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Abstract

This thesis describes a systematic procedure for performing quantitative analysis of
biomedical microscopy images. The procedure is investigated with four case studies.
The goal of the thesis is to illustrate the possibilities of automated image analysis in
biomedical microscopy in general and to provide solutions for specific cases. The
image analysis methods as well as the biological background of the case studies are
presented in such a way that the thesis is accessible for researchers with a background
in biology or in engineering.

Quantitative information on biomedical samples has been traditionally obtained by
visual inspection of the sample under the microscope. However, manual analysis is
subjective, labor-intensive, and slow. All these problems can be overcome by develop-
ing automated image analysis methods. The presented procedure has six steps: sample
preparation and image acquisition, image pre-processing, image segmentation, feature
extraction, validation, and data analysis. The main emphasis of the thesis is in the three
steps following sample preparation and image acquisition. They form the core of the
procedure: we start with an image, essentially a matrix of real or integer values, and
end up with a description of the image at a higher level of abstraction. A simple ex-
ample would be the extraction of the number of cells in an image. Cell-specific spatial,
spectral, and temporal features may be extracted as well. Validation of the obtained
results and of the methods used is also very important. In the example given above, we
want to be sure that the extracted number of cells is correct. The traditional way of vali-
dating results has been to compare the obtained results with results obtained by manual
inspection of the cells under the microscope. The thesis proposes new simulation-based
ideas for the validation step. The data analysis step uses the quantitative data obtained
in the feature extraction step to obtain biologically relevant results.

The first case study considers quantification of in vitro angiogenesis. The aims are
two-fold. On the one hand, the developed quantitative image analysis method is used
together with discrete growth models to study the global properties of angiogenesis.
On the other hand, the method is used to study the effects of different agents on in vitro
angiogenesis. The obtained information can be used in drug discovery, because one of
the strategies for treating cancer is to inhibit angiogenesis. In the second case study the
motivation is similar: a method for quantifying the effects of different agents on the
invasive capability of cancer cells in an in vitro invasion assay is presented.
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The third case study considers quantification of budding yeast. There are two aims
in this case study. The first aim is to obtain information on the cell cycle phase of the
population by quantifying bud sizes. The second aim is to study peroxisome biogenesis
in budding yeast. In the fourth case study an image analysis method is developed for
quantifying lymph nodes in surgical specimens of colorectal cancer. A correlation
between patient survival and the size and number of lymph nodes is found.
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Chapter 1

Introduction

The cell is the basic structural and functional unit of all living organisms. All cells
have a membrane which separates its interior from its environment and controls what
moves in and out. The inside of the membrane consists mostly of a salty cytoplasm.
All cells also possess DNA, the hereditary material of genes, and RNA, containing the
information necessary to build various proteins. They also contain organelles that have
specific functions. The most important organelle of an eukaryotic cells is the nucleus,
which is the place where almost all DNA replication and RNA synthesis occur.

The typical diameter of a cell ranges from 1 µm to 100 µm. A microscope is there-
fore needed for the observation of most cells. The observation can be done through the
eyepiece of the microscope or images can be obtained with a camera. The availabil-
ity of inexpensive digital cameras has enabled new kinds of studies in which a large
number of biological samples are analyzed based on digital images. In particular, the
structure and functionality of the cell are being studied. The acquired knowledge can
be applied in, for example, cancer research and drug discovery.

Traditionally biological samples have been analyzed manually by visual inspection
under the microscope. For example, a simple task could be to count the number of cells
in a cell population. Analysis performed in this way is naturally very labor-intensive,
tedious, and slow, which restricts the number of samples that can be analyzed. This is
a serious problem especially when a large amount of data is produced with emerging
high-throughput techniques such as cell microarrays [101,110]. The next step has been
a move to image-aided or semi-automatic analysis. For example, there are software
tools that can be used for counting the number of cells in such a way that the user
clicks on the cells with a mouse, and the program automatically counts the number of
clicks. Cells that have been already counted can be marked automatically on the image
so as to avoid counting a cell twice. Similarly, the area of cells or other features can be
measured semi-automatically by drawing the outline of the feature.

Semi-automated tools can provide significant improvements over manual methods
in terms of speed and accuracy, but they do not utilize the full potential of image analy-
sis. In particular, if these tools are used by different persons, the results may be differ-
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2 CHAPTER 1. INTRODUCTION

ent for the same image data. This is known as inter-observer variability. Intra-observer
variability can also be observed, that is, when the same person performs the analysis
twice, the results may differ. Inter- and intra-observer variability are of course present
also when the analysis is done by mere visual inspection through the eyepiece of the
microscope. The effects have been analyzed quantitatively in [100].

The flow cytometer is another tool for analysis of cells. Measurements are made
on fluorescently labeled cells flowing in a solution past a laser beam with detectors
measuring fluorescence and light scatter [66]. Flow cytometry is in wide usage, and
it is a reliable and reproducible way of obtaining quantitative information on cells.
However, the method has its limitations. Most significantly, in flow cytometry the
cells must almost always be removed from their natural environment and put into a
suspension. This can have significant effects on the behavior of the cells and also
makes it impossible to study inter-cellular phenomena. It is also not possible to study
subcellular structures.

Automated image analysis has the potential of overcoming the drawbacks of all of
the above mentioned analysis methods. A fully automated method does not require any
user intervention, which guarantees that there is no inter- or intra-observer variability
in the obtained results. More specifically, the same criteria and algorithms are always
used in detecting and quantifying the desired features from the images, and the analysis
is always performed objectively. Since the analysis can always be performed in exactly
the same way, results obtained with automated image analysis are also reproducible.
These properties are very important when comparisons are made between samples.

The most crucial step in image analysis is the segmentation of the foreground from
the background. Although segmentation has been studied intensely over the past few
decades, a single general purpose method does not exist. For each application one
needs to find a suitable method from a large pool of available methods. It is typical that
none of the standard methods works as such, and it is therefore crucial to understand the
most important principles underlying the available methods so that a method that works
well can be developed. Some of the most important factors that make segmentation
difficult include nonuniform intensity of the background, intensity variations within
foreground objects, and clustering of foreground objects. The background variations
make it difficult to distinguish the foreground from the background. The intensity
variations within the foreground causes over-segmentation, that is, foreground objects
split into several objects. On the other hand, clustering of the foreground objects may
lead to under-segmentation, that is, several clustered objects are detected as a single
object.

Although the solution to an image analysis problem depends heavily on the na-
ture of the image data, the general image analysis procedure is usually the same. The
procedure for biomedical microscopy images is described in Chapter 2. The most im-
portant image analysis methods are also described. The contributions of the enclosed
publications are discussed in Chapter 3. Chapter 4 contains a discussion on some of
the present challenges and future directions within the field of biomedical microscopy
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imaging and automated image analysis. Chapter 5 concludes the thesis with comments
on the enclosed publications.





Chapter 2

Quantitative image analysis

A digital image is a sampled and quantized representation of a continuous image. Let
us give a precise definition.

Definition 2.1 A d-dimensional digital gray level image is a mapping of a subset Df

of Z
d into a bounded set of nonnegative integers N given by

f : Df ⊂ Z
d −→ {0, 1, . . . , L},

where L is the maximum gray level (intensity) value.

The notation f(x), x ∈ Z
d is used for the gray level value of a d-dimensional image f

at x. In the special case d = 2, the notation f(m,n), m,n ∈ Z can also be used. In
that case the elements of f at a location x = (m,n) are commonly referred to as pixels.
Usually the gray level values are coded using b bits, in which case L = 2b − 1. The
values of f are restricted to nonnegative integer values for practical reasons. However,
all of the methods presented in this thesis extend directly to images with real-valued
pixels.

A binary image is a digital image that has only two possible pixel values.

Definition 2.2 A d-dimensional binary image is a mapping of a subset Df of Z
d into

the couple {0, 1} given by

f : Db ⊂ Z
d −→ {0, 1}.

Definition 2.3 The complement of an image f is given by

f c(x) = L − f(x),

where L is the maximum intensity value. For binary images L = 1.

Gray level and binary images are monochannel images. A multichannel image
consists of an array of monochannel images.

5



6 CHAPTER 2. QUANTITATIVE IMAGE ANALYSIS

Definition 2.4 A multichannel image with c channels is an array

[f1, f2, . . . , fc],

where each monochannel image fi is defined over a common definition domain Df ,
see Definition 2.1.

Definition 2.4 means that a vector in N
c is defined for each pixel of an image with c

channels. For example, color images in the RGB color space are multichannel images
containing three channels, one for each of the primary colors red, green, and blue.

Digital image analysis refers to the extraction of information from digital images.
Often the extracted information is quantitative. For example, one can extract the num-
ber of cells in an image. The information can also be qualitative or class information,
such as the type of cells in the image. In both cases the aim of image analysis is to de-
scribe the contents of the image in some useful way. The images under analysis often
contain objects on a background, and then usually the aim is to extract some specific
information on the objects. The objects can also be referred to as the foreground. The
extracted information can include such features as size, area, shape, brightness, color,
and so on.

Quantitative analysis of biomedical microscopy images can be divided into six fun-
damental steps:

1. Sample preparation and image acquisition

2. Pre-processing of the acquired images

3. Segmentation of the pre-processed images

4. Feature extraction based on the segmented images

5. Validation of the feature extraction results

6. Data analysis based on the extracted features

This chapter covers the most fundamental principles and methods that are applied in
these steps. The emphasis is on image processing and analysis methods, and other
topics are covered more briefly. Since the intended audience of this thesis includes
biologists, the intention is to give an accessible overview of the possibilities and limi-
tations of image analysis.

Textbooks on molecular cell biology, such as the books by Alberts et al. [1] and
Lodish et al. [66], can be used as reference material for many of the topics covered in
Section 2.1. Textbooks on digital image processing, such as the books by Gonzalez
and Woods [41] and Russ [82], can be used as reference material for topics covered
in Sections 2.2 through 2.4. Textbooks on pattern classification, such as the book by
Duda et al. [30], can be used as reference material for the topics covered in Sections 2.4
through 2.6.
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2.1 Sample preparation and image acquisition

Preparation of biological samples and image acquisition should be done carefully so
that high-quality images are obtained. Although problems in the image quality can be
mitigated in the image pre-processing step or by using robust segmentation methods,
one cannot expect to obtain accurate results unless the quality of the images is suffi-
cient. Possible staining of the samples, the choice of the type of microscope and its
settings, and the choice of camera and its settings are all important considerations.

Many of the studies with biomedical images are comparative studies. For example,
the aim may be to compare the effects of specific agents or treatments on some specific
properties of the cells or cell population under study. It is therefore important that the
samples have been prepared consistently following exactly the same protocol. It is
also important to design the experiment so that appropriate control or reference images
will be acquired. These control images may include experiments with no treatment or
with treatments whose effects on the features of the cells that are being quantified are
known. The purpose of the control images is to enable one to make conclusions on how
significant the effects of the other treatments are. As another example, in many studies
mutant strains are compared with a reference wild type strain.

In principle it is impossible to study a real world system without interfering with
the system itself. With cells and other biological systems the interference is often very
significant. For example, instead of studying cells in vivo in their natural environment,
cells are often studied in vitro, that is, they can be cultured in a solution of nutrients
in a plastic dish or specific in vitro assays may be used. Cells or tissue may also be
removed from their natural information and fixed (killed) before being studied. It is
very important to understand how the experiment was made so that one is able to make
the right conclusions regarding cells (or tissue) that are in their natural environment.

2.1.1 Staining

In many experiments the cells or the tissue absorb about the same amount of visible
light as the medium of the sample. The contrast obtained with a light microscope is
therefore usually insufficient for image analysis. More informally we can say that most
cells are colorless and translucent. In fact, many cells are more than 50 per cent water
by weight. One way of improving the contrast is to stain the cells.

Many chemical stains have an affinity for molecules that have specific features.
For example, hematoxylin and eosin stains can be used in many applications. Hema-
toxylin has an affinity for basic amino acids on many proteins and eosin has an affinity
for acidic molecules. The different affinity properties mean that these dyes stain vari-
ous cell types sufficiently differently that they are distinguishable visually. Numerous
chemical staining protocols are available for specific applications. For example, the
hematoxylin and eosin stain is commonly used for staining histological sections of
many types of tissue.
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Fluorescent staining provides an extremely versatile and powerful way of visual-
izing cells and subcellular structures by microscopy. Fluorescent markers that bind to
specific protein structures are used. They absorb light at one wavelength and emit light
at another longer wavelength. When a fluorescent molecule absorbs a photon, it is left
in an excited state, that is, the energy of the molecule is increased by the energy of the
photon

∆E =
hc

λ
, (2.1)

where h is Planc’s constant, c is the speed of light, and λ is the wavelength of the
electromagnetic wave. Some of the absorbed energy is dissipated as heat and the rest is
emitted as light having a longer wavelength than the absorbed light. This phenomenon
is known as the Stokes shift. It enables the separation of the absorbed and emitted light
by optical filters, allowing visualization of the cells or subcellular structures stained by
the fluorescent marker.

2.1.2 Microscopy

The microscope is an essential tool for many biologists. The obvious reason for this is
that the size of most cells is below the upper limit of the resolution of the human eye.
The basic ideas of magnification using lenses were already known in ancient times,
and the development of the modern microscope can be regarded to have started with
the work of Zacharias and Hans Janssen in the late 16th century.

The most important property of any microscope is its ability to distinguish between
two closely positioned objects, that it, its resolution. The resolution of a light micro-
scope is given by [66]

d =
0.61λ

N sin(x)
, (2.2)

where λ is the wavelength of the incident light, N is the refractive index of the medium
between the sample and the objective lens, and x is the angular aperture. The angular
aperture can be defined as the half-angle of the cone of light entering the objective lens
from the sample, see Figure 2.1.

The maximum angular aperture for the best objective lenses is 70◦. The refractive
index for air is by definition equal to unity. Higher values of up to N = 1.5 can be
obtained with an immersion oil. If we further assume visible light of shortest wave-
length, λ = 450 nm (blue), we obtain the value d ≈ 195 nm. This is considered as the
limit of resolution of light microscopes, which means that only objects with a diameter
195 nm or more can be detected with a light microscope. Note that the magnification
of the microscope is not part of Equation (2.2). It is in fact important to realize that
merely enlarging the image does not result in a capability to distinguish small details. If
a higher resolution is required, electron microscopy can be used in certain applications
to obtain resolutions of up to 0.1 nm.

Several optical configurations for light microscopes exist, see, for example, [94]. In
the common bright field configuration, light that is not absorbed by the sample creates
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Sample

Condenser lens

Objective lens

Light

Image

x

Figure 2.1: The optical pathway of a light microscope from the light source to the objective
lens.

the image. If the sample has not been stained, the image may have insufficient con-
trast. The contrast can be enhanced by techniques that make use of differences in the
refractive index of cell structures. In dark field microscopy this is achieved by making
the main field of observation dark by placing a disk on the condenser. Light enters the
sample from an oblique angle and the image is created by light that is scattered by the
sample. The sample is thus viewed in front of a dark background. For an illustration
of these principles, see Figure 2.2. The phase contrast microscope generates an image
in which the brightness of a region of the sample depends on the refractive index of
that region. Images with a high contrast can be obtained for thin samples using this
technique. The differential (Nomarski) interference microscope uses a similar princi-
ple: the brightness of the obtained image depends on changes in the refractive index
and thickness of the sample.

The two-dimensional image obtained with the bright field microscope consists of
a superposition of in-focus and out-of-focus regions of the sample. It is therefore not
suitable for imaging thick samples. Also, in the case of a sample of cells growing loose
in a solution it may not be possible to get all the cells in focus. The confocal microscope
avoids this problem by permitting visualization of each focal plane separately. The
basic principle is that the sample is illuminated one point at a time, and the detector
only registers light emitted from the illuminated point. Three dimensional images can
be obtained by combining images taken at different focal planes.

Fluorescently stained samples are detected with a fluorescence microscope. This
is similar to light microscopy. The difference is that the illuminating light is passed
through two sets of filters. The first filter ensures that only the absorption wavelengths
of the fluorescent marker hit the sample. The second filter blocks the absorption wave-
lengths and passes to the detector only those wavelengths that are emitted as the marker
fluoresces.
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(a) (b)

(c) (d)

Figure 2.2: In bright field microscopy, (a) the image is created by light that is not absorbed
by the sample, and (b) cells are seen as dark objects on a bright background. In dark field
microscopy, (c) the image is created by light that is scattered by the sample, and (d) cells are
seen as bright objects on a dark background.

2.1.3 Imaging

Imaging is performed with a digital camera attached to the microscope. The camera
may be attached to the eyepiece or to the trinocular port of the microscope. There are
also microscopes with a built-in digital camera. In recent years the quality of inexpen-
sive digital cameras has increased rapidly, making the quality of the camera typically
not a key factor in determining the quality of the microscopy images. Color images
should be taken only if there is useful color information in the samples. Most color
cameras produce RGB images, which are three-channel images of the form [r, g, b].
The channels r, g, and b define an additive mixture of the three primary colors red,
green, and blue.

Imaging should always be done consistently with the same microscope and cam-
era settings for all samples. All features that automatically select the settings of the
microscope or the camera should be disabled, because in that case it is impossible to
verify that the same settings have been used for all images, rendering accurate compar-
isons impossible. Ideally one should get the raw image data straight from the sensor
of the camera. However, in practice a sufficient quality can also be obtained by saving
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the images in a standard image format that does not use lossy compression. All other
automated processing within the camera or the imaging software should be disabled,
because the automated processing methods are usually proprietary to the camera or
software manufacturer. Proprietary methods make it impossible to know what process-
ing has been made with the data, making it impossible to know afterwards if a given
feature in the obtained image is a processing artefact or something that is really part of
the biological sample.

Many systems have a gain setting that can be used to amplify the signal obtained
from the camera. This naturally also amplifies the noise in the signal. Therefore care
should be taken in using the gain setting so that the amplified noise does not result
in deterioration of the image quality. For this reason it is usually better to increase
the intensity of the illumination than to adjust the gain, and a good balance should be
found between these settings. One should also be careful in using these setting so as
not to get over-exposed images, in which some of the pixel values have been clipped
to the maximum value. Especially if the intensities of the stained cells or subcellular
structures are compared, it is important that the illumination and gain settings are the
same for each image. Many microscopes have features that allow automated selection
of the best illumination settings for the sample under the microscope, and such features
should naturally be disabled if intensities are compared. Finally, since the samples are
three-dimensional, special care should be taken in finding the correct focus. Poor focus
results in blurred images, for which it is difficult to perform quantitative image analysis
accurately.

2.2 Pre-processing

Pre-processing refers to processing steps that need to be taken to make the acquired
image suitable for quantitative analysis. The aim is to reduce the effects of imperfect
image acquisition. The priority should always be to acquire the best quality images
possible in the image acquisition step. However, some pre-processing steps are usu-
ally nevertheless needed, no matter how image acquisition is performed. Moreover, in
practice it may be the case that not enough attention is payed to image quality in image
acquisition. If this is realized too late, it may be impossible to perform imaging anew.
For example, the intensity of the stains in the samples may have become too weak.

Many of the methods that are used are image enhancement or restoration methods.
The specific steps that need to be taken and the methods that are used depend on the
subsequent analysis methods.

2.2.1 Color space conversions

Digital color images are usually stored in the RGB color space. The RGB color space
is also the color space used by most digital cameras. However, because the RGB color
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space is in many cases not useful in digital image processing, a conversion to another
color space is a typical pre-processing step.

If the color image does not include any significant or useful color information, re-
taining the luminance information and discarding the chrominance (color) information
is the best approach. This is commonly done by [52]

f(x) = 0.2989r(x) + 0.5870g(x) + 0.1140b(x), (2.3)

where r, g, and b are the RGB components of the image. Because of the properties of
the human eye, the green channel is the dominant channel in the conversion. In fact,
instead of the conversion (2.3), the green channel can be used as a luminance image.

If there is significant color information in the image, a perceptually uniform color
space should be used. In a perceptually uniform color space the metric distance be-
tween two colors is proportional to the human perception of color differences. This
is important, because many image analysis methods use color differences as measured
by a metric in the color space. The CIE L*a*b* color space defined by the Commis-
sion Internationale l’Éclairage (CIE) is usually used [24]. In this color space the L
component represents the luminance of the color, the a component represents its posi-
tion between magenta and green, and the b component represents its position between
yellow and blue. Some image processing methods may require gray level images, and
these methods can be applied to the L component. The conversion from the RGB color
space to the CIE L*a*b* color space is done by assuming the sRGB color space [4].
The conversion is based on an intermediate system known as the CIE XYZ, which is
derived from sRGB by [106]

X(x) = 0.4124r(x) + 0.3576g(x) + 0.1805b(x),

Y (x) = 0.2126r(x) + 0.7152g(x) + 0.0722b(x),

Z(x) = 0.0193r(x) + 0.1192g(x) + 0.9505b(x), (2.4)

where r, g, and b are the sRGB components of the image. The components of the CIE
L*a*b* color space are then obtained by

L(x) = 116F (Y (x)/Yn) − 16,

a(x) = 500[F (X(x)/Xn) − F (Y (x)/Yn)],

b(x) = 200[F (Y (x)/Yn) − F (Z(x)/Zn)], (2.5)

where

F (t) =

{

t1/3 if t > 0.008856,

7.787t + 16/116 otherwise,
(2.6)

and Xn, Yn, and Zn represent a reference white. The CIE standard illuminant D65

yields Xn = 0.3127, Yn = 0.3290, and Zn = 0.3583.
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2.2.2 Correction of nonuniform illumination

When the microscope is set up properly, a roughly uniform illumination of the sample
can be achieved. However, in practice the illumination pattern is seldom perfectly
uniform in microscopy images. The nonuniformity may be caused by a number of
factors. These include imperfections of the illumination filament and of the design of
the light path between the camera and the microscope. The behavior of the camera itself
may also be behind the nonuniformity, especially if a camera that has not been designed
for microscopy is used. For example, the lens of the camera may show vignetting,
that is, reduction in image brightness in the image periphery compared to the image
center [61].

Correction of nonuniform illumination is therefore an important pre-processing
step. Its role is in fact crucial when microscopy images are used to compare intensity
measures from different parts of a sample. Moreover, many image analysis methods
rely on the assumption that the same type of object will have the same intensity ir-
respective of its spatial location. Global thresholding is a simple example of such a
method. Sometimes the problem of nonuniform illumination is circumvented by crop-
ping from the image a region of interest whose background is uniform enough. How-
ever, this approach has the severe disadvantage that typically a substantial percentage
of the image data is lost.

The relation between the acquired two-dimensional nonuniformly illuminated im-
age f and its corresponding uniformly illuminated image u can be described by the
linear model

f(x) = u(x)ξm(x) + ξa(x), (2.7)

where ξm and ξa are the multiplicative and additive nonuniformity components, re-
spectively [98]. If the nonuniformity components ξm and ξa are known, correction of
nonuniform illumination is achieved by inverting the linear model by

û(x) =
f(x) − ξa(x)

ξm(x)
. (2.8)

The correction problem can be simplified by assuming that only one of the nonuni-
formity components is involved in the corruption of the image u. Then, the corrected
image û can be obtained by either

û(x) = f(x) − ξa(x) + Ca (2.9)

or

û(x) =
f(x)

ξm(x)
Cm, (2.10)

where Ca ∈ R and Cm ∈ R are normalization coefficients needed to restore the de-
sired average grey level. Whether the additive or the multiplicative model should be
used depends on the characteristics of the camera. The additive model is correct if the
sensor response function is logarithmic, while the multiplicative model is correct for



14 CHAPTER 2. QUANTITATIVE IMAGE ANALYSIS

(a) (b) (c)

Figure 2.3: (a) A simulated image of a cell population with nonuniform illumination. (b)
The nonuniform illumination estimated as a polynomial surface. (c) The original image after
correction of nonuniform illumination by Equation (2.9) with Ca equal to the maximum value
of the estimate ξa.

a linear device [82]. Figure 2.3 shows an example of correcting nonuniform illumina-
tion under the assumption of the additive model and Ca equal to the maximum value
of the nonuniformity estimate ξa. The original image was obtained with the simulator
described in [60].

In the process of subtracting an image from another or dividing an image by an-
other, the dynamic range of the pixel values is reduced. The greater the variation in
the intensity of the background image, the greater the reduction in the dynamic range.
Therefore, one should not merely rely on digital correction of illumination uniformi-
ties. Rather, one should ideally put the emphasis on designing the illumination system
so that it produces as uniform an illumination as possible.

The nonuniformity components ξa and ξm can be obtained at the imaging step by
acquisition of additional calibration images. For example, they can be obtained by
imaging an empty or defocused field [98]. However, the use of calibration images
is not always feasible. For example, at the imaging step it may not be known that
automated image analysis is later going to be performed on the images, and thus the
need for calibration images is not known before it is too late to obtain them. It can also
be difficult to notice a small nonuniformity of the illumination at the imaging step, and
thus the need for calibration images may be overlooked at that point.

Instead of using calibration images for estimating the nonuniformity components,
one can estimate the nonuniformity components from the acquired image. This is of-
ten referred to as the data-driven approach. It is clear that from a practical viewpoint
the data-driven approach is simpler than using calibration images. There are several
standard approaches to the estimation problem. Let us now briefly review the three
main categories: low-pass filtering, morphological filtering, and fitting a nonunifor-
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mity model. Usually one can assume a purely additive or a purely multiplicative model
and use either Equation (2.9) or Equation (2.10).

The low-pass filtering approach is based on the assumption that the background
variation due to nonuniform illumination is a low frequency signal that can be separated
from the higher frequencies of the objects. This can be done in the frequency domain
by using the discrete Fourier transform [82] or one can use frequency selective filters in
the spatial domain. A method for estimating the nonuniformity component by filtering
the nonuniformly illuminated image with a Gaussian filter was proposed in [61]. The
disadvantage of the low-pass filtering methods is that the appropriate cut-off frequency
depends on the image. Also, the basic assumption that the nonuniformity component
and the underlying image are separable in the frequency domain is usually not true.

If the objects of interest are small compared with the scale of background variations
and the background is either everywhere darker or everywhere lighter than the objects,
the background can be estimated using the basic morphological operations. Both re-
quirements are often met in microscopy imaging. For the case of light objects on a dark
background, Russ [82] proposes to use the morphological erosion as the background
estimate and Soille [93] proposes to use the morphological opening (erosion followed
by dilation). For the opposite case, they propose the morphological dilation and closing
(dilation followed by erosion), respectively. Since erosion and dilation are essentially
local minimum and maximum operations, respectively, they are able to filter out light
and dark objects. The size of the local neighborhood depends on the size and shape
of the objects: it must be large enough so that at each pixel it contains at least one
background pixel.

The nonuniformity component can also be estimated by approximating the image
background by a smoothly varying function. This approach is often referred to as sur-
face fitting or fitting a background function. The approach can be employed if the illu-
mination nonuniformity follows a simple pattern, which often is the case in microscopy.
A popular choice for the estimate of ξa or ξm is to use a polynomial surface [98]. In
this class, the second-order polynomial surface is often the most appropriate choice.
Another popular choice for the estimate is to use B-splines [64]. This choice has the
advantage that B-splines are by definition continuous in the second derivative and there-
fore always smooth. Moreover, as with polynomials, the ability to vary the number of
control points gives flexibility. In both cases the problem can be posed as a least squares
problem and is therefore efficient to solve.

2.2.3 Noise reduction

There are many noise sources in microscopy imaging, the most significant ones be-
ing photon noise, thermal noise, readout noise, and quantization noise [99]. The two
first noise sources have a Poisson distribution, readout noise is Gaussian, and quanti-
zation noise is uniformly distributed. Only the last two noise sources are additive and
independent of the image.
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The noise from the above mentioned sources should generally be suppressed by
restoration methods that take into account the distribution and other properties of the
noise components. However, in practice the noise intensity is usually negligible in
microscopy imaging, and noise reduction may not be necessary at all. Further, low
intensity noise can often be removed by simple filtering techniques, for example using
the Gaussian low-pass filter or the median filter [7]. Image averaging [56] is also rou-
tinely used, especially in fluorescent microscopy. Although noise suppression by image
averaging is based on the assumption of uncorrelated zero mean noise, an assumption
that does not hold in microscopy imaging, the method is very useful in practice.

One should always keep in mind that noise removal and detail preservation are
conflicting requirements, and an acceptable compromise between the two needs to be
found when the image contains noise. Therefore, the emphasis should be in avoiding
noise in the image acquisition step. Photon noise is caused by the quantum nature of
light and can never be avoided. However, thermal noise from the sensor of the camera
can be reduced by cooling the sensor, readout noise is negligible unless one needs to
read several images per second, and quantization noise can be made negligible by using
at least 8 bits per pixel.

2.2.4 Region of interest selection

Many biological assays contain circular wells, but digital cameras produce rectangular
images. One possibility is to acquire an image that contains a rectangular area within
the well. This can be thought of as choosing a rectangular region of interest at the image
acquisition step. The drawback of this approach is that a substantial part of the well
cannot be used in the subsequent image analysis. The alternative approach is to acquire
an image that contains the whole well. In that case an appropriate circular region
of interest needs to be detected as a pre-processing step. Many of the segmentation
methods that are described in Section 2.3 can be used to find a binary mask that defines
the region of interest.

There can also be other situations in which region of interest detection is needed.
For example, cells localized in the segmentation step may be used as the regions of
interest in the detection of subcellular structures.

2.3 Segmentation

Segmentation can be defined as the process by which an image is divided into its con-
stituent objects and the background. It is often the most crucial and the most difficult
step in an image analysis task. Segmentation has been studied intensively over the past
few decades and numerous segmentation methods have been developed. However, a
general solution to the segmentation problem is not available.

In quantitative image analysis of biomedical images one of the frequently extracted
image-specific features is the number of foreground objects in the image. The objects
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could be, for example, cells of a specific type. This feature can be readily extracted if
the objects can be segmented from the image background and each other. However, if
the segmentation is not accurate, the extracted number of objects may be false. If one
is to extract object-specific spatial, spectral, or temporal features from the images, the
requirements for the accuracy of segmentation are even stricter. For example, it is clear
that features such as the area of a cell or the intensity of its stain are very sensitive to
the accuracy of segmentation. It is thus clear that the success of the final quantitative
analysis is dependent on the accuracy of segmentation.

Even though segmentation methods are often very application-specific, there are
many general principles that are applied in one way or another in most segmentation
methods. Most methods are based on one of two basic properties of intensity values:
discontinuity and similarity. Methods based on discontinuity try to find abrupt changes
in image intensity, and define the different regions based on these discontinuities. Edge
detection by gradient filtering is an example of a method in this category. Methods
that are based on similarity partition the image into regions that are similar according
to a set of predefined criteria. This category includes such methods as thresholding,
clustering, region growing, and region merging and splitting. This section concentrates
on similarity-based methods, because in the segmentation of biomedical microscopy
images they are usually more useful than discontinuity-based methods.

2.3.1 Thresholding

Due to its simplicity and intuitive properties, thresholding is a central image segmenta-
tion method. For bright objects on a dark background it can be defined by

fT (x) =

{

1 if f(x) > T,

0 if f(x) ≤ T,
(2.11)

where f(x) is the gray level of the point x from the image to be thresholded, fT (x) is
the respective point in the thresholded image, and T is the threshold. A pixel in fT with
the value 1 is called a foreground or object point and a pixel with the value 0 is called
a background point. If one has dark objects on a bright background, the roles of 1 and
0 are swapped. If the threshold T is the same for the whole image, the threshold is
called global. If a different threshold is used for different parts of the image depending
on some local properties, the threshold is called local. It is also possible to replace the
image f with an image that has been obtained by replacing the original pixel values
with the values of some local property of the pixels. This local property could be, for
example, the local average gray level or the local variance.

Research on thresholding has concentrated on automated selection of the optimal
threshold T for a given image f . Since the transition between the object and its back-
ground is often diffuse, it can be difficult for a human to decide where the object ends
and the background begins. The task is even more difficult for a computer: it is difficult
to select the optimal threshold automatically. In fact, a satisfactory general solution to
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Figure 2.4: (a) A simulated image of a cell population. (b) The histogram of the simulated
image. The arrow points to the threshold T = 153 obtained with Otsu’s method. (c) The image
after thresholding.

the threshold selection problem does not exist. To make matters worse, a small change
in the threshold may have a large impact on the subsequent analysis, as the quantifi-
cation of many features such as the area and the mean pixel intensity of the object are
directly dependent on the threshold.

Some of the first papers on automated selection of the threshold were published in
the 1960s (see, for example, [29]). An early paper by Prewitt and Mendelsohn [77] also
applied thresholding and automated threshold selection to the analysis of cell images.
The review papers by Glasbey [39], Sahoo et al. [83], Sezgin and Sankur [89], and
Sieracki et al. [91] give a good overview of the available methods. Probably the most
widely used single method is the one by Otsu [75], which selects the threshold in such
a way that the between-class variance of the gray levels of the background and objects
is maximized, and the intra-class variance is minimized.

In many methods the threshold is selected on the basis of the histogram of the im-
age. If the image has a bimodal histogram, one can often assume that one of the modes
represents the background and the other one the foreground, and the threshold should
be selected in the valley between the two modes. Otsu’s method is a histogram-based
method, and can find an appropriate threshold for images with bimodal histograms. An
example is shown in Figure 2.4. The image in Figure 2.4(a) is the same as the image in
Figure 2.3(c). Otsu’s method is useful even if the histogram is not bimodal. An example
is shown in Figure 2.5, in which the original image shows in vitro angiogenesis.

Thresholding does not have to be the final step in the segmentation procedure.
Rather, the thresholding result can be a starting point for further processing. The fur-
ther processing can consist of operations on the binary image alone, or the binary image
can be used together with the original image to refine the segmentation. Sections 2.3.4
to 2.3.6 describe some of these post-processing methods.
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Figure 2.5: (a) A image of in vitro angiogenesis. (b) The histogram of the image. The arrow
points to the threshold T = 139 obtained with Otsu’s method. (c) The image after thresholding.

2.3.2 Clustering

The segmentation problem can be posed as a classification problem. In the simplest
case one has two classes, the foreground and the background, but it is also possible
to have more classes. For example, there can be several foreground classes that cor-
respond to different types of cells. Supervised classification methods require training
images for which the correct classification is known for each pixel. Since this kind
of ground truth data is difficult to obtain, unsupervised classification methods, also
referred to as clustering methods, are more suitable for segmentation.

Clustering can be defined as the organization of a collection of patterns into clusters
based on similarity. Patterns within a valid cluster are more similar to each other than
they are to patterns belonging to a different cluster. The patterns are represented by
vectors in a feature space. An example of clustering 27 samples into 5 clusters in a
two-dimensional feature space is shown in Figure 2.6. Patterns belonging to the same
cluster are denoted with the same symbol.

A large number of clustering methods can be found in the literature, including
K-means clustering [47, 69], fuzzy C-means clustering [13, 32], and nearest neighbor
clustering [67]. An extensive review of clustering methods can be found in [53]. Instead
of defining similarity, most clustering methods define the dissimilarity between two
patterns by using a distance measure defined on the feature space. Common distance
measures in a d dimensional space include the Euclidean distance

dE(ai,aj) =

(

d
∑

k=1

(ai,k − aj,k)
2

)1/2

(2.12)

as well as the Mahalanobis distance

dM (ai,aj) =
(

(ai − aj)Σ
−1(ai − aj)

T)1/2
, (2.13)
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Figure 2.6: Clustering in a two-dimensional feature space.

where ai and aj are the feature vectors of the patterns i and j, and Σ is the covariance
matrix of the distribution from which ai and aj are taken.

When clustering is applied to image segmentation, a feature vector is defined for
each pixel, and the clustering method determines whether the pixel belongs to the back-
ground or one of the foreground classes. One of the possible features is the intensity
value of the pixel. In fact, thresholding can be thought of as a clustering method that
uses the intensity as the only feature. The possibility to use additional features means
that clustering is a more flexible segmentation method than thresholding: clustering
can be successfully applied in many situations in which thresholding does not give ac-
ceptable results. The features used in clustering are usually local features such as the
local mean and the local variance. If one has color images and the background and
the foreground have different colors, one can use the color components as features. A
perceptually uniform color space such as the CIE L*a*b* color space [24] should be
used so that the measured dissimilarities are proportional to the human perception of
color differences.

Correction of misclassifications

There may be misclassifications in the class data obtained with a classification or clus-
tering method. Specifically, in image segmentation some pixels may get a foreground
label even though the background label would be correct, or vice versa. If one has ad-
equate ground truth information that can be used as training data, the misclassification
correction method proposed in Publication VII can be used. The method is applied in a
sliding window fashion. Suppose that the samples of class data in the sliding window
are given by the multiset B = {b1, b2, . . . , bN}. Then the output is given by

C(B) = arg min
β∈B

N
∑

i=1

w(β, bi), (2.14)
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where w is a proximity function that defines the interclass distances, and can be ob-
tained by training the method with images for which the ground truth is available.

The successful application of the method requires that the data has several classes.
Even if there will ultimately be just two classes, that is, the foreground class and the
background class, it is possible to use additional classes in the initial classification. For
example, K-means clustering with K > 2 can be used for initial classification. The
obtained data can then be processed with Equation (2.14) in such a way that the output
is always required to be one of two classes.

If ground truth data is not available, the majority filter can be used to correct the
most obvious misclassifications [62]. The majority filter is a sliding window filter that
chooses as output the class that has most representatives in the window. Weighted
majority filters can also be used.

2.3.3 Region growing

Region growing is a general class of segmentation methods that group pixels into larger
regions based on predefined similarity criteria. Region growing methods start with a
set of seed points. Neighboring points are examined one at a time, and are added to the
growing region if they have properties sufficiently similar to the points in the growing
region. The procedure continues until no more pixels can be added. The selection of
the seed points and the similarity criteria depend on the nature of the problem under
consideration. The fundamental similarity criterion is the similarity of the gray levels
of the pixels. Local properties of the pixels can also be used as similarity criteria.

The watershed transformation is a popular region growing method that has proved
very useful in many areas of image segmentation, including the segmentation of
biomedical microscopy images (see, for example, [63, 65, 70, 108]). The method was
originally suggested in 1978 by Digabel and Lantuéjoul [27], and extended to a more
general framework by Beucher and Lantuéjoul [12]. The basic idea of the watershed
transformation is usually described with an analogy to flooding water, hence also the
name of the method. The image is thought of as a topographic map, and water is
flooded from each regional minimum in such a way that the water rises at a uniform
rate. When the rising water from two regional minima is about to merge, a dam (wa-
tershed) is built to prevent the merging. The flooding will eventually stop when only
the tops of the watersheds are visible above the water line. These watershed lines de-
fine the segmentation result. The main difference between the watershed method and
ordinary region growing is that the watershed method takes up a new intensity layer in
each iteration instead of a new neighbor layer.

The watershed transformation is usually applied to the gradient of the image rather
than the image itself. The reason is that the regional minima of the gradient image cor-
relate well with both the foreground objects and the background, whereas the largest
values of the gradient image are at the boundaries between the background and the ob-
jects. The gradient image is commonly obtained by convolving the image with gradient
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operators [36]. There are typically a very large number of regional minima in a gradi-
ent image, largely due to noise and other irregularities. Because there is a one-to-one
correspondence between the number of regional minima and the number of segmented
regions, direct application of the watershed transformation leads to over-segmentation.
However, watershed segmentation methods in which over-segmentation can be con-
trolled can be found in basic textbooks on image processing.

Let us look at one of the many watershed segmentation methods in which over-
segmentation can be controlled. Instead of letting water flood from all regional minima
of the gradient image, the method selects only the deepest regional minima as seeds
by using the h-minima transformation [93]. The h-minima transformation suppresses
all minima whose depth is less than a given nonnegative threshold level h. A small
h results in many seeds, often more than one seed per object, which results in over-
segmentation. A large h results in fewer seeds, and some objects may not get a seed
at all, which results in under-segmentation. In both cases the segmentation results can
be improved by post-processing methods, see Sections 2.3.4 and 2.3.5. It is also possi-
ble that over-segmentation and under-segmentation happen simultaneously in different
parts of an image.

Figure 2.7 shows an example of watershed segmentation with the method described
above. The image in Figure 2.7(a) is the same as the image in Figures 2.3(c) and 2.4(a).
Figure 2.7(b) shows the gradient obtained by the Sobel operator. The values of the gra-
dient have been normalized into the interval [0, 1]. Figure 2.7(c) shows the watershed
segmentation result when the value h = 0.2 is used in the h-minima transformation
that is applied to the gradient image. The result is similar to the thresholding result pre-
sented earlier in Figure 2.4(c). For comparison, the watershed segmentation result for
the case of h = 0.05 is shown in Figure 2.7(d). Severe over-segmentation is evident.

2.3.4 Region merging

Region merging is often needed as a post-processing step after initial segmentation.
The aim is to reconnect regions that belong to the same over-segmented foreground
object. A large number of region merging methods have been proposed in the literature.
They generally base the merging decision on the similarity of the intensity levels of
adjacent objects (see, for example, [46]) or on the gradient at the edge between adjacent
objects (see, for example, [108]). The idea is that two adjacent regions are likely to
belong to the same object if their average intensity levels are similar or if the gradient
of the edge between them is low. The method proposed in [48] combines these two
approaches. Additionally, if a minimum area that a correctly segmented object can
have is known, an object that is smaller than this minimum should be merged with one
of its neighbors. If the object has several neighbors, the properties mentioned above
should be compared to select the best neighbor to merge with. In [16] a watershed
merging method is proposed. The method can be applied after watershed segmentation.
The idea is analogous to letting rain fall over a landscape. The regions defined by the
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(a) (b)

(c) (d)

Figure 2.7: (a) A simulated image of a cell population. (b) The gradient of the simulated im-
age. (c) A watershed segmentation result with moderate under-segmentation. (d) A watershed
segmentation result with severe over-segmentation.

watersheds lines get filled progressively until an overflow to the neighboring region
occurs, merging the overflown regions.

2.3.5 Region splitting

Region splitting is often needed as a post-processing step after initial segmentation.
Foreground objects that are clustered together are usually not recognized as distinct
regions by thresholding and clustering methods, and the same can happen also with
region growing methods. The aim of region splitting is to separate under-segmented
regions that correspond to two or more different foreground objects.
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Figure 2.8: A concave region (black), its convex hull (black and gray), and potential splitting
points (white).

There are many methods that merely detect regions that correspond to several clus-
tered objects, but do not provide a way to do the actual splitting. A review of some of
these detection methods can be found in [11]. The detection is commonly done with a
classifier using features that relate to the shape and area of the regions as well as fea-
tures that relate to the intensity of the regions (see [80] for an extensive list of possible
features).

The detection methods can be useful as a first step of a region splitting method.
The actual splitting is done as a separate second step for those regions that have been
detected as corresponding to several clustered objects. The advantage of this approach
is that if the splitting method sometimes splits correctly segmented regions, the first
criterion may be used to exclude such regions from splitting. Conversely, some splitting
methods may choose not to split a region given as an input if a satisfactory split cannot
be found. Because more than two regions may be clustered together, splitting should
be applied iteratively until no further splitting is necessary.

Many cell types have approximately convex shapes. Therefore in many applica-
tions it can be assumed that under-segmented regions that need to be split are concave,
whereas correctly segmented regions are approximately convex. The convex hull is
therefore often used to detect splitting points, see, for example, [107]. The convex hull
of a concave region is the smallest convex region containing the concave region, see
Figure 2.8. Subtracting the concave region from the convex hull gives us the concavity
regions (marked gray in Figure 2.8) of the concave region. The deepest point of a con-
cavity is defined as the point that is inside the concavity and whose Euclidean distance
to the border of the convex hull is largest. These points (marked with white squares in
Figure 2.8) are used as endpoints of splitting lines.

The watershed transformation can also be used to split regions based on their
shape [93]. The underlying assumptions on the concavity of under-segmented regions
and the convexity of correctly segmented regions are the same as in the method de-
scribed above. The watershed splitting method has been used for separating clustered
cells in, for example, [108].

The watershed splitting method proceeds as follows. First, a distance transfor-
mation [17] of the complement of the binary segmentation result is calculated. The
distance transformation assigns for each pixel the distance between that pixel and the
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(a) (b) (c) (d)

Figure 2.9: (a) The original binary image. (b) The Euclidean distance transformation of the
complement of the original image. (c) The watershed transformation of the complement of the
image obtained by applying the h-maxima transformation to the distance transformed image.
(d) The region splitting result.

nearest nonzero pixel, and in the resulting image there should ideally be exactly one
local maximum for each cell. However, small concavities in the shapes of the cells can
result in several local maxima for each cell. Therefore, to prevent over-segmentation,
the h-maxima transformation [93] is employed to suppress all local maxima whose
height is less than a nonnegative threshold h. Since the watershed transformation be-
gins to flood the surface from each local minimum, it is applied to the complement of
the h-maxima transformed image. The resulting watershed lines define the splitting
of the clustered foreground objects. Figure 2.9 shows an example of the watershed
splitting method for a part of the image in Figure 2.7(c). The region in the middle cor-
responding to three clustered cells is correctly split into three parts, whereas the other
regions corresponding to single cells are not affected by the method.

2.3.6 Morphological filtering

The origins of mathematical morphology lie in the study of the geometry of porous
media in the mid-sixties France. Porous media was interpreted as binary data: each
point either belongs to a pore or to the matrix surrounding the pores. There are many
excellent textbooks on mathematical morphology and its applications in image process-
ing, see, for example, the ones by Serra [88] and Soille [93]. In this section we will
cover only the most fundamental morphological operations and refer the reader to these
textbooks for further information. Although mathematical morphology can be gener-
alized for multi-valued data and has been applied to gray level images, the following
discussion concentrates on binary images. The methods that are described below are
therefore suitable for processing binary segmentation results that have been obtained
with a segmentation method such as the thresholding, clustering or region growing
methods described above.

Mathematical morphology is usually defined in terms of set theory. Within that
framework the structuring element is defined as a set that is used to probe the image
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Figure 2.10: Structuring elements.

under study. However, we define the structuring element as a binary-valued mapping
of a subset of Z

d.

Definition 2.5 A d-dimensional structuring element with the origin b0 ∈ DB is a
mapping of a subset DB of Z

d into the couple {0, 1} given by

B : DB ⊂ Z
d −→ {0, 1}.

The fundamental morphological operations require the definition of an origin for each
structuring element. This allows the positioning of the structuring element at a given
point. More precisely, a structuring element B at a point x of an image f indicates
that its origin is at x. We restrict ourselves here to flat structuring elements, that is,
the dimensionality of the structuring element is always the same as the dimensionality
of the image. Usually structuring elements that are symmetric with respect to the ori-
gin are used. Examples of structuring elements having these properties are shown in
Figure 2.10. The origin of each structuring element is denoted with a boldface font.

The two fundamental morphological operations are erosion and dilation. The
eroded value at a given pixel x of an image f is the minimum value of the image
in the window defined by the structuring element B when its origin is at x, that is,

[εB(f)](x) = min
b∈DB

f(x + b). (2.15)

Erosion is thus equivalent to the minimum filter having a sliding window that is equiv-
alent to the structuring element B. For example, the erosion of an image by the struc-
turing element shown in Figure 2.10(a) is equivalent to the minimum filter with a 3× 3
sliding window.

The dilated value at a given pixel x of an image f is the maximum value of the
image in the window defined by the structuring element B when its origin is at x, that
is,

[δB(f)](x) = max
b∈DB

f(x + b). (2.16)

Dilation is thus equivalent to the maximum filter having a sliding window that is equiv-
alent to the structuring element B.
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(a) (b) (c)

(d) (e)

Figure 2.11: (a) A binary image and a structuring element (top left corner). (b) Morphological
erosion of the original image. (c) Morphological dilation of the original image. (d) Morpho-
logical opening of the original image. (e) Morphological closing of the original image.

In the case of binary images, the output of erosion is zero unless all the samples
in the sliding window are ones, whereas the output of dilation is one unless all the
samples are zeros. Erosion shrinks foreground objects and expands their background,
whereas dilation expands the foreground objects and shrinks their background. Fig-
ure 2.11(a) shows a binary image and a square-shaped structuring element (top left
corner). Figures 2.11(b) and 2.11(c) show the erosion and dilation of this image by the
square-shaped structuring element.

The morphological opening and closing are morphological operations that are very
useful in image processing. Let us first define the reflection of B as its symmetric with
respect to the origin. The morphological opening of f by the structuring element B
is defined as the erosion of f by B followed by dilation by the reflected structuring
element B̌, that is,

γB(f) = δB̌(εB(f)). (2.17)

Erosion first removes all objects in f that cannot contain the structuring element and
shrinks all the other objects. When the obtained image is dilated by the reflected struc-
turing element, the objects that have been removed are naturally not recovered. The
objects that have not been removed by erosion are restored in such a way that protru-
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sions that cannot contain the structuring element remain removed. The morphological
opening can thus be used to remove small objects and to smoothen the contours of
larger objects. An example is shown in Figure 2.11(d).

The morphological closing of f by the structuring element B is defined as the
dilation of f by B followed by erosion by the reflected structuring element B̌, that is,

φB(f) = εB̌(δB(f)). (2.18)

Dilation first fills all background structures that cannot contain the structuring element
and expands all objects. When the obtained image is eroded by the reflected structuring
element, the filled background structures naturally remain filled. The expanded objects
are restored in such a way that indentations that cannot contain the structuring element
remain filled. The morphological closing can thus be used to fill small holes in the
objects and to smoothen the object contours. An example is shown in Figure 2.11(e).

If one has a priori knowledge on the morphology of the foreground objects, it
is often possible to impose this knowledge on the segmentation results by applying
morphological closing and opening operations with a suitable structuring element. For
example, cells should not have holes, and therefore holes can be easily filled by a
morphological closing by a structuring element that is larger than the holes. Further,
the smallest possible area of the cells is often known, and the morphological opening
by a structuring element that is smaller than the minimum cell area can be used to
remove smaller objects that result from errors in the segmentation. Many cell types
have smooth, concave shapes, and opening and closing by a circular structuring element
can be applied to smoothen the contours of the recognized objects.

2.4 Feature extraction

In the feature extraction step the relevant quantitative parameters are extracted using
the images obtained in the segmentation step. These parameters may include object-
specific features such as area, shape, intensity, and color. Image-specific features such
as the total number of cells in an image are also often extracted. Extensive lists of
possible features can be found in [51] and [80]. To be useful, the features should be
invariant to translation and rotation of the objects or images.

It should be noted that feature extraction may aim at directly quantifying certain
properties of the objects or at extracting features that are useful in data analysis, see
Section 2.6. In the latter case, in addition to features that quantitatively capture the as-
pects of objects that human experts describe, less intuitive features are often extracted.
These features can be related to, for example, the frequency content or texture of ob-
jects. They capture information that a human observer may neglect, and may allow
improved performance of an automated classifier.
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Figure 2.12: The 3 × 3 neighborhood of a point p.

2.4.1 Connected component analysis

Usually it is necessary to identify each segmented foreground object individually before
features can be extracted. First we need to make a few definitions.

Definition 2.6 Assume the labeling of points (pixels) depicted in Figure 2.12. Then,
the points x1, x2, . . . , x8 are the eight-neighbors of p, and the points x1, x3, x5, x7 are
the four-neighbors of p.

Definition 2.7 A sequence of points y1, y2, . . . , yn is an eight-path (four-path), if yi+1

is an eight-neighbor (four-neighbor) of yi for all i ∈ [1, n − 1].

Definition 2.8 A subset P of pixels from an image f is eight-connected (four-
connected) if for every pair pi, pj of points in P there is an eight-path (four-path) from
pi to pj consisting of points in P . If f is a binary image and all points in P have
the same value (zero or one), P is said to define an eight-connected (four-connected)
component of f .

The individual identification of segmented foreground objects can be done by con-
nected component labeling. The same label is set for pixels belonging to the same
connected component, whereas pixels belonging to different connected components
get different labels. Integer labels are usually used, and the background usually re-
tains the zero label. A method for labeling connected components can be found in, for
example, [81] as well as in numerous textbooks on digital image processing.

Many features are very easy to extract from a labeled image. For example, assum-
ing correct segmentation, the number of labels corresponds to the number of foreground
objects. Measurements can be performed separately for each foreground object by con-
sidering only points that have the same label. For example, the areas of the objects can
be directly obtained by looking at the histogram of the labeled image. It should be
noted that the considered connectivity has an effect on the extracted features. Usually
eight-connected components are considered.

Because the field of view is finite in a digital image, it may contain only a part of
some foreground objects. These objects can be detected by finding objects that touch
the edges of the image. In feature extraction it is important to handle these objects
appropriately. If the number of objects is the only feature to be extracted, the standard
approach is to include in the count objects that touch two edges (and of course objects
that do not touch any edge), for instance the top and the left, and to ignore those that
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Figure 2.13: The use of a guard frame for unbiased feature extraction. Features are extracted
only from the objects marked black, whereas objects touching the bottom or right edges (green)
as well as objects in the guard frame (blue) are ignored.

touch the other two edges [82]. This approach can be used to find an unbiased estimate
for the number of objects per unit area.

If features such as the area, shape, or intensity of the objects are extracted, a more
complicated procedure may be needed. It is clear that such features cannot be extracted
from an object that touches any of the edges of the image, because the object is not
completely visible. If only objects that do not touch any edge are measured, the pro-
portions of small and large objects are wrong, because it is more likely that a large
object will touch an edge. Unbiased features can be extracted by dividing the image
into an active region and a guard region. The idea is illustrated in Figure 2.13, in which
the border between the active region (bottom right) and the guard region is marked with
a red line. As before, objects that touch the bottom and right edges (marked green) are
not counted or measured. The same applies to objects that lie entirely within the guard
frame (marked blue), irrespective of whether they touch the top or left edges or not.
Only objects that lie entirely in the active region or cross the edge between the guard
frame and the active region (marked black) are counted and measured. Since the guard
frame has to be large enough so that it is not possible for an object to extend from the
active region across the guard region to the edge of the image, in applications with large
objects the active region may have to be much smaller than the guard region.

2.4.2 Thinning

The extraction of certain features may require further image processing. For example,
if the lengths of elongated objects need to be extracted, the objects must be reduced
to arcs that are one pixel in width. The reduction process is generally referred to as
thinning, and the result of thinning an object is the skeleton of the object. A wide range
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of different thinning methods can be found in the literature. They produce slightly
different skeletons, and are often designed with a particular application in mind. A
comprehensive review of thinning methods can be found in [58]. Some of the more re-
cent studies, such as the ones reported in [20] and [90], have concentrated on thinning
in the presence of different types of noise. Thinning methods are usually divided into
two classes: iterative and non-iterative. Iterative methods delete successively layers of
pixels on the boundary of the object until only a skeleton remains. Non-iterative meth-
ods produce a center line of the object directly in one pass. This can be accomplished
by, for example, medial axis or distance transformations.

The skeletons obtained with a thinning method may contain spurious arcs, that is,
short arcs that are not topologically equivalent to the underlying object. The spurious
arcs result from small protrusions and indentations in the binary image obtained after
segmentation. The removal of the short arcs is referred to as pruning. It can be achieved
by, for example, iteratively removing endpoints of the skeletons until a given number
of iterations is reached.

2.5 Validation and quality control

In the validation step the goal is to confirm that the features extracted in the previous
step are correct. Validation is strongly related to the more general concept of per-
formance evaluation, see, for example, [104]. Validation usually starts with a visual
evaluation of the results, that is, segmentation results are compared with the original
images to see whether the segmentation seems to have been done correctly. However,
visual evaluation is not a well-defined way of validating image analysis results. It is
also always subjective. A ground truth evaluation should therefore be made when pos-
sible, that is, images for which the correct features are known should be used in order
to make an assessment of how well the image analysis method can match these results.

Traditionally the ground truth is obtained by manual inspection of the samples un-
der the microscope. However, such a manual quantification may not be completely
accurate [100]. One way of mitigating this problem is to let several experts repeat the
manual quantification several times. An average of these manual quantifications can
be assumed to be more accurate than a single manual quantification, and the variance
gives a measure of the reliability of the ground truth obtained in this way. Because a
large number of samples or images need to be quantified manually in order to have a
significant amount of ground truth data, the disadvantage of the above approach is that
it is very labor-intensive and can therefore be slow and expensive. Although factors
such as irregularities in the obtained images and physical fatigue can cause problems
in counting the number of cells in a sample, it is a task that in principle can be ac-
complished by visual inspection with the microscope. Many other parameters, such as
areas or lengths, are much more difficult to quantify manually, and an accuracy that is
needed for ground truth data cannot be obtained.
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Fully accurate ground truth data can be obtained by using simulated images. In
principle the cells in the images can be of any type and any kind of features can be
associated with them. A preliminary step towards validation based on simulation was
taken in [60], in which simulation of fluorescent microscope images of cell populations
was considered. The user can specify a number of parameters, and an image is created
based on these parameters. For example, it is possible to use the simulator to create
images for which the number of cells in the image is known. These images can be
used as ground truth for methods that extract the number of cells in the image. In
order for the ground truth to be useful, the simulated images must be similar enough to
real experimental images. In order to accomplish this, the simulator has parameters that
control factors such as cell size, cell shape, cell texture, the color of the stain, clustering
of the cells, uniformity of illumination, camera noise, and so on.

Whether simulated or real images are used as ground truth images, the set of ground
truth images should be representative of the new images that will be encountered later
when the image analysis method that is being validated will be used. It is also a good
idea to perform some worst-case testing, that is, to test what happens when the image
contains some rare or unusual features.

An alternative to ground truth validation is to let one or more experts do repeat man-
ual quantifications of the image data. If the variation between these manual quantifica-
tions is as large as it is between each of the manual quantifications and the automated
quantification, we know that the the accuracy of the automated method is comparable
to manual quantification.

Quality control is an issue related to validation. The idea is to make sure that
features are extracted only from those objects at which the image quality is sufficient.
For example, cells in a cell population may be in different focal planes, and features
should be extracted only from those cells that are in good enough focus. It is also
possible that the image includes artefacts that should be ignored even though they are
similar to cells or other foreground objects.

Quality control can be done by comparing each segmented object with objects that
are known to be segmented correctly. The objects that may or may not be segmented
correctly form a test data set, and the objects that are known to be segmented correctly
form a ground truth data set. The comparison between objects from these sets is done
in a multi-dimensional feature space. Let us denote the feature vector of an object from
the test data set by a, and the mean of the feature vectors of the objects from the ground
truth data set by ā. Then, the new object is classified as “valid” if the distance between
a and ā is less than a predefined threshold. Otherwise it is classified as “not valid”,
and the object is not included in the subsequent analysis. In [107] the Mahalanobis
distance dM (ā,ai) given by Equation (2.13) was used as the distance measure, but
other distance measures may be used as well. A large threshold value increases the risk
of artefacts or objects in poor focus being included in the subsequent analysis, whereas
a small threshold increases the risk that well focused objects are excluded from the
analysis. We can say that in the former case there can be false positives and in the latter
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case there can be false negatives. There are applications in which false negatives are
not a significant problem. For example, if the goal is to find properties of individual
cells and there is a large supply of cells, it is best to quantify only well-focused cells,
because otherwise the quantified cell-specific features may be inaccurate. However, in
applications in which the number of cells per unit area or other image-specific features
are quantified, false negatives are just as problematic as false positives.

2.6 Data analysis

The numerical data produced in the feature extraction step may not be the desired end
result. Instead, the goal may be to extract some specific higher level information on
the objects recognized in the segmentation step. For example, the goal may be to
find the percentages of different types of objects. In other studies test samples are
compared with control samples. For example in studies related to drug discovery test
samples are treated with different agents and compared with control samples so that the
effect of the agent can be quantified. In these studies multivariate statistical analysis
techniques are typically used. In comparative studies the important question is whether
the effects observed in the test samples are statistically significant. This can be achieved
by drawing confidence intervals and by performing statistical significance tests.

An enormous amount of methods for performing data analysis can be found in the
literature, see, for example, [51] and [65] as well as the references in these papers.
Typically the first step is to reduce the dimensionality of the problem by selecting those
features that are most suitable for the problem. Both supervised and unsupervised
methods can thereafter be used for classification. A validation step is also required
to determine the accuracy of the classifier. However, the implementation of the data
analysis step is outside of the scope of this thesis.





Chapter 3

Case studies

This chapter describes four case studies that have been published in the enclosed publi-
cations. The case studies apply the principles described in Chapter 2. The solutions to
the image analysis problems require the application of existing image analysis methods
as well as the development of new methods or new combinations of image processing
steps. The aim of the publications has been to develop image analysis methods that are
general enough so that they can be applied in a wide range of similar image analysis
problems. The applications of the publications cover a substantial range of different sit-
uations, and the developed methods provide a good basis for taking on new applications
within the field of biomedical microscopy imaging.

3.1 Quantification of in vitro angiogenesis

Angiogenesis is the formation of new blood vessels from pre-existing vasculature. It
plays an important role in embryonic development, tissue repair and wound healing,
tumor growth and metastasis, and various vascular diseases [6, 35, 79]. Publication I
proposes an image analysis method for quantifying angiogenesis. It is designed for in
vitro angiogenesis assays that are based on co-culturing endothelial cells with fibro-
blasts. Publication II uses the method proposed in Publication I to compare quantita-
tively the global properties of vascular networks grown with an in vitro angiogenesis
assay with the global properties of networks obtained with discrete, stochastic growth
models.

The motivation of Publication I is in drug discovery. The growth, invasion, and
metastasis of most solid tumors are dependent on angiogenesis. Therefore, one of
the strategies for the treatment of cancer is to inhibit angiogenesis by using specific
anti-angiogenic agents [33, 55]. The first anti-angiogenic agents have been recently
approved for clinical use in several countries and currently there are many angiogenic
inhibitors in clinical trials [34]. To be able to find anti-angiogenic agents, the stim-
ulatory and inhibitory effects of the different agents need to be quantified. Before a
potential drug is tested on animals or humans, it can often be tested in an in vitro ex-

35
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periment. Each potential agent is added to the in vitro experiment and the effects are
observed, preferably by automated image analysis. Agents that do not have the desired
inhibitory effect are removed from further testing. The same applies to agents that are,
for example, toxic or otherwise have undesired side-effects.

Some papers present computer-assisted methods for quantification of angiogenesis,
see, for example, [57,102]. In these papers general purpose image processing software
is used for the segmentation task. Automated methods that use such general purpose
software have also been proposed, see, for example, [15]. In [28] a fully automated
quantification method for in vitro assays based on the chorioallantoic membrane is
presented. In addition, a lot of work on quantification of blood vessels in different
contexts can be found in the literature. Many papers consider the segmentation of
retinal blood vessels, see, for example, [42, 50, 97]. There are also a large number
of papers on blood vessels segmentation in angiograms, see, for example, [21, 25].
The segmentation problems in these papers are very similar to the one considered in
Publication I.

3.1.1 Image acquisition

The angiogenesis experiment was done with the TCS Cellworks Angiokit (Bucking-
ham, UK), a commercially available in vitro angiogenesis assay [14]. The assay utilizes
a fibroblast matrix seeded with endothelial cells. Each well of the assay plate can be
used to test a condition. Immunostaining is used to stain the endothelial cells that form
the tubules that are grown with the assay. Each well was imaged with a bright field
microscope using a resolution of 1300 × 1030 pixels and 8 bits per pixel.

Four assay plates, each consisting of 24 wells, were used to examine the effects of
commercially available purified insulin-like growth factor-binding proteins (IGFBP) 1
through 5. In addition, each plate contained negative and positive control wells. The
negative controls were obtained by treating the well with 20 µM suramin, an anti-
angiogenic drug [38]. The positive controls were obtained by treating the well with
2 ng/ml vascular endothelial growth factor (VEGF). Each plate also contained control
samples with no treatment.

3.1.2 Pre-processing

The first step of the image analysis method proposed in Publication I is the correc-
tion of nonuniform illumination. The additive illumination model is assumed, and the
nonuniformity component ξa is found with a separated second order polynomial fit.

Let us first consider a kth order polynomial of the form

p(m) = a0 + a1m + . . . + akm
k. (3.1)

Given N data points (mi, bi), the polynomial least squares fit can be found by finding
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the coefficients ai from the equation
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In matrix notation this is given by

b = Ma, (3.3)

where the matrix M is also known as the Vandermonde matrix and uses the vector
m = [m1,m2, . . . ,mN ] as the basic building block. The least squares solution for a is
given by

a = (M
T
M)−1M

T
b, (3.4)

where (M
T
M)−1M

T
is the pseudoinverse of M. The fitted polynomial can then be

evaluated by using Equation (3.3).
Let us use a matrix representation for images. Then we denote the image f by a

matrix F. Let us assume that the size of the image matrix is M × N . The separated
kth order polynomial least squares surface fit on the image is then done as follows. We
first fit a kth order polynomial on each horizontal line fj of the image by

wj = M(M
T
M)−1M

T
fj, (3.5)

where m = [0, 1, . . . , N − 1]. Then we form an image W from the polynomials wj

and fit a kth order polynomial on each vertical line wi of that image by

bi = M(M
T
M)−1M

T
wi, (3.6)

where m = [0, 1, . . . ,M − 1]. The background estimate image B is then formed from
the polynomials bi, and can also be denoted by b(m,n), where m ∈ {0, 1, . . . ,M −1}
and n ∈ {0, 1, . . . , N − 1}.

Figure 3.1 shows an example of correction of nonuniform illumination using
the separated least squares fit. After the background estimate is obtained as pre-
sented above, the correction is done using Equation (2.9) with ξa = b and Ca =
max [b(m,n)]. The image shows a well from an in vitro angiogenesis assay, and is
part of the study of Publication I. Since the original image shown in Figure 3.1(a) has
a vignetting effect, a second order polynomial fit is used to remove it. The vignetting
effect can be most clearly seen in the thresholding result in Figure 3.1(b): because the
background is darker in the corners of the image than elsewhere, the thresholding result
is unacceptable in the corner areas. The result after correction of nonuniform illumina-
tion is shown in Figure 3.1(c) and the global thresholding result in Figure 3.1(d) shows
that a sufficiently uniform background is achieved.
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(a) (b)

(c) (d)

Figure 3.1: (a) An image of an in vitro angiogenesis assay with nonuniform illumination. (b)
The original image after global thresholding with the threshold value 135. (c) The original im-
age after correction of nonuniform illumination by a separated polynomial least squares back-
ground fit. The additive illumination model is assumed. (d) The original image after correction
of nonuniform illumination and global thresholding with the threshold value 135.

As explained in Section 2.2.2, the correct model for correction of nonuniform illu-
mination depends on the sensor response function of the camera. The additive model
used above is correct for a logarithmic device. Since the camera that was used to obtain
the angiogenesis images probably is not logarithmic, we tested correction of nonuni-
form illumination with the multiplicative model, and found that the model choice does
not have a significant effect on the results. For example, Figure 3.2(a) shows the im-
age in Figure 3.1(a) after correction of nonuniform illumination by Equation 2.10 with



3.1. QUANTIFICATION OF IN VITRO ANGIOGENESIS 39

(a) (b)

Figure 3.2: (a) The image in Figure 3.1(a) after correction of nonuniform illumination by a
separated polynomial least squares background fit. The multiplicative illumination model is
assumed. (b) The original image after correction of nonuniform illumination and global thresh-
olding with the threshold value 135.

ξa = b and Cm = max [b(m,n)]. Figure 3.2(b) shows the respective global thresh-
olding result. These results are very similar to the ones obtained using the additive
illumination model, see Figures 3.1(c) and 3.1(d).

The above correction method does not take into account the fact that some of the
pixel values do not represent the background. In the above example, blood vessels
are much darker than the background and can be thought of as outliers. Since the
least squares fit is sensitive to outliers, they may have an undesired effect on the fit.
If the outlier values are distributed approximately evenly in the data to be fitted, they
effectively cause the fit to be slightly below the actual background pixel values, see
Figure 3.3. Such a consistent bias does not have any effect on the background correc-
tion result, because the maximum value of the background estimate b was used as the
normalization coefficients Ca and Cm in Equations (2.9) and (2.10). In both cases, this
selection has the property that the intensity value of the point or points with highest
illumination remains intact, and the intensity values of the other points are increased.

If the outlying values are not distributed evenly, the outliers may render the least
squares fit unusable. As a solution, one could select the grid points that are used in
the fitting procedure in such a way that object pixels are excluded. In the case of
bright objects on a dark background one can calculate the standard deviation of all
pixel values and mask away pixels that deviate more than a constant number of standard
deviations from an initial background estimate [64]. In the case of dark objects on a
bright background one can use the same criterion on the complement image. Another
approach is to make the selection of grid points locally by dividing the image into small
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Figure 3.3: (a) The intensity profiles of the horizontal line m = 900 from the image in Fig-
ure 3.1(a) (blue) and from the polynomial least squares fit (red). (b) The intensity profiles of
the vertical line n = 300 from the image in Figure 3.1(a) (blue) and from the polynomial least
squares fit (red).

non-overlapping neighborhoods and selecting the brightest pixel in each neighborhood
as a grid pixel [82]. However, in the former approach the constant number of standard
deviations and in the latter approach the neighborhood size depend on the image, and
thus these correction methods are not fully automated.

Since with image data the outliers result from high or low pixel values, they af-
fect the one-dimensional intensity profiles only in the vertical direction. Thus, we can
use robust M -estimators [45] to make a robust fit in a fully automated fashion. M -
estimators can be thought of as a generalization of least-squares estimation. Let ri be
the residual of the ith data point, that is, the difference between the ith data point and
its fitted value. Least squares estimation tries to minimize

∑N
i r2

i , which is unstable to
outliers in the data. Replacing the cost function r2

i by a general function ρ(ri) of the
residual yields

min

N
∑

i

ρ(ri). (3.7)

This defines the general class of M -estimators. Some choices for ρ(ri) result in a
robust estimator. Here we use the the Tukey cost function, which is defined by

ρ(ri) =

{

c2

6

(

1 −
[

1 − (ri/c)
2
]3
)

, if |r| ≤ c,

c2

6
, if |r| > c,

(3.8)

where c is a tuning constant that affects the asymptotic efficiency of the M -estimator.
The Tukey M -estimator has the nice property that it totally removes the influence of
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Figure 3.4: (a) The intensity profiles of the horizontal line m = 900 from the image in Fig-
ure 3.1(a) (blue) and from the polynomial Tukey M -estimator fit (red). (b) The intensity profiles
of the vertical line n = 300 from the image in Figure 3.1(a) (blue) and from the polynomial
Tukey M -estimator fit (red).

all points whose residuals grow beyond c in the absolute value. Typically c = 4.6851
is used, resulting in 95% asymptotic efficiency. This value of the tuning constant is
suitable for the typical dynamic ranges of digital images. Therefore a nonparametric
method can be obtained by fixing c to this value.

Figure 3.4 shows the same intensity profiles as are shown in Figure 3.3, only now
the Tukey M -estimator fit is shown. Clearly now the fit better follows the intensity
values of the background pixels from the original image, that is, the outliers do not have
a serious effect on the fit. The only disadvantage of the robust M -estimator method is
that it is computationally more complex than the least squares method.

3.1.3 Segmentation

In addition to actual tubules, the obtained images contain tubule-like fibroblast struc-
tures. These structures have a similar appearance to tubules, but are in general lighter.
However, some parts of tubules can be as light as fibroblasts, and therefore segmenta-
tion cannot be achieved by global thresholding. Instead, the segmentation is performed
with hysteresis thresholding [18]. The method is sometimes called double thresholding.

The first step of hysteresis thresholding is to threshold the image separately with
two different thresholds. The two thresholds define two different ranges of gray level
values for the foreground, one being included in the other. The foreground objects
of the binary image corresponding to the wider range are candidates for foreground
objects in the hysteresis thresholding result. The foreground pixels defined by the nar-
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(a) (b) (c)

Figure 3.5: The principle of hysteresis thresholding. (a) Wide thresholding result. (b) Narrow
thresholding result. (c) Hysteresis thresholding result.

rower range are then used as seeds. Those candidate objects that overlap with a seed
pixel are marked as foreground objects. Figure 3.5 illustrates the idea.

In Publication I the threshold corresponding to the wider range was obtained with
Otsu’s method [75]. After thresholding some of the recognized tubules and fibroblast
structures are filled with a morphological closing by a 3×3 square structuring element.
The midpoint of the range of gray level values of the input image was used as the
threshold corresponding to the narrower range. Figure 3.6(a) shows a 280 × 240 pixel
fraction of one of the test images. With this image Otsu’s method gives the threshold
value 146, and the resulting wide thresholding result is shown superimposed in red
color on the original image in Figure 3.6(b). It can be seen that many of the fibroblast
structures get incorrectly recognized as foreground pixels. The threshold corresponding
to the narrower range is 118, and the respective image is shown in Figure 3.6(c). The
hysteresis thresholding result is shown in Figure 3.6(d). Now only the darkest structures
are recognized as tubules.

3.1.4 Feature extraction

The segmentation step results in a binary representation of the tubules. There are typ-
ically networks of connected tubules, which are referred to as tubule complexes in
Publication I. The parameters to be extracted are the areas of the tubule complexes, the
lengths of the tubule complexes, and the numbers of junctions in the tubule complexes.
The area of a tubule complex is measured in pixels by counting the number of pixels in
its binary representation.

In order to be able to measure the lengths of tubules and to detect junction points,
the tubules must be thinned so that they are exactly one pixel in width. This is done by
Algorithm 1 from the paper by Guo and Hall [44]. It is an iterative thinning method that
can be implemented efficiently using look-up tables. Because the obtained skeletons
contain spurious arcs, the skeletons need to be pruned. Pruning is done with a method
that removes arcs that are shorter than a given threshold without shortening the other
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Figure 3.6: (a) A fraction of an image of an in vitro angiogenesis assay after correction of
nonuniform illumination. (b) Wide thresholding result. (c) Narrow thresholding result. (d)
Hysteresis thresholding result. (e) Skeleton of the hysteresis thresholding result. (f) Pruned
skeleton and junctions.

arcs. The details of the method can be found in Publication I. After thinning, the length
of a tubule complex can be obtained by L = N + (

√
2 − 1)Nd − 1, where N is the

total number of pixels in the skeleton of the tubule complex and Nd is the number
of diagonally connected pairs of pixels. Junction points can be detected by finding
those points whose eight-neighbors form more than two four-connected components.
Figure 3.6(e) shows the skeleton corresponding to the segmentation result shown in
Figure 3.6(d). Figure 3.6(f) shows the pruned skeleton and the junction points (green
squares).

3.1.5 Validation

The proposed quantification method was tested with a set of 24 control images. There
were 7 negative controls (suramin), 9 positive controls (VEGF), and 8 no treatment
controls. The controls come from 4 different plates. Since the number of tubule com-
plexes varies significantly between the images, we compare the mean lengths and areas
of tubule complexes and the mean numbers of junctions per tubule complex. The quan-
tification results can be seen in Table 3.1. The lengths and areas of tubule complexes
are measured in pixels, since this is sufficient for the purpose of comparing the results
obtained with different treatments.
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Table 3.1: Quantification of 24 control wells from an in vitro angiogenesis assay.

length area junctions
treatment plate complexes total mean total mean total mean
none A 190 15431.4 81.2 61851 325.5 118 0.62
none A 208 16347.1 78.6 63633 305.9 130 0.63
none B 173 14440.4 83.5 56818 328.4 117 0.68
none B 173 13418.8 77.6 54334 314.1 99 0.57
none C 319 16824.7 52.7 77837 244.0 116 0.36
none C 298 16519.8 55.4 80703 270.8 150 0.50
none D 207 14611.0 70.6 87793 424.1 115 0.56
none D 283 24999.0 88.3 132607 468.6 303 1.07
suramin A 121 3769.1 31.2 17073 141.1 5 0.041
suramin A 92 3109.9 33.8 14489 157.5 9 0.098
suramin B 100 3105.0 31.1 13630 136.3 2 0.020
suramin C 259 9669.9 37.3 47625 183.9 51 0.20
suramin C 241 7181.3 29.8 34457 143.0 33 0.14
suramin D 183 7677.4 42.0 36387 198.8 48 0.26
suramin D 51 5341.8 35.4 27210 180.2 15 0.10
VEGF A 164 18550.2 113.1 80249 489.3 171 1.04
VEGF A 199 26959.5 135.5 117909 592.5 329 1.65
VEGF B 193 22844.2 118.4 102048 528.8 298 1.54
VEGF B 164 26212.6 159.8 117450 716.2 379 2.31
VEGF C 283 27321.0 96.5 117562 415.4 299 1.06
VEGF C 344 30609.1 89.0 128122 372.5 320 0.93
VEGF D 334 50577.1 151.4 251090 751.8 992 2.97
VEGF D 278 37788.6 135.9 204936 737.2 601 2.16
VEGF D 305 42684.2 140.0 217492 713.1 725 2.38

The obtained quantification results are similar for duplicate (same treatment) wells.
Moreover, we observe the expected results when the wells with suramin and VEGF
treatments are compared against the wells with no treatment. There are fewer tubule
complexes in the wells treated with suramin than in the wells with no treatment. Fur-
ther, the tubule complexes are much shorter and smaller than in the wells with no
treatment. There are also fewer junctions. For the wells treated with VEGF, the quan-
tification shows increased mean tubule complex lengths and areas as compared with
wells with no treatment. The mean numbers of junctions are also higher.

Figure 3.7 shows each of the 24 wells in a two-dimensional feature space. The
horizontal axis is the mean length of the tubule complexes, and the vertical axis is the
mean number of junctions per tubule complex. Wells with suramin treatment are rep-
resented by squares, wells with VEGF treatment are represented by upward triangles,
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Figure 3.7: A representation of 24 control wells from an in vitro angiogenesis assay in a two-
dimensional feature space.

and wells with no treatment are represented by downward triangles. The three classes
separate well in the feature space.

3.1.6 Data analysis

Effects of insulin-like growth factor-binding proteins

The members of insulin-like growth factor binding protein (IGFBP) family have been
implicated in diverse cellular functions. They are secreted proteins that are present in
circulation, with some of the members abnormally expressed in tumors. The work pre-
sented in [31] uses the image analysis method presented in Publication I to show that
different members of the IGFBP family have distinct effects on angiogenesis. The ex-
periment included IGFBPs 1 through 5. The endothelial cells were treated in triplicate
wells for 11 days with 2 µg/ml, 0.2 µg/ml, and 0.02 µg/ml of each purified protein
mixed in the medium. We also included two wells each of 2 ng/ml VEGF as a posi-
tive control, 20 µM suramin as a negative control, and medium only as a no treatment
control.

The number of junctions, number of tubule complexes, total tubule length, and
mean tubule length were quantified for each well. The results showed that the IGFBP1-
treated wells showed effects similar to the angiogenesis inhibitor suramin in terms of all
four measured quantities. IGFBP2 and IGFBP4 showed an effect similar to VEGF in
terms of these quantities, whereas IGFBP3 and IGFBP5 showed no significant effects.

Mathematical modeling of angiogenesis

Angiogenesis involves interactions among angiogenic factors, inhibitors, and regula-
tors at molecular, cellular, and tissue levels. To understand such a complicated process,
the experimental approach must be combined with mathematical modeling. The experi-
mental approach enables us to investigate isolated factors and simple interactions, while
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Figure 3.8: The power law behavior of tubule complex lengths in in vitro angiogenesis treated
with VEGF.

through mathematical modeling we can understand the large-scale emergent properties
of angiogenesis from a systems perspective. Indeed, several mathematical models of
angiogenesis have been developed, see, for example, [19, 71, 74, 76].

Publication II compares the global properties of vascular networks grown with the
TCS Cellworks Angiokit with the global properties of networks obtained with dis-
crete, stochastic growth models. The model classes that are investigated are invasion
percolation [103] and diffusion limited aggregation [105]. Both models have several
parameters that control their behavior, and the simulations are made with different sets
of parameters to obtain networks with different properties. The networks grown with
the TCS Cellworks Angiokit are quantified with the image analysis method presented
in Publication I. It is found that invasion percolation is better than diffusion limited
aggregation at matching experimental data.

Tubule complex length distribution

The tubule complex length distribution in the experimental angiogenesis data used in
Publication II follows a power law. This data set contains the tubule complex lengths of
2529 tubule complexes obtained from 9 different wells treated with VEGF. The power
law behavior suggests that a power law distribution provides optimal efficiency of blood
transfer. One possible explanation for the power law behavior is that large tubule com-
plexes have more potential branching points than small tubule complexes. Since tubule
complexes can grow either by branching or at the endpoints of existing branches, large
tubule complexes have more potential to grow than small tubule complexes. Thus, the
larger a tubule complex is, the faster it grows. This is akin to preferential attachment,
which is one of the mechanisms known to give rise to power law degree distributions in
networks [10]. The histogram of the tubule complex length data is plotted on a log-log
scale in Figure 3.8.
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3.2 Quantification of in vitro invasion

Tumor cells have the ability to invade surrounding tissues. Highly malignant cells
also have the ability to give rise to distant metastases by transversing vascular tissues
and migrating through the blood stream. The ability of cancer cells to invade into the
surrounding tissue correlates with cellular malignancy and the ability of the cancer to
metastasize.

The invasive capability of cells can be studied with in vitro invasion assays. Most
of them are based on an invasion chamber that consists of two compartments that are
separated by a porous membrane, see, for example, [2, 78]. The cells are placed in the
upper compartment, and they invade through the pores of the membrane to the lower
compartment. The remaining cells are removed from the upper compartment, and the
invaded cells in the lower compartment are stained and observed with a microscope.

The applications of in vitro invasion assays include the assessment of the invasive
potential of tumor cells [96] as well as of some developmental normal cells [26] and
the assessment of inhibition of tumor cell invasion by inhibitory drugs [85]. The work
presented in [86] is one of the few attempts to apply image analysis methods for quan-
tifying in vitro invasion assays. However, the image processing method presented in
that paper consists merely of global thresholding with a predefined threshold. Although
this simple method seems to provide good results for the custom assay that is described
in the paper, it does not provide good results with most other assays. Publication III
proposes an image analysis method for quantifying in vitro invasion.

3.2.1 Image acquisition

The invasion experiments were conducted with the BD BioCoat Matrigel Invasion
Chamber (Bedford, Mass., USA), a commercially available in vitro assay that uses ma-
trigel as a coating on top of the porous membrane [2]. The invaded cells were stained
with the Diff-Quik stain [92]. The assays were then imaged with a bright field micro-
scope using a resolution of 1300 × 1030 pixels and 8 bits per pixel. Imaging was done
in such a way that the rectangular image contains the whole circular well. To facilitate
correction of nonuniform illumination, an image of an empty slide was taken in each
imaging session.

3.2.2 Pre-processing

The first step of the image analysis method proposed in Publication III is the correction
of nonuniform illumination. The additive illumination model is assumed, and the image
taken of an empty slide is used as the nonuniformity component ξa. It is important that
the empty image is taken with the same illumination, microscope, and camera settings
as the assay images to be quantified.

Figure 3.9 shows an example of correction of nonuniform illumination in one of
the images used in the study of Publication III. The original image in Figure 3.9(a) as
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(a) (b)

(c) (d)

Figure 3.9: (a) An image of an in vitro invasion assay with nonuniform illumination. (b) An
image of an empty slide under the same illumination. (c) The original image after correction
of nonuniform illumination using the additive model. (d) The original image after correction of
nonuniform illumination by the multiplicative model.

well as the image of an empty slide in Figure 3.9(b) show a clear vignetting effect.
The result after correction of nonuniform illumination using Equation (2.9) is shown
in Figure 3.9(c), and the result using Equation (2.10) is shown in Figure 3.9(d). The
maximum value of the empty slide is used as the normalization coefficient in both
cases, that is, Ca = max [ξa(m,n)] and Cm = max [ξm(m,n)]. It can be seen that
in both cases the vignetting effect has been removed and the circular well stands out
appropriately from the rest of the image.
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(a) (b)

(c) (d)

Figure 3.10: (a) Initial region of interest (ROI) detection with global thresholding. (b) The
ROI mask after morphological filtering. (c) The circular fitted ROI. (d) The circular ROI after
correction of nonuniform illumination.

The next pre-processing step is the detection of the region of interest (ROI), that is,
the segmentation of the well from the background. An initial ROI detection is made
with global thresholding using Otsu’s method [75]. In the initial detection there may be
some errors. For example, the detected ROI may have holes, correctly recognized ROI
pixels may belong to more than one connected component, and pixels that do not belong
to the ROI may be falsely recognized as ROI pixels. These problems are solved with
a sequence of morphological filters. A circle is thereafter fitted on the detected ROI.
Finally, correction of nonuniform illumination is performed anew, considering just the
pixels within the detected region of interest. The additive model is again assumed, and
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(a) (b)

(c) (d)

Figure 3.11: (a) A fraction of an image of an in vitro invasion assay. (b) Potential cell areas. (c)
Potential cell locations. (d) Final cell detection result.

a second degree polynomial surface fit is used to estimate the nonuniformity component
ξa. Figure 3.10 shows an example of ROI detection for the image shown in Figure 3.9.

3.2.3 Segmentation

In the invasion assay images cells are shown as dark points. The pores are also visible,
but they are lighter and smaller than the cells. Figure 3.11(a) shows a 200 × 200 pixel
fraction of the full image shown in Figure 3.9(a). Several cells as well as pores can be
observed in this image.
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The first step of the segmentation method is to make a crude detection of potential
cell areas. This is done by global thresholding using Otsu’s method [75]. The result
for the example image is shown superimposed in red color on the original image in
Figure 3.11(b). All pixels that represent an invaded cell have been correctly recognized.
However, at the same time a lot of pixels that represent a pore or the background are
recognized as well. Therefore, the segmentation result needs to be improved.

Because the aim is only to find the number of invaded cells and not their areas,
we detect the darkest point of each invaded cell. Therefore, the second step of the
segmentation method is to find the local minima within the detected potential cell areas.
The result for the example image is shown in Figure 3.11(c). A 5 × 5 sliding window
was used to find the local minima. Finally, the local minima are replaced by the local
means using a small neighborhood, and these data points are divided into two classes
using a threshold obtained with Otsu’s method. The result for the example image is
shown in Figure 3.11(d). A 3 × 3 local neighborhood was used to calculate the local
means.

By using the local means of local minima, the segmentation method is able to
distinguish between pores and invaded cells. Namely, the local mean depends on both
the intensity and the size of the structure at which the local minimum is found. Note
especially that even if the darkest pixels inside some pores are darker than the darkest
pixels inside some of the invaded cells, the surrounding pixels are much lighter in the
pores, which makes the mean intensity smaller. Moreover, the fact that the nuclei of
the invaded cells are often seen as dark points within the cells makes it a good choice
to use local minima as the location markers.

In the last step of the segmentation method it is also possible to use more features
than just the local mean. For example, the local variance could be a good additional
feature, because the local variance is high at the locations of the cells and lower in
other locations. To be able to incorporate more features, thresholding the mean values
is replaced by a clustering method (see Section 2.3.2). In [43] and in [87] such an
approach with K-means clustering and fuzzy C-means clustering, respectively, is taken
in very similar segmentation tasks.

3.2.4 Feature extraction

The segmentation method guarantees that there is exactly one foreground pixel for each
detected cell. Therefore, the number of invaded cells is calculated by simply finding
the sum of the pixel values in the binary segmentation result. However, since the area
of the region of interest may be different for different images, the absolute amounts of
invaded cells are not comparable between assays. Instead, the amount of invaded cells
relative to the area of the ROI is recorded. For example, the number of cells per 100
pixels may be recorded.
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3.2.5 Validation

Validation was done by comparing the counts obtained with the image analysis method
with manual cell counts. The manual cell counts were done on the basis of digital im-
ages. The results show percent differences of less than 10 per cent. Moreover, there
is a good correlation between the automated and manual counts: as far as comparing
cell counts from different images is concerned, the automatic and manual results do not
contradict each other. It should also be noted that the results obtained by manual count-
ing may not be correct, and comparisons between the automated and manual counts are
suggestive at best.

3.2.6 Data analysis

The image analysis method presented above was used in [59] to asses the role of in-
creased insulin-like growth factor binding protein 2 (IGFBP2) in ovarian cancer cells. It
was shown that IGFBP2 increases the invasion capacity of ovarian cancer cells. Since
IGFBP2 is significantly over-expressed in invasive ovarian carcinomas as compared
with normal ovarian tissues, blockage of IGFBP2 may constitute a viable strategy for
targeted cancer therapy.

3.3 Quantification of buds and peroxisomes in budding yeast

Due to its relative simplicity, the budding yeast Saccharomyces cerevisiae is often used
as a model organism. The sequence of S. cerevisiae was completed in 1996 [40]. By
producing knockout strains it is possible to study the global regulation of different
properties of yeast. For example, the regulation of yeast morphology was considered
in [73, 84, 95] with the emphasis on developing an image analysis method for auto-
mated extraction of yeast cell morphology. Similar image analysis methods can also
be used in cell cycle studies in which the aim is to invert the population effects [9, 68].
In [54] knockout mutants and image analysis methods were used to study endocytosis
in budding yeast.

Publications IV and V propose image analysis methods for quantitative analysis of
budding yeast. The main emphasis is in the segmentation of yeast cells and their buds.
In Publication IV the motivation is to obtain information on the cell cycle phase of the
population by quantifying bud sizes. Publication V presents a method that can be used
to study peroxisome biogenesis in budding yeast.

3.3.1 Image acquisition

In the experiment used in Publication IV the cell population was synchronized using an
alpha factor-based synchronization method [37]. Samples of the cultivated population
were imaged using a bright field microscope using a resolution of 2776 × 2074 pixels
and 8 bits per pixel and the sampling interval of 2 minutes. One of the images is shown
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Figure 3.12: A bright field image of a budding yeast S. cerevisiae population.

in Figure 3.12. In addition, samples taken with the sampling interval of 6 minutes
were analyzed with a fluorescence-activated cell sorter (FACS). The imaging and FACS
analysis were performed for a total of 280 minutes.

In the experiment used in Publication V a confocal microscope was used to obtain
two images for each sample: a bright field image that visualizes the cells and a fluores-
cent counterpart that shows the peroxisomes marked with a green fluorescent protein
(GFP). The resolution 512 × 512 pixels and 8 bits per pixel were used for both types
of images. Figure 3.13 shows an example image pair.

3.3.2 Pre-processing

The first step is the correction of nonuniform illumination in the bright field images.
The additive illumination model is assumed, and the nonuniformity component ξa is
found with a separated second order polynomial fit, as described in Section 3.1.2.

The fluorescent images contain impulsive noise, which is removed with the 3 × 3
median filter. The result for the image in Figure 3.13(b) is shown in Figure 3.14.

3.3.3 Segmentation

In a bright field image of a yeast population, the cell membranes are clearly visible as
elliptic regions that are darker than the background. The cell membrane pixels thus
have two useful properties: the local mean is low and the local variance is high. Seg-
mentation can be achieved by marking as cell membrane pixels those pixels whose local
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(a) (b)

Figure 3.13: A budding yeast S. cerevisiae population. (a) A bright field image showing the
yeast cells. (b) A fluorescent image showing the peroxisomes marked with green fluorescent
protein.

mean is below a threshold Tµ and whose variance is above a threshold Tσ . The thresh-
old Tµ can be determined based on the global mean and variance of the local mean
image. Similarly, the threshold Tσ can be determined based on the global mean and
variance of the local variance image. Segmentation of the cell membranes is completed
by filling the holes in the cell membranes and removing all small foreground objects
by using morphological operations. Segmentation of the cells is thereafter completed
by a simple flood fill of the areas inside the inner boundaries of the cell membranes.

In order to enable individual analysis of each cell and bud, the cells and buds must
be separated from each other. The same applies also to cells that are clustered together.
In Publication IV the separation method is based on two criteria [8]. The first one is a
compactness measure

c =
4πA

p2
, (3.9)

where A is the area of an object and p is the length of its boundary line. Both quantities
are measured in pixels, but note that c is a dimensionless quantity. Objects for which
c is below a predefined threshold are candidates for objects that need to be split. The
second criterion is

r = max
p1,p2∈B

lB(p1,p2)

lE(p1,p2)
, (3.10)

where p1 = (m1, n1) and p2 = (m2, n2) are the coordinates of two points on the
boundary of the object, B is the set of boundary coordinates, lB is the distance between
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Figure 3.14: The fluorescent image shown in Figure 3.13(b) after filtering with the 3×3 median
filter.

the points along the boundary of the object, and lE is the Euclidean distance between
the points. If r is above a predefined threshold, a splitting line is drawn between p1

and p2. The final segmentation result for the image shown in Figure 3.12 is shown in
Figure 3.15.

In Publication V separation of clustered cells is done with a shape-based watershed
separation method (see Section 2.3.5). The watershed transformation is applied to the
Euclidean distance transformation [17] of the complement of the binary segmentation
result. The h-maxima transformation is applied to avoid over-segmentation. The final
segmentation result for the image shown in Figure 3.13(a) is shown in Figure 3.16(a).
Peroxisomes are segmented from the fluorescent image by thresholding the median fil-
tered image. In Publication V a constant threshold value 240 was used, because in
the data peroxisome pixels are consistently very close to saturation. The watershed
separation method is thereafter applied to the binary image in order to separate peroxi-
somes that are clustered together. The final segmentation result for the image shown in
Figure 3.13(b) is shown in Figure 3.16(b).

3.3.4 Feature extraction

In Publication IV the area of each bud and the total number of cells are extracted. This
allows us to determine the relative amounts of buds of different sizes in each image.
These features can be readily extracted from the segmentation results. In Publication V
the number of peroxisomes for each cell is determined. The detected cells in the bright
field image are used as regions of interest for the peroxisomes in the respective fluores-
cent image.
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Figure 3.15: The final segmentation result for the image shown in Figure 3.12. Each cell and
bud is shown with a different color. Cells that touch the edges of the image have been removed.

3.3.5 Validation

In [72] the estimates of the cell cycle distribution obtained with the image analysis
method presented in Publication IV were compared with distribution estimates ob-
tained with a method based on FACS measurements. The obtained distributions are
in agreement with each other, which suggests that the image analysis method gives
valid results.

The image analysis method presented in Publication V was tested with 25 test im-
age pairs taken of the same yeast strain. The automatically obtained number of cells
in each image was compared with manual cell counts. The results are illustrated as a
scatter plot in Figure 3.17(a). In most cases the automated counts given by the pre-
sented image analysis method differ from the manual counts by at most one cell. More
significant inaccuracies occur only when there is a large number of cells in the image.
In those cases large numbers of cells are clustered together, and the watershed method
is unable to separate them all.

Because of the large amount of noise in the fluorescent images, the manual counting
of the numbers of peroxisomes in the cells is difficult and tedious. However, the manual
counts were obtained for 30 randomly selected cells. The results are illustrated as a
scatter plot in Figure 3.17(b). It can be seen that the automated counts are very close
to the manual counts. However, it should be emphasized that the manual counts may
contain errors. In fact, it may even be the case that the manual count for a given cell is
incorrect and the automated count is correct. The automated method seems to have a
tendency to produce higher peroxisome counts than manual counting.
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(a) (b)

Figure 3.16: (a) The final segmentation result for the image shown in Figure 3.13(a). Each cell
is shown with a different color. Cells that touch the edges of the image have been removed.
(b) The final segmentation result for the image shown in Figure 3.13(b). Each peroxisome is
shown with a different color.

3.3.6 Data analysis

Inversion of population effects

The gene expression levels of cell cycle regulated genes are often observed as a time
series. Because the cell population is in practice never perfectly synchronized, that
is, all cells are not in the same phase of the cell cycle, the measured gene expression
level is a convolution of true values from neighboring cell cycle phases. The principles
of the inversion of this population effect are described in [68]. One of the described
methods uses bud counting data obtained with an image analysis method such as the
one presented in Publication IV.

Peroxisome biogenesis

The method presented in Publication V can be used to relate different gene knockouts
to peroxisome biogenesis. As a simple example, deletion of genes involved in the
biogenesis of peroxisomes would show a paucity of peroxisomes. Thus, if a gene
whose effect is unknown is deleted and a paucity of peroxisomes is observed with the
image analysis method, it may be concluded that the gene is involved in peroxisome
biogenesis.
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Figure 3.17: (a) The scatter plot of manual cell counts vs. automated cell counts for 25 test
images. (b) The scatter plot of manual peroxisome counts vs. automated peroxisome counts for
30 cells.

3.4 Quantification of lymph node size and number

Colorectal cancer is one of the most common types of cancer. The American Cancer
Society estimates that in the United States in the year 2006 about 148610 people will be
diagnosed with colorectal cancer and that over 55170 people will die of the disease [3].
It can be estimated that at least 30000 of the diagnosed cases of colorectal cancer will
be stage II and that several thousand of the stage II patients will eventually die of the
disease [109].

Some patients diagnosed with stage II colorectal cancer may benefit from adjuvant
chemotherapy. Because of the adverse effects of chemotherapy, the selection of patients
who are given this additional treatment must be done carefully so that chemotherapy
is given to only those patients that will benefit from it. The image analysis method
presented in Publication VI gives a solution for extracting two important prognostic
markers: the numbers and sizes of the lymph nodes recovered in surgical specimens of
colorectal cancer.

3.4.1 Image acquisition

The histopathologic sections of lymph nodes of 150 consecutive patients with stage II
colorectal cancer at The University of Texas M. D. Anderson Cancer Center between
1990 and 1998 were imaged with a standard desktop image scanner using the scanning
resolution 300 dpi. The histopathologic sections had been stained with the H&E stain
and put on slides at the time they had been recovered in surgery. Hematoxylin binds
to the lymph nodes and eosin is mainly washed away. Each slide can contain multiple
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lymph nodes and each image can contain multiple slides. There were 1069 slides in
total.

3.4.2 Pre-processing

The first task is to recognize the slides from each image. An example of a scanned
image with 7 slides is shown in Figure 3.18(a). The edges of the slides result in shadows
that can be seen as dark lines between the slides. These lines are detected with the aid
of a vertical projection of the image in a way akin to projection-based methods for
gridding of microarrays, see, for example, [5, 49].

3.4.3 Segmentation

The detection of lymph nodes is done slide by slide. The initial detection is done with
K-means clustering in the CIE L*a*b* color space. Three clusters are used. One of the
clusters corresponds to the the dark blue lymph nodes, one to the white background, and
one to the light pink structures that are not lymph nodes. The K-means clustering result
for the slides shown in Figure 3.18(a) is shown in Figure 3.18(b). It is then straight-
forward to obtain a binary image that represents the lymph nodes by simply replacing
the values that represent the appropriate cluster by the foreground label and the values
that represent the other two cluster by the background label. Finally, a sequence of
morphological operations is applied. The result for the slides shown in Figure 3.18(a)
is shown in Figure 3.18(c).

3.4.4 Feature extraction

The number of lymph nodes in each slide can be detected simply by finding the number
of connected components. The area of the lymph nodes can be found by calculating
the number of pixels in each connected component. A conversion into metric units is
possible because we know the resolution of the scanner. The area of the cross section
of the lymph nodes is used as a measure of the size of the lymph node. The area
naturally depends on how the histopathologic section of the lymph node was cut when
it was recovered by the pathologist. However, in this study it is enough to obtain rough
measurements of lymph node size.

3.4.5 Validation

The number of lymph nodes found in each surgical specimen was recorded by the
pathologists when the lymph nodes were originally recovered. We compared these
manual counts with the counts obtained with our automated image analysis method.
The scatter plot of the comparison is shown in Figure 3.19. The observations fit well
onto a straight line, and it can be concluded that the lymph node counts given by our
automated image analysis method are accurate.
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(a)

(b)

(c)

Figure 3.18: (a) An image with 7 lymph node slides. (b) The K-means clustering result with
lymph nodes marked red. (c) The final segmentation result with lymph nodes marked red.

3.4.6 Data analysis

The image analysis method presented in Publication VI was used in [22, 23] to show
that the size and number of lymph nodes can be used to predict survival in colorectal
cancer. As in previous reports, a larger number of examined lymph nodes was asso-
ciated with better overall survival: median survival was 127 ± 5.75 (standard error)
months for patients with more than eleven lymph nodes as contrasted with 105 ± 7.21
months. In addition, the median overall survival of patients with larger lymph nodes
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Figure 3.19: Correlation of manual and automated lymph node counts.

was longer: 127 ± 5.85 months vs. 105 ± 7.03 months. The sum of the sizes of the
nodes was a significant predictor for survival. Overall survival was best in patients with
large numbers of large nodes and worst in those with small numbers of small nodes.
In multivariate analysis, overall survival was independently predicted by the size of
negative lymph nodes.





Chapter 4

Discussion

The field of this thesis is in constant development. On the one hand, studies that uti-
lize automated image analysis are published in biological journals with an increasing
frequency. On the other hand, research on image analysis methods is very active. It is
clear that at this point final solutions to the general image analysis problem cannot be
offered. However, the field is rapidly moving forward in small increments.

Many of the challenges in image analysis are of a fundamental nature. For exam-
ple, in image segmentation the crucial question is how well the segmentation method
generalizes for new images that have not been seen during the development of the
method. In thresholding it is assumed that all foreground pixels are separated by in-
tensity from all background pixels. If this simple model holds for the new images,
they can be segmented correctly by thresholding. However, the appropriate model may
be more complicated. For example, edge intensities or shape information may be re-
quired to describe the foreground objects. By making the model more complicated it
is in principle possible to develop a segmentation method that performs perfectly for
all the images that are available. However, then the problem is that the method may
be over-fitted to the available images so that new images that will be encountered are
segmented incorrectly. The problem is exactly the same as in supervised classification:
generalization should be ensured by avoiding over-fitting to the training data.

Automated image analysis combined with data analysis techniques seems to offer
a lot of new possibilities in biology. The biggest challenge seems to be in finding ways
in which scientists coming from different disciplines can work together. The mere
identification of the situations where automated image analysis can be useful may at
times be difficult. One of the considerations is how much the image analysis method
can be controlled by the user. For example, if a high-throughput system capable of
analyzing thousands of images in a reasonable time is required, the system must most
likely be fully automated. If the amount of image data is smaller but the problem is too
difficult to be analyzed manually, an automated method in which the user has access to
some of the parameters may be more appropriate. Usually these decisions cannot be
made by a biologists or an engineer alone, and it is required that both have a reasonable
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understanding of both the biological and the technical dimensions of the problem. It is
certain that the most exciting results can be reached when biologists, medical doctors,
engineers, mathematicians, and statisticians work together towards a common goal.



Chapter 5

Comments on publications

This thesis consists of seven publications. No other dissertation is based on any of the
publications. The work started at the Institute of Signal Processing, Tampere Univer-
sity of Technology, in 2002. Publications I, II, III, and VI resulted from the author’s
research visit to The University of Texas M. D. Anderson Cancer Center in Hous-
ton, Texas, USA between September 2003 and March 2004. The author finished the
manuscript of Publication V at the Institute for Systems Biology in Seattle, Washing-
ton, USA.

5.1 Author’s contribution to publications

The author of this thesis is the first author of all seven publications. The author has
therefore been responsible for the overall manuscript preparation, including integration
of the biological and technical parts of the articles. Most of the image analysis methods
presented in the publications have been developed or implemented by the author and
the biological wet lab experiments were mainly carried out by the co-authors.

In Publication I the image analysis method was developed by the author. The val-
idation of the results by testing positive, negative, and no treatment controls as well
as the robustness analysis was also done by the author. In Publication II the author
designed the comparison of the invasion percolation (IP) and diffusion limited aggre-
gation (DLA) growth models, including the selection of the particular type of IP and
DLA models and the parameter values. The author also implemented the DLA model
and made the tests that established the power law behavior of experimental angiogene-
sis data.

The image analysis method of Publication III was developed by the author. The
author also performed the validation of the results.

In Publications IV and V the author was responsible for the image analysis meth-
ods with the exception of the mean-variance segmentation method and the watershed
separation method. The author also helped to perform the wet lab experiment for Pub-
lication IV and made the analysis for validation of the results in Publication V.
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In Publication VI the author was responsible for the image analysis method and its
validation with the help of the data produced by the pathologists who had recovered the
lymph nodes between 1990 and 1998.

In Publication VII the author was responsible for the development of the misclassi-
fication correction method based on an initial version developed by the co-authors and
published in 1999. The author also developed the training-based approach for learning
the proximity function and made the simulations as well as the assessment of accuracy.

5.2 Errata

In addition to some misprints, the following errors have been found in the publications.

• In Publication I the condition for i in the first sentence of the second paragraph
of Section II-A should be i ∈ [1, n − 1].

• In Publication I one of the quantified parameters is referred to as the tubule com-
plex size. However, it would be more appropriate to refer to tubule complex
area.

• In Publication II the journal of Reference 11 should be Mathematical Medicine
and Biology.

• In Publication III the segmentation result in Figure 5(d) is incorrect. The correct
segmentation result is presented in Figure 3.11(d) of this thesis.

• In Publication IV one of the quantified parameters is referred to as the bud size.
However, it would be more appropriate to refer to bud area.

• In Publication VI the number of patients is cited incorrectly as 148 in the last
paragraph of Section I and in the first paragraph of Section II. The correct number
of patients is 150.
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