TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

Terhi Kilamo

Essential Properties of Open Development Communities
Supporting Growth, Collaboration, and Learning

ade?

Tampereen teknillinen yliopisto. Julkaisu 1194
Tampere University of Technology. Publication 1194

Terhi Kilamo

Essential Properties of Open Development Communities
Supporting Growth, Collaboration, and Learning

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB109,
at Tampere University of Technology, on the 7" of March 2014, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2014

ISBN 978-952-15-3237-5 (printed)
ISBN 978-952-15-3265-8 (PDF)
ISSN 1459-2045

Abstract

Open development has emerged as a method for creating versatile and com-
plex products through free collaboration of individuals. This free collabo-
ration forms globally distributed teams. Similarly, it is common today to
view business and other human organizations as ecosystems, where several
participating companies and organizations co-operate and compete together.
For example, open source software development is one area where commu-
nity driven development provides a plausible platform for both development
of products and establishing a software ecosystem where a set of businesses
contribute their own innovations. Equally, open learning environments and
open innovation platforms are also gaining ground. While such initiatives
are not limited to any specific area, they typically offer a technological, legal,
social, and economic framework for development. Moreover, they always rely
on the associated community, the people.

Open development would not exist without the active participation of
keen developers. However, people are fickle. Firstly, as one of the main
driving forces for participation is own interest, "scratching your own itch”,
the question of how to grow and support open development rises to the fore-
front. Further it leads to ask what contributes to making open development
successful. This is especially crucial when the product has business value.
Secondly, as open development has its own governance methods and devel-
opment guidelines, one is led to ask, how learning these could be facilitated,
and how community participation could be supported.

This doctoral dissertation gives insight on tools and techniques that help
in dealing with the multi-faceted challenge of working with and growing an
open development community. It discusses these through a framework cov-
ering the five key aspects of open development: the people in and the purpose
of the community, the product developed by the community and the policies
and the platform the community needs to function.

il

The thesis presents work on establishing and monitoring an open de-
velopment community in two different settings: a Free/Libre/Open Source
Software(FLOSS) business environment and open education. The research
covers going ahead with open development within the FLOSS ecosystem
both from the point of view of the product and the business environment.
Additionally, this thesis offers research on how developers can learn open
development methods. It introduces academic open development communi-
ties through which the developers can adopt collaborative development skills.
The research presented paves the way for gaining further knowledge in grow-
ing thriving open development communities.

Keywords: Open development, community driven development, open
source software, Free/Libre/Open Source Software, collaborative software
development, software engineering education, participatory learning, open
innovation

v

Preface

This doctoral dissertation would not exist without the support and guidance
of many people. First and foremost, I want to thank my supervisor Docent
Imed Hammouda for his guidance, ideas, and encouragement throughout the
process. A very special thank you to Professor Tommi Mikkonen, my second
supervisor, for his comments, insight, and support, and for believing in me
when I didn’t. I also thank my co-authors, who have been a tremendous help
and a source of support and ideas. Additionally I want to thank my pre-
examiners Professor Matti Rossi and Associate Professor Bjorn Lundell for
their review and comments, and my opponent Associate Professor Gregorio
Robles for his insight and remarks.

This work has been supported by Nokia Foundation, Ulla Tuomisen séétio,
and Tuula ja Yrjo Neuvon rahasto. I thank them for the encouragement.

I am grateful for having had the opportunity to work on this thesis in
company of such great colleagues. Thank you Janne Lautaméki, Tuomas
Turto, Timo Aaltonen, and Matti Rintala among others. I also want to
thank my friends, especially Suvi for the therapeutic jogs, cycling, and gym
sessions, and my brilliant association of lovely ladies. You are all dear and
this work has partly been possible because you exist.

Lastly, I want to thank my family, Jussi and Nikolas, I love you, and my
parents, who have always been there for me. Extra thanks to my mother for
helping with the house and taking care of a lot of things throughout this work.

Tampere, Finland February 2, 2014

Terhi Kilamo
terhi.kilamo@tut.fi

“And by that destiny to perform an act
Whereof what’s past is prologue, what to come
In yours and my discharge.”-Antonio, The Tempest. Act 2, Sc 1

vi

Contents

Abstract

Preface

Contents

List of Included Publications

Author’s Contribution

1

Introduction
1.1 Motivation
1.2 Scopeof Worko
1.3 Contribution
1.4 Outline of the Thesis
Background
2.1 Openness and Communities
2.1.1 People
2.1.2 Purpose
2.1.3 Policies
2.1.4 Platform
2.2 Collaborative Development
2.3 Related Research
Research Approach

3.1 Research Questions
3.2 Collaborative Practice Research
3.3 Research Method
3.3.1 Case I: FLOSS Software Development
3.3.2 Case II: Open Learning Environments
3.3.3 Limitations

Vil

iii

xi

xiii

4 Five Ps Framework

4.1 Product . .

4.2 Interdependent Elements

5 Open Development Communities
5.1 Case I: Free/Libre/Open Source Software Development
5.1.1 Free/Libre/Open Source Software
5.1.2 Helping Open Source Communities Grow
5.1.3 Discussion
5.2 Case II: Open Learning Evironments
5.2.1 Collaborative Development in Education
5.2.2 Discussiono
5.3 Drawing Cases Together

6 Conclusions
6.1 Summary .

6.2 Research Questions Revisited

6.3 Future Work

Bibliography

viil

27
28
29

33

34
39
43
44
44
46
48

51
o1
93
o4

57

List of Figures

1.1

3.1
3.2

4.1
4.2

5.1
5.2
5.3
0.4
5.5
5.6
5.7

Contribution of the Thesis 5
Action Research Cyclical Process 19
Different Knowledge and Types of Research Activities 21
Open Development Community 28
Five Ps Model 30
Onion Model of Open Source Communities 35
FLOSS Stakeholders [IIT} 37
OSCOMM Framework 39
OSCOMM from Business Perspective 42
Five Ps in Industrial FLOSS 43
Five Ps in Open Learning 47
Demola Partners 49

1X

List of Included Publications

Case I: Free/Libre/Open source software development:

1]

(1]

[111]

T. Kilamo, I. Hammouda, T. Mikkonen, and T. Aaltonen. From Proprietary to
Open Source — Growing an Open Source Ecosystem. In The Journal of Systems and
Software (JSS). Volume 85, Issue 7, pages 1467-1478. July, 2012, Elsevier Science
Inc.

T. Kilamo, T. Aaltonen, and T.J. Heinimédki. BULB: Onion-Based Measuring
of OSS Communities. In Proceedings of the 6th International IFIP WG 2.13 Con-
ference on Open Source Systems (055°10), pages 342-347. Notre Dame, IN, USA,
May 30 — June 2, 2010, Springer.

T. Kilamo, T. Aaltonen, I. Hammouda, T.J. Heiniméki., and T. Mikkonen.
Evaluating the Readiness of Proprietary Software for Open Source Development,
In Proceedings of the 6th International IFIP WG 2.13 Conference on Open Source
Systems (0SS5°10), pages 143-155. Notre Dame, IN, USA, May 30 — June 2, 2010,
Springer.

Case II: Open learning environments:

[1V]

T. Kilamo, I. Hammouda, and M.A. Chatti. Teaching Collaborative Software
Development: A Case Study. In Proceedings of the 34th International Conference
on Software Engineering (ICSE’12), pages 1165-1174. Zurich, Switzerland, June 2
-9, 2012, Institute of Electrical and Electronics Engineers (IEEE).

T. Kilamo, I. Hammouda, V. Kairamo, P. Résénen, and J.P. Saarinen. Applying
Open Source Practices and Principles in Open Innovation: the Case of Demola
Platform. In Proceedings of the 7th International IFIP WG 2.18 Conference on
Open Source Systems (0SS’11), pages 307-311, Salvador, Brazil, October 6 — 7,
2011, Springer.

T. Kilamo. The Community Game: Learning Open Source Development Through
Participatory Exercise. In Proceedings of the 1/th International Academic MindTrek
Conference: Envisioning Future Media Environments (MindTrek’10), pages 55—-60.
Tampere, Finland, 2010, Association for Computing Machinery (ACM).

The permissions of the copyright holders of the original publications to reprint
them in this thesis are hereby acknowledged.

X1

X11

Author’s Contribution

The candidate has been the main contributing author or one of the main
authors of each of the publication included in this thesis. The candidate’s
role is discussed paper by paper in the following.

I

II

11

From Proprietary to Open Source — Growing an Open Source
Ecosystem.

The candidate was the main responsible author for writing the text
for the publication. Each author participated in the conception of the
paper, while the candidate had the main responsibility of closing the
gaps and bringing everything together with previously published work
in this publication. Although the paper draws together research con-
ducted by the research group over several years and is hence a product
of an interactive and iterative process, the candidate was the main au-
thor responsible for the syntheses of the group’s previous work. The
candidate together with the second author further kept in contact with
the representative of the example case which was used to report the
framework as a whole for the first time. This work is further extended
with the candidate’s contribution in [53] with a business perspective.

BULB: Onion-Based Measuring of OSS Communities

The candidate was the main responsible author writing this publication.
The data analysis for the publication was conducted together with the
second author as well as writing the text. All authors jointly worked
on the design and the conception of the work. The third author was
mainly responsible for the constructive setting and the data collection.

Evaluating the Readiness of Proprietary Software for Open
Source Development

The candidate was the author responsible for the writing process. The
candidate further contributed to the paper by collecting the information
on the company’s experiences with applying the approach in the case

xiii

1A%

VI

in Section 4.2 of the paper (the Gurux case) and by reporting the
findings in the paper. The publication was written in a collaborative
and interactive process. The research project this dissertation work
was conducted as a part of was developing the R3 framework depicted
in the paper at the time the candidate joined the project. Most of that
work is prior to the candidate’s.

Teaching Collaborative Software Development: A Case Study

The candidate conducted the research together with the second author
and did the data analysis by herself. The third author of the publication
contributed theoretical background to the work while the rest of the
paper was solely the candidate’s responsibility.

Applying Open Source Practices and Principles in Open In-
novation: the Case of Demola Platform

The candidate was responsible for the entire publication: the concep-
tion, design, analysis, and writing. The concept of Demola — the case
study context in the publication — was conceptualized and created by
the third, fourth, and fifth authors but the work conducted for the
publication is the candidate’s.

The Community Game: Learning Open Source Development
Through Participatory Exercise

The conception of the exercise depicted in the publication was an inter-
active effort where the candidate had a major contributing role. The
design, conception, and analysis is the candidate’s and the candidate
is the sole author of the paper.

X1iv

Chapter 1

Introduction

Openness is becoming prevalent. The open data movement [75], Free/Libre/-
Open Source Software (FLOSS) [77], open government [76] initiatives', and
open standards [95] are all examples where open access, transparency, and
participation is valued and promoted. From the business perspective, open
innovation [12] and open development [4] are allowing a wider audience of
interested individuals to participate in endeavors that have company inter-
est and business value as well. While traditionally such advantages have
been kept within the company, openness allows a wider group of partners to
strengthen and expand the scope. A closed approach would be tied to the
resources the company has at hand and restricted by the company policies
and know-how. Similarly, from a learning perspective open education offers a
wider access and more versatile learning opportunities to learners around the
globe through services like the Khan Academy? or open education providers
like the Open University?>.

A common way today is to view businesses and other human organizations
as ecosystems instead of separate actors [73]. The term ecosystem has further
emerged as a commonly used notion in software economy [69]. In a business
ecosystem companies function as a single unit. They co-operate and compete
to produce new innovations and products, and to satisfy their customers’
needs. In turn, the goal in a learning ecosystem is for the individuals to gain
competitive skills and expertise that are beneficial from an organizational
viewpoint as well. Ecosystems such as the software ecosystem, for example,
typically rely on a shared platform on top of which different parties contribute
their own innovations specific to their area of expertise [5]. This way each

'Finnish initiative: http://www.vm.fi/vm/en/05_projects/0238_ogp/index. jsp,
US initiative: http://www.whitehouse.gov/open

’https://www.khanacademy.org/

3http://www.open.edu/openlearn/

participant is free to extend the ecosystem and still all the participants can
gain benefits and utilize each contribution.

Such sharing of ideas and contributions is a form of openness, at least
within the scope of the ecosystem. In open development a group of peers
distributed worldwide collaboratively produce content, artifacts, knowledge,
or similar shared resource. Generally common aspects of open development
include transparency of development and the freedom to extend the available
artifacts into new and more complex products and tools, and thus open
development can be seen as a plausible platform for an ecosystem to build
upon.

Open development is done by people, in collaboration with other people
and, most commonly, focusing on a product that is meant for people to use
and gain benefits from. The participating people may work in varying en-
vironments, may have their particular backgrounds and act under different
conditions [9], yet sharing in many cases the same activities and interests.
Furthermore, their motivation for participation may be driven by a variety
of factors from employment and business drivers to altruistic incentives and
self-improvement [58,90]. For example recent software development settings
such as pair programming [79], global software engineering [47], and open
source software [85], exhibit the trend where individuals — from developers
to users — join together to perform common software engineering activities.
Similarly, there are initiatives such as Teaching Open Source [26] and Free
Knowledge Institute [25] that focus on research and promotion of open and
collaborative learning. In such online settings, participants need to work in
collaboration with limited face-to-face contact. This leads to a variety of
challenges including the technical, the organizational, and the social. Hence
open development needs to address a number of challenges such as motiva-
tion, integration, and exploitation of innovation [111]. There is a need for
a governance framework [30] that enables organizational alignment of the
different partners, proper handling of intellectual property rights issues, and
the emergence of new kinds of business opportunities.

1.1 Motivation

The rise of the Internet has enabled engaging participants worldwide in ven-
tures from all walks of life ranging from crowd funding the Death Star* (and

‘http://www.kickstarter.com/projects/461687407 /kickstarter-open\
\-source-death-star

naturally also the rebel alliance’s X-wing squadron®) to developing healthcare
software®. People participating out of their own personal interests raises the
question of how to support open development and what contributes to mak-
ing open development successful. This is especially crucial from an ecosystem
perspective where the product has business value to a company or an orga-
nization.

Open development relies on the developer community. Such communities
typically work online, and thrive on participants’ communication and interac-
tion to generate member-driven content [61]. A healthy, working community
is typically seen as a layered onion-like structure [16,74], with different par-
ticipant roles from core developers to users of the developed product. It
is important for a healthy community to have participants on each level of
participation [17]. Success of open communities relies on a large number of
identifiable metrics [15,82] over a life-cycle from birth to maturity [50].

Discussion on communities often regard them through expressions such
as building, constructing, or forging a community [36,54,99,112]. However,
open development — and communities in general — flourish through the active
participation of individuals, who in the case of development communities
share the common goal of developing a product. Still, their personal interests
may vary and focus on a wide range of different areas of development [43,44].
People are not built or forged, and thus the focus should be put, as the title
of this thesis suggests, on growing communities, growing as one would grow
crops instead of a simply focusing on growth as an outcome of building.

Growing is an activity where growth happens when certain prerequisites
and conditions are met. The motivation of this thesis is the viewpoint of
these conditions: what are the essential properties of open development and
how to handle them in order to support collaboration and grow communities
in the open development domain. The question is, how to approach open de-
velopment to allow the community to work together and grow in a healthy,
sustainable way. Open development is thus also not without its own gover-
nance methods and development guidelines [43,81,85]. Understanding team
work, tools, and open development methods is of more and more value as
more and more development is done in global teams and through open par-
ticipation initiatives [9]. Hence, how participants can learn these and how
community participation can be supported are of further importance.

Shttp://www.kickstarter.com/projects/simonkwan/crowdfunding-rebel\
\-alliance-x-wing-squadron
Shttp://en.wikipedia.org/wiki/List_of_open-source_healthcare_software

3

1.2 Scope of Work

This doctoral dissertation discusses the challenges of open development fo-
cusing on the properties that are pivotal in growing an open development
community and in supporting the growth of the community. This work in-
vestigates how open development can act as a platform for learning skills
that are essential in the Web 2.0 era [78] where the Internet is enabling
all kinds of forms of collaboration. The thesis presents research work on
two open development community cases: Free/Libre/Open Source Software
ecosystem and open education, and draws their findings together under a
common framework. The research questions answered are: 1) What aspects
of open development are essential in supporting the growth of open devel-
opment communities and at the same time supporting the collaboration of
the participants? 2) What kind of activities are needed to ensure and sup-
port community growth? and 3) How can collaboration be learned through
participation in an open development community? In order to formulate the
research questions and when developing the framework, a literature review
approach has been used [63,110].

In this thesis, the aim is to recognize what kind of aspects need to be
addressed in order to establish an open development community and further,
in order to give the community a chance to grow and thrive. The objective
is not so much to give a cookbook-like set of rules and guidelines for building
a perfect community, but to focus on the essential aspects needed to enable
growth of the community and to support collaboration of participants.

1.3 Contribution

The thesis consists of six publications and an introductory part that sum-
marizes the publications through a novel framework as a thesis contribution.
The research drawn together in this thesis covers what is needed to grow
a successful open development community and how people can adopt open
development skills. The thesis further addresses supporting learning how to
work with open development methods, as people are a pivotal part of open
development. Specifically, the thesis contributes: a framework of open devel-
opment communities that addresses their essential aspects, a set of guidelines
for establishing and growing a FLOSS business community and an approach
to enable learners to attain understanding of open development and the skills
required with an open educational development environment. The thesis
statement can be formulated based on the research as: An open development
community is characterized not only by the community itself but also by the

4

product the community aims to develop and improve. As such, an open de-
velopment community needs to be viewed through all of its essential elements
which include: people, purpose and product, and the community policies and
the development platform that support them.

Work on two cases of open development is included in this work. First as
a contribution, a common framework derived based on the cases, called five
Ps, is presented. It is then further discussed through the two case contexts as
intances of the framework. Case I provides the OSCOMM approach to grow-
ing open software development communities in a software business setting.
In Case II, an open education approach is taken with an open development
environment for learning, KommGame. The open development community
as a community of practice [59], where participation incites learning, ties
the case viewpoints together. In Case II the open innovation platform De-
mola acts as the case study context and it incorporates elements of both
approaches. The work done there contributes insight on how both aspects
—FLOSS ecosystem and open education— can appear in a common setting
and support each other.

Open Innovation:

Demola
Open Education:
KOMMGAME

Papers:|IV and VI

FLOSS Ecosystem:
OSCOMM

Papers:|l, Il and llI

Figure 1.1: Contribution of the Thesis

Figure 1.1 shows the work in relation to all of its elements. The contribu-
tion of the five Ps framework is derived based on the work done with the two
cases of open development communities and based on the existing literature.

In addition to the included publications, the candidate has been the main
contributing author in Kilamo et al. [53], which is a supporting publication to
Case I. In it growing open source communities is discussed from the business
perspective as well as from the viewpoint of the software product and the
software ecosystem surrounding it. The publication complements Publication
I included in the thesis. A supporting publication to Case II, Goduguluri

et al. [41], takes a software platform perspective with the candidate as a
supporting author. The candidate had an active part in the conception of
the environment described in the publication. The environment depicted acts
as the community platform in Case II.

1.4 Outline of the Thesis

The organization of the introductory part of this thesis is the following.
Chapter 2 sets the background of the work. It discusses the topic of openness
and open development and presents related research relevant to this thesis.
Chapter 3 describes the theoretical background of the research approach and
methodology used in this thesis work and gives the target questions. In ad-
dition, the chapter describes how the research was conducted and explains
the used research method.

Chapter 4 introduces the open development community framework adopted
for this work. Then Chapter 5 goes on to describe and discuss the two cases
of open development: open source software development and open education.
The chapter, through the framework introduced in Chapter 4, shows the de-
veloped OSCOMM framework, the people aspect of open development, and
how participation and learning participatory skills can be supported with an
open development platform called KommGame.

To conclude the introductory part, Chapter 6 gives a summary of the
included publications. The chapter further summarizes and concludes this
thesis with an evaluation of the thesis questions and provides possible direc-
tions for future research.

Chapter 2

Background

Communities are about people. They flourish on the notion of collaboration
of people. Communities, however, are not built nor do they emerge out of
thin air [81]. As mentioned, works like [36,99,112] use the wording "build”,
but what they actually discuss is more in the lines of nurturing instead of
building. Hence the claim that supporting communities to emerge and grow
is not construction work. The idea of "scraching your own itch” [85] — joining
the community out of your own motivation — further supports this. The
overarching approach in the thesis is that establishing communities should be
treated as an endeavor of nurturing or growing, not building of an inanimate
object.

Taking a philosophical approach, open indicates the notion of allowing any
keen participant to join and contribute. Openness incorporates the impilicit
notion that anybody can “hack anything” [85]. However, it is worth noting
straightaway that communities are a group of individuals discussing, sharing
ideas, mingling, and getting to know each other over a shared interest, but
they are not necessarily open for anyone to join [43]. Some communities are
closed [22] or gated [43,93] where terms, licences, and guidelines delineate
who and how people can participate. Even when the community is open,
moving ahead may be more difficult in some than in others.

Open development communities work on the basis of commons based
peer production [4]. It relies on a group of like-minded participants, the
developer community, to build and improve a product: software, content, or
relevance to name a few. The following discusses the traits common to open
communities, including open development communities specifically.

2.1 Openness and Communities

Open communities, such as online forums or Free/Libre/Open Source Soft-
ware development communities, rely on a group of individuals to carry out
discussions, to build a product or otherwise interact with each other. In [54]
Amy Jo Kim defines a community as:

"a group of people with a shared interest, purpose, or goal, who
get to know each other better over time.”

In [81, p. 10] Jenny Preece extends this definition in the scope of online
communities to include policies that guide people’s interactions and com-
puter systems that support and mediate social interaction in the community.
Through these definitions, we can conclude that an open community consists
of the people, the community’s purpose, its policies and the software platform
the community runs upon.

To describe a community with a few more words, interacting with each
other through conversations about and around their shared interest molds a
group of people with a shared preoccupation into a community [81]. Some
further perform special tasks for the good of the community. These peo-
ple, participating in the community, share a common purpose which ties the
people together as such and which draws cooperative individuals into the
community. Additionally, a community needs a set of policies that guide the
communication and co-operation in it. Policies also set the decision mak-
ing processes. Software systems, on the other hand, are needed to form a
common platform that enables interaction, participation, and creates an im-
pression of togetherness for the participants as in these cases the community
typically works through the Internet. The following sections discuss each of
these four in more detail. Open development brings in a fifth element, the
product, and as one of the contributions of the thesis, this topic is discussed
in Chapter 4. Lately, there has been a new rise in so called hackerspaces or
makerspaces which combine the virtual working environment with a physical
one by having real world meeting places [71]. In this thesis the focus is kept
on communities that work online.

2.1.1 People

Open development needs people participating in the development community.
There are varying reasons for what motivates people to participate in open
communities. Access to information and expertise useful to the participant,
getting help to a specific problem, or personal gain can motivate participa-
tion. The motivation can also be self-actualization and participation is done

for finding joy and challenges to personal, existing knowledge [108]. Gaining
reputation, often a professional one, is a significant driver for contribution as
well [109]. Such motivational aspects can further be divided and refined into
extrinsic and intrinsic ones [90].

Intrinsic motivators are those that are enjoyable or interesting to the in-
dividual inherently while extrinsic refer to a separable reward or outcome
that motivates the individual’s actions. Within the context of open devel-
opment communities the intrinsic factors are further divided into enjoyment
based and community-based motivations [58]. Consequently, all three types
of motivations can be found in people participating in open development.

The characteristics of the open community influence the motivations. For
example, open innovation online communities report intellectual challenges,
fun, interest towards the topic, possibility to influence and creativity as the
main motivational factors [2]. In turn in FLOSS communities creative project
experience and being paid rank high [58].

When viewing the community through the people, the social structure of
the community has three aspects to be considered: individuals, their actions,
and interactions [16]. The people themselves give an idea about the com-
munity and its size. How the people interact and work in the community
gives further insight on how the community functions. The social structures
of communities vary. There typically are central figures at the heart of the
community [48]. A large majority of participants get involved only for a small
amount of time.

2.1.2 Purpose

A community grows around a shared purpose, interest, or goal. It is the glue
that ties a seemingly random group of people together [54]. The purpose
can and will evolve over time. However, the purpose of the community has
influence on people’s interactions within the community [106]. The purpose
also has relevance to who gets involved —a wider purpose draws a wider
group of people into the community [81].

One key aspect for stating the purpose is for the community to have
a mission statement [54]. Through it, the type of the community, why it
exists, and who are the intended people can be communicated. The mission
statement expressing the purpose clearly and compellingly determines what
kind of people get involved [43]. Telling a vibrant story about the purpose and
the goals of the project is a way to get people enthusiastic about participation.

9

2.1.3 Policies

Communities, open communities in particular, need a set of policies to direct
and support them [81]. Some are clearly stated while some are less formal
or even unwritten codes of conduct formed by the community. Nonetheless,
the policies affect who join the community.

A governance model decides the participants’ roles in the community,
what can and cannot be done, and how decisions in the project are made.
Governance models can take a form of a meritocracy, a consensus-based
democracy [33], or follow more on the lines of a benevolent dictatorship [38],
where the final say in matters falls on a single individual. For example, the
Linux community follows the latter approach whereas the Apache HTTP
Server Project! [32] is an example of the former. Typically open communi-
ties do in any case expect some level of acknowledgement of merit, regarless
of the main governance model. The governance model affects the volunteer
participation [93].

In the case of open development communities, the governance policies are
affected by policies regarding the intellectual property rights of the contrib-
utors. These include possible contributor licence agreements (CLA) [87] and
the licencing details of the product [62]. As in open development a commu-
nity works on a shared product or artefact, and thus each own copyright to
their respective contributions, licencing allows the community to grant others
rights to the product. Contributor licence agreements are a way of defining
terms under which participants’ intellectual property is contributed to the
development of the product and it may require the contributor to assign the
copyright to the governing body of the community. Major open develop-
ment organizations such as Apache Software Foundation?, Eclipse® and Free
Software Foundation* utilize CLAs. It helps in the management of product
licencing, possible relicencing, and in cases of copyright dispute.

One key issue among participants is trust. Showing mutual respect en-
ables cooperation. In electronic environments the issue of trust that relates
to open communities falls into the trustworthiness of information, informa-
tion systems and online relationships [13]. Trust is developed in an online
community much like in the real world based on positive experiences and
when people meet their promises and expectations [81].

"http://httpd.apache.org/
’http://www.apache.org/licenses/
3http://www.eclipse.org/legal/CLA.php
4http://www.gnu.org/licenses/why-assign.html

10

2.1.4 Platform

Open communities typically work on an online software platform even if
they might have real world activities as well. Typical platforms are online
discussion forums, different types of chats, and mailing lists [81].

The platform must suit the community needs, as its role is to support the
community. This leads to the need to understand participants’ wishes, as a
platform that is suitable and usable for the participants supports learning,
creativity, and productivity. The software platform affects the participants’
activities and thus has an effect on the communication and interactions within
the community:.

2.2 Collaborative Development

Open collaborative development has its roots in peer-production where par-
ticipants, a group of peers, interact with each other and collaborate [4]. While
Free/Libre/Open Source may be the most famous example of such collabora-
tive effort, it is not the first nor the only domain where peer-production is in
use. Communities have influenced the development of things such as cars [56]
or sport-related consumer products [34]. In addition peer-production is visi-
ble throughout the web where people provide content®, relevance or value to
goods®, or distribute content”.

Globally distributed development of products is not necessarily always
collaborative in nature but such multi-site projects can also work on a joint
effort and in collaboration with each other. Human aspects such as social ties
and knowledge sharing as well as tools and procedures are emphasized when
development teams are located globally and work on a shared project [57].
Hence, the community aspects are visible also there.

Open development communities encompass the aspects of open commu-
nities and peer-production as well as product related details such as licensing
and project processes. As a working definition for the thesis, an open de-
velopment community is a community that keen participants can join with
their own contributions. It is further a development method where a trans-
parent process is applied for a plethora of different types of goods through
peer-production.

Shttp://www.wikipedia.org
Shttp://www.amazon. com
"http://www.gutenberg.org/

11

2.3 Related Research

The main goals of this work are identifying the essential properties for open
development communities with an ecosystem mindset and studying these
in the context of two different settings: industrial Free/Libre/Open Source
Software® and collaborative learning. Albeit not directly bound to a system-
atic literature review, the study context is grounded in the current body of
knowledge. Here, the focus is on the related body of knowledge of both cases.
Case I is approached from the point of view of starting FLOSS communities,
evaluation of existing communities” health, and community lifecycle research.
Case II is rooted in the existing knowledge from the point of view of usage
of FLOSS in software development education and collaboration. Both are
approached with a literature review using the relevant scientific databases
(IEEExplore, ACM Digital Library, Springerlink, Google Scholar, ScienceDi-
rect) with the recommended approach from the senior editors of MISQ [110].

Through ecosystems the work is related to ecosystem health research —
a healthy ecosystem has the means to grow. In their paper [49] Iansiti and
Levien conceptualize ecosystem health through three measures: productiv-
ity, robustness and niche creation. Health measures for business ecosystems
health are further developed by den Hartigh et al. [20]. However, these works
are strictly business oriented and on a general level. The thesis focuses on
open development community specifics within an ecosystem. The viewpoint
is community-centric and the ecosystem is viewed as a working environment.
In [103] the authors present a model that describe the key characteristics of a
software ecosystem. The work is related to this thesis as it investigates soft-
ware ecosystems through defining their key characteristics that include issues
such as platform planning and community building discussed also here. How-
ever, the focus of this work is on open development settings beyond a strict
business need. Furthermore, the thesis is not limited to software development
only but takes a more general view.

Case I: Free/Libre/Open Source Software Development

Case I investigates establishing and fostering open development communities
in the Free/Libre/Open Source Software ecosystem. Therefore, work on these
relates to that presented here.

Fogel [33] presents a cookbook-like guide for starting and running a free

81t is acknowledged here that there are lobbies for both free software and open source
software vernacular, and that there are several flavours and stances to the use of either
term. However, here, the term FLOSS is used due to its neutrality as the demarcation in
the terminology is of no essence from the viewpoint of the thesis.

12

software project in general. The book takes a very detailed and step-by-
step approach to Free/Libre/Open Source Software with the different per-
spectives ranging from instructions for the technical infrastructure to the
underlying political issues. In comparison, this work approaches open devel-
opment through grouping of the essential elements instead of trying to cover
the minutiae.

Establishing a Free/Libre/Open Source Software development commu-
nity in an industrial setting is a key issue of Case I. Thus the attributes of
FLOSS are an important angle to it. Open source maturity models such
as OSMM™(Open Source Maturity Model) [42], QSOS (Qualification and
Selection of Open Source Software) [83], and BRR™ (Business Readiness
Rating) [8] aim to aid companies in adopting FLOSS. While these models
evaluate existing Free/Libre/Open Source Software projects this thesis fo-
cuses on giving birth to and fostering FLOSS development.

In their paper [91] the authors define a lifecycle model for Free/Libre/Open
Source Software based on existing FLOSS projects. The paper argues that
Free/Libre/Open Source Software projects go through three phases: a cathe-
dral phase, a transition phase, and a bazaar phase. However, in contrast to
the metaphor of the "cathedral and the bazaar” [85], the phases are com-
plementary and represent common evolution phases of most open source
projects. The lifecycle model is further empirically assessed through his-
torical data using a number of case studies by Capiluppi et al. [10]. The
three-phase classification fits the work on FLOSS communities presented in
this thesis as the framework discussed in Subsection 5.1.2 follows the life-
cycle model. The life-cycle of online communities in general together with
information systems lifecycle viewpoint is taken in [50]. The authors use a
literature review to propose success conditions to improve the chances of the
community becoming a successful one. In this thesis the communities follow
a similar lifecycle approach: inception, creation, growth, maturity. In con-
trast, the framework proposed here discusses the properties of communitites
over the lifecycle and doesn’t simply tie them to a specific stage.

The problem of open source community building has also been researched
in the licentiate thesis by Stiirmer [99], who describes qualitative research on
eight successful FLOSS projects. The study is based on interviews with a
representative of each project. The interviews go through the lifecycle of the
projects from inception to present. The main contribution of the study is
in describing how to initialize a Free/Libre/Open Source Software project
and how the project is promoted. In comparison to the work in this thesis,
the main difference is in the research approach. The work here is not an
outcome of hindsight, but comes out of active participation in the process.
Furthermore, the researcher has an active role instead of one of an observer.

13

Stephanie Freeman’s doctoral dissertation [36] investigates OpenOffice.org
and the Finnish public sector as an adopter of FLOSS from the points of view
of developer motivation, the users, and leadership. Again, in comparison to
the work here, Freeman has an observer’s view. Additionally, the focus is
on the people and community-adopter interaction on a single case while this
thesis takes a more of a holistic view.

Case II: Open Learning Environments

Case II looks into incorporating collaborative aspects to education and how
open development can be taught in an environment where learners work
together in a social and learner-centric setting that resembles a real world
context. The work relates to open learning ecosystems [6] and utilizing games
in education [52] that are both gaining more ground in education. Initiatives
like Teaching Open Source [26] and Free Knowledge Institute [25] further
illustrate this trend.

Pedagogical principles and their relation to development of collaborative
virtual environments is one key aspect of open learning environments and
their role as a community of practice [88]. While not directly tied to the
work here, the pedagogical principles have bearing with the case and prin-
ciples such as "facilitating knowledge building” and "providing support for
community building” were regarded in the work. The thesis is further related
to massive open online courses (MOOC) as they convey the idea of a course
provided online with an open access to learners. The environment used as
the case context for KommGame in Case II does follow a lot of the same
principles as MOOC platforms [65].

Borrowing practices from open development, mainly FLOSS, has been
tried out in education. An open source ecosystem can be used in teaching
software engineering in general as suggested in [97]. In [68] a hybrid approach
blending open source community principles with education was used. The
approach shares similarities with the ideas behind the FLOSS game environ-
ment in Case II.

In papers [39] and [64] the authors report cases of teaching open develop-
ment through FLOSS. The courses require participation in, and contribution
to a Free/Libre/Open Source Software project. Similarly, large companies
have organized coding events such as the Google Summer of Code? since 2005
to promote open source development to students and to provide them with
an opportunity to work on things related to their studies while engaging them
in real-life software development. A similar approach is the Apache Software

“https://developers.google.com/open-source/soc/

14

Foundation’s (ASF) Mentor Programme!® where ASF projects provide men-
tors for project newcomers with the aim to allow mentees to learn how to
work and make valuable contributions to Apache projects. The difference to
the work done for this thesis is that here a learning community is established
to support learning of the key issues instead of utilizing an existing, working
product project.

From the collaboration viewpoint, the authors in [102] present how re-
quirements analysis is taught by using collaborative students teams and stu-
dents themselves playing also the part of the client. Collaborative develop-
ment, and getting to know distributed, collaborative working environments,
is in focus in [29] where student teams work on software development each
assuming a role in the project. Also in [9] a multidisciplinary distributed
collaborative environment is presented. The authors discuss using a process
which makes students face real world issues and combines different disciplines
that together are needed in a completed software product. Teaching aspects
of collaborative development from a software development point of view are
also in focus in [45]. The paper discusses characteristics of effective collabo-
rative learning and shares similarities with this thesis in using a collaborative
tool. The tool here, however, addresses all aspects of open development.

One essential element of Case IT is use of reputation systems [86] as part of
the community. In [98,101] Temperini and Sterbini present a reputation tool
for e-learning called SOCIALX, aiming to increase motivation, collaboration,
sharing, and critical thinking and to this way meet the learning objectives
better much like in Case II in this thesis. The authors do not aim at forming
a functioning learning community but the paper shows use of reputation in
an online environment paving ground for its use as a learning community tool
as well. Cruz et al. [18] discuss the use of reputation system in Communities
of Practice [59]. The goal is the same as in Case II: to promote trust among
participants, and thus encourage participation.

Ohttp://community.apache.org/mentoringprogramme . html

15

16

Chapter 3

Research Approach

Developing artifacts in a group, team, or community of people as a discipline,
software engineering (SE) being one, encompasses not only technological but
social aspects as well [23]. Furthermore, development communities such as
Free/Libre/Open Source Software development form their own type of social
and communication structures [16,74]. Hence research of such disciplines is
often conducted within actual, largely industrial settings. This further makes
research a collaboration of the researchers and the practitioners. Methodolo-
gies used must hence be suitable for studying current phenomena within
their natural context. Such approaches include case studies [89] and action
research [19], which further emphasizes the need to address actual organiza-
tional needs while acquiring scientific knowledge as well. In the following sec-
tions, this chapter gives the theoretical foundations of the research approach
adopted in the work this thesis presents. It gives the research questions to
which the thesis answers. In addition, it is discussed how the research was
conducted. The following also describes the research method used in connec-
tion with the research.

3.1 Research Questions

The research presented in the thesis focuses on investigating open develop-
ment in two types of settings: Free/Libre/Open Source Software and open ed-
ucation. The work examines establishing and growing an open development
community in both settings as well as connecting the two. While establishing
an open development setting is straightforward, getting people excited and
to participate is not. This research aims to answer what open development
essentially requires, in order to be able to draw people to participate and to
grow the community:.

17

The research questions the work aims to answer are:

Q1: What aspects of open development are essential in supporting both
the growth of open development communities and their participants’ collab-
oration?

Q2: What kind of activities are needed to ensure and support community
growth?

Q3: How can collaboration be learned through participation in a open
development community?

The research method used to approach the questions followed the collab-
orative practice research approach. The approach was chosen as it allowed
the combination of addressing practitioners’ needs with the additional goal
of contributing new knowledge by deriving answers to the research questions.
The methodological approach was especially suitable as it allowed the possi-
bility to create three types of complementary knowledge.

3.2 Collaborative Practice Research

Collaborative practice research (CPR) [66] is an approach that combines ac-
tion research, conventional practice studies, and empirical experiments. Es-
tablishing well functioning relations between research and practice is its main
focus. The action research method gives direct access to practice. Experi-
ments similarly provide access to practice in a way at least partly controlled
by the researcher. On the other hand, practice studies, such as case and field
studies, come without direct involvement of the researcher in the studied
practices but with a focus on understanding them. Collaborative practice
research combines these so that the research is organized as an action re-
search effort but is complemented with experiments and practice studies for
providing support for more rigorous research results.

Action Research

Action research [3] is most commonly referred as a method that:

“aims to contribute both to the practical concerns of people in
an immediate problematic situation and to the goals of social
science by joint collaboration within mutually acceptable ethical
framework.” [84]

as defined by Rapoport.
Action research is viewed as a cyclical process, a five stage cycle defined
by Susman and Evered [100]. Figure 3.1 shows the five phases which are:

18

1) diagnosing, 2) action planning, 3) action taking, 4) evaluating, and 5)
specifying learning. The diagnosing phase where the problem is defined is
the starting point for the iterations and findings of each iteration act as input
for the problem diagnosis in the next cycle.

DIAGNOSING

SPECIFYING
LEARNING | 4)
ACTION
PLANNING

EVALUATING

ACTION
TAKING

Figure 3.1: Action Research Cyclical Process

Case Study Research

A case study is a method that studies phenomena in their real life context
rather than in isolation [114]. In case studies, boundaries between the stud-
ied phenomenon and its context are not clearly separable, and case study
research utilizes multiple sources of evidence. Software engineering is one
field of research where the questions this thesis aims to answer are such that
case study research is a plausible research method option [89]. Software
development is a multidiciplinary field and the studied artefact and its en-
vironment cannot be clearly separated when studying software engineering
activities.

Case study research contains five major steps: 1) defining objectives, 2)
defining data collection procedures, 3) data collection, 4) analysing the data,
and 5) reporting.

19

Empirical Experiments

In a controlled experiment some testable hypothesis is studied by manip-
ulating one or more independent variables in order to measure their effect
on one or more dependent variables [23]. For example, in software engi-
neering experiments include practitioners performing some task or duty. In
software engineering research a controlled experiment is normally either a
randomized experiment, where a random process is used in deciding between
alternative paths, or a quasi-experiment, where randomization of conditions
is not used [96]. In controlled experiments software engineering practition-
ers or teams perform one or more engineering tasks with the objective of
comparing different processes, methods, or techniques.

3.3 Research Method

The research method used in this dissertation work falls under collabora-
tive practice research as research was conducted in close collaboration with
practitioners — the open source businesses, and software engineering students
and teachers. While action research is in direct connection with practice the
research process can be difficult to control when making improvements to
practice is the primary goal. Therefore, this work utilizes experiments [55]
and case studies [89] to conduct the research within the action research iter-
ations.

The method was chosen for two reasons. First, it provides an ideal set-
ting to conduct research activities in project-bound work contexts. It enables
working collaboration with the practitioners and fulfilling research interests
while contributing to the practical concerns of the project partners. Secondly,
through the specified learnings and problem diagnosis in the iterations, find-
ings toward the thesis aim of identifying the essential properties for growth
could be made.

The dual imperative of action research [67] involves both problem solving
and research interests into the aims of research. The knowledge, depicted in
Figure 3.2, these aim to create is three-fold: 1) to develop understanding of
the systems engaged in, 2) to build new knowledge to support practice, and
3) to improve practice.

These three goals are distinct and do not need to be targeted simulta-
neously. However, as Figure 3.2 suggests, the different research activities
complement and support each other within the iterative cycle of action re-
search.

In the publications included in the Case I of this thesis, Publication [III]

20

Improve
publications Il, IV

Support Understand
publications lll, VI publications I, V

Figure 3.2: Different Knowledge and Types of Research Activities

aims to support practice, Publication [II] focuses on a method to improve
practice and Publication [I] draws these together with understanding of the
FLOSS ecosystem, the supporting publication [53] extending the work fur-
ther with a business perspective. For Case II, Publication [V] makes inter-
pretations and collects understanding on open innovation practice, Publica-
tion [VI] falls into the category 2: building new knowledge on adoption of
community practices, and, finally, Publication [IV] leans toward improvement
of practices. However, the second case is clearly more constructive in nature.
Figure 3.2 further represents the three different types of research activ-
ities knowledge can be gathered with. As pointed out, action research is
an iterative process where each cycle acts as the initiator and input for the
next one; here the cyclical process defined by Susman and Evered [100] (see
Figure 3.1) is used as the frame of the research work. The two cases of
open development communities studied in the scope of this work both went
through three iterations. Tables 3.1 and 3.2 summarize the iterations. The
iterations for both cases are discussed in more detail in the following.

3.3.1 Case I: FLOSS Software Development

Case I focused on studying FLOSS development (see Section 5.1) within an
industrial setting. In initiating the case, the problem definition was how to
establish a development community for a previously in-house product. An

21

action to identify the possible issues and hindrances in practice was planned.
The project developed a way to approach this problem concretely — a frame-
work to run through as a checklist called the R3 framework [III]. The flow
of the research activities from iteration to iteration are presented in Table

3.1.

Initiating 1st Iteration 2nd Iteration | 3rd Iteration | Closing
Problem How to establish | Evaluate the Monitor the How to
diagnosis a FLOSS readiness progress of a grow an
community to release community ecosystem
Planned Identify needs Implement a Measure Draw best
action for improvement | checklist for activity and practices
in practice essential participation together
elements in community
Action R3 framework Applying R3 Establishing Applying
in practice BULB OSCOMM
in industrial framework
setting in practice
Exit Action part
closed
Evaluate Bottlenecks Complete
experiences identified framework
What next? is needed
Specified R3 helps BULB gives Required Results
learning making valuable, elements to Q1
preparations for | up-to-date clarified and and Q2
software release | information documented

Table 3.1: Case I: Action Research Performed

1st Iteration

The first iteration worked on evaluation of the readiness to start growing a
community. As the planned action, a checklist to go through the essential
elements of software development through open development was drafted.
The checklist was applied in practice to two industrial cases. Using a case
study was a natural method for this iteration as case studies are conducted
in real-life settings and do not require phenomena to be studied in isolation.
Here the research aimed at providing relevant information to the businesses
with a real-life goal to open their source code.

The cases showed that the designed evaluation process sheds light on
possible matters of improvement and can act as a set of recommendations on
working with the software. The work done within that scope is outside this
thesis. However, the specified learning was that the developed framework
identifies the points that need to be solved before open development, and
further, it raised a question that as development progresses, how can the
community be monitored and supportive actions taken based on current,
prevalent information.

22

2nd Iteration

The problem situation was that business decisions were made on a scarce set
of data in companies basing their business on open development. Further-
more, not a lot of information on how the community was doing got collected.
In the second iteration, an action to measure the participation and the ac-
tivity of the community continuously was taken. A method to follow several
data sources in a continuous yet simple way was developed and established
in an industrial case. Again, a case study was a suitable research approach
as it allows the community to be studied in its own context.

The second iteration showed that measuring the community gave valuable
information through which the progress of the community could be moni-
tored. It became apparent during the iteration that different stages of grow-
ing a community should not be considered as separate issues but a complete
framework is needed instead. In addition, an open development community
is not an island, and a wider ecosystem scope should be chosen.

3rd Iteration

As the research entered its third iteration the problem was formulated as
growing a software ecosystem for a software product. The action planned was
to draw together the best practices from the earlier iterations. A framework
for growing an open software development community with an ecosystem
scope in mind was established and applied in practice in an industrial case.

The third iteration closed the action part. It clarified and documented all
the required elements and provided further support in the form of a complete
industrial case. From the point of view of this thesis and its research questions
answers to questions one (Q1) and two (Q2) were gained.

3.3.2 Case II: Open Learning Environments

The initial problem of the open learning environment case was specified as
how to incorporate collaboration into learning and through that enable stu-
dents to learn aspects of community driven development. A participatory
exercise — a “community game” — where a group of students formed a open
development community within a classroom setting was devised [VI]. The
flow of the research activities from iteration to iteration for Case II is pre-
sented in Table 3.2.

23

1st Iteration

The first iteration of Case II aimed at assessing how working in collabora-
tion as a community is usable as a tool for learning. The action taken was
to run a controlled experiment of a self-organizing developer community of
software engineering students within a computer classroom. The students of
an elective seminar course acted as the developers.

The experiment gave initial results to indicate that students can learn
community driven development by doing and working together over an ex-
ercise such as the experiment. There were also indications that there was
little need for strict boundaries and outside direction. However, it became
apparent that the short timeframe and limitation of the classroom was not
sufficient. While the scope of the experiment was specifically open develop-
ment and communities, the question rose if skills similar to these were applied
elsewhere.

2nd Iteration

In the second iteration a local open innovation platform which works through
self-organizing developer teams of students was investigated as a case. In
the study similarities between the working processes of the innovative teams
and open development were found in motivation, collaboration, and legal
concerns.

The two first iterations specified communities as a learning tool and the
skills applicable outside the scope of the learning community. As the fol-

Initiating 1st Iteration 2nd Iteration 3rd Iteration Closing
Problem Collaboration Assess Skills applied How to grow
diagnosis and community | community in a different a learning
in learning as learning tool setting community
Planned Participatory Self-organization Identify common | Teaching
action exercise for in an in-class practices to collaborative
learners community open innovation development
development
Action The community | Monitoring Monitoring Introducing
game students work open innovation KommGame
together student teams
Exit Action part
closed
Evaluate Community Collaborative Platform and
experiences approach needs methods policies
wider frame in use support
Specified Self-organization, | Community Learning Results
learning learning through | skills utilized through to Q1,
community and in various participation Q2 and Q3.
collaboration settings & communities.

Table 3.2:

Case II: Action Research Performed

24

lowup into the third iteration, growing a wider learning community with
motivational aspects as well as collaboration support was planned.

3rd Iteration

The third iteration set out to find ways to support the growth of a learning
community. This was done as an experimental case study where an online
environment was used as a learning environment as well as a development
community for educational content. The learning environment included mo-
tivational aspects as well as tools for supporting collaboration.

The third iteration closed the action part of the second case. It drew
together parts of the research and supported the idea of a learning community
as a learning platform. The results address all three research questions of
this thesis.

3.3.3 Limitations

The research method itself renders the research with a number of limitations.
When a researcher works in collaboration with the practitioners there is the
risk of researcher bias, lending way to a threat to the internal validity of the
results. In order to mitigate this risk and to ensure validity of the results,
the findings of the research have been reviewed and discussed frequently with
the practitioners. They represent, however, only a small sample of the group
— a single representative or small team of practitioners was involved in the
research. This can, in part, narrow the scope. However, there were several
companies involved in the study of Case I and there were three different types
of student groups and learning situations in Case II, which both widen the
scope and bring further rigor. In Case II qualitative research methods would
have been beneficial to gather more in-depth results on the participant’s
behavior especially in the first iteration of the case.

The most significant threat to external validity is that open development
communities are established in rather case specific environments and thus
some things may be unique to a particular working environment or purpose.
This risk is mitigated by investigating the different aspects through separate
cases and combining the findings under a common framework. Replication of
some of the results is, furthermore, impossible with the exact same param-
eters and conditions as a software can only be released once. The results of
Case II are more generalizable in this respect.

For the open learning environment case, Case I, there is the limitation of
the iterations all being a single case or experiment. Having several cases or
more iterations of the experiment could in part have brought to light things

25

not commonplace to the practitioners involved here and thus improved the
external validity. The third iteration did, however, include aspects investi-
gated in the first iteration.

The work covers two different types of open development communities.
The work here relates to the company core scope of business based commu-
nities and, on the other hand, the developer focus is taken in the second case
with the educational communities. The second iteration of Case II can be
seen as a bridge between the industrial and the educational setting. However,
more work on bridging the two is still needed.

26

Chapter 4

Five Ps Framework

The aim of the thesis is to recognize the aspects needed to be addressed when
establishing and ensuring the future of an open development community.
Characteristics of open development communities range over several dimen-
sions, and have community specific flavors to them. Some of the aspects are,
furthermore, overlapping and interleaving. It may not be possible to sepa-
rate legalities from business goals or to cover the technological infrastructure
apart from the governance issues. While existing literature [33,43,81,99] tries
to address these, they end up with overly detailed and case specific results.
A framework of the essential properties from a broader perspective seems to
be missing. The five Ps framework discussed in this chapter addresses the
need to have an overarching umbrella under which the community specific
traits can be considered. The five Ps is derived based on the two research
cases and the existing background knowledge on open communities and peer-
production.

The different aspects of an open development communities from the view-
point of this thesis are depicted in Figure 4.1. An open development com-
munity is characterized here by five aspects: 1) people, 2) purpose, and 3)
product, the 4) policies that help the community to operate and the soft-
ware 5) platform that provides the means for communication, development
processes, and community group awareness. All aspects are linked to each
other, and thus, are an inseparable part of community. Similarly, each aspect
builds on top of the underlying issue, like peas in a pod. Figure 4.1 shows
them in this order — from the foundation forming platform towards the more
organic and fluctuating issues. The framework is named as the "five Ps” as
an abbreviation of its components. It extends the more general definition
from Chapter 2 with the product.

27

4.1 Product

Open development communities differ from general online communities in
that they do not exist simply for conversing and interacting with likeminded
individuals. While the other aspects discussed in Section 2.1 are common,
open development further aims to create and improve a product or a commod-
ity. The definition of "product” depends on the community. Software [77],
through Free/Libre/Open Source Software, is the most common example
of open development. However, open development is not by far limited to
software. The product can be cinema content [113], an eCorolla electronic
car [24], or anything that has value to and is a shared interest of the people
in the community [4].

Even though the product itself can be viewed as the shared preoccupation
of the community members, it is, in fact, more of an umbrella for a variety of
such concerns. People’s interests often focus on a specific issue or aspect of
the product and its development [43]. Instead of being a single unit, an open
development community has many internal communities, sub-communities if
you will, that each have their own view of the product. Each of these focus on
an integral part of the development of the project. It can be documentation,
user studies, marketing — it depends on the project — but it is that shared
interest that draws participants together with the purpose of developing the
product as a whole as a goal too. Thus the definition of an open development
community should include the product as a separate element.

PEOPLE
PURPOSE

PRODUCT

POLICIES

PLATFORM

Figure 4.1: Open Development Community

28

4.2 Interdependent Elements

There is an interdepedency between each of the elements: one is affected by
the others and none stands alone. Ergo, as the five Ps do not simply build on
top of each other, they need to be viewed through their individual relations.
For example, people and policies are entwined — the policies are molded by
the people and in turn affect people and their participation. Hence, the
framework is shaped through the relationships of its five aspects. This in-
terdependency of the elements is summarized in Table 4.1 and discussed in
more detail in the following.

Effect on | Platform Policies Product People Purpose

Platform | enabling set defines communication | suitability
factor requirements medium requirements

Policies distributed enabling license mold set
work factor contribution requirements

Product mediator for clear community different sub-communities,
artifacts access body interesting further

aspects development

People creativity, enabling draws community draws
productivity, participation | together body to join
communication

Purpose inline roadmap shared mold community
with body

Table 4.1: Interdependency of Elements

The platform and the policies function as the enabling factors of the
community [72]. The platform lays the ground for the entire community. It
provides not only a communication medium but is also a mediator of devel-
opment artifacts. As it acts as an easy access to the product’s work items
and the platform is a critical supporting and enabling element in distributed
work in open development. The policies direct and support the community.
Distributed work needs the social and legal conventions the policies provide,
not only to give clear access to the work items but also to setup reward-
ing policies for sharing that in turn enables participation. The people, the
shared purpose, and the product form the body of the community. Figure
4.2 illustrates the five Ps through their respective connections.

Purpose is tied to the product. The community has a shared purpose:
to develop the product, but while developing the product is the goal of the
community, the purpose on its own has a focus on the product and the
roadmap ahead to develop it further. Growing communities have a tendency
to organize themselves into an aggregate of smaller sub-projects and the
community ends up with multiple centers [43, 48] forming an ecosystem. As
large communities divide into sub-communities, each has a purpose of their
own within the community. Furthermore, the purpose draws people into the

29

/

y

; \

'PEOPLE PRODUCT

Figure 4.2: Five Ps Model

community. Even if they are enthusiastic about the product, if people don’t
agree with the purpose of the community, it is unlikely they wish to join
and participate. The purpose also affects people’s interactions [106] — we are
more likely to interact with likeminded individuals.

As the product and purpose are connected, the product is further linked
to the people in the community as the product or an aspect of it is an interest
shared by the people in the community. The product and improving it are
also one of the reasons behind people’s participation. Different people focus
on different things in the product. As Linus Torvalds, paraphrased by E.S.
Raymond [85], states, the person who first finds the problem is not usually
the same person who later understands or fixes the problem. The product
impacts the policies as well through product specific needs such as licensing
issues or methods of contributing.

The biggest single determinant of the platform is the product as the
software systems need to be suitable for the development of the product.
However, the platform needs to be a good fit for the people as well as it
supports creativity and improves productivity [81]. People’s communication
needs and tastes also affect what kind of a platform is needed and chosen.
The platform needs to be suitable from the viewpoint of the purpose as well:
a software business targeted community may require a different platform than
a community with a pedagogical purpose or one developing art content.

The policies are community specific but in general include issues such

30

as joining the community or accepted conduct between members. The poli-
cies have an influence on the people and who will join the community along
the product and the purpose [81]. People’s activities in turn affect the poli-
cies. The governance of a community may further evolve over time as the
community grows and sub-communities emerge.

31

32

Chapter 5

Open Development
Communities

Open sharing of software code is an idea that originates from the 1960s.
The idea was driven by the scarcity of available computers in research labs
such as the Artificial Intelligence Laboratory at Massachusetts Institute of
Technology [85]. With the Internet, sharing code with others world wide
became possible. Today online forges host tens of thousands of open source
projects!, and open source has witnessed an exponential growth in the num-
ber of projects [21]. The concept of commons based peer production [4]
has further extended the idea of open community driven development from
software to other fields as well. Open resources like the online dictionary
Wikipedia? or the video sharing platform YouTube® are examples of the
trend of open participation and content peer production.

The following Sections present two research cases on open development
communities. The five Ps framework is instantiated in both to establish
open development in two different contexts. While Free/Libre/Open Source
Software is the best known example, and Case I here, the thesis takes a more
general view of open development communities as communities of practice.
The five Ps framework is used to show they share properties regarless of the
specific domain of the community, while the individual details are community
and domain specific. The social aspect of learning further ties the cases
together.

http://www.ohloh.net
’https://en.wikipedia.org/wiki/Main_Page
Shttp://www.youtube.com/

33

5.1 Case I: Free/Libre/Open Source Software
Development

Free/Libre/Open Source Software (FLOSS) is a piece of software for which
the source code, documentation, bug lists, and other artifacts related to the
software product are available, and which gives users the right to use, modify,
and redistribute the software. In addition Free/Libre/Open Source Software
is a development method with a collection of processes and tools that allow
a wide variety of users and developers to contribute to the development of
the software product.

There are several terms used when talking about FLOSS, open source,
and FLOSS development, each taking a slightly different stance, and putting
emphasis on different aspects. It is thus worth to note that "open source” as
a term can have several meanings depending on the context [37]. Free/Libre
Software relates to the end user’s freedom to use, study, share, and modify
the software, and is more of a social movement or a political stance [35]. The
term Open Source Software in turn covers the development methodology and
business model approach on top of the availability of source code [77]. The
thesis follows this Open Source Initiative’s (OSI) definition as it incorpo-
rates the software artefact, the development process, and business aspects,
in addition to the licensing details. Still, the term Free/Libre/Open Source
Software is used here as it covers both aspects, and in addition comes without
bias towards either approach or political viewpoint [31, p. 89]. Nonetheless,
within the scope of this thesis, the term FLOSS is interchangeable with open
source software (OSS).

5.1.1 Free/Libre/Open Source Software

Free/Libre/Open Source Software builds on the general idea of open and
available source code and, furthermore, reaches beyond it by being both a
software development method and a software business model. It is further
defined by the license used to grant users and developers additional rights to
the code. FLOSS can be freely used, studied, and modified. Free software is
not necessarily cost free as such and thus free does not relate to monetary cost
but to freedom or liberty (libre instead of gratis). Copying and redistribution
is allowed as well but can be restricted by the license as it may require a need
to grant the same rights to the modified versions as well.

The first definition of free software was formulated by Richard Stallman
in 1986. In it free software is defined as any piece of software that grants
anyone with a copy the freedom to run, study, redistribute or improve it.

34

That is, these are the four freedoms [40] of FLOSS, which are indexed
from zero as a geek homage to zero-based numbering often used in computer
systems.

0. The freedom to run the program for any purpose.

1. The freedom to study how the program works, and change it to make
it do what you wish.

2. The freedom to redistribute copies so you can help your neighbor.

3. The freedom to improve the program, and release your improvements
(and modified versions in general) to the public, so that the whole
community benefits.

Open Source Software Communities

At the heart of FLOSS is the developer community — a social ecosystem on
its own. The structure of the community is often depicted with a layered
onion model [74] where the users of the software form the outmost layer and
the most prominent developers and the leader of the project are at the core.
The model is a generic representation and the amount of different layers may
vary from project to project [I].

Project
leader

Core developers

Active developers

Peripheral developers

Bug fixers

Bug reporters

Readers

Figure 5.1: Onion Model of Open Source Communities
Taking an ecosystem view on the topic, the key characteristics of a soft-

ware ecosystem vary depending on the viewpoint. From the engineering per-
spective, a software ecosystem provides the technology for implementation,

35

environment for the overall software project infrastructure, and a develop-
ment methodology that is aligned with the goals of the ecosystem. Addi-
tionally for the ecosystem to foster, social, legal, and business aspects must
also be considered along the technological. Consequently, the ecosystem can
be viewed as a business and governance model with marketing as one of the
strategic advantages.

FLOSS presents solutions for each of the aspects needed in a growing,
sustainable ecosystem. While commonly addressed with a single term ’open
source’, the set of principles, practices, culture, and licenses of FLOSS com-
munities differ from each other in various ways and bring diversity into the
ecosystem [85]. For example, some communities are geared towards the busi-
ness environment and companies, and make long-term plans, whereas there
are communities that focus on individual contributors’ innovative ideas to
make the community succeed. Furthermore, the license plays a major role as
some open source licenses are permissive* [87] and as such introduce only mild
obligations and constraints to the user/modifier or the redistribution of the
product. In contrast the so called strong copyleft licenses require any derived
work to contain the same rights. Nonetheless, the generally common aspects
of FLOSS include the transparency of development and the freedom to build
more complex systems out of readily available building blocks. These in turn
provide the means to grow an ecosystem around such pieces of software and
also have an ecosystem that benefits from the members’ open contributions.

Stakeholders

The onion community model for FLOSS focuses on the developer community
alone. However, FLOSS — especially industrial FLOSS — forms an ecosystem
involving many stakeholders that have their own objectives and whose in-
terests may be in conflict with each other. Business and industrial partners
and other similar interest groups are key participants in the ecosystem and
have influence on the community while they are not a part of the core model.
Similarly taking different viewpoints offers divergent looks on the community
as one community can contain underlying sub-projects.

The different stakeholders, including the end users of the software prod-
uct, are the people element in FLOSS development communities. The three
main groups are the publisher, the industrial partners, and existing open
source communities and other individuals [I,53] as shown in Figure 5.2.

Several factors like familiarity with the project, objectives, and availabil-
ity of skilled resources affect the position of each of three groups of stakehold-

4http://en.wikipedia.org/wiki/Permissive_free_software_licence

36

Developers &

Observers N e T
Industrial " _."' ."-._
Partners . . b

. ' '
J 2 1 Core . .
\ .

Open Source Communities &
individuals

:

Publishing entity
(software,
infrastructure,
legality, process)

; Dl‘-elopersfi

Figure 5.2: FLOSS Stakeholders [I1I]

ers in the community whether within the onion or outside its scope. Com-
pared to the other two groups, the publishing entity is most familiar with
the software product and commonly most willing to invest in the process of
fostering the community. Thus, an active role is essential for this stakeholder
throughout the development lifecycle. It is the task of the publishing entity
to make decisions on the proper project platform and infrastructure and set
initial policies such as the open source software license. Additionally, deci-
sions where both the software and the social ecosystem have influence, need
to be made on the role and type of the developer community. As a com-
munity policy, platform, and purpose element the publishing entity needs
to evaluate which of the alternatives, company-based, volunteer, or mixed
type [70] of community, would best suit the project and the ecosystem it will
live in. In addition, attention needs to be paid to the governance model and
the dynamics of the onion model structure (closed or gated). As a policy the
selection of such a fundamental governance structure affects the entire com-
munity as it has impact on motivation and participation [93]. The publisher
also has the means to allocate the community of skilled developers to lead
the development and to interact with the rest of the community.

When talking about industrial FLOSS, an ecosystem scope reaches be-
yond the core community. It brings both enthusiastic and conservative part-
ners into the community scope, and has influence on the place of the com-
munity in the ecosystem. Enthusiastic partners invest in the success of the

37

community, and thus usually participate with developers. They contribute
to the development of the software and stay close to its evolution, so the
community gets developers that are closer to the core team and might have
key roles. The conservative partners in turn are more likely to be just in-
terested in the evolution of the software and the outcome of the community.
Nonetheless, they too may have their dedicated developers in the community:.

The existing open source communities and other individuals are a vital
element in the community growing process. The project coexists with other
development projects as part of the software ecosystem they create. The
individuals may not all be simply keen volunteers but could as well represent
the interests of companies that are not partnering with the publishing entity.
This group also represents the pool of potential contributors who could join
the project if they get interested and motivated.

The individuals participating in the projects in the ecosystem form a
social ecosystem — the developer community. A well-defined developer pro-
motion policy is needed as more people join the project, especially if an open
core structure is chosen. It is possible that individuals joining the commu-
nity do not have any earlier experience with open source projects. In any
case, the newcomers typically join the community as passive users and then
may take key roles as they show commitment and value, thus penetrating
the onion structure inward from outer layers [16]. The community policies
support this migration.

Legalities

Copyright and intellectual property rights issues can be a tricky business.
With development of industrial software through open communities the most
commonly considered element is the legalities. While this is a broad topic and
extends towards legal sciences, legal issues are one key element included in the
policies of FLOSS communities. The license, furthermore, is an inseparable
element of the developed product.

The Free/Libre/Open Source Software license is a permanent policy that
affects the community throughout its life and can have influence on the will-
ingness of developers to participate in the community. Yet, it is a policy
decision often made before the community is even born. The choice of li-
cense affects other developers’ access to the code. At least the type of the
product, compatibility with licenses of related systems, the intended users
and partners, possible need for other open source components, and the de-
sire to provide the possibility of derived projects should be considered. Then,
finally, matters of personal taste influence the selection of license.

38

5.1.2 Helping Open Source Communities Grow

The three-phased process of growing viable FLOSS ecosystems, the OS-
COMM framework, was initially published in piecemeal fashion in Publi-
cations [II,III] and in [92]. Publication [I] is the first publication where the
framework is published as a complete concept.

The phases in the framework are: evaluating the readiness of the project
for being opened, open source engineering the product based on the findings
of the readiness evaluation, and measuring the ecosystem once the project is
open. The approach addresses all of the elements in the five Ps framework.
This is discussed further in Subsection 5.1.3.

Evaluating the readiness for open development is done to identify possible
bottlenecks both from the product perspective as well as from the business
angle. Making decisions on open development, its goals, and improving the
product together with defining the possible business model and goals are all
key actions to make sure the community can flourish. A growing community
needs to be monitored and it is possible that even drastic decisions may also
be needed from the publisher and the core of the community. The OSCOMM
framework does not make decisions, it only provides information to support
decision making.

Product Viewpoint

Figure 5.3 shows the three phases from the product angle. The arrows depict
the flow of the work from phase to phase.

Release Readiness Open Source Community

Rating Engineering Watchdog

Phase | Phase II Phase IlI
» Checklist * Bottlenecks resolved * Birth of the community
* Bottlenecks identified * Re-engineering * Community evolution
* Prioritizing * Decision making * Remedial actions
* Action plan prepared * Role of existing * Data analysis and
communities statistics

Figure 5.3: OSCOMM Framework

The OSCOMM supports the process of establishing an open development

39

community for industrial software regarding the five different elements in
what is called on the lines of Eric S. Raymond [85] the "pre-bazaar” phase
and in the bazaar — in the open development environment.

FEvaluating the release readiness: Regardless of whether the product has
been on the market as proprietary or not, it needs to be prepared for the
open source ecosystem as it will need to be approachable to people not nec-
essarily formerly familiar with it. The idea is to make an evaluation of the
intended community from the viewpoint of the five elements. In this R3
framework [III] the product — the software itself — is evaluated based on its
quality attributes, the architecture and source code, as any FLOSS project
fundamentally deals with source code. Policies such as coding conventions
are needed. The released system should have some practical importance and
relevance to outside developers — participation is fueled by versatile factors.
Thus, the purpose of the community needs to be given careful thought be-
yond the business goal, more as a mission statement and a roadmap. This
phase should also figure out who are the people. The evaluation focuses on
the potential user community and the possible partners that can form the
ecosystem. Further assessment is done for the legalities and the core of the
new community — the releasing authority and the code developers. The eval-
uation yields information that can be used to prepare for open development
in the next phase.

Open source engineering: Phase I renders a set of recommendations based
on which the software under evaluation and its development environment
then goes through a so-called open source engineering process [92] — the
Phase II. The process focuses on eliminating the problems and shortcomings
that were identified in the evaluation making sure the achievability of a viable
community for open development is rooted from the start. The open source
engineering process itself is driven by the same elements as open development
in general. The conceptual framework for this phase is not the work of the
candidate and is thus left outside the thesis.

The community watchdog: The core of the community needs to support
and follow the daily ongoing activities of the open development community.
Additionally, having up-to-date information often plays a key role in making
business decisions. Instead of relying on simple, single measures such as the
number of downloads or the amount of messages on the community mailing
list that can lead astray, the community watchdog [II] considers a wider set
of data sources. Phase III focuses on gathering and analyzing data from the
both facets of the ecosystem — the software and the social model. There
are three different types of things to assess: the community, the software
and how well the objectives of the releasing authority are met. How the first
two plot out can be seen based on the measures set up for them. The third

40

requires assessment on the measures: Are they moving to the right direction
or are remedial actions required? The community wathdog gives valuable
insight on the evolution of the ecosystem by continuously measuring the key
data points. The data and possible trends in its fluctuation can be used as
indicators for the state of the community.

Business Model

While not all FLOSS projects have business goals, within the scope of this
thesis, industrial FLOSS projects are investigated. This means FLOSS as a
business model needs to be taken into account as well. In [53], Publication [I]
is augmented with the business point of view. Moving the product from
proprietary to the open is a large business decision changing the company’s
entire business and revenue model. Moreover, business reasons are usually
the main motivation for the transition to industrial FLOSS. It is further
worth to note that most pieces of software start as in-house products. While
going open source may be a choice made from the get-go, the same phases
are still applicable and the same issues must be addressed.

Taking a business viewpoint illuminates the purpose elements that act
as the drivers to go for open development. These can be versatile ranging
from increased visibility to a better way to engage in discussion with and get
feedback from the company’s customers. There can be goals of improving
software quality or gaining a wider customer base [43].

Figure 5.4 augments the OSCOMM framework to address planting and
growing a FLOSS developer community from the business perspective. As
with the product, the business aspect is a three-phased process: evaluating
the business readiness, building a business strategy and growing business in
an open source ecosystem [53].

Business readiness: Moving to an open source business model radically
changes how a company makes business. Such actions are rarely taken if
there are no business bottlenecks. Changing the business model is a ma-
jor discontinuity, which naturally introduces risks with it. The motivation for
open development may come from external factors, such as a competitor that
provides similar facilities already as open source, or from internal issues, for
example multi-licensing, where a commercial license offers additional options
for customers. Enabling the participation of developers in the maintenance
of the system without commercial agreements can make the system more
attractive for business and be the driver for open development. At the same
time, some businesses are extremely conservative, which may mean that more
traditional business models are more suitable. Some conservative partners
may not be that familiar with open source and base their decisions on per-

41

Business Readiness Building Business Growing

Evaluation Strategy Business

Phase | Phase Il Phase IlI
* Business bottlenecks * Definition of business « Data analysis and
* Internal factors model statistics
* Action plan prepared * Business goals

Figure 5.4: OSCOMM from Business Perspective

ceptions, even misconceptions, or they can find it intimidating. Additionally,
it may take longer to make business with open source than with proprietary
software, as business comes out of dual-licensing, maintenance services, or
product customization to name a few. Therefore, there is an need for a
action plan to make the transition towards open development.

Building the business strategy: There are numerous subtle details that
provide different ways of making business from a growing open source ecosys-
tem. Therefore, an exact definition of the new business model needs to be
construed. This is something that needs to be done before considering the
open source engineering phase for the product as it may be affected by the
selected open source and business strategies here. In addition, the business
goals of the company will also determine many of the parameters of the com-
munity watchdog — if the business plan is to benefit from the community in
various ways, measuring the sufficienct of community actions is a necessity.
In general in an open source ecosystem, the users are gained first and only
later will they become business customers. Hence, a large mass of users is
commonly needed for a sufficient amount to turn into clients.

Growing the business: With the data from Phase III for the product, the
community watchdog, it is possible to keep track of the community together
with the business trends. Assuming that the parameters that are used to
monitor what is going on in the community have been carefully thought out
and that the business is truly building on community related aspects, the
resulting data — together with the data from business actions — can be used
to characterize the growth of the ecosystem.

42

5.1.3 Discussion

The work supports the five Ps framework as shown in Figure 5.5. The five
Ps framework is further summarized by breaking the elements into more
detailed subsets in Table 5.1. Establishing and growing FLOSS software is
investigated here within an industrial setting. However, many of the issues
apply even if there are no business goals imputed onto open develoment.

Element | FLOSS

Platform software ecosystem environment
technical platform

project infrastructure

Product Free/Libre/Open Source Software
software licence

Purpose business goals
use and improvement
mission statement

People publisher and core developers
industrial partners
OSCOMM other developers
. users
Policies Policies software licence

governance structure
promotion policies
release readiness
coding conventions
community watchdog

DAV [T I Infrastructure
Users

Software

Figure 5.5: Five Ps in Industrial Table 5.1: Summary of Five Ps
FLOSS

Mapping the work onto the FLOSS lifecycle model [10,91] the different
steps fall into the lifecycle neatly. Release and business readiness evaluation
occurs at the end stages of the cathedral phase, when the decision to select an
open development approach is made. Open source engineering and building
the business strategy fall into to the transition phase of the lifecycle. During
that time the software and its environment are improved before the actual
release and a FLOSS based business model is defined. The final phase, phase
III, coincides with the bazaar phase where project evolution is driven by the
open development community and growing business.

The OSCOMM approach provides insight on FLOSS development com-
munities crossing all the essential properties formulated in the five Ps. It
expresses and documents the elements required for establishing and sustain-
ing a FLOSS based ecosystem. The work presented is a product of combining
experiences from several industrial settings and shows what kind of activi-
ties and issues ensure and support growth. The goal is to turn the task of
establishing FLOSS development based ecosystems into an engineering and
business discipline with clear stepping stones and focus.

43

5.2 Case II: Open Learning Evironments

As open development has gained popularity in different fields, it has also
acquired aspects that require sskills and knowledge. Furthermore, the rise of
business ecosystems, especially within the software industry, has emphasized
the need for open innovation settings as ecosystems typically rely on a shared
platform on top of which different parties contribute their own, company-
specific innovations [5]. Initiatives such as MIT’s OpenCourseWare®, the
Open Source Courseware project [1] and openSE® are examples where open
approaches to education can be the root of an ecosystem. This merging
of open development, innovation and education leads not only to ask how
participation in such endeavors could be supported, but also to the question
if collaboration could be taught to interested participants, this way charting
the path to large scale open development communities.

5.2.1 Collaborative Development in Education

Learning is a disciple where the learners themselves have the most active role.
Modern pedagogical learning theories” [104] emphasize the learners central
role in learning — the learner’s activities and motivation, influenced by earlier
knowledge, creates learning. In today’s world, information is abundant and
easy to access. Hase and Kenyon [46] argue that self-determined learning
approaches can best meet the learner’s needs in the modern world. They state
that individuals and organizations are in need of flexibility, creativity, ability
to work together in teams, and to apply skills to different situations and that
flexible, learner-centric environments provide a way to learn and acquire such
skills. Personal learning environments (PLE) are such environments that
put the learner in control. In personal learning environments self-organized
learning is put into actual practice giving the central role to the learner and
thus control over their own learning experience [11].

Learning is furthermore a social activity. Communities of practice (CoP)
[59,60] convey tacit knowledge and learning is partly an outcome of participa-
tion in a community. Similarly, most of the literature on computer-supported
collaborative learning (CSCL) builds on the socio-cultural theory of learn-
ing, such as social constructivism [80, 105] and activity theory [27,105]. Sit-
uated learning theory [14] further gives the learning context more weight
emphasizing the context-dependency of learning. In [94] the author discusses
the shortening lifecycle and the ever growing abundance of knowledge. The

Shttp://ocw.mit.edu/index.htm
Shttp://opense.net/
"http://en.wikipedia.org/wiki/Constructivism_(learning_theory)

44

author proposes a model of learning, connectivism, which emphasizes that
learning and knowledge lie in an abundance options and that learning is a
process of creating networks and connecting information sources. Knowledge
is bound to the activities, context and culture that develop it and where it
is used and hence learning should include all three aspects [7].

In [51] the authors talk about learning environments:

"Learning, we believe, can be best facilitated through the de-
sign and implementation of constructivist tools and learning en-
vironments that foster personal meaning-making and discourse
among communities of learners (socially negotiating meaning)
rather than by instructional interventions that control the se-
quence and content of instruction and that seek to map a partic-
ular model of thinking onto the learners.”

Following that opinion, this thesis includes an approach where students col-
laborate together in different settings to achieve a common goal, thus ad-
dressing the learner-centric and social aspects of learning. Emphasis is put
on working in a community and networking to create, accumulate, and share
knowledge collaboratively. Publications [VI] and [IV] investigate the use of
the open development community approach in education with the aim to
teach both substance as well as the working practices of communities. Fur-
thermore, Publication [IV] considers the importance of the platform and the
policies for communities. Publication [V] investigates the application of skills
that are useful in open development in an alternate setting and finds them
similarly to be an aid in open innovation teams.

Reputation Systems and KommGame Community

Reputation systems are used web wide to measure and quantify individuals’
contribution to online communities of all sorts. One important role of repu-
tation systems, on top of encouraging participation, is to build trust among
community members online where there is limited face-to-face contact [86].
A recent example of social media reputation use is the Finland-based online
sports and activity environment called HeiaHeia® where sport enthusiasts
log their exercises on a daily basis. They can cheer each other’s activities,
comment on them and through this gain achievements and reputation sta-
tus. Similar systems are used throughout the Internet in eCommerce, social
media, and blogs.

The reputation of an entity can be determined with versatile methods:
feedback, points, favorites, voting, and reviews [28]. These can be combined

8http://www.heiaheia.com/

45

into more complex methods. One such is karma where participation and
quality of contribution are combined and weighted to give a participating
entity points or marks. The characteristics and arithmetic aspects of forming
the karma are presented in [107] and vary depending on community and goals.

KommGame [41] is an environment mimicking a FLOSS community for
a learner community to participate in. It has evolved from a student-centric
classroom exercise [VI] into a computer-mediated learning environment [IV].
It is a concrete instance of an open development learning community that
addresses the five Ps framework (see Figure 5.6 and Subection 5.2.2).

As one of its community policies, KommGame utilizes the karma model
to support participant collaboration and to act as a motivation for further
participation. The karma is accumulated both from online activities in the
community (participatory contribution) and other participants’ expressed ac-
ceptance of the contributions (quality) based on equation 5.1.

n

Karma = Z (fx(Contribution)

k= 5.1
+ f(Favorites) (5:1)

+ g(WeeklyQuality Tokens))

The weight function for each is chosen based on the importance and priority
of the contribution to the community.

The KommGame environment embodies the required elements of an open
development community in addition to the motivation and trust building
policy of the reputation system. The platform follows the traditional open
development community structure with FLOSS development emphasis [41].
As the environment is an e-learning platform, the developed product is learn-
ing content such as essays and info pages in wiki format. In addition there
are community activities teaching the day-to-day practices and activities of
open development. KommGame is an approach to answer to the real life
ecosystem need of skilled professionals.

5.2.2 Discussion

In [6] the authors start with the claim that well-educated workforce is pivotal
to an ecosystem. They go further to state that ecosystems must also support
continuous learning and creation of new ideas and skills. Then, the authors
launch the idea of demand-pull approach to learning where students gain
an access to learning communities built around practice. The open learning
environment case follows this idea.

46

/’\
) 9
Learning

Skills
/ \

Element | Education
Platform | KommGame open
platform
Product educational content
Reputation skills
4 Self-organization \ knowledge
y \ Purpose learning
£ \ skills
// \ People learners
y .) educators
Learners . AF ducational Policies reputation systems
Educators content self-organization

Figure 5.6: Five Ps in Open Learning Table 5.2: Summary of
Open Learning Communi-
ties

By mimicking real-world situations and problems, the KommGame acts
as a situated learning platform. Similarly, as the open innovation environ-
ment gets the projects from the industry, they have real-world meaning.
As an online distance learning setting the KommGame further fulfills the
requirements presented in [51] for a constructive learning environment: con-
text, construction of knowledge, collaboration, and conversation. There are
real world features included. Knowledge is created through the participants’
experiences within the context. The learners — the participants — collabo-
rate and discuss the problems they have encountered, and further engage in
conversation with each other.

Table 5.2 has the five elements of the five Ps framework further summa-
rized through their individual aspects. From the learning perspective the
product depends on the intended learning outcome. It can be text content,
participation, or contribution of artifacts, software code for example. The
knowledge the learners gain is one of the products of such an environment
and developed by each learner through their own individual process. As a
specific policy, the role of the karma model is to support collaboration and
learning by motivating and rewarding. In open approaches where the learners
act out of their own interest, self-organization and allowing it is an important
factor.

47

5.3 Drawing Cases Together

Case I and Case II approach open development from two different view-
points and in two separate settings. At first glance, they have distinct views
on open development and its elements. However, FLOSS itself can be viewed
as a community of practice. Furthermore, open education communities use
development processes similar to FLOSS in order to produce learning con-
tent. As open environments flourish they offer a platform for open innovation
ecosystems where business and educational objectives can meet and work to-
gether for the benefit of both.

Open Innovation Environments

The innovation of the future businesses relies heavily on the local schools and
universities teaching the future practitioners. This emphasizes the need for
early and wide collaboration between industry, teaching and research staff in
educational institutes, and students. Open innovation, however, comes with
a number of challenges such as motivation, integration, and exploitation of
innovation [111] putting open innovation in a need of a governance frame-
work [30] that enables organizational alignment of the different partners,
proper handling of intellectual property rights issues, and the emergence of
new kinds of business opportunities. These challenges have to be taken into
account when building any open innovation platform with the goal of driving
future development and solutions.

Publication [V] discusses the required practices and principles of open
innovation in a local open innovation ecosystem New Factory” and its inno-
vation platform Demola!®. One of the aims of the platform is a multidisci-
plinary and agile innovation environment where innovation can flow freely
and which is not restricted to any artificial process or framework that must
be obeyed in order to benefit from it. Demola incorporates elements from
the approaches applied in the two cases: it is both a learning environment
and a facilitator to development of proof of concept-like products that have
industrial relevance, and can act as a stepping stone for new business op-
portunities for the participants. Table 5.3 shows the elements specific to
the Demola case. Publication [V] focuses on policies, but the other open
development elements of Demola are included for a complete general view.

As one of its policies Demola emphasizes co-creation and relies on self-
motivated participants in the development of innovative products and demos.
The project ideas come from the local industry and public organizations and

“http://newfactory.fi/
Onttp://tampere.demola.fi/

48

Element | Education

Platform | Demola platform

Product | innovation project results:
demos and

proofs of concept

Purpose | open innovation

emerging business

People academia
industrial partners
Policies co-creation
IPR

Table 5.3: Summary of Demola specific aspects

thus have practical, factual business importance. Both the industrial and
the academic partners participate in the ecosystem and provide guidance to
the participants. The interaction of the different participants is shown in
Figure 5.7. In addition to producing innovation demos, Demola supports
the emergence of new business ideas. Immaterial rights are a part of any
such environment and Demola offers an approach that respects the authors
without hindering commercializing the results at the same time. As a working
platform Demola offers workspaces for the participant teams.

PROJECT
PARTNERS

DEMOLA
OPERATOR

Figure 5.7: Demola Partners

49

The Demola approach addresses the five key elements for open devel-
opment further bridging between open education and open software devel-
opment towards a joint open ecosystem. From a learning perspective the
two environments complement each other. The KommGame is a computer-
supported collaborative learning environment while in Demola the students
work with real life projects in a real life setting. As the project topics come
from the local industry the business environment aspects become important.
The role of Demola in this work is to show that parallels are visible in such en-
vironments with heavy business focus and open development, which supports
the notion that open development skills are applicable in different settings.

50

Chapter 6

Conclusions

The open development model has risen to the forefront in many contemporary
fields. At the same time ecosystems have become a way for companies and
individuals to cooperate through a shared platform. This leads one to ask
what is needed to make open development successful and how to best foster
an open development community.

This doctoral thesis answers the questions through looking at the chal-
lenges of open development through the properties of open development com-
munities that need to be addressed to make them succeed. How to support
growth and how people can be given the required skills to work in open devel-
opment communities through situated learning are also discussed here. The
thesis offers as a concrete contribution a framework of open development com-
munities that addresses their essential aspects drawn from the two research
cases. In addition, it presents a set of guidelines for establishing and grow-
ing an open development community in an industrial FLOSS context, and
an approach to teach learners open development with an open educational
development environment.

6.1 Summary

Establishing an open development setting is straightforward, but bringing
participants to join and get enthusiastic about the product is not. This thesis
presents work on establishing and monitoring an open development commu-
nity through Free/Libre/Open Source Software business and open education.
Parallels between the two are also presented. The research covers going ahead
with open development within the FLOSS ecosystem and open development
as an learning environment offering insight on how developers can learn open
development methods in an environment with real-world context. This thesis

o1

Purpose Product

I. Software business I. FLOSS Software
II. Learning and skills IT. Educational content
People Policies

I. OSCOMM F k
I. Developers and users FAHIEWOT

II. Reputation,

II. Learners and educators ..
self-organization

Platform

I. FLOSS Ecosystem

II. KommGame, Demola

Table 6.1: Contribution of the Thesis

answers the question: what open development essentially requires in order
to grow and to be able to draw people to participate.

This thesis comprises six publications. The candidate’s contribution to
each of the publications is defined separately in the beginning of the thesis
on page xiii. Next, a summary of the individual publications is given with
the division of the contributions of the research in them.

The publications included dicuss the different aspects of an open devel-
opment community along with growing and supporting them. Their contri-
butions can be mapped onto the five Ps model given in Section 2.1 as shown
in Figures 5.5 and 5.6 and summarized in Table 6.1. The thesis covers all
the specific aspects from the point of view of the two cases.

Firstly, Publication [I], reports on the problem of establishing and grow-
ing open source development communities for formerly closed industrial soft-
ware. The publication draws together several earlier results and presents the
OSCOMM framework for moving software from proprietary to open source
development. The publication gives insight on the entire frame of establish-
ing open development. Its main focus is on the software product and the
policies needed to migrate from proprietary into the open.

A method of collecting relevant information about the development com-
munity gets introduced in Publication [IT]. Information about the community,
the amount of different types of community members and how actively they
participate is valuable information when evaluating the growth of the com-

52

munity. Such data is needed in order to make decisions relating to the com-
munity purpose, along with defining policies. Both the size of the community
and the activity over time can be monitored with the proposed method.

Publication [III] proposes an evaluation framework for the release readi-
ness of a software product as open source. In addition to the product the
evaluation emphasizes the community, the policies, and the provided infras-
tructure as well. The publication discusses two cases where the framework
has been utilized and shortly adresses the steps that need to be taken based
on the results of the evaluation. A part of the OSCOMM framework, intro-
duced as a whole in [I], includes the work presented here.

Publication [IV] studies a student centric approach to teaching collabo-
rative software development by utilizing an online platform, a learning envi-
ronment called KommGame that acts as the basis of the learner community.
KommGame includes a set of policies, including a reputation model to sup-
port the social aspects and the learners’ collaboration. The publication shows
practical results of applying the environment on an elective course.

Publication [V] identifies the similarities between an open innovation plat-
form intended for students and community driven develoment on the whole.
The main parallels are drawn to open source software development. This
paper also bridges between the two open development community cases with
business aspects. It addresses development policies, the product and the key
stakeholders.

In conclusion, the final Publication [VI] discusses how software engineer-
ing students can be taught open software development and the special char-
acteristics of the open source software developments community through a
participatory exercise that mimics the day-to-day activities of open develop-
ment of a product in a classroom setting. The paper includes results on using
the exercise called the community game on a master’s and postgraduate level
course. It dicusses open development from the viewpoint of the participants
and the platform as well as the policies.

6.2 Research Questions Revisited

This thesis answers three research questions through two cases. The questions
are:

Q1: What aspects of open development are essential in supporting both
the growth of open development communities and their participants’ collab-
oration?

A1: The five Ps framework addresses the essential elements. It is drawn
from and in practice supported by two open development cases. The el-

93

ements: platform, product, purpose, people, and policies are identified in
both. These are summarized in Subsections 5.1.3 and 5.2.2. The OSCOMM
approach documents the elements required for establishing and sustaining a
FLOSS based ecosystem. The KommGame acts as a situated learning plat-
form. Both studied learning environments include all the essential elements
and through that complement each other. The two cases demonstrate the as-
pects of open development: peer-production, product related details, and the
project processes, and show how the community specific aspects can differ
while the essential elements identified in five Ps are common.

Q2: What kind of activities are needed to ensure and support community
growth?

A2: Community is not built as an afterthought. Preparation of the prod-
uct and the platform is needed long before moving into the open development
model. Additionally policies that support collaboration and enforce trust are
needed. The community needs to be kept an eye on through some way suit-
able for the community. Core participation and data support are needed.
Addressing and encouraging motivational aspects are also essential.

Q3: How can collaboration be learned through participation in a open
development community?

A3: As learning is situation dependent as well as an individual and social
endeavor, learning open development skills can be strengthened through an
environment that itself acts as an open development community. An edu-
cational tool such as the KommGame can incorporate all the elements of
open development while still meeting the pedagogical demands. There is evi-
dence to support that learning within an actual context is carried onto other
settings as well.

6.3 Future Work

The work presented here is far from completed. There are many directions yet
to investigate and to deepen. One such direction is to conduct a retrospective
study on one of the FLOSS communities established during Case I. After
several years in business in a FLOSS ecosystem there is a lot of data that can
provide interesting details especially considering the community watchdog.
From the people perspective, working on who the participants are and what
are their motivators would be an interesting future direction.

Qualitative research on the KommGame as an open learning ecosystem
would further strengthen the work presented here. It would also widen the
scope of the research. Demola offers a versatile environment with both busi-
ness and policy — especially legality — directions to study further. It would

o4

also be beneficial to make a cross-team study on the day-to-day activities of
the student teams.

The novel thesis contribution, the five Ps framework, should also be stud-
ied further. As a contribution to the dissertation it has been drawn on the
basis of the two research cases. It could further be strengthened with a ret-
rospective case study of an open development community. Additionally, it
could be investigated from a more of an industrial viewpoint. The rise of the
so-called app economy has created ecosystems that are, on one hand, open
but, on the other, heavily gated or even closed. Nonetheless, as communities
they lend room for studying them from the point of view of the framework.

%)

"This is my timey-wimey detector. It goes ding when there’s
stuff.”-The 10th Doctor

56

Bibliography

1]

K. Ala-Mutka and T. Mikkonen. Experiences with Distributed Open
Source Courses. Informatica-Ljubljana, 27(3):243-254, 2003. Special
Issue: Information and Communication Technology at European Uni-
versities.

M. Antikainen and H. Vaitdaja. “Innovating is fun” — Motivations
to Participate in Online Open Innovation Communities. In K. Huiz-
ingh, M. Torkkeli, S. Conn, and I. Bitram, editors, Proceedings of the
First ISPIM Innovation Symposium Singapore: Managing Innocation
in a Connected World. International Society for Professional Innovation
Management (ISPIM), 2008.

D. Avison, F. Lau, M. Myers, and P. A. Nielsen. Action Research.
Communications of the ACM, 42(1):94-97, 1999.

Y. Benkler. Coase’s Penguin, or, Linux and The Nature of the Firm.
Yale Law Journal, pages 369-446, 2002.

J. Bosch. From Software Product Lines to Software Ecosystems. In
Proceedings of the 13th International Software Product Line Confer-
ence, SPLC 09, pages 111-119. Carnegie Mellon University, 2009.

J. S. Brown and R. P. Adler. Open Education, the Long Tail, and
Learning 2.0. Educause review, 43(1):16-20, 2008.

J. S. Brown, A. Collins, and P. Duguid. Situated Cognition
and the Culture of Learning. FEducational Researcher, 18(1):32-42,
1898. Available at http://www.exploratorium.edu/ifi/resources/
museumeducation/situated.html.

Business Readiness Rating. http://www.openbrr.org/, 2005. Last
visited December 2013.

o7

[9]

[10]

[15]

[16]

[17]

[18]

[19]

[20]

L. J. Burnell, J. W. Priest, and J. R. Durrett. Teaching Distributed
Multidisciplinary Software Development. IEEE Software, 19(5):86-93,
2002.

A. Capiluppi and M. Michlmayr. From the Cathedral to the Bazaar:
An Empirical Study of the Lifecycle of Volunteer Community Projects.

In Proceedings of the 3rd International Conference on Open Source
Systems, OSS 07, pages 31-44. Springer, June 2007.

M. A. Chatti, M. R. Agustiawan, M. Jarke, and M. Specht. Toward a
Personal Learning Environment Framework. International Journal of
Virtual and Personal Learning Environments, 1(4):71-82, 2010.

H. Chesbrough. Open Innovation: Researching a New Paradigm, chap-
ter Open Innovation: A New Paradigm for Understanding Industrial
Innovation. Oxford University Press, Oxford, UK, 2006.

K. Chopra and W. A. Wallace. Trust in Electronic Environments. In
Proceedings of the 36th Annual Hawaii International Conference on
System Sciences, HICSS ’03. IEEE Computer Society, 2003.

W. J. Clancey. Representations of Knowing: In defense of cognitive ap-
prenticeships. Journal of Artificial Intelligence in Education, 3(2):139—
168, 1992.

J. Cothrel and R. L. Williams. On-line communities: helping them
form and grow. Journal of knowledge management, 3(1):54-60, 1999.

K. Crowston and J. Howison. The Social Structure of Free and Open
Source Software Development. First Monday, 10(2), 2005.

K. Crowston and J. Howison. Assessing the health of open source
communities. Computer, 39(5):89-91, 2006.

C. C. P. Cruz, M. T. A. Gouvea, C. L. R. Motta, and F. M. Santoro.
Towards Reputation Systems Applied to Communities of Practice. In
Proceedings of 11th International Conference on Computer Supported
Cooperative Work in Design, CSCWD 07, pages 74-79, 2007.

R. M. Davison, M. G. Martinsons, and N. Kock. Principles of Canonical
Action Research. Information Systems Journal, 14:65-86, 2004.

E. den Hartigh, M. Tol, and W. Visscher. The Health Measurement of a
Business Ecosystem. In Proceedings of the European Network on Chaos
and Complexity Research and Management Practice Meeting, 2006.

58

[21]

[22]

23]

[24]

[25]

[26]

28]

[29]

[30]

A. Deshpande and D. Riehle. The Total Growth of Open Source. In
Proceedings of the Fourth Conference on Open Source Systems, OSS
08, pages 197-209. Springer Verlag, 2008.

J. Dinkelacker, P. K. Garg, R. Miller, and D. Nelson. Progressive
Open Source. In Proceedings of the 24th International Conference on
Software Engineering, ICSE 02, pages 177-184. ACM, 2002.

S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. Guide to
Advanced Empirical Software Engineering, chapter Selecting Empirical
Methods for Software Engineering Research, pages 285-311. Springer,
London, UK, 2008.

The eCars - Now! community. http://www.sahkoautot.fi/eng. Last
visited December 2013.

Free knowledge institute. http://freeknowledge.eu/. Last visited
December 2013.

Online community for open source software educaton. http://www.
teachingopensource.org. Last visited December 2013.

Y. Engestrom. Learning by FEzpanding: An Activity — Theo-
retical Approach to Developmental Research. Helsinki: Orienta-
Konsultit, 1987. Retrieved from http://lchc.ucsd.edu/MCA/Paper/
Engestrom/expanding/toc.htm.

F. R. Farmer and B. Glass. Building Web Based Reputation Systems.
O’Reilly Media / Yahoo Press, Sebastopol, CA, USA, 2010.

J. Favela and F. Pena-Mora. An Experience in Collaborative Software
Engineering Education. IEEE Software, 18(2):47-53, 2001.

J. Feller, P. Finnegan, J. Hayes, and P. O’Reilly. Institutionalising
Information Asymmetry: Governance Structures for Open Innovation.
Information Technology € People, 22(4):297-316, 2009.

J. Feller, B. Fitzgerald, S. A. Hissam, and K. R. Lakhani, editors. Per-
spectives On Free And Open Source Software. MIT Press, Cambridge,
MA, USA, 2005.

R. T. Fielding. Shared Leadership in the Apache Project. Communi-
cations of the ACM, 42(4):42-43, 1999.

99

[33]

[34]

[35]

[36]

[40]

[41]

[42]

[43]

[44]

K. Fogel. Producing Open Source Software. O’Reilly Media, Sebastopol,
CA, USA, 2005. Available at: http://producingoss.com/.

N. Franke and S. Shah. How Communities Support Innovative Ac-
tivities: An Exploration of Assistance and Sharing Among End-Users.
Research Policy, 32(1):157-178, 2003.

Free Software Movement. http://www.gnu.org/philosophy/
free-software-intro.html. Last visited December 2013.

S. Freeman. Constructing a Community : Myths and Realities of the
Open Development Model. PhD thesis, University of Helsinki, Helsinki,
Finland, 2011. Available at https://helda.helsinki.fi/handle/
10138/28432.

C. Gacek and B. Arief. The many meanings of open source. Software,
IEEE, 21(1):34-40, 2004.

R. Gardler and G. Hanganu. Governance models. http://www.
oss-watch.ac.uk/resources/governanceModels, 2010. Last visited
December 2013.

D. M. German. Experiences Teaching a Graduate Course in Open
Source Software Engineering. In Proceedings of the First International
Conference on Open Source Systems, OSS ’05, pages 326-328, 2005.
Available at 0ss2005.case.unibz.it/Papers/0Es/Es1.pdf.

GNU.org. http://www.gnu.org/philosophy/free-sw.html. Last
visited December 2013.

V. Goduguluri, T. Kilamo, and I. Hammouda. KommGame: A Reputa-
tion Environment for Teaching Open Source Software. In Proceedings
of the Tth International IFIP WG 2.13 Conference on Open Source
Systems, OSS "11, pages 312-315. Springer, 2011.

B. Golden. Succeeding with Open Source. Addison-Wesley, Boston,
MA, USA, 2004.

R. Goldman and R. P. Gabriel. Innovation Happens Elsewhere. Morgan
Kaufmann Publishers, San Fransisco, CA, USA, 2005.

R. A. Gosh. Perspectives On Free And Open Source Software, chapter
Understanding Free Software Developers: Findings from the FLOSS
Study. MIT Press, Cambridge, MA, USA, 2005.

60

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[. Hadar, S. Sherman, and O. Hazzan. Learning Human Aspects of
Collaborative Software Development. Journal of Information Systems
Education, 2008.

S. Hase and C. Kenyon. From Andragogy to Heutagogy. uliBASE
Journal, 2001.

J. D. Herbsleb. Global Software Engineering: The Future of Socio-
technical Coordination. In 2007 Future of Software Engineering, FOSE
‘07, pages 188-198, Washington, DC, USA, 2007. IEEE Computer So-
ciety.

J. Howison, K. Inoue, and K. Crowston. Social Dynamics of Free and
Open Source Team Communications. In E. Damiani, B. Fitzgerald,
W. Scacchi, M. Scotto, and G. Succi, editors, Open Source Systems, vol-
ume 203 of IFIP Advances in Information and Communication Tech-
nology, pages 319-330, 2006.

M. Iansiti and R. Levien. Keynotes and Dominators: Framing the Op-
erational Dynamics of Business Ecosystems. Harvard Business School
Working Paper, (03-061), 2002.

A. Triberri and G. Leroy. A life-cycle perspective on online community
success. ACM Computing Surveys (CSUR), 41(2):11:1-11:29, 20009.

D. Jonassen, M. Davidson, M. Collins, J. Campbell, and B. B. Haag.
Constructivism and Computer-Mediated Communication in Distance
Education. American Journal of Distance Education, 9(2):7-26, 1995.

K. Kiili. Digital game-based learning: Towards an experiential gaming
model. The Internet and Higher Education, 8(1):13-24, 2005.

T. Kilamo, I. Hammouda, T. Mikkonen, and T. Aaltonen. Open Source
Ecosystems: a Tale of Two Cases, chapter 13, pages 276-306. Soft-
ware Ecosystems: Analyzing and Managing Business Networks in the
Software Industry. Edward Elgar Publishing, Cheltenham, UK and
Northampton, MA, USA, 2013.

A. J. Kim. Community Building on the Web: Secret Strategies for
Successful Online Communities. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1st edition, 2000.

B. A. Kitchenham, S. L. Pfleeger, D. C. Hoaglin, K. E. Emam,
and J. Rosenberg. Preliminary Guidelines for Empirical Research in

61

[62]

[63]

[64]

Software Engineering. I[EEFE Transactions on Software Engineering,
28(8):721-734, 2002.

R. Kline and T. Pinch. Users as Agents of Technological Change:
The Social Construction of the Automobile in the Rural United States.
Technology and Culture, 37(4):763-795, 1996.

J. Kotlarsky and I. Oshri. Social Ties, Knowledge Sharing and Suc-
cessful Collaboration in Globally Distributed System Development
Projects. European Journal of Information Systems, 14(1):37-48, 2005.

K. R. Lakhani and R. G. Wolf. Perspectives on Free and Open Source
Software, chapter Why Hackers Do What They Do: Understanding
Motivation and Effort in Free/Open Source Software Projects, pages
3-21. The MIT Press, Cambridge, MA, USA, 2005.

J. Lave. Situating Learning in Communities of Practice. Perspectives
on Socially Shared Cognition, pages 63—68, 1991.

J. Lave and E. Wenger. Situated Learning: Legitimate Peripheral Par-
ticipation. Cambridge University Press, Cambridge, UK, 1991.

F. S. Lee, D. Vogel, and M. Limayem. Virtual community informat-
ics: A review and research agenda. Journal of Information Technology
Theory and Application (JITTA), 5(1):47-61, 2003.

J. Lerner and J. Tirole. The scope of open source licensing. Journal of
Law, Economics, and Organization, 21(1):20-56, 2005.

Y. Levy and T. J. Ellis. A systems approach to conduct an effective
literature review in support of information systems research. Informing
Science: International Journal of an Emerging Transdiscipline, 9:181—
212, 2006.

B. Lundell, A. Persson, and B. Lings. Learning Through Practical
Involvement in the OSS Ecosystem: Experiences from a Masters As-
signment. In J. Feller, B. Fitzgerald, W. Sacchi, and A. Sillitti, editors,
Open Source Development, Adoption and Innovation, volume 234 of
IFIP International Federation for Information Processing, pages 289—
294. Springer, 2007.

7 Things You Should Know About MOOCs II. Avail-
able at http://www.educause.edu/library/resources/
7-things-you-should-know-about-moocs-ii, 2013. Last vis-

ited December 2013.

62

[66]

[67]

[68]

[69]

[70]

[71]

[75]

[76]

L. Mathiassen. Collaborative Practise Research. Information Technol-
ogy & People, 15(4):321-345, 2002.

J. McKay and P. Marshall. The Dual Imperatives of Action Research.
Information Technology € People, 14(1):46-59, 2001.

A. Meiszner, K. Moustaka, and I. Stamelos. A Hybrid Approach to
Computer Science Education — A Case Study: Software Engineering
at Aristotle University. In Proceedings of the First International Con-
ference on Computer Supported FEducation, volume 1 of CSEDU 09,
pages 39-46. INSTICC Press, 2009.

D. G. Messerschmitt and C. Szyperski. Software FEcosystem: Under-
standing an Indispensable Technology and Industry. MIT Press, Cam-
bridge, MA, USA, 2003.

T. Mikkonen and T. Vadén. The Anatomy of Sustainable Open Source
Community Building: the Cultural Point of View. In T. A. Imed Ham-
mouda and A. Capiluppi, editors, Proceedings of the First Interna-
tional Workshop on Building Sustainable Open Source Communities,
volume 3 of Department of Software Systems Report, pages 14-20. Tam-
pere University of Technology, 2009.

J. Moilanen. Emerging Hackerspaces — Peer-Production Generation. In
Open Source Systems: Long-Term Sustainability, volume 378 of IFIP
Advances in Information and Communication Technology, pages 94—
111. Springer, 2012.

J. J. Moon and L. Sproull. Essence of Distributed Work: The Case of
the Linux Kernel. First Monday, 5(11), 2000.

J. F. Moore. Predators and Prey: a new ecology of competition. Har-
vard Business Review, 71:75-86, 1993.

K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye.
Evolution Pattern of Open-Source Software Systems and Communities.

In Proceedings of the International Workshop on Principles of Software
Evolution, IWPSE ’02, pages 76-85. ACM Press, 2002.

Open Definition for Data and Content. http://opendefinition.org/
okd/. Last visited December 2013.

Open Government Partnership. http://www.opengovpartnership.
org/. Last visited December 2013.

63

[77]

[78]

[79]

[30]

[81]

[82]

[83]

[84]

[85]

Definition of Open Source. http://opensource.org/osd. Last visited
December 2013.

T. O’Reilly. What is web 2.0: Design patterns and business models for
the next generation of software. Communications € Strategies, 1(65):17
— 37, 2005.

Pair Programming. http://www.extremeprogramming.org/rules/
pair.html. Last visited December 2013.

J. Piaget. The Child’s Conception of the World. Rowman and Allen-
held, New York, 1960.

J. Preece. Online Communities: Designing Usability, Supporting So-
ciability. John Wiley & Sons, West Sussex, UK, 2000.

J. Preece. Sociability and usability in online communities: deter-
mining and measuring success. Behaviour & Information Technology,
20(5):347-356, 2001.

Qualification and Selection of Open Source Software. http://www.
gsos.org/, 2006. Last visited December 2013.

R. N. Rapoport. Three Dilemmas of Action Research. Human Rela-
tions, 23(6):499-513, 1970.

E. S. Raymond. The Cathedral and the Bazaar. O’Reilly Media, Se-
bastopol, CA, USA, 1999.

P. Resnick, K. Kuwabara, R. Zeckhauser, and E. Friedman. Reputation
Systems. Communications of the ACM, 43(12):45-48, 2000.

L. Rosen. Open Source Licensing Software Freedom and Intellectual
Property Law. Prentice Hall, New Jersey, USA, 2004.

W. Rubens, B. Emans, T. Leinonen, A. G. Skarmeta, and R.-J. Si-
mons. Design of web-based collaborative learning environments. trans-
lating the pedagogical learning principles to human computer interface.
Computers € Education, 45(3):276-294, 2005.

P. Runeson and M. Host. Guidelines for Conducting and Reporting
Case Study Research in Software Engineering. Empirical Software En-

gineering, 14(2):131-164, 2009.

64

[90]

[91]

[92]

[95]

[96]

[97]

(98]

R. M. Ryan and E. L. Deci. Intrinsic and Extrinsic Motivations: Classic
Definitions and New Directions. Contemporary Educational Psychology,
25(1):54 — 67, 2000.

A. Senyard and M. Michlmayr. How to Have a Successful Free Software
Project. In Proceedings of the 11th Asia-Pacific Software Engineering
Conference, APSEC 04, pages 84-91. IEEE Computer Society, 2004.

F. R. Shah, I. Hammouda, and T. Aaltonen. Open Source Engineering
of Proprietary Software: the Role of Community Practices. In Proceed-
ings of the OSCOMM 2009 workshop, Skovde Sweden, 2009. Available
at http://tutopen.cs.tut.fi/oscomm09/papers/cr5.pdf.

S. K. Shah. Motivation, Governance, and the Viability of Hybrid
Forms in Open Source Software Development. Management Science,
52(7):1000-1014, 2006.

G. Siemens. Connectivism: A learning theory for the digital age. In-
ternational Journal of Instructional Technology and Distance Learning,
2(1), 2005.

T. Simcoe. Open Innovation: Researching a New Paradigm, chapter
Open Standards and Intellectual Property Rights. Oxford University
Press, Oxford, UK, 2006.

D. L. Sjoeberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Kara-
hasanovic, N.-K. Liborg, and A. C. Rekdal. A Survey of Controlled
Experiments in Software Engineering. IEEE Transactions on Software
Engineering, 31(9):733-753, 2005.

I. G. Stamelos. Teaching Software Engineering with Free/Libre Open
Source Projects. International Journal of Open Source Software €&
Process, 1(1):72-90, 2009.

A. Sterbini and M. Temperini. Social Exchange and Collaboration in a
Reputation-Based Educational System. In Proceedings of 9th Interna-
tional Conference of Information Technology Based Higher Education
and Training, ITHET 10, pages 201-207, 2010.

M. Stiirmer. Open Source Community Building. Licentiate thesis,
2005. University of Bern, Bern, Switzerland.

G. I. Susman and R. D. Evered. An Assessment of the Scientific Merits
of Action Research. Administrative Science Quarterly, 23(4):582-603,
1978.

65

[101]

[102]

[103]

[104]

[105]

[106]

[107]

108]

[109]

[110]

M. Temperini and A. Sterbini. Learning from Peers: Motivating stu-
dents through reputation systems. In Proceedings of the International
Symposium on Applications and the Internet, pages 305-308, 2008.

J. Tuya and J. Garcia-Fanjul. Teaching Requirements Analysis by
Means of Student Collaboration. In Proceedings of the 29th Annual
Frontiers in Fducation Conference, FIE ’99. IEEE Computer Society,
1999.

I. van den Berk, S. Jansen, and L. Luinenburg. Software Ecosystems:
A Software Ecosystem Strategy Assesment Model. In Proceedings of
the Fourth European Conference on Software Architecture: Companion
Volume, ECSA 10, pages 127-134. ACM, 2010.

E. von Glasersfeld. International Encyclopedia of Education, chapter
Constructivism in Education. Pergamon Press, Oxford, UK, 1989.

L. S. Vygotsky. Mind in Society: The Development of Higher Psy-
chological Processes. Harvard University Press, Cambridge, MA, USA,
1978.

P. Wallace. The Psychology of the Internet. Cambridge University
Press, Cambridge, UK, 2001.

S. Wang. Study on E-Learning System Reputation Service, Wireless
Communications, Networking and Mobile Computing. In Proceedings
of the 4th International Conference on Wireless Communications, Net-
working and Mobile Computing, WiCOM ’08, pages 1-4. IEEE Com-
puter Society, 2008.

M. M. Wasko and S. Faraj. "It is what one does”: why people partici-
pate and help others in electronic communities of practice. The Journal
of Strategic Information Systems, 9(2-3):155-173, 2000.

M. M. Wasko and S. Faraj. Why Should I Share? Examining Social
Capital and Knowledge Contribution in Electronic Networks of Prac-
tice. MIS Quarterly Special Issue on Information Technologies and
Knowledge Management, 29(1):35-57, 2005.

J. Webster and R. T. Watson. Analyzing the past to prepare for the

future: Writing a literature review. MIS Quarterly, 26(2):xiii—xxiii,
2002.

66

[111] J. West and S. Gallagher. Challenges of Open Innovation: The Para-
dox of Firm Investment in Open-Source Software. R&D Management,
36(3):319-331, 2006.

[112] J. West and S. O’Mahony. Contrasting Community Building in Spon-
sored and Community Founded Open Source Projects. In Proceedings
of the 38th Annual Hawaii International Conference on System Sci-
ences, HICSS 05, pages 196-196. IEEE Computer Society, 2005.

[113] A collaborative film production platform: Wreck-a-Movie. http://
www.wreckamovie.com/. Last visited December 2013.

[114] R. K. Yin. Case Study Research. Design and Methods. Sage, London,
UK, 3rd edition, 2003.

67

68

Case I: Publication I

Terhi Kilamo, Imed Hammouda, Tommi Mikkonen, and Timo Aaltonen.
From Proprietary to Open Source — Growing an Open Source Ecosystem.
In The Journal of Systems and Software (JSS). Volume 85, Issue 7, pages
1467-1478. July, 2012, Elsevier Science Inc.

From Proprietary to Open Source — Growing an Open
Source Ecosystem

Terhi Kilamo?, Imed Hammouda?, Tommi Mikkonen?®, Timo Aaltonen®

o firstname.lastname@tut.fi
btimo.ta. aaltonen@nokia.com

Abstract

In today’s business and software arena, Free/Libre/Open Source Software
has emerged as a promising platform for software ecosystems. Following this
trend, more and more companies are releasing their proprietary software as
open source, forming a software ecosystem of related development projects
complemented with a social ecosystem of community members. Since the
trend is relatively recent, there are few guidelines on how to create and
maintain a sustainable open source ecosystem for a proprietary software.
This paper studies the problem of building open source communities for
industrial software that was originally developed as closed source. Supporting
processes, guidelines and best practices are discussed and illustrated through
an industrial case study. The research is paving the road for new directions
in growing a thriving open source ecosystem.

Keywords:
open source, software ecosystem, opening proprietary software, open source
engineering

1. Introduction

The term ecosystem has emerged as a commonly used notion in software
economy [1]. In a nutshell, a software ecosystem comprises a set of businesses
that function as a single unit, instead of each participating enterprise acting
individually. The ecosystem often relies on a shared platform on top of
which different parties contribute their own, company-specific innovations [2].
Then, the cost of developing the platform is shared by a number of companies,
each of which is free to extend it with their own modules. Similarly, all the
participants gain the benefits of joint investment in the platform.

Preprint submitted to Journal of Systems and Software March 29, 2012

A platform used for establishing an ecosystem comprises numerous facets
[3]. From the engineering perspective, a software ecosystem provides the
technology for implementation, environment for the overall software project
infrastucture and a development methodology. Additionally, for the ecosys-
tem to foster, social, legal and business aspects must also be considered in
addition to the technological. The ecosystem can be viewed as a business
and governance model with marketing as one of the strategical advantages.

One source of such platform for ecosystems is to use Free/Libre/Open
Source Software (FLOSS). Open source provides solutions for each of the
above aspects needed in a fostering ecosystem. Despite being addressed
with a single term 'open source’, there are actually numerous flavors of open
source, defined by principles, practices, culture, and licenses that differ from
each other in various ways [4]. For example, some communities are geared
towards companies and have long-term plans, whereas some others are geared
towards individual contributors, whose innovative ideas make the community
foster. Similarly, some licenses are liberal and introduce only slight obliga-
tions to the user/modifier of the system, but in contrast some other licenses
introduce details such as strong copyleft!. All these details contribute to
the characteristics of an ecosystem that can be established on top of the
community.

The generally common aspects of open source software include trans-
parency of development and the freedom to build more complex systems
out of readily available building blocks. These provide a unique manner to
rapidly construct ecosystems without large initial investment [5]— indeed, to
a great extent ecosystems simply seem to emerge on top of successful open
source projects. However, we do acknowledge that a lot of effort have been
invested in the creation of associated ecosystems when considering the most
famous open source communities.

Although it is difficult to measure to what extent many existing open
source ecosystems have been planned ahead, it is a feasible option to build
an ecosystem by releasing a piece of proprietary software as open source.
Companies such as Sun Microsystems and Nokia have open sourced systems
such as Java and Symbian operating system, both of which have enormous

LCopyleft is a wordplay derived from copyright. Copyleft licensing gives the right to
modify and redistribute the software but requires that any modified versions also contain
the same rights.

potential to attract other companies and individual developers who now can
join the development effort. We take this as evidence that leveraging an
existing proprietary system as the basis of an open source ecosystem promises
huge business opportunities that just wait to be harnessed.

Despite the opportunities, the generic ability of open source to act as
the basis for new business and systems has however gained relatively little
research interest. Moreover, since the trend to release proprietary software
as open source is relatively recent, there are few guidelines on how to create
and maintain a sustainable open source ecosystem for a proprietary software
[6]. Consequently, there is little evidence on how the different facets of an
open source platform should be taken into account when establishing a tried
and true ecosystem that is viable.

In this paper we provide an insight to our long-term research on establish-
ing and maintaining open source communities, which have been created by
companies in effort to use them as cornerstones for their future ecosystems.
Even though open source provides a viable platform for growing a software
ecosystem from several angles — implementation technology, development
methodology, business model, organization structure, governance and legal-
ity — we feel that it has not been widely studied from the point of view
of a company entering the ecosystem. Some early results of this work has
been partially published in a piecemeal fashion ([7, 8, 9, 10]), but no single
nor complete representation of the work has been previously published. The
framework as a whole is presented here for the first time. Furthermore, the
case study applying the framework to a single industry case has not been
published before.

The rest of this paper is structured as follows. Section 2 discusses the
background information behind forging an open source ecosystem. Section
3 introduces our framework for managing the process by considering various
differecnt aspects. Section 4 presents some case studies we have conducted,
and Section 5 provides an extended discussion on lessons learned and related
approaches. In Section 6 the future research focuses are given. Last, Section
7 draws some final conclusions.

2. Background

The process of forging and nurturing a thriving community is complex
with several aspects to be considered. The open source community is often
modeled through a layered, hiearchical structure. The factors that affect the

process of growing and maintaining such a community are discussed in the
following. The mehodology used in researching this is also explained.

2.1. Onion Model of Communities

The open source community is a social ecosystem on its own and in junc-
tion with other open source communities. However, it differs from other
social networks in its hierarchical structure that is brought into the commu-
nity by the software engineering context. Where a social ecosystem more
commonly is flat an open source community is layered according to the level
on engagement to development and the role in the project in general.

An often-referred model of an open source community structure is pre-
sented in Nakakoji et al. [11]. The model describes the community as an
onion (see Figure 1), where the most influential roles are in the center, and
each outer layer consists of less and less influential ones.

Fassive user

Figure 1: Onion Model of Open Source Communities

In the heart of the onion is the project leader, who is typically the person
who has started the project, and is or at least has been the most active
developer. A typical open source project has a small group of core members
who have participated long time in the project. They coordinate the project
and contribute much code. In the work of Gloor [12] it is noted that a typical
core group starts out with three to seven members, and grows up to 10 to
15 members when the community is established. The passive users on the
outermost level form usually the largest group and just use the software.

Even though on the outermost rims on the onion model, passive users and
readers are essential for a sustainable community:.

The open source community model does not depict the entire ecosystem.
There are naturally business partners, industrial partners and similar interest
groups participating outside the range of the model that are an integral part
of an open source ecosystem. The community may also look different given
a different viewpoint. An ecosystem seen through one community onion can
contain underlying communities concentrated on a given subproject.

2.2. Dimensions of Opening Proprietary Software

Creating and maintaining a sustainable open source community [13] for
proprietary software can be considered as a multifaceted challenge like with
any other online community. It is a complex process affected and driven by
various kinds of factors, which in turn can be grouped along six dimensions

shown in Figure 2.

Figure 2: Community Building Dimensions

Software: When opening proprietary software, the question is: how ap-
proachable the software is as a whole. Improved software quality may increase
the success rate of community building. There are several ways of enhancing
the quality ranging from code refactoring to documentation. Downloading,
installing, deploying and using the software should be made as easy as pos-
sible. The source code can for example be accompanied with user manuals
or architecture descriptions.

Infrastructure: The community and the project repository are the two
key elements in any open source project. Tools and technologies that enable
communication between the community members, coordination of the project
and easy access and management of the project repository are vital. Such
tools are, for example, developer discussion forums and mailing lists.

Process: Open source development can be regarded as an open main-
tenance process. A process that balances the community practices and the
needs of the company when making decision on the evolution of the software,
maintenance actions, and release management is necessary. Governance of
both the project and it in relation to the ecosystem is a part of this process.

Legality: The releasing company needs to choose a license type and a
licensing scheme for the product. The choice may be, for example, to choose
between GPL and LGPL or a single licensing stragedy over multi licensing.
In addition, source code should be legally cleared against IPR and copyright
issues. Also, the availability of trademarks and names used in the software
should be checked.

Marketing: Building an open source community is also a marketing chal-
lenge. Effective marketing strategies are needed in order to reach potential
users and developers. Selecting an existing open source community as a
target customer can be a substantial success factor.

Community: The releasing company should be prepared to support the
project community. Company developers who are participating in the com-
munity should be trained for their new roles and should be given clear re-
sponsibilities. Community members should be provided with clear guidelines
for example for how and when contributions are made. When the software
is opened, it is vital that all development related information that the com-
pany wants to share is made public. In addition, there should be trust among
community members. Trust is built over time but having zero tolerance of
rudeness and derogatory language both in the software artifacts and the
communication among the members helps in establishing it. The relation-
ship the community has or should have with other communities should also
be considered.

2.3. Research Approach

The goal of this research is to identify best practices and tools for opening
proprietary software in an industrial setting. Our study was therefore driven
by a number of industrial case studies. Accordingly, our research approach
has been two-fold: a constructive phase where we have built methods and
tools and a participatory phase where we worked together with four com-
panies to apply the OSCOMM framework in the business setting. The two
phases are closely intertwined with each other.

To this end, our study has been guided by the following research ques-
tions:

e What kind of evaluation criteria could be used to assess software readi-
ness for open source development?

e How the evaluation should be planned and which stakeholders are in-
volved?

e How to obtain data for the evaluation process?
e How to exploit the results of the evaluation process?

e How to measure the current state of a newly born community?

To address the first question, we have organized a number of workshops
with the industrial partners. We have combined input from the partners
with existing related literature. The second point has been addressed in
an action research setting [14], where the evaluation has been carried out
by company representatives as internal stakeholders and the authors of this
work as external stakeholders. The two perspectives have been later cross-
examined. It was deemed necessary to develop an evaluation framework in
cooperation with the companies. In order to carry out the evaluation process,
data has been manually collected from the software products, development
teams, and publishing companies. Our action research role has as well been to
use the evaluation results to build an action plan for the release process. The
action plan has been mostly implemented by the companies itself. Finally,
the last question required the development of software tools to monitor the
evolution of the community. For this, data is obtained from companies in
the form of activity logs, access statistics, and community contributions.

3. The OSCOMM Framework

The OSCOMM framework for growing an open source ecosystem focuses
on opening previously proprietary software. It consists of three phases that
extend over the opening process to keeping a nurturing eye on the newborn
community. The framework together with the stakeholders involved in the
opening process is discussed in the following.

3.1. Overview

In Figure 3 a three phased process of building sustainable open source
ecosystems called the OSCOMM framework is shown. The phases in the

framework are: evaluating the readiness of the project for being opened,
open source engineering the product based on the findings of the readiness
evaluation and measuring the ecosystem once the project is open. The arrows
depict the flow of the work from phase to phase. Phase 2 can only be entered
if phase 1 is completed first and similarly phase 3 must be preceeded with
phases 1 and 2. In this paper, release readiness always refers to how well-
equipped a piece of proprietary software is to be released as open source.

Release Readiness Rating r::> Open Source Engineering :{} Community Watchdog

- Going through a checklist - Resolving the bottlenecks - Birth of the community

- Identifying bottlenecks [- Re-engineering [- Community evalution

- Setting priorities - Taking decisions - Analysing data and statistics

- Preparing an action plan - Role of existing communities - Taking remedial actions
Phase 1 Phase 2 Phase 3

Figure 3: OSCOMM Framework

Evaluating the release readiness is done in order to identify possible bot-
tlenecks of the opening process. Prioritizing things to be solved and setting
up an action plan for the release are two essential actions to perform. Once
an action plan is set, the second phase can be entered. The bottlenecks are
solved by open source engineering and the role of the communities already
existing within the interest range of the new-born is decided. Once the estab-
lishing community feels the product is ready to be released the process steps
into the final phase — the community is born. In phase three the evolution of
the new-born is kept an eye on by the community watchdog. The role of the
company is to steer the community based on information gathered in phase
3. It is possible that even drastic decisions from the company may also be
needed here. The framework does not decide these, it only provides informa-
tion to support decision making. Each of these phases and the stakeholders
involved in the releasing process are discussed next.

3.2. Stakeholders

Releasing an industrial software as open source involves multiple stake-
holders with possibly different objectives and conflicting interests. It is vital
that the building process balances the forces of the stakeholders so that at

least minimal satisfaction level is reached by all parties. Also issues like so-
cietal norms (e.g. seniority, way of communication) and legal matters (e.g.
IPR issues, licenses used) should be considered. Any action not considering
these forces could compromise the success and viability of the community.

Developers &
Observers LeemmTTT el ..

Industrial
Partners

Open Source Communities &

j(:\z individuals

Publishing entity
(saftware,
infrastructure,
legality, process)

ia Dl“joq;

Figure 4: Ecosystem Stakeholders

Figure 4 depicts the main stakeholders involved during the early phases
of the building process. There are three main groups of stakeholders: the
publishing entity with its allocated resources for the project, the industrial
partners and theirs developers, and finally existing open source communities
and other individuals. As discussed earlier, FLOSS communities tend to
take the shape of an onion with the inner layers taking more leading and
contributing roles than the outer layers. The position of each of three groups
of stakeholders in the onion structure is determinant by factors like familiarity
with the project, objectives, and availability of skilled resources. Compared
to the other two groups, the publishing entity is most familiar with the
software to be released and most willing to invest in the building process.
Thus, the role of this entity is essential both in preparation of the release
and once opened. In this paper, our main focus is on releasing a proprietary
software as open source. How the community evolves and works once the
software has been opened is beyond the scope of the paper.

9

In addition to the software to be released, a number of skilled developers
from the original development team should be allocated to form the core of
the new-born community. The role of the developers is to lead the develop-
ment of the software and to interface with the rest of the community members
as they join. Furthermore, the entity should provide a proper project infras-
tructure, legality-related decisions such as the used license, and a process for
managing the development of the software.

If the publishing entity has industrial partners associated with the soft-
ware to be released, those partners might also be interested to get involved
in the community. Typically, the partners are either enthusiastic or conser-
vative. Enthusiastic partners are in favor of releasing the software as they
see it as an opportunity for their business. Betting on the success of the
community, these partners usually participate with developers to contribute
to the development of the software and stay close to its evolution. Therefore,
those developers are closer to the core team and might have key roles in the
community.

Conservative partners however are reluctant for the software to go open
source as this may change their mode of operations and business. Still, those
kinds of partners would like to observe the evolution of the software and
the outcome of the community by having own members in the community.
Though familiar with the software, those observers are closer to outer layers
of the onion structure as they do not assume any key development role in
the early phases. It is of course possible that there are no industrial partners
involved when releasing a software. In this case, the publishing entity should
replace the void in the middle layer(s) of the onion structure by allocating
more of their own resources and get other companies interested to the project.

The other vital element in the community building process is the existing
open source communities and other individuals. The project released as open
source will coexist with other development projects as part of the software
ecosystem they create. The individuals could as well represent the interests
of companies that are not partnering with the publishing entity. The software
to be released should be carefully introduced to this group because existing
communities and other individuals represent a pool of potential contributors
who could join the project if they get interested and motivated. The individ-
uals participating in the projects in the ecosystem form a social ecosystem of
their own — the developer community. It is possible that individuals joining
the new-born community do not have any earlier experience with open source
projects. In any case, the newcomers typically join the community as passive

10

Dimension Software

Category Source code Architecture Quality -
mé

Figure 5: The Framework Model for Release Readiness, the software dimension

Measure

users and then may take key roles as they show commitment and value, thus
penetrating the onion structure inward from outer layers. For this to happen,
a well-defined developer promotion policy needs to be in place.

When releasing a proprietary industrial software as open source decisions
need to be made on the role and type of the developer community for the
software. Both the software and the social ecosystem influence the decision.
The publishing entity needs to evaluate which of the alternatives company-
based, volunteer or mixed type of community would suit the project and the
ecosystem it will live in best. In addition attention needs to be paied to the
dynamics of the onion model structure (closed or open core) and the place
of the new-born in the ecosystem.

3.3. Release Readiness Rating

The aim of the release readiness rating framework for evaluating the readi-
ness of a proprietary software is to help identifying possible bottlenecks and
to eliminate them in the so-called pre-bazaar phase, where the goal is to
prepare the software to be released and the releasing company to the contin-
uation of the life of the system in the open source ecosystem.

An overview of the rating framework is shown in Figure 5. The criteria
under evaluation for the readiness for release consist of four different di-
mensions: the software itself, the intended community and its roles, legality
issues, and the releasing authority. In Figure 5 one of the criteria (software)
has been opened to its subcategories and the measures used in each. Each of
the criteria are similarly divided into categories and have different amounts
of measures in each category.

11

3.3.1. Software

The software itself forms a substantial aspect for any open source project
for obvious reasons. Based on our experience, at least the following issues
must be taken into account. The role of the rating is to aid decision making
and give supportive information. It is up to the company to decide whether
to, for example, improve the quality of the software in case of a poor rating
or to go open and allow the community to improve the code base. In either
case the rating has given the company valuable information on what kind of
software they are releasing.

Source code. Source code is a fundamental part of any open source
project. When releasing a new software system as open source, there are
numerous properties of the system related to code that can help other devel-
opers to participate in coding. Among these are quality of code, integrity, and
coding conventions. An expressed code of conduct and the documentation of
the system are also necessary.

Architecture. Developers must be able to easily understand the software
system for it to be easily approachable. This in turn calls for an architecture
that can be easily understood and communicated — and preferably docu-
mented. In addition to this, in the context of an open source ecosystem one
should pay special attention to the design motivators of the architecture. If
the architecture has been designed with changes in mind, it is often easier
for other developers to adapt and create various types of new systems.

Quality attributes. The perceived quality of the software being released
as open source is an noteworthy factor. The quality properties considered
are not just the quality of the architecture or the actual implementation but
the software as a whole is at focus.

3.3.2. Community

When releasing a software system one generally has an idea on what
kinds of developers should get involved. Careful planning of the intended
community participants can have an impact on what to release and how.

Purpose. As already stated in the book by Raymond [4], good work on
software commonly starts by developers scratching their own itch. Therefore,
the released system should be of practical importance and relevant for the
developers. The goal of the community is probably the most significant single
issue when releasing a piece of software as open source. However, since there
commonly are numerous similar ongoing projects, an adequate mission is
only a prerequisite for a successful launch and does not guarantee a thriving

12

community into the ecosystem will evolve.

User community. In addition to partners developing software, we feel that
the potential for the user community is vital. Provided with an active user
community, development resources can be invested in actual development,
and the user community can provide support for other activities, such as
peer user guidance, documentation, and testing.

Partners. The definition of partners that join in the community and
thus forging an ecosystem can be rather straightforward. For instance, if a
releasing company has been subcontracting from another company, the latter
may be automatically involved in the newly formed community. However if
the releasing company has no partners that would share the interest in the
development, there should be a clear plan to motivate others to join in the
development effort.

3.83.83. Legalities

In the context of companies, one of the most commonly considered as-
pects of releasing software as open source are the legalities. This is a wide
topic to cover, and there can be several subtle differences in different con-
texts. Here, we assume a straightforward view where different concerns are
discussed independently.

Copyright and intellectual property rights (IPR). Most commonly, com-
panies release software whose copyright and IPR they own. Things are more
complex, if the company does not own the copyright but sometimes it can
be obtained via different transactions.

Licensing. The choice of license (or licenses) has an effect on how oth-
ers perceive the community which can affect the willingness of developers to
participate in the community and hence also the projects place in the in-
tended ecosystem. Therefore strong copyleft licences such as GPL [15] have
some advantage over more liberal licenses with no copyleft, such as MIT [15]
and BSD [15]. However, one should also take the mission of the community
into account when defining the license. From the point of view of the open
source ecosystem license compatibility with related systems should also be
considered.

Branding. Availability of brand names is an issue for any project looking
for a good name that can be used in public. Since an open source project
can be a long lasting one, selecting suitable brand names is essential. The
same applies to hosting the project, since in many cases it would be practical
to reflect the name of the project also in the domain.

13

3.8.4. Releasing Authority

The final element we address in our framework is the releasing author-
ity, most commonly a company in the scope of the framework, which is
aiming to release an in-house software as open source. However, Other par-
ties such as universities, non-profit organizations, and individuals can act as
the releasing authority,

Mindset, culture, and motivation. Sometimes the mindset of developers
working in a company is somehow biased — either positively or negatively —
towards open source development. In order to benefit from an open source
community, the releasing authority should be motivated and mentally and
culturally ready for dealing with developers outside the company under fair
terms such as equal access to code, similar guidelines and conventions, as
well as mutual respect.

Process, organization, and support. In order to gain benefits from open
sourcing a system, the releasing authority should have a system in place
that provides support for users and developers. This requires planning of
a process that is to be followed, and putting the process in practice by the
support organization and that is available from the very beginning.

Infrastructure. In order to establish an open source project, the releasing
authority sometimes must be prepared to provide infrastructure. While some
systems do not need such support as such, companies often wish to gain
visibility through offering at least the download opportunity.

3.4. R3 FEvaluation Framework Model

The release readiness rating framework discussed above is a general model
for evaluating a proprietary software set out to be released as open source.
Our model - the R3 evaluation framework model — is an implementation of it.
The R3 model is organized into four main levels — dimensions. These levels
represent the software itself, the intended community, legal issues and the
releasing authority of the software. For each dimension there are a number
of categories. Each category is then associated with a number of measures
(i.e. questions). The R3 model, its dimension and the questions in each have
been developed in co-operation with four companies (Nokia, Sesca Mobile,
IT Mill, Gurux) all involved in opening their proprietary software as open
source. The output of the evaluation can be considered as a vector that
determines the relative values of these different elements. Each dimension is
equal in weight but the questions in them are associated with varying weights
based on their effect on the dimension.

14

The diversity of software products and additionally the different goals
companies have made evaluating all software in a similar fashion impossible.
The evaluation model itself must be tuned into taking into account the char-
acteristics of the product under release. Some criteria may not make sense in
some particular case and there may be a crucial criterion for the case missing
altogether. Hence the R3 model should be considered as a template which
needs to be instantiated to suit each case separately. When instantiating R3
all aspects of the model are gone over and validated as appropriate to the
case in hand.

At the concrete level the evaluation process means taking R3 Spread
Sheet Template and instantiating it to the case evaluated. Instantiating the
template requires adding new dimensions and criteria to the spread sheet and
possibly also removing some. The evaluation weights also require attention
from the evaluator. The pracical application of the spreadsheet is discussed
in Section 3.7

3.5. Open Source Engineering

The release readiness assessment of proprietary software does not just
give a pass/fail result for opening the product. The evaluation yields a set
of recommendations based on which the software under evaluation and its
development environment then undergoes an open source engineering process
that needs to be carried out before the software can be released. The process
focuses on eliminating the problems and shortcomings that were identified in
the evaluation. The success rate of building and sustaining the community
will improve. The open source engineering process itself is driven by different
kinds of influential factors that follow the same criteria as we used in the R3
framework.

Software. Any considerable rework on software requires extensive invest-
ment which puts numerous restrictions on what can be accomplished during
the pre-bazaar phase. Still, it is possible to clean up and refactor the code
to a certain extent, e.g. removing all company-specific comments. Since the
code may already be in use, special attention must be paid to determine
what to do with comments that indicate faulty or incomplete features. Some
documentation can also be composed in the pre-bazaar phase, or simply be
included in the comments of the code.

Community. Adding purpose as an afterthought can be difficult. Assum-
ing that a system has been developed with only business interests in mind, it

15

can be difficult to introduce attractions for an independent developer. How-
ever, a mission for a community can be defined in pre-bazaar phase, provided
that the software to be released enables a number of possible uses. Unfor-
tunately companies can be somewhat biased towards supporting their own
plans regarding the released system only, which in turn sometimes hinders
the outside participation in the development for reaching some other goals,
especially if the missions are conflicting. For instance, the releasing authority
may not be willing to incorporate a community contribution for free, if the
same feature can be sold for a commercial customer by the company.

Legalities. Legalities most commonly form the most straightforward cat-
egory of items. Provided with copyrights, which can be difficult to obtain in
pre-bazaar phase only, there are a lot of freedom to define the other aspects.

Releasing authority. We believe that the seeds of building cooperative
relations between the releasing authority and the actual community should
somehow be sewn at latest when entering the pre-bazaar phase. This can
already be evidenced by existing ways of working and infrastructure, but
they can also be introduced later on.

A conceptual framework for carrying out open source engineering can be
seen in respect to the role of different community practices. In an earlier pa-
per [9] the process is described and applied to an industrial case — the Wringer
software platform originally developed by Sesca Mobile Ltd. A target com-
munity is selected as a starting point. The selection process may be based on
software-related factors such as the programming environment or the appli-
cation domain but any other company motives like business and strategy can
be the driving forces. The selected community can be assumed to have norms
and practices of it own. It is also possible that the company does not go for
any existing community but prefers past experience or favoring popular solu-
tions instead. Once a target community is selected the proprietary software
and its environment is transformed and established according to the relevant
practices the target community is found to have, i.e. licensing scheme, re-
lease management, communication within the community, documentation,
coding style and convention, bugs reporting and tracking and source code
management. Then the software can be released hopefully attracting some
of the target community’s members in order to form an embryo community
which in turn can either join the target community or proceed to evolve as
an independent one. Selecting a target community may not be an easy task
in practice. The releasing company may also want to go for several commu-
nities complicating things further. If this is the case some of the community

16

practices, e.g. licensing and naming conventions differ or even conflict each
other. Resolving such conflicts is then a part of the open source engineering
process.

3.6. Community Watchdog

Once the newborn community is out in the open source world it needs to
be nurtured, supported, and kept an eye on. Having up-to-date information
on the developer community often plays a key role in making business deci-
sions. Instead of relying on simple, single measures such as the number of
downloads or the amount of messages on the community mailing list when
evaluating the success and evolution of the community, a wider set of data
sources should be considered. The community watchdog phase focuses on
gathering and analyzing data. Both facets of the ecosystem — the software
and the social model — are taken into account.

3.6.1. Implementing Community Watchdog

There are three different types of things to assess: the community, the
software and how well the objectives of the company are met. The develop-
ment of the first two can be seen based on the measures set up for them. The
third requires assessment of whether the measures are moving to the right
direction or if remedial actions are needed.

In order to collect information on the community the number of con-
tributors to the project and the number of users who have subscribed the
project mailing list should be measured. The amount of requests, feedback
or inquiries received are interesting as is access to the web site, the number
of hits the project gets in the media and blogs and what is the amount of ac-
tivity on the project’s visibility in the social media, e.g. Twitter, Facebook.
The geographical distribution of the community members can be kept an
eye on. The number of people participating in project events and meetings
gives direct information on the activity in the community. Even the number
of scientific publications mentioning the community or the amount of job
advertisements can be monitored.

From the software viewpoint the number of downloads is a key piece
of data. Similarly, the amount of reported bugs and feature requests are
valuable. The number and impact of the contributions received tells a lot
on the amount of development done outside the core of the community. In
addition whether the contributions are corrective, adaptive, perfective or

17

preventive in nature could be analyzed. One interesting point to keep an eye
on is the number of projects built on top of the platform.

Measuring and evaluating the community continuously gives valuable in-
sight on the evolution of the ecosystem. The trends seen in the changes of
the measures tell a lot on the state of the community and point out possible
issues that require attention.

3.6.2. The BULB Model

The community watchdog is a framework for analysis of the commu-
nity. It needs to be instantiated into a model suitable for the community in
question. It may not be reasonable to measure everything and similarly a
interesting metric may need to be added.

Firstly, we have instantiated the measuring of a open source community —
a measurement model called BULB [10] — into an industrial case, the Vaadin
community [16]. The data was gathered from the project’s version control
system, the bug tracker, Google Analytics and Alerts [17, 18], the database of
the community’s discussion forum and the projects web server logs. Things
measured ranged from software specific things like amount of authors com-
mitting and changes in code to webhits on relevant sites. Based on the
measures the activity in the community and the changes in the size of the
community on the different layers were calculated. The evolution of the size
of the different layers of the community is shown in Figure 6. The IT Mill
layer represents the amount of people working on the software in the com-
pany behind it, Act.dev is the amount of active developers and Per.dev.
represents the peripheral developers. Bug fixer layer is the amount of bug
fixers in the community. Reader and Pass.user show the amount of readers
and passive users in the community respectively. A similar picture can be
created based on the changes in activity of the different layers. The changes
in the activity of the Vaadin community over the same timeframe is visible
in Figure 7.

Other aspects of the community, the amount of communication or the
level of commitment for example, could be similarly monitored.

18

BT Mill @ Act. dev. O Per.dev. M Bug fixer M Reader O Pass. User

700

500

300

100

0
01.0509 010609 01.07.09 01.0809 01.0909 01.1009 01.11.09 30.11.09

Figure 6: The Evolution of the Vaadin Community

BT Mill @ Act. dev. O Per.dev. B Bug fixer M Reader O Pass. User

Figure 7: Activity in the Vaadin Community

3.7. Tool Support

With the framework tools to support the work in phases one and three
were developed. Phase two, that concerns the open source engineering, con-
tains tasks that can benefit from already available tools for refactoring, test-
ing and architecture analysis for instance.

19

The tool for working on release readiness evaluation can be downloaded
online.? The template needs to be assessed by the releasing authority as not
all software is alike. Possibly new points need to be added or existing ones
removed. The weights may also be adjusted to fit the situation tkaing into
account the software and the needs of the people doing the assesment. In the
example case at focus in this paper, all dimensions were seen equal and thus
their respective weights set accordingly. The current dimensions, the items
in each dimension and their weights are given in Table 1.

Table 1: R3 dimensions, items and relative weights

Dimension | Item ‘ Weight
Software 0.25
Source code 0.5
Architecture 0.4
Quality attributes 0.1
Community 0.25
Purpose and mission | 0.4
User community 0.4
Partners 0.2
Legalitites 0.25
Copyright 0.6
Licensing 0.3
Branding 0.1
Releasing 0.25
authority
Mindset, culture 0.5

and motivation

Process, organization | 0.3
and support

Infrastructure 0.2

The evaluation process starts from deciding in which order the criteria
are going to be evaluated. The starting point should be the most crucial
ones to the opening of the software under evaluation. Then the evaluation
is carried out in the given order by answering concrete questions under each

2The excel sheet tool is downloadable on: http://tutopen.cs.tut.fi/R3/R3_
Template.xls

20

dimension and item. The spreadsheet produces as a final result numerical
information, a four-dimensional array, on the dimensions. The result gives
indication on which dimensions need to be focused on in the next phase.

For phase two, the tools needed depend heavily on the company practises
and the software product itself. Tools for code refactoring, architectural
analysis, testing and documentation are used here but selection of the tools
is a matter of taste and company practises and thus not fixed in the model.

For the last phase — community watchdog — a set of scripts were developed.
The idea is that a variety of data sources can be used and new ones added
if needed with no changes made to the current measuring. In Figure 8 the
idea of using and extending the community watchdog is shown. New data
sources can be added by processing their data into a fixed format in the
data repository. The desired aspects, for example the size of the community
and how active it is, are then collected by the scripts in the back-end and
evolution of the community over time is shown.

4. Example Case Study: Gurux Software Ecosystem

The OSCOMM framework or parts of it have been applied in four separate
industrial cases. Three of these have been published in separate publications.
These cases were Notava [19], ITMill [10] and Sesca [9]. The latest case,

Gurux, is presented here as an example of applying the framework.

4.1. Guruzx Software Platform

The Gurux software platform [20] is a device communication solution
originally developed as a closed source system by Gurux Ltd. The platform

Front-end Repository Back-end
- [- onion
repository GIT ~ " IActivity Filter
Server \ ;
NbrOf —a H Fi - Size
logs Downloads ; Size Fler onion

Bulletin BBS L ~—— Vol — Filter —r—#»—
Borard Voluntariness
onion
System
°
°

Figure 8: The intended functionality of BULB framework.

21

User Interface

DEVICE Physical Device

Figure 9: Gurux Platform Architecture

offers a set of communication products that are protocol, device type, and
data connection independent. Figure 9 depicts the component architecture
of the platform in order to give an overview of the product in question. The
Gurux platform has components ranging from the user interface to those
working at hardware level. The developer community of the released prod-
uct has groups of developers concentrating on a single part of the entire
platform. A device communication application is built using the services
provided by the various components, supporting various programming lan-
guages and development environments. Example supported communication
medias include SMS, GPRS, and SNMP. An example application would be
to control an SMS-enabled device.

4.2. Goals

Inspired by the success of recent open source software ecosystems such
as Meego [21], Gurux Ltd. took the strategic move to go open in mid 2009.
The goal has been to grow and expand by reaching international partners
and customers as well as reducing development cost of the software plat-
form. Strategically, the objective has been to boost the field of technology of
the products developed by the company and to gain reputation as an open
source solution provider. Business-wise, the company decided to switch from
selling software licenses to other business models such as software-as-a-service
(SAAS), dual licensing, and offering consulting services.

The company anticipates that in a number of years the Gurux software
ecosystem should grow by itself and should not anymore be heavily driven

22

by Gurux. The ecosystem would consist of companies and individuals with
various business and technological interests in the platform.

4.3. Applying the OSCOMM Framework

In the following we describe the three phases of the OSCOMM framework
applied to the Gurux software platform.

4.3.1. Phase 1

Four people from the releasing authority carried out the R3 evaluation
for the Gurux platform before it was released as open source in November
2009. The overall impression was positive and R3 was considered a valuable
and useful tool. The evaluation process acted as a good checklist for things
that need to be considered when planning the release and showed well the
items where most improvement is required. In addition, those items where
improvement would be most beneficial were easily identified with R3, i.e. the
releasing authority knew where to focus most of the effort.

Some items were not seen relevant in the case of the Gurux platform.
However, this was not a significant problem for the process as irrelevant items
were simply skipped by the people doing the evaluation. Sometimes choosing
the correct grading was found hard. Grades like ”"well” and "reasonably” may
mean different things to different people as these types of grades depend on
how things are seen by individuals doing the evaluation and what they value.

The R3 evaluation data is confidential to the company and cannot be
published here as is.

4.3.2. Phase 2

Having identified the bottlenecks in phase 1, Gurux allocated 6 full time
workers for a period of six months to open source engineer their products.
The company has worked on tasks preparing their software product on all
six different dimensions of the OSCOMM approach. Listed by their order of
importance, the most significant dimension has been the community aspect,
then comes the process and software dimensions. To a lesser degree, the
company took open source engineering related decisions related to marketing,
infrastructure and legality dimensions.

The company planned to build an ecosystem of smaller communities, each
focusing on a small part of platform. Contribution was expected at different
levels of the component stack shown in Figure 9. It was decided that the
core of the intended community would be open. It is also expected that

23

the community would be a mixture of volunteers and company-paid workers,
provided both by Gurux and industrial partners. In order to attract users
and contributors, Gurux has contacted existing related communities as a
marketing strategy.

For supporting the community, Gurux established an infrastructure con-
sisting of a bug tracker, forum, and documentation of components. Docu-
mentation includes sample code, animated tutorials and quick starts. Com-
munity registration has been made straightforward and the company plans
to develop features to increase the size of the community. One of the latest
feature implemented is a system where active users can gain points to reach
higher levels and get more user rights. As for the software and process di-
mensions, it took considerable effort refactoring and cleaning up the software
as well as putting up a process to manage the platform in an open source
fashion.

4.3.3. Phase 3

Few months after releasing the software platform, Gurux has managed
to build a community of 100 users (individuals and companies). After six
months, the number increased to 200, most of which are abroad. The number
of daily downloads is increasing all the time and is estimated to reach 200 by
mid 2010. In addition to enthusiasts, the community consists of a number of
small business partners.

The BULB model was instantiated to the Gurux community for moni-
toring the evolution of the community and analyzing the healthiness of the
ecosystem. For monitoring Gurux has chosen to use the data sources: num-
ber of product downloads, number of visits to the webpage, volume of email
communication and kind of feedback received and mentions of the product
online through Google alerts. Data from these sources are collected continu-
ously. Once these measurements are analyzed, remedial decisions and actions
are taken regarding community support and software maintenance. Visually
the analysis is analogous to the Figures 6 and 7.

4.4. FEvaluation

Going open source has not been an easy decision or task for Gurux. A
lot of effort was needed to plan and select the co-operation partners and to
decide what, how, and when to do things. Eventually, going open source
has caused the company to lose few customers because the software can be

24

downloaded and used for free. However, thanks to increased visibility, new
customers have been obtained.

The role of partner organizations in the development of the Gurux ecosys-
tem has been promising but still minor. Most of the contributions have been
bug reports and feature requests but less effort has been spent on platform
development. However, it is noticed that the bug reports has become well
detailed which makes it easier for Gurux to fix the bugs. Content provided
by the community falls short of company expectations, Gurux hope for a real
social network sharing knowledge around the platform.

Most of the partner companies buy services and products from Gurux.
However, some of the companies contribute with support money as the Gurux
software platform is vital for their business. It is however still early to see
companies build and sell own products built on top of the software platform.

Going open source helped the company to strategically view the soft-
ware platform as an ecosystem. Other organizations are no more viewed as
clients only but also co-developers and business partners, which may help
maintaining the vitality of the platform.

Overall, building an open source ecosystem around the Gurux platform
has gone slower than anticipated due underestimating the effort required.
For instance, considerable time (almost the double of what is planned) has
been spent on writing support documentation, rewriting code and example
applications. Also it became a challenge to maintain different versions to
meet the needs of different users. Nevertheless, the effort has led to better
code quality and documentation. Also the company has now a better process
in place for maintaining the software platform. For example, the company re-
ported making architectural reviews on the software based on the evaluation
which led to improvements in packaging. This in part helped in making the
software more approachable to the community which can be seen as better
quality. Maintenance of the repackaged product is also easier.

When asked about the open source engineering (phase 2), the company
mentioned that marketing should have been stressed and taken more aggres-
sively. In addition, more effort should have been spent on refactoring the
software for community development. Finally, migration of infrastructure
has also been underestimated and should have been considered as a more
meaningful dimension. As future plans, the company intended to invest
more in marketing aiming at increasing the size of the community to reach a
self-sustainability level. Also more users of the software means more Gurux
customers.

25

In what concerns the role of the research team in the Gurux case study,
the company feedback has been positive. As described earlier, the research
team did not just act as an observer but assumed an active part of the process,
in an action research setting. Still, some aspects of action research were not
applicable either. One aspect of action research is that it is an iterative
process but in this study it was impossible to iterate within one case. A
software product can only be released once. Nevertheless, the experiences of
a single case could be utilized in releasing another product.

Furthermore, our action research role came with a number of inherent
challenges. In order to avoid researcher bias and to increase internal validity
of the results, we have conducted frequent reviews and syntheses of the find-
ings with the company. Also, our role was beyond pure consulting activities
by constructing concrete tools and methods in cooperation with the com-
pany. In order to mitigate threats to the external validity of our results, we
have engaged four companies from different application domains. In several
occasions, all the industrial partners were brought to the same discussion
table. Our active involvement in the study may have exposed some of com-
pany’s sensitive data. In order to address this possible source of conflict, the
company has been consulted before any public use of data. Also we have
avoided discussing the details of the case in the presence of other companies.
On the other hand, we believe that we were not given access to some data
which is classified by the company as sensitive. A wider access to the case
would have allowed better and more detailed analysis.

There are several other validity threats to the design and implementa-
tion of this study. During the interviews with the companies, we may have
somewhat mixed descriptions up with explanations of facts. This has in-
fluence on the kind of actions we have considered. Also, not all the data
we are given represented real evidence. We had to filter out data that was
not backed with clear facts. Also we were given data at different levels of
detail. For instance, data related to the Community Watchdog phase has
been raw and fine-grained whereas data related to the R3 phase has been
brief and abstract. Our interpretation of data may have been influenced by
its granularity level.

During data collection, we mostly used a single representative from the
company. Although we tried to mitigate this threat by considering differ-
ent perspectives such as technical, business, and legal, there is still a risk
that a single company contact can be biased and provide a narrow view of
the company. Similarly, the study has been carried out in a setting where

26

each company case has been allocated to a single researcher. In order to
coordinate between all the cases, regular review meetings involving all the
researchers have been organized. Finally, our understanding of the matters
being investigated as researchers may have been different from that of the
industry partners. In order to mitigate the associated risks, such issues were
raised and consequently resolved during visits by company representatives to
the research site.

5. Related Work

A main goal of our work is growing a sustainable open source community
and furthermore a healthy actor in the open source ecosystem. This is di-
rectly tied to ecosystem health research — an ecosystem must be healthy to
have longevity. In their paper [22] lansiti and Levien define three measures
for ecosystem healt: productivity, robustness and niche creation. Usable
measures for ecosystem health at the company level are given in [23]. Al-
though directly related to our work, the measures provided by den Hartigh
et al. are strictly business oriented and on a general level. Our approach
focuses on going open source with a proprietary software and thus addresses
the open source and software specific issues. In [24] the authors present a
model to describe the key characteristics of a software ecosystem. It inves-
tigates software ecosystems with a wide view while our approach is more
indepth to a specific setting of opening propietary software.

Building a sustainable open source ecosystem, and thus the applicability
of the OSCOMM approach, is best for software systems that are viewed as
platforms. These kinds of systems have better chances for attracting com-
munity members as they offer higher levels of customizability through con-
figuration and systematic adaptation to different usage contexts. A typical
example of such scenario is where a software product line company decides
to externalize the development of its software platform by including external
developers and partner organizations [2].

Going open source with a proprietary software system is at the heart
of our work. Thus the special traits of open source give an important an-
gle to it. Open source maturity models such as OSMM™(Open Source
Maturity Model) [25], QSOS (Qualification and Selection of Open Source
Software) [26], and BRR™ (Business Readiness Rating) [27] have been de-
veloped to aid companies in their adoption of open source. Whereas these

27

models evaluate existing open source software the viewpoint of our study is
the opposite: opening a previously proprietary software product.

In their paper “How to have a successful free software project.” [28] the
authors argue that FLOSS projects typically undergo a number of activi-
ties that can be grouped into three phases: a cathedral phase, a transition
phase, and finally a bazaar phase. However, in contrast to the metaphor of
the ”cathedral and the bazaar” [4], the authors show that the phases are
complementary and represent common evolution phases of most open source
projects. In a follow-up research study the framework has empirically been
illustrated using a number of case studies [29]. The OSCOMM approach fits
well into this three-phase classification. Release Readiness Rating can be
seen as an activity that occurs at a late stage of the cathedral phase, where
a decision to open up the proprietary software has been taken. Open Source
Engineering, on the other hand, corresponds mostly to the transition phase,
where certain aspects of the software and its environment are improved be-
fore the actual open source release. Finally, the Community Watchdog phase
of the OSCOMM approach can be associated with the bazaar phase where
project evolution is driven by the new born community.

When it comes to documented practices, the work of Fogel [30] is the clos-
est to our approach. The author presents a cookbook-like guide for starting
and running an open source community in general. The guide, which takes
a very low-level and detailed view to the phenomenon of open source, con-
siders different perspectives ranging from technical infrastructure to political
issues in open source. Compared to Fogel’s [30], our approach focuses on the
specific problem of opening industrial software.

On a much larger scale, the best practices we have discussed in the OS-
COMM approach have been partly considered in the so-called incubation
programs. These programs aim to establish fully functioning open source
communities for promising project ideas and initiatives. For example Eclipse
and Apache both have their own incubation programs [31, 32]. During the
incubation process, a project goes through rigorous review phases where the
outcome can be either termination, continuation or promotion of the project.
Incubation programs and the OSCOMM approach share the same aim: how
to have the project accepted by a community. In both approaches, the evo-
lution of the community should be monitored carefully.

The problem of open source community building has also been researched
in the licentiate thesis by Stiirmer [33]. The work describes a qualitative
research of eight successful open source projects. The study is based on

28

interviews with a representative of each project. The interviews go through
the life cycles of the projects from the beginning to the current state. The
main contribution of the study is in describing how to initialize an open
source project and how the project is promoted. Compared to our approach,
the main difference is that we do not base our study to interviews made after
the fact, but participate in the actual release process from the beginning.
Moreover, we are not passive observers, but we attempt to impact building
the project in various ways in order to improve its likelihood to succeed.

The OSCOMM approach is not a one-size-fits-all solution but rather an
umbrella guiding framework that should be tailored to individual needs. In-
deed, we have applied the approach differently to a number of case studies
other than the Gurux software platform. In each of the case studies, one of
the three phases has particularly been stressed. For instance, an intense open
source engineering process has been applied to a JavaScript binding platform
originally developed by Sesca Mobile Ltd. [9]. The process has been driven
by the practices of a selected open source community. In another case study
platform developed by I'T Mill Ltd., the community watchdog phase has been
the most useful among the three phases of the OSCOMM approach. The
company wanted to have concrete software tools to monitor the evolution of
the community around its Vaadin software platform [10].

6. Future Work

Growing an ecosystem for any software product is a long and continuously
evolving process. The work presented in this paper concentrates on estab-
lishing an open source ecosystem that is viable on the basis of a previously
proprietary software. The focus is on building a framework for opening the
software and it does not go too far into the life of the established community.

The framework does not give strict guidelines for the day-to-day working
of the community and the ecosystem. Any community however needs such
to govern the work and the interaction between the participants. In an
open source community there is a need for practices for decision making,
communication methods, handling patches and deciding on releases to name a
few. The governance framework needed for handling such things is a tempting
issue for a future study.

Our focus so far has been the birth of the ecosystem and how to ensure a
possibility for growth. A long term study on an established ecosystem should
be conducted. A period of five to ten years in the life of the ecosystem could

29

be monitored either from the start onwards or from today back into the
history of one of the most established open source ecosystems. Especially
the latter might bring light on how large a role chance plays in success and
the former more on how key business decisions and a governance organization
can support the community and the ecosystem to grow and thrive.

The software business is sometimes fickle and follows trends as any busi-
ness does. It is plausible that a need to close the software would also arise. To
what extend the same six dimensions considered here in the opening process
need to be addressed when going back to proprietary is an interesting ques-
tion for future research. Additionally how choosing a multilicensing scheme
instead affects the ecosystem is a possible research path.

7. Conclusions

Free/Libre/Open Source Software (FLOSS) has emerged as a promising
platform — including technical, methodological, legal, commercial, and nu-
merous other facets — for software ecosystems. Consequently, more and more
companies are releasing their proprietary software as open source, forming
a software ecosystem of related development projects complemented with a
social ecosystem of community members.

This paper studies the problem of building open source communities for
industrial software that was originally developed as closed source. Supporting
processes, guidelines and best practices are discussed and illustrated through
an industrial case. We conclude that while the multi-faceted nature of using
open source as a platform introduces inevitable complexities, there are ex-
isting tools and techniques that can be used to deal with them. Moreover,
some data from real cases is available, although not to an extent that would
provide conclusive evidence.

One of the main contributions of the OSCOMM approach is making ex-
plicit and documenting the elements required for building and sustaining an
open source ecosystem. We believe that such practices, at least in some
form, do exist in major software companies. These practices however are
very seldom documented and shared with other organizations.

Finally, getting experiences from a number of further real-life cases is
what is eventually required to make it possible to turn the task of building
an open source ecosystem into an engineering and business discipline. With
this research, we are paving the road for future experiments conducted in
different contexts and with different business settings in mind.

30

References

1]

D. G. Messerschmitt, C. Szyperski, Software Ecosystem: Understanding
an Indispensable Technology and Industry, MIT Press, Cambridge, MA,
USA, 2003.

J. Bosch, From software product lines to software ecosystems, in: SPLC
'09: Proceedings of the 13th International Software Product Line Con-
ference, Carnegie Mellon University, Pittsburgh, PA, USA, 2009, pp.
111-119.

S. Jansen, A. Finkelstein, S. Brinkkemper, Sense of community: A re-
search agenda for software ecosystems, in: In proceedings of the 31st In-
ternatinal conference on software engineering, companion volume, IEEE,

2009, pp. 187 — 190.
E. S. Raymond, The Cathedral and the Bazaar, O’Reilly Media, 1999.

C. Walton, The open source software ecosystem, Published in: Car-
les Sierra and Jaume Augusti editors, IITA Communications, Institut
d’Investigacion en Intel.ligencia Artificial, IITA, Barcelona (2002).

B. Lundell, B. Forssten, J. Gamalielsson, H. Gustavsson, R. Karls-
son, C. Lennerholt, B. Lings, A. Mattsson, E. Olsson, Exploring health
within oss ecosystems., in: In Proceedings of OSCOMM 2009, Sweden,
20009.

T. Kilamo, T. Aaltonen, I. Hammouda, T. J. Heinimaki, T. Mikkonen,
”Evaluating the Readiness of Proprietary Software for Open Source De-
velopment”, in: OSS2010, Vol. 319 of IFIP Advances in Information and
Communication Technology, Springer, 2010, pp. 143-155.

P. Sirkkala, T. Aaltonen, I. Hammouda, ”Opening Industrial Software:
Planting an Onion”, in: OSS2009, Vol. 299 of IFIP Advances in Infor-
mation and Communication Technology, Springer, 2009, pp. 57-69.

F. R. Shah, I. Hammouda, T. Aaltonen, Open Source Engineering of
Proprietary Software: the Role of Community Practices, In proceedings

of the OSCOMM 2009 workshop, Skévde Sweden (2009).

31

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

T. Kilamo, T. Aaltonen, T. J. Heiniméki, BULB: Onion-Based Measur-
ing of OSS Communities, in: OSS2010, no. 319 in IFIP Advances in
Information and Communication Technology, Springer, 2010.

K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, Y. Ye, Evolution
Pattern of Open-Source Software Systems and Communities, in: IWPSE
’02: Proceedings of the International Workshop on Principles of Software
Evolution (2002), ACM Press, 2002, pp. 76-85.

P. A. Gloor, Swarm Creativity : Competitive Advantage through Col-
laborative Innovation Networks, Oxford University Press, USA, 2006.

J. Preece, Online Communities: Designing Usability, Supporting Socia-
bility, Wiley, 2000.

D. Avison, F. Lau, M. Myers, P. A. Nielsen, Action research, Commu-
nications of the ACM 42 (1) (1999) 94-97.

Licences, http://www.opensource.org/licenses, last visited Febru-
ary 2009.

M. Gronroos, Book of Vaadin: Vaadin 6, Oy IT Mill Ltd, 2009.

Google analytics service, http://www.google.com/analytics/, last
visited April 2010.

Google alerts, http://www.google.com/alerts/, last visited April
2010.

I. Hammouda, T. Aaltonen, P. Sirkkala, Exploiting social software to
build open source communities, in: In Proceedings of SOSEA 2008, IEEE
Computer Society, L’Aquila, Italy, 42-25, p. 2008.

Gurux Software Platform, http://www.gurux.fi/, last visited April
2010.

The MeeGoCommunity, http://meego.com, last visited January 2011.

M. Tansiti, R. Levien, Keystones and dominators: Framing the opera-
tional dynamics of business ecosystems (2002).

32

23]

[24]

[25]
[26]
[27]
28]

[29]

[30]

[31]

[32]

[33]

E. den Hartigh, M. Tol, W. Visscher, The health measurement of a
business ecosystem, in: Paper presented for the ECCON 2006 Annual
meeting Organisations as Chaordic Panarchies, 2006.

I. van den Berk, S. Jansen, L. Luinenburg, Software ecosystems: A soft-
ware ecosystem stragedy assesment model, in: ECSA "10 Proceedings of
the Fourth European Conference on Software Architecture: Companion
Volume, ACM, 2010.

B. Golden, Succeeding with Open Source, Addison-Wesley, 2004.
QSOS, http://www.qgsos.org/, last visited December 2010.
BRR, http://www.openbrr.org/, last visited December 2010.

A. Senyard, M. Michlmayr, How to have a successful free software
project., in: In Proceedings of the 11th Asia-Pacific Software Engineer-
ing Conference, IEEE Computer Society, Busan, Korea, 2004, pp. 84-91.

A. Capiluppi, M. Michlmayr, From the cathedral to the bazaar: An
empirical study of the lifecycle of volunteer community projects, in: In
Proceedings of the 3rd International Conference on Open Source Sys-
tems, Springer, Limerick, Ireland, 2007, pp. 31-44.

K. Fogel, Producing Open Source Software, O’Reilly Media, 2005, avail-
able at: http://producingoss.com/, Last visited April 2010.

The Eclipse Project Incubator, http://www.eclipse.org/eclipse/
incubator/, last visited April 2010.

The Apache Incubator, http://incubator.apache.org/, last visited
April 2010.

M. Stiirmer, Open Source Community Building, licentiate thesis (2005).

33

Case I: Publication II

Terhi Kilamo, Timo Aaltonen, and Teemu J. Heiniméki. BULB: Onion-
Based Measuring of OSS Communities. In Proceedings of the 6th Interna-
tional IFIP WG 2.13 Conference on Open Source Systems (0SS’10), pages
342-347. Notre Dame, IN, USA, May 30 — June 2, 2010, Springer.

BULB: Onion-Based Measuring of OSS
Communities

Terhi Kilamo!, Timo Aaltonen', and Teemu J. Heiniméki'

Tampere University of Technology
firstname.lastname@tut.fi

Abstract. Up to date information on the associated developer com-
munity plays a key role when a company working with open source
software makes business decisions. Although methods for getting such
information have been developed, decisions are often based on scarce
information. In this paper a measuring model for open source commu-
nities, BULB, is introduced. BULB provides a way of collecting relevant
information and relates it to the well-known onion model of open source
communities.

1 Introduction

A company working with open source software (OSS) is often dependent on
the developing community. Especially, when a product or service is sold the
connection is obvious. In order to make business decisions, the need for up to
date information about the community is clear. For example, the size of the
community should be known, the activity of developers is interesting, and how
easy penetrating into the community is should be found out.

Currently getting this kind of information is hard. Precise models for such
have been developed. For example, social network analysis (SNA) [3] has been
suggested to get a strict view to the community. SNA analyses a mathematical
graph, where nodes are the members of the community and arcs model relation-
ships between them. Different kinds of surveys can be given as another example
of community information digging.

The industry does not seem to use such advanced methods today. On the
contrary, to our knowlegde the business decisions are often based on simple
models, and, it is not unusual that the only two sources of information are the
number of messages in discussion forums and the number of downloads.

In order to be adopted in the industry, metrics need to be instantly meaning-
ful. We propose is a measuring model BULB, which relates the measurements
to the well-known onion model [7] of OSS communities. The onion model is
commonly accepted and it is easy to grasp, so BULB conforms to the prerequi-
sites. The measurements are based on robots digging continuously information
from various sources, like the discussion forum, the version control and the bug
repository, i.e. the framework conforms to the rest of the conditions.

2 Terhi Kilamo, Timo Aaltonen, and Teemu J. Heinimaki

The rest of the paper is structured as follows. In Section 2 ways to measure
open source communities are discussed. The BULB model for measuring open
source communities is introduced Section 3 and applying it to an industrial
community is given Section 4. The paper in concluded in section 5

2 Measuring Open Source Communities

The community behind an open source project is a key component that effects
the success of the project. Information on the nature of the community is needed
in order to make informed decisions on adopting open source software and to
aid running a successful business based on open source components. Several
different approaches have been suggested to provide support in the decision
making ranging from easy to get to more extensive analysis.

Social Network Analysis: Any open source project can be seen as a
social network of developers. The developers are linked to each other through
different kinds of relationships that are created and maintained in OSS projects
mainly by computer-enabled channels. The OSS community is thus seen as a
graph with the developers as the nodes and the social relationships between
developers as the edges. Social network analysis (SNA) [3, 10] can be used to
study the community and its structure.

Business Readiness Rating: Business Readiness Rating (BRR) [2] pro-
poses a method for assessing open source software. The goal is to get a rating
on the open source software through four steps (1. quick assessment, 2. target
usage assessment, 3. data collection and processing and 4. data translation)
As BRR itself admits that phase three is the most time consuming and yields
best results for mature projects, its value is somewhat limited to eliminating
bad candidates. It also seems apparent that BRR is no longer being developed
further at the moment.

Simple metrics: One way to evaluate the open source project is to measure
some publicly available data that are easy to access and measure. Very simple
metrics, such as the amount of downloads or the daily amount of discussion
on email lists or the project discussion forum are used. Naturally the level of
activity in the community shows if the community is still alive, but says very
little on the product or the sustainability of the community on the whole.

Software use: Software use is naturally a popular metric albeit one that
is difficult to measure reliably in the case of open source software. Numbers
of downloads alone do not reliably tell about adoption [1]. Moreover from the
business decision point of view, the community as a whole is interesting, not
just the usage.

Surveys: Surveying community members is a suitable method for gain-
ing information from different interest groups within the community [9, 4, 11].
However, surveys don’t necessarily reach people, whose input would be most
valuable. In addition, surveys cannot be used as a mean of continuous analysis
as the likelihood of people answering them decreases over time.

BULB: Onion-Based Measuring of OSS Communities 3

Appearance: A common method of comparing projects and making de-
cisions on the project to use is not based on any kind of measuring as there
often is no time to undergo a vast analysis. The appearance of and the feeling
one gets from the community are the driving factors instead of a more formal
approach. Results beyond a blatant guess are needed, and therefore the need
to evaluate the community further is apparent.

Onion-Based Measuring: Open source communities can be modeled with
an onion model introduced in [7]. In the model each member of the community
has a distinct role. The community is seen as an onion-like structure, where the
most influential community members occupy the core layers, while the outer
layers hold the less influential ones.

3 Constructing an Onion-Based model: BULB

In this section a measuring model for onion-based measuring of open source
communities, BULB, is given. The structure of the community and how the
community members fall on layers in the onion is valuable information about
the community and its current state in making business decisions. BULB has
been developed for this very purpose. The theoretical base of the model has
already been introduced in [6]. In it, the traditional onion model for open source
communities is substituted with two onions, one for the size of the community
and another for the amount of activity on the onion layers. The traditional size

///

version

riEFol
/? stem

T
K
(e}
=
<
[0
Q.
(D
<

Reader

/
_
erlpheral develope
Bug reporter o
Passwe user

I

Fig. 1. The data sources on the onion

onion is produced by simply assessing the number of people on each layer of
the onion. Data from several data sources is combined to get a picture of the

4 Terhi Kilamo, Timo Aaltonen, and Teemu J. Heinimaki

structure of the community according to the onion model. Data used at this
point range from the version control system information to the number of web
hits for relevant sites. Some of the data sources have more effect on the onion
built out of the data than others. This is taken into account when constructing
the onion model for the community. The data sources used and the onion layers
affected by each source are depicted in Figure 1.

The onion is seen as a vector, where each element contains the relevant
information about the layer, for example in the size onion the number of people
on the corresponding onion layer. Each metric used is measured daily and a
vector representing its distribution on the onion layers is created by multiplying
it with a coefficient vector that indicates how influential the metric is on each
layer. The coefficient values of the layers add up to 1.0. If we denote the set of
metrics used with M the distribution vector d; of each metric is calculated:

Vm; € M : d;y = m;vy (1)

where vj is the coefficient vector of m;. The example vectors used in the case
studyfor distributing the numbers of bug reports and feature requests over the
onion are shown in Figure 2. The different data sources can have significant

Bug reports: Feature requests:
‘ 02 ‘ 03 ‘ 03 ‘ 02 ‘ 00 ‘ 00 ‘ ‘ 00 ‘ 0.25‘ 0.25‘ 0.25‘ 0.25 ‘ 00 ‘

Fig. 2. Example coefficient vectors

differences in their relative values as one can be very large while the other
occurs more rarely and is thus smaller. To compensate this the distribution
vector of each metric is multiplied with a balancing coefficient b;. We get a
partial onion vector:

pi = bid; (2)

The significance of the metric on the onion can also be scaled through this
coefficient. In the example measurements, the balancing coefficients used were
7.0 for bug reports and 9.0 for feature requests.

After the balancing the complete onion is created by simply adding the
values on each onion layer in the partial onion vectors together in order to
create the final onion, i.e.

o= Z pi (3)

The traditional onion alone is not able to accurately depict how active the
community members on the different layers of the onion are but is simply fo-
cused on the size and structure of the community. The activity may vary over
time although the size of the community has not changed. Thus the variation
in activity on the different layers should be taken into account in addition to
the development of the size of the community. As some of the metrics used
may give information about the current level of activity on a given layer BULB
suggests a second onion similar to the size onion to be used for depicting layer

BULB: Onion-Based Measuring of OSS Communities 5

activity. The activity onion is built like the size onion only based on the metrics
that measure activity. The distribution vectors and the balancing coefficients
are naturally adjusted suitably. In the example case, the balancing coeflicients
change to 100.0 for bug reports and 140.0 for feature requests as they are clear
indications on activity.

4 Experimenting BULB with the Vaadin community

The BULB model is in fact a generic method of depicting the evolution of an
open source community. The data values in the onion vectors can be changed
to a new community characteristic and the model is still applicable. To study
the applicability of the framework, we have experimented it with the developer
community of Vaadin [8]. The measurements were carried out from May 1 2009
to Nov 30 2009. The onion model was instantiated to the Vaadin community
as shown in Figure 1.

Vaadin is a server-side AJAX web application development framework devel-
oped by Oy IT Mill Ltd [5]. The framework is used for developing rich Internet
applications with the Java programming language. Vaadin framework was re-
leased as open source in December 2007. The business model of the company
is based on consulting services and the development of Vaadin. As Vaadin is
open source, I'T Mill needs up to date information about the Vaadin community.
So far the main source of information has been the number of downloads and
the number of messages post to the discussion forum. Figure 3 illustrates the

W iTvil B act dev. Dper. dev. MBug fixer M Reader DPass. User BTwill Bact dev. O per.dev. Mg fixer W Reader O pass. User
a0

ablin a Al AN AWM

PYYN-VL 0
010509 010609 010709 010809 01.0909 01.1009 011109 30.11.09 010509 010609 010709 010809 010909 011009 011109 301109

Fig. 3. The activity onion of the Vaadin Fig. 4. Size onion of the Vaadin commu-
community nity.

measured activity in the Vaadin community over the measurement window. It
visualizes the effect of events that have impact in the community. The size data
however needs to be filtered to lessen the weekly variation in the raw measures.
The size onion of the Vaadin community after filtering the data with a Gaus-
sian filter is shown in Figure 4. The window size of the filter was 31, p = 0,
o=31/4="7.75.

5 Conclusions

We have developed a new onion-based model, BULB, for measuring open source
communities. We applied the model in an industrial case to measure the layer

6 Terhi Kilamo, Timo Aaltonen, and Teemu J. Heinimaki

sizes in the Vaadin community onion and the activity on the layers. The model
was developed in cooperation with industry to make an easy-to-use and fast
way for digging valuable information on an open source community out of the
available data.

The board and other stakeholders of an open-source company or of compa-
nies thinking of adopting an open source product often base their decision to
a limited amount of information. With BULB these decisions can be based on
more fresh and divergent information than before. We have shown that the de-
scribed model works and produces sufficiently precise information fast enough
to be useful and support decision making.

References

1. Wiggins A., Howison J., and Crowston K. ”Heartbeat: Measuring Active User
Base and Potential User Interes in FLOSS Projects. In Open Source Ecosystems:
Diverse Communities Interacting, volume 299/2009 of IFIP Advances in Infor-
mation and Communication Technology, pages 94—104. Springer, 2009.

2. BRR. http://www.openbrr.org/. Last visited December 2009.

3. Del Rosso C. Comprehend and analyze knowledge networks to improve softaware
evolution. Journal of Software Maintenance and Evolution: Research and Practice,
21(3):189-215, 2009.

4. Capra E., Fancalanci C., Merlo F., and Rossi Lamastra C. A Survey on Firms’
Participation in Open Source Community Projects. In Open Source Ecosystems:
Diverse Communities Interacting, volume 299/2009 of IFIP Advances in Infor-
mation and Communication Technology, pages 225-236. Springer, 2009.

5. Oy IT Mill Ltd. web page: http://http://www.itmill.com/. Last visited De-
cember 2009.

6. Heiniméaki T. J. and Aaltonen T. An onion is not enough: Living in the multi-onion
world. In Proceedings of the Open Source Workshop - OSW 2009 In conjunction
with the 4th IEEE Systems and Software Week (SASW 2009), Skévde, October
2009.

7. Nakakoji K., Yamamoto Y., Nishinaka Y., Kishida K., and Ye Y. Evolution
Pattern of Open-Source Software Systems and Communities. In IWPSE ’02:
Proceedings of the International Workshop on Principles of Software Evolution
(2002), pages 76-85. ACM Press, 2002.

8. Gronroos M. Book of Vaadin: Vaadin 6. Oy IT Mill Ltd, 2009.

9. Ghosh RA, Glott R., Krieger B., and Robles G. Free/Libre and Open Source
Software: Survey and Study. International Institute of Infonomics, 2002.

10. Wasserman S. and Faust K. Social Network Analysis: Methods and Applications.
Cambridge University Press, 1994.

11. Mikkonen T., Vainio N., and Vadén T. Survey on four oss communities: descrip-
tion, analysis and typology, 2006. Empirical insights on open source software
business.

Case I: Publication II1

Terhi Kilamo, Timo Aaltonen, Imed Hammouda, Teemu J. Heiniméki.,
and Tommi Mikkonen. Evaluating the Readiness of Proprietary Software
for Open Source Development, In Proceedings of the 6th International IFIP
WG 2.18 Conference on Open Source Systems (0SS’10), pages 143-155.
Notre Dame, IN, USA, May 30 — June 2, 2010, Springer.

Evaluating the Readiness of Proprietary
Software for Open Source Development

Timo Aaltonen', Imed Hammouda!, Teemu J. Heiniméki', Terhi Kilamo® and
Tommi Mikkonen!

Department of Software Systems, Tampere University of Technology
Korkeakoulunkatu 1, FI-33720 Tampere, Finland
{firstname.lastname}@tut.fi

Abstract. As more and more companies are releasing their propri-
etary software as open source, the need for supporting guidelines and
best practices is becoming evident. This paper presents a framework
called R3 (Release Readiness Rating) to evaluate the readiness of propri-
etary software for open source development. The framework represents
a checklist for the elements required to ensure a better open source ex-
perience. The framework has been applied to an industrial proprietary
software planned to be released as open source. The evaluation has been
carried out by both external and internal stakeholders. The early ex-
periences of the case study suggest that the R3 framework can help in
identifying possible bottlenecks before evangelizing the software to the
open source community.

1 Introduction

Companies are getting more and more interested in releasing their closed source
software products to open source communities. The two large scale examples
of this are Sun Microsystems’ opening of its Java platform during 2006 and
2007, and Nokia’s actions to open the Symbian operating system during 2009-
2010 [11]. As the trend is relatively recent, the phenomenon of opening industrial
software is not well understood despite of the existence of general guidelines
such as in [2, 10]. In this paper we tackle the problematic of releasing industrial
software.

Most often companies are not used to release the source code of their prod-
ucts. Their standard ways of behavior tend to be more biased to hiding than
to releasing information. The processes, tools and infrastructure used by com-
panies might turn out to be an obstacle for a successful release. The software
itself might have been written so that open source developers run into trou-
bles when trying to contribute. This suggests that there is a need for proper
methodologies to evaluate the readiness of proprietary software for open source
development. Such methodologies would help identifying possible bottlenecks
before taking the software to the open. The bottlenecks are then resolved to in
order to increase the success rate of community building around the software.

2 Timo Aaltonen et al.

Given the above observations, the research questions we would like to explore
include the following:

— What kind of evaluation criteria could be used to assess software readiness
for open source development?

— How the evaluation should be planned and which stakeholders are involved?

— How to obtain data for the evaluation process?

— How to exploit the results of the evaluation process?

We argue that these issues have not been studied enough by the open source
research community. The closest works to our study are the open source ma-
turity models such as OSMM (Open Source Maturity Model™) [3], QSOS
(Qualification and Selection of Open Source Software) [8], and BRR, (Business
Readiness Rating™) [1]. These models are typically used by companies that
plan to use open source. The context of our research problem in this paper is just
the opposite: taking software out from companies to open source communities.

The main contribution of the paper is two fold. First, we discuss the speci-
ficities of the problem of opening proprietary software. Second, we present a
framework called R3 (Release Readiness Rating) to evaluate the readiness of
proprietary software for open source development. In order to demonstrate our
approach, we have applied the framework to an industrial proprietary software
planned to be released as open source.

The rest of this paper is structured as follows. In Section 2 we discuss related
work and the challenges of opening proprietary software. The details of the
R3 framework and the overall evaluation process are presented in Section 3.
In Section 4, we evaluate the R3 framework in the context of two industrial
case studies. Future work is discussed in Section 5 and finally, we conclude in
Section 6.

2 Background

2.1 Open Source Maturity Models

Several methods have been developed assessing the maturity of open source soft-
ware. For instance, Open Source Maturity Model™ (OSMM) enables a quick
assessment of the maturity level of an open source product. Products are ranked
according to OSMM scores, which are evaluated in a three-phase process: 1)
assess each product element’s maturity and assign maturity score; 2) define
weighting for each element based on the company’s requirements and 3) calcu-
late the score.

The Qualification and Selection of Open Source Software (QSOS) maturity
model is a four-step iterative process: 1) define (and organize criteria), 2) asses
(against the criteria), 3) qualify (define weighted scores, new and mandatory
criteria) and 4) select (asses using the weights, and select). Another evalua-
tion framework called Business Readiness Rating™ (BRR) was proposed as a

Evaluating the Readiness of Proprietary Software for OS Development 3

new standard model for rating open source software. The model consists of a
four-phase process: 1) quick assessment filter (for quickly abandon bad candi-
dates), 2) target usage assessment (for inputting the needs of the company), 3)
data collection & processing (for collecting the actual information) and 4) data
translation (which leads to one outcome: the rating).

Compared to the method we propose in this paper these maturity models
take a totally different direction. Whereas our model attempts to study one
software product which is going out from a company, these maturity models
attempt to study a set of software products, one of which is selected to come
in to the company. However, some ideas are still quite similar. For example, in
both cases the architecture of the software plays an important role, and it can
be evaluated similarly. On the other hand the infrastructure of an open source
project might not be so important when evaluating open source software to be
used, however it is a crucial element when building an open source community.

2.2 Opening Proprietary Software

Like any other online community [7], creating and maintaining a sustainable
open source community for proprietary software can be considered as a multi-
facet challenge. It is a complex process that is driven by various kinds of factors,
which in turn can be grouped along six dimensions.

Software. Improved software quality may increase the success rate of com-
munity building. Quality can be enhanced by incorporating best practices, doc-
umentation, code cleanup, coding standards and convention. Furthermore, in
order to support the community, source code may be accompanied with user
manuals, API documentation, and architecture descriptions. It is vital to have
the first experience with downloading, installing, deploying and using the soft-
ware as easiest as possible.

Infrastructure. There are two key elements in any open source project: com-
munity and project repository. An open source engineering process should pro-
vide enabling tools and technologies to facilitate the planning, coordination, and
communication between the community members. In addition, efficient mech-
anisms and tools are needed to facilitate the access and management of the
project repository.

Process. Open source development can be regarded as an open maintenance
process. A process needs to be established in order to handle decisions regarding
the evolution of the software, maintenance actions, and release management.
The process needs to balance between the practices of communities and the
needs of the company.

Legality. The releasing company needs to select a license type (e.g. GPL
versus LGPL) and a licensing scheme (e.g. single or multi licensing). In addition,
source code should be legally cleared against IPR and copyright issues. Also, the
availability of trademarks and names used in the software should be checked.

Marketing. Building an open source community can be regarded as a mar-
keting challenge. Effective marketing strategies are needed to market the open

4 Timo Aaltonen et al.

source project to potential users and developers. Selecting an existing open
source community as a target customer can be an important success factor.

Community. The releasing company should be ready to support the project
community. For instance, community members should be provided with clear
guidelines on how and what to contribute. Furthermore, company developers
who are participating in the community should be trained for their new roles and
should be given clear responsibilities. When the software is opened, it is vital
that all information are made public and that private discussions are avoided.
In addition, there should be trust among community members, zero tolerance
of rudeness and no use of bad language both in the software artifacts and the
communication among the members.

In the next section, we present a framework that addresses these questions by
evaluating software in a pre-bazaar phase. The pre-bazaar phase helps in getting
early feedback and experiences on using and evolving the software outside its
original development environment. This may need the involvement of external
stakeholders.

3 The Release Readiness Rating Framework

The Release Readiness Rating (R3) framework is a tool for planning the open
sourcing of a software system. The goal of the framework is to help identifying
possible bottlenecks and to eliminate them in so-called pre-bazaar phase, whose
goal is to prepare the software to be released and the releasing company to the
continuation of the life of the system as open source.

3.1 Framework Overview

The evaluation criteria for R3 consists of four different dimensions, including
software itself, intended community and its roles, legality issues, and the re-
leasing author. The output of the evaluation can be considered as a vector that
determines the relative values of these different elements. The dimensions are
further decomposed as indicated in Table 1. The table also lists the relative
importance of the item.

The current weights are based on our experience on previous case studies.
All dimensions are equal in weights when the individual items are associated
with different weights.

3.2 Evaluation Criteria

In the following, we discuss the different views that should be considered when
deciding the value set for the items representing different dimensions.

Evaluating the Readiness of Proprietary Software for OS Development 5

Table 1. R3 dimensions, items and relative weights

Dimension|Item [Weight
Software 0.25
Source code 0.5
Architecture 0.4
Quality attributes 0.1
Community 0.25
Purpose and mission (0.4
User community 0.4
Partners 0.2
Legalitites 0.25
Copyright 0.6
Licensing 0.3
Branding 0.1
Releasing 0.25
authority
Mindset, culture 0.5
and motivation
Process, organization|0.3
and support

Software The software itself forms an important aspect for any open source
project for obvious reasons. Based on our experience, at least the following
issues must be taken into account.

Source code. Fundamentally, any open source project deals with source code.
When releasing a new software system to open source, there are numerous
properties that the system itself, manifested in its code, should contain. These
in particular include quality of code, integrity, and coding conventions hat help
other developers to participate in coding. The importance of coding conventions
is highlighted, since introducing coding conventions as an afterthought can turn
out to be impossible. Moreover, the source code should express code of conduct,
which is a necessity for making the code public. Finally, documentation of the
system is a practical necessity for attracting other developers.

Architecture. In order to make a software system easily approachable, it
must be easy to understand by the developers. This in turn calls for an ar-
chitecture that can be easily understood and communicated - and preferably
documented. In addition to this, one should pay special attention to the design
drivers of the architecture: Is the system designed as a monolithic system that
solves a particular problem, or has the design taken into account extensibility,
modifiability, and the use of the system as a subsystem in another system. Pro-
vided that the architecture has been designed with changes in mind, it is often
easier for other developers to alter certain parts to create various types of new
systems.

Quality attributes. In software, quality attributes are commonly associated
with architectures. Indeed, many qualities, such as performance, scalability,

6 Timo Aaltonen et al.

and memory footprint, are often dictated by the architecture. However, when
considering a completed software system, quality properties are often considered
separately from the actual implementation, which makes the perceived quality
of software being released as open source an important factor.

Community In order to release a software system in open source, one generally
has an idea on what kinds of developers should get involved. Careful planning
of the intended community participants can have an impact on what to release
and how.

Purpose. As already stated in [9], good work on software commonly starts
by developers scratching their own itch. Therefore, we feel that in order to
become attractive for developers, the released system should be of practical
importance and relevant for the developers. This in turn enables one to solve
their own problems, not further developing some random software for companies
who seek profit in maintenance and creativity of others. Based on the above,
the goal of the community is probably the most important single issue when
releasing a piece of software as open source. Provided with a mission statement
welcomed by developers, companies, and other organizations, a community can
obtain support from numerous sources. The goal must be practical enough to be
meaningful for the developers, as well as clear enough to manifest itself in the
development. Unfortunately, estimating the attractiveness of a certain purpose
is difficult, and therefore it is sometimes difficult to make assumptions in this
respect. Moreover, since there commonly are numerous similar ongoing projects,
the adequacy of the mission is only a prerequisite for a successful launch, not
an automata for succeeding in community building.

User community. In addition to partners developing software, we feel that
the potential for the user community is important. Based on recent findings, it
seems that a community of 100 users can support one full-time developer. In
contrast, provided with an active user community, development resources can
be invested in actual development, and the user community can provide support
for other activities, such as peer user guidance, documentation, and testing.

Partners. The definition of partners that join in the community can be
straightforward. For instance, if a releasing company has been subcontracting
from another company, the latter may be automatically involved in the newly
formed community. Moreover, the use of subcontracting may also imply that
at least some documentation exists, which in turn simplifies introducing the
system to other partners. In general, getting partners involved in a community
guides the authoring company towards processes that liberate the development
from company specific tools and practices. In contrast, if the company that is
about to release a piece of software as open source has no partners that would
share the interest in the development, there should be a clear plan to motivate
others to join in the development effort.

Legalities In the context of companies, one of the most commonly consid-
ered aspects of releasing software as open source is legalities. This is a wide
topic to cover, and there can be several subtle differences in different contexts.

Evaluating the Readiness of Proprietary Software for OS Development 7

Here, we assume a straightforward view where different concerns are discussed
independently.

Copyright and intellectual property rights (IPR). Most commonly, companies
release software whose copyright and IPR they own. However, things can be
more complex, if subcontractors or open source communities have provided
pieces of the system that is being released. If the company does not own the
copyright, it can sometimes be obtained via different transactions.

Licensing. Provided with the copyright of the system to be released, the
company is in principle somewhat free to determine its licensing scheme. How-
ever, the choice of license (or licenses if several alternatives are offered) also has
an effect on how others perceive the community. This in turn potentially affects
the willingness of developers to participate in the community effort. Therefore,
since licenses that have strong copyleft, such as GPL [6], can be considered safe
for community building, they bear some advantage over other licenses in this re-
spect. However, since licenses with no copyleft, such as MIT [6] and BSD [6], are
favored due to their liberal flavor in some other contexts, one should also take
the mission of the community into account when defining the license. Moreover,
license compatibility with related systems should also be considered. Further-
more, one can even compose a list of accepted open source licenses, which can
be used during the development.

Branding. Availability of brand names is an issue for any project looking for
a good name that can be used in public. While issues such as trademarks may
bear little significance when developing an in-house product, once the product
is released, branding becomes an issue. Moreover, since an open source project
can be a long lasting one, selecting suitable brand names is important. The
same applies to hosting the project, since in many cases it would be practical
to reflect the name of the project also in the domain.

Releasing Authority The final element we address in our framework is the
releasing authority, most commonly a company in the scope of the framework,
which is targeted to releasing in-house software as open source. However, also
other parties can act as the releasing authority, including universities, non-profit
organizations, and individuals.

Mindset, culture, and motivation. Sometimes the mindset of developers
working in a company is somehow biased - either positively or negatively - to-
wards open source development. This is particularly true when their pet project
is about to be open sourced. In order to benefit from an open source commu-
nity, the releasing authority should be mentally and culturally ready for dealing
with developers outside the company under fair terms. The terms include equal
access to code, similar guidelines and conventions, as well as mutual respect.
We believe that the seeds of building such cooperative relation should somehow
be sewn well before entering the pre-bazaar phase. Therefore, evaluating the
readiness of the company to go for open source is fundamentally dependent on
mindset, culture, and motivation.

8 Timo Aaltonen et al.

Process, organization, and support. In order to gain benefits from open sourc-
ing a system, the releasing authority should have a system in place that provides
support for users and developers. This requires planning of a process that is to
be followed, and putting the process in practice by the support organization.
Establishing such support organization is a natural step to take towards the
end of the pre-bazaar phase. However, it should be in place before the actual
release, since support should be available from the very beginning.

Infrastructure. In order to establish an open source project, the releasing
authority sometimes must be prepared to provide infrastructure. For instance,
the company that releases a piece of software may provide web servers for
hosting the system, as well as maintain a build system needed for compiling the
code on top of certain reference hardware. While some systems do not need such
support as such - it would be perfectly reasonable solution to release a vanilla
Linux program in SourceForge - companies often wish to gain visibility through
offering the download opportunity. Moreover, if a company is releasing a system
targeted for the development of embedded systems, it is only reasonable to
assume that also tools for composing builds are offered from the very beginning
in open source.

The R3 evaluation model is organized into three main levels. For each di-
mension there are a number of categories. Each category is then associated with
a number of measures (i.e. questions). This is illustrated in Figure 1 taking the
software dimension as example.

Dimension Software
Category Source code Architecture Quality
Measure m1 m2 m3 m4 m5 m6

Fig. 1. The R3 framework model

3.3 Evaluation Process

The diversity of software products (and different goals of companies) makes
it impossible to evaluate all software in similar fashion. The evaluation model
itself must be tuned to take into account the characteristics of the product
under release. Not all criteria make sense to all cases, and some crucial criteria

Evaluating the Readiness of Proprietary Software for OS Development 9

might be missing. The proposed R3 model should be considered as a template
which has to be instantiated to each case. Instantiation R3 means going through
all aspects of the model and validating that they are appropriate to the case in
hand.

At the concrete level the evaluation process starts with downloading R3
Spread Sheet Template from http://tutopen.cs.tut.fi/R3/R3_Template.
x1s. Instantiating the template requires removing and adding dimensions and
criteria to the spread sheet. Also the evaluation weights require attention from
the evaluator.

On the Criteria The evaluation criteria form a continuum from a criterion
that can stop the release process to others that can be easily fixed. Examples of
the former are some legality issues, like possible copyright and IPR violations,
and probably mindset of partners. Changing these is hard or even impossi-
ble. The latter group can be worked on during the releasing process: usability,
and quality can be improved; infrastructure and process can be organized. An
example continuum is depicted in Figure 2.

IPR usability
copyright partner mindset quality infrastructure

-
L

Fig. 2. The continuum of criteria

Actual Process The evaluation process consists of three phases depicted in
Figure 3

Phase 1: Deciding the evaluation order. The evaluation is carried out accord-
ing to continuum of criterion. This allows early no-go decisions. If, for example,
the company does not own copyright of the product, it makes no sense to con-
tinue the process. However, there is no one unique and universal order of the
criteria, but the order is fixed in the beginning of the process.

Phase 2: Data collection and processing. Most of the work is done in this
phase. The criteria are evaluated one by one in the order fixed in the first phase.
This activity is shaped by the framework model presented in Figure 1. First a
dimension (e.g. software) is picked, then a specific category (e.g. source code) is
selected, and finally concrete questions are answered. After each evaluation the
decision of continuing the release process is made. Each measurement is filled
to a standard spreadsheet with justification of the evaluation.

Measures require expertise from different fields: engineers, marketing people,
legal experts and external open source experts. For example, the legal depart-
ment of the company is often contacted in the beginning of the evaluation

10 Timo Aaltonen et al.

to verify the copyright and possible IPR issues of the release. Engineers take
care of technically-oriented criteria. External open source experts have probably
the best understanding of the whole release process, and they know how open
source communities operate. The releasing process reminds much of marketing
challenges, therefore, marketing people are valuable for the process.

Phase 3: Data translation. In the data translation phase the evaluation of
the criteria is transformed to an array of scalars with respect to the dimensions
of the framework. The final result of the process is a four-dimensional array
of evaluations of each dimension: software, community, legalities and releasing
authority.

[]

Deciding the evaluation order

Data collection and processing

Data translation

< 0 7

Release Readiness Rating

N

Fig. 3. Evaluation process

3.4 Open Source Engineering

R3 assessment of proprietary software is not just a pass-or-fail process. The out-
come of R3 evaluation is a set of recommendations based on which the software
under evaluation and its development environment undergoes an open source
engineering process. This process needs to be carried out before evangelizing the
software to the open source community. The aim is to eliminate the problems
and shortcomings identified during the assessment process. This will increase
the success rate of community building and sustaining. The open source engi-
neering process itself is driven by different kinds of influential factors that follow
the same criteria as we used in the R3 framework.

In the case of the software itself, any considerable rework requires an ex-
tensive investment. Therefore there are numerous restrictions on what can be
accomplished during the pre-bazaar phase. Still, it is possible to clean up the
code, if there are some company specific remarks in comments. Since the code

Evaluating the Readiness of Proprietary Software for OS Development 11

may already be in use in products, special attention must be paid to determine
what to do with comments that indicate faulty or incomplete features. To some
extend, documentation can also be composed in pre-bazaar phase, or simply
included in the comments in the code.

Adding purpose to a community as an afterthought can be difficult. Assum-
ing that a system has been developed with only business interests in mind, it
can be difficult to introduce attractions for an independent developer. How-
ever, a mission for a community can be defined in pre-bazaar phase, provided
that the software to be released enables a number of possible uses. Unfortu-
nately companies can be somewhat biased towards supporting their own plans
regarding the released system only, which in turn sometimes hinders the out-
side participation in the development for reaching some other goals, especially
if the missions are conflicting. For instance, the releasing authority may not be
willing to incorporate a community contribution for free, if the same feature
can be sold for a commercial customer by the company.

Legalities most commonly form the most straightforward category of items.
There is a lot of freedom to define the other legal aspects once the copyrights
have been provided. However, copyrights can be difficult to obtain in pre-bazaar
phase only.

The seeds of building cooperative relation between the releasing authority
and the actual community should in our opinion be somehow sewn at the latest
when entering the pre-bazaar phase. This can already be evidenced by existing
ways of working and infrastructure, but they can also be introduced later on.

4 Case Study

In order to demonstrate our approach, we have applied the R3 framework
to measure the open source readiness of an industrial software platforms:
Wringer and Gurux. The Wringer software is a JavaScript binding platform
for GNOME/GTK+ [4] using V8 [12] as JavaScript engine. It was originally
developed by Sesca Mobile Oy. The Gurux software [5] is a platform for devel-
oping device communication systems.

4.1 The Wringer case

The R3 evaluation of the Wringer platform has been carried out separately by
the releasing authority as an internal stakeholder and by us as external open
source experts. It was observed that we agree on most answers. However there
are still a number of differences. For instance, in the software dimension, there
were few differences with respect to rating the technology used, the use of well-
known design principles, rating of bugs and warnings, and scalability level. We
received more pessimistic answers from the releasing authority. A partial reason
for this could be that the company is assessing Wringer, which is a prototype
software, relative to other high quality products developed inside the company.

12 Timo Aaltonen et al.

On the opposite, the answers with respect to the community perspective
for instance have been mostly identical. This probably shows that both parties
are aware and honest about the community-related properties of the software.
Also this shows that both parties are fairly aware of related user and developer
communities.

Taking a numerical perspective, we noticed that the software and legal-
ity dimensions received the best scores compared to the community and re-
leasing authority dimensions. This confirms our hypothesis that companies are
generally dealing with open source from legality point of view. We could also
infer that software-related properties are considered important irrespective of
whether the software is supposed to be used and developed as closed source or
as open source.

The low rating of the community dimension suggests that the company have
to work on making the software more attractive to open source communities,
involve business partners if possible, and look for potential users of the soft-
ware. As for the releasing authority dimension, the low rating suggests that
the company is not fully ready for open source operations. Concrete remedial
actions include training internal developers, setting clear open source related
processes, and building an infrastructure for the project. As mentioned earlier,
these remedial actions are to be carried out in the context of an R3 evaluation
post activity called the open source engineering process.

4.2 The Gurux case

Four people from the releasing authority carried out the R3 evaluation for the
Gurux platform before it was released as open source in November 2009. The
overall impression was positive and R3 was considered a valuable and useful
tool in the pre-bazaar phase. The evaluation process acted as a good checklist
for things that need to be considered when planning the release and showed
well the items where most improvement is required. In addition, those items
where improvement would be most beneficial were easily identified with R3, i.e.
the releasing authority knew where to focus most of the effort.

Some items were not seen relevant in the case of the Gurux platform. How-
ever, this was not a significant problem for the process as irrelevant items were
simply skipped by the people doing the evaluation.

Sometimes choosing the correct grading was found hard. Grades like ”well”
and ”reasonably” may mean different things to different people as these types
of grades depend on how things are seen by individuals doing the evaluation
and what they value.

5 Future Work

We are in the process of improving the R3 framework based on our experiences
with the case projects. This includes adjusting the weights, proposing new met-
rics, and covering other dimensions if found necessary. Currently the weights

Evaluating the Readiness of Proprietary Software for OS Development 13

are chosen based on experience gained forn earlier similar case studies. As the
framework is applied to further cases, enough data will be gathered to enable
us to better finetune the weights.

Furthermore, the case studies confirmed that it is difficult to come up with
a one R3 framework template for all software projects. For instance, usability
as a quality metric should be considered for end user software but was found
less relevant in the case of software platforms like Wringer and Gurux. We plan
to provide different templates for different kinds of software. Still, it is highly
probable that the R3 framework template needs to be adapted to the needs of
the subject software on a case by case basis.

6 Conclusions

Similarly to other major steps in software development, aiming at releasing a
piece of in-house software as open source requires an engineering effort. More-
over, in order to estimate the outcome of the release, tools and techniques are
needed for evaluating the potential of the emerging community as well as the
attractiveness the system for external developers.

In this paper, we have introduced the concept of Release Readiness Rating
Framework to determine how complete an in-house piece of software is for
releasing in open source, and what its potential to attract external developers
is - in essence evaluating how easily a cathedral could be transformed into a
bazaar. We also discussed potential engineering actions that can be taken as a
part of this transformation process, and provided a summary an industrial care
we have studied.

References

1. BRR. http://www.openbrr.org/. Last visited March 2009.

2. Karl Fogel. How to Run a Successful Free Software Project. O’Reilly Media, Inc.,
Oct 2005.

3. Bernard Golden. Succeeding with Open Source. Addison-Wesley, 2004.

4. GTK+. http://wuw.gtk.org/. Last visited March 2009.

5. Gurux/open source. http://www.gurux.fi/index.php?q=0penSource. Last vis-
ited December 2009.

6. Licences. http://www.opensource.org/licenses. Last visited February 2009.

7. Jenny Preece. Online Communities: Designing Usability, Supporting Sociability.
Wiley, 2000.

8. QSOS. http://www.gsos.org/. Last visited March 2009.

9. Eric S. Raymond. The Cathedral and the Bazaar. O’Reilly Media, 1999.

10. Matthias Stiirmer. Open source community building. licentiate thesis, 2005.

11. the Symbian Foundation. http://www.symbian.org/. Last visited December
2009.

12. V8 JavaScript Engine. http://code.google.com/p/v8/. Last visited February
20009.

Case 1I: Publication IV

Terhi Kilamo, Imed Hammouda, and Mohamed Amine Chatti. Teach-
ing Collaborative Software Development: A Case Study. In Proceedings
of the 34th International Conference on Software Engineering (ICSE’12),
pages 1165-1174. Zurich, Switzerland, June 2 — 9, 2012, Institute of Elec-
trical and Electronics Engineers (IEEE).

In referenceo IEEE copyrightedmaterialwhich is usedwith permissionn thisthesis,
the|[EEE doesnot endorseany of TampereJniversity of Technology'productsor
servicesInternalor personaliseof this materialis permitted.If interestedn
reprinting/republishingEEE copyrightedmaterialfor advertisingor promotionalpurposes
or for creatingnewcollectiveworksfor resaleor redistribution pleasegoto
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

to learnhow to obtaina Licensefrom RightsLink.

kulkki
Typewritten Text

kulkki
Typewritten Text
In reference to IEEE copyrighted material which is used with permission in this thesis,
the IEEE does not endorse any of Tampere University of Technology's products or
services. Internal or personal use of this material is permitted. If interested in
reprinting/republishing IEEE copyrighted material for advertising or promotional purposes
or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
to learn how to obtain a License from RightsLink.

kulkki
Typewritten Text

Teaching Collaborative Software Development:
A Case Study

Terhi Kilamo, Imed Hammouda
Department of Software Systems
Tampere University of Technology
Tampere, Finland
firstname.lastname @tut.fi

Abstract—Software development is today done in teams
of software developers who may be distributed all over the
world. Software development has also become to contain more
social aspects and the need for collaboration has become more
evident. The importance of teaching development methods used
in collaborative development is of importance, as skills beyond
traditional software development are needed in this modern
setting. A novel, student centric approach was tried out at
Tampere University of Technology where a new environment
called KommGame was introduced. This environment includes
a reputation system to support the social aspect of the environ-
ment and thus supporting the learners collaboration with each
other. In this paper, we present the KommGame environment
and how it was applied on a course for practical results.

Keywords-collaborative software development; SE education;
case study

I. INTRODUCTION

Software is created by people, with people and for people.
These people may work in varying environments, may have
their particular backgrounds and act under different condi-
tions [3], yet sharing in many cases the same activities and
interests. This is exhibited in recent software development
settings such as pair programming, global software engineer-
ing and open source software, where individuals —from de-
velopers to users— join together to work on common software
engineering activities. In many such settings, developers are
expected to collaborate with other members with limited
face-to-face contact. This leads to new kinds of software
engineering problems including technical, organizational,
and social challenges.

Understanding team work in collaborative software en-
gineering is crucial to understanding how methods and
tools are used, and thereby improving the creation and
maintenance of software systems as well as the management
of software projects. A natural starting point would be to
introduce those concepts to software engineering graduates.
In this regard, a number of approaches have been proposed
[8], [14], [16], [25]. However, many software engineering
curricula still lack education on collaborative software de-
velopment. In particular, the software engineering education

Mohamed Amine Chatti
Informatik 9 (Learning Technologies)
RWTH Aachen University
Aachen, Germany
chatti@cs.rwth-aachen.de

community is continuously seeking innovative ideas, effec-
tive tools, and valuable experience.

Driven by social learning theories, this paper introduces
an approach to teaching collaborative software development
where students collaborate collectively to achieve a common
goal. The approach is based on adapting reputation systems
[11] and using them to compute and publish members
contribution in a team. The approach allows students to
generate new knowledge through interaction with the teams
past experience and contribution with new ideas. The idea
is also inspired by the experiences of using reputation
systems to reward and recognize developers in open source
communities such as Qt [23].

We present an example reputation model and a concrete
reputation environment known as KommGame that mim-
ics real team projects. The environment has successfully
been tested at Tampere University of Technology (TUT)
to introduce community driven development to software
engineering students.

The remainder of this paper is structured as follows:
Section 2 gives the background of our work, including
social learning theories, personal learning environments,
teaching collaborative software development and reputation
systems. Section 3 presents an example reputation model and
environment for collaborative software development trams.
Section 4 presents a concrete course setting applying the
proposed approach. An evaluation of the course and the
underlying approach is presented in Section 5. Finally we
conclude in Section 6.

II. BACKGROUND

In modern pedagogical approaches, the learner plays a
central role. Learning is seen as an active effort of the learner
with intrinsic motivation towards learning and it builds new
knowledge based on the learner’s previous experience. The
role of the instructor is to assist the learner throughout the
learning process by applying the right teaching methods and
by providing a suitable learning environment. In collabora-
tive software development, the software product gets created
by a team, or a community, of developers, who keep in

close communication throughout development. Collaborative
software development is utilized within companies both
in-house and to run multi-site development. Open source
software is also developed through collaboration of globally
distributed developers. As learning is a social process as well
as an individual effort, teaching collaborative software de-
velopment benefits from adding social aspects into teaching
methods to reach the best learning outcome.

A. Learning is Social

Learning is social in nature, as has been emphasized
by many researchers. Lave and Wenger [18]., for instance,
introduce communities of practice (CoP) as ideal vehicles
for leveraging tacit knowledge and learning and explore the
participation metaphor of learning. More recent research also
view learning as a social process. Most of the computer-
supported collaborative learning (CSCL) literature relies
on the socio-cultural theory of learning, such as social
constructivism [22], [32] and activity theory [32], [10].
Recently, Siemens [26] stresses that knowledge resides in
networks and points out that the challenge today is not what
you know but who you know, and introduces connectivism
as a new learning theory, which presents learning as a
connection/network-forming process. Chatti et al. [5] discuss
the Learning as a Network (LaaN) theory, which puts the
learner at the center and represents a knowledge ecological
approach to learning. LaaN starts from the individual learner
and views learning, for an individual, as an issue of con-
tinuously building, maintaining, and extending her personal
knowledge network (PKN). A PKN is comprised of a myriad
of explicit knowledge nodes (i.e. information) and tacit
knowledge nodes (i.e. people) with complex connections.
In order to learn, we build, maintain, and extend our PKN
with new explicit/tacit knowledge nodes and when needed
we activate the nodes that we believe are able to help us
in mastering a learning situation. The process of developing
a PKN is driven by the learning demands of the individual
learner. In LaaN, participation suggests permanent listening,
active networking, and genuine knowledge sharing with
others, thus enabling each participant to build and extend
her PKN, and in so doing learn.

Recognizing the social aspect of learning, learning ini-
tiatives need to place a strong emphasis on knowledge
networking and community building to leverage, create,
sustain and share knowledge in a collaborative way, through
participation, dialogue, discussion, observation and imita-
tion.

B. Personal Learning Environments

Learning is self-directed in nature. Among others, Hase
and Kenyon [31] argue that this rapid rate of change suggests
that we should now be looking at a learning approach where
it is the learner who determines what and how learning
should take place, and point out that self-organized learning

may well provide the optimal approach to learning in the
twenty-first century. In recent years, self-organized learning
is increasingly supported by personal learning environments
(PLE), where the learner is in control of her own de-
velopment and learning. The PLE concept translates the
principles of self-organized learning into actual practice.
From a pedagogical viewpoint, a PLE-driven approach puts
the learner at the center and gives them control over the
learning experience [4].

C. Reputation Systems in Teaching

Reputation systems are used to measure the contribution
of individuals in many online communities. They are also
applied in versatile other fields such as e-commerce, search
engines and social news. As reputation systems are applied
for measuring online activities one can argue that they can be
applied in the e-learning educational context where most of
the activities happen online in order to support the learning
outcomes and activities. Students today are already children
of the web 2.0 era and thus well accustomed to existing
reputation models. Furthermore, those who are active in
online communities on their free time are used to gaining
reputation through their activities.

The reputation for any entity, such as a person, an activity
or a product, can be decided in several ways: by giving
feedback to the entity, by rating the entity with a points
system, by marking the entity as a favorite or by voting for
the entity. All of the models mentioned above are simple, but
simple does not mean less powerful, less useful or that they
do not produce desirable results. A more versatile reputation
model suited for a more complex setting such as a collab-
orative software development environment can be built by
creating an aggregation or a fitting combination of the more
simple models. In [11] Farmer discussed different reputation
models, which are listed in Table I with a description of their
reputation values.

Table I
LIST OF REPUTATION MODELS

Model
Rating

Reputation value

The average of all ratings that the entity

has been given.

Favorites and Flags | The number of times the entity has

been marked.

This-or-That Voting | The number of votes to the entity.
Voting for a particular entity within

a bounded set of possibilities.

Points The sum of points for different actions an
active entity has engaged in.

Reviews The number of normal ratings or freeform
text comments.

Karma The aggregate of all online activities of

interest.

In a rating model the entity is rated by giving it a value
from a given range. There are different types of rating
models in use, e.g. a points scale rating, a star rating, or
the so called HotOrNot rating where only two rating values
are used. Through rating it is quick and easy for the users
to provide reputation feedback, for example www.imdb.com
provides this kind of a model for users to rate movies.

The favorites and flags model gives control to the com-
munity for identifying entities of exceptionally high or low
quality. There are three variants of the model: vote to
promote, favorite, and report abuse. Vote to promote model
is for users to vote for the supporting a particular item
in a pool of choices for it to gain a step up. A favorite
model keeps track of the number of times a particular entity
has been bookmarked as someones favorite, thus increasing
the reputation of that entity. Report Abuse is a negative
reputation model. This model is used to avoid bad content
or to identify it so it can be removed if necessary. In this
model total reputation is the number of times particular item
is flagged as abuse and the higher the reputation gets, the
more likely the item is abusive.

The this-or-that voting model is used when the best option
within a bounded set of options available needs to be chosen.
An example of this type of model is when someone answers
a question, the other users can vote for the answer as helpful
or useful. As the votes accumulate the option most perceive
as useful rises above the others.

A points model is used when a very specific value of
user activity is desired. When a user is engaged in various
actions, these actions are recorded, weighted and summed
to calculate a value representing the total reputation. The
reviews model is also a combination of rating models or
freeform text comments on a particular entity. For exam-
ple in www.amazon.com users can write review comments
about the product they bought. The reputation increases or
decreases based on the review comments.

The term karma is used to refer to the results humans get
due of their past actions. A karma model of reputation is
used in particular when the entity to which is the reputation
is subjected to is human. There are two primitive forms
of karma: participatory and quality. Participatory karma is
used on representing the amount of contribution the user has
made. Quality karma on the other hand focuses to represent
the quality of user contribution over simply the amount of
it.

D. Related Work

Collaboration has been used in teaching different as-
pects of software development to university students. In
[31] requirements analysis is taught by using collaborative
students teams. Collaborative software development itself
is in focus in [12] where students from different countries
collaborate on a software learning project. Similarly in [3]
a multidisciplinary environment ranging several universities

was tried out to create a more realistic setting for learning
collaborative development. Teaching collaborative aspects of
software engineering is also reported in [16], [14] and [25].
In [8] a tools perspective is taken.

While global software development is not necessarily
always collaborative in nature, multi-site projects can also
work on a joint software project in collaboration with each
other. In [7] the authors describe an environment to teach
practical software engineering in a setting mimicking a
global multi-site project and with a collaborative approach.
Similar endeavors that address the global aspects of software
development are reported in [15] and [7].

As open source software (OSS) had gained importance
also a software business model, the need for OSS profes-
sionals has become apparent. The collaborative nature and
the key principles of open source development are discussed
in [24]. In the recent past collaborative software development
has already been taught from the OSS perspective [19],
[20], [4]. Also, some universities have tried out teaching
software engineering by using OSS as a collaborative learn-
ing environment [27] [13], to help students learn basic and
advanced software engineering topics. In [2] open source
evolution is taught in software engineering courses to give
students a more realistic experience. On a similar note
Google and The Finnish Center for Open Source Solutions
(COSS) have conducted summer code camps to encourage
students collaboration and participation in real life open
source project. There are some communities like Teaching
Open Source [29] and OpenSE [21] dedicated for promoting
and researching open, online and collaborative learning.

Reputation systems have been a popular method of moti-
vating the participants of online communities. Even though
only a few OSS communities have adopted the reputation
systems for motivating developers, it is discussed in [30] that
reputation systems suit small groups of young participants;
they have a high competitive sprit, which makes learning
more active and motivated which supports the suitability to
teaching environments. A Reputation system can be applied
in the CoP [6] context. In [33] it is showed that reputa-
tion systems are applicable in the context of e-learning.
A web based reputation system called SocialX [28] was
designed to support collaboration and social aspects of e-
learning. SocialX lets the students to sharing and exchange
of solutions, to discuss solutions of exercises through a
forum, and to participate in project activities. Combined with
our findings these support the use of reputation systems
in educational context in combination of a collaborative
development environment built for educational purposes.

III. REPUTATION ENVIRONMENT FOR TEACHING
COLLABORATIVE SOFTWARE DEVELOPMENT

In collaborative software development the software de-
velopers can be widely distributed over sites separated by
geographical distance and time zones. The consequence of

this is that most of activities and communication are carried
out online. Hence, collaborative development requires an
infrastructure where the developers can perform their project
related activities. For example such an infrastructure can
include a bug tracking system, a wiki system, a discus-
sion forum, a version controlling system, an IRC channel
and mailing lists. The most common activities in software
development relate to bugs, features, improvements, and
discussions on development details between developers via
different methods and among variant groups of people.

A reputation model for online software development ed-
ucation that incorporates collaborative aspects of the de-
velopment work should be designed so that most common
activities are taken in to consideration in order to give the
learners a realistic experience and thus promoting apprehen-
sion of key skills. From a developer community and software
development perspective all kinds of contributions are of
importance and there is no one good metric with which to
compare or quantify different types of contributions over
each other. In an educational context, however, the course
moderator or tutor can decide which types of contributions
promote key skills and should thus be emphasized. Taking
this viewpoint, we can design a reputation model which
supports learning the right skills and in the same time
supports collaboration.

We argue that the karma reputation model fits well with
the activities and the nature of collaborative software de-
velopment to enforce social learning and uphold motivation
among students in an online learning environment at the
same time. Both forms of the karma model, i.e. participatory
and quality, can be used to measure both the amount and the
quality of contributions.

Table 11
ACTIVITIES THAT CAN CONTRIBUTE TO PARTICIPATORY KARMA

Category Activity

Bug Reporting new bug
Commenting on bugs
Closing bugs

Feature Request new feature
Commenting on feature request
Closing new feature

Improvement Request Improvement
Commenting on Improvement
Closing Improvement

Wiki pages Creating/Editing wiki pages

Code repository | Apply a patch
Add a new code file

Removing a code file

Forum Starting new discussion
Commenting discussion
IRC Communicating through IRC

Mailing List

Send email to mailing list

A. Concrete Quantities of Karma

As said, all kinds of online activities can contribute to the
reputation of an entity. The activities that were considered
for the participatory karma values in a software development
environment are listed in Table II.

In practice all these activities need to be evaluated and a
single karma value be formed. Let us take a code bug han-
dling process as an example. In the process of contributing
to the development of a piece of software anyone may find
a bug in the software. Then the bug is reported vie a bug
tracking system used. Other developers verify, comment on
and discuss the bug and eventually someone writes the code
to fix the bug and the bug report gets closed. These all add up
to the karma values of the contributor. The feature requests,
and the requests for improvements, are handled in the same
manner. Essentially all developer activities from adding or
editing open content on the wiki pages or participation to
discussions with other developers via the available channels
to adding code or applying patches to the source code in the
code repository, contribute to the developers participatory
part of the karma value. The developers can also grant
quality karma to others in the model by liking their activities.
The number of these bookmarks, likes, will then contribute
to the quality part of the karma value of the author of
the wiki page. At regular intervals of time, a best quality
contributor can be selected based on their activity, or quality
of their activity, or be given a hat. The hat is considered as
token for best quality contribution. The number of hats any
contributor receives contributes to their quality karma also.

B. Karma Model for Teaching

The karma model we suggest is composed of the concrete
contributions and the karma attributes given in Section A.
Each contribution is given a particular weight relative to
their size or importance to the developer community. As
in our case the model is applied in an educational setting
with pedagogical goals the values are chosen by the course
moderator so that the highest weights support the key
learning outcomes. The final karma value of each learner is
the sum of weight times of each contribution. The universal
karma model can be written as

n
Karma = Z(fk(Contribution) + f(Favorites)+ W
k=1
g(WeeklyQuality Tokens)

Here n corresponds to the total number of contributions. fk
is the weight function corresponding to contribution type.
Favorites is the number of like bookmarks a content author
gets. Weekly Quality Tokens corresponds to the number
of time the particular participant was selected as the best
quality contributor of the week by the rest of the members of
community. The karma model in Equation 1 is composed of
two types of karma, participatory karma and quality karma.

The sum of all contributions gives the participatory karma.
The quality karma is composed of two parts, favorites, and

weekly quality tokens.

For example, a sample karma equation, which covers
activities related to bugs, features, improvements and wiki
edits, is ﬂfiven in Equation 2. In the formula each activity
is multiplied with its associated weight. Total karma is the
sum of all karma values gained from each activity. The
weights were set based on the relative importance of the
contributions to the example project. However, what we used
here is just a framework that could be adapted to different
project and course contexts.

Karma = 6 * \/m“. of bugs reported+

2% (nr. of bugs closed + 4 x \/ nr. of feature reqs.+

4 % \/nr. of bug comments + 2 x (nr. of closed new features)+

4% v/ nr. of requests + 3 * \/nr. of improvements comments+
2 % \/nr. of closed improvements + 4 x /nr. of edits+
4%/ nr. of likes + 4 % \/nr. of weekly qual. tokens

(@)

There is mapping between the first and the second equation
The sum of all the contributions that belongs to bugs,
features, improvements and wiki edits is the participatory
part of total karma, this corresponds to fk(contributions)
in Eq. 1 and quality karma is calculated from the number
of likes. This corresponds to f{Favorites) in Eq. 1 and
lastly the number of weekly quality tokens corresponds
to g(WeeklyQualityTokens). The weight function of each
contribution is chosen based on the priority of contribution,
in this example bug reports is given the highest priority.

C. KommGame Environment

We have developed an OSS learning environment based
on the reputation model presented earlier. The learning envi-
ronment, called KommGame [17], maintains karma values to
support collaboration through gaining karma via collabora-
tive actions. The gained reputation acts also as a motivational
factor for the learners as the higher karma values get more
visibility. Healthy, positive competition between learners can
support learning. The KommGame environment forms an
infrastructure required for collaborative and student centric
learning.

The KommGame infrastructure has been developed to
mimic the infrastructure of a real online software devel-
opment environment. It has features to add and edit open
content, a user management system to manage users of the
community, a system to track user activities, a communica-
tions channel, a bug management system, a source code base
to maintain source code of the project, a reputation system
to calculate the karma of each community member and an
user interface to publish karma values.

From the architectural point of view the learning environ-
ment can be divided into the following modules:

« Content management module
o Blogging module

« Bug reputation system

« Karma Engine

« User management module

« Version control system
All the modules share a common learner database. The
Karma module interacts with all other modules to collect
the learner contribution information and calculates the user
karma based on learner contribution and makes the karma
value publicly visible to every other learner.

IV. CASE STUDY: A TUT SOFWARE ENGINEERING
COURSE

A course on OSS was organized at Tampere University
of Technology for the second time during the academic year
2009-2010. KommGame with an open source development
community infrastructure was setup for the course and a the
reputation model was set to match the educational goals. The
main goal of the course was to give a practical experience
of OSS development in an actual open source infrastructure,
i.e. give the learners the possibility to learn collaborative
software development, in this case in the context of open
course, in a realistic, but still educational setting.

A. Course Setup

The duration of the course was 16 weeks and its extent
was 3 to 6 credits depending on learner performance. Every
week students participated in a two hour classroom session.
The first part of the session was dedicated to discussing a
specific open source topic. The second part is to discuss
student contributions to an example open source project.
Both parts use the KommGame environment to record stu-
dent contributions. Attendance was not mandatory. However,
participating in the example project and contributing to
OSS topics was an absolute requirement to pass the course.
The course had two main coordinators and two TAs, who
were responsible for the KommGame environment and the
community, for the course.

A total number of 24 students registered to the course.
Initially two students who had the prior knowledge of open
source development and infrastructure were assigned the
committer role and the rest of the students played the role of
developers, testers, and users. The KommGame environment
was introduced to the students during the first class session.
As the environment is accessible from the Internet, like
in real open source projects, students were allowed to
contribute to the project at any time they wanted to do so.

B. Course Activities

Course activities were divided in to three parts. In the first
part every student had to select one topic from a given set of
topics related to OSS. Then each student contributed with
their own part of content to the wiki so that information
could be accessed by everyone and would be available also
for the upcoming instances of the course. Every week a

number of students presented their topic to the rest of the
class. During the presentation, another group of students
acted as topic discussants providing peer review on the
content.

he second part was to participate in the development of
an example open source project called aKro. Initially aKro
was developed with very basic features and made available
in the version control system. In this exercise students were
asked to add new features, fix existing bugs and maintain
the project wiki. Whenever students observed a bug, im-
provement, or a new feature request they reported those
issues on the bug tracking system. Any student interested
in the reported issue could take up the report and submit a
corresponding patch file. Once the patch file was submitted
committers would test the patched version and apply the
patch. During the learning process students used IRC as
a communication channel. Every student maintained their
own blog page where they reported their activities in the
project. Every week in the classroom the course coordinators
inspected the contributions of the past week and rewarded
the student with the best quality contribution.

The karma model used in the course covers the following
activities:

o Creating or editing Wiki pages.

« Reporting bugs, new feature and improvement requests.

o Comment on bugs, new feature and improvement re-

quests.

o Closing bugs, new feature and improvement requests.

o Thumbs up to wiki content page.

« Adding the hats for best quality contributor of the week.

The third part of the course was to contribute to a real
open source project after getting familiar with the OSS
principles and practices covered by the first two course parts.
As possible open source projects, students were introduced
to the Apache Software Foundation programme [1] and the
Demola open innovation platform [9]. However, they were
free to choose whichever project they liked.

C. Example Scenarios

Learners can do different activities in the KommGame
infrastructure in order to contribute to project and open
content. Some example scenarios of activities that users can
do with the infrastructure include accessing the environment,
contributing open content, viewing the karma report and
viewing individuals profile. Details of each are discussed
in the following.

1) Accessing the KommGame Environment: The Komm-
Game environment is accessible from the Internet at [17] by
anyone interested. The user has to provide login credentials
in order to access the environment. Once the user is logged
in the user interface looks like the one shown in Figure 1.
Different parts of KommGame are accessible through links
that also are visible in Figure 1. The View issues link gives
the view to all reported. The Report Issue link is used to

report a new issue as the name suggests. The FLOSSpedia
link accesses the open content generated by participants.
Through the Project wiki the wiki content created by the
participants can be accessed. Finally the Karma Ranks link
allows the karma value of all the students to be investigated.

2) Adding Content: The system used to share the open
content with community is built as a wiki. Every participant
can add open content to the wiki system by providing the
authentication credentials. Figure 2 shows a wiki edit feature
where the user is adding content to the wiki. Once the
content edited is saved, any other user can start editing the
page. If any of the participants likes the content of the wiki
page, they can bookmark the page as a favorite. When any
of the wiki pages is marked as a favorite then the author of
the page gains quality karma.

3) Viewing the Karma Report: All participants can view
the karma values of all the participants in a graph using the
Karma reporting system. Figure 3 shows a sample view of
the karma graph. The names in Figure 3 are blurred out to
protect user privacy. The graph shows the different categories
of users, which are reported in different colors. Each vertical
bar in the graph represents the score of each of the users
in the system. Each vertical bar has two parts with different
colors; the bottom part indicates the score of the previous
week while the upper part indicates the score of the current
week. The hat like icon on some of the bars indicates that
those users were the best contributors for some week in the
past. From the karma report there are links to access the user

‘ Main | View [ssues | Report Issue | ELOSSpedia | Project Wik

@ Search: Apply Fiker |

viewing Issues (1 - 40 f 40) [Print Reports] [CSV Export]
P I # Category Severily Status
| 0000074 Mew Feature major new
r # 0000073 Bug block new
| 1 Improvement text new
F & 0000054 2 Improvement minor assigned (kishorel)
M # 0000065 2 Improvement tweak new
r # 0000059 17 Improvement — major closed (kishorel)
r 2 0000072 Improvement minor new
r 2 0000070 1 Bug minor new
r ' 0000071 1 Mew Feature feature new
r & 0000068 Improvement minor new
r & 0000067 Mew Feature minor new
r # 0000066 4 Bug trivial new
& 0000063 4 Bua minor new
Figure 1. System user interface

profile, which provides the details of the users contributions
and is discussed in next section.

4) Viewing Individuals Profile: All participants can have
a detailed view of the activities done by a participant by
using the user profile system. Figure 4 shows a sample view
of the user profile.

The left side table shows numerical figures on the partici-
pants contribution, on the right side we can see the blog that
is maintained by the participant about his work. This view is
publicly available to anyone. When the course coordinator
logs in they can see two more buttons Add a hat and Remove
a hat. The notion of a hat is used as a token for the quality
contributions here. If the current user is the best quality
contributor of the week then he can be given a hat through
the interface. There is a remove button to eliminate human
errors.

V. DISCUSSION

Collaboration is an important aspect in modern software
development. Reputation systems are is use in many online
environments to enforce the social aspects of the environ-
ment and give the users the feel of belonging to a group.
Focusing on the course case, we set out to teach collaborative
software development with an online environment incorpo-
rating a reputation system. Our focus on the course was in
teaching open source software but aspects of collaborative

Trace: » kommgame

KommGame

KommGame is a simulation of real open source

The main goal in the exercise is to learn open s

akro main project

Jogged im as: terzicci {terzicci)

Edit this page | | Old revisions

Figure 2. Add content to wiki and favorites bookmark
User Ranking Graph
704
.33 4
46,67 -
35
23.334

0L ¥ i L ———

i i b A mrmein [P e

Figure 3. Karma reporting interface

development in general are covered. Neither the environment
nor the learning outcomes are limited to the OSS context.

Out of the 24 registered students 15 participated actively
on the course. The details of student participation are shown
in Table III.

During the first part of the course where students were to
create wiki content on the chosen topics, participants got to
know KommGame environment. Working on the wiki also
acted as an introduction to working online and the need for
collaboration. In the second part of the course, the students
were to actually develop a small software project called
aKro. During the project it took some time for the students
to understand the key concepts: bugs, features, requests
etc. in the online collaboration context. Throughout both
phases the emphasis was on social learning, peer support
and learning by doing. The course coordinators were not
the ones teaching but the learners collaborated together in
reaching the learning outcomes.

Initially there was a slow start in the project as students
were not used to, not only collaborative and OSS develop-
ment, but also to a social learning course setting. As the
project progressed there were more contributions from the
students and the online work was more active. This trend
can be observed from the statistics. There were totally 63
issues reported in the bug tracking system, on average each
student posted 4 issues. In the first week there were only 3
issues reported and the second week 12 issues were reported.
This count kept fluctuating with the range from 3 issues
upwards. While the overall number of unique issues kept
rather steady, the increased activity can be seen in total
numbers of issues reported. The activity statistics per week
are shown in Tables IV and V and in Figure 5. While
observing all the contributions we found that there were 6
students who were more active than rest of the community.

User ID: 42 I have created wiki page for open source software

usarmama: 1 hawa created a wiki page about patch filas.

realname: P 1 have patched bug number 0000035 and closed th

bugs_reported:
bug_comments: 17
bugs_closed: 11

I have patched bug number 0000040 and closed the

1 hava patched bug numbar 0000041 and closad th

new_ragquast: 2

brorr 1o - 1 have patched bug number 0000036 and closed th
Wei B 1 have patched bug number 0000037 and closed th
previous_week_score: 55

e E¥BSRIT1158%45 | have patched bug number 0000043 and closed th
hat count: 1

1 I have patched bug number 0000044 and closed th
Add quality token

1 hawva patched bug number DD0003E and closad th

emwe quality token

Figure 4. Detailed user profile interface

Table IIT
DETAILS ABOUT NUMBER OF STUDENTS PARTICIPATED

Students Total Number
Registered 24
hline Participated 15
hline Active 6

This kind of scenario is also very common in real open
source project where very few members of the project create
90% of the code. On an average each student contributed 40
wiki edits and what shows the collaborative aspect the best
on the 7 bugs reported a total of 97 comments were made.

Initially, it was planned that all the communication during
the development process happens online, but in some situ-
ations there was verbal communication between groups of
students. This verbal communication aroused when students
had to make a critical decision about the project. This kind
of physical interaction is also common in real world software
projects when handling the most important decisions. As the
project development was progressing, the amount of students
contribution also kept increasing. All the students played the
key roles: user, developer, and bug fixer and reporter. Most
often the person who reported them also fixed the bug, with
only a few cases where someone else fixed the reported bug.
When the participants were asked for the reasons why, they
answered that coding is fun.

Every week, after the seminar session the course coordi-
nators along with the participants verified the contributions
made to the project to decide who would be the best quality
contributor of the week and thus to add a hat in their

Table IV
TOTAL NUMBER OF DIFFERENT ACTIVITIES DONE BY STUDENTS

Different Activities | Total Number
Bugs Reported 7
Bug comments 97
Comments on issues 40
Bugs closed 2
New features title 10
New features closed 4
Improvements 23
Improvements closed 12

Wiki edits 40 (Average)
Likes 9
Hats 7
Table V

NUMBER OF DIFFERENT AND TOTAL ISSUES CARRIED ON

Number Of Week | Different Issues | Total Issues
First 3 4
Second 12 25
Third 2 6
Fourth 2 7
Fifth 3 5
Sixth 8 20
Seventh 3 5
Eighth 3 6
Ninth 4 13
Tenth 4 6

120
100 A
80
60
40
20
0 T T T T T T T T T T]
O x0 H 0 & O © O xO L xO
& & 4’6\0& c,"éb d &Q’& & ST
Q oY @ © (SR
SIS OO
$ o L VL SE
o Q)‘} e ®$ \2? N @
s N ¢
&
=&=Different
Activities in
0SS course

Figure 5. Activities completed

profile. The top contributor of the week is given a small
gift to motivate others. This practice of verifying all users
contribution and select the best quality and top contributors
appeared to motive the others to work. It also enforced
collaboration and gave a sense of a community to the course.
Every week a new student was rewarded.

The weekly activity over the week KommGame was run-
ning is shown in Figure 6. There are two significant slumps
in weekly student activity. The drop in initial enthusiasm
explains the first slump. Furthermore, it occurs when the
students needed to make an adjustment to their learning
practices as they had to put in a more continuous work effort
to what the students were accustomed to be required. The
second is due to a break in the teaching for an examination
period. The last peak can be contributed to the course
coming to an end and thus participants working hard to close
the loose threads.

The student feedback after the course supports the notion
that the participants feel they reached the intended learning
outcomes and found the KommGame to have given them a
sufficient head start to collaborative development methods.

=&—Different Issues
=—Total Issues
30
25
20
15
10 A
5 -
0 T T T T T T T T 1
RIS S SR SR N o
& BEOMP SN AN AN
& F FEGF &S
& c_jQz <
Figure 6. Activity per week

A. Conclusions

The approach of KommGame for collaborative software
development education allows students to practice devel-
opment details and characteristics in a realistic yet safe
setting. The KommGame enforces collaboration through the
reputation aspects and thus gives the participants valuable
software project experience. The students are free to learn
from their own past and present experience as well as the
others. Based on the experiences gathered by the pilot course
in teaching OSS development we consider that using the

KommGame setting for collaborative development education
adds to the learning experience and paves the way for
working as a developer in the modern software industry.

The future plans for KommGame are to research how this
can be applied in traditional programming courses where
students have to collaborate and participate in programming
exercises. Research should also be done to know how to use
KommGame as standard system to issue certificate of OSS
beginner to any participant around the world who participate
and contribute.

REFERENCES

[1] The Apache Software Foundation. http://www.apache.org/
foundation/. last visited on March, 2011.

[2] J. Buchta, M. Petrenko, D. Poshyvanyk, and V. Rajlich.
Teaching evolution of open-source projects in software engi-
neering courses. In Proceedings of 22nd IEEE International
Conference on Software Maintenance (ICSM’06), pages 136—
144, 2006.

[3] L. J. Burnell, J. W. Priest, and J. B. Durrett. Teaching
Distributed Multidisciplinary Software Development. [EEE
Software, 19(5):86-93, 2002.

[4] M. A. Chatti, M. R: Agustiawan, M. Jarke, and M. Specht.
Toward a personal learning environment framework. Inter-

national Journal of Virtual and Personal Learning Environ-
ments, 1(4):71-82, 2010.

[5] M. A. Chatti, M. Jarke, and M. Specht. The 3p learn-
ing model. Journal of Educational Technology & Society,
13(4):74-85, 2010.

[6] C. C. P. Cruz, M. T. A. Gouvéa, C. L. R Motta, and F. M.
Santoro. Towards reputation systems applied to communities
of practice. In Proceedings of 11th International Conference
on Computer Supported Cooperative Work in Design, pages
74-79, 2007.

[71 D. Damian, A. Hadwin, and B. Al-Ani. Instructional de-
sign and assessment strategies for teaching global software
development: a framework. In Proceedings of the 28th
international conference on Software engineering (ICSE "06).

ACM, 2006.

[8] J. DeFranco-Tommarello and F. P. Deek. Collaborative soft-
ware development: A discussion of problem solving models
and groupware technologies. In Proceedings of the 35th
Annual Hawaii International Conference on System Sciences.
IEEE, 2002.

[9] Demola: Open innovation platform for students and com-
panies. http://www.demola.fi/what-demola-new-factory. last
visited on March, 2011.

[10] Y. Engestrom. Learning by Expanding: An Activity - Theoret-
ical Approach to Developmental Research. Helsinki: Orienta-
Konsultit. Retrieved from http://Ichc.ucsd.edu/MCA/Paper/
Engestrom/expanding/toc.htm.

[11] R. Farmer and B. Glass. Building web based reputation
systems, page 72. O’Reilly Media / Yahoo Press, 2010.

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

[22]

J. Favela and F. Pena-Mora. An experience in collaborative
software engineering education. IEE Software, 18(2):47-53,
2001.

M. D. German. Experience teaching a graduate course in
open source software engineering. In Proceedings of the
First International Conference on Open Source Systems (0SS
2005), pages 326-328, July 11-15 2005.

F. D. Giraldo, C. A. Collazos, S. F. Ochoa, S. Zapata,
and G.T. de Clunie. Teaching software engineering from a
collaborative perspective: Some latin-american experiences.
In Workshop on Database and Expert Systems Applications
(DEXA), pages 97-101, 2010.

0. Gotel, C. Scharff, and S. Seng. Preparing computer science
students for global software development. In 36th annual
Frontiers in Education Conference. IEEE, 2006.

I. Hadar, S. Sherman, and O. Hazzan. Learning human
aspects of collaborative software development. Journal of
Information Systems Education, 2008.

OSS Learning environment at Tampere University of Tech-
nology. http://osscourse.cs.tut.fi/mantis/login_page.php. last
visited on March, 2011.

J. Lave and E. Wenger. Situated Learning: Legitimate
Peripheral Participation. Cambridge University Press, 1991.

B. Lundell, A. Persson, and B. Lings. Learning through prac-
tical involvement in the oss ecosystem: Experiences from a
masters assignment. Open Source Development, Adoption and
Innovation, 234:289294, 2007. IFIP International Federation
for Information Processing, Springer.

D. Megas, J. Serra, and R. Macau. An international master
programme in free software in the european higher education
space. In Proceedings of the First International Conference
on Open Source Systems, page 349352, July 2005.

Open software engineering. http://opense.net. last visited 20
March 2011.

J. Piaget. The Childs Conception of the World. Rowman and
Allenheld, New York, 1960.

(23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

(32]

(33]

Qt developers network reputation system. http://developer.qt.
nokia.com/ranks, last visited on March 2011.

E. S. Raymond. The Cathedral and the Bazaar.
Media, 1999.

OReilly

C. Y. Shim, M. Choi, and J. Y. Kim. Promoting collaborative
learning in software engineering by adapting the pbl strategy.
World Academy of Science, Engineering and Technology, 53,
2009.

G. Siemens. Connectivism: A learning theory for the digital
age. International Journal of Instructional Technology and
Distance Learning, 2(1), 2005. Retrieved from http://www.
itdl.org/Journal/Jan_05/article01.htm.

I. Stamelos. Teaching software engineering with free/libre
open source projects. IJOSSP, 1(1):7290, 2009.

A. Sterbini and M. Temperini. Social exchange and collabora-
tion in a reputation-based educational system. In Proceedings
of 9th International Conference of Information Technology
Based Higher Education and Training (ITHET), pages 201—
207, April 29 -May 1 2010.

Online community for open source software educaton. http:
/Iwww.teachingopensource.org, last visited March 2011.

M. Temperini and A. Sterbini. Learning from peers, moti-
vating students through reputation systems. In International
Symposium on Applications and the Internet, pages 305-308,
2008.

J. Tuya and J. Garca-Fanjul. Teaching requirements analysis
by means of student collaboration. In the 29th ASEE/IEEE
Conference in Education, 1999.

L. S. Vygotsky. Mind in Society: The Development of Higher
Psychological Processes. Harvard University Press, 1978.

S. Wang. Study on e-learning system reputation service,
wireless communications, networking and mobile computing.
In WiCOM °08, pages 1-4, October 12-14 2008.

Case 1I: Publication V

Terhi Kilamo, Imed Hammouda, Ville Kairamo, Petri Résanen, and
Jukka P. Saarinen. Applying Open Source Practices and Principles in Open
Innovation: the Case of Demola Platform. In Proceedings of the 7th Inter-
national IFIP WG 2.18 Conference on Open Source Systems (0SS’11),
pages 307-311, Salvador, Brazil, October 6 — 7, 2011, Springer.

Applying Open Source Practices and Principles
in Open Innovation: the Case of the Demola
Platform

Terhi Kilamo!, Imed Hammouda!, Ville Kairamo?, Petri Réséinen?, and Jukka
P. Saarinen®

! Tampere University of Technology firstname.lastname@tut.fi
2 Uusi Tehdas/New Factory firstname.lastnameGhermia.fi
3 Nokia Research Center jukka.p.saarinen@nokia.com

Abstract. In numerous fields, businesses have to rely on rapid devel-
opment and release cycles. Variant new ideas and concepts can emerge
through open innovation as the participants are not limited to the com-
pany scope. This makes open innovation an increasingly appealing op-
tion for the industry. One such open innovation platform, Demola, al-
lows university students to work on real life industrial cases of their
own interest. We have identified similarities with its way of operation
to open source software development and find that it offers a viable mo-
tivational, organizational and collaborative solution to open innovation.

1 Introduction

Constant, lightning-fast innovation is becoming an essential element to compa-
nies in software business. Innovation can lie in any commodity it being some-
thing novel that can be put to actual use. Many companies rely on innovation
on a daily basis to create better products and to improve their internal pro-
cesses [2]. Traditionally such advantages have been kept within the company.

Opening up the option to innovate to a wider group of partners can en-
force and expand the scope of the innovation process, which becomes free of
the boundaries of the company and what knowledge is available within. Open
innovation helps in identifying the best ideas by combining internal and exter-
nal ideas into architectures and systems [11, 2]. The open innovation process
typically involves proof of concepts, trials, and, perhaps most importantly, the
right people to identify what should (or must) be focused on.

Open innovation, however, comes with a number of challenges such as mo-
tivation, integration and exploitation of innovation [5]. It needs a governance
framework [4] that enables organizational alignment of the different partners,
proper handling of intellectual property rights issues, and the emergence of new
kinds of business opportunities. These challenges have to be taken into account
when building any open innovation platform with the goal of driving future
development and solutions.

2 Terhi Kilamo et al.

In this paper, we argue that the open source model of development and
knowledge creation brings a set of principles of practices that could be adapted
to the context of open innovation, in the same way as observed in [10]. We focus
on open innovation in the context of academia-industry co-operation. In order
to support our arguments, we have analyzed an open innovation platform for
students called Demola [12].

We identify characteristics of open source software development in the mo-
tivational, organizational, and collaboration aspects of open innovation. The
main research question answered is: How Demola’s approach shares similarities
with other community driven development methods, mainly open source? In
Section 2 we give background on the Demola organization and discuss the prac-
tices of open source within the open innovation context of Demola in Section
3. Section 4 then concludes the paper with some discussion and final remarks.

2 Platform for Open Innovation and Learning

There is a real need for increased opportunities for innovation projects that can
lead to new business ideas. Open innovation environments allow businesses to
reach beyond the company scope in the search for new concepts and ideas. A
governance framework is needed with practices and working principles to bring
innovation partners together and to ensure ongoing innovation work.

Demola is one such open innovation platform intended for students. It aims
to multidiciplinary and agile development of innovative products and product
demos. The project ideas come from the industry and public organisations and

PROJECT
PARTNERS

DEMOLA
OPERATOR

Fig. 1. Demola Partners

thus concepts that have practical business importance are developed. The stu-
dent work is supported by both the industrial and the academia partners that
provide guidance throughout the project. Demola offers a governance framework
that facilitates team building and supports emerging business ideas. It also in-
corporates a model for managing immaterial rights that supports startups and

Open Source Principles in Open Innovation 3

respects the authors. On a practical level, Demola provides workspaces that
support team work and co-creation. Demola is a modern and actual learning
environment to students from different universities.

Figure 1 shows the partners in Demola innovation and the flow of communi-
cation and support for the project work. The team is at the heart of development
while others direct, aid and facilitate the work. In terms of numbers, there are
currently 35 companies involved in Demola as project partners. During 2011
the aim is to reach a yearly level of around 100 projects running. The Demola
operator itself employs three people: one manager and two assistants.

3 Adopting Open Source

Demola was built on the basis of openness. There are different aspects and
challenges that need to be addessed in making the platform open and functional.
A set of principles and practices of free/libre open source (FLOSS) can been
identified in Demola.

Motivation A famous quote from Raymond [1] claims that “Every good work
of software starts by scratching a developer’s personal itch.” This is commonly
seen as one of the driving forces behind open source software quality and success.
The participant’s motivation is also one of the main characteristics of Demola
team building and work. Similarly Raymond’s restatement of the itch: “To solve
an interesting problem, start by finding a problem that is interesting to you” is
a major driving force in the Demola way of doing.

Internal motivation as driver: The participant’s internal motivation is the
main driving factor for the Demola team work. Participation is fueled by their
own background, motivation and goals that range beyond normal school work.

Participant chooses the project: The way teams are formed in Demola is
similar to how open source communities come into being. Students search for
project topics that are meaningful and interesting to them and apply for par-
ticipation in it. The reasons for choosing a project are personal to the applicant
with widely varied factors behind the selection. The applicants have no knowl-
edge of the possible other team members in advance and it is not possible to
choose the people you form the team with.

Collaboration Jukka Saarinen, one of the key people behind the the founda-
tion of Demola, has said about the platform: “What is special about Demola is
the way of doing things: anyone and everyone can contribute ideas to a demo
which is then built together. The let’s do it attitude without bureaucracy and
formal processes makes the atmosphere fruitful” [8]. This reflects the philosoph-
ical standpoint of open source software development. Those with the interest
and skill can contribute their work to the community.

Co-creation: Demola has been built on the notion of bringing the right
people together and to enabling collaboration between participants. Demola

4 Terhi Kilamo et al.

itself is a developer community where anyone can contribute their work based
on their own interest and skill. Similarly the development of the project concepts
and demos in Demola is done through collaborative teams. Each team member
brings his or her own knowledge and expertise into the team and each team is
different.

Community spirit: The student teams, active academia members and the
project partners form an innovation ecosystem where all participants benefit
from the Demola platform. Demola acts like a community of developers where
the teams share ideas and work and where the project partners benefit from
the work done in teams for other partners.

Legal Concerns What is special about open source is its philosophy on in-
tellectual property rights (IPR). The approach chosen for managing the IPR
of the project teams in Demola is akin to the idea of licensing in open source.
The open innovation approach in Demola respects the IPR of the teams: the
students own the rights to the project results. The originator of the project idea
can buy wide and parallel usage rights to the results by paying the project team
an agreed reward, i.e. the team licences their work to the industrial partner.

4 Discussion and Conclusions

We have identified the best practices and principles of FLOSS development
within an open innovation platform, Demola. When its way of doing is juxta-
posed with the FLOSS principles and practices the common factors are identi-
fiable. FLOSS also enables a better and wider exploitation of the results as the
teams hold the rights to their work. Demola not only provides support for the
project partners to buy rights to the work but also for the students themselves
to start new businesses on top of the results.

Traditional open source principles and practices, however, may fall short in
other aspects such as timely delivery, communication, and quality. Such chal-
lenges in the daily workflow of the project development need futher management
methods on top of FLOSS. How these challenges are met is a focus of future re-
search. Our findings suggest that the open source model offers a viable solution
to open innovation in terms of motivational, organizational, and collaborational
aspects.

References

1. Raymond E.S. The Cathedral and the Bazaar. O’Reilly Media, 1999.

2. Chesbrough H. Open Innovation: Researching a New Paradigm, chapter Open
Innovation: A New Paradigm for Understanding Industrial Innovation. Oxford
University Press, 2006.

3. Takeuchi H. and Nonaka I. The New New Product Development Game. Harvard
Business Review, pages 137146, January-February 1986.

10.

11.

12.

Open Source Principles in Open Innovation 5

Feller J., Finnegan P., Hayes J., and O’Reilly P. Institutionalising information
asymmetry: governance structures for open innovation. Information Technology
& People, 22(4):297 — 316, 2009.

West J. and Gallagher S. Challenges of Open Innovation: The Paradox of Firm
Investment in Open-Source Software. R&D Management, 36(3):319-331, 2006.
Beck K. Embracing Change With Extreme Programming. Computer, 32(10):70—
77, October 1999.

Beck K., Beedle M., van Bennekum A., Cockburn A., Cunningham W., Fowler
M., Grenning J., Highsmith J., Hunt A., Jeffries R., Kern J., Marick B., Martin
R.C., Mellor S., Schwaber K., Sutherland J., and Thomas D. Manifesto for Agile
Software Development. Available at: http://agilemanifesto.org/, March 2002.
Last visited March 2011.

Facilitating Innovation at Demola. Open Threads: Open Innovation Newsletter,
April 2009.

Abrahamsson P.; Salo O., Ronkainen J., and Warsta J. Agile Software Develop-
ment Methods Review and Analysis. VT'T Publications 478, 2002.

Goldman R. and Gabriel R.P. Innovation Happens Elsewhere: open source as
business strategy. Morgan Kaufmann, 2005.

Davis S. How to Make Open Innovation Work in Your Company. Visions Maga-
zine, December 2006.

Demola Innovation Platform. http://www.demola.fi. Last visited March 2011.

Case 1II: Publication VI

Terhi Kilamo. The Community Game: Learning Open Source Develop-
ment Through Participatory Exercise. In Proceedings of the 1/th Interna-
tional Academic MindTrek Conference: Envisioning Future Media Environ-

ments (MindTrek’10), pages 55—60. Tampere, Finland, 2010, Association
for Computing Machinery (ACM).

The Community Game: Learning Open Source
Development Through Participatory Exercise

Terhi Kilamo
Tampere University of Technology
Department of Software Systems

Korkeakoulunkatu 1
FI-33101 Tampere, Finland
terhi.kilamo@tut.fi

ABSTRACT

As open source software has gained more foothold in the
software industry, teaching open source development to the
future software professionals has become a practical neces-
sity. A pioneering course was arranged during the aca-
demic year 2009-2010 at Tampere University of Technology
to teach software engineering students how open source is de-
veloped and what makes open source ecosystems special. To
allow students to learn the practical side of open source soft-
ware development, an exercise called the community game
was organised. The game is a part of the courses and focuses
on community-centric software development. It allows the
students to initiate and nurture a small developer commu-
nity and practise open sourcce development in a safe setting.
The game ensures that the students have a good enough
understanding on the open source development practises in
order to make contributions to actual open source projects.

General Terms

Human Factors, Experimentation

Keywords

Open source, software engineering education, participatory
learning

1. INTRODUCTION

Open source software engineering has its basis in the de-
veloper community. As Eric S. Raymond states in [6], “ev-
ery good work of software starts by scratching a developer’s
personal itch”. This statement holds especially true in open
source development where developers commonly participate
because they want to, not because they have to.

The rise of open source development in the software in-
dustry has encouraged teaching open source software en-
gineering to university students. The traditional lecture-
heavy course format cannot fully convey the special traits

Permission to make digital or hard copies of all or part o tivork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquires prior specific
permission and/or a fee.

MindTrek 2010 October 6th-8th 2010 Tampere, Finland

Copyright 2010 ACM 978-1-4503-0011-7/10/10 ...$10.00.

of an open source ecosystem. An approach that engages the
students more is needed instead. Choosing student-centric
teaching methods is further supported by modern learning
theories that emphasise the active role of the student and
thus naturally guide teaching away from the lecture envi-
ronment.

Tampere University of Technology has not previously had
a course dedicated to the development of open source soft-
ware, but a pioneering course was developed and arranged
during the academic year 2009-2010 to remedy this.

In this paper we focus on a participatory exercise called
the community game where students set out to learn open
source software development and methods via an exercise
mimicking actual open source projects. The game is a com-
pulsory part of the entire course, and its goal was to engage
students and let them learn the practical side of open source
development in the safety of the computer classroom.

In Section 2 the course on open source software is de-
scribed and the motivation behind it is given. In Section 3
how the community game was organised and played is ex-
plained. Section 4 describes the experiences from the game.
In Section 5 different aspects of the game are discussed and
the paper is concluded in Section 6.

2. TEACHING OPEN SOURCE

The role of the learner is at the heart of modern peda-
gogical learning theories. It is the learner who takes the re-
sponsibility for learning driven by their own motivation and
influenced by their earlier knowledge and experiences. The
instructor’s role is to help the learner in gaining more under-
standing and knowledge. When contrasting different con-
structivist pedagogical models such as problem-based and
project-based learning with open source development one
can see that these can promote learning open source soft-
ware engineering.

Teaching methods that borrow practises from open source
have been tried out in other universities. An open source
ecosystem can be used in teaching software engineering in
general as suggested by [7]. In [4] a hybrid approach blend-
ing open source community principles with education was
used. The approach shares similarities with the ideas be-
hind the community game.

Several courses teaching open source development have
also been arranged in universities worldwide [1], [3]. The
requirements of the courses contain a project asking for par-
ticipation in and contribution to an open source project.
On a similar note, Google has organised the Google Sum-

mer of Code (http://socghop.appspot.com/) since 2005 to
promote open source development to students and to pro-
vide them with an opportunity to work on things related to
their studies while engaging them in real-life software de-
velopment. The Finnish Centre for Open Source Solutions
(COSS) has also arranged a similar annual summer code
event in Finland (http://www.coss.fi/en/summercode) to
support participation in open source projects and thus al-
low participants to gain a better competence in open source
software development.

While the aforementioned ways of learning through par-
ticipation in an actual project are desirable, it requires a
certain amount of skills and time to get into an open source
community and to contribute to it. Open source projects
may not act as an ideal learning environment for the basic
open source software engineering practises as they are on-
going and active projects building software, and are not a
playground for newbie developers.

Our class, Introduction to Open Source Software (http://
tutopen.cs.tut.fi/coursel0/) was arranged in the form
of a course for the first time during the spring 2010. As the
course was new, the course staff was liberated to choose the
teaching methods freely to best reach the intended learning
outcomes. The course staff also set out to learn from the
chosen teaching methods in order to develop the course in
the future. Due to the developers and the community being
the driving forces of open source development, the course
was organised similarly, with the students in the key role
and the staff just supporting the learning.

The general idea behind all course arrangements was self-
organization and participation, which are also essential in
open source software. The goal was to keep the course as
open and open-source-like as possible without compromising
the educational goals. The material and content produced
during the course were visible to everyone and editable by
all course participants. The main bulk of the course mate-
rial was created by the students in collaboration with each
other. A book [2] was recommended as a basis for research
in various open source related topics but the students were
to collect information from other sources as well.

The course was offered to both undergraduate and post-
graduate students and it turned out to be rather popular
with 32 registered students, most of whom where undergrad-
uates. It is normal that not all students end up taking the
course and that was also the case here, with approximately
22 active participants.

The course consisted of three parts: getting to know and
reporting a key topic of open source software, taking part
in a community game, which is the focus of this paper, and
focusing on making a contribution to an existing open source
project.

3. PLAYING THE GAME

In the course, the students were given a safe pond to hone
their open source development skills before diving in the
deep end of open source development in an exercise called
“the community game”. In the game the students set out
to build and nourish a small open source project and thus
learn how open source development is organized and run in
vitro before moving on to rampage free in the open source
ecosystem. The game was organised as a single three-hour
session in a computer class.

3.1 Gamesetup

The students were provided with an initial start commu-
nity. However, as the entire course and thus also the game
were based on the notion of self-organization of the students,
i.e., the students make the decisions themselves, this prin-
ciple was naturally applied in setting up the game. The
embryo community for the game was therefore almost skele-
tal in nature and required the students to decide on most of
the practises.

The skeleton of the project was available in the course wiki
in the beginning. Similarly, the basic project infrastructure
was ready. Subversion (svn, http://subversion.apache.
org/) was used as the version control system and in the
beginning it contained the initial code. The bug reports
and feature requests were given in the Mantis bug tracking
system (http://www.mantisbt.org/).

The program being developed was a simple hyphenation
system. The program was small on purpose as the focus
was not the program itself but how it was being developed.
Initially, the program could only handle the most basic hy-
phenation rule of the Finnish language: inside a word a
hyphen preceeds consonants that are followed by a vowel.
Even the initial revision had known reported bugs in it: the
program added a hyphen at the beginning of the word and
it did not recognise the character ’a’. There were naturally
also unreported and unknown bugs. The initial code was 80
lines written in C++ including comments.

In the beginning, there were feature requests for multi-
language support, other hyphenation rules, wrapping words
and reading input from a file given as a command line pa-
rameter in Mantis. Out of these the input from a file proved
to be rather interesting, as it turned out that the core of the
community ended up deciding it was not needed.

The students were expected to make a contribution every
15 minutes. The goal was to ensure that people contribute
early and often although such timeboxing is foreign in real
open source communities. The reasons for timeboxing the
game were explained to the students at the beginning.

The participants were able to discuss with each other in
an irc (http://www.irc.org/) channel set up for the course
called. An additional mailing list and/or a discussion forum
would have been a little more realistic, but setting up one
for the purpose of the exercise seemed overkill.

In order to cheer up the students and keep up the good
work, free coffee and tea was served after two hours of work.

3.2 Student roles

In total 22 students — in other words, all the students ac-
tively participating in the course — registered to Mantis and
thus participated in playing the game. The students were as-
signed individual roles in the beginning of the game. There
were three possible roles: committer, community member
and forker. The committers played the owners of the prod-
uct and had the right to make commits to the project code
base, decide over releases and had the uppermost control of
the project. The forkers were given the instruction on fork-
ing the project right in the beginning and later try to merge
back. The community members focused on the development
of the main project. The students were free to decide what
to work on in their assigned role. However, each role was
a developer role in nature with no roles around using the
product.

The role of the committers was delegated to three pres-

elected students with enough prior experience. The rest of
the roles were arbitrarily assigned through giving the stu-
dents a piece of cardboard of a certain color as they came
into the classroom. The team’s colour codes were as follows:
yellow for the committers, blue for forkers and green for the
community members.

3.3 GameFlow

The students started with the game after a brief intro-
duction at 14:15 and the first bug was reported at 14:18 in
irc. Self-organization worked smoothly as people immedi-
ately got to work, and the committers gave instructions on
submitting patches and reporting bugs within 15 minutes in
the irc discussion'. Mantis was used for both bug reports
and feature requests.

14:29 < committerl> on behalf of the yel-
low team: can you please assign an issue from
the mantis to yourself and then post patches
under that issue as a note

14:31 < committer1> furthermore, if you find
a bug that is not in the mantis, please add
it in there as a new bug or feture request

The first new release was set to be released at 15:30, but
it was first postponed by fifteen minutes. The actual re-
lease missed even the postponed time by about five minutes.
When asked about it after the session nobody admitted get-
ting upset about the delay. The first release made had four
issues for the community to still fix. These issues, numbers
1, 2, 16 and 17, are visible in Figure 1.

: [Hyphenation] .
O & 0000013 = Feature request FEERE, Sioses
& |7 0000019 1 [Hyphenation]

E Bug major

= [Hyphenation]
[
o # 0000009 2 Feature request

minor osed (to

1 [Hyphenation]

2
I 0000005 = Feature reguest

feature closed (dar

O # = ooooool 2 [ﬂ'ﬁ%l major closed (kork
2 [Hyphenation]

L # . 0000017 2 poyyre request

major closed
g # 0000016 2 [ﬂ"’;"%] crash closed (kork
o & [Hyphenation]

U & . 0000003 5 poyire request feature closed (kork
O # . Doooooz 4 [MW]

major closed (tul

Figure 1: Issues resolved between the two releases.

The second stable release was made towards the end of
the session at 16:40. In it the four issues shown in Figure 1
had been covered but one major issue, number 12, remained
unresolved. The status of the project in Mantis is visible in
Figure 2 which also shows the additional minor issues that
still remained. Figure 3 shows a new bug, issue 16: crash,
being found. In Figure 4 the issue 16 is seen as resolved.

The final code in the version control system is still in one
file and it is 98 lines long in total. In addition to the code
being fixed and developed a Makefile has been written for
the project. A README file was also written, but at the
end of the game it was still only available in Mantis.

!The identities of the participants have been changed in the
quotes from the irc discussion

Viewing Issues (1 - 15 / 15) [Print Reports] [CSV Export]

[= iz} # Category Severity Status Updated
[Hyohenation] o
a2 0000018 1 Feature minor 20110803 README file
request
Hyphenati 5
Ll 0000012 3 [;‘;'ga fon] major 201.;!8—03 Doesn't recognice
[Hyohenation] -
L1 0000007 6 Feature feature acknowledged 201108-03 Other hyphenatior
request
B2 0000005 1y It :;:gahm] minor resolved (Anssi) 201195-03' Double hyphenatic
(Hyphenation] N
A g 0000024 Feature minor resolved (rantas) 201003~ &t command
request
[Hyohenation] y
O & oo00025 1 Feature minor new 201:::03 GUI
request
[Hyphenation] N
O » oooo022 1 Feature minor resolved (amatoori) 201108—03 Command prompt
request
[Hyphenation] N
i 0000014 Feature feature ed (jlautamaki) 201&03 cleanup of tavuta
request
Hyphenati -03-
(= 4 0000023 I Bgunga el major confirmed 201:?503 Compuond word
= Hyphenati -03-
g 0000021 [%J minor confirmed 2015503 No license informi
- [Hyphenat 5
gz 0000011 BT; — trivial resolved (dantas) 291;:03 Accepts numbers
_ [Hyphenation] i
0O # 0000006 Feature feature confirmed 201:)803 word wrap

request
Figure 2: Mantis after second release

Viewing Issues (1 - 16 / 16) [Print Reports] [CSV Export]

P ID # Category Severity Status
£ 0000006 (Hvohenation] — poop g confirme

Feature request

[Hyphenation]
0 0000016 = *:u”;“’“ crash new
1 [Hyphenation] = =
L 0000011 trivial assigned (dal

Bug

O .* . oooopos 5 . |Hyehenation]

3 Feature request feature assigned (korl

o2 0000008 5 [dt%] minor confirme:

Figure 3: A bug reported in Mantis

3.4 Forkingthe Project

The project was forked at the beginning of the game. Four
people set out to take the original program and develop it
independently as a separate project. They decided to im-
plement English hyphenation and thus had little in common
with the main branch. The forkers were not given an infras-
tructure for the fork project but they were expected to build
the fork from scratch. This took a lot of their time, and they
ended up using Google Docs (http://docs.google.com).

The forkers had to spend a significant amount of time in

Viewing Issues (1 - 17 f 17) [Print Reports] [CSV Export]

P ID # Category Severity Status
o | 8 [Hyphenation] = 5
L 0ooooos 6 Bug minor confirmed
L e 0000016 2 [MW] crash resolved (korki
@ a [Hyphenation]
= & . 0000017 Feature request maaiur nEW.
Bl [Hyphenation] =
S 0000006 Feature request feature confirmed
O oooooil [m‘w} trivial assigned (dan

Figure 4: Reported bug fixed

connecting with each other and setting up the fork. The
solutions for developing the fork were ad hoc and decisions
were made in the heat of the moment. Hence the fork project
ended up using tools out of the range of normal open source
development.

The fork project produced a program that could hyphen-
ate basic English. The code had less of a complete feel to it
then the orginal project’s and had 186 lines in total. Merg-
ing the fork was not done by the end of the game, as the
programs were both in separate files.

4. EXPERIENCES

We consider that the first community game implementa-
tion was successful. The general observation was that all
students got to work in the community and the game gave
everyone practical knowledge on what open source software
development entails. The group self-organised even better
than expected. Feedback from the students was altogether
positive and constructive in nature. The feedback also sup-
ported the course staff’s views on how the game could be
improved in the future.

4.1 Student Feedback

The initial feedback that came up during the discussion
directly after the game was positive. Additional feedback
was collected when the third part, making the contribution,
was about to start. The motivation for collecting the feed-
back here was to collect not only experiences and opinions
from the game once the dust had settled but also to map
how well the students felt prepared for working on making
contributions to actual open source projects having played
the game. In total 15 students gave feedback.

There were five claims about the game in the feedback
form. They were answered on scale from one to five based
on how well the respondent agreed with the claim. One was
complete disagreement and five complete agreement. The
claims were:

1. The community game was a good exercise.

2. The community game focused on the key practises of
OS software engineering.

3. The size of the project was suitable for the game.
4. You got to work on things you wanted during the game.

5. The community game helps with working on the con-
tribution required for the course credits.

In addition "which role did you play?” was asked together
with the fourth claim. The statistics on the feedback is given
in Table 1.

1. 2. 3. 4. 5.
Average | 4,2 | 4,07 | 3,87 | 3,2 | 3,64
Median 4 4 4 4 4

Table 1: Student feedback statistics

The participants thought the game was a good exercise
and that the focus was correct. The average of the an-
swers to the first claim was 4,2 with only one answer be-
low “mostly agree”. The median answer was “mostly agree”.

Five answered “completely agree” that the game was a good
exercise. The second claim got similar result with no answer
lower than “do not agree or disagree” with a median answer
“mostly agree” and 4,07 as the answer average.

People found the size of the game mostly suitable. The
average here was 3.87 and the median answer was “mostly
agree”. Two respondents disagreed somewhat and found the
project smallish. Otherwise the answers were distributed
between three to five. The additional written feedback given
about the size of the project was on the lines that the project
could be bigger.

The average of the answers to getting to contentrate on
things they wanted was 3,2. The median answer was still
“mostly agree”. The forkers were happy with their role with
4,25 average and with two respondants answering “agree
completely”, one answered “mostly agree” and one “do not
agree or disagree”. The handpicked committers were less
satisfied with their role with two “do not agree or disagree”
answers and one “mostly agree”. Among the community
members two respondents felt they didn’t get to do what
they wanted. One was focused on technical problems and
there were none. The other didn’t state what they did or
would have wanted to do. The average of the answers of the
community members was 3,1. This gives reason to think
if there should be more roles to assign to people. In ad-
dition instead of randomly assigning the roles the students
could choose their roles from a given pool providing them
with more power in what they do and thus emphasising the
self-organisation.

The average of the answers to the last claim was 3,64
with again a median of “mostly agree” and one complete
disagreement and no other answers below “do not agree or
disagree”. One respondent didn’t know if the game helped or
not and answered ’?’ as their own choise. The importance of
the claim can be judged better once the course is completed
and the contributions done. Based on the feedback here, the
students felt that the game was helpful in getting into actual
open source community work.

At the end of the feedback the respondents were asked an
additional question: “How would you improve the game?”
and given an opportunity to give free feedback. The main
improvement to which everything boiled down was that the
game needed more time to run. The timeframe of three
hours was too short for the game to get beyond the first
steps. After two releases the community had found a com-
mon tune and suitable development practices and then they
ran out of time. With a longer session the project could be
made larger and more realistic, more roles could be given
and a community would have more time to form making
the game more interesting and more educational. Some sug-
gested more instruction on the tools, but the longer time-
frame would remove the need for extra tool tutorials by leav-
ing enough time into the game for the community to evolve
and members to work on the product after the tool setup
and basic organisation. Outside tutorials would be an ar-
tificial part of the game and therefore the group learning
together and teaching each other is preferred.

4.2 Staff Perspective

Based on the initial observations by the course staff the
community game reached the intended learning objectives.
The students got to know the practical side of open source
development and gained experience that would help them in

getting into actual open source community work. However,
it is difficult to evaluate the learning of individuals. Self-
organization can lead to people concentrating more on what
they already know instead of challenging themselves. How-
ever, the point is not to force learners but to let their own
internal motivation to drive them. This appeared to work
well. The overall learning can be better evaluated once the
entire course is completed but based on the present evidence
the game seems to be a good exercise.

There is an obvious need for more fixed roles than the
three used this time in the community game. There is no
real need to assign all of the roles from the onion model for
open source communities [5] as in the game everyone needs
an active role. However, members acting as bug reporters
only would have been valuable. When the game commu-
nity was let to form freely among the participants assigned
a community member role, everyone assumed a developer
role. Leaving out only the passive, outermost roles would
have brought more discussion into the community and the
community would have more likely adapted more realistic
practises for example for handling the bugreports. This ob-
servation is again supported by student feedback.

It was obvious as the game drew towards an end that the
timeframe was too short. This was further highlighted by
the fact that one of the committers had to leave early as real
life intervened with the game. In addition, there is no real
need to timebox the contributions. The student feedback
heavily supports this notion.

5. DISCUSSION

Even though most of the students had prior knowledge of
all the tools used in open source development, using them
in a development setting showed that, in addition, practical
knowledge is essential. Especially how to create and send in
a patch, what a patch is, and how issues were to be handled
were significantly clarified by the exercise. The Mantis bug
reporting system was found confusing, and the students felt
it should have been explained. Getting to know the bug
tracking system and finding out how to use it was one of
the goals of the game. The game environment allowed the
students to learn through their own work, participation and
collaboration, how the bug tracking system worked which
led to a better learning outcome. Instead of giving students
the answers, they were given an environment to be active
and learn things through their own insight.

Although there was an initial requirement that all discus-
sion was to be held on the irc channel, the channel backlog is
only 247 lines long and some verbal communication between
smaller subgroups did emerge. The closer the game came to
the end, the more face to face discussion emerged. This
was to be expected and was not considered to be harmful
to the information flow within the community as the key is-
sues were raised into discussions in irc. In order to track the
interaction that went on outside the communication media
the entire session should have been videotaped, which may
be an option for the next implementation of the course and
the game.

In order to provide options in the working environments,
two computer classrooms had been reserved for the last two
hours of the game. However, nobody wanted to geograph-
ically distance themselves to another classroom and even
the fork team remained physically in the same room as the
main community. There was feedback directly after the ses-

Hyphenation]

O # . o001 1 o major closed 2010-03-16 Feature added. Read a text file
O # oo00009 2 Fe[?‘m%:‘;"\:‘g“ minor closed (tori) 2010-03-18 Interactive help and -h paramet
O # 0000005 1 Fe‘?{;‘%’a‘:“”e’ﬂ feature closed (dantas) 2010-03-18 Reading input from a file

O # a oooooor 2 ”ﬂw] major closed (korkeala) 2010-03-18 Doesn't recognize swedish o (3}
O # . oooooi7 e Tty major closed 2010-03-18 read file from command line

2 Feature request

Figure 5: Duplicate requests in Mantis

sion that the computers should have been more modern and
efficient but still nobody had switched classrooms. It is ap-
parent that the sense of being together and working as a
group was a stronger motivator than better computers. The
three hours reserved for the game was not enough to estab-
lish a strong enough online community for the students to
distanse themselves to another classroom. The social aspect
of developing software together was enforced by the shared
space and participants were reluctant to break that. This
does go against the actuality of open source development.
There was no real need to force more solitarity as the devel-
opment was carried out without much face to face discussion
despite the shared space.

The community members adopted a pattern of handling
bugs which cut a few corners on the way. The reporters of
the bugs often also fixed it themselves immediately without
waiting for confirmation. This pattern can be seen in bug 16
visible in Figures 4 and 3. The person who reported it also
fixed it in a timely fashion. The time between the reporting
and fixing the bug was 12 minutes, but naturally this left
no time for the core members to confirm the bug. Adding a
role for bug reporters would help to avoid this pattern.

The yellow committer team was handpicked to consist of
students the course staff knew had enough programming ex-
perience to assume this role. This ensured a smooth start
for the game and mimicked real life. The core members in
a real open source project are also skilled and experienced.
Similarly like in open source communities in general all par-
ticipants were given an opportunity to get promoted to a
committer based on their activity and progress during the
game. Surprisingly, nobody wanted to get promoted to a
higher status. The main reason given when asked in a free
discussion after the game was: “coding is fun”. Despite that,
the original committers did give one member the commit
rights towards the end of the game. The choise was based
on the member’s irc channel chat activity and contribution
to the community. The core members saw no reason not
to give the promotion. Adding more possible roles might
ensure more movement between the roles, mostly from the
outer roles towards the more influential ones.

The tight timeframe left no real time to test thoroughly.
The committers made only quick test runs and visual verifi-
cation of the patches before accepting them. This way they
could accept patches rather quickly. Patches were rejected
only if they were not applicable or didn’t implement a new
feature which meant that very few commits got rejected.
Some features were even left out of a release as there was
no time to go through them sufficiently. Furthermore the
game ended when it had started to run smoothly and more
fun and interesting things could have developed given more
time.

A feature request that came up several times and as dupli-
cates was a request for a possibility of handling input from
a file. This can be seen in Figure 5. Duplicate entries were

closed and the original rejected due to none of the commiters
seeing a motivation for the feature. There was some discus-
sion of the duplicates and of the feature on the irc channel,
but nobody supported it being taken on so it was disgarded:

15:54 < committerl> so, can you remind me why
is there a need for this feature? can’t we
just use redirection?

i.e. ./tavutus < file.txt
15:55 < committer2> I allready closed that
one

15:56 < committer2> I think we are not go-
ing to get feature ./tavutus file.txt

15:57 < committer2> except if there is some-
thing like ./tavutus filel.txt file2.txt
15:57 < committer2> or something else like
that

15:57 < memberl> committer2: you mean that
is not necessary?

15:58 < committerl> i just wanted to know
what’s the motivation for the file option?
as opposed to using < 7

15:58 < member2> what is 0000017 then

The shell redirection of the input was able to sufficiently
fill in the need for the feature and the issue was closed.
Here the students took control of the product as the feature
request was one the originals given in Mantis as a starting
point for the game.

The members of the fork project were not really interested
in the main branch but acted as a small project of their own.
They were not provided with a similar initial project as the
main branch, which obviously set them back. In the end the
fork was built on top of ad hoc tools instead of tools used in
actual open source development. In future implementations
of the game this needs to be taken into account and a better
starting point provided. The fork was for the first time asked
to remerge with main branch at 16:00. They however did not
proceed to do so, and in fact, the fork remained unmerged
also at the end of the game. There were bugs in the fork code
that would have broken the main branch and thus the merge
was not even attempted. The overlap between the main and
the fork was small as the fork was about English hyphen-
ation whereas the main branch focused on Finnish text. The
forkers estimated that completing the merge should not re-
quire too much work even though they were at that point
not prepared to merge. Feedback supports keeping the fork-
ing as a part of the game as the forkers were really satisfied
with the game. However, a better infrastructure needs to
be ensured so that the fork can reach the intended learning
outcomes. Now the goal of learning the tools and practises
was not fully reached in the fork’s case.

The initial code was given as a single code file. The main
branch didn’t see a need for changing this as patches needed
to be applied anyway. The fork saw it as a problem. How-
ever, the fork did not report it to the main community even
though a more modular structure would have helped them
to merge back. The single code file should be kept as the
starting point in the future as refactoring it acts as a good
feature request.

6. CONCLUSIONS

Based on our experiences, the community game teaches
open source software development in a safe but realistic set-
ting giving the students a good starting point for work in real
open source projects. The students are in no need for strict
boundaries or outside direction. Instead they can learn by
doing and together as a group through exercises such as the
game that take their incentive from real life but still keep
the scope small enough to further enforce learning.

There obviously are points for improvement and for the
course to learn and adapt but the community game did turn
out to be a good practise for real world and in addition —
and maybe more importantly — fun.

Acknowledgements

This research is a part of the openSE project supported
through the European Union’s Lifelong Learning Programme
(LLP).

7. REFERENCES

[1] D. M. German. Experiences teaching a graduate course
in open source software engineering. In Proceedings of
the First International Conference on Open Source
Systems, pages 326-328, July 2005.
0ss2005.case.unibz.it/Papers/0Es/Es1.pdf.

[2] J. M. Gonzilez-Barahona, J. S. Pascual, and G. Robles.

Introduction to free software. GNU Free Documentation

License, Creative Commons Attribute ShareAlike

License. http://ftacademy.org/materials/fsm/1#1.

B. Lundell, A. Persson, and B. Lings. Learning

Through Practical Involvement in the OSS Ecosystem:

Experiences from a Masters Assignment. In J. Feller,

B. Fitzgerald, W. Sacchi, and A. Sillitti, editors, Open

Source Development, Adoption and Innovation, volume

234 of IFIP International Federation for Information

Processing, pages 289-294. Springer, 2007.

[4] A. Meiszner, K. Moustaka, and I. Stamelos. A Hybrid

Approach to Computer Science Education — A Case

Study: Software Engineering at Aristotle University. In

CSEDU 2009 - Proceedings of the First International

Conference on Computer Supported Education,

volume 1, pages 39-46. INSTICC Press, 2009.

K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida,

and Y. Ye. Evolution Pattern of Open-Source Software

Systems and Communities. In IWPSE ’02: Proceedings

of the International Workshop on Principles of Software

Evolution (2002), pages 76-85. ACM Press, 2002.

[6] E. S. Raymond. The Cathedral and the Bazaar.
O’Reilly Media, 1999.

[7] L. Stamelos. Teaching Software Engineering with
Free/Libre Open Source Projects. IJOSSP, 1(1):72-90,
2009.

3

5

