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Abstract

Increasing demand for robots with broader applications has created many challenges for
the commercialization of recent achievements in the fields of robotics and perception. This
research focuses on formulating a solution for these challenges and to integrate vision-based
information in the real-time control loop of nonholonomic Mobile Manipulators (MMs)
to fulfil requirements for modularity and reusability of control subsystems. The proposed
solution answers two research questions: how can visual camera feedback be improved
during motion and how can dissimilar subsystems of mobile platforms and manipulators
be coordinated?

Seven publications have been developed to address these issues from various perspec-
tives. It is necessary to carefully address changes in camera outputs, discontinuities,
variable latencies, and quantization errors and uncertainties. In particular, there are
challenging issues about output of numerical iterative methods used for classic controllers
with assumptions of well-behaved and continuous setpoints and feedbacks. Due to the
multidisciplinary nature of this problem, the primary objective is to ensure that benefits
are realized by lessens learned from the everyday motions of humans as a smart agent.
Thus, the camera should act as the eyes, the mobile platform (i.e., the macro robot) as
the body trunk, and the manipulator (i.e., the micro robot) as the arm.

The thesis analyzes two main research questions considering practical issues caused by the
position feedback of several object detection methods. It is shown that a complementary
M-estimator and accurate synchronization of signals can significantly smoothen a visual
feedback for the control purposes. Moreover, another focus of this research is to formulate
coordination of macro robot and micro robot based on the performance of the visual
feedback and vehicle capabilities.

The solutions addressed in this thesis suggest the use of online evaluations of sensor
feedback to determine its quality. This evaluation plays a key role in both macro–micro
coordination and integration of visual feedback into robots’ motion controllers.
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1 Introduction

Mobile Manipulators (MMs) have multidisciplinary applications and are applied to many
aspects of robotics that share the challenges of high-dimensionality, uncertainty, and task
variability [10]. Since the 1980s, robotic arms have provided comparable performance to
human arms and hands and have been substituted for human labor to perform repetitive
tasks, especially in automotive industries. As manipulator technology has evolved,
robots have begun to appear outside the limited environments of Computer-Integrated
Manufacturing (CIM) cells and production lines. By 2022, the service robotics market is
expected reach a volume of $23 billion per year at a compound annual growth rate of
15% 1.

Common mechanisms for service robots are MMs. For example, mobile platforms carry one
or two manipulators to widen workspace [36], in which service robots target unstructured
environments while sharing the environment with humans [60], unlike CIM cells. Broad
application areas and the variety of tasks that these robots perform highlight demands
for vision-based methods to provide both indoor service robots and outdoor field robots
with suitable environmental feedback. Thus, this thesis developed within two projects
and test cases aligned to these demands.

1.1 PURESAFE

Project PURESAFE2 (i.e. Preventing hUman intervention for incrREased SAfety in
inFrastructures Emitting ionizing radiation), was a project partially targeting engineering
of complex robotic systems for scientific facilities, such as CERN3 and GSI Helmhotz
FAIR 4, as shown in Fig. 1.1. It was funded under the European Commission’s Seventh
Framework Programme and the Marie Curie Actions. Tampere University of Technology
(TUT) acted as the leading organization for this project. Design and manufacturing of the

1 Service Robotics Market by Operating Environment, Application, and Geography-Global Forecast
to 2022, reported by Markets and Markets, SE 2714, January 2017.

2http://puresafe.web.cern.ch
3https://home.cern
4https://www.gsi.de/en/researchaccelerators/fair.htm
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2 Chapter 1. Introduction

iMoro was also during this project, as the first mobile manipulator addressed in physics
hall of fame, illustrated in Figure X.30 of [37].

Figure 1.1: Graphical proof of concept proposed by [51] for iMoro inspection applications in
CERN LHC tunnels as a modular wheeled mobile manipulator for the PURESAFE project

1.2 GIM

Some algorithms of this research were implemented in autonomous field robots that were
developed at the Finnish Center of Excellence in Generic Intelligent Machines (GIM)5

and partially funded by the Academy of Finland from 2008 to 2013. Research teams from
Aalto University and TUT improved technologies for field robotics and MMs. Several
autonomous and multipurpose mobile machines and a test track were created for GIM
projects, such as one of the test cases in this research, namely the Avant forklift shown in
Fig. 1.2.

1.3 Research Problems (RPs)

The multidisciplinary problem of MMs includes many engineering branches and demands a
variety of complex technologies to be implemented. As much as possible, pre-existing tools
were used for basic robot functionalities, and the primary objective of the research was to
find solutions for two research questions (provided below) by considering multidisciplinary
approaches.

RP.I Coordinated Motion For Mobile Manipulation
How do two subsystems in a mobile manipulation system cooperate to accomplish
a manipulation task?

5http://gim.aalto.fi/

http://gim.aalto.fi/
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Figure 1.2: Avant autonomous forklift; AUT’s mobile laboratory

RP.II Analysis and Integration of Visual Feedback in Control Loop of a Mobile
Platform
What are the effects of vision-based feedback in control loops and how can undesirable
effects be reduced?

For the MM test cases using autonomous vehicles, maximum utilization of existing
hardware and software modules was required to ensure the practical use of output for
commercialization.

1.3.1 RP.I: Coordinated Motion for Mobile Manipulation

Introducing manipulators for applications beyond the capabilities of stationary instal-
lations within a CIM cell shows that there is demand for mobile platforms. Table 1.1
compares the use of mobile platforms for manipulation tasks, revealing challenges that
arise from dissimilarities in many aspects. Integration of these two systems can com-
promise precision in wider workspaces; thus, this research focused on generating mobile
platform motion and on-board manipulators to perform shared tasks. The research also
addressed the aspects of a task that each subsystem should share in terms of end effector
motion.

Table 1.1: Summarized common properties of macro and micro subsystems.

Subsystem Motion
Mechanics

Workspace Motion
Precision

Response

Macro (mobile platform) Nonholonomic Unlimited (but constrained) Low Slow
Micro (Manipulator) Holonomic Limited Spatial High Fast



4 Chapter 1. Introduction

1.3.2 RP.II: Analysis and Integration of Visual Feedback in the
Control Loop of a Mobile Platform

Service robots usually receive visual information extracted from two- (2D) or three-
dimensional (3D) camera images. This information can be about robot status and
functionalities, environmental perception, or both. Recent developments in machine
vision, embedded processors, and image perception in deep convolutional networks now
make such data extraction possible. In MM tasks, a common application of visual
information is to track an object for manipulation purposes; thus, vision output influences
feedback during closed-loop manipulation or of a path-following controller. There are
several differences in the fields of computer vision and robotic control that give rise to
challenging issues for system integration. One fundamental difference is how success is
defined in these fields. For a computer vision algorithm, a 90% success rate in detection
is considered extraordinarily good and beyond human capabilities. Relevant examples
of this are the winners of the ImageNet [25] competitions in recent years with success
rates higher than 93%, for instance by GoogLeNet [70]. Although this level of quality
is useful for user-assistive tasks, it causes problems in autonomous systems because a
90% success rate means that the system can fail to recognize correct targets once in ever
10 attempts. In a robotic control system, the autonomous system should be positioned
at strictly descending distances from the target object, and system quality is measured
based on errors when tracking an object or following a path in terms of repeatability
and accuracy. Therefore, to accomplish a vision-based MM task, both RPs should be
considered.

In the steerable mechanisms of mobile platforms, nonzero degrees of steerability, as in
the Avant forklift or iMoro, mean that oscillations are more obvious if the steering angles
directly depend on the instantaneous path curvature. For field robots, this issue is less
prevalent due to high inertia and viscous friction in power transmission. However, for
accurate and fast update rates in the iMoro, each oscillation in the curvature measurement
causes displacement of steering even when the body coordinates have not changed.

Studies focusing on these RPs are included in this thesis. For example, RP.I was considered
by P-II, P-IV, and P-VI, while publications by P-I, P-V, and P-VII focused on RP.II.
Moreover, P-III and [54] described the architecture of the iMoro.

1.4 Requirements and Scope of the Research

Besides the scientific challenges, dealing with service robotic or field robotic test cases
requires certain properties and specifics to develop solutions for RP.I and RP.II. The main
concern is to preserve system capabilities for further developments or commercialization
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of existing or developing software modules. In this research, availability and reusability
of methods for realistic experimental setups were the primary concerns. Test cases for
outdoor field robotics or indoor service robotics are commonly built on pre-existing and
advanced products and methods; for instance, in the Avant, control of hydraulic actuator
valves for setting the vehicle’s articulation angle was studied by [29]. For the iMoro,
the same level of development was achieved in cooperation with research conducted on
the path-following control of four-wheel steerable mobile platforms as described in [57].
Based on the generic architecture for MMs in such systems and applications, selected
requirements are listed as follows. They are compatible with the complete requirements
of the PURESAFE project, which were developed in conjunction with the needs and
requirements addressed in meetings with the Engineering Department of CERN [41].

1. The output performance of system positioning should maintain repeatability for
the entire system such that the iMoro could continuously hold a small object (e.g.,
3cm× 3cm cube) within its gripper jaw fingers. The same is required for the Avant
forklift, which must be able to pick up a standard EUR pallet. Thus, system
repeatability must be better than ±7cm because this accuracy allows the test to be
conducted using commercially available forklift forks and pallets.

2. All targets should be marked and defined using a monochrome single ARTag [26] or
have a bundle with detection preferences set to the farthest possible distance.

3. The visual feedback should be available at variable process times of 5 to 10 Frames
per Second (FPS). Controller feedback must be available for minor sample times of
hard real-time process units. For the Avant test case, this is about 20 milliseconds,
and for the iMoro test case, this is about 5 milliseconds. The controller is responsible
for driving the lower level actuators at each sample time, and without this feedback,
the system is enable to perform emergency soft stops.

4. The wheel odometer of the iMoro should be available at each sample time based on
the wheel angular encoders. However, for the Avant, the wheel odometer should
also be an event-based sensor that transmits updates for each appearance in the
proximity sensor label.

5. Mobile platforms should be based on nonholonomic steerable mechanisms.

6. The steering and driving actuators can have limited velocity and acceleration
capabilities.
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1.5 Thesis Contribution

The primary contribution of this thesis is an experimentally verified method for integration
of eye-in-hand systems for object tracking that considers limitations of system integration
and constraints of the nonholonomic mobile platform. The publications analyzed to
solve the RPs address several viewpoints and two different mechanisms. For outdoor
conditions, such as the test environments in P-II, P-IV, and P-VI, the signals of the
Global Navigation Satellite System (GNSS) were commonly available and the vehicles
used global coordinates during task performance. However, these coordinates were not
sufficiently accurate for pallet picking, and local feedback was necessary to ensure precise
motion control for this purpose. The proposed method caused the forklift to deviate from
the global path, based on logics provided in P-VI, when it sees the desired target, as in
P-II. Commonly available industrial cameras do not provide sufficiently accurate visual
feedback at distances greater than three meters. Consideration of special constraints,
is necessary to add more information to the system. As shown in P-II, assumptions of
constant pose for target objects with respect to an inertial frame can significantly improve
system robustness and smoothness.

The same solution was modified for better accuracy and faster responses for the iMoro,
and it was shown that adapting a path-following controller for vision-based motion control
can significantly improve the repeatability of positioning for mobile platforms of service
robots, as in P-V. This solution, which is briefly described in Section 3.2, supported
the real-time capabilities of a vision-based MM. Additionally, this solution considered
uncertain visual feedback that was dependent on object distance. As proposed in P-VII,
using complementary M-estimator to precise consideration of robot footprints, after
compensation for variable Object Detection Toolbox (ODT) delays, can significantly
improve vision feedback. This improves the smoothness of signals in closed-loop and
tolerance to bouncing of visual feedbacks. Thus, pure motion of the robot’s mobile base
maintained the robot’s positioning better than ±3cm at End Effector (EE).

This research was conducted in conjunction with research on path following and object
detection [52–58, 3, 4].

1.6 The Author’s Contribution to the Publications

This section briefly explains the role of the author in each of the listed publications.

Publication P-I: The author developed the presented methods. Professor Reza
Ghabcheloo initiated the idea and edited the paper. M.Sc. Antti
Kolu helped with the experimental setup, and Dr. Mika Hyvönen
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helped with the hardware-in-the-loop simulation setup. Professors
Kalevi Huhtala and Jouni Mattila reviewed the paper.

Publication P-II: The author developed the initial idea and the theoretical framework
and wrote the paper. As academic supervisors, Professors Reza
Ghabcheloo and Jouni Mattila reviewed the paper and made
corrections and suggestions.

Publication P-III: The author developed the initial idea and the theoretical frame-
work and wrote the paper. Dr. Reza Oftadeh helped with the
experimental setup. As academic supervisors, Professors Reza
Ghabcheloo and Jouni Mattila reviewed the paper and made cor-
rections and suggestions.

Publication P-IV: The author wrote the paper and developed the methods presented.
M.Sc. Antti Kolu helped with the experimental setup and the
hardware-in-the-loop simulation setup. As academic supervisors,
Professors Reza Ghabcheloo and Jouni Mattila reviewed the paper
and made corrections and suggestions.

Publication P-V: The author wrote the paper and developed the methods presented.
Dr. Reza Oftadeh helped with the experimental setup. As aca-
demic supervisors, Professors Reza Ghabcheloo and Jouni Mattila
reviewed the paper and made corrections and suggestions.

Publication P-VI: The author wrote the paper and developed the methods presented.
M.Sc. Antti Kolu helped with the simulation and experimental
setup. As academic supervisors, Professors Reza Ghabcheloo
and Jouni Mattila reviewed the paper and made corrections and
suggestions.

Publication P-VII: The author wrote the paper and developed the methods pre-
sented. Dr. Juho Vihonen helped with the experimental setup
and review of signal processing methods. As academic supervisors,
Professors Reza Ghabcheloo and Jouni Mattila reviewed the paper
and made corrections and suggestions.

1.7 Outline of the Thesis

This compendium thesis is comprised of five chapters. The arrangement of chapters and
publications is illustrated in Fig. 1.3. After the first chapter, which introduces the RPs,
scope of the research, and contributions, subsequent chapters are organized as follows.
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Chapter 2 starts with a brief review of fundamental studies and materials for definitions
and terminologies in the field. Then, the literature review is presented in four categories,
highlighting various research viewpoints. Then, experimental studies of state-of-the-art
methods are compared in terms of long-range detection and positioning accuracy of
robots.

Chapter 3 addresses the conceptual design basis of the publications for answering the RPs.
The second half of this chapter describes the relevant experimental setups and highlights
their similarities and differences. This chapter ends with a selection of practical issues
among experimental studies about these robotic problems.

Chapter 4 presents the research conclusions based on observations and experiment results
that answer the RPs (i.e., visual input and interference of multidisciplinary concepts).
Discussions are categorized into four subjects, and the final part of the chapter concludes
the discussions and addresses possibilities for further research.

Chapter 5 consists of summaries for each of the seven publications. This chapter explains
the connection between the thesis RPs and the publications. This chapter is followed by
the publications, which are relevant published papers.
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Figure 1.3: Thesis structure.



2 State of the Art

This chapter briefly describes the fundamental studies of control of MM using visual
feedback as well as a selection of achievements in the field. Similar approaches are
utilized for different applications, and the majority of studies can be categorized under
these topics: position-based or image-based visual servoing, visual guidance for mobile
platforms, docking and motion control of AGVs, and pallet picking.

2.1 Visual Servoing

Visual Servoing (VS) methods are categorized into three main types: Image-Based Visual
Servoing (IBVS) [15], Position-Based Visual Servoing (PBVS) [79], and a hybrid of both
[49]. IBVS is a visual target-tracking method that is most widely used in the literature to
compare a desired set of features to the features of current images to produce necessary
commands for robot motion generation [2]. Iterative feature matching and transformation
extraction methods incur high costs but are presented in [39], and due to limited features,
these methods are compatible with real-time systems but are best suited to 2D problems,
with initial knowledge of depth or scale [34], without large rotational movements [14].
IBVS is mostly used for short distances and eye-in-hand applications [17], while PBVS is
based on the estimation of the target pose using image features. Because pose estimations
(e.g., in Cartesian space) are provided in PBVS, vision output can be readily integrated
with other sensor modalities. However, the calibration of the extrinsic parameters of
the camera with respect to the robot body plays a significant role in the success of
manipulation [81]. A hybrid method, such as 21/2 D VS [49], combines both IBVS and
PBVS to extract the translational movement of a camera (using the PBVS method) and
its rotation in a 2D image coordinate system [13, 14]. Several studies have been reported
in this regard [13, 14] [33].

This thesis work is comparable to works on motion control of mobile systems based on
exteroceptive sensor data. Although the problems are similar, these works use different
terminologies and applications; however, the common goal is to position a mobile (or a
MM) robot in accordance with an object within its environment. This becomes more

10
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challenging when the robot must remain in contact with the environment as well. Related
works in the literature can be loosely categorized as those pertaining to pallet picking
or docking, IBVS, and PBVS. They use sensors or driving mechanisms not necessarily
similar to the current research. The intersection point of all these studies is the control
architecture of mobile platforms based on exteroceptive sensor data. For AGV docking
problems, the environment is more structured, and robustness is the main concern. In
contrast, the aim of IBVS research is to ensure more flexibility, while PBVS research
combines these aims; this is the category in which the current thesis resides. The following
sections describe each research category in more detail.

2.2 Motion Control of Mobile Manipulators

A variety of approaches have been implemented to control or distribute tasks among the
joints of a MMs. In some cases, the approach depends on the specific capabilities of the
mechanical design, such as the capabilities of the fourth generation of the Care-O-Bot [28].
Early works considered the entire system of the MM as a redundant robot and, therefore,
proposed extensions of redundancy resolution methods for MMs, without considering
the effects of visual feedback in control loops. Comprehensive studies by Khatib [35]
and Seraji [67] are good examples of these works, as well as methods later addressed in
the Springer Handbook of Robotics [10]. These solutions are more useful when system
response is not limited by nonlinear changes in the object–MM pose estimation. In
the close neighborhood of the object, these approaches are applicable because of better
visual feedback and limited demand for heading change from the mobile platform [17].
However, far distances, especially when feedback changes can demand large rotational
displacements, are not the best cases for these methods. The majority of complexities in
MMs are due to the steering of mobile platforms and include nonholonomic constraints
and singularities, which have been more extensively studied in relation to path following
for combinations of active and passive wheels and steering mechanisms [56, 60].

Despite limitations in efficiency and approach angle of its mobile platform, similar to
KUKA’s omniMove and youBot [8], the nonholonomic dynamics of MMs are avoided
with the use of omni-directional wheels (e.g. Swedish or Mecanum wheels). Combinations
of traction forces generated by these wheels partially cancel the force or torque of other
wheels such that the resultant planar force or torque is similar to a planar holonomic
joint. Since cancellations are based on wheel –ground contact friction, mobile platform
become shaky unless the application is limited to flat and even surfaces and flexible wheels.
Studies similar to [32] treated Castor wheels with excentricity as holonomic mechanisms
because of their capability to generate force by steering. However, these approaches
are solely dependent on very specific structures. The vast variety of recently developed
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commercially available MM platforms, such as PR2, Care-O-bot, Tiago, Baxter, and
Fetch [61], as well as autonomous field robots, are not suitable for use with these methods.

The proposed method in P-VII is comparable to recent work in [16], in which a simulated
mobile robot tracked a target using vision feedback. This method considered piecewise
path generation for following a given target. However, it overlooked some issues and did
not address low-frequency nonlinear changes in optical systems and deviations from pin-
hole camera models. Moreover, the switching method was used only within a predefined
coordinate frame. In P-II and P-IV, it was shown that for long distances and for integration
with systems in real-world applications, it was necessary to have switching capabilities
and the ability to change from global to local coordinates to enable independent control
loops and to coordinate complicated tasks and synchronization for disturbance rejection,
which is similar to solutions addressed in [73].

Compared to other contemporary methods provided in Table 2.1, the proposed method
achieves outstanding performance in positioning of the mobile platform by avoiding
compromised performance for smoothness, compared to other relevant works that have
lowered control-loop frequency when visual feedback is lacking. For instance, [18] updated
inputs directly after each ODT data update, meaning that the entire system had variable
sample times due to visual perception, which is not acceptable for large-scale automation
systems dealing with hard real-time requirements. The table also showed that, in the
proposed methods (P-IV, P-VII) for better system integration, positioning of the mobile
platform does not lead to loss of accuracy.

2.3 Docking and Motion Control of Vehicles and AGVs Based
on Exteroceptive Sensor Data

For AGVs with flexible tasks, the docking process must be able to handle different
stations and loads. A comprehensive study reviewed research methods and patents for

Table 2.1: Research on Accurate Mobile Robot Navigation

Reference Local
Update

Global Update Max Positioning
Accuracy

Sensor Robot

[69] 35 Hz 1.5 Hz 4 cm Range omniRob
[62] 6 cm 2xLaser omniRob
[18] 8 cm Vision Pioneer3AT

P-IV 50 Hz 5-7 Hz 10 cm Vision &IMU Avant Forklift
P-VII 200 Hz 7-10 Hz 3 cm Vision iMoro

* The addressed papers cover a wide range of functionalities. Only the parts comparable to the proposed
methods are considered in the table. The applications and environments are not exactly similar. Empty

cells indicate lack of information.
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this process [68]. Applications of AGVs are more dedicatedin structured environments; for
instance, some AGVs navigate by following wires or painted lines or by monitoring through
Radio-frequency Identification (RFID). These options are more suitable for workshops or
production lines with repetitive tasks rather than high-maneuver motion-task demands.
Thus, such research is better for precision and repeatability that compromises flexibility
and integration.

For outdoor vehicles, common sensor input are GNSS data, which are globally available;
however, even good control methods can generate 0.5m lateral errors for high maneuvers
[50]. Lateral errors are a key parameter for placement of a forklift’s fork into the proper
position during picking, and errors must be smaller than 10cm. Usually field robots,
similar to Avant, do not carry a dexterous manipulator, and only the mobile platform is
capable of affecting this error. Since this thesis discusses a nonholonomic mechanism for
mobile platforms, this error must be minimized during a platforms’ longitudinal motion;
therefore, vehicles cannot be stopped to improve estimation uncertainties using high-order
filtering methods.

A comprehensive review of applicable motion control methods are presented in [74].
This paper states that the control methods based on path following, so called vector
pursuit controllers such as [80], have good functionalities for controlling heading and
curvature. However, it considers the necessity of the look-ahead distance for these
methods as a negative point. As shown in P-IV, by choosing an appropriate strategy
for multistage inclusion of visual information on path segments, the look-ahead distance
cannot be a limiting factor for pallet-picking tasks. Additionally, methods based on
multiple trajectories for control of autonomous vehicles was studied by [27].

Generally speaking, the papers targeting AGV docking are more suited for industrial
workshop environments, in which workspace can be adapted to vehicle capabilities. This
is not possible in outdoor environments, such as construction sites. Thus, the approach
chosen in this thesis was to keep all functionalities of autonomous vehicles, as long as the
desired target was identified. After consistent recognition of the target, the robot began
to act based on the target’s pose and its imaginary desired path of manipulation toward
it. There are also branches of research on task planning and scheduling of AGVs [19],
although such research is out of the scopt of this thesis. However, they highlight a level
of autonomy that is expected from the MMs in similar environments. This topic includes
less legal and safety issues in industrial environments, and therefore, the architectures
can be simpler compared to service robots.
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2.4 Vision-based Control of MMs as a Visual Servoing Problem

Research addressing IBVS focus on simple control architecture that allows control of
an entire control loop using a single VS controller. This is not possible in complex
architecture, such as those presented in P-VI or P-III. [21] looked at the integrity of vision
in the control loop together with adaptation of gains when considering robot dynamics.
However, this work is not concerned about timing and data fusion in different coordinates
because the camera was stationary, and therefore, the coordinate frames did not change.
The delay effects on position errors, addressed in P-V and P-VII, were not considered
because such errors depend on speed values. Since this method learns the dynamics of
entire systems, it can include synchronization errors, and when moving coordinate frames,
this method cannot be applied.

VS for manipulation or navigation was also addressed by [77] and [78], who kept the
actuator saturated and used the maximum available actuation but only at short distances
to observe error reduction as a controlled and damped step response. Another study
highlighted the importance of VS of nonholonomic mobile platforms [83] and provided
a solution for this problem based on minimizing errors among matched features in the
camera-image frame in a differentially driven mobile platform application. Here, changes
in camera image depending on range, can affect the behavior of the vision-based estimated
values, which can cause a robot’s path to deviate or increases errors in estimations of
the relative pose. In [84], this change was assumed to be a disturbance. However, this
could have been caused by changes in the focus of the optics. This issue is considerable if
the robot must be used for long-range applications [40]. A similar problem, which has
relevance for long-distance detection, is the Unmanned Aerial Vehicle (UAV) landing
problem, especially for moving targets [1]. Sometimes, detection is based on utilization of
deep learning in comparison to Google Street View [5]; these works have inspired broader
applications for this thesis’ work as addressed in Section 4.5.

2.5 Vision-based Control for Autonomous Pallet Picking

For vision-based controllers in industrial applications, target detection inconsistencies
together with the limitations of the mechanical system are both common sources of
error [82]. A proper controller should be able to operate with both error sources while
improving in overall performance. In the literature, some studies emphasized one error
source more than the other. Since Autonomous Pallet Picking (APP) involves more large-
scale industrial MMs test cases, industrial solutions and system integration are considered
more often than VS. A group of studies has considered pallet detection and integration
of the visual sensor in the control topology, such as [31], whereas work such as that of [7]
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aimed to correct data while camera is approaching the pallet. A majority of these works
employ at least two cameras or monocular vision systems with defined Computer-Aided
Design (CAD) models [11] or incorporate both laser scanners and cameras [6].

Typically, the maximal range of the vision detection methods is three to four meters
in front of the vehicle for known targets. For instance, the reported maximal detection
ranges are:

• 3m for the CAD-based method of [11],

• 4m for a double-sensor architecture in [6],

• 3.7m for the MCSMwith stereo vision [64, 12],

• 3.5m for the Macro–Micro Controller for Mobile Manipulation (M4) method P-II,
and

• 2m for variable sized pallets using a laser scanner [38].

Only research benefiting multiple-view laser scanners provide longer distances for forklift
configuration space up to 6m [76, 75]. For large articulated frame-steering machines
with reduced mobility, the approach angle must be corrected from longer distances to
avoid extra back-and-forth maneuvers. The proposed method for APP is capable of
detecting a pallet (with markers) from 6m away by employing a monocular vision system.
The Macro–Micro Multistage Controller for Mobile Manipulation (M5) method in P-IV
improved the M4 method of P-II by incorporating step-by-step switching among the
control modes and path segments to include marker-detection data to the extent of its
validity. Its immediate result was a wider configuration space with a higher impact on
performance and pallet picking feasibility and more application areas. The method does
not impose limitations on detection methods; therefore, it is capable of integration with
any vision, Time-of-Flight Camera (TOF), or range sensors that are suitable for object
detection based on exteroceptive sensor data.

There are multiple controllers proposed for object manipulation and pallet picking in the
literature. Some navigate the robot in the image space or camera coordinate, such as
the mobile camera-space manipulation method (MCSM) [66, 12, 63, 65]. The intrinsic
complexity, nonlinear dynamics, and nonholonomic constraints of such machines make
the motion control problem very challenging to overcome [20],[56] because it requires
both path planning and following algorithms for APP [71],[75, 72]. Docking problems
face similar challenges [74], and one of the fundamental issues for these categories of APP
studies is the definition of the operational coordinate that becomes a reference for the
desired path, errors, and the target pose [76]. The operational coordinates for APP must
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be global or local, and selecting either has its own advantages or disadvantages. For
global coordinates, integration with normal autonomous navigation modules of a vehicle
is easier compared to that of local coordinates. However, any update in the desired path
requires re-execution of the global path planner since the improvements in the target
pose estimation occur when the robot approaches the target. In contrast, operations
using local coordinates provide high frequency location and detection feedback but change
the navigation control architecture, which may lead to undesirable drifts in the position
estimation.

The proposed methods, M4 and M5, take advantage of both operational coordinates.
During the time that the MM follows a desired path and detects the object for the first
time, the proposed method plans a smooth path before switching to a local operation
coordinate. Therefore, the robot motion avoids jumps and drifts during navigation in
both global and local coordinates as well as during switching intervals. Another benefit of
this method is the ability to start visual servoing from farther distances, which provides
more space and time for the MM and, therefore, smoother steering of the nonholonomic
mobile base. This feature, in most of the scenarios, eliminates the need to align the forks
by driving backward and re-planning the path.



3 Solutions and Results

3.1 Inspiration

The majority of challenges faced in service robotics arise from tasking robots together with
(or on-behalf of) humans in their environments. Considering real-world solutions to such
challenges can provide smart solutions rather than numerically optimal solutions. This is
also true for isomorphism between human arm and robotic manipulators. For example,
manipulators in the automotive industry work in the same way that the human arm
works because the entire design of production lines was initially based on human abilities.
Improvements in mechatronic design and cyber–physical systems were introduced as
a revolutionary movement, as in Industrie 4.0 [30]. However, the entire process is
evolutionary and based on improvements in integration of multidisciplinary methods and
products during the third and fourth industrial revolutions. A noticeable example is
the difference between the utilization of AGVs and autonomous vehicles. As a result of
being in a simpler environment, AGVs are now functional in industrial and structured
environments; however, autonomous passenger cars are still under development due to
the complexities of interactions with nonindustrial and unstructured environments. Since
these devices are designed for humans, robot’s actions are considered to be intelligent
or smart if they are acceptable and similar to human actions or justifiable by skillful
operators. The words smart or intelligent might be vague from this viewpoint and not
necessarily refer to optimality in a specific domain, but they do mean better integration
of process power and control in a mechatronic system. The majority of the literature
addressed in this thesis embrace a multidisciplinary perspective as a way of finding
inspiration from manipulation of objects in everyday life, as shown in Fig. 3.1.

If a person is told to pick up a box from a shelf, the following steps are carried out
subconsciously.

1. Understand the task.

2. Consider the way toward the assumed location of the shelf from the current location.

17
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Pallet Picking by Fork Lift Box Picking by Human

Macro
(Mobile Platform)

Micro
( Manipulator )

Figure 3.1: An inspirational concept for MMs in everyday life

3. Move toward the shelf location.

4. Update shelf pose assumption, as soon as it is visible.

5. Seek the box as soon as the shelf is in sight.

6. Check that the box label is the same as given.

7. Pose the body such that the arm has enough freedom (dexterity) to move.

8. Grasp the box using arm and hand motions.

9. Pick up the box.

Our muscles, brain, and nerves work smoothly through these steps such that the outcome
is a smooth motion, adjusted for the task and the capabilities of the person; it takes
into consideration environmental effects and is reactive to changes. These conditions
are further highlighted by considering different situations. For example, someone with
a shorter arm stops closer to the shelf, while someone who moves quickly may not stop
or pause during steps. On a slippery floor, or as a result of illness, fine adjustments of
the trunk might be ignored and the arm moved more. Studies on human motor control
and perception can partially confirm these observations [23]. The same issues must be
corrected for vehicles and mobile platforms that use MMs. Based on these analogies,
the MM uses a macro–micro architecture, while the mobile platform acts as the body,
and the manipulator acts as a human arm. In this way, robot cognition acts similarly to
accomplish the aforementioned steps for object manipulation.
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3.2 Solution Concept for Integration

If inspirational concepts are compiled into motions and measurements of coordinate
frames, their relationships are described by homogeneous transformation matrices as
in SE(3)1, which is denoted by T . For example, the following tensor comprised of an
orthonormal rotational matrix and position vector describes a body frame {B} in an
inertial frame {I} represented in {I}.

IT B(x, y, z, ϕ, θ, ψ) =


IRB(ϕ, θ, ψ) IP B(x, y, z)

0 0 0 1


4×4

(3.1)

If the coordinate frames are assumed, as illustrated in Fig. 3.2, the coordinate frame {W}
is stationary in {I}. Therefore, the transformations between these coordinate frames
are {W}T {I} or {I}T {W}, and therefore {I}T {O} can be assumed as a constant matrix,
which is equal to

{I}T {O} = {I}T {B}
{B}T {C}

{C}T {W}
{W}T {O}, (3.2)

for which parameters are described in Table 3.1. Based on this assumption, it is possible
to have redundant measurements for relative coordinates.

The same type of loop closure can be written to include a manipulator.

{I}T {O} = {I}T {B}
{B}T {M}

{M}T {M∗}
{M∗}T {O} (3.3)

Based on these loop-closures, the body pose {B} (as in P-V and P-VII) or manipulator
pose {M} (as in P-I) can be extracted or the desired values (as in P-II) can be extracted

1special Euclidean group in 3D space

Table 3.1: Transformations between different coordinate frames illustrated in Fig. 3.2

Matrix Description Determination
{I}T {O} Object’s pose in the inertial frame matrix composition
{I}T {B} Mobile platform’s pose in inertial frame odometer or GNSS
{B}T {C} Camera coordinates in the body frame extrinsic calibration
{C}T {W} Work piece (or marker) in the camera image frame vision system
{W}T {O} Grasp pose with respect to the work piece by definition (grasp planning)
{B}T {M} Manipulator pose with respect to the body manipulator joint values
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Figure 3.2: Defined coordinate frames of MMs, camera, and object.

in accordance with the object based on two sources. If practical issues are ignored and
assuming that {I}T {O} is constant in time, multiple measurements can be obtained during
a time interval independent of the robot’s motions. This is helpful in different situations
because changes in estimated values for {I}T {O} can be a measure of performance for
sensor output, as shown in P-VII. The entire chain of transformations can be mapped in
the visible coordinate frame {O}, such that the changes remain in the same coordinate,
theoretically. In P-V, it was shown that outliers can be rejected to significantly improve
the oscillations of ODT output by comparing {O}T {B} from (3.3) and from (3.2) after
delay compensation. Consistency of these two appearances can be used as an index for the
soundness of the outcome of the entire system. Moreover, wheel slippage or view occlusion
of the camera for short periods of time are not a problem for this system. Compared
to the example presented in Section 3.1, the pose of the box remains the same on the
shelf no matter how the person moves, and as long as the person moves toward the shelf,
the displacement appears in both the driven distance of the person and in the visual
appearance of the box from the person’s viewpoint. If the person closes their eyes for a
few seconds, they are still able to guess their hand’s position because of knowledge of
arm motion.

In utilizing such an idea, there are benefits from some assumptions that do not limit
applications similar to pallet picking or MMs for grasping. Because the forks of forklifts
and grippers jaws of MMs are usually parallel bars, it is more likely to have the last part
of a planned path be a straight line. This helps avoid nonlinearity in mapping between
the coordinates because the majority of the coordinates have parallel rotation matrices.
This happens at the same time as acquisition of better images because the robot is in the
neighborhood of the object. These two effects are helpful for improving the performance
of both the Avant forklift and mobile platform of the iMoro throughout the majority of
a path in the neighborhood of an object. For a limited time interval, ODT output can
correct sensor drift effects in {I}T {B} caused by Inertial Measurement Unit (IMU) or
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wheel odometer. However, these two sensors can compensate lack of real-time ODT by
generation of absolute pose feedback for hard real-time control loops using confidence
measures.

3.3 Concept of Macro–Micro Multistage Controller for Mobile
Manipulation (M5)

As discussed in the previous sections, the main idea behind the M4 was to consider
separate roles for each part of the MM by taking into consideration their dissimilarities,
as briefly addressed in Table 1.1. At the same time, the structure of existing controllers
should be maintained, as shown by the blocks in Fig. 3.6 or Fig. 3.8. This simplified
concept is illustrated in Fig. 3.3 and briefly described here. Theoretical details are
addressed in more detail in publications P-I, P-II, and P-IV. Programming logic for
implementation of these methods are addressed in P-VI.

In the M4, when the robot receives a message for a preplanned path that has a VS flag
toward the object, in P-II or P-I this object was a pallet, it starts seeking for corresponding
visual cues while driving on the global path. As soon as the estimation of the object pose
becomes accurate enough, the M4 algorithms interfere with the input and output of the
higher and lower level subsystems by mapping their feedback and set points into the local
coordinates to define a local path. When the robot finishes the path, the pallet-picking
task is accomplished. Participation of the manipulator in this task depends on error
improvement. By default, the M4 does not allow the manipulator to track the target,
and it remains in control of the global path planner as long as large error variations
exist. As the robot arrives in the vicinity of the pallet with an appropriate heading, the
manipulator and mobile base begin to coordinate. The macro robot stops coordination as
soon as the motion requires better accuracy than it can provide.

M5 is more suitable for larger motion scales and high inertia test cases, for which the
acceptable estimation of object pose is not convenient compared to the time or space
needed for error correction of the mobile platform. One solution is to pause the M4
algorithm and request re-planning of the global path based on the updated pose of the
target. However, as shown in P-IV, an intermediate phase can improve this situation.
Since the concept described in Section 3.2 can be used to determine estimation quality, it
was used to determine object visibility. The criteria for judgment were modified to keep
only the position of the object detection tensor in the equations. Thus, mapping can be
done only in the camera (or body) coordinates and not in global or local coordinates.
The two main results of the intermediate phase are to enable VS methods for more
heavy-duty autonomous vehicles and to avoid challenging the linearization assumptions
of lower level controllers by smoothing the steering command. For Articulated Frame



22 Chapter 3. Solutions and Results
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Figure 3.3: Three types of paths for pallet-picking experiments: the Macro–Micro Multistage
Controller for Mobile Manipulation (M5) uses global, intermediate, and local paths, as addressed
in P-IV; the Macro–Micro Controller for Mobile Manipulation (M4) only uses global and local
paths as addressed in P-II.

Steering (AFS) vehicles, speed of steering determines deviation in the Instantaneous
Center of Rotation (ICR) for the front and rear parts of the vehicle, which can create
instability in the basis of the system model.

3.4 Test Cases

The robots’ hardware architecture is illustrated in Fig. 3.7 and Fig. 3.5 and includes
two main networks: Controller Area Network (CAN) and Local Area Network (LAN).
Communication between the time-critical components and hard real-time functionalities
uses the CAN bus. For Avant, this network carries commands and feedback for hydraulic
control valves and sensors. For the iMoro, it communicates with servo motor drives.
Other real-time hardware are also on the same network, including sensors and manipulator
joints. Other hardware components are connected through LAN in the physical layer.
These network components are:

• the PC that hosts the remote development environment and Graphical User Interface
(GUI),

• the Gigabit Ethernet Communication Protocol (GigE) camera,

• the image-processing PC,
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• the real-time target, and

• the access point for wireless communications.

(a) iMoro, IHA mobile robot (b) AVANT Autonomous forklift (GIM)

Figure 3.4: Test Cases

For generic toolboxes, such as image grabbing, marker detection, planning, and calibration,
packages from the Robot Operating System (ROS) were used, as described in P-VI in
more detail.

3.4.1 Autonomous GIM Machine (Avant Forklift)

In P-I, P-II, P-VI, and P-IV, the Avant autonomous forklift was used for experimentation,
which shares its architecture and software modules with all the robots that use GIM. Avant
has four wheels on an AFS mobile platform driven by hydrostatic power transmission
and a 3-Degrees of Freedom (DOF) manipulator, as shown in Fig. 3.4b.

Local Area Network

Control Area Network

Fork IMUBoom IMUBody IMUHydraulic
Controllers

Diesel
Controllers

Proximity Wheel Sensors

Steering
Resolver

Interface 
ElectronicsPC 104 Linux 

PC GigE 
Camera

Figure 3.5: Hardware architecture for the iMoro as a common architecture for a MMs

3.4.2 iMoro Mobile Platform

As illustrated in Fig. 1.3, the test cases in P-V, P-III, and P-VII used the iMoro. The
robot and its fundamental functionalities are described in P-III and [54]. These studies
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Figure 3.6: Software architecture for an outdoor hydraulic MM GIM. The focus area of this
research is highlighted.

Figure 3.7: Common hardware architecture for a MMs

focused on integration of visual information into the control loop of the mobile platform’s
local coordinates.

Remote programming was done in the Simulink Real-time (formerly xPC-Target) en-
vironment or through MATLAB Code Generation using a Portable Operating System
Interface (POSIX) implemented in a real-time Linux operating system, Xenomai, as
explained in [58]. In both cases, host– target communication was based on Transmission
Control Protocol (TCP). Other communications, such as updating the robot’s status or
image information were done through User Datagram Protocol (UDP) signals.

3.4.3 Practical Issues

iMoro, a service robot, and a GIM (Avant), an autonomous forklift vehicle, both use
a nonholonomic steerable mobile platform, GigE camera, and wheel odometer sensors.
However, there are significant differences; the details of each system have already been
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Figure 3.8: Data flow for visual guidance of indoor MMs, iMoro using ROS packages. The
focus area of this research is highlighted.

explained in their relevant research papers, as referred in illustration of Fig. 1.3. The
k−mean solution was sufficient for mapping between the robot’s coordinates and the
object coordinate in all test scenarios for the Avant (e.g., P-II,P-IV). To some extent,
in near neighborhoods, the same solution was useful for the iMoro as presented in P-V.
However, for a GNSS-denied environment, such as the iMoro’s, the robot localized to
ensure required accuracy. The robot’s actuation benefited from brushless servo motors
with significantly better steering bandwidth and accuracy compared to the actuators and
wheel odometer in the Avant. The hydraulic machine handled both dry and Coulomb
friction and high-inertia mechanical parts, while the indoor robot had a lower moving mass
and better maintained gearboxes and driving system. Therefore, the common oscillations
addressed in P-V or P-VII were dampened by system nonlinearities; thus, short-time
jumps were small. However, in the iMoro, the control and actuation systems had faster
responses and were more sensitive to process delays in images, errors, and discontinuities.



4 Discussion and Conclusion

This chapter explains the research conclusions, discussed the research limitations, and
explains the research outcomes in comparison to relevant publications, divided by topic.

Due to the quantized nature of camera sensors and nonlinearities of optics, discontinuities
occur frequently in the output of any vision system. High-resolution and expensive
cameras can decrease the size of these jumps, but they do not resolve the issue.

4.1 Smoothness and Accuracy Contradictions

The simplest solution for oscillation of feedback for closed-loop systems is to lower the
controller gains or utilize high-order filters. However, in both of the test cases, these solu-
tions reduced system performance. The motion of the mobile platform must be accurate
to ensure few positioning errors to maintain manipulator dexterity. Therefore, lowering
system sensitivity is not a suitable option. Thus, smoothness becomes contradictory to
accuracy for the overall outcome of the MM because the modules for image-grabbing,
visual perception algorithms, and communication delay the ODT output and increase the
raise time of the system by over-dampening the control loop, which is unacceptable due
to possibility of significant changes in the system states during the delay time.

4.2 Macro–micro Coordination of Motion for a Vision-based
MM

Although distribution of errors between macro and micro parts can be an independent
problem, ODT properties can be considered to avoid undesirable motions. Generally
speaking, micro robots are quick and accurate, as shown in Table 1.1, making them more
prone to sensor noise than macro robots. Additionally, sudden changes in the direction of
motion for nonholonomic mobile platforms cause steering errors because of low inertia
motion, without significantly changing the center of mass. However, when the micro
part the entire manipulator moves toward the command, which can cause oscillations in
high inertia parts and rapid changes in the inertial forces of the center of mass of the
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robot. These changes challenge the capabilities of the embedded power, especially for
hydraulically-driven forklifts with diesel engines. Based on these issues, system integrity
is better if only high-quality visual feedback is permitted to reach the micro robot. This
underlines the importance of online assessment of measurement performance by comparing
loop closures, as discussed in Section 3.2.

4.3 Demand for Long-range Object Detection

Quality of object detection by camera, necessary in time-of-flight cameras and range
finders, depends on the distance between the object and the camera due to the limited
angular resolution of sensors. If sensors can provide feedback with acceptable accuracy
in a limited range, certain long-range applications for object detection can be achieved.
For outdoor autonomous vehicles, it is common to have low degrees of maneuverability
and steerability, which means that the vehicles require some driving distance to correct
heading or side errors. For the Avant, this distance was about 3.5 m for a repeatability
better than ±7cm. Thus, if the robot detected an object nearer than this distance, it
was less likely to be able to pick it up from an appropriate angle. For indoor service
robots, such as the iMoro, maneuverability and steerability are less challenging because
these robots are designed for tight areas. However, they are usually used in GNSS-denied
environments; therefore, cameras or other exteroceptive sensors are needed to localize the
robot. This is more important if the task includes manipulation, obstacle avoidance, or
fine adjustments of the mobile platform with respect to external objects. For the iMoro
test case, the minimum distance was 2 m to accomplish positioning with repeatability
better than ±3cm.

4.4 A Vision-based MM for Service Robotics and Field
Robotics

Vision feedback provides considerable environmental data and, with internal sensors,
it can increase the flexibility and functionality of an MM. This research showed how
visual information could be integrated among existing subsystems in two autonomous
mobile platforms. In addition to experimental challenges, there are a few interdisciplinary
issues that should be mentioned. Exploiting vision or localization methods based on
local observations can make the entire system’s work range-dependent, partially because
of the sensor structures, which are comparable to mapping using polar coordinates to
Cartesian coordinates with finite amounts of pixels. Moreover, with respect to the camera
coordinates shown in Fig. 3.2, position measurements along the ŷ and ẑ, which are
generally more accurate than the x̂ (i.e., the depth of the camera image). However,
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for orientation estimation, only rotations around the x̂-axis benefit from these position
measurements, while other rotations are prone to errors in depth estimation because
estimation of rotation between two points (or features) needs comparison in at least two
dimensions. This dependency is also affected by the size of objects or distances between
matched features, which can improve or worsen the effect of depth estimation. All these
dependencies highlight the sensitivity of orientation estimation of the depth of target
objects, which is also made clear by comparison of covariance ellipsoids that become
larger at farther distances.

Additionally, mapping between coordinates can cause propagation of uncertainties. For
instance, to localize the robot’s manipulator with respect to the object, the inverse of the
transformations previously introduced, such as MTO, are inversed and become OTM,
which is equal to

MT−1
O (x, y, z, ϕ, θ, ψ) =


MRT

O(ϕ, θ, ψ) − MRT
O(ϕ, θ, ψ) MPO(x, y, z)

0 0 0 1


4×4

.

(4.1)
This shows how the position data are more prone to orientation detection when providing
feedback to the controller. If measurements in the y − z plane were better in accuracy,
this multiplication negatively affects spatial representations of motions.

4.5 Conclusion and Remaining Challenges

For simplified assumptions of constant uncertainty, a system can become too conservative
unless another measure to reassess uncertainties is used, such as in P-VII. In P-IV, this
issue was solved by proposing the M5, which introduced an intermediate stage that only
used the position elements of the tensor to move the robot toward the object. Because the
ITO estimates were consistent, as addressed in 3.2, allowing them to be used as quality
measures, the local coordinates in the {W} were used after reliable feedback was received
for ITO. Both of these methods maintained the quality of visual feedback, as shown in
P-V (for the iMoro) and P-II (for the Avant), while the robot and camera were moving at
far distances.

Integration of vision into an MM was also analyzed and implemented, and integration of
information from the MM can be incorporated in perception tools. This process can be
applied using the same method as that used for detailed image features and Simultaneous
Localization and Mapping (SLAM) outputs. The filter introduced in P-VII was utilized
for each axis and extension of that with vector implementations of the proposed algorithm
together with deep learning methods, such as [22], or transfer learning can provide the
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network with motion primitives to be trained together with the image features. Further
analysis and formulation of uncertainties should be conducted to include better vector
representations of spatial motion estimations. Then, analytical formulations of the entire
system could be developed to define certain switching and error distributions in geometric,
frequency, and time domains with parameterization of the uncertainties. The idea can
be representation of nonholonomic constraints as delay that steering can cause to steer
toward the desired velocity vector. This is an important direction for future research to
support system integration for nonholonomic dynamics.



5 Summary of Publications

This chapter summarizes each publication of this thesis, and answering the research
problems were the primary aim of these publications. As previously addressed in Figure 1.3,
there were two variations of test cases. The hardware descriptions in P-I and P-VI
addressed the architecture of the Avant autonomous forklift, and P-III and [54] addressed
the iMoro mobile platform. The solutions provided in P-I, P-II, P-VI, and P-IV were
more suitable for field robots, while solutions for challenges highlighted in P-III, P-V, and
P-VII were more suitable for service robots.

5.1 Summary of P-I: Position-based Visual Servoing for Pallet
Picking by an Articulated Frame-steering Hydraulic Mobile
Machine

This paper discussed the first implementation of the visual guidance method developed for
the Avant, which resulted in an articulated frame-steering forklift driven by a hydrostatic
circuit (Fig. 3.4b). The kinematics and hardware architecture of the autonomous system
were described, focusing on sensory information and specifications as well as actuation
accuracy for driving the mobile platform. Due to limitations caused by outdoor conditions,
wheel encoders consisted of two hall sensors, for which output was invalid for low-speed
motions; therefore, the experiment was the first answer for challenges in facing the use
of mobile platforms and manipulators together. Such differences were then considered
to develop a solution to the control problem by dividing APP into two subspaces that
shared an x-axis. This initial solution addressed both research questions, RP.I and RP.II,
and was specific to real-world conditions. Based on common practices in grasp planning,
a parametric curve was proposed to convert updates with discontinuities into one smooth
path for pallet picking.
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5.2 Summary of P-II: A Macro–Micro Controller for Pallet
Picking Using an Articulated Frame-steering Hydraulic
Mobile Machine

This paper proposed an architecture to define a MM, in this case a forklift, as a
macro–micro system, namely M4. Despite a challenging application, by formulating an
M4, significant differences between the mobile platform and manipulation mechanism
were addressed. Practically, given the coordinate frames shown in Fig. 3.2 and Table 3.1,
this method provided the autonomous forklift with an APP range of 3–4 m pallet-picking
distance in the x-direction and a ±0.5m distance in the y-direction. Additionally, this
paper addressed the problem of visual servoing for pallet picking and the need to configure
multiplication for a homogeneous transformation matrix by reconstructing equations
similar to 3.3. Doing this, the problem can be represented as an M4 problem because the
macro part carries the micro part of the MM, for which, general properties are addressed
as presented in Table 1.1.

Based on this representation, visual features are artificially generated for the macro part
based on imposition of idealistic motion for the micro part and vice versa. Thus, the
simplification and limitations of the problem only influence the reachable directions of
the macro part and prevent cyclic bouncing that can delay hydraulic actuators and create
imprecise measurements. Additionally, the manipulator was prevented from performing
unnecessary movements because of inadequate detection quality, possibility of camera
occlusion. This method is robust for single jumps in vision data and short-term occlusions.

5.3 Summary of P-IV: A Multistage Controller with Smooth
Switching for Autonomous Pallet Picking

The main contribution of this paper is an improvement of M4 pallet-picking method
by introducing Macro–Micro Multistage Controller for Mobile Manipulation (M5). In
addition to cooperation between the macro and micro parts, the field robot’s macro–micro
behavior was formulated based on changes in visual feedback uncertainty to allow the
pallet-picking process to begin from farther distances from the pallet (e.g., 4–5 m) using
imperfect visual information.

An analysis of experimental errors presented in P-I and P-II highlights two contradictory
issues. To a certain extent, vision output improves when a robot is close to a target;
however, an AFS vehicle is not capable of fast corrections for lateral deviations from the
path or of following high-curvature paths. Generally speaking, car-like or AFS vehicles
are limited by a small turning radius, unlike differentially driven mobile platforms. This
limitation increases when a robot carries a camera and must perform sharp steering,
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which is more likely to occur when a pallet (i.e., a target) is out of the camera’s Field
of View (FOV). To overcome these issues, this papers proposed an initial position
estimation as soon as vision feedback provides consistent output, which allows the robot
to incorporate both orientation and position information. Practically, the intermediate
stage only works at distances of 0.5˘1m; however, this does increase robot functionality
and robustness such that it can tolerate one meter more than the robot in P-II in each
direction. This considerable heading change improves critical curvatures on the planned
path and target visibility.

5.4 Summary of P-III: Fault Tolerant Control Architecture
Design for Mobile Manipulation in Scientific Facilities

This paper introduced the hardware and software architecture for the iMoro and described
the needs, requirements, and conceptual designs for MMs and remote handling in scientific
facilities, based on [54]. It described how to break down a mission into different tasks,
and which subsystems are necessary for the autonomous functionalities of a service robot
for inspection and manipulation in restricted areas. Scientific facilities, such as CERN ,
have high-tech and expensive materials and test areas, in which human intervention can
be costly and must be As Low As Reasonably Achievable (ALARA) [9] or As Low As
Reasonably Practicable (ALARP) [24].

Based on the common conditions of scientific facilities, if a robot is designed to reduce
human intervention, it must guarantee minimum functionality; thus, a service robot,
including the iMoro, should guarantee that it can exit the test bed, in this case CERN
tunnels, in case of mission failure. Because remaining as an external object in a test
environment is unacceptable due to the physical or environmental limitations of scientific
tests. Thus, this paper proposed a parallel logic and architecture, namely a safety anchor,
that guarantees minimum functionality. Since the proposed method has limited states and
conditions, it can achieve the third Safety Integrity Level (SIL)[59] certification because
it implements safety components.

The paper also provided an analysis of the kinematic formulation of the robot to show
simplified actuation of the mobile platform without a path-following controller and to
use the fault-tolerant method during mission failure to extract body inclination data
from steering and driving wheel states in one robot leg to prevent corruption of inverse
kinematics. Since the test case mobile platform is Four-Wheel Steerable (4WS), it has
at least one redundant leg; therefore, the experimental results showed reliable outcomes
even if one of the legs does not perform well during synchronized motion.
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5.5 Summary of P-V: Real-Time Vision-Based Navigation for
Nonholonomic Mobile Robots

The solutions of RP.I and RP.II were briefly explained in previous papers for the Avant
test case. This paper experimentally verified these ideas on an indoor robot test case using
the iMoro to extend these ideas to RP.II to gain better integration of visual feedback in
the control loop. It was shown that an eye-in-hand setup for a mobile platform can be
prone to synchronization errors even when common issues in visual feedback are ignored.
Thus, if the real-time PC receives {C}T {W} (as explained in Table 3.1) at time t, data
belong to the camera frame at time t − td, where td stands for variable delays caused
by processes, image grabbing, buffering, and communication in order of their role. This
means that the transformation matrix represents an object’s pose with respect to an
imaginary camera behind the robot td seconds in the past. This effect proportionally
depends on a robot’s velocity history for the past td seconds, which is converted from a
timing error into a positioning error.

The paper compensated for this error and proposed improvements for positioning accuracy
based on the concept represented in Eq. (3.2). The results showed the importance of
synchronization for high-speed motions of mobile bases. Thus, the solution made it
possible for the robot to grab an object with tolerances better than 3cm solely using the
motion control of the mobile platform based on camera and wheel feedback.

5.6 Summary of P-VI: Vision-guided Autonomous Forklift

This paper targeted the architectural design and system structure of the Avant, which
is shown in Fig. 3.6. As an autonomous forklift, Avant’s motion control subsystem is
commanded by a GUI and a global path planner. The control system receives feedback
from estimation and localization data based on a GNSS, IMUs, and wheel odometer, as
well as command actuator-level controllers. Safety or obstacle avoidance systems can
override the actions of this control system; thus, this paper proposed a Vehicle State
Machine (VSM) to manage these operations and, at the same time, exploit these systems
to convert the machine into a flexible AGV. Based on certain rules, an event-based work
flow design was proposed to utilize pre-existing systems as a visual servoing controller.

The proposed multistate VSM used a three-step process of preprocessing, command
processing, and post processing. The paper proposed 3–4 rules for each step to prevent
interference of roles in each subsystem. This VSM connected the vehicle subsystems
to the higher level planner and monitoring modules. The interface flagged higher level
modules, which was used for long-distance communication consisting of
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1. Busy the component is running a command or not available.

2. Free (6= Busy) the component is available for the next task.

Internal flags can use more accurate descriptions for better coordination of actions among
lower level modules. Such flags include the following.

1. Active The module can receive a command according to its internal state and
synchronization criteria with other modules.

2. Done The module’s assigned task is accomplished, or it is no longer valid.

3. Release Accomplishment can be declared. The system is no longer busy with the
task.

4. Wait The module cannot be tasked due to its condition or because of interference
with other modules.

Based on these flags, the VSM runs the planned actions in order; thus, if a pallet-picking
task is implemented in the system, the vision toolbox will be activated, and driving
will continue in a saved pose. As soon as the object is detected in the neighborhood,
the localization feedback will be overridden by the vision feedback causing driving and
manipulation modules to coordinated actions.

5.7 Summary of P-VII: Latencies and Noise Effects in
Vision-Based Control of Mobile Robots

Based on the previous experiences explained in P-II, P-IV, and P-V, the efficacy and work-
flow for system decomposition was presented before this study. Using the same architecture
and formulation, it was possible to analyze measurement effects more accurately. Mobile
platforms are prone to shakiness due to imperfect localizations P-VI. Any assumptions of
continuity and well-behaved feedback in the MM control design are questioned due to
jumps of localization in indoor (e.g., P-V) and outdoor (e.g., P-I) conditions. The methods
addressed in the previous publications were more suited to outdoor conditions, in which
robustness imposes challenges for positioning precision. To extend the findings of P-IV to
indoor service robots (e.g., the iMoro), the fusion method proposed in this paper provides
significant improvements. Commonly, service robots have better interceptive information
and lack of GNSS and the absolute positions BOEX! (BOEX!). Therefore, a method
was proposed to integrate visual feedback from long distances that were smoothened by
wheel odometer data to provide the control system with hard real-time absolute position
and orientation feedback. As shown in Figure 3.4a, the iMoro was capable of repeatedly
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gripping a gauge below 3cm using only mobile platform motion. While the ODT camera
was working at a rate of 8 FPS, this method was capable of generating feedback for a
200 Hz control system. By accurately rejecting outliers and considering range-dependent
noise, the mobile robot was capable of localizing itself with respect to a detected object
within 5m, with negligible oscillating behavior.
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Position-Based Visual Servoing for Pallet Picking by an
Articulated-frame-steering Hydraulic Mobile Machine

Mohammad M. Aref, Reza Ghabcheloo, Antti Kolu, Mika Hyvönen, Kalevi Huhtala, Jouni Mattila

Abstract— This paper addresses a visual servoing problem for
a mobile manipulator. Specifically, it investigates pallet picking by
using visual feedback using a fork lift truck. A manipulator with
limited degrees of freedom and differential constraint mobility
together with large dimensions of the machine require reliable
visual feedback (pallet pose) from relatively large distances.
To address this challenge, we propose a control architecture
composed of three main sub-systems: (1) pose estimation: body
and fork pose estimation in the pallet frame; (2) path planning:
from the current pose to the origin (pallet frame); and (3)
feedback motion control. In this architecture, the pallet becomes
the local earth fixed frame in which poses are resolved and
plans are formulated. Choosing the pallet as the origin provides
a natural framework for fusing the wheel odometry/inertial
sensor data with vision, and planning is required only once
the pallet is detected for the first time (because the target
is always the origin). Visual pallet detection is non-real-time
and unreliable, especially owing to large distances, unfavorable
vibrations, and fast steering. To address these issues, we introduce
a simple and efficient method that integrates the vision output
with odometry and realizes smooth and non-stop transition from
global navigation to visual servoing. Real-world implementation
on a small-sized forklift truck demonstrates the efficacy of the
proposed visual servoing architecture.

I. INTRODUCTION

Visual Servoing (VS) or vision-based robot control found
a wide range of applications such as humanoid robots and
robotic manufacturing. VS is usually used in object detection
for manipulation or target tracking. In this study, we address
the problem of VS for a mobile manipulation task, namely,
pallet picking by a forklift truck. Because bulky and massive
materials are commonly handled on a pallet, automatic pallet
picking by a forklift truck has attracted considerable research
attention. The main challenge in this task is the reliable detec-
tion of the pallet while eliminating typical failures associated
with vision systems. To increase the robustness of vision,
previous studies have mostly used auxiliary sensors such as
laser pointers [1] or laser scanners [2]; another study [3]
applied a neural extended Kalman filter for object detection.
In this study, we propose a fault-tolerant pallet pose (position
and orientation) estimation in which vision data is fused with
odometry and inertial measurements. The estimation output is
then used for VS and motion control.

VS can be classified into three categories: Image-Based
Visual Servoing (IBVS), Position-Based Visual Servoing
(PBVS), and a hybrid of both. IBVS has been studied most
widely; it is based on the comparison of a desired image pose
and the current image to produce feedback [4]. Although it is

Authors are with Intelligent Hydraulics and Automation Department, Tam-
pere University of Technology, 33101, Finland.
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computationally expensive, it can be run in real-time through
certain approaches [5]. It is best suited to two dimensional
problems with initial knowledge of the depth or scale [6]
without having a large rotational movement [7]. IBVS is
mostly used for short distances and eye-in-hand applications
[8]. On the other hand, PBVS is based on the estimation of
the target pose using image features. Because pose estimations
(e.g., in Cartesian space) are provided in PBVS, the vision
output can be readily integrated with other sensor modalities.
However, the calibration of the extrinsic parameters of the
camera with respect to the robot body plays a significant role
in the success of manipulation [9]. A hybrid method such as
21/2 D VS [9] combines both IBVS and PBVS methods to
extract the translational movement of a camera from the PBVS
method and its rotation in a two-dimensional image coordinate
system [10], [7]. Several studies have been reported in this
regard [10], [7], and an earlier one [11].

The present study focuses on mobile manipulation and
fusion of vision pose estimates with inertial sensors. We have
used an on-board monocular camera in combination with
fiducial markers on the pallet. The pose of the markers is
computed using the Alvar computer vision library [12] in a
non-real-time fashion. The integration of inertial sensors with
vision provides real-time pallet pose estimation even in the
event of extended delays in visual pallet detection or when
the view to the markers is blocked by the boom and fork. The
proposed method is general and should be independent of the
computer vision method used to detect the pallet pose.

Generally, in the PBVS method, an error vector based on
the current pose (from vision) and the desired pose of the end
effector (or the work tools) is calculated, and proper control
signals are generated to drive the error to zero. This error can
be defined in either the image frame, Cartesian body frame,
or both [13], [14], [15]. Contrary to common practice, in this
study, we propose a control architecture in which the pallet
frame plays the role of the reference frame or the origin with
respect to which all the errors are defined. After the pallet
is robustly detected for the first time (as explained later), the
control system switches to the pallet frame as a local frame.
Therefore, the target pose remain the same (i.e., the origin)
throughout VS. Our control architecture comprises three main
subsystems: (1) pose estimation: estimation of the body and
fork in the pallet frame; (2) path planning: planning a route that
leads from the current location to the origin; and (3) motion
control: path following and manipulator control. Defining the
pallet as the origin has the advantage that path planning is
performed only once at the start when the pallet has been
detected, unlike in previous studies [16], [17].
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The remainder of this paper is organized as follows. In
Section II, we define the VS problem at hand and corre-
sponding error spaces related to the mobile manipulation
problem. In Section III III, we introduce the sensor system
(encoders, IMUs, and vision) required to address this PBVS
problem and we provide a fault tolerant solution to pallet
pose estimation. In Section IV, we describe the feedback
control laws that drive the errors to zero and solve this
PBVS problem. Finally, we examine the overall performance
of the proposed control system by experimental evaluation
on a forklift truck. In Section V we present the results and
demonstrate the capability of the proposed PBVS controller in
the presence of failures in marker detection, wheel slippage,
and kinematic constraints. The case study machine (Figure
1) is a small prototype wheel loader based on Avant 635
that was built at the Department of Intelligent Hydraulics
and Automation (IHA), Tampere University of Technology
(TUT), under the GIM project [18]. This machine is hereafter
referred to as the GIM mobile machine. The body of the
machine comprises two units, and steering is performed by
controlling the angle between the units; this is referred to as
articulated frame steering (AFS). Figure 2 shows a simplified
model of the same. The manipulator manipulator has three
degrees of freedom-boom, fork, and telescopic boom-that can
be controlled independently [19].

II. PROBLEM DEFINITION

Automatic pallet picking is one of the functionalities of fully
autonomous heavy vehicles. It can be described as follows.
The approximate locations of the pallets are known in a

 

Fig. 2. GIM mobile machine with two body units pivoting around O

global map, and the machine can navigate such that it is near
the target pallet using standard global localization systems
such as Global Positioning System (GPS), inertial sensors,
and LIDAR-based Simultaneous Localization and Mapping
(SLAM) [20]. However, most of these solutions are not
accurate enough for pallet handling tasks. When close enough,
with the aid of vision, the target pallet pose is estimated and
pallet picking is converted to a PBVS problem. We propose
a methodology to achieve robustness against vision failures
and describe a control architecture that realizes smooth and
non-stop transition from navigation in the global frame to VS
and leads the forks into the target pallet. Next, we introduce
the coordinate frames necessary to mathematically formulate
the problem.Let {I} denote the global frame. The body fixed
coordinate frame {B} is attached to the midpoint of the front
axle as shown in Figure 1. The pose of the vehicle is defined
by a homogeneous transformation matrix IT B:

IT B(x, y, z, φ, θ, ψ) =



IRB(φ, θ, ψ) IP B

0 1



4×4

(1)

in which the rotation matrix IRB defines the orientation of the
front unit as a function of φ, θ, and ψ ( roll, pitch, and yaw,
respectively). Moreover, IP B = (x, y, z) is the position of the
body origin in the inertial frame. Let {P} and {F} denote the
pallet frame and the fork frame, respectively. They are defined
in such a manner that the control objective is achieved when
ITP =I TF , in other words, when {P} and {F} coincide.
This should be clear from Figure 1. The manipulator has three
degrees of freedom. The boom can rotate around the y axis of
the body and stretch in/out. Thus the generalized coordinates
of the boom are specified in terms of the angle θ1 and length
L. The fork can only rotate around the y axis of the body by
an angle of θ2. Thus, the fork in the body can be defined by

BTF = T (L, θ1, θ2) (2)

Manipulation is realized by controlling the boom angle, tele-
scopic boom, and fork angle by u1, uL , and u2, respectively.
Moreover, let us and uv denote the steering and speed com-
mands, respectively. The control objective is to devise control
laws for these five control signals such that

ITF =I T B(x, y, z, φ, θ, ψ) BTF (L, θ1, θ2) (3)

coincides with ITP . It should be noted that the roll motion
φ (rotation around x-axis of the pallet) is not controllable.
Therefore, we assume that the pallet has the same roll angle
as the ground, which then determines the roll angle of the
machine. To control the five remaining degrees of freedom
(three positions and two angles), we now divide the error space
into two orthogonal planes:

1) x − y plane error variables (x, y, ψ) are controlled by
drive (us,uv)

2) x−z plane error variables (x, z, θ) are controlled by the
manipulator (u1, uL, u2)
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Clearly, there is a redundancy in the control space in that
x can be controlled by both the drive and the manipulator.
The accuracy of position control using the machine speed
is limited. Therefore, uv is used to drive the fork near the
pallet, and the manipulator is used if necessary to reduce the
remaining residual error to zero (usual less than 10cm). A
state-machine resolves this and other logical control issues.
Section IVdescribes the motion control solution, in which
a path-following strategy is introduced to address control
in the x − y plane and feedback laws are formulated for
the manipulator to control the errors in the x − z plane.
In Section III-B, we will show how dead-reckoning (wheel
odometry and IMU) can be used to improve visual feedback
and how the proposed VS can tolerate outdoor conditions
where marker detection can fail frequently and wheel slippage
is unavoidable especially in the snowy weather of Finland.

III. SENSOR DATA AND STATE ESTIMATION

Figure 3 shows the mechatronic architecture of the GIM
machine, where the sensors, actuators, and computing units
are shown. Next, we describe the sensor information used in
the proposed control system.

A. Sensor Information

Visual. In order to observe the {P} frame, a set of markers
have been installed on the face of the pallet as shown on
Figure 1. By using a camera, the onboard pose of the markers,
and thus that of the pallet, that is, CTP , with respect to the
camera frame {C} is determined. Therefore, the camera in
the body can be resolved if the calibration parameter BT C is
known:

BTP =B T C
CTP (4)

which defines the visual feedback. For image processing, we
have used the Alvar toolbox [12], an open-source augmented
reality library. It can be used to track fiducial markers based
on the known shape and size. It outputs the position and
the orientation of the marker relative to the camera. This
toolbox is capable of automatically tuning distortion and
intrinsic parameters for a pin-hole camera by detecting a
predefined checkerboard marker from fifty different poses. A
comparison of the calibration results shows that the calibration
of intrinsic parameters under indoor illumination conditions
(before installation on the vehicle) provides better results.
Other necessary measurements are performed using the wheel
encoders and inertial sensors.

Wheel encoders. Each wheel of the GIM mobile machine
is retrofitted with two hall sensors to construct an encoder with
a seventeen-teeth steel plate (for practical reasons). Owing
to the low resolution, pulse widths are measured. The speed
measurement is performed at 20Hz, and it is not valid for
speeds under 0.25m/s. We never drive under this critical
speed.

Intrinsic Sensors. The body articulation angle is measured
at the rate of 100Hz using a resolver. An IMU is installed
near the midpoint of the front axle. It includes three-axes
gyros and three-axes accelerometers providing data at 500

Local Area Network
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Fork IMUBoom IMUBody IMUHydraulic
Controllers
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Controllers

Proximity Wheel Sensors

Steering
Resolver
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ElectronicsPC 104 Linux 
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Fig. 3. Part of control hardware architecture for GIM Machine

Hz. There are two other IMUs, one of which is installed on
the boom and the other, on the fork. Each includes one gyro
and two accelerometers assembled on three orthogonal axes.
These three IMUs are used to measure the boom and fork
angles with respect to the body. This mechanism is described
in Section III-B. The length of the telescope or boom extension
is measured using a potentiometer.

B. State Estimation

Body Inclination. The orientation of the body frame is
calculated in the quaternion representation using the IMU
installed on the front axle. The gyro and accelerometer sig-
nals are filtered using a nonlinear complementary filter on
the special orthogonal group SO(3) proposed in [21]. The
filter eliminates random noises and biases; however, it suffers
from gyro scaling factors. Additionally, when the machine is
stopped, a window averaging is used to eliminate the gyro
biases. Steady-state errors are less than 0.5◦ which is tolerable
in our application. The fork and boom angles in the inertial
frame are also measured using IMUs by applying the same
complementary filters about one axis. The fork and boom
angles in the body frame are then calculated by subtracting the
body pitch angle. More details on the use of inertial sensors in
mobile machine applications are found in [22]. In summary,
the outputs of the complementary filters are roll φ, pitch θ,
boom angle θ1, and fork angle θ2.

Dead-reckoning When the GIM machine moves on uneven
terrain, it is subject to motions in all directions. However, when
aggressive maneuvers are avoided during pallet picking, as in
our case, neglecting the y and z components of the velocity
provides a good approximation. By this assumption, we use
the following kinematic equations for dead-reckoning [23]:

ẋ = vxcos θcosψ
ẏ = vxcos θsinψ

ψ̇ = ωz
cosφ
cos θ + ωy

sinφ
cos θ

(5)

Dead-reckoning involves integrating (5) to obtain at
x(t), y(t),and ψ(t). Toward this end, we require the speed vx,
and angular velocities ωz and ωy . Wheel odometry is simple,
inexpensive, and easy to accomplish in real-time. Because
the machine has four wheel drive (there are no free-wheeling
tires), and hydraulics flows are not controlled independently,
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the wheels are prone to slip and skid. In [24], it is shown
how kinematics constraints on four wheel speeds and body
articulation angle can be used to detect slippage and improve
vx and ωz estimates. In the present study, by following a
similar idea, we have further used z-axis gyro measurements to
improve these estimates. The details of the same are omitted.
Variables ωy , φ, and θ used in (5) are the outputs of the
complementary filter explained above.

Fault Tolerant Sensor Fusion and Synchronization The
dead-reckoning data is updated at 20Hz or every 50ms in
real-time. Experiments show that the time intervals elapsed
between two successful consecutive marker detections are
mostly around 180− 200ms, and they can increase to 1.5sec.
When the markers are visible, the success of detection depends
on the angle and distance to the markers and the camera
motion. Unfavorable conditions include a large distance to the
markers and fast steering/yaw motions. Fast yaw motions are
unavoidable when the machine approaches the pallet with large
initial errors in the y-axis or yaw angle. Owing to the size of
the machine and steering mechanism and the fact that markers
are reliably detected only when the fork is 3−4m away from
the pallet, tight maneuvers are often necessary. In this section,
we propose a state estimation filter that addresses the problem
of marker loss situations, for example, in the case of fast yaw
motions or when the pallet is in “shadow”. Shadow situation
occurs at the last stage of operation when the boom and fork
block the view to pallet when the fork is around 0.3m from
the pallet. The Alvar library also provides the process time,
which indicates how long ago the image of the corresponding
detection results has been acquired. These process time values
are 105-140 ms. The shorter the distance, the shorter is the
process time. The process time, denoted by Td, is used to
synchronize the vision data with dead-reckoning. This will be
explained below. Using wheel odometry and the IMU, dead-
reckoning and complementary filters provide

IRB(t) = Rz (ψ)Ry (θ)Rx (φ)
IP B(t) =

[
x y 0

]T (6)

with respect to some inertial frame {I} which is the point
at which dead-reckoning integrators are reset. This can be
performed at any time before VS has started.

The output of the vision at time t is PT B(t − Td) as
calculated from (4). To synchronize the dead-reckoning and
vision, we store a series of [x, y, φ, θ, ψ](k) : k = t, t−Ts, t−
2Ts, . . . , where Ts = 50ms. It should be noted that because
the pallet is not moving, PT I is constant. Every time the
object is detected, we calculate

PT I = PT B(t− Td) BT I(t− Td) (7)

If BT I at time t−Td is not available in the stored set, we make
a simple linear interpolation to calculate BT I(t − Td), that
is, [x, y, φ, θ, ψ](t − Td) is calculated by linear interpolation
between two stored dead-reckoning data of the two closest
time instances. Then, BT I(t − Td) is calculated by (6).
However, PT I calculated from (7) is noisy. Averaging over
several instances has been shown to improve and considerably

smoothen the estimate. Let P T̂ I denote the average of n latest
measurement of PT I using (7). If the markers are found at
least n times, the pallet tracking filter is initiated and VS is
started. To recover PT B(t) between consecutive instances of
marker detection, we can calculate

PT B (t) = P T̂ I
IT B(t) (8)

as fast as dead-reckoning is updated. This will provide a real
time fault tolerant feedback to the control system.

The outliers are eliminated in two stages. First, by using
knowledge of the approximate location of the target pallet,
we eliminate those PT B measurements that are out of bound.
Second, by using knowledge of PT I being constant, before
averaging n measurements, we eliminate those that are too far
from the rest (using k-means clustering). Common faults such
as marker detection failure, faults, and error accumulation of
localization are partially canceled using the above-described
method. The length of the averaging window is obtained via a
trade-off. The longer the averaging sequence, the smoother is
the estimate. However, wide averaging window is not optimal,
because as the machine approaches the pallet, the vision data
become more accurate. Moreover, if we use an overly long
averaging window, the machine needs to go very slow to obtain
reliable feedback data sufficiently early and to have room to
maneuver before getting too close to the pallet. Experience
shows that averaging over n = 5 latest measurements provides
a proper trade-off.

It should be noted that averaging over several rotation
matrices will not lead to a rotation matrix. One approach is
to keep the principal components of the resulting average.
Let us denote Rn = 1

nΣk=1:n
PRI(k) and its singular

value decomposition by Rn = USV T . Then PR̂I = UV T

is the closest rotation matrix to Rn. There are two issues
worth mentioning. By averaging over 5 measurements, we
have assumed that the added error by dead-reckoning in five
consecutive measurements is negligible compared to the vision
errors. We have also assumed that the statistical properties of
vision errors remain the same. None of these assumptions are
correct, and this issue remains to be explored in future work.

IV. MOTION CONTROL

Recall that the control objective is to drive the fork frame
into the pallet frame; thus, the error can be defined by
translation PTF = PT B BTF . We have already described
how measurements BTF and PT B are generated at the rate
of 20Hz. See (2) and (8). As justified before, we divide the
control space into two groups, and the errors are defined in two
orthogonal spaces. In other words, the manipulators solves the
pallet picking problem in the x-z plane and the drive-steering
solves the pallet picking problem in the x-y plane.

A. Manipulator Control
Toward this effect, we define the errors in the x-z plane

eφ = arg(PRF ,y)

ez = ( 0 0 1 )PPF

ex = ( 1 0 0 )PPF (9)
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where the arg(., .) function returns the angle argument of the
rotation matrix around the axis defined in the second argument
(y-axis in this case).

The manipulator actuators are driven by the pressure-
compensated proportional valves and it is reasonable to assume
that

θ̇1 = u1, θ̇2 = u2, L̇ = uL, (10)

where u1, u2, uL are the valve commands. Employing the
Lyapunov function V = 0.5k1e

2
x + 0.5k2e

2
z + 0.5e2φ, it can

be shown that the Jacobean-like control laws are as follows:

θ̇1 = u1 = −kp1sat (−k1exLsin θ1 − k2ezLcos θ1)

L̇ = uL = −kp3sat (k1excos θ1 − k2ezsin θ1)

θ̇2 = u2 = −kp2sat (eφ) (11)

The drive the errors eφ, ex, and ez to zero. In the equations
above,

sat(a) =





1 if a > 1
−1 if a < −1
a otherwise

(12)

is a saturation function, and gains kpi, i = 1, 2, 3 define the
velocity bounds of the actuators and unit conversions.

B. Steering-Drive control

Owing to the non-holonomic constraints of the machine, the
control in the x-y plane takes a rather more complex structure.
When the pallet tracking filter is initialized, the pallet pose
estimates are relatively accurate. A smooth path pd is then
generated that extends from the current location [xinit yinit]
of the machine to the pallet frame, that is, the origin [0 0].
Recall that the errors and position [xinit yinit] are defined
in the pallet frame {P}. In our experiments, we have used a
Bezier curve of order 4, with the following control points:

P1 = [xinit yinit] ,

P2 = [xinit + 1.4 0] ,

P3 = [xinit + 0.7 0] ,

P4 = [0 0] (13)

This choice guarantees that path pd is tangential to the x-axis
of {P} at its origin. Now, we define the error (TRF , T PF ),
where {T } is a tangent frame to the path attached to pd(τ),
where τ ∈ [0, 1] is the path parameter. It should be noted that
{T } coincides with {P} for τ = 1. The path following errors
can now be defined,

eψ = arg(TRB, z) = arg(TRF , z)

ex = ( 1 0 0 )T P B

ey = ( 0 1 0 )T P B = ( 0 1 0 )T PF (14)

Notice that errors in the yaw and y-axis are the same in the
body and in the fork frame. Therefore, if the machine follows
the path closely and the pose estimates are accurate enough,
the errors in the yaw and y-axis will be sufficiently small when
the fork frame reaches the pallet. The error in the x-axis is
not relevant and as discussed before, the system is redundant

in this coordinate. It should also be noted that the closer the
machine to the pallet, the more accurate are the pose estimates.
Therefore, even if the trajectory of the body frame in the real
world is initially not the same as pd, it converges to it as the
pose estimation errors decrease.

Definition: Path following problem. Design a control law
for steering signal us, to drive eψ and ey to zero.

A solution to this problem is devised in [19], which can be
summarized as follows. We showed in [24] that the motion
of the front unit of the GIM machine closely follows the
kinematics

ẋ=vxcosψ
ẏ=vxsinψ

ψ̇=ωz

(15)

and

ωz=
lrβ̇+vxsinβ

lfcosβ +lr
, (16)

where β is the body articulation angle and lf , lr are ge-
ometrical parameters (see Figure 2). Notice that (15) is a
simplified version of (5) in the horizontal plane, but it is
accurate enough for feedback control. The solution in [24]
provides a control law for the desired angular velocity ωcz =
CPF (ex, ey, eψ)), where the speed vx remains free and can be
controlled separately. Freedom in assigning the linear speed is
instrumental in our case, because without causing instability in
the path-following controller, the machine can be slowed down
or stopped. For example, in case the manipulator errors are
not yet small enough, collision with the pallet can possibly be
avoided. Now, given ωcz , we use (16) to calculate the required
steering valve command:

β̇c = −vf
lr

sinβ+

(
lf
lr

cosβ+1

)
ωcf

us = Kβ̇c (17)

where we assumed that the valve command is proportional to
the speed of body articulation.

V. EXPERIMENTAL RESULTS

It is reasonable to assume that, in practice, the position
of the pallet is known with certain accuracy. In the case of
the GIM machine, the pallet locations are registered with
an accuracy of 0.5 m using on-board GPS and the inertial
navigation system after the last placement. This accuracy is

TABLE I
SUMMARIZED SPECIFICATIONS OF GIM MOBILE MACHINE COMPONENTS

Device Specification Value
Wheel Radius r = 0.32m

Vehicle Max. Speed 3.3m/s

lf 0.6m
lr 0.6m

IMU Gyro Angular random walk NIMU = 10−3
rad/s√

Hz

Bias instability BIMU = 10−6 rad/s
Time correlation TIMU = 750 s

Wheel Encoder Resolution 17 pulses/round
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Fig. 4. Marker detection output, raw data. Five representative tests

enough to send the machine to the proximity of the pallet, and
therefore, the face of the pallet is visible to the vision system.
Based on this observation, we have set our experiments
as follows. In all the test runs, the machine started from
different initial configurations at distances of 7-8 m in front
of the pallet and facing toward the pallet with different initial
headings. Initially, the lateral distances of the body frame
with respect to the center of the pallet were in the range of
1 m. The machine then moves in a straight line until the
pallet is detected and the pallet tracking filter is initialized.
After the filter is initialized, PBVS is activated. The on-board
camera was a Gima GO423C with 1296 × 966 resolution.
Recall that owing to the reduced number of pulses per
revolution of wheel odometry devices, speeds under 0.25m/s
are not reliably measured. Therefore, in the experiments
reported in this paper, we have set the speed commands to
a constant value of 0.3m/s or zero (stop). The actual speed
varied from 0.3–0.4m/s in the test runs. We conducted a
total of 13 experiments. The experiments were conducted
on a cloudy day between 14:00 and 15:00 in December
2012. A few of the final experiments were performed with
the machine’s front lights on1. All the experiments were

1In this latitude, sun sets around 15:00 in December.
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successful. The tracking filter was initialized at the following
distances (when the markers are detected the first five times):
[3.17, 3.63, 6.97, 3.66, 3.52, 4.09, 4.21, 4.09, 4.54, 3.35, 3.54, 4.30, 4.02]
m. The fork blocks the camera view or the
marker is lost at the following distances:
[0.31, 0.21, 0.36, 0.24, 0.36, 0.17, 0.29, 0.27, 0.25, 0.30, 0.21, 0.42, 0.60]
m.

Figure 4 shows the trajectory of the body frame in the pallet
frame in the x-y pallet plane. For clarity of presentation, we
show only five representative tests: two each starting from the
left and the right side of the pallet and one from the middle.
This figure shows the marker detection output before filtering.
It can easily be seen that detection is very unreliable at large
distances and that it improves as the machine approaches the
pallet. Figure 6 shows the same trajectories after filtering.
Notice that how the trajectories have been smoothened out.
Figures 5, 7, and 8 show the pitch, yaw, and z-axis errors,
respectively, versus time for experiments 1-4 in four subplots
(the numbers correspond to the numbers in Figure 4). Some
observations can be made from these figures. The tracking
filter starts long after the vision output becomes available, and
it continues producing pose estimates even after the vision
output is not available. It is visually clear how the tracking
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filter has smoothened the vision output.

VI. CONCLUSION

In this paper, we introduced a position-based VS control
framework and a fault tolerant pose estimation algorithm.
This method was developed and experimented on a small-
sized forklift truck. The choice of the coordinate frames and
references provides a natural framework to divide the error
space into two orthogonal planes and to fuse the vision
output with the dead-reckoning data. One plane was then
controlled by drive-steering and the other, by the manip-
ulators. The redundancy resolution (along the x-axis) was
achieved by the state-machine (the details are omitted). Real-
world experiments showed the robustness and efficacy of the
methodology for the problem in hand. Future work includes
the optimal fusion of the image processing data with dead-
reckoning instead of averaging. A truly reliable integration of
vision into VS, especially in outdoor conditions, requires the
extension of the logic control and planning algorithm for better
exception handling. In real-world scenarios, there are always
broken pallets that make pallet detection a real challenge.
Alternative detection methods without the use of markers, for
example, using active sensors, will also improve the reliability
of the system. Further development of this work can be a
visual servoing platform to utilize a path follower controller
addressed in [25] for complex mobile robot architectures.
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based control approach for automated guided vehicles,” The Interna-
tional Journal of Advanced Manufacturing Technology, pp. 1–19, 2012.

[4] G. Allibert, E. Courtial, and F. Chaumette, “Predictive control for con-
strained image-based visual servoing,” IEEE Transactions on Robotics,
vol. 26, no. 5, pp. 933–939, 2010.

[5] V. Lippiello, F. Ruggiero, B. Siciliano, and L. Villani, “Visual grasp
planning for unknown objects using a multifingered robotic hand,”
IEEE/ASME Transactions on Mechatronics, vol. PP, no. 99, pp. 1 –10,
2012.

[6] F. Janabi-Sharifi and M. Marey, “A kalman-filter-based method for pose
estimation in visual servoing,” IEEE Transactions on Robotics, vol. 26,
no. 5, pp. 939–947, 2010.

[7] F. Chaumette and S. Hutchinson, “Visual servo control. II. advanced ap-
proaches [tutorial],” IEEE Robotics and Automation Magazine, vol. 14,
no. 1, pp. 109–118, 2007.

[8] G. Chesi and A. Vicino, “Visual servoing for large camera displace-
ments,” IEEE Transactions on Robotics, vol. 20, no. 4, pp. 724–735,
2004.

[9] E. Malis, F. Chaumette, and S. Boudet, “21/2D visual servoing,” IEEE
Transactions on Robotics and Automation, vol. 15, no. 2, pp. 238–250,
1999.

[10] F. Chaumette and S. Hutchinson, “Visual servo control. I. basic ap-
proaches,” IEEE Robotics and Automation Magazine, vol. 13, no. 4,
pp. 82–90, 2006.

[11] S. Hutchinson, G. Hager, and P. Corke, “A tutorial on visual servo
control,” IEEE Transactions on Robotics and Automation, vol. 12, no. 5,
pp. 651–670, 1996.

[12] VTT Technical Research Centre of Finland, “Alvar toolkit website.”
http://virtual.vtt.fi/virtual/proj2/multimedia/alvar/index.html, 2013.

[13] A. Ferreira, C. Cassier, and S. Hirai, “Automatic microassembly system
assisted by vision servoing and virtual reality,” IEEE/ASME Transactions
on Mechatronics, vol. 9, no. 2, pp. 321–333, 2004.

[14] H. Taghirad, S. Atashzar, and M. Shahbazi, “Robust solution to three-
dimensional pose estimation using composite extended Kalman observer
and Kalman filter,” Computer Vision, IET, vol. 6, no. 2, pp. 140–152,
2012.

[15] Y. Wang, H. Lang, and C. de Silva, “A hybrid visual servo controller for
robust grasping by wheeled mobile robots,” IEEE/ASME Transactions
on Mechatronics, vol. 15, no. 5, pp. 757–769, 2010.

[16] Y. Mezouar and F. Chaumette, “Path planning for robust image-based
control,” IEEE Transactions On Robotics and Automation, vol. 18, no. 4,
pp. 534–549, 2002.

[17] G. Lopes and D. Koditschek, “Visual servoing for nonholonomically
constrained three degree of freedom kinematic systems,” The Interna-
tional Journal of Robotics Research, vol. 26, no. 7, pp. 715–736, 2007.

[18] Finnish Centre of Excellence in Generic Intelligent Machines (GIM)
Research. http://gim.aalto.fi, 2013.

[19] R. Ghabcheloo, M. Hyvönen, J. Uusisalo, O. Karhu, J. Järä, and
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A Macro-Micro Controller for Pallet Picking by an
Articulated-frame-steering Hydraulic Mobile Machine

Mohammad M. Aref, Reza Ghabcheloo, and Jouni Mattila

Abstract— This paper addresses the macro-micro config-
uration of a mobile manipulation problem for a forklift;
specifically, it investigates pallet picking with visual feedback.
A manipulator with limited degrees of freedom and differential
constraint mobility, together with the large dimensions of the
machine, requires reliable visual feedback (pallet pose) and
navigation from relatively large distances. It has been shown
that the problem can be divided into two parts in order to solve
the related issues based on path following theories and visual
servoing. Moreover, visual pallet detection is non-real-time
and unreliable, especially due to large distances, unfavorable
vibrations, and fast steering. To address these issues, we
introduce a simple and efficient method that integrates the
vision output with odometry and realizes a smooth and non-
stop transition from global navigation to visual servoing. Real-
world implementation on a small-sized forklift demonstrates
the efficacy of the proposed macro–micro architecture.

I. INTRODUCTION

Visual Servoing (VS), or vision-based robot control, is
found in a wide range of applications, such as in humanoid
robots and robotic manufacturing. VS is usually used in
object detection, for manipulation or target tracking. In
this study, we address the problem of VS for a mobile
manipulation task, namely, pallet picking using a forklift.
Because bulky and massive materials are commonly handled
on a pallet, automatic pallet picking with a forklift has
attracted considerable research attention. The main challenge
in this task is the reliable detection of the pallet while
eliminating typical failures associated with vision systems.
To increase the robustness of the vision, previous studies
have often used auxiliary sensors such as laser pointers [1]
or laser scanners [2]; another study [3] applied a neural
extended Kalman filter for object detection. In this study, we
propose a fault-tolerant pallet pose (position and orientation)
estimation in which vision data is fused with odometry and
inertial measurements. The estimation output is then used
for VS and motion control.

VS can be classified into three categories: Image-Based
Visual Servoing (IBVS), Position-Based Visual Servoing
(PBVS), and a hybrid of both. A more detailed study on the
visual servoing backgrounds for pallet picking was studied
in [4].

The present study focuses on mobile manipulation and
the fusion of vision pose estimates with inertial sensors. We
have used an on-board monocular camera in combination
with fiducial markers on the pallet. The pose of the markers
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Tampere University of Technology, 33101, Finland.
Email: m.aref@ieee.org .

 

Fig. 1. The micro robot’s coordinate frames.

is computed using the Alvar computer vision library [5] in
a non-real-time fashion. The integration of inertial sensors
with vision provides real-time pallet pose estimation, even
in the event of extended delays in visual pallet detection
or when the view to the markers is blocked by the boom
and fork. The proposed method is general and should be
independent of the computer vision method used to detect
the pallet pose.

In this study, we propose a macro-micro control architec-
ture in which the pallet frame plays the role of the reference
frame or the origin, with respect to which all the errors are
defined. After the pallet is robustly detected for the first
time (as explained later), the control system switches to the
pallet frame as a local frame. Therefore, the target pose
remains the same (i.e., the origin) throughout VS. Defining
the pallet as the origin has the advantage that path planning
is performed only once, at the start, when the pallet has been
detected. Unlike in previous studies [6], [7], the macro part’s
controller keeps the vehicle’s path follower in the control
loop. Then, when the robot approaches the pallet, micro part
does the visual servoing.

The remainder of this paper is organized as follows. In
Section II, we define the VS problem at hand and corre-
sponding error spaces related to the mobile manipulation
problem. In Section III, we describe the feedback control
laws that drive the errors to zero and solve this PBVS
problem. Finally, we examine the overall performance of
the proposed control system by experimental evaluation
on a forklift. In Section IV, we present the results and
demonstrate the capability of the proposed macro-micro
controller in the presence of failures in marker detection,
wheel slippage, and kinematic constraints.

The case study machine (Figure 1) is a small prototype
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wheel loader based on Avant 635 that was built at the
Department of Intelligent Hydraulics and Automation (IHA),
Tampere University of Technology (TUT), under the GIM
project [8]. This machine is hereafter referred to as the
GIM mobile machine. The body of the machine comprises
two units, and steering is performed by controlling the
angle between the units; this is referred to as articulated
frame steering (AFS). Figure 2 shows a simplified model
of the same. The manipulator manipulator has three degrees
of freedom (boom, fork, and telescopic boom)that can be
controlled independently [9].

II. PROBLEM DEFINITION

Automatic pallet picking is one of the functionalities of
fully autonomous heavy vehicles. It can be described as
follows. The approximate locations of the pallets are known
in a global map, and the machine can navigate such that it is
near the target pallet using standard global localization sys-
tems such as the Global Positioning System (GPS), inertial
sensors, and LIDAR-based Simultaneous Localization and
Mapping (SLAM) [10]. However, most of these solutions
are not accurate enough for pallet handling tasks. When
close enough, with the aid of vision, the target pallet pose
is estimated and pallet picking is converted to a PBVS
problem. We propose a methodology to achieve robustness
against vision failures, and describe a control architecture
that realizes smooth and non-stop transition from navigation
in the global frame to VS, and leads the forks into the target
pallet. Next, we introduce the coordinate frames necessary
to mathematically formulate the problem.

Let {I} denote the global frame. The body fixed coordi-
nate frame {B} is attached to the midpoint of the front axle
as shown in Figure 1. The pose of the vehicle is defined by
a homogeneous transformation matrix IT B:

IT B(x, y, z, φ, θ, ψ) =



IRB(φ, θ, ψ) IP B

0 1



4×4

(1)
in which the rotation matrix IRB defines the orientation
of the front unit as a function of φ, θ, and ψ ( roll, pitch,
and yaw, respectively). Moreover, IP B = (x, y, z) is the
position of the body origin in the inertial frame. Let {P} and

 

Fig. 2. GIM mobile machine with two body units pivoting around O.

{F} denote the pallet frame and the fork frame, respectively.
They are defined in such a manner that the control objective
is achieved when ITP =I TF , in other words, when {P}
and {F} coincide. This should be clear from Fig.1. The
manipulator has three degrees of freedom. The boom can
rotate around the y axis of the body and stretch in/out. Thus
the generalized coordinates of the boom are specified in
terms of the angle θ1 and length L. The fork can only rotate
around the y axis of the body by an angle of θ2. Thus, the
fork in the body can be defined by:

BTF = T (L, θ1, θ2) (2)

Manipulation is realized by controlling the boom angle,
telescopic boom, and fork angle by u1, uL , and u2,
respectively. Moreover, let us and uv denote the steering
and speed commands, respectively. The control objective is
to devise control laws for these five control signals such that:

ITF =I T B(x, y, z, φ, θ, ψ)
BTF (L, θ1, θ2) (3)

coincides with ITP . It should be noted that the roll motion φ
(rotation around the x-axis of the pallet) is not controllable.
Therefore, we assume that the pallet has the same roll angle
as the ground, which then determines the roll angle of the
machine. To control the five remaining degrees of freedom
(three positions and two angles), we now divide the error
space into two orthogonal planes:

1) x− y plane error variables (x, y, ψ) are controlled by
drive (us,uv).

2) x− z plane error variables (x, z, θ) are controlled by
the manipulator (u1, uL, u2).

Clearly, there is a redundancy in the control space in that
x can be controlled by both the drive and the manipulator.
The accuracy of position control using the machine speed
is limited. Therefore, uv is used to drive the fork near the
pallet, and the manipulator is used if necessary to reduce the
remaining residual error to zero (usually less than 10cm). A
state-machine resolves this and other logical control issues.
Section III describes the motion control solution, in which
a path-following strategy is introduced to address control
in the x − y plane, and feedback laws are formulated for
the manipulator to control the errors in the x − z plane.
In [4] we show how dead-reckoning (wheel odometry and
IMU) can be used to improve visual feedback, and how
the proposed VS can tolerate outdoor conditions where
marker detection can fail frequently and wheel slippage is
unavoidable, especially in the snowy weather of Finland.

III. VISUAL SERVOING CONTROLLER

A. Visual Servoing Preliminaries

Consider that Si(i = 1, 2, 3, . . . , k) are the feature points
defining the {M} and {M∗} three-dimensional coordinate
systems for the current and desired object poses {C}M and
{C}M∗ with respect to the current camera frame.

Si = [Xi, Yi, Zi]
T
, S∗i = [X∗i , Y

∗
i , Z

∗
i ]
T (4)
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Pallet Picking by Fork Lift Box Picking by Human

Macro
(Mobile Platform)

Micro
( Manipulator )

Fig. 3. Macro-micro configuration for picking objects in everyday life.

So, the correspondence pixels on the image can be ex-
pressed by

si = [1, ui, vi]
T
, s∗i = [1, u∗i , v

∗
i ]
T (5)

By assuming a pinhole model for the camera, relationships
between the matching points become:

si =
1

Xi
ASi , s∗i =

1

X∗i
AS∗i (6)

in which A3×3 is known as the camera matrix. It can be
the output of the camera’s intrinsic parameters calibration
described in Subsection III-E. Since the geometric properties
of the object are known, the scale of normalized positions in
(6) can be determined. Therefore, hereafter, we use {M∗}
and {M} instead of comparing the S∗i and Si points, while
it means consideration of the matched s∗i and si features
which include the depth or scale. It should be noted that we
ignore the increment of uncertainties along the image depth
axes, which relies on the z axis on the camera frame {C}
as shown in Figure 1.

Installation of a camera in front of the forklift manipulator
is practically impossible. Therefore, we define an imaginary
coordinate attached to the manipulator, namely {F}. Then,
the output of the actual camera {C} attached to the vehicle’s
roof has to be transformed into {F} as a virtual camera
attached to the manipulator. Although it could increase any
error effects of the calibration results, the given calibration
method in III-E keeps the robot’s functionality and precision
acceptable, practically.

Geometrically, {M} becomes coincident with {M∗} if
and only if the current virtual camera {F} coincides {F∗}.
It should be noted that if the actual camera could be installed
at the place of {F}, the image Jacobian could be near
singularity. On the other hand, visual servoing on the frame
of the actual camera {C} is not useful because of the rank-
deficiency of the image Jacobian. In other words, from
the vision viewpoint, we are mapping the visual servoing
problem because the pose of the IC is suitable for the object
detection (ṡ), while IF is suitable for movement detection
(v̇). According to the above explanations, the error tensor
for the visual servoing becomes

T e =
FTF∗ (7)

The desired value for such a matrix is to become near the
identity matrix, I4×4 (approximately).

B. Macro-Micro Formulation for Visual Servoing

The concept of designing macro-micro VS in this research
was inspired by a comparison between an everyday life task
and the pallet picking concept as shown in Figure 3. Asking
a person to pick a known object means doing several steps
for the person:

1) Remember its approximate location as a memorized
first guess.

2) Go toward the location.
3) Look for the object while going to the given location.
4) After finding, walk a few steps to approach vicinity

of the object.
5) Pick the object by hand.

The progress for pallet picking can be similar to the
aforementioned steps. In our scenario, the first item is
done by a stationary global planner which has access to
the transportation database of all autonomous and manual
machines. The second and third tasks are the main tasks for
the macro robot. Then, the rest must be done by the micro
robot. Let the macro robot become the vehicle itself, without
consideration of the manipulator boom or fork which carries
the actual camera coordinate {C}. The manipulator part is
considered to be the micro robot to which the virtual camera
is connected.

This separation leads to several benefits including:
• Better accuracy (actuator and sensor).
• Benefit of the global planner for the set of coordinated

autonomous vehicles, including the GIM Machine.
• Simplifying formulation and the controller.
• Maintaining satisfactory experimental results.
According to the definitions in Sections II and III-B, we

divide the problem of pallet picking into a VS problem for
the macro and micro robots. For that purpose we expand the
transformations applicable to the coordinates such that:

T e =
BT−1F

BT B∗ B
∗
TF∗ (8)

in which BT−1F and B
∗
TF∗ determine the required move-

ments for the micro robot, and the remaining, BT B∗ governs
the demanded motion of the macro robot. This expansion
leads to the new definition of two consistent errors for both
macro and micro robots:

T e1 = BT B∗ (9)

T e2 = BT−1F
B∗

TF∗ (10)

Mathematically speaking, it should be noted that (9) and
(10) are not the direct results of (8), unless the macro robot
arrives at its destination, {B} −→ {B∗}. We disregard
this difference in order to simplify the macro and micro
controllers formulations independently. However, it cannot
cause any problems because before the arrival to the pallet,
the principle axes of the coordinates for the macro and micro
robots always become parallel to each other. Recall that the
pallet is assumed to be approximately the same angle about
the x-axis of the body. It is the only direction in which the
robot has lack of actuation.
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dp

initP
GuessP

Fig. 4. Defined coordinate frames for the macro robot.

C. Motion Control for the Macro Robot
The aim of VS for the macro robot is to guide the

body frame {B} to reach the desired coordinate {B}. Its
reflection can be found in the variation of (9) within its x−y
plane as well as the rotation around its z axis. Therefore,
the transformation matrix for the macro robot could be
written as IT B (x, y, ψ) because the other parameters for the
location of the macro robot are not controllable. Due to the
non-holonomic constraints of the machine, the control in the
x-y plane takes a rather more complex structure. The macro
robot’s autonomous driving architecture within the global
{I} is valid until receiving a task command that contains
a VS flag. It navigates to the vicinity of the given location
IBGuess[x, y, ψ] defined in the inertial global frame {I}. At
the same time, by activating the vision toolbox, it looks for
the given mark of the object. Since the FOV of the camera
is reasonably bigger than the accuracy of the initial guess,
we can be sure of finding the pallet. After detection of the
pallet, the robot replies to the higher level with an update to
the initial guess. Again, the planner transmits a new path.
In contrast with the last path, the recent one is in the local
coordinate {B∗}.

A smooth and obstacle-free path pd is generated, which
extends from the current location B

∗
P init[x, y, ψ] of the

macro robot to the origin of {B∗}, as illustrated in 4. Since
the path is presented within {B∗} itself, B

∗
B∗ becomes

[0, 0, 0]. It should be noted that B
∗
P init is the first position

that the object has been detected in five consequent times.
The start point of the path is fixed in the global coordinate
and the end point is considered to be a relative coordinate to
the origin of {B∗}. Therefore, any change in the estimated
pose of the pallet will not cause a time consuming update of
the path by the planner. At the same time, any enhancement
in the pose estimation affects the goal point of the path. This
change leads to increments in the process time efficiency
for real-time VS tasks, because a request for an AI-based
path planning takes plenty of CPU time depending on the
complexity of the planner configuration space [11]. From the
B∗

P init point forward, the macro robot follows the motion

control signals to zero the path following errors in order to
minimize T−1e1 error.

Now, we define the error T T B, where {T } is a tangent
frame to the path attached to pd(τ), where τ ∈ [0, 1] is
the path parameter. It should be noted that {T } coincides
with {B∗} for τ = 1. The path following errors can now be
defined:

ex = [1 0 0 1] T T B
eψ = arg(T T B, ẑ) = arg(T TF , ẑ)

ey = [0 1 0 1] T T B = [0 1 0 1] T TF (11)

where the arg(., .) function returns the angle argument of
the rotational part of the transformation matrix around the
axis defined in the second argument (z-axis in this case).

Notice that errors in the yaw and y-axis are the same in
the body and in the fork frame. Therefore, if the machine
follows the path closely and the pose estimates are accurate
enough, the errors in the yaw and y-axis will be sufficiently
small when the fork frame reaches the pallet. This makes the
rotational part of (8) equal to (9) and (10). It should also be
noted that the closer the machine is to the pallet, the more
accurate the pose estimates. Therefore, even if the trajectory
of the body frame in the real world is initially not the same as
pd, it converges to it as the pose estimation errors decrease.
Note that it is possible to design the macro robot controller
as an eye-in-hand visual servoing problem, however, fol-
lowing the planned path is more robust [12]. Particularly,
in a multi-robot and multi-machine environment, the macro
robot’s path is supposed to be coordinated with the others.
Definition: Path following problem. Design a control law for
steering signal us to drive eψ and ey to zero. A solution to
this problem is devised in [9], which can be summarized as
follows. We showed in [13] that the motion of the front unit
of the GIM machine closely follows the kinematics:

ẋ=vxcosψ
ẏ=vxsinψ

ψ̇=ωz

(12)
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ωz=
lrβ̇+vxsinβ

lfcosβ +lr
, (13)

where β is the body articulation angle and lf , lr are ge-
ometrical parameters (see Figure 2). Notice that (12) is a
simplified version of [4]:

ẋ = vxcos θcosψ, ẏ = vxcos θsinψ

ψ̇ = ωz
cosφ
cos θ + ωy

sinφ
cos θ

(14)

in the horizontal plane, but it is accurate enough for feed-
back control. The solution in [13] provides a control law for
the desired angular velocity ωcz = CPF (ex, ey, eψ), where
the speed vx remains free and can be controlled separately.
Freedom in assigning the linear speed is instrumental in
our case, because without causing instability in the path-
following controller, the machine can be slowed down or
stopped. For example, in the case where manipulator errors
are not yet small enough, collision with the pallet can
possibly be avoided. Now, given ωcz , we use (13) to calculate
the required steering valve command:

β̇c = −vf
lr
sinβ+

(
lf
lr
cosβ+1

)
ωcf

us = Kβ̇c (15)

where we assumed that the valve command is proportional
to the speed of the body articulation.

D. Visual Servoing for the Micro Robot

As described in the previous subsection, the path follower
controller is capable of driving the macro robot to the
vicinity of the pallet with a fairly small error, {B} −→ {B∗}.
As a hydrostatic rough terrain forklift, the macro robot is not
suitable for the motions below 20cm in actuation accuracy
and repeatability, especially along its longitude. Therefore,
we use the manipulator to adjust the height and angle of the
forks (z and θ) in addition to compensation for the macro
robot error in the Bx direction. As shown in Fig.1, there are
three joint parameters and three degrees of freedom for the
micro robot such that:

q̇ = J(q)Kv (16)

θ̇1
L̇

θ̇2


 =



k1L sin θ1 k2L cos θ2 0
−k1 cos θ1 k2 sin θ2 0

0 0 −k3






vx
vz
ωy



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Fig. 6. Calibration of the camera’s extrinsic parameters.

in which the K stands for the coefficients of conversion
between the oil debit of hydraulic proportional valves and
their displacements, and the movements of the joints. Toward
this formulation, we define the errors in the x− z plane:

eφ = arg(F
∗
TF , ŷ)

ez = [0 0 1 1] F
∗
TF

ex = [1 0 0 1] F
∗
TF (17)

Recall that for small errors in the macro robot, these errors
can be considered as corresponding components of the error
tensor for the micro robot addressed in (10). If we limit
the control space to just the micro robot joints and degrees
of freedom, such error components can also be presented
as an error among the matched features introduced in (4),
transformed into the virtual camera coordinate:

evs =
FT C

(CSi − CS∗i
)

(18)

Substituting the PBVS control law as addressed in [14] and
[12], and to enforce an exponential decoupled decrease of
the error, we apply ˙evs = −λevs to derive:

q̇ = −λJ(q) K evs (19)

The manipulator actuators are driven by the pressure-
compensated proportional valves, and it is reasonable to
assume that:

u1 = c1sat(θ̇1) (20)
u2 = c2sat(θ̇2)

uL = c3sat(L̇)

where u1, u2, uL are the valve commands. Employing the
Lyapunov function V = 0.5k1e

2
x + 0.5k2e

2
x + 0.5e2φ, it can

be shown that the control law addressed in this section can
drive the micro robot errors to zero. In the equations above:

sat(a) =





1 if a > 1
−1 if a < −1
a otherwise

(21)

is a saturation function, and gains ci, i = 1, 2, 3 define the
velocity bounds of the actuators and unit conversions.
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E. Camera Calibration

Since the camera provides integrated photometric cal-
ibration, the camera calibration process consists of the
calibration for the intrinsic and extrinsic parameters. While
we assume that camera distortion is independent of its
resolution, the tuning of the intrinsic parameters has been
done through the Alvar toolbox [5] based on Open-CV
[15]. The only notable parts are the image’s bigger radial
distortion coefficients, r1 and r2, compared to the tangential
distortion coefficients, t1 and t2, of the camera image:

(r1, r2, t1, t2) = (−0.186,−0.039, 0.0002,−0.0147) (22)

Because the pose of the detected objects must be mapped in
different coordinates, calibration of the extrinsic parameters
becomes critical for the system. To overcome this issue, we
set up a cross-shaped base with nine markers as shown in
Fig.6 in the camera FOV. The body frame has also been
indicated by three additional markers. Then, the Cai vectors
representing the position of the markers in the camera
coordinate are extracted. The dij , i = (1, 2 . . . , 9), j =
(1, 2, 3) distances are measured, and the set of 27 equa-
tions are optimized to extract Bai components by hand
measurements. Transformation of the two representations of
all points extracted by the camera and hand measurements
gives the linear transformation between the two coordinates.
It should be noted that the vector between points 8-9 and
5-7 was calculated. The principle axes of the rotation matrix
can be written:

Rx =
a8 − a9

‖a8 − a9‖
,Ry =

a5 − a7

‖a5 − a7‖
,Rz = Rx ×Ry

(23)

IV. EXPERIMENTAL RESULTS
It is reasonable to assume that, in practice, the position

of the pallet is known with certain accuracy. In the case of
the GIM machine, the pallet locations are registered with
an accuracy of 0.5 m using on-board GPS and the inertial
navigation system after the last placement. This accuracy
is enough to send the machine to the proximity of the
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Fig. 8. Tracking filter output. Five representative tests

pallet, and therefore, the face of the pallet is visible to the
vision system. Based on this observation, we have set our
experiments as follows. In all the test runs, the machine
started from different initial configurations at distances of
7-8 m in front of the pallet and facing toward the pallet
with different initial headings. Initially, the lateral distances
of the body frame with respect to the center of the pallet
were in the range of 1 m. The machine then moves in a
straight line until the pallet is detected and the pallet tracking
filter is initialized. After the filter is initialized, PBVS is
activated. The on-board camera was a Gima GO423C with
1296 × 966 resolution. Recall that owing to the reduced
number of pulses per revolution of wheel odometry devices,
speeds under 0.25m/s are not reliably measured. Therefore,
in the experiments reported in this paper, we have set the
speed commands to a constant value of 0.3m/s or zero
(stop). The actual speed varied from 0.3–0.4m/s in the
test runs. We conducted a total of 13 experiments. The
experiments were conducted on a cloudy day between 14:00
and 15:00 in December 2012. A few of the final experiments
were performed with the machine’s front lights on1. All the
experiments were successful.

Figure 7 shows the trajectory of the body frame in
the pallet frame in the x-y pallet plane. For clarity of
presentation, we show only five representative tests: two
each starting from the left and the right side of the pallet
and one from the middle. This figure shows the marker
detection output before filtering. It can easily be seen that
detection is very unreliable at large distances and that it
improves as the machine approaches the pallet. Figure 8
shows the same trajectories after filtering. Notice that how
the trajectories have been smoothened out. Figure 5, shows
the pitch, yaw, and z-axis errors, respectively, versus time for
experiments 1-4 in four subplots (the numbers correspond to
the numbers in Figure 7). Some observations can be made
from these figures. The tracking filter starts long after the
vision output becomes available, and it continues producing

1In this latitude, sun sets around 15:00 in December.
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pose estimates even after the vision output is not available.
It is visually clear how the tracking filter has smoothened
the vision output.

V. CONCLUSION
In this paper, we introduced a position-based VS control

framework and a fault tolerant pose estimation algorithm.
This method was developed and experimented on a small-
sized forklift truck. The choice of the coordinate frames and
references provides a natural framework to divide the error
space into two orthogonal planes and to fuse the vision
output with the dead-reckoning data. One plane was then
controlled by drive-steering and the other, by the manip-
ulators. The redundancy resolution (along the x-axis) was
achieved by the state-machine (the details are omitted). Real-
world experiments showed the robustness and efficacy of the
methodology for the problem in hand. Future work includes
the optimal fusion of the image processing data with dead-
reckoning instead of averaging. A truly reliable integration
of vision into VS, especially in outdoor conditions, requires
the extension of the logic control and planning algorithm
for better exception handling. In real-world scenarios, there
are always broken pallets that make pallet detection a real
challenge. Alternative detection methods without the use of
markers, for example, using active sensors, will also improve
the reliability of the system.

APPENDIX I
PARAMETRIC PATH FOR THE EXPERIMENTS

For a smooth path in our experiments, we have used a
cubic Bezier curve,

B∗
P d (s) =(1− s)3B∗

P 1 + 3s (1− s)2 B∗
P2 (24)

+ 3s2 (1− s)3B∗
P 3 + s3B

∗
P 4

with the following control points:
B∗

P 1 = [ B∗
xinit

B∗
yinit ],

B∗
P 2 = [ B∗

xinit + 1.4 0 ],
B∗

P 3 = [ B∗
xinit + 0.7 0 ],

B∗
P 4 = [ 0 0 ].

(25)

This choice guarantees that path pd is tangential to the x-
axis of {B∗} at its origin. Therefore, the object is in sight
of the camera.
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Abstract This paper describes one of the challenging
issues implied by scientific infrastructures on a mobile
robot cognition architecture. For a generally applicable
cognition architecture, we study the dependencies and
logical relations between several tasks and subsystems.
The overall view of the software modules is described,
including their relationship with a fault management
module that monitors the consistency of the data flow
among the modules. The fault management module is
the solution of the deliberative architecture for the single
point failures, and the safety anchor is the reactive solution
for the faults by redundant equipment. In addition, a
hardware architecture is proposed to ensure safe robot
movement as a redundancy for the cognition of the robot.
The method is designed for a four-wheel steerable (4WS)
mobile manipulator (iMoro) as a case study.

Keywords mobile robot, autonomous vehicle drive,
architecture design, remote handling, cognition.

1. Introduction

Scientific facilities (SFs) and research infrastructures
are indispensable in realizing the dreams of human
beings. They necessitate a combination of state-of-the-art
technologies together with reliability, availability,
maintainability and safety (RAMS) [1]. The development
of autonomous or semi-autonomous mechatronic systems
for such an environment is a challenging issue. The
challenge arises when the facilities turn into hazardous
environments for humans and/or machines. In this case, a
robot is utilized in order to minimize human intervention

in the non-suitable conditions of the workspace. The robot
is used in order to reduce the risks for humans “as low
as reasonably possible or achievable” (ALARA or ALARP)
[2]. Consequently, it is not acceptable to employ robots
or any complex system in SFs if they will become an
insecure system which needs on-site maintenance [3].
Therefore, the service robot has to be safe in order to
avoid undesirable changes in the environment, and it
has to be fault tolerant in order to recover itself without
direct human intervention, especially for leaving the test
environment.

Figure 1. The four wheel steerable mobile manipulator (iMoro).
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This necessity is a key requirement for such a robot or any
device acceptable for SFs [4].

The aim of this paper is a discussion of a fault-tolerant
architecture for the fulfilment of the above-mentioned
requirements as well as common needs for service robots,
such as flexibility and modularity.

The contributions of this paper can be divided into
higher-level strategies and lower-level practical issues for
design improvements of a safety standards-compatible,
fault-tolerant robot for SFs. This paper reflects the
decomposition of a high-level mission to generate several
commands and the structural behavior of the robot.
Next, we describe the necessary modules for achieving
the required functionalities of the robot. Moreover, to
make the robot compatible with safety requirements,
a safety anchor is proposed to provide a low-cost
redundant decision-making unit. It maintains the robot’s
behavior during its mission as well as its exit in the
case of unforeseen problems. The design considers
the requirements for a robot tasked to explore the
Large Hadron Collider (LHC) tunnels of the European
Organization of Nuclear Research (CERN) as a sample SF.

Generally speaking, a cognition architecture can be
divided into four control schemes: deliberative, reactive,
hybrid and behavior-based [5];

Deliberative Sense, plan, and then act.

Reactive React on a predefined action to a perception
relation.

behavior-based Distribute thinking over acting.

Hybrid Combine deliberative and reactive – think slowly,
react quickly.

Although all autonomous robots have to include
deliberation [6, 7], a pure deliberative architecture
cannot accomplish the requirements of contemporary
applications [8]. In some cases, it is used in assisting the
operator using autonomous functionalities, and in order to
predict possible accidents [9]. A study conducted recently
addressed several aspects of a deliberative control schema
as a divide-and-conquer problem-solving strategy [7].

The hybrid control topology is developed to overcome
the limitations of deliberative control and reactive control.
It uses the reactive control scheme to respond to
environmental changes and high-level planning to handle
complex tasks [10, 11]. During this research, we partially
apply a hybrid control topology for the architecture of
a mobile platform. Moreover, the safety of the mobile
manipulator is another issue addressed in this study via
a service robot with a lightweight arm [12].

The aim of this paper is to determine a strategy for
utilizing a mobile manipulator in inspections planning
and scheduling [13] and interventions instead of human
intervention[2]. In order to lower the risks, it is
more reliable to control the behavior of the autonomous
identification or model-based control process by a
safe configuration [14]. We propose a redundant
safety-compatible architecture to tolerate the faults of the

main architecture. It contains a set of actions activated by
pre-selected processes through triggers.

2. Problem Definition

This paper represents an architecture for a Modular Mobile
Manipulator System (MMMS) to be used as a road map for
the design and implementation process of mobile robots
targeting SFs. The concepts are designed based on the
statement of needs and requirements as a part of the
PURESAFE project systems engineering documents[4].
The project, “Preventing hUman intervention for incREased
SAfety in inFrastructures Emitting ionizing radiation”
(PURESAFE), has been initiated to advance theoretical
and experimental knowledge regarding semi-autonomous
mobile manipulation within the ionizing radiation and
contaminated environment of accelerators, in particular
the tunnels inside the European Organization for Nuclear
Research (CERN) and the GSI Helmholtz Centre for
Heavy Ion Research, Facility for Anti-proton and Ion
Research (GSI/FAIR). While perception and navigation
are challenging issues for mobile platforms, robot
intervention in SFs and hazardous environment imply
more significance of architecture design considering fault
tolerance and safety in robot cognition.

Although a variety of requirements should be considered
in the architecture design of the robot, we only discuss
a sample solution to a task scenario described in 2.1. In
addition to the challenging issues of mobile manipulator
architectures, this research considers an important and
mandatory constraint for the robot:

“As a service robot, the robot should not cause
human intervention in the test environment. In case
of failure in mission, it should be able to return to its
station.”

This restriction affects the risk assessment results and
highlights the immobility of the robot as the most severe
failure of the robot. Moreover, the presence of the robot
in the neighborhood of scientific test equipment during
operation or maintenance time, arises failure severity even
with a low occurrence chance. For instance, any damage
to the experiment infrastructure results in a SF shutdown
and human intervention in hazardous environment. The
robot perception, planning and navigation should be safe
and reliable so as to guarantee avoiding any destruction
or unplanned shutdown in the SF and to ensure the
robot’s ability to escape from the test environment in
an emergency. To overcome this problem, the proposed
architecture design of the robot will be addressed in the
following sections. We use IHA Mobile Robot (iMoro) as a
case study for experiments and the simulations proposed
in this paper. It is also under investigation for the further
development of robot intervention for SFs by Tampere
University of Technology.1

Similar to other complex systems, SFs are the subject
of frequent inspections and maintenance during their
lifetimes. Moreover, modifications, repairs and inspections
have to be accomplished over a short duration to
prevent the shutdown of scientific experiments, aging of

1 Robot videos are available at: https://www.youtube.com/channel/UCxemrk8NrIj-db6h06VBVLA
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the robot body, the effects of ionizing or non-ionizing
contamination, and hardware corrosion. In the following
section, we will define a sample mission for iMoroand
describe the necessary hardware and software components
in the rest of the paper that are compatible with the
described constraints.

2.1. Task Description

A mobile manipulator can have wide range of applications
within SFs. In this section, to summarize the system
description, the authors define a mission as a sequence
of tasks to develop necessary hardware and software
components. A sample inspection covers the following
description:

Mission Receive commands on control room
Human Machine Interface (HMI): In point “A”, Fast
forward to section “B” addressed on the CAD-based
map. Prepare for tele-operation around the device
number “36” and then inform the operator for
a semi-autonomous operation. Touch the object
defined by the operator. Inspect the area defined
by the operator and transmit preliminary results.
Finally, come back to your station and give detailed
data report. 2

To task the robot mobile manipulator inside a hazardous
area of a SF, there are several limitations and requirements.
Some of the key requirements are listed below:

Requirement 1. The physical or chemical effects of
materials and test equipment in the environment can
affect the work performance and lifetime of electrical
components.

Requirement 2. The facilities are mostly designed for
humans, the test equipment or special machines
accessible through different corridors. There is no
dedicated environment or specific landmarks - or
setups for a robot except its station. In other words,
the environment is unstructured for a robot.

Requirement 3. A lack of communication can frequently
occur. The robot shall be tolerant to failures of Wi-Fi
or delays of GSM transmitted signals.

Requirement 4. The purpose of utilizing a robot is
to prevent human intervention in hazardous
environments. Therefore, during the operation of the
robot, the area is not suitable for humans, and all robot
operations shall be remotely controllable.

Requirement 5. In case of failure, the robot should be able
to leave the SF.

Considering these requirements, the mission can break
down into sequential tasks. Since, in most cases,
the mobile manipulator applications are similar to the
described mission, we describe here those tasks, while we
describe the overall solution later on.

Task 1. Initialization
Get the global map IM, initial pose ITB0 , destination
ITB f

3, a final workspace IW, the initial status
of the robot, and calibration parameters. Monitor
output of the sensors and command their initialization.
Verify their functionality and consistency with the
initialized variables. Initialize the actuators. Perform
a predefined motion and examine the actuators and
sensors by verifying the consistency of the commands
and feedback.

Task 2. Planning
Convert the global map into a 2D occupancy grid IM′.
Plan an energy-optimal obstacle-free path from ITB0

to ITB f within IM′. Plan for wondering around the
position ITB f within IW. Estimate the elapsed time
and power consumption for all of the future tasks
programmed within the mission with a safety margin.
Compare the power status of the batteries with the
estimated power consumption. Wait for extra charge
in case of insufficient power.

Task 3. Autonomous Running Mode
Run these modules in parallel, repetitively:
Perception Perceive any change in the environment

and status of the robot compared to the preliminary
planned motions.

Planning Look–ahead and plan for local movements
regarding the high–level commands received and
the local obstacles and costs for doing the job.

Actuation Run the planned actions while receiving the
joints’ feedback for the closed–loop actuator–level
control.

Exception Handling In case of single point failures,
bypass the current sequence and save the algorithm.
Batch the logs and transmit to the supervisory room.

Fault Detection Once a while, conduct a survey
among the software and hardware modules with
their model. In case of the detection of unpredicted
motions and feedback signals, decide for one of
these solutions. Run the relevant fault management
component. Call the operator for decision making
or manual driving. Run the Safety Anchor
(described in Section 5 ).

Watchdog Independently maintain surveillance of the
robot software and hardware modules during the
operation.

Task 4. Update Mode
After reaching the target position, map the workspace
on a detailed map. Extract the optimum features
for accurate localization. Define the local stationary
coordinate attached to the features. Obtain
transformations between the new coordinate and
the predefined coordinates. Upload the collected
information to the supervisory room while considering
possibility of data loss and a delay in connection.
Finalize the autonomous mode and switch to the
semi-autonomous mode. Call the operator through
all of the available networks, such as Wi-Fi or GSM.

2 The numbers and names here are only samples for non-quantitative addresses by the operator.
3 It should be noted that ATB stands for the homogenous transformation representing a coordinate frame B with respect to another coordinate frame A
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Task 5. Tele-operation Mode
Let the operator define the movements in the virtual
environment and execute the commands in order.
Update the current status for the operator by the
minimal transmission of data to overcome any lack of
connection bandwidth and to enable the possibility of
augmented reality. In the case of selecting an object,
run the visual servoing to approach the vicinity of the
target object and do any inspection or manipulation
as commanded by the operator. At the same time,
maintain the prediction of power consumption. Set an
alarm when the power reaches the limit of the safety
margin. Quit from the position if the operator has
finished the operation or else if the power limitation
implies a forced return.

Task 6. Finalization Mode
Return to the nearest safe station. Set all the actuators
to their home positions. Next, transmit all the gathered
data by the high bandwidth connection, including the
final status of the robot and its components and the
evaluation of the modules that are gathered during run
mode. Clear any temporary information. Recharge the
embedded power source.

Task 7. Standby Mode
Turn off any high-consumption hardware and keep the
control blocks in sleep mode. Wait for the next trigger
and another mission.

According to the tasks and their descriptions, the rest
of this paper gives an overview of the hardware and
then describes the necessary software modules and the
architecture designed for the concisely described tasks.

2.2. Sensors

The robot is equipped with several sensors to collect data
from its components and the environment. We describe
them in the following subsections.

2.2.1. Laser Range Finder

(LRF) The laser scanner or LRF provides a 2D map of
the environment based on the reflection of its infrared
beams. The output data comprise pairs of distance and
angle based on a predefined polar coordinate attached to
the {LRF} coordinate. The origin of {LRF} which is
virtually defined as attached to the axis of rotation of its
motor in such a way that the +z direction is collinear to
the axis of rotation. Therefore, all the transmitted points
rely on the x − y plane of {LRF}. The corresponding
Cartesian representation of the detected point number k
by the laser scanner can be defined as LRFΛk(xk, yk, 0).
The number of detected points during one scan, max(k),
depends on the field of view (FOV) and the angular
resolution of the laser scanner. Note that the source
of systematic and random errors in the positions of the
detected points are still in the polar coordinate as errors in
the distance and angle [15, 16]. We can write for the vector
of points:

BΛLRF = BTLRF LRFΛ (1)

The output of the laser scanner determines the position
of the robot relative to its environment by a Simultaneous

Localization and Mapping Toolbox (SLAM) as described in
Subsection 4.2. Moreover, its output can be a local map
for obstacle avoidance and heading estimation.

Despite the fact that the LRF is a robust sensor for the
navigation of the mobile platform, it fails in the detection
of transparent and reflective materials in the environment
[17]. It is also hard to detect darker materials at longer
distances. Regarding these issues, the sensor can be
considered as a safe sensor for short distances (under
20m). Besides the accurate distance angle measurements,
it is possible to define warning zones on the same plane.
In this case, the scanner transmits the corresponding
situation of each zone. This communication can be safe
and totally independent of the points measurements, and
can be utilized in the safety anchor mechanism described
in Section 5. The warning zones can be defined as relay
outputs or logical switches on the hard-wired network.

2.2.2. Wheel Odometry

Each wheel of the robot is equipped by an encoder on
the steering and driving servo motors. The measured
values for the joint parameters used in the kinematics
and then in the path-following controller are estimated
based on these data. The steering actuators provide φi
as a feedback, and the driving actuators feed the driving
speeds vi. These parameters have been used to determine
the velocity vectors of each wheel as shown in Figure 2.
The resultant data determine the robot’s velocity v and
angular velocity ωb and motion direction ψv.

2.2.3. Current Sensor

The overall current of the mobile manipulator passes
through a current sensor. The measured sensor data can
be used for the power consumption and then for the
estimation of the remaining autonomy time. Moreover,
it can sense any abnormal electrical loss during standby
or the run-time of the robot. The energy management
methods[3] are also applicable to analyze the information
gathered from this sensor.

3. Kinematics

Figure 2. Denoted kinematic parameters.
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In this section, we present a kinematics formulation in the
velocity space for the 4WS mobile platform. Although the
equation is quite straightforward, it embeds substantial
information pertinent to the relative velocities of the body
and wheel modules. A general solution is then given for
estimating the body’s linear and angular velocity using
kinematic constraints and encoders data. The solution
uses the least squares method to measure the relative
consistency of the legs’ velocities, thus detecting faulty
encoder data. The mobile robot can be fully functional
even after losing the functionality of one of its wheel
modules. Hence, this approach can be used to single out a
faulty leg during the robot’s operation.

3.1. Inverse Kinematics

Figure 2 shows a schematic view of a 4WS mobile robot.
The denoted parameters for the configuration of the body
and the leg modules are presented in the figure. The
coordinate frame U{X̂ , Ŷ } is the inertial frame. Frame
B{x̂, ŷ} is a fixed-body frame defining the heading of the
robot, and Bv{v̂, û} is the velocity frame, that is, the unit
vector v̂ determines the direction of the robot’s base linear
velocity vector. Both B and Bv are attached to the robot’s
base at point Q, which can be chosen at will. The angles
ψv and θB are the angles v̂ and x̂, respectively, in U . The
scalar value v is the magnitude of the linear velocity of
point Q. The variables ωB = θ̇B and ωv = ψ̇v are the
angular velocities of the base and of v̂, respectively. The
constant vectors

−−→
QLi presented in frame B are denoted

by B`i, i = 1..4. The angle φi is the heading angle of the
ith leg while viv̂i is the velocity vector of the attachment
point Li. The steering and speed control commands for leg
i are calculated using φi and vi, respectively. The following
kinematic relations hold:

B v̂ = R(ψv − θB)[1 0 0]T (2a)

vi
B v̂i = v B v̂ + ωB(ẑ×B `i) (2b)

in which, ẑ = [0 0 1]T and R(ψv − θB) is the rotation
matrix with angle ψv − θB around the z-axis, that is, frame
Bv in B. For motion control purposes, once the control
signals ψv, ωB and v are calculated for the body frame,
the desired signals φi and vi can be derived using above
kinematics equations. Notice that only angle φi and not its
derivatives appears in (2a-2b) as the angle of vector B v̂i.
This fact justifies having steering actuators to be controlled
in position mode.

3.2. Forward Kinematics

As mentioned earlier, the speed of the drive actuators and
the positions of the steering actuators are measured, that
is, positions φi for the steering actuators and speeds vi for
the driving actuators. In this subsection, the goal is to
derive ψv, ωB and v based on the encoders’ measurement
data, that is, the sets {vi, φi} for i = 1 . . . 4. Clearly, the
relative velocity of the wheel modules with respect to each
other must be zero. In other words, the set {vi, φi} applied
to a leg should be consistent with other sets. Although
the set points for the steering and drive commands are
derived based on the equation (2b), and hence consistent,
the actual value of the actuators’ encoders will not comply

exactly with the kinematics relations due to different loads
and different servo dynamics. Since the legs are connected
to a rigid base, this inconsistency causes the legs to slip
with respect to one another. This slippage is different
than the overall slippage of the robot, and cannot be
observed through odometry data. In order to measure the
consistency of the actuators’ actual values, we define the
following measure:

ei =
1
4

√√√√
4

∑
j=1,j 6=i

e2
ij , i ∈ {1, 2, 3, 4} (3)

where:

eij = (vi
B v̂i − vj

B v̂j). `ij (4a)

`ij =
B`i −B`j

||B`i −B`j||2
(4b)

In the above equations eij is the relative velocity line Li
to Lj. Clearly, if both wheels are synchronized perfectly
and no slippage occurs, eij is zero. However, as explained
before, in practice these variables are not zero and the
value eij indicates the relative slippage of the wheel
modules i and j. The variable ei is the measure of the
relative slippage of one wheel with respect to the other
three wheels. In practice, for the mobile robot to move
properly, all eis must be small. The value of eis determine
the overall consistency of wheel i with respect to the other
modules. Several cases can be considered for different
values of ei.

• In the case where:

min(ei) > emax (5)

this means that the legs are somewhat faulty and that
they are not consistent with one another. Observing
such a condition for a pre-specified interval of time
should cause the controller to issue a fault signal to stop
the robot.

• If ei is large only for one wheel, it can be interpreted
such that the wheel is not consistent with the other
wheels and that it is being pushed by them. In this case,
different strategies can be considered, such as stopping
the robot or singling out the faulty leg from the control
loop and setting the actuators of the faulty wheel to
rotate freely.

• Alternatively, more complex strategies can be designed
based on the robot’s assigned task and application.

After calculating ei for all the legs and evaluating their
values, the forward kinematics problem can be solved as
follows. Let B v̂ and B v̂i be denoted by their components
by [vx vy]T and [vix, viy]

T . Next, (2b) for all the legs can be
rearranged into the following equation:

A




vvx
vvy
ωB




3×1

= B (6)

in which:

AT =




1 0 . . . 1 0
0 1 . . . 0 1
−l1y l1x . . . −l4y l4x




3×8

(7a)

BT =
[

v1x v1y . . . v4x v4y
]

1×8 (7b)
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Obviously, in the general case the matrix equation (6)
consists of eight equations and three unknowns. A simple
least squares solution is given by:




vvx
vvy
ωB




3×1

= A†B (8)

Note that the elements of A are the only function of
the constant vectors B`i. Hence, A† = (AAT)−1AT

needs to be calculated once. In practice, we need at
least three rows of matrices A and B to solve the forward
kinematics. Thus, one way to improve the solution is to
eliminate the inconsistent wheel module and eliminate the
corresponding rows from (6). Our strategy is based on
isolating the leg with a maximum of ei. Next, the rows
with respect to that leg are eliminated from matrix A in
7a and the least squares is calculated based on this new
matrix. In [18], we show the efficacy of the above strategy
and further details of the implementation of this approach.

4. Robot Software Modules

4.1. Dead Reckoning

Generally speaking, the time integration of the velocity
vector – known as ’deductive reckoning’ or Dead Reckoning
(DR) – for a mobile platform gives its approximate position
with respect to its initial pose [19, chap. 20]:

IxB(t) = IxB0 +
IRB0

∫ t

t0

B0RB Vx(t) dt (9)

IyB(t) = IyB0 +
IRB0

∫ t

t0

B0RB Vy(t) dt (10)

IRB(t) = IRB0 Rz(θB (t)), θB (t) =
(∫ t

t0

ωz(t) dt
)

(11)

The driving velocities of the wheels as regards their
steering angles and robot kinematics can generate
fundamental data for the localization of the mobile
platform.

4.2. SLAM

The errors for the mobile manipulator are accumulative
during its motion. In order to reduce the errors, it is
necessary to compare the position of the mobile base
with respect to its environment. The SLAM [20] method
provides the change in location of the robot according to
its initial configuration. Moreover, it provides the local
map of the environmentIM′, which is convertible to an
occupancy grid for the planning module.

4.3. Path Planning

The path-planning module comprises two modes: local
and global planning. The planner initially plans the
required path through requests from ITB0 to ITB f
as described in Task 2, namely a global plan. It
considers a configuration space extracted from IM′ based
on the initial information and the foreknown structural
conditions [21]. The global planner generates a set of via
points, ITBvia, which channelizes the route to approach
ITB f .

The module also implements local planning. It receives
the current status and some of the upcoming via points,
together with the current local map BM imported from the
SLAM module based on the LRF sensor. The outcome of
the module is a segment of a smooth and obstacle-free path
passing near the via points. It can also be extracted from a
motion-planning roadmap framework [22, 23].

4.4. Path Following

A path follower controller navigates the robot on the
given path and returns the resultant pose. The
path-following module considers actuator limitations at
maximum velocity and acceleration [24–26]. The path
follower also avoids obstacle on the robot’s route.

4.5. Mobile Manipulator Controller

Manipulators are usually provided together with their
specialized controllers. However, coordinated tasks have
to be performed synchronously between the path follower
for the mobile base and the arm controller [27]. We use
a mobile manipulator controller to close the outer control
loop that follows the task commands distributed among
the mobile base and the arm in a similar manner to [28].

Desired Path

Path Follower

Arm Controller

Optimal
Distribution

Actuator Level
Controllers

Actuator Level
Controllers

Figure 4. The loop for the synchronization of the mobile
manipulation tasks.

4.6. Fault Management

Besides software fault detection and fault-tolerant
techniques [29], it is necessary to monitor, verify and
recover the robot’s sensory data and actuator commands
from the instrumentation and control viewpoint.
This section contains a brief explanation of the fault
management module’s functionalities. As a general
requirement for the fault tolerance of safety-critical
systems [30, chap.1], the robot has redundancy in actuation
and sensation. Four steerable wheels [31] reduce the risk
of immobility caused by the mechanical hardware. The
wheel odometry, IMU, laser scanner and camera provide
redundancy for the perception of the robot. The fault
management module’s job includes:

• Monitoring the input and output of the other modules.
• In the case of a single point failure of a module, using

an alternative function.
• Verifying the consistency of the resultant sensory

information from the different sources, for each sensor
as well as results of sensor fusion:

∆T = BTS1

(
BTS2

)−1
(12)

where S1 and S2 are the localization or detection data
from Sources 1 and 2, respectively. For a perfect system,
∆T becomes the identity 4 × 4 matrix. It should be
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Figure 3. The robot’s software and hardware modules.

noted that the inverse of a transformation matrix is
calculated by the transpose of its rotational part as
addressed in [28]. Therefore, this calculation cannot be
singular. Arguments of ∆T represent the inconsistency
of the gathered information.

• If ∆T − I4×4 gives a sensible difference, the module
learns the difference.

• In case of a change in the learned difference, it calls
the calibration maintenance module which in turn
calibrates the divergent sensor.

• In case of unacceptable divergence of the primary
navigation sensors, the module suspends the motion
of the robot and reports its status. Following the
confirmation of the operator, the control changes to
tele-operation mode.

Some errors can be solved by outlier detection and the
substitution of the fused values. For instance, in the
following we describe how, at each segment of the path,
the module compensates for small errors between the
position and velocity feedback of the wheels.

The localization is obtained by dead-reckoning of the
odometry data as described in the previous section. The
iMoro mobile platform shown in Figure 1 is used to run
the experiments. The desired path that is followed by the
mobile platform is a cubic Bezier curve with its control
points located at {(0, 0), (2m, 0), (2m, 2m), (0, 2m)}. The
path is used with two desired heading profiles. Figure 5
shows the body and legs trajectories for following the path

with 180◦ rotation of the main body. Moreover, Figure 6
shows the same trajectories, this time for −90◦ rotation of
the body. Figure 5 also depicts the estimated location of
the body’s Instantenous Center of Rotation (ICR) during its
movement as red dots.
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Figure 5. Experimental results: the robot’s trajectories, 180◦

rotation.
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Figure 6. Experimental results: the robot’s trajectories, -90◦

rotation.

Figure 7. Experimental results: Least squares error before and
after the elimination of the outlier leg.
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Figure 8. Experimental results: leg number for the most
inconsistent leg.

The forward kinematics solution is solved both with and
without eliminating the leg with maximum ei. Figure
7 depicts the pseudo-inverse error before and after the
elimination. From the figure, it is clear that the error
is reduced considerably by eliminating the leg with
maximum ei from the forward kinematics solution.

Figure 8 shows the sensor number with the biggest ei at
each sample time. From the figure, it is clear that, at each

period, a different leg has maximum ei. This is due to
the change in the dynamic loads acting on each leg during
movement. Having one specific leg with maximum ei all
the time could indicate a defect in that leg.

5. Safety Anchor (SA)

It is a key requirement for a robot in SFs to be safe or at
least compatible with the safety standards’ requirements.
The first solution is to make the whole system certified
by the safety integrated standards, for instance, the
Safety Integrity Level (SIL) II or SIL III standards.
The solution is suitable for mechatronic systems with
lower flexibility and mass-produced products due to
its complexity and cost. On the other hand, the
perception and navigation of the mobile platform include
a variety of procedures and instruments which are
not necessarily safe. For the software, certain test
techniques exist for the verification of the safety standards’
compatibility. However, there are many issues confronting
the verification of decision-making for an autonomous
robot, even for industrial controlled environments, if we
assume that the robots are Automated Guided Vehicles
(AGVs). Moreover, the compatibility of the processes
and the required modules for decision-making cause
an increase in the robotâĂŹs production costs and
verification complexity. Furthermore, the robot must be
equipped with safe instruments and safe process units,
which is impossible for several sensors. For instance,
vision-based estimations and acceleration measurements
are not compatible with the current safety regulations.

In order to make the system tolerant to faults in these
modules, we define a redundant controller. The controller
is supposed to be safety compatible for both the hardware
and software. The software must be reactive and simple,
and therefore easy to examine. The hardware requirement
for such software becomes suitable for implementation on
a safe Programmable Logical Controller (PLC) or any other
safe process unit. It should be noted that target application
for this design comprises tunnels and corridor-shaped SFs.
Locally, the watchdog on the robot, and remotely, the
operator, can trigger the SA when the functionality of the
robot is not as expected.

5.1. Hardware Architecture

A schematic hardware architecture of the mobile platform
is shown in figure 9. The sensors and actuators are
connected to the embedded PC, which runs all of the
necessary cognition subsystems. The embedded PC is
connected to the motor drives, arm joints, laser scanners,
cameras, IMU and encoders. Most of the robot sensors
provide the perception of the robot and its environment
for object manipulation. The embedded PC is the target
of the remote development method described in [32]
during its run-time and debugging and the development
of its algorithms. It should be noted that any failure
in the embedded PC during its run-time can cause the
immobility of the robot or a collision with other facilities
in the environment.

In order to avoid failure, the authors propose adding a
safety anchor topology as a redundant decision-maker for
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the mobile platform, as shown in figure 9. During the
robot’s run-time, in case of any embedded PC failure,
the safety PLC can be triggered by the watchdog or
supervisory system to manage the mobile platform in
escape mode by a reactive controller. Ignoring complex
mathematical procedures and high-level algorithms, the
PLC solves the navigation problem at the lowest possible
level to guide the robot to safe places [33] before the
operation of the accelerators. The redundant system can
benefit from off-the-shelf, safe and certified components to
guaranty the safety of the system.

The LRF sensors provide for the availability or occupancy
of any predefined zone by toggling the corresponding
signal. The signal goes through the logical circuits of
the PLC. By limited conditional statements programmed
on the PLC, the system reacts by commanding the motor
drives in real-time. Since the logic, codes and connections
are reactive, time-invariant and simple, their verification is
easier and more dependable. In the same architecture, we
can also program and utilize the embedded PC by means
of the remote development method described in [32, 34].

Field Network

Safety Commander

Servo Motor Drivers and Encoders

Safety Sensors
Embedded PC Perception and Navigation Sensors

IMUBumblebee XB3

Manipulator Joints
Servo Motors and Encoders

Force/Torque
6DOF Sensor

Gripper
And Smart Finger

Figure 9. The hardware architecture related to cognition; the
yellow parts are the proposed safe components.

5.2. SA Logic

The hardware described in 5.1 needs a special setup,
adjustment and programming. The LRF zones need the
warning and alarm zones to be set up similar to the zones
shown in Figures 10, 11 and 12. The reason for using
the LRFs is their flexibility in the definition of sensitive
zones and their compatibility with the safety standards.
Generally speaking, the pseudo-code for the PLC can show
the reactions between the sensors and actuators in Table
1. It should be noted that the system design is reactive.
However, for the clarity of the commands’ order, it is
shown as a sequence of commands.

1 I n i t i a l i z e the sensors .
2 Disconnect the a c t u a t o r s from the embedded PC .
3 Stop the wheels .
4 Align the s t e e r i n g .
5 Read LRF output .
6 Adjust the drive speeds by v i s i b i l i t y of o b s t a c l e s .
7 S t e e r the robot .
8 When robot arr ived , f i n a l i z e the movement .
9 Return to 5 .

Table 1. The pseudo-code for the PLC.

Figure 10. LRF zones, crab steering.

Figure 11. LRF zones, robot spins around.

Figure 12. LRF zones, cross movements.

Furthermore, in the solution, we consider the conditions
in SFs. For instance, it is common that the experiment’s
infrastructures are located at one side of a tunnel or
a corridor - as they are at CERN LHC or GSI/FAIR -
and the transportation corridor usually runs along beside
them in parallel or circular patterns. Therefore, within
the path-selection routines, we give higher priority to
following the simpler wall of the corridor. According
to Table 1, let us divide the navigation into two parts:
the determination of the robot’s velocity (driving), and
steering. In the upcoming paragraphs, we describe the
overall idea and the benefits of a 4WS mobile robot for this
purpose.
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The robot’s steering capabilities, as described in Section
3, include a vast area of selection and calculation so as to
determine it for each wheel of the robot [24, 35]. However,
a robust solution, a dependable implementation and a
reliable verification method for such calculations become
complicated, especially if a safe solution is required. Recall
that the robot’s immobility is a high-severity failure. For
the purpose of simplification, we assume that the robot has
only two types of steering: crab steering and spin around
to keep the detection [36], planning[37], kinematics, and
control [26] simpler than contemporary solutions.

5.2.1. Crab Steering

Crab steering means that the angular velocity ωB, shown
in Figure 2 and mentioned in (2b), becomes approximately
zero. In other words, the instantaneous center of rotation
(ICR) goes to infinity. As such, (2b) becomes:

vi
B v̂i = v B v̂ (13)

This means that the velocity vectors of the body and legs
become parallel (or equal) to each other. In such a case, it
is not necessary to solve the system of kinematic equations
of the robot and the direction of B v̂; body’s velocity vector
defines the wheels’ steering angles B v̂i. Any change in the
steering comes from the change in the body’s movement
direction (not the heading). In this case, the robot can
continue with high-speed linear motion up to a sensible
change in the velocity direction regarding the actuator
limitations.

Crab steering activates when the robot is approximately
parallel to the simpler wall of the corridor while the robot
has obstacle in front as shown in Figure 10. The crab
steering maintains the distance from the side obstacles or
walls without lowering speed. The magnitude of velocity
vector v is proportional to the proximity of the obstacles
in front of the vehicle. It should be noted that, instead of
a distance measurement, a corresponding number for the
zone is considered.

5.2.2. Spin Around

There exists another method which leads to a
significant simplification of the complicated path-follower
kinematics. The 4WS robot can turn around on the spot
without any linear movement, or negligible translational
movements. In this case, the ICR converges into the
centroid of the robot. In this case, another term of the
velocity analysis becomes zero. The kinematics relations
in (2b) become:

vi
B v̂i = ωB(ẑ×B `i) (14)

which shows the constant angles of the wheels
perpendicular to B`i. Therefore, the change rate of the
heading defines the driving velocity of each wheel vi while
v v̂ - the linear velocity of the body - becomes zero.

6. Conclusion

In this paper, we study the architecture of a mobile
platform. The overall architecture, including a variety
of software modules, is studied in detail, and is suitable

for risk assessment and RAMS analysis. Moreover,
a top-down strategy is described to show how a
high-level mission can be broken down into several
tasks as well as which hardware/software are required
to accomplish the mission. In order to consider safety
concerns in Scientific Facilities (SFs), we propose “Safety
Anchor”, a redundant decision-making system that can
ensure that the robot leaves any hazardous environment
without the presented cognition architecture. Moreover,
Safety Anchor guarantees meeting the challenging
limitations of the actuators by solving the kinematics
of the robot in its simplified form. The specifications
and design requirements of a four wheel steerable
mobile manipulator, the IHA Mobile Robot (iMoro), are
considered as a case study in this paper.
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A Multistage Controller with Smooth Switching
for Autonomous Pallet Picking

Mohammad M. Aref, Reza Ghabcheloo, Antti Kolu, and Jouni Mattila

Abstract— This paper addresses the problem of pallet pick-
ing by an Articulated–Frame–Steering (AFS) hydraulic ma-
chine. We propose a macro–micro visual mobile manipulation
architecture, where a smooth switching logic navigates the
robot to pick an object. The state space is divided into several
regions depending on the accuracy of the vision and robot’s
degrees of freedom. The control architecture benefits from
the following phenomena: at distance, when the location of
the object of interest is detected, its orientation may not be
reliably estimated; at some closer distances, orientations also
become available; and because pallets are wide with small
height, yaw angle estimation are more accurate than pitch
is. The switching logic is devised to control the corresponding
degree of freedom of the mobile manipulator in each region.
Moreover, in different regions, we employ different coordinate
frames, namely an earth–fixed frame or an object–local frame,
which is more natural for the problem in that region. We
show that the architecture accomplishes the following: 1) it
eliminates the need for replanning as the accuracy of pose
estimation improves; and 2) it provides the mobile base with
a longer corridor to steer toward the pallet and align its
heading. We also incorporate a robust, accurate solution based
on fiducial markers for object manipulation in unstructured
outdoor environments and unfavorable weather conditions,
which relies solely on a monocular camera for pallet detection.
The presented experimental results demonstrate the superiority
of the method, as the model starts following the target even
when the pallet is still 6m away from the vehicle.

I. INTRODUCTION

Autonomous Pallet Picking (APP) as a control system en-
compasses three main elements, as follows: sensing, control,
and mechanical actuation. Forklift machinery, particularly in
outdoor applications, usually has a low actuation number.
The logistics industry is price conscious, and except in rare
case, an increase in degrees of freedom or maneuverability
is not favored. This gives rise to several challenges ranging
from designing an APP motion controller for nonholonomic
mobile platforms with under-actuated manipulators to object
recognition and pallet detection methods.

For vision-based controllers, error in the target detection
and limitations of the mechanical system are both common
sources of error [1]. A proper controller should overcome
both obstacles improving the overall performance. In the
literature, many studies focus on one of these issues over
the other. A group of studies gives more weight to the pallet
detection problem. Pallet detection and the integration of a
visual sensor in the control topology is the main focus in
[2], whereas [3] aims to correct the data while approaching
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Fig. 1. Control topology for Multistage Macro-Micro Visual Servoing

the pallet. Most of these works employ at least two cameras,
a monocular vision system with defined CAD models [4],
or both a laser scanner and camera [5].

Typically, the maximal range of the vision detection
methods become 3 to 4m in front of the vehicle for known
targets. For instance, the reported maximal detection ranges
are as follows:
• 3m for the CAD–based method in [4];
• 4m for the double–sensor architecture in [5];
• 3.7m for mobile camera–space manipulation (MCSM)

with stereo vision [6], [7];
• 3.5m for the authors’ previous work [8]; and
• 2m for different sized pallets using a laser scanner [9].

Only research including multiple-view laser scanners pro-
vides longer distances for the forklift configuration space,
specifically 6m [10], [11]. Therefore, regardless of the object
detection method, suitable sensory information is available
only in the close vicinity of the object. For large articulated–
frame–steering machines with reduced mobility, the ap-
proach angle must already be corrected from larger distances
to avoid the need for extra back and forth maneuvers.

Our method for APP is capable of detection and control
of the pallet picking from 6m with only a monocular vision
system. The method improves the macro–micro controller
[8] via a step–by–step switching among the control modes
and path segments to incorporate marker detection data to
the extent of its validity. Its immediate result is a broadened
configuration space with higher impact and a greater appli-
cation area. The method does not impose any limitations on
the detection methods. Therefore, it is capable of integrating

75



any vision, time–of–flight, or range sensors that are suitable
for object detection.

There have been multiple controllers proposed for object
manipulation and pallet picking in the literature. Some of
them navigate the robot in the image space or camera
coordinate, for instance, the MCSM method [12], [12], [7],
[13], [14]. The intrinsic complexity, nonlinear dynamics,
and nonholonomic constraints of such machines make the
motion control problem a difficult task [15], [16], [17], [18].
It requires requires the application of path planning and
following algorithms for APP [19],[11], [20]. The docking
problem also involves similar challenges [21]. One of the
fundamental issues for these categories of APP studies is
the definition of the operational coordinate, which becomes
a reference for the desired path, errors, and target pose [10].
The operational coordinate of APP has to be either a global
or a local coordinate. Each of these options has benefits and
disadvantages in relation to the other.

In the case of employing a global coordinate, integration
to the normal autonomous navigation modules of the vehicle
is easier. However, any update in the desired path requires
the re-execution of the global path planner, since the im-
provements in the target pose estimation occur when the
robot approaches to target. In contrast, operation using a
local coordinate makes it easier to provide high–frequency
location and detection feedback. However, this changes the
navigation control architecture and may lead to undesirable
drifts in the position estimation.

The method proposed here takes advantage of both oper-
ational coordinates. During the time that the robot follows
a desired path and detects the object for the first time, our
method plans a smooth path before switching into the local
operation coordinate. Therefore, the robot’s motion avoids
jumps and drifts during navigation in both the global and
local coordinates, as well as during the switching intervals.
Another step change benefit from this method is the ability
to start the Visual Servoing (VS) from farther distances; this
provides more room and therefore smoother steering of the
nonholonomic mobile base. In most scenarios, this feature
eliminates the need to align the forks by driving backward
and replanning the path.

In addition to the aforementioned improvements, the
proposed method complies with constraints of the industrial
development environment and hardware, such as inaccurate
actuators, minimal tolerance compared to the actuators’
resolutions, a rough environment, and so on. This paper
is organized as follows: Section II, describes the overall
problem definition and defines the coordinates and the
control variables. Section III provides an overview of the
vision feedback and necessary estimation. Next, in Section
IV, after introducing the VS controller, the main idea of the
proposed Multistage Micro–Mirco Visual Servoing (M3VS)
controller is described in subsection IV-B. The rest of the
section provides more details on the control and system in-
tegration of M3VS. Finally, in Section V, the overall results
of the pallet picking experiments and effects of switching
show the efficacy of the proposed method in action. The
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Fig. 2. Defined coordinate frames, path following on the global path, Step1.

results exhibit significant improvement of APP compared to
other contemporary methods with only a monocular vision
sensor while dealing with inaccurate and accurate detection
information by the M3VS control schema.

The experiments are based on GIM Machine, which is
one of the autonomous vehicles built at the Department of
Intelligent Hydraulics and Automation (IHA) at Tampere
University of Technology, Finland based on Avant 635. The
experiments also examined through the tests on GIM Sim,
a detailed Hardware-in-the-loop simulator developed in the
department for design, control, and mapping simulations of
hydraulic mobile machines [22] and multi-vehicle tests [23].

II. PROBLEM DEFINITION

APP occurs after long-distance transportation on a given
path, PdGPF

. A path-follower controller navigates the robot
on the path receiving localization feedback, for instance,
from the Global Positioning System (GPS), inertial sensors,
or LIDAR-based Simultaneous Localization and Mapping
(SLAM) [24], with respect to an inertial frame {I}. For
outdoor GPS-enabled locations, we can attach {I} to a fixed
flat–Earth coordinate.

The rotation matrix IRB, parametrized by the Euler an-
gles φ(roll), θ(pitch), and ψ(yaw), describes the orientation
of the front unit, and IP B = (x, y, z) is the position of
the body origin in the inertial frame. Let {P} and {F}
be the coordinate frames attached to the pallet and the
fork, respectively. As shown in Figure 3, these frames are
arranged such that the control objective is to have those
frames coincide, and therefore ITP =I TF .

This objective is achieved with the machine’s three–
degrees–of–freedom manipulator, as described below. The
boom rotates around the y–axis of the body by the angle θ1,
its telescopic joint stretches in/out by the length L, and the
revolute joint at the end of the boom rotates the fork around
the y–axis by the angle θ2. Thus the fork frame is defined
by the following:

BTF = T (L, θ1, θ2) (1)

with respect to the body frame. Let u1, uL, and u2 be the
manipulation control signals for θ1, L, θ2, and let us and
uv be the driving control signals for the machine’s steering
and speed commands, respectively. The control objective is
to devise control laws for these five control signals such that

ITF =I T B(x, y, z, φ, θ, ψ)
BTF (L, θ1, θ2) (2)
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Fig. 3. The micro robot’s coordinate frames.

coincides with ITP . Note that the roll motion φ (rotation
around the x–axis of the pallet) is not controllable. There-
fore, we assume that the ground, pallet, and machine all have
the same roll angles. Corresponding to the above control
signals, we project the error space onto two orthogonal
planes:

1) x− y plane error variables (x, y, ψ) are controlled by
drive (us, uv); and

2) x− z plane error variables (x, z, θ) are controlled by
the manipulator (u1, uL, u2).

There is a redundancy in the control space in that x can
be controlled by both the drive and the manipulator. The
accuracy of the position control by the machine speed is
limited. Therefore, uv is used to drive the fork near the
pallet, and the manipulator is used if necessary to reduce
the remaining residual error to zero (usually less than 10
cm).

III. OBJECT DETECTION

To pick up an object, it is a key concept that the controller
has to receive an accurate pose as a target with respect to its
control point on the robot body. In the M3VS controller, it is
even more critical to make a precise estimation of the object
because, at the final stage, the imaginary local coordinate
attaches to the pallet pose. The Vision Toolbox(VT) provides
the pose of object with respect to the camera, as described
in Section III-A. The constant transformation matrix to
define the pose of the effective camera frame in the body is
calculated through the calibration method described in [8].
To provide better insight into the visibility and feasibility
of object detection, in Section III-B, we conduct a test to
present changes in VT transmitted data versus the robot’s
position.

A. Vision

To observe the {P} frame, a set of markers is installed
on the face of the pallet pallet, as shown in Figure 3. By
using a camera, the onboard pose of the markers and thus
that of the pallet, that is, CTP , with respect to the camera
frame {C} is determined. Therefore, the pallet’s position
and orientation in the body frame can be resolved if the
calibration parameter BT C is known:

BTP =B T C
CTP . (3)

Fig. 4. Undistort camera images: A pallet appears in camera’s FOV (Right);
Vision toolbox receives accurate estimation of the pallet’s orientation (Left).

This defines the visual feedback. For image processing, we
have used the Alvar toolbox [25], an open-source augmented
reality library. This can be used to track fiducial markers
based on the known shape and size. It outputs the position
and the orientation of the marker relative to the camera.
This toolbox is capable of automatically tuning distortion
and intrinsic parameters for a pin–hole camera by detecting
a predefined checkerboard marker from 50 different poses.
A comparison of the calibration results shows that the
calibration of intrinsic parameters under indoor illumination
conditions (before installation on the vehicle) provides better
results. Other necessary measurements are performed using
the wheel encoders and inertial sensors. Two samples of the
camera images are shown in Figure 4

Equation 3 provides the output of the vision system at
time t, denotes as PT B(t − Td). The synchronization of
the dead-reckoning and vision is performed by storing a
series of [x, y, φ, θ, ψ](k) : k = t, t − Ts, t − 2Ts, . . . ,
where Ts = 50 ms. The pallet does not move, and therefore
PT I is constant. Each time the vision detects the object, we
calculate PT I using:

PT I = PT B(t− Td) BT I(t− Td). (4)

In the case that BT I at time t− Td is not yet in the stored
set, a simple linear interpolation is performed to evaluate
BT I(t − Td). Then, [x, y, φ, θ, ψ](t − Td) is derived by
linearly interpolating between the two stored dead-reckoning
data of the closest time instances. The main issue is that the
PT I given by equation (4) is noisy. Averaging over several
instances has been shown to improve and considerably
smoothen the estimation. Let P T̂ I denote the average of
n latest measurement of PT I using (4). If the markers are
found at least n times, the pallet tracking filter is initiated
and VS is started. To recover PT B(t) between consecutive
instances of marker detection, we can calculate

PT B (t)=
P T̂ I

IT B(t) (5)

as fast as dead–reckoning is updated. This will provide real–
time, fault–tolerant feedback to the control system. Using the
fact that PT I is constant, before averaging n measurements,
we eliminate those that are too far from the rest (using k–
means clustering). Common faults, such as marker detection
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failure and error accumulation of localization, are partially
canceled using this method.

B. Integration of Visual Information

According to our previous studies on sensor fusion and
pose estimation of predefined fiducial markers [8], [26],
for the early stages of detection, outputs of the detection
toolbox are rejected as outliers due to their inconsistency
with the IMU and odometery data. This is done to increase
robustness and improve the overall control performance.
However, further investigation on the transmitted outputs
show that the transmitted raw data are capable of providing
more information.

Even if the pose detected by the VT is not consistent with
the localization information, transmitting any result provides
that the VT recognized relevant markers in its field of
view. Of course, in longer distances, larger variances of the
estimated pose is expected. Further comparison between the
so-called “filtered outliers” and the accepted detected poses
shows significant similarities among the positions but not
the orientations. Recall that the final stage of the proposed
macro–micro controller switches into the local coordinate
attached to the estimated pallet pose, IT̂P . Therefore,
inaccurate data was rejected because of the sensitivity of
the overall performance to the pallet orientation, φ. The
method can be considered robust and reliable where the
robot is about to engage because of keeping the camera
output improvements in the loop. However, VS at farther
distances does not require high–frequency updates in the
global coordinate. Recall that any major change in the
path control points necessitates replanning. To alleviate the
severity of these effects, we use the M3VS method detailed
in the following section.

IV. VISUAL SERVOING CONTROLLER

A. Visual Servoing Preliminaries

Let Si(i = 1, 2, 3, . . . , k), defined by

Si = [Xi, Yi, Zi]
T
, S∗i = [X∗i , Y

∗
i , Z

∗
i ]
T (6)

be the feature points describing three-dimensional coordinate
systems {M} and {M∗}, which in turn define the current
and desired object poses {C}M and {C}M∗ with respect
to the current camera frame. The pixels on the image that
corresponds to those features may be expressed by

si = [1, ui, vi]
T
, s∗i = [1, u∗i , v

∗
i ]
T (7)

Based on a pinhole model for the camera, relations between
the matching points become

si =
1

Xi
ASi , s∗i =

1

X∗i
AS∗i (8)

in which A3×3 is the camera matrix evaluated by intrinsic
parameters calibration. We determine the scale of normalized
positions in equation 8 by incorporating the geometrical
properties of the object that are known a priori. Therefore,
instead of comparing the S∗i and Si points we use {M∗}

and {M} hereafter, which is equivalent to the employment
of the matched s∗i and si features with the depth or scale
information. Note that we disregard the accumulation of
uncertainties along the image depth axis, which lies on
the z axis of the camera frame {C} as shown in Figure
3. Moreover, installation of a camera on the forklift ma-
nipulator is practically unviable. Therefore, we emulate a
virtual camera attached to the manipulator by transforming
the output of the camera {C} attached on the vehicle’s roof
into the coordinate frame {F} attached to the manipulator.
In addition, if the camera were to be installed at the place
of {F}, the image Jacobian could become near singular at
some points in picking the pallet.

Geometrically, {M} coincides with {M∗} if and only
if the current virtual camera {F} coincides with {F∗}. In
other words, from the vision viewpoint, we are mapping
the VS problem because the pose of IC is suitable for the
object detection (ṡ), while IF is suitable for the movement
detection (v̇). According to the above explanations, the error
tensor for the VS becomes

T e =
FTF∗ (9)

The control objective is to drive T e to identity.

B. A Multistage Controller for Visual Servoing

The concept of M3VS for pallet picking is comparable
with an everyday life task. Assume a person has been asked
to pick a known object (e.g., a book) with the following
instructions. “Pick book (X). It is on the robotics bookshelf
on the left side in the library.” The person can interpret the
sentence to carry out step-by-step actions, as follows:

1) Based on the memorized place, move toward the
location;

2) Look for the bookshelf and approximately approach
the area that looks like a robotics bookshelf;

3) Find the book and stand next to it. Align your body to
make enough room for your arm to move dexterously
without collision;

4) Pick the book by hand from the shelf.
Similar procedures are applicable to the pallet picking

problem. We can list the robot’s main actions through the
following corresponding steps:

1) Path-following: A stationary global task planner plans
a set of paths based on the status of all robots and
objects in the configuration space, tasking the robot
with pallet picking. The path is defined in the global
coordinate, namely Global Path Follower (GPF) path.
It assumes that the pallet is located at IPGuess.
Since the location is not accurate, the task planner
triggers a flag assigned for VS. The robot follows
the given path while its vision sensor scans for the
corresponding marker of the pallet;

2) Macro robot VS in the global frame: When the vision
sensor detects the object, the robot compares two
consequent positions of the object with the robot’s
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motion. If the results are below the error threshold,
it switches into another global path considering the
new estimation of IPGuess called the Global Visual
Servoing (GVS) path. Note that this detection happens
at farther distances, and the calculated orientations of
the objects, and therefore I T̂P , are not acceptable
and they exhibit high variance;

3) Macro robot VS in the local frame: While following
the updated path, as soon as the detected object pose
I T̂P becomes consistent with the robot movements,
it switches to the local coordinate. A predefined
path for picking and placement is defined for each
pallet according to its geometry and environmental
limitations, called the Local Visual Servoing (LVS)
path. The origin of the local coordinate becomes
the target pose for picking and the end point of the
path for the macro robot. Exploiting this method
allows the latest updates to be incorporated smoothly
without any bouncing or sudden change in the
controller and its outputs. Thanks to the previous
step, the robot can wait until the estimation of IT̂P
continuously improves while approaching. Therefore,
the change in coordinate frames become smooth
and robust to the jumps in detection or localization
sensory information. This operation mode works until
the pallet enters the workspace of the manipulator; and

4) Micro robot VS: After arrival in the desired vicinity,
the robot has enough information to run a classic
Position–Based Visual Servoing (PBVS) for its planar
manipulator for pallet engagement.

Pseudo–code for the segment of a path with a VS flag:

while ‖T e − I‖ > εMicro do
i← 1
if P̂ p ∈Admissible Region then

i← 2
if {R̂p, P̂ p} ∈Admissible Region then

i← 3
run Feasibility Check
if ‖T e1 − I‖ < εMacro then

i← 4
run MVS, {F} → {F∗}

end if
end if

end if
if i ∈ {1, 2, 3} then

run Estimation(“Update”),P T̂ I →PT I
run Path-Follower(CPi), {B} → {B∗}

else
run Path-Follower(“Stop”)
run Planner(“Update”)

end if
end while

Let the macro robot become the vehicle itself, without
consideration of the manipulator boom or fork that carries
the actual camera coordinate {C}. The manipulator part is
considered to be the micro robot to which the virtual camera
is connected.

According to the definitions in Sections II and IV-A, we
divide the problem of pallet picking into a VS problem for
the macro and micro robots. For that purpose, we expand
the transformations applicable to the coordinates such that:

T e =
BT−1F

BT B∗ B
∗
TF∗ (10)

in which BT−1F and B
∗
TF∗ determine the required move-

ments for the micro robot, and the remaining BT B∗ governs
the demanded motion of the macro robot. This expansion
leads to the new definition of two consistent errors for both
macro and micro robots:

T e1 = BT B∗ (11)

T e2 = BT−1F
B∗

TF∗ (12)

Mathematically speaking, it should be noted that (11)
and (12) are not the direct results of (10), unless the
macro robot arrives at its destination, {B} −→ {B∗}. We
disregard this difference to simplify the macro and micro
controllers formulations independently. However, it cannot
cause any problems because, before the arrival to the pallet,
the principle axes of the coordinates for the macro and
micro robots always become approximately parallel to each
other. Recall that the pallet is assumed to be the same angle
around the x–axis of the body (roll motion). This is the only
direction in which the robot exhibits a lack of actuation.

C. Path Definitions

To achieve the goal of APP in a modular system, we want
to minimize modification of the other software modules,
which have perfect functionality in the robot’s navigation.
Therefore, we impose the M3VS concepts on the boundary
conditions of the path Control Points (CP) as described
below. The state machine switches setpoints and paths
according to the VS steps.

The GPF path comprises sets of n CP positions and
velocities needed for well-behaved, smoothly connected
Bezier curves of the order n− 1 generated from the global
path planner based on obstacle-free path planning methods
[27]. The points are represented with respect to {I}. Each
segment of the path starts from the correspondent IP 1

and finishes by IP n. The last GPF path that the planner
transmits to the robot tasks the robot with APP by triggering
the VS flag. The state machine turns on the marker detection
toolbox and waits for the result of having the pallet in
the field of view. The point Pn path has to coincide with
IPGuess. For the second–last CP, we have:

IPn−1 = IPn − k1x̂PGuess
(13)

The path for GVS consists of n CPs in the global frame.
The pose where the robot detects the approximate position
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of the pallet is represented by IPGV S . For the CPs for this
step, we have:

IP 1 = IPGV S (14)
IP 2 = IP 1 + k2x̂PGV S

(15)

IPn−1 =
1

k3 + k4

(
k3
IP 1 + k4

IP̂P
)

(16)

IPn = IP̂P (17)

The path for LVS is represented in the pallet coordinate
when the robot acquires an acceptable value for P T̂ B.
The pose of the body, at the moment that the position
and orientation of the pallet is detected correctly, can be
represented by PPLV S . The CPs for the last piece of the
path become

PP 1 = PPLV S (18)
PP 2 = PP 1 + k5x̂PLV S

(19)

PPn =

[
0
0

]
(20)

PPn−1 = PPn + k6x̂P (21)

Values for ki, i ∈ {1, 2, . . . } are positive real constant
coefficients that are adjustable depending on the smoothness
tolerance of the system.

D. Motion Control of the Macro Robot

The aim of VS for the macro robot is to guide the
body frame {B} to reach the desired coordinate {B∗}. Its
reflection can be found in variation of 11 within its x − y
plane, as well as the rotation around its z−axis. Therefore,
the transformation matrix for the macro robot could be
written as IT B (x, y, ψ) because the other parameters for
the location of the macro robot are not controllable. Owing
to the nonholonomic constraints of the machine, the control
in the x − y plane takes a rather more complex structure.
The macro robot’s autonomous driving architecture within
the global {I} is valid until it receives a task command
that contains a VS flag. It navigates to a vicinity of the
given location IBGuess[x, y, ψ] defined in the inertial global
frame {I}. At the same time, by activating the VT, it
looks for the given mark of the object. Since the camera’s
field of view (FOV) is reasonably wider than the accuracy
of the initial guess, we can be sure of finding the pallet.
After detection of the pallet, the robot replies to the higher
level with an update to the initial guess. Again, the planner
transmits a new path. In contrast with the last path, the most
recent one is in the local coordinate {B∗}.

A smooth and obstacle-free path pd is generated that
extends from the current location B

∗
PLV S [x, y, ψ] of the

macro robot to the origin of {B∗}, as illustrated in 2. Since
the path is presented within {B∗} itself, B

∗
B∗ becomes

[0, 0, 0]. It should be noted that B
∗
PLV S is the first position

at which the object has been detected five consecutive times.
The start point of the path is fixed in the global coordinate,
and the end point is considered as a relative coordinate to
the origin of {B∗}. Therefore, any change in the estimated

pose of the pallet will not cause a time–consuming update of
the path by the planner. At the same time, any enhancement
in the pose estimation affects the goal point of the path. This
change leads to an increment in the process time efficiency
for real-time VS tasks because a request for AI–based path
planning takes up plenty of CPU time depending on the
complexity of the planner configuration space [28]. From the
B∗

PLV S point forward, the macro robot follows the motion
control signals to zero the path–following errors to minimize
T−1e1 error.

Now, we define the error T T B, where {T } is the path
tangent frame attached to pd(τ) with τ ∈ [0, 1] being the
path parameter. {T } coincides with {B∗} for τ = 1. The
path following errors can then be defined as:

ex = [1 0 0 1] T T B
eψ = arg(T T B, ẑ) = arg(T TF , ẑ)

ey = [0 1 0 1] T T B = [0 1 0 1] T TF (22)

in which, the arg(., .) function returns the angle argument
of the rotation part of the transformation matrix of the
first argument around the axis determined by the second
argument (the z-axis in this case).

The yaw and y-axis errors are equal in the body and in the
fork frames. Thus, if the machine closely follows the path,
and the pose estimates are accurate enough, by the time
the fork frame reaches the pallet, the yaw and y-axis errors
will be adequately small, which makes the rotation part of
equation 10 equal to 11 and 12. Evidently, as the machine
gets closer to the pallet, the pose estimations become more
accurate. Therefore, even if the output trajectory of the
body frame does not initially coincide with pd, as the pose
estimation errors decrease, it converges to pd. Although it is
possible to design the macro robot controller as an eye-in-
hand VS problem, according to [29], following the planned
path is more robust. Particularly, this is advantageous in
a multi-robot and multi-machine environment, where the
macro robot’s path should be coordinated with the other
machines.

We showed in [30] that the horizontal plane suitably
approximates the kinematic model of the GIM machine front
unit as

ẋ=vxcosψ
ẏ=vxsinψ

ψ̇=ωz

(23)

ωz=
lrβ̇+vxsinβ

lfcosβ +lr
, (24)

where β is the body articulation angle and lf , lr are geo-
metrical parameters (see Figure 5).

Definition: Path following problem. Based on the above
kinematic model, design a control law for steering signal
us to drive eψ and ey to zero. The solution in [30] pro-
vides a control law for the desired angular velocity ωcz =
CPF (ex, ey, eψ)), where the speed vx is an exogenous input
and may be set separately. Freedom in assigning the linear
speed is instrumental in our case; it enables us to slow
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Fig. 5. GIM mobile machine with two body units pivoting around O.

down or stop the machine without causing instability in the
path-following controller. For example, if the manipulator
errors are not yet small enough, collision with the pallet can
possibly be avoided. Given ωcz , we use (24) to calculate the
required steering valve command:

β̇c = −vf
lr
sinβ+

(
lf
lr
cosβ+1

)
ωcf

us = Kβ̇c. (25)

In the above, we assumed that the valve command is
proportional to the speed of body articulation.

E. Visual Servoing for the Micro Robot

The macro robot is a hydrostatic rough terrain forklift,
which loses its repeatability for motions that require ac-
tuation accuracy of less than 20 cm. The path follower
controller is capable of driving the macro robot to the
vicinity of the pallet with a relatively small error, {B} −→
{B∗}. For the rest of the motion, we employ the manipulator
to compensate for the macro robot errors in the Bx direction
and to adjust the height and angle of the forks (z and θ). As
shown in Figure 3, there are three joint parameters for the
micro robot with the following kinematics:

q̇ = J(q)Kv (26)

θ̇1
L̇

θ̇2


 =



k1L sin θ1 k2L cos θ2 0
−k1 cos θ1 k2 sin θ2 0

0 0 −k3






vx
vz
ωy




Here, K stands for the coefficients of conversion between
the oil debit of hydraulic proportional valves, their displace-
ments, and the movements of the joints. Based on the above
model, we define the errors in the x-z plane as

eφ = arg(F
∗
TF , ŷ)

ez = [0 0 1 1] F
∗
TF

ex = [1 0 0 1] F
∗
TF (27)

Recall that if the errors of the macro robot are small enough,
they may be transformed as corresponding components of
the error tensor of the micro robot expressed in equation 12,
and can be presented as an error among the matched features
introduced in equation 6 transformed into the virtual camera
coordinate:

evs =
FT C

(CSi − CS∗i
)

(28)
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Fig. 6. Tracking filter output. Eight representative tests.

Substituting the PBVS control law, as addressed in [31] and
[29], and to enforce an exponential decoupled decrease of
the error, we apply ˙evs = −λevs to derive:

q̇ = −λJ(q) K evs (29)

The final step of M3VS is achieved by applying the above
control law to the micro part.

V. EXPERIMENTS

As a result of GPS errors or any unsaved small changes
in the pose of a pallet, we examine the effectiveness of
the proposed method by artificial error insertions in the
predefined pallet pose, as shown in Figure 6. According
to the test results, the method is capable of detection and
correction of the errors in the given pallet position up to 5−
6 m. Similar to the authors previous work [8], in distances
shorter than 3.5 m, the estimated orientation of the pallet
becomes accurate enough for VS in the local coordinate.
The steering limitations are no longer a problem compared
to those of the other methods. Because of the longer range
detection and earlier heading correction, the nonholonomic
mobile base has enough room for the rejection of lateral and
heading errors. However, the error in the y direction must
be smaller than 2m to keep the pallet in the camera’s FOV.

Figure 6 shows the trajectory of the body frame in
the pallet frame in the x − y pallet plane. For clarity of
presentation, we show only few representative tests starting
from the left, middle, and right side of the pallet. The
attached video shows functionality of the controller in clear
weather as well as snowy and slippery environment.

VI. CONCLUSION

The proposed method takes advantage of the both global
and local operational coordinates. During the time that the
robot follows a desired path and detects the object for the
first time, our method plans a smooth path before switching
into the local operation coordinate. Therefore, the robot
motion avoids jumps and drifts during the global and local
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visual servoing (VS). Another step change benefit from this
method is the ability to start VS from farther distances,
which provides more room and therefore smoother steering
of the nonholonomic mobile base. This feature, in most
scenarios, eliminates the need to align the forks by driving
backward and replanning the path. The method strives to
simplify system integration for complex modular control
software without altering the high-level planner(s) or low-
level controllers.
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Real-Time Vision-Based Navigation
for Nonholonomic Mobile Robots

Mohammad M. Aref1, Reza Oftadeh2, Reza Ghabcheloo1, and Jouni Mattila1

Abstract— Mobile manipulators are one of the major pillars
in the thriving field of service robotics, perhaps mainly due to
the wide workspace provided by the mobile base. Exploitation
of this vast workspace entails accurate positioning of the robot
while overcoming several complexities, such as nonholonomic
constraints and actuator limitations. In this paper, we analyze
the integration of a vision and path-following controller for
the accurate localization and tracking of known objects. Due
to the broad workspace of mobile manipulators, the improved
repeatability of the mobile base positioning can significantly
improve overall system performance, especially near the robot’s
workstation. Our method provides an accurate synchronization
and real-time fusion of data that together with the closed-
form solution of the given path-following controller manages
to accurately navigate the robot to perform a gripping task.
The achieved repeatability of the system is below 3 cm, which
is demonstrated by experimental results.

I. INTRODUCTION

Mobile manipulation is a highly active branch of robotic
research that strives to design and develop software and
hardware modules pivotal in various practical applications,
such as inspection and manipulation in hazardous environ-
ments.From the perspective of low-level software modules,
two categories of control and sensing play a major role.
The control part is responsible for execution of reliably
fast and accurate movements abiding by the mechanism’s
and actuators’ limitations, while the sensors provide the
necessary sensing information to the controller.

Generally speaking, the time-critical aspect of control
blocks demands real-time criteria and software environments
for their execution. In contrast, the detection and sensing
algorithms are iterative with high process costs, regardless
of the type of the actual sensor that provides the crude data.
This study mainly focuses on enhancing the integration and
synchronization of the two categories, culminating in precise
and fast positioning of wheeled mobile robots (WMR).
The algorithm receives asynchronous data from an object
detection toolbox (ODT) that provides the motion controller
with real-time feedback. During this process, especially for
vision-based controllers, error in target detection and limi-
tations of the mechanical system are both common sources
of error [1]. Therefore, a proper controller should overcome
both obstacles while improving the overall performance.

Comprehensive studies have been carried out on vision-
based sensing for mobile robots in [2] and later in [3] or

1 The Department of Intelligent Hydraulics and Automation, Tampere
University of Technology, 33101, Finland. e-mail: m.aref@ieee.org

2 The Department of Computer Science and Engineering (CSE), Texas
A&M University, TX 77840, United States.

Fig. 1. iMoro mobile robot and the experiment setup.

for navigation of underwater robots [4]. However, precision
and repeatability have been overlooked in most of these.
Moreover, there have been many researches on image-based
navigation of mobile robots, especially for long-distance
motions [5], [6]. The downside of the image-based visual
servoing control schema is that it affects the other control
blocks, such as nonlinear actuator-level controllers, which
brings up new challenges for system integration. In some
cases, such as an autonomous hydraulic mobile machine [7],
the system benefits from a complex control module for low-
level actuators that tackles the inherent nonlinearities.

The target mobile manipulator in this study, called iMoro,
is a four-wheel-steerable (4WS) mobile manipulator. The
mobile base has 8 servo motors for steering and driving its
wheels [8] and is one example of such robots; it does not
fit into the common unicycle model [9]. Therefore, we use
position-based methods to benefit from both accurate visual
tracking and integration with state-of-the-art pre-existing
control modules.

A. Related Works

In recent years, accuracy and repeatability of localization
and positioning methods of mobile robots, for the purpose of
mobile manipulation and service robotics have culminated
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Fig. 2. Defined coordinate frames for the robot, path, and target.

in several interesting studies for indoor applications. For
instance, [10] analyzed the repeatability of a laser-based
localization and positioning system for a holonomic omni-
directional robot, KUKA omniRob platform.

Another recent study [11] integrates localization infor-
mation in the trajectory planning phase, and the closed
loop controller uses odometry feedback for the navigation
of KUKA omniRob. In contrast, in this paper, our work
benefits from a closed-form solution that accounts for ac-
tuator limitations in the controller rather than the planner.
Therefore, we integrate global feedback into the closed loop
with higher frequencies and as soon as the visual detection
toolbox provides the results.

It is usually desirable for many applications to rely on
more accurate detection methods, which normally increase
the process cost [10]. Although the applications among the
aforementioned studies are slightly different, the proposed
vision-based controller potentially improves the performance
of robot positioning in the vicinity of its workstation. The
target application of this research is the accurate control
of the moving platforms of mobile manipulators near their
workstations for pick and place tasks. Furthermore, we
show that this approach improves docking functionalities of
Automated-Guided Vehicles (AGV)s. As shown in Table I,
the proposed method is capable of improving the results of
relevant studies in the field.

Compared to contemporary research, the main contri-

TABLE I
RESEARCHES ON ACCURATE MOBILE ROBOT NAVIGATION

Ref* Local
Update

Global
Update

Positioning

Max Acc.

Sensor Robot

[11] 35 Hz 1.5 Hz 4 cm Range omniRob
[10] 6 cm 2xLaser omniRob
[12] 8 cm Vision Pioneer3AT
[13] 50 Hz 5-7 Hz 10 cm Vision

&IMU
Avant
Forklift

Current 200 Hz 7-10 Hz 3 cm Vision iMoro

* The addressed papers cover a wide range of functionalities. Only the
parts relevant to our work are considered in the table. The applications and
environments are not exactly similar.Empty cells indicate no information.

butions of this paper are twofold: precise synchronization
and fusion of data from different sources, and taking into
account actuators’ limits by a path-following controller.
Moreover, free of any specific detection algorithm or sensor,
the proposed method is capable of fusing localization and
tracking data with the high-maneuverability path-following
control of 4WS mobile robots. It should be noted that the
mobile base of iMoro is a popular mechanism that is closely
similar to Rollin’ Justin from DLR [14], PR2 from Willow
Garage [15], and Care-o-bot from Fraunhofer IPA [16].

This paper is organized as follows: Section II explains
the formulation of the overall problem and defines the
relevant coordinate frames and the control variables. In II-
A we address the solution concepts. Section III provides
an overview of the vision feedback and detailed informa-
tion about the data synchronization. Section IV explains
the velocity-bounded path-following controller. Finally, in
Section V, the experimental results of the proposed method
are shown in action. This paper also has a video attachment,
including one of the test scenarios and an examination of the
system response for a large disturbance. Further videos of
the experimental evaluations are available on YouTube 1.

II. PROBLEM DEFINITION

For high-performance mobile manipulation tasks, an ac-
curate and responsive closed-loop control of the mobile base
is a key requirement. Maneuverability degrees of a planar
mobile base can coincide with 1 to 3 Degrees Of Freedom
(DOF) and provide redundancy with the first joints of a
manipulator. A wheeled mobile robot is known to reach
broader workspace with less accuracy in positioning. The
aim of this study is to improve the accuracy of the mobile
base positioning in the vicinity of a target. It uses fused
vision and wheel odometry data to provide feedback for a
path-following controller proposed in [9], [17]. This system
controls the mobile robot going toward the closest possible

1https://www.youtube.com/channel/UCxemrk8NrIj-db6h06VBVLA
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vicinity of the target object to pick it up. This architecture
considers the following objectives and requirements:

1) The controller feedback has to be real-time and avail-
able at each minor sample time of the system, which
is 0.005s. In that interval, all the servo motors derives
should receive a synchronized steering or driving
command.

2) Overall performance of the system should maintain ac-
curacy and repeatability of the system less than ±3cm
about each axes. Therefore, the mobile manipulator
can catch a fixed object between its gripper fingers
without the manipulator motion.

3) Accuracy of the target tracking should be less than
±5mm. This accuracy makes the feedback convenient
for manipulation purposes, too.

4) The system should work with a pre-existing ODT,
which can process only 5–10 image frames of per
second. The camera and process power are supposed
to be low-cost general purpose components.

5) The mobile base of the robot is nonholonomic, and
the control should consider kinematic constraints for
its navigation and motion control.

6) The actuators of the mobile base are servo motors with
bounded velocity and acceleration capabilities.

We define a problem formulation that suits a general test
case for the fulfillment of the aforementioned necessities.
Assume that position and orientation of the object is given by
a 4× 4 homogeneous transformation in SE(3) with respect
to the workstation coordinate,

WTO(x, y, z, φ, ψ, θ) =

[ WRO(φ, ψ, θ) WPO
0 1

]
. (1)

The rotation matrix WRO, parametrized by the Euler angles
φ(roll), ψ(pitch), and θ(yaw), describes the orientation of the
object, and WPO = [x, y, z]T is the position of the grasp
point of object {O} in the workstation coordinate {W}.
Transformation matrices between the other coordinates obey
the same definitions with respect to their coordinates, shown
in Fig. 2.

Let {M} be the coordinate frame attached to the grasp
point of the manipulator. Moreover, coordinate frame {B}
is attached to the mobile platform as its control point.
For the purpose of mobile robot navigation, {M} is fixed

Fig. 3. Vision-based controller architecture.

Fig. 4. Relevant hardware architecture for vision-based navigation.

on the mobile base. Therefore BTM is a known constant
for this problem. Since this paper tackles navigation as a
manipulation problem, the test case starts from the moment
the robot has the workstation in the camera Field of View
(FOV) in the vicinity of the workstation where the smooth-
ness and repeatability of the system play a key role in
mobile manipulation. According to Fig. 2 and the above-
mentioned definitions, the control objective is to control
the body frame {B} such that the gripper {M} coincides
with object {O}, and therefore ITM = ITO. Since this
paper tackles the problem of mobile robot navigation, roll,
pitch, and z-axis are not controllable and the object and
gripper coordinates are aligned. Therefore, the controller has
to navigate ITM(x, y, θ) for object grasping,

ITM(x, y, θ) = ITW(x, y, θ) WTO (2)

where ITW(x, y, θ) and ITM(x, y, θ) are subject of ob-
servation and control, respectively. The object’s pose in
the workstation WTO is considered as a known constant
transformation matrix for the controller.

A. Solution Concept

To achieve the controller objectives and requirements,
the problem is divided into different parts. We can show
the contribution of each part as its effect on the geometric
transformation of the coordinates concerning the control
objective in (2).

IT B
BTM = IT B

BT C
CTW

WTO (3)

in which,
IT B is localization information,
BTM is the manipulator’s gesture fixed on the body

frame,
BT C is the camera extrinsic calibration parameters,
CTW is the workstation coordinate detected by the cam-

era, and
WTO is the object pose in the workstation.

In Section III, we show how the right-hand side of (3) is
estimated. Section IV describes how the controller positions
the robot to generate the lhs terms of (3).

III. SENSOR FUSION

To pick up an object, the controller has to receive an
accurate pose as a target with respect to its control point
on the robot body. Near a workstation it is even more
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critical to make a precise estimation of the object because
the path-following coordinate changes into the workstation’s
coordinate to prepare to contact the environment. Generally
speaking, it is common in sensor fusion that the data are
different in
• sources that need to be synchronized,
• qualities that need to be filtered, and
• coordinates that need to be calibrated and transformed.

Each of these differences has its own effect on controller
performance, which we discuss in detail in the following.
The ODT provides vision feedback, as described in Sub-
section III-A. It is synchronized by the logics provided in
III-D. The acquired results are combined on the same time
frame as described in III-C to provide feedback for the
motion controller described in Section IV. The data flow
between these blocks is shown in Fig. 3. Since the object
detection and fusion techniques are thoroughly discussed in
the literature, the main part of this section is dedicated to
precise timing and synchronization challenges, which are
more important for our work compared to contemporary
studies in the field.

A. Object Detection

For the purpose of target tracking, localization, or any
action that requires feedback from the environment an ex-
trospective sensory information is necessary. Without loose
of generality, we consider a fiducial marker detection system
as an ODT for navigational purposes. The fusion and nav-
igation methods are compatible with any precise position-
based object detection system. The hardware architecture
is configured as illustrated in Fig. 4. There are two field
networks on the robot: CAN and LAN. All the time-
critical sensors and actuators are connected to CAN. For
components relevant to ODT or remote programming, all are
connected to LAN, including a PC running Robotic Operator
System (ROS).

A low-cost GigE Point Grey Flea3 camera is used as the
camera sensor. The camera transmits the images to Aravis2,
an Ethernet camera driver that has a ROS interface. We use
a ROS wrapper of Alvar3, as an AR tag tracking library,
for marker detection. The intrinsic camera parameters are
calibrated by the camera calibration package of ROS. For
the extrinsic parameters, a transformation matrix for the
pose of the effective camera frame in the body coordinate is
calculated through the calibration method described in [7]
to extract BT C . More detailed information is explained in
Table II.

B. Practical Issues

For the experimental evaluation, we studied the open-loop
behavior of the system. We recorded the extracted poses
from different distances in front of the marker, as shown
in 5. According to the figures, the data show correlation
between WxB and WyB because both are under the influence

2https://wiki.gnome.org/action/show/Projects/Aravis
3http://virtual.vtt.fi/virtual/proj2/multimedia/
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Fig. 5. Position uncertainties are reduced by filtering.

of the estimated yaw angle between the robot frame and the
workstation frame.

As mentioned in Subsection III-C, the pose of {W} is
assumed to be fixed. However, we used a wheeled table as
the workstation. We performed serveral tests and changed
the pose of the workstation during the robot’s motion to
test the dependency of the solution on this assumption.
As shown in the multimedia attachment, the robot is still
capable of catching the object except when large changes
of the workstation that move the marker out of the camera
FOV.

Our experience with ODT is similar to [18] except in the
near-singular positions. Due to the weakness of monocular
vision systems in depth estimation, ODT becomes singular
when
• {C}, the camera, becomes parallel to the workstation

marker {W} and
• the angle between the image frame and marker frame

becomes smaller than 15◦, while the distance between
the frames is less than 1m, which is wider than our
expectation.

Using a bundle of markers in different orientations can be
an effective solution for these issues. However, it affects our
analysis on properties of a monocular vision system as in
general.

For a short period of time, for example 4s at a speed of
0.6 m/s, the visual information is substituted by (5). How-
ever, for longer delays and larger changes to the heading, the
robot diverges from the given path until the target appears
in the camera’s FOV.

C. Geometrical Representations of Fused Data

To track the pose of the object by the manipulator,
according to (3) we want to observe the pose of the robot
with respect to the workstation coordinate. A marker is
installed on one side of the workstation, as shown in Fig.
1, which defines {W} for the camera as illustrated in
Fig. 2. ODT transmits the pose of the workstation with
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respect to the camera frame CTW . Since the workstation
and the inertial frame are supposed to be fixed, we estimate
the correspondent transformations between the coordinate
frames as a loopclosure,

ˆITW = IT B
BT C

CTW . (4)

This equation’s rhs, compared to (3), includes only the
parameters that depend on the moving platform’s motion,
regardless of the manipulator gesture. The inertial coordi-
nate frame is assumed to be attached to the robot’s initial
pose. Therefore, IT B is provided by the wheel odometry
through dead reckoning of the velocity frame [19]. After
few iterations, filtering the values of ˆITW provides a robust
and smooth estimation. This estimation resolves the issues
regarding slowness of the ODT by providing an estimation
of the workstation. Moreover, in case of a failure in the
ODT, for instance temporary occlusion of the view, this
estimation provides the robot its absolute pose instead of
the ODT explained in Subsection III-A,

W T̂ B =
(
I T̂W

)−1 IT B . (5)

To avoid numerical issues, the inverse of the homogeneous
transformation matrix is derived by the transposing of its
rotational part.

D. Synchronization of Vision Data

As addressed in Table I, the controller’s sampling time
is significantly shorter than the elapsed time for a global
feedback. For low-accuracy or slow motions, the movements

TABLE II
SYSTEM SPECIFICATIONS

Component Specification Value

Target PC CPU Core i7
Max Peak to Peak Jitter 6× 10−15s

Camera Image Size 1288× 960 px2
Shutter Time 0.016s

Fig. 7. How synchronization affects position accuracy.

during the process interval are not large enough to affect
control performance. Moreover, being “fast enough” is used
as an alternative for being in “real-time”. Unlike stationary
systems, effects of the timing errors can result in more
position/orientation errors for a moving system of coordi-
nates. These delay effects are added to the measurement
and calibration errors as we discuss in the following for two
types of sensors: i and j according to Fig. 7.

Sensor type i periodically streams raw data, for example,
wheel encoders and Inertial Measurement Units (IMU)s
on a real-time network. The algorithms associated with
these types of sensors have deterministic amounts of com-
putational costs or predictable numbers of iterations that
guarantees availability of data in a certain time interval.
Examples of these processes can be transfer functions or
kinematic formulations for a joint encoder or an IMU. This
configuration can be a base for updates of the real-time
feedback if they are real time and fast enough compared
to the controller sample time. For the test case of this
paper, the robot’s wheel encoders fulfill this requirement.
The Maxon Epos Drives transmit filtered encoder data to the
real-time target every 5ms. Note that for a low-resolution
wheel encoder, this sensor can be triggered by the changes
in wheel angle instead of a timer. For example, in the
authors’ previous work on an autonomous forklift [13], the
wheel rotation resolution was 17 pulses

round , which means there
is not necessarily an update for a short distance movement.
Therefore, resolution of sensor i can also affect the minimum
allowable velocity, frequency of local updates, and accuracy
of positioning for sensor i’s data. In this paper, we assume
that the robot’s odometry is sensitive enough to update the
data within the minor sample time of the fusion block.

Sensor type j transmits raw data of an absolute pose, e.g.,
a camera, Time of Flight Camera (TOF), or Laser Range
Finder (LRF), or a Global Position System (GPS). This
can be time-based or event-based. The algorithms associated
with this type of sensor are based on filtering and matching
techniques or other iterative methods. These types of sensors
can reject the accumulated errors or sensor drifts of local
feedback, although they have high process costs.

As shown in Fig. 7, assume that different types of sensors
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(i and j) are attached to the robot’s body to update the
estimation of (4) and (5). The pose of the sensors have
been calibrated with respect to the body frame. Extracted
information from sensor j’s data arrive at the moment t of
the real-time target PC after a few variable time-consuming
steps, as shown in Fig. 6. We record and compare the system
clock twice: when the image arrives at the ROS PC and when
it leaves. The difference between these two timestamps, td, is
considered to be the process delay. We know that the process
cost for image processing and machine vision algorithms
can change depending on the environmental conditions and
complexity of the scene. A sample set of values for td is
shown in Fig. 10. We know that the received information
from the ODT is not for the current pose of the robot.
Ignoring this difference adds the es error of Fig. 7.

In addition to the described process delay, there are
other sources of delay that are not included in the td.
There can be several sources for the latencies in buffering,
communications on the network, and grabbing the image.
Here, we assume them as latency. For the experiments in
this paper, we considered tl = 0.02s as a constant latency
in addition to the process delay td. These timings are more
important when the main sample time for the real-time
system becomes 5ms. Therefore, we temporarily store the
latest information data of Sensor i for a time interval of
max(td + tl). This provides an option for synchronization
to calculate the movements between T (t−td−tl) and T (t).
Therefore, the errors es or esd can be reduced to esd+l

.
The effects of calibration and measurement errors remain
as eci and ecj . The experiments show the improvement of
the feedback as a result of synchronization, as shown in
Fig. 9. The mathematical representation becomes clearer if
we recall that all of the rhs terms in (4) are time variant,
and we can have the equilibrium if we consider their values
for the same time frame. We rewrite (4) for the estimated
captured moment as

ˆITW = IT B(t− td − tl) BT C CTW(t− td − tl). (6)

Since we assume a fixed pose for the workstation, (5) is
still valid for providing the real-time feedback. It should be
noted that this technique significantly reduces the position
errors caused by the delays. However, timing effects of the
delays are obvious in the experimental results. The aim of
this technique is to choose “delayed precise pose” rather
than “delayed imprecise pose.”
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Fig. 9. Effects of synchronization on the experimental results.

IV. MOTION CONTROL OF THE MOBILE BASE

This section briefly describes the incorporated path-
following controller that is utilized in this study, the details
of which are given in [9] and [17]. The main benefit
of the controller is its decoupled framework. It provides
an online asymptotic path planner that guides the mo-
bile platform toward a given desired path. Additionally, a
bounded velocity trajectory generation scheme is built that
provides synchronous bounded velocities for all the driving
and steering actuators while honoring the velocity limits of
the actuators. As shown in [9], the controller enables the
execution of high maneuvers even close to the platform’s
singularities.

Let P d be a sufficiently smooth desired path with s
denoting its natural parametrization and θd(s) as the plat-
form’s desired heading. The final point of the desired path
P d(sf ) satisfies the desired value for IT B in (3) by the
negligible tolerance. Additionally, T {t̂, n̂} is the tangent
frame at point P = P d(s) and ψt represents the angle
between t̂ and X̂ . We define the error signals xe and ye
as position errors measured along t̂ and n̂, respectively, and
θe = θd − θb as the platform’s heading error in which θb
is the platform’s heading. The following equations describe
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the error dynamics of the system:

ẋe = ṡ(Cc(s)ye − 1) + v cos(ψe) (7a)
ẏe = −ṡCc(s)xe − v sin(ψe) (7b)

θ̇e =
∂θd
∂s

ṡ− ωb (7c)

in which ωb = θ̇b is the angular velocity of the platform’s
body frame B. Define σ as

σ(ye) = −sin−1
k2ye
|ye|+ ε

, (8)

where 0 < k2 ≤ 1 and ε > 0. σ(ye) is a function that
generates an appropriate approach angle from the platform
to the desired path.

As shown in [9], for the mobile platform’s base, the
feedback control laws are given by

ṡ = (k1xe + cosσ(ye))v = ksv (9a)

ωb = (k3θe +
∂θd
∂s

ks)v = kbv (9b)

ψv = ψt − σ(ye), (9c)

where ψv is the direction of the base linear velocity and
k1, k3 > 0. The controller provides asymptotic convergence
toward the desired path and heading profile for any arbitrary
base speed v(t)≥vm>0. The speed v(t) is then chosen such
that the resultant actuators’ control signals have velocities
bounded by their prespecified absolute limits. The procedure
is as follows: The following scalar constraints map the base
speed v to the ith wheel driving velocity vi and steering
velocity φ̇i:

vi =
√
v2 + ω2

b l
2
i + 2vωblisin ηi (10a)

v2i φ̇i = li (ω̇bv − v̇ωb) cos ηi+v (ωv − ωb) (v+liωbsin ηi)
(10b)

in which ψv is the direction of the base linear velocity,
ωv = ψ̇v , li is the distance between the wheels’ steering axis
and origin of the base frame, and ηi is the angle between
base linear velocity v̂ and `i. As shown in [17], insertion of
the base control signals into the above kinematic constraints
simplifies them into explicit relations in the form of

vi = v′iv, φ̇i = φ′iv, (11)
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Fig. 11. The path for the robot’s coordinate frame with respect to the
workstation coordinate frame.

in which v′i and φ′i are functions of the state variable and
their partial differentiation with respect to the desired path
variable s. This design allows us to find the base speed v
that honers the actuator limits by deriving it using

v(max) = min
i
(
v(max)
i

|v′i|
,
φ̇(max)
i

|φ′i|
), (12)

in which v(max)
i and φ̇(max)

i are the maximum limits of the
ith wheel driving and steering velocities, respectively. The
wheels’ driving and steering velocities that are the platform
inputs are then derived utilizing v(max) and the kinematic
constraints.

V. EXPERIMENTS

The proposed method is implemented on the mobile
platform of iMoro mobile manipulator in a setup shown in
Fig. 1 and hardware architecture shown in Fig.4. According
to the evaluations addressed in Subsection III-B, we adjusted
the workstation marker to avoid ODT singularity.

A planner sends the robot a set of control points for a
cubic Bezier curve defining an obstacle-free path. It starts
from the initial pose of the robot and ends at the grasp
point of the object. Usually, the robot starts moving from
a distance of 3 − 5m in the room and finishes the path in
the vicinity of the object, such that the object remains inside
the jaw fingers of the gripper, as shown in Fig. 13. About 12
tests were done with the same scenario, and all the results
had enough accuracy in heading and control of the y axis.
Maximum errors were ±2.5cm on the y-axis and ±3cm on
the x-axis with respect to the grasp point.

We also performed tests involving random changes in the
place of the workstation to disturb (5) during the robot’s
motion. The test results were satisfactory by the same
margins. However, in cases when we force a large rotational
disturbance on the workstation, robot changes its heading
during the filter’s resampling. Therefore, the object leaves
the FOV without enough updates of (4). A sample output of
the system is shown in Fig. 11. The path for the wheels for
the same motion is illustrated in Fig. 12 with respect to the
initial frame of the wheel odometry {I}.
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Fig. 12. Robot’s footprint based on the test results with respect to the
inertial coordinate as the initial position of the wheel odometry.
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Fig. 13. Robot’s final gesture from the viewpoint of the object.

VI. CONCLUSIONS

In this paper, we presented a framework for vision feed-
back integration into real-time motion control that mainly
focuses on synchronization issues resulting from the inherent
delays in visual feedback. For mobile manipulators, this
approach advances the role of the mobile platform as the
major contributor in wide motions of the manipulator’s end
effector. The method is then combined with the authors’
Macro–Micro architecture for mobile manipulation, and we
show that the synchronized visual feedback provides the
controller with a degree of accuracy that enables it to
properly track an object and grasp it with the gripper. This
precision makes the mobile robot’s performance comparable
to manipulators. Implementation of dead reckoning and
wheel kinematics in the sensor fusion by particle filter is
planned for future work.
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Abstract. This paper tackles the problem of integrating Visual Ser-
voing Control (VSC) into the functionalities of an Articulated-Frame-
Steering (AFS) hydraulic forklift. The controller is capable of breaking
down high-level messages into piecewise commands for the different soft-
ware modules of the vehicle. It also preserves seamless cooperation of
the modules for a successful pallet-picking mission. The proposed archi-
tecture have been verified on a real machine. Videos of the test runs are
available on YouTube.

Keywords: mobile manipulation, visual servoing, state machine.

1 Introduction

Robotics has become an important aspect of logistics and automation in many
application fields. Efficient material handling plays a significant role in the opti-
mization of construction processes among others. The invention of containers and
pallets has radically changed the way logistics is performed in all sectors, partic-
ularly in the construction business, both for buildings and infrastructures, e.g.
roads. Automated Guided Vehicles (AGVs) are possibly among the best-selling
robotic units, used mostly for warehouse management, such as the Kiva Systems
of Amazon [1]. In indoor cases following the traditions of factory robots both pal-
letizing systems and AGV localizations and navigation are rather accurate, and
system operation relies on this certainty. However, in outdoor applications, e.g.
in construction, the pallet-handling control system needs to be robust against
both localization and control inaccuracies. Localization may be improved using
more expensive equipment, though for a cost-conscious industry such as con-
struction, this is not usually acceptable. Forklift trucks used for pallet handling
in construction are built to move on uneven terrain, and they are made robust
with simple components, which makes the accurate control of these machineries
a real challenge. Notice that, contrary to typical logistics, the challenge is not
only in navigation in semi-/un-structured and dynamic environments but also
in the manipulation and coordination of the body and the boom. In a series
of publications, we have proposed methodologies for vision-guided navigation
that are robust against the uncertainties mentioned above [2,3,4]. In this pa-
per, we present the details of the control system’s architecture and report on
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Fig. 1: Autonomous forklift and its hardware.

the system integration of such a complex system. For vision-based autonomous
systems, errors in target detection and limitations of the mechanical system are
both common sources of error [5]. A proper controller should overcome both
obstacles, improving overall performance. In the literature, many studies focus
on one of these issues over the other. A group of studies gives more weight to the
pallet-detection problem. Pallet detection and the integration of a visual sensor
in the control topology are the main focuses in [6], whereas [7] aims to correct
data while approaching the pallet. Most previous work has employed at least two
cameras, a monocular vision system with defined CAD models [8], or both a laser
scanner and a camera [9]. In this paper, we introduce a modular architecture
and a state machine that integrates a VSC [2] with preexisting path-following
and manipulation controllers. This architecture can fill the gap between robot
functionalities for test cases and real-world problems.

2 Software Modules
This section briefly describes the software modules of the vehicle for the compo-
nents shown in Fig. 1a. Their interaction is shown in Fig. 2, which is categorized
by the relevant environment of each software module. The design criteria for the
architecture include reliability, availability, and maintainability. Our proposed
solution is a modular approach, which allows us to benefit from team work
and from the use of the existing advances made in the required and relevant
functionalities. Therefore, the controllers are self-dependent and not necessarily
flexible. The desired flexibility is achieved by controlling the interactions be-
tween the modules by a state machine, described in Section 3. The machine’s
control system is composed of primitive functionalities such as path planning,
path-following control (body), manipulator control (boom), and pallet detection,
which are all coordinated by stateflow machines. VSC then becomes a capability
built on the coordination of these primitive functions by a stateflow machine,
which is detailed in this paper. An important benefit of this architecture is mod-
ularity.

2.1 Control modules

Pallet-picking problems can be defined as generating control commands that lead
the fork frame to the pallet frame without any collisions. This clearly restricts
the final segment of the fork path to a line that is parallel to the pallet frame.
Moreover, the machine has limited maneuverability (detailed in the next section);
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Fig. 2: Software modules of vehicle control

it requires a minimum of 3m to reduce a 0.5m lateral error to 5cm, a value that
prevent collision with the pallet.

Path-Following Control: The machine in this study is a hydraulically actu-
ated (AFS) machine (with the steering mechanism of a wheel-loader). An AFS
consists of two bodies, front and rear units, joined by a hinge, each with freedom
in yaw motion. Normally, these units have freedom in pitch as well, to allow
good ground contact over rough surfaces. In a commercial AFS machine, bend-
ing angles are limited to about 42 degrees on each side to ensure roll stability.
Given a desired 2D geometrical obstacle-free path (smooth Bézier curves, in this
case) together with a desired velocity profile (trapezoidal, in this case), a path-
following controller generates the linear and angular speed of the body frame
attached to the middle of the front axle. A motion controller then generates
the required commands for the valve controlling of the steering cylinder and for
the drive power transmission controller (pump displacement and diesel RPM)
to control the speed. More details are found in [10], where we showed AFS kine-
matics can be approximated by two attached unicycles, for which a non-linear
path-following controller is designed.

Manipulator Control: As shown in Fig.1b, the forklift manipulator in this re-
search has three Degrees Of Freedom (DOF) in a rotary–prismatic–rotary (RPR)
configuration, in such a way that the height and reach of the fork and its pitch an-
gle are controllable. All DOF are controlled by linear hydraulics actuators, which
are driven by pressure-compensated proportional valves. In control terminology,
that means an inner loop servo controller compensates for nonlinear dynamics
and receives velocity control commands of the cylinders. In other words, we will
control the manipulator at the kinematic level. Given the target pose in the body
frame, a relevant Jacobian matrix is used to generate the valve speed commands.
Notice that the roll angle of the end effector (fork) is not controllable, neither
by the manipulator nor the body DOF.
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2.2 ROS Packages

Robot Operating System (ROS) is used for high-level control systems for map-
ping, path planning, obstacle avoidance, and marker detection. The core com-
ponents of the high level control system are presented in Fig. 2.

Mapping and Obstacle Detection: The mapping system uses the calibra-
tion and localization error-tolerant segmented mapping method [11]. A tilting
2D laser scanner is installed in front of the forklift. The laser range measure-
ments are transformed from the sensor frame into the global frame using the
localization information. Each point in the point cloud is attached with a height
variance value based on the localization’s uncertainty at the time of the range
measurement. The point clouds are gathered in the mapping module, and they
are processed once per tilting motion of the servo. The height of the terrain in
each cell is calculated using the height of each point assigned to each cell. The
Bayesian update is used to update the height, so the uncertainty of the measure-
ment is considered. The maximum gradient for each cell is calculated, and the
predefined threshold value is used to define the cell as free or occupied. A static
obstacle map is combined with the map calculated based on the point cloud to
avoid forbidden areas, such as roads, and areas with static obstacles, such as
buildings and fences.

Path Planning: Path-planning algorithms are presented more closely in [12].
The first step of the algorithm is to compute a finite set of feasible motions
connecting discrete robot states to construct a search graph offline. The mo-
tion primitives based on Bézier curves are generated by solving the constrained
optimization problem. The path planning receives an obstacle map from the
mapping system every time the map is updated. When a new goal is received,
the current pose of the machine is considered to be the start state for the path-
planning algorithm. A∗ search is then conducted through the graph of motion
primitives, resulting in a list of feasible motions from the start to the goal. This
list of Bézier curves are combined when feasible and are then further optimized
by solving the constrained optimization problem. This leads to a smooth and
feasible set of Bézier curves.

Marker Detection: The images are grabbed using camera_aravis and pub-
lished as unrectified raw images into ROS. The calibration is performed using
camera_calibration with a calibration plate that has a 12 × 8 grid of 6cm
square cells. The camera calibration file is saved into ROS so that it is found
by the marker detection package. The camera used in our tests was a GimaGO
GO423C GigE camera with a resolution of 1296× 966 pixels. The camera’s lens
is a Kowa 1.4 lens with a focal length of 12mm. Marker detection is imple-
mented using ar_track_alvar that uses the Alvar marker-detection library for
agumented reality. It uses unrectified images and uses the camera calibration to
rectify the images. A bundle of three individual markers is placed on the front
side the pallet as shown in Fig.1b. Alvar library recognizes them as a single
marker. This brings better reliability, as one or even two of the markers may be
occluded or unrecognizable in the camera image.
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3 Vehicle State Machine (VSM)

As shown in Fig. 2, the messages from the planner, GUI, and any higher-level
modules arrive to the VSM. This module distributes them as commands among
the relevant control modules depending on their content and the robot’s status.
Some of these message types are: driving, manipulation, forced driving, forced
manipulation, VSC, and placement. The VSM should handle and monitor the
continuous functionality of the control modules as well as interruptions and
delays.

For instance, on one hand, it should maintain smooth operation of the robot
during the communication delays of the long-distance wireless network or pack-
age drop. Therefore, the VSM uses a FIFO (First In, First Out) scheduling
system as a buffering method. On the other hand, the vehicle should immedi-
ately react to forced message types as the first priority. Therefore, forced message
types should bypass the buffers and interrupt the current work.

In the following, a selected part of the VSM is described. It focuses on ex-
ecuting a sequence of driving and manipulation commands individually or as
part of a VSC. The VSM runs at each minor sample time of the control system.
It consists of three main steps: preprocessing, processing, and post-processing.
The separation of phases not only simplifies the VSM’s design process but pro-
vides synchronization of the actions before tasking the command of the control
modules. The notation for the flags referred to in Fig. 3, 4, and 5 are as follows:

X-Active: allows the processing phase to turn on the corresponding controller.
X-Done: marks task accomplishment for local use.
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X-Release: declares task accomplishment for the high-level modules. Turns off
any busy signs for the corresponding control module.

X-Wait: pauses the command and prevents the release of the controller module.

3.1 Preprocessing

The preprocessing phase of the VSM picks the necessary control modules and
updates the VSM’s status according to the latest messages from the buffer. As
a general rule, a block in the preprocessing phase:

1. can read inputs and flags,
2. can write internal flags, and
3. should not update any outputs.

Based on these rules, we simplify the design of the VSM and avoid vicious circles.
A sample preprocessing phase for the drive command is shown by the flowchart
numbers 1 and 2 in Fig. 3. Column 1 manages flags relevant to the driving control.
The drive message can also carry the VS command and an object ID. Therefore,
the second column makes the decision about running VS-related modules. The
VSM blocks for the manipulator are similar to those in column 1. However, the
statement of accomplishment depends of the 2nd-norm of the controller error.
Note that the loops similar to the “While” loop of flowchart 1, avoids resetting
the internal flags without informing the high-level planner. X-Release flags are
updated during the postprocessing phase.

3.2 Command Processing

This phase provides the necessary data and actions for the controller modules.
Flowchart 3 in Fig. 3.1 and the flowcharts in Fig. 4 show the processing phase
of the VSM. The blocks of this phase:
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1. can read inputs and flags,
2. can write internal flags if they do not change the system status,
3. can update the outputs for the low-level modules, and
4. should not update the outputs for the high-level modules.

The VS task is based on the macro-micro controller proposed in [2].

3.3 Postprocessing

This phase updates the outputs based on the status of the controllers and the
decisions made in the earlier phases of the VSM. The blocks in this phase:

1. should not read inputs,
2. should not write internal flags except those for task accomplishment, and
3. can update the outputs for the high-level modules based on the internal flags.

The postprocessing phase for driving and manipulation are shown in Fig. 5. Note
that the X-Release flags in this phase are monitored by the high-level modules.
Unlike the other phases, this phase is triggered by the system clock. Its blocks
run sequentially at each sample time from the start to the last possible block.

4 Conclusions
The proposed method takes advantage of cooperative manipulation and path-
following in different operational coordinates. The robot receives messages from
a global planner and drives on the desired path. When the path contains a pallet
as its end-point, the vehicle state machine (VMS) smoothly switches the modules
to fit the visual-servoing architecture. In addition, VMS preserves all the func-
tionalities of the modules to run tasks sequentially or to interrupt messages from
the authorized high-level supervisory system. The architecture is implemented
on an autonomous forklift made by the Department of Intelligent Hydraulics
and Automation at the Tampere University of Technology, based on the Avant
635. The videos of the experimental evaluation are available on YouTube 1.

Acknowledgment. This work is supported by the Academy of Finland under
the project “Integrated Multimodal Sensing of 3D Environment for Intelligent
Manipulators,” grant no. 286260.

1 https://www.youtube.com/channel/UCxemrk8NrIj-db6h06VBVLA
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Table 1: Sample Rules for Decision Making
No. VS Status Description 1st Cond. 2nd Cond. [ex, ez, eθ] Flag

1 Global plan V SActive = 1 Lex ≥ D1

[
Gex,

Gez,
Geθ

]
D-Wait:OFF

2 VS adjusts height — Lex ≤ D1

[
0 ,Lez,

Geθ
]

D-Wait:OFF
3 Acceptable height Lez > εz

Lex ≤ D2

[
0 ,Lez,

Geθ
]

D-Wait:ON
. . .
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Abstract. We study the effects of variable latencies and noise-effects in
vision based navigation. Based on the observations, we adapt a new ro-
bust estimation solution that is simple to integrate into a path-following
controller and shown to provide a smoothed, high-bandwidth feedback
for real-time control of a mobile robot. The strong dependency of steer-
ing oscillations originating from the noises and inaccuracies of the robot’s
pose estimates is highlighted. The system is capable of positioning the
mobile manipulator’s gripper in the vicinity of a target only by naviga-
tion of its nonholonomic mobile base.

1 Introduction

Developments in prospective robotic markets and increasing demands for service
robots emphasize the role of mobile manipulators and moving platforms. A mo-
bile robot as a moving base for a manipulator or as an automated-guided vehicle
has broad workspace. Precise positioning of the mobile robot has a vital role
in its performance as well as manipulation functionalities. Mobile manipulators
are required to be capable of long-distance movements and precise placements
in certain neighborhoods so called workstations.

There are challenging issues for development of a precise mobile robot po-
sitioning systems. On the one hand, smooth, fast, and reliable commanding of
actuators is time-critical. On the other hand, detection and perception algo-
rithms are iterative, sequential and high in process cost. This paper focuses on
improvement in positioning of the mobile platform (of the mobile manipulator)
by integration of vision feedback into a path-following control topology to ob-
tain necessary accuracy, reliability, and smoothness of mobile robot positioning
of omnidirectional wheeled mobile robots for mobile manipulation tasks.

Comprehensive studies have been carried out on vision-based sensing for
mobile robots in [1] and later in [2] or for navigation of underwater robots [3].
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(a) Defined coordinate frames for the robot, path, and target. (b) iMoro

Fig. 1: The test case and scenario.

However, simplicity of integration, precision and repeatability have been over-
looked in most of these. Moreover, there have been many researches on image-
based navigation of mobile robots, especially for long-distance motions [4,5]. The
downside of the image-based visual servoing control schema is that it affects the
other control blocks, such as nonlinear actuator-level controllers, which brings
up new challenges for system integration. We use position-based methods to
benefit from both accurate visual tracking and integration with state-of-the-art
pre-existing control modules. For visual servoing or vision-based navigation in a
global coordinate system, the desired path or trajectory between the body frame
and target frame must be mapped. However, such mappings are subject to drift
[6], noise, and lack of real-time localization sensor for an affordable price.

The problem of complementary and Kalman filtering has been widely re-
searched in the past, see, e.g., [7,8,9]. In this context, we propose a position
estimation method, which is associated with explicit outlier rejection to improve
position estimation in accuracy, robustness, and smoothness. There are variable
latencies for machine vision techniques and differences between timestamps in
the robot’s real-time and non-real-time processors. Regardless of these issues,
by accommodating the latencies, the proposed method is capable of providing
significantly smoother and faster feedback compared to the previous method
[10,11], which was developed for nonholonomic outdoor field robots. The word
“nonholonomic” refers to robots whose velocity controllability depends on their
pose. The methods efficacy for maker-based and marker-less object detection is
demonstrated by videos of the tests1.

2 Problem Definition

The aim of this study is to improve the precision, robustness and smoothness of
the mobile base positioning in the vicinity of a target located in the workstation
of mobile manipulator as shown in Fig.1b. It uses fused visual feedback and
wheel odometry data to provide position estimation feedback a path-following
controller [12] in real-time. This system controls the mobile robot going toward

1 http://robatronics.com/2017/01/10/vision-based-motion-control/
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Fig. 2: Vision-based controller architecture.

the closest possible vicinity of the target object to pick it up. A selection of the
requirements are:

1. Real-time feedback at each minor sample time of the system, 0.005s.
2. Bellow ±3cm repeatability of positioning along each axes.
3. Maximum target tracking tolerance not more than ±5mm.
4. Dealing with a variable latency object detection toolbox (ODT) with a speed

of 5–10 image frames of per second.

We define a test scenario and a problem formulation to examine the function-
ality of positioning by different estimation methods. Assume that position and
orientation of the object is given by a 4× 4 homogeneous transformation with
respect to the workstation coordinate,

WTO(x, y, z, φ, ψ, θ) =

[WRO(φ, ψ, θ) WPO
0 1

]
. (1)

The rotation matrix WRO, parametrized by the Euler angles φ(roll), ψ(pitch),
and θ(yaw), describes the orientation of the object, and WPO = [x, y, z]T is
the position of the grasp point of object {O} in the workstation coordinate
{W}. Transformation matrices between the other coordinates obey the same
definitions with respect to their coordinates, shown in Fig. 1a.

For the purpose of mobile robot navigation, {M} is fixed on the mobile base.
Since this paper tackles navigation of mobile base, the test case starts from the
moment the robot has the workstation in the camera’s field of view. In the
vicinity of the workstation smoothness and repeatability of the system play a
key role in mobile manipulation. The control objective is to make ITM equal
to ITO. We do not consider Roll, pitch, and z-axis controllable in this problem.
Therefore, the controller has to estimate and navigate IT B(x, y, θ) for the object
grasping, IT B(x, y, θ) = ITW(x, y, θ) WT B∗ (2)

where ITW and IT B are subjects of observation and control, respectively. The
object’s pose in the workstation WT B∗ is considered as a known constant trans-
formation matrix to the desired final pose of the mobile platform.

A 1MPx GigE Point Grey Flea3 camera is used as the vision sensor. The
camera transmits the images to Aravis2, an Ethernet camera driver that has an

2 https://wiki.gnome.org/action/show/Projects/Aravis
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interface to Robotic Operation System (ROS). We use a ROS wrapper of Alvar3,
as an AR tag tracking library, for marker detection. The intrinsic camera param-
eters are calibrated by the camera calibration package of ROS. For the extrinsic
parameters, a transformation matrix for the pose of the effective camera frame
in the body coordinate is calculated through the calibration method described
in [10] to extract BT C . Detailed hardware architecture is similar to [13].

3 Complementary M-Estimation Method

Consider the problem of combining two redundant noisy measurements, X = Ẏ
and Y, to produce an estimate Ẑ of the signal Z without introducing any unnec-
essary distortion. Furthermore, assume that the measurement X is integrated to
attenuate noise. If G(s) is made a low-pass filter, 1 − G(s) is the complement,
i.e., a high-pass filter, and 1

s denotes an integrator in Laplace domain, the well-
known principles of complementary and Kalman filtering can be applied: i.e., we
can write

Ẑ(s) =
(
1−G(s)

)X (s)

s
+G(s)Y(s), (3)

which restores the signal Z without introducing any delay, assuming that the
noise in X is mostly low frequency and the noise in Y is mostly high frequency.
Therefore, in the theoretical case of noiseless and nonlinearity-free measure-
ments, the signal Z is estimated perfectly (e.g. [14]). For w = 1, the following
differential equation

[
˙̂Z
˙̂
b

]
=

[
0 1
0 0

][
Ẑ
b̂

]
+ w

[
kP
kI

]
(Y − Ẑ) +

[
1
0

]
X (4)

implements a classic 1-axis complementary filter, where Y is used as a low-
pass filtered, long-term reference to decouple the interaction of the short-term
information-bearing content and the slow time-varying bias dynamics of X . That
is, since the filter features a simple PI-type, closed-loop integrator with the
proportional gain kP and integral gain kI determining the filter dynamics, a
smoothed bias-free estimate of the signal can be rendered without detailed de-
scription of the noise processes.

The above can be implemented as a normal Kalman filter, but the ODT
noise in our experiments is highly range dependent. Alternatively, a particle lter
may be also considered, but a large number of particles is required for position
estimation at a high computational cost, as shown in [15]. For this reason, we
adjust the two gains adaptively by manipulating the term w in real-time. Thus,
if Ẑ represents the estimate of our interest and Y represents a noisy version of Z,
the gains kP and kI can be adjusted to accommodate the varying noise statistics
for as follows

w= e−
(
‖Y−Ẑ‖

c

)2
. (5)

That is, we propose evaluating the relative confidence in the context of the
robust Welsch function (e.g., [16]), which represents one of the most common

3 http://virtual.vtt.fi/virtual/proj2/multimedia/
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techniques to reduce the influence of outlying data in the statistical literature.
For example, occlusions might render the optical readings almost unusable, mo-
tivating a solution relying more on wheel odometry readings. Subsequently, the
gains were modified in real time to prevent outlying camera-based information
from corrupting the filter states (4). Since the function (5) is often utilized in the
context of the so-called M-estimators, we refer the filter to as the complementary
M-estimator. This estimation for each principle axis of motion is represented as

Ẑn = fm(X ,Y, Ẑn−1) (6)

where Ẑn and Ẑn−1 are the filter output for the current sample and the last
sample. Variable X contains velocity data from the forward kinematics of the
system based on the wheels and steerings encoders. Variable Y contains pose
data for the same based on ODT output. For spatial rotations, unlike planar
motions, Y has to be on the same coordinate of

∫
ωdt instead of Euler angles or

roll, pitch and yaw values.
As a remark, we note that evaluating the relative confidence of the mea-

surements is not only important because it allows one to reject clearly outlying
data but also because often even the outliers may contain relevant pieces of in-
formation. Thus, evaluating the relative confidence like above is by no means a
synonym for rejecting some data completely.

Discretized version of this filter is implemented in two steps. First an es-
timation of WRB is calculated and then the velocity vector of the body, as a
free vector, and ODT provided position vector are mapped into the workstation
coordinate. The mapped vectors are fused to extract the body’s relative position.

The data acquisition from the optical system as well as the subsequent on-
board processing is by no means strictly real-time. Typically, the pose of the
robot is resolved in about 70-200 ms. Effects of the timing delays can result
in position/orientation errors for a moving system of coordinates. In our case,
for example, the received information from the optical system is delayed under
fast motions and thereby does not represent the current pose of the robot; i.e.,
the process cost for image processing and machine vision algorithms change
depending on the environmental conditions and complexity of the scene. To
synchronize and compensate for the variable ODT delays, we propose projecting
the ODT information forwards using interoceptive sensor readings

Ŷ(t) = Y(t− td) +

∫ t

t−td
X (τ)dτ. (7)

This is to say that, in reality, Y in (3)–(6) is delayed by some delay td sec-
onds at time t. This delay can be calculated from the timestamps of our ODT
PC, which allows us to compensate for the variable ODT delays. Owing to the
inherently small delays, the estimation may be also considered drift free. The
above-mentioned variables are in the workstation coordinate {W}.

4 Benchmarking in Real-time Experiments

To demonstrate the range-dependent noise rejection and latency compensation in
action, this section presents an experimental study on the methods and analysis
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Fig. 3: Raw data and filters’ outputs for a couple of experiments approaching
the same target pose. Note the high noise affecting the k-means far away from
the grasping neighborhood.

of the results. The methods are implemented on iMoro, a four-wheel-steering
mobile manipulator. The robot is driven in closed-loop control. We use a fusion
method, called K-mean, described in [10] as the reference, which has a finite
memory of the most recent k values only motivated by speed and simplicity.

To compare the methods performance in a closed-loop navigation system,
the robot receives a path defined by control points of Bezier curve. The results
are overlaid in Fig. 3. Clearly, the K-means suffers from the high noise con-
tributions inherent to the camera-based information at distances further away
from the marker, resulting in oscillations. The complementary M-estimator, how-
ever, delivers smoother performance. Note the gap between the complementary
M-estimator and the camera-based reference without the synchronization: the
information from the camera contains time-dependent uncertainties, whose sig-
nificance is best illustrated by the forward projected, synchronized black dots
laying smoothly on top of the realized path in yellow (magnified in Fig. 3). This
shows that much of the noise-like position uncertainties in the raw ODT data
originates from the timings.

The following histogram in Fig. 4a shows the typical latencies when solving
the pose of the robot. Next to the histogram in Fig. 4b are the biases for the
estimated xy-coordinates and heading plotted. As can be noted, some part of
the biases are proportional to the speed of the robot.The difference between es-
timated biases for before and after synchronization depends on the fast dynamic
of the robot compared to the slowness of its ODT. Otherwise, the biases are
affected by uncertainties in the extrinsic calibrations or changes in the robot’s
mechanical and geometrical properties.

Since the steering angles depend on the path curvature, any jump in the es-
timated pose oscillates the steering angles. As shown in Fig.5 the M-estimation
performs three times lower steering actuator motion over the K-mean for a sim-
ilar path. This is important since the oscillations are undesirable and can affect
all of the measurements of all the sensors as well as actuator power consumption
in general. It is also worth noting that this is more pronounced in nonholonomic
robots due to higher costs of lateral changes in the body’s position compared to
holonomic robots.
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Fig. 4: Left: Histogram of latency variations for the ODT. Right: Estimated bias
for each state with/without the synchronization. Note the smoother convergence.
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5 Conclusions

In this paper, we have demonstrated explicit outlier rejection and real-time de-
lay compensation for variable latency, event-based ODT as shown in Fig. 3. The
outlier rejection was motivated by the high densities of range-dependent noise,
though a rich set of visual features is used by the marker based ODT. Further-
more, as shown in Fig. 4a, the ODT runs at only a rate of some 8 frames per
second. In more complicated visual scenes, the ODT process time can go as high
as 2 seconds [17], which underlines the importance of the proposed timestamp-
based, forward projection of the ODT information using the wheel odometery for
synchronization purposes. These advances provide well-behaved feedback from
the robot’s motion control viewpoint, which is a common issue for robot’s lo-
calization in any global coordinate and leads to more undesirable and power
consuming oscillations in steerable robots. In Fig. 5, these oscillations were re-
duced to at least by a factor of 3.

As stated in Section 1, video demonstrations show competence of the method
in integration of visual information for semi-unknown objects too. In this case,
the range-dependent ODT noise is significantly higher than that here.
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