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Abstract 

Due to interactions of nodes, a networked system may behave coherently with the nodes collabo-
rating to perform a joint task, such as transferring speech and data traffic in a mobile telecom-
munications network (MTN). On one hand, coherence may lead to high network performance 
and an ability to withstand high external node loadings caused by the traffic. On the other hand, 
however, because of coherence, a network may exhibit such qualitative properties that lead to a 
drastic sensitivity of the network to even smallest node loading changes under a high loading. At 
worst, such sensitivity may lead to a coherent collapse of the entire network and thereby to se-
vere financial and quality-of-service related losses. This thesis examines interacting coherent net-
works with a focus on MTNs and aims to provide information through statistical modelling for 
supporting the decision making of network operators and helping to improve the network ro-
bustness against unexpected node failures or excessive local node loadings.  
 
In this thesis, Markov random fields (MRFs) are applied as statistical collaborative models of 
networked systems, describing a network through the joint probability of network node states. 
Instead of trying to model the exact dynamics of complex networked systems, which is extremely 
difficult, MRF models provide all the uncertainty information related to the network state under 
given conditions. Ising model, a simple MRF model, is adopted to model the joint probability of 
network node states under given external node loadings. Though it describes nodes in binary 
states, the Ising model is highly capable of describing the behaviour of complex coherent net-
works and thus proper, e.g., to study the qualitative properties of MTNs.  
  
As an MRF model, identification of the Ising model consists of two parts: identification of the 
graph structure of the nodes and identification of the model parameters. Graph structure defines 
the neighbourhood relations of the nodes, and after the graph is fixed, the model parameters 
then determine the coherence of the network. Both the graph structure and the model parame-
ters hence contribute to the qualitative network properties. In this thesis, for graph structure 
identification, a method especially suitable for systems assuming an underlying spatial node con-
figuration, such as MTNs, is developed. However, the method is likely to be relevant to other 
applications as well and, more generally, serve as a means of learning a graph structure for MRF 
models. For parameter identification, an approximation of the maximum likelihood method, the 
pseudolikelihood method, is applied. The uncertainties of the parameter estimates are then stud-
ied via approximating the parameter distribution, under the pseudolikelihood assumption, with a 
Gaussian distribution.  
 
To study the qualitative properties of an identified Ising model, Markov chain Monte Carlo 
(MCMC) methods are used for model simulation under varying uniform node loading and local 
excessive node loading situations. Moreover, MCMC simulations are applied for studying the 
adiabatic and transient dynamics of the Ising model. By using the MCMC methods for generating 
samples from an identified Ising model, the identification methods are tested extensively with 
MCMC-generated synthetic data in varying qualitative network behaviour cases. By using real 
MTN data, the model identification methods are finally tested in a realistic case. 
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1. Introduction 

A networked system consists of a group of nodes with each node associated with a state and an 
external force, or loading, affecting the node state. Nodes interact through a set of neighbour 
relations defined by a network topology. Topological relations may also be associated with an 
interaction strength specifying how strongly neighbouring nodes are bound to each other. To-
pology being fixed, with weak interactions external force mostly determines a node state, whereas 
with strong interactions the node state is largely affected by the states of its neighbouring nodes. 
Consequently, under strong interactions and strongly connected topology, network becomes co-
herent with the states of neighbouring nodes showing correlations. Furthermore, the stronger the 
interactions and the connectivity, the larger the coherence and the correlations throughout the 
network. 
 
Because of the collective node behaviour, in a coherent network complex qualitative system 
properties may emerge (e.g., [42]). For example, the otherwise smooth transitions under varying 
external forces from one extreme network state (all nodes assuming the same state) into another 
may occur discontinuously with all the nodes transiting simultaneously. Furthermore, due to hys-
teresis, the time-reversal symmetry of the system may be broken with the network state depend-
ing on its past values (e.g., [37], [111], [128]). In a real network, discontinuous transition may cor-
respond to a sudden coherent collapse of the entire network under heavy external loading. Be-
cause of hysteresis, the original, desired, system state may not be obtained simply as by reducing 
the loading back to its previous value, but instead, needs to be severely reduced, and the larger 
the coherence, the larger the loading reduction needed. 
 
Under varying external loadings, systemic analysis of the collective node behaviour may thus 
provide valuable information about the qualitative properties of coherent networked systems, 
such as mobile telecommunications networks (MTNs), the application studied in this thesis. 
MTNs enable wireless communication via mobile phones as speech or text messages, but today 
they also provide other services, e.g., mobile broadband Internet. An MTN consists of base sta-
tion cells, or nodes, spread geographically to enable mobile communication in varying physical 
locations. Hence, like in many other physical systems, MTN cell nodes have a spatial configura-
tion in a two- (or three) dimensional space, and the topological relations then depend on the 
physical distances between the nodes in that space. In fact, an MTN assumes topology informa-
tion due to both the physical internode distances and a set of specified logical node relations, 
through which the cell nodes co-operate. The joint impact of the two pieces of topology infor-
mation is then manifested in the coherent behaviour of the MTN. 
 
As the phenomena in a networked system stem mostly from systemic node interactions, details 
of node structures and dynamics are less important. Indeed, many networks, which at first glance 
may appear very different, share similar qualitative properties; this is called universality in physics 
[166] and catastrophe theory in mathematics [112]. The universality of phenomena has been rig-
orously shown, e.g., in first- (discontinuous) and second- (continuous) order phase transitions of 
ferromagnets [166]. In particular, in technical networked systems, such as MTNs, transitions 
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from one system (desired) state into another (undesired) have similarities to those occurring in 
ferromagnets. Indeed, a network collapse may show similarities to discontinuous transitions in 
ferromagnets. Also in many other technical networks similar behaviour have been reported; e.g., 
in many communications networks (see, e.g., [73], [110], [153]) and in power-grids as blackouts 
(see, e.g., [11], [40], [85], [104], [125]). Hence, methods developed to study the coherent behav-
iour of one system may prove to be well suited to other similar systems as well. 
 
The Ising model, or Lentz-Ising model, [66], [89] (see also [22], [108]) is an example of a simple 
statistical network model, which was originally developed to analyse phase transitions in ferro-
magnets [166], but as some phenomena in the Ising model are universal, it has been widely ap-
plied, e.g., in image analysis [161]. As a statistical model, the Ising model assigns the joint prob-
ability of network node states, which are binary-valued, given the external forces affecting the 
node states. The Ising model belongs to a group of models called Markov random fields (MRFs) 
or Markov networks [70]. They are statistical models with their joint probability distribution fac-
torising according to network topology or an undirected graph [18]. Thus, the graph depicting 
the link connections of a networked system defines the structure of an MRF model. Another 
well-known class of statistical graph models, the Bayesian networks [105], exploits a graph with 
directed links. 
 
Identification of the Markov or the Bayesian network model consists of identification of graph 
structure and model parameters. Because a networked system may exhibit various types of quali-
tative behaviour, success in model identification depends on which type of network behaviour 
the identification data set represents. In the literature, parameter identification has been studied 
extensively for both MRF models (see, e.g., [16], [17]) and Bayesian networks (see, e.g., [105]). 
Graph identification studies have concentrated on the Bayesian networks (see, e.g., [31], [32], 
[36], [51], [94], [95], [105]), though some methods developed for Markov networks have been 
presented as well (see, e.g., [23], [82]). Once a statistical model has been identified for a net-
worked system, the model can be studied under varying external forces with Markov Chain 
Monte Carlo (MCMC) simulations [55]. 

1.1 Research Problem 

The dynamic behaviour of a networked system depends on the complex collective behaviour of 
the network nodes, where even the slightest change in external conditions, caused, e.g., by a ran-
dom fluctuation, may have a drastic effect on the overall network behaviour. Because of system 
complexity, the exact dynamic behaviour of a network is extremely difficult, if not impossible, to 
predict. Instead of trying to estimate exactly a network state under certain conditions, statistical 
modelling of the network state assigns a probability to the node states, and thereby covers all the 
uncertainty information related to the network state. Because under certain critical conditions a 
networked system may manifest itself in two drastically different states, it is essential to under-
stand the uncertainties related to the system state and to take action to reduce the risks, or con-
sequences, of a possible undesirable state. 
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This thesis examines statistical modelling of networked systems with applications to MTNs and 
addresses the following research problems:  
• How to model statistically technical networked systems, such as MTNs, under conditions of 

interest so that the model is able to reproduce the typical complex behaviour of networks, 
such as discontinuous phase transitions and hysteresis? 

• How to identify a statistical model from a node state–load measurement? 
o How to identify model structure to capture topological node interconnections?  
o How to identify model parameters to capture qualitative system properties? 

• How to evaluate with synthetic and real network data the performance of model identification 
methods and the quality of the models obtained? 

• By what means to study qualitative model behaviour under various instances of network be-
haviour, in particular the effect of changes in external loadings on collective network state be-
haviour? 

1.2 Hypothesis 

In modern technical networked systems, such as MTNs, statistical models can be used to study 
network state behaviour to obtain statistical information about the uncertainty of the network 
state. The state probability information obtained may then be used in planning a network and to 
render it more robust against sudden node failures or unexpected excessive local node loadings, 
and thereby to improve its quality of service to its users. At best, in MTNs, information obtained 
through statistical modelling will help network operators in their decision-making. Taking action 
accordingly, operators can prevent or at least minimise the risk of a disastrous network collapse, a 
coherently behaving network from suddenly transiting from a desired into an undesired state. 
Serious financial and quality-of-service-related losses could thus be avoided.  

1.3 Limitations 

This thesis focuses on statistical modelling of the overall behaviour of networked systems, in par-
ticular of that of MTNs. Consequently, the following topics are not covered: 
• Other approaches to modelling such as accurate modelling of network dynamics; yet an effort 

is made to study network dynamics by MCMC simulation of the statistical model 
• Detailed statistical/dynamic modelling of individual network nodes; instead a simple binary 

description of each node is assumed with the aim to model their collective behaviour 
• Detailed description of using statistical methodology in network planning and improving 

MTN performance; only methods to model such purposes are provided and their general use 
and performance described—their practical application is left to the network operator, who is 
better versed in network-specific concepts  

• Detailed description of MTNs and their operation; MTNs serve to test the methods, but this 
study does not aim at improving their performance 

1.4 Contribution  

The main contributions of this thesis, already partly published in [115], [116], [117], [118], and 
[119], are as follows: 
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• Adaptation of statistical models developed and studied extensively in other disciplines, such 
as physics, for analysis of technical networked systems, particularly MTNs 
o Models are promising in describing the type of phenomena that exist in MTNs and in 

many other technical networked systems  
o Defining the joint probability of network node states as a function of external conditions 

affecting the network supports network operators in their decisions on actions to the net-
work, e.g., to modify the network’s response under certain heavy external loading situa-
tions 

o The joint probability of network node states provides all the uncertainty information of a 
network state and thereby helps in managing risks related to network operation 

• Development of a topology identification method for networked systems, which can be ap-
plied to graph structure identification of MRF models  
o The method is suitable at least for systems such as MTNs, which assume an underlying 

spatial node configuration 
• Extensive testing of the developed graph structure identification method and the parameter 

identification method with synthetic network data under varying qualitative network behav-
iour situations and with real MTN data  
o The identification works efficiently in practical cases, in which a networked system is nei-

ther minimally nor extensively coherent 
• Study of the networked system’s sensitivity to local and global changes in external node load-

ing by simulating the statistical model with MCMC methods 
o Expected phase transitions do occur, such as network collapse under certain conditions 

• MCMC-simulations-based study of both transient and adiabatic network dynamics under 
changing external node loading  
o MCMC simulations are well suited candidates for studying some dynamic properties of 

statistical models 
 
In this study, the author’s contribution is as follows. The author studied statistical models suit-
able for analysis of technical networked systems, especially of MTNs, and chose the Ising model 
for extensive study. The author participated in developing model identification methods, de-
signed the necessary software, and carried out all the numerical method evaluations with syn-
thetic and real network data. The author also contributed to the study of networked systems’ sen-
sitivity to changes in external node loading and to the MCMC-simulations-based study of net-
work dynamics. The author performed all the sensitivity tests and simulations.  

1.5 Structure 

This thesis is divided into four parts. The first part consists of Chapters 2–3 and is an introduc-
tion to MTNs (Chapter 2) and in general to networked systems and their properties (Chapter 3). 
The second part contains Chapters 4–7, which provide a background to the methods applied in 
the thesis. This part introduces MRF models and their properties for modelling networked sys-
tems (Chapter 4), node dependency measures and other related methods for identifying MRF 
graph structures (Chapter 5), parameter identification methods for MRF models (Chapter 6), and 
MCMC methods for simulating MRF models (Chapter 7). The third part, through Chapters 8–10, 
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develops and extensively tests the topology (Chapter 8) and parameter (Chapter 9) identification 
methods with simulated synthetic network data. Qualitative model behaviour is then studied un-
der varying external loadings in Chapter 10. Finally, the fourth part, Chapters 11–14, introduces 
and preprocesses real MTN data (Chapter 11) and then applies the identification methods to this 
data (Chapters 12–13) and MCMC methods to the obtained models (Chapter 14). 
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2. Mobile Telecommunications Networks 

Today’s mobile telecommunications networks (MTNs) not only enable wireless communication 
via mobile phones as speech or text messages but also provide many other services, such as mo-
bile broadband access to the Internet. MTNs have rapidly developed from first-generation ana-
logue mobile networks, such as the Nordic Mobile Telephone (NMT) standard, into second-
generation (2G) digital mobile networks, e.g., the Global System for Mobile communications 
(GSM) standard. Although 2G networks are widely used today, third-generation mobile networks 
(3G) have become popular in providing more data bandwidth, and even fourth-generation net-
works are already on their way (see, e.g., [171], [172]). 
 
This thesis focuses mainly on GSM networks, simply because data was available from an anony-
mous GSM operator, and because GSM networks provide a good starting point for modelling 
telecommunications networks, having been in full-scale use for many years. Structurally, a GSM 
network is complex, for even its basic units, i.e., base transceiver stations (BTSs) and their cells, 
have two sources for topology information, geographical and logical. Extensive communication 
and control are necessary to manage the network and to deliver mobile cell phone traffic. All this 
makes detailed modelling of the network’s dynamics a challenge, which is why simplifications and 
approximations are necessary in any applicable methods of statistical modelling.  
 
The properties and functioning of single network nodes in MTNs have been analysed, e.g., in 
[78], [79], [145], whereas network planning and optimisation have been studied, e.g., by [80], [81]. 
The overall quality of service provided by an MTN has been studied in [156], [157]. Telecommu-
nications networks have also been extensively modelled through networks of queues [60] with 
each node being referred to as a queuing process. Queue network models yield probability distri-
butions and probability measures such as equilibrium distributions of the number of clients for 
each network node or for the whole network, hand-off rates, and blocking probabilities (see, e.g., 
[19], [83]).  
   
Chapters 2–3 introduce the reader to networked systems and their applications. The present 
chapter is a brief introduction to mobile telecommunications networks with focus on GSM net-
works. Section 2.1 discusses the structure and functioning of GSM networks, and Section 2.2 
outlines the topology information of GSM networks. Finally, Section 2.3 examines the effects of 
loading and other disturbances on GSM networks. Queuing networks or other previous methods 
for modelling telecommunications networks are not covered. 

2.1 Structure and Functioning 

The detailed structure of a GSM network (Figure 2.1) is complex consisting of three subsystems: 
a Network and Switching Subsystem (NSS), a Base Station Subsystem (BSS), and an Operations 
Subsystem (OSS). The BSS consists again of Base Transceiver Stations (BTSs) and Base Station 
Controllers (BSCs) and generally connects mobile stations, such as cell phones, via the NSS, 
which manages connections within the GSM network and bridges connections to an outside 
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network, e.g., a public telephone network. The OSS operates and maintains the network and 
manages the information of mobile stations. [156] 
 
Mobile stations connect to the GSM network via BTSs, which constitute the basic units of the 
GSM network. Each BTS has one or several transceivers (TRX) communicating with the mobile 
stations via BTS antennas in specified areas called (BTS) cells. Cells form an area covered by a 
single BTS handling communication with the mobile stations. BTSs must cover through the cells 
the entire geographical area where mobile stations may move to enable connections between the 
GSM network and the mobile stations [156]. BTS cells are the units considered in this thesis as 
network nodes. However, because many BTSs contain only one cell, often the two terms have 
quite the same meaning here. 
 
One or several BTSs operate under a single BSC, and several BSCs are further connected to a 
Mobile Switching Centre (MSC). The BSC controls its BTSs and transfers incoming and outgo-
ing mobile station traffic between the BTSs and the basic units of the NSS, the MSCs. The BSC 
also operates alarms, security, and reconfiguration. In general, for a GSM network to work prop-
erly, extensive communication and control are required. For details of GSM network structure 
and functioning, see, e.g., [150] and [156]. 

 
Figure 2.1. Structure of a GSM network. The figure is slightly modified from [156].  
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2.2 Topologies 

Because BTSs manage connections to mobile stations, the BTS cells must cover all the geo-
graphical locations where mobile stations can be positioned to enable the latter to connect to a 
GSM network. Therefore, BTSs (and their cells) are scattered in the geographical area covered by 
the GSM network, and their physical locations thus form a physical, or geographical node loca-
tion map of the GSM network. Because the mobile stations connecting to the GSM network 
cause traffic, or loading, on the GSM network, and because mobile station connections depend 
on their physical locations, the loadings of physically close cells obviously correlate. 
 
Mobile stations can change their physical locations while connected to a GSM network, whereas 
BTS locations are fixed and cover a certain physical area where they maintain communications 
with the mobile stations. Therefore, when a mobile station exits an area covered by one cell and 
enters one covered better by another cell, the connection between the GSM network and the 
mobile station is retained by transferring it from the former BTS to the latter. In telecommunica-
tions networks, this operation is referred to as handover.  
 
Handover is one example of exchange of information between BTS cells. However, though 
physically close cells usually co-operate via handovers, logical neighbour connections, in fact, 
determine the cells to which a given cell is connected. All logical connections in a network can be 
depicted as an undirected graph with the links between the nodes, cells, representing logical con-
nections or neighbourhood relations. We have thus two pieces of topology information: the first 
defined by physical locations of cell nodes, in which internode distances describe continuously 
dissimilarities between the cell nodes, and the second deriving from logical cell relations, defined 
in logical topology as binary node relations.  

2.3 Loading and Disturbances 

In a GSM network, speech and data transferred between mobile stations and BTSs cause a load-
ing on the BTS cells. Because the number of mobile stations and the amount of traffic caused by 
speech and data of the mobile stations vary from one location to another, the loading on cell 
nodes varies both over time and space. If a BTS cell becomes loaded close to its maximum ca-
pacity, attempts are made to hand the on-going connections between the BTS cell and the mobile 
stations over to some logical neighbouring BTS cell. If this is not possible, e.g., because the mo-
bile station cannot reach other cells, or because the other cells are also operating at full capacity, 
connections to mobile stations must be dropped [80]. 
 
In addition to the loading caused by the traffic of mobile stations, various disturbances may af-
fect steady network operation. Such disturbances include failures in devices maintaining network 
traffic, electric blackouts at BTSs or in parts of the network, and possibly even hostile attacks at 
the network and its BTSs. Disturbances causing failure at cells and links between cells may dras-
tically affect the quality of service of the network to mobile stations, as calls may be dropped or 
even widespread traffic blackouts may ensue (see, e.g., [168], [169], and [170]). This thesis deals 
only with disturbances that affect network operation through network loading and changes in 
traffic loading. 
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3. Networked Systems and Properties 

MTNs are an example of technical networked systems with other examples being, e.g., the Inter-
net, power grids, supply chains, and water distribution systems. More generally, examples of net-
worked systems include, e.g., neural networks in human brains, cellular networks in living organ-
isms, social networks of human beings, and the ecological networks of food webs.  
 
Networked system is thus a very wide concept, at its widest signifying any system consisting of 
nodes that interact. This is a loose definition because in general systems consist of subsystems 
that somehow exchange information or goods or interact by other means. In this thesis, net-
worked system refers to any system with homogeneous nodes, each specified by a state and each 
interacting through network topology with some other nodes, thus causing correlations seen in 
the joint statistics of states of interacting nodes. In addition, each node is specified in having an 
external effect on the state of the node itself. 
 
Today, by complex networks it is usually referred to networks with certain non-trivial topological 
properties, related, e.g., to the distribution of the number of neighbours or to the clustering of 
nodes [9]. On the other hand, complex systems also refers to systems with such behavioural 
qualitative properties that cannot be explained only by inspecting the properties of its subsystems 
[14], because new, unexpected properties emerge as a consequence of interaction between the 
subsystems. In practice, complex systems are networked systems with their behavioural proper-
ties affected by underlying topological network features.  
 
Studying some specific networked systems, such as MTNs, one should review in general the 
properties networked systems usually have, because various systems indeed share similar struc-
tural and behavioural properties [9], [42], [44], [106]. Consequently, methods for analysing a par-
ticular network application may prove equally well suited for other, initially rather distant, appli-
cations. Therefore, the present analysis of MTNs and their properties make use of a general ap-
proach to networked systems.  
 
This chapter introduces networked systems and considers both general topological and behav-
ioural properties. Section 3.1 introduces the concepts and data used in this thesis, and Section 3.2 
considers the various types of network topologies and their topological properties. Finally, Sec-
tion 3.3 discusses the effect of node removals and node failures on the topological and behav-
ioural properties of networks. 

3.1 Data and Concepts 

Each network node is associated with a state and a loading. The state and loading values are both 
assumed to be observed without measurement uncertainty. In general, node state data can be 
either discrete- or continuous-valued, but here only binary node states are considered in detail. 
Respectively, loading data may assume either discrete or continuous values. Here the state of 
node ݉ as a random variable is denoted as ܵ௠, whereas its value in a network observation ݈ is 
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denoted as ݏ௠
ሺ௟ሻ. Similarly, the loading of node ݉ in a network observation ݈ is denoted as ݄௠

ሺ௟ሻ. 
The network observation of a set of node state–load pairs is denoted as ሼݏ௠

ሺ௟ሻ, ݄௠
ሺ௟ሻሽ௠ୀଵ

ெ . The 
number of network nodes is denoted by ܯ and the number of observations by ܮ. 
 
Each node may also have a specified physical location and always has a set of neighbours—
MTNs assume both of these pieces of topology information. Here nodes are also assumed ho-
mogeneous in the sense that they are structurally identical. Both the physical locations of nodes 
and their neighbourhood relations are assumed constant through network observations. The 
physical location of node ݉, if given, is described by the node location map of the network and 
is denoted by a coordinate vector ܠ௠. The neighbours of node ݉ are denoted by a set of nodes 
݊ א ܰሺ݉ሻ, which for all nodes can be visually presented as a graph.  
 
Specifying a network node with a state and loading in general description means that for some 
specific networks, such as GSM networks, the information available about the nodes for each 
node must be compressed into the two variables, the state and the loading. With GSM networks, 
the two variables have the following meaning: the node state variable describes the performance 
of a BTS cell, e.g., how well the cell node performs requests from mobile stations; respectively, 
the load variable describes the external load, the amount of traffic caused by speech and data 
flows to and from mobile stations and affecting the BTS cells. However, since this is not the only 
way to define node states and loads in a GSM network, one goal in seeking an appropriate net-
work model is also to find an appropriate node description. 
 
Structure, or topology, is essential in defining many properties of a networked system [9], [44], 
[143]. Topology refers here to the list of nodes in networks and the list of interconnections be-
tween the nodes. In addition, the term graph, or graph structure, is used here in parallel to topol-
ogy. For a comprehensive specification of a networked system, the weights or strengths of inter-
connections are often specified in addition to a topological or graph description.  

3.2 Topologies 

Even diverse networks may share a similar basic structure of network topology. Only few such 
structures have been thoroughly studied in graph theory [38]. Regular networks are usually a sim-
plification, or an idealisation, of a true system topology. Yet regular topology structures exist in 
nature as well; e.g., in ice crystals, where the atoms are organised in a three-dimensional regular 
square grid. In a two-dimensional lattice, regular networks may assume interconnections in 
squares, triangles, or hexagonals (a regular square lattice structure is shown in Figure 3.1). In 
regular networks, if the network is infinite, each node has the same number of neighbours. In 
finite regular networks, the edge-nodes have fewer neighbours than the other nodes. However, in 
some cases, finite networks are deemed to have periodic boundary conditions with all nodes hav-
ing the same number of neighbours. Periodic boundary conditions mean that the edge nodes are 
neighbours to nodes at the edges on the opposite side of the network, the network being a torus.  
 
Random graphs, or random networks, [47], [48], [133] are models for network structures where 
node links are drawn samples according to some specified random process [9]. Widely studied 
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[47], [48], the Poisson process leads to the Poisson distribution of the number of neighbours, but 
random graphs with arbitrary distributions of the number of neighbours have been studied as 
well [101], [102], [107] (a random network topology is shown in Figure 3.1). Because the Poisson 
distribution is right-skewed with exponential tails, only few nodes have many more neighbours 
than the typical neighbourhood. Though extensively used to study the properties of real net-
works, random graphs with the Poisson distributed number of neighbours are seldom realistic 
since the real distribution of the number of neighbours is usually non-Poisson, such as the power 
law or exponential distribution [9], [25].  
 
Scale-free networks [9] are more complex in structure than the above with properties similar to 
those of many real-world networks. Scale-free networks have their number of neighbours dis-
tributed according to the power law. Consequently, scale-free networks are scale invariant [9]—
their topology appears similar at all length scales. Because the power law distribution has a heav-
ier tail than the exponential distribution, many nodes have relatively many neighbours (a scale-
free network is shown in Figure 3.1). An artificial generation of scale-free networks (see, e.g., [9]) 
mimics the evolution of growing networks; i.e., a new node is more likely to connect to a node 
with a high than a low number of neighbours. Growing networks often self-organise into scale-
free structures [44].  
 
Two further properties are generally used to classify network structures. One is the mean-
shortest path length (MSPL), which is the average node graph distance over all node pairs. Graph 
distance means here the smallest number of steps between two nodes along neighbourhood rela-
tions. Such networks have short graph distances in comparison to the size of the network. The 
other is about the clustering of the network structure, characterised by the clustering coefficient 
[160], i.e., how close the nodes are on average to forming cliques with their neighbours. Clique 
means a group of nodes in which each node is directly connected to every other node.  
 
A network is called a small-world network if it has a small MSPL value and a large clustering co-
efficient. Hence, small-world networks contain shortcut links that connect otherwise distant parts 
of the network, and the nodes form clusters of inter-connected node groups. Regular networks 
lack shortcuts and have thus large MSPL values, whereas both random graphs and scale-free 
networks assume shortcuts and thus small MSPL values [9]. In addition, scale-free networks and 
regular networks are typically highly clustered [9], whereas random networks are not because of 

 
Figure 3.1. Examples of regular square lattice (55ݔ) (left), random network (middle), and scale-free network (right). 
The last two topologies have both 32 nodes and 32 links and are redrawn according to [26]. 
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their randomly drawn links [41], [9]. Among regular networks, only nodes in triangular networks 
form cliques with their neighbours and assume thus a non-zero clustering coefficient. Finally, 
true networks often have some special properties that go beyond generated idealised topologies, 
and finite networks may be hard to classify as pure members of any topology types. 

3.3 Properties 

Networked systems may experience disturbances, e.g., due to device failures or electrical black-
outs, which affect their system topology and its connectivity by either disrupting links or remov-
ing nodes. Scale-free networks are robust against random node removal, because a randomly 
chosen node comes most likely from among the typical nodes with relatively few links. There-
fore, because the central nodes are likely to be unaffected, the network is still likely to be con-
nected via a path from every node to every other node, even if relatively many nodes are ran-
domly removed. Consequently, random node removals hardly change the topology or connec-
tivity of scale-free networks, unless some central nodes with many neighbours are removed. 
However, removal of the central nodes may drastically affect network connectivity with the net-
work fragmenting into several unconnected subnetworks [10].  
 
Because random graphs and regular networks lack central nodes, all the nodes assume nearly the 
same number of neighbours. Consequently, a randomly removed node in a random network con-
tributes relatively more to the network’s connectivity than it does in a scale-free network with the 
same average graph distance. Random networks are thus more vulnerable to random node re-
movals. When the threshold number of removed nodes is exceeded, the network decomposes 
into unconnected subnetworks [9]. On the other hand, random networks are more robust against 
removal of the most connected nodes than scale-free networks, because they have only few 
nodes with a large number of neighbours in the first place, which are thus rather insignificant to 
network connectivity [10]. Yet, in general, network robustness against removals is also affected 
by general network connectivity. Furthermore, let us recall the above reminder that real network 
topology may not follow any idealised topology type considered here (for more on the effects of 
node removals on networks, see, e.g., [9], [10], [34], [44]). 
 
This thesis does not consider link disruptions or node removals and their impact on topological 
properties. Instead, since the focus here is on MTNs, node failures are considered when a node 
operates poorly, or abnormally, and affects the states of its neighbouring nodes through its poor 
performance rather than by removing the node and its links from the network. In MTNs, such 
node failures may be caused by heavy node loadings, phenomenon whose impact on node states 
and thus the whole network operation are under scrutiny here. In particular, the average network 
node state is studied under varying node loadings. Though topological properties are not consid-
ered here, the connectivity of normally operating nodes can be analysed under a certain loading 
configuration to find out how the topology changes if abnormally operating nodes are ignored.  
 
Therefore, though the connectivity properties of two types of idealised network topologies under 
node removals have been briefly discussed above, the emphasis here remains on behavioural 
rather than topological properties. Topological properties also affect a networked system’s be-
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havioural properties, but only partly; the strength of node interactions is significant, too. In fact, 
interaction strengths are highly essential, because they determine the statistical coherence of the 
network analysis in this thesis, i.e., the stronger the interactions, the more coherent the network. 
In addition, though topology affects coherence, in this thesis network topology is mostly fixed 
and coherence therefore determined by node interactions only.  
 
Coherence affects a network’s qualitative behaviour, determining how the network behaves un-
der external node loadings. Depending on its coherence, a networked system under varying load-
ing may thus exhibit critical phenomena with continuous phase transitions at a critical coherence 
level or discontinuous phase transitions at high network coherence. A coherent networked sys-
tem may also exhibit hysteresis with the state of the network depending on its past loading val-
ues. All these properties are studied in depth in Chapter 4. 
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4. Markov Random Fields as Models of Networked Systems 

Markov random field (MRF) models are a set of collaborative statistical models representing de-
pendencies of variables through a joint probability. MRF models have their origin in statistical 
physics, where the Ising model [66] was first used to analyse ferromagnetism and its properties 
[70]. Since then the Ising model and other MRF models have been extensively used to model 
collective network behaviour and applied to spatial modelling, e.g., in image analysis [161], geo-
statistics [33], [59], and genetics [92].  
 
In the MRF model, a graph presentation of the interconnections of variables considered specifies 
a set of conditional independence properties and defines the structure of the MRF model. To 
specify an MRF model for a networked system, both the graph structure of the variables and the 
parameters of the chosen MRF model type must be set. In general, both structure and parame-
ters affect the qualitative properties of an MRF model, but after the model’s graph structure has 
been fixed, only parameters determine qualitative model properties. 
 
Chapters 4−7 provide the methodological background to this work. This chapter begins with an 
introduction to MRF models, which in this thesis are applied as models for networked systems. 
Section 4.1 introduces first the general structure and definition of MRF models, followed by a 
few specific MRF models in Section 4.2. Section 4.3 discusses the physics background of MRF 
models, and Section 4.4 reviews in general the qualitative properties of the Ising model applied in 
this thesis. 

4.1 General Structure and Definition 

An MRF model is a joint probability distribution (JPD) of a set of random variables. In it, the 
JPD factorises into a product of subset JPDs, the factorisation being determined by conditional 
statistical independence (hereafter conditional independence for short) properties of node vari-
ables. The maximum number of nodes that are all pairwise conditionally dependent, given the 
states of the rest of the nodes, form one factorisation term. These conditional dependence rela-
tions can be visually presented in a graph, in which an undirected link is drawn between all pair-
wise conditionally dependent nodes (see Figure 4.1). Connected nodes are called neighbours. The 
set of neighbours of a node ݅ is called the node’s Markov blanket and denoted here by ܰሺ݅ሻ. 
Having undirected links, all neighbourhood relations are symmetric: ݆ א ܰሺ݅ሻ

 
֞ ݅ א ܰሺ݆ሻ.  

 
The notations in Section 3.1 can be used to present conditional independence properties for-
mally. Denoting by ିܛ௜௝ the states of all network nodes, except for nodes ݅ and ݆, the pairwise 
conditional independence between node states ݏ௜ and ݏ௝, given ିܛ௜௝, can be written as 

Consequently, the conditional joint probability of node states ݏ௜ and ݏ௝ factorises into a product 
of marginal conditional probabilities, when the nodes are conditionally independent. This prop-
erty can also be expressed as ݌ሺݏ௜|ݏ௝, ௜௝ሻିܛ ൌ ௜ሻିܛ|௜ݏሺ݌ ൌ  ௜௝ሻ. Furthermore, since theିܛ|௜ݏሺ݌

,௜ݏሺ݌  ௜௝ሻିܛ|௝ݏ ൌ  ௜௝ሻ. (4.1)ିܛ|௝ݏሺ݌௜௝ሻିܛ|௜ݏሺ݌
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Markov blanket of a node ݅ defines the complete set of nodes ܰሺ݅ሻ, on which the state of node ݅ 
is pairwise conditionally dependent, the previous condition can also be formulated as  

This conditional probability is sometimes called the full conditional, a very useful concept in es-
timating MRF model parameters in Chapter 6 and in simulating the model in Chapter 7. 
 
Two nodes connected with a link and thus pairwise conditionally dependent are said to form a 
clique on the graph. In general, a clique is a subset of nodes such that all nodes pairwise condi-
tionally depend on each other. Thus nodes belonging to a clique are all directly connected to one 
another in the graph. A maximal clique is a clique of nodes that is not a subset of any other 
clique. For example, in Figure 4.1 each node forms a (trivial) clique of size 1, and each node pair 
connected with a link (e.g., nodes 1 and 2) forms a clique of size 2. Nodes 2, 3, and 6 form a 
maximal clique of size 3; but also node pairs (1, 2), (1, 4), (4, 5), (5, 6), (6, 7), (7, 8), and (3, 8) 
all form a maximal clique of size 2, because they are not subsets of any other cliques. 

 

Because the MRF JPD is defined in general based on pairwise conditional dependencies, the JPD 
can be formulated by using cliques. Let us first define the potential function (PF) of a clique as 
any positive definite function of the node states within the clique. In its general form, the MRF 
JPD is the product of the PFs of all cliques. In fact, it can be defined only through the PFs of 
maximal cliques, because any other cliques are subsets of the maximal cliques. However, this the-
sis considers only the PFs of maximal cliques that are products of the PFs of node pair cliques 
and the PFs of single node cliques within the maximal clique.  
 
The following notations are used to define the MRF JPD. First, the set of all node pairs on a 
graph are denoted by ܸ, and the PF of a node pair clique of nodes ݅ and ݆ is denoted by 
߰௏ሺݏ௜, ,௝ሻ, where ሺ݅ݏ ݆ሻ א ܸ. A PF of a single node clique is denoted by ߰ሺݏ௠ሻ, where the sub-
script ݉ ൌ  indexes the set of all nodes. Now the probability associated with a joint state ܯ…,1
s (a vector of size ܯ) of a random variable S of ܯ nodes, the MRF JPD, can be written as 

Here ܼ is a partition function that normalises the probabilities and is defined as a summation 
over all combinations of node states ܛ: ܼ ൌ ∑ ∏ ߰௏ሺ௜,௝ሻא௏ ሺݏ௜, ∏௝ሻݏ ߰ሺݏ௠ሻெ

௠ୀଵܛ . In the defini-
tion of the partition function, discrete-valued variables are assumed; with continuous-valued vari-
ables, summations are replaced by integrals. Different choices of potential functions lead to dif-

௜ሻିܛ|௜ݏሺ݌  ൌ  ேሺ௜ሻሻ. (4.2)א௡ሽ௡ݏ௜|ሼݏሺ݌
 

ሻܛሺ݌  ൌ ܼିଵෑ ߰௏ሺݏ௜, ௝ሻݏ
ሺ௜,௝ሻא௏

ෑ ߰ሺݏ௠ሻ
ெ

௠ୀଵ
. (4.3) 

 

 
Figure 4.1. A graph with eight nodes. 
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ferent model types, which are considered in the following subsection. Graph structure defines 
the global structure of an MRF model, whereas specification of potential functions defines local 
properties. 

4.2 Model Types 

Because positive definite, exponential functions are commonly used as potential functions. The 
PFs of node pair cliques determine the node-to-node interactions in the network, whereas the 
PFs of single node cliques determine the single node effects that can be thought of being due to 
external forces or an external field, and affecting nodes locally. In this thesis only exponential 
PFs of node pair cliques and single node cliques are considered. This section introduces the fol-
lowing three MRF model types based on the structure of their node state: the binary-state Ising 
model, the discrete-state Potts model, and the continuous-state Gaussian model.  

4.2.1 Ising Model 

The Ising model [66], [89] originates in statistical physics, where it was first used to model ferro-
magnetism, i.e., the alignment of magnetic particles under the effect of an external magnetic field 
[166]. The properties of the Ising model have been studied in detail in statistical physics [166], 
but the model has also been applied to many other fields, such as image analysis [161], the distri-
bution of galaxies in the universe [139], financial markets [134], [135], [154], spread of perturba-
tions, e.g., diseases [140], and the elasticity theory of DNA [8]. 
 
In the Ising model, each node has only two possible states, here െ1 and ൅1, and is hence classi-
fied as a binary node state MRF. Though at the node level it is then a very simple model, it has 
complex coherent properties and is phenomenologically rich for study of the collective behaviour 
of complex networks. In the previous notations, the JPD of the Ising model is here defined as  

The first model term inside the exponent is the interaction term, whereas the second term is the 
external field (load) term. Here ܬ௜௝  ௜௝ defines theܬ .and ݄଴ are the parameters of the model ,ܪ ,
strength of interaction between neighbouring nodes ݅ and ݆, ܪ the magnitude of the external 
loads, and ݄଴ the threshold value of the external load ݄௠, i.e., node ݉ prefers state ൅1 if 
݄௠ ൐ ݄଴ and state െ1 if ݄௠ ൏ ݄଴. This thesis assumes throughout a uniform ܬ௜௝ , i.e., for all 
node pairs ݅ and ݆ ܬ௜௝ ൌ -hence it describes the magnitude of the interaction term. Each pa ;ܬ
rameter may assume any positive or negative scalar value.  
 
Here the external loading term is over-parameterised in the sense that we may also write 
௠ሺ݄௠ݏܪ െ ݄଴ሻ ൌ  and ݄଴ are the same as re-scaling ݄௠ and ܪ ௠݄௠, where the effects ofݏ
changing the zero of ݄௠, respectively. Nevertheless, over-parameterisation is applied to clearly 
interpret the parameters. 
 

 
ሻܛሺ݌ ൌ ܼିଵෑ expሺܬ௜௝ݏ௜ݏ௝ሻ

ሺ௜,௝ሻא௏
ෑ expሾݏܪ௠ሺ݄௠ െ ݄଴ሻሿ
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Because only node pair cliques and single node cliques are used here, the Ising model can also be 
written in terms of node neighbourhoods: 

Here the last form defines the effective load ݄௠ୣ୤୤ of node ݉, which is the total loading affecting 
the node state due to node interaction and external loading. 
 
As node interactions (ܬ) increase, the Ising model exhibits a behaviour typical of complex net-
worked systems, such as spontaneous organisation at zero external field, resulting in coherence in 
the network node states and discontinuous phase transitions with hysteresis under external load-
ing. These phenomena are discussed with the Ising model in detail in Section 4.4. 

4.2.2 Potts Model 

The Potts model [113] is a discrete-state MRF model, in which a node may have any positive in-
teger, ݍ, number of states. Like in the Ising model, the JPD of the Potts model factorises into the 
product of potential functions of single node cliques and node-pair cliques, and can be written in 
general form as 

Here ߜ is the Kronecker delta-function, which is zero everywhere except when ݏ௜ ൌ  ௝, where itݏ
assumes the value one. Therefore, two interacting nodes ݅ and ݆ contribute to the JPD only when 
they assume an equal state. Parameters ܬ௜௝ and ݄଴ mean the same as in the Ising model. The 
parameterisation function ܪ still defines the magnitude of the external loading but is now a func-
tion of the node state ݏ௠, because the ݍ possible states; respectively, direct multiplication by the 
node state ݏ௠ is omitted here. 
 
The Potts model can be considered a ݍ-state extension of the Ising model, because with ݍ ൌ 2 
the Potts model reverts to the Ising model. The properties of the Potts model have been studied 
extensively with varying ݍ values and dimensions (see, e.g., [163]). For example, at the critical 
point of spontaneous organisation, in two-dimensions phase transitions in the Potts model are 
discontinuous with ݍ ൐ 4 and continuous for ݍ ൑ 4 [163], [166].  

4.2.3 Gaussian Model 

The Gaussian model [122], or Gaussian MRF model (GMRF), is a continuous-state model, with 
its node states assuming continuous values. In its simplest form without an external load term, 
the GMRF model is the ordinary Gaussian JPD: 

 

ሻܛሺ݌ ൌ ܼିଵexp ቈܬ෍ ෍ ௡ݏ௠ݏ
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where ۿ is an ܯݔܯ precision matrix (inverse of the covariance matrix) of ܛ with the element ܳ௜௝ 
defining the strength of interaction between nodes ݅ and ݆. Like in the Ising and Potts models, 
the external load term can be included in the Gaussian model by presenting it in the form of ca-
nonical parameterisation [122], after which the model JPD can be written as 

where in the first form the second term defines the external loading term, and 1ݔܯ vector ܊ 
contains the node loadings and loading parameters; e.g., ܾ௠ ൌ െܪ௠ሺ݄௠ െ ݄଴ሻ. ܼሺۿ,  ሻ is the܊
partition function, which normalises the probabilities, and whose analytical form is known and 
easy to calculate. As the second form in Eq. (4.8) shows, the canonical form is just a reparame-
terisation of the Gaussian distribution; hence all related computational methods are available. 
From the viewpoint of MRF models, the interpretation of the precision matrix ۿ in the Gaussian 
MRF has an intriguing property: the element ܳ௜௝ is nonzero only if nodes ݅ and ݆ are pairwise 
conditionally dependent. Consequently, the nonzero elements of the precision matrix ۿ instantly 
determine the graph structure of the GMRF. Because of the sparseness of the precision matrix 
  .many efficient computational methods have been developed for the GMRFs (see, e.g., [122]) ,ۿ
 
From the standpoint of this thesis, GMRF models have the disadvantage that the phenomena 
they exhibit are rather simple in the sense that no phase transitions or hysteresis takes place at all. 
Instead the average network node state changes smoothly as a function of external loading, as 
shown by the second form of Eq. (4.8), where the expectation value of ିۿ ,ܛଵ܊ is a linear func-
tion of the loading parameter vector ܊. It also follows that fluctuations around the mean values 
correlate according to the covariance matrix ିۿଵ. In addition, on a lattice with finite neighbour-
hood relations according to ۿ, correlations described by ିۿଵ decay exponentially in the distance 
between two nodes; hence no network-wide state coherence can occur. 

4.3 Physics Background of MRF Models 

MRF models originate in statistical mechanics, where the Ising model was first used to study 
phase transitions [66], [89]. Because the Ising model’s many properties are explained in physical 
quantities such as temperature and magnetisation, its structure and properties can be better un-
derstood in terms of these physical concepts. This section discusses briefly how the Ising model 
can be derived from one fundamental concept of statistical mechanics, the Boltzmann distribu-
tion, and how temperature is related to the parameters of the model. 
 
Statistical mechanics deals with macroscopic properties of systems consisting of large numbers of 
microscopic particles, each assuming a specific state (see, e.g., [86], [126]). Statistical mechanics 
assumes that for an isolated system, all accessible microstates are equally probable [126]. An iso-
lated system consists of a studied system connected to a large reservoir with which the system 

ሻܛሺ݌  ൌ ሺ2πሻିெ/ଶ|ۿ|ଵ/ଶ exp ൬െ
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exchanges energy according to the principle of equal probability of microstates. Such arrange-
ment is called thermal equilibrium. 
 
By using the laws of thermodynamics and the concept of equally probable microstates, a prob-
ability can be associated with the state of the studied system. However, rather than the probabil-
ity depending directly on the state configuration of the microscopic particles, it now depends on 
the total energy exhibited jointly by those particles. Consequently, the total energy consists not 
only of energies related to individual particles, but also of energies arising from particle interac-
tions. The probability for the system to assume a microstate configuration ܛ with the related total 
energy ܧሺܛሻ is determined by the so-called Boltzmann distribution (see, e.g., [126]): 

Here ߚ ൌ 1/݇ܶ, where ݇ is the so-called Boltzmann factor (constant) and ܶ the temperature of 
the reservoir with which the system is assumed to be in equilibrium. The exponential factor is 
called the Boltzmann factor, and ܼ is the partition function (normalisation term), defined as the 
sum over all the possible Boltzmann factors or microscopic states ܛ:  

The partition function plays a central role in statistical mechanics, because many macroscopic 
quantities describing the system, such as free energy and entropy, can be calculated when the par-
tition function is known. However, in practice the partition function is very difficult, if not im-
possible, to calculate for large systems, because the number of possible microstates grows expo-
nentially with the size of the system; for example, consider the Ising model with ܯ nodes with a 
total of 2ெ microstates [166]. 
 
As an example of the Boltzmann distribution, let us consider the formulation of the Ising model 
in Subsection 4.2.1. The total energy of a networked system is now composed of energies due to 
node interactions and of external energies affecting the individual nodes. Using the same nota-
tions as in Subsection 4.2.1 and further denoting by –ܬ′ the energy contributed by a single inter-
acting node pair and by –݄௠ the external energy contribution of a node ݉, we can write the total 
energy of a state configuration ܛ as 

where the threshold parameter ݄଴ used in Subsection 4.2.1 is omitted for simplicity. When we 
now insert Eq. (4.11) in the Boltzmann distribution of Eq. (4.9), the JPD of ܛ becomes 

Comparing this definition to that of Eq. (4.5) and omitting ݄଴ from Eq. (4.5), we can see that the 
parameters in Eq. (4.5) are redefined as ܬ ൌ ܪ and ′ܬߚ ൌ  in ܪ and ܬ and that both parameters ,ߚ
Eq. (4.5) include the temperature parameter ܶ via parameter ߚ. 

 ܲሺܛሻ ൌ ܼିଵexpሾെܧߚሺܛሻሿ. (4.9) 
 

 ܼ ൌ෍ expሺെܧߚሺܛሻሻ
ܛ

. (4.10) 
 

ሻܛሺܧ  ൌ െܬ′෍ ௝ݏ௜ݏ
ሺ௜,௝ሻא௏

െ෍ ݄௠ݏ௠
ெ

௠ୀଵ
, (4.11) 

 

 
ܲሺܛሻ ൌ ܼିଵexpሺെܧߚሺܛሻሻ 

ൌ ܼିଵexp ቆܬߚ′෍ ௝ݏ௜ݏ
ሺ௜,௝ሻא௏

൅ ෍ߚ ݄௠ݏ௠
ெ

௠ୀଵ
ቇ. 

(4.12) 
 



4. MARKOV RANDOM FIELDS AS MODELS OF NETWORKED SYSTEMS 23
 

 
In most theoretical phase transition analyses (e.g., [166]) of the Ising model, external loadings are 
assumed uniform; i.e., for each node ݉, it is assumed that ݄௠ ൌ ݄, where ݄ is the uniform ex-
ternal loading. However, this approach is often unrealistic for describing true phenomena in real 
networked systems, because for a regular grid and uniform loading, all nodes appear identical in 
the model. Yet, for example, in MTNs node loadings come from the traffic caused by mobile 
phones, and may obviously significantly vary locally and thus drastically affect the network be-
haviour.  
 
The random-field Ising model is a version of the Ising model, developed accurately to describe 
the phenomena of some real networks by incorporating also the node-specific loading in the 
model as a random variable. When Eq. (4.12) is changed according to the random-field Ising 
model, both uniform and node-specific random-field components are included in the node load-
ing; the loading of node ݉ becomes then ݄௠ ൌ ݄ ൅ ݄௠. In theoretical analysis, random loading 
components are randomly drawn from some distribution, e.g., identically and independently dis-
tributed according to the Gaussian distribution: ݂ሺ݄௠ሻ ൌ 1/√2π expሾെ݄௠ଶ -ଶሿ [42]. The ranߪ2/
dom-field Ising model describes true fluctuations and variations, or disorder, occurring in real 
systems. This model is used in Section 4.4 to demonstrate hysteresis phenomena, which the regu-
lar Ising model with uniform loadings and regular neighbourhoods is unable to describe. 

4.4 Properties of the Ising Model 

The Ising model exhibits various phenomena typical of complex networked systems. Though 
some typical networked system phenomena were briefly discussed in Chapter 3, this section is a 
technical review of these properties and concentrates on their appearance in the Ising model. In 
the literature, the qualitative properties of the Ising model are usually studied in the context of 
ferromagnetism, where the average magnetisation of spin nodes plays the role of the order pa-
rameter manifesting the model’s qualitative properties, i.e., which type phase transition the model 
exhibits under which conditions. Phase transition is understood as a discontinuity in some overall 
system properties or in some of their derivatives with respect to model parameters [166].  
 
Because the focus here is on technical networked systems, Ising model properties are not exam-
ined as they appear in magnetism; instead concepts relevant to the subject of this thesis are 
adopted by using the following substitutes: nodes instead of spins, node states instead of spin 
magnetisations, and external node loadings instead of external magnetic fields. Because in physics 
temperature is a quantity greatly affecting magnetisation properties, Ising model properties are 
studied as a function of temperature. However, here the temperature parameter is replaced with 
the parameter ܬ of Eq. (4.5), which is inversely proportional to the temperature used in the con-
text of magnetism (see Section 4.3). The term phase transition is still used here to describe 
changes taking place in a state of the model, i.e., the average of the node states. 
 
In the literature, the properties of the Ising model are usually studied in connection of either infi-
nite regular network topology, such as a square lattice with nearest-neighbour relations or a fully 
connected infinite graph with each node a neighbour of every other node. Recently, the Ising 
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model has also been analysed on more complex network structures [42], [43]. However, results of 
the idealised network structures are reported here as found in the literature to demonstrate the 
types of phenomena the Ising model may exhibit. Indeed, real networks are finite in size and 
usually widely irregular in topology [9]. Because of this finiteness, some consequences ensue from 
the boundaries of a finite network, where the nodes at the boundaries have generally fewer 
neighbours than the nodes at the centre of the network. However, because their network topol-
ogy is anyway irregular with a varying number of node neighbours, boundary nodes are not ex-
pected to cause further peculiarities in model behaviour. 

4.4.1 Qualitative Properties of the Ising Model 

The Ising model’s qualitative phenomena and types of phase transitions are schematically illus-
trated in Figure 4.2 for a regular network topology of ܯ nodes and with nearest-neighbour inter-
actions. On the left, the average state of the network nodes, denoted ۃsۄ, is given as a function of 
݄) in a zero external field ܬ/1 ൌ 0), and on the right ۃsۄ is given as a function of external uni-
form field, or loading, ݄ with three ܬ values. The uniform external loading is changed adiabati-
cally, which means that the dynamics of the external loading are much slower than those in the 
model. Consequently, after the uniform external loading is changed infinitesimally, the system has 
enough time to relax into its metastable stationary state before another loading change is exe-
cuted. 
 
In general, the Ising model incorporates two types of phase transition; first-order, or discontinu-
ous transitions and second-order, or continuous transitions with discontinuities in the first de-
rivative of system properties. A thorough analysis of the model on a two-dimensional square lat-
tice, as found in [166], is given next. 

The Case with ࡶ ൏  ࢘ࢉࡶ

Let us first study the state behaviour of the nodes in the Ising model using the right-hand plot 
in Figure 4.2, where the three curves give ۃsۄ with three ܬ values: the solid red curve corre-

Figure 4.2. Qualitative properties of the Ising model. The left-hand plot shows spontaneous symmetry-breaking 
organisation in the Ising model under zero external field. The right-hand plot shows the average network node 
state ۃsۄ as a function of ݄ with three levels of interaction parameter ܬ. The average state ۃsۄ changes continuously, 
when ܬ ൏ ݄ ୡ୰ (solid red). Phase transition is continuous with the diverging first derivative atܬ ൌ 0 when ܬ ൌ  ୡ୰ܬ
(dotted black). Phase transition is discontinuous at ݄ ൌ 0 when ܬ ൐  .ୡ୰ (dashed blue)ܬ
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sponds to ܬ ൏ ܬ ୡ୰, the dotted black curve toܬ ൌ ܬ ୡ୰, and the dashed blue curve toܬ ൐  .ୡ୰ܬ
With ܬ ൏ -ୡ୰, node loading dominates node interaction, and statistically the node states deܬ
pend weakly on each other. Hence ۃsۄ is a continuous function of loading between two ex-
treme states, ۃsۄ ൌ െ1 and ۃsۄ ൌ ൅1.  
 
When the internode interaction gains strength and point ݄ ൌ 0 is approached under an exter-
nal load change, the node states fluctuate less yet more coherently with significant correlations 
appearing in neighbouring node states. Interpreted physically, as the temperature drops, the 
interaction energy contributes increasingly, compared to thermal fluctuations in nodes due to 
temperature. That is, at low temperatures and at ݄ ൌ 0, the Ising model sets higher probabili-
ties for organised network states, whereas at high temperatures, organised and disorganised 
states are almost equally probable.  
 
In general, correlations in node states are described with a measure called correlation length, 
which measures the maximum size of node clusters that show correlations in their states. 
Hence the correlation length increases at the approach of the critical point ܬୡ୰; the system is 
then said to show a short-range order [166], because correlated node regions begin to appear. 

The Case with ࡶ ൌ  ࢘ࢉࡶ

At ܬ ൌ ݄ ୡ୰, when approaching the pointܬ ൌ 0, correlations appear at all length scales, and the 
correlation length becomes infinite. Hence a single node cluster can dominate the entire net-
work, and the average state ۃsۄ can be non-zero. The first derivative of ۃsۄ with respect to ݄ 
diverges at ݄ ൌ 0, indicating a second-order or continuous phase transition; on the right hand 
plot in Figure 4.2 at ݄ ൌ 0, the slope of ۃsۄ approaches infinity.  
 
The above phase transition can also be analysed using the left-hand plot in Figure 4.2, which 
shows the temperature, or 1/ܬ, dependence of ۃsۄ: at ܬ ൌ  ୡ୰ the symmetry of the system isܬ
said to be broken, and the system starts spontaneously organising itself into one of two possi-
ble extreme (coherent) states, the chosen state depending on random fluctuations. If the ex-
ternal loading assumes an infinitely small positive value, the path to state ൅1 is chosen, 
whereas if it assumes an infinitely small negative value, the path to state െ1 is chosen. Finally 
at zero temperature (ܬ approaches infinity), the system, respectively, ends up either in state 
ۄsۃ ൌ ൅1 or in state ۃsۄ ൌ െ1. The network state is said to “freeze” with fewer and fewer 
fluctuations, when the internode interaction increases until all nodes finally assume the same 
state, either െ1 or ൅1. Physically, the system now reaches its state of minimum energy. 
 
Many intriguing critical properties appear at continuous phase transition. In particular, many 
quantities such as the correlation length, the average node state, and the sensitivity to external 
loading (first derivative of ۃsۄ with respect to ݄) are all power law functions of ܬ െ  ୡ୰. Theܬ
correlation length and the sensitivity to external loading diverge at ܬ ൌ  ୡ୰. The exponents inܬ
power laws are called critical exponents and are known to be universal, whereas ܬୡ୰ depends 
on the details of the system’s dynamics. Universality means that exactly the same exponents 
appear in many different physical systems, and that they depend only on a few fundamental 
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parameters, such as the dimensionality and symmetry of the order parameter ۃsۄ in models 
with short-term interactions, e.g., the Ising model on a regular lattice with nearest-neighbour 
interactions. [166] 

The Case with ࡶ ൐  ࢘ࢉࡶ

At ܬ ൐  ୡ୰, nodes behave very coherently with their states strongly statistically dependent, butܬ
with fluctuations appearing at finite correlation lengths when approaching ݄ ൌ 0. The model 
is said to exhibit a long-range order [166]. A discontinuity now occurs in ۃsۄ at ݄ ൌ 0, as 
shown on the right-hand plot in Figure 4.2: at the approach of ݄ ൌ 0, only a modest change 
occurs in ۃsۄ with only a few nodes undergoing a state change until, at ݄ ൌ 0, an abrupt, dis-
continuous, jump takes place in ۃsۄ with nearly all nodes changing their states simultaneously. 
Such a phase transition is called discontinuous or first-order, because of the discontinuity in 
 As shown on the left-hand plot in Figure 4.2, discontinuous phase transitions take place .ۄsۃ
in the region from ܬ ൌ ܬ ୡ୰ toܬ ൌ ∞ . 
  
The 1/ܬ dependence of the Ising model was already analysed with continuous and discon-
tinuous phase transitions. However, consider starting from ܬ ൏  ୡ୰ and with either constantܬ
positive or negative external loading. When ܬ increases beyond the critical threshold and all 
the way to ܬ ൌ  changes continuously, and no phase transitions are encountered, as ۄsۃ ,∞
shown by the two curves above and below ۃsۄ ൌ 0 on the left-hand plot in Figure 4.2. De-
pending on the sign of the external loading, ۃsۄ moves continuously to either state െ1 or state 
൅1.  

 
In the Ising model, the network state below ܬୡ୰ is often referred to as the more symmetric phase 
in the sense that small fluctuations in node states do not change the network’s overall appear-
ance, whereas above ܬୡ୰ state fluctuations at ݄ ൌ 0 determine the coherent state into which the 
network spontaneously organises itself. Consequently, the less organised state is more symmetri-
cal than the more organised one. Because nodes at (ܬ ൌ ݄ ,ୡ୰ܬ ൌ 0) spontaneously organise 
themselves into the more ordered but less symmetrical state, the system’s symmetry is said to be 
broken.  

4.4.2 Qualitative Properties of the Random-Field Ising Model 

With the Ising model on a regular lattice and under uniform external loading, all phase transitions 
take place at ݄ ൌ 0 [166]. However, when some disorder or irregularity is incorporated into the 
model by including random components in the external fields, drastic qualitative changes occur 
in model behaviour [42], [65]. This model, called the random-field Ising model [128], comprising 
both uniform and random loading components, can demonstrate hysteresis, a phenomenon that 
occurs in various real systems, e.g., in the magnetisation of materials [98], in plastic materials [72], 
and in economics [39].  
 
Hysteresis, which has been extensively studied in the random-field Ising model (e.g., [37], [42], 
[111], [128], [129], [130]), means that the system’s time-reversal symmetry is broken, and that the 
state of the network then depends on its history. Hysteresis exists even in the Monte Carlo dy-
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namics of the Ising model under an oscillating loading, because the time variation of the network 
average state lags behind that of the oscillating field. This occurs when the relaxation time of the 
Monte Carlo dynamics of the network average state is slower than the frequency of the oscillat-
ing field (see, e.g., [4], [5], [6], [27]). The random-field Ising model has shown hysteresis also on 
an irregular network topology, and the topological properties of an irregular network affect the 
hysteresis properties [42], [62], [93], [147]. On regular lattices, also network connectivity affects 
hysteresis properties [124]. 
  
Here hysteresis means that as ݄ is adiabatically varied, two separate paths exist for ۃsۄ: one is fol-
lowed when initialising the model to state ۃsۄ ൎ െ1 and as increasing ݄, and the other when ini-
tialising the model to state ۃsۄ ൎ ൅1 and decreasing ݄, respectively. A range of external field val-
ues exists now, where simultaneously exists two possible coherent metastable network states (െ1 
and ൅1) and an unstable state, from which the network always transfers to either of the two co-
herent states (Figure 4.3). Consequently, the JPD of the random-field Ising model becomes bi-
modal with the two coherent state expectations corresponding to the two modes of distribution 
and unstable solutions represented by the improbable states between the two modes. 
 
In the random-field Ising model, hysteresis is stimulated by randomness in node loadings break-
ing the exact similarities of nodes. The model was studied in [128] at zero temperature for a regu-
lar network topology (cubic lattice) of ܯ nodes and with nearest-neighbour interactions. The 
study of [128] is followed here. Based on Eq. (4.5), the random-field Ising model is obtained 
simply by replacing the term ݄ ൅ ݄଴ with a term ݄ ൅ ݄௠ െ ݄଴, where the random-field loading 
component ݄௠ for each node ݉ is now included.  
 
Let us now assume that the random components of the external node loadings ݄௠ are independ-
ent and identically distributed according to the Gaussian probability distribution with mean 0 and 
variance  ߪଶ. The hysteresis properties of the random-field Ising model depend on the ߪ of the 
Gaussian distribution. This deviation can be interpreted as the size of the fluctuations, or disor-
der, caused by the random field. A critical value ߪୡ୰ exists for ߪ, which is directly proportional to 

 
Figure 4.3. Qualitative properties of the random-field Ising model. The average network node state ۃsۄ is given as a 
function of ݄ with three levels of interaction parameter ܬ (disorder ߪ). The average state ۃsۄ changes continuously 
when ܬ ൏ ߪ) ୡ୰ܬ ൐ ܬ ୡ୰) (solid red). Phase transition is continuous with the diverging first derivative whenߪ ؆  ୡ୰ܬ
ߪ) ؆ ܬ ୡ୰) (dotted black). Phase transition is discontinuous whenߪ ൐ ߪ) ୡ୰ܬ ൏  .ୡ୰) (dashed blue)ߪ

ۄsۃ

݄

ܬ ൐ crܬ
ܬ ൌ crܬ

ܬ ൏ crܬ
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the respective critical value of ܬ, which is here denoted by ܬୡ୰; ߪୡ୰~ܬୡ୰ [123]. In view of the quali-
tative properties of the random-field Ising model, having ߪ ൐ ܬ ୡ୰ is equal to choosingߪ ൏  ୡ୰ atܬ
ߪ ൌ ߪ ୡ୰, because thenߪ ൐  ୡ୰; i.e., in this case, node interactions are smaller and transitionsߪ
smoother. Respectively, having ߪ ൏ ܬ ୡ୰ is equal to choosingߪ ൐ ߪ ୡ୰ atܬ ൌ  ୡ୰, which impliesߪ
that ߪ ൏   .ୡ୰; i.e., node interactions are now larger and transitions more abruptߪ
 
The average node state ۃsۄ under a varying loading ݄ changes through a series of node ava-
lanches, which in magnetism account for the phenomenon called the Barkhausen noise [35], 
[111], [123], [128], [129]. Accordingly, though changes in the average node state ۃsۄ may appear 
continuous, they are, in fact, discontinuous with nodes changing states in various-size clusters or 
domains. In a node, a state change can be triggered by either the external loading or the effect of 
its neighbouring nodes flipping state. That is, if a node flips its state, e.g., if the external load af-
fecting it becomes large enough, it may cause its neighbouring nodes also to flip their states. The 
latter nodes may further cause their neighbours to flip their states, resulting in an avalanche of 
state changes [129], [130] (also [158]). 
 
At the limit of infinite internode interaction, the Ising model exhibits first-order, or discontinu-
ous, phase transitions, i.e., abrupt jumps from one coherent state into another as the uniform 
external load changes between positive and negative values. Figure 4.3 shows hysteresis proper-
ties for the random-field Ising model with ݄଴ ൌ ܬ ,0 ൌ 1, and ܪ ൌ 1, and with ۃsۄ again given as 
a function of adiabatically changing uniform external field. Figure 4.3 shows ۃsۄ in each case first 
from the initial state ۃsۄ ൌ െ1 on to the final state ۃsۄ ൌ ൅1 under an increasing ݄, and then 
from the initial state ۃsۄ ൌ ൅1 to the final state ۃsۄ ൌ െ1 under a decreasing ݄. 

The Case with ࣌ ൐ ࡶ) ࢘ࢉ࣌ ൏  (࢘ࢉࡶ

With ߪ ൐  ୡ୰, the external loading dominates the interaction term in the random-field Isingߪ
model with the node loadings experiencing large fluctuations because of large random com-
ponents. Because the node states are rather independent of each other, the nodes undergo 
state changes nearly independently. Therefore, in transitions all avalanches are quite small. 
Hysteresis occurs with ۃsۄ changing smoothly as a function of ݄, as demonstrated schemati-
cally in Figure 4.3 by the two solid red curves; the two transition curves are symmetrical with 
respect to ݄ ൌ 0. [128] 

The Case with ࣌ ؆ ࡶ) ࢘ࢉ࣌ ؆  (࢘ࢉࡶ

At ߪ ؆  ୡ୰, hysteresis occurs with continuous phase transitions, and correlations appear at allߪ
length scales. Consequently, also avalanches occur at all length scales, their size following a 
power-law distribution [123]. At this critical point, the disorder ߪ is just large enough for the 
state change of each node, on average, to trigger a state change in one of its neighbours [129]. 
Because these critical phenomena are universal, similar behaviour is expected to be prevalent 
and independent of the details of individual node interactions [128]. The universal behaviour 
of continuous phase transitions can be analysed with mean-field theory by analytical approxi-
mate calculations, as demonstrated for the Ising model in Subsection 4.4.3 . The above case is 
shown in Figure 4.3 with dotted black curves. [128] 
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The Case with ࣌ ൏ ࡶ) ࢘ࢉ࣌ ൐   (࢘ࢉࡶ

With ߪ ൏  .ୡ୰, the external loading is similar for all the nodes with only small fluctuationsߪ
The uniform loading must be greatly increased before considerable changes take place in ۃsۄ. 
When ݄ is finally large enough, nearly all nodes change states at the same time, causing an in-
finite-size avalanche and potentially a set of smaller avalanches. Thus an abrupt change with a 
discontinuity in ۃsۄ occurs, that is, a discontinuous phase transition. This case is shown in 
Figure 4.3 with dashed blue curves. The two paths corresponding to increasing and decreas-
ing ݄ are again separate at ݄ ൌ 0, and the system exhibits hysteresis with discontinuous phase 
transitions. [128] 

 
In conclusion, the main difference in qualitative behaviour between the Ising model and the ran-
dom-field Ising model is hysteresis. The qualitative behaviour of the random-field Ising model is 
more relevant than that of the regular Ising model to MTNs for two reasons. First, in MTNs ex-
ternal loadings vary between the network nodes, and their topology is irregular. Both facts cause 
disorder in the network, like random loadings in the random-field Ising model. Hence hysteresis 
is likely to appear in MTNs. Second, MTNs also tend to behave coherently; consequently, 
changes may occur rapidly in ۃsۄ, or even discontinuous phase transitions may take place. In an 
MTN under heavy external network loading, a discontinuous phase transition may mean a sud-
den collapse of a finely performing network. Because such an occurrence may be costly and det-
rimental to the quality of service, it is extremely important to study it. Furthermore, hysteresis 
together with discontinuous phase transitions is a particularly tricky phenomenon. In real net-
works, it means that after a network has collapsed, the desired coherent network state cannot be 
regained simply by returning external loads to their pre-phase-transition values. 

4.4.3 Mean-Field Theory for the Ising Model 

The Ising model is demanding to study analytically because of difficulties in evaluating the parti-
tion function (see, e.g., [164]). Hence some approximation techniques have been developed to 
analyse phase transitions by analytical calculations. One such widely used technique is the mean-
field theory [166], which aims to simplify the interactions of the network nodes. Here the mean-
field theory is used to demonstrate briefly how continuous and discontinuous phase transitions 
arise in the Ising model before these phenomena are analysed in real networked systems in later 
chapters by numerical simulations.  
 
To give an example of an application of the mean-field theory, let us consider the system studied 
in Subsection 4.4.1. First, interactions are studied from the standpoint of a single node ݅. The full 
conditional of this node, as defined by Eq. (4.2) and written in its notation, is 

where the partition function ܼ௜ for the full conditional of node ݅ has the form 

and is obtained simply by summing the two terms resulting from the evaluation of the full condi-
tional in two possible node states, ݏ௜ ൌ െ1 and ݏ௜ ൌ ൅1. Next, the states of the neighbouring 

௜ሻିܛ|௜ݏሺ݌  ൌ ேሺ௜ሻሻא௡ሽ௡ݏ௜|ሼݏሺ݌ ൌ ܼ௜ିଵexpሺݏ௜݄௜ୣ୤୤ሻ, (4.13) 
 

 ܼ௜ ൌ expሺെ݄௜ୣ୤୤ሻ ൅ expሺ݄௜ୣ୤୤ሻ ൌ 2coshሺ݄௜ୣ୤୤ሻ, (4.14) 
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nodes ܰሺ݅ሻ of node ݅ are temporarily fixed, or frozen, whereas node ݅ is free to assume either 
state െ1 or ൅1. A regular network structure, e.g., a square lattice, is assumed for all nodes to 
have the same number of neighbours, ܰ. The state expectation value of node ݅ is now 

where the hyperbolic tangent function always assumes values between െ1 and ൅1. For simplic-
ity, a uniform loading ݄ is assumed for all network nodes. When we also write the average state 
of the neighbours of node ݅ as ۃsۄ௡אேሺ௜ሻ and approximate the states of these neighbouring nodes 
with this mean value, Eq. (4.15) becomes 

On the left, Eq. (4.16) has the expected state ۃsۄ௜ of node ݅ and on the right the average state 
 ,ேሺ௜ሻ of its neighbours. In mean-field approximation, these two quantities are assumed equalא௡ۄsۃ
i.e., the effect induced by node interactions is the same for each node: ۃsۄ௜ ൌ ேሺ௜ሻא௡ۄsۃ ൌ  ,ۄsۃ
where ۃsۄ is the average state over the whole network. This approximation means that because all 
fluctuations in node states are omitted, Eq. (4.16) can finally be written as 

This equation is a self-consistent expression and cannot be solved analytically, because ۃsۄ ap-
pears on both sides of the equation. However, it can be studied graphically and with varying ܬ 
values, which leads to the curves studied on the right of Figure 4.2. Below the critical value 
ܬ ൏ ܬ ୡ୰, the network state average changes smoothly with varying loading, whereas withܬ ൐  ,ୡ୰ܬ
a discontinuous phase transition and at ܬ ؆   .ୡ୰ a continuous phase transition appearsܬ
 
Mean-field studies usually focus on continuous phase transitions and the critical behaviour of 
models, where many quantities exhibit power-law type behaviour. In such a case, exponents re-
lated to power-law decay can be derived from the mean-field approximation (see, e.g., [166]). 

 

௜ۄsۃ ൌ 1 · ௜ݏሺ݌ ൌ ൅1|ିܛ௜ሻ െ 1 · ௜ݏሺ݌ ൌ െ1|ିܛ௜ሻ 
ൌ ܼ௜ିଵexpሺ݄௜௘୤୤ሻ െ ܼ௜ିଵ expሺെ݄௜ୣ୤୤ሻ 

ൌ
െexpሺെ݄௜ୣ୤୤ሻ ൅ exp ሺ݄௜ୣ୤୤ሻ
expሺെ݄௜ୣ୤୤ሻ ൅ exp ሺ݄௜ୣ୤୤ሻ

ൌ tanhሺ݄௜ୣ୤୤ሻ, 
(4.15) 

 

 
௜ۄsۃ ൌ tanhሺ݄௜ୣ୤୤ሻ ൌ tanh ቈܬ෍ ௡ݏ ൅ ሺ݄ܪ െ ݄଴ሻ

௡אேሺ௜ሻ
቉ 

؆ tanh ሾۃܰܬsۄ௡אேሺ௜ሻ ൅ ሺ݄ܪ െ ݄଴ሻሿ. 
(4.16) 

 

ۄsۃ  ൌ tanhሾۃܰܬsۄ௡אேሺ௜ሻ ൅ ሺ݄ܪ െ ݄଴ሻሿ ൌ tanhሾۃܰܬsۄ ൅ ሺ݄ܪ െ ݄଴ሻሿ. (4.17) 
 



 
 

5. Methods to Estimate Topology 

This chapter introduces dependency (similarity) measures of variables and other methods that 
can be used to describe network node dependencies, and later in Chapter 8 to help identify MRF 
graph structures. Mutual information (MI), a special case of the Kullback-Leibler divergence, is a 
dependency measure based on entropy, a highly endorsed concept in physics and information 
theory. Furthermore, χ2-statistics (CSS) is an approximation of MI. All these concepts are based 
on probabilities; therefore, both MI and CSS are statistical dependency measures. Marginal and 
conditional versions of the MI and CSS dependency measures can be calculated, respectively, by 
using either marginal or conditional probabilities.  
 
The concepts of entropy, joint entropy, and conditional entropy are introduced in Sections 5.1–
5.2. Relative entropy, or the Kullback-Leibler divergence, is discussed in Section 5.3, its special 
case, mutual information, in Section 5.4, and the χ2-statistics approximation in Section 5.5. Alter-
native dependency measures based on rank-correlation are briefly reviewed in Section 5.6. Fi-
nally, Sections 5.7, 5.8, and 5.9 discuss the methods of multidimensional scaling (MDS), Pro-
crustes analysis, and the Frobenius matrix norm, respectively. MDS is a method to derive spatial 
representations from node dependency values, Procrustes analysis compares two such spatial 
representations, and the Frobenius matrix norm can be used to normalise two spatial representa-
tions into an equal scale.  

5.1 Entropy 

Entropy is a fundamental concept in physics, originally developed in thermodynamics but later 
developed into an essential measure in statistical mechanics. For a system consisting of a large 
number of objects, entropy, as used in statistical mechanics, is the amount of uncertainty in a 
detailed system state, given its observable macroscopic properties, such as temperature and vol-
ume [126]. Hence, in essence, it tells how probability is distributed among all possible system 
states under such macroscopic conditions: the more evenly probability is spread, the more uncer-
tain the state of the system, and thus the larger the entropy [126].  
 
In information theory, entropy [12], [131] is interpreted as the average information content in-
cluded in an observation of a random variable, or as the amount of uncertainty about a random 
variable that is eliminated when an observation has been made [30], [91]. For example, in coding 
theory, entropy gives the lower bound of the average amount of bits needed to communicate the 
state of a random variable from source to destination (see, e.g., [30]). However, here entropy is 
interpreted simply as the uncertainty related to a random variable. For a discrete random variable 

௜ܵ , it can be specified as  

where the sum runs over all the possible states of the random variable [30], [77], and ݌ሺݏ௜ሻ is the 
marginal probability of state ݏ௜. The base of the logarithm is typically 2 or ݁, and the entropy is 
given, respectively, either in bits or nats. For continuous variables, entropy can be defined simi-

ሺܪ  ௜ܵሻ ൌ െܧ௣ሺ௦೔ሻሾlog ௜ሻሿݏሺ݌ ൌ െ෍ ௜ሻݏሺ݌ log ௜ሻݏሺ݌
௦೔

, (5.1) 
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larly by replacing the summation with integration over the value domain of the random variable. 
For a given set of possible states, entropy reaches its maximum value when each state is equally 
probable (uniform distribution) and its minimum value of zero when the probability of a state is 
one and zero for all other states [30]. 

5.2 Joint and Conditional Entropies 

The joint entropy of two random variables ௜ܵ and ௝ܵ measures the amount of uncertainty the 
two-variable system contains. Joint entropy can be defined as 

where ݌ሺݏ௜,  ௝ሻ is the joint probability of the two variables, and the sums run over all joint statesݏ
of the two variables [30]. Joint entropy achieves its minimum value of zero if the probability of a 
single joint state is one. Respectively, the maximum value obtains if the probability is evenly, uni-
formly, distributed for all the joint states. Furthermore, the following inequalities hold: 
ሺܪ ௜ܵ, ௝ܵሻ ൒ ሺܪ ௜ܵሻ, ܪሺ ௜ܵ, ௝ܵሻ ൒ ሺܪ ௝ܵሻ, and ܪሺ ௜ܵ, ௝ܵሻ ൑ ሺܪ ௜ܵሻ ൅ ሺܪ ௝ܵሻ. In the first two cases, 
the equalities hold if and only if ௜ܵ and ௝ܵ are deterministically related. In the third case, the 
equality holds if and only if ௜ܵ and ௝ܵ are statistically independent. [30] 
 
Conditional entropy of a random variable ௜ܵ , given the value of another random variable ௝ܵ, is 
defined as 

where both sums run over all the possible values of the two variables [30]. Hence conditional 
entropy measures the residual uncertainty of a random variable ௜ܵ when the value of another 
random variable ௝ܵ is known; ܪሺ ௜ܵ| ௝ܵሻ ൌ ሺܪ ௜ܵ, ௝ܵሻ െ ሺܪ ௝ܵሻ. The maximum value of the condi-
tional entropy ܪሺ ௜ܵ| ௝ܵሻ ൌ ሺܪ ௜ܵሻ is obtained when the two random variables are statistically in-
dependent, i.e., knowledge of ௝ܵ does not decrease the uncertainty of ௜ܵ . Respectively, the mini-
mum value ܪሺ ௜ܵ| ௝ܵሻ ൌ 0 is achieved when ௜ܵ and ௝ܵ are deterministically related. 

5.3 Relative Entropy (Kullback-Leibler Divergence) 

When two probability distributions, ݌ and ݍ, are associated for the same discrete random variable 

௜ܵ , the entropies related to ݌ and ܪ ,ݍሾ݌ሺݏ௜ሻሿ and ܪሾݍሺݏ௜ሻሿ, are simply obtained via Eq. (5.1) by 
using the respective probabilities. However, when ݌ and ݍ are both involved with ௜ܵ , entropy can 
also be calculated in another way, as cross entropy:  

When the two probability distributions are the same, cross entropy equals the entropy given by 
both distributions: ܪሾ݌ሺݏ௜ሻ, ௜ሻሿݏሺݍ ൌ ௜ሻሿݏሺ݌ሾܪ ൌ  ௜ሻሿ. In coding theory, cross entropy isݏሺݍሾܪ
interpreted as the average number of bits (nats) needed to communicate the state of a random 
variable from source to destination if the coding scheme is based on probabilities defined by ݍ 
instead of (true) probabilities defined by ݌. 

ሺܪ  ௜ܵ, ௝ܵሻ ൌ െܧ௣ሺ௦೔,௦ೕሻሾlog ,௜ݏሺ݌ ௝ሻሿݏ ൌ െ෍ ෍ ,௜ݏሺ݌ ௝ሻݏ log ,௜ݏሺ݌ ௝ሻݏ
௦ೕ௦೔

, (5.2) 
 

ሺܪ  ௜ܵ| ௝ܵሻ ൌ െܧ௣ሺ௦೔,௦ೕሻሾlog ௝ሻሿݏ|௜ݏሺ݌ ൌ െ෍ ෍ ,௜ݏሺ݌ ௝ሻݏ log ௝ሻݏ|௜ݏሺ݌
௦ೕ௦೔

, (5.3) 
 

,௜ሻݏሺ݌ሾܪ  ௜ሻሿݏሺݍ ൌ െܧ௣ሺ௦೔ሻሾlog ௜ሻሿݏሺݍ ൌ െ෍ ௜ሻݏሺ݌ log ௜ሻݏሺݍ
௦೔

. (5.4) 
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Relative entropy, or the Kullback-Leibler divergence (KLD) [76], [77], measures the difference, 
or dissimilarity, between two probability distributions, and for a discrete random variable ௜ܵ with 
 associated with it, the KLD is defined as [76], [77], [30] ݍ and ݌

Hence the KLD is the difference between the cross entropy of ݌ and ݍ and the entropy associ-
ated with ݌. In coding theory, the KLD is thus the expected extra amount of bits (nats) needed 
to communicate the state of a random variable if the coding scheme is based on ݍ instead of ݌. 
  
The KLD is always non-negative, ܦ௄௅ሾ݌ሺݏ௜ሻ||ݍሺݏ௜ሻሿ ൒ 0, with the equality holding if and only if 
the associated probabilities are the same, i.e., ݌ ൌ  The KLD is closely related to conditional .ݍ
entropy. However, whereas conditional entropy is specified between two random variables with 
their associated probabilities, the KLD is specified for a single random variable between two 
probability distribution candidates associated with it.  
 
From the definition of Eq. (5.5), it follows that the KLD is asymmetric: ܦ௄௅ሾ݌ሺݏ௜ሻ||ݍሺݏ௜ሻሿ ്
-௜ሻሿ. Hence though widely applied as a distance measure of two distributions, beݏሺ݌||௜ሻݏሺݍ௄௅ሾܦ
cause of its asymmetry, the KLD is not a true distance measure. The Jensen-Shannon divergence 
(JSD) is a symmetric alternative to the KLD, and is defined as [87] 

where ݎሺݏ௜ሻ  ൌ   భమሾ݌ሺݏ௜ሻ  ൅  .௜ሻሿݏሺݍ 

5.4 Mutual Information 

Mutual information (MI), a special case of the KLD, measures the distance between the joint 
probability ݌ሺݏ௜, -௝ሻ, which asݏሺ݌௜ሻݏሺ݌ ௝ሻ of two random variables ௜ܵ and ௝ܵ and the productݏ
sumes the random variables statistically independent and described by their marginal probabili-
ties. Hence MI can be defined as [30] 

From Eq. (5.7), it follows that MI is symmetric: ܫሺ ௜ܵ; ௝ܵሻ ൌ ሺܪ ௜ܵሻ െ ሺܪ ௜ܵ| ௝ܵሻ ൌ ሺܪ ௝ܵሻ െ
ሺܪ ௝ܵ| ௜ܵሻ ൌ ሺܫ  ௝ܵ; ௜ܵሻ. Hence MI can also be considered a reduction in the entropy of a variable 
given another variable. [30] 
 
MI is a measure of statistical dependency between two random variables. According to Eq. (5.7), 
MI is always non-negative, i.e., ܫሺ ௜ܵ; ௝ܵሻ ൒ 0, and assumes the value zero if and only if the two 

 

௜ሻሿݏሺݍ||௜ሻݏሺ݌௄௅ሾܦ ൌ ,௜ሻݏሺ݌ሾܪ ௜ሻሿݏሺݍ െ  ௜ሻሿݏሺ݌ሾܪ
ൌ െ෍ ௜ሻݏሺ݌ log ௜ሻݏሺݍ

௦೔
൅෍ ௜ሻݏሺ݌ log ௜ሻݏሺ݌

௦೔
 

ൌ ௣ሺ௦೔ሻሾlogܧ
௜ሻݏሺ݌
௜ሻݏሺݍ

ሿ ൌ෍ ௜ሻݏሺ݌ log
௜ሻݏሺ݌
௜ሻ௦೔ݏሺݍ

. 

(5.5) 
 

௜ሻሿݏሺݍ||௜ሻݏሺ݌௃ௌሾܦ  ൌ
ଵ
ଶ
௜ሻሿݏሺݎ||௜ሻݏሺ݌௄௅ሾܦ ൅

ଵ
ଶ
 ௜ሻሿ, (5.6)ݏሺݎ||௜ሻݏሺݍ௄௅ሾܦ

 

 
ሺܫ ௜ܵ; ௝ܵሻ ൌ ሺܪ ௜ܵሻ െ ሺܪ ௜ܵ| ௝ܵሻ ൌ ௣ሺ௦೔,௦ೕሻܧ ቈlog

,௜ݏሺ݌ ௝ሻݏ
௝ሻݏሺ݌௜ሻݏሺ݌

቉ 

ൌ෍ ෍ ,௜ݏሺ݌ ௝ሻݏ log
,௜ݏሺ݌ ௝ሻݏ
௝ሻ௦ೕ௦೔ݏሺ݌௜ሻݏሺ݌

. 
(5.7) 

 



34 
 

random variables are statistically independent. The maximum value of MI equals the entropy of a 
random variable and is assumed if and only if the two random variables are deterministically re-
lated to each other, in which case ܪሺ ௜ܵ| ௝ܵሻ equals zero.  
 
In the literature, MI has been widely applied as a similarity measure, e.g., in image registration 
[28], [29], [53], [120], [159], statistical language translation [21], and inferring relationships be-
tween genes [24], [84]. MI has also been used to select components for mixture models [165] and 
to study traffic similarities [167], interactions [45], and connectivity [138] in networked systems. 

5.5 χ2-Statistics Approximation 

Between two probability distributions ݌ and ݍ the KLD is zero if and only if ݌ ൌ  Around .[30] ݍ
this point, the χ2-statistics (CSS) is an approximation of the KLD, and more specifically, of MI 
[97], [114], [155]. Let us first consider the approximation of the KLD and assume that ݌ ؆  A .ݍ
first-order Taylor series expansion of the logarithm around ݌ ൌ  leads to the approximation ݍ
logሾݍ/݌ሿ ൎ ݍ/݌ െ 1. By using this approximation and by adding a term – ݌ ൅ ݍ ൌ 0, the CSS 
approximation of the KLD can be written as [155] 

Similar result is obtained also by making a second-order Taylor series expansion of the KLD 
around ݌ ൌ  By the same reasoning, the CSS approximation of MI can be written as .ݍ

where essentially the same approximations are used as in Eq. (5.8).  

5.6 Measures Based on Rank Correlation 

Rank-correlation-based dependency measures are here given as an alternative to measures based 
on information theory. Rank correlation is similar to usual linear correlation, or the Pearson cor-
relation coefficient, but exploits the rank values of samples among all the other samples instead 
of the sample values themselves [114]. Two well-known rank correlation coefficients are Spear-
man’s rho (SR) [136] and Kendall’s tau (KT) [69]. Let us first consider SR in some detail. We use 
the notation in Chapter 3 with ݈ indexing the observations: ݈ ൌ 1,… , -The ranks of the ݈th ob .ܮ
served values of random variables ௜ܵ and ௝ܵ are denoted by ݎ௜௟and ݎ௝௟ and the mean ranks of the 
observations of the variables by ݎ௜ and ݎ௝ , respectively. SR is now defined as the linear correlation 
coefficient of the ranks as follows [114]: 

 
௜ሻሿݏሺݍ||௜ሻݏሺ݌௄௅ሾܦ ൎ෍ ௜ሻݏሺ݌ ൤

௜ሻݏሺ݌
௜ሻݏሺݍ

െ 1൨
௦೔

െ ௜ሻݏሺ݌ ൅  ௜ሻݏሺݍ

ൌ෍
௜ሻଶݏሺ݌ െ ௜ሻݏሺݍ௜ሻݏሺ݌2 ൅ ௜ሻଶݏሺݍ

௜ሻ௦೔ݏሺݍ
ൌ ෍

ሾ݌ሺݏ௜ሻ െ ௜ሻሿଶݏሺݍ

௜ሻ௦೔ݏሺݍ
. 

(5.8) 
 

ୟ୮୮ሺܫ  ௜ܵ; ௝ܵሻ ൎ ෍ ෍
ሾ݌ሺݏ௜, ௝ሻݏ െ ௝ሻሿଶݏሺ݌௜ሻݏሺ݌

௝ሻ௦ೕ௦೔ݏሺ݌௜ሻݏሺ݌
, (5.9) 

 

ௌோሺܥ  ௜ܵ, ௝ܵሻ ൌ
∑ ሾሺݎ௜௟ െ ௝௟ݎ௜ሻሺݎ െ ௝ሻሿ௅ݎ
௟ୀଵ

ට∑ ሺݎ௜௟ െ ௜ሻଶ௅ݎ
௟ୀଵ ∑ ሺݎ௝௟ െ ௝ሻଶ௅ݎ

௟ୀଵ

. (5.10) 
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KT is based on comparing the orders of the relative ranks of consecutive observations in ௜ܵ and 
௝ܵ to each other. More specifically, first, the relative orders of consecutive observations in both 

variables are calculated, yielding two label vectors of size ܮ െ 1. These label vectors categorise 
each consecutive observation pair ሺ݈ ൅ ݊, ݈ ൅ ݊ ൅ 1ሻ such that the ݈ ൅ ݊ th observation is larger 
than the ݈ ൅ ݊ ൅ 1th, or vice versa, or a tie exists between the consecutive points. Then the rank-
ings of the respective consecutive observations of ௜ܵ and ௝ܵ are compared, and if the relative 
ranks are the same for both variables, the observation pair is said to be concordant; if the ranks 
are opposite, the pair is called discordant. If there is a tie in variable ௜ܵ , the pair is called an extra 
௜ܵ-pair, and if the tie is in ௝ܵ, the pair is called an extra ௝ܵ-pair. The pair is ignored if both vari-

ables have ties. Denoting the total numbers of events “concordant,” “discordant,” “extra ௜ܵ-
pair,” and “extra ௝ܵ -pair” by ܧ ,ܦ ,ܥ௜ , and ܧ௝ , we can define the KT as [114] 

Compared to the Pearson linear correlation coefficient, SR and KT have the advantage of being 
more robust measures, because they use rank information instead of pure data observation val-
ues. On the other hand, exploiting only rank information, they may lose some information.  

5.7 Multidimensional Scaling 

Multidimensional scaling (MDS) [142], [152] is a method to spatially represent the dissimilarity 
data of variables in a ݍ-dimensional space as a node location map, where the nodes represent the 
original variables and the internode distances their maximally preserved original dissimilarities. 
For ܯ variables, all ܯሺܯ െ 1ሻ/2 pairwise symmetric dissimilarities can be presented as an ܯݔܯ 
proximity matrix. Dissimilarities are calculated from data for each node pair, e.g., by using some 
of the dependency measures introduced in the previous sections. For two nodes ݅ and ݆ such that 
ሺ݅, ݆ሻ א ܸ, and where ܸ denotes the set of all node state pairs, the dissimilarity is denoted by 
௜௝ߜ ൌ ௝௜ߜ . When the respective similarity ߪ௜௝ assumes a value between zero and one, the dissimi-
larity is obtained as ߜ௜௝ ൌ 1 െ  .௜௝ [50]ߪ
  
In essence, MDS is somewhat similar to principal components analysis in that it aims to reduce 
the dimensions of the original data. However, instead of projecting points from the original high 
dimensional state space directly into an orthogonal subspace of principal components, MDS 
searches for a new configuration in the ݍ-dimensional space by trying maximally to preserve the 
original dissimilarities as internode distances in the ݍ-dimensional space. Hence an original 
ܯ െ 1-dimensional presentation is turned into a ݍ-dimensional one, where ݍ ൏ ܯ െ 1. The 
choice of ݍ depends on the effective dimension of the data and the goodness of the MDS repre-
sentations in each dimension. Yet as proximity data is usually presented visually, typically ݍ ൌ 2 
or ݍ ൌ 3. Because of the nature of MTNs, it is here assumed that ݍ ൌ 2. 
 
The resulting map of node locations at ݍ ൌ 2 is often circular with neighbouring nodes almost 
equidistant from each other. However, MDS may also produce more structured location map 
representations with nodes clustered tightly into one or several groups. The internode distances 
in the mapping are invariant to any rotation, reflection, scaling, or translation of the node loca-

௄்ሺܥ  ௜ܵ, ௝ܵሻ ൌ
ܥ െ ܦ

ඥܥ ൅ ܦ ൅ ܥ௜ඥܧ ൅ ܦ ൅ ௝ܧ
. (5.11) 
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tion map; hence the map’s coordinate values are not unique [50]. In practice, absolute coordi-
nates are usually solved by placing mean coordinate values at the origin. For comparison, two 
node location maps must then be aligned with respect to each other, a matter considered later in 
Section 5.8. 
 
Subsections 5.7.1–5.7.2 examine in detail two variants of MDS, metric and non-metric MDS. 

MDS is applied in diverse ways, e.g., to visualize genes [71], molecules [7], and databases [15], to 

identify brain areas involved in cognitive tasks [148], and to analyse connections between brain 

regions [49], [52]. In [67], MDS is applied to positioning sensors in wireless ad-hoc sensor net-

works and in [61] to estimating the position and velocity of mobile stations. In [13], MDS is used 

to visualise relations between countries through the properties of their telecommunications net-

works.  

5.7.1 Metric Multidimensional Scaling 

Metric MDS aims to search for optimal node coordinate values by minimising a fit criterion be-
tween original dissimilarities and internode distances in ݍ-dimensions. Let us denote the coordi-
nate values of node ݅ on a ݍ-dimensional node location map by a vector ܠ௜ and the distance be-
tween two nodes ݅ and ݆ by ݀௜௝ሺܠ௜, -space is cho-ݍ ௝ሻ. If the Euclidean distance measure in theܠ
sen, the simplest way to formulate MDS is to find the coordinate values that minimise a squared 
distance between the distances and dissimilarities, ∑ ሾ݀௜௝ሺܠ௜, ௝ሻܠ െ ௜௝ሿଶ௜,௝ߜ . However, this crite-
rion assumes a very simplified relation between fitted distances and observed dissimilarities: 
݀௜௝ ൌ ௜௝ߜ ൅  ௜௝ gives errors due to measurements and distortions, because distances inߝ ௜௝, whereߝ
  .dimensions may not correspond exactly with observed dissimilarities [50]-ݍ
 
Let us allow a more complex relationship between ݍ-distances and dissimilarities such as a simple 
linear relation: ݀௜௝ ൌ ߙ ൅ ௜௝ߜߚ ൅ ௜௝ߝ . Furthermore, any other parametric functional 
ship, ݂ሺߜ௜௝ሻ, can be exploited: ݀௜௝ ൌ ݂ሺߜ௜௝ሻ ൅ ௜௝ߝ . In general, the minimised criterion is 

where the denominator is included for the criterion to be invariant not only to rotations, transla-
tions, and reflections, but also to uniform scaling [50]. This is known as Kruskal’s stress-1 crite-
rion [74], [75]. 
 
When a functional dependency ݂ is assumed for distances and dissimilarities, the search for op-
timal coordinate values by minimising the goodness-of-fit criterion becomes a two-stage recur-
sive process (see, e.g., [50]). After the initial coordinate values and their respective distances ݀௜௝ 
have been chosen, e.g., through some random process, the first stage is to estimate the parame-
ters associated with the functional relation. For example, in the case of a linear relation, parame-
ter estimates ߙො and ߚመ  are obtained through linear regression between the distances and dissimi-
larities. This results in a set of estimated distances, መ݀௜௝, called disparities, which are obtained as 

 ଵܵ ൌ ඨ
∑ ሾ݀௜௝ሺܠ௜, ௝ሻܠ െ ݂ሺߜ௜௝ሻሿଶ௜,௝

∑ ݀௜௝ሺܠ௜, ௝ሻଶ௜,௝ܠ
, (5.12) 
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evaluating the fitted parametric function at the dissimilarity values, መ݀௜௝ ൌ ݂ሺߜ௜௝ሻ ൌ ොߙ ൅ ௜௝ߜመߚ . In 
the second stage, revised coordinate values are searched for by minimising the criterion of Eq. 
(5.12) with some optimisation algorithm (e.g., the steepest-decent). If the fit is not adequate, the 
two stages are repeated. 

5.7.2 Non-Metric Multidimensional Scaling 

In metric MDS, numerical values of dissimilarities are exploited directly and disparities are ob-
tained from dissimilarities through some parametric function. In non-metric MDS, dissimilarities 
are not used directly in the search for optimal coordinate values. Instead of absolute values, only 
the rank order information of dissimilarities is exploited. Hence the resulting coordinate values 
are invariant to monotonic transformations of the proximity matrix. Non-metric MDS is thus 
more robust than metric MDS and more practical for real observed dissimilarity values contain-
ing measurement uncertainties and other distortions. 
 
In non-metric MDS, node positions are arranged on the map so that the order of distances be-
tween the nodes on the map matches best the order of dissimilarities between the respective 
variables. The aim is again to represent distances with respect to disparities, ݀௜௝ ൌ መ݀௜௝ ൅ ௜௝ߝ , 
where ߝ௜௝ again are fitting errors to be minimised. The map can be fitted, e.g., by minimising the 
stress-1 criterion of Eq. (5.12). Disparities መ݀௜௝ are again related to dissimilarities ߜ௜௝ through 
some function, but now any monotonic function is acceptable so that between any two pairs of 
variables ሺ݅, ݆ሻ and ሺ݇, ݈ሻ the relationship መ݀௜௝ ൏ መ݀௞௟  ֞

௜௝ߜ ൏ -௞௟ holds. The method for calculatߜ

ing disparities is called the monotonic regression method [50], [74], [75]. 
 
The above entire procedure follows the iterative Shepard-Kruskal algorithm, which is here de-
scribed only briefly (for details, see, e.g., [75]). First, node coordinates are initialised randomly 
and their respective distances calculated. The distances are then used to find, by the monotonic 
regression method, the monotonic relation between disparities and dissimilarities. Then node 
coordinates, and hence distances, are revised by minimising the goodness-of-fit criterion between 
distances and disparities. The last two steps are repeated until a satisfying value is achieved for 
the stress criterion. To avoid MDS get stuck on local minima, the algorithm can be run several 
times from varying node coordinate initialisations. The configuration yielding the best fit can 
then be chosen. 

5.8 Procrustes Analysis 

Because node location map estimates resulting from MDS are unique up to translation, rotation, 
reflection, and scaling, it is difficult to compare the estimates obtained, e.g., on the basis of dif-
ferent data sets to one another or to a known true node location map. Procrustes transformation 
is a combined translation, rotation, reflection, and scaling operation, and Procrustes analysis (see, 
e.g., [50], [57], [127]) is a method to find the best match between two node location maps by per-
forming a Procrustes transformation on one map with respect to the other [50]. Hence Pro-
crustes analysis is a method to evaluate through the final value of the Procrustes criterion the 
similarity between two node location maps and, further, to better visually compare the maps. 
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Let us consider two ݍ-dimensional node location maps with the node coordinates presented with 
size ݍݔܯ matrices ܄ and ۿ. In ܄ and ۿ, the ݉th rows ܞ௠ and ܙ௠ contain the coordinates of a 
node ݉. If the two maps have different dimensions, this can be managed by just adding columns 
of zeros to the map that corresponds to fewer dimensions [50]. To apply a Procrustes transfor-
mation, e.g., to location map ۿ with respect to location map ܄, in Procrustes analysis, the follow-
ing sum of the squared residuals (SSR) criterion will be minimised 

Here ܇ is a size ݍݔݍ orthogonal matrix defined by a rotation ܴሺߠሻ and a possible reflection 
߮  is defined by a ܊ vector ݍݔΦ, where Φ is the set of all possible reflections. The size 1א
translation and the scalar ܿ by a scaling. The minimum value of the SSR criterion can be solved 
from the singular value decomposition of ۿT[50] ܄, and it is a measure of dissimilarity between 
the two node location maps. 

5.9 Frobenius Matrix Norm 

The Frobenius matrix norm for matrices is similar to the Euclidean norm defined for vectors. 
Hence it is a sort of length assigned for a matrix. For an ݍݔܯ matrix ܅ with elements ݓ௜௝ 
(݅ ൌ 1,… ݆ and ܯ, ൌ 1,… ,  the Frobenius matrix norm is defined as [99] ,(ݍ

In practice, for two matrices each describing a set of point coordinate values in ݍ-dimensions, 
normalising the values in each with their respective Frobenius matrix norm results in having the 
points in the ݍ-dimensional space on a comparable scale. For example, let us consider the Fro-
benius norm for the two matrices ܄ and ۿ defined in Section 5.8. With the mean coordinate val-
ues in the two matrices denoted by ܞത and ܙഥ, and the coordinates with the mean coordinate values 
subtracted as ܄଴ and ۿ଴, the Frobenius-scaled coordinates ܄F and ۿF for ܄଴ and ۿ଴, are ob-
tained as 

Because the mean values are removed from the two matrices, the points in the ݍ-dimensional 
space are centred at the origin. Because of Frobenius scaling, the scale of the points in ܄F and ۿF 

is similar. 

 
ܴଵ ൌ min

௖,܊,ோሺఏሻ୶Φא܇
෍ ሾܞ௠ െ ,ߠሺ܇ܿ ߮ሻTܙ௠ െ ሿT܊

ெ

௠ୀଵ
 

ሾܞ௠ െ ,ߠሺ܇ܿ ߮ሻTܙ௠ െ  .ሿ܊
(5.13) 
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௤
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ெ
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ଵ
ଶ
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ሼ܄F, Fሽۿ ൌ ቐ܄଴ ൤෍ ሺܞ௠ െ ௠ܞതሻሺܞ െ തሻTܞ
ெ

௠ୀଵ
൨
ିଵଶ
, 

଴ۿ ൤෍ ሺܙ௠ െ ௠ܙഥሻሺܙ െ ഥሻTܙ
ெ

௠ୀଵ
൨
ିଵଶ
ቑ. 
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6. Methods to Estimate Parameters  

This chapter examines general model parameter estimation methods for later use in Chapter 9, 
which focuses on identifying MRF model parameters and in particular the Ising model. Bayes’ 
theorem provides the foundation on which all the probabilistic inference methods are ultimately 
based. The theorem works a framework for updating probabilistic information about a system as 
new uncertain information through measurements arrives. In parameter estimation, Bayes’ theo-
rem is applied by combining existing uncertain (a priori) information about model parameters 
with (likelihood) information obtained by evaluating the parameterised model with a set of data 
observations. Combining the two pieces of information then leads to updated (a posteriori) in-
formation about the model parameters.  
 
Even though Bayes’ theorem is not, in fact, directly applied here, it forms the basis for under-
standing all parameter estimation methods. Consequently, Bayes’ theorem is first discussed in 
Section 6.1. Section 6.2 introduces the maximum a posteriori (MAP) parameter estimation 
method, which exploits all the properties of Bayes’ theorem. Maximum likelihood (ML) estima-
tion, introduced in Section 6.3, can be viewed as a special case of the MAP method without a 
priori information. Maximum pseudolikelihood (MPL) estimation, examined in Section 6.4, is the 
most specialised method arising as an approximation of the ML method, and is especially suitable 
for identifying MRF model parameters. 

6.1 Bayes’ Theorem  

Bayes’ theorem (see, e.g., [18], [46]) combines uncertain information obtained through observa-
tions with uncertain prior system information to arrive at a posteriori system information. The 
approach carries all the uncertainty about system parameters and is thus formulated by using 
probabilities. Hence to estimate model parameters, Bayes’ theorem combines the prior probabil-
ity of parameters with the likelihood function of the parameters evaluated with data observation 
values. Therefore, the Bayesian approach provides not only point estimates as the most probable 
parameter values, but also an entire probability distribution as the uncertainty information about 
the model parameters.  
 
Let us now consider a system model with a multivariable state described by a random variable S 
and with a set of model parameters ી. Let there be a set of observations ሼܛሺ௟ሻሽ௟ୀଵ௅  of size ܮ. Es-
sentially, the Bayesian approach says that our information about parameters is described with a 
probability distribution, and that hence parameters ી are random variables. For the probability 
distribution of model parameters, Bayes’ theorem reads [18] 

 
ሺ௟ሻሽ௟ୀଵ௅ܛሺી|ሼ݌ ሻ ൌ

ሺ௟ሻሽ௟ୀଵ௅ܛሺሼ݌ |ીሻ݌ሺીሻ
ሺ௟ሻሽ௟ୀଵ௅ܛሺሼ݌ ሻ

ൌ
ሺ௟ሻሽ௟ୀଵ௅ܛሺሼ݌ |ીሻ݌ሺીሻ
׬ ሺ௟ሻሽ௟ୀଵ௅ܛሺሼ݌ |ીሻ݌ሺીሻી

 

ൌ ஼ܰ݌ሺሼܛሺ௟ሻሽ௟ୀଵ௅ |ીሻ݌ሺીሻ. 

(6.1) 
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Here ݌ሺሼܛሺ௟ሻሽ௟ୀଵ௅ |ીሻ is the probability of the observation data set when parameter values are ી. 
This probability is also called the likelihood of parameters, because once given, the data set can 
be used to find parameter values that correspond to the largest probability of the observation set.  
 
Assuming the observations statistically independent, we can write their likelihood as the product 
of the probabilities of individual observations: ݌ሺሼܛሺ௟ሻሽ௟ୀଵ௅ |ીሻ ൌ ∏ ሺ௟ሻ|ીሻ௅ܛሺ݌

௟ୀଵ . The prior 
probability of the parameters is defined by ݌ሺીሻ. The denominator in Eq. (6.1), ݌ሺሼܛሺ௟ሻሽ௟ୀଵ௅ ሻ, is 
the marginal probability of the observation set. However, in view of parameter estimation, it is 
just a constant ஼ܰ normalising the probabilities of parameter values, and hence does not affect 
the relative conditional probabilities of the parameters or their estimation. If necessary, ஼ܰ is ob-
tained for continuous (discrete) ી by integrating (summing) the numerator in Eq. (6.1) over a 
defined range of parameter values. 

6.2 Maximum a Posteriori 

With Bayes’ theory, the probability distribution of model parameters can be obtained in parame-
ter estimation. There is strong information-theoretical motivation, not discussed here, why best 
point estimates of parameters should be chosen as mode values of the posterior probability dis-
tribution. This distribution fully describes the uncertainty of the chosen point estimates. In MAP 
estimation [121], point estimates are obtained according to Bayes’ theory by choosing the pa-
rameter values that correspond to the highest posterior probability. Assuming independent ob-
servations, we can formulate MAP parameter estimation as [121] 

where the normalisation constant is omitted, because, as a constant, it has no effect on the posi-
tion of the maximum of the probability distribution or on the relative probabilities of parameter 
values.  
 
Logarithm is a monotonic function, and thus does not change the values at which its argument 
assumes maximum or minimum values. When the logarithm is taken from the product of the 
probabilities of individual observations in Eq. (6.2), the product of the terms transforms into a 
sum of the terms: 

from which the parameter values corresponding to the maximum probability are usually easier to 
obtain. 

6.3 Maximum Likelihood  

Based on Bayes’ theorem, finding MAP parameter estimates requires prior information about 
parameter values, and if this is not available, a guess should be made about parameter probabili-
ties. However, more often than not prior information is lacking or a good guess is hard to make. 
Therefore, all information is obtained by observation, and hence only the likelihood of parame-

 ી෡MAP ൌ argmax
ી

ሺ௟ሻሽ௟ୀଵ௅ܛሺી|ሼ݌ ሻ ൌ argmax
ી

ෑ ሺ௟ሻ|ીሻܛሺ݌
௅

௟ୀଵ
 ሺીሻ, (6.2)݌

 

 ી෡MAP ൌ argmax
ી

෍ log ሺ௟ሻ|ીሻܛሺ݌
௅

௟ୀଵ
൅ ܮ log  ሺીሻ, (6.3)݌
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ters can be used to estimate parameters. In Bayes’ theorem, lack of prior information can be in-
terpreted as probability being uniform for all parameter combinations. Because the prior prob-
ability ݌ሺીሻ is a constant, the posterior probability can thus be rewritten as [46] 

where the two constants are finally combined as ஼ܰଷ ൌ ஼ܰ ஼ܰଶ. If parameters may assume only 
values, the prior distribution of constant is not well-defined. However, such improper priors can 
be used with Bayes’ theorem, because only the posterior distribution is then normalised. Without 

஼ܰଷ, Eq. (6.4) is called the likelihood ܮሺી|ሼܛሺ௟ሻሽ௟ୀଵ௅ ሻ of parameters ી [144]: ܮሺી|ሼܛሺ௟ሻሽ௟ୀଵ௅ ሻ ൌ
∏ ሺ௟ሻ|ીሻ௅ܛሺ݌
௟ୀଵ . Because the constants again do not affect the parameter values at which maxi-

mum probability occurs, in the ML method parameter estimates are obtained by simply maximis-
ing the likelihood or its logarithm [144]: 

As a result, best point estimates are again obtained for the parameters, whereas the uncertainties 
related to these estimates can be studied through Eq. (6.4). 

6.4 Maximum Pseudolikelihood 

The ML method is a general approach to estimating model parameters, if no prior information is 
available. However, it is difficult to apply to estimating MRF model parameters, because the con-
ditional probability distribution ݌ሺܛ|ીሻ in Eq. (6.5) includes the partition function ܼሺી ሻ, which, 
as discussed in Chapter 4, is practically impossible to calculate in general. Therefore, Eq. (6.5) 
cannot be evaluated, and parameters cannot be estimated. Yet again, we have exceptions, such as 
the Gaussian MRF model, discussed in Subsection 4.2.3, in which the normalisation constant is 
easy to calculate, and thus the ML method can be applied.  
 
Maximum pseudolikelihood (MPL) [16], [17] is similar to ML, but the partition function need not 
be calculated for the whole joint probability distribution; instead the joint probability is approxi-
mated as a product of the full conditionals of variables (see Eq. (4.2)), i.e., the conditional prob-
ability of a variable given the remaining variables. Though all these conditional probability distri-
butions include the normalisation term, the number of states over which the summation (or inte-
gration) runs is equal to the number of possible variable states rather than possible system states. 
For example, in the Ising model, the normalisation term of a full conditional consists only of the 
sum of two terms, as shown by Eq. (4.14).  
 
When indexing the variables with subscript ݉ and subscript െ݉ referring to the remaining vari-
ables except ݉, the approximation of the conditional probability in Eq. (6.5) at observation ݈ can 
be written as [16], [17]  

The Bayesian posterior probability of parameters in approximate form now reads 

ሺ௟ሻሽ௟ୀଵ௅ܛሺી|ሼ݌  ሻ ൌ ஼ܰෑ ሺ௟ሻ|ીሻܛሺ݌
௅

௟ୀଵ
஼ܰଶ ൌ ஼ܰଷෑ ሺ௟ሻ|ીሻܛሺ݌

௅

௟ୀଵ
, (6.4) 

 

 ી෡ML ൌ argmax
ી

ෑ ሺ௟ሻ|ીሻܛሺ݌
௅

௟ୀଵ
ൌ argmax

ી
෍ log ሺ௟ሻ|ીሻܛሺ݌

௅

௟ୀଵ
. (6.5) 

 

ሺ௟ሻ|ીሻܛሺ݌  ൎෑ ௠ݏሺ݌
ሺ௟ሻ|ିܛ௠

ሺ௟ሻ , ીሻ
ெ

௠ୀଵ
. (6.6) 
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Without the constant ஼ܰଷ, Eq. (6.7) is called the pseudolikelihood ܮ௣ሺી|ሼܛሺ௟ሻሽ௟ୀଵ௅ ሻ of parameters 
ી: ܮ௣ሺી|ሼܛሺ௟ሻሽ௟ୀଵ௅ ሻ ൌ ∏ ∏ ௠ݏሺ݌

ሺ௟ሻ|ିܛ௠
ሺ௟ሻ , ીሻெ

௠ୀଵ
௅
௟ୀଵ . As a constant, ஼ܰଷ can again be omitted from 

the parameter estimation, and when taking the logarithm from the pseudolikelihood, MPL pa-
rameter estimates are obtained as 

and the pseudouncertainty of the parameters is given by Eq. (6.7).  

ሺ௟ሻሽ௟ୀଵ௅ܛሺી|ሼ݌  ሻ ൎ ஼ܰଷෑ ෑ ௠ݏሺ݌
ሺ௟ሻ|ିܛ௠

ሺ௟ሻ , ીሻ
ெ

௠ୀଵ

௅

௟ୀଵ
. (6.7) 

 

 
ી෡MPL ൌ argmax

ી
ෑ ෑ ௠ݏሺ݌

ሺ௟ሻ|ିܛ௠
ሺ௟ሻ , ીሻ

ெ

௠ୀଵ

௅

௟ୀଵ
 

ൌ argmax
ી

෍ ෍ log ௠ݏሺ݌
ሺ௟ሻ|ିܛ௠

ሺ௟ሻ , ીሻ
ெ

௠ୀଵ

௅

௟ୀଵ
, 

(6.8)
 



 
 

7. MCMC for Analysis and Evaluation 

Observations must be sampled or simulated according to the MRF joint state probability to both 
verify the methods developed with synthetic data and to predict the behaviour of the identified 
system. Two essential difficulties are involved here: first, the distribution may be very large in its 
dimension, and, second, owing to the large system dimension, it becomes nearly impossible to 
calculate the partition function, because the number of possible states grows exponentially with 
respect to the number of variables.  
 
Because of high dimensionality, the common sampling methods, such as importance sampling 
and rejection sampling (see, e.g., [91]) are inappropriate, because they are based on static proposal 
distributions, i.e., distributions from which the samples are drawn. A static proposal distribution 
is effective only if it is similar to a true distribution. However, with high dimensionality, such a 
proposal distribution is very difficult, in fact, impossible to construct, because the number of 
accepted samples falls exponentially with an increasing dimension [18]. In addition, importance 
sampling is suitable only for estimating expectation values with respect to a distribution, not for 
generating actual samples.  
 
Markov Chain Monte Carlo (MCMC) sampling methods are particularly suited for systems with 
high-dimensional sample spaces. With MCMC, the partition function need not be calculated [18], 
[91], which makes MCMC suitable for sampling MRF models. In fact, though they require con-
siderable computation time, MCMC methods are ideal for sampling joint probability distributions 
of high-dimensional MRF models. In the literature, MCMC has been applied extensively as part 
of many methods, such as Bayesian inference or hypothesis testing, where complex distributions 
often must be sampled or approximated by sampling from the distribution (see, e.g., [55]). 
MCMC methods have also been extensively used to simulate MRF models, such as the Ising 
model (see, e.g., [90], [146]). 
 
This chapter concentrates on sampling by MCMC methods from an identified MRF joint prob-
ability distribution. Model validation and system simulation with MCMC are studied in Chapters 
8−10 and in Chapter 14. The present chapter focuses on two MCMC techniques: the general 
Metropolis-Hastings method, discussed in Section 7.1, and its special case, the Gibbs method, 
introduced in Section 7.2. Convergence and other properties of MCMC methods are examined in 
Section 7.3. 

7.1 Metropolis-Hastings Algorithm 

MCMC sampling methods are based on proposal distributions; i.e., a sample is drawn from a 
proposal distribution and then either accepted or rejected according to some probability. Unlike 
in rejection sampling and importance sampling, proposal distributions in MCMC methods are 
not static. In form, the proposal distribution is usually constant, but, e.g., its mean value typically 
depends on the previous, accepted, generated state (observation). Because adjusting the proposal 
distribution according to the previous point secures a high acceptance rate even in high-
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dimensional cases, MCMC methods do not suffer from the dimensionality curse to the extent 
that, e.g., rejection sampling does [18]. Typically, the proposal distribution is some simple distri-
bution, such as the Gaussian distribution, which is easy to sample.  
 
Let us now examine the Metropolis-Hastings (MH) method [91] and assume that the algorithm 
starts from some initial state configuration ܛሺ଴ሻ of a set of variables to be considered. Now the 
sample ܛሺ௟ାଵሻ at iteration ሺ݈ ൅ 1ሻ is drawn from the proposal distribution, denoted by 
-ሺ௟ሻ. Consequently, the seܛ ሺ௟ሻሻ, which depends only on the current, accepted stateܛ|ሺ௟ାଵሻܛሺݍ
quence of generated samples ܛሺଵሻ, ,ሺଶሻܛ … ,  ሺ௅ሻ forms a Markov chain [58], which means thatܛ
each generated value depends only on the value of the previous, generated and accepted value. 
 
Assume that the goal is to draw samples from the target distribution ݌ሺܛሻ ൌ  ሻ/ܼ, where ܼ isܛ෤ሺ݌
the partition function. In MRF models, ݌෤ሺܛሻ is the product of potential functions, or more gen-
erally, it is the distribution except for the partition function term. It is now assumed that ݌෤ሺܛሻ is 
easy to evaluate at any state ܛ, and that some appropriate proposal distribution ݍሺܛሺ௟ାଵሻ|ܛሺ௟ሻሻ has 
been chosen. In the MH algorithm, a new candidate for the ሺ݈ ൅ 1ሻth sample ܛሺ௟ାଵሻ is generated 
from ݍሺܛሺ௟ାଵሻ|ܛሺ௟ሻሻ, and accepted with the probability 

If the latter term in Eq. (7.1) is larger than one, the generated point is accepted into the sample 
with probability one; otherwise, the point is accepted according to the probability of the latter 
term. This probability can be evaluated by drawing a random number ݑ from a uniform distribu-
tion over the unit interval ሾ0, 1ሿ and by accepting it if ܣሺܛሺ௟ାଵሻ, ሺ௟ሻሻܛ ൐   .[18] ݑ
 
Because the criterion of Eq. (7.1) does not depend on ܼ, ܼ need not be known to be able to draw 
samples from the target distribution ݌ሺܛሻ [18], [91]. Being able to omit ܼ when sampling a high-
dimensional distribution is a significant property, considering that for an MRF model with ܯ 
nodes of ݍ states, the total number of possible states, and thus the number of terms to be 
summed over at ܼ, is equal to ݍெ.  
 
When we choose a symmetric proposal distribution, i.e., ݍሺܛሺ௟ାଵሻ|ܛሺ௟ሻሻ ൌ  ,݈ ሺ௟ାଵሻሻ for allܛ|ሺ௟ሻܛሺݍ
we obtain a special case of the MH algorithm, called the Metropolis algorithm, with the criterion 
of Eq. (7.1) reduced to [18], [91] 

Consequently, in Eq. (7.2) acceptance of the generated value does not depend on the proposal 
distribution. 

7.2 Gibbs Sampling 

Gibbs sampling [18], [91] is a special case of the MH method such that each update is always ac-
cepted. In addition, in the Gibbs method, the states of the variables are updated one at a time, 

,ሺ௟ାଵሻܛሺܣ  ሺ௟ሻሻܛ ൌ min ቈ1,
ሺ௟ାଵሻሻܛ|ሺ௟ሻܛሺݍሺ௟ାଵሻሻܛ෤ሺ݌
ሺ௟ሻሻܛ|ሺ௟ାଵሻܛሺݍሺ௟ሻሻܛ෤ሺ݌

቉. (7.1) 
 

,ሺ௟ାଵሻܛሺܣ  ሺ௟ሻሻܛ ൌ min ቈ1,
ሺ௟ାଵሻሻܛ෤ሺ݌
ሺ௟ሻሻܛ෤ሺ݌

቉. (7.2) 
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either in some regular order or randomly. In particular, for the proposal distribution of each 
node, the node’s full conditional (see Eq. (4.2)) is used. In a way, the Gibbs sampling algorithm 
thus assumes the same as the pseudolikelihood method in Section 6.4, where the joint probability 
of variables was approximated as the product of the variables’ full conditionals. When condi-
tional distributions are used as proposal distributions, the former are assumed simple in form for 
easy sampling. Indeed, this is often the case, at least when univariate conditional distributions are 
compared to their respective multivariate joint (target) distributions. 
 
For a precise description, assume an initial state ܛሺ଴ሻ for the variables, which are being updated in 
some specific, regular order. Assume also that each variable has already been updated ݈ times, 
yielding a state configuration ܛሺ௟ሻ, which also serves as the initial state configuration for the itera-
tion ݈ ൅ 1. Let us now assume that the state ݏ௜ of variable ݅ is chosen to be updated next. In 
Gibbs sampling, the proposal distribution is now selected as ݍሺݏ௜

ሺ௟ାଵሻ|ܛሺ௟ሻሻ ൌ ௜ݏሺ݌ 
ሺ௟ାଵሻ|ିܛ௜

ሺ௟ାଵሻሻ, 
with ݌ሺܛሻ being the target distribution from which samples are to be drawn, and where െ݅ refers 
to all variables except variable ݅, and where ݌ሺݏ௜

ሺ௟ାଵሻ|ିܛ௜
ሺ௟ାଵሻሻ is thus the full conditional of ݅. In 

Gibbs sampling, when the state of a variable is being updated through its conditional distribu-
tion, the remaining variables are fixed at their most recently updated state values. A sketch of the 
Gibbs algorithm is shown in Algorithm 7.1 [18]. 

7.3 Convergence Properties and Other Issues 

Usually, two issues must be addressed in generating samples with the MCMC methods. The first 
is to generate samples so that the sample chain produced converges to the desired target distribu-
tion. By using the properties of Markov chains, we can show that the sequence of samples 
ሼܛሺ௟ሻሽ௟ୀଵ௅  converges to the desired target distribution ݌ሺܛሻ as ݈

 
՜ ∞ [91] (see, e.g., [18]). This 

result holds for both the MH and the Gibbs methods but does not determine the number of 
MCMC steps required in practice to attain a suitable convergence to a stationary state. The sec-
ond is the degree of correlation in the generated set of samples and how to deal with it. Correla-
tions arise because consecutive samples in the Markov chain depend on each other through a 
probability distribution.  
 
The number of steps the Markov chain requires to produce samples from a desired stationary 
distribution ݌ሺܛሻ and the independence of the samples can be solved roughly by using the so-
called burn-in period, a period of MCMC steps at the beginning of each simulation during which 
no samples are recorded. During this period, the Markov chain is expected to converge to the 
stationary distribution ݌ሺܛሻ, and consequently, the samples are also rather independent of the 

Algorithm 7.1. Simple implementation of the Gibbs sampling algorithm. 

1. Choose an initial state ܛሺ଴ሻ ൌ ሾݏଵ
ሺ଴ሻ, ଶݏ

ሺ଴ሻ, … , ெݏ
ሺ଴ሻሿT 

2. For ݈ ൌ 1,… ,  ܮ
3.     For ݅ ൌ 1,…  ܯ,
4.         Sample ݏ௜

ሺ௟ሻ~݌ሺݏ௜|ݏଵ
ሺ௟ሻ, ଶݏ

ሺ௟ሻ, … , ௜ିଵݏ
ሺ௟ሻ , ௜ାଵݏ

ሺ௟ିଵሻ, … , ெݏ
ሺ௟ିଵሻሻ 

5.     End 
6.     Return sample ܛሺ௟ሻ 
7. End 
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initial state. However, the appropriate length of the burn-in period is usually somewhat difficult 
to choose; fortunately, too long a burn-in period has no other drawbacks than lost computation 
time. 
 
When appropriate burn-in periods are used before recording any samples, MCMC can be ap-
proached in two ways to generate samples from the target distribution ݌ሺܛሻ. The first is to per-
form only a single long MCMC simulation, starting from some initial state ܛሺ଴ሻ, and, after a burn-
in period, run until the set of samples ሼܛሺ௟ሻሽ௟ୀଵ௅  has been obtained. If all consecutive samples are 
recorded in the sample set, adjacent samples correlate strongly. To avoid this, a certain number 
of generated samples can be ignored between two recorded samples. This approach has the ad-
vantage that the samples have the best chance of reaching a stationary distribution, and that only 
a single burn-in period is necessary. [91] 
 
A second approach is to record each sample from a separate MCMC simulation with each sample 
preceded by a burn-in period. Further, to avoid dependence on the initial state, each simulation 
could be started from a different initial state and thereby improve chances that recorded observa-
tions cover samples from the entire state space. This is important especially if the underlying 
Markov process is not ergodic; i.e., if every state in the state space cannot be reached from every 
other state. For example, above the critical node interaction ܬୡ୰, the Ising model is non-ergodic. 
For non-ergodic processes, when all samples are recorded from a single MCMC simulation, some 
region in the state space is not reached from the chosen initial state; consequently, this region 
remains uncovered in the generated sample set. This problem can be avoided if several MCMC 
simulations are used with each starting from a different initial state. This approach also renders 
the generated samples rather independent of each other. The drawback is that nearly all computa-
tion time is wasted on simulating burn-in periods; consequently, considerable computation time 
is required to record the same number of samples as in a single long MCMC simulation. [91] 
 
A third approach to MCMC to generate samples is to combine short and long MCMC simula-
tions. For example, a few MCMC simulations could be run, each starting from a different initial 
state with several samples then recorded during each simulation. Because this compromise cir-
cumvents the worst drawbacks, though also the best advantages of the two extreme approaches, 
it is usually a safe and relatively efficient choice. [91] 
 
One more issue related to MCMC sample generation is worth mentioning here. MCMC methods 
are somewhat inefficient for exploring the state space when variables to be sampled correlate 
highly. This inefficiency is caused by the methods’ random walk type behaviour, because the 
width of the proposal distribution is selected according to the smallest variance direction among 
the variables, and because the proposal distribution is always centred on the previous sample 
state [18]. Therefore, countless iterations may be required to cover the whole state space in direc-
tions of high correlation. However, this problem pertains mostly to continuous variables and less 
so to models such as the binary-state Ising model. 



 
 

8. Topology Identification 

This chapter deals with the identification of the MRF model graph structure with a data set. 
Identification is based on statistical dependencies between the network node states. However, 
since a link on a graph should exist only between conditionally dependent nodes, given all the 
other nodes, the properties of the conditional dependency must also be taken into account. Be-
sides, other issues must be emphasised. First, some dependency measures are affected by indi-
vidual node properties; e.g., mutual information is affected by the nodes’ marginal entropies. 
Second, with finite data sets, these measures are random variables, whose uncertainties depend 
on the number of observations, and, are thus not necessarily directly comparable for different 
node pairs, e.g., because of different node state distributions or missing data values. The focus 
here is on MTNs, whose topology is essentially based on a two-dimensional spatial node configu-
ration with their graph structure accordingly projected in two dimensions. However, the topology 
identification method considered here is not restricted only to such systems. 
 
The MRF model identification methods developed here and their evaluation are discussed in 
Chapters 8–10. This chapter first applies the methods and tools introduced in Chapters 4–7 to 
topology identification and then evaluates the methods extensively in various qualitative network 
behaviour situations with Ising model-based synthetic data. Sections 8.1 and 8.2 introduce the 
topology estimation method developed in this thesis. Section 8.3 discusses other similar methods 
reported in the literature. Section 8.4 introduces the methods to evaluate the resulting topology 
estimates. In Section 8.5, the topology identification method developed here is evaluated with 
synthetic data representing various qualitative network behaviour situations. Finally, Section 8.6 
compares the new topology identification method with those in the literature. 

8.1 Network Node Dependencies 

Dependency measures of variables were discussed in Chapter 5. For topology identification, mu-
tual information (MI), χ2-statistics approximation (CSS) of MI, and rank-correlation-based simi-
larity measures can all be used to model the dependencies or similarities of network nodes. How-
ever, the above measures, when calculated from data, are uncertain, their uncertainty depending 
on the number of observations available from the network. Therefore, more robust dependency 
measures are needed to compare node dependencies estimated with different-size observation 
sets and node pairs with different properties. The method developed here—instead of applying 
the above dependency measures directly—exploits the statistical significance that the measure 
implies nonzero dependency.  
 
The statistical significance of some estimated quantity is calculated by comparing the estimated 
value to the distribution of values of that quantity, when the values of the quantity are calculated 
from the same-size data set under a related null hypothesis. With the dependency measures con-
sidered here, the dependency value estimated with a data set for two node variables is thus com-
pared to the distribution of values of the respective measure estimated from the same-size data 
set under the assumption that the two nodes are statistically independent. In topology identifica-
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tion, statistical significances of dependency measures are estimated for each node pair, and the 
values are then used as similarity values between nodes to derive the topology of the network. In 
the following subsections, statistical significances are derived for MI, CSS, and rank-correlation 
measures.  

8.1.1 Statistical Significance of Mutual Information 

MI was defined in Eq. (5.7) as a statistical dependency measure of two random variables ௜ܵ and 

௝ܵ as ܫሺ ௜ܵ; ௝ܵሻ ൌ ∑ ∑ ,௜ݏሺ݌ ௝ሻݏ log
௣ሺ௦೔,௦ೕሻ

௣ሺ௦೔ሻ௣ሺ௦ೕሻ௦ೕ௦೔ . We now derive a more robust dependency meas-

ure, the statistical significance of MI (SSMI). The MI value estimated from a set of ܮ observa-
tions, ܫሺ ௜ܵ; ௝ܵ|ܮሻ, must be compared to the distribution of MI values estimated from a same-size, 
generated data set under the null hypothesis that the two variables are statistically independent. 
However, we face the difficulty that we do not know the analytical form of the MI distribution, 
and must, therefore, calculate numerically the probabilities under the null hypothesis.  
 
Let us assume that the two random variables under consideration are statistically independent, 
i.e., ݍሺݏ௜, ௝ሻݏ ൌ  ௝ሻ are the marginal probability distributions ofݏሺ݌ ௜ሻ andݏሺ݌ ௝ሻ. Hereݏሺ݌௜ሻݏሺ݌
the variables, derived from the true joint probability distribution ݌ሺݏ௜, ,௜ݏሺݍ ௝ሻ, andݏ  ௝ሻ is theݏ
joint distribution under the assumed null hypothesis. In theory, and when estimated from an in-
finite data set, MI is obviously zero under the assumed statistical independence: ܫሺ଴ሻሺ ௜ܵ; ௝ܵሻ ൌ
∑ ∑ ,௜ݏሺݍ ௝ሻݏ log

௤ሺ௦೔,௦ೕሻ
௣ሺ௦೔ሻ௣ሺ௦ೕሻ௦ೕ௦೔ ൌ 0. However in practice, when two variables are statistically inde-

pendent, and when the marginal probabilities ݌ሺ୭ୠୱሻሺݏ௜ሻ and ݌ሺ୭ୠୱሻሺݏ௝ሻ are estimated from a 
finite data set of ܮ observations, the product of the marginals is not equal to the joint probability 
,௜ݏሺ୭ୠୱሻሺ݌ ,௜ݏሺ୭ୠୱሻሺ݌ :௝ሻ estimated from the same set of observationsݏ ௝ሻݏ ്
  .௝ሻ. Hence MI assumes a non-zero positive valueݏሺ୭ୠୱሻሺ݌௜ሻݏሺ୭ୠୱሻሺ݌
 
Under the null hypothesis and ܮ observations, the distribution of MI values is estimated as fol-
lows. First, ܰ data sets are generated for ௜ܵ and ௝ܵ under the null hypothesis assumption, each 
data set consisting of L observations. These observations are easily generated for discrete vari-
ables from the multinomial distribution (binomial distribution for binary variables) by using the 
original data-estimated state probabilities ݌ሺݏ௜ሻ and ݌ሺݏ௝ሻ. Then MI values are estimated from 
each ܰ observation set, leading to a histogram estimate of the MI distribution ݂ሺ଴ሻሺܮ|ܫሻ; alterna-
tively, a more sophisticated method can be used to estimate the distribution. Finally, the SSMI, 
MIሺߪ ௜ܵ , ௝ܵሻ, is obtained for variables ௜ܵ and ௝ܵ as 

The probability that the null hypothesis is now erroneously discarded is 1 െ MIሺߪ ௜ܵ, ௝ܵሻ. Because 
estimated from a simulated set of observations, SSMI is a random variable with its uncertainty 
depending on both ܰ and ܮ. Because the uncertainty of the generated MI values is determined 
by the fixed ܮ, the uncertainty of the SSMI estimate can be reduced only by increasing ܰ. 
Throughout the studies in this thesis ܰ ൌ 2000. Since SSMI is a probability value, it is clearly 

MIሺߪ  ௜ܵ , ௝ܵሻ ൌ න ݂ሺ଴ሻሺܮ|ܫሻ݀ܫ
ூሺௌ೔;ௌೕ|௅ሻ

଴
. (8.1) 
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interpreted and always lies between zero and one: 0 ൑ MIሺߪ ௜ܵ , ௝ܵሻ ൑ 1. These are desired prop-
erties for a similarity measure.  
 
In the literature, SSMI has been applied, e.g., to modelling interactions of perturbed genes in [45], 
where it is first calculated for all gene pairs, and then a network based on SSMI values is con-
structed to represent genetic interactions. An estimation of mutual information and SSMI values 
from finite data sets is proposed also in [141].  

8.1.2 Statistical Significance of χ2-Statistics 

In Chapter 5, CSS was introduced as an approximation of MI and defined for two variables ௜ܵ 
and ௝ܵ by Eq. (5.9) as ܫୟ୮୮ሺ ௜ܵ; ௝ܵሻ ൎ ∑ ∑ ሾ݌ሺݏ௜, ௝ሻݏ െ ௝ሻሿିଵ௦ೕ௦೔ݏሺ݌௜ሻݏሺ݌௝ሻሿଶሾݏሺ݌௜ሻݏሺ݌ . The prob-
ability distribution of CSS is the incomplete gamma function. For ௜ܵ and ௝ܵ, the statistical signifi-
cance of CSS (SSCSS), ߪCSSሺ ௜ܵ , ௝ܵሻ, when a CSS value ܫୟ୮୮ሺ ௜ܵ; ௝ܵ|ܮሻ is estimated from a data set 
of ܮ observations, and with ܦ degrees of freedom, is defined as [114] 

The degrees of freedom parameter ܦ is calculated as follows: ܦ ൌ ሺݍ ௜ܵሻݍሺ ௝ܵሻ െ ሺݍ ௜ܵሻ െ
ሺݍ ௝ܵሻ ൅ 1, where the function ݍ indicates the number of accessible states of its argument vari-
able. The gamma function, Γ, is defined as Γሺ2/ܦሻ ൌ ׬  exp ሺെܫሻܫ஽/ଶିଵ݀ܫஶ

଴ . Because the 
only random variable here is the estimate ܫୟ୮୮ሺ ௜ܵ; ௝ܵ|ܮሻ, unlike to the SSMI estimate, no other 
uncertainties are related to the SSCSS estimate. On the other hand, the value ܫୟ୮୮ሺ ௜ܵ; ௝ܵ|ܮሻ itself 
is an approximation of the respective MI value ܫሺ ௜ܵ; ௝ܵ|ܮሻ, hence causing inaccuracies in the 
similarity estimate.  
 
The advantage of CSS over MI is that, in the case of the null hypothesis, the analytical form of its 
distribution is always known. Thus SSCSS is much less demanding to estimate computationally 
than the SSMI. Recently some other approximations to MI and its distribution have also been 
introduced, e.g., in [56], [63], and [64]. Particularly in [56], the approximation of MI is similar to 
that of the respective CSS approximation. In [56] MI is approximated as a second-order Taylor 
series at ݌ ൌ ݌ whereas CSS is obtained by approximating the logarithm function at ,ݍ ൌ  as a ݍ
first-order Taylor series (see Section 5.5). Hence the respective dependency test based on the MI 
distribution approximation, also shown in [56], is similar to the χ2-dependency test demonstrated 
here.  

8.1.3 Statistical Significances of Rank-Correlation Measures 

Approximations of the distributions of rank-correlation measures in the null hypothesis case are 

also known. For Spearman’s rho, a test measure ݐ ൌ ௌோሺܥ ௜ܵ, ௝ܵሻටሺܮ െ 2ሻ/ሾ1 െ ௌோሺܥ ௜ܵ, ௝ܵሻଶሿ 

with the data-estimated correlation value ܥௌோሺ ௜ܵ, ௝ܵሻ (see Eq. (5.10)) has been constructed to test 
the hypothesis. In the null hypothesis case of statistical independence, this test measure is ap-
proximately distributed according to Student’s distribution with ܮ െ 2 degrees of freedom [114]. 

CSSሺߪ  ௜ܵ , ௝ܵሻ ൌ
1

ΓሺDଶሻ
න expሺെܫሻ ܫ

஽
ଶିଵ݀ܫ

ூ౗౦౦ሺௌ೔;ௌೕ|௅ሻ/ଶ

଴
. (8.2) 

 



50 
 

With Γ again denoting the gamma function, the statistical significance of an estimated value 
ௌோሺܥ ௜ܵ, ௝ܵሻ with test measure ݐ is now obtained as 

Under the null hypothesis of zero statistical dependency, Kendall’s tau correlation coefficient 
௄்ሺܥ ௜ܵ, ௝ܵሻ (see Eq. (5.11)) is known to be approximately distributed according to the Gaussian 
distribution, with a zero expectation value and with a variance of ߪଶ ൌ ሺ4ܮ ൅ 10ሻ/ሾ9ܮሺܮ െ 1ሻሿ 
[114]. Consequently, for an estimated value ܥ௄்ሺ ௜ܵ, ௝ܵሻ, statistical significance is obtained as  

where the measure ܥ௄்ሺ ௜ܵ, ௝ܵሻ now defines the upper limit for the integration. 

8.2 Spatial and Graph Representations of Network Nodes 

The statistical significance value of a dependency measure, generally denoted here for two node 
variables ௜ܵ and ௝ܵ by ߪሺ ௜ܵ, ௝ܵሻ, is interpreted as a similarity value and transformed into a dissimi-
larity value ߜሺ ௜ܵ, ௝ܵሻ as ߜሺ ௜ܵ, ௝ܵሻ ൌ 1 െ ሺߪ ௜ܵ, ௝ܵሻ. Dissimilarity values for all ܯሺܯ െ 1ሻ/2 node 
pairs are given as a symmetric, size ܯݔܯ, dissimilarity matrix. In principle, these dissimilarities 
can be perfectly “visually” represented in an ܯ െ 1 dimensional space as a set of nodes, where 
the Euclidean distances between the nodes correspond to their dissimilarities. However, by ap-
plying the multidimensional scaling methods in Chapter 5 to the dissimilarity matrix, we can re-
duce this “visual” representation to a ݍ-dimensional approximation (ݍ ൏ ܯ െ 1), where the true 
dissimilarity ߜሺ ௜ܵ, ௝ܵሻ is represented as closely as the dimensionality allows by a continuous-
valued distance ݀௜௝ሺܠ௜,   .௝ሻ between the pairs of nodesܠ
 
To obtain a topology, or a graph presentation, of the nodes, the node dissimilarities represented 
by a spatial node location map must be turned into binary relations, a set of neighbourhood sets. 
Here we adopt a uniform thresholding procedure with the distance threshold ݀୲୦୰ defined for 
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Figure 8.1. Thresholding of a node location map into a graph structure. The construction of a neighbourhood for 
node ݅ is demonstrated when the threshold distance is defined by ݀୲୦୰. Nodes within the threshold distance ݀୲୦୰ 
from ݅ are neighbours to ݅. 

thr
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pairs of nodes on the node location map. The nodes within the threshold distance from one an-
other are considered neighbours; i.e., if ݀௜௝ሺܠ௜, ௝ሻܠ ൏ ݀୲୦୰ for nodes ݅ and ݆, then ݅ א ܰሺ݆ሻ and 
݆ א ܰሺ݅ሻ. An example of this procedure is shown in Figure 8.1, where the neighbours of node ݅ 
are those within the distance ݀୲୦୰ from ݅, and denoted here by undirected links. Although with a 
given threshold distance the graph structure is unique for a location map, an infinite number of 
location maps may correspond to a single graph structure, because small changes in node dis-
tances do not necessarily affect the thresholding and thus the neighbourhood relations. For con-
venience, this graph construction is abbreviated below as the MGMN (MDS-based Graph esti-
mation for Markov Networks) method (sketch of it shown as Algorithm 8.1). 

8.2.1 Uncertainty and the Effect of the Threshold Distance 

The uncertainty of an estimated node location map and its corresponding graph structure is re-
lated mainly to the size of the data set, from which node similarities are estimated. Because the 
node location map is a ݍ-dimensional approximation of the original dissimilarities, this approxi-
mation also introduces some further uncertainties into graph estimation. Furthermore, if nodes ݅ 
and ݆ are neighbours on a graph, the uncertainty related to this neighbour relation can be seen as 
depending on the gap between the threshold distance ݀୲୦୰ and the distance ݀௜௝ሺܠ௜,  ௝ሻ; i.e., theܠ
smaller the value ݀୲୦୰ െ ݀௜௝ሺܠ௜, -௝ሻ on the node location map, the more uncertain the correܠ
sponding graph link. In addition, the larger the ݀୲୦୰ being used, the more uncertain the 
neighbour relations included. With a small ݀୲୦୰, only the most certain neighbour relations are 
included, though many true neighbours may be excluded. 
 
Because ݀୲୦୰ is important in graph estimation, it may, when chosen incorrectly, later in the mod-
elling phase drastically affect the qualitative properties of an MRF model. If ݀୲୦୰ is chosen far 
too large, the graph is too strongly connected, resulting in false coherent behaviour in the model. 
If chosen far too small, the graph is too loosely connected, and truly coherent behaviour may be 
lost in the model. However, choosing ݀୲୦୰ slightly incorrectly is not expected to incur these dras-
tic effects; on the contrary, to affect qualitative model behaviour in such a fashion, ݀୲୦୰ must be 

Algorithm 8.1. Sketch of the MGMN method. 

1. Initialise ܷ as the set of all node variables: ׊ ௜ܵ; ݅ ൌ 1,… :ܯ, ௜ܵ א ܷ 
2. Initialise the adjacency matrix ܩ as an unconnected graph: ׊ ௜ܵ,  ௝ܵ: ܩሺ ௜ܵ, ௝ܵሻ  ൌ 0 
3. Estimate ߪሺ ௜ܵ, ௝ܵሻ for all node pairs ሺ ௜ܵ, ௝ܵሻ;   ௜ܵ א ܷ, ௝ܵ א ܷ 
4. Calculate ߜሺ ௜ܵ, ௝ܵሻ for all node pairs ሺ ௜ܵ, ௝ܵሻ;   ௜ܵ א ܷ, ௝ܵ א ܷ as ߜሺ ௜ܵ, ௝ܵሻ ൌ 1 െ ሺߪ ௜ܵ, ௝ܵሻ 
5. Form an ܯݔܯ dissimilarity matrix ܦ so that ܦሺ݅, ݆ሻ ൌ ሺߜ ௜ܵ, ௝ܵሻ 
6. Apply MDS to ܦ to obtain a low‐dimensional spatial representation with node locations ܠ௜ 

for all nodes  ௜ܵ; ݅ ൌ 1,… :ܯ, ௜ܵ א ܷ, and with internode distances ݀௜௝ሺܠ௜,  ௝ሻ for all nodeܠ
pairs ሺ ௜ܵ, ௝ܵሻ;   ௜ܵ א ܷ, ௝ܵ א ܷ 

7. Specify a threshold distance parameter ݀୲୦୰ 
8. For all node pairs ሺ ௜ܵ, ௝ܵሻ;   ௜ܵ א ܷ, ௝ܵ א ܷ 
9.     If ݀௜௝ሺܠ௜, ௝ሻܠ ൏ ݀୲୦୰  
10.         Set ܩሺ ௜ܵ, ௝ܵሻ  ൌ 1 and ܩሺ ௝ܵ, ௜ܵሻ  ൌ 1 
11.     End 
12. End 
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chosen quite poorly. Some approximate information, e.g., the number of neighbours nodes 
should typically have, is usually available for choosing an appropriate ݀୲୦୰. 
 
If no information is available for choosing ݀୲୦୰, we may try various threshold values and com-
pare the model identification results with the varying threshold values to each other. Yet again, 
usually no reference is available, to which the resulting graph could directly be compared. How-
ever, predictions with the MRF model with the obtained graph structure and parameters can be 
evaluated by comparing the model predictions to data. Uncertainties in estimated model parame-
ters can also be studied, and such a threshold distance chosen as to minimise these uncertainties. 
Model predictions and uncertainties are discussed further in Chapter 9 in connection with MRF 
model parameter identification.  

8.2.2 Advantages and Limitations of Graph Construction 

A data-based graph estimation scheme is valuable when the true system topology is not known 
on the basis of domain knowledge, when several pieces of inconsistent topology information 
exist, or when some other uncertainty about the system topology exists. When no information at 
all is available about the system topology, the data-estimated graph structure is the best estimate 
available for such topology. In case of some prior information about a mostly unknown system 
topology exist, a graph estimate can be applied by complementing it with the prior knowledge by 
simply adding or removing links. If the system topology is known but partly uncertain, a graph 
estimate can be used to evaluate the prior topology information and to complement the uncertain 
parts. 
 
Some networked systems, such as MTNs, may contain several pieces of topology information. 
MTNs embrace both physical and logical topologies, as discussed in Chapter 2. BTSs and their 
cells (nodes) interact mostly through logical connections, but also their physical topology is im-
portant, because, e.g., the handover between two cells depends on their physical locations and 
thus affects the states of the respective nodes. Because information from several topologies may 
be partly inconsistent and partly overlapping, it may be difficult to obtain a single consistent to-
pology to MRF modelling. We could simply choose one of many topologies, but important to-
pology information would then be wasted. However, as the effect of all topologies should be 
seen in node state data, at least on the scale they matter, the data-estimated graph structure 
should manifest the joint impact of all these topologies. In addition, the weightings of the to-
pologies in the estimated graph structure should reflect the impact of each topology on the op-
eration of the system. Consequently, we propose that the graph estimate be seen as the best sin-
gle topology estimate for the MRF modelling purposes.  
 
In two obvious and extreme situations the MGMN method does not work. The first arises when 
the nodes are completely independent and all dissimilarities equal one. All nodes should be equi-
distant apart from each other, corresponding to the distance of total dissimilarity. This corre-
sponds to a graph with no links. The second, an opposite situation, obtains when all nodes are 
highly coherent and dissimilarities equal zero, a situation corresponding to a fully connected 
graph with links between every node.  
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8.3 Other Methods to Identify Topology 

In the literature, mutual information is often applied as a similarity measure for constructing a 
spatial presentation of variables with multidimensional scaling. For example, in [1] and [2] MI 
and MDS are used to search for a spatial configuration to model dependencies in speech and 
music data, and in [96] and [103] to analyse word relations. In these publications, mostly spatial 
configurations are studied, but in [1] and [2] also the topology inference from spatial configura-
tion is mentioned. Several other topology construction methods are reported in the literature as 
well. Perhaps the most straightforward approach to constructing a graph is simply to threshold 
the node dependencies, modelled, e.g., with mutual information, into neighbourhood relations. 
Such a graph structure estimation method has been previously applied, e.g., to construct rele-
vance networks of associated genes [24] and will be compared to the MGMN method in Subsec-
tion 8.3.1. 
 
In general, two types of methods are used to estimate directed (Bayesian networks) and undi-
rected graphs (Markov random fields). Score-based methods are used mainly to estimate directed 
graphs (e.g., [36], [51], [149]), but recently a method has also been proposed in [88] for MRF 
models. Constrained-based methods, generally used for both directed and undirected graphs [82], 
are based on performing a set of conditional independence tests for nodes. SGS (named after 
Spirtes, Glymour, and Scheines) and PC (named after Peter Spirtes, and Clark Glymour) algo-
rithms constitute the basic approaches of the constrained-based methods [137]. These algorithms 
and constrained-based methods in general are discussed in detail in Subsection 8.3.2. The litera-
ture contains also some other network topology estimation methods, mainly for specific applica-
tions (see, e.g., [20], [109], [132], [151]). The methods discussed in the following subsections are 
later experimentally compared to the MGMN method in Section 8.6. 

8.3.1 Comparison to a Straightforward Approach 

The following two questions may well be asked about the MGMN method used in this thesis. 
First, why is the SSMI or some other statistical significance measure adopted as a similarity 
measure, instead of applying MI directly? And, second, why is the MDS phase used to construct 
a spatial presentation and then threshold the topology, instead of thresholding the topology di-
rectly from similarity values? This subsection addresses these questions by comparing the 
MGMN method to a more straightforward approach, which is directly to threshold similarity 
values, e.g., MI estimates, into a graph structure.  
 
When the statistical significance of a dependency measure, such as SSMI, is used, the resulting 
probability value lying between zero and one has a clear interpretation, and the same threshold 
value can be used with the same meaning for networks with varying node state distributions or 
data set sizes. SSMI values are thus, in principle, independent of the number of observations and 
on the number of possible states and state probability distributions. Hence even though the data 
contains missing values for some nodes, all the available joint observations for two nodes can still 
be used. If MI is used directly, observation of all nodes should in principle be abandoned, be-
cause ܮ should be kept the same to have MI estimates that are comparable between node pairs. 
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Even if ܮ were the same, the varying marginal node state distributions would yet render MI esti-
mates incomparable.  
 
If a networked system is known to have a spatial representation, e.g., in two-dimensions, such as 
MTNs do, and if the internode distances on this spatial representation are related to node de-
pendencies, then using MDS to reconstruct a spatial representation sounds like a natural phase in 
estimating graph structure. In MTNs, estimating first the spatial node configuration adds infor-
mation about two-dimensionality to the node relations. If, in contrast, the underlying networked 
system does not assume such a spatial configuration, it seems more reasonable directly to thresh-
old the ܯ െ 1-dimensional similarity values to define the graph structure. However, the problem 
now is that the decision whether two nodes are neighbours or not, is based only on a single un-
conditional dependency value estimated for the two nodes. When the information about all other 
unconditional node dependencies is ignored, it is impossible to decide whether the two nodes, in 
fact, are neighbours or only connected via other nodes. In other words, all conditional depend-
ency information, information defining graph links in the first place, is omitted (see Chapter 4).  
 
Seemingly, also the MGMN method first ignores unconditional dependency information, be-
cause it applies only unconditional dependency values. However, when MDS is applied, condi-
tional dependency information is, in fact, taken into account by using all the dependency infor-
mation at once to construct a spatial topology, in which internode distances describe which 
nodes are the closest neighbours to which nodes. As an example, consider a simple one-
dimensional system with three nodes A, B, and C. The central node B is a neighbour of both A 
and C, while A and C are not neighbours. Neighbour relations appear in the data as high depend-
encies between the nodes, and the goal is to estimate these neighbour relations from the data. If 
only unconditional dependency values are applied to each node pair directly, a high threshold 
value may result in a graph where all nodes are interconnected. But when MDS is first applied to 
dependency values in one-dimensions, B becomes located between A and C on the resulting 
node location map, and with an appropriate threshold distance, correct neighbourhood relations 
are recovered.  
 
In some cases, construction of a spatial presentation can add to the robustness of neighbour rela-
tions, because all dissimilarity data is then exploited to define neighbourhood relations, instead of 
a single dissimilarity value being applied to each node pair separately. With small amounts of 
data, dissimilarities are uncertain, thereby making neighbourhood relations uncertain and sensi-
tive to data observations. But when all dependency values are used at once with the MGMN 
method, the topology may become less sensitive to random fluctuations in some dissimilarity 
values.  

8.3.2 Constrained-Based Methods to Estimate Graphs  

Most constrained-based graph estimation methods have originally been developed to estimate 
directed graphs for Bayesian networks. For Bayesian networks, the Markov blanket of a node 
consists of its parents, its children, and its children’s other parents. If an estimation method first 
estimates the Markov blanket rather than removes links between a child node’s parents or directs 
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the remaining links, it can also be applied to estimating undirected graphs for Markov networks. 
This is because a Markov blanket obtained as an intermediate step in Bayesian network identifica-
tion corresponds to the graph structure of a Markov network. 
 
Constrained-based graph estimation approaches conduct a set of conditional independence tests 
of node variables. These conditional independencies have also been taken into account in the 
MGMN method, but in an indirect way by constructing a spatial configuration from all node-to-
node dependency values at once. In contrast, constrained-based methods conduct a series of 
conditional independence tests directly for each node by conditioning on subsets of the rest of 
the nodes. Node pairs found conditionally dependent are considered neighbours.  
 
The most straightforward approach in constrained-based methods is the SGS algorithm intro-
duced in [137], originally proposed for estimating directed graphs for Bayesian networks. How-
ever, the algorithm can also be applied to estimating undirected graphs by simply terminating it 
when it has found a Markov blanket. In this algorithm, a number of conditional independence 
tests are conducted for each node pair by conditioning on each subset of the rest of the nodes at 
a time, excluding the two nodes under study. The algorithm starts with a fully connected graph 
and removes the link between two nodes if they are found conditionally independent according 
to any of the tests conducted. In other words, if the two nodes are conditionally dependent ac-
cording to all tests, only then are they considered neighbours (see, e.g., [68]). A sketch of the part 
of the algorithm seeking the Markov blanket is given as Algorithm 8.2. The algorithm uses Pear-
son’s chi-square test with the test statistics specified by the quantity ߪCSSሺ ௜ܵ, ௝ܵሻ in Eq. (8.2), and 
denoted here, when conditioning on a set of nodes ܁, as ߪCSSሺ ௜ܵ; ௝ܵ|܁ሻ. When conditioning on a 
subset of nodes, the respective conditional frequencies are considered in χ2-statistics. 
 
The problem with the SGS algorithm is that its computation time grows exponentially as a func-
tion of the number of nodes, and thus does not scale for large systems. The PC algorithm (see, 
e.g., [68]), a better scaling version of the SGS algorithm, conducts conditional independence tests 

Algorithm 8.2. Sketch of the SGS algorithm for undirected MRFs (‘%’ indicates a header of a comment). 

1. Initialise ܷ as the set of all node variables: ׊ ௜ܵ; ݅ ൌ 1,… :ܯ, ௜ܵ א ܷ 
2. Initialise the adjacency matrix ܩ as a fully connected graph: ׊ ௜ܵ,  ௝ܵ: ܩሺ ௜ܵ, ௝ܵሻ  ൌ 1 
3. Initialise for each  ௜ܵ its set of neighbours ܰሺ݅ሻ according to ܩ 
4. Specify a significance level parameter ߙ for the dependency test 
5. For all nodes  ௜ܵ א ܷ 
6.     For all nodes  ௝ܵ א ܰሺ݅ሻ 
7.         For all subsets ܁; ܁ ك ܰሺ݅ሻ െ ௝ܵ 
8.             If ߪCSSሺ ௜ܵ, ௝ܵ|܁ሻ ൏ 1 െ   ߙ
9.                 Set ܩሺ ௜ܵ, ௝ܵሻ  ൌ 0 % The nodes are conditionally independent   
10.                 Update ܰሺ݅ሻ and ܰሺ݆ሻ according to ܩ 
11.                 Break % Exiting the inner‐most loop 
12.             End 
13.         End 
14.     End 
15. End  
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only for subsets of nodes, which have fewer nodes than some predefined threshold [137]. 
Though less accurate than the SGS algorithm, the PC algorithm scales as the network size to the 
power of maximum subset size and thus suits also for large systems containing some hundreds of 
nodes. In the sketch given as Algorithm 8.3, the PC algorithm differs from the SGS algorithm 
only on rows 5 and 8. Some modifications have been suggested to the PC algorithm [3]; besides, 
some other constrained-based algorithms are available for estimating graph structures (see, e.g., 
[23], [31], [32], [68], [82], [95]; for details of the PC algorithm, see, e.g., [68]). 
 
Here the Grow-Shrink (GS) algorithm [95] is examined as an alternative graph construction 
method to the MGMN method. Also the GS algorithm was originally developed for directed 
graphs, but a version called the Grow-Shrink Markov Network (GSMN) has been proposed in 
[23] for estimating undirected graphs of Markov networks. Two improvements, mostly of com-
putational efficiency, have been introduced to the GSMN algorithm in [23] and [54], called the 
GSIMN and DGSIMN algorithms. Though the two also boast other improvements on accuracy, 
only the GSMN algorithm is discussed here in detail because of its simplicity, and because com-
putational efficiency is not crucial here. This algorithm has been applied in [100] to structure 
learning of Markov logic networks. 
 
The GSMN algorithm (sketch shown as Algorithm 8.4) is also based on conditional independ-
ence tests. In [23], Pearson’s chi-square test is applied. In the GSMN algorithm, nodes are exam-
ined through in a loop in a specific order, called the visit-order, determined by unconditional de-
pendency tests conducted for each node pair. In particular, unconditional dependency is calcu-
lated for each node with respect to all other nodes (lines 3–6 in Algorithm 8.4), and then their 
average is taken (line 8). In visit-order, nodes are considered in ascending order of average de-
pendency values (line 8). Inside the visit-order loop (lines 15–39), conditional independence tests 
are conducted between a visit-order node and the rest of the nodes. Inside the visit-order loop, 
another order, called the grow-order, bears on how the conditional independence tests are exe-

Algorithm 8.3. Sketch of the PC algorithm for undirected MRFs (‘%’ indicates a header of a comment). 

1. Initialise ܷ as the set of all node variables: ׊ ௜ܵ; ݅ ൌ 1,… :ܯ, ௜ܵ א ܷ 
2. Initialise the adjacency matrix ܩ as a fully connected graph: ׊ ௜ܵ,  ௝ܵ: ܩሺ ௜ܵ, ௝ܵሻ  ൌ 1 
3. Initialise for each  ௜ܵ its set of neighbours ܰሺ݅ሻ according to ܩ 
4. Specify a significance level parameter ߙ for the dependency test 
5. Specify a maximum size max_size for the subset size tested 
6. For all nodes  ௜ܵ א ܷ 
7.     For all nodes  ௝ܵ א ܰሺ݅ሻ 
8.         For all subsets ܁; ܁ ك ܰሺ݅ሻ െ ௝ܵ ר   sizeሺ܁ሻ ൑ max_size 
9.             If ߪCSSሺ ௜ܵ, ௝ܵ|܁ሻ ൏ 1 െ   ߙ
10.                 Set ܩሺ ௜ܵ, ௝ܵሻ  ൌ 0 % The nodes are conditionally independent   
11.                 Update ܰሺ݅ሻ and ܰሺ݆ሻ according to ܩ 
12.                 Break % Exiting the inner‐most loop 
13.             End 
14.         End 
15.     End 
16. End  
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cuted. In grow-order, all nodes, except the current visit-order node, are sorted in ascending order 
of their unconditional dependency values with the visit-order node (lines 9–14). 
 
Inside the visit order, the GSMN algorithm consists essentially of two parts, the grow phase 
(lines 19–26) and the shrink phase (lines 28–33). In the former, nodes are taken according to 
their grow-order (line 20), and the conditional dependency test is then conducted between the 
visit-order node and the grow-order node conditioned with a set of nodes earlier found depend-
ent on the visit-order node (line 21). If the grow-order node is found conditionally dependent on 
the visit-order node, it is added to the set of nodes conditionally dependent on the visit-order 

Algorithm 8.4. Sketch of the GSMN algorithm for undirected MRFs [23] (‘%’ indicates a header of a comment). 

1. Specify a significance level parameter ߙ for the dependency test 
2. Initialise ܷ as the set of all node variables: ׊ ௜ܵ; ݅ ൌ 1,… :ܯ, ௜ܵ א ܷ 
3. For all node pairs ሺ ௜ܵ, ௝ܵሻ;   ௜ܵ א ܷ, ௝ܵ א ܷ  
4.     % Calculate unconditional dependencies 
ௌ೔,ௌೕ݌     .5 ൌ CSSሺߪ ௜ܵ, ௝ܵሻ 
6. End 
7. % Visit order – sort nodes in ascending order according to unconditional dependencies 
8. Initialise all nodes in ߨ so that ݅ ൏ ݅Ԣ if and only if Avgௌೕሺ݌ௌ೔,ௌೕሻ ൏ Avgௌೕሺ݌ௌ೔ᇲ          ,  ௌೕሻ  
9. For all nodes  ௜ܵ;   ௜ܵ א ܷ  
10.     ۰ௌ೔ ൌ  Initialisation of the neighbourhood of % ׎ ௜ܵ  
11.     % Grow order – sort the neighbour candidates of  ௜ܵ  in ascending order according to  
12.     % unconditional dependencies 
13.     Initialise all nodes except  ௜ܵ in  ߣௌ೔ so that ݆ ൏ ݆Ԣ if and only if ݌ௌ೔,ௌೕ ൏  ௌ೔,ௌೕᇲ݌
14. End 
15. While ߨ is not empty 
16.      ௜ܵ ൌ Nextሺߨሻ % Take the next node from the top of the queue 
܁     .17 ൌ  Initialisation of the subset of nodes % ׎
18.     % Grow phase 
19.     While ߣௌ೔ is not empty 
20.          ௝ܵ ൌ Nextሺߣௌ೔ሻ % Take the next neighbour candidate from the top of the queue 
21.         If ߪCSSሺ ௜ܵ, ௝ܵ|܁ሻ ൒ 1 െ  The nodes are conditionally dependent % ߙ
22.             Addሺ ௝ܵ,  ሻ % Add܁ ௝ܵ to ܁ 
23.         Else 
24.             Removeሺ ௜ܵ,  ௌೕሻ % Removeߣ ௜ܵ from ߣௌೕ 
25.         End 
26.     End 
27.     % Shrink phase 
28.     For all nodes  ௝ܵ;   ௝ܵ א   ܁
29.         If ߪCSSሺ ௜ܵ, ௝ܵ|܁ െ ௝ܵሻ ൏ 1 െ  The nodes are conditionally independent % ߙ
30.             Removeሺ ௝ܵ,  ሻ % Remove܁ ௝ܵ from ܁ 
31.             Removeሺ ௜ܵ,  ௌೕሻ % Removeߣ ௜ܵ from ߣௌೕ 
32.         End 
33.     End 
34.     ۰ௌ೔ ൌ  The set of neighbours of node % ܁ ௜ܵ 
35.     % Collaboration phase – make the neighbourhood relations symmetric 
36.     For all nodes  ௝ܵ;   ௝ܵ א ۰ௌ೔ 
37.         Addሺ ௜ܵ, ۰ௌೕሻ % Add  ௜ܵ to ۰ௌೕ 
38.     End 
39. End 
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node (line 22). In the shrink phase, all nodes added in the grow phase to the conditional-
dependent set of the visit-order node are surveyed and removed from the set if found condition-
ally independent of the visit-order node, given that the rest of the nodes remain in the condi-
tional-dependent set (lines 28–33). The shrink phase exists for that there may have been some 
false nodes added to the conditional-dependent set during the grow phase. Finally, the collabora-
tion phase (lines 36–38) ensures the symmetry of the neighbourhood relations (more details of 
this algorithm in [23]). 
 
In general, constrained-based graph estimation algorithms are suitable only for estimating rela-
tively sparse graphs. The result of a conditional dependency test depends strongly on the chosen 
value of the significance level (specified by parameter ߙ in Algorithms 3 and 4). The larger the 
value of the parameter ߙ chosen, the looser the test and eventually the larger the number of the 
node pairs considered conditionally dependent. Consequently, a large ߙ generally leads to large 
neighbourhoods; thus densely connected graphs can be constructed with a large ߙ. However, the 
problem with a large ߙ value is that as more nodes are considered conditionally dependent, the 
subsets of nodes on which conditional dependency tests are conditioned become larger. In Pear-
son’s chi-square dependency test to test the unconditional dependency of two nodes, a frequency 
table of size ݍଶ must be constructed. When conditioning is done on a subset of ܹ nodes, node 
state occurrence frequencies must be calculated for a total of ݍௐ instances [23]. Thus the num-
ber of conditioning instances studied grows exponentially as a function of the number of condi-
tioning nodes. In practice, calculation becomes very difficult for even as small subsets as those 
consisting of a few tens of nodes. In addition to computational inefficiency, accurate results re-
quire a vast amount of data. In general, with conditioning done on ܹ nodes, for an average of 
one observation for each table cell, ݍௐ observations are required [23]. Although the GSMN al-
gorithm somewhat alleviates these problems by reducing the number of tests conducted, it is still 
inefficient for obtaining dense graphs with large ߙ values. Hence in practice, the GSMN can 
produce only sparse graphs. However, the two, more developed versions of this algorithm intro-
duced in [23] and [54], the GSIMN and DGSIMN algorithms, ease these problems slightly by 
reducing the number of tests to run. 

8.4 Evaluation Methods of Topology Estimation 

The estimated network topology must be evaluated to confirm that it appropriately represents a 
true system topology. However, this is difficult because the true topology is unknown. Because 
this thesis evaluates also a topology estimation method with synthetic data from a known true 
topology, methods are now studied to help compare an estimated topology with a true topology. 
These methods can also be exploited with real MTN network data, as examined in Chapters 11–
14, where logical and physical topologies are known. When the true topology for defining an 
MRF graph structure is unknown, which is usually the case and holds also for the real data case 
here, evaluations must be made through MRF model predictions, as discussed in Chapter 9. 

8.4.1 Frobenius Scaling and Procrustes Analysis 

Location maps that are identical up to translation, rotation, and reflection lead to identical MRF 
structures. Applying uniform stretching or shrinking to a map and scaling correspondingly the 
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neighbourhood threshold also yield identical graphs. Consequently, maps identical up to a Pro-
crustes transformation (see Section 5.8) lead to identical graph structures. Therefore, Procrustes 
analysis [127] (see Section 5.8) is suitable for comparing two maps, and thus two graph struc-
tures, by means of searching for a global match between two location maps. Rather than compar-
ing two estimated maps, however, the goal here is to compare one estimated location map to a 
true map by which synthetic data is generated; yet the methodology remains the same.  
 
When a network consists of tightly bound node groups, the node map may be divided into sub-
networks, where nodes within a subnetwork heavily depend on each other, yet are nearly inde-
pendent of other subnetworks. If Procrustes analysis were applied to two such networks, the re-
sults would be poor, because the two maps consisting of nearly independent subnetworks may 
not show a good global match, even if the subnetworks themselves were identical. In particular, 
the scaling component of the Procrustes transformation tends to zero, because the translation, 
rotation, and reflection operations cannot provide a satisfying solution. Therefore, the Procrustes 
scaling component must be omitted and the node coordinates of both location maps first scaled 
explicitly with their Frobenius matrix norms according to Eq. (5.15). When we use the notations 
in Sections 5.8 and 5.9 and, further, denote the coordinate values of node ݉ in ܄F and ۿF by 
 F asۿ F and܄ F,௠, we can rewrite the SSR criterion of Eq. (5.13) forܙ F,௠ andܞ

where the Procrustes scaling component ܿ used in Eq. (5.13) is now omitted. 

8.4.2 Node and Graph Distances 

Even though Procrustes analysis may be applied even to networks consisting of nearly independ-
ent subnetworks by scaling the location maps with the Frobenius matrix norms and by omitting 
the Procrustes scaling component, the final SSR criterion may not be a good measure to compare 
the similarities of partitioned networks that have local rather than global similarities. Because 
weak dependencies are difficult to estimate with certainty, a good global match between two lo-
cation maps based on different data sets is highly improbable, even if the two networks were 
really the same. Therefore, it is natural to look for local similarity measures. 
 
Local similarities can be assessed by comparing internode distances between matching nodes on 
two location maps. If internode distances ݀௜௝஺ሺܠ௜, ௝ሻ and ݀௜௝஻ܠ ሺܠ௜,  ௝ሻ, with mean values ҧ݀஺ andܠ
ҧ݀஻, are calculated on two maps, abbreviated here as ܣ and ܤ, for all ܯሺܯ െ 1ሻ/2 node pairs 
ሺ݅, ݆ሻ א ܸ (ܸ is the set of all node pairs), the linear (or Pearson) correlation coefficient of the dis-
tances can be calculated as 

 
ܴଵ ൌ min

௖,܊,ோሺఏሻ୶Φא܇
෍ ሾܞF,௠ െ ,ߠሺ܇ ߮ሻTܙF,௠ െ ሿT܊

ெ

௠ୀଵ
 

F,௠ܞൣ െ ,ߠሺ܇ ߮ሻTܙF,௠ െ  ,൧܊
(8.5) 

 

,ܣሺୢܥ  ሻܤ ൌ
∑ ሾ݀௜௝஺ሺܠ௜, ௝ሻܠ െ ҧ݀஺ሿሾ݀௜௝஻ ሺܠ௜, ௝ሻܠ െ ҧ݀஻ሿሺ௜,௝ሻא௏

ට∑ ሾ݀௜௝஺ሺܠ௜, ௝ሻܠ െ ҧ݀஺ሿଶሺ௜,௝ሻא௏ ∑ ሾ݀௜௝஻ ሺܠ௜, ௝ሻܠ െ ҧ݀஻ሿଶሺ௜,௝ሻא௏

. (8.6) 
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To calculate ୢܥሺܣ,  ሻ, the internode distances need not be Frobenius-scaled. This similarityܤ
measure is called here the node distance correlation (NDC), and it measures local similarities be-
tween two node location maps. Another local similarity measure, the graph distance correlation 
(GC), is defined by replacing the continuous-valued node distances ݀௜௝஺  and ݀௜௝஻  with their respec-
tive node graph distances ݀௚,௜௝஺  and ݀௚,௜௝஻ . 
 
To reveal similarities between two node location maps or two graph structures, ܣ and ܤ, we may 
also study the distributions of their internode distances, ݌ሺ݀௜௝஺ሻ, ݌ሺ݀௜௝஻ ሻ, ݌ሺ݀௚,௜௝஺ ሻ, and ݌ሺ݀௚,௜௝஻ ሻ. 
Also the joint distributions ݌ሺ݀௜௝஺ , ݀௜௝஻ ሻ, ݌ሺ݀௚,௜௝஺ , ݀௚,௜௝஻ ሻ, ݌ሺ݀௜௝஺ , ݀௚,௜௝஻ ሻ, and ݌ሺ݀௚,௜௝஺ , ݀௜௝஻ ሻ can be 
studied. Furthermore, conditional distributions, e.g., ݌ሺ݀௚,௜௝஺ |݀௚,௜௝஻ ሻ and ݌ሺ݀௜௝஺ |݀௚,௜௝஻ ሻ, can be used 
to compare two graph structures. Later in this chapter when the MGMN method is evaluated, 
ሺ݀௜௝஺݌ ሺ݀௜௝஺ሻ is compared to݌ |݀௚,௜௝஻ ൌ 1ሻ, and also ݌ሺ݀௜௝஺ |݀௚,௜௝஻ ሻ is studied. 

8.5 Results with MCMC-Generated Synthetic Data 

In this section, location map and graph structure estimation methods are extensively evaluated 
with synthetic data generated by MCMC methods from the Ising model with a given network 
topology. In particular, the accuracy and limitations of the MGMN topology estimation method 
are studied while network behaviour is varied qualitatively. Different qualitative behaviours are 
generated in simulations by varying the parameter values of the Ising model, and defined network 
coherence measures are used to describe this qualitative network behaviour. Topology estimation 
results are studied as functions of coherence measures. SSMI is used as a similarity measure 
within the MGMN method, and non-metric MDS is applied to construct node location map es-
timates. 
 
In the following, synthetic data generated with the Ising model with different parameter values is 
discussed in Subsection 8.5.1. The same data is again discussed in Section 9.4 when the perform-
ance of parameter estimation is evaluated. Network coherence is characterised with coherence 
measures in Subsection 8.5.2, whereas Subsection 8.5.3 reviews the results of topology estima-
tion. Subsection 8.5.4 studies the effect of data characteristics on topology estimation, analysing 
particularly the effects of the number of network observations, network size, node neighbour-
hood size, and node loading distribution.  

8.5.1 MCMC-Generated Synthetic Data 

To generate synthetic data with the Ising model, graph structure and model parameters must first 
be fixed. Network topology is obtained here by first generating a node location map on a two-
dimensional plane with x- and y-coordinates for each node randomly drawn from a uniform dis-
tribution with interval ሾ0, 1ሿ. Varying graph structures are then derived from the obtained node 
location map by applying a uniform threshold for the internode distances. In most studies here, a 
network of 30 nodes is used with the threshold distance chosen so that each node has an average 
of 8.8 neighbours (node location map shown in Figure 8.2). 
 
As discussed in Chapter 3, topology affects the behaviour of a networked system and hence the 
qualitative properties of MRF models. The synthetic topology chosen here is generated to re-
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semble an MTN logical topology. However, comparison with an MTN logical topology is diffi-
cult in that both this topology and that of physical node locations are expected to affect the be-
haviour of an MTN, and such combined topology is unknown. The method of generating first a 
node location map and then thresholding the respective graph structure is somewhat similar to 
the MGMN method, in which a node location map is first estimated and the respective graph 
structure is then obtained by thresholding.  
 
Throughout Chapters 8–9, the performance of the MRF model identification method with syn-
thetic data is evaluated using only one sample of node location map, the one given in Figure 8.2, 
but several threshold values are tested to define the respective graph structures. Once an MRF 
model graph structure has been fixed, the three parameters of the Ising model, especially the in-
teraction parameter ܬ, determine its qualitative behaviour, as discussed in Chapter 4. Therefore, 
MRF model identification is studied by varying the values of ܬ between 0 and 0.2 at 0.01 inter-
vals, resulting in analysis of a total of 21 model parameterisations. The other two Ising model 
parameters, ܪ ൌ 0.6 and ݄଴ ൌ 0.7, are kept constant.  
 
Because the focus here is on node state probability distribution, and because node loadings affect 
state behaviour, we must, before any MCMC-generated synthetic state data, choose node load-
ings ሼ݄௠

ሺ௟ሻሽ௠ୀଵ
ெ  at each observation ݈ ൌ 1,… ,  ,Because node loads are here generated randomly .ܮ

the model applied is the random-field Ising model, but with a zero uniform loading component. 
In particular, each ݄௠

ሺ௟ሻ is drawn identically and independently according to a chosen distribution. 
The synthetic node state data ሼݏ௠

ሺ௟ሻሽ௠ୀଵ
ெ  for each ݈ is then generated with the Gibbs sampling 

method, described in Chapter 7. The ensemble scheme is adopted: only a single observation is 
generated in each MCMC simulation, which is initialised to a random state configuration and run 
through a constant-length burn-in period. The ensemble scheme ensures better chances for a 
non-ergodic system’s entire state space to be sampled effectively with the generated observation 
set. Although the infinite-size Ising model is non-ergodic, for finite-size networks it is ergodic. 
However, because of the coherence of simulated networks, it may take an extremely long time to 
sample the entire state space in a single simulation, even for a finite system of 30 nodes. Thus, in 
practice, the model may appear non-ergodic and require ensemble sampling.  

 
Figure 8.2. Node location map of a synthetic network of 30 nodes. 
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Throughout Chapters 8–9, a reference network is studied with a network of 30 nodes, shown in 
Figure 8.2, and with a graph structure corresponding to an average of 8.8 neighbouring nodes 
per node, denoted here by ܣ ൌ 8.8. With each ܬ, a set of 270 network observations is generated, 
ܮ ൌ 270. Here ܣ and ܮ are chosen such that they are similar to the corresponding values of a 
real MTN considered later. Each ensemble observation is generated with a burn-in period of 500 
complete rounds of node state updates (each node updated once). The set of node loadings is the 
same for each set of parameters, where ݄௠

ሺ௟ሻ is i.i.d. according to Uniሾ0, 1ሿ. This configuration 
forms the reference case studied in Subsections 8.5.2 and 8.5.3 with tools given in Sections 8.1–
8.4. In Subsection 8.5.4, the data characteristics are altered to study their effects on topology es-
timation by comparing the results with the reference case.  
 
Throughout this chapter, to reduce variation in the results due to the sample set and the stochas-
tic aspects of SSMI estimation, three generated data sets are used in Chapters 8–9 with each 
combination of data and model parameters. Results are thus given in medians of the three sets, 
unless stated otherwise. In addition, to avoid local minima, MDS is always run 20 times from 
varying initial node coordinate values, and the node location map giving the smallest stress-1 
value according to Eq. (5.12) is chosen. 

8.5.2 Coherence in Network Data 

Within a generated data set, coherence of network node states is determined by model parame-
ters. Because with the Ising model, coherence is largely determined by the interaction parameter, 
 itself can be considered a measure of overall network coherence. However, since also various ܬ
network connectivities are studied here by altering the graph distance threshold, ܬ alone does not 
determine the level of coherence, and other coherence measures must be considered as well. Be-
cause the statistical significance-based similarity measures, introduced in Section 8.1, measure the 
dependency of node variables, another overall coherence measure is gained by taking the average 
of the dependency measure values over all node pairs. For example, SSMI values averaged over 
all node pairs within a given data set constitute one such coherence measure, abbreviated here to 
ASSMI.  
 
Another coherence measure, defined specifically for the Ising model, though similar measures 
can also be defined for other MRF models, is based simply on comparing the ratio of the interac-
tion and the external load terms of the Ising model within a given data set, and is defined as 

where ݇ ൌ 1,… , ܭ) ܭ ൌ  observations, and where ݄௞ is ܮ nodes in all ܯ goes through all (ܯݔܮ
the loading of node ݇. Neighbourhoods ܰሺ݇ሻ are the estimated ones. With synthetic data, ݄଴ 
may assume either a true or an estimated parameter value. Because with synthetic data it is an 
exception to know the true parameter value, only an estimated value is used in the following. 
When we choose an estimated value, such that ݄଴ ൌ ݄଴ᇱ , we denote the coherence measure by ܴԢ. 
When we multiply ܴԢ with the absolute value of the ratio of the estimated interaction and exter-

 ܴ ൌ
∑ ห∑ ேሺ௞ሻא௡௡ݏ ห௄
௞ୀଵ

∑ |݄௞ െ ݄଴|௄
௞ୀଵ

, (8.7) 
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nal load parameters, |ܬԢ/ܪԢ|, we obtain a normalised version ܴே of the coherence measure. ܴே is 
useful for studying conditional node state probabilities, because in the Ising model, it gives the 
ratio of contributions of interaction and external load terms to conditional probabilities.  
 
The functional interrelatedness of the above overall coherence measures is demonstrated in Fig-
ure 8.3 with the reference data set by showing ܴԢ, ܴே, and ASSMI as functions of the true value 
of ܬ. At least with this data set, coherence measures appear to have similar non-linear, nearly 
monotonic, functional relationships to ܬ. Furthermore, Figure 8.3 gives the mean and median 
values of the SSMI measure as functions of the true graph distance of nodes in six out of the 21 
parameterisations, corresponding to the ܬ values of 0, 0.04, 0.08, 0.12, 0.16, and 0.20 (more on 
these six parameterisations in Chapters 8–9). SSMI values show how the coherence between two 
nodes depends on their graph distance when the model exhibits varying qualitative behaviour. 

 

 
Figure 8.3. Network coherence in the reference case of a synthetic network of 30 nodes. Top-left plot shows ܴԢ 
(circles) and ܴே (squares) as functions of ܬ, while the top-right plot shows ASSMI as a function of ܬ. Mean (bot-
tom-left) and median (bottom-right) values of SSMI are given as functions of graph distance of nodes with six ܬ 
values: 0.02 (asterisks), 0.04 (circles), 0.08 (diamonds), 0.12 (squares), 0.16 (plus signs), and 0.20 (triangles). 
Calculation: ܴԢ and ܴே are median values over respective measures calculated for the three ensembles. ASSMI is 
the median value over the respective measure calculated for the three ensembles as averages over pairwise SSMI 
values. With each graph distance, mean and median SSMI values are obtained by first taking the median SSMI over 
the three ensembles for each node pair with that graph distance and then taking the mean and median over those 
node pair SSMI values. 
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The mean and median SSMI values are similar, and coherence according to SSMI is always great-
est between neighbouring nodes, as expected. Also, the larger the ܬ, the larger the overall level of 
coherence, and the slower the decrease in coherence as the graph distance increases. 

8.5.3 Location Map and Graph Structure Estimates 

This subsection discusses the reference case topology identification results with the MGMN 
method with all the 21 model parameterisations. In each case, the node location map obtained is 
Procrustes-transformed with respect to the true location map shown in Figure 8.2 so that net-
works can be visually compared and quantitatively analysed with the SSR criterion. The location 
maps are first scaled with their Frobenius norms, and then a Procrustes transformation is applied 
without the scaling component. Location map estimates are shown in Figure 8.4 with six selected 
parameterisations.  
 
Obviously, visual comparison is difficult and subjective. The final Procrustes SSR criterion, given 
in Figure 8.5 as a function of ܴԢ and ܬ, is one measure for comparing the similarities of estimated 
and true node location maps. The similarity is highest when coherence is high, though not exces-
sively so. With the smallest ܴԢ values and with the corresponding ܬ values, the nodes are nearly 
independent, and the data is not informative about node locations. With increasing coherence, 
the data becomes more and more informative about node dependencies, and node location map 
estimates begin to approximate the true node location map. 
 
In the reference network, node location map estimates are thresholded into respective graph es-
timates by following the node distance thresholding scheme in Section 8.2 so that for each graph 

 

Figure 8.4. Estimated node location maps for a synthetic network of 30 nodes. From top-left to bottom-right, the 
maps correspond to the following ܬ values: 0.02, 0.04, 0.08, 0.12, 0.16, and 0.20. Calculation: each map presents 
a single randomly picked ensemble. 
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estimate ܣ ൌ 8.8. Node distance (NDC) and graph correlation (GC) measures with each ܬ are 
also given in Figure 8.5. As expected, these measures give information very similar to the SSR 
criterion. The conclusion is that for the MGMN method to perform well, network nodes can 
neither act as a group of (nearly) independent nodes, as in the case of very low ܴԢ, nor as a single 
network entity with very high coherence ܴԢ. However, the motivation to analyse networks is usu-
ally that the network is indeed considerably coherent yet does not behave as a single unit; i.e., the 
system’s coherence is such that the MGMN is at its best. According to Figure 8.3, topology esti-
mation seems most successful when the SSMI is the steepest function of the graph distance; i.e., 
when the coherence of true graph neighbours differs most distinctly from coherence between 
non-neighbours. 
 
Though the previous studies already largely clarified the performance and limitations of the 
MGMN method in the reference case, for completeness, the rest of this subsection briefly exam-
ines the node distance distributions. Figure 8.6 compares the distribution of distances between 
the nodes on the estimated location map to true graph neighbours and all network nodes in the 
six selected parameter cases. Obviously, the more different the two distributions, the less ran-
domly neighbourhoods are selected, and the better the graph structures. In addition, according to 
Figure 8.6, the best neighbourhood estimates are obtained with parameterisations corresponding 
to intermediate coherence levels, where the two distributions are considerably disparate.  
 
To quantify the similarities of the distributions in Figure 8.6, the Figure 8.6 further shows the 
Kullback-Leibler divergence (KLD), its symmetric version, the Jensen-Shannon divergence 
(JSD), and the CSS approximation of the KLD with all the 21 model parameterisations (see 

 
Figure 8.5. Similarity measures between estimated and true node location maps and their respective graph struc-
tures with a synthetic network of 30 nodes. NDC, GC, and SSR are shown as functions of ܴԢ (top row) and ܬ 
(bottom row). Calculation: with each ܬ, and respective ܴԢ, measure values are median values over respective meas-
ure values calculated with each ensemble. 
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Chapter 5). Evidently, the three measures provide very similar results, which clearly accord with 
all previous results. Further study of the histogram estimates of the distribution of true graph 
distances of estimated graph neighbours in Figure 8.7 reveals that the results are still similar to all 
previous results; in particular, bar heights at graph distance one somewhat follow the form of the 
plots in Figure 8.6. 

8.5.4 Effect of Data Characteristics 

This subsection examines how data characteristics, i.e., the type of node load distribution, node 
neighbourhood size, data set size, and network size affect topology identification. Furthermore, 
the quality of synthetic data is ascertained by studying the impact of the length of the burn-in 
period in MCMC data generation. The functional relationship between the overall coherence 
measures, ܴԢ, ASSMI, and ܬ, and the graph correlations as functions of ܴԢ are of main focus here.  
 

 

 

 
Figure 8.6. Distributions of internode distances in estimated node location maps of true graph neighbours (left-
hand-side bars) and of all nodes (right-hand-side bars), and corresponding distribution similarity measures (bot-
tom). The distribution plots from top-left to middle-right are shown for the following ܬ values: 0.02, 0.04, 0.08, 
0.12, 0.16, and 0.20. KLD (bottom-left), JSD (bottom-centre), and CSS approximation of KLD (bottom-right) 
are shown for all the 21 parameterisations as functions of ܬ. Calculation: with each ܬ, histograms are calculated by 
using all the data of the three ensembles with bars defined at equal intervals. The histograms are then represented 
in the form of probability densities. The number of bars is the same for each ܬ, but the range changes according to 
the distance values. Similarity measures are obtained from the distributions. 
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First, the distribution from which node loadings are randomly drawn is varied. Besides the uni-
form distribution Uniሾ0, 1ሿ, of the reference case, normally distributed node loadings with 
ࣨሺ0.5, 0.25ଶሻ (mean 0.5, variance 0.25ଶ) and exponentially distributed node loadings with 
Expሺ0.58ሻ (mean 0.58) are studied. The results with these three loading distributions are shown 
in Figure 8.8. With exponentially distributed loadings, ASSMI assumes a slightly different func-
tional form, and ܴԢ assumes clearly smaller values than with the other two distribution types. The 
differences may result from the smaller median value, which is 0.4 with the Expሺ0.58ሻ distribu-
tion. The graph correlation shows rather high and similar values with all three load distributions, 
implying that the MGMN method works well regardless of the type of node load distribution. 
 
Next the neighbourhood size is varied as ܣ ൌ ܣ ,6.8 ൌ 8.8 (reference), and ܣ ൌ 10.8. The re-
sults are shown in Figure 8.8, where the range of ܴԢ differs slightly from the rest of the figures. 
Obviously, the larger the ܬ value and the network connectivity, the larger the coherence with the 
values of ܴԢ and ASSMI being large. In fact, with ܣ ൌ 10.8 and a few largest ܬ values, the coher-
ence is so great that nearly all nodes appear constantly in equal states, entailing problems with 
topology estimation. Among the cases with ܬ ൐ 0.16, only one ensemble at ܬ ൌ 0.19 yielded 
topology estimates, this value corresponding to the GC value, which is being clearly distinct from 
the remaining values at ܴᇱ ൎ 33. Otherwise, topology is successfully identified in each case, 
though small ܣ values tend to yield somewhat better graph structures. 
  
The effect of data size is tested with ܮ ൌ 270 (reference) ܮ ൌ 540, and ܮ ൌ 1080. Figure 8.8 
shows that both ASSMI and GC values are affected. However, ܴԢ remains practically unchanged, 
because changing ܮ does not change average node states or loadings. The ASSMI increases with 

 
Figure 8.7. Histograms of true graph distances of estimated graph neighbours. Bars with each graph distance from 
left to right correspond to increasing ܬ values from 0 to 0.20 with even intervals of 0.01. Calculation: with each ܬ, 
histograms are first calculated for all three ensembles, then the hits at each bar are summed over the hits in the 
three ensembles, and finally the number of hits at each bar is divided by the total number of hits in the three en-
sembles together. 
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 because large data sets are more informative about node dependencies. As node dependencies ,ܮ
are better estimated with larger data sets, also the graph correlation increases; the change in GC 
from ܮ ൌ 270 to ܮ ൌ 540 is particularly large, whereas the difference between ܮ ൌ 540 and 
ܮ ൌ 1080 is small. Consequently, the smallest data set seems still too small to estimate SSMI 
values accurately and thereby to obtain an accurate topology estimate, whereas the second largest 
data size gives already results similar to the largest one and is thus large enough. 
 
Testing the effect of network size is more complicated, because increasing the number of nodes 
in a network should be coupled with a simultaneous increase in data set size. The following net-
work sizes are studied here: ܯ ൌ 30 (reference), ܯ ൌ 60, and ܯ ൌ 120. Tests are run in three 
ways: ܮ is first kept constant for each ܯ, then increased linearly, and finally quadratically in ܯ. 
The rationale for the last case is that the number of node pairs in a network grows quadratically 
in ܯ. For the same quality data for each network size, steps in the MCMC burn-in period must 
be increased linearly in ܯ as 500ܯݔ. The neighborhood size is constant at ܣ ൌ 8.8 for all ܯ. 
 

 

 

 
Figure 8.8. Effect of load distribution type (top row), node neighbourhood size (middle row), and data set size 
(bottom row) on topology identification. ܴԢ (left column) and ASSMI (centre column) are shown as functions of ܬ, 
and GC (right column) as a function of ܴԢ. Top row: exponential (squares), uniform (circles), and normal (trian-
gles) node load distributions. Middle row: ܣ ൌ 6.8 (squares), ܣ ൌ 8.8 (circles), and ܣ ൌ 10.8 (triangles). Bottom 
row: ܮ ൌ 270 (circles), ܮ ൌ 540 (squares), and ܮ ൌ 1080 (triangles). Calculation: measures are medians over the 
respective values with the three ensembles. 
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Figure 8.9 shows the results for constant data size, ܮ ൌ 270. With the smallest ܯ, both the 
ASSMI and GC assume clearly larger values than with the two larger ܯ values. Consequently, 
with the two larger networks, ܮ is all too small for the data to uncover node dependencies and to 
obtain adequate topology estimates. ܴ′ remains nearly unchanged when ܯ varies, which implies 
that the data assumes similar values with each network size. However, the ASSMI varies and is 
particularly different with ܯ ൌ 30, assuming clearly greater values than with the two larger net-
works. The conclusion is that ܮ must be increased to gain reasonable topology estimates also 
with large networks.  
 
Next, ܮ is increased linearly in ܯ (results in Figure 8.9). Because the computation time increases 
greatly with ܯ, as the number of node pairs grows quadratically in ܯ, only single ensembles are 
studied with ܯ ൌ 60 and ܯ ൌ 120. Consequently, the results may contain some extra uncer-
tainty. Though coherence measures behave like in the previous case, GC values are similar for all 
the network sizes, suggesting that linear increase indeed is suitable. Even more computation time 
is required to test the quadratic increase of ܮ in ܯ. Therefore, again only a single ensemble is 

 

 

 
Figure 8.9. Effect of network size on topology identification. ܴԢ (left column) and ASSMI (centre column) are 
shown as functions of ܬ, and GC (right column) as a function of ܴԢ. Top row: ܯ ൌ 30 (circles), ܯ ൌ 60 
(squares), and ܯ ൌ 120 (triangles), each with ܮ ൌ 270. Middle row: ܯ ൌ ܮ ,30 ൌ 270 (circles), ܯ ൌ 60, 
ܮ ൌ 540 (squares), and ܯ ൌ ܮ ,120 ൌ 1080 (triangles). Bottom row: ܮ ൌ 270 (circles), ܮ ൌ 540 (squares), and 
ܮ ൌ 1080 (triangles), each with ܯ ൌ 60. Calculation: for ܯ ൌ 30, measures are medians over the respective val-
ues with the three ensembles. For the other network sizes, measures are calculated from single ensembles. 
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studied, and only the network with ܯ ൌ 60 is tested with ܮ ൌ ܮ ,270 ൌ 540, and ܮ ൌ 1080 
(results in Figure 8.9). The results for ܮ ൌ 270 are the worst, whereas despite rather heavy fluc-
tuations, GC assumes values similar to those of the two larger data sets and almost those of the 
reference case. ASSMI values are similar to those of the two larger data sizes, whereas with 
ܮ ൌ 270 they are somewhat smaller. ܴ′ again remains nearly constant, indicating that the data is 
similar, as it should be, because in each case it is generated with the same Ising model parameters 
and with the same graph structure.  
 
In conclusion, the question remains why the ASSMI seems to depend on network size, or at least 
differs greatly with ܯ ൌ 30 when compared to the two larger networks. The reason may simply 
be the particular properties of that randomly generated network, and because the network is so 
small, even a few highly connected nodes may drastically affect its properties, contributing to 
high coherence and a high ASSMI. 
  
Finally, the quality of the data used in the above analyses is checked by changing the number of 
steps in the burn-in period of the MCMC data generation procedure. A well chosen burn-in pe-
riod is especially important here, because the ensemble scheme is used to generate data observa-
tions. If too short a burn-in period is chosen, the Markov chain of the MCMC do not converge 
to the stationary distribution of the respective Ising model, and the samples are false. If too long 
a burn-in period is chosen, only some unnecessary time is wasted on sample generation, but the 
quality of the generated data set remains unaffected. With the 30-node network the number of 
MCMC steps is varied here from the reference case’s 50030ݔ to 25030ݔ and to 100030ݔ. As 
Figure 8.10 shows, all three cases yield similar results, confirming that the length of the burn-in 
period in the reference case is long enough to generate reasonably good network observations. 

8.6 Comparison to Other Methods  

In this section, the MGMN method is first compared to the straightforward topology identifica-
tion approach discussed in Subsection 8.3.1 and then to one of the constrained-based graph 
learning methods discussed in Subsection 8.3.2, the GSMN algorithm. For a complete view of 
the performance of graph estimation methods, the methods should be tested with data generated 

 
Figure 8.10. Effect of the number of MCMC burn-in steps on topology identification. ܴԢ (left) and ASSMI (centre) 
are shown as functions of ܬ, and GC (right) as a function of ܴԢ. Results are shown with the following number of 
MCMC burn-in steps: 25030ݔ (squares), 50030ݔ (circles), and 100030ݔ (triangles). Calculation: measures are 
medians over the respective values with the three ensembles. 
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from various type graphs. For example, data could originate from a thresholded spatial network, 
which was already comprehensively discussed in the context of the MGMN method, but also 
from a graph where the links are not derived from a low-dimensional spatial configuration. The 
latter type graphs could be, e.g., random graphs and scale-free networks. However, because the 
methods are here applied to MTNs, where graphs are based on two-dimensional spatial configu-
rations, the methods are compared only with graphs derived from the randomly generated 30-
node spatial configuration shown in Figure 8.2. 
 
Above, the NDC and GC measures have been applied to compare similarities of spatial configu-
rations and graph structures. However, here another measure, the percentage of properly recov-
ered links in an estimated graph, abbreviated to PRL measure, is introduced to fully compare 
graph structures. Because independent of ܣ, when ܣ is the same for the compared graphs, it is 
suitable to be used here. The PRL is a more exact measure than the GC to compare graphs in 
that the latter may yield relatively large values even if graph distances, but not necessarily exact 
neighbourhoods, are similar. The GC is thus well suited for measuring the overall fitness of an 
estimated graph. However, the PRL is used here for a more exact, or strict, measure of graph 

 
Figure 8.11. Comparison of the MGMN method (circles) to direct thresholding of MI (squares) and SSMI values 
(triangles). Performance of the methods is tested with several data set sizes (ܮ), neighbourhood sizes (ܣ), and net-
work sizes (ܯ). In each case, results are given in percentages of estimated graph links that match the true links 
among all true links. Results are shown for ܬ values: 0.08, 0.10, 0.11, 0.12, 0.13, 0.14. Calculation: measures are 
medians over the respective values with the three ensembles, except for the two largest networks where only single 
ensembles are used. 
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similarity. In some cases, it seems to categorise more clearly than the GC the performance of 
graph estimation methods. 
 
In Figure 8.11, the MGMN method is compared to direct thresholding of MI and SSMI values in 
several cases of varying data size (ܮ), neighbourhood size (ܣ), and network size (ܯ). When ܯ 
increases here, ܮ increases linearly in ܯ, as in Subsection 8.5.3. Overall, the measures give similar 
results for ܯ ൌ 30, but with larger networks, i.e., ܯ ൌ 60 and ܯ ൌ 120, the MGMN method 
clearly outperforms the other two methods. Hence direct thresholding of MI/SSMI values seems 
to give good results with small size networks, though their performance drops drastically as ܯ 
increases. Evidently, the difference in performance stems from conditional dependency relations, 
which only the MGMN method takes into account. Somewhat surprisingly, the thresholding of 
MI values gives results quite similar to the thresholding of SSMI values, because whereas the lat-
ter are absolute values and hence instantly comparable among different node pairs, the former 
are not, because they depend on node probability distributions, and hence on entropies. How-
ever, in this particular case with binary-state nodes, node probability distributions are apparently 
so similar that the MI values between different node pairs are nearly comparable and thus trans-
late into good results. 

 
As discussed in Section 8.3, the parameter ߙ determines the neighbourhood size of a graph in the 
GSMN algorithm, and the GSMN algorithm, like many other constrained-based algorithms, es-
timates dense graphs rather poorly. The reference case with ܣ ൌ 8.8 (mimicking a true MTN 
network) is already a considerably dense graph and thus causes difficulties for the GSMN algo-
rithm. Because of the above, the GSMN algorithm is studied in the following with various ߙ val-
ues and with two sparser networks with ܣ ൌ 2.8 and ܣ ൌ 5.8, both obtained by thresholding the 
same spatial node configuration as in the reference case. Here ܮ ൌ 540 is used in most studies, 
because it gave clearly better results than ܮ ൌ 270, used previously in the reference case. 
 
Figure 8.12 shows the results with the GSMN algorithm with the following ߙ values: from 0.02 
to 0.2 at intervals of 0.02, and from 0.25 to 0.9 at intervals of 0.05. Because the computation 
time increases with ߙ, large ߙ intervals are larger. The PRL measure can be applied in two ways: 
as done before, to take the set of true neighbours and to calculate the proportion of links the 
estimated graph covers (centre column in Figure 8.12), or to do the above reversely, i.e., to take 
the links of the estimated graph and to calculate the proportion of links covered by the true 
graph (right column in Figure 8.12). When ܣ is the same for both the true and estimated graph, 
as it is in Figure 8.11, the two measures are the same. However, as in Figure 8.12, where graph 
estimation is tested by varying ߙ, and hence the average estimated number of neighbours ܣԢ, the 
two measures are obviously different. The latter way of calculating the PRL measure favours the 
GSMN algorithm, because when ܣᇱ ൏  obviously chances are better for a matching true ,ܣ
neighbour relation for each estimated one. For comparison, results with the MGMN method are 
also shown in Figure 8.12 (straight lines) when ܣᇱ ൌ  .ܣ
 
Estimation of the denser graphs (large ߙ values) with the GSMN method posed some difficulties 
with the GSMN method, which is why Figure 8.12 shows several missing data points. None-
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theless, first, graph estimation is studied with three ܬ values (0.08, 0.1, 0.12) in the top row of 
Figure 8.12. Results are clearly worse with ܬ ൌ 0.08 than in the two cases of greater coherence. 
When ܣԢ is small, nearly all estimated links are correct, but as more links are estimated, the rate 
of correctness drops, and at about ܣԢ ൌ 8.8, results are clearly worse than with the MGMN 
method.  

 
Figure 8.12. Performance of the GSMN algorithm. The figure shows ܣԢ as a function of ߙ (left column), the pro-
portion of correctly estimated links among all true links (centre column), and the proportion of true links matching 
estimated links among all estimated links (right column). From the top to bottom row, results are given (squares; 
circles; triangles) for (1080 ;540 ;270) ܮ ,(5.8 ;8.8 ;2.8) ܣ ,(0.12 ;0.1 ;0.08) ܬ, and 120 ;270 ,30 ;540 ,60) ܮ ,ܯ, 
1080). Results are shown with the following ߙ values: from 0.02 to 0.2 at even intervals of 0.02, and from 0.25 
to 0.9 at even intervals of 0.05. The two rightmost columns also show result with the MGMN method, when 
ᇱܣ ൌ  as vertical lines, with the colours matching the respective cases. In the first three rows, a reference case ,ܣ
(circles) is used (ܬ ൌ ܣ ,0.1 ൌ ܮ ,8.8 ൌ ܯ ,540 ൌ 30). Calculation: with the GSMN algorithm, results are ob-
tained from a single ensemble, whereas with the MGMN method, results are medians over the three ensembles; 
however, when ܯ ൌ 60 and ܯ ൌ 120, results are from a single ensemble. 
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In the second case of varying (5.8 ,8.8 ,2.8) ܣ, the two ways of calculating the PRL measure 
seem to yield somewhat inconsistent information in that according to the first way, the graphs 
are better when ܣ ൌ 2.8, whereas according to the second, the graphs are better when ܣ ൌ 8.8. 
This is because with most ߙ values ܣᇱ ൐ 2.8 when ܣ ൌ 2.8, whereas with most ߙ values 
ᇱܣ ൏ 8.8 when ܣ ൌ 8.8. In general, ܣᇱ ൐  translates into a smaller probability of a true link ܣ
corresponding to an estimated link than an estimated link corresponding to a true link. Hence the 
two ways of calculating the PRL behave oppositely, and when ܣ is changed, one way may give 
better results with a large ܣ, whereas the other produces exactly opposite results. Upon further 
scrutiny of the ܣԢ values with each ܣ in Figure 8.12, where ܣԢ ൎ  both PRL calculations give ,ܣ
similar but poorer results than those by the MGMN method. 
 
In the third case of varying (1080 ,540 ,270) ܮ, the two largest data sets give clearly the best 
results. With ܮ ൌ 1080, graph estimation is successful only in a narrow range of ܣԢ values. With 
each ܮ, graph estimates at ܣԢ ൎ -are again clearly worse than those by the MGMN method. Fi ܣ
nally, in the last case, ܯ varies and ܮ increases linearly in ܯ, yielding cases (ܮ ,ܯ): (30 ;540 ,60, 
270; 120, 1080). Graph estimation with the two larger ܯ is again successful only in a narrow 
range of ܣԢ values. Somewhat surprisingly, graph estimates are the better, the larger the network. 
This holds also for the results of the MGMN method, though differences there are small and 
based only on single data sets. Again, results obtained with the MGMN method seem at least as 
good as those by the GSMN method, even if the latter had yielded results also at ܣԢ ൎ -In con .ܣ
clusion, at least where relevant to the application studied here—a graph based on a two-
dimensional spatial configuration—the MGMN method seem better suited for estimating graphs 
than the GSMN algorithm. 



 
 

9. Parameter Identification 

Identifying the MRF graph structure makes it possible to identify MRF model parameters. The 
MRF parameter estimation is undertaken in this chapter via the maximum pseudolikelihood 
(MPL) method [17]. MRF model parameters can be estimated also with some other methods, 
e.g., the coding method [16], usually considered less efficient than the MPL method and thus not 
widely applied [162]. Another method estimates parameters by maximum likelihood and evalu-
ates the intractable partition function via MCMC simulations. This method, of course, comes 
with the obvious disadvantage of excessive computation time. These three methods have been 
compared in [162] with the MPL method deemed the most practical among them.  
 
Traditionally, parameter estimation has focused on seeking the best point estimate values. How-
ever, when parameters are estimated with a finite data set and with all the randomness associated 
with the data, uncertainties related to parameter estimates must also be considered. Uncertainty 
information is naturally included in the Bayesian approach through probability distributions. This 
approach extends also to cases where prior information is not available. Uncertainty information 
can then be used with only the likelihood part and thus to search for MPL parameter estimates. 
In general, the form of the joint probability distribution of an MRF model is unknown, which 
makes it difficult to assess the uncertainty of estimated parameters. However, if the true distribu-
tion can be approximated with the Gaussian distribution, the covariance matrix provides straight-
forward uncertainty measures of parameter estimates.  
 
In this chapter the MRF model parameter estimation with the methods introduced in Chapter 6 
will be studied. Section 9.1 deals with the MPL method in a general MRF model case and derives 
MPL estimates for the Ising model. Section 9.2 discusses parameter uncertainties through the 
covariance matrix of the Gaussian distribution approximation with uncertainties derived for Ising 
model parameter estimates. Section 9.3 introduces methods to evaluate the estimated parameters. 
Section 9.4 evaluates the performance of MPL parameter estimation with all synthetic data cases 
and by using the graph structures identified in Chapter 8. Finally, it will be emphasised that qual-
ity of model parameter estimates provides information about the entire MRF model identifica-
tion scheme, hence also about the topology identification phase. 

9.1 MPL Estimates of MRF Model Parameters 

The maximum pseudolikelihood estimation method was presented in its general form for MRF 
models in Chapter 6. When further exploiting the conditional independence properties of the 
MRF models according to Eq. (4.2), maximum pseudolikelihood parameter estimates ી෡MPL can 
be obtained as 

where the full conditional of node ݉ depends only on its neighbours, ݌ሺݏ௠|ିܛ௠ሻ ൌ
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Let us now try to find MPL estimates for the general MRF model, given by Eq. (4.3). First, by 
using the conditional independence properties, we can write Eq. (4.3) as 

The full conditional of node ݉ is now obtained from Eq. (9.2) by fixing the states of its 
neighbours. Because constants, the product terms in Eq. (9.2) that do not include node ݉ can be 
moved to the normalisation term. The conditional probability of Eq. (4.2) for node ݉ with the 
modified normalisation term ܼ௠ is now 

Indexing the observations with superscript ݈, we can now estimate parameters for the general 
MRF model by the MPL method as 

Seeking for the position of maximum of the objective function’s logarithm rather than the func-
tion itself, we get  

Let us next consider MPL estimation of Ising model parameters. The full conditional of node ݉ 
was previously given by Eq. (4.13) and at observation ݈ it can be rewritten as 
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ୣ୤୤,ሺ௟ሻሻ. Eq. (4.14) showed that the conditional partition 

function ܼ௠
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ሺ௟ሻ െ ݄଴ሻ was defined by Eq. (4.5). For the 
Ising model, the other two terms in Eq. (9.5) are now as follows: logሾ߰ሺs௠
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MPL estimation of the Ising model parameters ી ൌ ሺܬ, ,ܪ ݄଴ሻ as 
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from which MPL parameter estimates are easy and efficient to solve numerically. 

9.2 Uncertainties of MRF Model Parameter Estimates 

The MPL method yields only optimal parameter values but ignores the uncertainties related to 
these parameter estimates. In pseudolikelihood approximation, parameter uncertainties can be 
assessed by the Bayesian approach, discussed in Chapter 6. Because of no prior information 
about MRF model parameters, the prior probability distribution in Bayes’s theorem can be set as 
a constant and thus, according to Eq. (6.7), with pseudolikelihood approximation, the posterior 
distribution approximately equals the product of the constant multiplying the pseudolikelihood 
term: ݌ሺી|ሼܛሺ௟ሻሽ௟ୀଵ௅ ሻ ൎ ஼ܰଷ ∏ ∏ ௠ݏሺ݌

ሺ௟ሻ|ିܛ௠
ሺ௟ሻ , ીሻெ

௠ୀଵ
௅
௟ୀଵ . When conditional independence prop-

erties are further used, as in Eq. (9.5), the pseudolikelihood posterior parameter distribution be-
comes now  

This is the general form of the parameter probability distribution of an MRF model, when prior 
information is assumed absent and the pseudolikelihood approximation is given by Eq. (6.6). The 
distribution reveals all the available information about the uncertainties of the MPL parameter 
estimates. Because MPL parameter estimates ી෡MPL are obtained by maximising Eq. (9.7), the 
mode of the posterior distribution is obviously ી෡MPL. In the general MRF model, the posterior 
distribution ݌ሺી|ሼܛሺ௟ሻሽ௟ୀଵ௅ ሻ is not known in its analytical form, but in some special cases it is. For 
example, in a GMRF model, all conditional distributions are Gaussians, thus also the posterior 
distribution. In the general case, uncertainty is not as easily assessed as in the Gaussian case.  
 
However, the general posterior distribution can be approximated with a Gaussian distribution, 
and if the approximation is appropriate, the uncertainty of the Gaussian distribution, i.e., that 
given by the covariance matrix, can be considered a parameter uncertainty of the posterior distri-
bution. To obtain a Gaussian approximation, let us first denote the gradient (first-order deriva-
tive) and Hessian (second-order derivative) operators with respect to parameters ી by ׏ and ׏ଶ, 
and make a second-order Taylor series approximation to the logarithm of the posterior distribu-
tion ݌ሺી|ሼܛሺ௟ሻሽ௟ୀଵ௅ ሻ at around ી ൌ ી෡MPL as 

The gradient term goes to zero, because the estimate maximises the posterior distribution. By 
taking the exponent from both sides and denoting ܦ ൌ ሺ௟ሻሽ௟ୀଵ௅ܛሺી|ሼ݌ ሻ|ીୀી෡MPL

 and ۱ିଵ ൌ
െ׏ଶ logሾ݌ሺી|ሼܛሺ௟ሻሽ௟ୀଵ௅ ሻሿ |ીୀી෡MPL

 (inverse covariance matrix), Eq. (9.8) is simplified to 

This is the Gaussian approximation of the true parameter posterior distribution ݌ሺી|ሼܛሺ௟ሻሽ௟ୀଵ௅ ሻ at 
ી෡MPL with a covariance matrix ۱, or precision matrix ۱ିଵ. If the Gaussian approximation is 
close enough to the true posterior distribution, uncertainties in the estimated model parameters 

ሺ௟ሻሽ௟ୀଵ௅ܛሺી|ሼ݌  ሻ ൎ ஼ܰଷෑ ෑ ௠ݏሺ݌
ሺ௟ሻ|ሼݏ௡

ሺ௟ሻሽ௡אேሺ௠ሻ, ીሻ
ெ

௠ୀଵ

௅

௟ୀଵ
. (9.7) 

 

 

logሾ݌ሺી|ሼܛሺ௟ሻሽ௟ୀଵ௅ ሻሿ ൎ logሾ݌ሺી|ሼܛሺ௟ሻሽ௟ୀଵ௅ ሻሿหીୀી෡MPL
 

൅׏ logሾ݌ሺી|ሼܛሺ௟ሻሽ௟ୀଵ௅ ሻሿหીୀી෡MPL
ሺી െ ી෡MPLሻ 

൅ଵ
ଶ
ሺી െ ી෡MPLሻT׏ଶ logሾ݌ሺી|ሼܛሺ௟ሻሽ௟ୀଵ௅ ሻሿหીୀી෡MPL

ሺી െ ી෡MPLሻ. 
(9.8) 

 

ሺ௟ሻሽ௟ୀଵ௅ܛሺી|ሼ݌  ሻ ൎ ܦ expሾെଵ
ଶ
ሺી െ ી෡MPLሻT۱ିଵሺી െ ી෡MPLሻሿ. (9.9) 
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can now be studied through the covariance matrix ۱, where the diagonal elements give the vari-
ances of the respective parameters and the off-diagonal elements inform us about the correla-
tions between the parameter uncertainties.  
 
By denoting the log-pseudolikelihood by ܮ௣,୪୭୥ ൌ logሾ݌ሺી|ሼܛሺ௟ሻሽ௟ୀଵ௅ ሻሿ, the inverse covariance 
matrix ۱ିଵ is obtained for the Ising model parameters ી ൌ ሺܬ, ,ܪ ݄଴ሻ as  

whose matrix elements are specified in Table 9.1. 
 
To verify the fitness of the Gaussian approximation, the approximate Gaussian distribution must 
be compared to the respective true posterior distribution, which can be done as follows. First, 
the true posterior distribution ݌ሺી|ሼܛሺ௟ሻሽ௟ୀଵ௅ ሻ is evaluated in a region of parameter space where 
probability values are (clearly) non-zero. Approximately this region can be found as an ellipsoid 
of the Gaussian contour of the constant probability ݌଴ of the approximative Gaussian distribu-
tion. Parameter values can then be sampled from the area of the ellipsoid and the true posterior 
distribution evaluated at these points. The true posterior distribution and the Gaussian approxi-

 

۱ିଵ ൌ െ׏ଶܮ௣,୪୭୥หીୀી෡MPL
 

ൌ െ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ ߲ଶ

ଶܬ߲
௣,୪୭୥ܮ

߲ଶ

ܪ߲ܬ߲
௣,୪୭୥ܮ

߲ଶ

଴݄߲ܬ߲
௣,୪୭୥ܮ

߲ଶ

ܬ߲ܪ߲
௣,୪୭୥ܮ

߲ଶ

ଶܪ߲ ௣,୪୭୥ܮ
߲ଶ

଴݄߲ܪ߲
௣,୪୭୥ܮ

߲ଶ

߲݄଴߲ܬ
௣,୪୭୥ܮ

߲ଶ

߲݄଴߲ܪ
௣,୪୭୥ܮ

߲ଶ

߲݄଴
ଶ ௣,୪୭୥ܮ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

ીୀી෡MPL

, 
(9.10) 

 

Table 9.1. Elements of ۱ିଵ defined in Eq. (9.10) for Ising model parameters ી ൌ ሺܬ, ,ܪ ݄଴ሻ. 

െ
߲ଶ

ଶܬ߲ ௣,୪୭୥ܮ ൌ෍෍ ቎ ෍ s௡
ሺ௟ሻ

௡אேሺ௠ሻ

቏

ଶ

coshିଶሺ݄௠
ୣ୤୤,ሺ௟ሻሻ

ெ

௠ୀଵ

௅

௟ୀଵ

 

െ
߲ଶ

ଶܪ߲ ௣,୪୭୥ܮ ൌ෍෍ሺ݄௠
ሺ௟ሻ െ ݄଴ሻଶcoshିଶሺ݄௠

ୣ୤୤,ሺ௟ሻሻ
ெ

௠ୀଵ

௅

௟ୀଵ

 

െ
߲ଶ

߲݄଴
ଶ ௣,୪୭୥ܮ ൌ ଶ෍෍ܪ coshିଶሺ݄௠

ୣ୤୤,ሺ௟ሻሻ
ெ

௠ୀଵ

௅

௟ୀଵ

 

െ
߲ଶ

ܪ߲ܬ߲ ௣,୪୭୥ܮ ൌ െ
߲ଶ

ܬ߲ܪ߲ ௣,୪୭୥ܮ ൌ෍෍ሺ݄௠
ሺ௟ሻ െ ݄଴ሻcoshିଶሺ݄௠

ୣ୤୤,ሺ௟ሻሻ ቎ ෍ s௡
ሺ௟ሻ

௡אேሺ௠ሻ

቏
ெ

௠ୀଵ

௅

௟ୀଵ

 

െ
߲ଶ

଴݄߲ܬ߲
௣,୪୭୥ܮ ൌ െ

߲ଶ

߲݄଴߲ܬ
௣,୪୭୥ܮ ൌ െܪ෍෍ coshିଶሺ݄௠

ୣ୤୤,ሺ௟ሻሻ ቎ ෍ s௡
ሺ௟ሻ

௡אேሺ௠ሻ

቏
ெ

௠ୀଵ

௅

௟ୀଵ

 

െ
߲ଶ

଴݄߲ܪ߲
௣,୪୭୥ܮ ൌ െ

߲ଶ

߲݄଴߲ܪ
௣,୪୭୥ܮ ൌ෍෍ ௠ݏ

ሺ௟ሻ െ tanhሺ݄௠
ୣ୤୤,ሺ௟ሻሻ െ coshିଶሺ݄௠ܪ

ୣ୤୤,ሺ௟ሻሻሺ݄௠
ሺ௟ሻ െ ݄଴ሻ

ெ

௠ୀଵ

௅

௟ୀଵ
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mation can now be compared by evaluating the marginal distribution for each parameter for both 
true and Gaussian approximation of the posterior distribution, and by then comparing the re-
spective marginal distributions obtained. If the marginal distributions are similar, the approxima-
tion is sound and can be used to study parameter uncertainties. 
 
Let us further examine the practical calculation of true marginal probability distributions in the 
Ising model, and assume that a set of parameter values, ሼܬ௥, ,௥ܪ ݄଴௥ሽ௥ୀଵோ , is uniformly and ran-
domly drawn inside the contour of the constant probability ݌଴ with the superscript ݎ indexing 
the sample values ݎ ൌ 1, … , ܴ. Given an observed data set, ሼݏ௠

ሺ௟ሻ, ݄௠
ሺ௟ሻሽ௠ୀଵ

ெ , ݈ ൌ 1,… , -the mar ,ܮ
ginal distribution of each parameter is obtained similarly. Here ܬ is considered an example for 
which the marginal distribution is derived by marginalising the joint distribution as 

where ܦ denotes the domains of parameters ܪ and ݄଴. However, because the data set of pa-
rameter values, ሼܬ௥, ,௥ܪ ݄଴௥ሽ௥ୀଵோ , is sampled, the true marginal distribution is obtained in practice 
by first dividing the sample values of ܬ, ሼܬ௥ሽ௥ୀଵோ , into a set of constant-size intervals, say 
ሼΔܬ௚ሽ௚ୀଵீ , with ݃ ൌ 1,… ,  indexing the intervals. Then Eq. (9.11) is applied to each interval ܩ
separately, and at a certain interval Δܬ௚, the marginal probability of parameter ܬ is obtained by 
summing over all probability values ݌ሺܬ௥ሻ of those sample values ܬ௥ that appear at that interval, 
and then normalising the values to probabilities: 

Here ݀ሺΔܬ௚ሻ is the width of the interval Δܬ௚, and considered a constant. The denominator in 
Eq. (9.12) normalises the distribution to probabilities. Hence values ሼ݌୼௃೒ሺܬሻሽ௚ୀଵீ  form a dis-
crete probability distribution estimate of the true marginal probabilities of ܬ inside the contour of 
the constant probability ݌଴.  
 
According to the definition of pseudolikelihood in Eq. (6.7), the joint probability distribution 
estimate of the parameters can be written by using the pseudolikelihood, ܮ௣, as ݌ሺܬ, ,ܪ ݄଴ሻ ൎ
஼ܰଷܮ௣. Writing Eq. (9.12) by using this formula and the marginalisation in Eq. (9.11) yields  

where the terms ஼ܰଷ appearing both in the nominator and the denominator cancels. In practice, 
parameters are estimated from the log-pseudolikelihood ܮ௣,୪୭୥ ൌ log ሾܮ௣ሿ, which is computa-
tionally easier to evaluate than evaluating the pseudolikelihood directly. Hence when the log-
pseudolikelihood is used in Eq. (9.13), it becomes 

 
ሺ௟ሻሽ௟ୀଵ௅ܛሼ|ܬሺ݌ ሻ ൌ ሻܬሺ݌ ൌ ෍ ሺ௟ሻሽ௟ୀଵ௅ܛሺી|ሼ݌ ሻ

ுא஽ሺுሻ,
௛బא஽ሺ௛బሻ

ൌ ෍ ,ܬሺ݌ ,ܪ ݄଴ሻ
ுא஽ሺுሻ,
௛బא஽ሺ௛బሻ

, 
(9.11) 

 

ሻܬ୼௃೒ሺ݌  ൌ
∑ ୼௃೒א௥ሻ௃ೝܬሺ݌

∑ ∑ ୼௃೒א௚ሻ௃ೝܬ௥ሻ݀ሺΔܬሺ݌
ீ
௚ୀଵ

. (9.12) 
 

 
ሻܬ୼௃೒ሺ݌ ൌ

∑ ∑ ஼ܰଷܮ௣ுא஽ሺுሻ,௛బא஽ሺ௛బሻ௃ೝא୼௃೒

∑ ∑ ∑ ஼ܰଷܮ௣ுא஽ሺுሻ,௛బא஽ሺ௛బሻ ݀ሺΔܬ௚ሻ௃ೝא୼௃೒
ோ
௥ୀଵ

 

ൌ
∑ ∑ ୼௃೒א஽ሺ௛బሻ௃ೝא஽ሺுሻ,௛బא௣ுܮ

∑ ∑ ∑ ஽ሺ௛బሻא஽ሺுሻ,௛బא௣ுܮ ݀ሺΔܬ௚ሻ௃ೝא୼௃೒
ோ
௥ୀଵ

, 
(9.13) 
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In some practical calculations, taking the exponential in Eq. (9.14) from ܮ௣,୪୭୥ may not be suc-
cessful, because its values may be very large. It may then help to add a constant to the log-
pseudolikelihood values inside the exponents of both the nominator and denominator in Eq. 
(9.14). These values cancel out each other, and if the constant is chosen appropriately, the log-
pseudolikelihood values can be reduced to enable practical calculation. 
 
Eq. (9.14) can be directly used to estimate the true marginal probabilities of parameter ܬ, when 
log-pseudolikelihoods have been calculated for sampled parameter values. Marginal probability is 
calculated similarly for the other two parameters. In the Gaussian approximation, a marginal 
probability distribution is obtained for each parameter by simply evaluating a univariate Gaussian 
distribution, with the expectation value determined by the respective maximum pseudolikelihood 
parameter value and variance by the respective diagonal element in the estimated covariance ma-
trix ۱.  

9.3 Evaluation Methods of Parameter Estimation 

When an estimated network topology is used for the graph structure of an MRF model, and 
when model parameters are further estimated, evaluation of the quality of the parameter esti-
mates always includes evaluation of the quality of the estimated graph structure. An exception is 
the evaluation of model parameter identification with synthetic data with a known graph struc-
ture, where estimated parameters can simply be compared to true ones. But when the methods 
are applied to real data and when true parameters are unknown, also the graph structure is in-
volved, and additional evaluation methods must be adopted. One way to evaluate the quality of 
estimated parameters, or the entire model, is to consider the predictions made with the identified 
model. However, because networked systems usually contain a large number of network nodes, 
compared to the amount of available data, all available data must be exploited in the modelling 
phase.  
 
Because of a data shortage, a scheme similar to cross-validation is adopted here by considering 
single node state predictions based on full conditionals of nodes and on data already applied in 
the identification phase. For example, in the Ising model, for each node ݉ with each observation 
݈, probabilities of the two states of that node are predicted with the full conditional, yielding, e.g., 
for state െ1 the probability ݌ሺݏ௠

ሺ௟ሻ ൌ െ1|ሼݏ௡
ሺ௟ሻሽ௡אேሺ௠ሻሻ. Then the average of these state prob-

abilities is taken over all the observations, again giving for state െ1 the average probability 
భ
ಽ
∑ ௠ݏሺ݌

ሺ௟ሻ ൌ െ1|ሼݏ௡
ሺ௟ሻሽ௡אேሺ௠ሻሻ௅

௟ୀଵ . Respective marginal state probabilities can be calculated from 
the state observation set of node ݉, which for state െ1 yields భಽ ∑ ௠ݏ|

ሺ௟ሻ|ߜሺݏ௠
ሺ௟ሻ ൅ 1ሻ௅

௟ୀଵ , where ߜ 
denotes the Kronecker delta-function. Predicted probabilities for state െ1 and their respective 
data-calculated probabilities can then be compared for node ݉; repeating the comparison for 
each node then yields an overall picture of the fitness of the identified model.  

ሻܬ୼௃೒ሺ݌  ൌ
∑ ∑ expሾܮ௣,୪୭୥ሿுא஽ሺுሻ,௛బא஽ሺ௛బሻ௃ೝא୼௃೒

∑ ∑ ∑ expሾܮ௣,୪୭୥ሿுא஽ሺுሻ,௛బא஽ሺ௛బሻ ݀ሺΔܬ௚ሻ௃ೝא୼௃೒
ோ
௥ୀଵ

. (9.14) 
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9.4 Results with MCMC-Generated Synthetic Data 

In this section, MRF model parameter identification is examined with the Ising model by study-
ing the various Ising model parameterisation cases introduced in Subsection 8.5.1 and used in 
Chapter 8 to evaluate the topology identification. Parameter identification and parameter uncer-
tainties are first studied with these synthetic data cases in Subsection 9.4.1. Evaluation of the pa-
rameter identification method and entire MRF model identification are studied in Subsection 
9.4.2 via model predictions. The effect of various data characteristics on parameter estimation is 
tested in Subsection 9.4.3 with the cases used to evaluate topology identification in Subsection 
8.5.4. Again, most results are median values over the three parallel cases (see Subsection 8.5.1). 

9.4.1 Parameter Estimates and Uncertainties 

This subsection deals with MRF model parameter identification in the reference case introduced 
in Subsection 8.5.1 in the context of topology identification. In particular, in each reference case 
parameterisation, the graph structure identified in Subsection 8.5.1 is applied here for structure in 
the Ising model. However, the focus here is on identifying parameters, and using only identified 
graph structures would complicate separating between graph identification and parameter identi-
fication. Consequently, to gain information on parameter identification alone, all cases are con-
sidered also when the true synthetic graph structure is applied for structure in the Ising model. 
Ising model parameters are estimated with the pseudolikelihood method, and uncertainties of 
estimated parameters are studied via Gaussian approximations of true parameter distributions.  
 
With the reference case of 30 nodes the estimated Ising model parameters ሺܬԢ, ,Ԣܪ ݄଴ᇱ ሻ, with both 
estimated and true graph structures are presented in Figure 9.1 as functions of the true interac-
tion parameter ܬ, while the other two parameters are constants: ܪ ൌ 0.6 and ݄଴ ൌ 0.7. Accord-
ing to Figure 9.1, ܬ and ݄଴ are estimated almost perfectly with the true graph structure, whereas 
with the estimated graph structures, estimates appear fairly good up to about ܬ ൌ 0.13, beyond 
which the effect of the neighbourhood start to increase with an increasing interaction term mag-
nitude. In addition, with large ܬ values, graph estimates deteriorate, as shown, e.g., in Figure 8.5. 
Consequently, ܬԢ and ݄଴ᇱ  are worse with large ܬ values. Though graph estimates are the worst with 
small ܬ values, this does not show in parameter estimates because of the very small magnitude of 
the interaction term, which makes the neighbourhood relations quite insignificant.  

 
Figure 9.1. Ising model parameter estimates ܬԢ (left), ܪԢ (centre), and ݄଴Ԣ (right) as functions of ܬ. Results are 
shown with true (squares) and estimated topology (circles). Solid lines denote reference curves of optimal parame-
ter estimates. Calculation: parameter values are medians over the respective values with three ensembles. 
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Parameters ܬ and ݄଴ have essentially the same effect on network coherence; i.e., keeping the first 
fixed and changing the second has the same effect as keeping the second fixed and changing the 
first, hence their similar, but opposite behaviour as a function of ܬ in Figure 9.1. Using the esti-
mated graph structure seems also to induce a bias error in both ܬԢ and ݄଴Ԣ with ܬԢ being con-
stantly smaller than ܬ, and ݄଴Ԣ being larger than ݄଴. Because an estimated graph structure is never 
as good as a true one, coherence may always appear less than what it truly is, and thus possibly 
cause ܬ to be constantly underestimated and ݄଴ thereby to be overestimated. No bias error exists 
in ܪԢ; instead it fluctuates similarly between the true and the estimated graphs with the magnitude 
increasing at large ܬ values. 
  
Uncertainties related to estimated parameter values in cases of estimated and true graph struc-
tures are shown in Figure 9.2, which also shows relative parameter uncertainties, i.e., uncertainty 
values divided by their respective parameter estimate values. The uncertainty of each parameter is 
here the standard deviation of the marginal probability distribution of the parameter, calculated 
from the Gaussian joint distribution approximation of the true joint parameter distribution. Pa-
rameter uncertainties behave similarly in both graph structure cases, but after about ܬ ൌ 0.13, 
uncertainties based on estimated graph structures start to fluctuate widely. Relative uncertainties 
act somewhat like absolute values, except that at small ܬ they are large for ܬԢ. Overall, in the ref-
erence case, parameters are estimated quite successfully, but as expected, because of imperfect 
graph estimates, respective parameter estimates also deviate somewhat from true ones. 
 

 
Figure 9.2. Uncertainties (top row) and relative uncertainties (bottom row) of estimated Ising model parameters. 
Uncertainties of ܬԢ (left column), ܪԢ (centre column), and ݄଴Ԣ (right column) are shown as functions of ܬ. Results 
are shown with true (squares) and estimated topology (circles). Calculation: uncertainty values are medians over the 
respective values with three ensembles. 
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Figure 9.3. True marginal probability distributions of Ising model parameters (circles) and their Gaussian approxi-
mations (solid curves), when estimated graph structures are used. Distributions are shown for ܬ (left column), ܪ 
(centre column), and ݄଴ (right column), and from top to bottom correspond to the following six ܬ values: 0, 0.04, 
0.08, 0.12, 0.16, and 0.20. Calculation: in each case, distributions are shown only for a single randomly picked 
ensemble. 
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For estimated graph structures, Figure 9.3 shows true and Gaussian approximation-based mar-
ginal probability distributions of Ising model parameters with parameterisations corresponding to 
-values 0, 0.04, 0.08, 0.12, 0.16, and 0.20 (see Section 9.2). With each parameterisation, mar ܬ
ginal distributions appear well approximated with Gaussians. Because of the bias errors in ܬԢ and 
݄଴Ԣ with estimated graph structures, the positions of the respective marginal distributions assume 
the same bias errors. Evidently, parameter uncertainties increase with large ܬ values, as already 
shown in Figure 9.2. 

9.4.2 Model Predictions 

To evaluate the entire model identification scheme, the model predictions need to be analysed, as 
discussed in Section 9.3. Such analysis is particularly important for real networked systems whose 
true topology and true model parameters are unknown. Here we consider the model predictions 
using synthetic data like real data to have later a reference to which model predictions obtained 
with real network data can be compared. In six cases of parameters, Figure 9.4 shows prediction 
results for state െ1 for each node with estimated Ising models. The figure also shows linear re-
gression lines fitted to node state predictions and reference lines indicating optimal predictions. 
Predictions are poor with a small ܬ, as the neighbouring nodes hardly interact, and conditional 
state probabilities are mostly determined by the random external loading. With a larger ܬ, the 
neighbours contribute more, and neighbourhoods are estimated more accurately, improving pre-
dictions.  
 
Absolute prediction errors and slope coefficients of fitted linear regression curves are shown in 
Figure 9.5 as functions of ܬ for all 21 model parameterisations using both estimated and true 

 

 
Figure 9.4. Predictions with estimated (structure and parameters) Ising models. Node state െ1 probability predic-
tions are shown for each node as a function of data-calculated node state െ1 probabilities. Predictions are shown 
in dots, linear regression lines fitted to predictions in solid lines, and reference curves of optimal predictions in 
dashed lines. Predictions from top-left to bottom-right correspond to the following six ܬ values: 0, 0.04, 0.08, 
0.12, 0.16, and 0.20. Calculation: of three ensembles, shown are those that correspond to minimum average node 
state െ1 prediction errors. 
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Ising models. For the true Ising model, the error is largest with a small ܬ and then constantly de-
creases as ܬ increases. For the estimated Ising model, however, the error grows as ܬ increases, 
assuming the largest values at about ܬ ൌ 0.12. Consequently, the error alone seems a poor meas-
ure for the goodness of the predictions, because they are clearly poor at some of the smallest ܬ 
where node-specific behaviour cannot be predicted. 
 
With both the estimated and true graph structure, the slopes assume their smallest values at a 
small ܬ and then quickly rise close to one. However, with the estimated model, the rise happens 
at larger ܬ than with the true model. The slope coefficients have the problem that they ignore 
fluctuations taking place around the regression lines. Therefore, both errors and slopes must be 
studied to judge the goodness of predictions. According to errors and slopes, the best predictions 
are achieved with the largest ܬ values, though the best topology and parameter estimates are ob-
tained at around ܬ ൌ 0.12. In Figure 9.4 again, deviations in average states between nodes are 
largest at medium coherence values, i.e., at around ܬ ൌ 0.12, which probably complicates predic-
tion and explains at least the large prediction errors. 

9.4.3 Effect of Data Characteristics 

This subsection studies the effect of data characteristics on model parameter identification with 
the same cases as the effect of data characteristics on topology identification was tested in Sub-
section 8.5.4, exploiting the respective graph estimates as Ising model structures. Thus not only 
parameter identification but, in fact, the whole model identification scheme is considered here. 
Again the type of node load distribution is first changed from that of the reference case’s 
Uniሾ0, 1ሿ distribution to an ࣨሺ0.5, 0.25ଶሻ distribution and then to an Expሺ0.58ሻ distribution. 
Model parameter estimates corresponding to the topology identification results in Figure 8.8 are 
shown in Figure 9.6. Back in Subsection 8.5.4, graph estimates were nearly equally good in all 
three cases. However, according to the ASSMI, in the exponential distribution case, coherence is 

 
Figure 9.5. Node state െ1 absolute predictions errors (left) and slopes of fitted linear regression lines (right) as 
functions of ܬ. Results are shown for true (squares) and estimated Ising models (circles). Calculation: absolute 
prediction errors are medians over three ensembles, for which each error is calculated as an average over all nodes. 
Slope coefficients are medians of the respective coefficients obtained with each ensemble. 
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greater at larger ܬ values, which probably explains the better parameter estimates obtained in the 
same case here with large ܬ values. 
 
As Figure 9.6 shows, when the average node neighbourhood size is altered from the reference 
case’s 8.8 to 6.8 and to 10.8, model parameter estimates seem best at ܣ ൌ 6.8, where ܬԢ and ݄଴Ԣ 
are both quite good even at the largest ܬ values, and where fluctuations in ܪԢ are relatively small. 
In Subsection 8.5.4, we saw that also graph estimates were better with a small ܣ at large ܬ values. 
At ܣ ൌ 10.8, parameter estimates are the worst, even though with small ܬ values, they are as 
good as in the two other cases. Apparently, with larger ܣ poor graph structure estimates cause 
poor parameter estimates. 
 
In Subsection 8.5.4, with the two largest data sets, ܮ ൌ 540 and ܮ ൌ 1080, topology estimates 
were slightly better than with the reference case’s ܮ ൌ 270. In addition, the two largest data sets 
differed only slightly in favour of the larger one. Their differences in parameter estimates are 
small, as shown in Figure 9.6. In the reference case, parameter estimates are only slightly worse 

 

 

 
Figure 9.6. Effect of load distribution type (top row), node neighbourhood size (middle row), and data set size 
(bottom row) on parameter identification. Estimates ܬԢ (left), ܪԢ (centre), and ݄଴Ԣ (right) are shown as functions of 
 :Top row: exponential (squares), uniform (circles), and normal (triangles) node load distributions. Middle row .ܬ
ܣ ൌ 6.8 (squares), ܣ ൌ 8.8 (circles), and ܣ ൌ 10.8 (triangles). Bottom row: ܮ ൌ 270 (circles), ܮ ൌ 540 (squares), 
and ܮ ൌ 1080 (triangles). Calculation: measures are medians over the respective values with three ensembles. 
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than in the two other cases, the differences occurring mostly at some of the largest ܬ values. Be-
tween ܮ ൌ 540 and ܮ ൌ 1080, parameter estimates are similar. 
 
The effect of network size on topology estimation was tested in Subsection 8.5.4 with three dif-
ferent schemes. First, ܮ ൌ 270 was used for each network size, ܯ ൌ ܯ ,30 ൌ 60, and ܯ ൌ
120 nodes, and with the two larger networks, graph estimates appeared quite poor. The model 
parameter estimates corresponding to this case are presented in Figure 9.7. As expected, ܯ ൌ 30 
yields the best parameter estimates, though the differences are small in particular between 
ܯ ൌ 60 and ܯ ൌ 120. When ܮ was increased linearly in ܯ in Subsection 8.5.4, with all three 
network sizes, topology estimates were almost equally good. As Figure 9.7 shows, also differ-
ences in the corresponding parameter estimates are now smaller, even if slightly, than with a con-
stant ܮ. Finally, ܮ was increased quadratically in ܯ, but was tested only with ܯ ൌ 60 in Subsec-
tion 8.5.4, where the worst results were clearly those with ܮ ൌ 270, whereas the two larger ܮ 
showed slight differences. However, since parameter estimates here with all three data sizes are 
similar, the differences shown in graph estimates do not appear in parameter estimates. Yet, the 

 

 

 
Figure 9.7. Effect of network size on parameter identification. Estimates ܬԢ (left), ܪԢ (centre), and ݄଴Ԣ (right) are 
shown as functions of ܬ. Top row: ܯ ൌ 30 (circles), ܯ ൌ 60 (squares), and ܯ ൌ 120 (triangles), each with 
ܮ ൌ 270. Middle row: ܯ ൌ ܮ ,30 ൌ 270 (circles), ܯ ൌ ܮ ,60 ൌ 540 (squares), and ܯ ൌ ܮ ,120 ൌ 1080 (trian-
gles). Bottom row: ܮ ൌ 270 (circles), ܮ ൌ 540 (squares), and ܮ ൌ 1080 (triangles), each with ܯ ൌ 60. Calcula-
tion: for ܯ ൌ 30 measures are medians over the respective values with three ensembles. For other network sizes, 
measures are calculated from single ensembles. 
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results confirm our previous conclusions in Subsection 8.5.4 that ܮ must be increased at least 
linearly in ܯ for data to be representative. 
 
Finally, in Subsection 8.5.4, the quality of the data used in the analyses was tested with a network 
of ܯ ൌ 30, by studying its topology identification with three MCMC burn-in periods, 25030ݔ, 
 steps. Topology estimates turned out similar in all three cases. Figure 9.8 30ݔand 1000 ,30ݔ500
shows that this occurs also with model parameter estimates, which are similar for all burn-in pe-
riods, thus confirming the quality of the reference data set. 

 
Figure 9.8. Effect of MCMC burn-in steps on parameter identification. Estimates ܬԢ (left), ܪԢ (centre), and ݄଴Ԣ 
(right) are shown as functions of ܬ. Results are shown with the following number of MCMC burn-in steps: 
-Calculation: measures are medians over the respec .(triangles) 30ݔand 1000 ,(circles) 30ݔ500 ,(squares) 30ݔ250
tive values with three ensembles. 



 
 

10. System Properties 

When an MRF model has been successfully identified for a real networked system, the model’s 
qualitative behaviour under varying external conditions becomes of interest. This chapter dem-
onstrates via MCMC simulations of the Ising model how to analyse the dependence of the model 
phenomena on external node loadings, and how transitions occur in the average node state. 
Hence it will be shown how the Ising model can be used with MCMC simulations to study net-
work behaviour under particular external conditions. Therefore, simulations make use of true 
rather than identified graph structure and parameters. 
 
Chapters 8–9 evaluated the model identification method with a somewhat small synthetic 30-
node network, because many model parameterisation cases were studied there. This chapter ex-
amines a larger, 300-node network, with a topology generated as in Chapter 8. Large network is 
used for Ising model simulations, because, first, less computation time is now needed owing to 
fewer parameterisations, and, second, to reduce sample-dependent effects on the model’s behav-
iour caused by a small-size network. With the Ising model defined by this network topology, in 
Sections 10.1–10.2 qualitative model behaviour is analysed under varying global and local external 
loadings, after which transient dynamics and model state fluctuations are studied in Section 10.3. 

10.1 Behaviour under Global External Loading 

As discussed in Chapter 4, network coherence affects drastically the qualitative properties of the 
Ising model and determines how the average node state ۃsۄ changes under varying global external 
loadings or when subjected to a heavy local loading. In particular, according to Chapter 4, with 
small coherence, ۃsۄ changes smoothly under varying external loading from one extreme state 
into another, whereas with large coherence, ۃsۄ undergoes discontinuous phase transitions. This 
section studies these phenomena in MCMC Ising model simulations in synthetic network cases. 
 
The Ising model is simulated here with the following cases. The parameter ܬ is given three values, 
0.02, 0.2, and 2, while the two other parameters are kept constant, ܪ ൌ 1 and ݄଴ ൌ 0. With 
each ܬ, three threshold values, defining the graph structure from the node location map shown in 
Figure 10.1, are used with ܣ assuming values 8.76, 11.76, and 14.76. The middle case corre-
sponds to the average number of nodes in the true MTN topology, studied in Chapter 14. With 
all three ܣ values, all nodes are connected on the topology to form one large node cluster, except 
for ܣ ൌ 8.76, at which two nodes (5 and 46 in Figure 10.1) exist outside this cluster with no 
neighbours. 
 
A total of nine ܣ–ܬ combinations are thus considered here with focus on the adiabatic dynamics 
of the Ising model, which is studied as the trajectory of stationary model states produced by 
MCMC model simulations under a uniformly, and gradually, changing global external loading ݄; 
i.e., for each node ݉ ݄௠ ൌ ݄. Adiabatic dynamics means that changes in node loadings are slow 
enough for MCMC simulation to reach a stationary model state before the next loading change. 
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Section 10.3 later examines transient dynamics and state fluctuations in the Ising model between 
two stationary states.  
 
With each ܬ, a total of 51 external node loading cases with constant intervals are considered, the 
range of ݄ depending on the respective ܬ value. With each ݄, only a single network observation is 
MCMC-simulated, and the random number generator of MCMC is always initialised to the same 
state. Because hysteresis may appear in transitions, and the network state may then depend on 
the initial state, MCMC simulations are run twice with each ݄: one starting from ۄݏۃ ൌ െ1 and 
the other from ۄݏۃ ൌ ൅1. With each loading, an MCMC simulation could just as well start from a 
previously simulated stationary state, because the model is always simulated until it has converged 
to its stationary state. Owing to hysteresis, it makes a radical difference in the region of two sta-
ble solutions if simulations are started near ۄݏۃ ൌ െ1 or ۄݏۃ ൌ ൅1. The choice determines the 
branch of the hysteresis curve selected. Because the interaction term in the Ising model is addi-
tive in the number of neighbours, the ratio ܬሚ ൌ  is essential to the model’s behaviour. Table ܣ/ܬ
10.1 summarises the value of this ratio in all nine cases.  
 
Simulation results are shown in Figure 10.2 with ۄݏۃ given as a function of uniform global exter-
nal loading value. At each of the three smallest ܬሚ values, transitions between ۄݏۃ ൌ െ1 and 
ۄݏۃ ൌ ൅1 occur smoothly; the two state curves corresponding to two simulation initialisations 
overlap and hence no hysteresis occurs. However, from ܬ ൌ 0.2 and ܣ ൌ 8.76 on, the two simu-
lation paths diverge. In addition, changes in ۄݏۃ become steeper as a function of loading and, 
with the interval applied when varying the external loading values, occur abruptly within a few 

 
Figure 10.1. Node location map of a synthetic network of 300 nodes. 

Table 10.1. Values of ratio ܬሚ ൌ  .ܣ and ܬ with respect to ܣ/ܬ

ܣ ܬ ܬ ሚܬ ܣ ሚܬ ܬ ܣ  ሚܬ

0.02 8.76 2.28x10ିଷ 0.2 8.76 2.28x10ିଶ 2 8.76 2.28x10ିଵ 

0.02 11.76 1.70x10ିଷ 0.2 11.76 1.70x10ିଶ 2 11.76 1.70x10ିଵ 

0.02 14.76 1.36x10ିଷ 0.2 14.76 1.36x10ିଶ 2 14.76 1.36x10ିଵ 
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external loading steps. If the coherence were even larger, eventually all (or almost all) nodes 
would undergo simultaneous state changes with a discontinuity appearing in ۄݏۃ. Evidently, the 
larger the ܬሚ value, the larger the gap between two simulation paths; i.e., the more coherently the 
nodes act, the larger the external loading needed for state changes to occur. These are well-
known properties of the standard Ising model and repeated here to illustrate hysteresis in finite-
size but large networks and to demonstrate the effectiveness of MCMC simulation. 

10.2 Behaviour under Local External Loading 

According to the previous Ising model simulations, coherent networks with high connectivity 
and high interaction have the advantage that they seem to bear rather large external loadings 
without marked changes in ۄݏۃ. However, their drawback is that under heavy global external 
loading, they may exhibit a sharp threshold value for ݄, above (below) which they abruptly switch 
from one coherent state into another. Hence a coherent network near this threshold is very sensi-
tive to even the smallest changes in local or global external loading.  
 
A network’s sensitivity to a heavy local external loading under uniform global external loading is 

 
Figure 10.2. Model state behaviour under global uniform external loading. Average state ۄݏۃ is shown as a function 
of ݄ with three ܬ values, 0.02 (left), 0.2 (centre), and 2 (right), and each with three ܣ values, 8.76 (squares), 11.76 
(triangles), and 14.76 (circles). Calculation: results with each ݄ are average node states in a single simulated en-
semble. With each ݄, two ensembles are simulated, one starting from ۄݏۃ ൌ െ1 and the other from ۄݏۃ ൌ ൅1. 

 

 
Figure 10.3. Heavy local external loading (circles) affecting 15 (left) and 30 nodes (right). 
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studied here by simulating the Ising model under the previous nine ܣ–ܬ combinations. In all 
these cases, two local loading situations are considered: first, a 15-node cluster is selected from 
the center of the network, and the nodes are subjected to a constant heavy local loading 
(݄௟௢௖௔௟ ൌ 60), and, second, the number of affected nodes in the cluster is increased to 30, in-
cluding the previously 15 nodes. Figure 10.3 presents two node location maps that show the 
nodes that are affected by the local external loadings in the two cases.  
 
Figure 10.4 shows Ising model simulation results of nine ܣ–ܬ combinations with local loading 
affecting clusters of 15 and 30 nodes (results of the previous section without local loading are 
shown for reference). In all cases with ܬ ൌ 0.02, a heavy local external loading hardly affects ۄݏۃ, 
because the nodes act nearly independently. At ܬ ൌ 0.2 and ܬ ൌ 2, nodes act more coherently, 
and because of local loadings, transition now takes place already at smaller ݄ values. Not surpris-
ingly, the larger the group of affected nodes, the earlier the transition appears when going from 
ۄݏۃ ൌ െ1 to ۄݏۃ ൌ ൅1 with an adiabatically increasing ݄. 

 

 

 
Figure 10.4. Model state behaviour with a heavy local external loading under global uniform external loading. The 
average state ۄݏۃ is shown as a function of ݄ with three ܬ values, 0.02 (left column), 0.2 (centre column), and 2 
(right column), and each with three ܣ values, 8.76 (top row), 11.76 (middle row), and 14.76 (bottom row). Heavy 
local loading affects 0 nodes (squares), 15 nodes (triangles), and 30 nodes (circles). Calculation: results with each ݄ 
are average node states in a single simulated ensemble. With each ݄, two ensembles are simulated, one starting 
from ۄݏۃ ൌ െ1 and the other from ۄݏۃ ൌ ൅1. 
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10.3 MCMC Dynamics 

Because MRF models are statistical models describing joint probabilities of node states, true dy-
namics does not exists for the models themselves. Instead, when sampling the joint probability 
distribution, one may define the dynamics to be that of MCMC. This approach is used here to 
study dynamic response to dynamic changes under global uniform external loading. We assume 
that true network dynamics can be described coarsely with a trajectory of samples of model states 
simulated with MCMC methods. In the previous two sections, changes were made in ݄ so that 
the MCMC of the model always converged to its stationary state before a new change was made. 
This led to a trajectory of stationary, or equilibrium, model states, which were then considered to 
describe the equilibrium, or adiabatic, dynamics of the system. This section examines transient 
dynamics and the model’s convergence to its stationary state after a change in ݄, describing thus 
a trajectory of intermediate model states between the initial and final stationary state.  
  
An MCMC step in which each node is updated once in a regular order is here considered to pro-
duce one transient state. A series of samples produced in this way forms a trajectory of transient 

 

 

 
Figure 10.5. Model state fluctuations and transient dynamics under varying global external loading. Average state 
-values, 0.02 (left column), 0.2 (cen ܬ is shown as a function of MCMC simulation step (dotted lines) for three ۄݏۃ
tre column), and 2 (right column), and each with three ܣ values, 8.76 (top row), 11.76 (middle row), and 14.76 
(bottom row). Vertical lines mark the spots were ݄ changes. Calculation: results at each MCMC step are average 
node states in a single simulated ensemble. The first MCMC simulation step starts from ۄݏۃ ൌ െ1, and the rest 
always from a previous simulated state. 



94 
 

states such that the next transient state depends only on the previous state, and that the samples 
are thus produced by a Markov chain. Furthermore, this trajectory describes how the network 
moves from one stationary state into another. Of course, because the MRF model is a statistical 
model, it has no single trajectory but instead a huge number of possible trajectories. Which tra-
jectory is assumed depends on both randomness related to the updates of node states and the 
ordering of the node state updates. Similarly, instead of a single stationary state, it has a stationary 
distribution, which is the MRF joint probability distribution under given conditions. The aim is 
here to study one such state-path realisation, because in a true network only a single state-path 
realises among all the possible ones.  
 
As an example of transient dynamics and state fluctuations, a synthetic network of 300 nodes is 
again considered with nine ܣ–ܬ value combinations. Node loadings are uniform through the 
nodes and increased gradually by the following load values: ሾെ3,െ2,െ1,െ0.5, 0, 0.5, 1, 2, 3ሿ for 
ܬ ൌ 0.02, ሾെ1,െ0.5, 0, 0.3, 0.5, 0.6, 0.7, 1, 1.5ሿ for ܬ ൌ 0.2, and ሾെ1, 1, 3, 5, 7, 9, 11, 13, 15ሿ 
for ܬ ൌ 2. After each change in the node loadings, the Ising model is simulated from the previ-
ous state 10ସ MCMC steps before another change. During MCMC updates, the model is as-
sumed to converge to its stationary probability distribution. The initial state of the first simula-
tion is always the global state െ1; then after a loading change, the next simulation always starts 
from the end of the previous one.  
 
Simulation results for the nine ܣ–ܬ cases are shown in Figure 10.5. In general, the model con-
verges to its stationary distribution quite fast and usually requires only a few MCMC steps. How-
ever, with abrupt or drastic changes in ۄݏۃ, it clearly requires many extra MCMC steps to reach a 
stationary state. With ܬ ൌ 0.2 and ܣ ൌ 8.76, a loading change from ݄ ൌ െ0.5 to ݄ ൌ 0 induces 
particular instability with the network state fluctuating heavily and not converging on a stationary 

 
Figure 10.6. Zoom-in plots of transient dynamics of changes in ۄݏۃ shown in Figure 10.5. The centre column in 
Figure 10.5 corresponds here to the top row, whereas the right column in Figure 10.5 corresponds here to the 
bottom row. Original plots are zoomed here to show the ranges of MCMC steps with most drastic changes. 
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state before another loading change is made. Apparently, a loading at ݄ ൌ 0 is just large enough 
to cause an abrupt change from one coherent state into another and heavy fluctuations, similar to 
those occurring in continuous phase transitions in the Ising model. A further loading increase 
finally drives the network into a coherent state ൅1. A similar slow convergence also takes place 
in the other cases corresponding to the two larger ܬ values, better seen in Figure 10.6, which 
shows zoom-ins of discontinuous changes occurring in ۄݏۃ in Figure 10.5. 
 
Figure 10.6 shows that though transitions in these cases appear discontinuous when viewed only 
from stationary states, relatively many MCMC steps are yet needed to achieve stationary states. 
Consequently, transitions, in fact, occur as cascades of avalanches of node states, as discussed in 
Chapter 4, where node clusters change their states simultaneously, forcing other node clusters to 
undergo state changes as well. The larger the coherence, the larger these node clusters become. 
As an anticipated conclusion, the larger the interaction and the average neighbourhood size, i.e., 
the larger the coherence, the smaller the state fluctuations, and the more rapidly ۄݏۃ changes and 
hence converges to a stationary state. In addition, according to Figure 10.5, in general, the closer 
the network is to the point where ۄݏۃ is about to change, the larger the state fluctuations become.  
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11. Introduction to MTN Data 

In Chapters 11–14, the topology and parameter identification methods introduced and evaluated 
in Chapters 8–10 are applied to real mobile telecommunications network (MTN) data. The Ising 
model is chosen to represent a real MTN case. The identification methods are applied to net-
works of 30 and 132 BTS cells. The smaller network demonstrates the methods’ applicability 
more easily, whereas the larger network puts the methods to a more realistic test.  
 
The present chapter introduces GSM MTN data with variables of the data introduced in Section 
11.1. Section 11.2 focuses on preprocessing the state data from a multivariable format into a sin-
gle state variable per BTS cell node, which in Section 11.3 is then further discretised for MRF 
modelling. Finally, Section 11.4 examines the logical and physical topologies of the MTN and 
discusses the similarities of the two types of topology information.  

11.1 BTS Data 

Raw BTS data is continuous-valued and originates from thousands of counters measuring various 
aspects of network performance. Key Performance Indicators (KPI) summarise various cost effi-
ciency and quality-related properties of BTS cells [145], [80], [156]. Each KPI is calculated by 
combining the information given by the counter variables, and because averaged over a time pe-
riod, such as an hour or a day, KPI values are typically occurrence percentages of defined types 
of events during a time period. Hence a typical KPI variable assumes a value in the interval [0, 
100].  
 
Here the KPI variables analysed are evaluated hourly. The following KPIs are considered: Hand-
over Failure (HF), Handover Failure Due to Blocking (HFB), Stand-alone Dedicated Control 
Channel Success (SDCCHS), Traffic Channel Success (TCHS), and Calls KPI. Handover means 
transferring an on-going mobile station connection from one cell to another, either within a sin-
gle BTS or between two BTSs, when the quality of the connection deteriorates between mobile 
station and first cell [150]. In addition, an intra-cell handover is possible [150]. HF is the percent-
age of failed outgoing handovers from a cell. An HFB is similar to an HF, but describes the pro-
portion of failed handovers due to blocking of the receiving cell to all handover failures.  
 
Traffic channels (TCHs) carry speech and data between mobile stations and the MTN. A TCHS 
contains both speech and data traffic and indicates the rate of successful TCH transactions out of 
all TCH transactions. A TCH transaction is an event of transferring either speech or data. In a 
GSM MTN, control channels (CCHs) transmit service data, such as signalling or synchronising 
data. The SDCCHS indicates the rate of successful SDCCH transactions among all SDCCH 
transactions, signifying the various control signals between network and mobile stations. A Calls 
KPI is the number of calls handled by a single BTS cell and thus an exceptional KPI, because it 
takes non-negative integer values rather than occurrence percentages. Calls KPI is related to the 
Erlang unit that is generally used for measuring the volume of traffic in telecommunications net-
works. However, in addition of the number of calls handled, Erlang measure also takes into ac-
count, e.g., the duration of the calls.  
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11.2 Preprocessing of BTS Data 

Because in MRF modelling node states and loadings are assumed to be univariate, the informa-
tion given by several KPI data variables must be compressed into single state and load variables. 
With the Ising model, state data must also be binarised into െ1s and ൅1s, whereas load data may 
assume either discrete or continuous values. The Calls KPI is used here as load data, because it 
provides information about the loading of cell nodes. The Calls KPI is only rescaled by dividing 
all its values by its median value over all cell nodes. Scaling here provides a typical load value 
somewhat equal in magnitude to state data values and affects only the parameters of MRF mod-
elling. Because the capacity, the amount of traffic a cell can handle, may vary, another approach 
that could have been taken here is to scale the loading values of each cell node separately with 
their respective capacity. However, here the capacities are unknown in the data set, but assuming 
that the loading for each cell reflects the cell’s capacity, the loading of each cell could have been 
scaled, e.g., with the median cell load value.  
 
The other four KPIs considered here, HF, HFB, SDCCHS, and TCHS, are related more to the 
states of BTS cell nodes. To combine these KPIs, they are first scaled trivially to the range ሾ0, 1ሿ 
such that values 0 and 1 correspond to the worst and best possible node performance. As for 
HF and HFB KPIs, the meaning of their extreme values is opposite to that of SDCCHS and 
TCHS KPIs, their scale is reversed. The obtained multivariable KPI data is compressed here into 
a single measure with the following procedure adopted directly from [79]. 
 
Let us denote the values of the scaled KPI variables for (cell) node ݉ in a network observation ݈ 
by ݏHFሺ݉, ݈ሻ, ݏHFBሺ݉, ݈ሻ, ݏSDCCHSሺ݉, ݈ሻ, and ݏTCHSሺ݉, ݈ሻ. Given that each KPI value 1 indi-
cates optimal node performance, a univariate continuous-valued node state performance measure 
,ୡሺ݉ݏ ݈ሻ is obtained by taking the Euclidean distance of the KPI variables from the optimal: 

Values ݏୡሺ݉, ݈ሻ are continuous with the minimum value zero and the maximum value 2.  
 
The KPI variables used here as state data contain a lot of missing values, except SDCCHS, which 
has only a few missing values for each cell on the average. In the other state-related KPIs, on the 
average of about 10% of the cell observations are missing, whereas the loading-related Calls KPI 
contains no missing values at all. From the original data set, first those cell nodes and observa-
tions containing a lot of missing values are removed. Then for each cell observation, each miss-
ing KPI value is replaced by the average of the respective non-missing KPI values; e.g., if the 
values of HF and HFB were missing, then both of these values would be replaced by the average 
of the SDCCHS and TCHS values at that observation. This rather harsh handling of the missing 
values can be justified by the use of Eq. (11.1) to combine the KPI variables into a joint measure, 
for which each KPI contributes equally. By using the four KPIs to construct the joint measure of 
Eq. (11.1), therefore provides reasonable state estimates even when some of the KPI observa-
tions are missing.  
 

,ୡሺ݉ݏ  ݈ሻ ൌ ሼሾ1 െ ,HFሺ݉ݏ ݈ሻሿଶ ൅ ሾ1 െ ,HFBሺ݉ݏ ݈ሻሿଶ 
൅ሾ1 െ ,SDCCHSሺ݉ݏ ݈ሻሿଶ ൅ ሾ1 െ ,TCHSሺ݉ݏ ݈ሻሿଶሽ

భ
మ. 

(11.1) 
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Figure 11.1 shows overall distributions as histogram estimates and Figure 11.2 the distribution 
information of individual cell nodes as box plots for pre-processed continuous-valued state and 
load data. Because most state data assume zero value, or are close to it, the first bar is omitted 
from the histogram in Figure 11.1, which covers the range 0–0.005 and contains 6821 observa-
tions of a total of 8070 observations, and from which 1993 assume the exact value of zero, 
which is 24.7% of all the observations. The mean, median, and standard deviation values of the 
state and load data are summarised in Table 11.1. 
 
The state data histogram resembles an exponential distribution, whereas the load data is close to 
the Poisson distribution but with a fatter tail. Indeed, in telecommunications networks the arrival 
of calls is typically modelled as a Poisson process, whereas some other quantities related to the 
state of a node are described with exponential distributions, such as the service time in a node 
[60]. Figure 11.2 shows clear individual differences in the values of cell node variables between 
both state and load values; on average, some nodes perform worse than others, and some are 
clearly more heavily loaded than the average node. Yet, a heavy loading and a poor node state do 
not seem to correlate clearly, a phenomenon partly explained by node interaction by which 
neighbouring nodes affect each other’s state. The capacity of nodes may also vary, and thus a 
heavily loaded node may perform well due to its high capacity. Indeed, if this is the case in the 
data set applied here, it is not taken into account in the MRF modelling, because the cell loadings 
are not scaled with the respective capacities, which are unknown. 

 
Figure 11.1. Histograms of continuous-valued state (left) and load (right) data of an MTN of 30 BTS cell nodes. 

Table 11.1. Mean, median, and standard deviation of continuous-valued state and load data. 

  Mean  Median  Standard Deviation 

State values  0.00930  0.00053  0.03337 

Load values  0.964  0.532  1.185 
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11.3 Discretisation of BTS Data  

In general, for discrete MRF models, the continuous-valued state data ݏୡሺ݉, ݈ሻ, defined by Eq. 
(11.1), must be discretised. For the Ising model, ݏୡሺ݉, ݈ሻ is here discretised into binary values by 
thresholding the state values. If a continuous state value is below the threshold, state െ1 is as-
sumed, and if above, state ൅1 is assumed. Hence, state െ1 is here chosen to indicate good node 
performance, whereas state ൅1 indicates poor node performance. Alternatively, also other discre-
tisation methods, such as clustering-based classification, can be used [80], [156], [157].  
 
The threshold, chosen here uniform for all cell nodes, may be chosen according to a desired ratio 
for the amount of data in each state, e.g., using the domain knowledge about the usual propor-
tions of decent and poor node states. Because 24.7% of the continuous-valued state data assume 
zero value, this marks the minimum amount of data that can be interpreted as having the state 
value െ1. In principle, an appropriate threshold value can be determined by inspecting the distri-
bution of the state data. However, here we seem to have no such obvious threshold value, nor 
any prior knowledge to help choose one.  
 
For a thorough analysis, several discretisation thresholds are analysed here, which divide the data 
into two binary states so that the proportion of data in state െ1 ranges from 0.275 to 0.725 at 
0.025 intervals, yielding a total of 19 cases. With discretisation thresholds 0.3, 0.35, 0.4, 0.45, 
0.5, 0.55, 0.6, 0.65, and 0.7, the proportion of observations in state െ1 is shown in Figure 11.3 
for each cell node. In some nodes, the proportion of െ1 states is strikingly more sensitive to the 

 

 
Figure 11.2. Box plots of continuous-valued state (top) and load (bottom) data as functions of 30 BTS cell nodes. 
The horizontal lines inside the boxes denote median values, while the bottom- and top horizontal lines of the 
boxes define the lower- and upper quartile values. The dashed lines (whiskers) at the ends of each box extend to 
the adjacent values in the data. The plus signs denote outliers. 
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threshold than in other nodes. For example, as the threshold is increased, the data in state െ1 for 
node 5 increases dramatically compared to most other nodes. Therefore, the threshold value is 
expected markedly to affect MRF modelling as well.  

11.4 Logical and Physical Topologies  

As discussed in Chapter 2, MTNs comprise topologies because of both physical geographic loca-
tions of BTS cell nodes and their logical connections. Physical locations can be directly visualised 
as a two-dimensional map of BTS cell locations—overlapping nodes represent cells belonging 
under the same BTS. Visualisation of logical connections, however, is more complex, and here 
logical (graph) distances are first calculated for each ܯሺܯ െ 1ሻ/2 node pair, after which non-
metric multidimensional scaling, introduced in Chapter 5, is applied to the distances to form an 
approximate node location map for the original logical distances in two dimensions.  
 
Figure 11.4 shows both node location maps. For better visual comparison, the maps are first 
scaled with their respective Frobenius norms, and then the map based on logical distances is Pro-
crustes-transformed with respect to the physical location map. Though the two maps differ in 
many details, overall they are similar. In particular, for most nodes their neighbourhoods look 
very much alike. Obviously then, nodes physically close to each other are also logical neighbours. 
This is further justified in Figure 11.5, which shows mean and median values of distances be-
tween nodes on the physical node location map as a function of their respective logical distances. 

 
Figure 11.3. Proportions of observations assuming state value െ1 as functions of 30 BTS cell nodes. Results from 
top-left to bottom-right correspond to the following discretisation threshold values: 0.3, 0.35, 0.4, 0.45, 0.5, 
0.55, 0.6, 0.65, and 0.7. 
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Figure 11.4. Logical (left) and physical (right) location map presentations of 30 BTS cell nodes. Calculation: the 
physical location map simply shows the physical locations of nodes scaled with the respective Frobenius norm. 
The logical location map is obtained by applying non-metric MDS to logical distances, calculated for nodes from 
logical neighbourhood relations. The map is then further scaled with the respective Frobenius norm and Pro-
crustes-transformed with respect to the physical location map. 

 

 
Figure 11.5. Comparison of physical and logical internode distances of BTS cells. Mean (circles) and median 
(squares) values of physical internode distances according to a physical node location map are shown as a function 
of corresponding internode logical distance according to graph structure. Calculation: for each node pair with a 
certain logical distance, mean and median values are taken over the physical (Euclidean) distances between the 
nodes. 



 
 

12. Topology Identification for MTNs 

In this chapter, the MGMN topology identification method introduced and evaluated in Chapter 
8 is applied to real MTN data presented in Chapter 11 to identify the MTN’s topology from the 
data and to use it as a graph structure in MRF modelling of the MTN. As discussed in Chapters 2 
and 11, MTNs contain topology information because of both their logical node connections and 
the physical locations of the nodes. Though these two pieces of topology information led to 
rather similar neighbour relations in Chapter 11, they complement each other, and their com-
bined effect manifests itself in MTN data. Hence a data-estimated topology combines the effect 
of the two topologies into a single graph structure, which can then be used for graph structure in 
MRF modelling. 
 
As discussed in Chapter 11, to apply the Ising model, the state data of BTS cell nodes must be 
thresholded into two binary states. However, because we have no prior information available 
about choosing the threshold value, we study topology identification using several discretisation 
threshold values. On the other hand, we use prior information to define a graph structure from 
an obtained MDS node location map by selecting the distance threshold value so as to have an 
average of 8.73 neighbours for each cell node, which is the average number of neighbours ac-
cording to the MTN logical topology. Though we use this domain-knowledge-based prior infor-
mation to define the threshold distance value, we also test the impact of the threshold value on 
results by varying it around the value based on the prior information. 
 
In this chapter, Section 12.1 first studies network coherence as a function of discretisation 
threshold value. Section 12.2 presents the data-based node location map and graph structure es-
timates obtained by the MGMN method. The effect of the threshold distance on the graph struc-
ture is studied in Section 12.3, and Section 12.4 examines how the method works with large net-
works. MRF model parameter identification based on estimated graph structures is later dis-
cussed in Chapter 13. Though only a single data set is applied in Chapters 12 and 13, most calcu-
lations are repeated three times because of stochastic effects related to the calculation of MDS, 
SSMI, and MRF model parameter estimation. 

12.1 Coherence in Network Data 

In Figure 12.1, the network coherence measures ܴԢ, ܴே, and ASSMI, introduced in Subsection 
8.5.2, are shown as functions of the discretisation threshold value for MTN data. Estimated 
neighbourhoods and estimated parameter values are used to calculate ܴԢ and ܴே. All measures 
here seem rather similar in their functional forms, but ܴே differs slightly, because it is relatively 
small at some of the smallest discretisation thresholds. Overall, the coherence is the highest at 
small discretisation thresholds and then degrades monotonically as the threshold value increases.  
 
Figure 12.1 shows the mean and median values of the SSMI as functions of the logical (graph) 
distance of the MTN logical topology with the following discretisation thresholds: 0.325, 0.4, 
0.475, 0.55, 0.625, and 0.7. Some later results in this chapter are also studied in depth with 
these six discretisations. The measures are calculated like those in Subsection 8.5.2 to describe 
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the dependence of node coherence on logical distance. As expected, coherence is highest be-
tween neighbouring nodes and then drops as the logical distance grows. However, some nodes 
register clearly smaller coherence, because their mean values are smaller than the respective me-
dian values at logical distances one and two. Overall, as Figure 12.1 shows, at all logical distances, 
coherence is larger with the smaller discretisation thresholds. 

12.2 Location Map and Graph Structure Estimates 

This subsection studies identification of the network topology by the MGMN method at varying 
discretisation threshold values. MTN physical and logical topologies were already studied in Sec-
tion 11.4. Here each estimated location map is obtained by first applying non-metric MDS to 
SSMI-based dissimilarity values and then scaling node coordinates with the Frobenius norm and 
finally Procrustes-transforming, without the scaling component, the map with respect to the 

 

 
Figure 12.1. Network coherence with the real network of 30 nodes. Top-left plot presents ܴԢ (circles) and ܴே 
(squares), and the top-right plot ASSMI, as functions of the discretisation threshold. Mean (bottom-left) and me-
dian (bottom-right) values of SSMI are given as functions of the logical (graph) distance of nodes with discretisa-
tion thresholds: 0.325 (asterisks), 0.4 (circles), 0.475 (diamonds), 0.55 (squares), 0.625 (plus signs), and 0.7 
(triangles). Calculation: ܴԢ and ܴே are median values over the respective measures calculated for the three cases. 
ASSMI is the median value over the respective measure calculated for the three cases as averages over the pairwise 
SSMI values. The mean and median SSMI values with each logical distance are obtained by first taking the median 
SSMI over the three cases for each node pair with that logical distance and then taking the mean and median over 
those node pair SSMI values. 
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MTN physical location map shown in Figure 11.4. The resulting node location maps appear in 
Figure 12.2 for the six discretisation thresholds studied in the previous section. Apparently, the 
larger the threshold value, the more the nodes are divided into two parts, into a node cluster con-
sisting of tightly bound nodes and the remaining nodes loosely connected to any other nodes. 
 
Throughout this chapter, again, to avoid local minima, MDS is always run 20 times from varying 
initial node coordinate values, similar to Chapter 8. After node location maps are obtained, their 
respective graph structures are finally produced using the MGMN method with the distance 
thresholding scheme (see Chapter 8). Here the threshold distance is chosen so that at each dis-

 
Figure 12.2. Estimated node location maps for a real network of 30 nodes. From top-left to bottom-right, the 
maps correspond to the following discretisation thresholds: 0.325, 0.4, 0.475, 0.55, 0.625, and 0.7. Calculation: 
each map shows a single randomly picked case, each Procrustes-transformed with respect to the MTN physical 
node location map. 

 

 
Figure 12.3. Similarity measures between estimated and MTN node location maps and their respective graph struc-
tures with a real network of 30 nodes. NDC, GC, and SSR are shown as functions of discretisation threshold. 
NDC is calculated with respect to MTN logical distances (circles) and MTN physical internode distances (squares). 
Calculation: with each discretisation threshold, measure values are median values over the respective measure val-
ues calculated with three cases.  
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cretisation threshold, the average number of neighbours per node, ܣ, is equal to 8.73, which is 
the average number of neighbours according to the MTN logical topology. Figure 12.3 shows the 
node distance (NDC) and graph correlation (GC) measures used in Chapter 8 for estimated maps 
and graphs. Because two pieces of topology information are available from the MTN, the NDC 
is calculated at each discretisation threshold with respect to both, integer-valued logical distances 
in the MTN logical topology and continuous-valued internode distances according to the MTN 
physical node location map. GC is calculated only with respect to MTN logical distances. As the 
Procrustes transformation is taken with respect to the MTN physical location map, the final SSR 
criterion describes the similarity between the estimated location map and the MTN physical loca-
tion map.  
  

 

 

 
Figure 12.4. Distributions of internode distances on estimated node location maps of MTN logical neighbours 
(left-hand-side bars) and of all nodes (right-hand-side bars), and corresponding distribution similarity measures 
(bottom). Distribution plots from top-left to middle-right are shown for the following discretisation thresholds: 
0.325, 0.4, 0.475, 0.55, 0.625, and 0.7. KLD (bottom-left), JSD (bottom-centre), and CSS approximation of 
KLD (bottom-right) are shown for all 19 discretisation thresholds. Calculation: with each discretisation threshold, 
histograms are calculated by using all the data of the three cases with bars defined at equal intervals. The histo-
grams are then represented in the form of probability densities. With each discretisation and with each case, meas-
ures are calculated with the following bin widths in the histogram estimates: from 0.008 to 0.08 at constant inter-
vals of 0.001. All histograms are estimated at a distance range from 0.008 to 0.8. With each discretisation, each 
measure is then averaged over the respective measure values obtained with each bin width, and the values are then 
further averaged over the three cases.  
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Correlation measures are shown in Figure 12.3 as functions of the discretisation threshold. As 
could be expected, the correlation values here are clearly smaller than in the synthetic network 
cases, where the largest NDC and GC values were well above 0.6. Here NDC lies near 0.3 when 
calculated with respect to the MTN logical topology, and GC fluctuates near 0.27. NDCs calcu-
lated with respect to the physical location map assume clearly smaller values than when calculated 
with respect to the MTN logical topology; hence estimated topologies seem similar to the MTN 
logical topology.  
 
In Figure 12.1, according to ܴே, the contribution of the Ising model interaction term is clearly 
larger than that of the loading term. This may explain why the effect of physical node locations 
does not show in the state data as strongly as that of logical relations, and why the NDC is clearly 
smaller when calculated with respect to MTN physical internode distances. Also the form of the 
MTN physical node location map, shown in Figure 11.4, may partly explain its small contribution 
with the map not being circular as typically produced by MDS in estimating logical and data-
based maps. Altogether, the correlation measures are quite independent of the discretisation 
threshold, whereas according to the SSR criterion, the best node location map estimates are ob-
tained with discretisation thresholds of roughly above 0.5. 

 
Figure 12.4 shows distributions of internode distances on estimated location maps between logi-
cal neighbours according to the MTN logical topology and between all nodes. Calculations are 
here similar to those in Subsection 8.5.3, and results are again shown for the six discretisation 
thresholds. Because the distributions are difficult to compare visually, the KLD, JSD, and CSS 
approximation of the KLD, each introduced in Chapter 5, are calculated for each discretisation. 

 
Figure 12.5. Histograms of MTN logical distances of estimated graph neighbours. Bars with each logical distance 
from left to right correspond to increasing discretisation threshold from 0.275 to 0.725 at even intervals of 
0.025. Calculation: with each discretisation threshold, histograms are first calculated for all three cases, then the 
hits at each bar are summed over the hits in the three cases, and finally the number of hits at each bar is divided by 
the total number of hits in the three cases. 
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Because based on histogram estimates, these measures are sensitive to the number of bins in the 
histograms. Thus with each discretisation, several histograms with a varying number of bins are 
used, and final values are averaged over values obtained with the various bin numbers.  
 
The measures are shown in Figure 12.4; the KLD and the JSD are very similar, whereas the CSS 
approximation of the KLD shows similarities also with the two other measures, and, additionally, 
a linearly increasing trend with an increasing discretisation threshold. In general, in two discretisa-
tion modes, at about 0.4 and 0.6, the two distributions show the closest similarity. The two 
humps were not observable in the distance correlation measures, and may have been caused by 
the properties of this particular data set. Yet the two humps can be clearly seen in each distribu-
tion similarity measure. 
 
Figure 12.5 shows the distribution of MTN logical distances between estimated graph neighbours 
at all discretisation thresholds. The threshold distance increases in the bars from left to right, and 
the distributions are evaluated as in Subsection 8.5.3. For comparison, the proportions of node 
pairs assuming the three logical distances among all possible node pairs are 0.301, 0.561, and 
0.138. For estimated graph neighbours, the proportions are clearly larger at small logical dis-
tances than the above among all possible node pairs. In shape, the bars at logical distance one in 
Figure 12.5 follow roughly the shape of the JSD measure in Figure 12.4. As could be expected, 
the proportion of nodes with node distance one in Figure 12.5 assumes on average smaller values 
than in the respective histograms with synthetic data, shown in Figure 8.7.  

12.3 Effect of Neighbourhood Size 

In Section 12.2, the threshold distance to define graph neighbours with the MGMN method was 
selected according to prior knowledge of ܣ in the MTN logical topology. When prior informa-
tion is not available, several distance thresholds can be tested and one chosen that leads to rea-
sonable model predictions and small model parameter uncertainties. In this section, several 

  
Figure 12.6. Effect of neighbourhood size on MGMN graph estimation. The left-hand plot shows ܴԢ (circles) and 
ܴே (squares) as functions of ܣᇱ, and the right-hand plot shows ASSMI as a function of ܣᇱ. Calculation: ܴԢ and ܴே 
are median values over the respective measures calculated for three cases. ASSMI is the median value over the 
respective measure calculated for three cases as averages over pairwise SSMI values. 



12. TOPOLOGY IDENTIFICATION FOR MTNS 109
 

threshold distances are tested to study the sensitivity of MGMN graph estimation and to ensure 
that use of prior information yields a good topology estimate. GC is applied here as a graph simi-
larity measure, and distance threshold values are chosen such that on the estimated graph ܣ, de-
noted here by ܣԢ, ranges from 7.0 to 10.4 at intervals of 0.2. The discretisation threshold is cho-
sen to be 0.4. 
 
As the data and the true ܣ are the same in each case, the ASSMI is not affected, but ܴԢ and ܴே 
vary, because their calculation is based on estimated neighbourhoods. Figure 12.6 shows ܴԢ, ܴே, 
and GC as functions of ܣԢ. The term ratio ܴԢ increases linearly in ܣԢ, as expected, while ܴே is 
almost constant since ܬԢ/ܪԢ apparently compensates for the effect of changing neighbourhoods. 
According to the GC, best graph estimates are obtained between ܣᇱ ൌ 7 and ܣᇱ ൌ 8.6. Above 
ᇱܣ ൌ 8.6, the GC drops when ܣᇱ is increased to 8.8, i.e., just around the prior-information-based 
ܣ where ,ܣ ൌ 8.73. According to Figure 12.3, with ܣᇱ ൌ ܣ ൌ 8.73, the GC is about 0.26, which 
lies in the middle of the two steps in Figure 12.6. Hence ܣ appears as a sort of upper limit of a 
proper neighbourhood size, even though the GC values above it are only less than 10% smaller. 
 
Figure 12.7 shows further the proportion of estimated node pairs at each MTN logical distance. 
At logical distance one, this proportion is nearly constant over the range of ܣᇱ. The proportion 
of correct neighbours might have been expected larger with a small ܣᇱ, and then to decrease with 
an increasing ܣᇱ. However, apparently the proportions of correct and false neighbours increase at 
the same rate when ܣᇱ is increased. Later in Section 13.3, the effect of neighbourhood size is dis-
cussed in view of parameter estimation together with other methods for choosing the threshold 
distance correctly.  

 
Figure 12.7. Histograms of MTN logical distances of estimated graph neighbours. Bars with each logical distance 
from left to right correspond to increasing ܣᇱ from 7.0 to 10.4 at even intervals of 0.2. Calculation: with each ܣᇱ, 
histograms are first calculated for all three cases, then the hits at each bar are summed over the hits in the three 
cases, and finally the number of hits at each bar is divided by the total number of hits in the three cases. 
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12.4 Effect of Network Size 

In this section, topology identification by the MGMN method is tested with a network of 132 
nodes, having ܣ ൌ 11.76, at the same discretisation thresholds as above. The 30-node network 
studied earlier is a subnetwork of this larger network. In the GSM MTN, all 132 nodes belong to 
one BSC. Because of excessive computation time with the larger network, only the SSCSS, an 
approximation of the SSMI, is applied here as a node dependency measure. Because computation 
of the SSCSS requires no generation of synthetic data, it is much faster than that of the SSMI. In 
addition, because calculating the SSCSS is deterministic, calculations are not repeated thrice. 
However, as above, MDS is still repeated 20 times to reduce the stochastic effects related to the 
calculation of location map estimates.  

 
Figure 12.8. Logical (left) and physical (right) location map presentations of  132 BTS nodes. Calculation: the 
physical location map shows the physical node locations scaled with the respective Frobenius norm. The logical 
location map is obtained by applying non-metric MDS to logical distances, calculated for the nodes from logical 
neighbourhood relations. Then the map is further scaled with the respective Frobenius norm and Procrustes-
transformed with respect to the physical location map.

 

 
Figure 12.9. Comparison of physical and logical internode distances. Mean (circles) and median (squares) values of 
physical internode distances according to the physical node location map are shown as a function of corresponding 
internode logical distances according to the MTN logical topology. Calculation: for each node pair with a certain 
logical distance, mean and median values are taken over the physical (Euclidean) distances between the nodes. 
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The problem in testing the methods with a large MTN is that the number of data observations 
cannot be increased as with synthetic networks in Chapter 8. It was concluded in Chapter 8 that 
the number of observations should be increased at least linearly in the number of network nodes, 
and that with a synthetic network of 120 nodes the data with ܮ ൌ 270 was too small for accu-
rate results. In any case, only 270 network observations are available here, and after some are 
further removed because of missing data values in many nodes, the data finally amounts to 260 
observations. The data is preprocessed here like with the smaller network. 
 
The location map, obtained when non-metric MDS is applied to the MTN logical topology, and 
the respective true geography of nodes are shown in Figure 12.8. The previous 30-node subset is 
part of the main cluster on the physical location map. Most nodes are physically located near 
each other and form a cluster, whereas the remainder form a few small clusters outside the main 
cluster. Because the two location maps are difficult to compare visually, and though they seem to 

 

 
Figure 12.10. Network coherence with a real network of 132 nodes. Top-left plot shows ܴԢ (circles) and ܴே 
(squares), and the top-right plot ASSCSS, as functions of discretisation threshold. Mean (bottom-left) and median 
(bottom-right) values of SSCSS are shown as functions of the logical (graph) distance of nodes with discretisation 
thresholds 0.325 (asterisks), 0.4 (circles), 0.475 (diamonds), 0.55 (squares), 0.625 (plus signs), and 0.7 (trian-
gles). Calculation: ܴԢ, ܴே and ASSCSS are all calculated from a single case with  the ASSCSS as the average over 
pairwise SSCSS values. Mean and median SSCSS values are obtained by taking, respectively, the mean and the 
median over the node pair SSCSS values with each logical distance. 
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assume a somewhat similar form, Figure 12.9 shows mean and median internode distances on the 
physical location map at each logical distance, i.e., graph distance according to the MTN logical 
topology. The physical distance increases monotonically as the logical distance is increased, but 
drops at the largest logical distance, at which there are only a few nodes. Overall, the two location 
maps appear to be similar. 
 
Network coherence is studied in Figure 12.10, which shows ܴ and the ASSCSS (analogous to 
ASSMI) as functions of the discretisation threshold. Like the ASSMI with the smaller, 30-node 
network in Section 12.1, the ASSCSS degrades nearly linearly as the discretisation threshold in-
creases. Both ܴԢ and ܴே peak near the discretisation threshold 0.4, after which the two measures 
decrease as the discretisation threshold increases. Apparently, the denominator in Eq. (8.7) is 
very small near the discretisation threshold 0.4. Figure 12.10 also shows mean and median SSCSS 
values as functions of the MTN logical distance with the following six discretisations thresholds: 
0.325, 0.4, 0.475, 0.55, 0.625, and 0.7. The coherence decreases as the logical distance in-
creases, the decrease becoming steeper at a larger discretisation threshold. At the largest logical 
distance, the number of data points is small; hence SSCSS values are highly uncertain. Estimated 
node location maps at the six discretisation thresholds are shown in Figure 12.11. The maps are 
difficult to compare visually, but at least each map consists of a large node cluster and some 
loosely connected nodes in accordance with the logical and physical location maps. 
 
Figure 12.12 shows node distance and graph correlation values as functions of the discretisation 
threshold. The NDC calculated with respect to both physical and logical distances behaves simi-
larly. The NDC and GC both are rather small except at about discretisation threshold 0.6, at 
which the correlation suddenly increases. At this particular threshold, the correlation is close to  

 

 
Figure 12.11. Estimated node location maps for a real network of 132 nodes. From top-left to bottom-right, maps 
correspond to the following discretisation thresholds: 0.325, 0.4, 0.475, 0.55, 0.625, and 0.7. Calculation: each 
map presents a single case, each Procrustes-transformed with respect to the MTN physical node location map.  
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Figure 12.12. Similarity measures between estimated and MTN node location maps and the respective graph struc-
tures with a real network of 132 nodes. NDC, GC, and SSR are shown as functions of discretisation threshold. 
NDC is calculated with respect to MTN logical distances (circles) and MTN physical internode distances (squares). 
Calculation: with each discretisation threshold, measure values are calculated from a single case. 

 

 
Figure 12.13. Distributions of internode distances on estimated node location maps of MTN logical neighbours 
(left-hand-side bars) and of all nodes (right-hand-side bars), and the corresponding distribution similarity measures 
(bottom). Distribution plots from top-left to middle-right are shown for the following discretisation thresholds: 
0.325, 0.4, 0.475, 0.55, 0.625, and 0.7. KLD (bottom-left), JSD (bottom-centre), and CSS approximation of 
KLD (bottom-right) are shown for all  19 discretisation thresholds. Calculation: at each discretisation threshold, 
histograms are calculated from a single case, and represented in the form of probability densities. At each discreti-
sation measures are calculated with the following bin widths in the histogram estimates: from 0.005 to 0.05 at 
constant intervals of 0.001. All histograms are estimated in a distance range from 0 to 0.35. At each discretisa-
tion, each measure is then averaged over the respective measure values obtained at each bin width with the single 
case used. 
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the values obtained with the smaller, 30-node network, though in the smaller network correlation 
appears in a wider range of discretisation thresholds. In addition, the SSR decreases at about 0.6, 
at which it shows values similar to those of the smaller network. Hence, the success of topology 
identification by the MGMN method with the larger network seems sensitive specially to the 
choice of discretisation threshold. However, if the threshold is chosen appropriately, results are 
almost as good as those obtained with the smaller network. This is somewhat unexpected, be-
cause the data available for the large network was deemed inadequately small. Furthermore, the 
best topology estimates for both the large and small network are obtained at the same discretisa-
tion threshold, 0.6, though the small network produced good results also at 0.4. 
 
Figure 12.13 shows distributions of node distances on estimated location maps between MTN 
logical neighbours and all nodes. The histograms are calculated as in Section 12.2, and results are 
shown for the six discretisation thresholds. Compared visually, the two distributions seem dis-
similar at large discretisation thresholds. To verify this, the KLD, JSD, and CSS approximation of 
the KLD are again calculated. To avoid measure sensitivity to the number of bins in the histo-
gram, each measure is calculated with several histograms corresponding to a various number of 
bins and then averaged. Figure 12.13 shows that the three measures again behave similarly. In 
particular, the KLD and JSD both have a peak at discretisation threshold 0.6. Like in the 30-
node network, the CSS is otherwise nearly similar to the other two measures but increases also 
between discretisation thresholds 0.6 and 0.7. We conclude that the topology correlation meas-
ures and distribution similarity measures give similar results. 
 
Figure 12.14 shows distributions of MTN logical distances of estimated graph neighbours at all 
the analysed discretisation thresholds. The proportions of nodes at each logical distance among 

 
Figure 12.14. Histograms of MTN logical distances of estimated graph neighbours. Bars at each logical distance 
from left to right correspond to increasing discretisation thresholds from 0.275 to 0.725 at even intervals of 
0.025. Calculation: at each discretisation threshold, histograms are calculated from a single case. 
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all possible node pairs are as follows: 0.090, 0.229, 0.258, 0.182, 0.124, 0.075, 0.026, and 
0.015. Hence estimated neighbourhoods clearly assume smaller logical distance values. The 
peaks at logical distances one and two occur also at discretisation threshold 0.6. The curve 
shown in bars at logical distance one is similar to the curves formed by the previous distribution 
similarity measures in Figure 12.13. 
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13. Parameter Identification for MTNs 

This chapter focuses on the parameter identification of MRF models for MTNs with the model 
graph structures defined by topologies identified by the MGMN method in Chapter 12. To 
evaluate parameter estimation independently of topology estimation, also the MTN logical topol-
ogy is analysed by assuming that it is the true MRF model graph structure. The Ising model is 
applied again as the MRF model, and parameter identification is tested with the same data discre-
tisation thresholds as in Chapter 12 and with the data discussed in Chapter 11. All calculations 
are repeated three times at each discretisation threshold to reduce stochastic effects related to 
MRF model parameter estimation. Model identification is also examined with varying node 
neighbourhood sizes and with the larger network used in Chapter 12. 
 
Section 13.1 deals with Ising model parameter estimates and parameter uncertainty obtained at 
the varying data discretisation thresholds for the 30-node network. Node state probability pre-
dictions made with the identified models are then discussed in Section 13.2 as methods for evalu-
ating the entire MRF model identification scheme. Section 13.3 continues the analysis started in 
Section 12.3 and considers the effect of the threshold distance in defining graph structures for 
model parameter identification. Section 13.3 also studies the uncertainty of parameter estimates 
to define an appropriate threshold distance value for graph structure. Similarly, Section 13.4 con-
tinues the analysis in Section 12.4 by studying model identification for the large, 132-node net-
work.  

13.1 Parameter Estimates and Uncertainties 

Ising model parameters ሺܬ, ,ܪ ݄଴ሻ are estimated by the pseudolikelihood method already applied 
in Chapter 9. Parameter identification is studied at all discretisation thresholds ranging from 
0.275 to 0.725 at 0.025 intervals. At each discretisation threshold, the corresponding topology 
estimate in Section 12.2 is used for graph structure in the Ising model. However, the MTN logi-
cal topology is chosen as an alternative Ising model graph structure, and considered as a refer-
ence topology. Estimated parameter values based on both the estimated graph structure and the 
MTN logical topology are shown in Figure 13.1 as functions of the discretisation threshold.  

 

 
Figure 13.1. Ising model parameter estimates. Estimates ܬԢ (left), ܪԢ (centre), and ݄଴Ԣ (right) are shown as functions 
of discretisation threshold. The results are shown with the MTN logical topology (squares) and with the estimated 
topology (circles). Calculation: parameter values are medians over the respective values with the three cases. 
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It is difficult to evaluate parameter estimates when true parameter values are unknown. At least, 
no drastic changes or large fluctuations seem to occur in the parameter estimates at any discreti-
sation threshold. ܪԢ behaves smoothly and assumes values similar between the estimated graph 
structure and the MTN logical topology. Apparently, ܪԢ is not very sensitive to the graph struc-
ture, because it is related to the external load term in the Ising model, whereas the neighbour-
hoods affect directly the interaction term. Estimates ܬԢ and ݄଴Ԣ are more sensitive to the graph 
structure, and particularly at the largest discretisation thresholds, the difference grows in the es-
timates between the two topologies.  
 
In particular, changing the discretisation threshold, i.e., the proportion of node observations in 
state െ1, directly affects ݄଴Ԣ, because ݄଴ defines the threshold for loading values below which 
nodes favour states െ1 and above which states ൅1 are favoured, respectively. Since a kind of 
reverse relation exists between ܬ and ݄଴, discussed in Subsection 9.4.1, also ܬԢ is affected. Overall, 
at small discretisation thresholds, parameter estimates differ slightly for each parameter between 
the estimated and reference topology; however, at large discretisation thresholds, results differ 
markedly. Consequently, the latter difference suggests that also the physical topology affects 
MRF model behaviour, as previously discussed in Chapters 2 and 11. Therefore, the MTN logical 
topology should not be considered here as the true topology for MRF modelling.  
 
Figure 13.2 shows uncertainties and relative uncertainties of parameter estimates, derived 
through Gaussian distribution approximations, explained in chapter 9. The uncertainty of ܪԢ is 
almost identical to the estimated graph and the MTN logical topology. In summary, the parame-
ter uncertainties follow almost the respective parameter estimate values in Figure 13.1. Hence the  

 

 
Figure 13.2. Uncertainties (top row) and relative uncertainties (bottom row) of estimated Ising model parameters. 
Uncertainties of ܬԢ (left column), ܪԢ (centre column), and ݄଴Ԣ (right column) are shown as functions of discretisa-
tion threshold. Results are shown with the MTN logical topology (squares) and with the estimated topology (cir-
cles). Calculation: uncertainty values are medians over the respective values in three cases. 



13. PARAMETER IDENTIFICATION FOR MTNS 119
 

 

 

Figure 13.3. True marginal probability distributions of Ising model parameters (circles) and their Gaussian ap-
proximations (solid curves), when estimated graph structures are used. Distributions are shown for ܬ (left column), 
 and ݄଴ (right column), and from top to bottom correspond to the following six discretisation ,(centre column) ܪ
thresholds: 0.325, 0.4, 0.475, 0.55, 0.625, and 0.7. Calculation: in each case, distributions are shown only for a 
single randomly picked ensemble. 
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changes in the relative uncertainties are quite small. With the estimated topology, the relative un-
certainty for ܪԢ and ݄଴Ԣ is at its highest between 0.5 and 0.6, and for ܬԢ at its lowest at discretisa-
tion threshold 0.5.  
 
To justify the use of standard deviations of marginal Gaussian distributions as parameter uncer-
tainties, marginal Gaussians and the respective marginal parameter probability distributions de-
rived from the true joint probability distribution are shown in Figure 13.3 with estimated graph 
structures for the six discretisation thresholds. Though the true marginal distributions are slightly 
skewed at large discretisation thresholds, the marginal Gaussian distributions seem to approxi-
mate the true marginal distributions well enough to be used in uncertainty analysis. 

13.2 Model Predictions 

The logical and physical topologies of the MTN considered here are known, but in a general case 
its true network topology may be uncertain, unknown, or known only partially through some 
information. Here we have two, mostly overlapping but also somewhat different, pieces of to-
pology information. Though an estimated topology can be compared to these topologies, we 
should consider other topology evaluation methods as well, because we cannot be certain as to 
which of the two topologies the estimated one should most resemble. Furthermore, because true 
MRF model parameters are never known for real networks, estimated parameters must somehow 
be evaluated.  
 
Unfortunately, good methods are not available for evaluating topologies and parameters. Here 
the full conditionals of the Ising model are applied to predict node states with the same data set 

 

 
Figure 13.4. Predictions with estimated (structure and parameters) Ising models. Node state െ1 probability predic-
tions are shown for each node as a function of data-calculated node state െ1 probabilities. Predictions are shown 
in dots, linear regression lines fitted to predictions in solid lines, and reference curves of optimal predictions in 
dashed lines. Predictions from top-left to bottom-right correspond to the following six discretisation thresholds: 
0.325, 0.4, 0.475, 0.55, 0.625, and 0.7. Calculation: among the three cases, shown is the one that corresponds to 
the minimum average node state െ1 prediction error. 
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already used in the model identification phase. Due to the limited number of observations avail-
able, no validation data set can be separated from the overall data. The node state probability 
predictions applied here are based on the cross-validation scheme explained in detail in Chapter 
9. In addition, state probability predictions are here compared to their respective state probabili-
ties calculated directly from the data for each network node.  
 
Figure 13.4 shows identified model-based probability predictions for node state െ1 as functions 
of respective data-calculated probabilities for all the 30 nodes at the six discretisation thresholds. 
Linear regression lines are shown fitted to the prediction data. Evidently, predictions are at their 
best at small discretisation thresholds, whereas the nodes’ characteristic features cannot be pre-
dicted at large discretisation thresholds. 
 
Figure 13.5 shows absolute errors in state െ1 probability predictions and slopes of fitted linear 
regression lines for models based on both estimated graph structures and the MTN logical to-
pology. Clearly, prediction errors are smallest and slopes largest at the smallest discretisation 

 
Figure 13.5. Node state െ1 absolute predictions errors (left) and slopes of fitted linear regression lines (right) as 
functions of discretisation value. Results are shown for the MTN-logical-topology-based (squares) and estimated-
graph-structure-based Ising models (circles). Calculation: absolute prediction errors are medians over three cases, 
for which each error is calculated as an average over all nodes. Slope coefficients are medians of the respective 
coefficients obtained in each case. 

 
Figure 13.6. Ising model parameter estimates. Estimates ܬԢ (left), ܪԢ (centre), and ݄଴Ԣ (right) are shown as functions 
of ܣԢ. Results are obtained with the estimated topology. Calculation: parameter values are medians over the respec-
tive values in three cases. 
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thresholds. Hence best predictions are obviously obtained at the smallest discretisation thresh-
olds. Interestingly, the models based on estimated graph structures constantly yield better predic-
tions in the whole range of discretisation thresholds than those based on the MTN logical topol-
ogy. Therefore, data-based graph structure estimates seem to be capable of capturing more in-
formation about node interactions than logical relations can do alone, presumably, a joint impact 
of the logical and physical MTN topologies. 

13.3 Effect of Neighbourhood Size 

The sensitivity of the topology identification results to the choice of the threshold distance value, 
which defines node neighbourhoods, was tested in Section 12.3. This section continues the 
analysis by studying how the respective parameter identification results are affected by the chosen 
neighbourhood size. As in Section 12.3, the average neighbourhood size on the estimated graph, 
again denoted by ܣԢ, is varied from 7 to 10.4 at intervals of 0.2, and with each ܣԢ, the corre-
sponding graph structure estimate in Section 12.3 is applied for graph structure in the Ising 
model. Parameter estimates are shown in Figure 13.6 as functions of ܣԢ. The estimate ܬԢ de-
creases with the increasing ܣԢ, apparently because the interaction term of the Ising model is addi-
tive in ܣԢ; thus the increasing ܣԢ is compensated for by the decreasing ܬԢ. The ratio ܬᇱ/ܣԢ is al-
most constant with all the neighbourhood sizes analysed. Because ܬ and ݄଴ have the same magni-
tude effect, though opposite in sign, on model coherence, changes in ݄଴ᇱ  are opposite to those in 
 .Ԣ is a more random function of neighbourhood size than the two other parametersܪ Ԣ. Estimateܬ
 
Figure 13.7 shows the uncertainty and relative uncertainty of the estimated parameters. Accord-
ing to both figures, the uncertainty of ܬᇱ decreases as ܣԢ increases, whereas the uncertainties of 

 

 
Figure 13.7. Uncertainties (top row) and relative uncertainties (bottom row) of estimated Ising model parameters. 
Uncertainties of ܬԢ (left column), ܪԢ (centre column), and ݄଴Ԣ (right column) are shown as functions of ܣԢ. Results 
are obtained with the estimated topology. Calculation: uncertainty values are medians over the respective values in 
three cases. 
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Figure 13.8. True marginal probability distributions of Ising model parameters (circles) and their Gaussian ap-
proximations (solid curves), when estimated graph structures are used. Distributions are shown for ܬ (left column), 
 ,Ԣ values: 7.2ܣ and ݄଴ (right column), and from top to bottom correspond to the following six ,(centre column) ܪ
7.8, 8.4, 9.0, 9.6, and 10.2. Calculation: in each case, distributions are shown only for a single randomly picked 
ensemble. 
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the other two parameters increase. Parameter uncertainty can also be used to choose an appro-
priate distance threshold to define the graph, if no prior information is available about the true ܣ. 
Hence minimising the overall uncertainty of the parameters, with the weight on ܬ relating to the 
model’s interaction term, may lead to a reasonable graph structure. Here the uncertainty of all 
three parameters is relatively small around at ܣԢ ൌ 8.73, which is the average neighbourhood size 
according to the MTN logical topology. Figure 13.8 shows marginal parameter distributions and 
the respective marginal Gaussian approximations at the following values of ܣԢ: 7.2, 7.8, 8.4, 9.0, 
9.6, and 10.2. Despite some minor deviations, the Gaussian approximations are again good. 
 
Figure 13.9 presents the state probability prediction results with the identified models for six val-
ues of ܣԢ. Overall, changes in the prediction results are quite small. However, Figure 13.10, 
showing prediction errors and slopes of linear regression lines as functions of ܣԢ, is more infor-
mative. Though the numerical values change minimally, prediction errors evidently become 
smaller and the slopes larger as ܣԢ increases, indicating better predictions with large neighbour-
hood sizes. In conclusion, neither topology nor model parameter estimates are particularly sensi-
tive to ܣԢ. As already noted in Section 12.3, when ܣԢ is increased, correct neighbours increase in 
number at the same rate as incorrect ones, thus affecting results only slightly.  

13.4 Effect of Network Size  

In Section 12.4, a network of 132 BTS cell nodes and with 260 observations was analysed to 
demonstrate how the MGMN topology identification method works with large MTNs. Here the 
parameter estimation in the model identification is analysed for this network by using the corre-
sponding estimated topologies for graph structures in the Ising model. Figure 13.11 shows esti-

 

 
Figure 13.9. Predictions with estimated (structure and parameters) Ising models. Node state െ1 probability predic-
tions are shown for each node as a function of data-calculated node state െ1 probabilities. Predictions are shown 
in dots, linear regression lines fitted to predictions in solid lines, and reference curves of optimal predictions in 
dashed lines. Predictions from top-left to bottom-right correspond to the following six ܣԢ values: 7.2, 7.8, 8.4, 
9.0, 9.6, and 10.2. Calculation: among the three cases, shown is the one that corresponds to the minimum average 
node state െ1 prediction error. 
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mated parameter values, based on estimated graph structures and the MTN logical topology, as 
functions of discretisation threshold. With the MTN logical topology, ܬԢ and ܪԢ are both rather 
smooth, ܬԢ assuming its minimum value at a discretisation threshold of about 0.5 and ܪԢ decreas-
ing as the discretisation threshold increases. However, ݄଴Ԣ behaves more strangely, diverging at 
discretisation threshold 0.4.  
 
With the estimated graph structure, ܬԢ increases as the discretisation threshold increases and, at 
about 0.6, nearly coincides with the respective ܬԢ value with the MTN logical topology. Further-
more, ܪԢ is similar with both topologies, and at about 0.6, the results with the two topologies are 
the most similar. With the estimated graph structure, also ݄଴Ԣ somewhat follows the behaviour of 
the respective ݄଴Ԣ with the MTN logical topology, except that with the estimated topology, ݄଴Ԣ 
diverges at about discretisation threshold 0.35. With both topologies, the divergence of ݄଴Ԣ oc-
curs when the respective ܪԢ is close to zero. ܪԢ changing its sign, in fact, has major consequences 
to the model behaviour, because the impact of node loading to node state is reversed; e.g., a posi-
tive loading previously favouring one node state suddenly starts to favour the other state. There-
fore, the sudden change in ݄଴Ԣ, to some extent, compensates the change in the impact of ܪԢ. 

 
Figure 13.10. Node state െ1 absolute predictions errors (left) and the slopes of the fitted linear regression lines 
(right) as functions of ܣԢ. The results are with the estimated Ising models. Calculation: absolute prediction errors 
are medians over the three cases, for which each the error is calculated as average over all the nodes. The slope 
coefficients are medians of the respective coefficients obtained with each case. 

 
Figure 13.11. Ising model parameter estimates. Estimates ܬԢ (left), ܪԢ (centre), and ݄଴Ԣ (right) are shown as func-
tions of discretisation value. Results are shown with the MTN logical topology (squares) and estimated topology 
(circles). Calculation: parameter values are based on a single case. 



126 
 

Parameter uncertainties are studied through Gaussian distribution estimates of true parameter 
probability distributions. Some numerical difficulties emerge when true marginal probability dis-
tributions are calculated, mostly because of the diverging values of ݄଴Ԣ, causing wide variation in 
the log-pseudolikelihood values and spikiness in the true distributions when the exponential of 
the log-pseudolikelihood value is taken (see Chapter 9). Therefore, the estimated parameter val-
ues in Figure 13.11 are somewhat unreliable, in particular those of ܪ′ and ݄଴Ԣ, which is seen in 
Figure 13.12, presenting the respective absolute and relative parameter uncertainties. The interac-
tion term of the Ising model thus possibly dominates the external load term, which is also sup-
ported by the considerably large neighbourhood size (11.76) and Figure 12.10, where the term 
ratio measures peaked at about discretisation threshold 0.6. Moreover, the small data size com-
pared to the size of the network may largely account for the problems of parameter estimation. 
 
Figure 13.13 shows state probability predictions again with the six discretisation thresholds. The 
predictions are slightly better at large discretisation thresholds, but rather poor overall, a fact 
supported by Figure 13.14, showing respective absolute prediction errors and slopes of regres-
sion lines, the former decreasing and the latter increasing slightly at large discretisation thresh-
olds. Based on the MTN logical topology, the prediction error peaks at a discretisation threshold 
of about 0.55 and the slope assumes its largest value at the smallest discretisation values and 
again at about discretisation value 0.6. Altogether, though some results are somewhat unreliable 
with the 132-node network, and probably because of the relatively limited data, most results 
support the selection of a rather large discretisation threshold, one at which nodes would assume 
state െ1 in 60% of observations. 

 

 
Figure 13.12. Uncertainties (top row) and relative uncertainties (in absolute values) (bottom row) of estimated Ising 
model parameters. Uncertainties of ܬԢ (left column), ܪԢ (centre column), and ݄଴Ԣ (right column) are shown as func-
tions of discretisation threshold. Results are shown with the MTN logical topology (squares) and estimated topol-
ogy (circles). Calculation: uncertainty values are based on a single case. 
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Figure 13.13. Predictions with estimated (structure and parameters) Ising models. Node state െ1 probability pre-
dictions are shown for each node as a function of data-calculated node state െ1 probabilities. Predictions are 
shown in dots, linear regression lines fitted to predictions in solid lines, and reference curves of optimal predic-
tions in dashed lines. Predictions from top-left to bottom-right correspond to the following six discretisation 
thresholds: 0.325, 0.4, 0.475, 0.55, 0.625, and 0.7. Calculation: predictions are obtained with a single case. 

 
Figure 13.14. Node state െ1 absolute predictions errors (left) and slopes of fitted linear regression lines (right). 
Results are shown for the MTN-topology-based (squares) and estimated-graph-structure-based Ising models (cir-
cles). Calculation: absolute prediction errors are medians over average node prediction errors in a single case. Slope 
coefficients are obtained in a single case. 
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14. System Properties for MTNs 

This chapter studies the qualitative properties of MTNs with the Ising model by MCMC-
simulating the models identified in Chapters 12–13. Because the focus is particularly on how 
MTNs behave under varying external loading conditions, these studies resemble Chapter 10, 
where the qualitative properties of the Ising model were studied under similar conditions. In 
Chapters 12–13, MRF models were identified mainly for a network of 30 BTS cell nodes, be-
cause much computation time was needed to test the identification with varying discretisations 
and neighbourhood sizes. However, here the large MTN of 132 nodes, also studied in the con-
text of identification, is simulated, because simulation results on large networks are less sensitive 
to particular topological properties and to random fluctuations in node states. 
 
In Chapters 12–13, with the network of 132 BTS cell nodes, the estimated graph structure re-
sembled most closely the MTN logical topology if the discretisation threshold was chosen to be 
about 0.6; hence the graph estimate at discretisation 0.6 is used here along with the MTN logical 
topology. Because, to some extent, the parameter estimates turned out unreliable with the 132-
node network, instead of only applying the estimated parameter here, we vary the interaction pa-
rameter of the Ising model as done with the synthetic network in Chapter 10. Nevertheless, 
model simulations are run also using estimated model parameters. 
 
In structure, this chapter is similar to Chapter 10. In Section 14.1, the qualitative behaviour of the 
Ising model is studied via MCMC simulations under a varying global external loading using esti-
mated graph structures and the MTN logical topology. In Section 14.2, a heavy local external 
loading is applied to certain nodes, and model behaviour is studied under a varying global exter-
nal loading. Finally, Section 14.3 focuses on transient dynamics and state fluctuations in the iden-
tified Ising models via MCMC simulation steps. 

14.1 Behaviour under Global External Loading 

This section examines the global state of the Ising model under changing global external loading 
values using graph structures identified in Chapter 12 and the MTN logical topology for refer-
ence. Here the estimated graph structure corresponding to a discretisation threshold of 0.6 con-
stitutes the main case, because with this discretisation the graph estimate was found appropriate 
in Chapters 12–13. The corresponding estimated node location map is shown in Figure 14.1.  
 
The Ising model is simulated here first with ܬ values of 0.02, 0.2, and 2. Therefore, simulations 
resemble those of the synthetic network in Section 10.1. In addition, at each ܬ value, ܣԢ values of 
8.76, 11.76, and 14.76 are used to derive graph structures with varying connectivity. The mid-
dle case of ܣԢ equals ܣ according to the MTN logical topology. Because the case with a discreti-
sation threshold of 0.6 is our main case, graph structures are obtained from the node location 
map shown in Figure 14.1. Table 14.1 shows the values of the ratio ܬሚ ൌ  Ԣܣ–ܬ Ԣ with all testedܣ/ܬ
combinations. 
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A single network sample is MCMC generated with the Ising model with each nine ܣ–ܬԢ combina-
tions and external loading. Each simulation study is repeated, first, starting from the global initial 
state െ1 and then from the global initial state ൅1, respectively. The two initial values are again 
applied to reveal possible hysteresis phenomena exhibited by the model. In addition, again in all 
simulations, the uniform external loading is increased and decreased adiabatically.  
 
Figure 14.2 shows results with estimated graph structures applied in MCMC simulations. At 
ܬ ൌ 0.02, no hysteresis occurs, and transition is smooth between the two coherent states െ1 and 
൅1. Here simulations started with the two coherent states give exactly an equal global state de-
pendence on loading, because the MCMC random number generator is seeded identically at the 
beginning of each simulation. These results are practically independent of neighbourhood size. 
At ܬ ൌ 0.2, the simulation paths corresponding to the two initial states diverge and the model 
exhibits hysteresis. The larger the ܣԢ and ܬ values, the larger the coherence in the node states, 
requiring thus generally a large loading for ۄݏۃ to change. Here differences are quite small be-
tween the three ܣԢ values.  
 
The estimated node location map, shown in Figure 14.1, consists of a tight node cluster and 
nodes outside that cluster. Evidently, this structure causes the change in ۄݏۃ at ܬ ൌ 0.2 to happen 
roughly in two steps. First, the loosely connected nodes undergo state changes more or less inde-
pendently of each other. Only after the loading increases further, do the nodes in the node clus-
ter finally undergo state changes almost simultaneously, causing discontinuity in ۄݏۃ. The nodes 

 
Figure 14.1. Estimated node location map of 132 nodes with a discretisation threshold of 0.6. Calculation: the 
node location map is Procrustes-transformed with respect to the MTN physical node location map. 

 

Table 14.1. Values of ratio ܬሚ ൌ  .′ܣ and ܬ with respect to ′ܣ/ܬ

 ܬ  Ԣܣ  ሚܬ  ܬ  Ԣܣ  ሚܬ  ܬ  Ԣܣ  ሚܬ

0.02  8.76  2.28x10‐3  0.2 8.76  2.28x10‐2 2 8.76  2.28x10‐1 

0.02  11.76  1.70x10‐3  0.2 11.76 1.70x10‐2 2 11.76 1.70x10‐1 

0.02  14.76  1.35x10‐3  0.2 14.76 1.35x10‐2 2 14.76 1.35x10‐1 
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within the cluster change states almost simultaneously, because each has a large number of 
neighbours and thus the nodes behave very coherently. At ܬ ൌ 2 , results are otherwise similar to 
those at ܬ ൌ 0.2, but because coherence is now even larger, also loosely connected nodes un-
dergo state changes almost simultaneously. Large loadings are also required for any state change 
to occur; in particular, the loading value must be considerably increased for a final, discontinuous 
state jump to take place. 
 
The network can be seen as consisting of two parts, which behave differently especially at a large 
 ,The states of loosely connected nodes are still mostly determined by their external loadings .ܬ
because they have only a few neighbours, whereas an increase in the interaction term makes the 
states of more interconnected nodes very dependent on the states of their neighbours. Conse-
quently, the more interconnected the nodes, the more resistant the network to an increasing ex-
ternal loading, until at some critical loading, the nodes simultaneously change states, marking a 
discontinuous abrupt change in ۄݏۃ. Similar results are expected also with the other graph struc-
tures tested in Chapters 12–13, because they all consist of a tight cluster and loosely connected 
outside nodes. 
 
The MCMC simulations are repeated using the MTN logical topology for graph structure in the 
Ising model. Figure 14.3 shows results at the same three ܬ values. For comparison, results from 
Figure 14.2 are repeated here with a case corresponding to ܣ in the MTN logical topology, 
ܣ ൌ 11.76. At ܬ ൌ 0.02, results are similar to those with the estimated topology. However, with 
the two larger ܬ values, no such two-phased transition occurs in ۄݏۃ as with the estimated topol-
ogy. Rather (nearly) all nodes change states simultaneously, obviously because neighbourhood 
sizes are more evenly distributed in the MTN logical topology, giving rise to no highly connected 
node cluster. Evidently, the model changes its behaviour when the properties of the graph struc-
ture change. 

14.2 Behaviour under Local External Loading 

This section again studies the Ising model as a function of uniform global external loading, but 
now a subset of nodes has a constant heavy local loading. The study resembles Section 10.2, 

 
Figure 14.2. Model state behaviour with the estimated topology under global uniform external loading. The aver-
age state ۄݏۃ is shown as a function of ݄ with three ܬ values, 0.02 (left), 0.2 (centre), and 2 (right), and each with 
three ܣԢ values, 8.76 (squares), 11.76 (triangles), and 14.76 (circles). Calculation: results with each ݄ are average 
node states in a single simulated ensemble. With each ݄, two ensembles are simulated, one starting from ۄݏۃ ൌ െ1 
and the other from ۄݏۃ ൌ ൅1. 
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where changes in ۄݏۃ started earlier but appeared more gradually than without a heavy local load-
ing. Because loading typically correlates between physically close nodes, and to emulate true local 
loading changes, the heavy local loading again affects a group of nearby nodes. However, instead 
of choosing affected nodes according to the MTN physical topology, we select them here ac-
cording to the estimated node location map with a discretisation threshold of 0.6.  
 
Because the estimated node location map consists of a tight node cluster and a loosely connected 
part, the model may change its behaviour drastically depending on the network part that comes 
under a heavy local loading. Therefore, we consider local loading of nodes both inside and out-
side the node cluster and use the MTN logical topology as well. In simulations, first, a group of 
seven nodes is subjected to a constant heavy local loading, and loading is then further increased 
to cover 14 nodes; as in Section 10.2, the numbers correspond roughly to five and ten percent of 
a total of 132 nodes. Nodes under a constant heavy local loading (݄௟௢௖௔௟ ൌ 60) are shown in 
Figure 14.4, which depicts the estimated node location map in Figure 14.1. 

 
 

 
Figure 14.3. Model state behaviour under global external loading with the MTN logical topology (squares) and 
estimated graph structure (circles). The average state ۄݏۃ is shown as a function of ݄ with three ܬ values, 0.02 
(left), 0.2 (centre), and 2 (right), and each with ܣ ൌ 11.76. Calculation: results with each ݄, are average node 
states in a single simulated ensemble. With each ݄, two ensembles are simulated, one starting from ۄݏۃ ൌ െ1 and 
the other from ۄݏۃ ൌ ൅1. 

 
Figure 14.4. Heavy local external loading affecting 7 (left) and 14 nodes (right). Nodes inside the tight node cluster 
(circles) and nodes outside the node cluster (asterisks) are affected by the heavy local loading. 
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Let us first discuss a case with affected nodes chosen inside the node cluster, and consider the 
previously used nine ܣ–ܬԢ combinations. Figure 14.5 shows the results and also the reference 
cases without effects of local loading. In all these cases, transitions occur earlier than in the refer-
ence cases, and in some all nodes even change their states simultaneously. However, in most 
cases, a two-phased transition in ۄݏۃ occurs, though to complete the second phase requires a 
much smaller increase in loading than without the heavy local loading. Furthermore, with 14 
nodes affected, the model can bear much smaller global loading values than with only seven 
nodes affected; thus transition occurs at a lower uniform loading. Moving from ൅1 to െ1, local 
loading has the opposite effect with affected nodes slowing the state changes of the rest of the 
nodes inside the node cluster. However, transitions from ൅1 to െ1 are almost identical whether 
local loadings are included or not, except that affected nodes do not change states at all. 
 
Figure 14.6 shows results with all the nine ܣ–ܬԢ combinations when affected nodes are chosen 
outside the node cluster. Moving from െ1 to ൅1, transitions now appear similar to those with-
out a local loading. A two-phased transition in ۄݏۃ appears again with nodes outside the node 

 

 

 
Figure 14.5. Model state behaviour with the estimated topology with a heavy local external loading affecting nodes 
inside the node cluster. The average state ۄݏۃ is shown as a function of ݄ with three ܬ values, 0.02 (left column), 
0.2 (centre column), and 2 (right column), and each with three ܣԢ values, 8.76 (top row), 11.76 (middle row), and 
14.76 (bottom row). Heavy local loading affects 0 nodes (squares), 7 nodes (triangles), and 14 nodes (circles). 
Calculation: results with each ݄ are average node states in a single simulated ensemble. With each ݄, two ensem-
bles are simulated, one starting from ۄݏۃ ൌ െ1 and the other from ۄݏۃ ൌ ൅1. 



134 
 

cluster changing states first, to be followed by nodes within the node cluster simultaneously un-
dergoing state changes. Consequently, nodes affected by the local loading do not affect the quali-
tative transition properties of the average network state, because nodes chosen outside the node 
cluster are only loosely connected to the rest of the nodes and thus affect the node cluster very 
little. For the same reason, the node cluster is hardly affected at all whether seven or 14 nodes 
are affected. However, the number of heavily loaded nodes has its impact in that in the loosely 
connected part nodes change states the earlier the larger the group of affected nodes. The impact 
on transitions from ൅1 to െ1 is mostly similar, but in some cases a node cluster undergoes a 
transition somewhat later because of the slowing effect of the affected nodes. 
 
Figure 14.7 shows results in two local loading cases when the MTN logical topology is used with 
ܣ ൌ 11.76. As shown in Figure 12.8, the structure of the MTN logical topology is only slightly 
clustered. However, since the nodes affected by local loading are the same as before, i.e., chosen 
according to the estimated topology, they are not necessarily neighbours on the MTN logical to-
pology. Yet again, as the local loading is now brought into the network, in some cases the other-

 

 

 
Figure 14.6. Model state behaviour with the estimated topology with a heavy local external loading affecting nodes 
outside the node cluster. The average state ۄݏۃ is shown as a function of ݄ with three ܬ values, 0.02 (left column), 
0.2 (centre column), and 2 (right column), and each with three ܣԢ values, 8.76 (top row), 11.76 (middle row), and 
14.76 (bottom row). Heavy local loading affects 0 nodes (squares), 7 nodes (triangles), and 14 nodes (circles). 
Calculation: results with each ݄ are average node states in a single simulated ensemble. With each ݄, two ensem-
bles are simulated, one starting from ۄݏۃ ൌ െ1 and the other from ۄݏۃ ൌ ൅1. 



14. SYSTEM PROPERTIES FOR MTNS 135
 

wise discontinuous transitions become more like two-phased transitions. Because of similarities 
between the estimated and MTN logical topology, results also differ whether in the estimated 
topology affected nodes are chosen inside or outside the node cluster. 

 
Figure 14.8 shows simulation results when both estimated graph structures and estimated model 
parameters are applied with and without local loading (݄௟௢௖௔௟ ൌ 60) effects. Because significant 
variations in the Ising model parameter estimates between varying discretisations were found in 
Chapter 13, the simulations are studied here with three discretisation thresholds, 0.3, 0.45, and 
0.6, and with ܣԢ ൌ ܣ ൌ 11.76. The estimated model parameters in these cases are given in Table 
14.2. Because of negative ܪԢ at discretisation values 0.45 and 0.6, changes in ۄݏۃ are in the op-
posite direction than in the previous cases above. However, with discretisation value 0.3, changes 
in ۄݏۃ are in accordance with the previous cases, because with this discretisation ܪԢ is positive in 
sign. In addition, in all the three discretisation cases, changes in ۄݏۃ are mostly continuous, but 
also some discontinuities occur in ۄݏۃ, partially because of rather large gaps between changes in 
global loading. Some cases also display modest hysteresis and the hysteresis properties seem to be 
somewhat affected by the heavy local loading. Otherwise, the heavy local loading have only a 
small effect on ۄݏۃ. We conclude that owing to the small data set available, relative to the net-
work size, joint estimation of topology and parameters is rather tricky with the 132-node net-
work. Consequently, between varying discretisation thresholds, the Ising model parameters iden-
tified result in diverse network state behaviour as a function of global loading. 
 
 

 

 
Figure 14.7. Model state behaviour with the MTN logical topology with a heavy local external loading affecting 
nodes inside (top row) and outside (bottom row) the node cluster. The average state ۄݏۃ is shown as a function of 
݄ with three ܬ values, 0.02 (left column), 0.2 (centre column), and 2 (right column), and each with ܣ ൌ 11.76. 
Heavy local loading affects 0 nodes (squares), 7 nodes (triangles), and 14 nodes (circles). Calculation: results with 
each ݄ are average node states in a single simulated ensemble. With each ݄, two ensembles are simulated, one 
starting from ۄݏۃ ൌ െ1 and the other from ۄݏۃ ൌ ൅1. 
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14.3 MCMC Dynamics 

Transient dynamics and state fluctuations are studied with the MTN of 132 nodes as with the 
synthetic networks in Section 10.3. Here both an estimated topology corresponding to discretisa-
tion threshold value of 0.6 and the MTN logical topology are applied in simulations. The three ܬ 
values are again used, and the global uniform loading assumes the same values as the synthetic 
network in Section 10.3, i.e., ሾെ3,െ2,െ1,െ0.5, 0, 0.5, 1, 2, 3ሿ with ܬ ൌ 0.02, ሾെ1,െ0.5, 0, 0.3,  
0.5, 0.6, 0.7, 1, 1.5ሿ with ܬ ൌ 0.2, and ሾെ1, 1, 3, 5, 7, 9, 11, 13, 15ሿ with ܬ ൌ 2. Again, after each 
load change, the model is simulated 10ସ MCMC steps before another load change, and each 
simulation is started from the previous stationary state. The first simulation is started from 
ۄݏۃ ൌ െ1. 
 

 
 

 
Figure 14.8. Model state behaviour with the estimated topology and estimated parameters with a heavy local exter-
nal loading affecting nodes inside (top row) and outside (bottom row) the node cluster. The average state ۄݏۃ is 
shown as a function of ݄ with three discretisation threshold values, 0.3 (left column), 0.45 (centre column), and 
0.6 (right column), and each with ܣ ൌ 11.76. Heavy local loading affects 0 nodes (squares), 7 nodes (triangles), 
and 14 nodes (circles). Calculation: results with each ݄ are average node states in a single simulated ensemble. 
With each ݄, two ensembles are simulated, one starting from ۄݏۃ ൌ െ1 and the other from ۄݏۃ ൌ ൅1. 

Table 14.2. Ising model parameter estimates ܪ ,′ܬ′, and ݄଴′ with discretisation thresholds 0.3, 0.45, and 0.6. 

Discr. Value   Ԣܬ  Ԣܪ ݄଴Ԣ 

0.3  0.0603  0.0140  െ12.3 

0.45  0.0720  െ0.0494  1.12 

0.6  0.0855  െ0.0641  െ1.32 
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Figure 14.9 shows ۄݏۃ as a function of MCMC step in each case. With the MTN logical topology, 
changes in ۄݏۃ are similar to those obtained in the synthetic case in Chapter 10. With the esti-
mated topology, a two-phased transition appears again in ۄݏۃ, because the transition being a 
property of the topology of a central cluster and outside nodes. With both topologies, state fluc-
tuations are larger than with the synthetic topology in Section 10.3. With the estimated topology, 
fluctuations are particularly large at ܬ ൌ 0.2 when only a part of the network has undergone a 
transition.  
 
Convergence to a stationary probability distribution is again very fast, requiring usually no more 
than a few MCMC steps. However, as with the synthetic network, at the two largest ܬ values, 
more discontinuous changes in ۄݏۃ take several more MCMC steps. The discontinuous parts in 
 are shown in detail in Figure 14.10 as zoom-ins of the average node state curves of Figure ۄݏۃ
14.9. The figure shows with the estimated topology the step from ۄݏۃ ൎ 0 to ۄݏۃ ൎ ൅1 with 
ܬ ൌ 0.2 and the step from ۄݏۃ ൎ െ1 to ۄݏۃ ൎ 0 with ܬ ൌ 2. With the MTN logical topology, 
discontinuous changes appear in ۄݏۃ in about two steps with convergence being clearly faster 
with ܬ ൌ 2 because of greater interaction. With ܬ ൌ 0.2, transition takes about 300 MCMC steps, 
whereas with ܬ ൌ 2, it takes only about 30 steps. With the estimated topology with ܬ ൌ 0.2, tran-
sition happens fast after a lengthy period of fluctuations at around ۄݏۃ ൎ 0.2. With ܬ ൌ 2, it ap-
pears in a few small steps. 
 
 

 

 
Figure 14.9. Model state fluctuations and transient dynamics under varying global external loading with the MTN 
logical topology (top row) and estimated topology (bottom row). The average state ۄݏۃ is shown as a function of 
MCMC simulation step (dotted lines) for the three ܬ values, 0.02 (left column), 0.2 (centre column), and 2 (right 
column), and each with ܣ ൌ 11.76. The vertical lines mark the spots were ݄ changes. Calculation: results with 
each MCMC step are average node states in a single simulated ensemble. The first MCMC simulation step is 
started from ۄݏۃ ൌ െ1, and all the rest always from the previous simulated state. 
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Figure 14.10. Zoom-in plots of the transient dynamics of changes in ۄݏۃ shown in Figure 14.9. The two right-most 
columns at the top of Figure 14.9 correspond here to the top row, whereas the two right-most columns at the 
bottom of Figure 14.9 correspond here to the bottom row. Original plots are zoomed here to show the ranges of 
MCMC steps with most dramatic changes. 



 
 

15. Conclusions and Discussion 

Communications networks have traditionally been studied mostly by analysing the performance 
and optimisation of single network nodes with less emphasis on analysis of overall network per-
formance. However, qualitative properties, which cannot be predicted or understood by inspect-
ing only the properties of single network nodes, may emerge as a consequence of systemic col-
laborative network behaviour. Diverse networked systems are known to share similar, universal, 
complex qualitative network properties, even though the properties of their individual nodes may 
vary greatly. Therefore, analysis methods developed to study the overall system behaviour of one 
such system may be extended to cover other similar systems as well. 
 
The Ising model is an example of a simple statistical collaborative network model originally de-
veloped to analyse ferromagnetic phenomena in physics, but as some qualitative properties the 
Ising model describes are universal it has since been applied widely to several diverse systems. 
Though the model describes single network nodes in an extremely simple fashion, it is yet capa-
ble of describing complex network phenomena, such as discontinuous phase transitions and hys-
teresis; hence its generality and wide applicability. Because essentially similar qualitative phenom-
ena, such as the collapse of a coherently acting network under heavy loading, may take place also 
in mobile telecommunications networks, the Ising model is well suited for modelling such sys-
tems as well. 
 
It is, in general, extremely difficult to model accurately the exact dynamical behaviour of complex 
networked systems, where, e.g., in specific circumstances with a heavy external loading affecting 
the nodes, even the smallest loading changes, e.g., due to random fluctuations, may drastically 
derail the network into a different state. In addition, if the network exhibits hysteresis, the recov-
ery of the network to its original state may be substantially difficult and costly. Having a statistical 
description for a system, instead of trying to describe the exact system state under specific condi-
tions, a joint probability is adjusted to the network node states. The network state and all the un-
certainties related to it can then be assessed through the statistical model. Thus, for any real net-
work it becomes of interest to define a statistical model, such as the Ising model, and to study its 
qualitative properties as a function of external conditions affecting the node states. 
 
By exploiting statistical models, the uncertainties, and thus the risks, related to the behaviour of a 
networked system under certain conditions and external loadings become explicit for the net-
work operator, who can then use the information in network planning and maintenance. A net-
work’s state behaviour can be studied by simulating the statistical model from a given initial state 
to a stationary state. Because the model is probabilistic, to make it yield a probability presentation 
of the final system state, a simulation must be run a number of times. Though no dynamics is 
essentially involved in the statistical model, and would be extremely difficult to assess, both tran-
sient dynamics (how a system transfers from one state into another) and adiabatic dynamics (how 
a system evolves under slowly changing conditions) can be attempted by using MCMC model 
simulations. 
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It is essential to be able to identify a statistical model from network data to obtain an appropriate 
model description of the true system, particularly when in a practical case the true system topol-
ogy and model parameters are unknown. This thesis focused extensively on the identification of 
statistical models, in particular of the Ising model, by developing a topology identification 
method (abbreviated here as the MGMN method) and by exploiting an existing parameter esti-
mation method, the pseudolikelihood method. Altogether, tests with model-generated synthetic 
network data suggest that the Ising model can be successfully identified when the network as-
sumes neither too small nor too large coherence values—two extreme cases corresponding to 
nearly independent nodes, and a highly dependent node cluster, respectively. The model identifi-
cation is thus useful in practical network cases when both node interactions and external loadings 
are contributing factors. In MCMC model simulations the practical relevance of the Ising model 
was demonstrated as the model being able to exhibit complex qualitative properties typical for 
networked systems such as discontinuous changes and hysteresis in network state under varying 
global external loading. 
 
It is more difficult to test the performance of model identification methods with real network 
data because of lack of information about the true topology and true parameter values. The data 
available here was also considerably limited for any identification of large networks. For the same 
reason, a separate test data set was not used to evaluate the method, instead, all data was used in 
the identification phase. However, tests with existing data suggest that the identification methods, 
particularly the MGMN topology identification method, are relevant at least for mobile tele-
communications networks and other similar systems, which assume an underlying spatial node 
configuration. Moreover, the MGMN method is expected to be relevant in general for MRF 
graph structure identification. In conclusion, at best, the model identification methods together 
with model MCMC simulations will prove themselves useful tools to help and support network 
operators in their decision making and in planning more reliable and efficient mobile telecom-
munications networks.  
  



 
 

16. References 

[1] Abdallah, S., (2002), Towards Music Perception by Redundancy Reduction and Unsupervised Learning in Probabilistic Models, 

Doc. Thesis, Department of Electronic Engineering, King's College, London. 

[2] Abdallah, S., and Plumbley, M. (2004), “Application of geometric dependency analysis to the separation of con-

volved mixtures,” Proc. ICA’04, 540–547. 

[3] Abellán, J., Gómez-Olmedo, M., and Moral, S. (2006), “Some variations on the PC algorithm,” Proc of the Third 

European Workshop on Probabilistic Graphical Models. 

[4] Acharyya, M. (1999), “Nonequilibrium phase transition in the kinetic Ising model: Existence of a tricritical point 

and stochastic resonance,” Phys. Rev. E, 59(1), 218–221. 

[5] Acharyya, M., Chakrabarti, B.K., and Stinchcombe, R.B. (1994), “Hysteresis in Ising model in transverse field,” J. 

Phys. A: Math. Gen., 27, 1533-1540. 

[6] Acharyya, M., Chakrabarti, B.K. (1995), “Response of Ising systems to oscillating and pulsed fields: Hysteresis, 

ac, and pulse susceptibility,” Phys. Rev. B., 52(9), 6550–6568. 

[7] Agrafiotis, D., Rassokhin, D.N., and Lobanov, V.S. (2001), “Multidimensional scaling and visualization of large 

molecular similarity tables,” Journal of Computational Chemistry, 22(5), 488–500. 

[8] Ahsan, A., Rudnick, J., and Bruinsma, R (1998), “Elasticity theory of the B-DNA to S-DNA transition,” Biophys 

J, 74, 132–137. 

[9] Albert, R., and Barabási, A.-L. (2002), “Statistical mechanics of complex networks,” Rev. Modern Phys., 74, 47–97.  

[10] Albert, R., Jeong, H., and Barabási, A.-L. (2000), “Error and attack tolerance of complex networks,” Nature, 406, 

378. 

[11] Anghel, M., Werley, K.A., and Motter, A.E. (2007), “Stochastic model for power grid dynamics,” Proc. of the 40th 

Hawaii International Conference on System Sciences. 

[12] Arndt, C. (2004), Information Measures: Information and Its Description in Science and Engineering, Springer-Verlag. 

[13] Barnett, G., A. (2001), “A longitudinal analysis of the international telecommunication network, 1978-1996,” 

American Behavioral Scientist 44(10), 1638–1655. 

[14] Bar-Yam, Y. (1997), Dynamics of Complex Systems, Westview Press. 

[15] Basalaj, W. (1999), “Incremental multidimensional scaling method for database visualization,” Proc. SPIE’99, 

149–158. 

[16] Besag, J.E. (1974), “Spatial interaction and the statistical analysis of lattice systems,” J. R. Stat. Soc. Ser. B Stat. 

Methodol., 36, 192–225. 

[17] Besag, J.E. (1975), “Statistical analysis of non-lattice systems,” The Statistician, 24, 179–195. 

[18] Bishop, C.M. (2006), Pattern Recognition and Machine Learning, Springer, 383–393. 

[19] Boucherie , R.J., and Van Dijk, N.M. (2000), “On a queueing network model for cellular mobile telecommunica-

tions networks,” Operations Research, 48(1), 38–49 

[20] Breitbart, Y., Garofalakis, M., Jai, B., Martin, C., Rastogi, R., and Silbershatz, A. (2004), “Topology discovery in 

heterogeneous IP networks: the NetInventory system,” IEEE/ACM Transactions on Networking, 12(3), 401–414. 

[21] Brown, P., Cocke, J., Della Pietra, S., Della Pietra, V, Jelinek, F., Mercer, R, and Roossin, P. (1988), “A statistical 

approach to language translation,” COLING-88, 1, 71–76. 

[22] Brush, S.G. (1967), “History of the Lenz-Ising model,” Rev. Mod. Phys., 39(4), 883–893. 

[23] Bromberg, F., Margaritis, D., and Honavar, V. (2006), “Efficient Markov network structure discovery using in-

dependence tests,” Proceedings of the 2006 SIAM International Conference on Data Mining, 141–152. 

[24] Butte, A.J., and Kohane, I.S. (2000), “Mutual information relevance networks: Functional genomic clustering 

using pairwise entropy measurements,” Pacific Symposium on Biocomputing 5, 15–426. 



142 
 

[25] Callaway, D.S, Newman, M.E.J., Strogatz, S.H., and Watts, D.J. (2000), “Network robustness and fragility: Per-

colation on random graphs”, Phys. Rev. Lett., 85(25), 5468–5471. 

[26] Castillo, C. (2004), Effective Web Crawling, Doc. Thesis, University of Chile, Chile.  

[27] Chakrabarti, B.K., and Acharyya, M. (1999), “Dynamic transitions and hysteresis”, Reviews of Modern Physics, 71(3), 

847–859. 

[28] Chen, H., and Varshney, P. (2003), “Mutual information-based CT-MR brain image registration using general-

ized partial volume joint histogram estimation,” IEEE Trans. on Medical Imaging, 22(9), 1111–1119. 

[29] Chen, H., and Varshney, P., and Arora, M.K. (2003), “Performance of mutual information similarity measure for 

registration of multitemporal remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing, 41(11), 

2445–2454. 

[30] Cover, T.M., and Thomas, J.A. (2006), Elements of Information Theory, 2nd ed., John Wiley & Sons. 

[31] Cheng, J., Bell, D., and Liu, W. (1998), “Learning Bayesian networks from data: An efficient approach based on 

information theory,” Technical Report, Department of Computer Science, University of Alberta. 

[32] Cheng, J., Greiner, R., Kelly, J., Bell, D., and Liu, W. (2002), “Learning Bayesian networks from data: An infor-

mation-theory based approach,” Artificial Intelligence, 137(1–2), 43–90. 

[33] Cressie, N.A.C. (1993), Statistics for Spatial Data, John Wiley & Sons, 383–573. 

[34] Crucitti, P, Latora, V., Marchiori, M., and Rapisarda, A. (2003), “Efficiency of scale-free networks: Error and 

attack tolerance,” Physica A: Statistical Mechanics and its Applications, 320, 622–642. 

[35] Dahmen, K.A., Sethna, J.P., Kuntz, M.C., Perkovic, O. (2001), “Hysteresis and avalanches: Phase transitions and 

critical phenomena in driven disordered systems,”Journal of Magnetism and Magnetic Materials, 1287–1292. 

[36] De Campos, L.M. (2006), “A scoring function for learning Bayesian networks based on mutual information and 

conditional independence tests,” Journal of Machine Learning Research, 7, 2149–2187. 

[37] Dhar, D., Shukla, P., and Sethna, J.P. (1997), “Zero-temperature hysteresis in the random field Ising model on a 

Bethe lattice,” J. Phys. A, 30, 5259. 

[38] Diestel, R. (2000), Graph Theory, Springer-Verlag. 

[39] Dixit, A. (1989), “Hysteresis, import penetration, and exchange rate pass-through,” The Quarterly Journal of Eco-

nomics, 104(2), 205–228. 

[40] Dobson, I., Carreras, B.A., Lynch, V.E., and Newman, D.E. (2007), “Complex systems analysis of series of 

blackouts: Cascading failure, critical points, and self-organization,” Chaos, 17. 

[41] Dorogovtsev, S.N. (2004) “Clustering of correlated networks,” Phys. Rev. E, 69(2), 027104, 1–4. 

[42] Dorogovtsev, S.N., Goltsev, A.V., and Mendes, J.F.F. (2007), “Critical phenomena in complex networks,” 

arXiv.org, Cornell University Library. 

[43] Dorogovtsev, S.N., Goltsev, A.V., and Mendes, J.F.F. (2002), “Ising model on networks with an arbitrary distri-

bution of connections,” Phys. Rev. E, 66(1), 016104. 

[44] Dorogovtsev, S.N., and Mendes, J.F.F. (2002), “Evolution of networks,” Advances in Physics, 51(4), 1079–1187. 

[45] Drees, B.L., Thorsson, V., Carter, G.W., Rives, A.W., Raymond, M.Z., Avila-Campillo, I., Shannon, P., and 

Galitski, T. (2005), “Derivation of genetic interaction networks from quantitative phenotype data,” Genome Biol-

ogy, 6:R38. 

[46] Duda, R.O., Hart, P.E., Stork, D.G. (2001), Pattern Classification, 2nd ed., John Wiley & Sons, Inc. 

[47] Erdõs, P., and Rényi, A. (1959), “On random graphs,” Publ. Math. Debrecen, 6, 290–297. 

[48] Erdõs, P., and Rényi, A. (1960), “On the evolution of random graphs,” Publ. Math. Inst. Hung. Acad. Sci., 5, 17. 

[49] Esposito, F., Scarabino, T., Hyvärinen, A., Himberg, J., Formisano, E., Comani, S., Tedeschi, G., Goebel, R., 

Seifritz, E., and Di Salle, F. (2005), “Independent component analysis of fMRI group studies by self-organizing 

clustering,” NeuroImage, 25(1), 193–205. 

[50] Everitt, B.S., and Rabe-Hesketh, S. (1997), Kendall’s Library of Statistics 4: The Analysis of Proximity Data, Arnold, 

11–68. 



16. REFERENCES 143
 

[51] Friedman, N., and Koller, D. (2003), “Being Bayesian about network structure: A Bayesian approach to structure 

discovery in Bayesian networks,” Machine Learning, 50, 95–126. 

[52] Friston, K.J., Frith, C.D., Fletcher, P., Liddle, P.F., and Frackowiak, R.S. (1996) “Functional topography: multi-

dimensional scaling and functional connectivity in the brain,” Cereb. Cortex, 6, 156–164. 

[53] Gaens, T., Maes, F., Vandermeulen, D., and Suetens, P. (1998), “Non-rigid Multimodal Image Registration Using 

Mutual Information,” W.M. Wells et al. (Eds.): MICCAI’98, LNCS 1496, 1099–1106. 

[54] Gandhi, P., Bromberg, F., and Margaritis, D. (2008), “Learning markov network structure using few independ-

ence tests,” Proceedings of the 2008 SIAM International Conference on Data Mining, 680–691. 

[55] Gilks, W.R, Richardson, S., and Spiegelhalter, D.J (1996), Markov Chain Monte Carlo in Practice, Chapman & 

Hall/CRC. 

[56] Goebel, B.D.Z., Dawy, Z., Hagenauer, J., and Mueller, J.C. (2005), “An approximation to the distribution of 

finite sample size mutual information estimates,” Proc. IEEE International Conference on Communications, 2, 1102–

1106. 

[57] Gower, J.C. (1975), “Generalized procrustes analysis,” Psychometrika, 40(1), 33–51. 

[58] Grimmett, G., and Stirzaker, D. (2004), Probability and Random Processes, 3rd ed., Oxford University Press. 

[59] Hartman, L. (2007), Spatial Statistics and Ancestral Recombination Graphs, Doc. Thesis, Lund University, Sweden. 

[60] Hayes, J.F., and Ganesh Babu, T.V.J. (2004), Modeling and Analysis of Telecommunications Networks, John Wiley & 

Sons, Inc. 

[61] Hellebrandt, M., Mathar, R., and Scheibenbogen, M. (1997), “Estimating position and velocity of mobiles in a 

cellular radio network,” IEEE Trans. Vehicular Technology, 46(1), 65–71. 

[62] Hovorka, O., and Frieman, G. (2007), “Non-converging hysteresis cycles in random spin networks,” arXiv:cond-

mat/0703525v2. 

[63] Hutter, M. (2002), “Distribution of mutual information” In: Dietterich, T.G., Becker, S., Ghahramani, Z. (Eds.), 

Advances in Neural Information Processing Systems, 14, MIT Press, 399–406. 

[64] Hutter, M, and Zaffalon, M. (2005), “Distribution of mutual information from complete and incomplete data,” 

Computational Statistics & Data Analysis, 48(3), 633–657. 

[65] Imry, Y. and Ma, S.-K. (1975), “Random-field instability of the ordered state of continuous symmetry,” Phys. Rev. 

Lett., 35(21), 1399. 

[66] Ising, E. (1925), “Beitrag zur Theorie des Ferromagnetismus,” Z. Physik., 31, 253–258. 

[67] Ji, X., and Zha, H. (2004), “Sensor positioning in wireless ad-hoc sensor networks using multidimensional scal-

ing,” INFOCOM 4, 2652–2661. 

[68] Kalisch, M., and Bühlmann, P. (2007), “Robustification of the PC-algorithm for directed acyclic graphs,” To 

appear in the Journal of Computational and Graphical Statistics. 

[69] Kendall, M.G. (1938), “A new measure of rank correlation,” Biometrika, 30, 81–93. 

[70] Kindermann, R., and Snell, J.L. (1980), Markov Random Fields and Their Applications, American Mathematical Soci-

ety, Providence, RI. 

[71] Kishino, H., and Waddell, P.J. (2000), “Correspondence analysis of genes and tissue types and finding genetic 

links from microarray data,” Genome Informatics, 11, 83–95. 

[72] Krejci P., and Sprekels J. (1997), “On a system of nonlinear PDE's with temperature-dependent hysteresis in 

one-dimensional thermoplasticity,” J. Math. Anal. Appl., 209, 25–46. 

[73] Krisnamachari, B., Wicker, S.B., and Béjar, R. (2001), “Phase transition phenomena in wireless ad hoc net-

works,” GLOBECOM'01. 

[74] Kruskal, J.B. (1964), “Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis,” Psy-

chometrika, 29, 1–27. 

[75] Kruskal, J.B. (1964), “Nonmetric multidimensional scaling: A numerical method,” Psychometrika, 29, 115–129. 

[76] Kullback, S., and Leibler, R.A. (1951), “On information and sufficiency,” Ann Math. Statist., 22(1), 79–86. 



144 
 

[77] Kullback, S. (1959), Information Theory and Statistics. John Wiley (1959); reprinted by Dover Publications, Inc. 

(1997), 155–188. 

[78] Kumpulainen, P., and Kylväjä, M. (2008), ”Local anomaly detection for mobile network monitoring,” Information 

Sciences, 178, 3840–3859. 

[79] Kylväjä, M., Kumpulainen, P., and Hätönen, K. (2005), “Information summarization for network performance 

management,” Proc. IMEKO TC10, 167–172. 

[80] Laiho, J. (2002), Radio Network Planning and Optimisation for WCDMA. Doc. Thesis, Helsinki University of Tech-

nology, Finland. 

[81] Lehtimäki, P. (2008), Data Analysis Methods for Cellular Network Performance Optimization, Doc. Thesis, Helsinki 

University of Technology, Finland. 

[82] Li, F. (2007), Structure Learning with Large Sparse Undirected Graphs and Its Applications, Doc. Thesis, Carnegie Mellon 

University, USA. 

[83] Li, W., and Chao, X. (2004), “Modeling and Performance Evaluation of a Cellular Mobile Network,” 

IEEE/ACM Transactions on Networking, 12(1), 131–145. 

[84] Liang, S., Fuhrman, S., and Somogyi, R. (1998), “REVEAL, a general reverse engineering algorithm for inference 

of genetic network architectures,” Pacific Symposium on Biocomputing 3, 18–29. 

[85] Liao, H., Apt, J., and Talukdar, S. (2004) “Phase transitions in the probability of cascading failures,” Proc. Electric-

ity Transmission in Deregulated Markets. 

[86] Lifshitz, E.M., and Landau, L.D. (1980), Statistical Physics: Course of Theoretical Physics, Volume 5, 3rd ed., Pergamon 

Press Ltd. 

[87] Lin, J. (1991), “Divergence measures based on the Shannon entropy,” IEEE T Inform Theory, 37(1), 145–151. 

[88] Lee, S.-I., Ganapahthi, V., and Koller, D. (2007), ”Efficient structure learning of Markov networks using L1-

regularization,” Advances in Neural Information Processing Systems. 

[89] Lenz, W. (1920), “Beitrag zum Verständnis der magnetishen Erscheinungen in festen Körpern,” Z. Physik, 21, 

613–615. 

[90] Lo, W.S., and Pelcovits, R.A. (1990), “Ising model in a time-dependent magnetic field,” Phys. Rev. A, 42(12), 

7471–7474. 

[91] MacKay, D. (2003), Information Theory, Inference and Learning Algorithms, Cambridge University Press, 357–421. 

[92] Majewski, J., Li, H., and Ott, J. (2001), “The Ising model in physics and statistical genetics,” Am. J. Hum. Genet., 

69(8), 53–862. 

[93] Malarz, K.W., Antosiewicz, J., Karpinska, K., Kulakowski, and Tadic, B. (2007), “Avalanches in complex spin 

networks,” Physica A, 373, 785–795. 

[94] Margaritis, D. (2003), Learning Bayesian Network Model Structure from Data, Doc Thesis, Carnegie Mellon University, 

Pittsburgh, USA. 

[95] Margaritis, D., and Thrun, S. (1999), “Bayesian network induction via local neighbourhoods,” IEEE Trans. on 

Pattern Analysis and Machine Intelligence. 

[96] Martín-Merino, M., and Muñoz, A. (2004), “A new MDS algorithm for textual data analysis,” Proc. ICONIP’04, 

LNCS 3316, 860–867. 

[97] Mathiassen, J., Skavhaug, A., and Bø, K. (2002), “Texture similarity measure using Kullback-Leibler divergence 

between Gamma distributions,” In ECCV 2002 Part III, LNCS 2352 (eds. A. Heyden et al.), 133–147. 

[98] Mayergoyz, I.D. (1986), “Mathematical models of hysteresis,” Phys. Rev. Lett., 56(15), 1518–1521. 

[99] Meyer, C.D. (2000), Matrix Analysis and Applied Linear Algebra, SIAM. 

[100] Mihalkova, L., and Mooney, R.J. (2007), “Bottom-up learning of Markov logic network structure,” Proceedings of 

the 24th International Conference on Machine Learning, 625–632. 

[101] Molloy M., and Reed, B., (1995), “A critical point for random graphs with a given degree sequence,” Random 

Structures and Algorithms, 6, 161. 



16. REFERENCES 145
 

[102] Molloy M., and Reed, B., (1998), “The size of the giant component of a random graph with a given degree se-

quence,” Combinatorics, Probability and Computing, 7, 295. 

[103] Muñoz, A., and Martín-Merino, M. (2002), “New asymmetric iterative scaling models for the generation of tex-

tual word maps,” Proc. of JADT 2002. 

[104] Nedic, D.P., Dobson, I., Kirschen, D.S., Carreras, B.A., and Lynch, V.E. (2005), “Criticality in a cascading failure 

blackout model,” 15th Power Systems Computation Conference. 

[105] Neopolitan, R.E. (2004), Learning Bayesian Networks, Pearson Prentice Hall. 

[106] Newman, M.E.J. (2003), “The structure and function of complex networks,” SIAM Rev., 45(2), 167–256. 

[107] Newman, M.E.J., Strogatz, S.H., and Watts, D.J. (2001), “Random graphs with arbitrary degree distributions and 

their applications,” Phys. Rev. E, 64(2). 

[108] Niss, M. (2005), “History of the Lenz-Ising model 1920–1950: From ferromagnetic to cooperative phenomena,” 

Arch. Hist. Exact Sci., 59, 267–318. 

[109] Niu, C., and Grimson, E. (2006), “Recovering non-overlapping network topology using far-field vehicle tracking 

data,” Proc. ICPR'06, 944–949. 

[110] Ohira, T., and Sawatari, R. (1998), “Phase transition in a computer network traffic model,” Physical Review E, 

58(1), 193–195. 

[111] Perkovic, O., Dahmen, K., and Sethnal, J. P. (1995), “Avalanches, Barkhausen noise, and plain old criticality,” 

Phys. Rev. Lett., 75, 4528. 

[112] Poston, T., and Stewart, I. (1978), Catastrophe Theory and Its Applications, Pitman, London. 

[113] Potts, R.B. (1952), “Some generalized order-disorder transformations,” Proc. Camb. Phil. Soc., 48, 106–109. 

[114] Press W., Flannery, B., Teukolsky, S., and Vetterling, W. (1986), Numerical Recipes: The Art of Scientific Computation. 

Cambridge University Press, 476–481. 

[115] Rajala, M., and Ritala, R. (2005), “Identification of diagnostics statistical state model for networked systems,” 

Proc. IMEKO TC10, 161–166. 

[116] Rajala, M., and Ritala, R. (2006), ”Mutual information and multidimensional scaling as means to reconstruct 

network topology,” Proc. SICE-ICCAS’06, 1398–1403. 

[117] Rajala, M., and Ritala, R. (2006), ”Statistical model describing networked systems phenomena,” Proc. ISCC’06, 

647–654. 

[118] Rajala, M., and Ritala, R. (2007), “A method to estimate the graph structure for a large MRF model,” In ICANN 

2007 Part II, LNCS 4669 (eds. J. Marques de Sá et al.), 836–849. 

[119] Rajala, M. (2008), “Heavy Loading Effects in Networked Systems,” Proc. SMCia’08, 119–124. 

[120] Rangarajan, A., Chui, H., and Duncan, J.S. (1999), “Rigid point feature registration using mutual information,” 

Medical Image Analysis, 3(4), 425–440. 

[121] Robert, C.P. (2007), The Bayesian Choice: From Decision Theoretic Foundations to Computational Implementation, 2nd ed., 

Springer Science + Business Media, LLC. 

[122] Rue, H., and Held, L. (2005), Gaussian Markov Random Fields: Theory and Applications, Chapman & Hall/CRC. 

[123] Sabhapandit, S. (2002), Hysteresis and Avalances in the Random Field Ising Model, Doc. Thesis, University of Mumbai, 

India. 

[124] Sabhapandit, S., Dhar, D., and Shukla, P. (2002), “Hysteresis in the random field Ising model and bootstrap 

percolation,” Physical Review Letters, 88, 197202. 

[125] Sachtjen, M.L., Carreras, B.A., and Lynch, V.E. (2000), “Disturbances in a power transmission system,” Phys. 

Rev. E, 61, 4877–4882. 

[126] Schroeder, D.V. (1999), An Introduction to Thermal Physics, Addison-Wesley. 

[127] Seber, G. (1984), Multivariate Observations, John Wiley, 235–256. 

[128] Sethna, J.P., Dahmen, K., Kartha, S., Krumhansl, J.A., Roberts, B.W., and Shore, J.D. (1993), “Hysteresis and 

hierarchies: Dynamics of disorder-driven first-order phase transformations,” Phys. Rev. Lett., 70, 3347. 



146 
 

[129] Sethna, J.P., Dahmen, K.A., and Myers, C.R. (2001), “Crackling noise,” Nature, 410, 242. 

[130] Sethna, J.P., Dahmen, K.A., and Perkovic, O. (2005), “Random-field Ising models of hysteresis,” arXiv:cond-

mat/0406320. 

[131] Shannon, C.E. (1948), “A mathematical theory of communication,” The Bell System Technical Journal, 27, 379–423, 

623–656. 

[132] Shih, M.-F., and Hero III, A. (2004), “Network topology discovery using finite mixture models,” Proc. 

ICASSP’04, 433–436. 

[133] Solomonoff, R. and Rapoport, A. (1951), “Connectivity of random nets”, Bull. Math. Biophys., 13, 107–117. 

[134] Sornette, D. (2002), Why Stock Markets Crash: Critical Events in Complex Financial Systems, Princeton University 

Press. 

[135] Sornette, D., and Zhou, W.-X. (2006), “Importance of positive feedbacks and overconfidence in a self-fulfilling 

Ising model of financial markets”, Physica A: Statistical Mechanics and Its Applications, 370(2), 704–726. 

[136] Spearman, C. (1904), “The proof and measurement of association between two things,” American Journal of Psy-

chology, 15, 72–101. 

[137] Spirtes, P., Glymour, C., and Scheines, R. (2000), Causation, Prediction, and Search. The MIT Press, Cambridge, 

Massachusetts. 

[138] Sporns, O., and Tononi, G. (2002), “Classes of network connectivity and dynamics,” Complexity, 7(1), 28–38. 

[139] Sprott, C. (2003), Chaos and Time Series Analysis, Oxford University Press.  

[140] Stanley, H.E., Stauffer, D., Kertész, J., and Herrmann, H.J. (1987), “Dynamics of spreading phenomena in two-

dimensional Ising models,” Phys. Rev. Lett., 59(20), 2326–2328. 

[141] Steuer, R., Kurths, J., Daub, C.O., Weise, J., and Selbig, J. (2002), “The mutual information: Detecting and 

evaluating dependencies between variables,” Bioinformatics, 18(2), 231–240. 

[142] Steyvers, M. (2002), “Multidimensional scaling,” In Encyclopedia of Cognitive Science, Macmillan, London. 

[143] Strogatz, S.H. (2001), “Exploring complex networks,” Nature, 410, 268–276. 

[144] Stuart, A., Ord, K., and Arnold, S. (1999), Kendall’s Advanced Theory of Statistics, Vol. 2A: Classical Inference & the 

Linear Model. 6th Ed., Oxford University Press, 46–116. 

[145] Suutarinen, J. (1994), Performance Measurements of GSM Base Station System. Thesis (Lic. Tech.), Tampere University 

of Technology, Finland. 

[146] Szabó, G., and Kádár G. (1998), “Magnetic hysteresis in an Ising-like dipole-dipole model,” Phys. Rev. B, 58(9), 

5584–5587. 

[147] Tadic B., Malarz, K., and Kulakowski, K. (2005), “Magnetization reversal in spin patterns with complex geome-

try,” Phys. Rev. Lett., 94, 137204. 

[148] Tagaris, G.A., Richter, W., Kim, S.-G., Pellizzer, G., Andersen, P., Ugurbil, K., and Georgopuolos, A.P (1998), 

“Functional magnetic resonance imaging of mental rotation and memory scanning: a multidimensional scaling 

analysis of brain activation patterns,” Brain Research Review, 26, 106–112. 

[149] Thomas, J., Ramakrishnan, N., and Bailey-Kellogg, C. (2007), “Graphical models of residue coupling in protein 

families,” Accepted to IEEE/ACM Transactions on Computational Biology and Bioinformatics. 

[150] Thomsen, J.M., and Manggaard, R. (2003), Analysis of GSM Handover Using Coloured Petri Nets, MSc Thesis, Uni-

versity of Aarhus, Denmark. 

[151] Tieu, K., Dalley, E., and Grimson, W. (2005), “Inference of nonoverlapping camera network topology by meas-

uring statistical dependence,” Proc. ICCV’05, 2, 1842–1849. 

[152] Torgerson, W.S. (1952), “Multidimensinal scaling: I. Theory and method,” Psychometrika, 17(4), 401–419. 

[153] Tretyakov, A.Y., Takayasu, H., and Takahasu, M. (1998), “Phase transition in a computer network model,” 

Physica A, 253, 315–322. 

[154] Vanderwalle, N., Ausloos M., Boveroux P., and Minguet A. (1998), “How the financial crash of October 1997 

could have been predicted,” Eur. Phys. J. B, 4, 139–141. 



16. REFERENCES 147
 

[155] Vasconcelos, N., and Lippman, A. (2000), “A unifying view of image similarity,” Proc. ICPR'00, 38–41. 

[156] Vehviläinen, P. (2004), Data Mining for Managing Intrinsic Quality of Service in Digital Mobile Telecommunications Net-

works. Doc. Thesis, Tampere University of Technology, Finland. 

[157] Vehviläinen, P., Hätönen, K., and Kumpulainen, P. (2003), “Data mining in quality analysis of digital mobile 

telecommunications network,” Proc. XVII IMEKO World Congress.  

[158] Vives, E., and Planes, A. (2001), “Hysteresis and avalanches in the random anisotropy Ising model”, Physical 

Review B, 63, 134431. 

[159] Wachowiak, M. P., Smolíková, R., Tourassi, G., and Elmaghraby, S. (2002), “Generalised mutual information 

similarity metrics for multimodel biomedical image registration,” Proc. EMBS, 23–26. 

[160] Watts, D.J., and Strogatz, S.H. (1998), “Collective dynamics of ‘small-world’ networks,” Nature, 393, 440–442. 

[161] Winkler, G. (2003), Image Analysis, Random Fields and Markov Chain Monte Carlo Methods. 2nd ed., Springer-Verlag.  

[162] Wu, H., and Huffer, F.W. (1997), “Modelling the distribution of plant species using the autologistic regression 

model,” Environmental and Ecological Statistics, 4, 49–64. 

[163] Wu, F.Y. (1982), “The Potts model,” Rev. Mod. Phys., 54(1), 235–268. 

[164] Yang, C.N. (1952), “The spontaneous magnetization of a two-dimensional Ising model,” Phys. Rev., 85(5), 808–

816. 

[165] Yang, Z.R., and Zwolinski, M. (2001), “Mutual information theory for adaptive mixture models,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 23(4), 396–403. 

[166] Yeomans, J.M. (1992), Statistical Mechanics of Phase Transitions, Oxford University Press. 

[167] Zhu, Y., Fu, X., Graham, B., Bettati, R., and Zhao, W. (2004), “On flow correlation attacks and countermeasures 

in mix networks,” Proc. PET’04, 207–225. 

[168] http://news.bbc.co.uk/1/hi/scotland/edinburgh_and_east/7431969.stm (2.3.2009). Mobile Network Failure Re-

ported.  

[169] http://news.bbc.co.uk/1/hi/technology/3305431.stm (2.3.2009), Mobile Network Users Hit by Fault. 

[170] http://news.bbc.co.uk/1/hi/technology/4704359.stm (2.3.2009), Mobile Networks Bear Blast Calls. 

[171] http://wikipedia.org/wiki/4G (2.3.2009), 4G. 

[172] http://www.3gpp.org/article/lte-advanced (2.3.2009), LTE-Advanced. 

 

 

 


