

0.65 4199 4734 4800 5837

Table 6.3: Number of iterations needed to reach the convergence level of CVSS for first

echo path with p = 0.64, A = −120, N = 32, for different constants E0.
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E0 a = −15 dB a = −20 dB a = −25 dB a = −30 dB

0.30 554 779 856 996

0.31 710 714 957 1007

0.32 500 799 1082 1089

0.33 523 760 998 1042

0.34 589 735 919 960

0.35 589 775 1097 1106

0.36 567 882 943 1225

0.37 619 746 937 1018

0.38 886 929 962 1121

0.39 737 902 1009 1182

0.40 625 824 1061 1065

0.41 640 749 1053 1146

0.42 667 853 943 1044

0.43 637 890 1090 1113

0.44 636 823 1226 1241

0.45 801 750 1024 1487

0.46 767 976 969 1040

0.47 836 881 1126 1182

0.48 718 808 1002 1243

0.49 826 998 881 1000

0.50 690 855 970 1147

0.51 741 1004 1129 1164

0.52 688 877 988 1050

0.53 748 938 972 1079

0.54 697 937 1054 1102

0.55 938 1188 1003 1181

0.56 933 798 881 1021

0.57 785 883 1049 1108

0.58 716 985 974 1270

0.59 806 901 1038 1128

0.60 716 757 1008 1142

0.61 1037 867 971 1172

0.62 852 890 1162 1357

0.63 709 1007 1115 1268

0.64 1043 946 986 1101

0.65 739 929 1106 1209

Table 6.4: Number of iterations needed to reach the convergence level of CVSS for real

hybrid, for different constants E0.
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Figure 6.2: Learning curves of VSS and CVSS algorithms.

The first set of simulations we present is the stationary case, where the algorithms

were running 100 times and averaged. The learning curves are presented in Figure 6.2.

The second example (Figure 6.3) shows the behaviour of the CVSS and VSS algorithms

when the unknown system coefficients experience a sign change at iteration k = 2000.

These results show that the algorithms under comparison achieve quite similar perfor-

mances both in stationary and non-stationary cases.

6.2 Threshold Technique

A new kind of solution [57, 65] is proposed in this Section to address the mentioned

problem (Section 2.2.4). The main idea is to apply the LMF algorithm at the beginning

and at the end of the adaptation time, where its performances are superior to the LMS

in the case of data echo cancellation. An important issue was how to decide the instants
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Figure 6.3: Performance of VSS and CVSS algorithms for a sign change in coefficients.

when we apply one of these two algorithms. One of our assumptions was that it is better

to apply for a long time a certain algorithm. We considered that skipping from one to

another could cause instability issues or just loose the benefits of the convexity of the

error surfaces.

From the implementation point of view, the error mapping proposed in Section 3.2.2

is used again. The output of the filter is used for comparison with the selected thresholds

to decide whether on the next step we apply LMS or LMF. Also we need to avoid possible

oscillations: LMS to LMF and back. Our suggestion was to use two different hysteresis

loops. As a consequence the LMFSF algorithm results:

Let be V4 > V3 > V2 > V1 > 0 the selected thresholds. Then for LMFSF:

1) The weights are computed with Equation (2.1);
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Figure 6.4: The error exponent update as a function of the magnitude of the error.

2) The power r = r(k) is updated by:

r(k) =




4, if:




k < 3 or

|ê(k − 1)| < V1 or

|ê(k − 2)| < |ê(k − 1)| < V2 or

|ê(k − 1)| > V4 or

|ê(k − 2)| > |ê(k − 1)| > V3

2, otherwise.

(6.4)

A graphical representation of the LMFSF algorithm is shown in Figure 6.4.

Thus we try to take advantage of the benefits given by the large gradients and good

residual weight error from the LMF algorithm, and of the better performances of LMS

during tracking and all adaptation period.

Example 22 . The threshold technique and quadratic algorithms

The channel considered to test the LMFSF algorithm has one zero at the origin and one

pole at 0.8, and the length of FIR adaptive filter is N = 40. The level of the attenuated

far-end signal is adB = −20, and consequently the step-size of the adaptive algorithm is

µ = 5 · 10−4 to assure the convergence of the LMF.

The initial estimated error is ê(0) = 4 · a. The constant of the recursive filter is

L = 500. The thresholds are V1 = 0.1005, V2 = 0.1125, V3 = 0.375, V4 = 0.4. The

learning curves obtained are the average of 20 runs.
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Figure 6.5: The learning curves of the LMS, LMF and LMFSF algorithms.

Figure 6.5 delivers a comparison between LMS, LMF and LMFSF algorithms, from

both the convergence speed and steady-state point of view. It is clear now that the

LMFSF algorithm has a faster convergence than both LMS and LMF algorithms, and

this is a result of applying the LMF algorithm at the beginning of adaptation.

The steady-state also finds LMF acting, and as a consequence the residual error prop-

erties are similarly with the LMF algorithm. Thus the steady-state performances are

better than of the LMS algorithm.

For more details, Figure 6.6 illustrates the performances of the above mentioned algo-

rithms during the adaptation time, and now we can estimate the gain in adaptation speed

in the case of the LMFSF algorithm. This is almost the same as other CFA techniques.

Example 23 . The threshold technique and switched error algorithms

The last comparison addresses the family of switched error norms algorithms. As an
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Figure 6.6: Adaptation period of the LMS, LMF and LMFSF algorithms.

example, we consider the LMSEN (Least Mean Switched Error Norm) algorithm, which

consists of applying the LMF algorithm, and switching to the LMS algorithm when the

absolute value of error is greater than one.

Figure 6.7 shows the performances of the LMFSF algorithm in comparison with the

LMSEN algorithm [73], using the same parameters as before. It is clear now that the

LMFSF algorithm behaves better than LMSEN algorithm, with little extra computation

cost due to the implementation of the error estimator filter.
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Chapter 7

Motivation and Problem Statement

A large number of scientific problems deals with Hilbert transform and their sampled

derivations. In certain applications the domain is restricted, or other specific conditions

are imposed. Nevertheless, some particular problems are encountered almost in every

situation.

A critical issue is related to the singularities involved in the Hilbert transform com-

putation, since we are confronted with an improper integral. If the integral cannot be

evaluated in a closed form, as it is the case with discrete input data, numerical integration

is in general complicated.

Another inconvenience is related to the properties of algorithms when noise is present.

As it is known, the Hilbert transform can behave as an unbounded operator [2]. However,

the situation is more promising for rational and stable matrix functions where an L∞

continuity result was established [3]. There the bounds obtained were affine in n, where

the complex matrix rational function has a McMillan degree1 less than or equal to n. The

affine-with-n nature is the best that can be expected.

In the following, the second part of the thesis discusses some aspects of the Hilbert

transform for causal signals in the logarithmic domain, where several novel numerical

approaches to Bode gain-phase relationships are the desired outcome. Implementation

considerations and results of numerical experiments are also presented.

In the derivation of proposed methods we shall concentrate on minimum-phase func-

tions, since the achievements can be very easily applied to non minimum-phase functions

[11, 67]. In addition we restrict our discussion on functions defined only on real axis,

therefore we consider only 1-D phase approximation case. All improper integrals will be

1Briefly, McMillan degree measures the degree of complexity of a circuit, for instance the number of
delay cells needed for implementation. For a general definition, see [38].
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114 Motivation and Problem Statement

interpreted as Cauchy principal values. This will apply also for singularities at finite point

[49].

7.1 The Phase Retrieval Problem

The 1-D phase retrieval problem is to reconstruct a signal given the modulus of its Fourier

transform. This problem is associated with various applications including antenna design,

filter design, image reconstruction, wavefront sensing, electronic microscopy, and the char-

acterization of astronomical objects [79]. The phase retrieval problem arises also in ap-

plications of electromagnetic theory in which wave phase is apparently lost or impractical

to measure and only intensity data are available.

Solutions of the phase retrieval problem are of two types: solutions depending on

analytic properties and solutions depending on numerical procedures. The analytical

solutions are usually related with the logarithmic Hilbert transform. Customary solution

techniques approximate the solution by discretizing the continuous problem.

We note also that 1D and 2D phase retrieval are completely different approaches. In

the case of 1D phase retrieval we have to reconstruct the phase given the modulus of

its Fourier transform. This is equivalent to synthesize the signal using inverse Fourier

transform. There are some ambiguities in this problem. Clearly, if x(n) is a solution,

then its symmetric conjugate, scaling and time-shifting are also. Even excluding them,

we can still have more solutions.

The difficulty of the problem consists in the fact that in 1D we cannot find the phase

from the magnitude of the Fourier transform. More information about the signal is needed,

for instance that the signal is of minimum phase. In 2D this is not anymore a problem,

the phase retrieval problem has a unique solution, except the trivial ambiguities.

The phase retrieval is equivalent with autocorrelation retrieval. For instance, in 1D

the solution can be found by solving the corresponding integral equation:

r(τ) =

∫
x∗(t)x(t + τ)dt, (7.1)

where the autocorrelation function is obtained by inverse Fourier transform of squared

modulus. Note that for the autocorrelation function the zeros occur in reciprocal con-

jugate pairs, and we need some supplementary information to derive a unique solution.

Non-negativity is not enough, but knowledge of a single point can be helpful. The addi-

tional information can be also some samples of the signal, or imposing a specific condition

on the support of minimum and non-minimum phase solutions [11, 67].
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Other methods for solving phase-retrieval problem employ iterative algorithms applied

to a discrete approximation, but their utilization is limited by the unpredictability of their

convergence [76]. Recently, also some wavelet basis functions were employed [8]. Our

approaches in the problem of the approximation of the phase from the gain will start

from the very early results of this field.

7.2 The Bode Gain-Phase Relations

The Bode relations are known as one of the most useful techniques available in network

theory, communications, and signal processing [48]. The method is based on the fact that

the transform H(jω) = R(ω) + jI(ω) of a causal function h(t) is uniquely determined in

terms of R(ω) or I(ω). Proofs based on Cauchy’s residue theorem [10, 87] or convolution

[49] established that we have

R(ω) = R(∞) − 1

π

∫ ∞

−∞

I(y)

y − ω
dy = R(∞) − 2

π

∫ ∞

0

yI(y) − ωI(ω)

y2 − ω2
dy, (7.2)

and

I(ω) =
1

π

∫ ∞

−∞

R(y)

y − ω
dy =

2ω

π

∫ ∞

0

R(y) − R(ω)

y2 − ω2
dy. (7.3)

From the mathematical point of view, the gain-phase relations can be obtained from

the Equations (7.2) and (7.3) of Hilbert transform directly by taking logarithms [49].

However, the stable and minimum phase condition ask for supplementary conditions in

order to satisfy the right half plane analyticity requirements of the Hilbert transform.

If we assume that H(s) is not only analytic, but has no zeros for Re(s) ≥ 0, then

ln(H(jω)) = α(ω) + jβ(ω) will also be analytic in the right-hand plane, and the phase

β(ω) will be uniquely determined from the gain (in nepers) α(ω):

β(ω) =
2ω

π

∫ ∞

0

α(y) − α(ω)

y2 − ω2
dy. (7.4)

A change of variable u = ln(y/ωc) where ωc is a normalizing frequency, is usually intro-

duced. The results are [10]:

β(ωc) =
2

π

∫ ∞

−∞

α(ωce
u) − α(ωc)

eu − e−u
du =

2

π

∫ ∞

0

α(ωce
u) − α(ωce

−u)

eu − e−u
du

=
1

π

∫ ∞

−∞

(
d

du
α(ωce

u)

)
ln(coth

|u|
2

)du.

(7.5)

Equation (7.5) shows mostly that the phase characteristic is proportional to the derivative

of the gain characteristic on a logarithmic frequency scale, weighted by an even function

of frequency.
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This result is the basis of a method used for a long time in analogue electronics in

order to draw the phase characteristics as concatenation of straight lines. Bode straight-

line approximations are an extremely useful tool also in the study of system frequency

response [23]. These approximations give good insight into the frequency variation of the

amplitude and the phase of a system response without the use of computer simulation

or complex calculations. Several variants of this technique have been proposed, which

differ by the way to approximate the derivative. Three Bode straight-line approximations

to the phase of second-order, underdamped systems were subjected to quantitative error

analysis in [68], and the results of the analysis indicate a small superiority of the little-

known decade-fraction phase approximation technique. From this result it seems that

the guess of sampling points and ratio is important for an appropriate straight-line phase

approximation.

Providing that the frequency ωc is given, and after having logarithmized both x and

y-axis, we can define the next functions: the log-log gain A : R → R+, and the log-log

phase B : R → R, by

A(u) = α(ωce
u); B(u) = β(ωce

u), (7.6)

and they will be intensively used in the following. Taking into account the new functions,

Equation (7.5) becomes:

B(0) = β(ωc) =
2

π

∫ ∞

0

α(ωce
u) − α(ωce

−u)

eu − e−u
du =

2

π

∫ ∞

0

A(u) − A(−u)

eu − e−u
du. (7.7)

Perhaps it is interesting to note that if the normalizing frequency is changed, then

the log-log functions are shifted correspondingly. It follows that their derivatives are also

shifted in the same manner. Thus the identities based on linear combinations of log-log

functions and their derivatives are still valid even the normalizing frequency is modified,

if both axes are shifted correspondingly.

The evaluation of Equations (7.4) and (7.5) is in general complicated. By a change of

variable ω = − tan δ
2
, a set of equations, known as Wiener-Lee transforms can be derived

[49]. Thus the resulting attenuation function can be related to the matching phase by a

Fourier series expansion:

α = d0 + d1 cos δ + · · · + dn cos nδ + · · · ,
β = e1 sin δ + · · · + dn sin nδ + · · · ,

where the coefficients of the corresponding cosine and sine series are opposed each other

dn = −en.

The numerical assessment is still difficult for this method, it needs a nonlinear variable

change, identification of Fourier coefficients, development of a Fourier series. Furthermore,
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Figure 7.1: The sampling points for wavelet transform (1) and logarithmic sampling (2).

the computation of phase only from a certain number of gain samples might be also

problematic.

7.3 Sampling in Logarithmic Domain

Sampling in logarithmic manner was not a very often used way in the transform domain2,

the usual modality was to sample in the uniform fashion. Nevertheless, the recent spread

of the wavelet transform and time-scale analyses [56] reconsiders more frequently other

types of sampling beside the traditional uniform way.

The fundamental result, known as the sampling theorem, expresses a band-limited

function in terms of its sample values at a sequence of equidistant points. From the worth

of the weights, it is suggested that the neighbour samples contribute most to the actual

value of the signal. It follows that perhaps it is more efficient to concentrate on the

samples near the point of interest, and skip the furthest samples. This was an important

reason for developing a lot of non-uniform sampling methods [77].

As we are usually more interested in transient details, another type of sampling might

be the one which consists of a large number of samples at the beginning of signal burst,

and to dedicate less and more less samples as the time passes. Actually something like

this is done by wavelet transform, where the main characteristics are localized first by

2Recent interests for this logarithmic sampling technique were in pictorial recognition of objects em-
ploying affine invariance in the frequency domain [9].
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a shift operation, then details are recovered by scaling. However, for the wavelet trans-

form the left-side and right-side samples are equally spaced relative to the scale origin

(Figure 7.1). But if the signal has non-symmetric wave shape, and this is the most often

case in electronic circuits, perhaps it is better to sample in an asymmetric manner as the

logarithmic sampling does. Certainly, this is the case of almost real ordinary signals in

electronics and communications, where, except the step-unit changes, they exhibit (sums

of) exponential evolution.

In addition, after applying the logarithm, the sampling ratio is easy to evaluate as in

any usual uniform sampling. Clearly, the importance of shifting operation is the same for

both wavelet transform and logarithmic sampling.

Note that in the case of the Bode gain-phase relation the sampling in log domain

is natural for electronic engineers, since for a long time the charts were represented in

logarithmic coordinates. Moreover, from practical point of view, a sequence of frequencies

in geometrical progression seems easier to generate than in arithmetic progression.

7.4 The Issue Addressed

In the following we are interested to establish relations in order to approximate the phase

characteristic from the gain samples, given at equally spaced points on the logarithmic

frequency domain. For this reason we consider now the following set of sampling points:

{xj|xj = ωc∆
j, j ∈ Z}, where ∆ > 1.

The following type of formula is suggested by the symmetry of the second term from

Equation (7.5):

β(ωc) ≈
∑
n∈N

Γn

[
α(ωc∆

n) − α(ωc∆
−n)

]
. (7.8)

In this dissertation two different types of approaches are presented:

1. In Chapter 8 we show first that the phase is a series of the odd derivatives of the

neperian gain. Then by approximating the derivatives by gain differences the first

approach is obtained.

2. In Chapter 9 the phase is obtained directly from gain samples, by discretizing in a

certain way of the Equation (7.5).

Let denote the gain samples by A(n) = α(ωc∆
n) and, respectively the phase samples

by B(n) = β(ωc∆
n), where n ∈ Z. It is easy to check that this definition is consistent
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xo(n)

yo(n)

zo(n)

xi(n)

yi(n)

zi(n)

Z −1

Z

Figure 7.2: The basic cell xo(n) = xi(n + 1), yo(n) = yi(n − 1), and zo(n) = zi(n) +

Cp[xi(n) − yi(n)].

with Equation (7.7). Using these notations, the previous formula (7.8) can be written in

the following form:

B(p) =
∑
n∈N

Cn[A(p + n) − A(p − n)],

where p is given by ωc = ∆p.

Perhaps it is interesting to note that if p ∈ Z, then the last relationship leads directly

to a linear phase FIR filter, where the impulse response has an odd symmetry. For

implementation a systolic realization is suggested below, similar with those proposed in

[41].

The basic cell is shown in Figure 7.2, where xi(n), yi(n), zi(n) and xo(n), yo(n), zo(n)

are the input data, and the output data of the systolic array respectively. The minimum

cycle time of the basic cell can be taken as the time required by one real multiplication,

and two additions. The proposed array is presented in Figure 7.3 and it consists of P

basic cells. The values of their coefficients Cp are from the left to the right equal to

C1, C2, · · · , CP .

By passing the input data A(n), which is in fact the gain samples equally spaced in

the logarithmic frequency domain, once for each operation cycle into the top left-hand

corner of the array, the first output data appears at the bottom right-hand corner of the

array after a delay of P cycles. Successive output data B(n) are then obtained once for
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A(n)

0

B(n)

C1 C2 CP

Figure 7.3: The systolic implementation of the approximated phase.

each subsequent operation cycle.

However, only off-line processing can be accomplished due to the existence of the

advance operator in the basic cell. This is not a major impediment, without the knowledge

of the future gain samples, the phase cannot be approximated for a minimum-phase

transfer functions.



Chapter 8

Phase Approximation by Gain

Derivatives

The goal of this Chapter is to establish a new relationship for computing the phase of

the minimum-phase functions from the gain derivatives, as a first step to approach phase

by gain samples. As a beginning, we show that for a given frequency the phase could be

obtained from the odd derivatives of the neperian gain, evaluated for this frequency. Then

we select a finite number of terms of the main formula and we derive an approximation

of phase. We compute this approximations for first-order and second-order systems,

and we emphasize the issue of higher-oder derivatives majorants. We show that the

approximations derived can be improved by taking into account the Gibbs phenomenon

and the Feher kernel. Finally we utilize finite differences in order to substitute the higher

derivatives involved in the proposed approaches.

8.1 Main Result

In the following we shall prove the following main result1:

Theorem 2 . We have∫ ∞

0

A(u) − A(−u)

eu − e−u
du =

∞∑
n=0

(2n+2 − 1)π2n+2|B2n+2|
(2n + 2)!

A(2n+1)(0), (8.1)

under the following specified conditions: Assumptions 1,2, where Bn are Bernoulli num-

bers of order n.

1It is easy to see that it is related to the term from the right-hand side of Equation (7.7).
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Proof:

Suppose that

Assumption 1 . A has derivatives of all orders in an interval around origin.

In this case, by expanding the numerator of the integrand into a series, we get:

A(u) =
∞∑

n=0

A(n)(0)

n!
un. (8.2)

The following series development can be obtained for u > 0:

1

eu − e−u
=

1

eu(1 − e−2u)
=

∞∑
k=0

e−(2k+1)u.

It follows that we have:∫ ∞

0

A(u) − A(−u)

eu − e−u
du =

∫ ∞

0

( ∞∑
n=0

∞∑
k=0

2A(2n+1)(0)

(2n + 1)!
e−(2k+1)uu2n+1

)
du.

Furthermore, we consider that

Assumption 2. The log-log gain A(u) does not grow faster than an exponential (A(u) ≤
eΨu, Ψ ≤ 1).

After changing the order of summation and integration, in the right-hand side of previous

formula we obtain the following expression:

2
∞∑

n=0

A(2n+1)(0)
∞∑

k=0

1

(2n + 1)!

∫ ∞

0

e−(2k+1)uu2n+1du. (8.3)

The last integral is the Laplace transform of function u2n+1, and from [24] we deduce∫ ∞

0

e−(2k+1)uu2n+1 =
(2n + 1)!

(2k + 1)2n+2
.

Thus we get the relationship:∫ ∞

0

A(u) − A(−u)

eu − e−u
du = 2

∞∑
n=0

A(2n+1)(0)
∞∑

k=0

1

(2k + 1)2n+2
.

But it is known that [53]

∞∑
k=0

1

(2k + 1)2n+2
=

(22n+2 − 1)π2n+2

2(2n + 2)!
|B2n+2|. (8.4)

Thus we obtain finally the result claimed in Theorem 2.
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Remark 11 .

The first ten terms on the right hand side of Equation (8.4) are descending slowly to 1:

A2 = 1.23370055; A3 = 1.05179974; A4 = 1.01467803;

A5 = 1.00452376; A6 = 1.00144708; A7 = 1.00047155;

A8 = 1.00015518; A9 = 1.00005135; A10 = 1.00001704.

As a consequence sometimes the series from right-hand side of Equation (8.1) can also

converge slowly.

Remark 12 . We can truncate the log-log gain series (Equation 8.2), and obtain an

approximation of the phase.

This can be done only if the next order derivative is bounded over R+. The accuracy

of approximation depends on the corresponding bound and the number of terms of the

approximation (Remark 15).

8.2 A Series for Phase

We are going now forward and present the method for computing, without integral re-

lations, of the phase by the gain derivatives. By combining Equation (7.7) with Equa-

tion (8.1) we obtain:

β(ωc) =
2

π

∫ ∞

−∞

α(ωce
u) − α(ωce

−u)

eu − e−u
du =

2

π

∫ ∞

−∞

A(u) − A(−u)

eu − e−u
du

=
2

π

∞∑
n=0

(2n+2 − 1)π2n+2|B2n+2|
(2n + 2)!

A(2n+1)(0)

=
∞∑

n=0

2(2n+2 − 1)π2n+1|B2n+2|
(2n + 2)!

·
[
d(2n+1)

du2n+1
(α (ωce

u))

]
|u=0.

Thus the phase of a minimum-phase function can be computed with

β(ωc) =
∞∑

n=0

2(2n+2 − 1)π2n+1|B2n+2|
(2n + 2)!

·
[
d(2n+1)

du2n+1
(α (ωce

u))

]
|u=0. (8.5)

In this way we have shown that the phase at a given frequency is the series of the odd

derivatives of the neperian gain evaluated at this frequency.

Remark 13 . Equation (8.5) is valid for every ωc.
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This results from the fact that during the proof the normalizing frequency was chosen

arbitrarily.

Remark 14 . A change in exponent base affects the right-hand side of Equation (8.5).

Indeed, if ∆ > 1 we have the following equalities:

β(ωc) =
∞∑

n=0

2(2n+2 − 1)π2n+1|B2n+2|
(2n + 2)!

·
[
d(2n+1)

du2n+1
(α (ωce

u))

]
|u=0

=
∞∑

n=0

2(2n+2 − 1)π2n+1|B2n+2|
(2n + 2)!

·
[
d(2n+1)

du2n+1

(
α

(
ωc∆

u(ln∆)−1
))]

|u=0

=
∞∑

n=0

2(2n+2 − 1)π2n+1|B2n+2|
(2n + 2)!

·
[

d(2n+1)

d[(ln ∆)−1u]2n+1
(α (ωc∆

u))

]
|u=0

=
∞∑

n=0

2(2n+2 − 1)π2n+1(ln ∆)2n+1|B2n+2|
(2n + 2)!

·
[
d(2n+1)

du2n+1
(α (ωc∆

u))

]
|u=0.

As a consequence, let denote by αdB the gain expressed in decibels, and consider that

the frequencies are measured in decades [10]. Then the phase can be computed with the

relationship:

β(ωc) = ln 10
∞∑

n=0

2(2n+2 − 1)π2n+1(ln 10)2n|B2n+2|
(2n + 2)!

·
[
d(2n+1)

du2n+1
(α (ωc10u))

]
|u=0

= ln 10
∞∑

n=0

2(2n+2 − 1)π2n+1(ln 10)2n|B2n+2|
(2n + 2)!

·
[
d(2n+1)

du2n+1
(α (ωc10u))

]
|u=0

=
ln 10

20

∞∑
n=0

2(2n+2 − 1)π2n+1(ln 10)2n|B2n+2|
(2n + 2)!

·
[
d(2n+1)

du2n+1
(αdB (ωc10u))

]
|u=0

=
1

8.68

∞∑
n=0

2(2n+2 − 1)π2n+1(ln 10)2n|B2n+2|
(2n + 2)!

·
[
d(2n+1)

du2n+1
(αdB (ωc10u))

]
|u=0.

Remark 15 . We can use Equation (8.5) to obtain approximations of the phase.

Taking into account Remark 12, this is possible if the log-log gain A(u) has bounded

higher-order derivatives. As an example we can consider the first four terms derived from

the main formula:

B(0) ≡ π

2
A′(0) +

π3

24
A(3)(0) +

π5

240
A(5)(0) +

17π7

40320
A(7)(0). (8.6)

In this case the residual in the Equation (8.2) is given by

A(u) −
7∑

n=0

A(n)(0)

n!
un =

A(8)(ξ)

8!
un, ξ ∈ (0, u).
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An evaluation of the degree this difference affects at the end the phase computation is

done by:

2
∣∣A(8)(ξ)

∣∣ ∞∑
k=0

1

(2k + 1)8
, ξ ∈ (0, u).

The value is around double of 8-th order derivative (Remark 11). From this evaluation

it is suggested that caution must be taken when it is intended to compute the phase

with the previous formula. A reason (bounded derivative) has been already pointed out.

Another motivation is related with the Remark 11, i.e. the relatively slow decrease of

series. In view of these restrictions, a modality to approximate the phase is presented in

the following (Section 8.3.4).

8.3 Case Studies

Before applying the main result in the discrete case, first we study the level of approxi-

mations when the derivatives are computed analytically. In this way we can distinguish

between the sources of the errors in the proposed approach. Because real transfer func-

tions can be factored into real first-order and real second-order transfer functions, these

types are probably the most important systems available. Most designs are based upon

them [16]. For this motivation, we shall first discuss the proposed approach in these two

cases, and only after that we proceed with phase approximations examples.

8.3.1 First-order system

We consider as an example the system:

H(s) =
1

s + ωm

,

with magnitude given by

|H(jω)| =
1√

ω2 + ω2
m

.

The neperian gain is

α(ω) = −1

2
ln(ω2 + ω2

m),

and it becomes the log-log gain after we choose the normalised frequency ωc:

A(u) = α (ωce
u) = −1

2
ln(ω2

ce
2u + ω2

m) = −1

2
ln(ω2

c ) −
1

2
ln(e2u +

ω2
m

ω2
c

).
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If we introduce the parameter γ =
ω2

m

ω2
c

, then the first derivative of the log-log gain is given

by

A′(u) = −1

2
[ln(e2u + γ)]′ = − e2u

e2u + γ
,

or equivalently

A′(u)(e2u + γ) = −e2u.

If we apply the Leibnitz rule [7] to the last relationship in order to compute the higher-

order derivatives of the product of two functions, and if n ≥ 1, we obtain:

n∑
k=0

(
n

k

)
(e2u + γ)(k)A(n−k+1)(u) = −(e2u)(n),

or

(e2u + γ)A(n+1)(u) +
n∑

k=1

(
n

k

)
2ke2uA(n−k+1)(u) = −2ne2u,

which gives us the (n + 1)-derivative of the log-log gain:

A(n+1)(u) = −
2ne2u +

n∑
k=1

(
n

k

)
2ke2uA(n−k+1)(u)

e2u + γ
.

As we want to compute the phase function for a given frequency, we need only the values

of odd derivatives in origin. They are:

A(n+1)(0) = −
2n +

n∑
k=1

(
n

k

)
2kA(n−k+1)(0)

1 + γ
= −

2n +
n∑

k=1

(
n

k

)
2kA(n−k+1)(0)

1 +
ω2

m

ω2
c

. (8.7)

Example 24 . Higher-order derivatives majorants

Perhaps it is better to recognize that the applicability of the Theorem 2 to evaluate an

approximation of phase is reduced in those points where the higher-order derivatives of

log-log gain have large majorants. This can happen even for simple first-order systems. As

an example we consider the case of H(s) = s+1, and we compute their log-log derivatives.

The results are presented in Figure 8.1. It can be seen that if the order of derivatives

is higher than 5, the magnitude of derivative around ωc = 1 is increasing rapidly. This

suggests us to use derivatives until this order, for phase approximations of this type of

systems.



8.3 Case Studies 127

10
−2

10
0

10
2

0

0.2

0.4

0.6

0.8

1
1

10
−2

10
0

10
2

0

0.1

0.2

0.3

0.4

0.5
2

10
−2

10
0

10
2

−0.5

0

0.5
3

10
−2

10
0

10
2

−1

−0.5

0

0.5
4

10
−2

10
0

10
2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
5

10
−2

10
0

10
2

−4

−2

0

2

4

6

8

6

10
−2

10
0

10
2

−30

−20

−10

0

10

20

30
7

10
−2

10
0

10
2

−150

−100

−50

0

50

100
8

10
−2

10
0

10
2

−600

−400

−200

0

200

400

600

9

Figure 8.1: Higher-order derivatives for the first-order system presented in Example 24.

8.3.2 Second-order system

The second example considered is the second-order system:

H(s) =
1

s2 + 2ξωns + ω2
n

, (ξ ∈ R).
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The magnitude is given by

|H(jω)| =
1√

(ω2 − ω2
n)2 + 4ξ2ω2ω2

n

,

and the neperian gain equals:

α(ω) = −1

2
ln[(ω2 − ω2

n)2 + 4ξ2ω2ω2
n] = −1

2
ln[ω4 + 2(2ξ2 − 1)ω2ω2

n + ω4
n].

After choosing the normalised frequency ωc, the log-log gain becomes:

A(u) = α (ωce
u) = −1

2
ln[ω4

ce
4u + 2(2ξ2 − 1)ω2

cω
2
ne2u + ω4

n] =

= −ln ω2
c −

1

2
ln[e4u + 2(2ξ2 − 1)

ω2
n

ω2
c

e2u +
ω4

n

ω4
c

].

If we introduce the parameters δ = 2(2ξ2 − 1)
ω2

n

ω2
c

and σ =
ω4

n

ω4
c

, then the first derivative of

the log-log gain is given by

A′(u) = [ln(e4u + δe2u + σ)]′ = − 4e4u + 2δe2u

e4u + δe2u + σ
,

or equivalently

A′(u)(e4u + δe2u + σ) = −(4e4u + 2δe2u).

If we apply again the Leibnitz rule to last relationship by n times (n ≥ 1), then we get

the following

n∑
k=0

(
n

k

)
(e4u + δe2u + σ)(k)A(n−k+1)(u) = −(4e4u + 2δe2u)(n),

or

(e4u + δe2u + σ)A(n+1)(u) +
n∑

k=1

(
n

k

)
(4ke4u + δ2ke2u)A(n−k+1)(u) = −(4n+1e4u + 2n+1δe2u),

which gives us the (n + 1)-derivative of the log-log gain:

A(n+1)(u) = −
4ne4u + 2n+1δe2u +

n∑
k=1

(
n

k

)
(4ke4u + δ2ke2u)A(n−k+1)(u)

e4u + δe2u + σ
.
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In order to compute the phase function for a given frequency, we need only the values of

odd derivatives in origin. They are:

A(n+1)(0) = −
4n+1 + 2n+1δ +

n∑
k=1

(
n

k

)
(4k + δ2k)A(n−k+1)(u)

1 + δ + σ

= −
4n+1 + 2n+22(2ξ2 − 1)

ω2
n

ω2
c

+
n∑

k=1

(
n

k

)
[4k + 2k+1(2ξ2 − 1)

ω2
n

ω2
c

]A(n−k+1)(u)

1 + 2(2ξ2 − 1)
ω2

n

ω2
c

+
ω4

n

ω4
c

.

(8.8)

8.3.3 An example

We consider as an example the system:

H(s) =
s + ωm

s + ωn

,

with the gain given by:

α(ω) =
1

2
ln(ω2 + ω2

m) − 1

2
ln(ω2 + ω2

n).

After introducing the normalised frequency ωc, the log-log gain is:

A(u) = α(ωce
u) =

1

2
ln(ω2

ce
2u + ω2

m) − 1

2
ln(ω2

ce
2u + ω2

n).

After applying the achievements from Section 8.3.1, the first, the second and the third

derivative of the function A(u) for u = 0 are given by:

A′(0) =
1

1 +

(
ωm

ωc

)2 − 1

1 +

(
ωn

ωc

)2 ;

A′′(0) =

2 − 2
1

1 +

(
ωm

ωc

)2

1 +

(
ωm

ωc

)2 −

2 − 2
1

1 +

(
ωn

ωc

)2

1 +

(
ωn

ωc

)2 =

2

(
ωm

ωc

)2

[
1 +

(
ωm

ωc

)2
]2 −

2

(
ωn

ωc

)2

[
1 +

(
ωn

ωc

)2
]2 ;
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A(3)(0) =

22 − 22 ·
2

(
ωm

ωc

)2


1 +

(
ωm

ωc

)2



2 − 22 · 1

1 +

(
ωm

ωc

)2

1 +
ω2

m

ω2
c

−

22 − 22 ·
2

(
ωm

ωc

)2


1 +

(
ωm

ωc

)2



2 − 22 · 1

1 +

(
ωm

ωc

)2

1 +
ω2

m

ω2
c

=

=

4

(
ωm

ωc

)2
[
1 −

(
ωm

ωc

)2
]

[
1 +

(
ωm

ωc

)2
]3 −

4

(
ωn

ωc

)2
[
1 −

(
ωn

ωc

)2
]

[
1 +

(
ωn

ωc

)2
]3 .

Now we can compute the first and the second phase approximations derived from the

main formula. They are:

β1(ωc) = B1(u) ≈ π

2


 1

1 +

(
ωm

ωc

)2 − 1

1 +

(
ωn

ωc

)2


 ,

and

β2(ωc) = B2(u) ≈ π

2


 1

1 +

(
ωm

ωc

)2 − 1

1 +

(
ωn

ωc

)2


 +

π3

24




4

(
ωm

ωc

)2
[
1 −

(
ωm

ωc

)2
]


1 +

(
ωm

ωc

)2



3 −
4

(
ωn

ωc

)2
[
1 −

(
ωn

ωc

)2
]


1 +

(
ωn

ωc

)2



3




,

respectively.

A plot of B(u), B1(u), B2(u) for ωm = 5; ωn = 1 is shown in Figure 8.2. It seems

that the first approximation is better than the second one. Indeed we have the following
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Figure 8.2: Phase (i) versus first (ii) and second (iii) approximations with main formula.

inequalities which describe the behaviour in L1, L2, and L∞ spaces.

max
|u|≤6

(|B1(u) − B(u)|) < max
|u|≤6

(|B2(u) − B(u)|);

∫ 6

−6

|B1(u) − B(u)|du <

∫ 6

−6

|B2(u) − B(u)|du;

∫ 6

−6

|B1(u) − B(u)|2du <

∫ 6

−6

|B2(u) − B(u)|2du.

It is clear now that the magnitude of the third derivative of log-log gain affects the

quality of phase approximation. As we shall see in the following, this is not the only one

responsible, actually its influence is quite low.
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Figure 8.3: Phase (i) versus first (ii) and second (iii) approximations with Feher kernel.

8.3.4 The Feher kernel

If we reconsider the relations (8.2) to (8.4), it can be easily noticed that the above approx-

imations are obtained after the correspondent Taylor series is truncated. Then the error

of truncation is propagated through the frequency domain and the Gibbs phenomenon

appears [6]. In order to avoid it, we shall use the Feher kernel, i.e., we shall pass the deriva-

tives weights through a triangular window. It gives the following second approximation

β2F (ωc):

β2F (ωc) = B2F (u) ≈ π

2


 1

1 +

(
ωm

ωc

)2 − 1

1 +

(
ωn

ωc

)2


 +
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+
1

2
· π3

24




4

(
ωm

ωc

)2
[
1 −

(
ωm

ωc

)2
]

[
1 +

(
ωm

ωc

)2
]3 −

4

(
ωn

ωc

)2
[
1 −

(
ωn

ωc

)2
]

[
1 +

(
ωn

ωc

)2
]3




.

A plot of B(u), B1(u), B2F (u) is shown in Figure 8.3. It is clear now that B2F (u) is a

better approximation of B(u) than B1(u). In fact we have∫ 6

−6

|B2F (u) − B(u)|du <

∫ 6

−6

|B2(u) − B(u)|du;

∫ 6

−6

|B2F (u) − B(u)|2du <

∫ 6

−6

|B2(u) − B(u)|2du;

max
|u|≤6

(|B2F (u) − B(u)|) < max
|u|≤6

(|B1(u) − B(u)|).

Finally, we can state that if we need an appropriate approximation in four terms through

a triangular window, then Equation (8.6) must be rewritten as

B4F (u) ≈ π

2
A′(u) +

3

4
· π3

24
A′′′(u) +

1

2
· π5

240
A(v)(u) +

1

4
· 17π7

40320
A(vii)(u).

However some other smooth windows with exponential decrease could provide better

results than the triangular one.

8.3.5 Phase approximation by gain differences

The practical problem we address (Section 7.4) gives us only the gain’s samples and thus

it is necessary to approximate the higher derivatives with differences. There are several

possibilities to do this. Following [54] we use the Stirling numbers of the first kind2, and

in this situation we have:

dk

dxk
y(a0) =

k!

hk

(
n∑

j=k

S
(k)
j

j!
∆

j
f0

)
,

where ∆
i
are the finite difference of order i and n is the order of approximation.

Taking into account previous results, we develop only the first three approaches derived

from the Feher kernel formula. An one term approximation is given by:

B1(0) =
π

2
A′(0) ≈ π

2h
∆

1
f0,

2The Stirling numbers of the first kind are defined by S
(k)
n+1 = S

(k−1)
n − nS

(k)
n , S

(k)
k = 1, and S

(0)
j = 0

for j = 0.
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Figure 8.4: First (i), second (ii) and third (iii) approximation of phase for ∆ = 1.05.

and this is the well-used old approximation in Bode charts. If we add the third finite

differences we get the second approach:

B2(0) =
π

2
A′(0) +

1

2
· π3

24
A′′′(0) ≈ π

2h
(∆

1
f0 − 1

2
∆

2
f0 +

1

3
∆

3
f0) +

π3

48h3
∆

3
f0

=
π

2h
∆

1
f0 − π

4h
∆

2
f0 + (

π

6h
+

π3

48h3
)∆

3
f0;

Finally we obtain the third approximation:

B3(0) =
π

2
A′(0) +

2

3
· π3

24
A′′′(0) +

1

3
· π5

240
A(v)(0)

≈ π

2h
(∆

1
f0 − 1

2
∆

2
f0 +

1

3
∆

3
f0 − 1

4
∆

4
f0 +

1

5
∆

5
f0)

+
π3

36h3
(∆

3
f0 − 3

2
∆

4
f0 +

7

4
∆

5
f0) +

π5

720h5
∆

5
f0
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Figure 8.5: First (i), second (ii) and third (iii) approximation of phase for ∆ = 1.25.

≈ π

2h
∆

1
f0 − π

4h
∆

2
f0 + (

π

6h
+

π3

36h3
)∆

3
f0 − (

π

8h
+

π3

24h3
)∆

4
f0

+(
π

10h
+

7π3

144h3
+

π5

720h5
)∆

5
f0.

In order to illustrate the performances of the proposed phase approximations by gain

differences, Figures 8.4 and 8.5 present the behaviour of B1, B2 and B3 approaches for

∆ = 1.05, and respectively ∆ = 1.25. We consider once again the system discussed in

Sections 8.3.3 and 8.3.4. Some remarks can be given:

1. The behaviour of these approaches follows the performed analysis outcomes in the

previous section.

Indeed, the third approximations behaves the worst, and this can be explained by

the fact that the sixth derivative of log-log gain has a large value near the natural
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frequencies of the system.

2. The choice of the abscissas can affect the precision of results.

It is easy to see that for ∆ = 1.05 we obtain better results than when we have

∆ = 1.25.

3. A non-symmetry on the waveforms of approximations can be distinguished.

This is a reminisced of the skew in derivatives values, an additional result of the

asymmetry of finite differences.



Chapter 9

Phase Approximation by Gain

Samples

In this Chapter we establish new relationships for approximating the phase values from

the gain samples, in nepers, equally spaced in the logarithmic frequency domain. First a

general approximation formula is proved, then two quadrature formulae are derived using

Newton-Cotes and Simpson rules. Finally some numerical examples are shown.

9.1 The Main Formula

In the following we shall prove the following approximation result:

Theorem 3 .

β(ω) ≈ 1

π
[α(ω∆) − α(ω/∆)]+

2 ln ∆

π

∫ k

1

α(ω∆z) − α(ω∆−z)

∆z − ∆−z
dz, (9.1)

where ∆ > 1 and k ∈ N, k ≥ 1 satisfy certain conditions (Assumptions 3,4,7).

First we recall three well-known results:

1. A logarithm inequality:

Proposition 1 . For any x > 0, we have ln(1 + x) ≤ x.

If we define the function f : R+ → R, by f(x) = ln(1 + x) − x, then the inequality

results from f(0) = 0 and

f ′(x) =
x

1 + x
≤ 0,

for any x > 0.

137
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2. Taylor Theorem [55]:

Theorem 4 . Let f be defined on [a,b], let n be a positive integer, suppose f (n−1)

is continuous on [a,b], and suppose f (n) exists at every point of (a,b). If R is defined

by:

f(b) = f(a) +
n−1∑
k=1

(b − a)k

k!
f (k)(a) + R,

there is a point ξ ∈ (a, b) such that

R =
(b − a)n

n!
f (n)(ξ).

.

3. The Mean-Value Theorem [50]:

Theorem 5 . If F is continuous and p is positive, then∫ b

a

F (x)p(x)dx = F (ξ)

∫ b

a

p(x)dx, a ≤ ξ ≤ b.

If F is also positive, it follows that∫ b

a

F (x)p(x)dx ≤ sup
ξ∈[a,b]

F (ξ)

∫ b

a

p(x)dx.

Now we shall give the proof of Theorem 3.

Proof:

We shall also use the decomposition:

β(ω) =
2ω

π

∫ ∞

0

α(y) − α(ω)

y2 − ω2
dy =

2ω

π

∫ ω/∆k

0

α(y) − α(ω)

y2 − ω2
dy

+
2ω

π

∫ ω/∆

ω/∆k

α(y) − α(ω)

y2 − ω2
dy +

2ω

π

∫ ω∆

ω/∆

α(y) − α(ω)

y2 − ω2
dy

+
2ω

π

∫ ω∆k

ω∆

α(y) − α(ω)

y2 − ω2
dy +

2ω

π

∫ ∞

ω∆k

α(y) − α(ω)

y2 − ω2
dy.

(9.2)

We first consider the last integral:∫ ∞

ω∆k

α(y) − α(ω)

y2 − ω2
dy.

We suppose that:
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Assumption 3 . The variation of the gain is bounded over any interval of the type

Ij = [ω∆j, ω∆j+1] of constant length in the logarithmic scale.

That is, for any x, y ∈ Ij and for every j > 1, there exists M1 > 0 such that |α(x) − α(y)| < M1.

We suppose also that:

Assumption 4 . M1 is independent of j.

This condition is usually respected, since the gain plots are drawn as asymptotes in Bode

charts. We further remark that if ∆ > 1, k > 1 and j ≥ k, then∣∣∣∣∣
∫
Ij

α(y) − α(ω)

y2 − ω2
dy

∣∣∣∣∣ ≤ (j + 1)M1∆
1−j

ω
. (9.3)

This follows from∣∣∣∣∫Ij

α(y) − α(ω)

y2 − ω2
dy

∣∣∣∣ < supy∈Ij

|α(y) − α(ω)|
|y − ω|

∫
Ij

1

y + ω
dy

≤ (j + 1)
supx,y∈Ij

|α(y) − α(x)|
infy∈Ij

|y − ω|
∫
Ij

1

y + ω
dy,

with

|y − ω| ≥ ω(∆j − 1), ∀y ∈ [∆j, ∆j+1],

and the fact that

1

∆j − 1
ln(y + ω)

ω∆j+1

ω∆j =
1

∆j − 1
ln

(
1 + ∆j+1

1 + ∆j

)
=

ln
(
1 + ∆j+1 − ∆j

1 + ∆j

)
∆j − 1

≤ ∆1−j,

where the inequality follows from ln(1+x) ≤ x for any x > 0 (Proposition 1). From (9.3)

we obtain (Appendix 9.4)

∣∣∣∣
∫ ∞

ω∆k

α(y) − α(ω)

y2 − ω2
dy

∣∣∣∣ ≤ M1

ω

∞∑
j=k

(j + 1)∆1−j =
M1∆

−k+1

ω(1 − ∆−1)2
[k(1 − ∆−1 + 1)].

The following assumption is that:

Assumption 5 . The variation of the gain is bounded over any interval of the type

I−j = [ω∆−(j+1), ω∆−j] of constant length in the logarithmic scale.

That is, for any x, y ∈ Ij and for every j > 1, there exists M2 > 0 such that |α(x) − α(y)| < M2.

We suppose also that:
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Assumption 6 . M2 is independent of j.

In this case, a similar bound can be established for the first integral of (9.2).

We shall evaluate now the sum of the integrals

∫ ω/∆

ω/∆k

α(y) − α(ω)

y2 − ω2
dy +

∫ ω∆k

ω∆

α(y) − α(ω)

y2 − ω2
dy.

Using the substitution y = ω∆z, it can clearly be written as

ln ∆

ω

(∫ −1

−k

α(ω∆z) − α(ω)

∆z − ∆−z
dz +

∫ k

1

α(ω∆z) − α(ω)

∆z − ∆−z
dz

)
.

Thus the sum of the two integrals is given by

ln ∆

ω

(∫ k

1

α(ω∆z) − α(ω∆−z)

∆z − ∆−z
dz

)
.

We next evaluate the integral from the middle of (9.2) and we have∫ ω∆

ω/∆

α(y) − α(ω)

y2 − ω2
dy =

1

2ω

∫ ω∆

ω/∆

(
α(y) − α(ω)

y − ω
− α′(y)

)
dy

− 1

2ω

∫ ω∆

ω/∆

α(y) − α(ω)

y + ω
dy +

1

2ω

∫ ω∆

ω/∆

α′(y)dy.

Assume that the following assumption holds.

Assumption 7. The gain second derivative is continuous in [ω/δ, ωδ], there exists M3 >

0 and M4 > 0 such that α′′(x) < M3, α′(x) < M4, ∀x ∈ [ω/δ, ωδ].

In this case using the Taylor formula (Theorem 4) and the Mean-Value Theorem (Theo-

rem 5) we have:∫ ω∆

ω/∆

(
α(y) − α(ω)

y − ω
− α′(y)

)
dy =

∫ ω∆

ω/∆

(
α(y) − α(ω) − α′(y)(y − ω)

y − ω

)
dy

≤ M3

2

∫ ω∆

ω/∆

|ω − y|dy =
M3ω

2(∆ − 1)2(1 + ∆−2)

4∆2
,

(9.4)

and∣∣∣∣
∫ ω∆

ω/∆

α(y) − α(ω)

y + ω

∣∣∣∣ dy =

∣∣∣∣
∫ ω∆

ω/∆

α(y) − α(ω)

y − ω
· y − ω

y + ω

∣∣∣∣ dy ≤ M4

∣∣∣∣
∫ ω∆

ω/∆

y − ω

y + ω
dy

∣∣∣∣
= M4ω

[
(∆ − 1)2

∆
+ ln

4∆

(1 + ∆)2

]
.

(9.5)
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Hence for suitable ∆ we obtain:∫ ω∆

ω/∆

α(y) − α(ω)

y2 − ω2
dy ≈ 1

2ω
[α(ω∆) − α(ω/∆)].

Now, for any Mi, i = 1, 4, given any ε > 0, there exists:

1. A frequency ratio ∆ = ∆(ω, ε) such that

M3ω
2(∆ − 1)2(1 + ∆−2)

4∆2
<

ε

4
, M4ω

[
(∆ − 1)2

∆
+ ln

4∆

(1 + ∆)2

]
<

ε

4
;

2. An integer k = k(∆, ω, ε) which verifies

M1∆
−k+1

ω(1 − ∆−1)2
[k(1 − ∆−1 + 1)] <

ε

4
,

M2∆
−k+1

ω(1 − ∆−1)2
[k(1 − ∆−1 + 1)] <

ε

4
.

From these conditions we conclude that∣∣∣∣β(ω) −
{

1

π
[α(ω∆) − α(ω/∆)] +

2 ln ∆

π

∫ k

1

α(ω∆z) − α(ω∆−z)

∆z − ∆−z
dz

}∣∣∣∣ < ε,

which is the main formula (9.1).

9.2 Quadrature Approximations

For numerical computations support, it is of interest to develop a quadrature formula

where the phase function will be determined by the gain samples. Such a formula was

derived in [63, 64] and viewed in Section 8.3.4, where it was shown that the phase is the

series of the odd derivatives of the neperian gain. Unfortunately the convergence of the

series is slower. Also the numerical evaluation of the higher derivatives are likely to have

sizeable errors [54].

The condition of equally spaced abscissas leads to one of the Newton-Cotes or Simp-

son’s quadrature formulae [54]. At the beginning we selected the trapezoidal formula and

we obtained the first approximation βT (ω) of the phase β(ω):

βT (ω) =
1

π
[α(ω∆) − α(ω/∆)] +

ln ∆

π
[
α(ω∆) − α(ω/∆)

∆ − ∆−1
+

+2
k−1∑
p=2

α(ω∆p) − α(ω∆−p)

∆p − ∆−p
+

α(ω∆k) − α(ω∆−k)

∆k − ∆−k
],

(9.6)
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or
βT (ω) =

∑
p∈Z

Tpα(ω∆p),

Tp = T−p =




1

π

(
1 +

ln ∆

∆ − 1/∆

)
, p = 1;

2 ln ∆

π (∆p − ∆−p)
, p = 2, 3, . . . , k − 1;

ln ∆

π (∆p − ∆−p)
, p = k;

0, otherwise.

The parabolic rule, for k = 2m + 1 gives the second proposed quadrature approach

βS(ω), and we have:

βS(ω) =
1

π
[α(ω∆) − α(ω/∆)] +

2 ln ∆

3π
[
α(ω∆) − α(ω∆−1)

∆ − ∆−1
+

+4
α(ω∆2) − α(ω∆−2)

∆2 − ∆−2
+ 2

α(ω∆3) − α(ω∆−3)

∆3 − ∆−3
+

+4
α(ω∆4) − α(ω∆−4)

∆4 − ∆−4
+ . . . + 4

α(ω∆k−1) − α(ω∆1−k)

∆k−1 − ∆1−k

+
α(ω∆k) − α(ω∆−k)

∆k − ∆−k
],

(9.7)

or
βS(ω) =

∑
p∈Z

Spα(ω∆p),

Sp = S−p =




1

π

(
1 +

2/3 ln ∆

∆ − 1/∆

)
, p = 1;

8 ln ∆

3π (∆p − ∆−p)
, p = ±2,±4, . . . ,±2m;

4 ln ∆

3π (∆p − ∆−p)
, p = ±3, . . . ,±(2m − 1);

2 ln ∆

3π (∆p − ∆−p)
, p = ±(2m + 1);

0, otherwise.

In these two cases, in addition to the error of the main result (9.1), we have the error

of approximation of quadrature formula, which is given by ET = −((k − 1)α′′(η))/12 for

the Newton-Cotes rule, and respectively ES = −((k− 1)αiv(ξ))/180 for Simpson formula,

where η, ξ ∈ (1, k) [54].

Some remarks are necessary:

1. First, it seems from the previous estimations that the two quadrature formulae

proposed are comparable in performance according to the number of samples. How-

ever, the multiplying constants and the level of derivatives differ by much. It will
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be shown in the next section that there is not a prevalent choice; sometimes the

parabolic rule outperforms the trapezoidal formula, sometimes not.

2. Secondly, the formulae developed above are both easy to implement. Also, their

coefficients are anti-symmetric which leads straightaway to the linear phase FIR

filters structures (Section 7.4).

3. Finally, we remark that we did not assume special conditions for the frequency ω,

and consequently the phase can be approximated for every frequency within the

conditions mentioned in Section 2.

9.3 Numerical Examples

To illustrate the performance of the approaches described here, we used the transfer

functions of the gain-phase plots presented in Bode’s book [10]:

H(s) =
1|
|s +

1|
|sK2

+
1|

|s/H +
1|
|1

Their phase is almost constant for ω < 0.01 and ω > 10, consequently the interval of

interest in our experiments was ω ∈ [0.01, 10].

9.3.1 Phase versus approximated phase

The quality of the approximated phase for both Newton-Cotes and Simpson approaches is

presented first. In Figure 9.1 for the Newton-Cotes approach and respectively in Figure 9.2

for the Simpson approach, the three different phase approximations are plotted together

with the actual phase for the case of ∆ =
√

2, k = 5, 9, 17 and K = 1/2, H = 1/2. Note

that the phase increases from −π/4 to π/3 and then descends almost to −π/2 during four

consecutive gain samples, which makes it difficult to approximate. We can conclude also

that there are no major differences between the results of the different proposed methods.

9.3.2 Sampling parameters influence

In the following we are interesting in the effect of distance between the gain samples and of

the number of samples. For comparison we used the well known three norms L1, L2, L∞,

where for simulations purposes the integral was replaced by numerical integration with

a trapezoidal rule in the case of L1, L2, and with a min-max criterion over the available

results for L∞. Nine frequency ratio step-sizes were selected: ∆ = 2m(q), where m(q) =
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Figure 9.1: The phase of H(s) = 1|
|s + 1|

|s/4
+ 1|

|2s
+ 1|

|1 (i), and the approximated phase by

Newton-Cotes approach, for k = 5 (ii), k = 9 (iii) and k = 17 (iv).

22−q, and q = 1, 2, . . . , 9. The number of samples was chosen to increase exponential

k = 2p + 1, p = 2, 3, . . . 8. In this way we can compare the two approaches, as in the

case of the Simpson approach k is odd. The number of samples, the frequency ratio step-

sizes, and their corresponding performances for trapezoidal and parabolic approaches,

are shown in Tables 9.1, 9.2, 9.3, and respectively Tables 9.4, 9.5, 9.6, for the transfer

functions parameters equal to K = 2, H = 1/2 and L1, L2, L∞ norms.

Similar results were also obtained for the other transfer functions, at all various pa-

rameters K and H given in Bode’s book, i.e., K = 1/2, 1/
√

2, 1,
√

2, 2, and H = 1/2,

1/
√

2, 1,
√

2, 2. The behavior of all simulations is the same:

1. For some values of ∆ > 1, one of the Simpson or the Newton-Cotes approaches
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Figure 9.2: The phase of H(s) = 1|
|s + 1|

|s/4
+ 1|

|2s
+ 1|

|1 (i), and the approximated phase by

Simpson approach, for k = 5 (ii), k = 9 (iii) and k = 17 (iv).

outperforms the other in L1, L2, or in L∞, but there is not a universal alternative.

2. As ∆ → 1, both approaches behave quite similarly.

3. In both cases, if the number of samples increases, all types of the error decreases.

After they attain a certain level, they become stationary.

This can be explained by the fact that if the number of samples passes a given value,

the error of quadrature formulas (9.6) and (9.7) is much greater than the corresponding

remaining error in (9.1).

If we increase more and more the number of the samples, the approaches could blow-

up. This fact can be also justified. Once since k increases, we have to compute the phase
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q k=5 9 17 33 65 129 257

1 0.365 0.368 0.368 0.368 0.368 0.368 0.368

2 0.165 0.103 0.106 0.106 0.106 0.106 0.106

3 0.340 0.145 0.046 0.037 0.037 0.037 0.037

4 0.572 0.368 0.136 0.018 0.006 0.006 0.006

5 0.746 0.603 0.389 0.145 0.016 0.001 0.001

6 0.858 0.767 0.619 0.401 0.149 0.016 0.001

7 0.923 0.870 0.778 0.628 0.407 0.152 0.016

8 0.957 0.929 0.877 0.783 0.632 0.409 0.153

9 0.975 0.961 0.933 0.879 0.786 0.634 0.411

Table 9.1: Newton-Cotes Approach L1

q k=5 9 17 33 65 129 257

1 0.4743 0.477 0.477 0.477 0.477 0.477 0.477

2 0.228 0.222 0.224 0.224 0.224 0.224 0.224

3 0.412 0.172 0.111 0.110 0.110 0.110 0.110

4 0.714 0.450 0.156 0.025 0.021 0.021 0.021

5 0.926 0.752 0.478 0.166 0.016 0.005 0.005

6 1.050 0.949 0.773 0.492 0.172 0.016 0.001

7 1.119 1.064 0.962 0.783 0.499 0.175 0.017

8 1.155 1.126 1.070 0.968 0.789 0.503 0.176

9 1.173 1.159 1.129 1.073 0.971 0.791 0.505

Table 9.2: Newton-Cotes Approach L2

for larger frequencies; if ω À 1, then it is required for ∆ to tend to one more rapidly,

otherwise the error of (9.4) becomes very important. If we keep ∆ constant, for some k

this will give increasing errors.

We can conclude that the two approaches we develop in this Section can find an

approximation of the phase assuming that the unknown minimum-phase system has no

finite zeros on the imaginary axis. This could be a satisfactory result when we have only

finite gain samples available and no further information.
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q k=5 9 17 33 65 129 257

1 0.921 0.926 0.926 0.926 0.926 0.926 0.926

2 0.603 0.672 0.680 0.680 0.680 0.680 0.680

3 0.619 0.392 0.390 0.401 0.401 0.401 0.401

4 1.041 0.692 0.261 0.115 0.102 0.102 0.102

5 1.298 1.090 0.730 0.279 0.042 0.032 0.032

6 1.433 1.325 1.115 0.751 0.289 0.024 0.005

7 1.502 1.447 1.338 1.128 0.761 0.293 0.024

8 1.536 1.509 1.453 1.345 1.134 0.766 0.296

9 1.554 1.540 1.512 1.458 1.349 1.138 0.769

Table 9.3: Newton-Cotes Approach L∞

q k=5 9 17 33 65 129 257

1 0.330 0.333 0.333 0.333 0.333 0.333 0.333

2 0.170 0.113 0.114 0.114 0.114 0.114 0.114

3 0.343 0.148 0.150 0.050 0.042 0.042 0.042

4 0.572 0.369 0.137 0.020 0.009 0.009 0.009

5 0.746 0.603 0.390 0.145 0.016 0.002 0.002

6 0.859 0.767 0.620 0.401 0.150 0.016 0.001

7 0.923 0.870 0.778 0.628 0.407 0.152 0.016

8 0.957 0.929 0.877 0.783 0.632 0.409 0.153

9 0.975 0.961 0.933 0.880 0.786 0.634 0.411

Table 9.4: Simpson Approach L1

9.4 Appendix

If ∆ > 1 and k > 0, then we have

∞∑
j=k

(j + 1)∆1−j =
∆−k+1

(1 − ∆−1)2

[
k(1 − ∆−1) + 1

]
.

Indeed,
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q k=5 9 17 33 65 129 257

1 0.454 0.456 0.456 0.456 0.456 0.456 0.456

2 0.235 0.229 0.231 0.231 0.231 0.231 0.231

3 0.413 0.178 0.121 0.120 0.120 0.120 0.120

4 0.713 0.450 0.157 0.030 0.026 0.026 0.026

5 0.926 0.752 0.478 0.166 0.017 0.006 0.006

6 1.050 0.950 0.772 0.492 0.172 0.016 0.001

7 1.119 1.063 0.962 0.783 0.499 0.175 0.017

8 1.155 1.126 1.070 0.968 0.789 0.503 0.177

9 1.173 1.158 1.129 1.074 0.971 0.791 0.505

Table 9.5: Simpson Approach L2

q k=5 9 17 33 65 129 257

1 0.930 0.927 0.927 0.927 0.927 0.927 0.927

2 0.625 0.692 0.700 0.700 0.700 0.700 0.700

3 0.618 0.431 0.417 0.428 0.428 0.428 0.428

4 1.041 0.692 0.261 0.123 0.113 0.113 0.113

5 1.298 1.090 0.730 0.279 0.049 0.041 0.041

6 1.433 1.325 1.115 0.751 0.289 0.024 0.007

7 1.502 1.447 1.339 1.128 0.761 0.293 0.025

8 1.537 1.509 1.454 1.345 1.134 0.766 0.296

9 1.554 1.540 1.512 1.457 1.348 1.138 0.768

Table 9.6: Simpson Approach L∞

∞∑
j=k

(j + 1)∆1−j = ∆2
[
(k + 1)∆−(k+1) + (k + 2)∆−(k+2) + (k + 3)∆−(k+3) + (k + 4)∆−(k+4) + · · ·]

= ∆2[k∆−(k+1) + k∆−(k+2) + k∆−(k+3) + k∆−(k+4) + · · ·

+∆−(k+1) + 2∆−(k+2) + 3∆−(k+3) + 4∆−(k+4) + · · ·]

= ∆2

[
k∆−(k+1)

1 − ∆−1
+

∆−(k+1)

1 − ∆−1
+

∆−(k+2)

1 − ∆−1
+

∆−(k+3)

1 − ∆−1
+ · · ·

]
=

∆−k+1

(1 − ∆−1)2
[k(1 − ∆−1) + 1] .
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Conclusions

This thesis has introduced several different approaches to cost function adaptation for

data echo cancellation and phase approximation by logarithmic gain, offering a broad

picture of their performances and benefits. The contributions of the dissertation have

both theoretical and practical nature.

The goal of this thesis has been twofold. On the hand, we have aimed at creating new

tools1 for adaptive filtering applications in data communications. On the other hand,

the aim has been to recall and further develop the old fashioned and challenging field of

phase approximation by gain, which in our opinion is still attractive for several types of

applications in communications and industry.

In the newly introduced concept of cost function adaptation, we have derived two main

classes of approaches: nonrecursive and recursive algorithms. Nonrecursive adaptation of

cost function can be distinguished by the fact that the error exponent is updated every

iteration using only direct relationships between an approximation of the error and the

power of the cost function. Alternatively, in recursive cost function adaptation, we do not

need anymore to estimate the actual error of the system, the updated error exponent is

computed recursively.

As in other cases of signal processing, the nonrecursive and recursive families have

common and different features. We have found that they behaves similarly in the sense

that the best performances from speed of convergence and steady-state point of view

are closed. Also the computation requirements do not differ dramatically from one to

another. However, the analytical analysis and parameter selection seems for us more

1As Prof. Simon Haykin states in [35]: ”There is no unique solution to adaptive filtering problem.
Rather, we have a ”kit of tools” represented by a variety of recursive algorithms, each of which offers
desirable features of its own”.
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straightforward and easier to design and to foresee for the nonrecursive case. On the

other hand the necessary memory for a given performance remain a potential important

benefit of recursive techniques.

The convergence and steady-state analysis carried out suggests that an important

contribution to the stability of cost function adaptation algorithms is given by the length

of the period when the higher-order algorithms act. Perhaps a more detailed analysis,

similar with [78] can reveal more insights of these aspects.

We are optimistic that cost function adaptation concept (or variable error exponent

technique) can be applied in more situations and applications. Actually we feel that

whenever there is a different behaviour for different powers of certain error cost functions,

a similar strategy can extract their benefits in a new and efficient tool.

In the second part of the work we have been concentrated in obtaining new analytical

and numerical formulae for phase. The novelty of these approaches is that we took into

account as inputs the gain samples, equally distanced in logarithmic domain. We did

not discuss extensively the logarithmic sampling, but we are expecting that this sampling

method can be a more fruitful domain that it has been considered until now.

Phase obtained by a series of gain derivatives provided us a very interesting analytical

avenue toward phase approximation. In certain situations we have improved previous

results, but unfortunately after a rank the resulting numerical formulae are sensitive to

the higher derivatives or higher-order differences. A future direction of study will be to

reduce their effect, and some nonlinear a priori filtering techniques like those described in

[6, 75] might be helpful.

Certainly the phase approximation by gain samples as it is described in Chapter 9 is

a better method to approximate the phase. First of all, the bounds of the approximation

are clear. For a given level of accuracy we can find the sampling period and after that we

can search the number of terms for the desired approximation. With this formula we can

get good approximations, even when the frequencies are not so closed each other.

As a final conclusion we can state that this thesis succeeded to get ready several

solutions to relative difficult problems, and it can provide also enough possible topics for

future research.
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