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Abstract

The aim of systems biology is to study living beings at the system level.
This means that instead of studying just single molecules, we also try to
understand the dynamics of larger systems such as biochemical and gene
regulatory networks. By entering the genome and proteome wide level we
are faced with great opportunities but also challenges.

The introduction of high-throughput measurement technologies for cellu-
lar level studies during the last decade has made it necessary to use advanced
signal processing methods in computational systems biology and bioinfor-
matics. The gene activity and protein level measurement technologies avail-
able today produce huge amounts of data that cannot be processed manually.
Thus, advanced computational methods for analysing the data and making
conclusions are essential.

The aim of this thesis is to introduce efficient signal processing methods
that can be used in making relevant decisions based on systems biological
measurement data. The thesis has been divided into three logical parts.

In the first part of the thesis, gene expression microarray measurements
are studied. These measurements provide one of the main type of data used
in the analyses later in the thesis. A simulation model is then introduced
for the generation of microarray data with realistic statistical and biological
properties. This data can be used e.g. in the generation of ground truth
data for simulation studies.

In the second part, time series signals measured from genes with microar-
rays are studied. Periodicity detection analysis of gene microarray data is
especially difficult due to short time series length, the vast number of mea-
sured genes and unknown type of noise in the measurements. We introduce
different robust methods for both uniformly and nonuniformly sampled time
series. The introduced methods are shown to be insensitive to changes in
the assumed statistical model for the data and thus improve on robustness
if compared to classical methods.

Finally, in the third part we move from genomic data to the actual end
products of genes, proteins. A method is presented that can discern locations
in the protein sequence that are more prone to pathogenic mutations on
average than other locations in the sequence. The data we use is measured
from clinical patients and depict the hydropathy of different parts of the
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sequence. Changes in the hydropathy of a protein have been shown to relate
to structural and functional changes and thus provide an interesting field of
study.
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for the support and guidance they have provided me during my research
work. As the supervisors of my post-graduate studies, they have given me
the possibility to advance in my academic career and provided me the sup-
port and encouragement to successfully finish my studies. In addition, I
also want to thank all my colleagues in the Computational Systems Biology
group for all the insightful discussions and collaboration. I am especially
indebted to Dr. Matti Nykter for his invaluable comments, suggestions and
remarks regarding my thesis.

This work has been mainly carried out in Institute of Signal Processing
(ISP), Tampere University of Technology. The faculty and administration
of ISP are gratefully acknowledged. I have also gained invaluable expe-
rience while working in Institute for Systems Biology (ISB, Seattle, WA,
USA), Spring and Summer 2007. I want to express my sincerest grati-
tude to Professor Ilya Shmulevich for providing me the chance of working
in the international environment at ISB. The financial support of Tampere
Graduate School in Information Science and Engineering (TISE), Jenny and
Antti Wihuri Foundation, Tekniikan edistämissäätiö and Academy of Fin-
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Chapter 1

Introduction

All living organisms are composed of cells. Simple light elements such as car-
bon, hydrogen, oxygen, nitrogen and phosphorus provide the building blocks
for biomolecules such as carbohydrates, amino acids and deoxyribonucleic
and ribonucleic acids (DNA, RNA) [22]. Together, these building blocks
eventually form cells that are the basic units of life on earth. In all cells, be
it the simple one cell prokaryotes or more complex eukaryotes, chromosomal
DNA is the component that carries the hereditary information (genome)
that eventually leads to protein synthesis and other important functions in
the cell.

The ability to find the actual sequences of genes in DNA has been medi-
ated by the different genome sequencing projects. Although all humans
have different genomes, the differences between individuals are so small
that it has been seen profitable to discover a reference human genome se-
quence [63, 124]. Although the human genome is huge with approximately
3.2 billion nucleotide base pairs (the bases adenine (A), guanine (G), cyto-
sine (C) and thymine (T)), only some 2 percent of the genome is comprised of
genes. The current estimate is that there are approximately 20000 to 25000
protein-coding genes in humans [26]. The rest of the genome consists of so
called non-coding regions that are not coding proteins but instead have other
possible functions like providing structural stability or regulation of genetic
expression. The genomes of other organisms have been studied extensively
as well. For example, Escherichia coli [13], a species of bacteria (prokary-
ote) living in the intestines of mammals, Saccharomyces cerevisiae [46], the
quick growing budding yeast (eukaryote), and Drosophila melanogaster [23],
the fruit fly, have been studied as model organisms. Based on an assump-
tion that all living beings are descended from a common ancestor, different
species also share similar properties. Thus, studying these model organisms
is hoped to help also in studying humans (see e.g. [8]).

The function of genes is to produce meaningful proteins for the cell. Pro-
teins serve both functionally and structurally in cells and are composed of
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chemical compounds called amino acids. There are a total of 20 different
amino acids and each amino acid is coded by three nucleotides of the cor-
responding gene. Proteins compose large sets called proteomes, which are
much more complex than genomes, since single genes can give instructions
for tens or hundreds of proteins. The function of the genome is to virtually
stay the same whereas the proteins coded by the same gene can vary under
different conditions. Thus, for example the human proteome project [49] is
a much more demanding task than the genome project.

The synthesis of proteins, translation, is initiated in the cell nucleus by
the transcription of messenger RNA (mRNA) from the part of the DNA
that codes the corresponding gene [20]. The mRNA is then transported
out of the nucleus to the cytoplasm (see Figure 1.1). In the cytoplasm the
four-letter alphabet of nucleic acids is then translated on ribosomes into the
twenty-letter alphabet amino acid sequences, i.e. proteins. The ribosomes
themselves consist of three large RNA molecules and a collection of proteins.
Post-translational processing of proteins includes e.g. folding of the protein
into correct structure, cleavage of different parts of the protein, chemical
modification by for example attachment of new chemical groups and removal
of unneccessary parts. The finished protein can have different purposes;
some act as structural components and others have functional purposes like
signalling. Proteins can also initiate or inhibit the expression of genes. A
special class is self-regulating proteins that activate their own transcription
so that once the gene has been turned on it is expressed continuously. These
changes in the protein sructures and regulation loops cannot be accounted
for by the knowledge of the genome sequence alone and thus systematic more
wider approaches are needed to understand the functional properties of the
genome and the cell as a system.

As pointed out in [59], systems biology is a new field in biology that aims
at systems theoretic analysis of biological systems. Further, to understand
biological systems in their entirety, it is necessary to first investigate the
structure, e.g. genes, metabolism, physical structures etc., of such systems.
The next step is to understand the dynamics of the systems and how to
control them. Finally, the goal is to be able to both design new and modify
existing systems for desired properties. The approach of systems biology
is to cyclically carry out scientific experiments and perform computational
simulations and modelling so that the experiments are analysed computa-
tionally and the simulations are validated by further experiments.

According to [60], computational biology has two distinct branches. The
first branch is data mining and includes the extraction of hidden patterns
from experimental data. Applications of this approach include e.g. the infer-
ence of gene regulatory networks from gene expression profiles and detection
of cell cycle regulated genes based on microarray time series data [115]. The
main part of this thesis is devoted to developing novel analysis methods for
these types of studies. The second branch is termed simulation-based anal-
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Figure 1.1: Visualisation of protein synthesis in a cell. Illustration repro-
duced courtesy of the Canadian Museum of Nature, Ottawa, Canada.

ysis, which tests hypotheses on computers (relatively cheap) and provides
predictions to be tested by real experimental studies. The objective is to
predict the dynamics of the underlying system so that the assumptions made
about the operation of the system can be tested. The computational mod-
els are compared with experimental observations and inconsistencies mean
that our knowledge of the system is at best incomplete. Models surviving the
validation are used to make predictions that can be tested by experimenters.

Although the simulation based approach has received less attention in
the past, the current experimental molecular biology is now supplying the
high-throughput data necessary for also supporting the simulation approach.
With the progress of the genome and proteome projects and fast increase
in computational resources, there is tremendous potential in the systems
approach and computational modelling and analysis are hoped to provide
biological insights and predictions for targets like metabolic analysis, cell
cycle oscillations and so on. The attempt to understand biological systems
as systems, targeting the indentification of structure and dynamics, to con-
trol cellular behaviour by external stimuli and designing genetic circuits can
only be achieved by combining computation, system analysis, comprehen-
sive quantitative measurements and biological high-throughput experimen-
tal data.

There are many different components in a living cell that interact with
each other, including e.g. genes and their products. These components give
rise to the execution of normal cellular functions, seemingly complex (al-
though coherent according to [60]) behaviour and interplay with the sur-
rounding environment (including other cells). Cells are representative of
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systems where the “whole” is seemingly more than the “sum of parts”. A
systems-wide analysis approach of such systems can be useful in gaining in-
sight into their behaviour, requiring the introduction of a quantitative model
of the components and their interactions. Further, mathematical, statistical
and simulation tools are needed to understand the behaviour and how it
relates to experimental data.

Cellular level high-throughput measurement technologies for studying
biological organisms are the main tool of systems biology. The measurements
have to be first comprehensive, secondly quantitatively accurate and thirdly
systematic. For example, the ability to measure the expression of genes of
a whole genome in a parallel way was made possible by the introduction
of novel microarray technologies [113]. Although it is not yet possible to
measure the gene expression in single cells on a large scale but instead in
cell populations, this technology has truly changed the way genes can be
studied. With DNA gene expression microarrays we can inspect genome-
wide patterns of gene expression in any cell type, at any time and under any
specified set of conditions [6] thus enabling us to study also the interplay
between different genes. In Chapters 2 and 3 a more in depth discussion is
given of the measurement technology, microarray data and how to simulate
microarray measurements in a statistically sound way.

As pointed out, statistics and its applications in systems biology play an
important role in processing the biological high throughput data produced
by the modern measurement technologies. The high dimensional data we
are dealing with consists usually of only few samples (large p small n) and
the characteristics of interfering noise are unknown and non-Gaussian. Thus,
the classical analysis methods are simply not guaranteed to be optimal when
making conclusions based on the measurement data and it is imperative
to use robust analysis methods. One of the main aspects of this thesis is
to improve on robustness of computational analysis methods so that if our
initial assumptions about the nature of the stray signals do not exactly hold,
the results are still fairly reliable [84].

Cell cycle is an excellent example of how feedback loops work in a cell.
The cell cycle is depicted in Figure 1.2 where we can see the growth of the
cell and the eventual cell division after which the parent and descendant
cell begin the growth process again. Cell cycle can be studied with help of
microarray data by measuring gene expression over time. If the cells under
study are in synchrony, the expression of genes that are mostly involved
in the cell cycle should also oscillate at the period of the cycle. Chapter
4 deals with the problems of periodicity detection, including the detection
of cell cycle related genes, in time series measurements with applications in
microarray time series.

The effects of gene mutations are eventually observed in the proteins that
genes produce. Some nucleotide polymorphisms (variation of a nucleotide
in the DNA) do not change the corresponding amino acid alphabets at all
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Figure 1.2: Illustration of the different phases of cell cycle, eventually leading
to cell division.

and some amino acid mutations do not change the operation of the protein
but the most interesting changes in proteins are the ones that alter the op-
eration. The change of operation of a protein can be either beneficial or
unfavourable. The detection of unfavourable changes that lead to malig-
nant cancer is of utmost importance since knowing what causes the cancer
can help finding specifically targeted cures. A disease phenotype can arise
if amino acid substitutions result in structural alterations or loss of critical
function in the amino acid sequence. However, it is also known that protein
folds are rather robust and allow insertions to numerous sites without loss of
function [100]. Protein folding refers to the process of amino acid sequences
taking the three dimensional shape that depends on the surrounding envi-
ronment. Hydrogen bonding and what is called hydrophobic effect are large
contributors to the stability of the three dimensional shape of proteins [94].
In general, hydrophobic side chains of amino acids repel water and minimis-
ing their contact with water is an important factor contributing to the three
dimensional shape. A backbone hydrogen-bonding based theory of folding
is given in [106].

Predicting pathogenic mutations based on amino acid strings is difficult.
Protein amino acid strings are seemingly random in the way that random
permutations of real protein amino acid strings are difficult to discern from
the original sequence by statistical means [137]. On the other hand, protein
hydropathy sequences, which also relate to protein solvent accessibility, have
been shown to deviate from randomness and are closely related to protein
folding. Since amino acid changes modify the corresponding hydropathy val-
ues and cause misfolding, further leading to incorrect function, the study of
hydropathy values is of great interest. A nonlinear analysis method known
as recurrence quantification analysis (RQA) [126] has been successfully used
in discriminating between different mutation classes based on hydropathy
data [99]. A modification of RQA was used by us in Publication-V in pre-
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dicting pathogenic mutation locations based on protein solvent accessibil-
ity data. Therefore, Chapter 5 is dedicated to the analysis of protein sol-
vent accessibility sequences and how, with this information, we can predict
pathogenic mutations in protein sequences.

Finally, concluding remarks, review of the results and future plans are
discussed in Chapter 6
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Chapter 2

Overview of microarray

technologies

Modern high throughput methods for measuring gene expression, the activ-
ity of the genome to produce proteins in cells, have been in brisk development
in the past decade. Protein production is mediated by the gene specific ri-
bonucleic acids (RNA), so measuring the RNA content of a cell is indicative
of the activity of its genes. Modern gene microarray technologies provide an
elegant high throughput method of measuring this activity at the systems
level.

In general, microarray technologies include deoxyribonucleic acid (DNA)
hybridisation arrays, such as spotted two-channel arrays [113] and single
channel arrays [74, 77], but also different protein arrays, tissue arrays and
combinatorial chemistry arrays. The technological development in the area
of different microarray technologies is likely to continue at a fast pace due
to their huge success [6].

Gene expression microarrays make it possible to study genome-wide pat-
terns of gene expression in any cell type at given times and set of condi-
tions [6]. In gene expression microarray experiments, the total RNA of a
cell population under study is reverse-transcribed into complementary DNA
(cDNA, radioactively or fluorescently labelled), which is then hybridised on
a glass or membrane support holding target DNA at known fixed positions.
The cDNA that has attached to their counterparts on the support is then
read by a laser excited scanner or other imaging techniques to produce gene
expression measurements for thousands of target genes under various ex-
perimental conditions. The amount of data made available by microarray
experiments is enormous and is hoped to provide fundamental insights into
biological processes from gene function to development and cancer, among
others. The amount of data also calls for efficient and statistically sound
computational methods for making decisions based on the data.

It should be noted that gene microarrays can also be used to other ends
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besides studying gene expression. For example, the ability of a group of
proteins called transcription factors (TF) to bind to a promoter sequence of
a gene can be studied with what is termed ChIP-chip microarrays (see [128]
for a review).

We first review here the technological background of gene microarray
technology and then present a model for simulating the microarray gene
expression measurement process, based on Publication-I and [1].

2.1 Fabrication of gene expression microarrays

In practice, microarrays can be for example microscope slides that contain
individual ordered samples (RNA, DNA, protein, tissue) where the type of
the sample defines whether the assay is e.g. a DNA microarray or a tissue
microarray. Since we know exactly where each sample or sequence is, the
data that is obtained from the experiment can be traced back to any of the
samples. Therefore each gene is addressable.

DNA microarrays are the most commonly used microarray type. There
are more than one way of preparing a microarray, depending on how the ar-
ray is fabricated. In two channel microarrays [113] the DNA that is printed
on the microscope slide is enzymatically generated by polymerase chain re-
action (PCR) from cellular messenger RNA (mRNA), using available DNA
libraries. The DNA samples, or probes that are to be used in the array are
fixed on the slide either by covalent bonding or with the help of electrostatic
interactions. In these arrays, one spot on the slide usually corresponds to
one gene and two samples with different markers are usually hybridised, a
reference and a test, to obtain a differential measurement. Ratios of the
reference and test are often used in studies.

A whole different approach is to synthesise the DNA directly on the
slide itself by a photolithographic process using oligonucleotides (see Figure
2.1) [77]. In this context we usually speak of single-channel intensity-based
oligonucleotide arrays or Affymetrix Inc. Genechips. With these kind of
oligonucleotide arrays, the amount of target probes on the array is more
exactly known. There is however a limit to how long sequences can be pho-
tolithographically synthesised and one gene is usually represented by more
than one probe. These microarrays are usually single-channel and give good
estimates of the absolute values of gene expression due to the well known
amounts of targets on the array. The comparison of two conditions with
single-channel microarrays requires usually the fabrication of two separate
arrays.

Agilent Technologies provide also two-channel non-contact inkjet spotted
oligonucleotide arrays [66]. These arrays combine some of the favorable prop-
erties of single-channel oligonucleotide arrays (specificity) and two-channel
spotted arrays (length of the nucleotide chains) [28]. In addition, they also
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Figure 2.1: Fabrication of oligonucleotides on a Genechip (Affymetrix, Inc.)

offer simpler single-channel spotted oligonucleotide arrays.

DNA microarrays can be used to determine both the expression levels
of genes in a sample (expression profiling) and the sequence of genes in a
sample (minisequencing, mutation or single nucleotide polymorphism (SNP)
analysis) [62]. To perform microarray experiments, it is not required to build
a laboratory from scratch. Microarrays can be obtained from a variety of
sources and commercial microarrays are of high quality, density and available
for the most commonly studied organisms, including human, mouse, rat and
yeast ( [62]). A typical scheme of a two-channel microarray experiment can
be seen in Figure 2.2 where samples from two cell populations are hybridised
on the probes attached to the slide.

There are several steps left to perform after attaching the probes to the
slide to obtain the gene expression values. These steps are reviewed next
(as in [62]).

2.2 Extraction and labeling of the RNA samples

The measured quantity in DNA microarray experiments is actually the
amount of mRNA present in cells. mRNA indirectly indicates what pro-
teins are being synthesised. The three steps to labelling the mRNA are
isolation of the mRNA from the cell population, labelling the mRNA by a
reverse transcription procedure with fluorescent markers (most commonly
Cy3 or Cy5) and purification of the labelled products. In the labelling pro-
cess the labeled molecules are actually cDNA molecules which are produced
from the mRNA by using the reverse transcriptase enzyme. If two samples
are hybridised on the same array, each population is given a corresponding
different label. If the amount of produced cDNA is small, PCR amplification
can also be used.
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Figure 2.2: Layout of a two-channel gene expression microarray experiment
[62].
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2.3 Hybridisation of the sample on the slide

The fluorescently labelled samples are next hybridised onto the microarray
slide where binding of the sample occurs with matching probes on the array.
To keep the environment favourable, specific hybridisation chambers are
used where temperature is kept constant and humidity can be controlled.
The sample liquid is introduced onto the slide and incubated for several hours
(overnight) for binding to occur before removing the part of the sample that
has not bound to anything (i.e. no matching probe).

2.4 Scanning of the slide

After hybridisation, the fluorescently labeled bound molecules (probably not
all cDNA samples had a target to bind to) can be read with a scanner. Usu-
ally microarray readers are scanning confocal microscopes with laser exciting
at wavelengths proper for the (Cy3 or Cy5) dyes. The light emitted by the
bound molecules is captured in a photomultiplier tube and the amount of ra-
diation emitted is directly proportional to the amount of bound molecules.
A two-channel microarray image is shown in Figure 2.4, where the chan-
nels are given their respective colours (Cy3 corresponding to green and Cy5
corresponding to red) to visually distinguish them. A single-channel array
image is seen in Figure 2.3 [36]. The spots in the single-channel Genechip
arrays are usually rectangular instead of round. Furthermore, the the error
caused by non-specific binding for each gene perfect match (PM) probe is
corrected with help of a mismatch (MM), which is a modified probe that
should not correspond to any gene in the system under study.

2.5 Image processing of the data

The scanned microarray image must be further processed to obtain val-
ues corresponding to levels of gene expression. Since the Genechip type
Affymetrix microarray images are usually stored in a closed format and are
often preprocessed by their proprietary software, the following text is mostly
focused on two-channel microarrays. At first, the spots on the array are sep-
arated by gridding the image. The aim of gridding is to detect the location of
each spot so that the genes they correspond to can be addressed. Due to the
high quality of the present day microarray technologies, automatic gridding
is no longer a huge problem, even if there were some artefacts present on the
slides. Such artefacts could be caused by for example slight scratches on the
slide, misalignments of the spots or spots of varying size and shape. One
approach to automatic gridding is shown in Figure 2.4, where horizontal and
vertical projections of the image intensities are used to find approximate lo-
cations of columns and rows. Should the rows and columns be badly aligned
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Figure 2.3: An example of a single-channel Genechip image [36]. The spots
are rectangular rather than round, which is usually the case in printed two-
channel microarrays. PM corresponds to perfect match and MM to mis-
match.

or significant amounts of noise be present, the automatic gridding results
can vary. Usually, the gridding algorithms in microarray analysis software
allow manual adjustment of the gridding.

After gridding, segmentation of the image follows. The purpose of seg-
mentation is to divide the image into a fore- and background so that the
foreground is composed of the actual spots. If the spots were ideal, the
segmentation would be trivial. However, since microarray images tend to
be noisy and the spots less than ideal, robust approaches are needed to
automatically separate the foreground from the background. One of the
advanced segmentation algorithms is the watershed algorithm that does not
assume a strict circular shape for the spots, see for example [67,105]. After
the spots are located, the intensity of each spot is estimated. A (trimmed)
mean or median of the pixels inside the spot is computed and background
corrected to yield the gene expression level estimate. The estimation of
the background is based on either the whole image background or the local
neighbourhood of the spot.

2.6 Preprocessing and normalisation of the data

As explained in [62], preprocessing and normalisation of the data are needed
before further analyses. Preprocessing includes several steps. First, handling
missing values and their possible imputation is important since missing val-
ues can seriously interfere with statistical testing and clustering. Compar-
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Figure 2.4: Automatic gridding of a two-channel microarray image. The two
channels are given their respective colours corresponding to the wavelength
of the laser used in reading the spots - red and green in this case [62].

ison between two conditions (channels or arrays) is usually conducted by
considering the ratio of the intensities. Since a low expression of the test
sample is confined in ratio in the interval between zero and one and high
expression from one to infinity, the ratio is usually log-transformed to make
the distribution more symmetric. In addition, different biological and tech-
nical replicates can be used to assess nonbiological variation in the data.
Sometimes there can be higly inconsistent values in the data that can lead
to biased statistical analyses. The detection and handling of these gross
errors (outliers) is also necessary. For more details on data preprocessing,
see [62] and references therein.

Normalisation, which can be thought of as part of preprocessing, is an
important process of removing systematic variation not corresponding to
gene expression levels in data [114]. Normalisation is necessary to be able
to compare different channels or arrays in a meaningful way. The aim of
normalisation is to remove systematic biases in the data but the problem is
how to tell what is biological and what is not. The systematic biases can be
caused by differences in labelling between the used dyes, differing powers of
the lasers in the scanners, uneven hybridisation and so on. As an example,
it is possible that in a two-channel microarray experiment, one of the dyes
labels the sample more efficiently than the other, by a factor greater than
one. Without normalisation, the gene expression in the first sample could
be falsely considered higher even if they were equal. Different algorithms
and methods (mean centering, median centering, standardisation, lowess
smoothing to linearise channels) have been proposed for normalisation, but
the basic idea is to scale the mean intensity ratio between the two channels or
chips to equal to one. Then, the logarithm of the ratio for nondifferentially
expressed genes should be zero. These methods are usually applied with-
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in slide, but if several arrays have been prepared for the same experiment,
between-slide normalisation can also be applied. It should be noted that
normalisation makes assumptions about the data but is necessary for making
comparisons.

2.7 Uses of microarray data

Currently microarrays are used mainly to monitor the expression levels of
genes in comparison between two conditions, whether they are environmen-
tal, nutritional, chemical or related to temperature changes. This kind of
study, namely gene expression profiling, is used to assess the function of
specific genes under changes in the above-mentioned conditions [62].

In the past years there has been an explosion of available microarray
gene expression data. Time series experiments, where the changes in gene
expression are observed over time, have also become abundant. Because the
data is inherently noisy and usually sparsely sampled, better algorithms are
being developed to extract as much information as possible.
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Chapter 3

Simulation of gene

expression microarrays

In Publication-I and [1] we introduced a modular microarray simulation
platform that combines all the steps taken in e.g. real gene microarray ex-
periments, from gene regulatory networks to the scanned microarray slide.
A big issue in e.g. validating different computational data analysis algo-
rithms on simulated data is the mathematical model chosen for the data.
The analysis methods that assume a similar model that is used in generat-
ing the data are favoured over others. Our modular approach allows the use
of many different models for the data so that the analysis methods can be
compared over different classes of models.

The introduced simulation platform has many possible uses in simulat-
ing the images of different microarray platforms, simulating the effects of
noise on different biological systems and validating different computational
algorithms, such as image processing, background noise removal, normalisa-
tion, clustering, classification and regulatory network inference. To validate
different data analysis methods on actual measurement data requires a lot
of measurements and knowledge on the biological ground truth. Since it can
be very expensive to perform microarray experiments just for computational
method development and the ground truth can be hard to discern (discus-
sion in [88]), a simulation based approach is always welcome. For meaningful
results, the simulated data must have similar characteristics to those in real
biological data. In addition, if a biologically relevant model can be simulated
accurately, it can be used in testing hypotheses in silico, in a fast and cost
effective way. For Affymetrix type data, there exists real measurement data
(known as spike-in and dilution data, see [56]) where the ground truth is ap-
proximately known for the measurements (using controlled samples). This
type of data is especially good for evaluating the performance of normalisa-
tion algorithms [15] and assessing differentially expressed genes. This does
not invalidate our simulation platform in the evaluation of the performance
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Figure 3.1: Layout of the microarray simulator. The different blocks of the
simulator are modular in the way that only their inputs and outputs are
specified, whereas the implementation can be changed.

of computational methods, since the platform can be used for generating
all types of different data for different purposes, provided that a reasonable
model exists for the simulated target.

We first discuss different ground truth models and then review the mi-
croarray simulation platform. The layout of the platform can be seen in
Figure 3.1, where the modularity of the platform is also illustrated.

3.1 Ground truth models

Generating meaningful ground truth data depends on the application where
the data is to be used. Since a microarray experiment may include compar-
isons of different classes of samples, measuring response to perturbations or
measuring time series behaviour among other things, different ground truth
data generation schemes must be considered.

The simplest approach of generating ground truth data is to take random
samples from a specified distribution. The parameters of the distribution
can be chosen ad hoc or estimated [31] from real data sets, if such data
exists. Should it be necessary to compare for example how different analy-
sis methods perform in detecting differentially expressed genes, the ground
truth data could be sampled from two distributions, which have differing
location parameters.

Real measurement data can also be used as ground truth data, to verify
for example how data analysis algorithms can handle different amounts of
added noise in data. By using real intensity data it is also possible to
simulate the scanned images.

For a list of other ground truth models, see Publication-I.

3.2 File input

The file input block converts the input data from a file to the internal format
of the simulator. Supported formats include for example simulated expres-
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sion values as intensities or ratios. Different parameters include for example
the number of subarrays and number of columns and rows in each subarray.

3.3 Biological stray signals and error models

The aim of the biological noise module is to take into account the fact that
whatever the true expression level of a gene is in a cell, it cannot be directly
exactly measured with the currently available technology. The character-
istics of simulated data should thus include biological and measurement
technology related errors. Biological errors are usually considered to include
phenomena such as the stochastic noise of the cells and sample preparation
errors [12, 39]. Measurement technology related limitations and errors are
typical of the chosen platform; one- or two-channel microarray-based [121].
In [121] the authors state that for oligonucleotide-based microarray experi-
ments the sample preparation noise is small if compared to the hybridisation
related noise.

Since actual microarray measurements are performed for cell popula-
tions, the measured expressions are averages over many cells. To take
this population effect into account, smoothing of the ideal ground truth
data can be executed for example by using an averaging kernel [81]. Af-
ter taking the population effect into account, noise with different char-
acteristics can be added to the simulated data. Different noise models
and noise parameter estimation methods have gained a lot of attention
lately [25,28,30,31,48,51–53,69,70,76,87,93,104,116,121,129,132]. The ap-
proaches usually also produce lists of differentially expressed genes. Many of
the models are technology specific but some can also be applied to both one-
and two-channel array data. Frequentist models are usually based on maxi-
mum likelihood or least squares estimation, see e.g. [28,51,53,70,104] ( [116]
for an extended quasi-likelihood approach), whereas Bayesian approaches
rely on the use of priors and posterior probability density estimates of the
parameters, see [25, 30, 31, 48, 52, 69, 76, 87]. An attempt to unify a number
of error models is presented in [132]. The models for the gene expression
level are all captured by the following model

y = f(x) + e, (3.1)

where y is the observed expression value, x is the true gene expression value,
f is a nonlinear function dependent on the gene expression level and e is an
error term independent of the expression level. More specific models are
usually given for f and e to allow estimating the error in real data. The
models typically include separate terms for gene specific noise, measurement
specific noise, array specific noise, biological sample specific noise and other
possible noise sources [25,31].
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As mentioned, some of the error sources must be implemented as tech-
nology specific. For example, in Genechip oligonucleotide arrays several
probes correspond to one gene so they should have some level of depen-
dence. Further, the perfect match and mismatch probes need to be handled
independently [52]. These effects have been implemented, among others, in
our simulation model and new features can be added easily.

A simple error model for single-channel arrays was introduced in [51]
that makes the assumption of multiplicative noise only, transforming to a
log-additive model. The model for the log-transformed data yij, where i
indexes the spiked controls and j indexes the separate chips, is

yij = µi + ρj + ǫij. (3.2)

The authors assume that ǫij is randomly distributed and drawn from the
central normal distribution with variance σ2

i , ρj corresponds to the chip
specific error and µi corresponds to the true log-transformed gene expression
value. Thus, the log-reported expression levels are distributed

yij ∼ N(µi + ρj , σ
2
i ). (3.3)

The authors also derive maximum-likelihood and maximum a posteriori es-
timates for the parameters and apply them to Saccharomyces cerevisiae data
obtained from Affymetrix GeneChips.

A more complicated model suiting both one- and two-channel arrays was
introduced in [104]. The model is

yij = αj + µie
η + ǫj, (3.4)

where yij is the intensity measurement, αj is the mean intensity of unex-
pressed genes and µi is the expression level in arbitrary units. The error
terms are assumed ǫj ∼ N(0, σ2

ǫ ) and η ∼ N(0, σ2
η), which is a proportional

error present in all measurements but noticeable mainly for highly expressed
genes. The authors give instructions on how to estimate the background us-
ing negative controls, replicate measurements and what to do if no replicates
are available. The estimation of σ2

η from high level expressed genes is also
discussed. After estimating the parameters, the authors give instructions
on how comparison of the expressions can be evaluated. Besides these two
simpler models, many more elegant models exist. Future plans include the
verification of the performance of the most promising error models.

These errors will affect the ideal ground truth data but not the phys-
ical appearence of the array. Physical effects are introduced in the slide
manufacturing, hybridisation and slide scanning modules. The current im-
plementation of the simulator includes several error models proposed in the
literature [25, 31, 51, 52, 93, 104]. The methods proposed in [31, 51, 52] can
also be used to estimate the error parameters from the expression data.
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Figure 3.2: Visualisation of different physical artefacts related to slide man-
ufacturing.

3.4 Slide manufacturing

Since the spots on a microarray slide that are composed of the probes are not
always the same size and quality, artefacts related to slide manufacturing
were also considered in Publication-I. Error sources related to array fabri-
cation that are usually visible include variation in spot sizes (not so much
in Genechip oligonucleotide arrays), marks done by the printing tip and de-
formations in the spot shapes, like chords cut away from the spots. These
artefacts are shown for a two-channel type microarray template in Figure
3.2 where printing tip holes, cuts in spots and varying spot sizes are visible.
The effect of misaligning the spots is also visible. For more information, see
Publication-I.

3.5 Hybridisation

Hybridisation, the phase where the sample populations of labelled cDNA are
introduced on the array, is simulated in the model by modifying the spots
generated in the slide manufacturing phase. Since different array technolo-
gies produce different types of spots, different spot shapes are included in
the model.

A simple Gaussian distribution has been shown to fit spotted two-channel
microarray spots [21]. Other more complicated models were considered in
Publication-I as well, including polynomial hyperbolic spot shapes [35] and
rectangular shapes for Genechip type arrays. Hybridisation effects are in-
cluded in the simplest form by applying multiplicative Gaussian noise, with
user tunable parameters, to the ideal spot pixels. The hybridised spot is
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then obtained by multiplying the spot of high brightness with the ground
truth value (from zero to one). Other error sources, like background noise,
spot bleeding, scratches and artificial air bubbles are included and whose
parameters are controllable.

A visualisation of ideal and noisy Gaussian shaped two-channel array
spots is shown in Publication-I Figure 4 (a-b). A noisy simulated single-
channel array spot is visualised in Publication-I Figure 4 (c). Some of the
different simulated hybridisation errors are also visible in the simulated im-
age in Figure 3.3.

3.6 Slide scanning and image reading

In real microarray experiments, hybridisation is followed by scanning of
the slide and reading the intensity values from the image. Since all real
scanners have a limited dynamic range, saturation effects are included in
the model. Different channels in multi-channel microarrays may also get
misaligned and the slide may not be scanned straight, so these artefacts
are also considered. Dye effects that can give different scanner readings for
same true expression levels of two samples are also controllable. Since the
simulated images are comparable to real microarray images, any microarray
image reading software can be used for gridding and reading the intensities.
However, an automatic grid alignment and image segmentation algorithm is
included in the simulator package but can be replaced by any other software
just as well.

3.7 Simulated images and results

Microarray images simulated with the introduced platform are shown in this
section. The results obtained in Publication-I are also briefly reviewed. To
verify that the simulator produces meaningful results, several ground truth
data and noise models are considered and compared to real microarrays.

First, ground truth reference data was generated using random network
topology with kinetic rate laws for gene mRNA amounts [89]. A random
gene knockout was then simulated to obtain a test sample (second channel).
Both models were simulated for a hypothetical time of 200 minutes and a hi-
erarchial error model [25] was applied to add noise to the data. The resulting
simulated microarray images can be seen if Figure 3.3. In the leftmost array
(10 minutes) most spots are yellow, indicating no differential expression. On
the right (200 minutes), the effects of gene knockout are visible so that some
spots are green and some are red, indicating differential expression. This
visualises the ability of the platform to imitate real experiments.

Secondly, a self versus self experiment was simulated by assigning same
ground truth values for the two samples. The values were drawn from an ex-

20



Figure 3.3: Simulated two-channel microarrays corresponding to 20 minutes
(a) and 200 minutes (b) after the beginnning of the hypothetical experiment.
More differentially expressed spots can be seen in (b) and several physical
artefacts like scratches and misalignments are visible.
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ponential distribution and centered normal noise was added independently
to both channels to make the channels differ. A transformation of the data
was then performed as suggested in [5] to generate the true intensity values.
Two experiments were simulated, i.e. an array for the generated data with-
out applying further noise models and an array where a hierarchial error
model [25] was applied. Scatter plots of the read intensities of these arrays
were then compared with the original noise free data. Considerable simi-
larities to scatter plots of real data are visible (plots not shown here). See
Publication-I for further details.

Next, real Affymetrix Genechip readings were passed through the simu-
lator. Part of the simulated microarray image can be seen with the original
Affymetrix image in Publication-I Figure 10. The proprietary text in the
upper part is clearly visible in both the original and the simulated image.

Finally, the capability of the simulator in making comparisons of different
data analysis algorithms (spot segmentation in this case) was illustrated in
Publication-I in a consistent way.

These examples illustrate the usefulness of the microarray simulation
platform and give only a few suggestions on how to use it. The modularity
of the platform gives the user the freedom to suit the needs of any imaginable
microarray related validation or verification purpose.
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Chapter 4

Detection of periodicity in

gene expression time series

Data obtained from microarray experiments can be measured in consecutive
time points, thus allowing access to time series. If the cell populations under
study are in synchrony according to the periodicity of interest (see [110,115]),
we can assess the periodically expressed genes from the measured time series
by using traditional time series analysis methods.

Periodic phenomena on the cell and gene level include for example cAMP
oscillations, cell cycle and circadian rhythms [122]. The technologies that
measure these phenomena are usually indirect and consist of multiple phases
that each add stray signals to the actual signal of interest.

Periodicity detection applied to gene expression data has been previously
considered in [3, 24, 29, 45, 58, 72, 75, 78, 79, 131, 139]. These methods vary
on a wide scale of approaches from using the frequentist approach in the
detection of periodic genes at a priori unknown frequency (Fisher’s test,
applied in [131]) and a priori known (or hypothesised) frequency [29,58] to
Bayesian periodicity detection [3]. Periodicity in gene expression has been
shown to be indicative of for example cell-cycle regulation [17] and circadian
rhythms [27]. The recent increasing interest in detecting cell-cycle regulated
genes has been mediated by the verification of connection between cell-cycle
and cancer [130].

Non-uniform time series sampling is often encountered in systems bio-
logical studies and microarray experiments. Most previously published pe-
riodicity detection methods intrinsically assume uniform sampling and are
therefore not directly suitable for detection in non-uniformly sampled data.
Exception to this is presented in [45] where the authors use a modification
of the periodogram (Lomb-Scargle periodogram) to detect periodic patterns
in gene expression time series with no prior knowledge on the cycle period.
A refined approach using B-splines is considered in [72]. In [29,58,75,78,79]
non-uniform sampling is taken into account but the methods need accurate
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prior information about the cycle period.
The Bayesian approach into spectrum estimation and periodicity detec-

tion has been covered in [3, 18, 102, 140]. The Bayesian methods make use
of prior knowledge such as the approximate frequency of the oscillation and
prior distributions for the estimated variables. In [3] the authors show that
their approach is also robust in the sense that it can handle Laplacian and
uniform noise in the data besides Gaussian. The method can also handle
non-uniform sampling but no discussion is given about robustness against
outlying data (a definition of an outlier is given below).

In this chapter we introduce robust nonparametric methods for period-
icity detection that are dependendent on distributional assumptions only in
the approximate sense. Therefore the introduced methods do not necessarily
produce the best results in the case of normality assumption but produce
better results on a wider scale of different distributions than the classical
methods [84]. With classical we mean the basic methods, which assume
that the distributional assumptions (usually Gaussian) hold exactly [84]. A
basic example is the sample mean, which is the minimum variance unbi-
ased (MVU) estimator for location of the normal distribution. The word
robustness in this context implies insensitivity to changes in the distribu-
tional assumptions. A method that can provide reliable results even if the
assumed distribution for the data does not exactly hold is called robust [84].

Outliers, which are usually defined as points that are inconsistent with
the majority of the data [97], are closely related to the notion of robustness.
Outliers are gross errors which can be the result of e.g. decimal point shifts or
scratches in microarray slides that cause erroneous scanner readings. Non-
robust methods usually give false results if the data is contaminated by
outliers. The least squares based methods square-weight the residuals that
are to be minimised so outliers have a tendancy to bias the estimates in a
degrading manner.

In microarray gene expression studies the measured signals are usually
covered by noise whose characteristics are not well known. The distribution
of the samples can be strongly non-Gaussian [91] and a lot of samples can be
missing [14] or outlying. These are the main reasons why classical time series
analysis methods should be used with caution and why we have developed
robust methods for periodicity detection. Most of the previously published
periodicity detection methods are not robust when outlying data are present
in the time series.

In the following we first review the background of the classical time se-
ries analysis methods by Hilbert space formulation and the connection of
the periodogram spectral estimator to the projection theorem [19]. The
periodogram spectral estimator, although non-robust, is a natural classical
choice for periodicity detection in time series. Fisher’s test for the detection
of hidden periodicities, a test based on the periodogram, is then reviewed
before introducing the robust estimators. Of the robust estimators we first
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consider a robust rank based periodicity detection method (Publication-II)
that performs well both with simulated and measured microarray time se-
ries. The rank based method is however not designed to handle non-uniform
sampling. Therefore we next consider the problem of non-uniform sampling
and introduce a robust regression based framework for periodicity detection
(Publication-III). Finally, we consider the regression framework in the spe-
cial case of uniform sampling in Publication-IV. In this approach, we replace
least squares fitting in Fisher’s test with robust M-estimate (maximum like-
lihood type) regression, for which we show that the original analytic null
hypothesis distribution of Fisher’s test approximately holds. This yields a
robust test for periodicity that is fast to compute.

4.1 Stochastic processes, stationarity and Hilbert

spaces

As according to [19], the analysis of time series is initiated by selecting a
proper mathematical model or class of models for the data. Due to the un-
predictable nature of measured variables it is reasonable to assume that our
observed variables are realisations of certain random variables. We therefore
define the time series {xt, t ∈ T0} as a realisation of the family of random
variables {Xt, t ∈ T0}. This suggests modelling the data as a realisation
of a stochastic process {Xt, t ∈ T} where the index set T ⊇ T0 (usually
{0,±1,±2, . . .} or {1, 2, 3, . . .}). Further, a stochastic process is a family of
random variables {Xt, t ∈ T} defined on a probability space (Ω,F , P ) with
Ω as the sample space, F the so-called sigma-algebra of the subsets of Ω and
P the probability measure (restricted on the interval [0, 1]). It is noted that
for a fixed t ∈ T , Xt(·) is a function on the set Ω and, on the other hand,
for each fixed ω ∈ Ω, X·(ω) is a function on T .

Kolmogorov’s theorem asserts the connection between a stochastic pro-
cess and its distribution function, i.e. the probability distribution functions
{Ft(·), t ∈ T } (T is the set of vectors {t = (t1, . . . , tn)′ ∈ T n : t1 < t2 <
. . . < tn, n = 1, 2, . . .}) are the distribution functions of some stochastic pro-
cess if and only if for any n ∈ {1, 2, . . .}, t = (t1, . . . , tn)′ ∈ T and 1 ≤ j ≤ n,

lim
xj→∞

Ft(x) = Ft(j)(x(j)), (4.1)

where Ft(x) = P (Xt1 ≤ x1, . . . ,Xtn ≤ xn). The (n − 1)-component vectors
t(j) and x(j) are obtained by deleting the jth components of t and x, re-
spectively. This simply states that each function Ft(·) should have marginal
distributions that coincide with the specified lower dimensional distribution
functions.

Before defining (weak) stationarity we first recall the definition of the
autocovariance function. If {Xt, t ∈ T} is a process such that ∀t ∈ T :
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Var(Xt) < ∞, then the autocovariance function γ
X

(·, ·) of {Xt} is defined
by

γ
X

(r, s) = Cov(Xr,Xs) = E[(Xr − E(Xr))(Xs − E(Xs))], r, s ∈ T. (4.2)

Stationarity is then defined for a time series {Xt, t ∈ Z} with index set
T = Z = {0,±1,±2, . . .} as

(i) E|Xt|2 <∞, ∀t ∈ Z,
(ii) E[Xt] = m, ∀t ∈ Z

(iii) γ
X

(r, s) = γ
X

(r + t, s+ t), ∀r, s, t ∈ Z.
(4.3)

which means that the expected values of the squared variables must be
limited, the time series variables have the same (limited) expected value
and the autocovariance function is time shift-invariant.

4.1.1 Hilbert spaces

There are some important properties of Hilbert spaces (of which the Eu-
clidean space is a special case) that are extremely useful in spectral analysis
and periodicity detection in time series [19]. The most important properties
of Hilbert spaces needed in this thesis are related to the norm induced by the
inner product and the projection theorem, both of which are briefly reviewed
in Appendix A. It should be noted that the periodogram spectral estimator,
which will be introduced in the next section, is obtained by projecting the
measured time series on a set of orthonormal sinusoidals. A more in-depth
presentation of Hilbert spaces is given in [19].

4.2 Periodicity detection in stationary processes

In this section we consider the periodogram spectral estimator in the context
of statistical inference for time series in the frequency domain. We first
define the periodogram and then present tests for the presence of hidden
periodicities in data (as given in [19]). Different models and hypotheses for
the time series are discussed.

4.2.1 The periodogram

Let x1, . . . , xn represent n complex valued data observed at integer times
1, . . . , n. The vector x := (x1, . . . , xn) ∈ Cn can be represented as a linear
combination

x =
∑

j∈Fn

ajej, (4.4)

where (with i the imaginary unit) ej = n−1/2(eiωj , ei2ωj , . . . , einωj ), j ∈ Fn

and Fn = {j ∈ Z : −π < ωj ≡ 2πj/n ≤ π} = {−[(n − 1)/2], . . . , [n/2]} and
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[x] denotes the integer part of x [19]. This holds since the vectors ej, j ∈ Fn

can be shown to constitute an orthonormal basis for the space Cn. Thus

aj = 〈x, ej〉 = n−1/2
n∑

t=1

xte
−itωj . (4.5)

The sequence {aj , j ∈ Fn} is also called the discrete Fourier transform of
x ∈ Cn.

The periodogram of x ∈ Cn is defined by

I(ωj) = |aj|2 = |〈x, ej〉|2 = n−1

∣∣∣∣∣

n∑

t=1

xte
−itωj

∣∣∣∣∣

2

, j ∈ Fn (4.6)

and further we can show that the periodogram decomposes ‖x‖2 in the
following way

‖x‖2 =
∑

j∈Fn

I(ωj), (4.7)

which allows us to view the frequency components in the analysis of variance
sense. It should be noted that harmonics outside the interval (−π, π] cannot
be distinguished by the periodogram based on observations at integer times
only.

For real valued signals x ∈ Rn if ωj,−ωj ∈ (−π, π] (ωj = 2πj/n, also
known as the Fourier frequencies), then aj = a−j and I(ωj) = I(−ωj). In
this case Equation (4.4) reduces to

x = a0e0 +
∑[(n−1)/2]

j=1 (ajej + aje−j) + an/2en/2

= a0e0 +
∑[(n−1)/2]

j=1

√
2rj(cj cos θj + sj sin θj) + an/2en/2,

(4.8)

where we have expressed aj = rj exp(iθj) in the polar form and an/2 = 0 in
case n is odd. Vectors cj and sj are defined as

cj =
√

(2/n)(cosωj, cos 2ωj , . . . , cosnωj)
′,

sj =
√

(2/n)(sinωj, sin 2ωj , . . . , sinnωj)
′ (4.9)

and {e0, c1, s1, . . . , c[(n−1)/2], s[(n−1)/2], en/2} (excluding en/2 if n is odd) con-
stitute an orthonormal basis for Rn. As in the case of complex valued signals,
we can now decompose

∑n
i=1 x

2
i into components corresponding to the vec-

tors that form the basis thus allowing the analysis of variance (Table 4.2.1).
Usually for frequencies ωj, 1 ≤ j ≤ [(n − 1)/2] a single component per fre-
quency is given, corresponding to the length of the projection of x onto the
two-dimensional subspace span{cj , sj}, as in Table 4.2.1.

For convenience, we redefine the autocorrelation function for a stationary
process (for which γ(r, s) = γ(r − s, 0) ∀r, s ∈ Z [19]) as

γ
X

(k) ≡ γ
X

(k, 0) = Cov(Xt+k,Xt), ∀k, t ∈ Z.
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A stationary time series {Xt} with mean µ and absolutely summable auto-
covariance function γ

X
(·) has a continuous spectral density

f(ω) = (2π)−1
∞∑

k=−∞

γ
X

(k)e−ikω, ω ∈ [−π, π], (4.10)

The correlogram spectral estimator, which is a scaled estimate of the above
spectral density, is given at the Fourier frequencies by

{
I(ωj) =

∑
|k|<n γ̂X

(k)e−ikωj , ωj 6= 0

I(0) = n|µ̂x|2,
, (4.11)

where µ̂x = n−1
∑n

t=1 xt. If the autocovariance function estimate is cho-

sen as γ̂
X

(k) = n−1
∑n−|k|

t=1 (xt − µ̂x)(xt+|k| − µ̂x), which is actually a biased
estimate, we can show that the correlogram spectral estimator coincides
with the periodogram spectral estimator. This shows the potential value of
the periodogram for spectral density estimation and also opens up possibil-
ities for modifying the periodicity detection tests (introduced in the next
subsection) that are based on the periodogram ordinates. This is because
we can replace the periodogram spectral estimator with the correlogram in
the tests and also consider robust alternatives for the correlogram (as in
Publication-II).

4.2.2 Tests for the presence of hidden periodicities

Based on the periodogram, several statistical tests can be formed to test the
null hypothesis H0 that the data {X1, . . . ,Xn} are generated by a Gaussian
white noise process, against the alternative hypothesis (denoted H1) that
the data have a superimposed deterministic periodic component in addition
to white Gaussian noise [19].

Table 4.1: Analysis of variance table for the harmonic decomposition of a
real valued signal (as in [19]).

Source Degrees of freedom Sum of squares

ω0 (mean) 1 a2
0 = n−1(

∑n
t=1 xt)

2 = I(0)
ω1 2 2r21 = 2|a1|2 = 2I(ω1)
...

...
...

ωk 2 2r2k = 2|ak|2
...

...
...

ωn/2 1 a2
n/2 = I(π)

Total n
∑n

j=1 x
2
j
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The model for the data is chosen as

Xt = µ+A cosωt+B sinωt+ Zt, (4.12)

where Zt is zero-mean Gaussian white noise with variance σ2, A and B
are deterministic constants and ω is the frequency of periodicity. As a side
note, any sinusoidal τ sin(ωt + θ), τ ∈ R can be expressed by the above
sum of cosine and sine terms. To formally define the null and alternative
hypotheses, we choose

H0 : A = B = 0,
H1 : A and B are not both zero.

(4.13)

In case we have prior knowledge on the frequency of periodicity, and ω is
one of the Fourier frequencies ωk = 2πk/n ∈ (0, π), the analysis of variance
(Table 4.2.1) provides an easy test for periodicity. We can write the model
in Equation (4.12) in a similar form as in Equation (4.8), i.e.

X =
√
nµe0 +

√
(n/2)Ack +

√
(n/2)Bsk + Z, Z ∼ N(0, σ2In). (4.14)

In this case we reject H0 in favour of H1 if 2I(ωk) in Table 4.2.1 is sufficiently
large. Under H0

2I(ωk) = ‖Pspan{ck ,sk}X‖2 = ‖Pspan{ck,sk}Z‖2 ∼ σ2χ2(2), (4.15)

which is independent of

‖X− Pspan{e0,ck,sk}X‖2 =

n∑

i=1

X2
i − I(0) − 2I(ωk) ∼ σ2χ2(n− 3). (4.16)

This leaves us to reject H0 at level α if

(n− 3)I(ωk)/

[
n∑

i=1

X2
i − I(0) − 2I(ωk)

]
> F1−α(2, n − 3). (4.17)

If ω is not one of the Fourier frequencies, the testing is a bit more com-
plicated but follows the same directions. Using the model of Equation (4.14)
but replacing ck, sk with the non-orthogonal vectors

c =
√

(2/n)(cosω, cos 2ω, . . . , cosnω)′,

s =
√

(2/n)(sinω, sin 2ω, . . . , sinnω)′,
(4.18)

yields a modified test. In this case we reject H0 in favour of H1 if

2I∗(ω) := ‖Pspan{e0,c,s}X− Pspan{e0}X‖2 (4.19)

is sufficiently large. Under H0, 2I∗(ω) ∼ σ2χ2(2) and I∗(ω) is independent
of ‖X−Pspan{e0,c,s}X‖2 ∼ σ2χ2(N −3). Therefore we reject H0 at level α if

(n− 3)I∗(ω)/‖X − Pspan{e0,c,s}X‖2 > F1−α(2, n − 3). (4.20)

29



To obtain the estimates we compute

Pspan{e0}X =
√
n
∑n

i=1Xie0,

Pspan{e0,c,s}X =
√
nµ̂e0 +

√
(n/2)Âc +

√
(n/2)B̂s,

(4.21)

where the parameters β = (µ̂, Â, B̂)′ are obtained by solving W ′Wβ = W ′X

for β with W = [
√
ne0,

√
(n/2)c,

√
(n/2)s].

In case the frequency of the periodic signal is unknown we must use a dif-
ferent approach. Fisher’s test for hidden periodicities ( [38]) was constructed
to test the null hypothesis that {Xt} is Gaussian white noise against the al-
ternative that {Xt} contains an added deterministic periodic component of
unspecified frequency. In Fisher’s test, the null hypothesis is rejected if the
maximum of the periodogram ordinates is substantially large when com-
pared to the sum of the ordinates. Letting q = [(n− 1)/2], the test statistic
is defined as

g =
max1≤k≤q I(ωk)∑q

k=1 I(ωk)
. (4.22)

Note that we do not consider the frequencies 0 and π. The p-value for a
realisation of the g statistic (g∗) is given (under the strict assumption of
normality) by

P (g ≥ g∗) = 1 −
q∑

j=0

(−1)j
(
q

j

)
(1 − jg∗)q−1

+ , (4.23)

where x+ = max(x, 0). If this probability is less than α we can reject the
null hypothesis at level α [19].

Before moving to robust periodicity detection, recall that the periodogram
is an unbiased but not a consistent estimator, i.e. its variance does not ap-
proach zero as the sample size approaches infinity. The consistency can
be corrected in many ways but the approaches rely on smoothing of the
estimates. Unfortunately, the time series present in gene microarray experi-
ments are usually of length 20 to 30 the most, so these smoothing approaches
are not feasible here. We therefore modify and robustify the periodogram
and Fisher’s test using other approaches, as introduced in the next section.

4.3 Robust spectrum estimation and periodicity

detection

We now consider robust modifications of the periodicity detection methods
presented in the previous section. We consider both the detection of un-
known and fixed frequency periodic signals. In the case of uniform sampling,
there are several modifications of the periodogram that can be considered in
periodicity detection, two of which are introduced. Methods that deal with
non-uniform sampling are also introduced.
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4.3.1 Rank based approach

A robust rank based spectral estimator was introduced in [98] that can, to
a good degree, reject outliers in data and handle missing samples. The es-
timator uses ranks of the samples instead of the actual time series values in
estimating the autocorrelation function, which relates closely to the autoco-
variance function in Equation (4.11). The robust autocorrelation function
can thus be used in the estimation of the spectra of signals. Rank order
filters and statistics have been previously used for example in image pro-
cessing [133], multirate signal processing [4] and statistical testing [141] and
are known to possess robust characteristics. Samples that have inconsis-
tent values when compared to other data points usually bias the approaches
based on minimising square sums, but this bias is much less pronounced if
ranks are used instead.

In Publication-II we introduced a modification of Fisher’s test for the
detection of hidden periodicities that uses the rank based spectral estima-
tor described in [98]. We first here review the spectral estimator and the
modification of Fisher’s test after which we show the key results for the de-
tector. From this point on {Xt} is assumed to be real. In addition, note that
the autocorrelation function ρ

X
(k) is related to the autocovariance function

through ρ
X

(k) =
γ

X
(k)

σ2

X

where σ2
X = E[Xt − µX ] is the variance of Xt and

{Xt} is stationary. We can use the autocorrelation function in the correlo-
gram, since the autocorrelation function is just a shifted and scaled version
of the autocovariance function. We therefore consider spectral estimators
that are of the form

S̃(ω) =

L∑

k=−L

ρ̃
X

(k) exp(−iωk), (4.24)

where ρ̃
X

(k) is the estimate of the autocorrelation function between {Xt}
and {Xt+k} and L is the maximum lag to be considered (for the rank based
method L ≤ n − 2 as in Publication-II). The rank based autocorrelation
function estimate is defined as

ρ̃
X

(k) =
1

Cσ̃2

∑

t∈Ik

(Rx(t) − µ̃X)
(
R′

x(t) − µ̃X

)
, (4.25)

where Ik is the set of indices t for which both xt and xt+k exist (in case there
are missing values), Kk = |Ik| (and assuming Kk ≥ 2), C is a normalisation

factor, σ̃2 =
K2

k
−1

12 can be shown to be the variance of the rank sequence,

µ̃ = Kk+1
2 is the mean of the rank sequence, Rx(t) denotes the rank of xt in

the set S = {xt : t ∈ Ik} and R′
x(t) the rank of xt+k in S′ = {xt+k : t ∈ Ik}.

C can be chosen in multiple ways. If we choose C = Kk we get the unbiased
estimator. However, by choosing C = n yields a spectral estimate analogous
to the periodogram and C = n is therefore used.
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It should be noted that in Publication-II we have used the term corre-
lation coefficient for the autocorrelation function (as defined here) and the
term autocorrelation function for the autocovariance function that has not
been mean subtracted, as sometimes defined in signal processing applica-
tions. The definitions are equivalent for mean subtracted processes.

Since the robust rank based autocorrelation estimator is analogous to
the classical autocorrelation estimator, it can readily be used in robustly
estimating spectra and detecting periodic time series, as will be illustrated
shortly. Other good properties include straightforward calculation (no iter-
ations needed) and ease of implementation. Additional discussion and illus-
trations on how the rank based approach performs as a spectral estimator
are given in [98] and Publication-II.

To combine the Fisher’s test and the rank based spectral estimator, we
proposed the following test statistic in Publication-II (q = [(n− 1)/2])

g =
max1≤k≤q |S̃(ωk)|

Σq
k=1|S̃(ωk)|

, (4.26)

assuming a similar (without the location term µ) model as in Equation (4.12)
and the null hypothesis (4.13). The absolute value of S̃ is used, since, unlike
the periodogram, S̃ is not guaranteed to be non-negative. For this modified
test statistic the null hypothesis distribution is not readily available in an
analytical form, so two different p-value evaluation methods were considered
in Publication-II, namely Monte Carlo simulation and permutation tests, to
be explained shortly. Due to not using an analytical distribution, different
interpolation schemes were also considered in Publication-II. That is, in the
stage where the robust autocorrelation function estimate is Fourier trans-
formed, frequencies were sampled more densely than just at the harmonic
frequencies. It was found that interpolation of the spectrum for example to
twice the density of the original yielded somewhat better results, although
interpolation does not actually create any new information. This could be
due to some frequencies of periodicity being between two harmonic frequen-
cies, in which case interpolation could help bring about these cases.

Before elobarating on the p-value computation, an important property
of the rank based periodicity detection method is emphasised: due to the
g statistic, as given in (4.26), being dependent on {Xt} only through the
ranks, it is distribution free (see Publication-II and [103] for further details).
It follows that for each n, regardless of the type of noise, the g statistic has
exactly the same null distribution as long as the noise term is continuous and
i.i.d. This important feature is utilised in the Monte Carlo simulation type
p-value computation in the way that different noise types do not need to be
considered separately; it suffices to simulate the null hypothesis distribution
for one i.i.d. noise type only, for example Gaussian white noise. This null
hypothesis distribution can then be used regardless of the noise type present
in the data.
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The Monte Carlo approach of estimating p-values to assess periodicity in
time series is performed by simulating a large set of time series from any null
distribution whose samples are i.i.d. and computing the g statistic for each
of these series. If we denote the set of g statistics evaluated this way as G, a
p-value for a time series of interest can in the simplest form be approximated
by

p∗ = P (g ≥ g∗) ≈ |{g ≥ g∗ : g ∈ G}|
|G| , (4.27)

where g∗ is the realisation of the g statistic for the time series under study.
Other more novel approaches like kernel density estimation methods can also
be used to form the null hypothesis distribution based on which p-values can
be estimated using numerical integration.

Permutation tests, which exist for any test statistic (regardless of whether
or not the distribution of the test statistic is known) can also be used in eval-
uating the p-values [47]. The idea is relatively simple:

1. Evaluate the g statistic on the original time series.

2. Randomly permute the time series P times and for each permutation
πj, j = 1, . . . , P evaluate the g statistic to obtain gj . Usually P ≪ n!
and in the range of hundreds or thousands. For small n it may also be
feasible to consider all the permutations.

3. Based on the original g statistic and the sample generated in point
2, estimate the the p-value similarly as in the Monte Carlo case, see
Equation (4.27).

The procedure is then repeated for all the time series in the set. To be
able to apply permutation tests, it suffices that the time series samples are
exchangeable under the null hypothesis [47]. A sequence of random variables
{Xt, t = 1, . . . , n} is exchangeable, if the joint distribution of Xπ1

, . . . ,Xπn

is the same as that of the original sequence for all permutations π. Under
the null hypothesis, the elements of the time series are assumed to be i.i.d.
and therefore exchangeable.

Although permutation tests are theoretically exact and nonparametric
and can thus be used without knowledge of the exact distribution of the
data at hand, the Monte Carlo simulation approach is more feasible here.
This is because the Monte Carlo-approach involves less computation here
and is also exact in case we are using the rank based detector.

After obtaining p-values (depicting distrust in the null hypothesis) for all
the genes in the dataset, the problem of choosing a proper cut off point for
periodic genes arises. A strict significance level, e.g. α = 0.05, means that
under the null hypothesis there is a 5% chance of accepting a false positive
(when considering one time series). To control the number of false positives
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in the case of multiple time series, several multiple testing correction meth-
ods have been proposed (see [32]). The Benjamini-Hochberg method [10],
which controls the false discovery rate (FDR), is an easy-to-apply procedure.
The procedure can be used on a population of p-values (see Publication-II
for details) and gives a cutoff point that is adaptive to the data.

We now briefly also consider the case where knowledge on the frequency
of periodicity is available. A modified g statistic is defined by

g′ =
|S̃(ω′)|

∑q
k=1 |S̃(ωk)|

, (4.28)

where ω′ is a chosen frequency but S(ω′) is not necessarily the maximum of
the spectral estimate. This modified test is also distribution free and both
methods for p-value estimation for the time series can be used, the Monte
Carlo simulations or permutation tests.

Comparison of the performance of the rank based method to other peri-
odicity detection methods is given in the next subsection, after introducing
the regression based approaches. The rank based method was also applied
to several publicly available microarray data sets in Publication-II.

4.3.2 Regression based approach

What is usually the case in cell level high throughput studies, like gene mi-
croarray experiments, is that the measurements are conducted non-uniformly
in time. The reasons for this are many; the optimal experimental design may
be based on non-uniform sampling or it might be too expensive or otherwise
unfeasible to conduct the experiments at constant time intervals. In addi-
tion, the biologists conducting the experiment might not realise the good
computational properties of uniform sampling. Although the rank based
detector, which was intoduced in the previous subsection, is insensitive to
heavy contamination of outliers, missing values, short time series length and
nonlinear distortions, it cannot be easily modified to handle non-uniform
sampling. Thus, alternative approaches are needed.

In this subsection, we consider a regression based formulation of the peri-
odogram and its use in periodicity detection, as presented in Publication-III
and Publication-IV. We first note that a scaled version of the model in (4.8)
can be given in matrix form as

x =





1
1
...
1

A1 A2

1
−1
...

(−1)n−1









a0

a1

a2

an/2



 , (4.29)

where x is the measured time series and omitting an/2 (and the last column
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in the matrix) if n is odd. Matrices A1 and A2 are then

A1 =





cos(ω1t0) · · · cos(ωqt0)
cos(ω1t1) · · · cos(ωqt1)

...
...

cos(ω1tn−1) · · · cos(ωqtn−1)




(4.30)

A2 =





sin(ω1t0) · · · sin(ωqt0)
sin(ω1t1) · · · sin(ωqt1)

...
...

sin(ω1tn−1) · · · sin(ωqtn−1)




. (4.31)

By scaling t· to integers (still assuming uniform sampling) and using ordinary
least squares regression (inverse of the model matrix in this case) to solve

for
[
a0 a1

T a2
T an/2

]T
, we get the periodogram ordinates [101] by

I(ω0) = n(â0)
2,

I(ωk) =
n

4
â2

1k +
n

4
â2

2k, k = 1, . . . , q, (4.32)

I(ωn/2) = n(ân/2)
2.

This regression based formulation provides a convenient way of introducing
non-uniform time indices and also replacing least squares minimisation with
robust alternatives.

When considering non-uniform sampling, the harmonic Fourier frequen-
cies are not well defined anymore. Therefore, to imitate uniform sampling,
we scale the measurement times so that the first time point scales to zero
and the last time point scales to n− 1, where n is the number of samples in
the time series. These time indices are then used in the model matrices in
(4.30-4.31). We also estimate what the the sampling time would be on av-
erage, as if the sampling was performed uniformly. If we denote the original
measurement times as a vector τ , new scaled indices are computed in the
following way

t =
(τ − τ0 · 1)(n − 1)

τn−1 − τ0
. (4.33)

The average sampling time is

Ts =
1

n
(τn−1 − τ0), (4.34)

which can be used to make the connection between a real frequency and the
hypothetical Fourier frequencies. By letting the sampling be non-uniform,
the column vectors in the model matrix are no longer orthogonal and there-
fore the model matrix may under severely bad conditions become singular.
This is, however, highly unlikely in practice.
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Replacing least squares estimation with robust alternatives, like max-
imum likelihood-type robust regression methods (M-estimation), the high
dimensionality (non-convergence) in (4.29) becomes a problem. Therefore
the dimension of the problem should be reduced and the frequencies fit one
at a time. In [119] the authors point out that when fitting sinusoidals one
frequency at a time, it is imperative to fit to the residuals of the last fit
to avoid overfitting, i.e. first choose the order the frequencies are fit and
then after fitting the sinusoidals at one frequency, use the residual signal in
the next fit. The order in which the frequencies are fit can be chosen for
example based on an initial spectral estimate where no residual fitting is
performed, the strongest component getting highest priority. The reduced
model is given as

x = X(ω)b + e, (4.35)

where e, the residual, is used as the x of the following fitting and b can
be used in estimating the spectrum, corresponding to the amplitudes of the
fitted sine and cosine terms (like â in Equation (4.32)). Matrix X(ω) is now

X(ω) =





1 cos(ωt0) sin(ωt0)
1 cos(ωt1) sin(ωt1)
...

...
...

1 cos(ωtn−1) sin(ωtn−1)



 , (4.36)

This spectral estimate can then be used in Fisher’s test similarly as the rank
based estimator was used in Equation (4.26). The biggest difference to the
rank based estimator is that we should not use Monte Carlo simulations in
p-value computation since the regression based approach is not guaranteed
to be distribution free.

Should prior information on the frequency of periodicity exist, we can
also test for periodicity at just one frequency. This is also computationally
more feasible since we need to estimate only one spectral component. We
define the test statistic as

gm = b̂21c + b̂22c, (4.37)

where b̂21c and b̂22c are the estimates of the cosine and sine terms corresponding
to the chosen frequency in Equation (4.35). Permutation tests are then
applied to produce p-values depicting distrust in the null hypothesis. It
should also be noted that we have discarded the normalising term (previously
sum of all the spectral components) in Equation 4.37, because firstly for
non-Fourier frequencies the normalising term does not make sense anymore,
secondly the gains in computational time are significant (the sinusoidals are
fitted for one frequency only) and lastly because the term is not necessarily
needed (permutation tests are used).

Before considering the performance of the regression based periodicity
detection methodology on simulated and real data, we briefly review the
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idea of M-estimation. As was shown in Publication-III, M-estimators, more
specifically the Tukey’s bisquare, provide good robust characteristics on a
wide range of distributions and were shown to be the most viable option
among the group of considered regression based estimators. Since it is rea-
sonable to assume that the predictors (time points) are fixed and nonrandom,
M-estimators can reject outliers (in the measurement signal) to a good de-
gree. In the following we follow the presentation in [84] and assume a linear
data model

x = Ab + e, (4.38)

where x is the vector of measured data, A is the n × p (p ≤ n) predictor
matrix (nonrandom and known in what follows), b is the vector of unknown
parameters to be estimated and e is a vector of random variables (the error
terms). The first column in A is usually a constant 1 to take location
(intercept) into account. If ek has density

1

σ
f0

(ek
σ

)
, (4.39)

where σ is a scale parameter, then for independent xk the density function
is

1

σ
f0

(
xk −A′

kb

σ

)
, (4.40)

where A′
k is the kth row of A. The likelihood function for b assuming a

fixed σ is

L(b) =
1

σn

n∏

k=1

f0

(
xk −A′

kb

σ

)
, (4.41)

and computing the maximum likelihood estimate corresponds to maximising
(4.41). Thus, we need to find b̂ such that

b̂ = arg min
b

1

n

n∑

k=1

ρ0

(
rk(b)

σ

)
+ log σ, (4.42)

where ρ0 = − log f0 and rk(b) = xk − A′
kb. Assuming that σ is known,

differentiating with respect to b and solving for the stationary point can
be useful in the search for the solution of Equation 4.42. Thus, we get the
equation

n∑

k=1

ψ0

(
rk(b̂)

σ

)
Ak = 0, (4.43)

where ψ0 = ρ′0 = −f ′0/f0. It should be noted that the zero point of the
derivative does not necessarily guarantee a unique solution to Equation
(4.42). In case f0 is the standard normal density function, then there exists
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a unique b̂, which is also known as the least squares (LS) estimate. If f0 is
the Laplacian density, then b̂ satisfies

b̂ = arg min
b

n∑

k=1

|rk(b)| , (4.44)

also known as the L1 estimate. It is worth noting that the L1 estimate is
the regression equivalent of the median location estimate and that the L1
estimate is independent of any scale. No explicit expression for the L1 esti-
mate exists, unlike for the LS estimate, but fast computational algorithms
implementing the L1 estimate do [84].

In general, regression M-estimates are solutions b̂ to

b̂ = arg min
b

n∑

k=1

ρ

(
rk(b)

σ̂

)
, (4.45)

where σ̂ is an error scale estimate. By differentiating (4.45) with respect to
b we get the equation

1

σ̂

n∑

k=1

ψ

(
rk(b̂)

σ̂

)
Ak = 0, (4.46)

where ψ = ρ′ and (4.46) does not actually need to be the estimating equa-
tion of a MLE. In fact, if the underlying error distribution is unknown,
as it usually is, our aim is to find a function ψ that produces good pa-
rameter estimates on a wide range of distributions, even if there is no real
distribution corresponding to ψ. Henceforth solutions to (4.46) with mono-
tone ψ are called monotone M-estimates whereas solutions corresponding to
nonmonotone ψ are called redescending M-estimates. A favorable property
of monotone estimates is that all solutions of (4.46) are also solutions of
(4.45). On the other hand, the redescending estimates may have multiple
solutions corresponding to local minima; this does not happen with mono-
tone estimates. The reason why redescending estimates are used is that the
redescending M-estimates can yield a better trade-off between robustness
and efficiency and can reject outliers altogether [84]. Our main interest is
thus in redescending ψ, especially in the Tukey’s bisquare, defined by

ψ(x) = x

[
1 −

(x
k

)2
]2

I(|x| ≤ k), (4.47)

where I(x) = 1 when x is true and zero otherwise. It can be shown
that the selection k = 4.68 yields a 95% efficiency on the normal distri-
bution [84]. The bisquare function is everywhere differentiable and vanishes
outside [−k, k], thus zero weighting outlying samples. It can also be shown
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that M-estimates with vanishing ψ outside an interval are not MLEs of any
distribution [84].

Computation of redescending M-estimates is highly dependent of choos-
ing a good starting point, which is usually provided by a monotone estimate
(the L1 for example). For smooth ψ we can solve Equation (4.46) using
an iterative algorithm called iteratively reweighted least squares (IRWLS).
Defining [84]

W (x) =

{
ψ(x)/x if x 6= 0
ψ′(0) if x = 0

, (4.48)

(where L’Hôpital’s rule was used for x = 0) we can rewrite (4.46) as

n∑

k=1

wkrkAk =

n∑

k=1

wkAk(xk −A′
kb̂) = 0, (4.49)

where wk = W (rk/σ̂) and omitting the multiplier σ̂, since it has no effect on
finding the zero point. The equations can also be given in the matrix form
as

(WA)′(x −Ab) = 0, (4.50)

where W is a diagonal matrix whose diagonal elements are the weights.
These are called weighted normal equations and if wks were known, could
be solved by applying LS to

√
wkxk and

√
wkAk. This, however, is not

the case, since wks depend on the data. The procedure for IRWLS with a
tolerance parameter ε is

1. As an initial estimate of b̂, compute the L1.

2. Estimate σ as the normalised median of residuals of the L1-fit: σ̂ =
1

0.675Medk(|rk| | rk 6= 0), considering only nonnull residuals to prevent
underestimating σ.

3. For j = 0, 1, 2, . . .:

(a) Given b̂j , for k = 1, . . . , n compute rk,j = xk −A′
kb̂j and wk,j =

W (rk,j/σ̂).

(b) Compute b̂j+1 by solving

n∑

k=1

wk,jAk(xk −A′
kb̂) = 0. (4.51)

for b̂

4. Stop when maxi(|rk,j − rk,j+1|)/σ̂ < ε.
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The algorithm converges if W (x) is nonincreasing for x > 0 and the solution
is unique for monotone ψ [84].

In Publication-III, several regression based estimators were considered
(least squares, bisquare M-estimator, least trimmed squares [107], minimum
covariance determinant [108]) and compared also to the rank based method
(Publication-II) in a simulation study where first the frequency of periodic-
ity was unknown and sampling was non-uniform with 20 samples. In these
simulations, 300 time series were generated from the null hypothesis (noise)
distributions and 300 were generated from the alternative hypothesis (peri-
odic signal plus noise) distributions. The different tests were then applied
to the data. With knowledge of the ground truth, it is possible to assess the
amount of true and false positives and negatives and visualise the perfor-
mances by plotting receiver operating characteristic (ROC) curves for the
different methods (see Publication-III). Based on the simulation results and
ROC curves, which plot sensitivity (true positive rate) versus 1-specificity
(false positive rate), the M-estimator was chosen as the best representative of
the regression based methods. The method was then compared to a recently
published Bayesian detector [3], in addition to the rank based method, in a
simulation where the frequency of periodicity is approximately known. By
this we mean that we fixed the frequency of periodicity in the simulated
signals but deliberately chose the frequency, at which periodicity is to be
detected, approximately 10% off the true value. According to the authors,
the Bayesian detector should be robust to distributional changes. In Figure
4.1 we can see that in case the noise is purely Gaussian, the Bayesian de-
tector is superior since it uses a prior centered around the chosen frequency
(which is 10% off the true value) to be detected and does not assume a
strict value. The left hand column data in Figure 4.1 is sampled according
to a real non-uniformly sampled microarray data set measured from Mytilus
californianus (introduced shortly) and the right hand column corresponds
to an artificially deteriorated version of the left hand column sampling. The
M-estimator and rank based methods perform relatively well even though
they assume a strict value for the periodicity (deliberately chosen wrongly).
Going down Figure 4.1, we see the effect of added outliers. The performance
of the Bayesian detector degrades in an alarming manner whereas for the ro-
bust M-estimator and the rank based method there is no huge degradation.
Since microarray data is known to be noisy and the noise characteristics are
not guaranteed to be well known, methods that cannot reject outliers should
be used with caution. It can also be seen that the rank based detector per-
forms relatively well even though it is not designed to handle non-uniform
sampling.

The introduced regression framework can also be readily used in the case
of uniform sampling, as considered in Publication-IV. As noted previously,
by utilising bisquare M-estimation it is possible to obtain 95% efficiency on
the normal distribution and also reject outliers in data. This further sug-
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Figure 4.1: ROC curves for three methods, the rank based method (Robust-
periodic), the bisquare M-estimate method (M-estimator) and the Bayesian
method (Bayesian). The non-uniform sampling in the left hand column data
is of a real microarray data set and the sampling in the right hand column
data is a deteriorated version of the left hand column. On the first row
the noise present in the signals is Gaussian white noise with standard de-
viation 1. On rows two to four every signal has one, two or three outliers,
correspondingly, added to random locations in the signal.
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gests that the analytical null hypothesis distribution of Fisher’s test could
be used in conjunction with the M-estimator in case the data is uniformly
sampled. In Figure 4.3 we can see the theoretical null hypothesis distri-
bution of Fisher’s test (solid line), the estimate of the null hypothesis dis-
tribution when using periodogram based g statistic values (solid line with
dots) and the estimates of the null hypothesis distribution when using M-
estimation (dashed line for Gaussian data and dotted line for Gaussian data
and outliers). The distribution estimates were obtained from the g statistic
populations by using standard kernel density estimation methods in Mat-
lab. The simulated null hypothesis time series (10000) were drawn from a
centered unity variance Gaussian distribution and in the outlier case, 10%
of the time series points were replaced by values in the interval ±[5, 6]. The
estimates are shown both for time series length 20 (a)) and 100 (b). As we
can see, approximate p-values can be obtained for the robust test using the
analytical null hypothesis distribution, yielding a very quick to implement
test for detecting periodicity.

Figure (4.2) shows how the unmodified Fisher’s test, the rank based ap-
proach and the M-estimator based test performed in a simulation study with
uniform sampling. For the simulation, 300 time series were generated from
the null hypothesis distribution and 300 from the alternative distribution.
Gaussian distribution with standard deviation 0.75 was used as the null hy-
pothesis distribution in the ROC curve of Figure (4.2) (a). In (b) to (d)
outliers of amplitude ±(5 . . . 6) were randomly placed, one per time series in
(b), two in (c) and three in (d). The alternative distribution was otherwise
similar to the null hypothesis distribution but a sinusoidal of amplitude

√
2

and random phase and frequency was also added to represent a periodic
signal. The time series length in the simulation was set to 20. The ROC
curves illustrate the robust properties of both the rank based test and the
M-estimator based test. The rank based test performs the best in the case
of no outliers (a) but the M-estimator retains its performance better when
outliers are added (b-c). In (d) where there are already 3 outliers (out of
20 samples), the ROCs of all the methods are rather close to the chance
diagonal.

In addition to the simulation results, we also tested the M-estimate re-
gression based method on gene microarray time series data measured from
the mussel Mytilus californianus (available on the Internet in ArrayExpress,
accession number E-TABM-287). The data was obtained by measuring gene
expression over several days with non-uniform sampling. We hypothesised
that the gene expression of the seaside mussel periodic at the circadian cycle
and tidal rhythm would have a connection to the cell cycle or other known
biological factors. However, the best ranked genes that were found peri-
odic at the 24 hour cycle were not found, according to gene set enrichment
analysis [117], to have a significant connection to 245 gene sets capturing
biological prior knowledge, defined by their shared participation in a spe-
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Figure 4.2: Receiver operating characteristic curves for Fisher’s test (Fishers
test) and two robust modifications of the test. The dashed line corresponds
to the M-estimator based test (M-estimator) and the dotted line corresponds
to the rank based test (Rank). The noise type is Gaussian with standard
deviation 0.75. In addition, one outlier per time series is present in (b), two
outliers in (c) and three outliers in (d).

cific biological process in the Gene Ontology database. The 12 best ranked
genes periodic in the 24 hour cycle can be seen in Figure 4.4. These genes
were expressed at small amplitudes, which could be a reason they have not
been studied much before and do not appear in data sets capturing prior
biological relevance. Future studies include finding out the cycle frequencies
at which the periodic genes that do have a biological relevance are expressed
at.

The robust periodicity detection methods presented in this chapter pro-
vide a wide range of robust options to detect periodic events in sequence
data that can be either uniformly or nonuniformly sampled and have noise
characteristics of unknown distribution. As the results in Publication-II,
Publication-III and Publication-IV show, detection at both priorly known
and unkown frequencies have been implemented in an efficient way.
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Figure 4.3: Analytical (solid line), estimated (solid line with dots) and
bisquare M-estimate estimated (dashed line for Gaussian data and dotted
line for Gaussian data and outliers) null hypothesis distributions for Fisher’s
test. Time series length was set to 20 in (a) 100 in (b).
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Figure 4.4: The twelve best mussel gene expression data time series periodic
at the 24 hour cycle.
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Chapter 5

Detection of pathogenic

mutation prone locations in

protein sequences

The purpose of this chapter is to consider actual protein, i.e. gene end prod-
uct, measurements and introduce methods for the detection of pathogenic
mutation prone locations in the protein sequences.

Proteins play a crucial role in most biological processes [11,92]. Proteins
have many different physiological functions, for example as catalysing en-
zymes; binding, storaging and transporting molecules; structure supporting
molecules; antibodies; neurotransmitters; receptors and also as transcription
factors for promoting or suppressing gene expression. Proteins are made up
of building blocks known as amino acids. There are a total of 20 different
amino acids that are in general used in proteins and each amino acid is
coded by three nucleotides (many to one mapping actually). Some of the
amino acids (valine, leucine and isoleucine) are termed hydrophobic, some
hydrophilic (lysine, arginine and histidine are basic hydrophilic and aspartic
acid and glutamic acid are acidic hydrophilic in nature) and others are more
or less neutral in this sense. Hydrophobic amino acids tend to cluster in the
inside region of a protein and away from the water surface, thus significantly
stabilising the protein structure.

Proteins have a total of four levels of structure [11, 92], as illustrated
in Figure 5.1. The primary structure refers simply to the amino acid se-
quence of the protein. The secondary structure refers to the simple three-
dimensional structures of the amino acid chain. These arrangements can be
for example helices or pleated sheets, as shown in Figure 5.1. Of the differ-
ent structures, the tertiary structure is the most interesting in the context
of this work. The tertiary structure refers to the overall three-dimensional
arrangement of all atoms in a protein as opposed to the secondary struc-
ture, which only refers to the spatial arrangement of amino acid residues
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Figure 5.1: The four levels of protein structure.

that are adjacent in the primary structure. A protein spontaneously folds
into a three-dimensional shape with a distinct inside and outside. Typically
in an aqueous environment the interior of the protein is composed mainly
of the hydrophobic amino acids present in the sequence that exclude wa-
ter and the exterior mainly of hydrophilic amino acids, which increase the
water solubility of the protein. Finally, the quaternary structure refers to
how in some proteins that have separate amino acid chain subunits, the sub-
units arrange further into three-dimensional complexes (see Figure 5.1). The
correct function of a protein is heavily dependent on the three-dimensional
structure but the relation between e.g. the primary and tertiary structure is
not extensively known. As according to [137], a major concern of biochem-
ical research is to figure out the relationship between sequence embedded
information and folding behaviour of proteins. This concern is especially
pronounced in areas such as sequence and three-dimensional structure based
functional predictions and folding mechanisms [34,109].

The hydrophobicities and hydrophilicities of the different amino acids
in the sequence play an important role especially in the formation of the
tertiary (folding) structure of proteins. Later in this chapter we study mu-
tations in protein amino acid sequences. We assume that the mutations
that strongly change the hydropathy of certain critical parts (assessed by
our algorithm) of the sequence will affect especially the tertiary structure
of the protein and thus alter its operation to an unwanted direction. Previ-
ously, effects of pathogenic mutations have been predicted e.g. by observing
the conservation of amino acid residue sequences in different protein fami-
lies [80]. The methods proposed in this thesis and in [80] can complement
each other in a useful manner and remain as a topic for future studies.

Only specific amino acid sequences are good for generating functional
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proteins. However, statistically, there are only weak differences between
random permutations of a protein sequence and the original sequence [137].
Especially, protein hydropathy sequences have been shown to differ from ran-
dom sequences [55, 99]. According to [99], hydropathy is the only chemico-
physical property of proteins that shows statistically significant nonrandom-
ness. Further, prediction of 3D-structures of proteins based on sequence in-
formation alone may be impossible but hydrophobicity patterns have been
shown to correlate with 3D-structures [42]. Hydrophobicity is believed to
be linked to stabilising protein structures and points to the existence of spe-
cific constraints in the arrangement of hydrophobic and hydrophilic patterns
along chains, leading to foldable structures.

It should be noted that hydropathy values are usually estimated from the
amino acid sequence. A related measured quantity is the solvent accessibil-
ity of a protein. Solvent accessibility is closely linked to protein hydropathy,
since hydrophilic parts of the sequence tend to be closer to the surface of
the protein and are thus more accessible, whereas hydrophobic parts tend
to be more inside of the protein or, for example, buried inside the cell mem-
brane [2, 68]. Kyte-Doolittle method [61] is often used in the estimation of
hydropathy values. In estimating hydropathy, each amino acid is first given
a predetermined value between −4.6 and 4.6. The sequence is then passed
through an averaging filter of length 9, a value suggested in [61], to take into
account the interactions between the linked amino acids.

Protein hydropathy sequences have been studied extensively using a com-
putational technique called recurrency quantification analysis (RQA), see for
example [41, 42, 44, 99, 135–138]. RQA is based on quantifying the impor-
tant characteristics of a plot known as recurrence plot. Recurrencies, on
the other hand, are simply points that repeat itself [137]. In the context of
chaotic systems, recurrencies can be indicative of unstable periodic orbits,
which represent an element of order within chaos [16]. Recurrence plots and
RQA are further introduced in the following subsections.

Recurrences are inherent in dynamical systems, whereas for random sys-
tems recurrences occur by chance alone [127]. This was visualised in [126],
where a chaotic system known as Hénon strange attractor was simulated.
The Hénon system is basically composed of two interconnected variables
with nonlinear feedback. Plots of the simulated variables seem rather non-
deterministic, but the recurrence plots of the variables show structures im-
plying determinism that is not present in the recurrence plots of random
permutations of the sequences. This gives a very good, although heuristic,
motivation for trying to analyse protein hydropathy sequences with help of
recurrence strategies.

The scale of applications where recurrence plots and RQA have been
applied is wide. Applications include for example: Rhythmical physiological
systems [126], surface electromyographic signals [37], characterising folding
properties of chimeric sequences derived from two parental proteins [44],
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discriminating between function retaining and nonfunctional mutants of β-
lactamase with aid of principal component analysis [136] (principal compo-
nent analysis has also been applied to protein p53 in [99]), prediction of ther-
mophilic/mesophilic characteristics of rubredoxins [41], revealing hydropho-
bicity patterns in prions [138], predicting the presence of surface β-strands
from amino acid sequence data [96], complexity studies [43, 85], studying
chaotic systems [16,57,83,111,120], studying protein sequence-structure re-
lationships [42], discovering hidden dynamics in epileptic electroencephalo-
gram data [71] and numerous other studies. For more application areas and
references, see [85], where the authors note that more than 1000 related
references are found by the Scirus search engine.

We first review recurrence plots and related attempts to quantify the
plots, including RQA. Much of the following is based on a recently published
very formal 93-page study of recurrence plots and related metrics [85]. As an
application, a modification of RQA is applied to real protein solvent accessi-
bility data, as introduced in Publication-V. The method is successfully used
to distinguish locations in the sequence that are more prone to pathogenic
mutations than others.

5.1 Recurrence plots and statistics

Recurrence plots (RPs) were originally designed for studying dynamical sys-
tems, especially to detect hidden rhythms embedded within complex wave
forms, independent of stationarity restrictions (possibly nonstationary sig-
nals) [33]. RPs provide a useful graphical representation of recurrent pat-
terns in time or any ordered series [83].

Supposing we have a trajectory of a system, {xi}n
i=1, the development of

the system is then described by this series of vectors. The RP corresponding
to this system is then based on the following recurrence matrix,

Ri,j =

{
1 : xi ≈ xj ,
0 : xi 6≈ xj ,

i, j = 1, . . . , n, (5.1)

where xi ≈ xj means that the two vectors are separated by an error ε the
most. This error term is essential, since most systems never recur to a
formerly visited state exactly, just in the approximate sense. Recurrences
are thus indicated as ones, usually black spots on white background in the
plots, in the recurrence matrix and are indicative of where similar states in
the underlying system occur [85].

Three examples of RPs are shown in Figure 5.2 [85], namely of (uniformly
sampled) periodic motion on a circle (A), of the (uniformly sampled) chaotic
Rössler system (B) [112], and of uniformly distributed I.I.D. noise (C). The
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Figure 5.2: Recurrence plots of (A) a periodic signal with one frequency,
(B) the chaotic Rössler system with parameters a = b = 0.2, c = 5.7 and
(C) uniformly distributed noise [85].

Rössler systems is defined in terms of differential equations as

dx
dt = −y − z
dy
dt = x+ ay
dz
dt = b+ z(x− c)

, (5.2)

where the parameters were chosen a = b = 0.2 and c = 5.7. A plot of the
attractor can be seen in Figure 5.3. Recurrences can be observed in all the
three systems, but the patterns are clearly different. In Figure 5.2 (A) the
long diagonals reflect the periodic signal with the vertical distance between
these lines corresponding to the period of the oscillation. In Figure 5.2
(B), for the Rössler system, the diagonals are shorter and there are vertical
distances between the lines that are more irregular than for case (A). An
exception is seen in the upper right corner in (B), where the rectangular
patch looks like the RP of the periodic signal of (A). It is shown in [85] that
this section corresponds to a nearly periodic structure on the attractor of
the Rössler system, called an unstable periodic orbit (UPO). For the purely
stochastic signal (C), the RP consists of mainly separate single recurrent
points and next to none diagonal line structures. This leads us to the obvious
conclusion that the shorter the diagonals in the RP, the less predictable the
system is.

Constructing RPs

We now review the construction of recurrence plots in a more formal way.
With focus on recurrences of states in dynamical systems, the recurrence
plots measure recurrences of a trajectory xi ∈ Rd in d-space. If a scalar
time series yi = y(i∆t), with i = 1, . . . , n and ∆t as the sampling rate,
has been measured, the phase space has to be reconstructed. Typically,
the reconstruction is performed in the following way (for existing indices)
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Figure 5.3: Illustration of Rössler attractor with a = b = 0.2 and c = 5.7.

Figure 5.4: The ε-tube [85].

[85,95,118]

x̂i =

m∑

j=1

yi+(j−1)τej , (5.3)

where m is the embedding dimension, τ is the integer time delay (which
allows undersampling) and vectors ej are unit vectors. Choosing the embed-
ding parameters m and τ correctly is not trivial. Several rules of thumb have
been proposed [42,126] as well as methods to estimate the parameters [85].
The choice of these parameters is critical in the the reconstruction of the
original d-dimensional space of trajectories. This is because only correct
values yield embeddings that are guaranteed to be topologically equivalent
to the original and unobserved dynamics [57,95,118]. The RP matrix is then
defined as

Ri,j(ε) = u(ε− ‖xi − xj‖), i, j = 1, . . . , n, (5.4)

where n is the number of measurement points, ε is a selected threshold, u(·) is
the unit step function (u(x) = 1 for x ≥ 0, zero otherwise) and ‖·‖ is a proper
norm. The ε-neighbourhood is visualised in Figure 5.4. The recurrence plot
is then obtained by plotting the recurrence matrix 5.4, plotting a black dot
at (i, j) whenever Ri,j equals to one (and white otherwise). Conventionally
the point (1, 1) is at the lower left corner of the plot. Since Ri,i is trivially
always one, the main diagonal is called the line of identity (LOI). If ε is
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kept constant, the RP is also symmetric with respect to the main diagonal.
Choosing the norm is usually a choice between the L1-, L2- (Euclidean norm)
and L∞-norms (maximum norm). The L2-norm has been used a lot in the
more biological publications (e.g. [41,42,44,99,135–138]), probably because
of convention. However, it is actually possible to study some features in RPs
analytically by choosing the L∞-norm and it has therefore been used in the
more theoretical works [16,57,83,85].

Selection of the threshold ε is crucial in using RPs. Should ε be chosen
too small, there are only few recurrent points in the RP and there is little
to learn about the dynamics of the system. Of course, too big a ε leads
to the situation that nearly every point is a neighbour of another and also
to an effect called tangential motion. Tangential motion refers to including
recurring points that are not actually recurring but just consecutive to real
recurring points on the trajectory [85].

Several options for choosing the threshold have been presented in the
literature. As pointed out in [57], the decision of the authors in [126] to
prescribe a threshold corridor corresponding to the lower ten percent of the
entire distance range is made without a comment. This cutoff is used by
the authors of [126] in most of their later publications (which are many)
as well. If ε is chosen based on a fixed percentage, the percentage should
not exceed 10% of the mean or the maximum phase space diameter [85].
Another possibility is to choose ε so that the recurrence point density in
the RPs is a constant. The advantage of this would be that comparing
RPs of different systems would be easier without normalising the time series
beforehand. Other possibilities for choosing ε are given in [85], including
for example a noise-adaptive ε. No single correct method for choosing ε has
been published so the decision remains application specific.

Patterns in RPs

RPs provide important insights into the time evolution of the trajectories of
high dimensional systems [85]. Therefore, several important structures and
patterns that are visible in RPs are next discussed. First, homogeneity of the
patterns in RPs means that the process is fairly stationary. Second, fading
to the upper left and right corners (away from the line of identity) means
that the data is nonstationary and contains a trend or a drift. Third, white
bands in the plot points to nonstationarities in the data and some states
are either rare or far from the majority of data. Fourth, periodic and quasi-
periodic patterns mean that there are cyclicities in the process. Distances
between these line structures are indicative of the frequency of the period
and differing distances point to quasi-periodic behaviour. Fifth, a RP with
single isolated points means that the process is strongly fluctuating and is
probably random. Sixth, diagonal lines parallel to the line of identity are
indicative of states that evolve similarly at different locations. This can mean
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that the process is deterministic or, if the diagonal lines occur beside single
isolated points, chaotic. Periodic occurrance of diagonal lines can also point
to unstable periodic orbits. Seventh, diagonal lines orthogonal to the line of
identity means that the evolution of states is similar at different times but
with reverse time. This could also be indicative of insufficient embedding.
Eighth, vertical (or horizontal) lines and clusters mean that some states do
not change or change only slowly. Lastly, long bowed line structures point
to similar evolution of states at different points but with different velocity,
meaning that the dynamics of the system could be changing.

It was discussed before that in case a scalar time series or sequence has
been measured, the phase space must be reconstucted for example by the
delay embedding technique. If the parameters m and τ are set to one, we
get what is called an unembedded RP. Increasing the embedding dimension
by one reduces always the length of all diagonal lines by one and removes
isolated dots entirely [83]. It was shown in [85] that an increase in the embed-
ding dimension cleans the RP from single recurrence points and emphasises
the diagonal structures as diagonal lines. This affects any quantification of
RPs that are based on diagonal lines. Therefore the embedding parameters
must be chosen carefully or statistics that are invariant to the embedding
dimension should be used. Higher dimensional embedding, even if advanta-
geous, can however cause spurious correlations in the regarded system [85]
and too large an embedding dimension can make random/stochastic sys-
tems display strong artificial patterns of recurrence. This can happen even
though diagonal structures should be extremely rare for uncorrelated data.
The bottom line here is that a stochastic signal that is embedded in a high
dimensional space can give rise to diagonal lines in RPs and feign nonexisting
determinism.

Modifications to RP construction

Several modifications to the presented RP evaluation have been published.
The original definition of RPs in [33] used the L2-norm and ε was chosen
for each xi separately so that the neighbourhood contained a fixed amount
of nearest neighbours (FAN) xj . This leads to an asymmetric RP, since it
is possible that xi is one of the nearest neighbours of xj but not necessarily
vice versa. Further, all the columns in the RP have the same recurrence
density. The neighbourhood with a FAN plays an important role in detec-
tion of generalised synchronisation and cross recurrence plots [85]. Another
modification for visualisation purposes and studying phase space trajectories
is to plot the actual distances between states without quantising to zero or
one. This kind of a plot is called a global recurrence plot or unthresholded
recurrence plot. For further information, see the review on different ways of
choosing the neighbourhoods and figures of the corresponding RPs in [85].

Further extensions of recurrence plots include cross recurrence plots and
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multivariate joint recurrence plots. Measures of complexity for recurrence
plots (such as RQA) and how dynamical invariants for RPs can be derived
are also considered in [85]. Furthermore, the potential of RPs for the analysis
of spatial data, the detection of UPOs [16], detection and quantification of
different kinds of synchronisation and effects of noise are considered. Com-
parisons with other methods (if applicable) that have been used in similar
tasks are also given, see [85].

5.1.1 Recurrence quantification analysis

We now turn to quantifying the characteristics of RPs. One of the first
attemps to quantify RPs was given in [126]. The approach is called recur-
rence quantification analysis and evaluates several important scores based
on RPs. Five scores called recurrence rate (REC), percent determinism
(DET ), entropy of the diagonal line lengths (ENTR), trend (TREND)
and ratio (RATIO) were initially introduced. Later, two more scores were
introduced, the first quantifying vertical lines (laminarity LAM) and the sec-
ond the average length of vertical line structures (trapping time TT ) [86].
In addition, computation of these measures in small windows of the RP
moving along the line of identity can be useful in detecting state transitions
and the time dependent behaviour of these variables. Further scores and
modifications have also been reviewed in [85]. For other reviews of RQA,
see [127,137].

A lot of criticism has erupted on the RQA metrics. In [16] the authors
state that RQA cannot elucidate the spatiotemporal details of the dynamics
of the underlying system. Further, RQA results on structurally dissimilar
RPs can be virtually identical [57]. However, the authors in [126] claim
that the goal of RQA is not to search for chaos or reconstruct attractors.
Instead, the point is to use recurrence plot methodologies to reveal dynam-
ical behaviour in sequences that is not so obvious and is not detected by
standard linear techniques. Although having been subject to a lot of cri-
tique, RQA has been successfully used in many applications ranging from
chemoinformatics [9] to economy [134].

We now focus on the application of RQA to RPs and consider the dif-
ferent RQA scores, their potentials and limits.

Recurrence density estimation

Recurrence rate (sometimes also called as correlation sum) of a system as
measured from its RP is defined as

REC(ε) =
1

n2

n∑

i,j=1,i6=j

Ri,j(ε). (5.5)
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Recurrence rate measures thus the density of recurrence points in the RP.
In the limit n → ∞, REC is the probability that a state recurs to its ε-
neighbourhood in phase space [85]. The average number of neighbours each
point on a trajectory has in its ε-neighbourhood is given by

Nn(ε) =
1

n

n∑

i,j=1,i6=j

Ri,j(ε). (5.6)

Quantifying diagonal line structures

The histogram of diagonal line lengths is an important concept in quantifying
diagonal line structures in RPs (see Figure 5.5 for examples). It is defined
as

P (ε, l) =

n∑

i,j=1,i6=j

(1 −Ri−1,j−1(ε))(1 −Ri+l,j+l(ε))

l−1∏

k=0

Ri+k,j+k(ε), (5.7)

and for simplicity of notation assuming that Ri,j = 0 outside the defined
boundaries (e.g. at R0,0).

Processes with uncorrelated or weakly correlated, stochastic or chaotic
behaviour cause none or short diagonals and more deterministic processes
have been shown to cause longer diagonals (and less isolated points) in RPs
[85]. To measure the determinism and predictability of a system based on
diagonal lines, the score DET is introduced as the ratio of recurrent points
that form diagonal structures to all recurrent points, i.e.

DET =

∑n
l=lmin

lP (l)
∑n

l=1 lP (l)
, (5.8)

where lmin is the minimum length of diagonal lines considered (helping ex-
clude diagonal lines formed by tangential motion) and omitting the symbol
ε in P (ε, l).

A diagonal line of length l indicates that a part of a trajectory is close
to another segment during l τ -time steps. The lines are thus related to the
divergence of trajectory segments. The average time that two segments of a
trajectory are close to each other is quantified by the average diagonal line
length

L =

∑n
l=lmin

lP (l)
∑n

l=lmin
P (l)

. (5.9)

The complexity of RPs in respect of diagonal lines is reflected by the
Shannon entropy of the probability p(l) = P (l)/nl to find a diagonal line of
exactly length l in the RP,

ENTR = −
n∑

l=lmin

p(l) ln p(l), (5.10)
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where nl =
∑

l≥lmin
P (l) is the total number of diagonal lines. For uncorre-

lated stochastic signals the value of ENTR is relatively small, since the RP
is composed mainly of lines of length one, indicating low complexity.

The authors in [57] claimed that DET and ENTR are independent
of the embedding dimension. However, it was shown in [83] that this is
only true for some low-dimensional chaotic processes whose recurrence rate
scales approximately exponentially as RECm ≈ Ae−K2m for some K2 (the
Kolmogorov entropy rate) and embedding dimension m. For the Shannon
entropy ENTR this holds only in the case of perfect exponential scaling
(data derived from an I.I.D. process).

It is useful in some instances, for example computing the variable TREND,
to compute the variables REC and DET separately for each diagonal paral-
lel to the line of identity. Therefore, RQA measures for a certain line parallel
to and distance τ from the line of identity are denoted as τ -recurrence rate
(RECτ ) and τ -determinism (DETτ ). Further, we denote Pτ (l) as the num-
ber of diagonal lines of length l on each diagonal Ri,i+τ parallel to the line
of identity. The τ -recurrence rate for the diagonal lines at distance τ from
the line of identity is

RECτ =
1

n− τ

n−τ∑

i=1

Ri,i+τ =
1

n− τ

n−τ∑

l=1

lPτ (l). (5.11)

This measure can be thought of as a generalised auto-correlation function
[85]. The measure describes higher order correlations between points of
trajectories depending on τ . An advantage over the linear auto-correlation
function is that RECτ can be determined for a trajectory in phase space
and not only for a single observable of the trajectory of a system. It is also
the probability that a state recurs to its ε-neighbourhood after τ time steps.
The τ -determinism is defined as

DETτ =

∑n−τ
l=lmin

lPτ (l)
∑n−τ

l=1 lPτ (l)
, (5.12)

and describes the proportion of recurrence points forming diagonal lines
longer than lmin to all recurrence points on the chosen diagonal. It is further
noted in [85] that the τ -RQA measures are also important scores on their
own. The measure RECτ has been used in finding UPOs in low-dimensional
chaotic systems [40, 64, 90]. The main motivation for using RECτ in this
is that periodic orbits are more closely related to the occurrance of longer
diagonal structures. Other application areas are in studying nonstationarity
in data [33] an analysing synchronisation between oscillators [85].

Yet another RQA measure is TREND, which provides information about
nonstationarity in the process, for example whether a drift is present in the
analysed trajectory. This variable is defined as the linear regression coef-
ficient over the recurrence point density RECτ of the diagonals parallel to
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Figure 5.5: Typical diagonal line structures and points in RPs [137]. (1) a
diagonal line composed of 8 recurrent points. (2) 4-point diagonal line. (3)
Chance recurrent points. (4) The line of identity. (5) The line perpendicular
to the line of identity, representing the x-axis in computing TREND. (6)
Perpendicular lines along which recurrences may fall.

the line of identity, as a function of the time distance between the diagonals
and the line of identity

TREND =

∑ñ
τ=1(τ − ñ/2)(RECτ − 1/ñ

∑ñ
t=1RECt)∑ñ

τ=1(τ − ñ/2)2
, (5.13)

where ñ < n is chosen so that the edges of the RP are excluded. This is
because of the insufficient number of recurrence points near the corners of
RPs. Another way to look at TREND is to view it as the slope of the
τ -recurrence rates when the line number 5 in Figure 5.5 is the x-axis and
the τ -recurrence rates form the y-axis. For more discussion on choosing ñ,
see [85].

Lastly, the measure RATIO is defined as the ratio between DET and
REC [126]. It is based on the number P (l) of diagonal lines of length l as

RATIO = n2

∑n
l=lmin

lP (l)

(
∑n

l=1 lP (l))2
. (5.14)

The authors state in [126] that during certain types of qualitative physio-
logical state transitions the number of recurrent points decreases and the
proportion of points in line structures is less affected. Therefore, during
physiological transitions RATIO increases substantially but settles down
again when a new state is achieved.
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Quantifying vertical line structures

As mentioned in [85], large part of the vertical lines in RPs of continuous
time systems, discretised with sufficiently high time resolution and using an
appropriately large ε, are caused by tangential motion of the phase space
trajectory. There are, however, some elements in the sets of vertical lines
that do not correspond to tangential motion, for example in the presence
of laminar states in intermittent regimes. Vertical lines are also present in
the RPs of systems that have two or more different time scales. The total
number of vertical lines of length v in the RP can be evaluated as

Pvl(v) =

n∑

i,j=1

(1 −Ri,j)(1 −Ri,j+v)

v−1∏

k=0

Ri,j+k. (5.15)

The laminarity score is then evaluated analogously to DET as

LAM =

∑n
v=vmin

vPvl(v)∑n
v=v1

Pvl(v)
, (5.16)

with vmin chosen large enough to decrease the influence of tangential motion
(although vmin = 2 is often used). The average length of vertical structures,
known as trapping time, is given by

TT =

∑n
v=vmin

vPvl(v)∑n
v=vmin

Pvl(v)
, (5.17)

and estimates the mean time the system will stay at a specific state.
The scores based on vertical line structures are able to find chaos-chaos

transitions and allow for the investigation of intermittency in short and non-
stationary data [86]. Chaos-order transitions can also be identified because
for periodic dynamics the measures quantifying vertical structures are zero.
It is further pointed out in [85] that the RQA variables quantifying vertical
line structures can detect transitions between chaos and periodic windows
based on just approximately 1000 data points, whereas some formerly pro-
posed methods may need as many as 100000 data points.

5.1.2 Embedding independent properties of RPs

The previously introduced scores quantifying RPs are rather heuristic but
are useful in finding various transitions in dynamical systems. The biggest
problem of the RQA framework is that the measures are in general depen-
dent on the embedding parameters used in reconstructing the phase space
trajectory [85]. In some cases, if ground truth knowledge of the data at hand
were available, resampling methods such as cross validation could be used
in estimating the optimal embedding parameters. There are, however, some
embedding invariant properties in RPs.
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It is shown in [85] that the correlation dimension and correlation entropy
are independent of the choice of the embedding dimension. The downside is
that the accurate estimation of these variables may require tens or hundreds
of thousands of data points; amounts that are not usually available for actual
measurement data. On the other hand, correlation entropy can be used in
estimating generalised mutual information, which quantifies the amount of
information obtained from the measurement of one variable on another and
has been applied to quantify dependencies within and between time series.

Recurrence plot statistics that are invariant to embedding dimension
were also studied in [83]. It was noted in [83] that RPs of higher embedding
dimensions can be obtained from the parental unembedded RP. Thus, em-
bedding is not strictly necessary since all of the information is contained in
the unembedded plot (i.e. m = 1). For further discussion on the effects of
embedding, see [85].

5.2 Application of recurrence plots to solvent ac-

cessibility data

Since mutations in genes and deficiencies in post-translational processing of
proteins can lead to serious illness and cancer, it would be very interest-
ing to know which positions in the protein sequence are more susceptible
to pathogenic mutations than others. In Publication-V, we studied pro-
tein sequences with help of recurrence plots and recurrence quantification
analysis and distinguished locations where pathogenic mutations occur more
frequently than elsewhere. This was verified by information on locations of
pathogenic amino acid mutations in clinical patients. However, this addi-
tional information was not used in any kind of training of the algorithm; it
was used only to validate the results.

Although protein solvent accessibility (or hydropathy) sequence is not a
time series, it can be considered to be an ordered (spatial instead of tem-
poral) sequence that RQA can equally well be applied to [43]. In [99],
the authors show that the first principal component of the RQA variables
(REC, DET , ENTR and TREND) of different protein p53 mutants can
discriminate between two known differently acting mutation types (binary
classification). The authors used estimated hydropathy profiles for the wild
type and mutated p53 proteins as their data set. In Publication-V we stud-
ied several protein domains with knowledge of pathogenic mutation loca-
tions in the sequences. Our first target, the human Bruton tyrosine kinase
(BTK), is an extensively studied [7, 50,54,82,123] protein that plays a cru-
cial role in B cell development. Mutations in this protein result in X-linked
agammaglobulinemia (XLA), which is an immunodeficiency characterised by
failure to produce mature B lymphocyte cells [73]. We also analyse here the
von Hipplel-Lindau (VHL) tumor suppressor protein [65]. Changes in this
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protein can lead to failure in controlling a protein called hypoxia-inducible
factor. Excess amounts of this factor stimulates cells to divide abnormally
and can lead to development of cysts and tumors. The considered data
sets include, besides the amino acid sequences of the protein domains, the
solvent accessibility sequences and locations of pathogenic amino acid muta-
tions discovered in clinical patients. For each pathogenic mutation location,
several amino acid substitutions may have been found.

In applying RQA to solvent accessibility data, the L2-norm was used.
The L∞-norm was also tested but did not significantly change the results. In
addition, embedding dimension 4 was chosen. The decision has no other than
a heuristic reasoning; [44] claim that for hydrophobicity data, embedding
dimension of 4 is dictated by a balance between the need to have a window
large enough to keep track of between-residue interactions and on relying,
at the same time, on a sufficient number of considered windows. Since
a change of an amino acid in a protein can change the hydropathy and
solvent accessibility around its location, we decided to simulate this effect
in Publication-V by introducing values that are inconsistent with the rest of
the data, i.e. outliers, to the wild type solvent accessibility sequence.

5.2.1 Outlier analysis of RQA

We demonstrate next how the proposed method works on actual measured
protein solvent accessibility data. In previously shown RPs the origin has
been in the bottom-left corner but in the following figures the origin is placed
in the top-left corner, as in Publication-V. The data is obtained from three
domains of the wild type human Bruton tyrosine kinase [125] (RPs in Figure
5.6 (a-c)) and from von Hippel-Lindau (VHL) tumor suppressor protein
(Figure 5.6 (d), not considered in Publication-V). The proposed method
was applied to other proteins as well and results were similar (not shown
here).

In our approach, we subsequently change each value in the solvent acces-
sibility sequence one location at a time by inserting a value (an outlier) that
is at a far distance from all the other values. This effectively means that
the affected windows can no longer be recurrent with any others. Although
the effect of a real amino acid mutation to the solvent accessibility sequence
is smoothened and spread to the adjacent positions, the outlier replacement
coarsely approximates the worst case scenario of an amino acid change in the
protein sequence. We next compute REC, by using ε corresponding to the
10% of the entire distance range (as in [126] and many other publications)
in the wild type sequence, for all the modified sequences and plot REC as a
function of the outlier location in the corresponding sequence. If the outlier
hits an area of no recurrence or chance recurrence, REC will not change
much. On the other hand, if the outlier hits an area contributing to line
structures, REC will decrease more considerably. We call this procedure
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Figure 5.6: Recurrence plots for BTK PH domain (a), BTK kinase domain
(b), BTK SH2 domain (c) and von Hippel-Lindau tumor suppressor protein
(d).

as outlier analysis of RQA. If the data were generated by an independent
noise process and the corresponding RP consisted mainly of line structures
of length 1, the REC change plot would fluctuate slightly down (when the
outlier affects one or a few recurrent points) and up (when the outlier has no
effect on REC) and could maybe be modelled by a t-distribution. However,
with longer line structures in the RP, the REC change plot will addition-
ally make strong downward fluctuations that make the REC-change data
asymmetrically distributed. Therefore, we opt to use a robust detection
threshold to distinguish regions with a strong REC change. Least trimmed
squares [107] is used in fitting a baseline to the REC change data and find-
ing a robust estimate for the scale of the data. The threshold, below which
points are treated as candidates for pathogenic mutation locations, is then
chosen based on the scale estimate and t-distribution (one-sided 99% value).
We also consider the receiver operating characteristic curve approach here
that is independent of a single detection threshold. In other words, we use
the recurrence percentage change values and knowledge of pathogenic mu-
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tation locations (although this information is likely to be incomplete) to
construct ROC curves that indicate how well our method performs on the
different protein accessibility sequences.

We found that the change caused by the outliers in REC was more in-
formative than the change in DET . This points to the possibility that the
vertical lines in RPs, corresponding to laminar states, are also important
when considering volatile locations in protein sequences. Since there is usu-
ally a considerable amount of measurement noise involved, some diagonal
line structures may have also been split to single, although relatively close,
recurrent points and thus make REC more interesting to observe.

The best results shown in Publication-V were obtained for the BTK PH
domain whose corresponding RP is seen in Figure 5.6 (a), REC-change in
Figure 5.7 (a) and ROC curve in Figure 5.8 (a). The detected locations cover
27.5% of the whole range but 62.5% of the known mutation locations reside
in this area, indicating better than random detetection (15 true positives, 9
false negatives). The ROC curve, which is not dependent on the detection
threshold, in Figure 5.8 (a) shows a clear deviation from the chance diagonal
(area under the curve 0.74). Results for BTK kinase domain (area under
the ROC curve 0.64) and VHL (area under the ROC curve 0.59) are shown
in Figures 5.6-5.8 (b) and 5.6-5.8 (d), correspondingly. The results for BTK
SH2 domain, whose ROC curve fluctuates around the chance diagonal (Fig-
ure 5.8 (c)) are not very good (area under the curve 0.5). This is possibly a
result of the low initial recurrence percentage. Changing ε for this sequence
did not yield any better results either. The low initial REC of the SH2
domain could be a result of shorter sequence length and/or measurement
noise. It must be noted that in Publication-V, the value ε = 10% of the
entire distance range was used only for the BTK kinase domain (Figure 5.6
(b)). The value ε = 8% of the distance range was accidentally used for the
RPs of BTK PH and BTK SH2 domains. Figures 5.6 (a) and 5.6 (c) show
the corrected plots, which differ from the ones in Publication-V. To see if
the ad-hoc selection of ε = 10% of the entire distance range is reasonable,
we observe the effect of varying ε next.

By varying ε in the analysis of BTK PH domain, the ratio of detected
true mutation percentage to detected point percentage was highest at around
3.5 (detecting 37.5% of the mutations and covering 10.7% of the sequence)
with ε ≈ 15% of the maximum wild type Euclidian distance range. The
ratio is shown for several values of ε in Figure 5.9. It can be observed that
shortly after the value ε = 13%, although the prediction ratio goes initially
high, both the detected true mutations and detected locations approach
zero. This is also evident with very low values of ε. The highest detected
mutation percentage (62.5%) was obtained for ε ≈ 10% of the range. It is
also visible in Figure 5.9 that the ratio is nearly constant for a wide range
of ε. Similar behaviour was also observed for BTK kinase domain (Figure
5.6 (b)), i.e. changing ε around 10% changed the results only slightly. The
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choice of ε ≈ 10% (based on literature [126]) of the range is therefore quite
reasonable, at least here.

Based on these results, the conclusion can be drawn that the density of
harmful mutations in the detected locations, mostly corresponding to the
vertical and diagonal lines in the RPs, is generally higher than elsewhere.
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Figure 5.7: REC change plots for BTK PH domain (a), BTK kinase domain
(b), BTK SH2 domain (c) and von Hippel-Lindau tumor suppressor protein
(d). The plain spots correspond to REC percentages in locations where
pathogenic mutations have not been observed in clinical patients. The spots
surrounded by diamond shapes correspond to locations where pathogenic
mutations have been observed in clinical patients. The dashed line shows
the detection threshold, below which points are treated as susceptible to
pathogenic mutations.
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Figure 5.8: ROC curves of detection for BTK PH domain (a), BTK kinase
domain (b), BTK SH2 domain (c) and von Hippel-Lindau tumor suppressor
protein (d). The plots illustrate that for cases (a), (b) and (d) the detection
deviates from random.
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Figure 5.9: The effect of changing the value of ε on the value of detected
locations in the sequence and detected true mutation locations.
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Chapter 6

Conclusions

Several new robust statistical signal processing methods were introduced
in this thesis for time series analysis in genomic and proteomic data. In
addition, a general simulator framework for simulating gene expression mi-
croarrays was presented.

In Chapter 2 an overview of microarray technologies was given, of which
gene microarrays represent the most advanced high throughput gene ex-
pression measurement technology to date. In Chapter 3, a highly modular
gene expression microarray simulator was introduced that is able to simu-
late microarray measurements in a statistically sound way. One of the many
uses of the simulator is to allow conducting microarray experiments in sil-
ico and help plan real microarrays. It can also be used in benchmarking
different microarray preprocessing and analysis algorithms. Future plans in-
clude performing a comparison study of the different published error models
for microarray data and implementing the simulation of other types of high
throughput arrays. In addition, inference for the error terms and verifying
the usefulness of the different models in processing microarray data should
be considered.

Three robust periodicity detection methods were considered in Chapter
4. Robust spectrum estimation and periodicity detection have gained sur-
prisingly little attention in the literature. Publication-II, Publication-III and
Publication-IV are good exceptions to this and provide serious alternatives
to classical methods in short length data with unkown noise characteris-
tics. These methods can be used in a wide variety of applications where
robustness is needed. To the author’s knowledge, the algorithm introduced
in Publication-II has already been applied to a wide range of measured mi-
croarray data as well as on nesting frequency data from leatherback turtles
nesting in Gabon (personal communication based on algorithm implemen-
tation requests). There have been a total of 20 requests by E-Mail (as of
October 18., 2007) for the implementation of the algorithm besides anony-
mous downloads on the companion website (for which no statistics exist). It
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is also suprising that in the simulation studies considered in Publication-III
the robust rank based algorithm has better receiver operating character-
istics than the exact classical Fisher’s test in the case of pure Gaussian
noise. The results in Publication-III, when nonuniform sampling is con-
sidered, are equally surprising. It is evident from the simulation results
that the algorithm presented in Publication-II operates outstandingly even
when the sampling is not exactly uniform. In the case of more extreme
nonuniform sampling schemes the regression based framework proposed in
Publication-III performs robustly and with good receiver operating charac-
teristics. Future work in this research direction includes considering wavelets
in periodicity detection. As opposed to Fourier series based functions, some
wavelet basis functions are localised and are known to capture the tran-
sient behaviour in signals. Wavelet analysis of short length time series and
robustifying the wavelet transform are worth closer inspection.

The presentation given in Chapter 5 is the least developed aspect in
this thesis. It was shown in Publication-V that the detected deterministic
(even if weakly so) parts of human Bruton tyrosine kinase are volatile to
pathogenic mutations and the density of pathogenic mutations is higher in
the areas detected by our algorithm. This serves as a good motivation for
continuing the work on recurrence based methods. Future work in this area
should be devoted to formally quantifying the more or less ad-hoc measures
and settings in the algorithms. It is important to quantify how much the
paramaters in recurrence plots affect the results. Especially, the effects of
the chosen norm and ε (although the choice of ε was shown to be quite
liberal in Chapter 5) in constructing recurrence plots and the embedding
parameters in recurrence quantification analysis should be quantified. In-
corporating other biological (such as amino acid conservation) information
and considering estimated hydrophobicities of the wild type and mutated
sequences (and their comparison to the results obtained from solvent acces-
sibilities) give also options for refining the algorithms.
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Appendix A

Hilbert space properties

An inner-product space (H), whose completisation a Hilbert space is [19],
is characterised for each pair x and y from the space by a complex number
〈x, y〉 (the inner product) for which

(a) 〈x, y〉 = 〈y, x〉,
(b) 〈x+ y, z〉 = 〈x, z〉 + 〈y, z〉, ∀x, y, z ∈ H
(c) 〈αx, y〉 = α〈x, y〉, ∀x, y ∈ H, α ∈ C

(d) 〈x, x〉 ≥ 0, ∀x ∈ H
(e) 〈x, x〉 = 0 if and only if x = 0.

(A.1)

In a complex finite-dimensional inner-product space the inner-product is
defined as 〈x,y〉 =

∑k
j=1 xjyj with x = (x1, . . . , xk)

′ ∈ Ck (y defined in a
similar manner). In the Euclidean space the corresponding vectors are real
valued and the complex conjugate of y reduces to y. The norm of an element
x of an inner-product space is defined by

‖x‖ =
√

〈x, x〉. (A.2)

As was mentioned, a complete inner-product space is called a Hilbert
space. Completeness of an inner-product space is guaranteed if all Cauchy
sequences in the space converge in norm to some element x ∈ H, i.e. for
every ǫ > 0 there exist positive integers nǫ1, nǫ2 such that

‖xn − xm‖ < ǫ, ∀m,n > nǫ1,
⇒ ∃x : ‖xn − x‖ < ǫ, ∀n > nǫ2,

(A.3)

where ∀n ∈ N : xn ∈ H. For example, Rk, Ck and L2(Ω,F , P ) (a complete
linear norm space) are Hilbert spaces, but the inner-product space Cr(A,B)
that is the set of functions for which the rth derivative is continuous, in
general is not.

In a Hilbert space, the orthogonal complement of M ⊆ H is the set
M⊥ ⊆ H whose all elements are orthogonal to all the elements of M, i.e.

x ∈ M⊥ ⇔ 〈x, y〉 = 0 ∀y ∈ M. (A.4)
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An orthonormal set {et, t ∈ T} is a special case of orthogonal sets for which
for every s, t ∈ T : 〈es, et〉 = 1 if s = t and 0 otherwise. The projection
theorem states that for a closed subspace M ⊆ H there is a (unique) x̂ ∈ M
such that ‖x− x̂‖ = infy∈M ‖x−y‖ if and only if x̂ ∈ M and (x− x̂) ∈ M⊥,
where x̂ is called the orthogonal projection of x onto M.

In Rn every closed subspace M can be expressed as M = span{e1, . . . , em}
with {e1, . . . , em} an orthonormal subset of M and m ≤ n (the dimension
of M). In case m < n, there exists an orthogonal complement of M such
that M⊥ = span{em+1, . . . , en}. If we denote the projector onto M as PM

(the projector onto M⊥ is I − PM), then

PMx =
m∑

j=1

〈x, ej〉ej . (A.5)

We can also compute PMx directly from any set of vectors {x1, . . . ,xm}
(xi ∈ Rn) that are not necessarily orthogonal but span M (meaning that
they are linearly independent). First denote

PMx =
∑m

j=1 βjxj = Xβ, (A.6)

for some m-vector β and where X is the matrix composed of the vectors
spanning the subspace. Since Xβ − x ∈ M⊥, it follows that

〈xj ,Xβ − x〉 = x′
j(Xβ − x) = 0, j = 1, . . . ,m (A.7)

and X ′(Xβ − x) = 0 from which further follows that X ′Xβ = X ′x. Matrix
X ′X is non-singular (and thus has an inverse) since the column vectors of X
are assumed to be linearly independent. Therefore we have a unique solution

PMx = X(X ′X)−1X ′x. (A.8)

The vector β = (X ′X)−1X ′x can be viewed as the set of coordinates for the
projection in the subspace M.
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