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Abstract

This thesis is dedicated to demosaicing and deblurring problems in digital image process-
ing and their solution exploiting signal adaptive �ltering. In particular, we use �ltering
based on the local polynomial approximation (LPA) and the paradigm of the intersection
of con�dence intervals (ICI) for the adaptive selection of the scales of LPA. This �ltering
is nonlinear and spatially-adaptive with respect to the smoothness and irregularities of
the image.
In the �rst part of the thesis, demosaicing is studied. It refers to the problem of

interpolation of complete red, green, and blue values for each pixel, to make a color
RGB image, from downsampled gray-scale mosaic-like raw data recorded by a single-
chip digital camera. We propose a novel technique for demosaicing that shows results
that, to the best of our knowledge, are a signi�cant improvement over the state of the
art.
Traditionally, in demosaicing the input signal is assumed to be noise-free. However,

the raw data is always noisy and thus pre�ltering has commonly been used prior to
demosaicing. We show that the demosaicing and denoising designed as a single procedure
can be signi�cantly more e�cient than analogous independent procedures. In this thesis,
we do not restrict ourselves to the conventional stationary Gaussian noise model. In the
developed technique, we also take into account the signal-dependant Poisson noise which
is much more relevant for digital imaging sensors. As a result, we achieve higher quality
of image restoration as demonstrated by extensive experiments for both arti�cial and
real data taken directly from the sensor of a camera phone.
The second part of the thesis is dedicated to image deblurring. We develop several

techniques as an evolution from conventional deconvolution with a known blur to blind
deconvolution with an unknown blur. We propose techniques for digital optical section-
ing, multi-channel and single-channel blind deconvolution, and techniques for automatic
selection of the regularization parameter.
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Chapter 1

Introduction

The recent decade was outlined with drastic growth of high-tech consumer and industrial
electronics. As a part of this process, imaging made an overwhelming step from analogue
to digital photography and video. A number of di�erent cutting-edge digital imaging
technologies found their places in real-life appliances, among which charge-coupled device
(CCD), complementary-symmetry/metal-oxide semiconductor (CMOS), synthetic aper-
ture radar (SAR), sensors for thermal, multispectral imaging, etc. The size of devices
and prices are continuously becoming smaller while the possibilities that they provide
are impressively increasing. Nowadays, nobody can be surprised by a mobile camera
phone that takes a high-resolution color image and sends it to an another mobile phone,
desktop computer, or printer. Digital imaging equipment became not only usual for us
but also often a necessary one.

This growth was impressively fast and gave us plenty of new opportunities. Neverthe-
less, the digital imaging still is extremely challenging problem targeted and designed even
for such devices and applications as digital photo and video cameras, 
uorescence and
confocal microscopes, space telescopes, etc. This results in developing advanced optical
systems, imaging sensors, speci�c image-processing processors, technologies that reduce
power consumption. On the other hand, many aspects are unrealistic for mobile cam-
era phones due to the hardware limitations that makes problems related to the digital
imaging sometimes even more di�cult. Often computational imaging restoration tech-
niques implemented in software are very attractive to replace e�ectively their hardware
counterparts.

1.1 Image Reconstruction Chain

In a typical digital camera, the image restoration chain can contain the following usually
cascaded operations:

� Noise reduction,

� Color �lter array interpolation (CFAI),

� Deblurring of color component,

1



2 1. Introduction

� Automatic white balance (AWB),

� Color gamut conversion,

� Geometrical correction and vignetting elimination.

It is evident that the �nal image quality depends on the e�ective and optimized
use of all these operations in the reconstruction chain. Typically, the most e�ective
implementations of these algorithms are non-linear (Trimeche, 2005).
In this dissertation, the following stages from the image restoration chain were stud-

ied: noise reduction, color �lter array interpolation, and deblurring. In particular, we
cover mainly three problems of digital image processing formulated as signal-adaptive
denoising, noise-resistant interpolation, and deconvolution related applications. The cru-
cial part of the developed approach to these problems is the �ltering adaptive to signal.
The main intention is done on the spatial (temporal) adaptivity based on the LPA-ICI
technique that proved its e�ciency in a variety of applications.
Let us start from the mathematical image formation models used in this work.

1.2 Image Acquisition Models

1.2.1 Additive Noise Models

It is the well-known fact that any image recorded by a digital camera sensor is noisy. The
most wide-spread and well-studied modeling is perhaps the model with additive noise:

z(x) = y(x) + n(x); (1.1)

where z(x) is the observed signal, y(x) is the true signal to be estimated, n(x) is the
noise at every point x; x 2 X = fx = (x1; x2) : x1 = 1; :::; 2N; x2 = 1; :::; 2Mg are the
spatial coordinates.
It is convenient to represent the noise in (1.1) in the form

n(x) = �(x)�(x); (1.2)

where �(x) is an independent zero-mean noise with variance equal to one at every point
x and thus �(x) is the standard deviation of z(x). It is not necessarily invariant with
respect to the spatial variable x.
The following noise models are considered in this work:

a) The additive stationary white Gaussian noise with the invariant standard deviation

�(x) = const (1.3)

for all x 2 X (exploited in Publications I-VII), and the term �(x) � N (0; 1) is the
white Gaussian noise with the variance equal to one. An example of Blocks 1D
signal with this type of noise with � = 0:5 is illustrated in Fig.1.1b.

However, dependence of the noise from the signal is more realistic in practice, for
instance, in photon-counting applications. An important property of such a noise is the
dependence of its variance from the signal (Hirakawa, 2005b; Foi, 2007a; Foi, 2006b).
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a) b)

c) d)

Figure 1.1: Illustration of di�erent noise models: a) true signal; b) additive Gaussian noise; c)
Poissonian noise; d) mixture of Gaussian noises.

The most widely encountered models for this dependence are �lm-grain, multiplicative,
speckle noise, and, in particular, Poissonian noise. In probability theory and statistics,
the Poisson distribution is a discrete probability distribution that expresses well stochas-
tic counting processes (Ross, 1997; Khuri, 2003). This distribution is associated with the
random number of events that take place over a �xed period of time and provided that
probability of an arrival occurring during this time interval does not depend on what
happened prior to it. Such modeling is common for CCD and CMOS digital image sen-
sors. Photons that strike digital imaging sensor during the opening shutter of a camera
is an example of such a process. Sometimes it is called as photon-counting noise (Bovik,
2000).

b) The signal-dependent Poissonian model of the form �z(x) � P(�y(x)) is considered
in this work. This noise can be written explicitly in the additive form (1.1) where
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the standard deviation depends on the image intensity as

�(x) = stdfz(x)g =
p
y(x)=�: (1.4)

Here � is the parameter that controls the noisiness of the observed data z(x). It
is shown in (Foi, 2007a; Foi, 2006b) that such a model can be used for generic
CCD/CMOS digital imaging sensors (exploited in Publications I, III). An example
of Blocks 1D signal with this type of noise is illustrated in Fig.1.1c. The shown
signal was modi�ed in such a way that all his values are larger than 0, particularly,
�z(x) � P(�(y(x) + 10)) with � = 20:

c) The nonstationary Gaussian noise with the signal-dependant standard deviation
(Hirakawa, 2005b; Hirakawa, 2005c)

�(x) = k0 + k1y(x) (1.5)

exploited in Publication I, where, k0 and k1 are the parameters that control the
noisiness of the observed data z(x). This noise model can be used as an e�cient
approximation for CCD/CMOS digital imaging sensors

A more advanced noise modeling for CMOS/CCD sensor data, as a mixture of Pois-
sonian and Gaussian noises where e�ects of over- and undersaturation are taken into
account, is proposed in (Foi, 2007b). The authors also propose a technique to determine
the noise model parameters from any single observation.

The modeling for the impulsive noise may be used in some applications. It can be
caused by malfunctioning pixels in camera sensors, faulty memory locations in hardware,
transmission in noisy channel (Chan, 2005; Bovik, 2000). The salt-and-pepper noise
is widely used as a particular case of the impulsive noise, as in (Chan, 2005). More
general than the salt-and-pepper model was studied in (Aizenberg, 2005b; Aizenberg,
2002a; Aizenberg, 2003a), where a corrupted pixel is a random value with the uniform
distribution.

d) A mixture of Gaussian noises was used in (Huber, 1981; Katkovnik, 2006b) as
another model for the impulsive noise:

n(x) � f; f = (1� �)f0 + �f1; (1.6)

where f0 = N (0; �20); f1 = N (0; �21), �1 � �0; and 0 � � � 1. The parameter
� de�nes the proportion of the high-variance random impulses/outliers in the ob-
served signal (Fig.1.1f). It is equal in our example to 5%; i.e. � = 0:05, �0 = 0:5;
and �1 = 5:

Usually, the parameters in (1.3)-(1.6) are determined from a camera calibration pro-
cedure.

It is worth to mention that in general noise models used in practice are not restricted
to the given in (1.1)-(1.6) ones.
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a) b) c)

Figure 1.2: Examples of CFAs: a) Bayer pattern; b) CMY+G; c) pattern with transparent
cites.

1.2.2 Color Filter Array Interpolation for Bayer Pattern

The common approach in single-chip digital cameras is to use a color �lter array (CFA)
to sample di�erent spectral components like red, green, and blue. The sensor records one
value per pixel location. The resulting image is a gray-scale mosaic-like one. Demosaicing
algorithm interpolates sets of complete red, green, and blue values for each pixel, to make
an RGB image.
The CFA is a crucial element in design of single-sensor digital cameras. Perhaps the

most widespread nowadays CFA is the Bayer CFA (Bayer, 1976) (Fig.1.2a) that samples
red (R), green (G), and blue (B) colors. Study on a variety of R, G, and B sampling
patterns may be found in (Lukac, 2004e). Di�erent characteristics in design of CFA
a�ect both performance and computational e�ciency of the demosaicing solution (Lukac,
2004e; Adams, 1998a). Alternatively, the complementary mosaic pattern may be used
that contains cyan, yellow, magenta, and green photocites (Parulski, 2002) (Fig.1.2b).
Recently, CFA with transparent elements was proposed in order to improve signal-to-
noise ratio (SNR) (Luo, 2007) (Fig.1.2c). The fundamentals about digital color image
acquisition with single-sensor can be found in (Lukac, 2006b; Parulski, 2002).
Considering the fact that the Bayer CFA (Fig.1.2a) is one of the most often exploited

today, we developed techniques for this particular CFA. We follow the general Bayer
mask image formation model (Fig.1.2a):

z(x) = BfyRGB(x)g; (1.7)

where Bf�g is a Bayer sampling operator (Bayer, 1976)

BfyRGB(x)g =

8>><>>:
G(x); at x 2 XG1

;
G(x); at x 2 XG2

;
R(x); at x 2 XR;
B(x); at x 2 XB :

(1.8)

Here, z is an output signal of the sensor, yRGB(x) = (R(x); G(x); B(x)) is a true color
RGB observation scene, x 2 X; R (red); G (green); and B (blue) correspond to the
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color channels. For two available green channels we will use notations G1(x); such
that x 2 XG1 = f(x1; x2) : x1 = 1; 3; :::; 2N � 1; x2 = 1; 3; :::; 2M � 1g; and G2(x);
such that x 2 XG2

= f(x1; x2) : x1 = 2; 4; :::; 2N; x2 = 2; 4; :::; 2Mg. Spatial coordi-
nates for the red R(x) and blue B(x) color channels are denoted x 2 XR = f(x1; x2) :
x1 = 1; 3; :::; 2N � 1; x2 = 2; 4; :::; 2Mg and x 2 XB = f(x1; x2) : x1 = 2; 4; :::; 2N;
x2 = 1; 3; :::; 2M � 1g, respectively.
Demosaicing attempts to invert Bf�g in order to reconstruct R(x); G(x); and B(x)

intensities from the observations z(x). This problem is covered in Publications I, II.

1.2.3 Color Filter Array Interpolation of Noisy Bayer Data

In a single-sensor camera the light passes through the optical system and is focused on
a digital sensor. The sensor is composed of photon-collection sites. Each site works as
a photon-counter to measure the amount of light coming to it. The sensor produces a
digital value for each site which corresponds to the intensity of the light at that position.
This digital output of the sensor is called \raw data".
The general Bayer mask image formation model for the data corrupted by noise is

considered as a combination of (1.1) and (1.7):

z(x) = BfyRGB(x)g+ �bayer(x)�(x); (1.9)

where the term �(x) is an independent zero-mean noise with variance equal to one at
every point x. Thus, �bayer(x) is the standard deviation of z(x). It is not necessarily
invariant with respect to the spatial variable x. The problem is to reconstruct the true
color high-resolution image yRGB from the noisy subsampled data z.
In Publication I, III the techniques for integrated demosaicing and denoising into a

single procedure are developed for the noise as in (1.3)-(1.5) targeted, in particular, the
Poissonian Bayer data.

1.2.4 Deconvolution and Blind Deconvolution

Another type of distortions in digital cameras is caused by the optical system, relative
motion between camera and object, imprecise focus, etc. Often, these distortions are
called as blur.
Mathematically, image capturing is modelled by the Fredholm integral of the �rst

kind in R2 space z(x) =
R
X
v(x; t)y(t)dt where x; t 2 X � R2; v is a point-spread

function (PSF) of a system, y is an image intensity function, and z(x) is an observed
image (Rushforth, 1987). A conventional simpli�cation is that the PSF v is shift-invariant
which leads to a convolution operation in the observation model. We assume that the
convolution is discrete and noise is present. Hence, the observed image z is given in the
following form:

z(x) = (y ~ v)(x) + n(x); (1.10)

where "~ " denotes the convolution, x is de�ned on the regular 2N � 2M lattice, x 2 X,
and n(x) is the noise.
Usually, it is assumed that the noise is white Gaussian with zero-mean and variance

�2; n(x) � N (0; �2) (it can be rewritten in the form (1.2-1.3)). However, the model
(1.10) with Poissonian noise (1.4) is also used, for instance, in (Foi, 2006c).
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Deconvolution aims to invert (1.10) and estimate the true signal y(x) from the blurred
noisy observation z(x).
When the blurring operator v is unknown in (1.10), the image restoration becomes a

blind deconvolution problem (Lagendijk, 1990; Giannakis, 2000; Harikumar, 1999a). The
most popular approaches to blind deconvolution can be divided in two classes: a multi-
channel deconvolution (Sroubek, 2005; Tico, 2006), and a single-channel one (Molina,
1997; Rekleitis, 1996; Rooms, 2004; Likas, 2004; Chen, 2005; Chen, 2006).
For a multi-channel blind deconvolution we consider a 2D single-input multiple-output

(SIMO) linear spatially invariant imaging system. Such a system is appropriate for
the model of multiple cameras, multiple focuses of a single camera, or acquisition of
images from a single camera through a changing medium. The input to this system is an
unknown image y(x); x 2 X. This image is distorted by unknown �nite impulse response
functions modeled by the PSFs vj(x), j = 1; :::; L. It is assumed that vj(x) are discrete
spatially invariant. The discrete convolutions of the input y(x) and the PSFs vj(x) are
degraded by the additive white Gaussian noise to produce the observed output images:

zj(x) = (y ~ vj)(x) + �j(x)�(x); j = 1; :::; L. (1.11)

It is assumed that the noise in each channel is uncorrelated with the noise from other
channels and �(x) have the Gaussian distribution N (0; 1). The parameters �j are the
standard deviations of the noise in the channels.
The problem is to reconstruct both the image y and the PSFs vj from the observations

fzj(x) : x 2 X, j = 1; :::; Lg.
The problems (1.10)-(1.11) are considered in Publications V, VI, VII.
For 3D problems, model (1.10) may be reformulated in the form when x 2 R3:

The assumption that the PSF is shift-invariant in all three dimensions usually does not
correspond to reality. A more natural assumption is that the PSF is shift-invariant with
respect to two horizontal and vertical dimensions and varying with respect to the third
depth dimension (Preza, 2004; Markham, 2001; Ng, 1996). This approach leads to the
optical sectioning formalism originated in digital microscopy.
According to this technique the optical system is focused at some focal plane and an

image is recorded, then it is refocused at another plane and another image is recorded,
and so on. The focusing planes may di�er from the planes of interests. Precise focusing
is not needed for reconstruction. However, the spatial resolution depends on a number
of recorded images.
Suppose that we wish to reconstruct a 3D image intensity function y(~x), ~x 2 R3, from

its blurred and noisy observation z(~x). In the argument ~x = (x1; x2; x3) the �rst two
variables x1 and x2 de�ne the pixel's coordinates of 2D image obtained from y(~x) with
the �xed depth coordinate x3. The axe x3 is parallel to the optical axe of the optical
system and perpendicular to the 2D image plane.
We consider the discrete observation model in the following form:

zi(x) =
mX
j=1

(vi;j ~ yj)(x) + �i(x)�(x); i = 1; :::; n; (1.12)

where x 2 R2; x = (x1; x2); i is a discrete variable used for the depth variable x3; and
v = (vi;j) is an n�mmatrix of the 2D PSFs. The PSF vi;j corresponds to the observation
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of the object slice j from focusing at the position i. �j are the standard deviations of
the noise in the channels.
Overall, when n > m the system (1.12) is overdetermined, generally the least squares

solution is applied. In the case if n < m then the system (1.12) is underdetermined, and,
therefore, we impose the assumption of smoothness on the solution. When n = m the
system (1.12) is consistent and the solution is unique. However, (1.12) is ill-posed with
respect to PSF matrix v that results in high instability of the solution.
It is required to restore the 3D image (the slices of the object, which is described

by y(x) = (y1(x); :::; ym(x))) from n blurred 2D projections z(x) = (z1(x); :::; zn(x)).
Optical sectioning problem is addressed in Publication IV.

1.3 Thesis Structure

The thesis is divided into the following parts. Chapter 2 is the introductory part where
the basics of the LPA-ICI technique are presented. They are given in the form applicable
for interpolation what makes it di�erent from conventional use. This approach is used
in most of our methods and algorithms.
In Chapter 3, methods to recover the true image from subsampled and noisy Bayer

sensor data are considered. Firstly, we propose a novel CFAI technique. Secondly, we
show that joint denoising and demosaicing of Bayer sensor data is more e�cient than
usual use of these independent cascaded operations. In this section we use Publications
I-III. The principles of adaptive LPA-ICI denoising are used widely in the proposed
techniques.
In Chapter 4 we consider the deconvolution problem. Firstly, deconvolution algorithm

is explained for the optical sectioning problem (Section 4.1). It is assumed that the PSF
of the optical system is known.
In Section 4.2 we show the �ltering that was proposed to be robust with respect to

both PSF (that was identi�ed for a particular camera phone model) and noise misesti-
mation.
In Sections 4.3 and 4.4, blind deconvolution techniques are presented, i.e. when the

PSF is unknown (and practically cannot be measured). We consider multichannel and
single channel approaches for blind deconvolution. For multichannel approach we exploit
minimization of the energy criterion produced in frequency domain using a recursive
gradient-projection algorithm. The proposed techniques are based on the adaptive LPA-
ICI applied to the image and/or blur operators. This key element is used for �ltering
and regularization. For the single-channel deconvolution we used a neural network to
identify the blur operator and its parameter.
Finally, in Section 4.5, techniques for selection of the varying regularization parameter

are given. It is di�erent from conventional approach to select the regularization parameter
to be invariant for the image.
The Publications IV-VII are related to this chapter.



Chapter 2

Spatially Adaptive Filtering

One of the most crucial parts in many image processing applications is a �ltering per-
formed in a signal-adaptive (which is unknown in practice) way. In particular, the spatial
(temporal) adaptivity is used in denoising in order to avoid smoothing of edges. For this
purpose the LPA-ICI technique is used e�ciently in many applications like denoising
(Katkovnik, 2002), deblurring (Katkovnik, 2005, Publications IV-VII), CFAI (Publica-
tions I-III), bispectrum �ltering (Totsky, 2006), etc. More details of the approach and a
variety of its applications can be found in (Katkovnik, 2006b).

The general idea of the approach can be explained as follows. Let us consider a
simpli�ed model and assume that the image to be restored y(x) in (1.1) is a piece-wise
constant function. Let us assume that the signal y(x) has constant value on a region
I (Fig.2.1a), and also that it has a di�erent constant value outside of this region. The
best unbiased estimate for all given but also not given points in this region is the sample
mean of z(x) within this region (Katkovnik, 2006b). The idea is trivial, but the problem
to determine this region is not.

The spatially adaptive �ltering used in this work includes the following components:

1. Directional linear �lters design,

2. Adaptive window-size selection,

3. Aggregation of directional estimates.

We use directional sectorial estimates for every point in I in order to �nd the approx-
imation of this region (Fig.2.1b). The LPA is used to design directional linear �lters,
while the ICI is used to select the close to optimal size in data-driven manner. The
obtained directional data-adaptive estimates are fused into a single �nal estimate of the
true image.

In some applications, for instance as in (1.7) or (1.9), observations z(x) are available
not for all points (considering a speci�c R, G, or B color channels) (Fig.2.1c).

9
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Figure 2.1: Directional (sectorial) LPA-ICI.

2.1 Design of Directional Linear Filters and Interpo-

lators in Polynomial Basis

We introduce two sets of coordinates. Let ~X � X � R2 be a domain of coordinates ~x 2 ~X
where the observations z(~x); ~x 2 ~X; are given, and �X = X= ~X where the observations
are not given. For ~x 2 ~X we aim to perform denoising and for �x 2 �X we aim to perform
interpolation. Note that it is di�erent from conventional use of LPA.

Particularly, if the domain of processing is not subsampled then ~X = X that is typical
for denoising problems (1.1)-(1.4). For interpolation (1.7) and (1.9), the coordinates for
green channel are ~X = XG1

[ XG2
. For red and blue we have ~X = XR and ~X = XB ;

respectively. It can be used to design interpolation kernels. The interpolation should be
produced for the missed pixels �X = X= ~X if the data is downsampled �X 6= ?.
It is emphasized that the sets �X and ~X are di�erent. The set �X is a collection of the

"missed" points where there are no observations and the signal should be interpolated
for these points. Contrary to it the set ~X is a set of the observed points where values of
the signal true or noisy are given.

It is assumed that y(x) is a piece-wise smooth function which locally can be well
approximated by polynomials (monomials)

1

i!j!
xi1x

j
2, i = 0; :::;m1, j = 0; :::;m2.

Here, m = (m1;m2) is the order of this set of polynomials. The maximal number of the
linear independent polynomials of the order m is equal to M = (m1 + 1)(m2 + 1).

Let �(x) be a set of these linear independent polynomials �k(x) presented as a vector-
function

�(x) = (�0(x); �1(x); :::; �M (x))
T
;

where the symbol \T" denotes the transpose operation.

The polynomials in this vector are ordered according to their power de�ned for xi1x
j
2

as i+ j. For instance
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�0 = 1; for i+ j = 0;

�1 = x1; �2 = x2; for i+ j = 1;

�3 =
x21
2
; �4 =

x22
2
; �5 = x1x2; for i+ j = 2;

�6 =
x31
6
; �7 =

x32
6
; �8 =

x21x2
2
; �9 =

x1x
2
2

2
; for i+ j = 3.

The LPA of y(x) at the point x 2 X is of the form

ŷ(x; ~x) = CT�(x� ~x); (2.1)

where C = (C0; C1; :::; CM )
T are the coe�cients of this expansion to be found.

In order to �nd the vector C in (2.1) we use the weighted residual quadratic criterion:

Js(x) =
X
~x2 ~X

ws(x� ~x)(z(~x)�CT�(x� ~x))2; x 2 X (2.2)

where ws(x) is a window function with a scaling parameter s de�ning the neighborhood
size and the residual weights in the LPA.
In particular, typically we use the non-symmetric uniform window of the length s1

and the width s2 to design denoising kernels:

ws(x) =

� 1
s1(s2�1) ; for 0 � x1 < s1; jx2j <

s2
2 ;

0; otherwise,
(2.3)

where x 2 ~X; s2 is even, s1 � 2 and s2 � 2. We use symmetric uniform window

ws(x) =

� 1
(s1�1)(s2�1) ; for jx1j <

s1
2 ; jx2j <

s2
2 ;

0; otherwise,
(2.4)

to design the interpolation kernels for x 2 �X, where s1 = s2, s1 � 2 and s2 � 2,
for instance in Publications I,II,III. In (Paliy, 2006b), the use of directional smoothing
kernels for downsampled data is considered.
Particularly, these types of windows were chosen from empirical considerations, since

they showed the best performance. Other types of window functions ws(x) may be found
in (Katkovnik, 2006b).
The estimates of C are found by minimization of (2.2)

Ĉ(x; s) = argmin
C
Js(x):

The minimum condition

@Js(x)

@CT
= �2

X
~x2 ~X

ws(x� ~x)(z(~x)�CT�(x� ~x))�T (x� ~x) = 0

gives a system of the normal equationsX
~x2 ~X

ws(x� ~x)z(~x)�T (x� ~x) = CT
X
~x2 ~X

ws(x� ~x)�(x� ~x)�T (x� ~x): (2.5)
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with the solution

Ĉ(x; h) =
X
~x2 ~X

ws(x� ~x)��1s �(x� ~x)z(~x); (2.6)

�h =
X
~x2 ~X

ws(x� ~x)�(x� ~x)�T (x� ~x): (2.7)

Substituting Ĉ(x; s) into (2.1) we obtain the polynomial estimate of the signal ŷs(x; ~x) =
�T (x� ~x)Ĉ(x; s) valid in a neighborhood of the point x 2 X . According to the idea of
the LPA we use this model only for the center of the LPA, i.e. for x = ~x.

Then the estimate ŷs(x; ~x) is transformed to the �nal form

ŷs(x) = ŷs(x; x) = Ĉ
T (x; s)�(0) =

X
~x2 ~X

ws(x� ~x)�T (x� ~x)��1s �(0)z(~x):

This interpolation estimate can be rewritten in the form of convolution

ŷs(x) =
X
~x2 ~X

gs(x� ~x)z(~x); x 2 X; ~x 2 ~X; (2.8)

with the convolution kernel

gs(x) = ws(x)�
T (x)��1s �(0); (2.9)

because the window ws(x) = 0 for x = �x: Thus, the kernel gs(x) is also equal to 0 for
x = �x; gs(�x) = 0:

Using the directional windows ws;� in (2.3), (2.4) we obtain directional kernels gs;�
(Katkovnik, 2006b).

In the case of interpolation, the kernels (2.9) are essentially di�erent from the standard
LPA kernels (Katkovnik, 2006b) by zeros used to �ll the kernel support at the positions
of the missed observations.

Note that the kernels gs essentially depend on a given interpolation grid.

2.2 Adaptive Window-Size Selection

2.2.1 Motivation

The estimate of y in (1.1) is found in the form:

ŷs(x) = (z ~ gs)(x);

where s is the scale parameter of the �lter (2.9).

The quadratic error between the true and estimated signal as a function of the scale
s

J(s) = ky � ŷsk22 :
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Figure 2.2: MSE, bias, and variance as a function of the scale parameter.

The expectation of J may be rewritten as the sum of quadratic bias and variance:

E [J(s)] = E

"X
x2X

(y � gs ~ (y + n))2
#
=

=
X
x2X

E
�
(y � gs ~ (y + n))2

�
=

=
X
x2X

E
h
((y � gs ~ y)� gs ~ n)2

i
=

=
X
x2X

(y � gs ~ y)2 +
X
x2X

E
h
(gs ~ n)2

i
=

=
X
x2X

(y � gs ~ y)2 +
X
x2X

g2s ~ �2 = bias2 (s) + var (s) : (2.10)

Here, bias2 (s) = ky � gs ~ yk22 is the systematic error which is an increasing function of
s, and var (s) =

X
x2X

g2s ~ �2 is the stochastic error which is a decreasing function of s.

The natural idea is to �nd such a scale s+ that minimizes the global quadratic error
(2.10). Di�erent approaches were proposed and tested in (Hurvich, 1998; Katkovnik,
1985; Simono�, 1998) in order �nd to such optimal scale s+.
Contrary to that, we aim to �nd such a scale s+(x) that minimizes (2.10) in a point-

wise manner:

E [J(x; s)] = E
�
(y(x)� (gs ~ z) (x))2

�
=

= (y(x)� (gs ~ y) (x))2 +
�
g2s ~ �2

�
(x) =

= bias2 (x; s) + var (x; s) (2.11)

at every x 2 X: Here, bias (x; s) = y(x) �
X
t2X

gs(t)y(x � t) is an increasing function of

s and var (x; s) =
X
t2X

g2s(t)�
2(x� t) is a decreasing function of s (Katkovnik, 2006b) at

every point x; as it is shown in Fig.2.2.
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Figure 2.3: Selection of point-wise adaptive estimates by the LPA-ICI.

Various developments of this idea and statistical rules for adaptation can be found
in (Klemela, 2001; Lepski, 1997; Nemirovski, 2000; Polzehl, 2000). Using the point-
wise scale selection showed signi�cant improvement in quality of restoration comparing
it with the invariant scale selection. Larger review of this type of methods can found in
(Katkovnik, 2006b).
In our works we used point-wise scale selection by statistical multiple hypothesis

testing based on the intersection of con�dence intervals (the ICI rule).

2.2.2 Multiple Hypothesis Testing based on Con�dence Intervals

A set of the image estimates of di�erent scales s and di�erent directions � are calculated
by the convolution bys;�(x) = (z ~ gs;�)(x), (2.12)

for s 2 S = fs1; s2; :::; sJg, where s1 < s2 < ::: < sJ , and � 2 � (see Fig.2.3).
The ICI rule is the algorithm for selection of the scale (close to the optimal least-

square value) for every pixel x. This algorithm uses a sequence of con�dence intervals

Di;� =
�bys;� (x)� ��ŷs;� ; bys;�(x) + ��ŷs;�� ; s 2 S; (2.13)

where � > 0 is a threshold parameter for the ICI, bys;� is the estimate of y; �ŷs;� is the
standard deviation of this estimate, and i is the index of s in S (Fig.2.4).
The ICI rule de�nes the adaptive scale as the largest s+ of those scales in S whose

estimate does not di�er signi�cantly from the estimates corresponding to the smaller
window sizes. This rule is stated as follows: consider the intersection of the con�dence
intervals Iis =

Tis
i=1Di;� and let i

+
s be the largest of the indices of s for which Iis is

non-empty (Fig.2.4). Then the optimal scale s+ is de�ned as s+ = si+s and, as result,
the optimal scale estimate is bys+;� (x) (Fig.2.3).
The parameter � is a key element of the algorithm as it says when a di�erence between

estimate deviations is large or small. Too large value of this parameter leads to signal
oversmoothing and too small value leads to undersmoothing. Theoretical aspects about
the value of this parameter can be found in (Katkovnik, 2006b). However, usually in
practice, this parameter is treated as a �xed design parameter.
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Figure 2.4: Illustration of the ICI rule principle.

The ICI rule provides mean-square convergence of the adaptive estimates to the true
signal values as the number of observations increases (as it is shown in (Lepski, 1997;
Goldenshluger, 1997; Katkovnik, 2006b, Chapter 6)).

Note that in the standard form of the ICI the standard deviation of the estimate is
calculated according to (2.11):

�ŷs;� (x) =
q
(�2 ~ g2s;�)(x); (2.14)

where � is a given standard deviation of the additive observation noise in the model (1.1).

This approach was used for �ltering the noise of the models (1.3)-(1.5).

However, there are applications where either standard deviation or model of noise are
unknown. For instance, in Publications I,III, we deal with the data where the noise is only
a convenient form for modeling of the interpolation errors that are actually nonrandom.
Thus, the standard deviation of the estimate bys;� is estimated at every position x over
the directional local area. It is calculated as the weighted mean of the squared errors
between the estimate and the observations in the directional neighborhood of the pixel
x :

�ŷs;� (x) =
q
((z � ŷs;�)2 ~ g2s;�)(x); (2.15)

where the weights are de�ned by gs;� used in (2.12).

Equation (2.15) gives the results close to (2.14) assuming that the LPA estimates ŷs;�
�t to the underlying data and that squared di�erence is mainly due to error variance
(and not bias). This approach is used only in demosaicing problems where we do not
impose any prior for the noise.
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2.3 Aggregation of Directional Estimates

This optimization of s for each of the directional estimates yields the adaptive scales
s+(�) for each direction �. The union of the supports of gs+(�);� is considered as an
approximation of the best local vicinity of x in which the estimation model �ts the
data. The �nal estimate is calculated as a linear combination of the obtained adaptive
directional estimates bys+;� (x) :
The �nal LPA-ICI estimate by(x) combined from the directional ones is computed as

the weighted mean

ŷ(x) =
X

�2�
ŷs+;�(x)w�; w� =

��2ŷs+;�P
�2� �

�2
ŷs+;�

; (2.16)

with the variance �2ŷ of the �nal estimate ŷ(x) computed for simplicity as

�2ŷ =
�X

�2�
��2ŷs+;�

��1
: (2.17)

The weights in (2.16) follow from the maximum likelihood (ML) estimation provided
that the estimates ŷs+;�(x) with variances �

2
ŷs+;�

are unbiased and independent. If these

conditions are ful�lled then for Gaussian noise this fusing gives minimal mean square
error.
It is convenient to treat this complex LPA-ICI multidirectional algorithm as an adap-

tive �lter with the input z and the output ŷ. The input-output equation can be written
as

ŷ = LI fzg (2.18)

by denoting the calculations imbedded in this algorithm as an LI operator.



Chapter 3

Demosaicing of Data Acquired
by CCD/CMOS Sensor of
Digital Camera

This chapter is based on Publications I, II, III, where the problem of demosaicing is
considered for both the noiseless and noisy data. A novel CFAI technique was proposed
in Publications I, II, that outperforms many well-known state-of-the-art techniques by
both objective numerical and subjective visual criteria evaluation. Also, an integrated
CFAI and denoising approach was proposed in Publications I, III. In Publication I we
showed its e�ciency and applicability for real digital imaging sensor data where the
photon-counting noise model (among others) was taken into consideration as an impor-
tant intrinsic degradation of data. We showed that this approach is more e�cient than
conventional divide-and-conquer one when the denoising and demosaicing are considered
as two independent problems. The e�ciency of this approach was shown by both arti�cial
and real data simulations.

3.1 Problem Formulation

The common approach in single-chip digital cameras is to use a CFA to sample di�erent
spectral components like red, green, and blue. The sensor records one value per pixel
location. The resulting image is a gray-scale mosaic-like one. Demosaicing algorithm
interpolates sets of complete red, green, and blue values for each pixel, to make an
RGB image. Independent interpolation of color channels usually leads to drastic color
distortions. The way to e�ectively produce a joint color interpolation plays a crucial role
for demosaicing.
Modern e�cient algorithms exploit several main facts. The �rst is the high correlation

between the red, green, and blue channels for natural images. As a result all three color
channels are very likely to have the same texture and edge locations. The second fact is
that digital cameras use the CFA in which the green channel is sampled at the higher
rate than the red and blue channels. Therefore, the green channel is less likely to be
aliased, and details are preserved better in the green channel than in the red and blue

17
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channels (Gunturk, 2002). Also, the CFA is a crucial element in design of single-sensor
digital cameras. Di�erent characteristics in design of CFA a�ect both performance and
computational e�ciency of the demosaicking solution (Lukac, 2004e; Adams, 1998a).
The fundamentals about digital color image acquisition with single-sensor can be found
in (Lukac, 2006b; Parulski, 2002).
Considering the fact that the Bayer CFA (Bayer, 1976) (see Fig.1.2a) is one of the

most often exploited today, in this work we focus on techniques for this particular CFA.

3.1.1 Correlation Models in Demosaicing

There are two basic interplane correlation models: the color di�erence rule (Laroche,
1994; Hamilton, 1997) and the color ratio rule (Kimmel, 1999; Lukac, 2004a). The �rst
model asserts that intensity di�erences between red, green, and blue channels are slowly
varying, that is the di�erences between color channels are locally nearly-constant (Adams,
1998b; Laroche, 1994; Hamilton, 1997; Li, 2005; Hirakawa, 2005a; Zhang, 2005; Lukac,
2004b; Lukac, 2005b). Thus, they contain low-frequency components only, making the
interpolation using the color di�erences easier (Hirakawa, 2005a).
The second correlation model is based on the assumption that the ratios between col-

ors are constant over some local regions (Kimmel, 1999; Lukac, 2004a). This hypothesis
follows from the Lambert's law that if two colors have equal chrominance then the ratios
between the intensities of three color components are equal (Hirakawa, 2005a; Kimmel,
1999).
The �rst di�erence-based correlation model is found to be more e�cient than the

ratio-based model and, therefore, exploited more often in practice. Moreover, the color-
di�erence rule can be implemented with a lower computational cost and better �ts linear
interpolation modeling (Li, 2005).
Other correlation models used in the demosaicing literature can be found in (Keren,

1999; Lukac, 2004c; Lukac, 2006a).

3.1.2 Demosaicing Methods

Many demosaicing algorithms (Laroche, 1994; Hamilton, 1997; Kimmel, 1999; Lukac,
2004d) incorporate edge directionality in interpolation. Interpolation along object bound-
aries is preferable versus interpolation across these boundaries for most of the models.
We will classify the demosaicing techniques into two categories: noniterative (Adams,

1998b; Laroche, 1994; Hamilton, 1997; Malvar, 2004; Zhang, 2005; Menon, 2007; Taub-
man, 2000; Pei, 2003), and iterative (Gunturk, 2002; Kimmel, 1999; Lukac, 2004a; Li,
2005; Hirakawa, 2005a). There are also alternative ways of this classi�cation, for instance
considered in (Gunturk, 2005).
Noniterative demosaicing techniques basically rely on the idea of edge-directed inter-

polation. In a variety of color demosaicing techniques the gradient estimates analysis
plays a central role in reconstructing sharp edges. The exploitation of intraplane cor-
relation typically is done by estimating local gradients under the main assumption that
locally the di�erence between colors is nearly constant. Directional �ltering is the most
popular approach for color demosaicing that produces competitive results. The best
known directional interpolation scheme is perhaps the method proposed by Hamilton
and Adams (Hamilton, 1997). The authors use the gradients of blue and red channels
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as the correction terms to interpolate the green channel. Similar idea is exploited e�ec-
tively in (Laroche, 1994; Malvar, 2004; Wu, 2004a) but with a di�erent aggregation of
vertical and horizontal estimates. Directional �ltering with a posteriori decision is also
e�ectively exploited for demosaicing in (Menon, 2007). A novel e�cient data adaptive
�ltering concept in conjunction with the re�ned spectral models is proposed in (Lukac,
2005a) for demosaicing.

In addition, there are approaches based on: pattern recognition (Cok, 1994), restora-
tion algorithms (Taubman, 2000; Trussel, 2005), sampling theory (Adams, 1998b) (see
(Gunturk, 2005) for more details), the regularization theory (Keren, 1999), the Bayesian
approach (Brainard, 1994; Vega, 2005), demosaicing in frequency domain (Alleyson,
2005; Alleysson, 2002; Dubois, 2005). Taubman (Taubman, 2000) proposed an e�cient
preconditioned approach of Bayesian demosaicing that is used in some digital cameras
today.

A number of iterative demosaicing techniques have been proposed recently (Gunturk,
2002; Kimmel, 1999; Lukac, 2004a; Li, 2005; Hirakawa, 2005a). It has been observed
that iterative demosaicing techniques often demonstrate higher quality restoration than
noniterative ones at the price of increased computational cost. The re�nement of green
pixels and red/blue pixels are mutually dependent and jointly bene�cial to each other.
An iterative strategy is exploited in (Li, 2005) in order to handle this correlation.

A new idea has been proposed and e�ectively used in the recent papers (Li, 2005;
Zhang, 2005), where the di�erences between initial directional interpolated estimates
of color intensities are �ltered. In the paper (Zhang, 2005) the concept of directional
"demosaicing noise" was introduced for the interpolation errors. A �ltering procedure
is exploited to remove this noise and obtain the improved estimates of the di�erences
between the chrominance and luminance channels as result of denoising procedure.

Our approach is motivated by the work (Zhang, 2005) where the demosaicing is refor-
mulated as the denoising problem. The di�erences between color channels are considered
as noisy signals and the term noise is used for interpolation errors. We use a direc-
tional anisotropic scale-adaptive denoising technique to remove the errors, instead of the
�x-length �lter used in (Zhang, 2005). The exploited technique is based on the LPA.
The adaptivity to data is provided by the multiple hypothesis testing based on the ICI
rule which is applied to select varying scales (window sizes) of LPA (Katkovnik, 1999;
Katkovnik, 2002; Katkovnik, 2006b). The main problem that appears is that the LPA-ICI
requires a priori knowledge about the variance of the noise. However, the "demosaicing
noise" cannot be considered as a stationary one and its statistics are unknown, since
the errors strongly depend on the signal. For instance, its variance near edges may be
signi�cantly higher than at smooth areas and, therefore, it is estimated locally. In such
a way, we aim to improve results with a �ltering that is adaptive to image irregularities,
e.g. edges.

3.1.3 Demosaicing of Noisy Sensor Data

In many applications the observed data is noisy. In particular, it is known that the
raw data from the sensor is corrupted by signal-dependant noise (Hirakawa, 2005b; Foi,
2007a; Foi, 2006b) (for details see Section 1.2.1).

The problem is to restore the true observation scene from the noisy subsampled
data. The conventional approach used in image restoration chains for raw sensor data
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exploits successive independent denoising and demosaicing steps. Denoising aims to
remove the noise, and demosaicing performs interpolation of missing colors assuming
that the processed data is noiseless.
In case of treating the original noisy observed data the denoising done �rst was proven

to be more e�cient. Some post-CFAI and pre-CFAI denoising techniques are compared
in (Kalevo, 2002). The authors show the possibility to reduce more noise with the pre-
CFAI denoising than with the post-CFAI denoising. Also, the computational costs can
be lower with the pre-CFAI denoising than with the post-CFAI one. The model of noise
plays a crucial role in image denoising, which is known before CFAI but not after CFAI.
Noting that image interpolation and image denoising are both estimation problems,

the papers (Hirakawa, 2005b; Hirakawa, 2005c) propose a uni�ed approach to performing
demosaicing and image denoising jointly, where the noise is modeled as multiplicative
Gaussian. The multi-colored demosaicing/denoising problem was simpli�ed to a single-
color denoising problem. The authors veri�ed that performing demosaicing and denoising
jointly is more e�ective than treating them independently (Hirakawa, 2005b). Ramanath
and Snyder (Ramanath, 2003) proposed a bilateral �ltering based scheme to denoise,
sharpen and demosaic the image simultaneously.
Most denoising techniques are designed for stationary Gaussian-distributed noise. We

propose a technique specially designed for �ltering not only Gaussian but also more gen-
eral signal-dependant noise. It is natural to adopt the CFAI proposed for noiseless case to
the noisy one since it already considers demosaicing as a denoising problem. The crucial
di�erence is that here all pixels have to be either denoised or interpolated from noisy
observations. Therefore, �ltering only the di�erence between directional interpolated es-
timates of color intensities is not su�cient and thus we decorrelate them by calculating
both sum and di�erence, and then apply the LPA-ICI denoising to these pairs of compo-
nents. The advantage of this approach is that di�erent color channels are used for both
denoising and interpolation, �ltering also "demosaicing noise" that is present implicitly
on the image. The proposed technique results in better utilization of data, in better
performance and quality of image restoration, and lower complexity of implementation.
These issues are of crucial importance especially for small mobile devices, where the
impact of noise is particularly severe because of the constrained power and hardware.

3.2 Proposed Demosaicing Based on the Adaptive LPA-

ICI

In this section we consider image formation model (1.7). Here, only the exploited idea is
shown while all the details can be found in Publications I, II.
As in (Zhang, 2005), our algorithm consists of the following steps: initialization,

�ltering, and interpolation. At the initialization, the approximate color estimates are
obtained and directional di�erences between G � R and G � B are calculated. These
di�erences are considered as degraded by noise and �ltered. The modi�ed version of the
LPA-ICI algorithm is used for this �ltering. Finally, the obtained estimates are exploited
to calculate missing color values at each pixel.
Firstly we calculate the directional (horizontal and vertical) estimates of the green

channel at every point (x1; x2) 2 X following the rules of Hamilton-Adams algorithm
(Hamilton, 1997). Interpolation of G at R positions (x1; x2) 2 XR is done as follows:
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~Gh(x1; x2) =
1

2
(G(x1 + 1; x2) +G(x1 � 1; x2))+ (3.1)

+
1

4
(�R(x1 � 2; x2) + 2R(x1; x2)�R(x1 + 2; x2)) ;

~Gv(x1; x2) =
1

2
(G(x1; x2 + 1) +G(x1; x2 � 1))+ (3.2)

+
1

4
(�R(x1; x2 � 2) + 2R(x1; x2)�R(x1; x2 + 2)) :

Here h and v stand for horizontal and vertical estimates. Similarly to (3.1)-(3.2), the
initial directional estimates for the red channel R at the green positions G ((x1; x2) 2 XG1

or (x1; x2) 2 XG2
) are interpolated as:

~Rh(x1; x2) =
1

2
(R(x1 + 1; x2) +R(x1 � 1; x2))+ (3.3)

+
1

4
(�G(x1 � 2; x2) + 2G(x1; x2)�G(x1 + 2; x2)) ;

~Rv(x1; x2) =
1

2
(R(x1; x2 + 1) +R(x1; x2 � 1))+ (3.4)

+
1

4
(�G(x1; x2 � 2) + 2G(x1; x2)�G(x1; x2 + 2)) :

As a result of (3.1)-(3.2) and (3.3)-(3.4) we obtain at the every horizontal line of red
and green values two sets of true (from data) and estimated (interpolated) green and red
values:

::: ~Gh G ~Gh G ~Gh :::

::: R ~Rh R ~Rh R :::
:

Similar calculations are produced for the vertical lines.
Let us denote the spatial coordinates as x = (x1; x2). At every point the di�erences

between the true values R(x) and G(x); and the directional estimates ~Gh(x) and ~Rh(x);
are calculates as follows:

~�hg;r(x) = G(x)� ~Rh(x); x 2 XG1 ; (3.5)

and
~�hg;r(x) = ~Gh(x)�R(x); x 2 XR; (3.6)

for the horizontal direction. For the vertical direction the analogous computations are:

~�vg;r(x) = G(x)� ~Rv(x); x 2 XG2 ; (3.7)

and
~�vg;r(x) = ~Gv(x)�R(x); x 2 XR: (3.8)

As in (Zhang, 2005), we assume for further �ltering that these di�erences between
the intensities of di�erent color channels can be presented as the sums of the true values
of the underlying di�erences and errors:

~�hg;r(x) = �g;r(x) + "
h
g;r(x); (3.9)

~�vg;r(x) = �g;r(x) + "
v
g;r(x); (3.10)
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a) b)

c) d)

Figure 3.1: The horizontal di�erence between G and R colors: a) The true di�erence between

the values R and G; b) The di�erence ~�h
g;r between the true values R and G, and the directional

color estimates Gh and Rh; c) The absolute values of the errors "
h
g;r; d) The �ltered di�erence

~�v
g;r with LPA-ICI in horizontal direction.

where "h(x) and "v(x) are considered as random demosaicing noise; �g;r(x) is the true
di�erence between green and red color channels.

The blue channel B is treated in the same way and we calculate the directional
di�erences ~�hg;b(x) and

~�vg;b(x).

In such way the problem of interpolation is reformulated into the denoising one.

The LPA-ICI �ltering is used for all noisy estimates ~�hg;r(x), ~�
v
g;r(x) for R, and

~�hg;b(x),
~�vg;b(x) for B. We consider this input data in the form (1.1) in order to use

this �ltering in the form applicable for any input data as the adaptive �lter LI f�g
(2.18) with the input z and the output ŷ. The input-output equation can be written as
ŷ = LI fzg by denoting the calculations imbedded in this algorithm as an LI operator.
It results in obtaining the following estimates �̂hg;r = LI

n
~�hg;r

o
; �̂vg;r = LI

n
~�vg;r

o
;

�̂hg;b = LI
n
~�hg;b

o
; and �̂vg;b = LI

n
~�vg;b

o
. The �nal RGB image is restored from these
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Figure 3.2: Mean values of PNSR (left) and S-CIELAB (right) for the Kodak test set of 24
images. The following techniques are compared: HA (Hamilton, 1997); LI (Malvar, 2004); HD
(Hirakawa, 2005a); SA (Li, 2005); DFPD (Menon, 2007); AP (Gunturk, 2002); CCA (Lukac,
2004d); CCA+PP is a demosaicing approach (Lukac, 2004d) with postprocessing (Lukac, 2004a);
DLMMSE based interpolation (Zhang, 2005); proposed LPA-ICI interpolation; "Oracle �" is the
proposed LPA-ICI interpolation with the optimal threshold parameter �.

�ltered estimates (see Publications I, II).
It is essential that the standard deviations of estimates of (3.9)-(3.10) for the ICI are

estimated locally as in (2.15).
Fig.3.1 illustrates the di�erence ~�hg;r between the horizontal estimates of green and

red color channels for the Lighthouse test image. It is clearly seen that ~�hg;r (Fig.3.1b)
drastically su�ers from aliasing comparing it to the true G � R color di�erence, calcu-
lated at G;R lines only (Fig.3.1a). The largest errors are near edges and image details
(Fig.3.1c). We aim to remove these errors by an adaptive �ltering using the LPA-ICI in
particular (for details see Chapter 2).
Our study shows that the "demosaicing noise" is not white and strongly localized. At

di�erent parts of an image the power of noise is di�erent. It justi�es the use of the local
estimates of the variance in (2.15). As a result, suppression of color distortions becomes
much better in terms of both numerical and visual evaluation.
In our example, the �ltered di�erence �̂hg;r is shown in Fig. 3.1d.

3.3 Adaptation of Color Filter Array Interpolation to
Noisy Data

For the demosaicing of noisy data we consider the model (1.9) with the noise term as
in (1.3)-(1.5). Details of the algorithm can be found in Publications I, III while here we
focus on the di�erence in initialization part of the demosaicing for noiseless data.
Let z(x) be a sampled noisy observation signal (1.9). Considering the fact that not

only interpolation has to be performed in order to reconstruct yRGB but also denoising at
every point, the initialization di�ers from the one presented in Section 1.2.3. One way is
to exploit a denoising before CFAI and then perform interpolation treating the obtained
data as noiseless. This approach is trivial but may be signi�cantly improved. We aim to
perform both denoising and interpolation exploiting the high correlation between color
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Figure 3.3: Fragment of the Lighthouse test image (from left to right and from top to bot-
tom): True image; HA (Hamilton, 1997) PSNR=(36.67 38.34 37.09); HD (Hirakawa, 2005a)
PSNR=(37.60 39.51 37.09); AP (Gunturk, 2002) PSNR=(38.70 42.12 39.80); DLMMSE based
interpolation (Zhang, 2005) PSNR=(39.83 42.77 40.93); Proposed LPA-ICI based interpolation
PSNR=(40.32 43.36 41.48).

channels and consider not only the di�erences between color channels but also their sums.
Hence, the initialization (3.5)-(3.8) is transformed in the following way, where knowledge
about �bayer plays crucial role.

Assuming that the color channels are correlated, we decorrelate them using the fol-
lowing summation and di�erentiation linear operators working in the horizontal direction
which is di�erent from (3.5)-(3.8):�

~�hg;r(x)
~�hg;r(x)

�
=

�
1 1
1 �1

��
z(x)
~Rh(x)

�
; (x) 2 XG1

; (3.11)

and �
~�hg;r(x)
~�hg;r(x)

�
=

�
1 1
1 �1

��
~Gh(x)
z(x)

�
; (x) 2 XR: (3.12)

For the vertical directions, the corresponding �̂vg;r(x) and �̂
v
g;r(x) are calculated as

follows: �
~�vg;r(x)
~�vg;r(x)

�
=

�
1 1
1 �1

��
z(x)
~Rv(x)

�
; (x) 2 XG2

; (3.13)

and �
~�vg;r(x)
~�vg;r(x)

�
=

�
1 1
1 �1

��
~Gv(x)
z(x)

�
; (x) 2 XR: (3.14)
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Here, ~Rh; ~Gh; ~Rv; ~Gv are calculated similarly to (3.1)-(3.4) for the noisy data (1.9). Let us
stress that in (3.1)-(3.4) G and R notations are used because z(x) = G(x); x 2 XG1[XG2 ;
and z(x) = R(x); x 2 XR:
We assume for further �ltering that the directional di�erences between the green and

red signals ~�hg;r(x),
~�vg;r(x) can be presented as the sums of the true values of these

di�erences and the errors including the random observation noise in (1.9) and what has
been called the "directional demosaicing noise" (Zhang, 2005):

~�hg;r(x) = �hg;r(x) + "
�;h
g;r (x); x 2 XR [XG1

; (3.15)

~�vg;r(x) = �vg;r(x) + "
�;v
g;r (x); x 2 XR [XG2

; (3.16)

where "�;hg;r (x) and "
�;v
g;r (x) are the errors and �

h
g;r(x) and �

v
g;r(x) are the true values of

the corresponding di�erences.
The same modeling with the additive errors is assumed for the sums ~�hg;r(x) and

~�vg;r(x) :

~�hg;r(x) = �hg;r(x) + "
�;h
g;r (x); x 2 XR [XG1

; (3.17)

~�vg;r(x) = �vg;r(x) + "
�;v
g;r (x); x 2 XR [XG2

; (3.18)

where �hg;r(x) and �
v
g;r(x) are the true values of the sums and "

�;h
g;r (x); "

�;h
g;r (x) are the

errors.
It can be veri�ed that (3.11)-(3.14) can be computed as a convolution of z(x) with

the linear 1D FIR �lters f� = (�1; 2; 6; 2;�1)=4 and f� = (�1; 2;�2; 2;�1)=4: For
calculations of the variance of the sums ~�hg;r; ~�

v
g;r; and di�erences ~�

h
g;r; ~�

v
g;r in (3.11)-

(3.14) we assume that the random observation noise is dominant in the errors in (3.15)-
(3.18). Then the observation noise from (1.9) gives the following standard deviations for
the sums ~�hg;r; ~�

v
g;r (3.17),(3.18):

� ~�hg;r
(x) =

r�
�2bayer ~ f2�

�
(x); x 2 XR [XG1 ; (3.19)

� ~�vg;r(x)
=

r�
�2bayer ~

�
fT�
�2�

(x); x 2 XR [XG2 ; (3.20)

where the symbol "T " denotes the transpose operation and �bayer(x) is the noise standard

deviation in (1.9). The standard deviations for the di�erences ~�hg;r;
~�vg;r corresponding

to the observation noise are computed as

� ~�h
g;r
(x) =

r�
�2bayer ~ f2�

�
(x); x 2 XR [XG1

; (3.21)

� ~�v
g;r(x)

=

r�
�2bayer ~

�
fT�
�2�

(x); x 2 XR [XG2 : (3.22)

The blue channel B is treated in the same way in order to calculate the directional
sums and di�erences ~�hg;b;

~�vg;b;
~�hg;b;

~�vg;b for (G�B) and (G+B).
The spatially adaptive LPA-ICI �ltering LI f�g (2.18) is exploited to denoise ~�hg;r,

~�vg;r; ~�
h
g;r, ~�

v
g;r for R color channel, and ~�hg;b,

~�vg;b;
~�hg;b;

~�vg;b for B color channel.
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Figure 3.4: Restoration of the Lighthouse test image corrupted by Poissonian noise. Columns
are enumerated from left to right: interpolated noisy image by HA (Hamilton, 1997) CFAI;
restoration by HA (Hamilton, 1997) CFAI with iterative LPA-ICI denoising (Foi, 2005) at the
pre�ltering step, PSNR=(28.17, 29.07, 28.61); proposed LPA-ICI based integrated interpolation
with denoising, PSNR=(29.39, 30.13, 30.15).

The standard deviation of directional estimates inside of the LPA-ICI is calculated as in
(2.14).
The �nal RGB image is restored from the obtained �ltered estimates (for details see

Publications I, III).

3.4 Experiments with Arti�cial and Real Sensor Data

The e�ciency of the proposed approaches was demonstrated on the standard database of
Kodak set of color test-images in terms of both numerical and visual criteria evaluation.
The diagram of mean PSNR values for each color channel is shown in Fig.3.2. The PSNR
values are calculated excluding 15 border pixels in order to eliminate the boundary e�ects.
The threshold � in (2.13) is an important design parameter of the ICI rule. With

small � the ICI selects only the estimates with the smallest scale s; while with large �
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Figure 3.5: Fragment of the restored Window (7) and Parrots (23) test images corrupted by
noise with � = k0 + k1BfyRGBg (Hirakawa, 2005b; Hirakawa, 2005c) where k0 = 10; k1 = 0:1.
Columns are enumerated from left to right: interpolated by HA (Hamilton, 1997) CFAI noisy
image; restoration by joint denoising and demosaicing technique (Hirakawa, 2005b; Hirakawa,
2005c); restoration by proposed technique.

only the estimates with the largest scale s: The best selection of � for each image can be
found only if the original images are known. We call these best values of � "Oracles".
They show the potential of the developed adaptive algorithm provided the best selection
of �. The corresponding PSNR values are given in the column "Oracle �" of Fig.3.2. It
can be seen that these oracle results are signi�cantly better than the results for all other
methods.

We have found an empirical formula giving the image dependent � with the values
close to the oracle ones. Let �f be standard deviation of high frequency components of
G channel calculated as median absolute deviation (MAD) (Donoho, 1995). Then nearly
oracle values of the threshold parameter can be calculated as � = 0:05�f + 0:33. The
results with this value of � are shown in the "LPA-ICI" column of Fig.3.2.

The proposed technique ("LPA-ICI" column) gives about 0.4 dB better mean PSNR
value than DLMMSE method (Zhang, 2005) demonstrated the best performance among
the reviewed CFAI methods. Analyzing the diagram in Fig.3.2 (left) we can see that this
improvement is signi�cant.

The results in terms of average S-CIELAB1 (Zhang, 1997) metric for color images are
shown in the diagram in Fig.3.2 (right). It shows actual ordering of the methods as the
S-CIELAB performance is improving. It is seen that the proposed technique provides
the best performance for the majority of the test images.

As an example, demosaicing of the well-known benchmark Lighthouse image is demon-
strated in Fig.3.3. It is clearly seen that the color artifacts are removed almost completely

1The MATLAB code for the S-CIELAB metric is available following the link: http://white.

stanford.edu/�brian/scielab/scielab.html

http://white.stanford.edu/~brian/scielab/scielab.html
http://white.stanford.edu/~brian/scielab/scielab.html
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Figure 3.6: Restoration of raw sensor data taken by cameraphone: HA (Hamilton, 1997)
interpolation (left); The proposed integrated denoising and interpolation (right) for noisy data.

by the proposed method (Fig.3.3 bottom right image). It is done signi�cantly better than
by other methods.

Detailed numerical and visual simulations for the proposed demosaicing for all images
from the testing set and for a variety of well-known demosaicing techniques can be found
in Publications I, II.

Similarly, performance of the demosaicing of noisy data is illustrated in Fig.3.4-3.6.

Fig.3.4 illustrates some di�cult parts of the restored Lighthouse test-image with im-
posed Poissonian noise (1.4). Left column illustrates the noisiness of the test image
where Hamilton-Adams (HA) CFAI was used to interpolate noisy data. Second col-
umn illustrates processing by the LPA-ICI denoising and DLMMSE CFAI (Zhang, 2005)
performed independently for each color channels. As a result, the �nal image visually
looks oversmoothed and su�ers from color artifacts visible especially near edges, even
for very advanced CFAI techniques. In combination with aliasing problem (noticeable
at the fence and wall regions of the Lighthouse image) the color artifacts become visible
signi�cantly. It is seen that the proposed technique (right column) provides signi�cantly
better performance also at the regions that contain small details and textures di�cult
for restoration.

The LPA-ICI denoising embedded into the interpolation procedure helps to avoid
or reduce the mentioned above problems. As a result, numerical and visual quality
evaluation show better performance. The high frequency regions di�cult for denoising
like the grass region are preserved signi�cantly better and color artifacts are reduced. As a
result, the restored image looks more natural. Detailed numerical and visual simulations
for the proposed technique for di�erent images can be found in Publications I, III.

In Publications I, III, we also showed the e�ciency of the proposed technique for
other noise models like stationary (1.3) and nonstationary (1.5) Gaussian noise. As
an example of the technique's performance, the visual comparison on the Window and
Parrots test images is given in Fig.3.5 for k0 = 10; k1 = 0:1 for the noise model (1.5). The
HA CFAI (Hamilton, 1997) was used in order to visualize the noisiness of the simulated
noisy Bayer data (Fig.3.5, �rst column). The second column contains restored fragments
by (Hirakawa, 2005b; Hirakawa, 2005c) and the third column corresponds to the results
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obtained by the proposed technique. The proposed technique provides less color artifacts
that is supported by the better S-CIELAB values provided in Publication I. The di�erence
is signi�cant especially for the Window test image.
Also, it is very important that we demonstrate the restoration of real noisy Bayer data

directly from the sensor of a cameraphone (Fig.3.6). The noise model and its parameters
were identi�ed exactly in the same way how it is done in (Foi, 2007a; Foi, 2006b). The
left image was interpolated by HA CFAI (Hamilton, 1997) and the right by the proposed
CFAI for noisy data. The histograms for both of them were equalized in order to improve
visual perception in print. No other color correction steps, pre- and post�ltering were
done in these experiments.
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Chapter 4

Deconvolution Methods

Usually blur refers to the low-pass distortions introduced into an image. It can be
caused, e.g., by the relative motion between the camera and the original scene, by the
optical system which is out of focus, by atmospheric turbulence (optical satellite imaging),
aberrations in the optical system, etc. (Pratt, 1992). Any type of blur, which is spatially
invariant, can be expressed by the convolution kernel in the integral equation (Nagy,
1998; Rushforth, 1987). Hence, deblurring (restoration) of a blurred image is an ill-
posed inverse problem, and regularization is commonly used when solving this problem
(Tikhonov, 1977).

There exists a variety of sophisticated and e�cient deblurring techniques such as
deconvolution based on Wiener �ltering (Pratt, 1992, Katkovnik, 2005), nonparametric
image deblurring using local polynomial approximation with spatially-adaptive scale se-
lection based on the intersection of con�dence intervals rule (Katkovnik, 2005), Fourier-
wavelet regularized deconvolution (Neelamani, 2003), expectation-maximization algo-
rithm for wavelet-based image deconvolution (Figueiredo, 2003), etc. All these techniques
assume a prior knowledge of the blurring kernel or PSF, and its parameter.

When the blurring operator is unknown, the image restoration becomes a blind de-
convolution problem (Lagendijk, 1990; Giannakis, 2000; Harikumar, 1999a).

This chapter is dedicated to solution of some of the mentioned problems. It is based
on Publications IV-VII. We start from the 3D deconvolution for optical sectioning (Pub-
lication IV) which is a generalized form of the technique based on LPA-ICI �ltering
proposed in (Katkovnik, 2003; Katkovnik, 2005). A special iterative Landweber decon-
volution with LPA-ICI post-�ltering is considered with application to mobile devices
(Trimeche, 2005). D. Paliy was a co-author of this publication and, in part, the obtained
results have been used for further works. Similarly, the adaptive LPA-ICI post-�ltering
applied to the iterative gradient-projection minimization was e�ectively used in Publica-
tion V for multi-channel blind deconvolution.

A di�erent principle for blind deconvolution was used in Publication VI where this
problem was considered from the classi�cation point of view. A neural network was ex-
ploited for the PSF identi�cation. The multi-layer neural network based on multi-valued
neurons (MLMVN) was used as an e�cient classi�er having only single observation. We
showed its e�ciency for this particular problem. After the PSF was identi�ed, the blind
deconvolution was reduced to a conventional deconvolution for which the LPA-ICI based
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technique (Katkovnik, 2005) was used.

As a part of the considered problems, the problem of the regularization parameter
selection was considered in Publication VII.

In such a way, we aimed to cover the deconvolution for imaging in a comprehensive
manner.

4.1 Deconvolution for Optical Sectioning

In Publication IV we propose a novel nonparametric approach to reconstruction of three-
dimensional (3D) objects from 2D blurred and noisy observations. This is the problem
of computational optical sectioning. This approach is based on an approximate image
formation model which takes into account depth varying nature of blur described by a
matrix of shift-invariant 2D PSF of an optical system (1.12). The proposed restoration
scheme incorporates the matrix regularized inverse and matrix regularized Wiener inverse
algorithms in a combination with a novel spatially adaptive denoising. This technique is
based on special statistical rules for selection of the adaptive size and shape neighborhood
used for the local polynomial approximation of the 2D image intensity.

In general, images su�er from degradation due to the out-of-focus areas contributing
to the in-focus areas. For instance, in an observation of specimen in a microscope there
is only one portion that appears in focus. However, usually a specimen is not 
at but is a
3D structure. Therefore, some portions are out of focus. Nevertheless, these out-of-focus
structures are in the �eld of view and thus obscure the in-focus plane. In order to obtain
a deblurred 3D image of a specimen, it is common to use the optical sectioning method.
The microscope is focused at a given focal plane and the image is recorded. This image is
an optical slice. Then, the microscope is refocused and another image is recorded. This
process is repeated until the whole specimen is covered (Preza, 2004). The restoration of a
scene from its multiple degraded observations is typical also for conventional photography.
This is often considered as a multichannel image restoration problem. Usually, this
problem exploits methods of a single-image restoration to degraded multi-channel images
to recover the original scene (Kubota, 2005). The 3D optical sectioning equipped with
digital deblurring algorithms is a powerful modern tool for visualization of specimens in
biology, medicine, mineralogy, etc. Computational restoration methods applied to slice
images are quite an e�cient and promising tool.

The 3D PSF is the main factor describing how a point source of light is being dis-
tributed laterally and across the focal planes. It plays a crucial role in image formation
and its reconstruction. 3D inverse is a problem of object restoration from its observations
using a known PSF of optical system. It is an ill-posed problem (Tikhonov, 1977). It
means that small perturbations in initial data (observed image and inaccuracy in the
used PSF model) result in large changes in the solution. For solving the deconvolution
problem with a given PSF, a number of approaches were proposed since the mid 1970s
under various idealizations of the PSF and noise model.

In microscopy there are two approaches to reduce out-of-focus contributions: optical
and computational. In the optical approach a confocal microscope is used that reduces
the contribution from the out-of-focus 
uorescence. The recorded images are all in-focus
and are an optical equivalent of a series of microtome slices allowing the 3D reconstruction
of the specimen.
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In the computational approach, image processing is applied to process the set of 2D
optical slices in order to reduce the out-of-focus interferences. This method is based
on information about the processes of image formation. The most severe degradation
is often caused by di�raction at objective and condenser lenses. This degradation is
modeled by the PSF of the microscope optical system.

Image deconvolution has become an established technique to improve both resolu-
tion and signal-to-noise ratio of serially sectioned three-dimensional images (Schaefer,
2001). The reconstruction of 3D objects by means of optical sectioning is very pop-
ular in 
uorescence microscopy imaging. A number of techniques was proposed for
optical sectioning based on the iterative expectation-maximization approach (Preza,
2004; Markham, 2001). Using the expectation-maximization formalism, algorithms for
maximum-likelihood image restoration were developed using a depth-variant model for
the optical sectioning microscopy. Theoretical analysis of properties for proposed tech-
niques is an advantage. However, these methods are e�cient but computationally expen-
sive. Other works which exploit iterative inverse schemes can be seen also in (Zhu, 2004;
McNally, 1999). A good review of non-linear image restoration techniques for 
uores-
cence microscopy and theoretical background for mathematical modeling can be found
in (VanKempen, 1999).

The iterative solution presented by a combination of the conjugate gradient method
with the Tikhonov regularization is proposed in (Schaefer, 2001). The conjugate gradi-
ent iteration scheme was used considering either Gaussian or Poisson noise models. For
the regularization, the standard Tikhonov method was modi�ed. However, the generic
design of the algorithm allows for more regularization approaches. To determine the reg-
ularization parameter, the generalized cross-validation method is used. Tests produced
for both simulated and experimental 
uorescence wide-�eld data show reliable results.

Linear non-iterative methods for deconvolution of 3D images in computational op-
tical sectioning microscopy are proposed in (Homem, 2004). The authors consider also
Gaussian and Poissonian noise formation models. An approach using complex-valued
wavelet transform to obtain extended depth-of-focus for multi-channel microscopy im-
ages is proposed in (Forster, 2004). However, this method does not take into account the
image acquisition model.

Knowledge about image formation is an important issue in the restoration techniques.
The PSF of an optical system as the main factor plays a crucial role. We assume that
the PSF is known a priori. For example, modeling and estimation of PSF are done
in (Preza, 2004; Li, 1995) for optical system of a microscope or in (Kubota, 2005) for
a photo-camera. The reconstruction of all-in-focus image from two arbitrarily focused
images is proposed in (Kubota, 2005). The true scene is supposed to have the background
and foreground regions only. The authors propose a method for PSF estimation from
degraded observed images and use the inverse �lter to obtain an original scene. However,
the image formation model does not assume the presence of noise.

We focus on the noniterative method of reconstruction and generalize the spatially
adaptive 2D deblurring algorithm developed in (Katkovnik, 2005; Katkovnik, 2006b) to
the 3D imaging. It incorporates the regularized inverse and regularized Wiener �lters.
The noise model considered in this paper is Gaussian. The scale-adaptive denoising
technique is used to remove it e�ectively.

The simulations done for a realistic phantom image show the e�ciency of the proposed
technique.
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a) b)

Figure 4.1: 3D object consisted of 5 spheres: a) strata of the object; b) observation of each
stratum focusing preciselly at stratum 1, stratum 2, and stratum 3.

We consider the problem as the formal modeling given in the form (1.12). Speculations
on formalities of the problem addressed are given in Section 1.2.4.
Let Zi(!) be the discrete 2D Fourier transform of zi(x); Zi = Ffzig; Ff�g is the

discrete Fourier transform (DFT) operator, and x 2 X � R2 as in (1.1). Here ! 2W =
f(!1; !2); !1 = 1; :::; 2N; !2 = 1; :::; 2Mg is the 2D normalized discrete frequency. Then,
equation (1.12) in the frequency domain can be written as follows:0@ Z1:::

Zn

1A =

0@ V11 ::: V1m
::: ::: :::
Vn1 ::: Vnm

1A0@ Y1
:::
Ym

1A+
0@ "1:::
"n

1A ; (4.1)

where Vij = Ffvijg; Yj = Ffyjg; and "i = Ff"ig. Here, "i corresponds to the noise term
in (1.12). Speculations on the given image formation model are given in Section 1.2.4.
Finally, the collected 3D observation Z = (Z1; :::; Zn)

T is a set of blurred 2D images.
In order to �nd the true object Y = (Y1; :::; Ym)

T we need to solve the system of linear
equations (4.1).
We obtain for (4.1) the following vector-matrix representation de�ned in the 2D

frequency domain:

Z(!) = V(!)Y(!) + "(!): (4.2)

We develop the technique which is a vector-matrix generalization of the regularized
inverse (RI) and regularized Wiener inverse (RWI) adaptive scale deblurring algorithms
proposed in (Katkovnik, 2003; Katkovnik, 2005). The ICI rule (Katkovnik, 1999) is
exploited for the adaptive scale �ltering of the reconstructed 2D slices of the 3D object
function y(x). The algorithm consists of two stages. At the �rst stage the RI �lter and
adaptive LPA with the ICI rule are used in order to obtain the estimate ŷRI(x) exploited
at the second stage as a reference signal. The second stage incorporates the RWI �lter
and LPA-ICI to obtain the �nal result ŷRWI(x) (Fig.4.2).
Fig.4.1 illustrates the setting of the problem. Let us consider as an example the 3D

object that consists of 5 spheres. The object slices called strata (Preza, 2004) lie in the
planes perpendicular to the optical axis. It is assumed that the thickness of the strata
is small and variation of the PSF with respect to the coordinate x3 in one stratum is
insigni�cant. The object in Fig.4.1 is discretized to m = 3 strata. In observations of
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Figure 4.2: The proposed restoration scheme includes RI step with adaptive LPA-ICI denoising
in order to obtain a pilot signal for the RWI �lter.

this object one can see clearly only the strata which are in the focal planes while others
are blurred (Fig.4.1b). The aim is to reconstruct the original strata Fig.4.1a from their
n = 3 observations Fig.4.1b.

4.1.1 Regularized Inverse

The RI �lter is obtained by minimization of the penalized quadratic residual function
which for the problem (4.2) is given in the form:

J = kZ�VYk22 + r
2
RI kYk

2
2 = (4.3)

=
X
!

(Z(!)�V(!)Y(!))H(Z(!)�V(!)Y(!)) + r2RI
X
!

YH(!)Y(!);

where r2RI is a regularization parameter and the superscript "H" denotes the Hermitian
transpose.
In order to justify the choice of the residual function (4.3), let us �rstly consider the

residual function for (1.12) in the signal domain:

J = n � 2N � 2M
�
kz� v ~ yk22 + r2RI kyk

2
2

�
; (4.4)

whose minimization, exploiting the Parseval's theorem, is equivalent to minimization of
(4.3), which refers to the well-known method of Lagrange multipliers of constrained opti-

mization and the Tikhonov regularization (Tikhonov, 1977). Here, the term kz� v ~ yk22
corresponds to the �delity between estimate and observation signal. However, due to the
ill-posedness of the problem, the solution is highly unstable and, therefore, the term kyk22
imposes bounds on the power of the estimate.
The minimum of J is achieved when @J=@YH = 0: Calculation of this derivative gives

the estimate: bYRI(!)=(VH(!)V(!) + r2RIIm�m)
�1VH(!)Z(!); (4.5)

where Im�m is the m�m identity matrix.
Following the technique developed in (Katkovnik, 2003; Katkovnik, 2005) we intro-

duce the �ltered RI estimate as follows:

bYRI
s (!) = Gs(!) bYRI(!); (4.6)
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a) b)

Figure 4.3: The phantom 3D MRI object used in simulations: a) A subvolume of the true
object; b) A corresponding subvolume of blurred and noisy observations.

where Gs is a low-pass �lter generated by LPA (see details in Section 2.1): This �lter is

the same for all components of the vector bYRI(!).
Here, s is an important scale-parameter of the �lter which is selected adaptively by

the ICI rule. In spatial domain ŷRIs;j = F�1
n
Ŷ RIs;j

o
; j = 1; :::;m; where F�1 f�g denotes

inverse discrete Fourier transform (IDFT).
Using formulas (4.2), (4.5), (4.6), and Parseval's theorem the variance at every point

of the estimate ŷRIs;j (x); j = 1; :::;m; is computed as

�2ŷRIs;j(x)
= varfŷRIs;j (x)g =

1

2N � 2M
X
!

(QRI(!)�
2QH

RI(!))j;j ; j = 1; :::;m: (4.7)

Here, QRI(!) is a transfer matrix of (4.6)

QRI(!) = Gs(!)(V(!)
HV(!) + r2RIIm�m)

�1VH(!)

and �2 = diag(�21; :::; �
2
n) is a diagonal matrix of the variances of observations z(x) =

(z1(x); :::; zn(x)).
The variance of noise for every observation can be di�erent. The variances �2

ŷRIs;j(x)

are used in the ICI rule for the adaptive selection of the scale s.

4.1.2 Regularized Wiener Inverse

Looking for an optimal linear estimate ŷj(x) = (q
WI
j;i ~ zi)(x); i = 1; :::; n; j = 1; :::;m,

of a smoothed signal ys;j(x) = (gs ~ yj)(x) we come to the Wiener inverse �lter QWI =�
FfqWI

j;i g
�
by minimizing criterion function

J = E

�


Ys � bY


2
2

�
= E

n
kGsY �QWIZk22

o
:
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Solution of @J=@QH
WI = 0 gives us the transfer matrix for the Wiener �lter:

QWI = GsYY
HVH(VYYHVH + 2N � 2M�2)�1: (4.8)

Inserting the regularization parameter r2RWI into (4.8) we obtain the regularized Wiener
inverse (RWI) �lter:

QRWI = GsYY
HVH(VYYHVH + 2N � 2Mr2RWI�

2)�1: (4.9)

The �ltered RWI estimate similarly to the (4.6) has the following form:

bYRWI
s (!) = QRWI(!)Z(!): (4.10)

In spatial domain ŷRWI
s;j = F�1

n
Ŷ RWI
s;j

o
; j = 1; :::;m: The variances for the estimate

(4.10) are:

�2ŷRWI
s;j (x) = varfŷRWI

s;j (x)g = (4.11)

=
1

2N � 2M
X
!

(QRWI(!)�
2QH

RWI(!))j;j ; j = 1; :::;m;

and they are used in the following LPA-ICI post-processing.

4.1.3 Experiments

We use a 3D body modeling of an MRI datascan of a human cranium as a complex phan-
tom for simulations of 3D object. This numerical model is available within MATLAB.
The image �le mri.tif presents 27 slices of 128�128 cross-section images of a cranium.
We use this model in order to imitate observation data for the considered 3D inverse
imaging. Intensity values are in the range from 0 to 1, yj(x) 2 [0; 1]: It consists of 27
object slices enumerated from 1 to 27, x3(j) = j; j = 1; :::; 27. A corresponding subvol-
ume of the true object is visualized in Fig.4.3a. A subvolume of 27 noisy and blurred
observations is shown in Fig.4.3b as they are recorded by focusing one after another at
each object slice.
We set the additive noise variances �2i in such a way that the BSNR for each obser-

vation

BSNRi = 10 log10

0B@



Pj(vi;j ~ yj)� 1

2N �2M
P

x

�P
j(vi;j ~ yj)(x)

�


2
2

2N � 2M � �2i

1CA
equals 40 dB, which is signi�cant level of the noise for inverse problems. It is strongly
visible on the reconstructed by RI technique strata (e.g. Fig.4.4c). The adaptive LPA-ICI
technique is exploited to remove it.
In experiments we run the following test in order to reconstruct the true object strata

shown in Fig.4.4a. Let the observations zi(x) consist of 9 strata yj(x); j = 1+4k; where
4 = 3 and k = 0; :::; 8; of the MRI object by focusing precisely at the positions j, i.e.
i = j: Applying the proposed technique, we reconstruct this object at positions j: The
results of the RI reconstruction only are shown in Fig.4.4c. The slices are reconstructed
and the object is clearly visible but the noise is signi�cant.
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a) b)

c) d)

Figure 4.4: The reconstruction of the true MRI object: a) True object strata (j=1,4,...,26); b)
Observations made by focusing at the positions of the true strata given in (a); c) RI reconstruc-
tion of (a) using observations (b); d) RWI reconsruction with LPA-ICI denoising of (a) using
observations (b).

The adaptive LPA-ICI denoising technique signi�cantly improves the quality of re-
construction visually and numerically. This can be seen in Fig.4.4d, where the images
after the RWI reconstruction with the LPA-ICI �ltering are shown. The level of noise is
lower and small details are better preserved.

Other simulations can be found in Publication IV. With this publication we showed
e�ciency of the proposed approach to the optical sectioning problem.
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In the proposed approach the important fact is that the PSF (practically PSFs for
all observations) are assumed to be known. However, it is di�cult to achieve this in
practice. In (Trimeche, 2005) the PSF of a camera phone was estimated. It was possible
since its optical system is signi�cantly less complex than optical system of a microscope.
The authors proposed a deblurring procedure robust to misestimation of PSF and noise.
The adaptive LPA-ICI �ltering was e�ectively used as a post-�ltering procedure (a regu-
larizator) for the iterative Landweber deconvolution scheme (Trimeche, 2005). Further,
similar approach was applied to gradient-projection method for multi-channel blind de-
convolution (Publication V).

4.2 Deconvolution for Mobile Devices

In the paper (Trimeche, 2005) a novel multi-channel image restoration algorithm was
presented as a result of collaboration of Tampere University of Technology (TUT) and
Nokia Research Center (NRC).
The main intention was to develop practical approaches to reduce optical blur from

noisy observations produced by the sensor of a digital camera. In this method, an itera-
tive deconvolution is applied separately to each color channel directly on the raw data. A
modi�ed iterative Landweber algorithm was used combined with the adaptive LPA-ICI
denoising technique. In order to avoid a false coloring due to independent component
�ltering in RGB space, we have integrated a novel saturation control mechanism that
smoothly attenuates the high-pass �ltering near saturated regions. It is shown by sim-
ulations that the proposed �ltering is robust with respect to both errors in PSF and
approximated noise models. Experimental results show that the proposed processing
technique produces signi�cant improvement in perceived image resolution.

4.2.1 Overview

Image restoration requires knowledge of the degradation process in order to solve the
consequent inverse problem. This inverse problem is generally ill-posed (Bertero, 1998),
that is, if the direct solution is considered, a small perturbation in the input can result
in an unbounded output. Several algorithms have been proposed to solve the ill-posed
inverse problem by introducing a regularization step that suppresses over-ampli�cation
of the solution. For example, a directional adaptive regularization was proposed to avoid
over-smoothing of the solution (Lee, 2003). Another method suggests the use of spatially
adaptive intensity bounds in the framework of gradient projection method (May, 2003)
in order to regularize the problem.
The speci�c problem of restoring noisy and blurred color images has been investigated

in the literature since the mid-eighties. Several algorithms (Molina, 2002; Katsaggelos,
1988; Tekalp, 1989) have been proposed to restore the color images by utilizing the inter-
channel correlation between the di�erent color components. However, most techniques
approach the problem as a post-processing problem, that is, the processing is applied after
the image is captured, processed, and stored. Our approach is inherently di�erent. We
consider the application of the image restoration algorithm directly (and separately) on
the raw color image data, so that the deblurring and denoising are at the �rst step of the
image reconstruction chain. In other words, we apply the restoration as a pre-processing
operation which gives bene�ts for the cascaded algorithms in the imaging chain, such
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a) b)

Figure 4.5: a) Landweber technique with LPA-ICI denoising (solid line) compared with the
standard Landweber technique without denoising (dashed line). b) Simulation of the sensitivity
of the iterative deblurring methods to possible errors in PSF estimates (vi). We used Gaussian
PSF with parameter �blur = 1���, where �� is an error that is deliberately introduced.

as AWB and CFAI (typically non-linear operations). Applying the image restoration
as a pre-processing step also minimizes the non-linearities that are accumulated in the
image gathering process. A similar processing paradigm was proposed earlier (Na, 1995)
in order to reduce color cross-talk and to decorrelate the di�erent color components.
However, the processing was carried out after color conversion which may introduce the
cross-talk itself. The restoration was proposed without consideration of the di�erence in
the blur of the di�erent color channels. In our work, we use separate processing of the raw
RGB color components measured by the camera sensor, and we restore separately each
channel according to the estimated optical blur. In fact, the optical blur in each color
channel is di�erent, since the focal length depends on the wavelength of the incoming
light (Hecht, 2002).

Another key issue in our proposed solution is the use of a modi�ed iterative Landweber
algorithm which includes adaptive denoising �lter LPA-ICI (Katkovnik, 1985; Katkovnik,
1999; Katkovnik, 2006b). This combination gives us estimates that are robust to errors
in the estimation of the PSF and in noise parameters. The direct inverse methods such
as the RI and RWI deconvolution techniques (Katkovnik, 2005; Katkovnik, 2006b) are
e�ective methods, but sensitive to modelling errors. On the other hand, the iterative
methods are more robust (Liang, 2003; Jiang, 2003; Biggs, 1997a; Biggs, 1997b) and,
hence, more interesting for practical implementations.

4.2.2 Proposed Approach

Let us consider image formation model (1.10). This model is considered for every color
component of the Bayer pattern. Therefore, the observed image can be modelled as:
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zi(x) = (vi � yi)(x) + ni(x); i = 1; :::; 4 (4.12)

where zi is the measured color component image, yi is the original color component, vi
is the corresponding PSF in that component, and ni is an i.i.d. additive Gaussian noise
term as in (1.3). The index i = f1; 2; 3; 4g denotes respectively the data corresponding to
the Red, Green1, Green2, and Blue color channels, those are measured according to the
Bayer matrix sampling pattern (1.8). Note that each of these images has a quarter oh
the size of the �nal output image. The restoration problem can be stated as recovering
the original image yi from its degraded observation zi.
Iterative methods have shown to be an attractive alternative for implementing the

inverse solution of image deblurring, especially when the blurring parameters can exhibit
some modelling errors. The standard Landweber method (Liang, 2003; Jiang, 2003) to
solve for yi from the observations zi in equation (4.12) is given by the following iterative
process:

y
(0)
i = 0; (4.13)

y
(k+1)
i = y

(k)
i + �i � vTi � (zi � vi � y

(k)
i ); k = 0; 1; :::; i = 1; :::; 4, (4.14)

where �i is the update parameter, v
T
i (t) = vi(�t): If the image formation model (4.12)

is noise-free, �i(t) = 0, the iterative process described above converges to the true signal
(Jiang, 2003).
Another aspect of the Landweber method in equation (4.14) is the fact that it is

designed to solve a problem zi(t) = (vi � yi)(t): As a result, the obtained solution is
sub-optimal in presence of noise. We propose to use the following modi�cations in order
to incorporate a noise �ltering stage and to enhance convergence:

ey(0)i = 0; (4.15)

y
(k+1)
i = ey(k)i + �i � di � vTi � (zi � vi � ey(k)i ); (4.16)ey(k+1)i = LIfy(k+1)i g; k = 0; 1; :::; i = 1; :::; 4 (4.17)

where di is an impulse response of high-pass linear �lter that is used to accelerate the
convergence of the solution. The choise di = F�1

�
1=jVij2

	
gives 1 step convergence but

requires inverse for the PSF which can be ill-conditioned. The Laplacian �lter for di is
used in some applications.
We used LPA-ICI denoising in this work LIf�g (2.18) which is an intermediate �ltering

operator that is intended to enhance the robustness of the solution.
It can be considered as a separate regularization step. It is interesting to note that

in the context of expectation-maximization (EM) methods (Figueiredo, 2003), in the
iterative process described above, the E-step coincides with equation (4.16), and M-step
corresponds to �ltering stage in equation (4.17).
The operator LIf�g can be, for example, a simple averaging �lter, or any other

sophisticated �lter that takes into consideration the local signal statistics. We have
chosen to plug-in an adaptive LPA-ICI denoising �lter in order to preserve the image
details from over-smoothing. This adaptive denoising technique plays an important role
in our proposed solution because it preserves image details and ensures also e�cient noise
removal, which is di�cult to achieve using �lters operating on �xed data support.
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a) b)

Figure 4.6: a) Image taken from Nokia 6600 phone; b) Image (a) processed by the proposed
iterative Landweber with LPA-ICI technique after 3 iterations.

It is worth to note that an adaptive technique provides more accurate and robust
estimates against misestimations in the noise model.

Importance of the introduced step is illustrated in Fig.4.5. For studying properties
of this proposed method we used the Cameraman test image that was corrupted by a
Gaussian PSF with �blur equal to one. We further degraded the blurred image with an
additive white Gaussian noise (variance equals to 0.02). The restoration results obtained
with the standard Landweber method were compared against the proposed method with
the LPA-ICI �ltering. It can be seen from the improvement in signal-to-noise ratio (ISNR)
values (Fig.4.5a) that the proposed denoising step signi�cantly enhances the performance
of the restoration process.

Also important that, in practice, it is rarely possible to have precise estimates for
the PSF. Therefore, it is essential to have restoration algorithms that are robust against
deviations in PSF. In Fig.4.5b, we compared the proposed technique (solid line) with the
standard Landweber method (dashed line). In our experiments, we used Gaussian PSF
with parameter �blur = 1 � ��, where �� 2 f0; 0:1; :::; 0:6g is the assumed estimation
error. It is clear from the ISNR curves that the proposed solution is more robust against
possible errors in PSF, since the performance was consistently better than the standard
Landweber method for all the values of �� that were used.

This approach showed also its e�ciency for real data. Fig.4.6 illustrates the �nal
result that is obtained when we applied the proposed multichannel restoration algorithm
in the reconstruction chain of a real camera system. The processing was carried out on
the raw pictures captured with Nokia 6600 camera-phone. The PSF was estimated for
this particular camera.

It is not always possible to estimate the PSF of optical system. Therefore, it is rea-
sonable to consider the problem when the PSF is unknown, i.e. the blind deconvolution
problem. Further, two approaches are proposed for its solution.
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4.3 Multi-Channel Blind Deconvolution

The most popular approaches to blind deconvolution considered in the scienti�c literature
can be divided in two classes: a multi-channel deconvolution (Sroubek, 2005; Katkovnik,
2006a; Tico, 2006, Yuan, 2007), and a single-channel one (Molina, 1997; Rekleitis, 1996;
Rooms, 2004; Likas, 2004; Chen, 2006; Chen, 2005).

The multi-channel blind deconvolution assumes that several observations of a sin-
gle scene are available for restoration. The problem is to restore the true scene from
these noisy, di�erently-blurred data having no preliminary knowledge about the distor-
tion (smoothing) operators (Katkovnik, 2006a). Multi-channel deblurring of spatially
misaligned images has been considered in (Sroubek, 2005). Restoration from two obser-
vations where one of them is very noisy (for instance, taken by the camera phone with
short exposition time), and one is less noisy but blurred (taken with long exposition
time) was proposed in (Tico, 2006; Yuan, 2007).

The single channel blind deconvolution usually assumes preliminary knowledge on the
model of blur. For instance, it can be defocus, Gaussian, motion models, etc. After this,
having one observation of a scene and knowing the type of distortion operator, the prob-
lem is to estimate the parameters of this model that can be described mathematically
(e.g., variance for the Gaussian blur, extent for motion blur, etc.). For instance, restora-
tion from data destroyed with motion blur was considered in (Rekleitis, 1996). The
parameter for Gaussian model of blur is determined e�ciently by wavelet decomposition
in (Rooms, 2004). Single-channel blind deconvolution within Bayesian framework is con-
sidered in (Likas, 2004). Camera shake removal from a single photograph is proposed in
(Fergus, 2006).

The known size of PSF support may simplify the problem signi�cantly (Chen, 2006).
Parametric solution where a prior imposed on PSF takes into account multiple classes is
proposed in (Chen, 2005).

Image processing based on multiple observations of one scene aims to enhance compre-
hensive restoration quality, often when knowledge about image formation is incomplete.
Classical �elds of application are the astronomy, remote sensing, medical imaging, etc.
Multisensor data of di�erent spatial, temporal, and spectral resolutions are exploited for
image sharpening, improvement of registration accuracy, feature enhancement, and im-
proved classi�cation. Other examples can be seen in digital microscopy, where the same
specimen may be recorded at several di�erent focus settings; or in multispectral radar
imaging through a scattering medium which has di�erent transfer functions at di�erent
frequencies.

Image restoration is an inverse problem which assumes having a prior information
about the formation model. This model includes all sorts of distortions related to the
image degradation. For instance, the atmospheric turbulence, the relative motion be-
tween an object and the camera, the out-of-focus camera, the variations in optical and
electronic imaging components, etc.

Conventionally, the image acquisition is modelled by the convolution with the PSF
and noise (1.10). The PSF introduces low-pass distortions into an image which are called
often as blur. When the blur is unknown, the image restoration becomes a blind inverse
problem or blind deconvolution. For multiple observations of one scene, it is a multiframe,
or multichannel, blind inverse problem.

A theoretical breakthrough on the blind and non-blind deconvolution techniques has
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Figure 4.7: Illustration of Cameraman image restoration (lower row) from its three blurred noisy
observations (upper row).

been done in works on perfect blur and image reconstruction. With the blur functions
satisfying certain co-primeness requirements the existence and uniqueness of the solution
is guaranteed under quite unrestrictive conditions, i.e. both the blur and the original
image can be determined exactly in the absence of noise, and stably estimated in its
presence (Harikumar, 1999a; Harikumar, 1999b; Giannakis, 2000).

A number of works have been done to deal with noisy data. In particular, the blind
deconvolution based on the Bussgang �lters is proposed in (Panci, 2003). The inverse �l-
ter is build as a nonlinear approximation of the optimal Wiener deconvolution �lter. This
approach is used e�ciently for both multi-channel and single-channel blind deconvolution
in (Campisi, 2007, pp. 43-93).

Blind noise-resistant deconvolution algorithms based on the least square method have
been proposed in (Sroubek, 2003). The criterion includes the standard quadratic �delity
term as well as a quadratic term of the cross-channel balance. Overall, the criterion is
nonquadratic as the total variation and Mumford-Shah energy functionals are used as the
regularizators. These nonquadratic terms, or penalty functions, of the criterion result in
a nonlinear edge-preserving �ltering (Rudin, 1992; Mumford, 1989; Chan, 2001). It is
shown in (Sroubek, 2003) that the proposed algorithm using this sort of regularization
performs quite well.

The novel approach obtained as a further development of (Sroubek, 2003) was pro-
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Figure 4.8: The used three PSFs (upper row) and their estimates (lower row).

posed in the recent paper (Sroubek, 2005). The main emphasise of this work is done
on multichannel deblurring of spatially misaligned images. The proposed algorithm does
not require the accurate size of supports of the blur functions, and the observed images
are not assumed to be perfectly spatially aligned.

Many state-of-the-art works on image blind deconvolution can found in the recent
book (Campisi, 2007) dedicated to this problem.

The technique proposed in Publication V is based on the frequency domain represen-
tation of the observation model. One of the bene�ts of this approach concerns the ability
to work with large images and with large supports of PSFs.

4.3.1 Gradient-Projection Algorithm

Let us present brie
y the formal approach to solve the problem (1.11). The blind decon-
volution is ill-posed with respect to both the image and the blurring operators. Therefore,
a joint regularization technique is commonly used in order to regularize both vj and y
(Campisi, 2007, Chapter 3).

In order to estimate vj and y; let us consider the problem of minimization of the
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Figure 4.9: The result of restoration of Cameraman (left) after 20 iterations and the plot
illustrating improving SNR criterion vs. iterations (right).

following non-negative functional:

min
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Since the �delity term corresponds to multiple observations, the normalization is applied
to each of them.
An important di�erence between (4.18) and conventional approaches in regularization,

for instance as Tikhonov regularization, is the cross-term
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Figure 4.10: Improving the SNR criterion vs number of iterations for restoration of the Cam-
eraman and three PSFs.

where �i and �j denote di�erent realizations of the noise in order to avoid possible
confusion comparing to (1.11). Here, �i and �j are the standard deviations of the
Gaussian noise and they are constant over the observations zi and zj . Hence, dij =

1
�2i
P

x v
2
j��2j

P
x v

2
i
:

Using the Parseval's theorem,
P
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(4.18) is equivalent to minimization of the functional
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Here, Zj ; Y; and Vj are the Fourier transforms (FTs) of the signals zj ; y, and vj ; respec-
tively. For the sake of simplicity, we do not show in the formulas the frequency argument
!.
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The estimates of the signal and of the PSFs are the solutions of the following problem:

(ŷ; v̂j) = argminy2Qy;vj2Qvj
J; (4.22)

where the admissible convex setsQy for y andQvj for vj are de�ned asQy = fy : 0 � y � 1g ;
Qvj = fvj :

P
xvj(x) =1; vj(x) �0;vj(x) =0 if jx1j> �; jx2j> �g : The sets Qvj impose

the positivity and normalized mean value assumptions on PSFs vj : The parameter � > 0
de�nes the size of the support of vj(x).
The recursive projection-gradient algorithm is used for solution of (4.22). Firstly, the

values Y (k) and V
(k)
j are calculated:

Y (k) = Y (k�1) � �k@Y �J(Y (k�1); V (k�1)); (4.23)

V
(k)
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(k�1)
j � �k@V �

j
J(Y (k); V (k�1)); (4.24)

where k = 1; :::; �k > 0 and �k > 0 are step-size parameters.

Secondly, Y (k), V
(k)
j are projected onto the sets Qy; Qvj :

PQy
fyg = max f0;min(1; y)g ; (4.25)
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x

vj(x); vj � 0, (4.26)

vj(x) = 0 if jx1j > �; jx2j > �.

The ill-conditioning of the considered inverse problem means that the criterion J
has di�erent scale behavior for di�erent frequencies. In order to enable stable iterations
for all frequencies the step-sizes �k and �k should be small and, as result, the partial

convergence rates on Y (k) and V
(k)
j can be very slow.

The convergence of the algorithm on the variables Y and Vj is de�ned mainly by
the second-order derivative HY �Y = @Y @Y �J for Y and the Hessian matrix HV �V T =�
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where d
(k�1)
ij are calculated in (4.21) for Vj = V

(k�1)
j .

Some of the restrictions de�ning Qy and Qvj (e.g., 0 � y � 1) are not principal and
are imposed only to improve the convergence and the accuracy of the algorithm.
The recursive procedure endowed with the spatially-adaptive LPA-ICI �lters works as

a spatially-adaptive regularizator for the blur-operator inversion. It is applied to y(k); v
(k)
j
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a) b) c)

d) e) f)

Figure 4.11: The three blurred noisy observations: a) blurred with boxcar 9 � 9 PSF; b)
blurred with rotated by 450 boxcar 7 � 7 PSF; c) blurred with inverse-quadratic 7 � 7 PSF.
Blind reconstruction estimate in: d) RGB color space; e) Opponent color space. The true Fruits
image is illustrated in (f).

according to the algorithm:

y(k) , LI
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The details of algorithm derivation and implementation are given in Publication V.

4.3.2 Experiments

Simulation experiments show the e�ciency of the restoration algorithm which demon-
strates good convergence and high quality image restoration. The algorithm is quite
robust with respect to the support sizes used in the PSF estimation.
The simulations for the Cameraman test image are given in Fig.4.7-4.10. We consider

three channel observations with the following di�erent PSFs: Box-car 9 � 9 uniform;
Box-car 7� 7 uniform rotated by 450; "Inverse-quadratic" v (x1; x2) = (1 + x

2
1 + x

2
2)
�1,
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x1; x2 = �7; : : : ; 7 (Fig.4.8). The level of noise in the observations zj , j = 1; 2; 3; is such
that BSNR

BSNRj=10 log10

0@ 1
�2






vj ~ y� 1
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x2X

(vj ~ y)(x)






2

2

1A
is equal to 40 dB. The obtained observations and the restored image are shown in Fig.4.7.
Similarly, the true simulated PSFs and their restored estimates are illustrated in Fig.4.8.
Improvement of the SNR criterion versus iteration number is illustrated for the ob-

servation z in Fig.4.9 and three PSFs vj in Fig.4.10.
As a test image for blind deconvolution of color images we used 256 � 256 RGB

Fruits image (Fig.4.11f). We assume that blurring operator vj for a single observation
zj = (R;G;B) is the same for all color R (red), G (green); and B (blue) channels. The
PSFs vj used are the same as for grayscale images experiments provided in the previous
section. The level of noise is set to be 40 dB for each channel. The observations zj
obtained are illustrated in Fig.4.11a-c.
The restored image when the proposed technique was applied to the three color

channel independently is shown in Fig.4.11d. However, usually natural color images are
highly correlated. We use the opponent color space transformation in order to decorrelate
these color signals (Plataniotis, 2000).
The results of image restoration are illustrated in Fig.4.11e that looks signi�cantly

more natural. Evaluation in terms of the SNR showed about 1 dB higher values then
those for straightforward restoration in RGB color space.
As it was mentioned above, some of the restrictions imposed on the signal and the

PSFs (Qy andQvj ) are not principal. However, they may help to improve the convergence
and the accuracy of the algorithm. Stronger assumptions, for instance assumptions
imposed of the size and the model of PSFs vj , may lead to the general single-channel
blind deconvolution approach, where a single observation is enough to restore the true
image y.

4.4 Single-Channel Blind Deconvolution

Recently, applications of neural networks in image restoration became very popular. In
(Da Rugna, 2006), a neural network is used for segmentation. The authors propose an
approach to �nd and classify areas in one photo image that are blurred and in-focus.
In (Qiao, 2006) a support-vector machine (SVM)-based method is used for blind super-
resolution image restoration.
In Publication VI, we proposed a novel approach to blind deconvolution when the PSF

and its parameter are identi�ed by a classi�er. The multilayer neural network based on
multi-valued neurons (MLMVN) was used for this purpose, whose precise identi�cation
is of crucial importance for the image deblurring.
We proposed to identify a blur model and its parameters from the �nite number of

multiple models and the corresponding parameters using single observed blurred image.
The proposed solution is a one step process, which is signi�cantly di�erent from typical
single-channel blind deconvolution.
Preliminary results in (Aizenberg, 2006a; Aizenberg, 2006b) showed e�ciency of this

approach. The MLMVN was exploited for identi�cation of a type of blur among six
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a) b)

Figure 4.12: a) A neural element with n inputs and activation function f ; b) A neural network
with n inputs, m layers, and Nm outputs.

trained blurs and their parameters. The functionality of the MLMVN is higher than the
ones of the traditional feedforward neural networks and a variety of kernel-based networks
(Aizenberg, 2006c). Its higher 
exibility and faster adaptation to the mapping makes
possible an accomplishment of complex problems using a simpler network. Therefore, the
MLMVN can be used to solve those non-standard recognition and classi�cation problems.

When the PSF is identi�ed, the problem becomes conventional deconvolution. The
adaptive LPA-ICI based deconvolution technique (Katkovnik, 2005) was used for this
purpose.

4.4.1 Multilayer Neural Network Based on Multi-Valued Neu-
rons as a Classi�er

A multi-layered feedforward neural network (MLF) and a backpropagation learning al-
gorithm for it are well studied from all points of view. It is possible to say that this is
a classical example of a neural network. We can refer in this context to the hundreds
of the papers and books. Let us refer, for example, to the book (Haykin, 1998). A
multi-layer architecture of the network with a feedforward data
ow through nodes that
requires full connection between consecutive layers and an idea of a backpropagation
learning algorithm was proposed in (Rumelhart, 1986). It is well known (Haykin, 1998)
that MLF can be used as a universal interpolator. It is also well known that MLF is
traditionally based on the neurons with a sigmoid activation function. MLF learning is
based on the backpropagation learning algorithm, when the error is being sequentially
backpropagated form the "right hand" layers to the "left hand" ones (Fig.4.12b).

On the other hand, it is possible to use di�erent neurons as the basic ones for a
network with a feedforward architecture. We consider the MLMVN.

A multi-valued neuron (MVN) is based on the principles of the multiple-valued thresh-
old logic over the �eld of the complex numbers. A comprehensive observation of MVN
and its learning is presented in (Aizenberg, 2000). Di�erent applications of MVN have
been considered during the last years: MVN has been successfully used, for example, as
a basic neuron in cellular neural networks (Aizenberg, 2000), as a basic neuron of neural-
based associative memories (Aizenberg, 2000; Jankowski, 1996; Aoki, 2000; Muezzinoglu,
2003; Aoki, 2001) and as the basic neuron of pattern recognition systems (Muezzinoglu,
2003; Aoki, 2001).
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a) b)

Figure 4.13: a) Geometrical interpretation of the MVN activation function; b) Geometrical
interpretation of the MVN learning rule.

The mentioned successful applications of MVN make further extensions very attrac-
tive. Taking into account that a single MVN has a higher functionality than a single
neuron with a sigmoid activation function and that learning of a single MVN is based
on the simple linear error correction rule, it would be interesting to consider a neural
network with a traditional feedforward architecture, but with MVN as a basic neuron.

MVN with discrete activation function

An MVN was introduced in (Aizenberg, 1992) as a neural element based on the prin-
ciples of multiple-valued threshold logic over the �eld of complex numbers proposed in
(Aizenberg, 1977). It was thoroughly analyzed in (Aizenberg, 2000), where its theory,
basic properties, and learning were presented.
A single discrete-valued MVN performs a mapping between n inputs and a single

output (Fig.4.12a). This mapping is described by a multiple-valued (K-valued) function
of n variables f(x1; :::; xn) with n+ 1 complex-valued weights as parameters:

f(x1; :::; xn) = P (w0 + w1x1 + :::+ wnxn); (4.29)

where X = (x1; :::; xn) is an input vector (pattern vector) and W = (w0; w1; :::; wn)
is a weighted vector. The function and variables are the Kth roots of unity: "j =
exp(i2�j=K), j = 0; :::;K�1, where i is an imaginary unity. P is the activation function
of the neuron:

P (z) = exp(i2�j=K); if 2�j=K � arg z < 2�(j + 1)=K; (4.30)

where j = 0; :::;K � 1 are the values of K-valued logic, z = w0 + w1x1 + :::+ wnxn is a
weighted sum, arg z is the argument of the complex number z. Fig.4.13a illustrates the
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idea behind (4.30). Function (4.30) divides a complex plane onto K equal sectors and
maps the whole complex plane into a subset of points belonging to the unit circle. This
is a set of Kth roots of unity.
Let "q be a desired output of the neuron (see Fig.4.13b) and "s = P (z) be an actual

output of the neuron. The most e�cient MVN learning algorithm is based on the error-
correction learning rule (Aizenberg, 2000):

Wr+1 =Wr +
Cr
n+ 1

("q � "s) �X; (4.31)

where X is an input vector, n is the number of neuron's inputs, �X is a vector with
the components complex conjugated to the components of vector X, r is the index of
iteration, Wr is the current weighted vector, Wr+1 is a weighted vector after correction,
Cr is a learning rate.

MVN with continuous activation function

The activation function (4.30) is discrete. As proposed in (Aizenberg, 2005b; Aizenberg,
2007b), the function (4.30) can be modi�ed in order to generalize it for the continuous case
in the following way: if K ! 1 in (4.30) then the angle value of the sector approaches
zero. Hence, the function (4.30) can be de�ned as follows:

P (z) = exp(i(arg z)) = eiArg z =
z

jzj ; (4.32)

where Arg z is the main value of the argument of the complex number z and jzj is its
modulo.
The function (4.32) maps the complex plane into a whole unit circle, while the function

(4.30) maps a complex plane just into a discrete subset of the points belonging to the
unit circle. Thus, the activation function (4.32) determines a continuous-valued MVN.
The learning rule (4.31) is modi�ed for the continuous-valued case in the following way
(Aizenberg, 2005b; Aizenberg, 2007b):

Wr+1 =Wr +
Cr
n+ 1

�
"q � z

jzj

�
�X: (4.33)

MVN-based Multilayer Feedforward Neural Network

Amultilayer feedforward neural network (Rumelhart, 1986) (MLF, it is also often referred
as a "multilayer perceptron") and backpropagation learning algorithm for it are well
established. MLF learning is based on the algorithm of error backpropagation. The
error is sequentially backpropagated from the "rightmost" layers to the "leftmost" ones.
A crucial property of the MLF backpropagation is that the error of each neuron of the
network is proportional to the derivative of the activation function.
As proposed in (Aizenberg, 2005b; Aizenberg, 2007b), MLMVN network has at least

two principal advantages in comparison with an MLF: higher functionality, (i.e. an
MLMVN with the smaller number of neurons outperforms an MLF with the larger num-
ber of neurons) and simplicity of learning.
As mentioned above for a single multi-valued neuron, the di�erentiability of the MVN

activation function is not required for its learning. The MVN learning is reduced to the
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movement along the unit circle and it is based on the error-correction rule. Hence, the
correction of weights is completely determined by the neuron's error. The same property
holds not only for the single MVN, but for an MVN-based feedforward neural network.
A backpropagation training algorithm for the MLMVN is analogous to training of a

single MVN. Firstly, this algorithm for the MLMVN with a single output neuron and a
single hidden layer has been derived in (Aizenberg, 2007b).
MLMVN is a multilayer neural network with standard feedforward architecture, where

the outputs of neurons from the preceding layer are connected with the corresponding
inputs of neurons from the following layer. The network contains one input layer, m� 1
hidden layers and one output layer, the mth one. Let us use here the following notations.
Let Tkm be a desired output of the kth neuron from the mth (output) layer; Ykm be an
actual output of the kth neuron from the mth (output) layer (Fig.4.12b). Then the global
error of the network taken from the kth neuron of the mth (output) layer is calculated
as follows:

��km = Tkm � Ykm: (4.34)

The square error functional for the sth pattern Xs = (x1; :::; xn) is as follows:

Es =
X
k

(��km)
2
;

where ��km is a global error of the kth neuron of the mth (output) layer, Es is the square
error of the network for the sth pattern. It is fundamental that the error depends not only
on the weights of the neurons from the output layer but on all neurons of the network.
The backpropagation of the global errors ��km through the network is used (from the

mth (output) layer to the m�1st one, from the m�1st one to the m�2nd one, . . . , from
the 2nd one to the 1st one) in order to express the error of each neuron �kj ; j = 1; :::;m
by means of the global errors ��km of the entire network.
The errors of the mth (output) layer neurons are:

�km =
1

sm
��km; (4.35)

where km speci�es the kth neuron of the mth layer; sm = Nm�1 + 1, i.e. the number of
all neurons on the preceding layer (layer m � 1 which the error is propagated back to)
incremented by 1.
The errors of the hidden layers neurons are computed as follows:

�kj =
1

sj

X
�ij+1

�
wij+1k

��1
; (4.36)

where kj speci�es the kth neuron of the jth layer (j = 1; : : :;m � 1); sj = Nj�1 + 1;
j = 2; :::;m is the number of all neurons in the layer j � 1 (the preceding layer j which
error is backpropagated to) incremented by 1.
The MVN learning is reduced to the movement along the unit circle and it is based

on the error-correction learning rule. Thus, the correction of the weights is completely
determined by the neuron's error. The same property is true not only for the single
MVN, but also for the whole MLMVN. The errors of all neurons from the MLMVN are
completely determined by the global errors of the network (4.34).
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The weights for neurons of the network are corrected after calculation of all errors.
This can be done by using the learning rule (4.30) or (4.32) depending on the discrete-

(4.30) or continuous-valued (4.32) model. Let �~Yij be the complex conjugated output of
the ith neuron from the jth layer after weights update in the current training step. Hence,
the following correction rules are used for the weights (Aizenberg, 2005b; Aizenberg,
2007b):

~wkji = wkji +
Ckm
Nm + 1

�km
�~Ykm�1; i = 1; ::; n;

~wkj0 = wkj0 +
Ckm
Nm + 1

�km;

for the neurons from the mth (output) layer (kth neuron of the mth layer),

~wkji = wkji +
Ckj

(Nj + 1) jzkj j
�kj
�~Yij�1; i = 1; ::; n;

~wkj0 = wkj0 +
Ckj

(Nj + 1) jzkj j
�kj ;

for the neurons from the 2nd tillm�1st layer (kth neuron of the jth layer (j = 2; : : :;m�1),
and

~wkli = wkli +
Ckl

(n+ 1) jzkj j
�kl�xi; i = 1; ::; n;

~wkj0 = wkj0 +
Ckl

(n+ 1) jzklj
�kl;

for the neurons of the 1st hidden layer, where Ckj is a constant part of the learning rate.
In general, the learning process should continue until the following condition is satis-

�ed:

E =
1

N

NX
s=1

X
k

(��km)
2
s � �; (4.37)

where � determines the precision of learning. In particular, in the case when � = 0 the
equation (4.37) is transformed to ��km = 0 for all k and all s.
The detailed derivation of this training algorithm is given in Publication VI.

4.4.2 Training and Testing Patterns

The considered neural network is used for training on the training set of pattern vectors
as follows.
The observed image z(x) is modeled as the output of a linear shift-invariant system

(1.10) which is characterized by the PSF v. The PSF v, e.g. Gaussian, linear motion,
and the boxcar blurs are considered in Publication VI, has its own speci�c frequency
characteristics. Hence it is natural to use its spectral coe�cients as features for both
training and testing sets. Since originally the observation is not v (v is not known) but
z, we use spectral coe�cients of z as input training (and testing) vectors in order to
identify the PSF v. Since this model in the frequency domain is the product of the true
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a) d) g)

b) e) h)

c) f) i)

Figure 4.14: Illustration of pattern vectors selection for Cameraman test image: a) true image;
b) image blurred with Gaussian PSF with variance 2; c) image blurred with rectangular boxcar
PSF of the size 9x9. d) normalized logjZj of true image; e) normalized logjZj of image blurred
with Gaussian PSF as in (b); f) normalized logjZj of image blurred with rectangular boxcar
blur as in (c); g) the normalized logjZj values used as arguments to generate training vectors X
obtained from the true image (a): h) training vectors X for image blurred with Gaussian blur
as in (b); i) training vectors X for image blurred with rectangular boxcar blur as in (c).

object function Q and the PSF V; we state the problem as recognition of the shape of V
and its parameter from the power-spectral density (PSD) of the observation Z, i.e. from

jZj2 = Z � Z.
We use normalized log values of jZj for pattern vectors X in (4.29). Examples of

X values are shown in Fig.4.14. The distortions of PSD for the test image Camera-
man (Fig.4.14a) that are typical for each type of blur (Fig.4.14b,c) are clearly visible in
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Fig.4.14e,f.

4.4.3 Blur Models

We consider Gaussian, motion, and rectangular (boxcar) blurs. We aim to identify both
the blur, which is characterized by the PSF, and its parameter using a single network.
Let us consider all these models and how they depend on the corresponding parameters.
The PSF v describes how the point source of light is spread over the image plane.

It is one of the main characteristics of the optical system (Hecht, 2002). For a vari-
ety of devices, like photo or video camera, microscope, telescope, etc., PSFs are often
approximated by the Gaussian function:

v(x) =
1

2��2blur
exp

�
�x

2
1 + x

2
2

�2blur

�
; (4.38)

where �2blur is a parameter of the PSF (the variance). Its Fourier transform V is also a
Gaussian function.
Another source of blur is a uniform linear motion which occurs while taking a picture

of a moving object relatively to the camera:

v (x) =

� 1
h ;
p
x21 + x

2
2 < h=2; x1 cos� = x2 sin�;

0; otherwise,
(4.39)

where h is a parameter which depends on the velocity of the moving object and describes
the length of motion in pixels, and � is the angle between the motion orientation and
the horizontal axis. Any uniform function like (4.39) is characterized by the number of
slopes in the frequency domain.
The uniform rectangular blur is described by the following function:

v (x) =

� 1
h2 ; jx1j <

h
2 ; jx2j <

h
2 ;

0; otherwise,
(4.40)

where parameter h de�nes the size of smoothing area.

4.4.4 Neural Network Structure

Below we consider the complex multiple-class identi�cation problem where every class
(blur model) also has a parameter to be identi�ed. The number of neurons at the output
layer Nm (see Section 4.4.1) equals to the number of classes to be identi�ed (Fig.4.15a),
and 	i is a number of parameter's values for the i

th class, i = 1; :::; Nm. Each output
neuron has to classify simultaneously blur, a parameter of the corresponding type of blur,
and to reject other blurs (as well as an unblurred image) (Fig.4.15b).

4.4.5 Performance Evaluation

The MLMVN that we use here contains 5 neurons in the �rst hidden layer and 35 ones in
the second hidden layer; this structure of the network has been selected experimentally.
The output level neuron has a speci�c structure (see Fig.4.15b). The range of values

[exp (i � 0) = 1; exp (i � 2�) = 1[ of the activation function (4.32) is divided onto 	i + 1
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a) b)

Figure 4.15: a) Structure of the feedforward neural network used for both blur model and its
parameter identi�cation; b) Structure of the neural element on the output layer of MLMVN.

intervals, each used for identi�cation of the blur parameter value, and one more interval
is used to reject other blurs and unblurred images.
As an example, let us consider performance of the MLMVN solving the problem

of identi�cation of the Gaussian PSF parameter. Thus, the structure of MLMVN is
5 ! 35 ! 1. The Gaussian blur is considered with �blur 2 f1; 1:33; 1:66; 2; 2:33; 2:66; 3g
(4.38), i.e. 	1 = 7. The level of noise in (1.10) is selected to satisfy BSNR

BSNR=10 log10

0@ 1
�2






v ~ y� 1

2N � 2M
X
x2X

(v ~ y)(x)






2

2

1A (4.41)

to be equal to 40 dB.
We have used a database which consists of 150 greyscale images with sizes to generate

the training and testing sets. 100 images are used to generate the training set and 50
other images are used to generate the testing set. The images with no blur and no noise
were also included in both the training and testing set.
The trained network is used to perform classi�cation on the testing set. The classi�ca-

tion rate (CR) is computed as the number of correct classi�cations in terms of percentage
(%):

CR = 100
Ncorrect
Ntotal

(%) ;

where Ntotal is a total number of pattern vectors X in the testing set, and Ncorrect is a
number pattern vectors correctly classi�ed by the trained network.
The numerical results (given in Publication VI) for MLMVN showed CR close to

100%. Its performance was compared with such NN as support-vector machines (SVM),
and MLF trained using the Fletcher-Reeves Conjugate Gradient and the Scaled Conju-
gate Gradient algorithms. The improvement in performance was signi�cant.
For multiple models of blur, we provide the following two experiments. In the �rst

experiment (Experiment 1) we consider six types of blur (Nm = 6) with the following
parameters:

� the Gaussian blur �blur 2 f1; 1:33; 1:66; 2; 2:33; 2:66; 3g ; in (4.38), 	1 = 7;

� the linear uniform horizontal � = 0 motion blur of the lengths 3, 5, 7, 9, in (4.39),
	2 = 4;
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a) b)

c) d)

Figure 4.16: Experiments for Cameraman test image: a) noisy blurred image with Gaussian
PSF �blur = 2; b) reconstructed using the regularization technique (Katkovnik, 2005) after the
blur and its parameter has been identi�ed as Gaussian PSF with �blur = 2 (ISNR=3.88 dB); c)
the original image was blurred by the Gaussian PSF with �blur = 1:835 and then reconstructed
using the regularization technique (Katkovnik, 2005) after the blur and its parameter has been
identi�ed as Gaussian PSF with �blur = 2 (ISNR=3.20 dB); d) the original Cameraman image
was blurred by Gaussian PSF with �blur = 2:165 (This blurred image does not di�er visually
from the one in (a)) and then reconstructed using the regularization technique (Katkovnik, 2005)
after the blur and its parameter has been identi�ed as Gaussian PSF with �blur = 2 (ISNR=3.22
dB).

� the data corrupted by the linear uniform vertical � = �=2 motion blur of the length
3, 5, 7, 9, in (4.39), 	3 = 4;

� the linear uniform diagonal motion from South-West to North-East blur � = �=4
of the lengths 3, 5, 7, 9, in (4.39), 	4 = 4;

� the linear uniform diagonal motion from South-East to North-West blur � = 3�=2
of the lengths 3, 5, 7, 9, in (4.39), 	5 = 4;

� rectangular has sizes 3� 3, 5� 5, 7� 7, 9� 9; in (4.40), 	6 = 4.
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Since we consider six types of blur (Nm = 6), the output layer contains six neurons.
As mentioned above, the structure of the MLMVN is two hidden layers with 5 and
35 neurons, respectively and the output layer. Therefore, the structure of network is
5! 35! 6.
Each neural element of the output layer has to classify a parameter of the correspond-

ing type of blur, and reject other blurs, as well as the unblurred image. For instance,
the �rst neuron is used to identify the Gaussian blur and to reject the non Gaussian
ones. If the weighted sum for the 1st neuron at the output (3rd) layer hits the jth in-
terval, j 2 f1; :::; 7g, then the input vector X corresponds to the Gaussian blur and its
parameter is � j .
We have used the same initial database of 150 di�erent greyscale images with sizes

256�256, which has been used to generate the training and testing sets. As well as above,
100 images are used to generate the training set and 50 other images are used to generate
the testing set. The level of noise in (1.10) is selected satisfying BSNR (4.41) to be equal
to 40 dB.
The trained network is used to perform the classi�cation on the testing set. The CR

is used as an objective criterion of classi�cation. The results are presented in Publication
VI.
The results of using the MLMVN classi�cation for image reconstruction are shown in

Fig.4.16 for the test Cameraman image. The adaptive deconvolution technique proposed
in (Katkovnik, 2005) has been used after the blur and its parameter identi�ed. The
image was blurred by the Gaussian PSF (4.38) with �blur = 2. It is seen that if classi�ed
PSF coincides with the true PSF, then the value of ISNR criterion is 3.88 dB. If the
image is blurred using �blur = 2 � 0:33=2 = 1:835 or � = 2 + 0:33=2 = 1:835 then the
network classi�es them as blurred with �blur = 2 and reconstruction is applied using the
recognized value. Then, the error of reconstruction is approximately 0.6 dB below the
accurate value in the case if reconstruction would be performed for original �blur.
In order to reduce this error we propose to consider Experiment 2. We are targeting

here classi�cation of a single Gaussian blur type, but with much higher precision. The
grid of the blur's parameters is �ner with signi�cantly larger number of them in the
same interval �blur 2 f1 + 0:15� : � = 0; 1; :::; 14g in (4.38), which makes the problem
of classi�cation more challenging. The output layer of the network contains in this case
a single neuron, and the network structure is 5! 35! 1.
The error of classi�cation was formally higher, approximately by 10%. Nevertheless,

it is very important that the reconstruction error for the similar experiment as shown
in Fig.4.16 does not exceed 0.1 dB, which is a minor value in practice. During the
reconstruction simulation we used the images that have been blurred with �blur = 2 �
0:15=2 = 1:925 and �blur = 2 + 0:15=2 = 2:075, while the reconstruction has been done
as for �blur = 2.

4.5 Techniques to Select the Varying Regularization

Parameter

The estimation of y from the observation z (1.10) is a removal of the degradation caused
by the PSF v. Usually this problem is ill-posed which results in instability of the solution
which, in particular, is very sensitive with respect to the additive noise.
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In the 2D frequency domain for the circular convolution the model (1.10) takes a
form:

Z(!) = V (!)Y (!) + n(!); (4.42)

Z = Ffzg, V = Ffvg; Y = Ffyg; n = Ffng, and ! 2 W; is the normalized 2D discrete
frequency as in (4.1). n(x) is the white Gaussian noise (1.3).
Stabilizing e�ects can be introduced by constraints imposed on the solution. A gen-

eral approach to this kind of constrained estimation refers to the methods of Lagrange
multipliers and the Tikhonov regularization (Tikhonov, 1977). The regularized (con-
strained) inverse (RI) �lter can be obtained as a solution of the least square problem
with a penalty term:

Ŷ = argmin
Y
J = kZ � V Y k22 + r kY k

2
2 ; (4.43)

where r � 0 is a regularization parameter and k�k2 denotes Euclidean norm. Here, the
�rst term kZ � V Y k22 evaluates the �delity of the model V Y to the available data Z and
the second term kY k22 bounds the power of this estimate. The regularization parameter r
balances these two terms in the criterion J . In (4.43), and further, we omit the argument
! in the Fourier transforms. We obtain the estimate of the image by minimizing (4.43):

byr(x) = F�1 nbY o ; bY = V �

jV j2 + r
Z; (4.44)

where (�) means the complex-conjugate variable.
The PSF v can be estimated for a particular optical system (e.g. as in Section 4.2),

or can be estimated in blind manner as it was proposed in Section 4.3 and identi�ed as
in Section 4.4. The regularization parameter r is an important parameter that controls
a trade-o� between �delity to data and smoothness of a solution adjusted by a regular-
ization parameter. The problem to select the proper r plays a crucial role in any inverse
regularization.
A proper selection of the regularization parameter r in (4.44) is a key point of the

regularization technique overall. There are numerous publications concerning this prob-
lem.
Roughly speaking there are two types of methods: with a prior knowledge and without

a prior knowledge about the noise variance �2 in (1.3). The L-curve method, sometimes
also called the Tikhonov curve method, belongs to the group of methods with no informa-
tion on the value of �2 (e.g. in (Miller, 1970), and (Tikhonov, 1977)). This technique uses

a log� log plot with the log



Z � V bY 


2

2
as an abscissa and log




bY 


2
2
as an ordinate, with

r as a parameter along this curve. The transition between under- and over-regularization
corresponds to the "corner" of the L-curve and the corresponding value of r is proposed
as an optimal value of the regularization parameter that minimizes (4.43). Further, this
idea was developed in (Hansen, 1992) where he has stipulated conditions when the cor-
ner exists. The corner is de�ned as the maximal curvature point of the log� log plot.
Methods for detection of this point can be seen in (Hansen, 1993; Oraintara, 2000).
Galatsanos and Katsaggelos in (Galatsanos, 1992) proposed a technique for selection

of the asymptotically optimal regularization parameter provided that the variance of
noise in (1.10) is known. This approach is based on calculation of the derivative of the
mean squared error (MSE) functional. A similar idea is exploited by Neelamani et al.
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a) c)

b) d)

Figure 4.17: Results obtained by Monte-Carlo (100 runs) silmulations for Cameraman test
image: a) true image; b) blurred with 9x9 boxcar PSF and noisy (white Gaussian noise) with
BSNR=40dB; c) values of the varying oracle regularization parameters; d) varying regularization
parameters obtained by the ICI rule.

in (Neelamani, 2003), where the optimal invariant regularization parameter is found by
minimizing an upper bound of MSE calculated in the Fourier-Wavelet domain. The
iterative constrained total least-square adaptive procedure is used in (Chen, 2000), and
its stability and convergence are shown.

The review of the methods for invariant regularization parameter selection can be
found in (Galatsanos, 1992; Thompson, 1991; Vogel, 2002).

In (Berger, 1999), authors propose a spatially varying regularization parameter se-
lection and describe a method based on the local weighted standard deviation analyzing
the di�erence signal of the estimate. Wu et al. in (Wu, 2004b) choose both the spatially
adaptive regularization parameter and regularization operator by estimation of the local
noise variance and detecting edges in the image.
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In Publication VII we develop two methods based on minimization of the point-wise
mean squared error. The �rst algorithm is based on estimation of the squared point-wise
bias. The second algorithm is based on direct multiple statistical hypothesis testing for
the estimates calculated with di�erent regularization parameters. The estimates byr(x)
are calculated for di�erent r and those estimates are compared in a pixel-wise manner in
order to select best r: The ICI rule is used in this testing (Katkovnik, 1999, Katkovnik,
2005) (see Chapter 2).
The algorithm based on the ICI rule demonstrated better performance than the algo-

rithm using the bias estimate. Comparison of the proposed adaptive techniques' versus
the optimal (oracle) invariant selection technique for various images showed that the
proposed techniques performs better than the estimate with the best possible invariant
regularization parameter.
The results are shown the Cameraman of the size 256�256 (Fig.4.17a) by the Monte-

Carlo simulation (100 runs)
The blur is de�ned as the 9�9 boxcar PSF (mean �lter). The level of the Gaussian

noise is calculated as the BSNR (4.41) equals to 40 dB in our experiments.
We select the regularization parameter values from the set R = fr1; r2; :::; rNg. In

general, these optimal value depends on the image, the point-spread function and the
noise level. The following construction de�nes the set R in the manner universally ap-
plicable for variety of scenarios:

ri = � i �
2N � 2M � �2 kv(x)k21P
f jZ(f)j

2 � �2 � 2N � 2M
; i = 1; :::; 5;

where � 2 f1:3; 2:3; 6:3; 9:6; 30g and kv(x)k21 = (
P

x jv(x)j)
2
. It is employed for all test

images used in our simulation experiments and similar to implementation proposed in
(Neelamani, 2003).
Visually the e�ects of point-wise regularization are demonstrated in Fig.4.17c,d,

where the results of Monte-Carlo modeling are shown for the blurred Cameraman image
(Fig.4.17b). These images show the mean values of the regularization parameters for
di�erent pixels of the Cameraman image. The varying oracle values of the regularization
parameter are small near edges while larger values correspond to the smoother areas of
the image (Fig.4.17c). The mean values of the varying adaptive regularization param-
eter selected by the ICI rule are shown in Fig.4.17d. Comparing the images Fig.4.17c
and Fig.4.17d we note their similarity. In particular, the ICI rule gives smaller values of
the regularization parameter near the edges and larger for smoother areas as the oracle
estimator does. The adaptive values of the regularization parameter accurately delineate
the edges of the image similarly to Fig.4.17c.
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Conclusions

The demosaicing and deblurring are the problems studied in this thesis. The main results
can be brie
y �nalized as follows.

We proposed a novel demosaicing technique based on spatially adaptive �ltering of
interpolation errors. These errors are treated as noise that is nonstationary and strongly
depends on signal. The magnitude of errors is higher near edges of image details. We
e�ciently exploited the adaptive LPA-ICI denoising in order to remove these errors and
preserve the edges. This idea was exploited for noiseless and noisy Bayer data considering
signal-dependant noise natural for CCD/CMOS digital imaging sensors. The CFAI and
denoising were integrated into a single procedure that showed signi�cant improvement
comparing it with the independent analogous denoising and CFAI. The e�ciency and
applicability of the proposed technique were shown by experiments for both arti�cial
and real raw data (taken directly from the sensor of a cameraphone).

We considered several settings for the deconvolution problems. A novel technique
was proposed for the computational optical sectioning with a good potential for high-
resolution 3D image reconstruction and e�cient noise suppression. The technique is
a multi-channel generalization of the algorithms for 2D inverse imaging developed in
(Katkovnik, 2005). E�cient deconvolution algorithms in combination with a point-wise
adaptive denoising make this approach powerful tool for the visualization of 3D objects.
It can be applied in microscopy, astronomy, or in digital photo-images. This approach
requires precise knowledge about the image formation model, in particular the PSF.
Further works are focused on the methods of restoration when the blurring operator is
unknown, i.e. on the blind deconvolution problems.

We proposed an iterative multi-channel blind deconvolution algorithm. It is assumed
that several degraded observations of a single scene (that is to be restored) are avail-
able. The technique proposed is based on the frequency domain representation of the
observation model. This algorithm does not require the accurate size of supports of blur
functions, and the observed images are not supposed to be perfectly spatially aligned.
One of the bene�ts of this approach concerns the ability to work with large images
and with large supports of PSFs. The recursive procedure completed by the spatially-
adaptive LPA-ICI �lters works as a spatially-adaptive regularizator for the blur-operator
inversion. Simulations produced for both grayscale and color images showed high quality
of restoration in terms of objective numerical criteria and subjective visual evaluation.

A prior information about the PSF may signi�cantly simplify the restoration. We
considered the single-channel blind deconvolution where it is assumed that the paramet-
ric model of PSF is known. As a particular example we considered Gaussian, motion,
and boxcar PSFs. The PSF and its parameter were identi�ed from a single image. For

65
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this purpose we employed the MLMVN neural network that was trained for a database of
images. The identi�cation procedure is computationally fast and cheap. After identi�ca-
tion any conventional deblurring technique can be used in order to restore an image. We
used the LPA-ICI deconvolution technique (Katkovnik, 2005) and the obtained results
have shown the e�ciency of the proposed approach.
As a key element of deconvolution problem, we considered the problem to select the

regularization parameter. Usually it is considered as invariant for the whole image. We
proposed two techniques for selection of the varying regularization parameter. The �rst
algorithm is based on the bias estimation and MSE minimization for every point of an
image. The second one uses the statistical ICI rule. The last algorithm demonstrated bet-
ter performance than the former one. Comparison of the proposed adaptive techniques'
versus the ideal (oracle) invariant selection technique showed that the proposed tech-
niques performs better than the estimate with the best possible invariant regularization
parameter.
We intensively used the LPA-ICI adaptive to the signal �ltering as an important part

of the proposed techniques.
Overall, two kinds of nonparametric estimation are exploited in this thesis. The �rst

one is an empirical �tting implemented in the LPA. It is used for �lter design. The
second one is closer to the conventional estimation theory based on statistical moments
calculations. It is used in Wiener style estimators and in the ICI rule enabling the quality
estimation close to the minimum squared error.
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