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Abstract

Understanding heat transfer is vital in numerous applications in the field of power
electronics. This thesis introduces some new reliable and efficient calculation
methods for plate-fin heat sinks. There may be any number of electronic compo-
nents attached to the base plate. The components may have arbitrary prescribed
heat flux distribution. The state-of-the-art calculation methods found in the liter-
ature are based on conduction analysis, while the convective heat transfer is only
treated as a boundary condition. This may lead to unphysical solutions. In this
thesis, conjugated conduction and convection heat transfer problem is solved in
the fins. However, the tedious solution of the Navier-Stokes equations is avoided
by applying well-known analytical and experimental results for convective heat
transfer. The conjugated heat transfer solution for the fins is used to determine
the temperature field of the base plate. Some numerical examples are given to
illustrate the fact that the present calculation methods give physically more real-
istic results than the methods found in the literature. The analysis in this thesis
has been carried out assuming steady-state conditions. However, it is pointed
out that the methods presented in the thesis can easily be generalised for the
transient operation of the electronic components.
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Nomenclature

Roman letters:

a Base plate thickness

Aij Coefficients in Eq. (3.4)

aj Vector composed of coefficients Aij, see Eq. (6.12)

b Fin half-spacing

Bij Coefficients in Eq. (3.4)

bj Vector composed of coefficients Bij, see Eq. (6.12)

cf Friction factor

Ci Coefficients in Eq. (4.6)

cp Fluid specific heat

Di Coefficients in Eq. (4.6)

Ej Matrix in Eq. (6.14)

Ej,iI Element of matrix Ej on row i and column I, indexing begins from zero

f Arbitrary function

fi Coefficient or function in Eqs. (A.1) and (A.6)

fij Function in Eq. (A.7)

Gn Graetz solution coefficient

H Heat sink width in direction normal to fins, see Figs. 1.1 and 1.2

h Heat transfer coefficient based on fluid inlet temperature

hm Heat transfer coefficient based on mixed mean flow temperature

heff Effective heat transfer coefficient at top of base plate

i, I Eigenvalue number in x-direction
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j Eigenvalue number in z-direction

ka Fluid thermal conductivity

kb Base plate thermal conductivity

kf Fin thermal conductivity

L Heat sink length in flow direction, see Fig. 1.1

l Fin length in direction normal to base plate, see Figs. 1.1 and 1.2

L+ Dimensionless fin length in flow direction, see Eq. (2.9)

m
√

h/(kf t), fin parameter

ṁ Total mass flow rate through the heat sink

M Square root of matrix M 2

M 2 Matrix in Eq. (5.9)

M2
iI Element of matrix M 2 on row i and column I, indexing begins from zero

n Eigenvalue number of Graetz solution

Nf Number of fins in heat sink

Ni Number of terms in summation in x-direction

Nj Number of terms in summation in z-direction

Ntu Number of transfer units, see Eq. (2.20)

Num
4bhm

ka

, mean Nusselt number

p Summation index

Pr
ρcpν

ka

, Prandtl number

Q Total heat transfer rate of the heat sink

q Convective heat transfer rate from fins, heat flux at bottom of base plate

Qij Fourier coefficients of bottom heat flux, see Eq. (3.7)

qj Vector composed of coefficients Qij, see Eq. (6.12)

r
kf t

kb(t + b)
, dimensionless fin thickness parameter

R Matrix in Eq. (5.19)

RiI Element of matrix R on row i and column I, indexing begins from zero
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Rfins Fin-side thermal resistance θb/Q

Re
4Ub

ν
, Reynolds number

T Matrix transpose

t Fin half-thickness

T∞ Fluid inlet temperature

Ta Fluid temperature

Tb Base plate temperature

Tf Fin temperature

Tm Fluid mixed mean temperature

U Fluid mean velocity

u Velocity in the x-direction

V Matrix composed of eigenvectors of matrix M

x Coordinate in the direction of flow, see Fig. 1.1

X Arbitrary matrix

x+ Dimensionless x-coordinate, see Eq. (2.13)

y Coordinate in the direction normal to base plate, see Figs. 1.1 and 1.2

z Coordinate in the direction normal to fins, see Figs. 1.1 and 1.2

Greek letters:

αI Iπ/L, eigenvalue in x-direction

αi iπ/L, eigenvalue in x-direction

βj jπ/H, eigenvalue in z-direction

δ Delta function, see Eq. (A.4)

ε Heat transfer effectiveness, see Eq. (2.19)

γij

√
α2

i + β2
j , separation constant

Λ Diagonal matrix composed of eigenvalues of matrix M

λn Graetz solution eigenvalue

µi

√
m2 + α2

i , separation constant

ν Fluid kinematic viscosity

v



ρ Fluid density

θb Base plate temperature excess Tb − T∞

θb,ij Fourier coefficient functions of θb in Eq. (3.2)

θf Fin temperature excess Tf − T∞

θf Vector-valued function composed of functions θf,i

θf,i Fourier coefficient functions of θf in Eq. (4.4)

θm Mixed mean temperature excess Tm − T∞

ξ Dummy variable in integrals in x-direction
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Chapter 1

Introduction

1.1 Background and motivation

One of the most difficult challenges in modern power electronics is obtaining suffi-
cient cooling for the components. The operating temperature of the components
is an extremely important factor affecting their reliability. The usual cooling ar-
rangement is attaching the components at a heat sink that is cooled by liquid or
air. The heat sink typically consists of a base plate and a stack of fins. A com-
monly used plate-fin arrangement is shown schematically in Figs. 1.1 and 1.2.
In addition, as the dissipated heat of the components grows, a fan or a pump is
needed to obtain higher rates of heat transfer by forced convection.

The design process of a heat sink for a given set electronic components is a very
complicated task involving many contradicting optimisation criteria. The goal is
to minimise the following:

• Temperature of the component(s)

• Fluid outflow temperature (for safety reasons)

• Manufacturing costs

• Mass

• Outer dimensions

• Operating costs

• Purchasing and operating costs of a fan or a pump

• Noise

Generating an overall cost function for assessing the goodness of a particular heat
sink design is difficult. The cost function is certainly highly nonlinear at least
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Figure 1.1: Schematic view of heat sink.

Figure 1.2: Schematic front view of heat sink.
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as a function of the temperature of the components, the outflow temperature,
the outer dimensions and the noise. There are numerous design parameters that
affect the issues to be minimised. The operation of the simple-looking heat sink
consisting of rectangular plate fins is affected by the following parameters:

• Base plate thickness a

• Heat sink length L

• Heat sink width H

• Fin length l

• Fin thickness 2t

• Fin spacing 2b

• Choice of fin, base plate and fluid materials

• Properties of fan or pump

• Placement of component(s)

From the heat transfer point of view, the most interesting thing is to determine
the temperature of the components for a given heat sink design. This is a difficult
problem that can be approached with many different ways. The most convenient
for the designer would be an analytical formula or an empirical correlation re-
lating the design parameters and the maximum temperature of the system. The
multitude of the design parameters and the complexity of the heat transfer prob-
lems suggest that finding a formula that realistically describes the physics of the
case is very difficult.

The second alternative is to calculate the case with the help of computational
fluid dynamics software. This alternative is becoming increasingly attractive
as the cost of extensive computing diminishes. However, the method has its
drawbacks. In order to obtain reliable results, one needs to have the control
volumes or nodes very densely spaced in the gaps between the fins. This results
in a relatively large computational effort. In addition, the computational grid
has to be regenerated each time the heat sink design is changed. This makes
the use of the computational fluid dynamics less attractive at the optimisation
stage. Furthermore, the coupling between conduction and convection may cause
convergence problems during the computations.

The third alternative is manufacturing prototypes and carrying out measurements
on them. If the measurements are done correctly, they can give very valuable
information about the operation of the prototype. However, this is very slow
and expensive, which makes the method unsuitable for the early design process.
Furthermore, analysis is always needed to complement measurements in order to
improve the prototype.
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There is plenty of literature on forced convection between parallel plates. Analyt-
ical methods for optimising the plate spacing in an isothermal heat sink have been
developed in [Bejan & Sciubba], [Mereu et al.], [Bejan & Morega]. They used the
method of intersecting asymptotes, which provides an analytical formula for the
optimal plate spacing in various different flow conditions. For electronics cooling,
the most realistic choice for the flow condition they cover is the assumption of
prescribed available pumping power. This is a very realistic assumption for a fan
operating near its best efficiency point.

The method can be expected to give fairly accurate results also in the non-
isothermal case. However, the method cannot be used to calculate the total heat
flux transferred by the heat sink. Moreover, as the optimisation is done only
for the plate spacing, the method gives no information on how to choose the
remaining heat sink dimensions.

Fin spacing optimisation has also been done from the conduction point of view for
fins of various different shapes [Yeh & Chang]. However, it was assumed that the
base plate is isothermal and that the heat transfer coefficient is spatially uniform.
Moreover, the convective heat transfer coefficient was assumed to be independent
on the fin spacing, which is clearly inaccurate for densely spaced fins.

On the other hand, a lot of research has been done on conduction in the
base plate with discrete heat sources attached at the bottom of the base plate
[Culham & Yovanovich], [Lee et al.], [Yovanovich et al.], [Muzychka et al. 2003],
[Muzychka et al. 2004]. In these papers, the top of the base plate was assumed to
be cooled by a uniform convective heat transfer coefficient or a uniform effective
heat transfer coefficient, which can be calculated from the fin-side thermal resis-
tance. It was explicitly or implicitly assumed that the fin-side thermal resistance
can be calculated using the one-dimensional fin theory. Furthermore, the base
plate spreading resistance and the fin-side thermal resistance were assumed to
operate in series.

In reality, the assumption of the base plate and fin-side thermal resistances to be
in series is not always valid. As pointed out in [Lehtinen & Karvinen 2004], the
spreading of the heat not only happens in the base plate, but in the x-direction
also in the fins. For thick enough fins, this may have a significant effect in
diminishing the total thermal resistance of the heat sink.

There seems to have been quite a lot interest in two-dimensional fins, where
the conduction in the y- and z-directions are treated [Ma et al.], [Buikis et al.].
However, there exist considerably less papers on two-dimensional fins with con-
duction in the y- and x-directions. Perhaps the reason is that for a uniform heat
transfer coefficient, the total heat transfer rates given by one-dimensional and
two-dimensional analyses coincide. However, in the heat sink applications the
total amount of heat transferred is not as important as the existence of hot spots
in the base plate. Thus, it is very important to know the spatial distribution of
the heat flux transferred from the base plate by the fins.
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Depending on the heat transfer efficiency, there may by a significant wake effect
in the heat sink. Due to the fluid warming, the components near the trailing edge
of the heat sink tend to be hotter than the components near the leading edge.
Thus, the heat transfer coefficient based on the fluid inlet temperature is actually
non-uniform. The wake effect for a plate has been analysed in [Culham et al.],
[da Silva et al.].

There is also plenty of analysis for one-dimensional and two-dimensional fins
with a variable heat transfer coefficient [Ünal], [Ma et al.]. In these papers the
heat transfer coefficient was a prescribed function depending either on location
(h = h(y)) or the local fin temperature (h = h(Tf )). Also vapour condensation
in fins has been taken into account, which is an important phenomenon in air
conditioning, but of no interest in heat sink design [Karvinen et al.].

However, the heat transfer coefficient in the heat sinks is not a function that would
be known a priori. Instead, the spatially variable heat transfer coefficient needs to
be determined as a solution for a conjugated convection and conduction problem.
These kind of conjugated solutions have been found for a single fin [Karvinen]
and for an array of fins cooled by forced convection [Lehtinen & Karvinen 2005].
However, the applicability of these solutions in realistic heat sink calculations are
limited by the facts that the fin base was assumed to be isothermal and that the
x-direction conduction was neglected.

In conclusion, analytical methods that consider the plate-fin heat sink as a whole,
taking into account the convection in the fins conjugated with the conduction
both in the base plate and in the fins, seem to be missing. The goal of this thesis
is to obtain a way to calculate the temperature field in a heat sink, taking into
account the conjugated convection and conduction heat transfer, but neglecting
thermal radiation. The conduction will be treated three-dimensionally in the base
plate and two-dimensionally in the fins, assuming that each fin has a uniform
temperature in the thickness direction. The purpose is to develop an algorithm
with which the solution is accurate, but still markedly easier to compute than
with the computational fluid dynamics.

Throughout the thesis, the treatment is maintained as general as possible. There
is no limitation for the Reynolds number at which the heat sink is operated.
Furthermore, the coolant can be either liquid or gas, as long as Pr ≥ 0.5. The
physical properties of the base plate are allowed to differ from those of the fins.
The number, shape and heat flux distribution of the heat sources are arbitrary.
Thermal contact resistance is allowed to occur between the electronic components
and the base plate, but the temperature is only solved for the heat sink, not for
the electronic components.

However, perfect thermal contact is assumed between the base plate and the fins.
In addition, the treatment is limited to shrouded heat sinks. In other words, there
is no by-pass flow. It is also assumed that the heat conductivities of the base plate
and the fins are much larger than that of the coolant fluid. Furthermore, it is
assumed that the fin thickness and spacing, 2t and 2b, are much smaller than the
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other heat sink dimensions, L, H and l. The base plate thickness a is assumed
to be at least of the same order of magnitude as the fin spacing 2b.

1.2 Organisation of the thesis

In Chapter 2, the most important issues of the one-dimensional fin theory are
reviewed. Also commonly used results for forced convection between parallel
plates are given. Moreover, coupling the fin theory and the convection results
together is discussed. In Chapter 3, the base plate temperature is solved using the
method of effective heat transfer coefficient, which can be found in the literature.
In Chapter 4, the traditional fin theory is extended by allowing two-dimensional
conduction in the fins. In Chapter 5, the analysis of the fins is further complicated
by using a more realistic convection model than what is done in the traditional
fin theory.

In Chapter 6, the base plate temperature is solved by using the results for the
heat transfer in the fins, which were developed in Chapter 4 and Chapter 5. In
Chapter 7, some numerical examples are examined and the results given by the
different calculation methods are compared. The calculation methods and the
results they give are further discussed in Chapter 8. Finally, the conclusions are
given in Chapter 9.

The Fourier cosine series and some related properties of the cosine function are
reviewed in Appendix A. To improve the readability of the text, some integrals
occurring in the development of the theory are given in Appendix B. Definitions
of some matrix functions used in the thesis are given in Appendix C. Also the
numerical computation of the relevant matrix functions is discussed.
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Chapter 2

Preliminaries

2.1 Fin theory

Extended surfaces play a vital role in numerous heat transfer applications. They
are used to enhance heat transfer by providing a much larger heat transfer surface
than what would be obtained without them. The traditional analysis of extended
surfaces is based on the so-called Murray–Gardner assumptions [Kraus, pp. 3–4],
which are:

1. The heat flow in the fin and the temperature at any point on the fin remain
constant with time

2. The fin material is homogeneous and its thermal conductivity is the same
in all directions and remains constant.

3. The heat transfer coefficient between the fin and the surrounding medium
is uniform and constant over the entire surface of the fin.

4. The temperature of the medium surrounding the fin is uniform

5. The fin width is so small compared with its height that temperature gradi-
ents across the fin width may be neglected.

6. The temperature at the base of the fin is uniform

7. There are no heat sources within the fin itself

8. Heat transfer to or from the fin is proportional to the temperature excess
between the fin and the surrounding medium

9. There is no contact resistance between fins in the configuration or between
the fin at the base of the configuration and the prime surface.

10. The heat transferred through the outermost edge of the fin (the fin tip) is
negligible compared to that through the lateral surfaces (faces) of the fin.
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Naturally, in practise there exist plenty of situations where none of these ide-
alised assumptions are valid. However, the assumptions offer the basis for simple
analytical treatment of heat transfer in extended surfaces. It can easily be shown
that the Murray–Gardner assumptions imply the following equation governing
the temperature excess of the fin

kf t
d2θf

dy2
= q(x, y) (2.1)

where the heat flux at the right hand side of the equation is calculated from

q(x, y) = hθf (x, y) (2.2)

The boundary conditions for Eq. (2.1) are θ(x, 0) = θb and dθ
dy

∣∣∣
y=l

= 0. The

solution of Eqs. (2.1) and (2.2) is derived in numerous text books, for example
[Incropera & DeWitt, p. 126]:

θf (x, y)

θb

=
cosh (m(l − y))

cosh(ml)
(2.3)

where

m =

√
h

kf t
(2.4)

Differentiating Eq. (2.3) at the base of the fin yields the total heat rate transferred
by the heat sink

Q =
kfmtLHθb

t + b
tanh(ml) (2.5)

where the number of the fins in the heat sink has been approximated with

Nf =
H

2(t + b)
(2.6)

The fin-side thermal resistance Rfins = θb/Q can be solved from Eq. (2.5) as

Rfins =
t + b

kfmtLH tanh(ml)
(2.7)
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The power of the Murray–Gardner assumptions lies in the simple results in
Eqs. (2.3) and (2.5) that they imply. However, in practise there are numer-
ous situations where using the Murray–Gardner assumptions leads to severe loss
of accuracy in the computations. In this thesis, instead of using the Murray–
Gardner assumptions numbered 3, 4, 6 and 8, the convective heat transfer will be
modelled more accurately and the fin base temperature will be allowed to vary
in the x-direction. All the other Murray–Gardner assumptions listed above will
be assumed to be valid throughout the thesis. Naturally these assumptions may
also be invalid in many practical situations, but these cases are outside of the
scope of this thesis.

2.2 Laminar forced convection between parallel

plates

For fully developed temperature and velocity profiles in laminar flow between
two isothermal plates, it is possible to obtain an analytical solution [Kays et al.,
p. 89]. However, since the effect of the entrance region is appreciable even for
relatively narrow plate spacing, this solution may significantly underestimate heat
transfer. Thus, it is more prudent to use an empirical correlation which takes the
entrance region into account. The most widely used formula is probably that of
Stephan, given in [Shah & London, p. 190]

Num = 7.55 +
0.024 (L+/2)

−1.14

1 + 0.0358 (L+/2)−0.64 Pr0.17
(2.8)

where L+ is the dimensionless length of the heat sink defined by

L+ =
L

2bRePr
(2.9)

and the mean Nusselt number Num is defined by

Num =
4b

kaL

∫ L

0

q(x, y)

θf (x, y)− θm(x, y)
dx (2.10)

where

θm(x, y) =
1

bU

∫ b

0

u(x, y, z) [Ta(x, y, z)− T∞] dz (2.11)

is the mixed mean temperature of the fluid. Note that the definition of the mean
Nusselt number in Eq. (2.10) actually implies that the mean Nusselt number Num
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is a function of the y-coordinate. However, the correlation in Eq. (2.8) implies
that there is no y-dependence.

Also analytical treatments that take the entrance region into account have been
presented. For example, an analytical composite model for convection between
isothermal parallel plates was proposed in [Teertstra et al.]. The model has only
a single empirical parameter, whose value was determined with the help of com-
putational fluid dynamics. The numerical results are very close to those given by
Eq. (2.8), at least for Pr = 0.7.

The method proposed by Teertstra is physically much more sound than the fully
empirical correlation in Eq. (2.8). However, the drawback is that the present
author does not know any correspondent to the model proposed by Teertstra
in the turbulent case. Thus, the concept of Nusselt mean number is needs to
be introduced in the thesis. To avoid multiple different convective heat transfer
concepts, and to keep the treatment as compact as possible, the correlations in
Eqs. (2.8)–(2.11) are preferred in this thesis when average heat transfer coefficients
are assumed.

However, the heat transfer coefficient for laminar flows is strongly dependent on
the temperature boundary condition. The results presented above are only valid
for isothermal surfaces. For example, in the fully developed flow with uniform
heat flux from the surfaces, the Nusselt number is about 10% higher than in the
isothermal case [Shah & London, pp. 155–156].

For conjugated conduction and convection problems, where the temperature and
the heat flux distributions of the fins are not known a priori, no exact analytical
solutions are available. However, the problem lends itself to analytical treatment
when some approximations are employed. A commonly used approximation is
that of hydrodynamically fully developed flow.

Assuming a fully developed velocity profile between two parallel plates and that
conduction in the fluid occurs only in the direction normal to the plates (z-
direction), the classical Graetz solution is obtained. The result for isothermal
parallel plates is [Kays et al., p. 102]

q(x, y) =
kaθf

b

∞∑
n=0

Gn exp
(
−λ2

nx
+
)

(2.12)

where

x+ =
x

2bRePr
(2.13)

is the dimensionless length variable. The coefficients Gn and the eigenvalues λn

in Eq. (2.12) are given in Table 2.1. The result given by Eq. (2.12) is much more
accurate than the result that would have been obtained by assuming also fully
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n λn Gn

0 3.885 1.717

1 13.09 1.139

2 22.32 0.952

> 2 16
√

n
3

+ 20
3

√
1
3

2.68λ
−1/3
n

Table 2.1: Graetz infinite-series-solution eigenvalues and coefficients for isother-

mal parallel plates.

developed temperature profile. However, the result still slightly underestimates
the heat transfer, especially for small values of x+, due to the assumption of
hydrodynamically fully developed flow.

Since the solution in Eq. (2.12) is linear with respect to the surface tempera-
ture, the superposition principle can be used to obtain a solution for arbitrarily
varying surface temperature. Assuming that the fin temperature excess func-
tion θf (x

+, y) is everywhere differentiable with respect to x+, the solution in
[Kays et al., pp. 112] is obtained

q(x, y) =
ka

b

∞∑
n=0

Gn

(
exp(−λ2

nx
+)θf (0, y) +

∫ x+

0

exp
[
−λ2

n(x+ − ξ)
] ∂θf (ξ, y)

∂ξ
dξ

)
(2.14)

The assumption of a fully developed velocity profile is never valid near the en-
trance region of the heat sink. However, for liquids having a high Prandtl number
(Pr ≥ 5), the solution in Eq. (2.14) is very accurate. For gases with Pr ≈ 1, the
Graetz solution underestimates heat transfer. However, the solution in Eq. (2.14)
can be used as an approximation even for gases if x+ is high enough. Although ap-
proximate, Eq. (2.14) is frequently preferable over Eq. (2.8) due to the possibility
to take the variable surface temperature into account.

2.3 Turbulent forced convection between paral-

lel plates

In the turbulent case there are no analytical convective heat transfer solutions.
Thus, the designer needs to rely on the available experimental data. However,
from the point of view of conjugated heat transfer problems, turbulent flows are
much easier to treat than laminar ones. This is because of the fact that the
heat transfer coefficient is virtually independent on the temperature boundary
condition [Hewitt, p. 2.5.1-5].

Consequently, complexities like the integral equation (2.14) can be safely avoided
in the turbulent case by simply assuming a uniform heat transfer coefficient.
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Moreover, the heat transfer is also nearly independent on the shape of the duct
cross section. This allows one to use the results of circular ducts also in the case
of parallel plates, as long as the duct diameter is replaced with the hydraulic
diameter dh = 4b.

There are numerous experimental correlations for turbulent forced convection in
ducts. For example, Gnielinski proposed the following formula [Hewitt, p. 2.5.1-5]

Num =
(cf/8)(Re− 1000)Pr

1 + 12.7
√

cf/8(Pr2/3 − 1)

[
1 +

(
4b

L

)2/3
]

(2.15)

where the friction factor cf may, for smooth surfaces, be calculated from

cf = (1.82 log10(Re)− 1.64)−2 (2.16)

2.4 Simple isothermal heat sink

Writing a differential energy balance and using the definition of the fluid mixed
mean temperature in Eq. (2.11) gives the result

q(x, y) = ρcpbU
∂θm

∂x
(2.17)

The simplest way to evaluate the thermal performance of a heat sink is to as-
sume that both the base plate and the fins are isothermal. Assuming a constant
surface temperature θf (x, y) = θb and using the definition of the Nusselt number,
Eq. (2.10), together with Eq. (2.17) yields the solution [Shah & London, p. 59]

ε = 1− e−Ntu (2.18)

where the heat sink effectiveness ε is defined as a ratio of the total heat transfer
rate and the maximum possible heat transfer rate with the given mass flow rate

ε =
Q

ṁcpθf

(2.19)

and Ntu is the number of transfer units defined by

Ntu =
hmL

ρcpbU
(2.20)

where the heat transfer coefficient hm is defined by
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hm =
Numka

4b
(2.21)

It may easily be checked that assuming

q(x, y) = hm [θf (x, y)− θm(x, y)] (2.22)

and using Eq. (2.17) also results in Eq. (2.19) in the case of isothermal fins. In
view of this, hm will be called the heat transfer coefficient based on mixed mean
flow temperature, in order to distinguish it from h in Eq. (2.2), which is the heat
transfer coefficient based on fluid inlet temperature.

The assumption of an isothermal heat sink is very seldom adequate. Usually,
the base plate cannot be assumed to be isothermal, because the areas where the
components are attached are much hotter than the other parts of the base plate
[Incropera, p. 19]. Moreover, as shown in Section 2.1, the fins are isothermal only
if they are very thick. Thus, variable surface temperature needs to be taken into
account either with the simple fin theory or using a more detailed conjugated
analysis, as will be done later in the thesis.

2.5 Combining convection and fin theory

In reality, many of the Murray–Gardner assumptions are not strictly valid. How-
ever, the result they imply, namely the total heat transfer rate given by Eq. (2.5),
may be used as an approximation in many cases. The only question when using
Eq. (2.5) is the correct choice of the heat transfer coefficient h in Eq. (2.4). In the
laminar case, a way to do this using a composite convection model is presented
in [Teertstra et al.]. However, in the turbulent case, or when the more commonly
used laminar convection result in Eq. (2.8) is preferred to be used, a different
approach is needed.

It is clear that setting h = hm would overestimate heat transfer as Eq. (2.2)
defines h to be the heat transfer coefficient based on the fluid inlet temperature
while Eq. (2.22) shows that hm is the heat transfer coefficient based on the mixed
mean flow temperature. It is natural to demand that the fin theory gives correct
results in the isothermal case. Assuming kf = ∞, using ṁ = ρUHl b

t+b
and

combining Eqs. (2.5) and (2.18)–(2.20) yields

h =
hm

Ntu

(
1− e−Ntu

)
(2.23)

Examining Eq. (2.23) shows that for very short heat sinks (Ntu � 1), the equation
reduces to h ≈ hm. Physically, this means that the warming of the fluid in the
x-direction is of no importance, and that the heat transfer coefficients based on
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the fluid inlet temperature and the fluid mixed mean temperature coincide. On
the other hand, for very long heat sinks (Ntu � 1), the heat transfer coefficient
h based on the fluid inlet temperature tends to zero. Physically, this means that
increasing heat sink length produces very little additional heat transfer rate, since
the fluid has already warmed to the heat sink temperature.

Using Eq. (2.23) together with Eq. (2.5) and the convection results presented
in Section 2.2 and Section 2.3 is expected to give reasonable results. In the
laminar case with Pr = 0.7, the results are essentially similar to those given in
[Teertstra et al.].

This far, however, no attempt has been to model the effect of the non-isothermal
base plate or the conjugated conduction and convection in the fins. These effects
will be treated in the following chapters.
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Chapter 3

Conduction in base plate

Consider the heat sink shown in Figs. 1.1 and 1.2. The heat sink consists of a
base plate and a number of fins. There is a number of heat sources attached
to the bottom of the heat sink. It is assumed that the heat fluxes of the elec-
tronic components are known a priori. They can be either uniform or spatially
distributed. Thus, the heat flux at the bottom of the base plate can be described
with a function q(x, z). Furthermore, it is assumed that the heat leaves the base
plate only through the fins. In other words, the base plate edges, the fin edges,
the gaps between the fins at the top of the base plate and the gaps between
the components at the bottom of the base plate are assumed to be insulated.
Moreover, thermal radiation is assumed to be negligible.

In this chapter, only conduction in the base plate is treated while the fins are
modelled with the assumption of a uniform effective heat transfer coefficient. This
can be viewed as the state-of-the-art analytical method for heat sink calculations.
The analysis has been previously carried out by [Muzychka et al. 2003], but it
is repeated here with a slightly different formulation that is more suitable for
the purposes of the following chapters. In particular, the origin of the y-axis is
taken to be at the top of the base plate in order to have a more natural boundary
condition for the fins in the following chapters.

The steady-state temperature of the base plate with constant thermal conductiv-
ity is governed by the heat equation [Incropera & DeWitt, p. 56]

∂2θb

∂x2
+

∂2θb

∂y2
+

∂2θb

∂z2
= 0 (3.1)

The temperature distribution in the base plate can be presented in the form of
Fourier cosine series, see Appendix A

θb(x, y, z) =
∞∑
i=0

∞∑
j=0

θb,ij(y) cos (αix) cos (βjz) (3.2)
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where αi = iπ/L and βj = jπ/H. It is noted that Eq. (3.2) automatically satisfies
the adiabatic boundary conditions at the edges of the base plate. Substituting
Eq. (3.2) into the heat equation, Eq. (3.1), multiplying the resulting equation by
cos (αix) cos (βjz) and integrating in the x- and z-directions over the entire base
plate, yields an ordinary differential equation for each θb,ij(y)

d2θb,ij

dy2
= γ2

ijθb,ij (3.3)

where γ2
ij = α2

i +β2
j . The solution of Eq. (3.3) is straightforward, but one needs to

notice the special form of solution for the case i = j = 0, which arises due to the
zero eigenvalue. The general form of the solution for the base plate temperature
distribution obtained from Eqs. (3.2)–(3.3) is given by

θb = A00 + B00y +
∞∑
i=0

∞∑
j=0

i+j 6=0

[
Aij cosh(γijy) +

Bij

γij

sinh(γijy)

]
cos (αix) cos (βjz)

(3.4)

The coefficients Aij and Bij need to be determined from the boundary conditions
at the bottom of the base plate and at the junction between the base plate and
the fins. The bottom boundary condition is the simpler of the two, and it is
treated first. The heat flux at the bottom of the base plate can be obtained by
differentiating Eq. (3.4) at y = −a

q(x, z) = −kb
∂θb

∂y

∣∣∣∣
y=−a

(3.5)

= kb

∞∑
i=0

∞∑
j=0

[γij sinh(γija)Aij − cosh(γija)Bij] cos (αix) cos (βjz)

where the symmetry property of the hyperbolic cosine

cosh(−γija) = cosh(γija)

and the anti-symmetry property of the hyperbolic sine

sinh(−γija) = − sinh(γija)

have been used [Spanier & Oldham, p. 264]. Using the orthogonality property of
the cosine function, Eq. (A.2), one can rewrite Eq. (3.5) as

kb [γij sinh(γija)Aij − cosh(γija)Bij] = Qij (3.6)
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where

Qij =

∫ L

0

∫ H

0
q(x, z) cos (αix) cos (βjz) dz dx∫ L

0

∫ H

0
cos2 (αix) cos2 (βjz) dz dx

(3.7)

The coefficients Qij are the Fourier coefficients of the bottom heat flux q(x, z)
and they can be readily calculated for any prescribed heat flux distribution. To
be able to solve Aij and Bij, one needs an additional equation relating them.
This can be obtained by imposing a boundary condition at the junction between
the base plate and the fins at y = 0. In the literature, the most commonly used
boundary condition is a uniform effective heat transfer coefficient at the top of
the base plate [Muzychka et al. 2003]

−kb
∂θb

∂y

∣∣∣∣
y=0

= heffθb(x, 0, z) (3.8)

where

heff =
1

LHRfins

(3.9)

and the simplest way to calculate the fin-side thermal resistance Rfins is given in
Eq. (2.7).

Using Eqs. (3.4) and (3.8) together with the orthogonality property of the cosine
function, Eq. (A.2), yields

−kbBij = heffAij (3.10)

The final solution can now be obtained by solving the coefficients Aij and Bij

from Eqs. (3.6) and (3.10)

Aij =
Qij

kbγij sinh(γija) + heff cosh(γija)
(3.11a)

Bij = −
[
kbγij

heff

sinh(γija) + cosh(γija)

]−1
Qij

kb

(3.11b)

The base plate temperature distribution can now be calculated by substi-
tuting Eq. (3.11) into Eq. (3.4). The result coincides to that presented
in [Muzychka et al. 2003]. If desired, the temperature distribution given by
Eq. (3.4) can easily be averaged over the heat source area to obtain the aver-
age temperature of the junction between the base plate and the component.
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If the effective heat transfer coefficient heff is calculated using Eqs. (2.7) and
(3.9), the result in Eq. (3.11) can be rewritten as

Aij =
Qij

kb [γij sinh(γija) + rm tanh(ml) cosh(γija)]
(3.12a)

Bij = −
[
γij sinh(γija)

rm tanh(ml)
+ cosh(γija)

]−1
Qij

kb

(3.12b)

where r =
kf t

kb(t+b)
is a dimensionless fin thickness parameter. The result in

Eq. (3.12) is in a more convenient form than Eq. (3.11) for the purpose of com-
parisons between this result and the ones presented later in the thesis.
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Chapter 4

Fin theory with conduction in

flow direction

The solution presented in Chapter 3 treats the conduction only in the base plate
and approximates the effect of the fins as a uniform effective heat transfer coef-
ficient imposed at the top of the base plate. This approach is simple and often
adequate to obtain reasonable results. However, the treatment neglects some
physical phenomena, such as deterioration of the heat transfer coefficient toward
the trailing edge of the heat sink and the conduction in the fins in the x-direction.

In the following, the purpose is to establish a solution for the heat sink taking the
two-dimensional conduction in the fins into account. The heat transfer coefficient
from the fins to the ambient air is assumed to be a constant h. Each of the fins
is assumed to be so thin, that the conduction in the z-direction can be neglected.
Moreover, the heat flux through the edges and the tips of the fins is assumed to
be negligible.

Thus, the temperature distribution in a single fin can be modelled with the equa-
tion

kf t

(
∂2θf

∂x2
+

∂2θf

∂y2

)
= q(x, y) (4.1)

where

q(x, y) = hθf (x, y) (4.2)

The boundary condition at the base of the fin is a prescribed arbitrary temper-
ature function θf (x, 0). For the fin tip, the customary boundary condition of
negligible heat flux is used
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∂θf

∂y

∣∣∣∣
y=l

= 0 (4.3)

The temperature distribution in the fin can be presented in the form of Fourier
cosine series

θf (x, y) =
∞∑
i=0

θf,i(y) cos (αix) (4.4)

The adiabatic boundary conditions at x = 0 and x = L are automatically satisfied
by fin temperature in Eq. (4.4). Substituting the series in Eq. (4.4) into Eqs. (4.1)
and (4.2), multiplying the resulting equation by cos (αix) and integrating in the x-
direction over the entire length of the fin, yields an ordinary differential equation
for each θf,i(y)

d2θf,i

dy2
= µ2

i θf,i (4.5)

where µ2
i = m2 + α2

i . Solving Eq. (4.5) and substituting the result in Eq. (4.4)
yields the general solution for the fin temperature

θf,i(x, y) =
∞∑
i=0

[Ci cosh(µiy) + Di sinh(µiy)] cos(αix) (4.6)

The coefficients Ci and Di need to be determined from the boundary conditions.
Using Eqs. (4.3) and (4.6) together with the orthogonality property of the cosine
function, Eq. (A.2), gives a relation between the coefficients Ci and Di

Di = − tanh(µil)Ci (4.7)

Using Eq. (4.6) and the orthogonality property of the cosine function, Eq. (A.2),
the coefficients Ci can be determined from the base temperature of the fin

Ci =

∫ L

0
θf (x, 0) cos(αix) dx∫ L

0
cos2(αix) dx

(4.8)

Finally, using Eqs. (4.4), (4.6), (4.7) and (4.8) yields the relationship between the
fin base heat flux and the fin base temperature

−kf
∂θf

∂y

∣∣∣∣
y=0

= kf

∞∑
i=0

µi tanh(µil)

∫ L

0
θf (x, 0) cos(αix) dx∫ L

0
cos2(αix) dx

cos(αix) (4.9)

20



The result in Eq. (4.9) is the solution for the heat flux distribution at the base
of a single fin with arbitrarily varying fin base temperature θf (x, 0). Section 6.2
shows how to combine this result with conduction in the base plate to obtain the
base plate temperature distribution.
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Chapter 5

Conjugated heat transfer in fins

In the preceding chapter, the convection was calculated assuming a uniform heat
transfer coefficient based on the difference between the fin and the fluid inlet
temperatures, Eq. (4.1). In practise, this is not always a good assumption. The
assumption of a uniform heat transfer coefficient based on the inlet temperature
neglects the effect of fluid warming in the x-direction.

The solution Eq. (4.9) in the last chapter implies that a uniform temperature at
the fin base produces uniform heat flux at the fin base. Thus, a symmetrically
heated base plate would have a symmetrical temperature distribution. The same
phenomenon occurs when using the method of effective heat transfer coefficient,
Eq. (3.11).

In reality, the temperature maximum in a symmetrically heated base plate occurs
at x > L

2
because of the fluid warming. The effect may be substantial, since the

number of heat transfer units Ntu defined by Eq. (2.20) may in practise be in the
order of magnitude of 1.

This wake effect was also discussed in [Muzychka et al. 2003] in context of the
method of effective heat transfer coefficient. They proposed replacing the bound-
ary condition at the top of the base plate in Eq. (3.8) with

−kb
∂θb

∂y

∣∣∣∣
y=0

= heff [θb(x, 0, z)− θm(x)] (5.1)

where the mixed mean temperature excess would be approximated from

θm(x) =
Qx

ṁcpL
(5.2)

where Q is the total heat transfer rate dissipated by the heat sink. However, they
did not give any advice on how to use the correction in Eqs. (5.1)–(5.2) to obtain
the final solution for the whole base plate temperature distribution. Evidently,
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it is no longer possible to obtain a simple closed-form result such as Eq. (3.11).
Moreover, it is clear that the approximation in Eq. (5.2) is not very accurate
if the bottom heat flux q(x, z) is very non-uniformly distributed over the base
plate. Finally, to be precise, the fin theory should also be somehow modified
as the warming of the ambient fluid somewhat improves the fin efficiency while
decreasing the convective heat transfer rate.

In this chapter, a different approach to the problem is chosen. Instead of using
Eqs. (5.1)–(5.2), the two-dimensional temperature field in a single fin is considered
like in Chapter 4. However, in this chapter the convection is modelled more
accurately than in Chapter 4 in order to take the wake effect into account.

Calculating the convection from Eqs. (2.17) and (2.22) is expected to give more
accurate results than Eq. (4.2). In other words, a uniform heat transfer coefficient
based on the mixed mean temperature of the fluid, rather than the fluid inlet
temperature, is assumed. However, even these equations may lead to errors in
the case of laminar flow because the local heat transfer coefficient is dependent
on the upstream fin temperature distribution as discussed in Section 2.2.

In Section 5.1, the equations governing the fin temperature are formulated as
a second-order ordinary vector differential equation, assuming a uniform heat
transfer coefficient based on the mixed mean temperature of the fluid. In Sec-
tion 5.2, the same procedure is followed assuming laminar hydrodynamically fully
developed flow. Finally, the fin temperature is solved in Section 5.3 with the as-
sumption of a prescribed fin base temperature distribution. The coupling of the
fins to the base plate is postponed until Chapter 6.

5.1 Problem formulation for uniform heat

transfer coefficient based on mixed mean

temperature

Eliminating the fluid mixed mean temperature from Eqs. (2.17) and (2.22) yields
an integral relation between the fin heat flux and temperature distributions

q(x, y) = hm

(
θf (x, y)− Ntu

L

∫ x

0

exp

[
Ntu

(
ξ − x

L

)]
θf (ξ, y) dξ

)
(5.3)

It can be seen from Eq. (5.3) that the local heat flux is assumed to depend only
on the temperature distribution of the fin in question, and not on those of the
neighbouring fins. This is because Eq. (2.17) is strictly valid only if there is
temperature symmetry at the centreline between the fins.

In reality, the heat flux is slightly dependent on the temperature distributions of
the neighbouring fins. However, at the system level, the net effect of asymmetry in
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the wall temperatures is very small. The spreading of the heat in the z-direction
occurs quite effectively in the base plate. In comparison to this, the convective
heat transfer between two neighbouring fins can be neglected and the symmetry
boundary condition at the centreline between the fins is justified.

Each of the fins is naturally allowed to have different temperature distribution
depending on their location in the z-direction. The temperature distribution of a
single fin can again be presented in the form of Fourier cosine series. Substituting
Eq. (4.4) into Eq. (4.1) and changing the summation index yields

∞∑
I=0

kf t

(
−α2

Iθf,I +
d2θf,I

dy2

)
cos(αIx) = q(x, y) (5.4)

Multiplying both sides of Eq. (5.4) by cos(αix) and integrating in the x-direction
over the length of the fin yields

∞∑
I=0

kf t

(
−α2

Iθf,I +
d2θf,I

dy2

)∫ L

0

cos(αIx) cos(αix) dx =

∫ L

0

q(x, y) cos(αix) dx

(5.5)

Using the properties of the cosine function in Eqs. (A.2)–(A.3) and rearranging
yields an ordinary differential equation for each θf,i(y)

d2θf,i

dy2
= α2

i θf,i +
2
∫ L

0
q(x, y) cos(αix) dx

kf tL(1 + δ(i))
(5.6)

where δ(i) is the delta function defined by Eq. (A.4). To be able to solve Eq. (5.6),
the integral on the right hand side needs to be calculated. Substituting the Fourier
cosine series presentation of the fin temperature in Eq. (4.4) into the convection
model in Eq. (5.3) yields, with the help of Eq. (B.1),

q(x, y) =hm

∞∑
I=0

θf,I

(
cos(αIx)− Ntu

L

∫ x

0

exp

[
Ntu

(
ξ − x

L

)]
cos(αIξ) dξ

)

=hm

∞∑
I=0

θf,I

(
cos(αIx)−

Ntu

[
Ntu

(
cos(αIx)− e−Ntu

x
L

)
+ Iπ sin(αIx)

]
N2

tu + (Iπ)2

)

=hm

∞∑
I=0

θf,I

(
(Iπ)2 cos(αIx) + N2

tue
−Ntu

x
L −NtuIπ sin(αIx)

N2
tu + (Iπ)2

)
(5.7)

Substituting Eq. (5.7) into Eq. (5.6) and performing the integration on the right
hand side with the help of Eqs. (A.2), (A.3), (B.2) and (B.3) gives an ordinary
differential equation for each θf,i(y)
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d2θf,i

dy2
=

[
α2

i +

(
hm

kf t

)
(iπ)2

N2
tu + (iπ)2

]
θf,i

+

(
hm

kf t

)(
2N3

tu

1 + δ(i)

)(
1− (−1)ie−Ntu

N2
tu + (iπ)2

) ∞∑
I=0

θf,I

N2
tu + (Iπ)2

(5.8)

+

(
hm

kf t

)(
2Ntu

1 + δ(i)

) ∞∑
I=0
I 6=i

I2
[
1− (−1)i+I

]
[i2 − I2] [N2

tu + (Iπ)2]
θf,I

If the Fourier cosine series in Eq. (4.4) is truncated such that only the functions
θf,i for i < Ni are considered, Eq. (5.8) gives Ni ordinary differential equations for
Ni unknown functions θf,i(y). Using matrix notation, Eq. (5.8) can be rewritten
as

d2θf

dy2
= M 2θf (5.9)

where

θf (y) = [θf,0(y) θf,1(y) ... θf,Ni−1(y)]T (5.10)

and the elements of the matrix M 2 = {M2
iI} ∈ RNi×Ni may be found by ex-

amining Eq. (5.8). The matrix M 2 appears as squared in Eq. (5.9) to maintain
the treatment analogous to the one-dimensional fin theory in Section 2.1. The
diagonal elements (i = I, 0 ≤ i < Ni) of the matrix M 2 are

M2
ii = α2

i +
hm

kf t

[
(iπ)2

N2
tu + (iπ)2

+

(
2N3

tu

1 + δ(i)

)(
1− (−1)ie−Ntu

[N2
tu + (iπ)2]

2

)]
(5.11a)

and the non-diagonal elements (i 6= I, 0 ≤ i < Ni, 0 ≤ I < Ni) of the matrix M 2

are

M2
iI =

hm

kf t

(
2Ntu

1 + δ(i)

)[
N2

tu

[
1− (−1)ie−Ntu

]
[N2

tu + (iπ)2] [N2
tu + (Iπ)2]

+
I2
[
1− (−1)i+I

]
[i2 − I2] [N2

tu + (Iπ)2]

]
(5.11b)

It can by seen from Eq. (5.11) that if Ni = 1 and the relation between the heat
transfer coefficients h and hm is taken from Eq. (2.23), the matrix M 2 reduces
to the scalar M 2 = m2. In this case the solution of Eq. (5.9) reduces to the one-
dimensional solution in Eq. (2.3). This observation further justifies the choice of
the average heat transfer coefficient h in Eq. (2.23).
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On the other hand, in the limit of very large mass flow rate, Eq. (2.20) gives
Ntu → 0. At this limit, Eq. (2.23) gives hm → h. The matrix M 2 in Eq. (5.11)
is seen to reduce to a diagonal matrix, whose elements are given by M2

ii = µ2
i .

Thus, the set of differential equations in Eq. (4.5) and the solution in Eq. (4.9)
are recovered. Consequently, as expected, the effect of fluid warming is negligible
for small values of Ntu.

However, for large and moderate values of Ntu, the full vector differential equation
(5.9) is needed. Its solution will be given in Section 5.3.

5.2 Problem formulation for laminar hydrody-

namically developed flow

The results obtained by the method presented in Section 5.1 are expected to be
fairly accurate for turbulent flows. For laminar flows, however, the assumption
of a uniform heat transfer coefficient may lead to errors. In reality, the local heat
flux from the fins is dependent on the whole upstream temperature distribution.

The purpose of this section is to present a calculation method for laminar flows.
The method is similar to that used in Section 5.1, but now the convection from
the fins is modelled differently. The flow is assumed to be hydrodynamically fully
developed. This assumption is strictly valid only for fluids with high Prandtl
number, but the assumption can also be used for air, at least for dense fin spacing.

In addition, it is assumed that the conduction in the fluid occurs only in the
direction normal to the fins (z-direction). Furthermore, temperature symmetry
is assumed at the centreline between the fins as explained in Section 5.1.

The above assumptions lead to the integral form of the Graetz solution for con-
vection, which was presented in Eq. (2.14). Substituting the Fourier cosine series
form of the fin temperature in Eq. (4.4) into the Graetz solution in Eq. (2.14)
and using Eq. (B.4) yields

q(x, y) =
ka

b

∞∑
n=0

∞∑
I=0

θf,IGn

(
e−λ2

nx+

+

∫ x+

ξ=0

e−λ2
n(x+−ξ)∂ cos

(
αIx
x+ ξ

)
∂ξ

dξ

)

=
ka

b

∞∑
n=0

∞∑
I=0

θf,IGn

e−λ2
nx+

+
(Iπ)2

[
cos(αIx)− e−λ2

nx+
]
− λ2

nL
+Iπ sin(αIx)

(λ2
nL

+)2 + (Iπ)2


=

ka

b

∞∑
n=0

∞∑
I=0

θf,IGn

(
(Iπ)2 cos(αIx) + (λ2

nL
+)

2
e−λ2

nx+ − λ2
nL

+Iπ sin(αIx)

(λ2
nL

+)2 + (Iπ)2

)
(5.12)
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Substituting Eq. (5.12) into Eq. (5.6) and performing the integration on the right
hand side with the help of Eqs. (A.2), (A.3), (B.3) and (B.5) gives an ordinary
differential equation for each θf,i(y)

d2θf,i

dy2
=

(
α2

i +
ka

kfbt

∞∑
n=0

Gn(iπ)2

(λ2
nL

+)2 + (iπ)2

)
θf,i

+
ka

kfbt

∞∑
n=0

Gn
2 (λ2

nL
+)

3

1 + δ(i)

(
1− (−1)ie−λ2

nL+

(λ2
nL

+)2 + (iπ)2

)
∞∑

I=0

θf,I

(λ2
nL

+)2 + (Iπ)2

+
ka

kfbt

∞∑
n=0

Gn
2λ2

nL
+

1 + δ(i)

∞∑
I=0
I 6=i

I2
(
1− (−1)i+I

)
[i2 − I2]

[
(λ2

nL
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]θf,I (5.13)

Truncating the Fourier cosine series, Eq. (5.13) can again be written in the matrix
notation with Eq. (5.9). The only difference to Section 5.1 is that the elements of
the matrix M 2 are different. This time inspecting Eq. (5.13) gives the diagonal
elements of the matrix M 2

M2
ii = α2

i +
ka

kfbt

∞∑
n=0

Gn

[
(iπ)2

(λ2
nL

+)2 + (iπ)2
+

2 (λ2
nL

+)
3

1 + δ(i)

(
1− (−1)ie−λ2

nL+[
(λ2

nL
+)2 + (iπ)2

]2
)]

(5.14a)

while the non-diagonal elements of the matrix M 2 are given by

M2
iI =

ka

kfbt

∞∑
n=0

Gn
2λ2

nL
+

1 + δ(i)
× (λ2

nL
+)

2
[
1− (−1)ie−λ2

nL+
]

[
(λ2

nL
+)2 + (iπ)2

] [
(λ2

nL
+)2 + (Iπ)2

] +
I2
(
1− (−1)i+I

)
[i2 − I2]

[
(λ2

nL
+)2 + (Iπ)2

]

(5.14b)

The elements of the matrix M 2 can be calculated to desired accuracy by including
a suitable number of Graetz solution eigenvalues in the summation.

5.3 Solution for fin temperature

To be able to solve Eq. (5.9), one needs two boundary conditions. At the present
stage, the temperature distribution at the base of the fin is assumed to be a
known function θf (x, 0). Using Eqs. (4.4) and (5.10), the function θf (x, 0) can
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be described with a set of its Fourier coefficients θf (0), giving the boundary
condition

θf (y = 0) = θf (0) (5.15a)

The actual fin base temperature is later determined by coupling the fin tempera-
ture distribution to the base plate temperature distribution. The other boundary
condition is the assumption of negligible heat flow from the fin tip.

dθf

dy

∣∣∣∣
y=l

= 0 (5.15b)

The solution of Eq. (5.9) with the boundary conditions in Eq. (5.15) is

θf (y) = (cosh(M l))−1 cosh (M(l − y)) θf (0) (5.16)

where cosh is the matrix hyperbolic cosine function defined by Eq. (C.3). The
validity of the result in Eq. (5.16) may be checked by direct substitution into
Eq. (5.9) with the help of the differentiation formulae and commutative proper-
ties of the matrix hyperbolic functions in Eqs. (C.6)–(C.7). The matrix M in
Eq. (5.16) is any of the square roots of the matrix M 2 given by Eqs. (5.11) or
(5.14). In other words, M is any matrix such that MM = M 2. It can be
verified that the solution in Eq. (5.16) reduces to the one-dimensional solution in
Eq. (2.3) if Ni = 1.

The result is very remarkable. With the knowledge of the base temperature dis-
tribution of the fin, one can compute the temperature distribution in the whole
fin by taking into account both two-dimensional conduction and using a relatively
realistic convection model. In practise, the most interesting issue is the relation-
ship between the fin base temperature and heat flux distributions. This can be
obtained by differentiating Eq. (5.16) at the base of the fin

−kf
dθf

dy

∣∣∣∣
y=0

= kfM tanh(M l)θf (0) (5.17)

where tanh is the matrix hyperbolic tangent function defined by Eq. (C.5). The
result in Eq. (5.17) can be rewritten as

−kf
dθf

dy

∣∣∣∣
y=0

=
kf

l
Rθf (0) (5.18)

where
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R = M l tanh(M l) (5.19)

is a dimensionless matrix. Practical methods for computing the matrix R are
given in Appendix C. The heat flux distribution is finally obtained from Eq. (5.18)
with the help of Eq. (4.4) and the orthogonality property of the cosine function,
Eq. (A.2)

−kf
∂θf

∂y

∣∣∣∣
y=0

= −kf

Ni−1∑
i=0

dθf,i

dy

∣∣∣∣
y=0

cos(αix)

=
kf

l

Ni−1∑
i=0

Ni−1∑
I=0

RiIθf,I(0) cos(αix)

=
kf

l

Ni−1∑
i=0

Ni−1∑
I=0

RiI

∫ L

0
θf (x, 0) cos(αIx) dx∫ L

0
cos2(αIx) dx

cos(αix)

(5.20)

The result in Eq. (5.20) will be used in Section 6.3 to determine the base plate
temperature distribution.
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Chapter 6

Solution for base plate

temperature

In Chapter 3, the temperature distribution was solved in the whole base plate
using the method presented in [Muzychka et al. 2003]. However, a uniform effec-
tive heat transfer coefficient was assumed at the top of the base plate. In reality,
the things are not quite that simple when a number of fins are attached at the
top of the base plate. It should be evident from Chapter 4 and Chapter 5 that
the local heat flux at the fin base is not directly proportional to the local base
temperature of the fin.

Therefore, the effective heat transfer coefficient in Eq. (3.8) should actually be
a non-constant function heff = heff (x, z). The variation of the effective heat
transfer coefficient occurs due to three different physical phenomena:

• The heat continues to spread in the x-direction in the fins. Therefore, the
effective heat transfer coefficient is higher at the relatively hotter areas of
the base plate than at the relatively colder areas of the base plate.

• The convective heat transfer rate varies, and generally deteriorates in the
x-direction. This causes the effective heat transfer coefficient to behave
correspondingly.

• The junction is discontinuous in the z-direction. The effective heat transfer
coefficient is very much higher at the bases of the fins than in the gaps
between them.

The purpose of this chapter is to treat the top boundary condition of the base
plate more rigorously than in Chapter 3 by using the solutions for the fins obtained
in Chapter 4 and Chapter 5. However, the discontinuity in the z-direction is still
neglected. In Section 6.1, the choice for the boundary condition at the junction
between the base plate and the fins is discussed. In Section 6.2, the base plate
temperature is solved calculating the heat transfer in the fins with the result
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obtained in Chapter 4. In Section 6.3, the fluid warming is taken into account by
using the results obtained in Chapter 5.

6.1 Boundary conditions at top of base plate

For simplicity, it is assumed that there is perfect contact between the base plate
and the fins. In other words, temperature continuity in the y-direction is assumed
at the base of the fin

θf (x, 0, z) = θb(x, 0, z) (6.1)

The boundary condition in Eq. (6.1) can naturally be applied only at the fin
bases, not in the gaps between them. Moreover, the heat flux from the top of the
base plate is assumed negligible in the gaps between the fins. In other words, the
heat is assumed to leave the base plate only through the fins. This assumption is
justified if b � l. Mathematically, the heat flux at the top of the base plate can
be expressed as

−kb
∂θb

∂y

∣∣∣∣
y=0

= −kfg(z)
∂θf

∂y

∣∣∣∣
y=0

(6.2)

where

g(z) =

{
1, for z occupied by fin

0, for z occupied by fluid
(6.3)

However, the use of Eqs. (6.2) and (6.3) is quite complicated. A two-dimensional
solution for conduction in a fin attached to a base plate has been presented in
the form of a Green’s function in [Buikis et al.]. However, although the problem
is rigorously solved by taking conduction in the y- and z-directions into account,
their results are difficult to apply in the present case with non-isothermal base
plate in the x-direction. Therefore, in this thesis the heat flux boundary condition
is approximated with

−kb
∂θb

∂y

∣∣∣∣
y=0

= − kf t

t + b

∂θf

∂y

∣∣∣∣
y=0

(6.4)

It can be seen from Eqs. (2.3) and (2.7) that if the one-dimensional fin theory
is used, the boundary condition in Eq. (6.4) is identical with the effective heat
transfer coefficient boundary condition in Eqs. (3.8)–(3.9).

The approximation in Eq. (6.4) implies that each point at the top of the base
plate is thought to be attached to a fin. However, the overall energy conservation
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at the junction is guaranteed by reducing the heat flux with the factor t
t+b

. It
can be seen that Eq. (6.4) satisfies Eq. (6.2) in an integral sense. Both equations
give the same result if they are integrated in the z-direction over the half-width
of a fin and the half-width of the gap adjacent to it.

Physically, the approximation in Eq. (6.4) neglects the constriction resistance
of the heat flux leaving the base plate, or the temperature depression of the
fin base [Sparrow & Lee]. Therefore, using the approximation overestimates the
heat transfer. The effect of the constriction resistance may be substantial for
very thin base plate and fins. However, in most of the practical situations its
effect is expected to be small. Moreover, the things are somewhat balanced by
the opposite effect of the adiabatic approximation that was used at the fin tips,
base plate and fin edges and in the gaps between the fins at the top of the base
plate.

6.2 Solution for uniform heat transfer coeffi-

cient based on fluid inlet temperature

Substituting the relation between the temperature and the heat flux distribu-
tions at the fin base, Eq. (4.9), into the heat flux continuity boundary condition,
Eq. (6.4), and using the temperature continuity, Eq. (6.1), yields the boundary
condition for the top of the base plate

−kb
∂θb

∂y

∣∣∣∣
y=0

=
kf t

t + b

∞∑
i=0

µi tanh(µil)

∫ L

0
θb(x, 0, z) cos(αix) dx∫ L

0
cos2(αix) dx

cos(αix) (6.5)

It is noted that although only a single fin was treated in Chapter 4, its results
can be used for each value of z to obtain a boundary condition at the top of the
base plate. As seen from Eq. (6.9), the boundary condition correctly describes
the physics in the sense that the local heat flux at the top of the base plate is
dependent on the temperatures for all the values of x, but only for the given value
of z. This is because each of the fins can conduct heat in the x-direction, but
there is no heat transfer between two separate fins. Naturally, the fins interact
with each other through the conduction in the base plate, but this should not be
seen in the boundary condition.

Substituting the general solution for the base plate temperature, Eq. (3.4), into
Eq. (6.5) and using the orthogonality property of the cosine function, Eq. (A.2),
gives the result
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−kb

∞∑
i=0

∞∑
j=0

Bij cos(αix) cos(βjz) =
kf t

t + b

∞∑
i=0

∞∑
j=0

µi tanh(µil)Aij cos(αix) cos(βjz)

(6.6)

The orthogonality property of the cosine function, Eq. (A.2), yields the relation
between the coefficients Bij and Aij

Bij = − kf t

t + b
µi tanh(µil)Aij (6.7)

Now, the unknown coefficients Aij and Bij can be solved using the boundary
conditions at the bottom and top of the base plate, Eqs. (3.6) and (6.7)

Aij =
Qij

kb [γij sinh(γija) + rµi tanh(µil) cosh(γija)]
(6.8a)

Bij = −
[
γij sinh(γija)

rµi tanh(µil)
+ cosh(γija)

]−1
Qij

kb

(6.8b)

The base plate temperature distribution with the two-dimensional fin conduction
taken into account can now be found by substituting Eq. (6.8) into Eq. (3.4).

Comparing Eqs. (3.12) and (6.8), it can be seen that the results obtained with
the method of effective heat transfer coefficient and the method of uniform heat
transfer coefficient are analogous. The only difference is that the fin parameter m
in Eq. (3.12) is replaced with the parameter µi in Eq. (6.8) to take into account
the x-direction conduction in the fins. There are many limiting cases such as
a →∞ or m →∞ where the results obtained with the two methods coincide.

6.3 Solution for conjugated convection and con-

duction

Substituting the relation between the temperature and the heat flux distributions
at the fin base, Eq. (5.20), into the heat flux continuity boundary condition,
Eq. (6.4), and using the temperature continuity, Eq. (6.1), yields the boundary
condition for the top of the base plate

−kb
∂θb

∂y

∣∣∣∣
y=0

=
kf t

l(t + b)

Ni−1∑
i=0

Ni−1∑
I=0

RiI

∫ L

0
θb(x, 0, z) cos(αIx) dx∫ L

0
cos2(αIx) dx

cos(αix) (6.9)
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It can be seen from Eq. (6.9) that the boundary condition at the top of the
base plate is an integral equation in the x-direction for each value of z, which
is analogous to Eq. (6.5). Each of the fins naturally has its own temperature
distribution depending on its location in the z-direction.

Substituting the general solution for the base plate, Eq. (3.4), into Eq. (6.9) and
using the orthogonality property of the cosine function, Eq. (A.2), results in

−kbBij =
kf t

l(t + b)

Ni−1∑
I=0

RiIAIj (6.10)

Substituting Eq. (6.10) into the bottom boundary condition, Eq. (3.5), yields a
set of Ni ×Nj linear equations for the Ni ×Nj unknown coefficients Aij.

γij sinh(γija)Aij + cosh(γija)
kf t

kbl(t + b)

Ni−1∑
I=0

RiIAIj =
Qij

kb

(6.11)

However, only Ni unknowns need to be solved simultaneously. Using the vector
notation

aj = [A0j A1j ... ANi−1,j]
T (6.12a)

bj = [B0j B1j ... BNi−1,j]
T (6.12b)

qj = [Q0j Q1j ... QNi−1,j]
T (6.12c)

the solution for the unknown coefficients aj and bj can be written with the help
of Eqs. (6.10) and (6.11) as

aj = Ej
−1qj

kb

(6.13a)

bj = − kf t

k2
b l(t + b)

REj
−1qj (6.13b)

where Ej = Ej,iI ∈ RNi×Ni is a matrix whose diagonal elements are found by
inspecting Eq. (6.11) to be

Ej,ii = γij sinh(γija) + cosh(γija)
kf t

kbl(t + b)
Rii (6.14a)

while the non-diagonal elements are

Ej,iI = cosh(γija)
kf t

kbl(t + b)
RiI (6.14b)
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Once the coefficient vectors aj and bj have been calculated from Eq. (6.13)
for each j < Nj, they can be substituted into the general base plate solution,
Eq. (3.4), to obtain the temperature distribution in the whole base plate.
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Chapter 7

Examples

In the preceding chapters, different solution methods have been presented for
the temperature distribution at the base plate of a heat sink. The usual way of
presenting heat transfer results is to form dimensionless groups and explore their
relations to each other with the help of graphical presentations, tabulations and
correlation equations. In the present case, however, dimensional analysis is rather
ineffective.

Even for a specified pair of fluid and heat sink materials, there exist six length
variables that describe the heat sink geometry. Using the Buckingham’s theorem
[Langhaar, p. 18], one can form five independent dimensionless groups from the
length variables alone. Adding the Reynolds number, the dimensionless thermal
resistance of the heat sink would depend on six dimensionless variables for each
pair of materials. Moreover, the thermal resistance is naturally highly dependent
on the heat source configuration at the bottom of the base plate. In principle,
there are an infinite number of different heat flux distributions q(x, z), depending
on the number of the components, their positioning and the heat flux distributions
of the individual components.

Consequently, no attempt is made here to provide any general results that could
be used in a handbook way. Instead, the designer needs to implement the algo-
rithms presented in the preceding chapters on a digital computer and perform
the calculations for each heat sink design of interest. The purpose of this chapter
is to illustrate the results obtained from the calculations with the help of a cou-
ple of numerical examples. Thus, the numerical values chosen in the examples
are somewhat arbitrary. There was no specific reason for choosing the particular
values, but the author feels that the chosen values represent realistic examples.
This illustrates the differences between the calculation methods.

The geometry and the material properties used in the numerical examples are
described in Section 7.1. The different calculation methods presented in the
thesis are summarised in Section 7.2 for easier reference when comparing the
results. Some selected results from the calculations are shown in Section 7.3 and
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some discussion of the differences between the calculation methods is given in
Section 7.4.

7.1 Description of examples

The dimensions of the heat sink shown in Figs. 1.1 and 1.2 were the following:
L = 0.3 m, H = 0.2 m, l = 0.1 m, a = 0.01 m, b = 0.002 m and t = 0.001 m.
The thermal conductivity of both the base plate and the fins was kb = kf =
180 W/mK. The properties of the fluid were taken as ka = 0.026 W/mK and
Pr = 0.7, while the Reynolds number was in the laminar region, being Re = 2000.

Two different heat source configurations were used. In the first configuration,
there was a single heat source of size 0.1 m × 0.1 m located at the centre of the
bottom of the base plate. The heat source generated spatially uniform heat flux
of 100000 W/m2.

In the second configuration, there were two distinct heat sources, each of size
0.1 m × 0.1 m. The first heat source generated uniform heat flux of 55000 W/m2

and was centred at x = 0.07 m, z = 0.1 m. The second heat source generated
uniform heat flux of 45000 W/m2 and was centred at x = 0.23 m, z = 0.1 m. In
both of the configurations, the total heat flux was 1000 W and the rest of the
base plate was assumed insulated.

7.2 Calculation methods

The base plate temperature profiles were calculated with four different methods
of different complexity, presented in the thesis. In all of the methods the Fourier
coefficients Qij were calculated from Eq. (3.7) and the base plate temperature
distribution from Eq. (3.4). The number of terms calculated was Ni = Nj = 50.
Using a greater number of terms was seen to give essentially the same results.

The heat transfer coefficient hm based on the mixed mean flow temperature was
calculated from Eqs. (2.8) and (2.21). Then, the heat transfer coefficient h based
on the fluid inlet temperature was calculated from Eq. (2.23). Further, the ef-
fective heat transfer coefficient heff was calculated from Eqs. (2.7) and (3.9).
The values obtained were hm = 28.1 W/m2K, h = 18.3 W/m2K and heff = 464
W/m2K.

The only difference between the methods was the calculation of the coefficients
Aij and Bij in Eq. (3.4).

1. In the method of effective heat transfer coefficient, the coefficients Aij and
Bij were calculated from Eq. (3.12). Since this method is essentially the
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method presented in [Muzychka et al. 2003], results obtained serve as a
reference. The virtues and drawbacks of other methods can be assessed
comparing the results to this state-of-the-art model.

2. In the method of uniform heat transfer coefficient based on the fluid inlet
temperature, the coefficients Aij and Bij were calculated from Eq. (6.8).

3. In the method of uniform heat transfer coefficient based on the fluid mixed
mean temperature, the matrix M 2 was calculated from Eq. (5.11) and the
matrix R was calculated from Eq. (5.19) using the eigenvalue decomposition
method given in Appendix C. Finally, the coefficients Aij and Bij were
calculated from Eqs. (6.12)–(6.14).

4. In the method of laminar hydrodynamically developed flow, the matrix M 2

was calculated from Eq. (5.14) by including 30 Graetz solution eigenvalues
in the summation. The matrix R was calculated from Eq. (5.19) using
the eigenvalue decomposition method given in Appendix C. Finally, the
coefficients Aij and Bij were calculated from Eqs. (6.12)–(6.14).

7.3 Results

The temperature excess distributions θb(x,−a, z) at the bottom of the base plate
are shown in Fig. 7.1. The first and the second columns show the results for
a single heat source and two distinct heat sources, respectively. The four rows
show the results from the different calculation methods, in the order listed in
Section 7.2.

The temperature excess profiles θb(x,−a, H/2) at the centreline of the bottom of
the base plate obtained with different calculation methods are shown in Fig. 7.2.
In the figure the four different calculation methods refer to the methods listed in
Section 7.2. The two different graphs above and below correspond to the case of
a single and two distinct heat sources, respectively.

To show the different treatment of the base plate top boundary condition of the
different calculation methods, the effective heat transfer coefficients heff (x, z)
obtained with the different calculation methods and heat source configurations
are plotted in Fig. 7.3. In view of Eq. (3.8), the spatially variable effective heat
transfer coefficients were calculated from

heff (x, z) =
−kb

∂θb

∂y

∣∣∣
y=0

θb(x, 0, z)
(7.1)

The eight different plots in Fig 7.3 correspond to the same calculation methods
and heat source configurations as in Fig. 7.1.
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Figure 7.1: Temperature excess distributions θb(x,−a, z) (K) at bottom of base

plate, calculated with four different methods listed in Section 7.2 and two different

heat source configurations.
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Figure 7.2: Comparison of centreline temperature excess distributions

θb(x,−a, H/2) (K), calculated with four different calculation methods listed in

Section 7.2 and two different heat source configurations.
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Figure 7.3: Effective heat transfer coefficients heff (x, z) (W/m2K) at top of base

plate calculated with four different methods listed in Section 7.2 and two different

heat source configurations.
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7.4 Interpretations of results

For the case of a single heat source attached at the centre of the bottom of the
base plate, Figs. 7.1 and 7.2 show that each of the calculation methods provide
results that are qualitatively quite similar to each other. The greatest discrepancy
is that the method of effective heat transfer coefficient gives significantly larger
maximum temperature than the other methods.

The reason for the discrepancy is that the method of effective heat transfer co-
efficient does not take the x-direction conduction in the fins into account. The
reason for the different results can be clearly seen from the plot of the effective
heat transfer coefficients in Fig. 7.3. The methods 2–4, which take the x-direction
conduction into account, have large effective heat transfer coefficients near the
hot spots of the base plate. The large effective heat transfer coefficients arise
from the ability of the fins to spread the heat to the colder areas. Conversely, the
fins are not able to transfer much heat from the colder areas of the base plate as
they are receiving remarkable amount of heat from the hotter areas of the fins
through the x-direction conduction.

With the present numerical example, in which the fin mass is more that three
times larger than the base plate mass, the effect of neglecting the x-direction
conduction in the fins becomes significant. However, if the base plate were thicker
and/or the fins were shorter and thinner, the simple method of effective heat
transfer coefficient would give results much more similar to the other methods.

As can be seen from Figs. 7.1 and 7.2, the differences between the methods 2–4
listed in Section 7.2 are relatively small for the case of a single heat source. In
particular, the maximum temperatures given by the three methods almost coin-
cide. As expected, the methods 3 and 4 that take the fluid warming into account,
give relatively hotter temperatures near the trailing edge of the heat sink and
relatively colder temperatures near the leading edge. However, these differences
between the results are of minor importance, since the maximum temperature of
the components is the only thing that the designer is really interested in.

The case with two distinct heat sources gives somewhat different results. This
time Figs. 7.1 and 7.2 show that the results given by the simple methods 1 and 2
differ qualitatively from the results given by the more complicated methods 3 and
4. According to the methods 1 and 2, the upstream component, which dissipates
the larger amount of heat, is the hotter one. In contrast, the method 3 gives
approximately equal temperatures for both of the components, while the method
4 suggests that the downstream component is the hotter one.

The reason for this discrepancy is that the first two methods do not take into
account the fluid warming in the x-direction and therefore overestimate convective
heat transfer near the trailing edge of the heat sink. It can be seen from Fig. 7.3
that the effective heat transfer coefficients given by the conjugated methods 3
and 4 are relatively larger near the leading edge of the heat sink.
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The differences between the two methods taking the fluid warming into account
are relatively small. However, the method 3, which assumes a uniform heat
transfer coefficient hm, gives slightly colder temperatures near the trailing edge
of the heat sink. This is because method 4 takes into account the deterioration of
the heat transfer coefficient for increasing x in laminar flows. Thus, the effective
heat transfer coefficient given by the method 4 has even more skewness toward
the leading edge of the heat sink than the method 3.
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Chapter 8

Discussion

8.1 Recommendations

The simplest of the calculation methods presented in this thesis is the method
of effective heat transfer coefficient, which can be viewed as the state-of-the-art
method found in the literature. The three new calculation methods presented
in this thesis each add some complexity to the calculations, while trying to de-
scribe the physics behind the problem more accurately. The question naturally
is, whether the results obtained are worth the added complexity.

As discussed in Section 6.2, the results given by the first two methods actually
coincide for large values of the base plate thickness a or fin parameter m. Thus,
when the base plate is very thick in comparison to the fins, there is no need to
include the effect of x-direction conduction in the fins.

Unfortunately, it is not easy to give any recommendation on how big the base
plate thickness a and the fin parameter m need to be in order to be able to use
the method of effective heat transfer coefficient, since it depends on all the other
parameters in the problem. Since calculating the results from Eq. (3.12) is not
significantly simpler than using Eq. (6.8), it can be recommended that the latter
is always preferred to the former. However, one needs to bear in mind that both
of the results were derived using several approximations which may cause errors
larger than the differences between the two models.

The methods 3 and 4, as listed in Section 7.2, take the treatment of the problem
to the next level. Much more physics is introduced to the solution by allowing
the convective heat flux from the fins to respond to the changes in the fluid
mixed mean temperature or the whole upstream fin temperature distribution. It
is no longer possible to obtain a fully analytical solution in these conjugated heat
transfer cases.

However, the solutions can be very easily and rapidly computed using standard
linear algebra procedures such as eigenvalue decomposition and Gaussian elim-
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ination. Moreover, the matrices R and Ej need to be calculated only once for
each geometry and mass flow rate. This makes the optimisation of the heat source
placement very efficient, since only the coefficients Qij need to be recalculated,
after which the result in Eq. (6.13) can be directly used.

In the cases of a single heat source, it is quite safe to ignore the effect of fluid
warming and use Eq. (6.8). This is especially true if the single heat source is
attached near the centre of the bottom of the base plate. In contrast, when
there are two or more heat sources placed such that one heat source is located
in the wake of another, it is usually preferable to use the conjugated solution in
Eq. (6.13).

However, the simpler Eq. (6.8) may give feasible results in some cases even with
several heat sources. One such an example is a nearly isothermal base plate, when
the total amount of convective heat transfer becomes much more important than
its spatial distribution. Another example would be a very high mass flow rate
(Ntu ≤ 0.1) which results in only slightly warming mixed mean flow temperature.

For laminar flows, the differences between the conjugated methods 3 and 4 as
listed in Section 7.2 are usually quite small. An important advantage of the
method 3 over the method 4 is that it can be used for both laminar and turbulent
flows, as long as the correct convection formulae in Sections 2.2–2.3 are used. In
contrast, the method 4 is only applicable for laminar flows.

It is a difficult choice between the methods 3 and 4 in the laminar case. The
computational effort is of the same order of magnitude in both of the methods,
being slightly higher for the method 4. The method 3, which assumes a uniform
heat transfer coefficient based on the mixed mean flow temperature, tends to un-
derestimate heat transfer near the leading edge of the heat sink and overestimate
the heat transfer near the trailing edge of the heat sink. On the other hand,
the method 4, which assumes a hydrodynamically fully developed flow, tends to
underestimate the overall heat transfer, especially for air-cooled heat sinks that
are very short.

For liquid-cooled laminar-flow heat sinks, the method 4 is always the more accu-
rate, as the Graetz solution can be viewed as exact. For air-cooled heat sinks,
the choice is more difficult. The longer the heat sink is, the better the method 4
performs. As a rule of thumb, the method 4 is to be preferred when L+ > 0.02.
However, the method 3 may be the more accurate far beyond that limit if the
heat sink is very isothermal. Luckily, as said above, the differences between the
methods 3 and 4 are quite small in most engineering calculations.
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8.2 Limitations and possible generalisations of

calculation methods

There are several physical phenomena that all the calculation methods presented
in the thesis fail to describe. First of all, the thermal radiation was neglected.
This is not usually a big issue in forced convection since the convection is the
dominating mode of heat transfer.

Furthermore, the heat was assumed to leave the base plate only through the
fins. Usually the fin heat transfer area is very large when compared to the base
plate area, which justifies this assumption. The same applies to the adiabatic
approximation at the tips and edges of the fin.

Moreover, the junction was treated in an approximate way neglecting the contact
and constriction resistances. The effect of a contact resistance that depends
linearly on the local heat flux may be incorporated into the boundary condition
in Eq. (6.4) quite easily. The contact resistance was neglected in the present
treatment in order to keep the equations as simple as possible.

In contrast, the effect of the constriction resistance at the junction between the
base plate and the fins is somewhat more difficult to include in the present formu-
lation. If this effect is significant, some correction factors will probably have to be
used. Luckily, the effect of the constriction resistance is significant only for very
thin base plates and large fin spacings. The effect of the three-dimensional fin
temperature has also been neglected. The effect of non-uniform fin temperature
in the z-direction is negligible as long as the transverse Biot number is much less
than unity, ht

kf
� 1 [Ma et al.].

For simplicity, isotropic heat conductivity was assumed throughout the thesis.
The whole analysis can be equally well done for base plates and fins having dif-
ferent heat conductivities in the x-, y- and z-directions. The purpose of assuming
isotropy was again to keep the equations relatively simple.

Finally, the methods presented in the thesis can be extended to the transient
operation of the heat sink in a straightforward way. This would be done by
Laplace transforming the time-dependent heat equation for both the base plate
and the fins. Then, the analysis would be carried out in the Laplace domain in
the way described in the thesis. This would correspond to treating the convection
with the quasi-static approximation, which is very accurate due to the great heat
capacity of the solids [Arpaci & Larsen, p. 181]. Finally, the desired transient
base plate temperature would be obtained using a numerical inverse Laplace
transform algorithm.
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8.3 Other methods of solution

The natural alternative for the methods presented in the thesis is to use compu-
tational fluid dynamics to determine the temperature field. This is a perfectly
valid approach, but the computational effort would be much higher than that
of the present methods. Much effort would be needed to solve the momentum
and energy equations in the fluid but the accuracy of the results is expected to
be virtually the same as that of the present methods 3 and 4. Moreover, great
attention would be needed to ensure convergence when computing conjugated
conduction and convection heat transfer.

Another alternative would be to calculate the base plate and the fins with a
standard numerical partial differential equation solution method, such as the
finite difference method, the finite volume method or the finite element method.
The convection would be coupled to the solution using the same formulae as in
the thesis, namely Eqs. (2.14) or (5.3). The computational effort involved in this
approach is significantly smaller than that of the computational fluid dynamics
method, but still greater than that of the methods presented in the thesis.

In the finite difference method, for example, the solution method would probably
be iterative. If a non-iterative solution is desired, one needs to solve temperatures
of all the nodes in the heat sink simultaneously. This corresponds to inverting a
sparse matrix, which is a fairly frequent task in numerical linear algebra. In the
present case, however, the things are quite complicated as the bandwidth of the
matrix is relatively large. This is because the energy balance at the trailing edge
of the fin is affected by the whole upstream fin temperature distribution, as can
be seen from the integral in Eqs. (2.14) or (5.3).
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Chapter 9

Conclusions

In this thesis, new calculation methods have been developed for rectangular plate-
fin heat sinks cooled by forced convection. The traditional fin theory has been
extended by allowing the fin temperature to vary in the direction of the flow and
allowing the convective heat flux from the fins to be modelled more accurately
than just using a uniform heat transfer coefficient h. The methods can be used
for any prescribed heat source configuration at the bottom of the base plate.

Using an approximate treatment of the junction between the base plate and the
fins, three new solution methods were presented with which one can solve the base
plate temperature using the newly developed solutions for the fin temperature.
With a realistic numerical example, it was shown that the new methods may give
results that significantly differ from the state-of-the-art method of effective heat
transfer coefficient.

It was shown that the method of effective heat transfer coefficient is a special
case of the new methods. Since the new methods include more physics, it is ex-
pected that they can perform no worse than the method of effective heat transfer.
However, the improvement in the accuracy comes at the cost of some complexity.

In the method of uniform heat transfer coefficient based on inlet temperature,
the added complexity is very small. The computational effort is very small,
being virtually the same as in the method of effective heat transfer coefficient.
In contrast, the conjugated methods which take the warming of the fluid into
account are somewhat more complicated to use. The solution procedure involves
computing a matrix function and solving several sets of linear equations. However,
the solution is very efficient with the standard numerical mathematics software.
The computing times are typically in the order of seconds. This makes the present
methods preferable to computational fluid dynamics in many cases.

The suitability of the calculation methods for different cases was also discussed.
The method of uniform heat transfer coefficient based on mixed mean tempera-
ture was recommended to be used in most engineering calculations with turbulent
flows. For laminar flows, the method of hydrodynamically fully developed flow

48



is preferable for liquid-cooled or very long air-cooled heat sinks. However, for a
single heat source or for a high mass flow rate, the simple method of uniform heat
transfer coefficient based on fluid inlet temperature gives good results.

Finally, generalising the methods presented in the thesis for the transient opera-
tion of the heat sink was shortly discussed. This leads to an efficient algorithm
for a bottom heat flux which varies arbitrarily both spatially and temporally.
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Appendix A

Fourier cosine series

Any function f(x) can be expressed as the Fourier cosine series in the interval
0 < x < L [Strauss, p. 103]

f(x) =
∞∑
i=0

fi cos

(
iπx

L

)
(A.1)

Note that most textbooks use the convention that f0 is divided by 2 in the series
in Eq. (A.1). The advantage of this definition is that the norms of each of the
basis functions are equal. For the purposes of this thesis, however, the above
definition for the Fourier cosine series is more convenient.

The cosine function has the orthogonality property

∫ L

0

cos

(
iπx

L

)
cos

(
Iπx

L

)
dx = 0 if i 6= I (A.2)

The integral over the cosine function squared is also frequently needed

∫ L

0

cos2

(
iπx

L

)
dx =

2L

1 + δ(i)
(A.3)

where

δ(i) =

{
1 for i = 0
0 for i 6= 0

(A.4)

Using Eqs. (A.1)–(A.3) the Fourier coefficients fi can be solved as
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fi =
1 + δ(i)

2L

∫ L

0

f(x) cos

(
iπx

L

)
dx (A.5)

The Fourier cosine series in the right hand side of Eq. (A.1) converges uniformly
to f(x) on 0 ≤ x ≤ L provided that [Strauss, p. 124]

1. f(x), f ′(x), and f ′′(x) exist and are continuous for 0 ≤ x ≤ L and

2. f(x) satisfies the given boundary conditions

The uniform convergence is very important since it allows term-by-term differ-
entiation of the series. All the Fourier cosine series occurring in the thesis are
uniformly convergent. The derivatives of the temperature exist and are contin-
uous due to the nature of heat conduction and absence of heat sources inside
the base plate or the fins. Also the second condition above is satisfied, since the
cosine series fit to the adiabatic boundary conditions at the edges of the base
plate and the fins.

Functions of several variables can also be expressed in the form of Fourier cosine
series [Strauss, pp. 140, 155–158]. For example, the function f(x, y) can be
expanded in 0 < x < L, 0 < y < l

f(x, y) =
∞∑
i=0

fi(y) cos

(
iπx

L

)
(A.6)

or the function f(x, y, z) can be expanded in 0 < x < L, 0 < y < l, 0 < z < H

f(x, y, z) =
∞∑
i=0

∞∑
j=0

fij(y) cos

(
iπx

L

)
cos

(
jπz

H

)
(A.7)
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Appendix B

Some integrals

Some integrals occurring in the thesis are presented in this appendix to improve
readability of the text.

∫ x

0

exp

[
Ntu

(
ξ − x

L

)]
cos(αIξ) dξ

= e−Ntu
x
L

∫ x

0

e−Ntu
ξ
L cos

(
Iπξ

L

)
dξ

= e−Ntu
x
L

x/
ξ=0

Le−Ntu
ξ
L

[
Ntu cos

(
Iπξ
L

)
+ Iπ sin

(
Iπξ
L

)]
N2

tu + (Iπ)2

=
NtuL

[
cos(αIx)− e−Ntu

x
L

]
+ IπL sin(αIx)

N2
tu + (Iπ)2

(B.1)

∫ L

0

e−Ntu
x
L cos(αix) dx

=

∫ L

0

e−Ntu
x
L cos

(
iπx

L

)
dx

=

L/
x=0

Le−Ntu
x
L

[
iπ sin

(
iπx
L

)
−Ntu cos

(
iπx
L

)]
N2

tu + (iπ)2

= −
LNtu

[
e−Ntu cos(iπ)− 1

]
N2

tu + (iπ)2

=
LNtu

[
1− (−1)ie−Ntu

]
N2

tu + (iπ)2

(B.2)

∫ L

0

sin(αix) cos(αix) dx

=
1

2

∫ L

0

sin

(
2iπx

L

)
dx = 0

(B.3a)
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∫ L

0

sin(αIx) cos(αix) dx

=

∫ L

0

sin

(
Iπx

L

)
cos

(
iπx

L

)
dx

=
1

2

∫ L

0

[
sin

(
(I + i)πx

L

)
+ sin

(
(I − i)πx

L

)]
dx

= −1

2

L/
x=0

[
L

(I + i)π
cos

(
(I + i)πx

L

)
+

L

(I − i)π
cos

(
(I − i)πx

L

)]
= −1

2

[
L

(I + i)π

(
(−1)i+I − 1

)
+

L

(I − i)π

(
(−1)I−i − 1

)]
= −1

2

[
L

(I + i)π

(
(−1)i+I − 1

)
+

L

(I − i)π

(
(−1)I+i − 1

)]
=

LI
(
1− (−1)I+i

)
π(I2 − i2)

(B.3b)

∫ x+

ξ=0

e−λ2
n(x+−ξ)d cos

(
αIx
x+ ξ

)
dξ

dξ

= −
(αIx

x+

)
e−λ2

nx+

∫ x+

ξ=0

eλ2
nξ sin

(αIx

x+
ξ
)

dξ

=
(αIx

x+

)
e−λ2

nx+

x+/
ξ=0

eλ2
nξ
[(

αIx
x+

)
cos
(

αIxξ
x+

)
− λ2

n sin
(

αIxξ
x+

)]
λ4

n +
(

αIx
x+

)2
=

(
αIx
x+

)2 [
cos(αIx)− e−λ2

nx+
]
− λ2

n

(
αIx
x+

)
sin(αIx)

λ4
n +

(
αIx
x+

)2
=

(Iπ)2
[
cos(αIx)− e−λ2

nx+
]
− λ2

nL
+Iπ sin(αIx)

(λ2
nL

+)2 + (Iπ)2

(B.4)

Analogously to Eq. (B.2):

∫ L

0

e−λ2
nx+

cos(αix) dx

=

∫ L

0

e−
λ2

nL+

L
x cos

(
iπx

L

)
dx

=
Lλ2

nL
+
(
1− (−1)ie−λ2

nL+
)

(λ2
nL

+)2 + (iπ)2

(B.5)
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Appendix C

Matrix functions

The matrix exponential can be defined as [Golub & Van Loan, p. 540]

eX =
∞∑

p=0

Xp

p!
(C.1)

Direct differentiation of Eq. (C.1) shows that

deXy

dy
= XeXy = eXyX (C.2)

Analogously to the scalar case, one can define the hyperbolic matrix functions

cosh(X) =
eX + e−X

2
(C.3)

sinh(X) =
eX − e−X

2
(C.4)

tanh(X) =
(
eX + e−X

)−1 (
eX − e−X

)
(C.5)

Using Eqs. (C.2)–(C.4) shows that

d cosh(Xy)

dy
= X sinh(Xy) = sinh(Xy)X (C.6)

and
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d sinh(Xy)

dy
= X cosh(Xy) = cosh(Xy)X (C.7)

One approach to compute matrix functions such as the matrix R in Eq. (5.19) is
to compute an eigenvalue decomposition

M 2 = V Λ2V −1 (C.8)

where Λ2 is a diagonal matrix composed of the eigenvalues of the matrix M 2 while
V is a matrix composed of the eigenvectors of the matrix M 2. The eigenvalue
decomposition can be routinely computed with numerical mathematics software
such as Matlab. It can easily be seen that one of the square roots of the matrix
M 2 is given by

M = V ΛV −1 (C.9)

where the diagonal matrix Λ is obtained by simply taking the element-wise square
root of the diagonal matrix Λ2. The virtue of the eigenvalue decomposition is
that all the matrix functions can be computed by calculating the function values
of the eigenvalues of the original matrix [Golub & Van Loan, p. 539]

f(M) = V f(Λ)V −1 (C.10)

Therefore, the matrix R in Eq. (5.19) takes the following form

R = M l tanh(M l) = V Λl tanh(Λl)V −1 (C.11)

where tanh(Λl) is a diagonal matrix resulting from taking an element-wise hy-
perbolic tangent of the diagonal elements of the matrix Λl.

In general, the method of eigenfunction decomposition may lead to numer-
ical instability as the errors in evaluating f(Λ) can be magnified by as
much as ‖V ‖‖V −1‖. These problems can be avoided by using more ad-
vanced decomposition methods, such as the Schur-Parlett algorithm presented
in [Davies & Higham].

However, the eigenvalue decomposition method is expected to perform sufficiently
well for the matrix M 2. This is because the matrix M 2 is very diagonally-
dominant, as can be seen by inspecting Eqs. (5.11) and (5.14). Physically, this
results from the large stabilising effect of the x-direction conduction in the fins.
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