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Abstract

In this thesis, the robust output regulation problem is studied both in the time
domain and in the frequency domain. The problem to be addressed is to find a
stabilizing controller for a given plant so that every signal generated by an ex-
ogenous system, or shortly exosystem, is asymptotically tracked despite pertur-
bations in the plant or some external disturbances. The exosystem generating
the reference and disturbance signals is assumed to be infinite-dimensional.

The main contribution of this thesis is to develop the robust regulation the-
ory for an infinite-dimensional exosystem in the frequency domain framework.
In order to do that, the time domain theory is studied in some detail and new
results that emphasize the smoothness requirement on the reference and dis-
turbance signals due to infinite-dimensionality of the exosystem are presented.
Two types of controllers are studied, the feedforward controllers and the er-
ror feedback controllers, the latter of which facilitate robust regulation. These
results exploit the structure at infinity of tha plant transfer function. In this the-
sis, a new definition of the structure at infinity suitable for infinite-dimensional
systems is developed and its properties are studied.

The frequency domain theory developed is based on the insights into the
corresponding time domain theory. By following some recent time domain ideas
the type of robustness and stability types are chosen so that they facilitate the
use of an infinite-dimensional exosystem. The robustness is understood in the
sense that stability should imply regulation. The chosen stability types resemble
the time domain polynomial and strong stabilities and allow robust regulation
of signals that have an infinite number of unstable dynamics along with transfer
functions vanishing at infinity.

The main contribution of this thesis is the formulation of the celebrated
internal model principle in the frequency domain terms in a rather abstract
algebraic setting. Unlike in the existing literature, no topological aspect of the
problem is needed because of the adopted definition of robustness. The plant
transfer function is only assumed to have a right or a left coprime factorization
but not necessarily both. The internal model principle leads to a necessary and
sufficient condition for the solvability of the robust regulation problem.

The second main contribution of the thesis is to design frequency domain
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controllers for infinite-dimensional systems and exosystems. In this thesis,
the Davison’s simple controller design for stable plants is extended to infinite-
dimensional systems and exosystems. Then a controller design procedure for
unstable plants containing two phases is proposed. In the first phase, a stabi-
lizing controller is constructed for a given plant. The second phase is to design
a robustly regulating controller for a stable part of the plant. This design pro-
cedure nicely combines with the Davison’s type controllers and is especially
suitable for infinite-dimensional plants with transfer functions in the Callier-
Desoer class of transfer functions.
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Chapter 1

Introduction

1.1 Introduction to Robust Regulation
This thesis deals with one of the central issues in the mathematical systems
theory, the robust regulation. The mathematical background is in state space
and frequency domain theories for linear distributed parameter systems. With
distributed parameter systems one is able to model phenomena involving partial
differential equations. Basic examples of partial differential equations are heat,
wave, and delay equations, which naturally arise in the natural sciences and
related engineering applications.
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Figure 1.1: The basic control configuration.

On a general level the problem considered in this thesis is as in Figure 1.1.
There P is a given system and y is an output or a measurement, which describes
the data available from the systems behavior. Reference signal yr is the desired
behavior of the system or, to be more precise, of the measurement. Input u is
a signal through which one can control the system. The aim is to zero out the
error e between the reference and the measurement signals despite an external
disturbance d.

The problem can be formulated in the time domain by using the state space
formulation or in the frequency domain by using transfer functions. The most
recent results related to the subject of this thesis are given in state space terms.
While the main contribution of this thesis lies in developing the theory of robust

1
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(b) The error feedback control configuration

Figure 1.2: Two control configurations. The feedforward control configuration
1.2(a) and the error feedback control configuration 1.2(b).

regulation in the frequency domain, the work is based on the insight about the
time domain theory. In addition, the time domain formulation of the problem
is more intuitive, so assume for now that the signals are functions of time.
In the ideal case the control can be chosen so that the error is zero all the
time, but, in practice, that is impossible. A more realistic aim would be to
keep the error small or to try to get rid of the error asymptotically. In this
thesis, the latter is the desired behavior of the error, and it is called asymptotic
tracking, which mathematically means that e(t) → 0, as t → ∞. In this
thesis, an appropriate control is provided by a controller C. The two control
configurations considered in this thesis are the feedforward control configuration
shown in Figure 1.2(a) and the error feedback control configuration shown in
Figure 1.2(b). The exogenous system, or the exosystem, S is generating the
reference and the disturbance signals. The exosystem is assumed to be infinite-
dimensional. One of the main problems of the thesis is to design controllers that
have two properties; they should guarantee asymptotic tracking for all possible
initial states of the plant, and the controller and the exosystem and they should
stabilize the closed loop system. The problem of designing such controllers is



1.1. Introduction to Robust Regulation 3

called the output regulation problem.
Any periodical signal can be generated by an infinite-dimensional exosystem,

which is a major motivation for using them for regulation problems. A robot arm
in a factory is a good example of a situation where a periodic reference signal
is needed. Another motivating example is the noise damping in a ventilation
duct by using a speaker attached on its wall, which have been studied, e.g.,
in [85]. In that case, the noise can be seen to be periodical since it is caused
by a rotating fan at one end of the duct. The speaker should dampenn the
disturbance noise at the open end of the ventilation duct, so the reference signal
is just zero. Both of the control configurations presented above can be applied
to the regulation problem at hand. It makes sense to assume that one has a
good idea of the dynamics of the disturbance so that a feedforward controller is
feasible. However, if there are other sources of disturbances, or the noise caused
by the fan changes over time, one might want to use a feedback controller.

The controllers for infinite-dimensional exosystems typically have irrational
transfer matrices. Such controllers are not implementable with the usual means,
so the applicability such controllers in engineering applications is limited. How-
ever, there may exist very complex control systems, e.g., biological systems,
which may be infinite-dimensional by nature or for which infinite-dimensional
systems serve as a useful abstraction. For example, very long finite platoons of
vehicles can be modelled as infinitely long platoons [43]. It is important study
the related theory in order to understand the behavior and limitations of such
systems. For example, [12] shows that the infinite-dimensionality of a platoon
model can cause some undesired consequences. The designed controllers can
serve as a target model that is approximated by a finite-dimensional physical
system. By doing so, one accepts a small persistent error, but in principle
this error can be made arbitrarily small. Measuring the error and finding op-
timal approximations are related to the topological side of the problem, which
is not pursued in this thesis. Practical output regulation and approximation of
infinite-dimensional controllers by finite-dimensional ones have been studied in
[39].

A mathematical model of a real world phenomena unavoidably contains some
errors. Small errors can stem from various sources, for example faulty parameter
estimation, numerical errors, or model simplifications, such as linearization.
Furthermore, the system modelled can change during the time due attrition of
components or other causes. All these errors can be understood as perturbations
in the mathematical model. A controller should solve the output regulation
problem despite such perturbation in order to be fully functional. A controller
is called structurally robust, or shortly robust, if it tolerates small perturbations
in the model parameters. The problem of finding such controllers is called
the robust regulation problem. Understanding robust control mechanisms and
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their limitations is of fundamental importance since they can be encountered in
biological systems in addition to engineering applications [46].

The robust regulation problem was solved for finite-dimensional linear sys-
tems during the 1970s, and the very nature of robustly regulating controllers
was captured by a fundamental result called the internal model principle due to
Francis and Wonham [28]. The internal model principle states, roughly speak-
ing, that a robustly regulating controller should have the dynamics to be tracked
build in it. In mathematical terms, this means that the controller should con-
tain a suitably reduplicated copy of the exosystem. Since then, many authors
have extended the results of finite-dimensional systems to infinite-dimensional
systems. Recent development to this direction is the research on robust regu-
lation problem with infinite-dimensional exosystems. The major obstacle with
an infinite-dimensional exosystem is the trade off between the generality of the
exosystem and the stabilizability of the closed loop system. It is known that
if a controller contains an internal model of an infinite-dimensional exosystem,
then it is often impossible to stabilize the closed loop exponentially [39], and
one has to consider a weaker stability type, for example strong stability. Un-
fortunately, this leads to inferior robustness properties of stability. In addition,
the reference and the disturbance signals need to be smooth enough in order
for the problem to be solvable. The required smoothness is related to the high
frequency behavior of the plant transfer function [34, 39, 72].

The robust regulation problem can be alternatively formulated in the fre-
quency domain. In the frequency domain, the plant is a transfer function, which
gives an input-output description, whereas a state space description in the time
domain also models internal dynamics. If one wants the input and output spaces
of all the transfer functions to be finite-dimensional, one has to modify the way
the reference and disturbance signals are generated. The reference and the dis-
turbance signals are generated by a transfer function Θ called the generator
from stable signals ŷ0 and d̂0, and the control configuration of Figure 1.2(b) is
modified to the one depicted in Figure 1.3.

In the frequency domain, a transfer function is said to be stable if it is an
element of a ring R of stable transfer functions. The choice of R depends on
the problem to be solved; there are several commonly used rings available [56].
The asymptotic tracking means that the elements of the error vector ê are in
R. The problem of finding a controller C that stabilizes a given plant P and
guarantees asymptotic tracking for all the signals generated by the generator Θ
from stable signals ŷ0 and d̂0 for all plants near the nominal plant P is called
the robust regulation problem. Being close is usually understood in the sense
of some topology. It should be noted that the frequency domain problem is
formulated purely in algebraic terms.

In this thesis, the main aim is to develop the frequency domain theory
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ŷ0

Θ

?j-+
-

ŷr
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Figure 1.3: The control configuration in the frequency domain.

of the robust regulation problem for infinite-dimensional systems and signals.
This means that the chosen transfer functions class should contain a variety of
transfer functions of infinite-dimensional systems and the signal classes should
contain Laplace transforms of signals generated by an infinite-dimensional ex-
osystem. The ideas presented by Pohjolainen, Immonen, Hämäläinen, and
Paunonen in [34, 39, 72] about the time domain robust regulation with infinite-
dimensional exosystems are used to formulate and to solve the problem in the
frequency domain.

The coprime factorization approach provides a simple framework to study
stabilizability in the frequency domain. For the rational transfer functions and
the fractions of H∞ functions, it is not a restriction to assume that the plant
transfer function has a left and a right coprime factorization, since all stabi-
lizable transfer functions have them. In this thesis, the coprime factorization
approach is used despite the fact that a plant does not necessarily have a co-
prime factorization in the algebraic structures to be considered. However, many
of the transfer functions of interest have them, e.g., the stable transfer functions.
In this thesis, only the existence of a left or a right coprime factorization is as-
sumed, not necessarily both, in which sense the results in the thesis on robust
regulation generalize those in the existing literature in which both coprime fac-
torizations are invariably assumed to exist.

The exosystem is chosen so that the signals have an infinite number of poles
approaching infinity on the imaginary axis. A similar problem has been studied
in [35] by Hara et al., who designed controllers in the frequency domain with an
infinite-dimensional internal model and discovered that it is impossible to find
a state space realization that makes the closed loop system exponentially stable
if the plant transfer function is strictly proper. This is a major restriction for
the generality of the theory since many interesting systems are strictly proper.
Robust regulation with an infinite-dimensional exosystem was later studied by
Ylinen et al. in [101] in purely algebraic terms with H∞-stability; a similar
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restriction was encountered. In this thesis a way to overcome this restriction is
found by defining two new rings of stable transfer functions resembling strong
and polynomial stability in the time domain. The essential feature of the rings
is that they allow transfer functions to be unbounded on the imaginary axis in
contrast to H∞-stability. Allowing the growth on the imaginary axis makes it
possible for a controller to contain an infinite-dimensional internal model and
to stabilize the closed loop system simultaneously.

A general algebraic approach to the robust regulation problem is due to Nett
who studied the problem by using coprime factorizations [67]. Basically, Nett
only assumed the ring R of stable transfer functions to be a general unitary ring
with a topology induced by a metric. By using coprime fractions, Nett was able
to formulate the internal model principle for the generators of form Θ = θ−1I
where θ is an element of R under some topological assumptions. The frequency
domain version of the internal model principle states, generally speaking, that
a the denominator matrix of a coprime factorization of the controller should
be divisible by θ in order the controller to be robustly regulating. Similar
results for rational transfer functions can be found in [92] where the generator
Θ was allowed to be a general rational function. In this case, θ appearing in
the internal model principle is the largest invariant factor of the denominator
in a coprime factorization of Θ. In [92], the solvability of the problem was
characterized directly in terms of the coprime fractions of the plant and the
generator, and it was noted that the results partially generalize to more general
algebraic structures. The results in [67, 92] are generalized in the sense described
below.

In this thesis, the robustness is understood in the sense that the closed loop
stability should imply asymptotic tracking, whereas usually the robustness is
understood in the sense of a topology. By defining the robustness this way one
is able to consider the robust regulation without defining a topology in which
sense the presented results generalize those in [67]. The treatment without a
topological aspect is convenient since it is hard, if possible, to find a suitable
topology for the class of transfer functions when the new rings of stable transfer
functions to be presented in this thesis are used.

One of the main results of the thesis is that the internal model principle
formulated in [67] is valid for the robustness type considered in this thesis.
The signal class in this thesis is not initially generated by a frequency domain
generator. To be able to show the internal model principle, a generator of
form Θ = θ−1I that generates all the reference and the disturbance signals of
interest is presented. Since the original signal class does not contain all of the
signals generated by Θ, the results are more general to those in [67]. When
showing that a robustly regulating controller necessarily contains an internal
model, ideas from [92] are used. However, the results there are only for rational
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matrices.
It is relatively easy to design controllers for rational transfer functions since

coprime factorizations allow parametrization of all robustly regulating con-
trollers [92]. An extremely simple controller for stable finite-dimensional sys-
tems consisting of an internal model and a feedback was proposed by Davison
[17, 18]. This controller was later generalized for finite-dimensional exosystems
and infinite-dimensional plants with their transfer functions in Callier-Desoer
algebra in [33]. In the case of an infinite-dimensional exosystem, the controller
design is not so straightforward. However, a modification of the Davison’s ro-
bustly regulating controller for infinite-dimensional exosystems was presented
in [101]. The drawback was that the plant transfer function was not allowed to
be strictly proper. The approach in this thesis allows the generalization of the
Davison’s controller design for the infinite-dimensional exosystems even if the
plant transfer function is strictly proper. It is also shown how the controllers
for stable plants can be exploited if the transfer function is unstable. To the
author’s knowledge, this result is new even for finite-dimensional exosystems
and plants. The proposed controller design is shown to be especially suitable
for the functions in Callier-Desoer algebra.

1.2 Organization and Main Contributions
The theoretical work of the thesis is carried out in Chapters 2-4. An overview
of the organization and the main results of this thesis is given below. Each of
the research chapters contains a comprehensive introduction to its topic and a
detailed list of research results.

Chapter 2 The topic of this chapter is the structure of transfer function ma-
trices at infinity. A new definition for the structure at infinity of an
infinite-dimensional plant is presented and its properties are studied. The
need for defining the structure at infinity stems from the connection be-
tween the solvability of the output regulation problem and the structure
at infinity which is to be established in Chapter 3. The problem has been
that the structure at infinity of an infinite-dimensional plant has not been
defined before. A definition for the structure of a transfer function is
needed because the transfer functions of infinite-dimensional plants are
not meromorphic at infinity, which results into a complicated high fre-
quency behavior. A major part of the results of this chapter has already
been published by the author in [52].

Chapter 3 The topic of this chapter is the (robust) output regulation prob-
lem in the time domain. The restrictions and the trade-offs caused by an



8 Chapter 1. Introduction

infinite-dimensional exosystem noticed in the recent literature, for exam-
ple in [34, 39, 72], are emphasized. The chapter focuses on the required
smoothness properties of the reference and the disturbance signals. The
structure at infinity defined in Chapter 2 is exploited to characterize the
solvability of the output regulation problem with feedforward and error
feedback controllers. In particular, the required smoothness properties of
the reference and the disturbance signals are made precise by using the
structure of the plant transfer function at infinity. The results concern-
ing the solvability of the output regulation problem with a feedforward
controller can be found in articles [52, 53] by the author.

Chapter 4 The topic of this chapter is the robust regulation problem with an
infinite-dimensional exosystem in the frequency domain. The ideas from
the time domain robust regulation are used, i.e., by revising the definition
of robustness and considering the weaker type of stability rather than the
commonly used ones, the robust regulation problem is formulated so that
the theoretical results for rational matrices in [92] can be generalized to a
more general theoretical framework.
The major contributions of this chapter, and the whole thesis, are the
following. First, the internal model principle is formulated and proved for
the proposed problem. This generalizes the results in [67, 92]. Secondly,
it is shown that the Davison’s controller design in [17, 18] for stable plants
can be used with an infinite-dimensional exosystem. Finally, it is shown
how the controllers for stable plants can be exploited if the plant transfer
function is unstable. To the authors knowledge, this result is new even for
finite-dimensional exosystems and plants. The proposed controller design
is shown to be suitable for the functions in Callier-Desoer algebra. The
theory is based on the use of coprime factorizations, but only a left or a
right, not necessarily both, coprime factorization is needed. This extends
the earlier results on robust regulation appearing in the literature, which
invariably assume the existence of both coprime factorizations.

Chapter 5 In this chapter the results of the thesis are summarized and com-
pared. Directions for further research are discussed.

1.3 Notations and Definitions
The sets of complex numbers, real numbers, imaginary numbers, integers, and
natural numbers are denoted by C, R, iR, Z, and N, respectively. Notation β
is used for the complex conjugate of a β ∈ C. The real and the imaginary parts
of β are denoted by <(β) and =(β), respectively.
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The extended complex plane C ∪ {∞} is denoted by C∞. Notation C+
β is

used for the right half-plane {s ∈ C | <(s) > β} and C+ denotes the set C+
0 . An

s0-centered disc {s ∈ C | |s− s0| < r} with radius r is denoted by Br(s0). The
closure of S ⊆ C is denoted by S.

LetX and Y be Hilbert spaces. The set of all linear operators fromX to Y is
denoted L (X, Y ). The set of bounded linear operators from X to Y is denoted
by B (X, Y ). Shorthand notations L (X) and B (X) are used for L (X,X) and
B (X,X). The domain, the range and the null space of an operatorG ∈ L (X, Y )
are denoted by D (G), R (G) and N (G), respectively.

If H is a set, then the set of all n×m-matrices with elements in H is denoted
by Hn×m. The set of all matrices with elements in H is denoted by M (H).
Notation ‖ · ‖ is used for vector and operator norms. An inner product in a
Hilbert space is denoted by 〈·, ·〉.

Let G : C→ Cn×m be a matrix valued function. If rank (G(s)), the rank of
G(s), is k almost everywhere, then it is said that the normal rank of G is k and
is denoted by nrank (G(s)) = k.

Let G be an n×m-matrix. An i×i-minor of G is denoted by |A|ir,c, where the
multi-indices r = (r1, r2, . . . , ri) and c = (c1, c2, . . . , ci), where 1 ≤ rj < rj+1 ≤ n
and 1 ≤ cj < cj+1 ≤ m, define the rows and columns selected. The determinant
of a square matrix G is denoted by det(G).

The Hardy space of all analytic functions that are bounded in C+
β is denoted

by H∞β . Shorthand notation H∞ is used for H∞0 and the set of all functions that
belong to H∞β for some β < 0 is denoted by H∞− . The hardy space of analytic
functions f : C+

β → X where X is a Hilbert space such that

‖f‖2,β =
(

sup
x>β

∫ ∞
−∞
‖f(x+ yi)‖2dy

) 1
2

<∞

is denoted by H2
β(X). The class of Lebesgue measurable and square integrable

functions f : [a, b]→ X is denoted by L2((a, b), X) where X is a Hilbert space.
If X = C, then the shorthand notation L2(a, b) is used. The class of Lebesgue
measurable and absolutely integrable functions f : [a, b] → C is denoted by
L1(a, b).

An ordered sequence with elements xk is denoted by (xk)k∈Z. The class of
bounded complex sequences x = (xk)k∈Z ⊂ C is denoted by `∞. Notation `2

is used for the class of complex sequences x = (xk)k∈Z ⊂ C that are square
summable.





Chapter 2

Structure at Infinity

2.1 Introduction to Structure at Infinity

There are many different zero types, both finite and infinite, in the literature,
for example, transmission zeros, system zeros and different decoupling zeros.
Theory of infinite zeros is closely related to that of finite zeros. Thus, it is not
a surprise that results on finite zeros were soon after followed by corresponding
results on infinite zeros. Most of the work done on different zeros was done in
1970s and 1980s. A review on this research can be found in [86]. Structure at
infinity of finite-dimensional system is related to the infinite transmission zeros
and is thoroughly studied.

Structure at infinity has a central role in many control theoretical problems
of finite-dimensional systems. Solvability of model matching problems can be
characterized in terms of the structure at infinity [58, 59]. Disturbance rejec-
tion and different decoupling problems can be formulated as a model matching
problem, so it is natural that the structure at infinity appears in many related
results [19, 20, 23, 64]. Furthermore, the asymptotic behavior of the root-loci
is dependent on the structure at infinity [38, 47].

Structure at infinity describes the behavior of a rational matrix at high fre-
quencies and there are many equivalent definitions available. Transfer functions
of finite-dimensional systems are rational, so it follows that theory of rational
matrices can be used to study their properties.

The first study to define the zeros and poles at infinity of multiple-input
multiple-output (MIMO) systems was that of Rosenbrock in [81]. His definition
was based on the Smith-McMillan form over the ring of polynomials. Let an
principal ideal domain R be given and let the field of fractions associated with
R be FR, for definition see for example [92]. Then for every G ∈ Fn×m

R there

11



12 Chapter 2. Structure at Infinity

exists such R-invertible matrices U and V inM (R) that

UGV =
[
Λ 0
0 0

]
,

where Λ has non-zero diagonal elements fi = ni
di
, i = 1, 2, . . . , rank (G) = l.

Furthermore, ni and di are coprime, ni divides ni+1 and di+1 divides di for all
i = 1, 2, . . . , l−1 [92, p. 404]. The diagonal matrix is called the Smith-McMillan
form of G. A degree function δ is always defined in a Euclidean domain, and
an algorithm based on the degree function can be used to bring a matrix into
the Smith-McMillan form. In the Euclidean domain of polynomials a degree
function is given by the order of polynomials denoted by deg(·). For proper
rational functions a degree function is defined by δ (f) = deg(d)−deg(n), where
f = n

d
and n and d are polynomials.

If R is chosen to be the set of polynomials, then FR is the set of rational
functions and U and V above are polynomial matrices. One says, that G has a
zero of order k at s0 ∈ C if ni has a zero of order k there for some i. In this case
one sets qi(s0) = k. There is a pole of order k at s0 ∈ C if di has a zero there
for some i. In this case, one sets qi(s0) = −k. If fi has no poles nor zeros at s0,
then qi(s0) = 0. The defined l-tuple (q1(s0), . . . , ql(s0)) is called the structure
at s0.

Rosenbrock defined the zeros of G(s) at infinity to be zeros at s = 1 of
G (αs/s−1), where α 6= 0 is not a finite zero of G(s). He also gave another
non-equivalent definition. These two definitions were discussed in [77] where
the structure at infinity was defined to be the structure at 0 of G (1/s). This
definition is equivalent to the Rosenbrock’s definition mentioned above.

An alternative way to define the structure at infinity is to choose R to be the
set of proper rational functions Cpr(s), i.e., rational functions with the degree of
the numerator polynomial less than or equal to the degree of the denominator
polynomial. Again, FR is the set of all rational functions. The structure at
infinity is the l-tuple with qi = deg(di) − deg(ni), where deg(·) refers to the
degree of a polynomial. The definitions above are equivalent [91].

Other definitions and approaches to define structure at infinity are available.
Structure at infinity can be calculated by using minors [44, 90]. This method
uses the degree function of an Euclidean domain. An alternative method uses
Laurent expansion at infinity and certain Toeplitz matrices to calculate struc-
ture at infinity [76]. A geometric algorithm resulting in the same l-tuple as
above was given in [10]. For a module theoretical definition see [11] and the
references therein.

The above approach, which defines the structure at infinity, is not possible
for infinite-dimensional systems because the transfer functions are not mero-
morphic at infinity in general. Since systems with finite-dimensional input and
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output spaces and bounded operators A, B, C, and D have a transfer function
analytic at infinity the above definitions generalize for such systems [60]. For
other systems the situation is far more complicated.

For time-delay systems, Malabre and Rabah provided two different struc-
tures at infinity, i.e., strong and weak structures, in a series of articles [61, 62, 63]
and used them in model matching and decoupling problems. Restricting the
way the infinity was approached allowed similar definition to those mentioned
above for certain time-delay systems. For strong structure, the infinity was
approached so that the real part approaches infinity. For weak structure, the
infinity was approached along the positive real line.

2.1.1 Organization and Contributions of the Chapter
Section 2.2: Besides the definitions due to Malabre and Rabah, there are no

other definitions of the structure at infinity suitable for infinite-dimen-
sional systems available. In addition, the existing definitions are only
suitable for infinite-dimensional systems with bounded operators [60] or
for time-delay systems [61, 62, 63], so the class of transfer functions they
cover is not very general. In Section 2.2.4, a new definition of the struc-
ture at infinity suitable for all infinite-dimensional systems with finite-
dimensional input and output spaces is given. The trade-off is that the
definition only describes the size of the transfer function and does not pro-
vide strong enough algebraic properties needed in many related problems.
However, as seen in Chapters 3 and 4, the defined structure at infinity
can be applied to give solvability conditions for certain output regulation
problems.
The definition of the structure of a transfer function given in this thesis
is based on a diagonal form similar to the Smith-McMillan form. An
algorithm diagonalizing a given transfer function is given in Section 2.2.2.
The algorithm resembles to the one proposed in [91] based on the use
of the degree function on the Euclidean domain of the proper transfer
functions. In the algorithm presented in this section, the degree function
is replaced by a majorization relation, which allows a comparison of the
sizes of the elements in the matrix. The majorization relation is presented
and its properties are discussed in Section 2.2.1. In order to simplify the
considerations, the way the infinity is approached is restricted to a set
of paths, which leads to so called directed structure. Examples of the
structure at infinity of infinite-dimensional systems are provided. The
results in this section have been published by the author in the research
article [52], see also [51].

Section 2.3: In this section, calculation of the structural functions is consid-
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ered. The method using minors for finding the structure of a rational ma-
trix at infinity presented in [44, 90] is extended to the infinite-dimensional
systems. In addition, a relation between the structural functions and the
singular values is established. To the author’s knowledge this relation
is new even for finite-dimensional systems. The method for calculating
the structure at infinity of a transfer function has been published by the
author in [52].

Section 2.4: In this section, invariance of the structure at infinity with re-
spect to state and output feedbacks is considered. The results of this
section generalize the well-known properties of the finite-dimensional sys-
tems stated in [24] to infinite-dimensional systems. The main results show
that state or output feedbacks do not change the structure of a system at
infinity of exponentially stabilizable or exponentially detectable systems.
These properties are important since many controllers use different types
of feedback loops.

Section 2.5: Robustness of structure at infinity of linear systems is discussed
in this section. Later in Chapter 3, robustness of structure at infinity is
shown to be related to robustness of output regulation. Examples show
that the structure at infinity has in general poor robustness properties
and that there can be some physically important perturbations that do
not change the structure at infinity.

Section 2.6: In the output regulation problems considered in Chapter 3, one
needs to consider both the finite transmission zeros and the high frequency
behavior of the plant transfer functions. For this, it is convenient to define
the global structure of systems that captures the structure at finite points
as well as the structure at infinity, which is the purpose of this section. The
definition of the global structure is an easy modification of the structure
at infinity defined in Section 2.2.

2.2 Structure at Infinity

2.2.1 The Majorization Relation
The structure at infinity of rational matrices is defined by using the Smith-
McMillan form over the Euclidean domain of all proper rational functions. The
degree function δ of Cpr(s) is used in an algorithm that constructs the Smith-
McMillan form at infinity [91]. The degree function’s role in the algorithm is
to compare the rates at which the transfer function’s elements vanish at high
frequencies.
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The aim of this section is to present a majorization relation that enables
comparison of high frequency behavior in the class of all complex functions
much like the degree function δ of Cpr(s) enables the comparison in Cpr(s).
This relation enables one to find a structure algorithm that produces a diagonal
form for transfer functions of infinite dimensional systems. The diagonal form
resembles the Smith-McMillan form and defines the structure at infinity for
infinite-dimensional systems.

The set of all complex functions f : C → C∞ is denoted by C. The set of
all paths in complex plane approaching infinity is denoted by

P = {p : [0,∞)→ C | ∀M > 0 : ∃ρ ≥ 0 : ∀α ≥ ρ : |p (α)| > M} .

For the rest of the thesis the following conventions are used: ∞∞ = 1 = 0
0 ,

a
0 =∞ for a 6= 0 and a

∞ = 0 for a 6=∞.

Definition 2.2.1. Let f, g ∈ C, and H ⊆ P. If

∀p ∈ H : ∃ρ ≥ 0 : sup
α≥ρ

∣∣∣∣∣ g(p(α))
f(p(α))

∣∣∣∣∣ <∞,
it is said that f majorizes g with respect to H. This is denoted by f ≥H g. If
f ≥H g and g ≥H f , notation f =H g is used.

Some direct consequences of Definition 2.2.1 are listed in the following
lemma.

Lemma 2.2.2. Let H ⊆ P, and let f1, f2, f3, f4 ∈ C. The relations ≥H and
=H have the following properties:

1. If f1 ≥H f2 and f1 ≥H f3, then f1 ≥H f2 + f3.

2. If f1 ≥H f2 and f3 ≥H f4, then f1f3 ≥H f2f4.

3. If f1 =H 1, then f1f2 =H f2.

4. Relation =H is an equivalence relation in the set of all complex functions.

Notation [f ]H is used for the equivalence class of a function f . Setting
[f ]H ≥H [g]H , if f ≥H g, defines a partial order in C/ =H . In the next section
the fact that there exists the supremum of a finite set of equivalence classes is
needed.

Lemma 2.2.3. Let H ⊆ P. The supremum of {[f ]H , [g]H} exists with respect
to the partial order ≥H . Furthermore, the supremum is [|f |+ |g|]H .
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Proof. Definition 2.2.1 implies that [|f |+ |g|]H ≥H [f ]H and [|f |+ |g|]H ≥H
[g]H , so [|f |+ |g|]H is an upper bound. Let [h]H be an upper bound. By
Definition 2.2.1, there exists ρ ≥ 0 such that

sup
α≥ρ

∣∣∣∣∣ |f(p(α))|+ |g(p(α))|
h(p(α))

∣∣∣∣∣ ≤ sup
α≥ρ

∣∣∣∣∣f(p(α))
h(p(α))

∣∣∣∣∣+ sup
α≥ρ

∣∣∣∣∣g(p(α))
h(p(α))

∣∣∣∣∣ <∞,
for all p ∈ H. This shows that [h]H ≥H [|f |+ |g|]H , so [|f |+ |g|]H is the
supremum.

Related to an f ∈ C function sgn(f) : C→ C ∪ {∞} is defined by setting

sgn(f)(s) = |f(s)|
f(s) .

Recall that conventions 0
0 = 1 = ∞

∞ were made, so the above functions is well-
defined for all f ∈ C. This function provides a convenient way to represent the
supremum of {[f ]H , [g]H}.

Lemma 2.2.4. One has |f |+ |g| =H g + f sgn(f)
sgn(g) for all H ⊆ P and f, g ∈ C.

Proof. The claim follows by the definitions of sgn(·) and =H , since∣∣∣∣∣g + f
sgn(f)
sgn(g)

∣∣∣∣∣ =
∣∣∣∣∣g + g

|f |
|g|

∣∣∣∣∣ = |f |+ |g|.

2.2.2 The Structure Algorithm
In this section, an algorithm for constructing a diagonal that generalizes the
Smith-McMillan form to the class of matrices with complex function elements
is presented. The algorithm produces two matrices that diagonalize a given
matrix. The diagonalizing matrices satisfy the following boundedness property.

Definition 2.2.5. It is said that M : D (M) ⊆ C→ Cn×n satisfies the uniform
boundedness property with respect to H ⊆ P if for all p ∈ H there exists such
a ρ > 0 that M(p(α)) is invertible for all α ≥ ρ and ‖M(p(α))‖, ‖M−1(p(α))‖
are uniformly bounded in [ρ,∞).

Besides the uniform boundedness property, no other requirements for the
elements of the diagonalizing matrices are set. One can always find the diago-
nal form no matter how the infinity is approached because of the minimalistic
requirements for the diagonalizing matrices. On the other hand, restricting the
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way the infinity can be approached generally leads to simpler functions in the
diagonal form.

Unlike with rational functions, one cannot generally compare the rate of
convergence or divergence at high frequencies of two complex functions. For
example, one cannot say which one of the functions sin(s) and 1/s is smaller
at high frequencies, because sin(s) has infinitely many finite zeros diverging
to infinity but it does not converge to zero, whereas 1/s converges to zero as
s → ∞ but it does not have zeros at finite frequencies. However, one can say
that in some sense there exists a smallest function majorizing a given set of
functions by Lemma 2.2.3. It is shown in the next theorem that a given matrix
can be brought to a form with an element majorizing all the other elements.

Lemma 2.2.6. Let H ⊆ P. A matrix G(s) ∈ Cn×m can be written in the form

G(s) = V (s)F (s)U(s)

where F (s) ∈ Cn×m has an element that majorizes all the other elements, and
U and V satisfy the uniform boundedness property of Definition 2.2.5.

Proof. The matrix received by using elementary matrix operations to G is de-
noted by F = (fij). Note that F changes after each operation.

It is first shown how to bring a majorizing element to kth column. Add
the first row multiplied by h = sgn(f1k)

sgn(f2k) to the second one. The element at
(2,k)-position now is f2k + hf1k. It majorizes f1k by Lemma 2.2.4.

Add the second row multiplied by h = sgn(f2k)
sgn(f3k) to the third one. The element

at (3,k)-position is f3k + |f2k(s)|
sgn(f3k) , and it majorizes both f1k and f2k by the

transitivity of relation ≥H . Continuing this way one finds an element fnk that
majorizes all the elements in the kth column.

Use the procedure described above to bring a majorizing element to the first
column, add the first column multiplied by h = sgn(fn1)

sgn(fn2) to the second one, and
interchange the first and the last row. The element at (1,2)-position majorizes
all the elements in the first column. Repeat the process to find a majorizing
element to the second column. Note that the elements in the first column may
change. However, they are of the form fl1 + hfl+1,1 where h =H 1, so the found
majorizing element majorizes the elements in the first and the second column
by the first and the third properties of Lemma 2.2.2.

Continuing this way one finally finds an element fnm that majorizes all the
other elements. Interchanging rows and adding row or column multiplied by h
to another corresponds to a multiplication by a square matrix. These square
matrices are invertible. They have the uniform boundedness property because
in every multiplication h =H 1. Thus, one finds the desired F , U and V
by multiplying the matrices corresponding to the elementary row and column
operations appropriately.
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Theorem 2.2.7. Let H ⊆ P. A matrix G(s) ∈ Cn×m can be written in the
form

G(s) = V (s)
[
Λ(s) 0

0 0

]
U(s) (2.1)

where Λ(s) = diag (q1(s), . . . , qr(s)) is a diagonal matrix with non-zero elements,
q1 ≥H q2 ≥H · · · ≥H qr, the zero blocks may be non-existent, and U and V satisfy
the uniform boundedness property of Definition 2.2.5.

Proof. The algorithm presented here is similar to the one in [91]. Notation
F = (fij) denotes the matrix during the algorithm received by using some
elementary matrix operations to G. Note that F changes after each operation.

Step 1: At the beginning one has F = G. If there is no elements majorizing
all the other elements, then use the elementary matrix operations described in
the proof of Lemma 2.2.6 to bring F to a form with a majorizing element. Bring
the majorizing element to (1,1)-position by interchanging rows and columns.

The element f11 now majorizes all the elements in the first row and column.
It is possible to subtract the first row multiplied by fi1

f11
from the ith one because

1 ≥H fi1
f11

. After this operation, fi1 = 0. In this way, it is possible to zero out
all the elements in the first row except the first one. Similarly, all the elements
in the first column can be zeroed out except the first one.

After zeroing out the off-diagonal elements in the first row and column the
matrix F is of the form

F =
[
f11 0
0 F1

]
.

Lemma 2.2.2 implies that the elements in F1 are majorized by f11 since f11
majorized all the elements in the matrix before zeroing out the of diagonal
elements.

Step k + 1: After k steps the following matrix is obtained

F =



f11 0 · · · 0 0
0 f22 · · · 0 0
... ... . . . ... ...
0 0 · · · fkk 0
0 0 · · · 0 Fk

 .

If there are no majorizing elements in Fk, then use Lemma 2.2.6 to find one.
By Lemma 2.2.2, fkk still majorizes the newly found majorizing element of Fk.
Bring the majorizing element to (k + 1, k + 1)-position. Zero out the first row
and column of the submatrix Fk as described in the first step. It is easy to see
that fkk majorizes fk+1,k+1.



2.2. Structure at Infinity 19

End of the algorithm: If Fk at the beginning of the (k + 1)th step is a
zero matrix or k + 1 > min{n,m}, then the algorithm ends.

Matrices corresponding to an interchange of rows or columns are constant
matrices. The assumption that one of the elements of the submatrix Fk ma-
jorizes all the other elements implies that every matrix corresponding to an
elementary row or column operation that adds a row or a column multiplied by
an element to another satisfies the uniform boundedness property. It is there-
fore clear that there exist the matrices U and V such that G is of the form
(2.1).

It follows from the uniform boundedness property of U(s) and V (s) that
the elements of Λ(s) describe the behavior of G(s) at infinity. It can happen
that U(s) and V (s) are not continuous. In particular, they are not in any
ring of transfer functions commonly encountered in system theory. Despite this
inconvenience, the diagonal elements describe the rate of convergence to zero
or the rate of divergence to infinity, which is the property needed in Chapter 3.
The next theorem establishes a uniqueness property of the diagonal entries of
Λ.

Theorem 2.2.8. The elements of Λ in (2.1) are unique up to multiplication by
element h that satisfies h =H 1.

Proof. Let the matrices

Λ1(s) = diag (λ1(s), . . . , λr(s))

and

Λ2 = diag (σ1(s), . . . , σr(s))

be as in (2.1). For i = 1, 2

G(s) = Vi(s)Li(s)Ui(s) = Vi(s)
[
Λi(s) 0

0 0

]
Ui(s),

where Ui(s) and Vi(s) satisfy the uniform boundedness property. Write V (s) =
V −1

1 (s)V2(s) and U(s) = U2(s)U−1
1 (s). Matrices V (s) and U(s) satisfy the

uniform boundedness property and L1(s) = V (s)L2(s)U(s).
By using the Binet-Cauchy formula (A.2) and noting that L2(s) have non-

zero elements only on the diagonal, it can be seen that

|L1(s)|ir,r = |V (s)L2(s)U(s)|ir,r
=
∑
h,v
|V (s)|ir,h |L2(s)|ih,v |U(s)|iv,r

=
∑

h
|V (s)|ir,h |L2(s)|ih,h |U(s)|ih,r . (2.2)
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Since all the elements of U(s) and V (s) are majorized by 1, Lemma 2.2.2
shows that 1 ≥H |V (s)|ir,h |U(s)|ih,r for all h and r. Set r = (1, 2, . . . , k), where
k ≤ r. By Lemma 2.2.2, the property σj ≥H σj+1 for all j = 1, . . . , r − 1, and
the equation (2.2),

k∏
j=1

σj(s) ≥H
k∏
j=1

λj(s). (2.3)

Similarly one shows that

k∏
j=1

λj(s) ≥H
k∏
j=1

σj(s). (2.4)

The equations (2.3) and (2.4) imply that λj =H σj for all j = 1, . . . , r.

2.2.3 The Definition for Matrices
The structure at infinity of a rational matrix G is always {s−q1 , s−q2 , . . . , s−qr},
where r = nrank (G). The structure at infinity defined by Rosenbrock in [81]
is the set of integers {q1, q2, . . . , qr}. Henceforth, the integers q1, q2, . . . , qr are
called the structural indices. They are defined for all matrix valued functions
that are meromorphic at infinity [60].

In general, it is impossible to define the structure at infinity as a set of
integers because of the complex nature of the structural functions, e.g., Example
2.2.11 and Example 2.2.18. However, one can use the diagonal form found in the
previous section instead of the Smith-McMillan form to describe the behavior
of a matrix at high frequencies. By Theorem 2.2.8, the structural indices of
a rational matrix just denote the equivalence classes to which the structural
functions belong. These observations lead to the following definition.

Definition 2.2.9. Let Λ(s) = diag (q1(s), . . . , qr(s)) be the diagonal matrix in
(2.1). The structure at infinity of G(s) with respect to H is {[q1]H , . . . , [qr]H}.
The functions q1, q2, . . . , qr are called structural functions with respect to H.

The structure at infinity with respect to some set of paths is a set of equiva-
lence classes, where a equivalence class can occur multiple times. The structure
at infinity is uniquely defined by Theorem 2.2.8. From now on, notation f is
used instead of [f ]H when referring to the structure at infinity if there is no risk
of confusion.

It might be that H consists of all paths in some specified unbounded set
Q ⊆ C, i.e., H = {p ∈ P | p(α) ∈ Q}. In this case notations ≥Q, =Q and [·]Q
can be used instead of ≥H , =H and [·]H , respectively. If f ≥Q g (f =Q g), it is
said that f majorizes g along Q (f is equivalent to g along Q). If H is replaced
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by a set Q in the above definition it is said that the structure at infinity is
defined along Q.

Actually, a number of different structures at infinity have been defined. The
different structures are related in the following way.

Theorem 2.2.10. Let H1, H2 ⊆ P and G ∈ Cn×m. Let the structure at infinity
of G with respect to H1 be {[q1]H1 , . . . , [qr]H1}. If H2 ⊆ H1, then the structure
at infinity of G with respect to H2 is {[q1]H2 , . . . , [qr]H2}.

Proof. Set H = H1 in Theorem 2.2.7, and let U and V be the matrices in (2.1).
If f ≥H1 g, then f ≥H2 g. Thus, the matrices U and V satisfy the uniform
boundedness property respect to H2 from which the claim follows.

Example 2.2.11. Consider the time-delay system ΣD (A0, A1, B, C) where

A0 =


−1 −1 1 −1
−1 −1 0 −1
0 0 −1 0
0 0 0 −1

 , A1 =


0 1 1 1
0 0 0 1
0 0 0 0
0 0 0 0

 , B =


0 0 0
1 0 0
0 1 0
0 0 1

 ,
and

C =

1 0 0 0
0 1 0 0
0 0 1 0

 .
The transfer function of this system is

P(s) =


e−s−1
g(s)

e−s+1
g(s)

(e−s+s)(e−s−1)
(s+1)g(s)

s+1
g(s)

−(e−s+1)
(s+1)g(s)

s(e−s−1)
(s+1)g(s)

0 1
s+1 0


where g(s) = (s+ 1)2 + e−s − 1.

The behavior along the imaginary axis becomes crucial in Chapter 3 and
Chapter 4, so the structure at infinity is defined along iR. The structural
functions are found by using the algorithm presented in the proof of Theorem
2.2.7.

It is easily verified that 1
s+1 majorizes all the other elements of P(s) along iR.

The majorizing element is first brought to the (1,1)-position by interchanging
the first and the last rows, and the first and the second columns. Now

P1(s) =

0 0 1
0 1 0
1 0 0

P(s)

0 1 0
1 0 0
0 0 1

 =


1
s+1 0 0

−(e−s+1)
(s+1)g(s)

s+1
g(s)

s(e−s−1)
(s+1)g(s)

e−s+1
g(s)

e−s−1
g(s)

(e−s+s)(e−s−1)
(s+1)g(s)

 .
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The non-diagonal elements in the first row are already zeros so one only needs
to zero out the non-diagonal elements in the first column. Adding the first row
multiplied by

−
( 1
s+ 1

)−1 −(e−s + 1)
(s+ 1)g(s) = (e−s + 1)

g(s)
to the second one, and adding the first row multiplied by

−
( 1
s+ 1

)−1 e−s + 1
g(s) = −(e−s + 1)(s+ 1)

g(s)
to the last one brings the transfer function to the form

P2(s) =


1 0 0

(e−s+1)
g(s) 1 0

− (e−s+1)(s+1)
g(s) 0 1

P1(s) =


1
s+1 0 0
0 s+1

g(s)
s(e−s−1)
(s+1)g(s)

0 e−s−1
g(s)

(e−s+s)(e−s−1)
(s+1)g(s)

 .
The element s+1

g(s) majorizes the elements of the submatrix received by deleting
the first row and column. By adding the second column multiplied by

−
(
s+ 1
g(s)

)−1
s(e−s − 1)
(s+ 1)g(s) = −s(e

−s − 1)
(s+ 1)2

to the last column, and the second row multiplied by

−
(
s+ 1
g(s)

)−1 e−s − 1
g(s) = −e−s − 1

s+ 1
to the last row one, the diagonal form

P3(s) =

1 0 0
0 1 0
0 − e−s−1

s+1 1

P2(s)


1 0 0
0 1 − s(e−s−1)

(s+1)2

0 0 1

 =


1
s+1 0 0
0 s+1

g(s) 0
0 0 e−s−1

(s+1)2


is obtained. Multiply the diagonal form by diag

(
s+1
s
, g(s)
s(s+1) ,

(s+1)2

s2

)
to get

Λ(s) = diag
(
s−1, s−1, s−2(e−s − 1)

)
. (2.5)

One gets the matrices

V (s) =


1 0 0

0 1 0
0 − e−s−1

s+1 1




1 0 0
(e−s+1)
g(s) 1 0

− (e−s+1)(s+1)
g(s) 0 1


0 0 1

0 1 0
1 0 0



−1

=


(e−s+1)(s+1)

g(s)
e−s−1
s+1 1

− e−s+1
g(s) 1 0
1 0 0
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and

U(s) =


0 1 0

1 0 0
0 0 1




1 0 0
0 1 − s(e−s−1)

(s+1)2

0 0 1



s+1
s

0 0
0 g(s)

s(s+1) 0
0 0 (s+1)2

s2



−1

=


0 s

s+1 0
s(s+1)
g(s) 0 s2(e−s−1)

(s+1)g(s)
0 0 s2

(s+1)2


for which P(s) = V (s)Λ(s)U(s) by multiplying the matrices corresponding to
the matrix operations made during the algorithm. It is easy to verify that

V (iω)→

0 0 1
0 1 0
1 0 0


and

U(iω)→

0 1 0
1 0 0
0 0 1

 ,
as ω → ±∞, so the found matrices U(s) and V (s) satisfy the uniform bound-
edness property along iR.

The diagonal form (2.5) reveals that a part of stucure at infinity of P(s) is
purely rational, but another part is a combination of the periodically behaving
function e−s− 1 and the rational function s−2. Note that the periodic behavior
of the function e−s−1 is essential when considering the behavior at infinity along
the imaginary axis, because the zeros of e−s − 1 on the imaginary axis have an
accumulation point at infinity. Note that the found structural functions are not
structural functions along C because the terms e−s in P(s) grow exponentially
when <(s)→ −∞. �

2.2.4 The Definition for Linear Systems
Transfer functions of linear systems of the form (2.6) are discussed next, and
the structure at infinity with respect to H ⊆ P for a linear system is defined.
First, it is made clear what is meant by the transfer function of a given system.

Notation Σ (A,B,C,D) is an abbreviation for a linear system of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ X, (2.6a)
y(t) = Cx(t) +Du(t), t ≥ 0, (2.6b)
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where A : D (A) → X is the generator of a C0-semigroup in a Hilbert space
X, and B ∈ B (U,X), C ∈ B (X, Y ), and D ∈ B (U, Y ). The input and output
spaces are U = Cm and Y = Cn, respectively. The transfer function of a system
Σ (A,B,C,D) is defined to be

P(s) = CR (s, A)B +D, s ∈ ρ(A) (2.7)

where R (s, A) = (sI−A)−1 denotes the resolvent of A, and ρ(A) is the resolvent
set of the operator A, i.e., the set where R (s, A) is defined as a bounded linear
operator in X. The spectrum of A is denoted by σ (A) = C \ ρ (A). It is said
that a system Σ (A,B,C,D) has a transmission zero at s0 ∈ C if rank (P(s0)) <
nrank (P(s)).

Time-delay systems form a special class of distributed systems and they
appear in some examples of the thesis. A time-delay system

ẋ(t) = A0x(t) + A1x(t− 1) +Bu(t), x(0) = x0, (2.8a)
y(t) = Cx(t) (2.8b)

where all the operators are matrices of suitable dimensions, is denoted by
ΣD (A0, A1, B, C). A time-delay system can be presented in the form (2.6).
Lemma 4.3.9 of [14] shows that its transfer function is

P(s) = C(sI − A0 − e−sA1)−1B. (2.9)

The definition of transfer functions adopted here is the most convenient one
to use in Chapter 3. However, there are other definitions available. One can
always define the transfer function of a finite-dimensional system in many equiv-
alent ways and it has a unique closed form expression as a rational matrix. It
was shown in [102] that in the infinite-dimensional case the different definitions
can lead to different transfer functions. Thus, the different definitions of transfer
functions may lead to different structures at infinity.

A transfer function generally is an abstract operator valued function that
has no closed form. The absence of the closed form is not a restriction from the
theoretical point of view.

Definition 2.2.12. Let the transfer function of a linear system Σ (A,B,C,D)
be P(s), and let H ⊆ P be a set such that p(α) ⊆ ρ(A) for all p ∈ H and α ≥ 0.
The structure of Σ (A,B,C,D) at infinity with respect to H is defined to be
the structure of P(s) at infinity with respect to H.

Remark 2.2.13. Define

Hs = {p : [0,∞)→ C |Re (p(α))→ +∞ as α→∞}
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Consider a delay system ΣD (A0, A1, B, C). The structure at infinity with respect
to Hs (along C+) is the same as the strong (weak) structure in [62] in the sense
that the integer set called the strong (weak) structure at infinity by Malabre
and Rabah corresponds to a set of functions that is exactly the set of structural
functions with respect to Hs (along C+).

Remark 2.2.14. The definition of the structure at infinity given here is espe-
cially suitable for those systems that have a transfer function with a closed form
expression that is a combination of fractional and exponential terms, because
it is relatively easy to verify the majorization conditions for them respect to
certain sets of paths. Obviously, the time-delay systems, but also several other
distributed parameter systems [4], are of this type.

Remark 2.2.15. The algorithm that lead to the given definition of the structure
at infinity involved only basic calculations with functions and their absolute val-
ues. Thus, the algorithm can be used in computer aided numerical calculations.

By [13], a transfer function P(s) is said to be proper, if there exists α ∈
R, such that sup

s∈C+\Bα(0) ‖P(s)‖ < ∞. A transfer function P(s) is strictly
proper if sup

s∈C+\Bα(0) ‖P(s)‖ → 0, as α → +∞. The transfer function is
well-posed if there exists a constant α ∈ R such that sups∈C+

α
‖P(s)‖ < ∞.

The following theorem gives a necessary and sufficient condition for properness,
strictly properness, and well-posedness of a transfer function in terms of the
structural functions.

Theorem 2.2.16. Let P(s) be a transfer function and let {q1, . . . , qr} be its
structure at infinity along C+

ρ for some ρ < 0. The transfer function P(s) is
proper/strictly proper/well-posed if and only if q1(s) is proper/strictly proper/
well-posed.

Proof. Only the result concerning properness is proved. The results concerning
strict properness and well-posedness can be proved similarly.

Sufficiency. Assume that P(s) is not proper. It follows, that for all k ∈ N
there exists xk ∈ C+ \ Bk(0) such that ‖P(xk)‖ > k. Define p ∈ P to be such
that p(β) = xk for β ∈ [k − 1, k). Now for all α > 0

sup
s∈C+\Bα(0)

|q1(xk)| ≥ sup
xk∈C+\Bα(0)

|q1(xk)|

≥ sup
xk∈C+\Bα(0)

M0

∥∥∥∥∥
[
Λ(xk) 0

0 0

]∥∥∥∥∥
≥ sup

xk∈C+\Bα(0)
M1 ‖P(xk)‖ =∞,
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where the existence of a suitable M0 > 0 follows since q1(s) majorizes all the
other diagonal elements, and the existence of a suitable M1 > 0 follows by the
uniform boundedness property of the diagonalizing matrices in (2.1).

Necessity. Assume that q1(s) is not proper. It follows that for all k ∈ N
there exists xk ∈ C+ \Bk(0) such that |q1(xk)| > k. It follows that for all α > 0

sup
C+\Bα(0)

‖P(s)‖ ≥ sup
xk∈C+\Bα(0)

‖P(xk)‖

≥ sup
xk∈C+\Bα(0)

m0

∥∥∥∥∥
[
Λ(xk) 0

0 0

]∥∥∥∥∥
≥ sup

xk∈C+\Bα(0)
m1|q1(xk)| =∞,

where the existence of a suitable m0 > 0 follows by the uniform boundedness
property of the diagonalizing matrices in (2.1), and the existence of a suitable
m1 > 0 follows by the properties of matrix norms.

Example 2.2.17. Recall the time-delay system ΣD (A0, A1, B, C) in Example
2.2.11. By the definition, the structure of ΣD (A0, A1, B, C) at infinity along iR
is {s−1, s−1, s−2(e−s − 1)}. �

Example 2.2.18. Consider the metal bar of Figure 2.1. It is heated with
two heaters along the second and the fourth quarters of its length, and the
temperature is measured along the first and the third quarters of its length.
The resulting system can be written in the form (2.6) where D = 0 and the
linear operators A, B, and C are defined below.

Ax(z, t) = d2x

dz2 (z, t)− x(z, t),with

D (A) =
{
h ∈ L2(0, 1)

∣∣∣∣∣h, dhdz are absolutely continuous,

d2h

dz2 ∈ L2(0, 1) and dh

dz
(0) = dh

dz
(1) = 0

}
,

(Bu)(z, t) = 4
[
1[ 1

4 ,
1
2 ](z),1[ 3

4 ,1](z)
]
u(t),

y(t) = Cx(z, t) =
∫ 1

0

[
1[0, 1

4 ](z)
1[ 1

2 ,
3
4 ](z)

]
x(z, t)dz

where the state space is X = L2(0, 1), the input space and the output space is
U = Y = C2, and the characteristic function 1[a,b](z) is defined to be

1[a,b](z) =
{

1, z ∈ [a, b],
0, z /∈ [a, b].
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y1(t)
︸ ︷︷ ︸

y2(t)
︸ ︷︷ ︸

u1(t)︷ ︸︸ ︷ u2(t)︷ ︸︸ ︷
0 1/4 2/4 3/4 1

Figure 2.1: A heated metal bar with two heaters and sensors side by side.

The term −x(z) in A represents the heat transfer to the environment. The op-
erator A is a generator of a C0-semigroup, and B and C are bounded operators.
The spectrum of A consists of eigenvalues λn = −1− (nπ)2 where n ∈ {, 1, . . .}.
The system is exponentially stable.

Calculations similar to those in [14, Example 4.3.11] show that the transfer
function is

P(s) =
[
g11(s) g12(s)
g21(s) g22(s)

]

where

g11(s) =
4 sinh

(
1
4
√
s+ 1

) (
sinh

(
3
4
√
s+ 1

)
− sinh

(
1
2
√
s+ 1

))
(s+ 1) 3

2 sinh
(√

s+ 1
) ,

g12(s) =
4 sinh2

(
1
4
√
s+ 1

)
(s+ 1) 3

2 sinh
(√

s+ 1
) ,

g21(s) =

 −4 + 4 cosh
(√

1
4(s+ 1)

)
+ 2 cosh

(√
1
2(s+ 1)

)
−4 cosh

(√
3
4(s+ 1)

)
+ 2 cosh

(√
s+ 1

)


(s+ 1) 3
2 sinh

(√
s+ 1

) , and

g22(s) = g11(s).

Next the behavior of the transfer function is considered in the right half-
plane C+

−1. If s ∈ C+
−1 and |s| → ∞, then Re

(√
s+ 1

)
→ +∞. It is seen that∣∣∣sinh

(
d
√
s+ 1

)∣∣∣ and ∣∣∣cosh
(
d
√
s+ 1

)∣∣∣ where d > 0 behave approximately like∣∣∣ed√s+1
∣∣∣ near infinity, if s ∈ C+

−1.
The above arguments show that

g11(s) =H g22(s) =H g21(s) =H s−
3
2 ≥H s−

3
2 e− 1

2
√
s =H g12(s).
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It follows that in 2.1 the diagonal matrix is Λ(s) = diag
(
s−

3
2 , s−

3
2
)
. Thus, the

structure of P(s) at infinity along C+
−1 is {s− 3

2 , s−
3
2}.

Note that the term g12(s) of the transfer function, which describes the effect
of u2 on y1, decays much faster towards zero when approaching infinity in C+

−1
than the other terms. The exponential decay rate e− 1

2
√
s is a consequence of the

gap of half a unit between the measurement y1 and the input u2. Thus, if there
would be an interval of measurement that is not adjacent to any interval that is
heated or vice versa, then there would be an exponentially decaying structural
function of the form e−d

√
s where d > 0. �

2.3 Calculation of Structure at Infinity
In this section, different ways to find the structure at infinity of a given matrix
are discussed. The main result of this chapter is a method for calculating the
structure at infinity by using minors. It generalizes the method of [44, 90] to
transfer functions of infinite-dimensional systems. Computer aided computation
of the structure at infinity is also considered.

Before proceeding to the main result of this section, a technical lemma is
given. The existence of the supremums in the following discussion follows by
Lemma 2.2.3.

Lemma 2.3.1. Let A ∈ Cn×m and B ∈ Cm×k. If 1 ≥H |A|ir,c for all i, r, and
c, then supr,c

{
|B|ir,c

}
≥H supr,c

{
|AB|ir,c

}
. If 1 ≥H |B|ir,c for all i, r and c,

then supr,c

{
|A|ir,c

}
≥H supr,c

{
|AB|ir,c

}
.

Proof. By the Binet-Cauchy formula (A.2) and Lemma 2.2.2,

sup
r,c

{
|B|ir,c

}
≥H sup

r,c,l

{
|A|ir,l |B|

i
l,c

}
≥H sup

r,c

{∑
l
|A|ir,l |B|

i
l,c

}
= sup

r,c

{
|AB|ir,c

}
.

One can show that supr,c

{
|B|ir,c

}
≥H supr,c

{
|BA|ir,c

}
by using similar argu-

ments.

Theorem 2.3.2. Let H ⊆ P, and denote the supremum with respect to order
≥H of all the equivalence classes of i × i-minors of G(s) by [µi(s)]H . Let r be
the size of the largest non-zero minor. A set of structural functions of G with
respect to H is given by q1(s) = µ1(s), and qi(s) = µi(s)

µi−1(s) for i = 2, . . . , r.

Proof. LetG(s) be of the form (2.1). The uniform boundedness property implies
that all the minors of U and V are majorized by 1. By using Lemma 2.3.1
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repeatedly, one gets

[q1 · · · qi]H = sup
r,c

{
|Λ(s)|ir,c

}

≥H sup
r,c


∣∣∣∣∣U(s)

[
Λ(s) 0

0 0

]
V (s)

∣∣∣∣∣
i

r,c


≥H sup

r,c


∣∣∣∣∣U−1(s)U(s)

[
Λ(s) 0

0 0

]
V (s)V −1(s)

∣∣∣∣∣
i

r,c

 = [q1 · · · qi]H .

Thus, q1 · · · qi =H µi. This implies that qi =H
µi
µi−1

.

Example 2.3.3. Consider the transfer function of Example 2.2.11. It is obvious
that µ1(s) = 1

s+1 is a 1 × 1-minor that majorizes all the other minors of the
same size along iR. The determinant of the plant is

µ3(s) = det (P(s)) = e−s − 1
(s+ 1)2g(s) (2.10)

and all the non-zero 2× 2-minors are

−(e−s + 1)
(s+ 1)g(s) , ±

e−s − 1
(s+ 1)g(s) ,

1
g(s) , ±

(e−s + s)(e−s − 1)
(s+ 1)2g(s) , and s(e−s − 1)

(s+ 1)2g(s) ,

where g(s) = (s+ 1)2 + e−s − 1. The minor µ2(s) = 1
g(s) majorizes all the other

2 × 2-minors. The following structural functions along iR are found by using
Theorem 2.3.2:

µ1(s) = 1
s+ 1 ,

µ2(s)
µ1(s) = s+ 1

g(s) and µ3(s)
µ2(s) = e−s − 1

(s+ 1)2 .

These are the ones also found in Example 2.2.11. �

Remark 2.2.15 shows that the computer aided calculation of the behavior of
structural functions is possible – at least in theory. In practice, the calculations
involved are heavy for large systems. Luckily, there is a more convenient way
to do the calculations.

Let G(s) be a matrix valued function. The matrix G(s0) has singular value
decomposition U(s0)Λ(s0)V (s0) where U(s0) and V (s0) are unitary matrices at
a given point s0. The axiom of choice allows one to define U(s) and V (s) by
fixing the unitary matrices at each point of the domain of G(s). Since U(s)
and V (s) are unitary for all s, they satisfy the uniform boundedness property.
Thus, the structural functions are given by the singular values, and one has the
following theorem.
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Theorem 2.3.4. Denote the singular values of a n×m-matrix valued function
G(s) by σ1(s), σ2(s), . . . , σr(s) for all s, and assume that the singular values are
in decreasing order. The structure at infinity of G(s) with respect to H ⊆ P is
{[σ1(s)]H , [σ2(s)]H , . . . , [σr(s)]H}.

The above theorem enables numerical calculation of the structural functions,
if one is able to calculate the value of the transfer function at a point. One gets
the following interesting relation between the singular values and the structure
at infinity for rational matrices.

Corollary 2.3.5. Let G(s) be a rational matrix with nrank (G(s)) = k, and
denote the non-zero singular values of G(s) by σ1(s) > σ2(s) > . . . > σk(s). Let
q1, q2, . . . , qk be the structural indices of G(s). There exist positive constants M ,
m, and ρ such that m

|s|qi < σi(s) < M
|s|qi for i = 1, 2, . . . , k and for all s ∈ C such

that |s| > ρ.

Proof. Every structural index qi corresponds to a structural function for form
s−qi . Theorem 2.3.4 shows that s−qi =C σi(s). The claim follows by Definition
2.2.1.

2.4 Invariance of Structure at Infinity Under
Feedback

2.4.1 Invariance under State Feedback
The invariance under a constant state feedback of form

u = Kx+ v

is studied in this section. The results generalize the well-known results on
structural properties of finite-dimensional systems presented in [24] to infinite-
dimensional systems. The closed loop system with the constant state feedback
is

ẋ = (A+BK)x+Bv, x(0) = x0 (2.11a)
y = (C +DK)x+Dv. (2.11b)

Its transfer function is

PK(s) = (C +DK)(sI − (A+BK))−1B +D.
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Substitute X = sI − A, Y = −BK, and Z = I = V to (A.1) to see that

PK(s) = (C +DK)(sI − (A+BK))−1B +D

= C(sI − (A+BK))−1B +D +DK(sI − (A+BK))−1B

= C(sI − A)−1B +D + (C(sI − A)−1B +D)K(sI − (A+BK))−1B

= P(s)(I +K(sI − (A+BK))−1B).

Consequently, the state-feedback does not alter the structure at infinity with
respect to H ⊂ P if I+K(sI−(A+BK))−1B satisfies the uniform boundedness
property with respect to H. This leads to the following lemma.

Lemma 2.4.1. Choose β ∈ R. The structure at infinity along C+
β is not affected

by the state feedback u = Kx+ v, if there exists ρ ≥ 0 such that

sup
s∈C+

β
\Bρ(0)

‖K(sI − (A+BK)−1B‖ < 1. (2.12)

Proof. Assume that the condition (2.12) holds for some ρ > 0. In that case,
I + K(sI − (A + BK))−1B is invertible in C+

β \ Bρ(0), and both I + K(sI −
(A+BK))−1B and its inverse are uniformly bounded there. Thus, I +K(sI −
(A + BK))−1B satisfies the uniform boundedness condition along C+

β and the
claim follows.

Lemma 2.4.2. If the system Σ (A,B,C, 0) that has finite-dimensional input
and output spaces is exponentially stabilizable or exponentially detectable, then
there exists β < 0 such that sup |s|>ρ

s∈C+
β

‖P(s)‖ → 0 as ρ→∞.

Proof. Only the case where the system is exponentially stabilizable is proved.
The proof for exponentially detectable systems follows by similar arguments.

By [14, Theorem 5.2.6] there exists a constant ε > 0 such that the state-
space can be decomposed into a direct sum X = X+ ⊕ X− where X+ is a
finite-dimensional space corresponding to the finite point spectrum of A in C+

−ε.
Denote the decompositions of the operators C, B, A, and R (s, A) with respect
to the decomposition of the state-space by C =

[
C+ C−

]
,

B =
[
B+
B−

]
, A =

[
A+ 0
0 A−

]
, and R (s, A) =

[
R (s, A+) 0

0 R (s, A−)

]
,

respectively. The transfer function is of the plant is

P(s) = C+R (s, A+)B+ + C−R (s, A−)B− = P+(s) + P−(s).

Since Σ (A+, B+, C+, 0) is a finite-dimensional plant, P+ is a strictly proper
rational matrix, and ‖P+(s)‖ → 0, as s → ∞. By the triangle inequality, it
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remains to show that there exits a constant β < 0 such that ‖P−(s)‖ → 0, as
s→∞ in C+

β .
The operator A− is an infinitesimal generator of an exponentially stable C0-

semigroup T−(t), so there exist constantsM > 0 and ε0 > 0 such that ‖T−(t)‖ ≤
Me−ε0 for all t ≥ 0. Thus,

∞∫
0
‖eεtC−T−(t)B−‖2 < ∞ if 0 < ε < ε0. This shows

that eεtC−T−(t)B− ∈ L2([0,∞),L (Cn,Cm)). By the Paley-Wiener theorem
[14, Theorem A.6.21], P−(s − ε) =

∫∞
0 e−steεtC−T−(t)B−dt ∈ H2

0 (L (Cn,Cm)).
Choose 0 < β < ε. By [36, Theorem 6.4.2], ‖P−(s)‖ → 0, as s→∞ in C+

β

Theorem 2.4.3. If Σ (A,B,C,D) is exponentially stabilizable, there exists β <
0 such that a state-feedback of the form u = Kx+v does not change the structure
at infinity along C+

β .

Proof. Since Σ (A,B,C,D) is exponentially stabilizable Σ (A+BK,B,K, 0) is
too. Lemma 2.4.2 shows that K(sI − (A + BK))−1B satisfies the condition
(2.12), so the claim follows by Lemma 2.4.1.

2.4.2 Invariance under Output Feedback
Consider output feedback of the form

u = Ly + v. (2.13)

The resulting closed-loop transfer function is

PL(s) = (I − P(s)L)−1P(s). (2.14)

The structure at infinity is not invariant under output feedback – not even
in the finite-dimensional case – as it is shown in the following example. In the
example the feedback takes one finite pole to the infinity. However, the zeros at
infinity are invariant under output feedback in the finite-dimensional case [24].
The next theorem generalizes the result to infinite-dimensional systems.

Example 2.4.4. Set A = B = C = D = L = 1. Now P(s) = 1
s−1 + 1 and

PL(s) = −s, so the structure at infinity was changed by the output feedback.
�

Theorem 2.4.5. Let Σ (A,B,C,D) be such that I − DL is invertible and
CR (p(α), A)B → 0, as α → ∞, for all p ∈ H ⊆ P. The output feedback
(2.13) does not change the structure at infinity with respect to H.

Proof. Fix p ∈ H. Since CR (p(α), A)BL → 0, as α → ∞, it follows that
I − P(p(α))L → I − DL. Thus, I − P(p(α))L has the uniform boundedness
property, and the claim follows by (2.14).
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A direct consequence of Theorem 2.4.5 and Lemma 2.4.2 is given by the
following corollary:

Corollary 2.4.6. If Σ (A,B,C,D) is exponentially stabilizable or exponentially
detectable and I−DL is invertible, then there exists a β > 0 such that the output
feedback (2.13) does not change the structure at infinity along C+

β .

2.5 Robustness of Structure at Infinity
Robustness properties of the structure at infinity are studied in this section.
It is seen that the robustness properties are generally very weak. Nonetheless,
there might exist some important classes of perturbations that do not change
the structure at infinity. The robustness properties are of importance since in
Section 3.3 it is shown that the robustness properties of the structure at infinity
are related to the robustness of regulation.

The next example illustrates that small perturbations may change the struc-
ture at infinity of a linear system. Actually, almost every perturbation changes
the structure at infinity of certain systems. However, for systems with bounded
operators and one dimensional input or output space there exists a neighborhood
where the perturbed transfer functions cannot vanish faster than the original
plant transfer function as shown by Theorem 2.5.3. Example 2.5.2 shows that
this property fails even for finite-dimensional MIMO-systems.

Example 2.5.1. Let Σ (A,B,C,D) be a finite-dimensional plant with one
dimensional input and output spaces that satisfies D = CAi−1B = 0 for
i = 1, . . . , j−1 and CAjB 6= 0. Since P(s) = D+∑∞i=1

1/siCAi−1B the structure
at infinity is 1/sj. Any perturbation to D changes the structure at infinity. In
addition, it is easy to see that certain arbitrarily small perturbations change
CAi−1B to be non-zero. Such perturbations change the structure at infinity. �

Example 2.5.2. Consider the system Σ (A,B,C, 0) where

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

B =


0 0
1 0
0 0
0 1

 and C =
[
1 0 0 0
0 0 1 0

]
.

Let the output operator be subject to the additive perturbation

∆C =
[
0 0 0 −ε
0 0 0 0

]
.
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The transfer functions of the original and the perturbed systems are

P(s) =
[

1
s2 0
0 1

s2

]
and P ′(s) =

[
1
s2

ε
s

0 1
s2

]
,

and the structures at infinity are {s−2, s−2} and {s−1, s−3}, respectively. Thus,
even an arbitrarily small perturbation can increase the order of the zero at
infinity. �

In the above example, the number of zeros at infinity counting multiplicities
remains the same. The perturbation lowers the order of the first zero and
increases the order of the second one. This is not possible if there is only one
input or output.

Theorem 2.5.3. If the input space or the output space of Σ (A,B,C,D) with
bounded operators is one dimensional, then there exists ε > 0 such that the
structural functions of Σ (A′, B′, C ′, D′) majorize the structural functions of
Σ (A,B,C,D) for all systems Σ (A′, B′, C ′, D′) such that ‖A − A′‖ < ε, ‖B −
B′‖ < ε, ‖C − C ′‖ < ε, and ‖D −D′‖ < ε.

Proof. The plant transfer function has the following Laurent expansion at in-
finity:

P(s) = D +
∞∑
i=1

1
si
CAi−1B.

Denote the lowest order non-zero coefficient in the Laurent expansion by Ψ. This
term determines the structural index of P . If Ψ = D and 0 < ε < ‖D‖, then
D′ 6= 0 whenever ‖D−D′‖ < ε. Thus, the structure at infinity remains invariant.
Assume, that Ψ = CAi−1B for some i > 1. Since Ψ is a continuous function of
A, B, and C, it is clear that there exists ε > 0 such that Ψ′ = C ′(A′)i−1B′ 6= 0,
if ‖A−A′‖ < ε, ‖B−B′‖ < ε, and ‖C−C ′‖ < ε. It follows, that the structural
index cannot increase.

The next examples illustrate that arbitrarily small perturbations can change
the structure at infinity of infinite-dimensional SISO-systems. In the first ex-
ample, an infinite number of finite transmission zero locations are perturbed.
The perturbation changes the structure at infinity, because the zeros have an
accumulation point at infinity. The second example shows that in small pertur-
bations can result in a big difference in the structural properties of a system.
It also illustrates that structure at infinity can be robust with respect to some
important class of perturbations.
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Example 2.5.4. Consider the time-delay system ΣD (A0, A1, B, C,D) with

−A0 = A1 =
[
0 −1
0 0

]
, B =

[
0
1

]
, C =

[
1 0

]
and D = 0.

The transfer function is P(s) = 1/s2 (1− e−s). There is a finite transmission
zero at 2πki for all k ∈ Z.

Consider an additive perturbation of form ∆A0 = (e−iε − 1)A0. Since
∆A0 → 0 as ε → 0 the norm of the perturbation can be chosen to be arbi-
trarily small. The perturbed transfer function is P ′(s) = 1/s2 (e−iε − e−s), so
the finite transmission zero locations have been perturbed to (2πk + ε)i where
k ∈ Z. The two transfer functions are not comparable at infinity along iR by
the majorization relation, so the structure at infinity has changed. �

Example 2.5.5. The heated bars of Figure 2.2 have one heater u and one
measurement y, and there is some uncertainty in the location of the heater.
Let the heat transfer be modelled by using models similar to that in Example
2.2.18. Let the transfer functions of the systems be P1(s) and P2(s), first of
which is related to Figure 2.2(a) and the latter of which to Figure 2.2(b).

y(t)
︸ ︷︷ ︸

u(t)︷ ︸︸ ︷0 1/5 2/5

13/5 4/5

(a) Non-collocated

y(t)
︸ ︷︷ ︸

u(t)︷ ︸︸ ︷
0 1/3

1/3+δ 1

2/3

2/3+δ

(b) Collocated

Figure 2.2: Two heated bars: one with a non-collocated heater and sensor pair
[2.2(a)] and one with a collocated heater and sensor pair [2.2(b)].

The structure at infinity along iR of P1(s) is 1
s
√
s
e−( 1

5 +δ)√s+1. It is seen,
that an arbitrarily small perturbation in the location changes the structure at
infinity. Furthermore, the perturbations that move the heater farther away from
the measurement make the transfer function to vanish faster as the infinity is
approached along the imaginary axis. The perturbations that move the heater



36 Chapter 2. Structure at Infinity

closer to the measurement make the transfer function to vanish slower. The
change in the decay rate between the perturbed and the original plant transfer
functions is e−δ

√
s+1. Thus, even a small perturbation changes the decay rate

by an exponential degree.
The structure at infinity along iR of P2(s) is 1

s
as long as δ < 1

3 . Thus, the
structure at infinity is robust with respect to small perturbations in the location
of the heater. Similar robustness property is also evident with respect to the
location of the measurement. �

2.6 Global Structure of Transfer Functions
The structure at infinity describes the rate of convergence or divergence as the
frequency approaches infinity, However, it does not take into account the finite
structure, i.e., the finite poles and zeros. In Chapters 3 and 4, the finite structure
and the structure at infinity are of interest. That is why it is convenient to
combine these two. This is done next by defining the global structure.

If one carefully examines the way the structure at infinity was defined, it is
easy to see that one only needs to take the finite zeros and poles into account
when defining the majorization relation. This leads to the following global
majorization relation.

Definition 2.6.1. Let f, g ∈ C and H ⊆ P. If

∀p ∈ H : sup
α≥0

∣∣∣∣∣ g(p(α))
f(p(α))

∣∣∣∣∣ <∞
it is said that f globally majorizes g with respect to H. This is denoted by
f =H g. If f =H g and g =H f , notation f ≡H g is used.

Actually, all the properties of Lemma 2.2.2 hold for the relations =H and
≡H . Furthermore, if [[f ]]H denotes the equivalence class of f with respect to
relation ≡H , then Lemma 2.2.3 and Lemma 2.2.4 hold if [·]H is replaced by
[[·]]H , and =H by ≡H . This means that the structure algorithm in the proof
of Theorem 2.2.7 constructs diagonalizing matrices U and V having the global
uniform boundedness property defined below. Thus, the same proof shows the
stronger version of Theorem 2.2.7 that is stated in Theorem 2.6.3.

Definition 2.6.2. It is said that G : D (G) ⊆ C → Cn×n satisfies the global
uniform boundedness property with respect to H ⊆ P if M(p(α)) is invertible
and ‖M(p(α))‖, ‖M−1(p(α))‖ are uniformly bounded in [0,∞) for all p ∈ H.
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Theorem 2.6.3. Let H ⊆ P. A matrix G(s) ∈ Cn×m can be written in the
form

G(s) = V (s)
[
Λ(s) 0

0 0

]
U(s) (2.15)

where Λ(s) = diag (q1(s), . . . , qr(s)) is a diagonal matrix with non-zero elements,
q1 =H q2 =H · · · =H qr, the zero blocks may be non-existent, and U and V have
the global uniform boundedness property.

The result of Theorem 2.2.8 generalizes to the diagonal elements of Λ in
(2.15), so they are unique up multiplication by elements f ≡H 1, and it makes
sense to define the global structure in the following way.

Definition 2.6.4. Let Λ(s) = diag (q1(s), . . . , qr(s)) be the diagonal matrix
in (2.15). The global structure at infinity of G(s) with respect to H is the
set {[[q1]]H , . . . , [[qr]]H}. The functions q1, q2, . . . , qr are called global structural
functions with respect to H.

Consider the global structure along a set Q ⊆ C. A matrix valued function
G with full normal rank can have a transmission zero at s0 ∈ Q if and only if
global structural function qr(s) has a zero at s0. Similarly G can have a pole at
s0 ∈ Q if and only if q1(s) has a pole at s0. Since the global structural functions
are also structural functions it is evident that the global structure captures the
finite structure and the structure at infinity.

The reason for defining the global structure was explained in the beginning
of the section. One might wonder where is the structure at infinity needed. The
reason for defining the structure at infinity are the invariance properties found
in Section 2.4. The global structure does not have the invariance properties,
because feedback affects the finite structure even though the structure at infinity
remains intact.





Chapter 3

Regulation in the Time Domain

3.1 Introduction to Robust Regulation in the
Time Domain

In this section, the time domain output regulation problem is introduced. The
purpose is to review the related results appearing in the literature so that the
time domain and the frequency domain problems and their solvability conditions
can be compared and that the smoothness properties of the reference and the
disturbance signals required for solvability can be studied.

The output regulation problem is to find any controller that is capable to
asymptotically track the reference signal. The two controller configurations
considered in this thesis are the feedforward control configuration of Figure
1.2(a) and the error feedback control configuration depicted in Figure 1.2(b). It
is also possible to combine these two controller designs [42].

The robust regulation problem studied here is the one from [34] where the
exosystem is an infinite-dimensional diagonal system with an infinite number
of unstable poles on the imaginary axis. The state spaces as well as the input
and the output spaces are assumed to be Hilbert spaces. This is not the most
general formulation appearing in the literature, see for example [39, 70], but is
the closest one to the frequency domain regulation problem studied in the next
chapter.

3.1.1 The Plant
In the time domain, the plants have the following state space formulation:

ẋ = Ax+Bu+ d1, x(0) = x0 ∈ X, (3.1a)
y = Cx+Du+ d2. (3.1b)

The state disturbance d1 and the measurement disturbance d2 are defined be-
low. The state operator A is assumed to be an infinitesimal generator of a

39
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C0-semigroup on a Hilbert space X. In addition, B ∈ B (U,X), C ∈ B (X, Y ),
and D ∈ B (U, Y ) where the input space U and the output space Y are assumed
to be Hilbert spaces. Choosing the spaces to be Hilbert spaces is not crucial.
Most of the results appearing in the literature hold in some form even if X, U ,
and Y are Banach spaces.

3.1.2 The Reference and Disturbance Signals
It is clear that no controller can regulate every possible reference signal, nor
can it get rid of every disturbance signal. However, usually only a certain
class of reference and disturbance signals needs to be regulated at a time. The
allowed reference and disturbance signals are often assumed to be generated by
an exosystem.

The exosystem considered in this thesis is of form

v̇ = Sv, v(0) = v0 ∈ W, (3.2a)
yr = F1v, (3.2b)
d1 = E1v, (3.2c)
d2 = E2v, (3.2d)

where F1 ∈ B (W,Y ) and E1 ∈ B (W,X), E2 ∈ B (W,Y ), and S is a linear
diagonal operator

S =
∑
k∈Z

iωk 〈·, φk〉φk, (3.3)

with domain

D (S) =

v ∈ W
∣∣∣∣∣∣
∑
k∈Z
| 〈v, φk〉 |2 <∞


in a Hilbert-space W with an orthonormal basis (φk)k∈Z. The operator has
point spectrum iωk on the imaginary axis. The following standing assumption
states that there is a uniform gap between the poles of the exosystem.

Assumption 3.1.1. The constants ωk ∈ R in (3.3) are in increasing order and
there exists such a positive constant γ > 0 that ωk − ωk−1 > 4γ for all k ∈ Z.

In the frequency domain, one often considers only input disturbances, be-
cause the transfer functions give only an input-to-output description and the
output disturbance can be seen as a part of the reference signal. The input
disturbance signal can be written in the form d0 = E0v. If there are no other
types of disturbances, the disturbance to the state of the plant is d1 = Bd0
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and disturbance to the measurement d2 = Dd0; therefore, one has E1 = BE
and E2 = DE in (3.2). In this thesis, there are no other types of disturbances
affecting the system at the same time with an input disturbance.

With exosystems of the proposed form one can generate the class of almost
periodic signals. Particularly, all periodic signals belong to this class of signals.
More general signals can be generated if Jordan blocks are allowed in S. In
this case, the signals can be polynomially increasing. The simple form of the
exosystem makes controller design easier. A very general generator that can
generate all the bounded periodic signals with one generator was considered in
[40, 39], but actual controller design for such a controller is very difficult.

The smoothness of the reference and disturbance signals is crucial in regu-
lation. There are two ways to control the smoothness of the signals, either by
setting conditions on the allowed initial states of the exosystem [70, 68] or by
setting conditions on the reference operator F1 and disturbance operators E1
and E2 [34]. However, the latter approach allows different smoothness proper-
ties of the reference and disturbance signals to be set, while the former does
not. This is why the latter approach is adopted here.

3.1.3 The Controller
There are two controller types considered in this thesis. The first one is feed-
forward controllers with a stabilizing feedback loop. A feedforward controller is
a control law

u = Kx+ Lv, (3.4)
where K ∈ B (X,U) and L ∈ B (W,U).

The second controller type is error feedback controllers. It is a dynamic
controller of form

ż = G1z + G2e, z(0) = z0, (3.5a)
u = Kz, (3.5b)

where G1 is an infinitesimal generator of a C0-semigroup on a Hilbert space
Z, G2 ∈ B (Y, Z) and K ∈ B (Z,U). The input of the controller is the error
e = yr − y between the reference and output signals. The transfer function of a
dynamic controller is C(s) = KR (s,G1)G2.

Combining the plant and the error feedback controller gives the extended
closed loop system

ẋe = Aexe +Bev, xe(0) = xe0 =
[
x0
z0

]
, (3.6a)

e = Cexe +Dev, (3.6b)
(3.6c)
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where Ce =
[
−C −DK

]
, De = F1 − E2,

Ae =
[

A BK
−G2C G1 − G2DK

]
and Be =

[
E1

G2(F1 − E2)

]
. (3.7)

From now on denote E = E1 and F = F1 − E2.

3.1.4 The Feedforward Output Regulation Problem
The feedforward output regulation problem is to find a feedforward control law
(3.4) such that

1. A+BK is a generator of an exponentially stable C0-semigroup, and

2. the tracking error e(t) = y(t)− yr(t)→ 0, as t→∞.

Feedforward controllers are widely used in applications, if not by themselves,
along with feedback controllers to improve performance. Thus, it is important
to understand their possibilities and limitations. The most severe weakness of
feedforward controllers is the lack of robustness properties. However, the output
regulation problem without robustness is solvable by a feedforward controller
if and only if it is solvable by a feedback controller under certain stabilizabil-
ity conditions [6]. Consequently, if the stabilizability conditions are satisfied
the solvability conditions of the output regulation problem with a feedforward
controller are necessary for the robust output regulation problem too.

Necessary and sufficient conditions for the solvability of the output regula-
tion problem with a feedforward controller in the finite-dimensional case have
been known since the 1970s [16]. Since then, many authors have generalized
these results to infinite-dimensional plants with finite-dimensional exosystems,
see for example [6, 73]. A case study with a feedforward controller and an
infinite-dimensional exosystem in [5] revealed a connection between the solv-
ability of the problem and the behavior of the plant transfer function at high
frequencies. In principle, the faster the transfer function approaches zero the
smoother the reference and the disturbance signals should be for the problem to
be solvable. This connection was later studied in [41]. A similar phenomenon
was reported with dynamic error feedback controllers in [34, 70].

An instrumental tool in the study of the feedforward regulation problem are
the so called regulator equations:

ΣS = AΣ +BΓ + E in D (S) (3.8a)
F = CΣ +DΓ. (3.8b)

These equations are from [6] where they were used with a finite-dimensional
exosystem and no feed through term, i.e., D = 0. Later, Immonen used the
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equations with an infinite-dimensional exosystem [39, 41]. In this thesis, the
plant is required to be exponentially stabilizable and the solvability of the equa-
tions is actually a necessary and sufficient condition for the feedforward output
regulation problem to be solvable. If only strong stability of the plant is needed,
then the solvability of the regulator equations is only a sufficient condition for
the solvability of the feedforward regulation problem [39].

3.1.5 The Error Feedback Output Regulation Problem
The error feedback output regulation problem is to find an error feedback con-
troller (3.5) such that

1. Ae is strongly stable, and

2. the tracking error e(t) = y(t) − yr(t) → 0 as t → ∞ for all initial states
xe0 ∈ Xe and z0 ∈ W .

Denote the set of all 7-tuples

(A′, B′, C ′, D′, F ′1, E ′1, E ′2),

where A′ ∈ L (X) is a infinitesimal generator of a C0-semigroup, B′ ∈ B (U,X),
C ′ ∈ B (X, Y ), D′ ∈ B (U, Y ), F ′1 ∈ B (W,Y ), E ′1 ∈ B (W,X) and E ′2 ∈ B (W,Y )
by Ω. The nominal plant (3.1) and the unperturbed reference and disturbance
operators in (3.2) corresponds to the 7-tuple

(A,B,C,D, F1, E1, E2) ∈ Ω.

In this thesis, perturbations are allowed in the operators of the plant and in
the reference and the disturbance operators. When the nominal plant or the
reference and the disturbance operators are subject to a perturbation the re-
sulting plant and the operators are assumed to be an element of a subset V

of Ω. Thus, V defines the class of allowed perturbations. It is assumed that
(A,B,C,D, F1, E1, E2) ∈ V, but, at this point, no further assumptions on this
set are made. The robust error feedback output regulation problem is to find an
error feedback controller (3.5) such that

1. it solves the error feedback output regulation problem for the nominal
plant (3.1), and

2. it solves the error feedback output regulation problem for all plants in V

preserving strong stability of the closed loop.
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For finite-dimensional linear systems and finite-dimensional signal genera-
tors, the error feedback output regulation problem and the robust error feedback
output regulation problem were solved during the 1970s. Francis, Wonham,
and Davison had a central role in this work [15, 18, 28, 29, 97]. The results for
finite-dimensional plants have been generalized to infinite-dimensional plants by
several authors [2, 33, 70, 74, 75, 80, 89]. In what follows, the focus is on the
robust regulation problem with an infinite-dimensional exosystem. For a more
comprehensive list of references and some discussion on their contributions an
interested reader should see [32, 39, 68].

A fundamental result called the internal model principle first stated by Fran-
cis and Wonham in [28] gives a necessary and sufficient condition for a controller
to be robustly regulating. Roughly stated, a controller can robustly regulate
the dynamics generated by an exosystem if and only if it contains a suitably
reduplicated copy of the exosystem.

This famous result was generalized to infinite-dimensional exosystems in the
form of a repetitive control system by Hara et al. in [35, 99]. The idea of the
repetitive control is that since all L-periodic function can be generated by using
a free time-delay loop with delay length L, including such a loop in a controller
would make it robustly regulating. Hara et al. formulated the internal model
principle in frequency domain terms. However, the results in [35, 99] suffered
from relatively narrow applicability.

In his thesis and articles, Immonen provided a state space formulation of
the internal model principle that is suitable for infinite-dimensional systems and
exosystems, see [39] and the references therein. His formulation of the internal
model principle was called the internal model structure. The controller is said
to possess the internal model structure of the exosystem if for all ∆ ∈ B (W,Y )
and for all such Γ ∈ B (W,Z) that ΓD (S) ⊂ D (G1)

ΓS = G1Γ + G2∆⇒ ∆ = 0.

It was shown that a controller possessing the internal model structure solves
the robust regulation problem. Furthermore, the internal model structure is a
necessary condition for a controller that exponentially stabilizes the extended
system to be robustly regulating in the traditional sense, by which it is meant
that small enough bounded linear additive perturbations do not destroy the
output regulation. In other words, the controller solves the error feedback reg-
ulation problem for all systems in V containing all 7-tuples

(A′, B′, C ′, D′, F ′1, E ′1, E ′2) ∈ Ω

satisfying ‖A − A′‖ < ε, ‖B − B′‖ < ε, ‖C − C ′‖ < ε, and ‖D − D′‖ < ε for
some small enough ε > 0. Since linear additive perturbations were considered
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the operator A−A′ is a bounded operator, although A and A′ can be unbounded
operators, and its norm is well defined.

Despite the nice robustness results with exponential stability, Immonen pre-
ferred strong stability. This is because he used an infinite-dimensional exosys-
tem. If one wants to find a robustly regulating controller, an internal model
of the exosystem should be build into the controller. Consequently, with an
error feedback controller this infinite-dimensional exosystem becomes a part of
the closed loop, so it is often impossible to exponentially stabilize the extended
system. This difficulty was already pointed out by Hara et al. in [35], who
showed that it is impossible to obtain exponential stability with their repetitive
control system if the transfer function is strictly proper.

The lack of exponential stability in the closed loop results in weaker robust-
ness of stability. It is possible that an arbitrarily small perturbation destroys
strong stability, e.g. [39, Example 6.5], and it is difficult to find classes of pertur-
bations preserving strong stability. This is why Immonen merely considered the
robustness of regulation under the assumption that the allowed perturbations
preserve the strong stability of the closed loop. Immonen called this ”condi-
tional robustness”, but later Paunonen used the term somewhat differently as
seen below. In this thesis, conditional robustness is to be understood in the
sense of Paunonen, and robustness of regulation is considered under the as-
sumption that the perturbations preserve closed loop stability as was done in
[34, 68, 70, 72].

Another characterization of the internal model principle suitable for infinite-
dimensional setting was given by Hämäläinen and Pohjolainen in [34]. This
characterization originates from a proof in [27] and was called the G-conditions
by Paunonen since the conditions are related to operators G1 and G2 of the
controller [70]. For the diagonal exosystem in (3.3), the controller is said to
satisfy the G-conditions if for all k ∈ Z

R (iωkI − G1) ∩R (G2) = {0}, (3.9a)
N (G2) = {0}. (3.9b)

This characterization was extended for exosystems that were allowed to contain
non-trivial Jordan blocks by Paunonen in [70] who also showed that the two
characterizations above are equivalent. Related to the size of the non-trivial
Jordan blocks, an additional G-condition was needed. Under an additional as-
sumption σ (Ae) ∩ σ (S) = ∅, Paunonen was able to show in [70] that what he
called the n-copy internal model is equivalent to the afore mentioned charac-
terizations of the internal model principle. For the exosystem with diagonal
operator (3.3), the controller is said to contain an n-copy of the exosystem if
for all k ∈ Z

dim (iωkI − G1) ≥ dim (Y ) .
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Perhaps the most important contribution of [70] was that it was shown that
the internal model structure and the G-conditions, which were known to be
sufficient conditions for a controller to be robustly regulating, are also necessary
provided the class of allowed perturbations is appropriately chosen. The class
of perturbations considered in [34, 70] was chosen so that the Sylvester equation

ΣS = AeΣ +Be on D (S) (3.10)

has such a unique solution Σ ∈ L (W,Xe) that ΣD (S) ⊆ D (Ae) for all per-
turbed plants. It was noted that the solvability of the above equation is related
to the smoothness of the reference and the disturbance signals. In principle, the
smoother the signals the easier it is to solve the equation (3.10). The required
smoothness of the signals is related to the high frequency behavior of the plant
transfer function [34, 39]. Conditions on the smoothness of the signals can be
imposed by restricting the set of initial conditions of the exosystem [70] or by
restricting the set of allowed reference and disturbance operators F1, E1, and
E2 [34]. It should be noted that the solution Σ does not need to be unique in
order a controller with an internal model to solve the robust output regulation
problem.

In his thesis [68], Paunonen presented yet another equivalent condition called
conditional robustness for a controller to be robustly regulating. A controller is
said to be conditionally robust if the implication

ΣS = AeΣ +Be ⇒ CeΣ +De = 0 (3.11)

is satisfied for all operators Ae, Be, Ce, and De in the extended system (3.6)
with fixed controller parameters G1, G2, and K and exosystem state operator S.
Paunonen allowed the reference and the disturbance operators to be arbitrary,
and restricted the set of the allowed initial values of the exosystem. If the set
of initial states is restricted, then it is possible to consider the solvability of the
Sylvester equation (3.10) in a related subspace of W . In this thesis, the set of
initial values is not restricted but the reference and the disturbance operators
are; consequently, one needs to consider the solvability of (3.10) inW . However,
as seen later, this is not a restriction to theory and the two approaches to control
the smoothness of signals can be used interchangeably.

In [49], it was shown that if σ (Ae)∩ σ (S) = ∅, then (3.11) is satisfied for S
defined in (3.3) if and only if

Pe(iωk) = CeR (iωk, Ae)Be +De = 0 (3.12)

for all k ∈ Z. This is called the blocking zero condition and generalizes the
finite-dimensional result in [26] to infinite-dimensional systems and exosystems.
If there are non-trivial Jordan blocks in the exosystem, then the orders of the
blocking zeros should correspond to the sizes of the blocks.
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Actual time-domain controller design for infinite-dimensional exosystems can
be found in [34, 40, 72]. The controllers Immonen proposed in [40] generalizes
the finite-dimensional controllers of Davison [17] and Francis [29]. The design
procedure of controllers proposed by Immonen requires equations similar to the
regulator equations (3.8) to be solvable. An observer-based controller design
procedure in [34] by Hämäläinen and Pohjolainen gives a definite method of how
one can implement an infinite-dimensional internal model into a controller and
simultaneously stabilize the closed loop system. For finite-dimensional input
and output spaces, Hämäläinen and Pohjolainen were able to strongly stabilize
the closed loop system, but they had to settle for weak stability in regard to
infinite-dimensional input and output spaces. Later similar controller design
was used by Paunonen and Pohjolainen for SISO-systems. They used pole
placement to stabilize the system and under the assumption

|P(iωk)| ≥M (1 + |ωk|)α

for some α > 0 andM > 0, and they were able to achieve polynomial stability in
addition to strong stability. Requiring polynomial stability in addition to strong
stability is advantageous since recent results show that this type of stability
has relatively good robustness properties, see [69] and the references therein. It
should be noted that the controllers in [34, 72] are designed assuming conditions
implying existence of a unique solution to (3.10).

This introduction section is concluded by emphasizing some important as-
pects of the robust regulation problem and its solvability. First, the charac-
terizations of the internal model principle are just properties of the controller
under which asymptotic tracking is guaranteed if the closed loop system is sta-
ble. Since the characterizations of the internal model principle provide the
necessary and sufficient conditions for a controller to be robustly regulating,
it follows that the robustness of regulation should be understood in the sense
that the closed loop stability should imply asymptotic tracking. Secondly, it is
often impossible to simultaneously obtain exponential stability and asymptotic
tracking if the exosystem is infinite-dimensional. Consequently, some weaker
stability types should be considered. A valid choice would be strong stabil-
ity, but, if possible, additionally requiring polynomial stability would improve
robustness of stability. The third and final point to be emphasized is that it
is customary to assume that there exists a solution to the Sylvester equation
(3.10) when designing controllers in order to guarantee sufficient smoothness of
the reference and disturbance signals.

3.1.6 Organization and Contributions of the Chapter
The purpose of this chapter is not to give a detailed study of the robust regu-
lation problem but merely to understand the trade-off between solvability and
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generality of the classes of possible plants and signals when one has an infinite-
dimensional exosystem. The introduction above gives a fairly complete picture
of what kind of limitations an infinite-dimensional exosystem causes. It was
pointed out that the solvability and the smoothness of the reference and the
disturbance signals are related. The rest of this chapter is dedicated to study
this relation and is organized as follows.

Section 3.2: In this section, the solvability of the feedforward regulation prob-
lem is studied in detail. Special attention is paid to the relation between
the solvability of the problem and the high frequency behavior of the
plant transfer function. The results of this section can be found in articles
[52, 53] by the author of the thesis.

In Section 3.2.1, new sum conditions for the solvability are presented and
discussed. These sum conditions generalize the similar result in [41] where
the input space was assumed to be one dimensional. The sum conditions
to be presented in this thesis allow even infinite-dimensional input and
output spaces. In addition, the sum conditions exist in terms of the ex-
osystem and the original plant, in contrast with the results in [41] where
the sum conditions were given in terms of the exosystem and the stabilized
plant.

Section 3.2.2 is dedicated to the study of the required smoothness prop-
erties of the reference signals. A relation between the solvability of the
feedforward regulation problem and the high frequency behavior of the
plant transfer function is made precise. An instrumental tool in this work
is the global structure defined in Chapter 2. This leads to a characteriza-
tion of all the reference signals generated by the proposed exosystem for
which the output regulation problem is solvable by using a feedforward
controller.

Section 3.3: As mentioned in the introduction, it is customary to assume that
there exists a solution to the Sylvester equation (3.10) when designing con-
trollers in order to guarantee sufficient smoothness of the reference and
disturbance signals. The purpose of the section is to clarify the smooth-
ness properties such an assumption implies. For simplicity, the plants
are assumed to have one dimensional input and output spaces. A simple
relation between the smoothness of the signals and the solvability of the
Sylvester equation is found and the connection to the structure at infinity
is established. It is also shown that the robustly regulating controller in
[72] works under the found smoothness condition, which is more general
than the one used in [72].
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3.2 Solvability of the Feedforward Output Reg-
ulation Problem

The purpose of this section is to characterize the solvability of the feedforward
output regulation problem. The plants are supposed to satisfy the assumption
given below.
Assumption 3.2.1. 1. The pair (A,B) is exponentially stabilizable.

2. The spectrum of S is contained in the resolvent set of A, i.e., iωk ∈ ρ(A).

3. The transfer function P(iωk) = C(iωkI − A)−1B + D is left or right in-
vertible for all k ∈ Z.

The following useful characterization of bounded operators is used exten-
sively.
Lemma 3.2.2. Let W and V be Hilbert spaces and let (φk)k∈Z be an orthonor-
mal basis of W . A linear operator T : W → V is bounded if and only if
sup‖h‖≤1

∑
k∈Z | 〈Tφk, h〉 |2 <∞.

Proof. Necessity. Assume that T is bounded and let h0 be an arbitrary fixed el-
ement of V satisfying ‖h0‖ ≤ 1. Set wN = ∑

|k|≤N 〈Tφk, h0〉φk. By boundedness
of T

‖T‖‖wN‖ ≥ ‖TwN‖
= sup
‖h‖≤1

| 〈TwN , h〉 |

≥ | 〈TwN , h0〉 |
=

∑
|k|≤N

|〈Tφk, h0〉|2 .

Since ‖wN‖2 = ∑
|k|≤N | 〈Tφk, h0〉 |2 one has ∑|k|≤N |〈Tφk, h0〉|2 ≤ ‖T‖2 for all

N ∈ N. Thus, sup‖h‖≤1
∑
k∈Z | 〈Tφk, h〉 |2 <∞.

Sufficiency. Assume that M = sup‖h‖≤1
∑
k∈Z | 〈Tφk, h〉 | < ∞. Let w ∈ W .

Since (φk)k∈Z is an orthonormal basis, one can write w = ∑
k∈Z 〈w, φk〉φk. By

Cauchy-Schwartz inequality

‖Tw‖ = sup
‖h‖≤1

| 〈Tw, h〉 |

≤ sup
‖h‖≤1

∑
k∈Z
| 〈w, φk〉 || 〈Tφk, h〉 |

≤ sup
‖h‖≤1

∑
k∈Z
| 〈w, φk〉 |2

 1
2
∑
k∈Z
| 〈Tφk, h〉 |2

 1
2

=
√
M‖w‖
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In what follows the following two sum conditions turn out to be crucial for
the solvability of the feedforward output regulation problem:

sup
‖u‖≤1

∑
k∈Z
|〈γk, u〉|2 <∞ (3.13a)

and

sup
‖x‖≤1

∑
k∈Z
|〈πk, x〉|2 <∞ (3.13b)

where γk = Prl(iωk)(F − C(iωkI − A)−1E)φk, πk = (iωkI − A)−1(Bγk + Eφk),
and Prl(iωk) is left or right inverse of P(iωk), which ever exists.

By Lemma 3.2.2 operators

Γ =
∑
k∈Z
〈·, φk〉 γk (3.14a)

and

Π =
∑
k∈Z
〈·, φk〉 πk (3.14b)

are bounded linear operators if and only if the sum conditions (3.13) hold. These
operators in turn satisfy the so called regulator equations. The regulator equa-
tions in [6, 41] give a necessary and sufficient condition for the solvability. The
following result was given only for the single output case in [41, Theorem 3.1].
However, the proof is valid also in the current case with minor modifications.

Theorem 3.2.3. The feedforward output regulation problem is solvable by a
state-feedback control law of form (3.4) if and only if A + BK is exponentially
stable and there exists a decomposition L = Γ − KΠ, where Γ : W → U and
Π : W → X are bounded linear operators such that for all k ∈ Z

Eφk = ΠSφk − AΠφk −BΓφk, (3.15a)
Fφk = CΠφk +DΓφk. (3.15b)

Proof. Denote

Ae =
[
A+BK BL+ E

0 S

]
∈ L (X ×W ) .

The operator Ae generates the C0-semigroup

TAe(t) =
[
TA+BK(t)

∫ t
0 TA+BK(s)(BL+ E)TS(t− s)ds

0 TS(t)

]
. (3.16)
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If the regulator equation (3.15a) holds and L = Γ−KΠ, then

(BL+ E)φk = (ΠS − (A+BK)Π)φk = (iωkI − (A+BK))Πφk

and ∫ t

0
TA+BK(s)(BL+ E)TS(t− s)v0ds

=
∫ t

0
TA+BK(s)(BL+ E)TS(t− s)

∑
k∈Z
〈v0, φk〉φkds

=
∑
k∈Z
〈v0, φk〉

∫ t

0
TA+BK(s)(BL+ E)TS(t− s)φkds

=
∑
k∈Z
〈v0, φk〉

∫ t

0
TA+BK(s)(BL+ E)eiωk(t−s)φkds

=
∑
k∈Z
〈v0, φk〉

∫ t

0
eiωk(t−s)TA+BK(s)(iωI − (A+BK))Πφkds

=
∑
k∈Z
〈v0, φk〉

∫ t

0

d

ds

(
−eiωk(t−s)TA+BK(s)

)
Πφkds

=
∑
k∈Z
〈v0, φk〉

(
eiωktI − TA+BK(s)

)
Πφk

= ΠTS(t)v0 − TA+BK(t)Πv0. (3.17)

Changing the order of the integration and the summation above is justified by
the Lebesgue dominated convergence theorem. Furthermore, by substituting
(3.17) into (3.16), one finds out that

e(t) =
[
−(C +DK) F −DL

]
TAe(t)

[
x0
v0

]
= (C +DK)TA+BK(t) (Πv0 − x0) + (F −DΓ− CΠ)TS(t)v0. (3.18)

Necessity. Assume that the feedforward regulation problem is solvable by the
feedforward control law (3.4). By the problem formulation A + BK is expo-
nentially stable. The growth bound of TA+BK(t) is strictly negative and the
growth bound of TS(t) is zero so [96, Corollary 8] states that there exists a
unique solution Π ∈ B (W,Z) to the Sylvester equation

ΠS − (A+BK)Π = BL+ E

on D (S). By choosing Γ = L+KΠ one sees that the regulator equation (3.15a)
is satisfied. Thus, the error is given by (3.18). Since TA+BK(t) is exponentially
stable one must have that (F −DΓ− CΠ)TS(t)v0 → 0 for all v0 ∈ W , as
t → ∞. This is possible only if F − DΓ − CΠ = 0, so the regulator equation
(3.15b) also holds.
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Sufficiency. Assume that A + BK is exponentially stable and that the
regulator equations (3.15) hold. By (3.15b) F − DΓ − CΠ = 0, so (3.18) and
exponential stability of TA+BK(t) implies e(t)→ 0, as t→∞.

Before proceeding, the regulator equations are formulated so that the plant
transfer function is present. This is done in the next lemma.
Lemma 3.2.4. The operators Γ and Π satisfy the regulator equations (3.15a)
and (3.15b) if and only if for all k ∈ Z they satisfy

P(iωk)Γφk = Fφk − C(iωkI − A)−1Eφk, (3.19a)
Πφk = (iωkI − A)−1(BΓ + E)φk. (3.19b)

Proof. Necessity. Assume that the regulator equations (3.15) hold. By noting
that φk is the eigenvector of S corresponding to the eigenvalue iωk, one can
write (3.15a) in the form

Πφk = (iωkI − A)−1(BΓ + E)φk.

Left multiplying the above equation by C, add DΓφk to both sides and use
(3.15b) to see that

CΠφk +DΓφk = P(iωk)Γφk + C(iωkI − A)−1Eφk = Fφk.

Sufficiency. Assume that the equations (3.19) hold. The equation (3.19b)
implies

ΠSφk − AΠφk −BΓφk = (iωkI − A)Πφk −BΓφk = Eφk.

By (3.19), one sees that

CΠφk +DΓφk = P(iωk)Γk + C(iωkI − A)−1Eφk = Fφn.

3.2.1 Solvability Conditions
Next it is shown that the sum conditions (3.13) are crucial for the solvability of
the feedforward output regulation problem. The sum conditions are similar to
the one given in [41, Corollary 4.7] for SISO plants. However, the sum conditions
given here cover general Hilbert spaces as input and output spaces, and they
give solvability conditions directly in terms of the original plant instead of the
closed loop plant.

It is clear that if one has less control than measurements, then it is practically
impossible to solve the feedforward output regulation problem. This is why the
case of right invertible transfer functions is more interesting. However, for
thorough analysis the case when P(s) is left invertible is also considered. This
is done next.
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Theorem 3.2.5. Assume that the plant transfer function is left invertible at
iωk for all k ∈ Z. The feedforward output regulation problem is solvable if and
only if the equations (3.13) hold for some choice of Prl(iωk) = P l(iωk) and

(I − P(iωk)P l(iωk))(Fφk − C(iωkI − A)−1Eφk) = 0. (3.20)

Proof. Necessity. Assume that the feedforward output regulation problem is
solvable. It follows that (3.19a) and (3.19b) hold. Left invertibility and the
equation (3.19a) show Γφk = γk. The equation (3.19b) implies that Πφk = πk.
The sum conditions (3.13) hold by Lemma 3.2.2. Since (3.19a) implies Fφk −
C(iωkI −A)−1Eφk ∈ R (P(iωk)) and P(iωk)P l(iωk) is a projection operator on
R (P(iωk)), condition (3.20) holds.

Sufficiency. Under the sum conditions (3.13) Lemma 3.2.2 shows that the
operators (3.14) are bounded. By Assumption (3.20), it is clear that (3.19a)
and (3.19b) are satisfied by the defined operators.

Condition (3.20) is natural. One has less control than measurements with
non-square left invertible plants. As the reference signals live on the measure-
ment space, it is clear that one cannot have control over all the reference signals.
Roughly speaking, (3.20) means that the part of a reference signal that is not
controllable must be compensated by the error signal.

Remark 3.2.6. No matter how one chooses the left inverse P l(iωk), one has the
same value for γk. Thus, the operators Γ and Π solving the regulator equations
are uniquely determined.

In the remaining part of this section, the case of right invertible transfer
functions is considered. The solvability condition in this case turns out to be
similar to the one given in the case of left invertible transfer functions, but no
additional assumptions need to be made.

Theorem 3.2.7. Assume that the plant transfer function is right invertible at
iωk for all k ∈ Z. The feedforward output regulation problem is solvable if and
only if for some choice of Prl(iωk) = Pr(iωk) the sum conditions (3.13) hold.

Proof. Necessity. Assume that the feedforward output regulation problem is
solvable. It follows that (3.19a) and (3.19b) hold. By (3.19a) Γφk = γk for
some choice of right inverses Pr(iωk) where k varies over Z. From (3.19b) one
gets Πφk = πk. The sum conditions (3.13) hold by Lemma 3.2.2.

Sufficiency. Under the sum conditions (3.13) Lemma 3.2.2 implies that the
operators in (3.14) are bounded. It is a matter of trivial calculation to verify
that (3.19a) and (3.19b) are satisfied by the defined operators.
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For right invertible transfer functions, the operators Γ and Π are not in
general defined uniquely since different choices of right inverses Pr(iωk) lead to
different operators. However, the sum conditions (3.13) can be used to charac-
terize all the regulating controllers of form (3.4). The next corollary follows by
the proof of the above theorem and Lemma 3.2.4.

Corollary 3.2.8. If the sum conditions (3.13) hold for a choice of Prl(iωk) =
Pr(iωk), k ∈ Z, then the feedback control law (3.4), where K exponentially
stabilizes the pair (A,B) and L = Γ−KΠ with the operators Γ and Π in (3.14),
solves the feedforward output regulation problem. All the feedback control laws
solving the feedforward output regulation problem are of this form.

It have been seen above that the solvability of the feedforward output regula-
tion problem is characterized by two sum conditions. Both of them are needed,
as shown by the following two examples.

Example 3.2.9. In this example, the plant and the exosystem are chosen so
that the sum condition (3.13a) fails while the sum condition (3.13b) is satisfied.
Set ωk = k, for k ∈ Z, and U = Y = X = C. Choose E = 0, D = 0, B = C = 1,
A = −1, and F = 〈·, w0〉 where w0 = ∑

k∈Z\{0}
1
k
φk ∈ W . Assumption 3.2.1 is

now satisfied and

γk = (ik + 1) 〈φk, w0〉 = ik + 1
k

and πk = 〈φk, w0〉

for k ∈ Z \ {0}. It is clear that

sup
‖u‖≤1

∑
k∈Z
|〈γk, u〉|2 =∞

and

sup
‖x‖≤1

∑
k∈Z
|〈πk, x〉|2 = ‖w0‖2 <∞.

�

Example 3.2.10. In this example, the plant and the exosystem are chosen so
that the sum condition (3.13b) fails while the sum condition (3.13a) is satisfied.
Let ωk = k, for k ∈ Z, and U = Y = X = Z. Choose X to be a Hilbert space
with an orthonormal basis {φk ∈ X | k ∈ Z}. Choose B = D = E = F = I,

A =
∑
k∈Z

(
ik − 1

|k|+ 1

)
〈·, φk〉φk
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with

D (A) =

(xk)k∈Z ∈ `
2

∣∣∣∣∣∣
∑
k∈Z
|k|2 |〈xk, φk〉|2 <∞

 ,
and

C =
∑
k∈Z

1
|k|+ 1 〈·, φk〉φk.

Elementary calculations show that

P−1(s) =
∑
k∈Z

(|k|+ 1)(s− ik) + 1
(|k|+ 1)(s− ik) + 2 〈·, φk〉φk.

All the standing assumptions are now satisfied and

γk = −1
2φk and πk = |k|+ 1

2 φk.

It is now clear that sup‖u‖≤1
∑
k∈Z |〈γk, u〉|

2 = 1
2 < ∞. Since ∑k∈Z |〈πk, φk〉|

2 =
(|k|+1)2

4 , the sum condition (3.13b) fails. �

Since the supremum over an infinite number of series is hard to find in
practice, one seeks some additional conditions that simplify the situation. This
is what is done in the remaining part of this section.

Lemma 3.2.11. Let B be a finite rank operator and let ∑k∈Z ‖γk‖2 <∞. The
sum conditions (3.13) hold if and only if

sup
‖x‖≤1

∑
k∈Z

∣∣∣〈(iωkI − A)−1Eφk, x
〉∣∣∣2 <∞. (3.21)

Proof. By assumptions of the lemma, it follows that

sup
‖u‖≤1

∑
k∈Z
| 〈γk, u〉 |2 ≤

∑
k∈Z

sup
‖u‖≤1

| 〈γk, u〉 |2 =
∑
k∈Z
‖γk‖2 <∞.

The exponential stabilizability of (A,B) implies that X can be decomposed
as X = X+ ⊕ X−, where X+ is finite-dimensional. The operator A has a

corresponding decomposition A =
[
A+ 0
0 A−

]
, where A+ is a generator of C0-

semigroup in X+ and A− is a generator of an exponentially stable C0-semigroup
in X− [14, Theorem 5.2.6]. By [14, Lemma 2.1.11], ‖(sI −A−)−1‖ is uniformly
bounded in some right half-plane including the imaginary axis. Since A+ is an
operator on a finite-dimensional space ‖(iωI − A+)−1‖ → 0, as |ω| → ∞. It
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follows that there exists M > 0 such that ‖(iωkI − A)−1‖ < M for all k ∈ Z,
because iωk do not cluster at any finite point. Since B is bounded,

sup
‖u‖≤1

∑
k∈Z
|
〈
(iωkI − A)−1Bγk, u

〉
|2 ≤

∑
k∈Z
‖(iωkI − A)−1Bγk‖2

≤M‖B‖
∑
k∈Z
‖γk‖2 <∞.

It follows that sup‖u‖≤1
∑
k∈Z | 〈πk, u〉 |2 <∞ if and only if (3.21) holds.

Theorem 3.2.12. If the output space Y is finite-dimensional and B is a finite-
rank operator, then the feedforward output regulation problem is solvable if and
only if ∑

k∈Z
‖γk‖2 <∞ (3.22a)

and

sup
‖x‖≤1

∑
k∈Z

∣∣∣〈(iωkI − A)−1Eφk, x
〉∣∣∣2 <∞ (3.22b)

for some choice of Prl(iωk) = Pr(iωk), k ∈ Z.

Proof. By Lemma 3.2.11, it is sufficient to show that sup‖x‖≤1
∑
k∈Z | 〈γk, x〉 |2 <

∞ if and only if ∑k∈Z ‖γk‖2 < ∞, which is true by the Riesz representation
theorem.

It is obvious that the latter sum condition is satisfied, if the disturbance
operator is of finite-rank. This leads to the following corollary.

Corollary 3.2.13. Let the output space Y be finite-dimensional and the oper-
ators B and E be of finite-rank. The feedforward output regulation problem is
solvable if and only if ∑

k∈Z
‖γk‖2 <∞

for some choice of Prl(iωk) = Pr(iωk), k ∈ Z.

3.2.2 On the Required Smoothness Properties of Refer-
ence Signals

In this section, the required smoothness properties of the reference signals for
the feedforward output regulation problem to be solvable are characterized in
terms of the global structure of the plant transfer function. The focus is the
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smoothness of the reference signals, and the disturbance signals are assumed to
be smooth enough. In what follows, all the reference operators for which the
feedforward output regulation problem is solvable are characterized.

Since the global structure is only defined for such plants that have finite-
dimensional input and output spaces, choice U = Cm and Y = Cn is made.
In the case of right invertible transfer functions, the operators Γ and Π were
shown to be non-unique. The question arises whether there is a systematic
way to choose Γ and Π such that the feedforward output regulation problem
is solvable if and only if the chosen operators satisfy the regulator equations.
The next theorem gives a positive answer to this question. Using the global
structure of plant transfer function is convenient here, but the result can also
be formulated by using the structure of plant transfer function at infinity since
the convergence of the sums defined in Section 3.2.1 depends only on the high
frequency behavior of the plant transfer function if Assumption 3.2.1 holds.
Since only the behavior of the plant transfer function along the imaginary axis
is of interest, one defines

H = {p ∈ P | p(α) ∈ iR for all α ∈ [0,∞)} . (3.23)

Theorem 3.2.14. Write P(s) as in Theorem 2.6.3 with H from (3.23). The
feedforward output regulation problem is solvable if and only if the sum condi-

tions (3.22) hold with the choice Prl(iωk) = V −1(iωk)
[
Λ−1(iωk)

0

]
U−1(iωk).

Proof. Sufficiency is obvious, so only the necessity remains to be proved. By
Corollary 3.2.12 there exists a choice Pr(iωk) for all k ∈ Z such that (3.22)
holds. Now one needs to show that (3.22) holds if Pr(iωk) is replaced by

P+(iωk) = U−1(iωk)
[
Λ−1(iωk)

0

]
V −1(iωk).

Every right inverse of P(s) can be written in the form

Pr(s) = U−1(s)
[
Λ−1(s)
J(s)

]
V −1(s).

It is sufficient to show that there exists an M > 0 such that ‖Pr(s)y‖ ≥
M‖P+(s)y‖ for any y ∈ Y .

Let y be an arbitrary element of Y and set
[
y1(s)
y2(s)

]
=
[
Λ−1(s)
J(s)

]
V −1(s)y.

Now
[
Λ−1(s)

0

]
V −1(s)y =

[
y1(s)

0

]
so the problem is reduced to showing that
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there exists M > 0 such that
∥∥∥∥∥U(iωk)

[
y1(iωk)
y2(iωk)

]∥∥∥∥∥ ≥ M

∥∥∥∥∥U(iωk)
[
y1(iωk)

0

]∥∥∥∥∥. For

any invertible matrix U one has

1
‖U‖

∥∥∥∥∥U
[
y1
0

]∥∥∥∥∥ ≤
∥∥∥∥∥
[
y1
0

]∥∥∥∥∥ ≤
∥∥∥∥∥
[
y1
y2

]∥∥∥∥∥
=
∥∥∥∥∥U−1U

[
y1
y2

]∥∥∥∥∥
≤
∥∥∥U−1

∥∥∥ ∥∥∥∥∥U
[
y1
y2

]∥∥∥∥∥ .
Since U(s) satisfies the global uniform boundedness property respect toH, there
existsM > 0 such that 1

‖U(iωk)‖‖U−1(iωk)‖ > M and the claim follows by the above
inequality.

The previous theorem shows that the solvability of the feedforward output
regulation problem is closely related to the global structure of the plant transfer
function. The next lemma gives a simple solvability condition in terms of the
plant transfer function and the smoothness of the reference signal, provided that
the disturbance signal is smooth enough. To guarantee the required smoothness
for the disturbance signal, it is assumed that

∑
k∈Z

∥∥∥P+(iωk)C(iωkI − A)−1Eφk
∥∥∥2
<∞, (3.24)

where P+(iωk) = U−1(iωk)
[
Λ−1(iωk)

0

]
V −1(iωk) and U , Λ and V are from The-

orem 2.6.3 with H from (3.23).

Lemma 3.2.15. Write P(s) as in Theorem 2.6.3 with H from (3.23). Set

Prl(iωk) = P+(iωk) = U−1(iωk)
[
Λ−1(iωk)

0

]
V −1(iωk).

Assume, that the sum conditions (3.21) and (3.24) hold. The feedforward output
regulation problem is solvable if and only if ∑k∈Z ‖P+(iωk)Fφk‖2 <∞.

Proof. Sufficiency. Assume that ∑k∈Z ‖P+(iωk)Fφk‖2 < ∞. By the triangle
inequality,

‖γk‖2 ≤ 2
(
‖Pr(iωk)Fφk‖2 +

∥∥∥P+(iωk)C(iωkI − A)−1Eφk
∥∥∥2
)
.

By Theorem 3.2.12, sufficiency follows.
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Necessity. Assume that the feedforward output regulation problem is solv-
able. By the reverse triangle inequality,

∑
k∈Z

∣∣∣‖P+(iωk)Fφk‖ −
∥∥∥P+(iωk)C(iωkI − A)−1Eφk

∥∥∥∣∣∣2 ≤∑
k∈Z
‖γk‖2 <∞.

Since ∑k∈Z ‖P+(iωk)C(iωkI − A)−1Eφk‖2
<∞, the claim follows.

It is now possible to characterize all the reference signals that can be reg-
ulated by a feedforward controller (3.4) under the assumption that the distur-
bance signals are smooth enough or nonexistent. To this end, write the reference
operator F : W → Y in the form

F =
∑
k∈Z
〈·, φk〉V (iωk)


〈f1, φk〉

...
〈fn, φk〉

 , (3.25)

where V (s) is from Theorem 2.6.3. That every bounded operator from W to
Y can be presented in this form follows from the Riesz representation theorem,
boundedness properties of V (iωk) and Lemma 3.2.2.

Theorem 3.2.16. Let the global structure of P(s) respect to H from (3.23) be
{q1(s), . . . , qn(s)} and write F as in (3.25). Assume that the sum conditions
(3.21) and (3.24) hold. The feedforward output regulation problem is solvable if
and only if

(
〈fj ,φk〉
qj(iωk)

)
k∈Z
∈ `2 for all j = 1, . . . , n.

Proof. By Lemma 3.2.15, the feedforward output regulation problem is solvable
if and only if ∑k∈Z ‖P+(iωk)Fφk‖2 <∞, where

P+(iωk) = U−1(iωk)
[
Λ−1(iωk)

0

]
V −1(iωk)

with U , V and Λ from Theorem 2.6.3. The result follows immediately by writing
F as in (3.25) and noting that ‖U−1(iωk)‖ < M <∞ and ‖U(iωk)‖ < M <∞
for some M > 0.

The following example illustrates the importance of the above theorem. It
shows that for certain signals the required smoothness properties are far stricter
than for others.

Example 3.2.17. Consider the metal bar of Figure 3.1 that is heated with
two heaters and its temperature is measured along two intervals. The resulting
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y1(t)
︸ ︷︷ ︸

y2(t)
︸ ︷︷ ︸

u1(t)︷ ︸︸ ︷ u2(t)︷ ︸︸ ︷
0 2/7 3/7 4/7 5/7 6/7 1

Figure 3.1: A heated metal bar with two heaters and sensors.

system is

∂x

∂t
(z, t) = ∂2x

∂z2 (z, t)− x(z, t) + 7 · 1[ 2
7 ,

3
7 ](z)u1(t) + 7 · 1[ 6

7 ,1](z)u2(t),

y1(t) =
∫ 3

7

0
x(z, t)dz,

y2(t) =
∫ 5

7

4
7

x(z, t)dz,

x(z, 0) = x0(z),
∂x

∂z
(0, t) = 0 = ∂x

∂z
(1, t),

where 1[a,b](z) is the characteristic function of [a, b].

Calculations similar to those in [14, Example 4.3.11] show that the transfer
function is

P(s) =
[
p11(s) p12(s)
p21(s) p22(s)

]
,
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where

p11(s) = 1
s + 1 + 7


− cosh

(√
s + 1

)
+ cosh

(
6
7
√

s + 1
)

− cosh
(

2
7
√

s + 1
)

+ cosh
(

1
7
√

s + 1
)


2(s + 1)3/2 sinh

(√
s + 1

) ,

p12(s) = 7
(s + 1)3/2

sinh
(

1
7
√

s + 1
)

sinh
(

3
7
√

s + 1
)

sinh
(√

s + 1
) ,

p21(s) = 7


− cosh

(
6
7
√

s + 1
)
− 2 cosh

(
5
7
√

s + 1
)

+ cosh
(

4
7
√

s + 1
)

+2 cosh
(

1
7
√

s + 1
)
− 4


2(s + 1)3/2 sinh

(√
s + 1

) , and

p22(s) =
7 sinh

(
1
7
√

s + 1
) (

sinh
(

5
7
√

s + 1
)
− sinh

(
4
7
√

s + 1
))

(s + 1)3/2 sinh
(√

s + 1
) .

The global structure P(s) along the imaginary axis is{
1

s+ 1 ,
1

(s+ 1)3/2 e− 1
7
√
s+1
}
.

Consider the feedforward output regulation problem with ωk = k and E = 0,
and define the following two reference operators:

F1 =
∑
k∈Z
〈·, φk〉V (ik)

[
〈f1, φk〉

0

]
,

and

F2 =
∑
k∈Z
〈·, φk〉V (ik)

[
0

〈f2, φk〉

]
,

where V (·) is the matrix valued function in (2.15). The boundedness properties
of V (ik) imply that the smoothness of the reference signals generated by using
the reference operators F1 and F2 are essentially the same, if f1 = f2. By
Theorem 3.2.16, the feedforward output regulation problem with the reference
operator F1 is solvable if and only if (〈f1, φk〉 (ik + 1))k∈Z ∈ `2. Similarly, the
feedforward output regulation problem with the reference operator F2 is solvable
if and only if

(
〈f2, φk〉 (ik + 1)3/2e

√
ik+1/7

)
k∈Z
∈ `2. The required smoothness of

the reference signals generated by using F2 is of exponential type, while using
F1 only polynomial smoothness is required. �
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In [6], results answering to the question when it is possible to solve the feed-
forward output regulation problem for all reference and disturbance operators
were presented. By this it is not meant that a single controller is able to do the
task, which would mean the controller to be robustly regulating. The exosystem
considered in [6] was finite-dimensional. Even if Assumption 3.2.1 is satisfied,
Theorem 3.2.16 shows that there exists reference operators for which the prob-
lem with infinite-dimensional exosystems is not solvable. However, there is a
controller solving the problem for all the reference signals if the set of reference
operators is restricted appropriately as shown by the following corollary.

Corollary 3.2.18. Write P(s) as in Theorem 2.6.3 with H from (3.23) and F
in (3.25). Assume that the sum conditions (3.21) and (3.24) hold. Choose a
sequence of strictly positive real numbers (zk)k∈Z ∈ `∞ and denote

Y (zk) =

F ∈ B (W,Y )

∣∣∣∣∣∣
∑
k∈Z
|zk|−2‖Fφk‖2 <∞

 .
The feedforward output regulation problem is solvable for all F ∈ Y (zk) if and
only if

(
αk

zk
qn(iωk)

)
k∈Z
∈ `2 for all sequences (αk)k∈Z ∈ `2 of positive real numbers.

Proof. By Theorem 3.2.16, the feedforward output regulation problem is solv-
able for all F ∈ Y (zk) if and only if

∑
k∈Z

‖Fφk‖2

|qn(iωk)|2
=
∑
k∈Z

‖Fφk‖2

z2
k

z2
k

|qn(iωk)|2
<∞.

The claim follows by noting that
(
‖Fφk‖
zk

)
k∈Z
∈ `2 and for each (αk)k∈Z ∈ `2

there exists such an F ∈ Y (zk) that αk = ‖Fφk‖
zk

.

Example 3.2.19. Let I be an infinite subset of Z, and set ωk = 2πk
p

for k ∈ I.
It is assumed that ωk are in strictly increasing order. Consider the solvability of
the disturbance free feedforward output regulation problem with the time-delay
system from Example 2.2.11 and the reference operators from Y (zk) defined in
Corollary 3.2.18 with index set I. The system is already exponentially stable
as det(sI − A0 − e−sA1) 6= 0 when s ∈ {x ∈ C | <(x) ≥ 0} [14, Theorem 5.1.5].
Thus, Assumption 3.2.1 holds if there are no transmission zeros at frequencies
iωk = i2πk

p
, k ∈ I. The determinant of the transfer function, readily calculated

in (2.10), shows that the time-delay system has finite transmission zeros on the
imaginary axis at s = i2πl, l ∈ Z.

Assume that ωk 6= 2πl for all k ∈ I and l ∈ Z. Since the structure of the
system at infinity is {(s+ 1)−1, (s+ 1)−1, (s+ 1)−2(e−s− 1)} and the structural
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functions do not have zeros at iωk, k ∈ I, Corollary 3.2.18 gives a necessary and
sufficient condition

∀(αk)k∈I ∈ `2 :
∑
k∈I

α2
k

∣∣∣(iωk)−2(e−iωk − 1)
∣∣∣−2

z2
k <∞

which is equivalent to

∀(αk)k∈I ∈ `2 :
∑
k∈I

k4z2
kα

2
k∣∣∣∣e−2πki

p − 1
∣∣∣∣2 <∞ (3.27)

for the problem to be solvable for all F ∈ Y (zk). Note that changing the index
set from Z to I or using the structure at infinity instead of global structure is
not a problem here, because the transmission zeros are assumed to be separate
from iωk. In particular, if one chooses p = 2 and I = {2k + 1 | k ∈ Z} the
points iωk and transmission zeros both lie on the imaginary axis, but they do
not cluster at infinity. Thus, the term |eiωk − 1| remains bounded and bounded
away zero for k ∈ I and a necessary and sufficient solvability condition is∑

k∈I
α2
kk

4z2
k <∞ for all (αk)k∈Z ∈ `2.

Consequently, ∑k∈I k
3z2
k <∞ is a necessary condition for the solvability.

To show that finite transmission zeros are a crucial part of the infinite struc-
ture, set p = 2π and consider an infinite set I ⊂ Z of elements k ∈ Z that
satisfy |2πl−k| < ρ

|k| for some l ∈ Z, k 6= 0 and fixed ρ > 0. Such a set I exists,
because there are infinitely many pairs of integers (k, l) such that

∣∣∣ 1
2π −

l
k

∣∣∣ < 1
k2

[84, Corollary 5.4.].
Now the transmission zeros and terms iωk cluster at infinity, i.e., the mini-

mum distance of iωk to transmission zeros approach zero as k →∞. It follows
that limk→±∞ e

iωk −1 = 0. The faster the rate of convergence the more unlikely
it is that the condition (3.27) holds.

One cannot say for sure at which rate iωk approaches the set of transmission
zeros. Irrationality measure gives insight into the rate of convergence. It is
believed that the irrationality measure of π is 2 in which case eiωk − 1 → 0 by
rate proportional to 1

|k| and (3.27) is equivalent to∑
k∈I

α2
kk

6z2
k <∞ for all (αk)k∈Z ∈ `2.

So far the best approximation for the irrationality measure is 7.6063 . . . due to
Salikhov [83]. Thus, by approximating the irrationality measure of π by 8 it is
seen, that s−2(e−s − 1) ≥H s−10. Corollary 3.2.18 gives a sufficient condition∑

k∈I
k22z2

k <∞.

�
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In the above discussion, it was assumed that the disturbance signal is smooth
enough or even nonexistent. One may wonder what happens if the roles of the
disturbance signals and reference signals in the discussion are changed. Assume
for a moment that the reference operator is zero and the plant transfer function
is right invertible at iωk for all k ∈ Z. Now γk = Pr(iωk)C(iωkI − A)−1Eφk
and πk = (iωkI − A)−1(Bγk + Eφk). It is seen that the smoothness of the
disturbance signals is not related to the boundedness of the operator Γ in such
a direct manner as the smoothness of the reference signals is due to the term
C(iωkI − A)−1. This is why there is no such a simple characterization for the
required smoothness properties of the disturbance signals than there is for the
smoothness of the reference signals. However, generally one would expect the
required smoothness properties to be less strict for the disturbance signals since
the resolvent operator (iωkI −A)−1 of an exponentially stabilizable operator A
generally smoothens the term γk.

3.3 Solvability of the Error Feedback Robust
Regulation Problem

The robust regulation was studied in [34, 70] under the assumption that the
solvability of the Sylvester equation (3.10) is preserved by the perturbations.
However, no research on the robustness of this assumption was made. Here
the connection between solvability of the regulation equation (3.10) and the
smoothness of the reference and disturbance signals is considered with a diagonal
exosystem and SISO plants. The main aim is to study the smoothness of the
signals. However, the found results are simply conditions for solvability of the
Sylvester equation (3.10) and are important as such. They also provide insight
into what perturbations are allowed to the parameters.

It is quite straightforward to include an internal model into a controller, but
it is hard to stabilize the controller [34, 72]. For stabilization of the extended
system to be as simple as possible it is advantageous if the plant is exponentially
stabilizable and detectable and if the internal model is not complicated. The
assumed properties of the nominal plant are given in the next assumption. Then
some assumptions on the controller are made.

Assumption 3.3.1. The nominal plant (3.1) is assumed to satisfy the following
conditions:

1. The plant has one dimensional input and output spaces,

2. the pair (A,B) is exponentially stabilizable,

3. the pair (A,C) is exponentially detectable, and
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4. the plant transfer function P(s) is right invertible at iωk for all k ∈ Z.

Assumption 3.3.2. The controller (3.5) is assumed to satisfy the following
conditions:

1. iωk is an isolated spectrum point of G1 for all k ∈ Z,

2. if γk is a simple closed curve that separates iωk from the rest of the spec-
trum and Pk = − 1

2πi
∫
γk
R (s,G1) ds, then Zk = PkZ is finite-dimensional,

and

3. the controller satisfies the G-conditions (3.9).

Remark 3.3.3. If item 1 of Assumption 3.3.2 holds Pk in item 2 is a projection
and Z is a direct sum of Zk and Z ′k = (I − Pk)Z by [45, III-§4].

When the robust error feedback regulation problem was formulated in Sec-
tion 3.1.5 a class of allowed perturbations was defined by a set V of 7-tuples.
However, the V was not defined explicitly. This is due to the fact that for a
given controller it is not a trivial task to describe all the perturbed plants for
which the controller is stabilizing or regulating. In the recent literature, it have
been customary to assume that the Sylvester equation (3.10) is solvable for all
the perturbed plants. With the exosystem (3.2) a solution to (3.10) is always
unique provided that the controller strongly stabilizes the extended system [71,
Theorem 8]. To see why such an assumption was made note that if the Sylvester
equation has a solution, then the error can be written as

e(t) = CeTe(t)(xe0 − Σv0) + (CeΣ +De)v(t),

where Te(t) is the C0-semigroup generated by Ae. A robustly regulating con-
troller is conditionally robust, so (CeΣ + De)v(t) = 0 by (3.11). Since Te(t)
is strongly stable e(t) → 0. The solvability was assumed in [34, 72] for all
perturbations, but the robustness of solvability was not explicitly studied.

In [34, 72], a simplifying assumption that iωk ∈ ρ (Ae) was made. This
assumption allows one to give an explicit formula for the unique solution of the
Sylvester equation (3.10). By [34, Lemma 6], the unique solution to (3.10) is

Σ =
∑
k∈Z
〈·, φk〉R (iωk, Ae)Beφk,

and it exists as a bounded operator in W if and only if

sup
‖xe‖≤1

∑
k∈Z
|〈R (iωk, Ae)Beφk, xe〉|2 <∞ (3.28)

by Lemma 3.2.2. This sum condition relates the operators E and F to the
closed loop system consisting of the plant and the controller. Thus, it gives a
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relation between the solvability and the smoothness of the reference and the
disturbance signals. This connection is to be clarified later in this section.

It is assumed in this section that the spectrum separation condition iωk ∈
ρ (Ae) holds for all perturbed plants. The sum condition (3.28) relates the
smoothness of the signals and the behavior of the plant transfer function at
high frequencies. In [70, 72] the smoothness of the signals was controlled by
restricting the set of initial states of the exosystem. A class of initial states of
the exosystem is defined by a set

I (fk)

v ∈ W
∣∣∣∣∣∣
∑
k∈Z

f−2
k |〈v, φk〉|2 <∞

 , (3.29)

where (fk)k∈Z is a fixed bounded sequence of strictly positive real numbers.
In this thesis, the smoothness is controlled by restricting the set of allowed
reference and disturbance operators. To this end, one defines

Y (fk) =

F ∈ B (W,Y )

∣∣∣∣∣∣
∑
k∈Z
|fk|−2‖Fφk‖2 <∞

 (3.30)

and

D (fk) =

E ∈ B (W,X)

∣∣∣∣∣∣
∑
k∈Z
|fk|−2‖Eφk‖2 <∞

 , (3.31)

where (fk)k∈Z is a fixed bounded sequence of strictly positive real numbers. In
order to clarify the relation between the two approaches to control the smooth-
ness of the reference signals note that the reference signal generated by the
exosystem (3.2) are of form

yr(t) =
∑
k∈Z
〈v0, φk〉eiωktF1φk. (3.32)

Assume that a reference signal yr(t) can be written in form (3.32), where v0 ∈
I (fk) and F1 ∈ B (W,Y ). If one defines

v′0 =
∑
k∈Z

〈v0, φk〉
fk

φk and F ′1 =
∑
k∈Z

fk〈·, φk〉Fφk,

then it is easy to see that v′0 ∈ W , F ′1 ∈ Y (fk) and

yr(t) =
∑
k∈Z
〈v′0, φk〉eiωktF ′1φk. (3.33)

Analogously, for every pair v′0 ∈ W and F ′1 ∈ Y (fk) there exists such a pair
v0 ∈ I (fk) and F1 ∈ B (W,Y ) that (3.32) and (3.33) define the same reference
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signal. Similar observation holds also for the disturbance signals. It is not
required that one chooses the same sequence (fk)k∈Z in (3.30) and (3.31). Thus,
the only difference between the two approaches to control the smoothness of the
reference and the disturbance signals is that the control through the reference
and the disturbance operators allow one to set different smoothness properties
for the reference and the disturbance signals.

In what follows, the robustness of regulation is considered under the as-
sumption that iωk ∈ ρ (Ae) and that certain smoothness of the reference and
the disturbance signals is guaranteed. In addition, it is assumed that the spectra
of the exosystem is contained in the resolvent set of the perturbed state operator
of the plant and that the perturbations preserve the exponential stabilizability
of the plant. This extra assumption is made in order to simplify the results and
does not restrict the generality much. The assumptions made define the set of
allowed perturbations, or in other words, one is now able to define the set V.

Definition 3.3.4. Let an error feedback controller (3.5) be given and fix S
to be the operator in (3.3). Fix two strictly positive sequences of real numbers
(fk)k∈Z ∈ `∞ and (gk)k∈Z ∈ `∞. The class of perturbed plants and the perturbed
reference and disturbance signals V ⊆ Ω is defined to be the set of all 7-tuples
(A′, B′, C ′, D′, E ′1, E ′2, F ′1) for which

1. F ′1, E ′2 ∈ Y (fk) and E ′1 ∈ D (gk),

2. iωk ∈ ρ (A′),

3. iωk ∈ ρ (A′e),

4. A′e generates a strongly stable C0-semigroup, and

5. the Sylvester equation (3.10) is solvable.

Here A′e is the perturbed state operator of the extended plant in (3.7). N

In the above definition of V, the perturbations were defined with respect
to a controller. It would be interesting to know what kind of perturbations V

allows in the plant. In general, the second and the third property in the above
definition tolerate perturbations relatively well, especially if the perturbations
preserve strong stability. The smoothness of the reference signals can be seen as
a matter of choice and the smoothness of the disturbance signals may be justified
by some other arguments, e.g., by physical restrictions in a modelling problem.
The robustness of strong stability is out of scope of this thesis. Thus, what is
done in this thesis is that one tries to identify a conditions for perturbations
that preserve the solvability of the Sylvester equation.
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Some preliminary results are given before proceeding. First, the resolvent
R (s, Ae)Be is written in terms of the plant and the controller transfer functions,
which simplifies the analysis. In ρ (A),

sI−Ae =
[

I 0
−G2CR (s, A) I

] [
sI−A 0

0 sI−G1+G2P(s)K

] [
I −R (s, A)BK
0 I

]
.

Denote W (s) = (sI − G1 + G2P(s)K)−1. Now,

R (s, Ae) =
[
I R (s, A)BK
0 I

] [
R (s, A) 0

0 W (s)

] [
I 0

−G2CR (s, A) I

]

=
[
R (s, A) (I −BKW (s)G2CR (s, A)) R (s, A)BKW (s)

−W (s)G2CR (s, A) W (s)

]
. (3.34)

Set X = sI − G1, Y = G2, Z = I, and V = P(s)K in the inversion formula
(A.1) to get

W (s) = R (s,G1)−R (s,G1)G2 (I + P(s)KR (s,G1)G2)−1P(s)KR (s,G1)
= R (s,G1)−R (s,G1)G2 (I + P(s)C(s))−1P(s)KR (s,G1)

and

W (s)G2 = R (s,G1)G2
(
I − (I + P(s)C(s))−1P(s)C(s)

)
= R (s,G1)G2 (I + P(s)C(s))−1 .

Substitute this into (3.34) to get

R (s, Ae)Be =
[
R (s, A) (I −BC(s)(I + P(s)C(s))−1CR (s, A))
−R (s,G1)G2 (I + P(s)C(s))−1 CR (s, A)

]
E

+
[
R (s, A)BC(s)(I + P(s)C(s))−1

R (s,G1)G2 (I + P(s)C(s))−1

]
F (3.35)

For the input disturbance case, one substitutes E = BE0 and F = F1−DE0
into (3.35) and gets

R (s, Ae)Be =
[
R (s, A)B (I − C(s)(I + P(s)C(s))−1P(s))
−R (s,G1)G2 (I + P(s)C(s))−1P(s)

]
E0

+
[
R (s, A)BC(s)(I + P(s)C(s))−1

R (s,G1)G2 (I + P(s)C(s))−1

]
F1. (3.36)

The last preliminary result shows that one can divide the sum condition
(3.28) into two parts and analyze both of them separately.
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Lemma 3.3.5. Let X and Z be Hilbert spaces with inner products 〈·, ·〉X and
〈·, ·〉Z, respectively. Define the inner product of the product space Xe = X × Z
by setting 〈(x1, z1), (x2, z2)〉 = 〈x1, x2〉X + 〈z1, z2〉Z. Let the norms ‖ · ‖X , ‖ · ‖Z,
and ‖ ·‖ be induced by 〈·, ·〉X , 〈·, ·〉Z, and 〈·, ·〉, respectively. For a fixed sequence
((xk, zk))k∈Z ⊂ Xe,

sup
‖(x,z)‖≤1

∑
k∈Z

∣∣∣∣∣
〈[
xk
zk

]
,

[
x
z

]〉∣∣∣∣∣
2

<∞

if and only if {
sup‖x‖X≤1

∑
k∈Z |〈xk, x〉X |

2 <∞,
sup‖z‖Z≤1

∑
k∈Z |〈zk, z〉Z |

2 <∞.

Proof. Necessity. By the definition of the inner product,

sup
‖x‖X≤1

∑
k∈Z
|〈xk, x〉X |

2 = sup
‖(x,0)‖≤1

∑
k∈Z

∣∣∣∣∣
〈[
xk
zk

]
,

[
x
0

]〉∣∣∣∣∣
2

≤ sup
‖(x,z)‖≤1

∑
k∈Z

∣∣∣∣∣
〈[
xk
zk

]
,

[
x
z

]〉∣∣∣∣∣
2

<∞.

Similarly one can show, that sup‖z‖Z≤1
∑
k∈Z |〈zk, z〉Z |

2 <∞.
Sufficiency. By the assumptions,

sup
‖(x,z)‖≤1

∑
k∈Z

∣∣∣∣∣
〈[
xk
zk

]
,

[
x
z

]〉∣∣∣∣∣
2

= sup
‖(x,z)‖≤1

∑
k∈Z
|〈xk, x〉X + 〈zk, z〉Z |

2

≤ 2 sup
‖(x,z)‖≤1

∑
k∈Z
|〈xk, x〉X |

2 + |〈zk, z〉Z |
2

≤ 2 sup
‖x‖X≤1

∑
k∈Z
|〈xk, x〉X |

2 + 2 sup
‖z‖Z≤1

∑
k∈Z
|〈zk, z〉Z |

2

<∞

where the inequality |a+ b|2 ≤ 2(|a|2 + |b|2) was used.

3.3.1 Solvability of ΣS + AeΣ = Be and Smoothness of
Reference Signals

Here the relation between the solvability of the Sylvester equation (3.10) and the
smoothness properties of the reference signals is considered for SISO-systems.
The next theorem makes the connection between the smoothness of the reference
signals, the controller and the plant apparent. Since the focus is the reference
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signals, one sets E = 0. It is justified to consider the smoothness properties
of the reference and disturbance signals separately since perturbations in the
operators F and E are allowed. It is clear that the measurement disturbance
and the reference signal have similar effect on the error. This is why the case
with no measurement disturbance needs not to be considered separately.
Theorem 3.3.6. Assume that iωk ∈ ρ (A) for all k ∈ Z, σ (S) ∩ σ (Ae) = ∅,
and U = Y = C. Let the controller satisfy Assumption 3.3.2. Write K = 〈·, k0〉
and G2y = yg2 where k0, g2 ∈ Z. If E = 0, then the sum condition (3.28) holds
if and only if

sup
‖z‖Z≤1

∑
k∈Z

∣∣∣∣∣ 〈(G1 − iωkI)νk−1Pkg2, z〉Z
〈(G1 − iωkI)νk−1Pkg2, k0〉Z

∣∣∣∣∣
2 ∣∣∣∣∣ FφkP(iωk)

∣∣∣∣∣
2

<∞, (3.37)

where νk is the order of the pole of R (s,G1) at iωk.
Proof. It follows from Assumption 3.3.2 that the resolvent R (s,G1) has a pole
at iωk. Substituting (3.35) into (3.28) and using Lemma 3.3.5 gives the following
necessary and sufficient pair of sum conditions.

sup
‖x‖X≤1

∑
k∈Z

∣∣∣∣〈 lim
s→iωk

R (s, A)BC(s)(I + P(s)C(s))−1Fφk, x
〉
X

∣∣∣∣2 <∞, (3.38a)

sup
‖z‖Z≤1

∑
k∈Z

∣∣∣∣〈 lim
s→iωk

R (s,G1)G2 (I + P(s)C(s))−1 Fφn, z
〉
Z

∣∣∣∣2 <∞. (3.38b)

The limits above exist because iωk ∈ ρ (Ae).
The next step is to calculate the limits. Fix k ∈ Z. By [70, Lemma

6.4.] there exists exactly one eigenvector z1 at iωk. Since Zk in the second
item of Assumption 3.3.2 is finite-dimensional, it follows by [45, III-§5] that
Zk = span{z1, . . . , zνk} where zi, i = 1, . . . , νk, are the generalized eigenvectors.
Furthermore, in a neighborhood of iωk the resolvent has the Laurent expansion
R (s,G1) = ∑νk

i=1
1

(s−iωk)i (G1 − iωkI)i−1Pk + ∑∞
i=0(s − iωk)iRi where matrices Ri

are of no interest.
It is easy to see that Z = span{zνk} ⊕ R (iωkI − G1). For (3.9a) to hold it

is necessary that g2 = αzνk + z, where z ∈ R (iωkI − G1) and α 6= 0. It follows,
that (G1 − iωkI)νk−1Pkg2 = αz1. By [70, Lemma 6.4.], K(G1 − iωkI)νk−1Pkg2 =
αKz1 6= 0.

If P(iωk) 6= 0 the above arguments show that

lim
s→iωk

C(s)(I + P(s)C(s))−1 = 1
P(iωk)

(3.39)

and

lim
s→iωk

R (s,G1)G2 (I+P(s)C(s))−1 = (G1−iωkI)νk−1Pkg2

〈(G1−iωkI)νk−1Pkg2, k0〉Z P(iωk)
. (3.40)
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Note that the sum condition (3.38) holds if and only if P(iωk) 6= 0 or Fφk = 0.
Since R (iωk, A) exists for all k ∈ Z it is seen by (3.39) and (3.40) that (3.38)
can be written as

sup
‖x‖X≤1

∑
k∈Z

∣∣∣∣∣
〈
R (iωk, A)B
P(iωk)

Fφk, x

〉
X

∣∣∣∣∣
2

<∞, (3.41a)

sup
‖z‖Z≤1

∑
k∈Z

∣∣∣∣∣
〈

(G1 − iωkI)νk−1Pkg2

〈(G1 − iωkI)νk−1Pkg2, k0〉Z P(iωk)
Fφk, z

〉
Z

∣∣∣∣∣
2

<∞. (3.41b)

The condition (3.41b) is (3.37) in a slightly different form. Thus, the claim
follows if (3.41a) follows from (3.41b). Substituting z = k0 gives a lower bound∑
k∈Z

∣∣∣ Fφk
P(iωk)

∣∣∣2 for the supremum in (3.41b). By the Cauchy-Schwarz inequality∑
k∈Z

∣∣∣ Fφk
P(iωk)

∣∣∣2 <∞ is a sufficient condition for (3.41a) to hold.

The above theorem shows how the solvability of the Sylvester equation is
dependent on the choice of the controller, the plant and the smoothness of the
reference signals. In particular, it shows that the degree of robustness can be
increased by setting stricter smoothness requirements on the reference signals.

Theorem 3.3.6 establishes a direct link between the smoothness of the signal
class and the robustness of the structure of the plant transfer function at infinity.
Unfortunately, as was seen in Section 2.5, an arbitrarily small perturbations may
change the structure at infinity drastically, so the solvability of the Sylvester
equation (3.10) has weak robustness properties.

3.3.2 Solvability of ΣS + AeΣ = Be and Smoothness of
Disturbance Signals

The required smoothness of the disturbance signals is studied next. The smooth-
ness properties of the output reference signals are already discussed above, so
only the smoothness of the state disturbance and the input disturbance are of
interest. The required smoothness properties of the state disturbance signals
are considered first.

Theorem 3.3.7. Assume that iωk ∈ ρ (A) for all k ∈ Z, σ (S) ∩ σ (Ae) = ∅,
and U = Y = C. Let the controller satisfy Assumption 3.3.2. Write K = 〈·, k0〉
and G2y = yg2 where k0, g2 ∈ Z. If F = 0, then the sum condition (3.28) holds
if and only if

sup
‖x‖X≤1

∑
k∈Z
|〈R (iωk, A)Eφk, x〉X |

2 <∞, (3.42a)
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and

sup
‖z‖Z≤1

∑
k∈Z

∣∣∣∣∣ 〈(G1 − iωk)νk−1Pkg2, z〉Z
〈(G1 − iωk)νk−1Pkg2, k0〉Z

∣∣∣∣∣
2 ∣∣∣∣∣CR (iωk, A)Eφk

P(iωk)

∣∣∣∣∣
2

<∞ (3.42b)

where νk is the order of the pole of R (s,G1) at iωk.
Proof. Substituting (3.35) into (3.28) and using Lemma 3.3.5 results in the
following necessary and sufficient pair of sum conditions:

sup
‖x‖X≤1

∑
k∈Z

∣∣∣∣〈 lim
s→iωk

R (s, A)
(
I−BC(s)(I+P(s)C(s))−1CR (s, A)

)
Eφk, x

〉
X

∣∣∣∣2 <∞,
(3.43a)

sup
‖z‖Z≤1

∑
k∈Z

∣∣∣∣〈 lim
s→iωk

R (s,G1)G2 (I + P(s)C(s))−1 CR (s, A)Eφk, z
〉
Z

∣∣∣∣2 <∞.
(3.43b)

The limits above exist because iωk ∈ ρ (Ae). Use (3.39) and (3.40) to show that
(3.43) is equivalent to

sup
‖x‖X≤1

∑
k∈Z

∣∣∣∣∣〈R (iωk, A)Eφk, x〉X −
CR (iωk, A)Eφk

P(iωk)
〈R (iωk, A)B, x〉X

∣∣∣∣∣
2

<∞,

(3.44a)

sup
‖z‖Z≤1

∑
k∈Z

∣∣∣∣∣ 〈(G1 − iωk)νk−1Pkg2, z〉Z
〈(G1 − iωk)νk−1Pkg2, k0〉Z

CR (iωk, A)Eφk
P(iωk)

∣∣∣∣∣
2

<∞. (3.44b)

Conditions (3.44b) and (3.42b) are the same, so it remains to show that (3.42a)
and (3.44a) are equivalent if (3.42b) holds. Exponential stabilizability implies
uniform boundedness of terms 〈R (iωk, A)B, x〉X . Substituting z = k0 into
(3.42a) shows that

sup
‖x‖X≤1

∑
k∈Z
|〈R (iωk, A)B, x〉X |

2
∣∣∣∣∣CR (s, A)Eφk
P(iωk)

∣∣∣∣∣
2

<∞,

which in turn shows that (3.42a) and (3.44a) are equivalent provided (3.42b)
holds.

Generally, the resolvent operator R (iωk, A) smoothens the reference signal
so it is natural that the smoothness requirements for the reference signals tend
to be stricter compared to those of disturbance signals. Since the disturbance
operator E is not a finite-rank operator in general, the condition (3.42a) is
required, and the stricter smoothness requirements for the reference signals
may occur. The condition (3.42a) always holds with finite-rank disturbance
operators, so for input disturbances the smoothness requirement are very mild
as shown by the following theorem.
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Theorem 3.3.8. Assume that iωk ∈ ρ (A) for all k ∈ Z, σ (S) ∩ σ (Ae) = ∅,
and U = Y = C. Let the controller satisfy Assumption 3.3.2. Write K = 〈·, k0〉
and G2y = yg2, where k0, g2 ∈ Z. If F1 = 0 and there is only input disturbance,
then the sum condition (3.28) holds if and only if

sup
‖z‖Z≤1

∑
k∈Z

∣∣∣∣∣ 〈(G1 − iωk)νk−1Pkg2, z〉Z
〈(G1 − iωk)νk−1Pkg2, k0〉Z

∣∣∣∣∣
2

|E0φk|2 <∞, (3.45)

where νk is the order of the pole of R (s,G1) at iωk.

Proof. By using (3.36), (3.39), and (3.40), one can show that

lim
s→iωk

R (s, Ae)Be =
 0

(G1−iωk)νk−1Pkg2

〈(G1−iωk)νk−1Pkg2,k0〉
Z

E0

 .
It follows that (3.28) holds if and only if (3.45) holds.

3.3.3 Solvability of the Robust Regulation Problem
The aim of Sections 3.3.1 and 3.3.2 was to study the type of robustness defined
by the perturbation class V from Definition 3.3.4. In this section, the solvability
of the robust regulation problem is studied.

It is sensible to assume that a controller solves the output regulation problem
for all the reference and the disturbance signals that can be generated by the
exosystem (3.2) with any operators F1, E2 ∈ Y (fk) and E1 ∈ D (gk). A sufficient
condition can be found by using the results from the preceding two sections.

Theorem 3.3.9. Assume, that the pair (A,B) is exponentially stabilizable,
σ (S) ⊂ ρ (Ae) ∩ ρ (A) and U = Y = C. In addition, assume that (fk)k∈Z ∈ `∞
and (gk)k∈Z ∈ `2 are sequences of strictly positive real numbers. Let the con-
troller satisfy Assumption 3.3.2. Write K = 〈·, k0〉 and G2y = yg2 where
k0, g2 ∈ Z. The Sylvester equation (3.10) is solvable for all F1, E2 ∈ Y (fk)
and E1 ∈ D (gk) if only if for all sequences (αk)k∈Z ∈ `2 of positive real numbers
and all E ′ ∈ B (W,X)

∑
k∈Z

α2
k

∣∣∣∣∣ 〈(G1 − iωk)νk−1Pkg2, z〉Z
〈(G1 − iωk)νk−1Pkg2, k0〉Z

∣∣∣∣∣
2

f 2
k

|P(iωk)|2
<∞ (3.46a)

and

∑
k∈Z

α2
k

∣∣∣∣∣ 〈(G1 − iωk)νk−1Pkg2, z〉Z
〈(G1 − iωk)νk−1Pkg2, k0〉Z

∣∣∣∣∣
2

|CR (iωk, A)E ′φk|2
g2
k

|P(iωk)|2
<∞. (3.46b)
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Proof. It is easy to see that the Sylvester equation is solvable if the conditions
(3.37) and (3.42) hold simultaneously. By the exponential stabilizability of
A and the assumption σ (S) ⊂ ρ (A), the sum condition (3.42a) holds for all
E1 ∈ D (gk). Since the zero operators belong to Y (fk) and D (gk) it is clear
that it is sufficient to show that (3.46a) is a necessary and sufficient condition
for (3.37) to hold for any F = F1−E2 ∈ Y (fk), and that (3.46b) is a necessary
and sufficient condition for (3.42b) to hold for any E = E1 ∈ D (fk).

Note that F ′ = ∑
k∈Z f

−1
k 〈·, φk〉Fφk ∈ B (W,Y ) if F ∈ Y (fk) and that

(Hφk)k∈Z ∈ `2 if and only if H ∈ B (W,C). By writing

|Fφk|2

|P(iωk)|2
= |Fφk|

2

f 2
k

f 2
k

|P(iωk)|2
,

one sees that (3.46a) holds if and only if (3.37) holds for all F = F1−E2 ∈ Y (fk).
By similar arguments, one can show that (3.46b) holds if and only if (3.42b)
holds for all E = E1 ∈ D (gk).

The above theorem gives a condition for a controller to be regulating for
all the signals with certain smoothness. The theorem shows that if one is able
to construct a stabilizing controller satisfying Assumption 3.3.2 and conditions
(3.46) hold, then the controller is robustly regulating in V from Definition 3.3.4.

Theorem 3.3.10. Let (fk)k∈Z ∈ `∞ and (gk)k∈Z ∈ `2 be bounded sequences of
strictly positive real numbers and let U = Y = C. If the plant (3.1) satisfies
Assumption 3.3.1 and

∑
k∈Z

|fk|2 + |gk|2√
1 + |k||P(iωk)|2

<∞, (3.47)

the robust regulation problem is solvable for the perturbation class V from Defi-
nition 3.3.4.

To prove the above theorem, a robustly regulating controller needs to be
constructed. This section is concluded by proposing a robustly regulating con-
troller for a plant satisfying the assumptions of the theorem. To that end,
recall the observer based robustly regulating controller from [72]. Only a minor
modification is needed to make the controller design work under the current
assumptions.

Consider the controller (3.5) where Z = X ×W , K =
[
K1 K2

]
,

G1 =
[
A+BK1 + L(C +DK1) (B + LD)K2

0 S

]
, and G2 =

[
−L
G2

]
.

The operator L is chosen so that A + LC is exponentially stable. In addition,
G2u = ug2, where g2 is chosen so, that 〈g2, φk〉 6= 0 for all k ∈ Z. Let A+BK11
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be exponentially stable. By [72, Lemma 14], the unique solution Σ0 to the
Sylvester equation

SΣ0 = Σ0(A+BK11) +G2(C +DK11)

that satisfies Σ0 (D (A)) ⊆ D (S) is given by

Σ0v =
∑
k∈Z
〈G2(C +DK11)R (iωk, A+BK11) v, φk〉φk. (3.48)

Setting K1 = K11 + K2Σ0, where K2 is chosen so that S + (Σ0B + G2D)K2 is
strongly stable and σ (S)∩σ ((Σ0B +G2D)K2) = ∅, yields a strongly stabilizing
controller that satisfies the G-conditions [72, Theorems 12 and 13].

The problem is now reduced to choosing K2 such that it strongly stabilizes
(S,B0), where B0 = Σ0B + G2D. In [72], it was desired that the spectrum
approaches the imaginary axis polynomially in order to get a nice polynomial
bound for the resolvent of the closed loop system. This assumption is not
necessary for the strong stabilizability. It is enough to find an operator K2
such that S +B0K2 is a Riesz spectral operator and the spectrum of S +B0K2
is in the open left half plane {s ∈ C | <(s) < 0}. If that is the case, then the
strong stability follows by Arendt-Batty-Lyubich-Phong theorem [1, 57]. An
appropriate operator K2 can be found by using Theorem A.2.1. It is easy to
verify that the hypotheses H1−H3 of the theorem hold. Set

µk = iωk −
|fk|2 + |gk|2√

1 + |k|
|〈g2, φk〉|. (3.49)

Denote the transfer function of the plant Σ (A+BK11, B, C +DK11, D) by
PK(s). Since iωk ∈ ρ (A)∩ρ (A+BK11), and P(iωk) 6= 0 by (3.47), the transfer
function of the stabilized plant cannot have a transmission zero at iωk [42,
Lemma 4.3]. By using (3.48), one easily shows that 〈B0, φk〉 = 〈g2, φk〉PK(iωk).
Now,

∑
k∈Z

∣∣∣∣∣µk − iωk
〈B0, φk〉

∣∣∣∣∣
2

=
∑
k∈Z

|fk|2 + |gk|2√
1 + |k||PK(iωk)|2

<∞

by Theorem 2.4.3 and (3.47). Theorem A.2.1 is now applicable and if K2 =
〈·, h〉, where

h =
∑
k∈Z

hkφk, where hk = µk − iωk
〈B0, φk〉

∏
l∈Z
l 6=k

iωk − µl
iωk − iωl

, (3.50)

then S + B0K2 is a Riesz spectral operator, has spectrum σ (S +B0K2) =
{µk | k ∈ Z} and is strongly stable.
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The closed loop system is now strongly stable and the controller satisfies the
G-conditions. Thus, the controller solves the robust regulation problem if one
can show that the Sylvester equation (3.10) has a solution for all F1, E2 ∈ Y (fk)
and E1 ∈ D (gk). To this end, note that (3.37) is equivalent to (3.38b). Denote
R1 = A+BK1 + L(C +DK1), R0 = B + LD, and C0(s) = K2R (s, S)G2. One
has

R (s,G)G2 =
[
−R (s, R1)L+R (s, R1)R0C0(s)

R (s, S)G2

]
.

Furthermore, C(s) = −K1R (s, R1)L + (1 + K1R (s, R1)R0)C0(s). Since
(R1, R0) is exponentially stabilizable, K1R (iω,R1)R0 → 0 as ω → ±∞ by
Lemma 2.4.2. For large enough |k| one has 1 +K1R (iωk, R1)R0 6= 0 and

lim
s→iωk

R (s,G1)G2(I + P(s)C(s))−1 =
R (iωk, R1)R0

(1+K1R(iωk,R1)R0)
P(iωk)

1
〈φk,h〉P(iωk)φk


where h is from (3.50). Substitute this into (3.38b) and note that the discussion
above shows that 1 + K1R (s, R1)R0 =iR 1. By Lemma 3.3.5, the condition
(3.38b) holds if

sup
‖z‖Z≤1

∑
k∈Z

∣∣∣∣∣ 〈φk, z〉
〈φk, h〉P(iωk)

Fφk

∣∣∣∣∣
2

<∞. (3.51)

Note that 〈φk, h〉 = hk defined in (3.50). By using (3.49) one can write

iωk − µl
iωk − iωl

= 1 + i(|fl|
2 + |gl|2)|〈g2, φl〉|√
1 + |l|(ωl − ωk)

= 1 + ukl.

Clearly
∣∣∣ iωk−µl

iωk−iωl

∣∣∣ > 1, so
∣∣∣∣∏ l∈Z

l 6=k
iωk−µl
iωk−iωl

∣∣∣∣ > 1. Apply the estimate for infinite
products from [82, Lemma 15.3] to see that∣∣∣∣∣∣∣∣

∏
l∈Z
l 6=k

iωk − µl
iωk − iωl

∣∣∣∣∣∣∣∣ ≤ exp

∑
l∈Z
l 6=k

|ukl|



= exp

∑
l∈Z
l 6=k

(|fl|2 + |gl|2)|〈g2, φl〉|√
1 + |l||ωl − ωk|



≤ exp

M0
∑
l∈Z
l 6=k

|〈g2, φl〉|
γ|l − k|

 < M <∞
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where one has used estimate 0 < |fl|2+|gl|2√
1+|l|

< M0. The existence of a bound
M > 0 that is independent of k ∈ Z follows by Lemma 4.3.2. This shows, that
whether (3.51) holds does not depend on the infinite products in terms hk.

Substituting 〈z, φk〉 = zk and 〈φk, h〉 = hk into (3.51) and removing the
infinite sums appearing in hk, which is allowed by the above discussion, shows
that (3.51) is equivalent to

sup∑
k∈Z |zk|

2≤1

∑
k∈Z

Fφk√
1 + |k|(|fk|2 + |gk|2)

∣∣∣∣∣PK(iωk)
P(iωk)

∣∣∣∣∣
2

|zk|2 <∞.

Note that
(

Fφk√
1+|k|(|fk|2+|gk|2)

)
k∈Z

is a bounded sequence, since F ∈ Y (fk). The

supremum above is finite since P(s) =iR PK(s) by Theorem 2.4.3. Thus, (3.46a)
holds. By similar arguments, (3.46a) holds. The controller is robustly regulating
by Theorem 3.3.9.





Chapter 4

Regulation in the Frequency
Domain

4.1 Introduction to Robust Regulation in the
Frequency Domain

The robust regulation problem considered in the previous chapter has an alter-
native formulation in frequency domain terms. Powerful yet simple results in
the frequency domain that allow simple parametrization of all robustly regulat-
ing controllers and quantitative measurement of robustness of stability in terms
of a metric, for example graph metric [92], make the frequency domain approach
appealing. A survey on stabilization and regulation in the frequency domain
was given in [56] where several related topics including especially robustness of
regulation were addressed.

The purpose of this section is introduce the robust regulation in the fre-
quency domain and review related literature. In addition, some necessary pre-
liminary results concerning stability are stated.

4.1.1 Stability
As was seen earlier, the stability type chosen in the robust regulation problem
is of importance in the time domain. It is even more important in the frequency
domain, since the plants and the controllers considered are determined by the
stability type. First, one chooses a ring of stable functions R that is assumed to
be commutative, to have no zero divisors, and to have a multiplicative identity
element. The field of fractions over R is denoted by FR. The plant P and the
controller C considered are the matrices inM (FR). A transfer function is said
to be R-stable if it is inM (R). If the ring of stable transfer functions is clear
from the context, then R-stability is meant when speaking of stability.

79
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There are several rings of stable transfer functions that all have special
features; some are more suitable for certain problems than others [56]. The
transfer functions of finite-dimensional plants are proper rational matrices. In
this case, one can choose R to be the set of all proper rational functions with
poles in some prescribed set H ⊆ C− = {s ∈ C | <(s) < 0}. Then FR is the set
of all rational functions. For infinite-dimensional plants, commonly used rings
of stable transfer functions are the rings of H∞ and H2 functions, i.e., the set of
bounded and analytic functions in C+ and the Hardy space of square integrable
functions. In the Callier-Desoer class of transfer functions, the stable functions
Â− are Laplace-transforms of a certain impulse responses, see Section A.3. The
transfer functions in the Callier-Desoer algebra are of form n̂

d̂
, where n̂ ∈ Â−

and d̂ ∈ Â∞ ( Â−, so it is a proper subset of FÂ− .
Stability in the frequency domain is an input-to-output property, but stabil-

ity in the time domain involves internal dynamics of the plant. Roughly speak-
ing, the frequency domain stability is a weaker property. For finite-dimensional
plants, the frequency domain stability implies stability in time domain provided
that the plant is stabilizable and detectable. The result generalizes for plants
with transfer functions in Callier-Desoer -algebra [14]. However, for more gen-
eral transfer function classes or weaker stability types than exponential stability
the connection between time domain and frequency domain stability is not so
clear.

Note that if one considers only a proper subset of FR, one might be able
to prove stronger theoretical results. For example, in the Callier-Desoer class
M

(
B̂(β)

)
transfer functions have coprime factorizations while this is not the

case for all elements inM
(
FÂ−

)
.

4.1.2 Coprime Factorization Approach to Stabilization
An algebraic approach to stabilization of a frequency domain plant was given
in [94] where coprime factorizations were used. The assumptions made on the
ring were exactly the same made in the previous section for R except that R
was assumed to be a topological ring when robustness was considered. The use
of coprime factorizations is a restriction, e.g., in FH∞ there are functions with
no coprime factorization [54]. In addition, it might be hard to find a coprime
factorization for a given plant even if it exists. Therefore, it would be more
sophisticated to use theory that is not based on the coprime factorizations. For
stability results using non-coprime factorizations approach see [66, 79] and the
references therein. In this thesis, the coprime factorization approach is used
in stabilization because the focus is regulation and the coprime factorization
approach provides simple and strong stability results. In addition, many plants
of interest have coprime factorizations, e.g. all stable plants. Results for plants
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with either a right or a left coprime factorization are available [65]. A review of
results from [94] is given next.

A pair of transfer functions (Npr, Dpr) ∈ Rn×m × Rm×m is called a right
coprime factorization of P ∈ Fn×m

R if P = NprD
−1
pr , det (Dpr) 6= 0 and (Npr, Dpr)

is a right coprime pair of matrices, i.e., there exist such matrices X ∈ Rm×n

and Y ∈ Rm×m that

XNpr + Y Dpr = I.

Similarly, a pair of transfer functions (Npl, Dpl) ∈ Rn×m×Rn×n is a left coprime
factorization of P ∈ Fn×m

R if P = D−1
pl Npl, det (Dpl) 6= 0 and (Npl, Dpl) is a

left coprime pair of matrices, i.e., there exist such matrices X ∈ Rm×n and
Y ∈ Rn×n that

NprX +DprY = I.

It is easy to characterize all coprime factorizations once one of them is known
[92, Lemma 8.2]. A square matrix G in M (R) is said to be R-unimodular if
there exists a matrix G−1 ∈M (R) such that GG−1 = G−1G = I.

Lemma 4.1.1. Let G ∈ Fn×m
R be given.

1. If G has a right coprime factorization (N,D), then the set of all right
coprime factorizations of G is the set{

(NU,DU)
∣∣∣U ∈ Rm×m is R − unimodular

}
.

2. If G has a left coprime factorization (N,D), then the set of all left coprime
factorizations of G is the set{

(UN,UD)
∣∣∣U ∈ Rn×n is R − unimodular

}
.

Consider the feedback loop of Figure 1.3. The transfer function from com-
bined vector (d̂, ŷr) of the disturbance and the reference signals to the combined
vector (û, ê) of the input and error vectors is

H (P , C) =
[
I − C (I + PC)−1P C (I + PC)−1

− (I + PC)−1P (I + PC)−1

]

=
[

(I + CP)−1 (I + CP)−1 C
−P (I + CP)−1 I − P (I + CP)−1 C

]
. (4.1)

A controller C is said to be R-stabilizing, or shortly stabilizing if the ring R is
clear from the context, for P if H (P , C) is R-stable and det (I + PC) 6= 0.
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The following lemma is a version of [94, Lemma 3.1]. The roles of the P
and the C can be changed, so the lemma also gives a necessary and sufficient
condition for a plant to be stabilizable with a controller having a coprime fac-
torization. The proof is included since it provides valuable insight into how to
find a coprime factorization of a given stabilizing controller.

Lemma 4.1.2. 1. If (Npr, Dpr) is a right coprime factorization of a plant
P, then the following are equivalent:

i. The controller C R-stabilizes P.
ii. There exists such a left coprime factorizations (Ncl, Dcl) of C that

NclNpr +DclDpr = I.
iii. C has a left coprime factorization and NclNpr +DclDpr is R-unimod-

ular for all left coprime factorizations (Ncl, Dcl) of C.

2. If (Npl, Dpl) is a left coprime factorization of a plant P, then the following
are equivalent:

i. The controller C R-stabilizes P.
ii. There exists such a right coprime factorizations (Ncr, Dcr) of C that

NplNcr +DplDcr = I.
iii. C has a right coprime factorization and NplNcr + DplDcr is R-uni-

modular for all right coprime factorizations (Ncr, Dcr) of C.

Proof. The proof is for a plant having a left coprime factorization. The case
with a right coprime factorization is similar. By using Lemma 4.1.1, it is easy to
show that the second item and the third item are equivalent. Next, it is shown
that the first and the second one are equivalent.

Assume, that the second item holds. Then

(I + PC)−1 = (D−1
pl DplDcrD

−1
cr +D−1

pl NplNcrD
−1
cr ) = DcrDpl.

It follows that

H (P , C) =
[
I −NcrNpl NcrDpl

DcrNpl DcrDcl

]
∈M (R) .

Thus, the second item implies the first one.
It remains to show, that the first item implies the second one. To this end,

assume that C is stabilizing. Denote Dcr = (Dpl+NplC)−1 and Ncr = CDcr. It is
shown that (Ncr, Dcr) is the desired right coprime factorization of C guaranteed
by the second item. Since

det (Dcr) = det
(
(I + PC)−1 D−1

pl

)
= det

(
(I + PC)−1

)
det(Dpl) 6= 0
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the matrices Dcr and Ncr are well defined. Since

NplNcr +DplDcr = Dpl

(
D−1
pl NplNcr +Dcr

)
= Dpl (PC + I)Dcr

= Dpl (I + PC) (I + PC)−1 D−1
pl = I,

the proof is completed if the defined matrices are inM (R).
It is shown that Dcr and Ncr are in M (R). By stability (I + PC)−1 =

DcrDpl ∈M (R) and (I+PC)−1P = DcrNpl ∈M (R). Since (Npl, Dpl) is a left
coprime pair of matrices, there exist X, Y ∈ M (R) such that NplX + DplY =
I. Thus, Dcr = Dcr(NplX + DplY ) = DcrNplX + DcrDplY ∈ M (R). Since
C(I +PC)−1 = NcrDpl ∈M (R) and C(I +PC)−1P = NcrNpl ∈M (R), similar
arguments show that Ncr ∈M (R).

It was seen in the proof of the previous lemma that the closed loop transfer
function H (P , C) has a simple representation provided that there exists a left
coprime factorization of P . Corresponding representation can also be found if
there exists a right coprime factorization. This observation is used later and is
stated as a separate lemma.

Lemma 4.1.3. 1. If (Npr, Dpr) is a right coprime factorization of a plant
P and (Ncl, Dcl) is such a left coprime factorizations of C that NclNpr +
DclDpr = I, then

H (P , C) =
[

(I + CP)−1 (I + CP)−1 C
−P (I + CP)−1 I − P (I + CP)−1 C

]

=
[
DprDcl DprNcl

−NprDcl I −NprNcl

]
.

2. If (Npl, Dpl) is a left coprime factorization of a plant P and (Ncr, Dcr) is
such a right coprime factorizations of C that NplNcr +DplDcr = I, then

H (P , C) =
[
I − C (I + PC)−1P C (I + PC)−1

(I + PC)−1P (I + PC)−1

]

=
[
I −NcrNpl NcrDpl

DcrNpl DcrDpl

]
.

The set of all stabilizing controllers can be parametrized in a simple manner
provided that the plant possesses both right and left coprime factorizations.
This lemma was presented in [94, Lemma 3.2], where [21] was cited as proof.
For ease of reference, proof is provided here.
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Lemma 4.1.4. Let (Npr, Dpr) and (Npl, Dpl) be a right and a left coprime fac-
torization of P. Let X, Y,

∼
X,

∼
Y ∈ R be such, that XNpr + Y Dpr = I and

Npl

∼
X +Dpl

∼
Y = I.

1. A controller C stabilizes P if and only if it possesses a left coprime fac-
torization (Ncl, Dcl) where

Ncl = X +RDpl

and

Dcl = Y −RNpl,

for some R ∈M (R) for which det(Y −RNpl) 6= 0.

2. A controller C stabilizes P if and only if it possesses a right coprime
factorization (Ncr, Dcr) where

Ncr =
∼
X +DprR

and

Dcl =
∼
Y −NprR,

for some R ∈M (R) for which det(Y −RNpl) 6= 0.

Proof. The proof is provided only for the first item since the proof of the second
item is analogous. Assume first that Dcl possesses a left coprime factorization
(Ncl, Dcl), where Ncl = X + RDpl and Dcl = Y − RNpl. The controller is
stabilizing by Lemma 4.1.2 since

(X +RDpl)Npr + (Y −RNpl)Dpr = I +R(DplNpr −NplDpr)
= I +RDpl(P − P)Dpr = I.

Assume that C is stabilizing. By Lemma 4.1.2 it has such a left coprime factor-
ization (Ncl, Dcl) that NclNpr +DclDpr = I. Denote

U1 =
[
Y X
−Npl Dpl

]
and U2 =

Dpr −
∼
X

Npr

∼
Y

 .
By direct calculation

U3 = U1U2 =
[
I R1
0 I

]
,
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where R1 = X
∼
Y − Y

∼
X. It follows that U−1

2 = U−1
3 U1. Since

[
Dcl Ncl

]
U2 =[

I R2
]
, where R2 = Ncl

∼
Y −Dcl

∼
X, one has

[
Dcl Ncl

]
=
[
I R2

]
U−1

2 =
[
I R

] [ Y X
−Npl Dpl

]
,

where R = R2 −R1. This is exactly what was claimed.

4.1.3 Reference and Disturbance Signals
In the time domain, all reference and disturbance signals were generated by an
exogenous system. In the frequency domain, it is customary that the reference
and disturbance signals are generated by using transfer functions Θ1 and Θ2.
This is to say, that the reference and the disturbance signals are

ŷr = Θ1ŷ0 and d̂ = Θ2d̂0,

where ŷ0 and d̂0 varies over all stable vectors of appropriate size. The simplest
generator would be of form θ−1I where θ ∈ R. This kind of generator was
used for example in [101]. In [30, 92] robust regulation was considered for
rational matrices and therefore the generator had a left coprime factorization
Θ = D−1N .

Another approach is to simply define the sets of reference and disturbance
signals. The choice of the signal class is usually motivated by certain time
domain signals that can be generated by a finite-dimensional exosystem, see
[33, 80]. Thus, the corresponding generator in the frequency domain is a rational
matrix. An appropriate choice of generator is not evident for a more general
class of signals.

4.1.4 Robust Regulation
Let Ŷ and D̂ be sets of reference and disturbance signals, respectively. Let
P ∈M (FR) be given. The output regulation problem is to find such a controller
C ∈ M (FR), that

1. C stabilizes P .

2. For all ŷr ∈ Ŷ and d̂ ∈ D̂

ê =
[
(I + PC)−1P (I + PC)−1

] [ d̂
ŷr

]
∈M (R) .



86 Chapter 4. Regulation in the Frequency Domain

If a plant-controller pair (P , C) is such that the second item holds, then it is
said that C regulates P .

It is desired that a regulating controller of a given plant also solves the
regulation problem for all plants near the given nominal plant. To define what
being close means one must define a topology. Let a topology τ on the set of
plants be given. A controller C is said to be robustly regulating if it solves the
output regulation problem for all the plants in a neighborhood of P .

It makes sense to set some restrictions for the topology. At least closed
loop stability should be a robust property. For general topological rings, the
weakest topology having this property was introduced in [94], and, for rational
transfer functions, this topology is called the graph topology [92]. It is also
possible to measure the degree of robustness. This is done by introducing a
metric that induces the topology. There are several known metrics inducing
the graph topology, e.g., Graph metric [92, 93], gap metric [22], pointwise gap
metrics [78], and ν-metric [31, 95].

4.1.5 Solvability of the Robust Regulation Problem
Solvability of the robust regulation problem is well known for rational matrices
with graph topology [30, 92]. Stability is a robust property in graph topology,
so a stabilizing controller solves the robust regulation problem provided that
it regulates every plant it stabilizes. Consequently, one can see the problem
is divided into stabilization and regulation parts. The regulation part finds
conditions under which regulation follows from stability, which is exactly the
same characterization of robustly regulating controllers that was adopted in the
time domain.

Every rational generator Θ has a left coprime factorization D−1N . It was
shown in [92] that if θ is the largest invariant factor of D, then a stabilizing C
is robustly regulating if and only if θ divides Dcr, where Dcr is the denominator
of a right coprime factorization (Ncr, Dcr) of C. This is the frequency domain
version of the internal model principle. The robust regulation problem was then
shown to be solvable if and only if the pair (θI,Npr) is left coprime, where Npr

is the numerator of a right coprime factorization (Npr, Dpr) of P . The set of
all stabilizing controller for a plant P was shown to be the set of all stabilizing
controllers for the plant θ−1P .

The solvability conditions mentioned above are based on the coprime factor-
izations, which is an obstacle when generalizing them for more general trans-
fer function classes. However, the theory generalize to some transfer function
classes very straightforwardly, e.g., the Callier-Desoer class of transfer functions
[7]. In addition, for stable transfer functions both coprime factorizations exist,
and the stability results of Section 4.1.1 hold. Then it is possible to parametrize
a simple robustly regulating controller for certain sets reference and disturbance
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signals. This was done in [33] for stable plants in the Callier-Desoer class of
transfer functions with a rational generator of form Θ = θ−1I with unstable
poles on the imaginary axis. The results of [33] were later generalized for H∞− -
stable plants with Hilbert spaces as input and output spaces and a rational
generator in [80] and for H∞− -stable plants with a generator having an infinite
number of poles on the imaginary axis in [101].

4.1.6 Robust Regulation with a Generator Having an In-
finite Number of Poles

Generalizing the theory of rational transfer matrices to the H∞-setting was
discussed in Chapter 8 of [92] on a general level, but no detailed study was made.
While many of the results can be generalized in a straightforward manner, there
are some unavoidable problems. As mentioned, the theory relying on coprime
fractions is restrictive. Another problem is that the Smith form is guaranteed
to exist only in a principal ideal domain. Consequently, the invariant factors
cannot be defined for all stable matrices, and the frequency domain version of
internal model principle becomes superfluous with some generators.

The repetitive control system considered by Hara et al. in [35, 99] is the first
attempt to tackle the robust regulation problem in the frequency domain terms
with an infinite-dimensional exosystem. The main obstacle turned out to be
that a controller designed for a strictly proper time domain plant cannot have
an exponentially stabilizing realization. A similar restriction was encountered in
[101] where the robust regulation problem withH∞− -stable plants and generators
having an infinite number of poles on the imaginary axis was discussed. The
pole locations iωk were assumed to have a uniform gap; therefore, they approach
infinity as k approaches infinity. It was shown that there should be a uniformly
bounded sequence of right inverses of P(iωk), where k ∈ Z, in order the robust
regulation problem to be solvable. This means that the plant should not vanish
at infinity at the zero locations. For example, if P(s) = C(sI − A)−1B + D is
the transfer function of an exponentially stabilizable time domain plant, then D
should be invertible. The problem is caused by a conflict between stability type
and requirement that the controller possess an internal model, which is evident
for SISO-systems. Indeed, if a controller C is to be stabilizing for a H∞-stable
plant P , then PNcr + Dcr = I. But if Dcr is to posses an internal model, then
Dcr(iωk) = 0 for all k ∈ Z, so P(iωk)Ncr(iωk) = I. Since Ncr is bounded, P
should be bounded away from zero in a neighborhood of each iωk.
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4.1.7 Relation of the Time Domain and Frequency Do-
main Robust Regulation Problems

Some remarks on the connection between the time domain and frequency do-
main robust regulation problems are made before proceeding. The two prob-
lems are very similar, although the mathematical tools to tackle the problems
are quite different. The theories are based on the same basic ideas, such as
the internal model principle, the need for sufficiently weak concept of stability
when the signals contain infinite number of unstable dynamics, and the proper
characterization of robustness.

The connection is well-understood for finite-dimensional systems. In the
finite-dimensional framework, the time domain robust regulation requires the
closed loop transfer function have a blocking zero of suitably high order, and
this should be a robust property [26]. This implies that the controller transfer
function contains a frequency domain internal model of the unstable dynamics
produced by the exosystem. Since the time domain stability implies stability in
the frequency domain, the robustness of regulation is inherited from the time
domain to the frequency domain. Consider the converse problem where a proper
rational plant transfer function and a robustly regulating controller for it are
given. For any realizations the regulation property is conserved since ê ∈ R
implies e→ 0, as t→∞. Here R is the set of all proper rational functions not
having poles in C+ and e the inverse Laplace-transform of ê. It is well-known
that the R-stability of the transfer function guarantees exponential stability
of the realization only for minimal realizations, so one has to pay attention to
stability part. If one assumes minimality one also fixes the dimension of the
state space, and the robustness of exponential stability and conservation of the
regulation property imply robust regulation in the time domain.

For infinite-dimensional framework the situation is in general more compli-
cated. For the Callier-Desoer class of transfer functions the connection between
the time domain and frequency domain problems is much like in the finite-
dimensional case [7], but in general stability issues may rise. The conditional
robustness implies the blocking zero condition [49], so the controller transfer
function would contain an internal model in some sense. This would mean
that in certain cases the time domain robustness would be inherited to the fre-
quency domain. When infinite-dimensional realizations are considered, there
are at least two problems to deal with. First, ê ∈ R does not generally imply
e → 0, as t → ∞, e.g., if R = H∞. This may not be such a big problem
from the physical point of view, e.g., if R = H∞β with β < 0 this would im-
ply fast convergence of the energy [80]. In addition, the implication can hold
under certain smoothness assumptions on the signal generators [25]. A similar
situation occurs in the time domain theory where certain smoothness properties
were needed. Secondly, a minimal realization of R-stable functions is not always
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exponentially stable, e.g. if R = H∞ [55]. However, one can restrict the class
of transfer functions so that the exponential stability is implied by minimality,
see [100] and the references therein, or it might be that some weaker stability
type is inherited. Here one should point out that the stability properties trans-
mitted from the frequency domain to the time domain are dependent on the
time domain topology chosen [103].

4.1.8 Organization and Contributions of the Chapter
An introduction to the robust regulation in frequency domain terms and a
review of related results are given in this section. The author of the thesis has
written two research articles based on the theory to be presented in this chapter
[48, 50]. The rest of this chapter is organized as follows:

Section 4.2 A new ring P of stable transfer functions is introduced to be used
in the robust regulation problem. The new stability type is motivated
by the polynomial stability in the time domain. The rationale behind
the ring is to relax the boundedness requirement of H∞-functions on the
imaginary axis in order to allow polynomial growth there.
The motivation to use such a ring of stable transfer functions dwells from
observation that in the time domain the exponential stability is too strong
for the robust regulation problem to be solvable. It is seen in Section
4.6.1 and Section 4.6.2 that choosing P-stability instead of H∞-stability
makes the robust regulation problem solvable for a wider class of transfer
functions. The resulting field of fractions contains most of the fractions
over H∞. In particular, P contains all transfer functions from Callier-
Desoer algebra B̂(0). The ring P appeared for the first time in the article
[49] by the author of the thesis.

Section 4.3 In this section, signals to be regulated are defined. They are
Laplace transformations of the signals generated by the exosystem (3.2).
Thus, a reference signal is a superposition of infinitely many sinusoidal
signals. The smoothness properties of the signals are discussed in Section
4.3.1. Two different generators for the signals are introduced and com-
pared in Section 4.3.2. The introduced generators are of simple form and
have infinite number of poles on the imaginary axis.
The found generators are natural frequency domain counterparts of the
exosystem (3.2) as is seen in Theorem 4.3.3 and Theorem 4.3.4. They
give a concrete way of generating the desired signals. In addition, they
are minimal in the sense that any other generator generating the desired
signals generates a larger class of signals than the ones in question, see
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Theorem 4.3.6. These results are new and unlike [101], where the gen-
erators were defined through a set of assumptions, they provide a link
between the time domain and the frequency domain signals and address
the minimality of the generators. The importance of the generators is
revealed by the internal model principle, see Section 4.5.1.

Section 4.4 The output regulation problem and the robust output regulation
problem are introduced in this section. The problem formulations are
motivated by the time domain problems studied in Section 3.1.5.

Section 4.5 In this section, the solvability of the robust regulation problem is
considered. It is seen in Section 4.5.1 that a robustly regulating controller
should contain a generator generating the reference signals. This general-
izes the frequency domain internal model principle [92] for the reference
signals that are superposition of infinitely many sinusoidal signals. It is
also shown that partial internal model can be sufficient for robust dis-
turbance decoupling. In Section 4.5.2, the solvability condition given by
[92, Theorem 7.5.2] for rational transfer matrices using the largest invari-
ant factor of the generator and coprime factorization of the plant transfer
function is generalized to plants inM (FP) and the class of signals defined
in Section 4.3 with an infinite-number of poles.

Only a left or a right coprime factorization of a given plant is assumed to
be known. This is important since it is not entirely sure if a P-stablizable
plant has both coprime factorizations, as is the case with H∞-stabilizable
transfer functions. Furthermore, choice R = P plays a role only when
proving the internal model principle in Section 4.5.1, so the results of
Section 4.5.2 generalize to a any algebraic setting where the internal model
principle holds.

Section 4.6 In this section, design of robustly regulating controllers is con-
sidered. First, a robustly regulating controller is designed for H∞− -stable
plants in Section 4.6.1. Then a general design procedure is given in Sec-
tion 4.6.2 for unstable plants with a right or a left coprime factorization.
Finally, in Section 4.6.3, it is shown that the proposed controller design
is well-suited the transfer functions in the Callier-Desoer class, and an
example is provided.

The controller design in Section 4.6.1 is based on the work by Davison
[15, 17, 18]. The Davison’s controller structure was generalized to infinite-
dimensional systems in [33, 80] where the signals only had a finite num-
ber of poles on the imaginary axis. A similar controller was designed in
[101] for signals with infinite number of poles on the imaginary axis. In
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[101], H∞-stability was considered, and the solvability of the robust reg-
ulation problem set severe restrictions on the allowed plants. Use of the
P-stability solves such a problem, and Theorem 4.6.5 shows that polyno-
mial decay is allowed on the imaginary axis.
The controller design for unstable plants presented in Section 4.6.2 shows
that a robustly regulating controller can be found in a very straightforward
way provided that one has left or right coprime factorization and one
can design a robustly regulating controller for stable plants. The design
procedure combines nicely with the simple controller design of Section
4.6.1. In addition, it shows how to generalize the controller design of
stable plants in [33, 80] to unstable plants.

Section 4.7 A cursory study on the meaning of the smoothness of the refer-
ence and disturbance signals is made in this section. Using examples, it
illustrates that while the smoothness of the signals does not play a role
in the solvability of the robust regulation problem, it might be of use if
some smoothness of the error term is required.

Section 4.8 A new ring S of stable transfer functions is introduced and the ro-
bust regulation is considered with S-stability. The idea behind S-stability
is to remove the polynomial boundedness assumption of P-stability on the
imaginary axis.
The results of Section 4.5, including the internal model principle and the
controller design of Section 4.6, are also applicable with S-stability. The
use of S instead of P allows the design of a robustly regulating controller
for a more general class of transfer functions.
The blocking zero condition of the robust regulation problem first intro-
duced by Francis and Wonham in [26] for finite-dimensional systems is
generalized here for the generator with an infinite number of poles. The
blocking zero condition was later generalized for infinite-dimensional sys-
tems in time domain terms and the frequency domain counterpart of the
condition was also considered with P-stability in [49] by the author of this
thesis and his coauthors. However, the blocking zero condition was not
shown to be sufficient for the robust regulation with P-stability. With
S-stability it can be shown that the blocking zero condition is a sufficient
condition for a controller to be robustly regulating.

4.2 P-stability
This section introduces a ring of stable transfer functions that allows polynomial
growth on the imaginary axis. Choosing such a ring of stable transfer functions
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instead of the more commonly used H∞ is justified by the discussion in Section
4.1.5.

To overcome the aforementioned difficulties with solvability of the robust
output regulation problem, one should relax the boundedness conditions near
the poles of the reference signals. In this thesis, the reference and disturbance
signals have unstable poles only on the imaginary axis, so it is sufficient to relax
the boundedness conditions there. Unfortunately, there are no suitable rings of
stable transfer functions readily available.

In [3, Theorem 2.4], the following two conditions were shown to be equiva-
lent: ∥∥∥T (t)A−1

∥∥∥ = O
(
t−

1
α

)
, t→∞, (4.2)

and

‖R (iω,A)‖ = O (|ω|α) , ω →∞, (4.3)

where α > 0 is fixed, T (t) is a bounded C0-semigroup on a Hilbert space, and A
satisfying iR ⊂ ρ (A) is the generator of T (t). The growth condition (4.2) shows
that sufficiently smooth initial states are guaranteed to vanish at a polynomial
rate. Thus, certain polynomially stable systems have polynomially bounded
transfer functions by (4.3). Thus, a complex function f is said to be P-stable if
it satisfies the following conditions:

1. f is analytic in an open set containing C+,

2. f ∈ H∞β for all β > 0, and

3. there exists constants M > 0 and α > 0 such that |f(iω)| ≤M (1 + |ω|)α.

The set of all P-stable functions is denoted P. It is a matter of an elementary
exercise to show that P together with the pointwise addition and multiplication
forms an integral domain with an identity. The following lemma establishes
relations between FP and some classes of transfer functions that frequently
appear in the control theory literature.

Lemma 4.2.1. One has the relations

1. Cpr(s) ⊂ FP,

2. B̂(0) ⊂ FP,

3. FH∞ 6⊆ FP,

4. {f ∈ FH∞ | f is analytic on iR} ⊂ FP, and
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5. FH∞−
⊂ FP

Proof. The set of proper rational functions can be presented as a fraction of
two proper rational functions with no poles in C+ from which the first item
follows. The second item follows by noting that f̂ ∈ Â−(0) is bounded and
holomorphic in C+ so Â∞(0) ⊂ Â−(0) ⊂ P. The third item holds since a
H∞ function need not be analytic on the imaginary axis. A function f in
{f ∈ FH∞ | f is analytic on iR} is a fraction of two H∞ functions that are ana-
lytic on the imaginary axis, which shows the fourth item. The fifth item follows
from the fourth one.

4.3 The Reference and Disturbance Signals
The reference and disturbance signals considered in this chapter are generated
by a diagonal exosystem defined in (3.2). To make the frequency domain anal-
ysis possible, the Laplace transforms of the time-domain reference and distur-
bance signals are considered. Note that in the frequency domain the plant is
subject to input disturbance.

Laplace transforming the reference and disturbance signals in (3.2) gives

ŷr(s) = F1(sI − S)−1v0 =
∑
k∈Z
〈v0, φk〉

1
s− iωk

F1φk (4.4a)

and

d̂(s) = d̂0(s) = E0(sI − S)−1v0 =
∑
k∈Z
〈v0, φk〉

1
s− iωk

E0φk (4.4b)

The following standing assumption is made:

Assumption 4.3.1. For all k ∈ Z terms F1φk 6= 0.

The assumption is made to guarantee that all the terms corresponding to
any mode iωk are present in a reference signal for some initial state v0. This is
important when formulating the frequency domain version of the internal model
principle.

Rewriting the signals (4.4) yields

ŷr(s) =
∑
k∈Z

αk
s− iωk

ak (4.5a)

and

d̂(s) =
∑
k∈Z

βk
s− iωk

bk (4.5b)
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where αk = 〈v0, φk〉 ‖F1φk‖, ak = F1φk
‖F1φk‖

and βk = 〈v0, φk〉 ‖E0φk‖. If E0φk 6= 0,
then bk = E0φk

‖E0φk‖
. Otherwise bk = 0.

In this thesis, robust regulation is studied in two separate cases. In the first
case, F1 and E0 are allowed to vary arbitrarily. The set of reference (disturbance)
signals in this class of signals is denoted by Ŷ0 (D̂0). It is clear that there exists
such F1 that Assumption 4.3.1 is satisfied. This is why the above assumption
does not reduce the generality. In the second case, F1 and E0 are assumed to
be fixed. Assumption 4.3.1 is crucial in that case.

4.3.1 Smoothness of the Reference and Disturbance Sig-
nals

In the time domain regulation the smoothness of the reference and disturbance
signals becomes crucial. There are two ways to control the smoothness of the
reference and the disturbance signals, either by conditions on the allowed initial
states of the exosystem [68, 70] or by conditions on the operators F and E [34].

By setting conditions on the allowed set of initial sates v0, one can affect the
rate at which |〈v0, φk〉| approaches zero as |k| approaches zero. Conditions on
F and E would affect the rate at which ‖Fφk‖ and ‖Eφk‖ approach zero as |k|
approaches infinity. Both approaches forces the terms αk and βk to approach
zero at some rate. However, the latter approach allows different smoothness
properties of reference and disturbance signals to be set while the first one does
not. This is why the latter approach is adopted here.

In the frequency domain, the smoothness of reference and disturbance signals
in (4.5) means the rate at which αk and βk vanish as |k| approaches infinity.
Consider the size of the term |αk| in (4.5a). The sequence (|〈v0, φk〉|)k∈Z is
square summable since {φk | k ∈ Z} is an orthonormal basis. The sequence
(‖Fφk‖)k∈Z is square summable since F is a linear operator from an infinite-
dimensional space to a finite-dimensional space. It follows that ∑k∈Z |αk| <∞.
Similar justifications show that ∑k∈Z |βk| < ∞. Thus, (αk)k∈Z and (βk)k∈Z are
at least absolutely summable. However, the signals in (4.5) are well defined as
frequency domain signals if (αk)k∈Z and (βk)k∈Z are square summable, because
there is a uniform gap between the poles iωk which implies that

(
1

s−iωk

)
k∈Z

is
square summable for all s /∈ {iωk | k ∈ Z}.

In this thesis, the smoothness of the reference and disturbance signals are
controlled by a sequence (fk)k∈Z ∈ `2 of strictly positive real numbers. The
following sets of reference and disturbance signals with respect to (fk)k∈Z are
defined:

Ŷ (fk) = {ŷr in (4.5a) | ak ∈ Cn, ‖ak‖ = 1,∃M > 0 : αk ≤Mfk} (4.6a)
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and

D̂ (fk) =
{
d̂ in (4.5b)

∣∣∣ bk ∈ Cm, ‖bk‖ = 1,∃M > 0 : βk ≤Mfk
}
. (4.6b)

The above sets of signals corresponds to the case where F1 and E0 subject to
arbitrary perturbations. This means that ak and bk can have arbitrary direc-
tions. If F1 and E0 are fixed, then ak and bk are fixed. In that case the following
two sets are defined

Ŷ (fk, ak) = {ŷr in (4.5a) | ∃M > 0 : αk ≤Mfk} (4.7a)

and

D̂ (fk, bk) =
{
d̂ in (4.5b)

∣∣∣∃M > 0 : βk ≤Mfk
}
. (4.7b)

Note that the sequence (fk)k∈Z does not need to be the same in (4.6a) and
(4.6b) (or in (4.7a) and (4.7b)), because one can choose different smoothness
properties for the reference and disturbance signals independently of each other.

To justify the requirement that (fk)k∈Z is square summable, note that if one
chooses fk = 1

1+|k| say, then the sets (4.6) contains all the Laplace transforms of
the signals generated by the diagonal exosystem (3.2). Furthermore, if (fk)k∈Z
is some absolutely summable sequence, then there exist exosystems of the form
(3.2) that generate reference signals not in Ŷ (fk).

4.3.2 Generators for the Reference and Disturbance Sig-
nals

Consider a rational signal generator Θ, and let (N,D) be its left coprime fac-
torization. The internal model principle can be formulated for rational transfer
functions by using the largest invariant factor θ of D. The element θ has the
property that the generator θ−1I can generate all the signals the generator Θ
can. In addition, θ is minimal in the sense that, if θ0 is an element with the
same property, then θ divides θ0.

The purpose of this section is to find an generating element θ resembling
the largest invariant factor, i.e., the generator of form θ−1I needs to generate
the signals in the signal classes from the previous section, and it needs to be
minimal in the afore mentioned sense. In what follows it is seen that the internal
model principle can be formulated by using such an element even if there is no
concrete signal generator given. A repeatedly used technical lemma is given
before proceeding.

Lemma 4.3.2. Consider a series ∑k∈Z
Ak

s−iωk
, where Ak ∈ M (C). Let ωk ∈ R

be such that ωk+1 − ωk > 4γ for a constant γ > 0. If ‖Ak‖ ∈ `2, then
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1. ∥∥∥∥∥∥
∑
k∈Z

Ak
s− iωk

∥∥∥∥∥∥ ≤
√∑
k∈Z
‖Ak‖2

√√√√ ∞∑
n=1

2
γ2n2 <∞,

2. ∥∥∥∥∥∥
∑
k∈Z

1
(s− iωk)(s− iωk + ε)

∥∥∥∥∥∥ ≤
∞∑
n=1

2
γ2n2 <∞

for all s ∈ C+ \ ⋃k∈ZBγ(iωk) and ε > 0.
Proof. Fix s ∈ C, and denote the integer for which mink∈Z{|s−ωk|} is attained
by l. By assumptions, |s − iωk| > (|k − l| + 1)γ for all k 6= l. If |s − iωk| > γ,
then by the Cauchy-Schwarz inequality∥∥∥∥∥∥

∑
k∈Z

Ak
s− iωk

∥∥∥∥∥∥ ≤
∑
k∈Z

‖Ak‖
|s− iωk|

≤
∑
k∈Z

‖Ak‖
γ(|k − l|+ 1)√

≤
∑
k∈Z
‖Ak‖2

√√√√ ∞∑
n=1

2
γ2n2 .

The second item follows from the first one by noting that |s− iωk| > |s− iωk+ε|
in C+ \

⋃
k∈ZBγ(iωk).

In the next theorem, an element θ such that the signal generator θ−1I gen-
erates all the signals of interest is presented. It is called a generating element.
It becomes handy when parameterizing the robustly regulating controllers and
giving solvability conditions for regulation problems.
Theorem 4.3.3. Let (hk)k∈Z ∈ `2 be a sequence of strictly positive real numbers
in `2. Define

θ(s) =
1 + ε1

∑
k∈Z

hk
s− iωk

−1

, (4.8)

where the real numbers ωk satisfy ωk+1 − ωk > 4γ for some fixed γ > 0 and for
all k ∈ Z. Denote Φ1k = (1 + ε1

hk
s−iωk

)−1 and Φ2k(s) = ∑
l∈Z
l 6=k

hl
s−iωl

. The constant
ε1 > 0 is chosen so that

ε1‖Φ1k(s)Φ2k(s)‖ <
1
2 (4.9)

for all k ∈ Z and s ∈ Bγ(iωk) ∩ C+.
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1. There exists a choice of ε1 such that (4.9) is satisfied.

2. θ is in H∞ and is analytic in an open set containing C+.

3. If (fk) is a sequence of strictly positive real numbers such that fk ≤M0hk
for some M0 > 0 and for all k ∈ Z, then the signals in Ŷ (fk) and D̂ (fk)
are of the form θ−1w0, where w0 is a H∞-vector that is analytic in an
open set containing C+.

Proof. If <(s) > 0, then <
(

hk
s−iωk

)
> 0. Thus,

∣∣∣1 + ε1
hk

s−iωk

∣∣∣ > 1, and ‖Φ1k(s)‖ <
1 in Bγ(iω) ∩ C+. There exists M > 0 such that |Φ2k(s)| < M for all s ∈
Bγ(iω)∩C+ and k ∈ Z by Lemma 4.3.2. Thus, choosing ε1 = 1

2M completes the
proof of the first item.

To prove the second item note that 1 + ε1
∑
k∈Z

hk
s−iωk

is analytic everywhere
except at iωk where k ∈ Z. It is clear that θ(s) is analytic in C+ provided that
it is bounded there. Since <

(
hk

s−iωk

)
> 0 whenever <(s) > 0, it follows that∣∣∣1 + ε1

∑
k∈Z

hk
s−iωk

∣∣∣ > 1. This in turn implies the boundedness of θ.
The third item is proved by showing that the claim holds for an arbitrary

ŷr ∈ Ŷ (fk). The proof for disturbance signals is identical. Write ŷr(s) =∑
k∈Z

αk
s−iωk

ak. One needs to show that w0 = θŷr is in H∞, and that w0 is
analytic in an open set containing C+.

Again, w0 is analytic, if it is bounded. Denote U = ⋃
k∈ZBγ(iωk). There

exists M1 > 0 such that ‖ŷr‖ < M1 for all s ∈ C+ \ U by Lemma 4.3.2. Since
‖θ(s)‖ < 1 in C+ it follows that ‖w0(s)‖ < M1 for all s ∈ C+ \ U .

The claim follows if one can show that w0 is bounded in U . To this end, fix
k ∈ Z. Using the decomposition θ = Φ1k (1 + ε1Φ1k(s)Φ2k(s))−1 one can write

w0(s) =

Φ1k(s)
αk

s− iωk
ak + Φ1k(s)

∑
l∈Z
l 6=k

αl
s− iωl

al

 (1 + ε1Φ1k(s)Φ2k(s))−1 .

(4.10)

The inequality (4.9) shows that |(1 + ε1Φ1k(s)Φ2k(s))−1| < 2 for all s ∈ Bγ(iωk).
It is also easy to verify that

∥∥∥∥∑ l∈Z
l 6=k

αl
s−iωl

al

∥∥∥∥ < M1 in Bγ(iωk).
Since |αk| ≤ Mfk ≤ MM0hk for some M,M0 > 0 independent of k ∈ Z,

and ‖ak‖ = 1, ∥∥∥∥Φ1k(s)
αk

s− iωk
ak

∥∥∥∥ = |αk|
|s− iωk + ε1hk|

≤MM0ε
−1
1

for all s ∈ C+ ∩Bγ(iωk). By (4.10),

‖w0‖ <
(
MM0ε

−1
1 +M1

)
2
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in s ∈ C+ ∩ Bγ(iωk). Since ε1, M , M0 and M1 are independent of k ∈ Z, w0 is
bounded in U , which completes the proof.

In the above generating element a sequence (hk)k∈Z must be fixed. A gen-
erating element with no such restriction is proposed below.

Theorem 4.3.4. Define

θ(s) =
1 +

∑
k∈Z

ε2
2

(s− iωk)(s− iωk + ε2)

−1

, (4.11)

where the real numbers ωk satisfy ωk+1 − ωk > 4γ for some fixed γ > 0
and for all k ∈ Z. Denote Φ1k(s) =

(
1 + ε22

(s−iωk)(s−iωk+ε2)

)−1
and Φ2k(s) =∑

l∈Z
l 6=k

ε2
(s−iωl)(s−iωl+ε2) . The constant ε2 > 0 is chosen so that

ε2
2

∥∥∥∥∥∥
∑
k∈Z

1
(s− iωk)(s− iωk + ε2)

∥∥∥∥∥∥ < 1
2 (4.12)

for all s ∈ C+ \ ⋃k∈ZBγ(iωk), and

ε2‖Φ1k(s)Φ2k(s)‖ <
1
2 (4.13)

for all s ∈ Bγ(iωk) ∩ C+ and k ∈ Z.

1. There exists a choice of ε2 such that (4.12) and (4.13) hold.

2. θ is in H∞ and is analytic in an open set containing C+.

3. If (fk) ∈ `2, then all the signals in Ŷ (fk) and D̂ (fk) are of the form θ−1w0,
where w0 is a H∞-vector that is analytic in an open set containing C+.

Proof. Denote U = ⋃
k∈ZBγ(iωk). By Lemma 4.3.2, there exists a constant

M > 0 such that
∣∣∣∑k∈Z

1
(s−iωk)(s−iωk+ε2)

∣∣∣ < M for all s ∈ C+ \ U . Thus, the
equation (4.12) holds if ε2 <

1√
2M and the first item is shown if for small enough

ε2 > 0 equation (4.13) holds. To this end, set z = s−iωk
ε2

. Now

Φ1k(s) =
(

1 + 1
z(z + 1)

)−1

= z(z + 1)
z2 + z + 1 .

Since the poles of z2 +z+1 have real part −1
2 and the rational function z(z+1)

z2+z+1 is
strictly proper, M1 = sup

z∈C+

{∣∣∣ z(z+1)
z2+z+1

∣∣∣} <∞. The function Φ1k is bounded in
Bγ(iωk) by a constantM1 > 0 independent of k since <(s) ≥ 0 implies <(z) ≥ 0.
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The existence of M2 > 0 such that |Φ2k(s)| < M2 for all s ∈ Bγ(iω) ∩ C+ and
k ∈ Z can be proved by using Lemma 4.3.2. The choice ε2 < min

{
1√
2M ,

1
2M1M2

}
completes the proof of the first item.

Boundedness of θ in C+ \ U follows by (4.12). Since the boundedness of θ
in C+ implies that θ is analytic in C+, the second item follows if one is able to
show the boundedness of θ in U . Observe that θ = Φ1k (1 + ε2Φ1kΦ2k)−1. Since
Φ1k is bounded in Bγ(iωk) by a constant independent of k ∈ Z, the boundedness
of θ in U follows by (4.13).

The proof of the third item is analogous to the proof of the third item in
Theorem 4.3.3.

The two generators above are very similar, but in the first one a choice of a
sequence must be made. Such a choice naturally affects the class of signals the
generator can produce. A natural question arises whether the sets of signals the
above signal generators can produce are different. The next theorem answers
this question.

If θ is an element in R denote the set of signals θ−1 generates by θ−1R =
{θ−1w0 |w0 ∈ R}. Before proceeding to the theorem, a simple lemma is given
that illustrates the relation between the generators and the sets of the reference
signals they generate.

Lemma 4.3.5. For θ1, θ2 ∈ R, θ−1
1 R ⊆ θ−1

2 R if and only if θ2θ
−1
1 ∈ R.

Proof. Necessity. If θ−1
1 R ⊆ θ−1

2 R, then there exists w0 ∈ R such that

θ2θ
−1
1 = θ2(θ−1

1 · 1) = θ2(θ−1
2 w0) = w0 ∈ R.

Sufficiency. Write θ−1
1 w0 = θ−1

2 θ2θ
−1
1 w0 = θ−1

2 v0 for a w0 ∈ R, where
v0 = θ2θ

−1
1 w0. If θ2θ

−1
1 ∈ R, then v0 ∈ R. Thus, θ−1

1 R ⊆ θ−1
2 R.

Theorem 4.3.6. Fix (hk)k∈Z ∈ `2, and denote the functions (4.8) and (4.11)
by θ1 and θ2, respectively. Assume that ωk ∈ R satisfy ωk+1 − ωk > 4γ > 0 for
some fixed γ and all k ∈ Z. With these assumptions the following are true.

1. θ−1
1 H∞ ( θ−1

2 H∞,

2. If hk > M(|ωk| + 1)−α for some fixed α,M > 0 and for all k ∈ Z, then
θ−1

1 P = θ−1
2 P.

3. If there exist no α > 0 and M > 0 such that hk > M(|ωk| + 1)−α for all
k ∈ Z, then θ−1

1 P ( θ−1
2 P.

4. If θ ∈ P generates all the signals in (4.6a), where fk > M(|ωk|+ 1)−α for
some fixed constants M,α > 0 and for all k ∈ Z, then θ = θ1w0 = θ2v0
where w0, v0 ∈ P.
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Proof. Theorem 4.3.4 shows that there exists such w0 ∈ H∞ that θ−1
2 w0 =

ε1
∑
k∈Z

hk
s−iωk

. Thus, θ−1
2 (θ2 +w0) = 1 + ε1

∑
k∈Z

hk
s−iωk

= θ−1
1 . By Theorem 4.3.4,

θ2 ∈ H∞. Thus, θ2θ
−1
1 ∈ H∞. Lemma 4.3.5 shows that θ−1

1 H∞ ⊆ θ−1
2 H∞.

Since w0 and θ2 are analytic on the imaginary axis θ−1
1 P ⊆ θ−1

2 P.
Next it is shown that the inclusions in the first and third items are proper,

and that the sets are equal in the second item. Consider θ1θ
−1
2 . Note that it is

uniformly bounded in C+∩⋃k∈ZBγ(iωk). Decompose θ1 = Φ1k (1 + ε1Φ1kΦ2k)−1

where Φ1k and Φ2k are the functions defined in Theorem 4.3.3. By the choice
of ε1, one has

∣∣∣(1 + ε1Φ1kΦ2k)−1
∣∣∣ > 1

2 for all s ∈ C+ ∩Bγ(iωk). Thus,

1
2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣Φ1k(s)

1 +
∑
l∈Z
l 6=k

ε2
2

(s− iωl)(s− iωl + ε2)


∣∣∣∣∣∣∣∣−

∣∣∣∣∣Φ1k(s)
ε2

2
(s− iωk)(s− iωk + ε2)

∣∣∣∣∣
∣∣∣∣∣∣∣∣

≤
∣∣∣θ1(s)θ−1

2 (s)
∣∣∣ ≤ 1

2
∣∣∣Φ1k(s)θ−1

2 (s)
∣∣∣ . (4.14)

The supremum of
∣∣∣Φ1k(s) ε22

(s−iωk)(s−iωk+ε2)

∣∣∣ over C+ ∩ Bγ(iωk) is ε2
ε1hk

. By
the arguments presented in the proofs of Theorem 4.3.3 and Theorem 4.3.4,∣∣∣∣Φ1k(s)

(
1 +∑

l∈Z
l 6=k

ε22
(s−iωl)(s−iωl+ε2)

)∣∣∣∣ is bounded by a constant independent of k.

Thus, θ1(s)θ−1
2 (s) /∈ H∞. The first item holds by Lemma 4.3.5.

If there exists no α > 0,M such that hk > M(|ωk|+1)−α, then there exists no
α > 0,M such that 1

hk
< M−1(|ωk|+1)α. The supremum of

∣∣∣Φ1k
ε22

(s−iωk)(s−iωk+ε2)

∣∣∣
is attained at iωk and is ε2

ε1hk
. It follows that θ1(s)θ−1

2 (s) /∈ P. The third item
follows by Lemma 4.3.5.

To prove the second item, assume that hk > M(|ωk|+1)−α for some α,M >
0. The uniform boundedness of θ−1

2 in C+ \
⋃
k∈ZBa(iωk) for all a > 0 follows

by Lemma 4.3.2. Furthermore, θ−1
2 θ1 ∈ H∞β for all β > 0 since θ1 ∈ H∞. It

remains to show that θ−1
2 θ is polynomially bounded in ⋃k∈ZBγ(iωk). The first

absolute value on the first line of (4.14) is uniformly bounded in ⋃k∈ZBγ(iωk).
The second absolute value on the first line of (4.14) is bounded byM(|ωk|+1)−α
in Bγ(iωk) since its supremum in Bγ(iωk) is ε2

ε1hk
. The polynomial boundedness

on the imaginary axis follows since there is a uniform gap between the real
numbers ωk where k ∈ Z. Thus, θ1θ

−1
2 ∈ P. The second item holds by Lemma

4.3.5
The fourth item is shown next. Assume, that θ ∈ P generates all the

signals in (4.6a). In particular, this means that there exists w0 ∈ P satisfying
θ−1w0 = ∑

k∈Z
εfk
s−iωk

. This implies that θ−1(θ + w0) = 1 + ∑
k∈Z

εfk
s−iωk

= θ−1
f .

It is clear, that θf ∈ P is another generator of form (4.8) for an appropriate
choice of ε. By the second item, θ−1

f v0 = ∑
k∈Z

ε1hk
s−iωk

for some v0 ∈ P. Thus,
θ−1(θ + w0)(θf + v0) = θ−1

1 , from which the assertion follows.
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Remark 4.3.7. Although the Theorem 4.3.6 states the result only for the scalar
case, it can be trivially generalized to the case where w0 is a vector.

The second item in Theorem 4.3.6 reveals when the the function θ defined
in (4.8), is a generating element for all the signals that are of form (4.5a) with
an absolutely summable sequence (αk)k∈Z. The fourth item shows that this
element is actually minimal in the sense that if θ−1

0 I generates all the signals of
form (4.5a), then θ divides θ0. Thus, it comes as no surprise that in Section 4.5
the generator serves as an internal model.

4.4 Problem Formulation in the Frequency Do-
main

4.4.1 The Regulation Problem
In this section, regulation of the signals defined in the previous section is con-
sidered in frequency domain terms. The basic setup is as in Section 4.1, but
the ring of stable transfer functions is fixed to be P. To avoid confusion, the
regulation problem to be considered is specified below:

Let Ŷ and D̂ be sets of reference and disturbance signals, respectively. Let
P ∈M (FP) be given. The (Ŷ, D̂)-regulation problem is defined in the following
way:

Find a controller C ∈ M (FP) such that
1. C is P-stabilizing, and

2. for all ŷr ∈ Ŷ and d̂ ∈ D̂

ê =
[
− (I + PC)−1P (I + PC)−1

] [ d̂
ŷr

]
∈M (P) .

The above regulation problem is called the (Ŷ, D̂)-regulation problem to distin-
guish it from the general case. The regulation problems considered in this thesis
are with respect to four different sets of reference and disturbance signals; those
that are the Laplace transforms of the signals generated by the exosystem (3.2)
with fixed F1 and E0, those that are the Laplace transforms of the signals gen-
erated by the exosystem (3.2) with any F1 and E0 satisfying certain smoothness
properties, those that are the Laplace transforms of the signals generated by
the exosystem (3.2) for completely arbitrary F1 and E0, and those generated by
an generator of form θ−1I where θ is the one in (4.8). The corresponding sets of
the reference and disturbance signals defined in the previous section are denoted
by Ŷ (fk, αk) and D̂ (hk, βk), Ŷ (fk) and D̂ (hk), Ŷ0 and D̂0, and θ−1In×nP and
θ−1Im×mP, respectively.
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Lemma 4.4.1. Let (fk)k∈Z ∈ `2, and let θ be the generating element defined in
(4.8) with hk = fk. A controller C solves the (Ŷ (fk) , {0})-regulation problem if
and only if it solves the (θ−1P, {0})-regulation problem.

Proof. By Theorem 4.3.3, Ŷ (fk) ⊂ θ−1P, so the sufficiency follows. Assume
that C solves the (Ŷ (fk) , {0})-regulation problem. Then, (I + PC)−1 ŷr is sta-
ble for all ŷr ∈ Ŷ (fk), in particular, for ŷr = ∑

k∈Z
fk

s−iωk
ei where ei the ith

natural basis vector of Cn. It follows that ∑k∈Z
fk

s−iωk
(I + PC)−1 ∈ M (P) so(

1 + ε1
∑
k∈Z

fk
s−iωk

)
(I + PC)−1 = θ−1 (I + PC)−1 ∈ M (P), which shows the

claim.
Theorem 4.4.2. Let θ ∈ P, and let P ∈ FP have a left coprime factoriza-
tion (Npl, Dpl). If C is a stabilizing controller with a right coprime factoriza-
tion (Ncr, Dcr), then it solves the (θ−1P, θ−1P)-regulation problem if and only
if θ−1Dcr ∈ P.
Proof. One can assume that NplNcr +DplDcr = I by Lemma 4.1.1 and Lemma
4.1.2. By Lemma 4.1.3,

ê =
[
(I + PC)−1P (I + PC)−1

] [ d̂
ŷr

]
= θ−1

[
DcrNpl DcrNpl

] [d̂0
ŷ0

]
, (4.15)

so clearly ê ∈M (P) for all stable d̂0 and ŷ0 if θ−1Dcr ∈ P.
If C solves the (θ−1IP, θ−1IP)-regulation problem, then ê is P-stable if one

chooses d̂0 = Ncrv and ŷ0 = Dcrv where v is an arbitrary constant vector.
Thus, θ−1Dcrv ∈ M (P) for all constant vectors v by (4.15). This implies that
θ−1Dcr ∈M (P).
Remark 4.4.3. It is easy to verify that the proof of the above theorem is valid
if P is replaced by any ring of stable transfer functions as long as the results
concerning stabilizability presented in Section 4.1.1 hold.

In the time domain, an internal model is not needed in regulation, but the
above theorem shows that this is not the case for (θ−1P, θ−1P)-regulation prob-
lem. The reason for this is that the time domain counterpart of (θ−1P, θ−1P)-
regulation problem would be a regulation problem where the output regulation
problem should be solved for all F1 and E0 simultaneously. Any controller that
solves this time domain problem should contain an internal model.

4.4.2 The Robust Regulation Problem
Let Ŷ and D̂ be sets of reference and disturbance signals, respectively. Let
P ∈ M (FP) be given. The (Ŷ, D̂)-robust regulation problem is defined in the
following way:

Find a controller C ∈ M (FP), such that
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1. C P-stabilizes P , and

2. C solves the (Ŷ, D̂)-regulation problem for all the plants it stabilizes.

Here the robustness is understood in the sense that the closed loop stability
should imply regulation. This type of robustness have been already considered
in the frequency domain in [7] where a design of robustly regulating controllers
was proposed for the transfer functions in the Callier-Desoer algebra. However,
the main motivation for choosing such a definition is due to the observation
that, in the time domain, infinite-dimensional exosystems force one to settle for
stability types that have bad robustness properties.

4.5 Solvability of the Robust Regulation Prob-
lem

4.5.1 The Internal Model Principle
Some results from [65] are needed in order to formulate the internal model
principle for plants having only a right coprime factorization. These results
generalize the stabilization results of Section 4.1.2 to plants with left or right
coprime factorization but not necessarily both. They are stated here without
proofs.

Lemma 4.5.1. Let P ∈ Fn×m
P . Denote P1 =

[
PT 0

]T
∈ F(n+m)×m

P and P2 =[
P 0

]
∈ Fn×(n+m)

P .

1. If P has a right coprime factorization, then P1 has both right and left
coprime factorizations.

2. If P has a left coprime factorization, then P2 has both right and left co-
prime factorizations.

Lemma 4.5.2. Let P ∈ Fn×m
P . Denote P1 =

[
PT 0

]T
∈ F(n+m)×m

P and P2 =[
P 0

]
∈ Fn×(n+m)

P .

1. If P has a right coprime factorization (Npr, Dpr) that satisfies Y Npr +
XDpr = I for some X, Y ∈ M (R), and (N1, D1) is a left coprime
factorization of P1 that satisfies N1Y1 + D1X1 = I for some X1, Y1 ∈
M (R), then C stabilizes P if and only if it has a left coprime factoriza-
tion

(
Y +RD1

[
I 0

]T
, X −RN1

)
for some R ∈M (R).
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2. If P has a left coprime factorization (Npl, Dpl) that satisfies NplY+DplX =
I for some X, Y ∈ M (R), and (N2, D2) is a right coprime factoriza-
tion of P2 that satisfies Y1N1 + X1D1 = I for some X2, Y2 ∈ M (R),
then C stabilizes P if and only if it has a right coprime factorization(
Y +

[
I 0

]
D1R,X −N1R

)
for some R ∈M (R).

Remark 4.5.3. One can use Lemma 4.1.4 and Lemma 4.5.2 to parametrize
all the plants a controller stabilizes by changing the roles of the plant and the
controller.

Definition 4.5.4. Consider a controller C ∈ Fn×m
P .

1. If C has a right coprime factorization (Ncr, Dcr), then it is said that it
contains θ ∈ P as its internal model if θ−1Dcr ∈M (P).

2. Let C have a left coprime factorization, and let (
∼
N e,

∼
De) be a right coprime

factorization of Ce =
[
C 0

]
which exists by Lemma 4.5.1. It is said that

C contains θ ∈ P as its internal model if θ−1
[
I 0

] ∼
De ∈M (P).

N

To be precise, one needs to give a concrete definition of the internal model
principle. In this thesis, the internal model principle for the (Ŷ, D̂)-robust reg-
ulation problem is formulated as follows:

The internal model principle. It is said that the internal model principle
holds if there exists such an element θ ∈ P that C solves the (Ŷ, D̂)-robust
regulation problem for a given plant with left or right coprime factorization
if and only if it contains θ as its internal model.

In the next two theorems, the internal model principle is shown to hold
for the (Ŷ (fk) , {0})-robust regulation problem. The first theorem states the
necessity and sufficiency of an internal model for plants that have a left coprime
factorization, and the latter for those with a right coprime factorization. It
should be noted that the existence of both right and left coprime factorizations
is not assumed. A technical lemma is given before proceeding to the theorems.

Lemma 4.5.5. Let G ∈ Pp×m. Fix a sequence (fk)k∈Z ∈ `2, and let θ be the
function (4.8) with hk = fk. If GQŷr ∈ M (P) for all ŷr ∈ Ŷ (fk, ak) and
Q ∈M (P) of appropriate size, then θ−1G ∈M (P).

Proof. Recall that ŷr is a n-vector. Choose Q = eie
T
j , where ei is the ith natural

basis vector of Cm and eTj denotes the transpose of the jth natural basis vector ej
of Cn. In ŷr = ∑

k∈Z
αk

s−iωk
ak choose αk = fk

|eTj ak|
eTj ak

and denote xjk = fk
∣∣∣eTj ak∣∣∣. By
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varying i and j, one can show that every element of G is divisible by ∑k∈Z
xjk
s−iωk

.
Since fk = fk‖ak‖ ≤

∑n
j=1 xjk, it is shown that ∑k∈Z

fk
s−iωk

divides every element
of G. Thus, θ−1G =

(
1 + ε1

∑
k∈Z

fk
s−iωk

)
G ∈M (P).

Theorem 4.5.6. Let P have a left coprime factorization (Npl, Dpl) and fix a
sequence (fk)k∈Z ∈ `2. If θ is the function (4.8) with hk = fk, then a sta-
bilizing controller C with a right coprime factorization (Ncr, Dcr) solves the
(Ŷ (fk, ak) , {0})-robust regulation problem if and only if θ−1Dcr ∈M (P).

Proof. Since θ generates all the signals in Ŷ (fk, ak), the sufficiency follows by
Theorem 4.4.2 and Lemma 4.4.1. It remains to show the necessity.

Assume that C solves the (Ŷ (fk, ak) , {0})-robust regulation problem. One
can assume by Lemma 4.1.1 and Lemma 4.1.2 that NplNcr+DplDcr = I. Choose
Q = δ

(s+1)αQ0 where Q0 ∈ M (P) and α, δ > 0 are such that det(Dpl + Q) 6= 0
and ‖Q(s)‖‖Dcr(s)‖ < ε for all s ∈ C+ and for some fixed ε < 1. Such constants
exist because Q0, Dcr ∈M (P).

Consider the plant P ′ = (Dpl − Q)−1Npl. Since ‖Q(s)Dcr(s)‖ < ε < 1
NplNcr+(Dpl−Q)Dcr = I−QDcr is P-unimodular so the controller stabilizes P ′
by Lemma 4.1.2. By using the Neumann series of (I−QDcr)−1 and (I−DcrQ)−1

[37], one shows that

(I + P ′C)−1 = Dcr(I −QDcr)−1(Dpl +Q)

= Dcr

(
I +

∞∑
i=1

(QDcr)i
)

(Dpl +Q)

=
(
I +

∞∑
i=1

(DcrQ)i
)

(DcrDpl +DcrQ)

= (I −DcrQ)−1 (DcrDpl +DcrQ).

The controller is regulating for P ′ by the assumption, so (I+P ′C)−1ŷr ∈M (R)
for every ŷr ∈ Ŷ (fk, ak). Let ŷr ∈ Ŷ (fk, ak) be arbitrary. Since (I −DcrQ)−1 is
P-unimodular, (DcrDpl +DcrQ)ŷr ∈ M (P). One has DcrDplŷr ∈ M (P) since
C is regulating for P . Thus, DcrQŷr ∈M (P).

Recall that ŷr = ∑
k∈Z

αk
s−iωk

ak for some sequence (αk)k∈Z ∈ `2 satisfying
αk ≤ Mfk for some M > 0. The reference signal ŷr is bounded in every right
half plane C+

β with β > 0 by Lemma 4.3.2, so only the boundary behavior
on the imaginary axis can make DcrQŷr unstable. Consequently, DcrQŷr =

δ
(s+1)−αDcrQ0ŷr ∈ M (P) if only if DcrQ0ŷr ∈ M (P). The result follows by
Lemma 4.5.5.

Theorem 4.5.7. Assume that P ∈ Fn×m
P has a right coprime factorization

(Npr, Dpr) and that C is a stabilizing controller for P. Fix a sequence (fk)k∈Z ∈
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`2. Let θ be the function (4.8) with hk = fk. If (
∼
N e,

∼
De) is a right coprime

factorization of Ce =
[
C 0

]
∈ Fm×(n+m)

P , then C solves the (Ŷ (fk, ak) , {0})-

robust regulation problem if and only if θ−1
[
I 0

] ∼
De ∈M (P).

Proof. Sufficiency. Assume that θ−1
[
I 0

] ∼
D ∈ M (P), and denote Pe =[

P T 0
]T
. It is a matter of an elementary calculation to show that Ce sta-

bilizes Pe. By Lemma 4.1.2, Pe has a left coprime factorization (Ne, De) that
satisfies Ne

∼
N e +De

∼
De = I. By the assumption,

θ−1(I + PC)−1 = θ−1
[
I 0

]
(I + PeCe)−1

[
I
0

]

= θ−1
[
I 0

] ∼
DeDe

[
I
0

]
∈M (P) .

The sufficiency follows by Lemma 4.4.1 and Theorem 4.4.2.
Necessity. Assume that C solves the (Ŷ (fk, ak) , {0})-robust regulation prob-

lem. Let (Ncl, Dcl) be the left coprime factorization of C that satisfies NclNpr +
DclDpr = I. Remark 4.5.3 implies that every plant P ′ the controller C stabilizes
can be written in form

P ′ =
[
I 0

] ([Npr

0

]
+
∼
DeR

)(
Dpr +

∼
N eR

)−1

where R ∈ M (P) is such that det
(
Dpr +

∼
N eR

)
6= 0. It is a matter of simple

calculation to show that

I − P ′ (I + CP ′)−1 C = I −NprNcl −
[
I 0

] ∼
DeRNcl.

Fix an arbitrary element ŷr ∈ Ŷ (fk, ak). Since C is robustly regulating (I −
NprNcl)ŷr ∈ M (P). It follows that

[
I 0

] ∼
DeRNprŷr ∈ M (P). In particular,

one can choose R = −QNpr where Q is an arbitrary matrix of appropriate size.
Now [

I 0
] ∼
DeRNclŷr =

[
I 0

] ∼
DeQ(−I + (I −NprNcl))ŷr

=
[
I 0

] ∼
DeQ(I −NprNcl)ŷr −

[
I 0

] ∼
DeQŷr.

Since (I −NprNcl)ŷr is P-stable,
[
I 0

] ∼
DeQŷr ∈ M (P). The claim follows by

Lemma 4.5.5.

Remark 4.5.8. The sufficiency parts of Theorem 4.5.6 and Theorem 4.5.7 hold
for any ring of stable transfer functions, because they do not use any properties
of P.



4.5. Solvability of the Robust Regulation Problem 107

Corollary 4.5.9. If P ∈ M (FP) has left or right coprime factorization, then
a controller C solves the (Ŷ (fk, ak) , ∅)-robust regulation problem if and only if
it solves the (θP, θP)-regulation problem.

Proof. If P has a left coprime factorization, the claim follows directly from The-
orem 4.4.2 and Theorem 4.5.6. Assume that P has a right coprime factorization.
The sufficiency is obvious, so it remains to show the necessity. By Lemma 4.1.2
and Lemma 4.5.1, Ce =

[
C 0

]
has a right coprime factorization (

∼
N e,

∼
De).

If C stabilizes a plant P ′, then P ′e =
[
(P ′)T 0

]T
has a left coprime factor-

ization (Ne, De) that satisfies Ne

∼
N e +De

∼
De = I. Now

[
− (I + P ′C)−1P ′ (I + P ′C)−1

]
=
[
I 0

] ∼
De

[
−Ne De

] I 0

0
[
I
0

] ,
so the claim follows Theorem 4.5.7.

It was seen above that a robustly regulating controller always contains the
generating element (4.8) as its internal model even if the sequence (ak)k∈Z is
fixed. The next example shows that a controller can be robustly regulating even
if it does not contain an internal model if only the disturbance signals contain
unstable dynamics. Thus, the internal model principle does not hold for the
({0}, D̂ (fk, bk))-robust regulation problem. However, a controller containing
the generatring element (4.8) as its internal model is ({0}, D̂ (fk, bk))-robustly
regulating by Theorem 4.4.2.

Example 4.5.10. Consider the
(
{0},

{[
1
s

0
]T})

-robust regulation problem.
Let the plant and the controller be

P =
[ 1
s+1 0
0 0

]
and C =

[
s+1
s

0
0 1

]
.

The plant admits a right coprime factorization (P , I) which is also a left coprime
factorization. A factorization of C, that is both right and left coprime, is given
by (I, C−1) because C−1 is P-stable and P + C−1 = I. This also shows that C
stabilizes P . All plants C stabilizes are of the form

P ′ = (P + C−1R)(I − IR)−1

where det(I − IR) 6= 0. Since P ′(I + CP ′) = (P + C−1R)C−1 and C−1
[

1
s

0
]T

is
stable the controller is robustly regulating. However, 1

s
C−1 is not stable, so the

controller contains only a partial internal model.
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4.5.2 A Necessary and Sufficient Condition for the Solv-
ability

The next two theorems generalize the solvability condition of rational transfer
functions and generators given in [92, Theorem 7.5.2] to the class of signals
defined in Section 4.3 and to the plants in FP.

Theorem 4.5.11. Let P have a left coprime factorization (Npl, Dpl). Fix a
sequence (fk)k∈Z ∈ `2 and let θ be the function (4.8) with hk = fk. If (Ne, De)
is a right coprime factorization of Pe =

[
P 0

]
, then the (Ŷ (fk, ak) , {0})-robust

regulation problem is solvable if and only if (θI,Ne) is left coprime.

Proof. Sufficiency. Assume that (θI,Ne) is left coprime. There exist P-stable
matrices V andW such that θV +NeW = I. Since (Npl, Dpl) is left coprime and
(Ne, De) is right coprime, there exist P-stable matrices Y , X, Ye, and Xe such
that NplY +DplX = I, and YeNe+XeDe = I. Note thatX can be chosen so that
det(X) 6= 0. All stabilizing controllers of P have a right coprime factorization
of the form

([
I 0

] ([
Y T 0

]T
+DeR

)
, X −NeR

)
by Lemma 4.5.2. Choose

R = WX. Now

θ−1 (X −NeR) = θ−1 (I −NeW )X = θ−1 (θV )X ∈M (P) .

By Theorem 4.5.6, the chosen controller is robustly regulating provided that
det (X −NeWX) = det (I −NeW ) det (X) 6= 0. If this is not the case, then
choose R = (W+θR0)X where R0 is chosen so that det (I −Ne(W + θR0)) 6= 0.
Similar arguments to those above show that the controller is robustly regulating,
which completes the proof of the sufficiency part.

Necessity. Assume that C is a robustly regulating controller. Since C is sta-
bilizing, Lemma 4.1.2 implies that it has a right coprime factorization (Ncr, Dcr)
that satisfies NplNcr +DplDcr = I. Denote Ce =

[
CT 0

]T
. Since

[
Npl 0

] [
NT
cr 0

]T
+DplDcr = I

Ce stabilizes Pe. By Lemma 4.1.2, Ce has a left coprime factorization (
∼
N e,

∼
De)

satisfying Ne

∼
N e +De

∼
De = I. By Lemma 4.1.3,

I −Ne

∼
N e = (I + PeCe)−1 = DcrDpl.

Theorem 4.5.6 shows that θ−1
(
I −Ne

∼
N e

)
= V ∈ M (P). The claim follows

since Ne

∼
N e + θV = I.
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Theorem 4.5.12. Let P have a right coprime factorization (Npr, Dpr). Fix
a sequence (fk)k∈Z ∈ `2 and let θ be the function (4.8) with hk = fk. The
(Ŷ (fk, ak) , {0})-robust regulation problem is solvable if and only if (θI,Npr) is
left coprime.

Proof. Sufficiency. Assume that (θI,Npr) is left coprime. There exist P-stable
matrices V and W such that θV +NprW = I. Since (Npr, Dpr) is right coprime
there exists stable matrices X and Y such that Y Npr +XDpr = I.

By Lemma 4.5.1, Pe =
[
PT 0

]
has a left coprime factorization (Ne, De). It

also has the right coprime factorization
([
NT
pr 0

]
, Dpr

)
. It is easy to verify that

C0 =
[
X−1Y 0

]
stabilizes Pe, so C0 has a right coprime factorization (N0, D0)

such that NeN0 +DeD0 = I and det(D0) 6= 0.
Choose R =

[
W + θR0 0

]
D0 where R0 is chosen so that

det
(
D0 −

[
NT
pr 0

]T
R
)
6= 0.

The controller

Ce = (N0 +DprR)
(
D0 −

[
NT
pr 0

]T
R
)−1

= (N0 +DprR)D−1
0

[
I −NprW + θNprR0 0

0 I

]−1

=
(
C0 +

[
Dpr(W + θR0) 0

]) [θ(V +NprR0)−1 0
0 I

]

stabilizes Pe by Lemma 4.1.4. The defined controller is of the form Ce =
[
C 0

]
.

It is a matter of an easy calculation to show that C stabilizes P . Theorem 4.5.7
shows that C is robustly regulating since

[
I 0

] (
D0 −

[
NT
pr 0

]T
R
)

= θ
[
V +NprR0 0

]
D0.

Thus, the (Ŷ (fk, ak) , {0})-robust regulation problem is solvable.
Necessity. Let C be a robustly regulating controller. Since it stabilizes P it

possesses a left coprime factorization (Ncl, Dcl) such that NclNpr +DclDpr = I.
Let (

∼
N e,

∼
De) be a right coprime factorization of Ce =

[
C 0

]
. Since Pe =[

PT 0
]
is stabilized by Ce, it has a left coprime factorization (Ne, De) such
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that Ne

∼
N e +De

∼
De = I. By Theorem 4.5.7,

θ−1(I −NprNcr) = θ−1 (I + PC)−1

= θ−1
[
I 0

]
(I + PeCe)−1

[
I
0

]

= θ−1
[
I 0

] ∼
DeDe

[
I
0

]
= V ∈M (P) .

Thus θV +NprNcr = I, which completes the proof.

A stable plant P has the right coprime factorization (P , I). The above
theorem implies the following corollary.

Corollary 4.5.13. Let P be a P-matrix. Fix a sequence (fk)k∈Z ∈ `2 and let
θ be the function (4.8) with hk = fk. The (Ŷ (fk, ak) , {0})-robust regulation
problem is solvable if and only if (θI,P) is left coprime.

Remark 4.5.14. The results of this section do not use any properties of the
ring P. Only the internal model principle is needed. Thus, the results can be
generalized as long as the internal model is required for a controller to be robustly
regulating. This is the case for the (θ−1P, θ−1P)-regulation problem if the plant
has a right coprime factorization.

4.6 Design of Robustly Regulating Controllers
A robustly regulating controller design for a plant with left or right coprime
factorization is proposed in this section. The controller is a combination of an
arbitrary stabilizing controller and a robustly regulating controller designed for
the numerator matrix of the plant. It is shown first how to design a robustly
regulating controller for a H∞− -stable plant. Then a general design procedure is
proposed for unstable plants with a coprime factorization.

4.6.1 Design of Robustly Regulating Controllers for H∞− -
stable Plants

The main result of this section is given by the following theorem. The theo-
rem gives a necessary and sufficient condition for the solvability of the robust
regulation problem with an H∞− -stable plant.

Theorem 4.6.1. If P(s) is H∞− -stable, then there exists a controller solving
the (Ŷ (fk, ak) , {0})-robust regulation problem if and only if there exist right
inverses Pr(iωk) of P at iωk where k ∈ Z and constants M,α > 0, such that
‖Pr(iωk)‖ < M(1 + |ωk|)α for all k ∈ Z.
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The proof of the above theorem is divided into two theorems; Theorem 4.6.3
shows the necessity, and Theorem 4.6.5 shows the sufficiency. The necessity
holds for all P-stable plants with a right coprime factorization, whereas the
sufficiency is proved only for H∞− -stable functions.

Remark 4.6.2. If P ∈ M
(
H∞−

)
, the solvability of the (Ŷ (fk, ak) , {0})-robust

regulation problem is independent of the sequence (fk)k∈Z by Theorem 4.6.1.
Thus, the smoothness of the reference signals does not affect the solvability of
the robust regulation problem.

Theorem 4.6.3. Let P ∈ Pn×m. If the (Ŷ (ak, fk) , {0})-robust regulation prob-
lem is solvable, then P is right invertible at iωk and the right inverses Pr(iωk)
can be chosen so that ‖Pr(iω)‖ < M(1+|ωk|)α for some fixed constants α,M > 0
and for all k ∈ Z.

Proof. Let C solve the (Ŷ (ak, fk) , {0})-robust regulation problem. There exists
a right coprime factorization of (Ncr, Dcr) of C satisfying PNcr +Dcr = I since
(P , I) is a left coprime factorization of P and C is a stabilizing controller.

It follows easily from Theorem 4.5.6 that Dcr(iωk) = 0 for all k ∈ Z, so
P(iωk)Ncr(iωk) = I for all k ∈ Z. Thus, Ncr(iωk) is a right inverse of P(iωk).
Since Ncr ∈ M (P) it follows that ‖Ncr(iω)‖ < M(1 + |ω|)α for some α,M > 0
and for all ω ∈ R. In particular, this holds if ω = ωk.

It is shown next that there exists a robustly regulating controller for an H∞− -
stable plant if the plant has at most polynomial decay rate at iωk, as |k| → ∞.
To this end, a controller solving the robust regulation problem is presented.
The controller considered here is based on the one in [80]. The controller is of
the form

Cε(s) = ε

C0(s) +
∑
k∈Z

Kk

s− iωk

 , (4.16)

where C0 is H∞− -stable and (‖Kk‖)k∈Z ∈ `2. The only difference to the controller
considered in [80] is that the sum here is infinite. Some assumptions over the
design parameters Kk are needed.

Assumption 4.6.4. Denote Gk = P(iωk)Kk. It is assumed that

1. Gk is invertible for all k ∈ Z,

2. there exist α,M > 0 such that ‖G−1
k ‖ ≤M(1 + |ωk|)α for all k ∈ Z,

3. there existsM > 0 such that
∥∥∥∥(I + Gk

z

)−1
∥∥∥∥ < M for all z ∈ C+ and k ∈ Z,

and
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4. there exists M > 0 such that
∥∥∥∥(I + zG−1

k

)−1
∥∥∥∥ < M for all z ∈ C+ and

k ∈ Z.

The first assumption is crucial for the controller to contain an internal model.
The second assumption is needed for closed loop stability. Since KkG

−1
k is a

right inverse of P (iωk) it restricts the convergence speed of the plant. The last
two are technical assumptions that are used to guarantee polynomial bound of
the closed loop transfer function. In the last condition polynomial bound would
be sufficient.

Theorem 4.6.5. Let P(s) ∈ M
(
H∞−

)
. If there exist right inverses Pr(iωk)

of P(iωk) and constants M,α > 0 such that ‖Pr(iωk)‖ ≤ M(1 + |ωk|)α for all
k ∈ Z, then there exist parameters Kk and a constant ε∗ > 0 such that the
controller (4.16) solves the robust output regulation problem for all ε ∈ (0, ε∗].

The proof of the above theorem is divided into a series of lemmas. First,
a technical lemma is given. Lemma 4.6.7 and Lemma 4.6.8 show that, if As-
sumption 4.6.4 holds, the proposed controller is stabilizing. Lemma 4.6.9 shows
that the controller is regulating. Finally, Lemma 4.6.10 shows that a choice of
parameters that satisfies Assumption 4.6.4 actually exists.

Lemma 4.6.6. Let P(s) ∈ M
(
H∞β

)
for some β ∈ R. For any fixed ε > 0,

there exists a positive real number M > 0 such that
∥∥∥P(s)−P(s0)

s−s0

∥∥∥ < M for all
s, s0 ∈ C+

β+ε.

Proof. Fix s0 ∈ C+
β+ε and choose δ < min

{
ε
3 , 1

}
. By assumption, there exists

M0 > 0 such that ‖P(s)‖ < M0 for all s ∈ C+
β+. Let γ be the simple positively

oriented circular path around s0 with radius 2δ. By the Cauchy’s differentiation
formula,

∥∥∥P(n)(s0)
∥∥∥ =

∥∥∥∥∥ n!
2πi

∮
γ

P(s)
(s− s0)n+1ds

∥∥∥∥∥
≤ n!

2π

∮
γ

‖P(s)‖
|s− s0|n+1ds

≤ n!
2π

∮
γ

M0

(2δ)n+1ds = M0n!
(2δ)n .

Let s ∈ Bδ(s0) be arbitrary. By using the above equation and the Taylor series
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of P(s) at s0,∥∥∥∥∥P(s)− P(s0)
s− s0

∥∥∥∥∥ =
∥∥∥∥∥
∑∞
n=0

1
n!P

(n)(s0)(s− s0)n − P(s0)
s− s0

∥∥∥∥∥
=
∥∥∥∥∥
∞∑
n=1

1
n!P

(n)(s0)(s− s0)n−1
∥∥∥∥∥

≤
∞∑
n=1

1
n!‖P

(n)(s0)‖|s− s0|n−1

<
∞∑
n=1

1
n!
M0n!
(2δ)n δ

n−1

= M0

δ

∞∑
n=0

1
2n = 2M0

δ
.

Thus,
∥∥∥P(s)−P(s0)

s−s0

∥∥∥ < 2M0
δ

for all s ∈ Bδ(s0). It is easy to see, that the same
upper bound also holds true for all s ∈ C+

β+ε \ Bδ(s0). The claim follows since
the limit does not depend on s0.

Lemma 4.6.7. Let P ∈M
(
H∞−

)
. If the design parameters Kk in (4.16) satisfy

Assumption 4.6.4, then there exists a constant ε∗ > 0 such that (I + PCε)−1 ∈
M (P ∩H∞) for all ε ∈ (0, ε∗].

Proof. Denote U = C+ ∩ ⋃k∈ZBγ(iωk). Lemma 4.3.2 and the uniform bound-
edness of P(s) show that P(s)∑k∈Z

Kk
s−iωk

is uniformly bounded in C+ \ U .
Thus, P(s)Cε(s) is uniformly bounded in C+ \ U . Choose M1 > 0 such that∥∥∥P(s)∑k∈Z

Kk
s−iωk

∥∥∥ ≤ M1 for all s ∈ C+ \ U and set ε1 = 1
2M1

. By using the
Neumann series [37, Corollary 5.6.16],

∥∥∥(I + P(s)Cε(s))−1
∥∥∥ =

∥∥∥∥∥
∞∑
i=0

(−P(s)Cε(s))i
∥∥∥∥∥ ≤

∞∑
n=0

1
2n = 2

for all ε ∈ (0, ε1].
Consider the decomposition (I + PCε)−1 = Φ1k (I + εΦ2kΦ1k)−1, where

Φ1k(s) =
(
I + ε

P(iωk)Kk

s− iωk

)−1

(4.17)

and

Φ2k(s) = P(s)− P(iωk)
s− iωk

Kk + P(s)C0(s) +
∑
l∈Z
l 6=k

P(s)Kl

s− iωk
. (4.18)
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Assumption 4.6.4 implies that there exists a positive constant M2 such that
‖Φ1k(s)‖ < M2 since the real part of z = s−iωk

ε
is positive whenever s ∈ C+. A

constant M3 > 0 such that ‖Φ2k(s)‖ < M3 for all s ∈ Bγ(iωk) exists by Lemma
4.6.6 and Lemma 4.3.2. Note that M2 and M3 can be chosen so that they are
independent of k. Choose ε2 = 1

2M2M3
. Now,

∥∥∥(I + P(s)Cε(s))−1
∥∥∥ ≤ 2M2 for all

ε ∈ (0, ε2] and s ∈ C+∩Bγ(iωk). Since M2 does not depend on k ∈ Z, the claim
follows by choosing ε∗ = min{ε1, ε2}.

Lemma 4.6.8. If the design parameters Kk in (4.16) satisfy Assumption 4.6.4,
then there exists such a constant ε∗ > 0 that Cε(I + PCε)−1 ∈ M (P) for all
ε ∈ (0, ε∗].

Proof. Lemma 4.6.7 shows that there exists a choice of ε1 > 0 such that (I +
PCε)−1 is P-stable for all ε ∈ (0, ε1]. The controller Cε is uniformly bounded in
C+ \⋃k∈ZBδ(iωk) for all δ < γ by Lemma 4.3.2. It follows that Cε(I+PCε)−1 ∈
H∞β for all β > 0. Thus, the polynomial boundedness of Cε(I +PCε)−1 needs to
be shown only in C+ ∩ ⋃k∈ZBγ(iωk).

Observe that Cε(s)(I + P(s)Cε(s))−1 can be written in the form

εKk

s− iωk
(I + P(s)Cε(s))−1 +

C0(s) +
∑
l∈Z
l 6=k

εKl

s− iωl

 (I + P(s)Cε(s))−1.

Lemma 4.3.2 and Lemma 4.6.7 show that the last term is bounded in Bγ(iωk)
by a bound independent of k ∈ Z.

It remains to analyze the behavior of εKk
s−iωk

(I + P(s)C(s))−1 in Bγ(iωk).
Decompose (I + PCε)−1 into Φ1k (I + εΦ2kΦ1k)−1, where Φ1k and Φ2k are the
functions defined in (4.17) and (4.18). By Assumption 4.6.4, there exist M > 0
and ε0 > 0 such that

∥∥∥(I + εΦ2kΦ1k)−1
∥∥∥ < M in Bγ(iωk) for all k ∈ Z and

ε ∈ (0, ε0]. Thus, it is sufficient to analyze the behavior of εKk
s−iωk

Φ1k(s). To this
end, write z = s−iωk

ε
. By Assumption 4.6.4,

εKk

s− iωk
Φ1k(s) = Kk

z

(
I + Gk

z

)−1
= KkG

−1
k

(
I + zG−1

k

)−1

is bounded by M(1 + |ωk|)α where M > 0 and α > 0 can be chosen to be
independent of k ∈ Z. This completes the proof.

Lemma 4.6.9. Let θ be the function (4.8). If the controller Cε in (4.16) P-
stabilizes P ∈M

(
H∞−

)
, then θ−1(I + PCε)−1 ∈M (P).

Proof. The proof is analogous to the proof of Lemma 4.6.8 and is therefore
skipped.
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Lemma 4.6.10. Let P ∈ M
(
H∞−

)
be right invertible at iωk for all k ∈ Z,

and assume that the right inverses Pr(iωk) can be chosen so that ‖Pr(iωk)‖ ≤
M(1 + |ωk|)α for some fixed α,M > 0 and for all k ∈ Z. In (4.16) choose
Kk = gkPr(iωk). The constants gk > 0 can be chosen so that (‖Kk‖)k∈Z ∈ `2

and Assumption 4.6.4 holds.

Proof. Since ‖Pr(iωk)‖ < M(1 + |ωk|)α there exists a sequence (gk)k∈Z ∈ `2 of
positive real numbers such that gk > 1

M0
(1+ |ωk|)−α0 and (‖Kk‖)k∈Z ∈ `2. Since

Gk = P(iωk)Kk = gkI, the first and the second item of Assumption 4.6.4 hold.
Since (I + z−1Gk)−1 = z(z + gk)−1I and

(
I + zG−1

k

)−1
= (1 + zg−1

k )−1I, it is

easy to see that for all z ∈ C+
∥∥∥(I + z−1Gk)−1

∥∥∥ < 1 and
∥∥∥∥(I + zG−1

k

)−1
∥∥∥∥ < 1.

It follows that the third and the fourth items of Assumption 4.6.4 hold.

Proof of Theorem 4.6.5. Lemma 4.6.7, Lemma 4.6.8, and Lemma 4.6.10 show
that there exists a choice of ε∗ > 0 and the design parameters Kk in (4.16) such
that (I + PCε)−1 and Cε(I + PCε)−1 are P-stable for all ε ∈ (0, ε∗]. It follows
that Cε is a P-stabilizing controller by P-stability of P for all ε ∈ (0, ε∗].

Since (P , I) is a left coprime factorization of P , there exists a right coprime
factorization (Ncr, Dcr) of Cε that satisfies PNcr +Dcr = I. By Lemma 4.6.9,

θ−1(I + PCε)−1 = θ−1(DcrD
−1
cr + PNcrD

−1
cr )−1 = θ−1Dcr ∈M (P) .

The controller Cε is robustly regulating by Theorem 4.5.6. The claim follows
since this holds true for any ε ∈ (0, ε∗].

Corollary 4.6.11. Let θ be the function (4.11). If P ∈ H∞− , then (θI,P)
is left coprime if and only if P has such right inverses Pr(iωk) at iωk that
‖Pr(iωk)‖ < M(1 + |ωk|)α for some fixed positive constants M and α and for
all k ∈ Z.

Proof. Theorem 4.5.12, Theorem 4.6.3, and Theorem 4.6.5 show that the claim
holds for the generators defined in (4.8) such that the sequence (hk)k∈Z has at
most polynomial decay rate. The claim follows by Theorem 4.3.6.

Corollary 4.6.12. Let θ be the function (4.11). Let the structure at infinity of
P ∈ H∞− along iR be {q1, . . . , qn}. The pair (θI,P) is left coprime if and only if
P(iω) has full rank for all k ∈ Z, and there exist positive constants α, M and
M0 such that |qn(iωk)| > M(1 + |ωk|)α whenever |k| > M0.

Example 4.6.13. Recall the transfer function of Example 2.2.18. The zeros of
sinh(

√
s+ 1) are −1−k2π2, k ∈ Z, so the transfer function does not have poles

in C+
−1. Since the structure at infinity along C+

−1 is{
(s+ 1)− 3

2 , (s+ 1)− 3
2
}
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it is seen that P ∈ H∞− . Corollary 4.5.13 and Corollary 4.6.12 show that the
controller (4.16) is robustly regulating for P .

Similar arguments show that the transfer function of Example 3.2.17 is in
P ∈ H∞− . The structure at infinity along iR is{

1
s+ 1 ,

1
(s+ 1)3/2 e

− 1
7
√
s+1
}
.

Theorem 4.6.3 implies that there are no robustly regulating controllers for the
transfer function since the structural function 1

(s+1)3/2 e
− 1

7
√
s+1 has an exponential

decay rate on the imaginary axis. �

A controller of the form (4.16) was discussed in [101] by Ylinen et al., but
they were not able to show whether the controller works in their setting. The
next example illustrates that the answer is negative. In the example only SISO-
systems are considered and the signal generator is chosen to be θ(s) = 1− e−s.
However, one can use similar justification to show the results for MIMO-systems
and every signal generator satisfying the assumptions in [101].

Example 4.6.14. Consider the reference signals of form ŷr(s) = γ(s)
θ(s) , where

γ(s) ∈ H∞ and θ(s) = 1 − e−s. The generator has zeros at 2πki where k ∈ Z,
so ωk = 2πk in this case. Let P(s) be a SISO-plant such that |P(iωk)| > M for
some fixed M > 0 and for all k ∈ Z.

Consider the controller (4.16) where C0(s) = 0. Write Kk in the form Kk =
gk
P(iωk) . Since the controller should be defined at s = 1, say, necessarily Kk → 0
as |k| → ∞. It follows, that gk → 0 as |k| → ∞.

The decomposition of (I+P(s)Cε(s))−1 from the proof of Lemma 4.6.7 gives
1
θ(s) (1 + P(s)Cε(s))−1 = 1

θ(s)Φ1k(s)
(
I + εΦ2k(s)Φ−1

1k (s)
)−1

.

Here one can choose sufficiently small ε > 0 so that εΦ2k(s)Φ−1
1k (s) < 1

2 near iωk.
It follows, that

lim
s→iωk

∣∣∣∣∣(1 + P(s)C(s))−1 × 1
θ(s)

∣∣∣∣∣ ≥ 1
2 lim
s→iωk

∣∣∣∣∣ s− iωk
(s− iωk + εgk)θ(s)

∣∣∣∣∣ = 1
2ε|gk|

.

The last term approaches infinity as |k| → ∞, so there exists no ε∗ > 0 such
that 1

θ(s)(1 + P(s)Cε(s))−1 ∈ H∞ for all ε ∈ (0, ε∗]. �

4.6.2 Design of Robustly Regulating Controllers for Un-
stable Plants

The results of Section 4.4 give conditions for the solvability of the robust regu-
lation problem, but they do not give any actual controllers for unstable plants.
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C

ê

Figure 4.1: Structure of the designed robustly regulating controller.

An idea how to find a robustly regulating controller can be found in the proofs of
Theorem 4.5.12 and Theorem 4.5.11. In what follows, this idea is made precise
and a procedure for finding a robustly regulating controller is proposed. For
a plant with a right coprime factorization (Npr, Dpr) the proposed controller
consists of a stabilizing controller Cs and a controller Ci that robustly regulates
Npr and contains an internal model. The controller has the structure depicted
in Figure 4.1.

In [25] it was shown that a regulating controller should contain an internal
model cascaded with a loop stabilizer. Roughly speaking, a regulating controller
can be constructed by adding an internal model to the plant and stabilizing the
resulting system. Such a design procedure of robustly regulating controllers was
also suggested for rational transfer functions in [92]. Although the controller
designed here necessarily has the suggested structure, the design procedure is
somewhat different. Here a stabilizing controller is designed for the plant alone
including no internal model and the robustly regulating controller is designed
for a stable part of the plant.

Controller Design for Plants with a Right Coprime Factorization

Let P have a right coprime factorization (Npr, Dpr). A robustly regulating
controller can be found by using the following procedure:

1. Find a stabilizing controller Cs for P .

2. Find a robustly regulating controller Ci for Npr. Denote

∼
Di = (I +NprCi)−1 and

∼
N i = Ci

∼
Di.
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3. A robustly regulating controller is given by

C = Cs
∼
D
−1

i +DprCi =
[
Cs I

] [I Npr

0 Dpr

] [
I
Ci

]
.

Note that the second step is possible if and only if the robust regulation
problem is solvable by Theorem 4.5.12. Similar justifications to those made in
the proof of Lemma 4.1.2 show that the factorization of Ci in the second step
is right coprime and satisfies Npr

∼
N i +

∼
Di = I. To show that C is robustly

regulating, let (
∼
N e,

∼
De) be a right coprime factorization of Ce =

[
Cs 0

]
. Now

C =
( ∼
N e +DprR

)(∼
De −

[
Npr

0

]
R

)−1 [
I
0

]

where R =
[ ∼
N i 0

] ∼
De. By Lemma 4.1.4,

[
C 0

]
stabilizes

[
PT 0

]T
so it is

easy to show that C stabilizes P . In addition,
( ∼
N e +DprR,

∼
De −

[
NT
pr 0

]T
R
)

is a right coprime factorization of
[
C 0

]
. Since θ−1

∼
Di ∈ M (P) by Theorem

4.5.6 and
[
I 0

] (∼
De −

[
NT
pr 0

]T
R
)

=
[∼
Di 0

] ∼
De, Theorem 4.5.7 implies that

C is robustly regulating.

Controller Design for Plants with a Left Coprime Factorization

Let P have a left coprime factorization (Npl, Dpl). A robustly regulating con-
troller can be found by using the following procedure:

1. Find a stabilizing controller Cs for P . Denote

Dcr = (Dpl +NplCs)−1 and Ncr = CsDcr.

2. Find a right coprime factorization (Ne, De) of Pe =
[
P 0

]
. A way to do

this can be found in [65].

3. Find a robustly regulating controller Ci for Ne. Denote
∼
Di = (I +NeCi)−1 and

∼
N i = Ci

∼
Di.

4. A robustly regulating controller is given by

C = Cs
∼
D
−1

i +
[
I 0

]
DeCi =

[
Cs I

] [I Ne

0
[
I 0

]
De

] [
I
Ci

]
.
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The proof of Lemma 4.1.2 shows that, in the first step, the selected fac-
torization of the controller is right coprime and satisfies NplNcr + DplDcr = I.
Similarly, Ne

∼
N i +

∼
Di = I. By Theorem 4.5.11 and Corollary 4.5.13, the third

step is possible if and only if the robust regulation problem is solvable. To see
that C actually is robustly regulating, note that

C =
(
Ncr +

[
I 0

]
DeR

)
(Dcr −NeR)−1 ,

where R =
∼
N iDcr. Since Dcr − NeR =

∼
DiDcr, Lemma 4.5.2 shows that the

controller is well defined and stabilizing. Furthermore, θ−1
∼
Di ∈ M (P) by

Theorem 4.5.6, so the same theorem implies that the controller is robustly
regulating.

4.6.3 Design of Robustly Regulating Controllers in the
Callier-Desoer Algebra

The power of the controller design procedure proposed in Section 4.6.2 becomes
apparent when one considers plants that have a coprime factorization with the
numerator matrix in H∞− . The controller (4.16) is robustly regulating for the
stable numerator matrix of such plants. In particular, all the matrices in the
Callier-Desoer class have a right coprime factorization (N,D) where N ∈ H∞− ,
as was stated in Section A.3. In addition, standard techniques can be used to
stabilize a plant inM

(
B̂(0)

)
. Thus, the proposed design procedure is especially

suitable for the plants in the Callier-Desoer class of transfer functions.
The output regulation problem in the Callier-Desoer class of transfer func-

tions has been studied earlier in [7, 25]. However, no robustness properties were
studied in [25], and the signal generator had only a finite number of unstable
dynamics in both articles. In [34], robustly regulating controllers were designed,
but the plants were assumed to be stable, and the reference and disturbance sig-
nals consisted of finite sums of sinusoidal functions. Thus, the results presented
here extends the existing theory to infinite-dimensional reference signals.

Corollary 4.6.11 gives a necessary and sufficient condition for the left co-
primeness of H∞− -stable matrix and the function (4.11). The next corollary
gives similar conditions for all the plants inM

(
B̂(0)

)
.

Corollary 4.6.15. 1. Let P ∈ FP have a left coprime factorization, and
let (Ne, De) be a right coprime factorization of Pe =

[
P 0

]
. If Ne ∈

M
(
H∞−

)
, then the (Ŷ (fk, ak) , ∅)-regulation problem is solvable if and only

if Ne is right invertible at points iωk and the right inverses N r
e (iωk) can

be chosen so that there exist α > 0 and M > 0 such that ‖N r
e (iωk)‖ <

M(|ωk|+ 1)α for all k ∈ Z.
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2. Let P ∈ FP have a right coprime factorization (Npr, Dpr). If Npr ∈
M

(
H∞−

)
then the (Ŷ (fk, ak) , ∅)-regulation problem is solvable if and only

if Npr is right invertible at points iωk, and the right inverses N r
pr(iωk) can

be chosen so that there exist α > 0 and M > 0 such that
∥∥∥N r

pr(iωk)
∥∥∥ <

M(|ωk|+ 1)α for all k ∈ Z.

Proof. The claim follows by Corollary 4.6.11, Theorem 4.5.11, and Theorem
4.5.12.

Note that the above result and the proposed design procedure are valid
for a more general class of transfer functions than M

(
B̂(0)

)
. An example of

such a class of transfer functions is given by the stabilizable transfer functions
in FH∞−

since they have both coprime factorizations over H∞− by [87]. The
following example illustrates the design procedure of Section 4.6.2 for a plant
inM

(
B̂(0)

)
.

Example 4.6.16. In what follows, a robustly regulating controller is con-
structed for the transfer function

P(s) =
[

0 1
s

1
s−2

1
s+1

1
s

+ 1−e−s
s(s+1) 0

]

stemming from a delay system. First a right coprime factorization is to be
searched. To this end, the transfer function is presented as a sum of a rational
transfer function that contains the unstable poles of the plant, and a stable
transfer function.

P(s) =
[
0 1

s
1
s−2

0 1
s

0

]
+
[

0 0 0
1
s+1

1−e−s
s(s+1) 0

]
= Pr(s) + Ps(s).

A right coprime factorization of the rational matrix Pr is (Nr, Dr) where

Nr(s) =
[
0 1

s+1
1
s+1

0 1
s+1 0

]
and Dr(s) =

1 0 0
0 s

s+1 0
0 0 s−2

s+1

 .
Set X = I and

Y =

0 0
0 1
3 −3

 .
Now, Y Nr +XDr = I. Choose Dpr = Dr and

Npr = Nr + PsDr =
[

0 1
s+1

1
s+1

1
s+1

1−e−s
(s+1)2 0

]
.
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The pair (Npr, Dpr) is a right coprime factorization since

NprD
−1
pr = NrD

−1
r + Ps = Pr + Ps = P

and

Y Npr + (X − Y Ps)Dpr = Y Nr + Y PsDr +XDr − Y PsDr = I. (4.19)

Set N0 = Y and

D0 = X − Y Ps =


1 0 0
−1
s+1 1− 1−e−s

s(s+1) 0
3
s+1

3(1−e−s)
s(s+1) 1

 .
The equation (4.19) shows that C0 = D−1

0 N0 is a stabilizing controller of P .
A robustly regulating controller for Npr is given next. It is easy to see that

the structure at infinity of Npr is
{

1
s+1 ,

1
s+1

}
, so a robustly regulating controller

for Npr exists by Corollary 4.6.12 and Corollary 4.5.13. Since

Npr(s)

 0 s+ 1
0 0

s+ 1 0

 = Npr(s)N r
pr(s) = I

a right inverse of Npr(iωk) is N r
pr(iωk) for all k ∈ Z. Choose ε∗ = 1

60γ . A robustly
regulating controller for Npr is

Ciε(s) =
∑
k∈Z

εN r
pr(iωk)

(s− iωk)(1 + |ωk|)2 =

 0 cε(s)
0 0

cε(s) 0

 ,
where cε(s) = ∑

k∈Z
ε(1+iωk)

(s−iωk)(1+|ωk|)2 and ε is any positive real number in (0, ε∗].
One now has a right coprime factorization (Npr, Dpr) of P , a stabilizing

controller C0 of P , and a robustly regulating controller Ci of Npr. Thus, a
robustly regulating controller for P is

Cε(s) =
[
C0(s) I

] [I Npr(s)
0 Dpr(s)

] [
I
Ciε(s)

]
=


0 cε(s)
0 s(1+s+cε(s))

s(s+1)+e−s−1
3 + cε(s) −3s(1+s+cε(s))

s(s+1)+e−s−1

 ,
where cε(s) = ∑

k∈Z
ε(1+iωk)

(s−iωk)(1+|ωk|)2 and ε is a real number in
(
0, 1

60γ

]
. Recall that

γ > 0 is any number less than one quarter of the minimum distance between
the poles iωk. Note that the tuning parameter ε > 0 enables online tuning of
the controller if necessary. �
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4.7 On Smoothness of the Reference and Dis-
turbance Signals

A cursory survey on the role of the signal smoothness in frequency domain
regulation is made in this section. The purpose is not to do a comprehensive
study on the subject, but to illustrate some related ideas by examples. The
plants are assumed to be inM

(
B̂(0)

)
.

It was shown in Section 3.3 that, if a robustly regulating controller was given
in the time domain, the transfer functions of all perturbed plants should satisfy
certain conditions related to the smoothness of the signals. Corollary 4.6.15
shows that for plants in Callier-Desoer class of transfer functions the solvability
of the robust regulation problem depends solely on the asymptotic behavior of
the numerator matrix Npr(iωk), as k →∞. Thus, unlike in the time domain, the
solvability of the frequency domain robust regulation problem does not depend
on the smoothness of the reference or disturbance signals.

In the frequency domain, one might want the error signal to be in H∞ for
all reference and disturbance signals. The smoothness properties are of use in
that case. The required smoothness is related to the asymptotic behavior of the
plant as shown by the following example.
Example 4.7.1. Let P(s) ∈ H∞− be such that the (Ŷ (fk) , {0})-robust regula-
tion problem is solvable. It is shown that, if the reference signals are smooth
enough, it is possible to find such a robustly regulating controller that ê ∈ H∞
for any reference signals.

Consider a controller of form

Cε(s) =
∑
k∈Z

εgk
P(iωk)(s− iωk)

.

It is desired that ê = (1 + PC)−1ŷr ∈ H∞ for all ŷr ∈ Ŷ (fk). This implies that
(1 + P(s)Cε(s))−1∑

k∈Z
fk

s−iωk
should be bounded on the imaginary axis. The

value of (1 +P(s)Cε(s))−1∑
k∈Z

fk
s−iωk

at iωk is fk
εgk

. It is seen that, if supk∈Z fk
gk
<

∞, then one can choose ε to be small enough to guarantee that ê ∈ H∞.
The terms gk are restricted by that Cε(s) should be well defined for almost

all s ∈ C+. This happens if
(

gk
P(iωk)

)
k∈Z
∈ `2. If one chooses fk < |P(iωk)|

(1+|ωk|)

1
2 +ε0

and gk = |P(iωk)|
(1+|ωk|)

1
2 +ε0 , then Cε is well defined and supk∈Z fk

gk
<∞. Thus, choosing

ε small enough makes the given controller to satisfy the required properties. �
In the next example, the growth rate of the closed loop is considered. There

a robustly regulating controller is given for a plant, and it is shown that there
exists perturbations such that the closed loop remains P-stable while the poly-
nomial growth rate (1 + |iω|)α of ê on the imaginary axis can grow arbitrarily
large.
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Example 4.7.2. Choose P(s) = 1. Set ωk = k and fk = (1 + |k|)−1. The con-
troller C = ∑

k∈Z
ε

(1+|k|)(s−iωk) solves the (Ŷ (fk) , {0})-robust regulation problem
for ε > 0. Here ε is chosen so that for all k ∈ Z

ε

∣∣∣∣∣∣∣∣
∑
l∈Z
l 6=k

1
(1 + |k|)(s− iωk)

∣∣∣∣∣∣∣∣ <
1
4 .

Consider the perturbed systems

P ′(s) =
1 +

∑
k∈Z

εhk
s− iωk + zk

−1

∈ P

where hk = (1 + |k|)−α and zk = (1 + |k|)−β for some α > 1 and β > 1. It is
easy to verify that 1

P ′(s) ∈ P and

(
1
P ′(s) + C(s)

)−1

=
1 +

∑
k∈Z

(
εhk

s− iωk + zk
+ 1

(1 + |k|)(s− iωk)

)−1

∈ P.

Thus, (1 + P ′C)−1 = (P ′)−1 ((P ′)−1 + C)−1 ∈ P. An analysis similar to that in
the proof of Theorem 4.3.3 shows that C ((P ′)−1 + C)−1 ∈ P, so C(1 +P ′C)−1 ∈
P. It follows that the closed loop system remains P-stable in the perturbation.

Taking the limit at iωk shows that there exists a constant M > 0 such that∣∣∣∣∣∣(1 + P ′(iω)C(iω))−1 ∑
k∈Z

fk
s− iωk

∣∣∣∣∣∣ > M
hk
zk

= M(1 + |k|)β−α.

Since the constants α > 1 and β > 1 can be chosen arbitrarily, it follows that
ê(s) is polynomially bounded on the imaginary axis while the polynomial growth
rate β − α can be arbitrarily large. �

Example 4.7.1 shows that the error signals are bounded on the imaginary
axis, if the smoothness of the reference signals is restricted appropriately. On
the other hand, Example 4.7.2 shows that some restrictions over the set of
perturbations is needed, if the perturbations should preserve the boundedness
of the error signal. The situation is somewhat similar to that in Chapter 3 with
time domain plants. In the time domain, sufficient smoothness of the signals is
guaranteed by the solvability of the regulator equation, but it is hard to give
simple conditions that imply sufficient smoothness properties of the signals in
the frequency domain.
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4.8 S-stability and Robust Regulation in FS

When the robust regulation problem with P-stability was considered it was seen
that the solvability of the problem was related to the decay rate of the plant.
The purpose of this section is to get rid of this restriction. The first step to that
direction is to weaken the stability type further, which leads to the definition
of S-stability. The results of Section 4.4 and Section 4.6 hold if P-stability is
replaced by the new stability type. The only exception is that the condition on
the decay rate of P can be removed.

Unlike polynomial stability, strong stability does not limit the growth rate of
the resolvent operator’s norm on the imaginary axis. It was seen in Section 3.3
that, if strong stability is considered, one can always restrict the smoothness of
the reference and disturbance signals appropriately so that the robust regulation
problem is solvable. With polynomial stability the norm of the original resolvent
operator should be polynomially bounded. It is seen below that the situation
is very similar also in the frequency domain; the removal of the polynomial
boundedness assumption of P-stability allows the robust regulation problem to
be solved in a more general class of transfer functions.

A complex function f is said to be S-stable if it satisfies the following con-
ditions:

1. f is analytic in an open set containing C+, and

2. f ∈ H∞β for all β > 0.

The set of all S-stable functions is denoted by S. Together with pointwise
addition and multiplication S forms an integral domain with an identity.

To avoid confusion, the regulation problem to be considered is formulated in
terms of S-stability. Let Ŷ and D̂ be sets of reference and disturbance signals,
respectively. Let P ∈ M (FS) be given. The (Ŷ, D̂)-regulation problem is
defined in the following way: Find a controller C ∈ M (FS) such that

1. C S-stabilizes P , and

2. for all ŷr ∈ Ŷ and d̂ ∈ D̂

ê =
[
(I + PC)−1P (I + PC)−1

] [ d̂
ŷr

]
∈M (S) .

The (Ŷ, D̂)-robust regulation problem is defined in the following way: Find
a controller C ∈ M (FS) such that

1. C S-stabilizes P , and

2. C solves the (Ŷ, D̂)-regulation problem for all the plants it stabilizes.
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Since P ⊆ S it is clear that the signal generators from Section 4.3.2 generate
all the desired signals. The proofs of Theorem 4.5.6 and Theorem 4.5.6 apply
to the current problem so one has the following theorem.
Theorem 4.8.1. Consider a plant P ∈ Fn×m

S . Let θ be the function (4.8) with
any sequence of positive real numbers (hk)k∈Z ∈ `2. Fix a sequence (fk)k∈Z ∈ `2.

1. If P has a left coprime factorization and C is a stabilizing controller with a
right coprime factorization (Ncr, Dcr), then C solves the (Ŷ (fk, ak) , {0})-
robust regulation problem if and only if θ−1Dcr ∈M (S).

2. Let P have a right coprime factorization, and let C be a stabilizing con-
troller. If (

∼
N e,

∼
De) is a right coprime factorization of Ce =

[
C 0

]
∈

Fm×(n+m)
S , then C solves the (Ŷ (fk, ak) , {0})-robust regulation problem if

and only if θ−1
[
I 0

] ∼
De ∈M (S).

Note that the assumption hk = fk was not needed in the above theorem.
This is due to the fact that the set θ−1S where θ is the function (4.8) does not
depend on the sequence (hk)k∈Z ∈ `2 chosen.

If θ is the function (4.8), then θ−1 ∈ H∞β for all β > 0. Consequently, if
D ∈ M (S) then θ−1D ∈ M (S) if and only if D(iωk) = 0 for all k ∈ Z. This
shows the following corollary.
Corollary 4.8.2. Consider a plant P ∈ Fn×m

S . Let θ be the function (4.8) with
any sequence of positive real numbers (hk)k∈Z ∈ `2. Fix a sequence (fk)k∈Z ∈ `2.

1. If P has a left coprime factorization (Npl, Dpl) and C is a stabilizing con-
troller with a right coprime factorization (Ncr, Dcr), then C solves the
(Ŷ (fk, ak) , {0})-robust regulation problem if and only if Dcr(iωk) = 0 for
all k ∈ Z.

2. Let P have a right coprime factorization (Npr, Dpr) and let C be a sta-
bilizing controller. If (

∼
N e,

∼
De) is a right coprime factorization of Ce =[

C 0
]
∈ Fm×(n+m)

S , then C solves the (Ŷ (fk, ak) , {0})-robust regulation

problem if and only if
[
I 0

] ∼
De(iωk) = 0 for all k ∈ Z.

It is now possible to state a result that corresponds to the time domain
blocking zero condition for robustly regulating controllers in [26].
Corollary 4.8.3. Consider a plant P ∈ M (FS). Let θ be the function (4.8)
with any sequence of positive real numbers (hk)k∈Z ∈ `2, and assume that P
has right or left coprime factorization. A controller C solves the (θS, θS)-robust
regulation problem if and only if it S-stabilizes P and[

− (I + P ′(iωk)C(iωk))−1P ′(iωk) (I + P ′(iωk)C(iωk))−1
]

= 0

for all P ′ which C S-stabilizes.
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Since the internal model principle holds by Theorem 4.8.1, the results of
Section 4.5.2 are applicable by Remark 4.5.14. Thus, the left coprimeness of the
numerator matrix of a right coprime factorization and the generating element
characterizes the solvability of the robust regulation problem.

The controller design of Section 4.6 can be carried out with S-stability. In
fact the proofs are easier, because no attention to the behavior on the imaginary
axis needs to be payed as long as the closed loop system remains analytic on
the imaginary axis. This is why the polynomial decay rate of a plant P(s) ∈
M

(
H∞−

)
is not needed; only right invertibility of P(iωk) is required for all

k ∈ Z.

Theorem 4.8.4. Let θ be the function (4.8). If P ∈M
(
H∞−

)
, then (θI,P) is

left coprime if and only if P(iωk) is right invertible for all k ∈ Z.

Since the controller design procedure of Section 4.6.2 for unstable plants is
applicable, the above theorem gives an easy characterization for the solvability
of the robust regulation problem with S-stability for all plants in the Callier-
Desoer class of transfer functions.

Example 4.8.5. Recall the transfer functions in Example 2.2.18 and Exam-
ple 3.2.17. They both belong to H∞− and do not have transmission zeros on
the imaginary axis. Thus, the (Ŷ (fk, ak) , {0})-robust regulation problem with
S-stability is solvable with both of the transfer functions. A comparison to Ex-
ample 4.6.13 illustrates the difference between the robust regulation problems
with S-stability and P-stability. �



Chapter 5

Concluding Remarks and
Directions for Further Research

5.1 Concluding Remarks
In this thesis, the robust regulation problem with an infinite-dimensional exosys-
tem was studied. The main emphasis was in the frequency domain formulation
of the problem. The thesis was divided into three somewhat independent topics
– the structure at infinity, the time domain robust regulation problem and the
frequency domain robust regulation problem – each of which was studied in its
own chapter. Relations between the topics were discussed.

In Chapter 2, a new definition for the structure at infinity was given. The
strength of the definition, when compared to the definitions based on the Smith-
McMillan form, is that it is available for a more general class of transfer func-
tions, including the transfer functions of plants with an infinite-dimensional
state operator. However, the structure at infinity has weak algebraic proper-
ties compared to the conventional definition, which is an unavoidable trade-off
caused by the complicated high frequency behavior of transfer functions that
are not meromorphic at infinity. The structure at infinity describes the con-
vergence or divergence rate of the transfer function at high frequencies. This
property was exploited in Chapter 3 and Chapter 4. The structure at infinity
of exponentially stabilizable plants was shown to be invariant with respect to
state feedback and output feedback, but it was also shown that in general it has
weak robustness properties.

Chapter 3 was dedicated to the study of the robust regulation problem in
the time domain. In the introduction of the chapter, special attention was paid
to how the robustness should be defined and what is an appropriate type of
stability. The research results of the chapter focused on the relation between
the structure at infinity of the plant transfer function and the solvability of the
output regulation problem. The solvability of the feedforward output regula-
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tion problem was characterized and the required smoothness of the reference
signals was revealed in Section 3.2 by using the structure at infinity of the plant
defined in Chapter 2. Roughly speaking, the faster the transfer function ap-
proaches zero at high frequencies the smoother the signals should be for the
robust regulation to be solvable. A similar connection between the robust er-
ror feedback output regulation problem and the high frequency behavior of the
plant transfer function was found in Section 3.3. Since a small perturbation
can change the structure at infinity drastically, see Example 2.5.5, the found
connection shows that the solvability of the Sylvester equation (3.10) has weak
robustness properties. Consequently, the robustness properties of the controller
are generally weak even if the perturbations are assumed to retain the closed
loop stability. It was shown that the degree of robustness can be increased by
restricting the set of reference and disturbance signals to a signal class with
better smoothness properties.

The formulation of the robust regulation problem in the frequency domain
in Chapter 4 used the ideas of Chapter 3, i.e., the definition of robustness, the
stability types, and the classes of the reference and disturbance signals were all
inspired by their time domain counterparts. The results found in this thesis
show that this approach is reasonable.

The reference and disturbance signals were chosen to be the Laplace trans-
forms of those generated by the exosystem (3.2). The signals had an infinite
number of poles on the imaginary axis. Consequently, the robust regulation
problem could not be solved if H∞-stability of the closed loop system was re-
quired. This problem was solved by introducing two new rings of stable transfer
functions, P and S, resembling polynomial stability and strong stability in the
time domain. The reason why these stability types made the robust regulation
problem solvable even if the plant transfer function was strictly proper was that
they allowed the closed loop transfer function to grow on the imaginary axis.

The use of the new rings of stable transfer functions lead to another prob-
lem, namely, in what sense should the robustness be understood. Again, the
answer was found by using a time domain idea. The robustness type considered
was defined by saying that a controller is robustly regulating if it solves the
regulation problem for all the plants it stabilizes. It should be noted that the
same type of robustness was considered already in [7], where a design procedure
of a robustly regulating controller was proposed in the Callier-Desoer class of
transfer functions. Defining robustness this way made it possible to consider
the robustness of regulation without bothering the robustness of stability. This
is why there was no need to find topologies for the proposed rings of stable
transfer functions. Although omitting the topological aspect might seem to
restrict the usability of the theory, one should note that the classical concept
of robustness necessitates a robustly regulating controller to posses an internal
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model, both in the time domain and in the frequency domain. This implies
that for situations where the classical notion of robustness is feasible, the two
concepts of robustness are equivalent.

The theory of robust regulation for rational transfer functions in [92] made
use of coprime factorizations and the invariant factors. In particular, the fre-
quency domain version of the internal model principle has the following form
for rational transfer functions:

The internal model principle for rational transfer functions: Let
the pair (N,D) be a left coprime factorization of the generator Θ and
(Ncr, Dcr) be a right coprime factorization of a stabilizing controller C.
If θ is the largest invariant factor of D, then the controller is robustly
regulating if and only if θ divides Dcr.

In this thesis, coprime factorizations of plants and controllers were used, but
invariant factors could not be defined in the algebraic structures considered.
However, a generating function θ for the signals considered in this thesis that
corresponds to the largest invariant factor in the above formulation of the in-
ternal model principle was found in Section 4.3.2. This function served as an
internal model and a generalization of the above formulation of the internal
model principle to infinite-dimensional systems was found in Section 4.5.1. In
addition, solvability of the robust regulation problem was characterized by using
the function θ and a coprime factorization of the plant.

In Section 4.6.1, it was shown that the Davison’s robust controller design for
finite-dimensional stable plants can be generalized in a straightforward manner
for H∞− -stable plants if the closed loop was required to be P-stable. This con-
troller design and the solvability condition from Section 4.5.2 revealed a simple
solvability condition for H∞− -stable plants, i.e., the robust regulation problem
with P-stability was shown to be solvable if and only if the decay rate of the
plant transfer function at the zeros of the generator θ was at most polynomial.
Later in Section 4.8, it was shown that this solvability condition further simpli-
fies if only the S-stability of the closed loop is required; in this case, the plant
transfer function was required to be only invertible at the zeros of the generator
function θ.

A simple way to design a controller for a plant transfer function with a right
coprime factorization (Npr, Dpr) was presented in 4.6.2, provided one is able
to robustly regulate the numerator Npr. To that end, one needed to find any
stabilizing controller Cs for the plant and a robustly regulating controller Ci for
Npr. The controller Ci contained the internal model and appropriately com-
bining the two controllers resulted into a stabilizing controller with an internal
model. The power of the controller design lies in that one can separately design
a stabilizing controller – several techniques readily available – and a robustly
regulating controller for a stable plant, which is generally easier task than to
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design a robustly regulating controller for an unstable plant directly. In Section
4.6.3, it was seen that the proposed controller design is especially suitable for
plants in the Callier-Desoer class of transfer functions since the plants in the
Callier-Desoer class possess a right coprime factorization with the numerator
matrix inM

(
H∞−

)
.

5.2 Directions for Further Research
A fairly comprehensive study on the robust regulation problem was made in this
thesis, but there are still many related topics that need to be studied. These
topics are discussed in this section. The topics are mainly related in one way or
another to the connection between the time domain and the frequency domain
description of the robust regulation problem, which was not studied in this
thesis. This connection is important for applicability of the theory developed in
this thesis due to dominating role of state space representations in the modern
control engineering.

The structure of transfer functions at infinity defined in Chapter 2 described
the rate of the convergence or divergence of the transfer function at high fre-
quencies and was sufficient to make the relation between the smoothness of the
signals and the solvability of the time domain output regulation problem ap-
parent. In many problems, for example model matching, the structure needs
to be described in a certain algebraic structure and the algorithm used when
defining the structure should work in that algebraic structure. In such a case,
one would need the algebraic structure to be a principal ideal domain so that
the Smith form exists. Consequently, the definition of the structure at infin-
ity given here is too weak. However, many of the algebraic structures related
to infinite-dimensional plants are not principal ideal domains. Two interesting
research topics arise. First, would it be possible to find a way to find easily
verifiable conditions under which a diagonal form similar to Smith form exists
for plant transfer functions of infinite-dimensional systems? Secondly, would it
be possible to define the structure at infinity without using any algorithm at all,
particularly in the way that one could define the structure of a linear system
with infinite-dimensional input and output spaces?

In the time domain theory for robust regulation developed in [34, 39, 70, 72]
the perturbations were assumed to preserve the solvability of the Sylvester equa-
tion ΣS + AeΣ = Be. In Chapter 3, the solvability of the equation with SISO
plants was shown to be related to the structure of the plant transfer function
at infinity. The results in the same chapter for feedforward controllers indicates
that the solvability results should extend to MIMO plants. Furthermore, the re-
lation between the solvability and the structure at infinity shows the importance
of understanding the robustness properties of the structure at infinity. Some
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results to this direction were presented in Chapter 2, but a more detailed study
on this subject should be made in order to get a better idea on the perturbations
that a controller possessing an internal model tolerates.

It was mentioned that the relation between the time domain and the fre-
quency domain formulations of the robust regulation problem should be studied.
Maybe the most important part of this work is providing realization theory for
the frequency domain controllers. A specific research question would be: under
which conditions does a realization of a frequency domain controller solving the
robust regulation problem solve the time domain robust output regulation prob-
lem? A part of the research topic would be finding out in what sense realizations
of P-stabilizing or S-stabilizing controllers stabilize the extended system in the
time domain. It was mentioned that P-stability and S-stability resemble poly-
nomial stability and the strong stability in the time domain, respectively. Under
the assumption that the state operator of a plant is polynomially and strongly
stable and generates a bounded semigroup, one knows that its transfer function
is P [3], but it would be hard to say when P-stability of the plant transfer func-
tion implies polynomial stability in the time domain. The connection between
the strong and S-stability is even more fuzzy. Strong stability allows accumula-
tion points of point spectra on the imaginary axis, but S-stability does not allow
accumulation points of poles there. Even the current definition of S-stability
is sufficient to tackle the problem considered in this thesis, one might want to
revise the definition in order to facilitate more complicated signal generators or
plants and to have stronger connection between the strong stability in the time
domain and the S-stability in the frequency domain.

With the type of robustness considered in this thesis, the perturbations a
robustly regulating controller tolerates are just the perturbations preserving
closed loop stability. Thus, the robustness of stability is of importance. To be
able to use stability theory for topological rings studied by Vidyasagar et al.
in [94], one needs to define a topology to the rings P and S. It would be even
better if one is able to find a metric inducing a suitable topology, since it would
enable quantitative measurement of robustness and deeper understanding of
robustness of stability. The author believes that the robustness properties of
P-stability would be better and the task of finding a suitable topology would be
easier for P compared to finding it for S-stability, because the transfer function
behavior on the imaginary axis is generally better in P than in S. At least
in the time domain, Paunonen has been able to find classes of perturbations
preserving polynomial stability [69].

The time domain theory of robust regulation in [39, 68, 72] is suitable for
more general signal classes than those considered in this thesis. The theory al-
lows the state operator of the exosystem to be a block diagonal operator with an
infinite number of non trivial Jordan blocks on its diagonal. The signals gener-
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ated by such operators correspond to signals with higher order poles. One possi-
ble direction for future research is to generalize the results in this thesis for such
signals. The generalization for signals with a finite number of unstable higher
order poles and an infinite number of simple poles is believed to be straight-
forward; one could possibly combine the finite-dimensional controller design for
signals with higher order poles from [33] and the controller for infinite-number
of simple poles presented in this thesis. The theoretical results concerning the
solvability of the problem might also generalize in a straightforward manner
for generators with infinite number of higher order poles. However, since the
controller design in [33] relied on the finite-dimensionality of the exosystem, the
actual controller design for signals with an infinite number of unstable higher
order poles might be hard or even impossible.

The class of linear systems with bounded input and output operators is
quite restricted. One possible research direction would be to extend the time
domain theory to systems with unbounded input and output operators to allow
boundary control and measurement. It would be also interesting to allow the
plants to have some nonlinearities. One possible class of systems are the semi-
linear ones. Although the robust regulation of nonlinear systems has been
studied before, see [88] and the references therein, it would be interesting to see
whether the new insights presented in this thesis hold for a more general class
of systems.
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Appendix A

Selected Results from Literature

A.1 Some Results from Linear Algebra
The following inversion formula called the Woodbury matrix identity is used
extensively in this thesis:

(X + Y ZV )−1 = X−1 −X−1Y (Z−1 + V X−1Y )−1V X−1, (A.1)

where X and Z are invertible.
The Binet-Cauchy formula [81, Theorem 1.3] states, that if A and B are

n×m and m× l matrices, respectively, and i ≤ min{n, l}, then

|AB|ir,c =
∑

h
|A|ir,h |B|

i
h,c . (A.2)

A.2 Riesz Basis Assignment
The following result is a part of [98, Theorem 1]. Let G be the infinitesimal
generator of a C0-semigroup on a separable Hilbert space H. One makes the
following hypotheses.

H1 The operator G has a compact resolvent, and its spectrum is simple and
is denoted by σ (G) = {λk | k ∈ N}.

H2 The domain D (G∗) of the adjoint operator G∗ is a Hilbert space with the
graph norm. D′ (G∗) is the topological dual of D (G). It is supposed that
b ∈ D′ (G∗).

H3 The eigenvectors {φk ∈ H | k ∈ N} of G form a Riesz basis in H and the
biorthogonal sequence corresponding to the eigenvectors of G∗ is denoted
by {ψk ∈ H | k ∈ N}. Set bk = (ψk, b) where (·, ·) is the classical duality
product on D (G∗)×D′ (G∗). Suppose that bk 6= 0 for all k ∈ N. Denote
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dk = infk 6=l∈N{|λk−λl|}. Suppose that there exists a constantM > 0 such
that for all λ /∈ ⋃k∈NB dk

3
(λk) and l ∈ N

∞∑
k=1

∣∣∣∣∣ bk
λ− λk

∣∣∣∣∣
2

≤M (A.3)

and

∑
k∈N
k 6=l

∣∣∣∣∣ bk
λl − λk

∣∣∣∣∣
2

≤M. (A.4)

Denote the unique extension of G : D (G)→ H ⊆ D′ (G∗) in L (H,D′ (G∗))
by Ĝ. The linear operator Gh : D (G) → D′ (G∗) admits a unique extension
from H to D′ (G∗) still denoted by Gh, and

Ghx = Ĝx+ b〈x, b〉.

The domain of Gh is defined to be

D (Gh) =
{
x ∈ H

∣∣∣ Âx+ b〈x, h〉 ∈ H
}
.

Theorem A.2.1. Assume that the hypotheses H1-H3 above hold.

1. For every h ∈ H the operator Gh is regular spectral, i.e., it has a compact
resolvent and its eigenvectors form a Riesz basis of H, and the spectrum
σ (Gh) = {νk | k ∈ N} satisfies condition

∑
k∈N

∣∣∣∣∣νk − λkbk

∣∣∣∣∣
2

. (A.5)

2. If Λ = {νk | k ∈ N} is a given set satisfying νk 6= νl for k 6= l, then
there exists an element h ∈ H such that the operator Gh has spectrum
σ (Gh) = Λ if and only if the set Λ satisfies the condition (A.5). Moreover,
the feedback is given by

h =
∑
k∈N

hkψk where hk = νk − λk
bk

∏
l∈N
l 6=k

.

The infinite product above is understood as a limit in `2.
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A.3 The Callier-Desoer Class of Transfer Func-
tions

Here the Callier-Desoer class of transfer functions and some of its basic proper-
ties are presented. The Callier-Desoer algebra was first defined by Callier and
Desoer in [9]. The results presented here are from [8, 14].

Let β be a real number, and denote the class of functions that Lebesgue
measurable and absolutely integrable on the interval [0,∞) by L1(0,∞). No-
tation A(β) is used for the class of complex functions that can be presented in
the form

f(t) =
{
f0(t) +∑

i∈N fiδ(t− ti), for t ≥ 0,
0, for t < 0,

where ti ∈ [0,∞), t1 = 0, ti > 0 for i ≥ 2, δ(t − ti) is the ti-centered delta
distribution, e−β·f0(·) ∈ L1(0,∞), and (fi)i∈N is a sequence of complex numbers
such that ∑i∈N = |fi|e−βti <∞.

The set A(β) with norm

‖f‖ =
∫ ∞

0
e−βt|f0(t)|dt+

∑
i∈N
|fi|e−βti ,

and the convolution product is a commutative Banach algebra with identity.
The algebraic properties of A(β) are inherited by Â(β), the set of Laplace
transforms of A(β). Subalgebras Â−(β) and Â∞(β) of Â(β) are defined by

Â−(β) =
{
f̂ ∈ Â(β)

∣∣∣ f̂ ∈ Â(β0) for some β0 < β
}

and

Â∞(β) =

f̂ ∈ Â−(β)

∣∣∣∣∣∣∣∣∣ inf
s∈C+

β

|s|>ρ

|f̂(s)| > 0 for some ρ > 0

 .

Note that Â∞(β) is a subalgebra of Â−(β).
The Callier-Desoer class of scalar transfer functions is defined to be

B̂(β) =
{
f̂ = n̂

d̂

∣∣∣∣∣ n̂ ∈ Â−(β) and d̂ ∈ Â∞(β)
}
.

The Callier-Desoer class of transfer functions is defined to beM
(
B̂(β)

)
.

Every matrix P ∈M
(
B̂(β)

)
can be presented in the form

P = NprD
−1
pr = D−1

pl Npl,
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where Dpr and Dpl are square matrices satisfying det(Dpr), det(Dpl) ∈ Â−(β) \
{0}, and there exist matrices X, Y, X̃, Ỹ ∈M

(
Â−(β)

)
such that

XNpr + Y Dpr = I

and

NplX̃ +DplỸ = I

on C+
β . The pairs (Npr, Dpr) and (Npl, Dpl) are said to be a right coprime

factorization and a left coprime factorization of P , respectively.
Lemma A.7.47 in [14] states that the Laplace transform f̂ of an f ∈ A(β)

is holomorphic and bounded on C+
β . Consequently, if (N,D) is a right or a left

coprime factorization of a transfer function inM
(
B̂(0)

)
, then N ∈ H∞− .






