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ABSTRACT

Second-harmonic generation is a second-order nonlinear optical process that can

be utilized in a variety of applications. The main limitation of second-harmonic

generation is that it is forbidden for centrosymmetric materials. Enabled by the

advances in nanofabrication, considerable amount of attention has been given to

the miniaturization of optical components for integrated photonics. As a result, the

expansion of the range of second-order materials is more desirable than ever.

In this work, we developed a sophisticated analytical model to characterize the

second-harmonic response of thin �lms using various traditional experimental meth-

ods. A thin material system brings forth additional complexity due to the presence of

re�ections that have signi�cant consequences to the nonlinear characterization pro-

cess both qualitatively and quantitatively. Using the developed model, we studied

second-harmonic generation from various material candidates in order to determine

whether they have potential as novel nonlinear materials. These materials are com-

posites consisting of multiple alternating dielectric layers, silicon nitride, indium

selenide, and gold nanoparticle �lms coated with titanium dioxide.

The results of this work indicate, that 1) multilayered composites are in fact a

promising solution to circumvent the requirement for non-centrosymmetry of second-

harmonic generation, 2) indium selenide was found to possess a signi�cant second-

harmonic response and to show potential for nonlinear applications, 3) the already

strong second-harmonic generation from silicon nitride was enhanced six-fold by

material composition, and 4) the second-harmonic response from gold nanoisland

�lms was enhanced 40-fold by a novel non-resonant local-�eld enhancement process,

controlled by tuning the thickness of dielectric coating covering the nanoislands.

Lastly, the utility of the developed model was demonstrated by showing that using

a traditional simpler model that neglects re�ections results in both qualitatively

and quantitatively erroneous results in the recognition of multipolar contributions

to second-harmonic generation from thin �lms. In addition, the general nature of

the model was highlighted by the fact that the same model was used successfully to

analyse the various di�erent experimental con�gurations used in this work.
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TIIVISTELMÄ

Taajuudenkahdennus on toisen kertaluvun epälineaarinen optinen prosessi jota voi-

daan hyödyntää monissa sovelluksissa. Taajuudenkahdennuksen tärkein rajoite on

se, että prosessi on kielletty keskeissymmetrisissä materiaaleissa. Nanoteknologian

kehityksen mahdollistamana optisten laitteiden miniaturisointi integroidun fotonii-

kan tarpeisiin on saanut osakseen suuren määrän huomiota. Tästä syystä uusien

toisen kertaluvun epälineaaristen materiaalien löytäminen olisi erityisen hyödyllistä.

Tässä työssä kehitettiin hienostunut analyyttinen malli ohutkalvojen toisen ker-

taluvun epälineaarisen vasteen karakterisointiin käyttäen erinäisiä tyypillisiä mit-

taustekniikoita. Ohutkalvojen analysointi on erityisen haasteellista, koska niiden

äärimmäisen pieni paksuus johtaa monimutkaisiin heijastusilmiöihin joilla on edel-

leen merkittävä vaikutus karakterisointiprosessiin sekä kvalitatiivisesti että kvan-

titatiivisesti. Työssä tutkittiin taajuudenkahdennusta erinäisistä materiaaleista ja

niiden potentiaalia uusina epälineaarisina materiaaleina käyttäen kehitettyä mallia.

Tutkittavat materiaalit olivat useista ultraohuista kalvoista sykleinä koostuva kom-

posiittikalvo, piinitridi, indiumselenidi ja titaanidioksiidilla päällystetty kultanano-

partikkelikalvo.

Työn tulokset osoittavat, että: 1) komposiittikalvot ovat lupaava metamateriaaliryh-

mä taajuudenkahdennuksen keskeissymmetriarajoitteiden kiertämiseksi, 2) indium-

selenidin taajuudenkahdennusvaste on merkittävä ja näin ollen indiumselenidi on po-

tentiaalinen materiaali epälineaarisiin optisiin sovelluksiin, 3) piinitridin voimakasta

taajuudenkahdennusvastetta voidaan vahvistaa entisestään jopa kuusinkertaiseksi

säätämällä piinitridin kemiallista koostumusta ja 4) kultananohiukkaskalvon taa-

juudenkahdennusvaste voidaan kasvattaa jopa 40-kertaiseksi uudenlaisen epäreso-

nantin lähikenttäilmiön avuttaa. Lisäksi kehitettyä hienostunutta mallia verrattiin

yksinkertaisempaan heijastusilmiöt laiminlyövään perinteiseen malliin, ja yksinker-

taisen mallin havaittiin tuottavan sekä kvalitatiivisesti että kvantitatiivisesti virheel-

lisiä tuloksia ohutkalvojen multipoli-taajuudenkahdennuksen karakterisoinnissa. Ke-

hitettyä mallia käytettiin kaikkien työn tulosten analysointiin, mikä kuvastaa mallin

yleistä luonnetta.
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1. INTRODUCTION

The �eld of nonlinear optics is de�ned by the study of phenomena where the optical

response of a material depends on the interacting optical �elds in a nonlinear man-

ner, which occurs in the presence of intense light �elds [6]. Thus, it is unsurprising

that the invention of laser marks the de facto beginning of nonlinear optics [7], as

evidenced by the consequent emergence of multiple observations of nonlinear op-

tical e�ects such as second-harmonic generation [8�14]. The observation of other

nonlinear e�ects such as third-harmonic generation, sum-frequency generation and

di�erence-frequency generation soon followed [9, 15, 16]. However, second-order ef-

fects, such as second-harmonic generation, are the lowest-order coherent frequency

conversion processes and thus remain interesting due to the gradual weakening of

the nonlinear e�ects with increasing order of nonlinearity [6, 17].

Second-harmonic generation is an instantaneous process where two incident pho-

tons at a fundamental frequency are annihilated and one photon at the doubled

frequency is generated [6, 18]. Under the electric-dipole approximation of the light-

matter interaction, the process is governed by a polar third-rank tensor and is thus

forbidden for centrosymmetric materials [17,19]. For this reason, studies of second-

harmonic generation have been limited to systems of lower symmetry, such as sur-

faces [11, 12, 14], crystals [8, 9, 20�22] and for example chiral molecules [23�26]. It

should be noted that this limitation can become advantageous when the goal is to

probe surface or symmetry features of a material [27�29]. However, if high nonlinear-

ity is required, the non-centrosymmetry requirement remains an important problem.

Several methods have been utilized to arti�cially create materials with high second-

order nonlinearity, such as poling [30�33], Mie-resonant structures [34], resonant

dielectric structures [35], symmetry-breaking strain [36�38], stacking of ultrathin

layers [39,40], plasmon enhancement in metal nanostructures [41] and utilizing mul-

tipolar (magnetic-dipole and electric-quadrupole) contributions to the second-order

nonlinear response [42].
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Due to advancements in nanofabrication during recent decades, the miniaturiza-

tion of optical devices has become more realistic [43�45]. As a consequence, there

has been considerable attention towards integrated photonics, i.e., the integration

of multiple photonic devices together on a substrate [46�50]. Silicon on insulator

is often used as the basis of these devices, as it enables the use of the existing

complementary metal-oxide semiconductor infrastructure established for integrated

electronic circuits [43, 46�48]. As some of the desired functionalities for these pho-

tonic devices rely on second-order e�ects [51�56], expanding the range of suitable

nonlinear materials has become even more desirable.

In order to expand the range of nonlinear materials, an experimental methodology

for the nonlinear characterizaton of the candidate materials must be established.

The characterization is often most convenient to do by using thin-�lm samples. The

second-harmonic response of a material is then typically characterized by an exper-

iment where the polarizations of the fundamental beam and the second-harmonic

beam as well as the angle of incidence are controlled in order to access the various

susceptibility tensor components of the material [26, 57�59]. The most traditional

method, known as the Maker-fringe method, utilizes variable angle of incidence for

�xed choices of polarization for the fundamental and detected SHG beam [57, 58].

This method has been further extended to account for absorption and birefrin-

gence [60]. Another approach is to have the angle of incidence �xed while conduct-

ing multiple measurements with di�erent combinations of the polarization of the

fundamental and SHG beams [26].

Lastly, it was discovered early that if magnetic-dipole and electric-quadrupole con-

tributions are taken into account, second-harmonic generation is allowed even in

centrosymmetric media [17, 61, 62]. The separation of these contibutions from the

electric-dipole contribution of the material surface has been a long-standing prob-

lem in nonlinear optics [59, 63]. However, it was later found out that this could be

done by second-harmonic generation based on the use of two non-collinear excitation

beams at the fundamental frequency [64�67].

1.1 Research objectives and scope of the Thesis

As discussed above, expansion of the range of novel nonlinear materials is highly

desirable and second-order nonlinear materials are particularly hard to come by

due to the symmetry restrictions associated with second-order processes. Thus, the
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ultimate research objective of this work is to expand the range of materials with

high second-order response.

We limit our research methodology to the consideration of the second-harmonic

response, as its presence already indicates that the symmetry restrictions are over-

come. In addition, due to the physical similarities between second-harmonic gen-

eration and other second-order processes, it is likely that a material with a strong

second-harmonic response exhibits high second-order nonlinearity in general. This

limitation of scope is highly bene�cial for the practical experimental methodology

and the associated analysis.

Our ultimate research objective can be separated into 3 sub-objectives all contribut-

ing to the ultimate objective: 1) Finding a high second-harmonic response from a

material that was previously unknown to possess one, 2) Finding a method to en-

hance the second-harmonic response of a material that was previously known to

possess one, and 3) Improving the experimental methodology of nonlinear charac-

terization, contributing to the ultimate objective.

In order to determine the nonlinear response, we utilize the experiments presented

in Refs. [26, 57] and expand the analysis to the case of thin �lms using the theo-

retical framework presented in Ref. [68]. In addition, we apply the aforementioned

theoretical framework in conjunction with the analysis presented in Ref. [69] for two

non-collinear fundamental beams for the case of thin �lms, and use experiments

presented in Ref. [64] to probe the multipolar contribution to the second-harmonic

generation. In addition to enabling the research, the development of these models

falls under sub-objective 3.

In this work, we studied the following material candidates: i) A metamaterial con-

sisting of cycles of alternating dielectric layers, ii) silicon nitride, iii) indium selenide

and iv) gold nanoisland �lms coated with titanium dioxide.

The choice for material (i) was inspired by the recent results on a similar multilayered

structure presented in Ref. [40]. We aimed to improve upon the previous design in

order to enhance the second-harmonic response using the guidelines presented in

Ref. [70]. In addition, this research will serve to verify or question the previous

results, and falls under sub-objective 2.

The choice for material (ii) was motivated by the recent results on high second-
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harmonic response from silicon nitride presented in Ref. [71]. We aimed to study

samples of di�erent material compositions in order to determine whether the second-

harmonic response can be enhanced by tuning the material composition. In addition,

we aimed to probe the presence and relative strength of the multipolar contribution

to second-harmonic generation from silicon nitride. These topics fall under sub-

objective 2.

The choice for material (iii) was motivated by a previous report of optical nonlinear-

ity presented in Ref. [72] in conjunction with reports of its �exible phases presented

in Ref. [73], potentially enabling favourable symmetry breaking. We aimed to study

multiple thin �lms of indium selenide in order to determine its second-harmonic

response, if any is present. This falls under sub-objective 1.

The choice for material (iv) was motivated by the well-documented high enhance-

ment of second-harmonic generation from metal nanostructures by plasmon reso-

nance driven local �elds, presented for example in Ref. [74]. We aimed to determine

whether this enhancement could be accomplished by tuning the thickness of the

titanium dioxide coating of gold nanoisland �lms. This falls under sub-objective 2.

1.2 Structure of the Thesis

This dissertation consists of six chapters including this one. Chapters 2 and 3 provide

the theoretical framework for the analysis and design of experiments speci�ed in

Chapter 4. The results of the experiments are described and analysed in Chapter 5.

Chapter 6 concludes the work with a summary and a brief outlook to the future.

In Chapter 2, we examine the fundamental principles of the optics of thin layers

embedded between dielectric media. Starting from the Maxwell's and Fresnel's

equations, the description of the total electric �eld inside the layer is derived for

the case of a plane wave input from outside the layer. Lastly, we describe the total

�eld originating from a nonlinear polarization source within the layer. This serves

as important groundwork for the analysis of second-harmonic generation from thin

layers treated in the following chapter.

In Chapter 3, we look into the nonlinear polarization for the case of a plane-wave

excitation and determine the total second-harmonic �eld generated within a thin

nonlinear layer. In addition, second-harmonic generation for two fundamental �elds
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is examined. In both cases, the second-harmonic generation �eld is described in

terms of its polarization components and with respect to the polarization compo-

nents of the input �eld(s) in order to analyse the nonlinear experiments described

in the following chapter.

Chapter 4 describes the experimental methodology of this work. This includes a

detailed description of the experimental arrangements, an overview of the studied

materials, and an explanation of the motivations behind the chosen methodology.

Lastly, the particular experiments are explicitly speci�ed.

In Chapter 5, the results of all of the experiments outlined in Chapter 4 are described

in detail and analysed using the theoretical results of Chapter 3. The particular

weaknesses and strengths of both the experiments and the analysis are assessed.

Finally, the key results are laid out in a logical manner and their scienti�c impact

is discussed.

Lastly, Chapter 6 contains concluding remarks about the research as a whole, discus-

sion about the results with respect to our objectives and an outlook to the potential

future of the research.



6 1. Introduction
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2. OPTICS OF LAYERED STRUCTURES

In this chapter, we examine the basic optical phenomena in layered structures. In

this context, the term layered structure denotes a system which consists of multiple

well-de�ned media that are separated from each other by parallel interfaces. We

will start by writing down Maxwell's equations and deriving the wave equation for

homogeneous media. Next, we will write down the basic laws of refraction and

re�ection, followed by the expression of the homogeneous solution for a layered

system. We will then utilize the Green's function formalism for nonlinear optics

to write the �eld generated from a nonlinear source similarly to what was done in

Ref. [68]. Finally, we combine all of the above in order to describe the �eld generated

outside the system with respect to the nonlinear source.

2.1 Maxwell's equations and the homogeneous wave equation

In this section, we write down the Maxwell's equations under electric-dipole (ED)

approximation for a non-magnetic system without free charges or currents as well

as formulate and solve the wave equation for a homogeneous material. These results

will provide the foundation for the more speci�c analysis ahead.

In the classical regime, the physics of light in matter is governed by Maxwell's

equations [75]. In this work, all bulk media are assumed to consist of dielectric

materials, and thus exhibit no free charges or currents. For such materials, Maxwell's

equations can be written as [6]

∇ ·D(r, t) = 0 (2.1a)

∇ ·B(r, t) = 0 (2.1b)

∇× E(r, t) = −∂B(r, t)

∂t
(2.1c)

∇×H(r, t) =
∂D(r, t)

∂t
, (2.1d)
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where D denotes the electric displacement, B denotes the magnetic �ux density, E

denotes the electric �eld, H denotes the magnetic �eld, r denotes the spatial coordi-

nate and t denotes time. The relationships between the two pairs of electric (E,D)

and magnetic (B,H) quantities describe the electric and magnetic interactions be-

tween light and matter, respectively. Mathematically, they can be connected via

constitutive equations. The constitutive equations can be written for a nonmag-

netic medium under the ED approximation as [76]

D(r, t) = ε0E(r, t) + P(r, t) (2.2a)

H(r, t) =
1

µ0

B(r, t), (2.2b)

where ε0 is the electric permittivity of vacuum, µ0 is the magnetic permeability of

vacuum and P is the material polarization. In this section, we will consider the case

where the material polarization is linearly dependent on the electric �eld and can

be written as

P(r, t) = ε0χ
(1)
e E(r, t), (2.3)

where χ(1)
e is the linear electric susceptibility. It should be noted that generally the

linear electric susceptibility is a tensorial quantity. However, we will assume that

the medium is isotropic in the linear regime.

In order to proceed, we assume that all of the above time-dependent quantities can

be treated in terms of their frequency components, i.e.,

f(r, t) = f(r)e−iωt + c.c., (2.4)

where c.c. denotes the complex conjugate and ω is the angular frequency of the

respective quantity. This is justi�ed because in the context of this work, only co-

herent light sources and processes are considered and thus all light can be separated

into su�ciently discrete frequency components. From here on, we treat the �elds

implicitly in terms of their frequency components and consider any frequency mix-

ing explicitly when required. As a result, the temporal behavior of the Maxwell's

equations is greatly simpli�ed. By combining the Eq. (2.1) with Eqs. (2.2, 2.3), the
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simpli�ed set of Maxwell's equations can be written as

∇ · E(r) = 0 (2.5a)

∇ ·B(r) = 0 (2.5b)

∇× E(r) = iωB(r) (2.5c)

∇×B(r) = −iωn
2

c2
E(r), (2.5d)

where c = 1/
√
ε0µ0 is the speed of light and n2 = (1 + χ

(1)
e ) is the refractive index.

By using Eq. (2.5d), the vector identity ∇×∇× = ∇(∇· )−∇2 and Eq. (2.5a), the

curl of Eq. (2.5c) yields

∇2E(r) + ω2n
2

c2
E(r) = 0, (2.6)

which is the standard Helmholz equation for a homogeneous medium. The equation

is satis�ed by the plane wave

E(r) = Eeik·r (2.7)

provided that the condition

k · k = n2ω2/c2 = k2 (2.8)

holds, where k is the magnitude of the wave vector.

2.2 Refraction and re�ection

We will begin this section by writing down the basic laws of refraction and re�ection.

Firstly, the angle of re�ection of light at an interface is equal to the angle of incidence.

Secondly, the refraction of light at an interface between two media is governed by

the Snell's law [77]

ni sin θi = nt sin θt, (2.9)

where ni and nt (θi and θt) are the refractive indices of (propagation angles in) the

media before and after the interface, respectively.

The quantitative re�ection and transmission of light at an interface are governed by

the Fresnel equations. The Fresnel coe�cients for �elds describe the ratio between

transmitted and re�ected �elds with respect to the incident �eld, and are given
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Figure 2.1: A schematic of the geometry of an interface and the notation used for the
Snell's law and the Fresnel equations.

by [77]

rpit =
nt cos θi − ni cos θt
nt cos θi + ni cos θt

(2.10a)

rsit =
ni cos θi − nt cos θt
ni cos θi + nt cos θt

(2.10b)

tpit =
2ni cos θi

ni cos θt + nt cos θi
(2.10c)

tsit =
2ni cos θi

ni cos θi + nt cos θt
, (2.10d)

where r denotes the Fresnel re�ection coe�cient, t denotes the Fresnel transmission

coe�cient, superscript p (s) denotes polarization component parallel (perpendicular)

to the plane of incidence and subscript i (t) denotes the medium before (after) the

interface. A schematic of the geometry is shown in (Fig. 2.1).

Before proceeding further, it is useful to de�ne the coordinate system for the mate-

rial. In this work, we focus on systems that 1) consist of layers whose interfaces are

parallel to each other, 2) exhibit at least in-plane isotropy along planes parallel to

the interfaces and 3) exhibit negligible birefringence. If the normal to the interfaces

is de�ned as z and a plane wave propagates at an oblique angle with respect to z, x

axis can be chosen in such a way that the wave vector of the plane wave lies in the

(x, z)-plane. Thus, the wave vector of the plane wave can be written as

k = kxx̂+ kz ẑ, (2.11)

where kx and kz are the x and z components of the wave vector. Due to the

limitations applied to the medium (requirements 1, 3), di�erent spatial frequency
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Figure 2.2: A schematic of the coordinate systems used for the material system (x, y, z)
and the wave solutions (p±, s, k±).

components de�ned by kx do not mix, which is very convenient for the following

analysis. In the rest of this chapter, all spatially dependent quantities will be treated

with respect to the single spatial frequency component kx unless otherwise explicitly

stated.

By substituting Eq. (2.11) into the condition imposed by the wave equation Eq. (2.8),

two solutions appear and are given by

k± = kxx̂+ w±ẑ, (2.12)

with

w± = ±w = ±
√(nω

c

)2
− k2x, (2.13)

where w± represents the two solutions for the z-component of the wave vector for

a given kx. From this point on, the (+)-solution is labeled as upward propagating

wave and (−)-solution as downward propagating wave.

Lastly, we will de�ne the polarization coordinates of the plane wave and combine

them with the wave vector into a single right-handed orthogonal system given byp̂±ŝ
k̂±

 =

∓ cos θ 0 sin θ

0 −1 0

sin θ 0 ± cos θ


x̂ŷ
ẑ

 , (2.14)

where p̂+ (p̂−) and k̂+ (k̂−) are the unit vector for p-polarized component and the

wave vector of upward (downward) propagating wave, respectively. In addition, ŝ is

the unit vector for s-polarized component of the wave. From the above de�nition,

we have also de�ned the propagation angle theta so that at θ = 0, the unit wave

vector is given by k̂± = ±ẑ. A schematic of the coordinate systems is shown in (Fig.

2.2).
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By expanding the electric �eld of the wave in terms of its polarization components,

noting that the wave is transverse (see Eq. 2.5a) and substituting Eq. (2.11), the

upward and downward propagating solutions can be expressed as

E±(r) = (Ep±p̂± + Es±ŝ)eik±·r, (2.15)

where Ep± and Es± are the amplitudes of the p and s polarized components of the

electric �elds propagating along k±. By substituting Eq. (2.15) to Eq. (2.5c), a

similar expression is obtained for the magnetic �ux density but in terms of electric

�eld amplitudes

B±(r) =
n

c
(−Es±p̂± + Ep±ŝ)eik±·r. (2.16)

Equations Eq. (2.15) and Eq. (2.16) represent solutions for the electric and mag-

netic �elds of a propagating wave characterized by the spatial frequency kx in a

homogeneous system, and are the main result of this section.

2.3 Green's function formalism

In this section, we will utilize Green's function formalism to solve Maxwell's equa-

tions for a system where a source polarization term is present. The approach follows

closely to what was published in Ref. [68]. First, let us write the total polarization

as a sum of a linear polarization term as described by Eq. (2.3) and a nonlinear term

as

P(r, t) = ε0χ
(1)
e E(r, t) + PNL(r, t). (2.17)

By substituting Eq. (2.17) into the constitutive equations and following an approach

similar to the one used for the homogeneous case, Maxwell's equations can be ex-

pressed as

∇ ·D(r) = 0 (2.18a)

∇ ·B(r) = 0 (2.18b)

∇× E(r) = iωB(r) (2.18c)

∇×B(r) = −i ω
c2

(n2E(r) +
1

ε0
PNL(r)). (2.18d)

In order to solve Eqs. (2.18), let us consider an elementary source polarization sheet
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at some z = z0 and of the form

PNL(r) = P0δ(z − z0)eikxx, (2.19)

where P0 is the magnitude of the source polarization and δ is the Dirac delta func-

tion. Due to the in�nitesimal thickness of the source sheet, the previous homoge-

neous solutions described by Eqs. (2.15) and (2.16) also hold here when z 6= z0.

Furthermore, such a source cannot directly a�ect �elds that are below the source

sheet and are propagating upward. Similarly, the source cannot directly a�ect �elds

that are above the source sheet and are propagating downward. Thus, we try an

ansatz

E(r) = E+(r)eiw−z0H(z − z0) + E−(r)eiw+z0H(z0 − z)

+ ELδ(z − z0)eikxx
(2.20)

B(r) = B+(r)eiw−z0H(z − z0) + B−(r)eiw+z0H(z0 − z), (2.21)

where H(z) is the Heaviside step function, EL is the local non-propagating response,

E±(r) denote the homogeneous solutions for the electric �eld (see Eq. 2.15) and

B±(r) denote the homogeneous solution for the magnetic �eld (see Eq. 2.16). In

order to determine the upward and downward propagating �eld components Ep±

and Es± with respect to the source term P0, Eqs. (2.20) and (2.21) are substituted

to Eqs. (2.18c) and (2.18d), which yields

∇× E(r) = δ(z − z0)
(
ŝEp

+

w+

k
+ x̂Es

+

)
− δ(z − z0)

(
ŝEp
−
w−
k

+ x̂Es
−

)
+ ikxδ(z − z0) (−ẑEs

L + ŝEz
L)

+
∂

∂z
δ(z − z0)(x̂Es

L − ŝEx
L) = 0,

(2.22)

∇×B(r) = δ(z − z0)
n

c

(
x̂Ep

+ − ŝEs
+

w+

k

)
− δ(z − z0)

n

c

(
x̂Ep
− + ŝEs

−
w+

k

)
= −δ(z − z0)

iωn2

c2
EL − δ(z − z0)

iω

c2ε0
P0,

(2.23)

By matching the di�erent singular terms and vector components, the �eld ampli-
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tudes are found to be

Es+ = Es− =
iω2

2ε0c2w
P s
0 (2.24a)

Ep− =
iω2

2ε0c2w
p̂+ ·P0 (2.24b)

Ep+ =
iω2

2ε0c2w
p̂− ·P0, (2.24c)

where w is the absolute value of the z-component of the wave vector, and the total

propagating �eld generated from the sheet source is found to be

E(r) =
iω2

2ε0c2w

(
p̂+p̂+ ·P0(z0) + ŝŝ ·P0(z0)

)
×H(z − z0)eiw+(z−z0)eikxx

+
iω2

2ε0c2w

(
p̂−p̂− ·P0(z0) + ŝŝ ·P0(z0)

)
×H(z0 − z)eiw−(z−z0)eikxx,

(2.25)

where the sheet position z0 is now explicitly noted to emphasize the fact that

Eq. (2.25) describes a �eld generated by a thin sheet located at z0. By reorganizing

Eq. (2.25), the generated �eld can be expressed as

E(r) = G(z − z0) ·P(z0)e
ikxx, (2.26)

where G(z − z0) is a dyadic Green's function describing how a source polarization

sheet at z0 generates a propagating �eld at an arbitrary z position and is de�ned as

G(z − z0) =
iω2

2ε0c2w

(
p̂+p̂+ + ŝŝ

)
×H(z − z0)eiw+(z−z0)

+
iω2

2ε0c2w

(
p̂−p̂− + ŝŝ

)
×H(z0 − z)eiw−(z−z0).

(2.27)

As stated above, the Green's function describes the tensorial relationship between

the sheet source polarization and the generated propagating �elds for all z. However,

another interpretation is that the Green's function describes the generated �eld at

some z by a sheet at an arbitrary location z0. Due to the superposition principle, the

total contribution from a volumetric source can then be determined by integration:

E(r) =

∫ ∞
−∞

G(z − z0) ·P(z0)e
ikxxdz0. (2.28)

Now, Eq. (2.28) describes the generated �eld at any z from a source polarization
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distribution speci�ed by P(z0), and is the main result of this section.

2.4 Total �elds in layerered structures

In this section, we utilize the results of the previous sections for the case of a layer

embedded between two dielectric media. We note the three media by numbers 1, 2

and 3 so, that number 2 denotes the layer, number 1 denotes the medium above the

layer (towards the positive z) and number 3 denotes the medium below the layer

(towards the negative z). Let us begin by studying a plane wave solution given by

Eqs. (2.15 and 2.16) within such a layer. As discussed earlier, a portion of light is

re�ected at interfaces between media of varying refractive indices as dictated by the

Fresnel equations Eq. (2.10). The re�ected portion acts as a new partial wave whose

wave vector does not change except for the z-component changing sign (w± → w∓).

Therefore, the wave vector of the re�ected part of the upward (downward) �eld is

parallel to the wave vector of the original downward (upward) �eld, and for the

case of a plane wave, these these two partial waves are geometrically inseparable

from each other (Fig. 2.3a). Furthermore, the successive re�ections occurring for

the re�ected partial waves result in a family of downward and upward propagating

partial waves that are geometrically inseparable from each other.

Figure 2.3: A schematic of re�ection e�ects in layers. a) Components of the wave
vector for re�ected partial waves; b) Re�ected waves contributing to one another in a thin
layer; c) Re�ected waves being geometrically separated and not mixing in a thick layer; d)
Contribution principle of multiple re�ected partial waves to the total �eld in a thin layer;
e) Coordinate system and labels of media used in this work.

In practice, a light wave is never an in�nite plane wave but has some �nite beam

width W . Consequently, the resulting total �eld within the layer depends on the

relative size of the beam with respect to the layer thickness D. For the case of a thin
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layer (D � W ), the wave exhibits plane wave like behavior within the layer (Fig.

2.3b), and a family of upward and downward propagating partial waves emerges. As

a result, a Fabry-Perot etalon like phenomenon occurs [78]. By writing the Fresnel

re�ection coe�cients as r21 and r23 for the top and bottom interfaces approached by

upward and downward propagating beams, respectively, and noting that the total

phase di�erence of the re�ection cycle is 2wD, the �eld of each subsequent cycle is

the �eld of the previous cycle multiplied by a factor (r21r23ei2wD). Therefore, the

total upward (downward) propagating �eld that arises from an upward (downward)

propagating original �eld can be written as

EFP±(z) = E±(z)
(
1 + (r21r23e

i2wD) + (r21r23e
i2wD)2 + · · ·

)
= E±(z)

∞∑
l=0

(r21r23e
i2wD)l = E±(z)

1

1− r21r23ei2wD

, (2.29)

where the subscript FP refers to Fabry-Perot etalon like behavior, E±(z) = (p̂±E
p
±+

ŝEs
±)eiw±z denotes the original upward and downward propagating �elds described

by Eq. (2.15) with + (−) indicating upward (downward) propagation. These �elds

can originate for example from outside of the layer or be generated within the layer

via nonlinear processes as shown in (Fig. 2.3b) and (Fig. 2.3d), respectively. Noting

the above discussion about the upward (downward) propagating �eld contributing

to the downward (upward) propagating �eld via re�ection, the total �elds inside the

medium can be written as

ET+(z) = p̂+

(
Ep

+

1

1− rp21r
p
23ei2wD

+ Ep
−

rp23e
i2wD

1− rp21r
p
23ei2wD

)
eiw+z

+ ŝ

(
Es

+

1

1− rs21rs23ei2wD
+ Es

−
rs23e

2iwD

1− rs21rs23ei2wD

)
eiw+z

(2.30)

ET−(z) = p̂−

(
Ep

+

rp21
1− rp21r

p
23ei2wD

+ Ep
−

1

1− rp21r
p
23ei2wD

)
eiw−z

+ ŝ

(
Es

+

rs21
1− rs21rs23ei2wD

+ Es
−

1

1− rs21rs23ei2wD

)
eiw−z,

(2.31)

where the subscript T refers to the total upward/downward propagating beam inside

the layer and where the polarization dependence of Fresnel coe�cients is explicitly

noted.

For the case of a thick layer (D � W ), the re�ected partial waves are geometrically

separated from each other and thus separable in experiment, resulting in a ray like
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behavior (Fig. 2.3c) where the re�ected beams can be neglected.

Let us next examine the light wave generated by a volumetric source spanning over a

thin layer surrounded by unknown dielectric media. Using Eq. (2.28), the generated

upward and downward propagating �elds can be calculated at locations right before

the top and bottom interfaces of the source layer, respectively. By setting the top

and bottom interfaces at z = 0 and z = −D, respectively, Eq. (2.28) yields

E+(0) =

∫ 0

−D
G(0− z0) ·P(z0)e

ikxxdz0 (2.32a)

E−(−D) =

∫ 0

−D
G(−D − z0) ·P(z0)e

ikxxdz0, (2.32b)

where the two �elds arise separately from the two di�erent terms of the Green

function Eq. (2.27) due to the presence of the Heaviside functions. Furthermore, in

the calculation of Eq. (2.32), the �elds are assumed to originate exclusively from the

source polarization. As above, some portion of the �elds is consecutively re�ected

at the interfaces, giving rise to the mixing of the upward and downward propagating

waves as well as etalon factors (Fig. 2.3d). Following a procedure similar to the one

used in derivation of Eqs. (2.29, 2.30 and 2.31), the total generated �eld outside the

layer can be written as

Eout(0) = p̂+t
p
21

(
Ep

+(0)
1

1− rp21r
p
23ei2wD

+ Ep
−(−D)

rp23e
iwD

1− rp21r
p
23ei2wD

)
+ ŝts21

(
Es

+(0)
1

1− rs21rs23ei2wD
+ Es

−(−D)
rs23e

iwD

1− rs21rs23ei2wD

) (2.33)

Eout(−D) = p̂−t
p
23

(
Ep
−(−D)

1

1− rp21r
p
23ei2wD

+ Ep
+(0)

rp21e
iwD

1− rp21r
p
23ei2wD

)
+ ŝts23

(
Es
−(−D)

1

1− rs21rs23ei2wD
+ Es

+(0)
rs21e

iwD

1− rs21rs23ei2wD

)
,

(2.34)

where t21 and t23 are the Fresnel transmission coe�cients for the top and bottom

interfaces when approached from inside the layer, respectively. By de�ning a pa-

rameter

Cp/s =
1

1− rp/s21 r
p/s
23 ei2wD

, (2.35)

where p/s can be either p or s depending on the polarization component in question,
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Eqs. (2.33 and 2.34) can be written in a more concise form as

Eout(0) = p̂+t
p
21

(
CpEp

+(0) + rp23e
iwDCpEp

−(−D)
)

+ ŝts21
(
CsEs

+(0) + rs23e
iwDCsEs

−(−D)
) (2.36)

Eout(−D) = p̂−t
p
23

(
CpEp

−(−D) + rp21e
iwDCpEp

+(0)
)

+ ŝts23
(
CsEs

−(−D) + rs21e
iwDCsEs

+(0)
)
,

(2.37)

where the parameters Cp and Cs describe the Fabry-Perot factors arising from suc-

cessive re�ections for p and s polarized �elds, respectively.
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3. NONLINEAR OPTICS AND SOURCE

POLARIZATION

In this chapter, we lay out the basic principles of nonlinear optics and second-

harmonic generation (SHG). Our goal is to formulate expressions for the nonlinear

source polarization present in the previous chapter with respect to the fundamental

optical �eld and for the generated harmonic �eld in various relevant con�gurations.

The �eld of nonlinear optics addresses the nonlinear part of the material response

to an optical �eld. Mathematically speaking, the material polarization can be ex-

pressed in terms of its dependence on di�erent powers of the electric �eld under ED

approximation as [6, 18]

P(r, t) = ε0

∞∑
j=1

χ(j)(r, t) · Ej(r, t), (3.1)

where the interaction is assumed to be local and instantaneous. In Eq. (3.1), χ(j)

denotes the j:th order susceptibility tensor governing the response to the j:th power

of the electric �eld. If the medium is assumed to be isotropic in the linear regime,

the �rst order susceptibility can be described with a scalar and the polarization can

be expanded to its linear and nonlinear parts as described by Eq. (2.17). As a result,

the nonlinear part can be written as

PNL(r, t) = ε0

∞∑
j=2

χ(j)(r, t) · Ej(r, t). (3.2)

Using this notation, the nonlinear part of the polarization acts as the source polar-

ization equivalent to the source polarization discussed in the previous chapter, while

the linear part is contained within the refractive index.

The process of interest in this work, the SHG, is an instantaneous second-order

process described by the �rst term in the summation in Eq. (3.2) [6]. Thus, the
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Figure 3.1: A photon diagram of the second-harmonic generation process.

higher order terms can be neglected, yielding a nonlinear polarization of

PNL(r, t) = ε0χ
(2)(r, t) · E2(r, t). (3.3)

It is again useful to treat the time-dependent quantities in terms of their frequency

components. Speci�cally, by describing the incident �eld with its frequency compo-

nents E(t) = E(ω)e−iωt + c.c., the squared �eld in Eq. (3.3) becomes

E2(t) = E(ω)E(ω)e−2iωt + E(ω)E∗(ω) + c.c., (3.4)

and has two frequency components 2ω and 0. Assuming that the response is instan-

taneous, these two frequency components of the fundamental �eld give rise to two

frequency components for the material polarization at 2ω and 0, respectively. The

0 component corresponds to optical recti�cation, a temporally static electric �eld

that is of no interest to us. The 2ω component, however, corresponds to the SHG

process shown in (Fig. 3.1). Thus, the SHG source polarization can be written as

PNL(r, 2ω) = ε0χ
(2)(r, 2ω;ω, ω) · E2(r, ω), (3.5)

with, neglecting optical recti�cation,

PNL(r, t) = PNL(r, 2ω)e−2iωt + c.c.. (3.6)

Lastly, if the nonlinear medium is homogeneous in terms of the nonlinear suscepti-

bility, and the incident �eld is a plane wave characterized by kx, we can write the

SHG polarization as

PNL(2kx, z; 2ω) = ε0χ
(2)(2ω;ω, ω) · E2(kx, z;ω), (3.7)
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where

PNL(r, 2ω) = ε0P
NL(2kx, z; 2ω)e2ikxx + c.c., (3.8)

whose form is compatible with the analysis presented in Chapter 2. To avoid clutter,

the spatial frequency kx will be left implicit from now on in the description of the

SHG polarization arising from a plane wave characterized by kx.

3.1 SHG susceptibility

SHG susceptibility is the fundamental material quantity governing the SHG process.

In this section, we examine the mathematical properties of the SHG susceptibility

under ED approximation. Mathematically, the SHG susceptibility can be described

as a third rank polar tensor. The tensorial relation of Eq. (3.7) can be written in

terms of spatial components as

PNL
i (r, 2ω) = ε0

∑
(j,k)

χ
(2)
ijk(r, 2ω;ω, ω)Ej(r, ω)Ek(r, ω), (3.9)

where the subscript i denotes the vector component of the SHG polarization, the

subscripts j and k denote the vector components of the interacting �eld, χ(2)
ijk is the

tensor component describing the i:th SHG polarization vector component generated

by fundamental �eld components j and k and the summation is carried out over

material coordinate axes.

As a third rank polar tensor, the SHG susceptibility is sensitive to symmetry. Firstly,

due to the fact that the two fundamental �eld factors in Eq. (3.9) are identical and

thus interchangeable, it is immediately evident that the permutation of the last two

indices cannot change the process in any way, i.e.,

χ
(2)
ijk(2ω;ω, ω) = χ

(2)
ikj(2ω;ω, ω). (3.10)

This property is known as the intrinsic permutation symmetry and, as stated above,

always holds for SHG [6].

Secondly, it can be shown that as long as all frequencies of the interaction (ω and

2ω) are su�ciently far from material resonances, all of the indices of the SHG tensor

can be permuted as long as the corresponding frequency arguments are permuted

as well, i.e.,

χ
(2)
ijk(2ω;ω, ω) = χ

(2)
jik(ω; 2ω,−ω), (3.11)
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where the signs of the frequency arguments must be chosen so that the �rst one is the

sum of the latter two. This is called the full permutation symmetry. Furthermore, if

the frequencies are much smaller than the lowest resonance frequency of the material,

the susceptibility depends weakly on frequency [6]. As a result, all of the indices of

the susceptibility tensor can be permuted freely

χ
(2)
ijk = χ

(2)
jik = χ

(2)
kji = χ

(2)
ikj = χ

(2)
jki = χ

(2)
kij, (3.12)

where the frequency arguments are omitted as irrelevant. This is called the Kleinman

symmetry [79], and while we do not assume it to hold in this work, it is worth noting

in order to analyze the results.

Lastly, there are certain restrictions for the susceptibility components that arise

from the symmetry of the material system. For a structural symmetry operation

r → r′, the new susceptibility tensor must remain constant, i.e., χ
′(2) = χ(2). The

new susceptibility tensor component χ
′(2) resulting from a transformation r→ r′ for

a third-rank polar tensor is given by [19]

χ
(2)
ijk → χ

′(2)
ijk =

∑
(m,n,σ)

∂r′i
∂m

∂r′j
∂n

∂r′k
∂σ

χ(2)
mnσ = χ

(2)
ijk, (3.13)

where (r′i,r
′
j,r
′
k) are the coordinates corresponding to the indices of the post-trans-

form tensor χ′(2)ijk and the summation of (m,n, σ) is carried over pre-transform coordi-

nates. The last equality follows from the fact that the transformation is a symmetry

operation.

The structural symmetry poses some very important restrictions for SHG, such

as the well known property that SHG is forbidden in a centrosymmetric medium

under ED approximation. The layered structures studied in this work are assumed

to exhibit in-plane isotropy, i.e., to belong to the symmetry group C∞v. Using

Eqs. (3.10 and 3.13), the nonvanishing independent SHG tensor components for

such a material under ED approximation can be shown to be [18]

χ(2)
zzz, χ

(2)
zxx = χ(2)

zyy, χ
(2)
xzx = χ(2)

yzy = χ(2)
xxz = χ(2)

yyz. (3.14)

Note that in the above equation as well as the following analysis the frequency

arguments are omitted for simplicity.

The above analysis was carried out within the ED approximation, i.e., within an
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assumption where the source is governed by the electric polarization arising from

fundamental electric �eld as described by Eqs. (2.17 and 3.2). Although the ED

interaction is often the strongest electromagnetic phenomenon, magnetic and higher

multipole interactions behave di�erently under symmetry and can thus have an

unique contribution to the SHG process.

In the following, we will consider magnetic-dipole and electric-quadrupole contribu-

tions to SHG so that only one photon of the process can be interacting via magnetic

or quadrupole interaction at a time. This is justi�ed by the fact that in this work we

are mainly interested in qualitative detection of multipole phenomena and by the

general weakness of higher multipole interactions compared to the ED interaction for

most materials [80]. For the same reason, we will neglect higher-multipole contribu-

tions beyond magnetic-dipole and electric-quadrupole (e.g., magnetic-quadrupole,

electric-octopole, etc.). From here on, we will use the term multipole (MP) to refer

to electric-quadrupole and magnetic-dipole interactions.

The MP interactions can be addressed by including MP terms into the constitutive

equations Eqs. (2.2) and rewriting them as [76]

D(r, t) = ε0n
2E(r, t) + P(r, t)−∇ ·Q(r, t) (3.15)

H(r, t) =
1

µ0

B(r, t)−M(r, t), (3.16)

where P, M and Q are the nonlinear parts of material polarization, magnetization

and quadrupolarization, respectively and which results in a set of equations similar

to Eqs. (2.18), but with the source polarization term given by [76]

PNL = PED + PMP +
i

ω
∇×M−∇ ·Q = PED + PMP,e�, (3.17)

where PNL is the total e�ective nonlinear polarization, PED is the conventional

nonlinear ED polarization, PMP is the nonlinear electric dipole density arising from

MP interaction and PMP,e� is the sum of all MP terms.

Using a similar approach to what was presented in Ref. [70, 81, 82], the multipolar
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Figure 3.2: A schematic of the electric-dipole (e), magnetic-dipole (m) and electric-
quadrupole (q) interactions addressed in this work.

source terms to the SHG can be written as

PMP
i (2ω) = χeemijk Ej(ω)Bk(ω) + χeeqijklEj(ω)∇kEl(ω) (3.18)

Mi = χmeeijk Ej(ω)Ek(ω) (3.19)

Qij = χqeeijklEk(ω)El(ω), (3.20)

where, for clarity, the superscript (2) was replaced with superscripts referring to

the physical origin of interaction associated with the dimensions of the tensor. The

�rst superscript corresponds to the interaction between the SHG photon and the

material, and the latter two correspond to the interactions between the fundamental

photons and the material. The values of the superscripts are either e, m, or q for ED,

magnetic dipole and quadrupole interactions, respectively. The notation is shown

in (Fig. 3.2).

The introduced MP interactions have di�erent behavior under symmetry than the

ED interaction. The magnetic SHG susceptibilities (χmeeijk , χ
eem
ijk ) are third rank

tensors with one axial dimension and the quadrupolar SHG susceptibilities (χqeeijkl,

χeeqijkl) are fourth rank polar tensors, whereas the ED SHG susceptibility is a third

rank polar tensor. The symmetry properties can still be determined by using a

method similar to what was used for ED case. For the magnetic susceptibility,

Eq. (3.13) is valid provided that the sign is switched for each improper symmetry

operation [19]. For the quadrupolar susceptibility, the summation in Eq. (3.13) must

be adjusted to be carried over all four indices with four corresponding derivatives in

the summand [19] as

χ
(2)
ijkl → χ

′(2)
ijkl =

∑
(m,n,σ,ρ)

∂r′i
∂m

∂r′j
∂n

∂r′k
∂σ

∂r′l
∂ρ

χ(2)
mnσρ = χ

(2)
ijkl, (3.21)

where the notation is similar to that of Eq. (3.13).
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Regarding the MP interaction, we will limit ourselves to the case of full isotropy.

This is justi�ed in the scope of this work since we are interested in qualitative

probing of the presence of multipole e�ects in thin �lms. Under full isotropy, the

independent nonvanishing components of a third rank tensor with a single axial

component (magnetic susceptibility) and a fourth rank polar tensor (quadrupolar

susceptibility) can be written as [6, 18]

χxyz = χyzx = χzxy = −χxzy = −χzyx = −χyxz, and (3.22)

χijkl = χxxyyδijδkl + χxyxyδikδjl + χxyyxδilδjk, (3.23)

where δ is the Kronecker delta, respectively. These nonvanishing components can

further be combined into three components in a well documented fashion as [59,63,

70,81]

PMP,e� = βE(ω)(∇ · E(ω)) + γ∇(E(ω) · E(ω)) + δ′(E(ω) · ∇)E(ω), (3.24)

where the contribution from β is known to vanish for isotropic media and can thus

be neglected. Furthermore, γ is known to be indistinguishable from surface ED

SHG [59] and will be neglected here because in the scope of this work we are mainly

interested in the detection of the presence of MP SHG governed by the last term.

3.2 Electric-dipole SHG from layered structures

In this section we will develop the mathematical formulae for the SHG generated

from a thin nonlinear layer embedded between dielectric media under ED approx-

imation. We will start by writing the full fundamental �eld within the thin layer,

followed by expressing the source polarization introduced in Chapter 2, and �nally

calculating the total �eld leaving the material system.

Let us �rst consider the fundamental �eld within the nonlinear layer. For practical

reasons, we consider a monochromatic plane wave of frequency ω characterized by

spatial frequency kx approaching the nonlinear layer from medium 1 as per the

coordinate notation of Chapter 2. If the polarization components of the �eld prior

to the upper interface are Ep
0 and E

s
0, the polarization components of the �eld inside

the nonlinear medium, neglecting re�ections, are given by

E
p/s
− (z) = t

p/s
12 E

p/s
0 eiw−z, (3.25)
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where the p/s once more denotes either p or s depending on the polarization com-

ponent in question.

For the reasons outlined in Chapter 2, re�ections at the interfaces of the nonlinear

layer give rise to both upward and downward propagating waves. Using Eqs. (2.30

and 2.31) and setting E+ = 0, the total fundamental �eld inside the medium can be

written as

ET(z) = ET+e
iw+z + ET−e

iw−z

=
(
p̂+E

p
T+ + ŝEs

T+

)
eiw+z +

(
p̂−E

p
T− + ŝEs

T−
)
eiw−z,

(3.26)

with

E
p/s
T+ = K

p/s
T+E

p/s
0 = e2iwDtp/s12 r

p/s
23 C

p/sE
p/s
0 and (3.27)

E
p/s
T− = K

p/s
T−E

p/s
0 = t

p/s
12 C

p/sE
p/s
0 , (3.28)

where Cp/s is the parameter de�ned in Eq. (2.35) and K
p/s
± factors are used to

combine the re�ection e�ects discussed in the last section of Chapter 2 in a conve-

nient manner. Now, the SHG polarization arising from the fundamental �eld can

be written as

P(z) = ε0χ
(2) · E2

T(z), (3.29)

with

E2
T(z) = (ET+)2e2iw+z + ET+ET− + ET−ET+ + (ET−)2e2iw−z. (3.30)

The above equations fully describe the SHG source polarization that is compatible

with the analysis of Chapter 2. The generated unre�ected second-harmonic wave

must ful�ll Eqs. (2.18), and can be described with Eqs. (2.32) with Eq. (3.29) as the

source. However, before substitution, we note that the parameters of the second-

harmonic solution must be evaluated for the second-harmonic frequency. Thus, we

denote all frequency dependent quantities that correspond to the second-harmonic

frequency with an underline, e.g., E(2ω)→ E. Now, the substitution for the upward
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and downward propagating SHG �elds yields

E(0) = ε0e
ikxx
(∫ 0

−D
G(0− z0)e2iw−z0dz0 · χ(2) · (ET−)2

+

∫ 0

−D
G(0− z0)dz0 · χ(2) · ET+ET−

+

∫ 0

−D
G(0− z0)dz0 · χ(2) · ET−ET+

+

∫ 0

−D
G(0− z0)e2iw+z0dz0 · χ(2) · (ET+)2

)
and

(3.31)

E(−D) = ε0e
ikxx
(∫ 0

−D
G(−D − z0)e2iw−z0dz0 · χ(2) · (ET−)2

+

∫ 0

−D
G(−D − z0)dz0 · χ(2) · ET+ET−

+

∫ 0

−D
G(−D − z0)dz0 · χ(2) · ET−ET+

+

∫ 0

−D
G(−D − z0)e2iw+z0dz0 · χ(2) · (ET+)2

)
,

(3.32)

respectively, where kx = 2kx is the x-component of the wave vector of the generated

SHG �eld and G is the dyadic Green's function evaluated for the second-harmonic

frequency. Thus, the SHG source polarization acts as a source to two plane waves

characterized by wave vectors k± = kxx̂ + w±ẑ as per Eq. (2.12). In the following

discussion, the transverse component of the wave vector will be left implicit as it is

conserved in the system in the absence of nonlinear e�ects.

The integration in Eqs. (3.31 and 3.32) can be carried out by the substitution of

Eq. (2.27), yielding

E(0) =
ω2

2c2w
(p̂

+
p̂
+

+ ŝŝ) ·
(
χ(2) · (ET+)2Φ+++

+ χ(2) · ET+ET−Φ++− + χ(2) · ET−ET+Φ+−+

+ χ(2) · (ET−)2Φ+−−

)
(3.33)

E(−D) =
ω2

2c2w
eiwD(p̂−p̂− + ŝŝ) ·

(
χ(2) · (ET+)2Φ−++

+ χ(2) · ET+ET−Φ−+− + χ(2) · ET−ET+Φ−−+

+ χ(2) · (ET−)2Φ−−−

)
,

(3.34)
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where

Φφβγ =
1− e−i(−wφ+wβ+wγ)D

−wφ + wβ + wγ
, (3.35)

and φ, β, γ ∈ {+,−}. The upward and downward generated �elds described by

Eqs. (3.33 and 3.34) both contribute to the total SHG �elds leaving the medium as

per Eqs. (2.36 and 2.37). Let us consider the SHG �eld leaving to medium 3 and

substitute Eqs. (3.33 and 3.34) into Eq. (2.37), yielding

Ep
out(−D) = eiwD

ω2

2c2w
tp23
∑
φβγ

p̂
φ
· χ(2)Kp

φΦφβγ ·
(
p̂βp̂γK

p
βK

p
γ(Ep

0)2

+ p̂β ŝK
p
βK

s
γE

p
0E

s
0 + ŝp̂γK

s
βK

p
γE

s
0E

p
0 + ŝŝKs

βK
s
γ(E

s
0)2
) (3.36)

Es
out(−D) = eiwD

ω2

2c2w
ts23
∑
φβγ

ŝ · χ(2)Ks
φΦφβγ ·

(
p̂βp̂γK

p
βK

p
γ(Ep

0)2

+ p̂β ŝK
p
βK

s
γE

p
0E

s
0 + ŝp̂γK

s
βK

p
γE

s
0E

p
0 + ŝŝKs

βK
s
γ(E

s
0)2
)
,

(3.37)

where Kp/s
+ = r

p/s
21 C

p/s, Kp/s
− = Cp/s and the summation is carried out over all

combinations of φ, β, γ ∈ {+,−}.

Although tedious, the forms of Eqs. (3.36 and 3.37) become convenient as they

explicitly map the SHG �eld polarization components with respect to those of the

fundamental �eld. To probe the SHG susceptibility tensor, a polarization controlled

experiment can be utilized. It is thus useful to describe the SHG process in the

system in terms of polarization signatures, i.e.,

Ep
out(−D) = fppp(Ep

0)2 + fppsEp
0E

s
0 + fpspEs

0E
p
0 + fpss(Es

0)2 (3.38)

Es
out(−D) = f spp(Ep

0)2 + f spsEp
0E

s
0 + f sspEs

0E
p
0 + f sss(Es

0)2, (3.39)

where f ζ,η,κ are the polarization signatures for ζ-polarized SHG arising from η and

κ -polarization components of the fundamental �eld, i.e., ζ, η, κ ∈ {p, s}. The

polarization signatures can be written as

f ζ,η,κ = eiwD
ω2

2c2w
tζ23
∑
φβγ

ζ̂
φ
· χ(2)Φφβγ · η̂βκ̂γK

ζ
φK

η
βK

κ
γ . (3.40)

Finally, the polarization signatures can be described in terms of SHG susceptibility

tensor components by expressing the tensor product in terms of the polarization
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unit basis vectors (p̂±, ŝ, k̂±) shown in (Fig. 2.2) as

f ζ,η,κ = eiwD
ω2

2c2w
tζ23
∑
ijk

∑
φβγ

Lζ,i,φχ
(2)
ijkΦφβγLη,j,βLκ,k,γK

ζ
φK

η
βK

κ
γ , (3.41)

where the summation of i, j, k is carried out over Cartesian coordinates. For a

fundamental �eld propagating along c-direction, the factor Labc is the projection of

the polarization component a to the Cartesian axis b. Similarly, for a SHG �eld

propagating along c-direction, the factor Labc is the projection of the Cartesian

coordinate b to the polarization component a. As such, for a given system with a

thin source embedded between two dielectric media and a given angle of incidence

of the fundamental �eld, the polarization signatures are linear combinations of the

SHG susceptibility tensor components.

In should be noted that although Eq. (3.41) may seem mathematically convoluted,

the various factors present describe distinct physical phenomena: K and the two K-

factors describe the mixing of the upward and downward propagating partial �elds

inside the thin medium for SHG and fundamental �elds, respectively; L and the two

L factors describe the projections between the �eld polarization coordinates and

the system coordinates for SHG and fundamental �elds, respectively; and the factor

Φ describes the phase-mismatch of the SHG process for di�erent combinations of

upward and downward propagating partial fundamental and SHG �elds. Finally,

within K and K, the C and the two C factors are the etalon factors due to multiple

re�ections inside the thin layer for the SHG and fundamental �elds, respectively. A

short summary about the above parameters is shown in Table 3.1.

Table 3.1: A short summary of the used parameters

Factor Description
C Etalon factor due to consequtive re�ections
K Combined etalon factor and cross contribution between + and −
L Projection between beam coordinates and material coordinates
Φ Phase mismatch factor between SHG polarization and SHG �eld

The concept of polarization signatures conveniently splits the analysis into two parts:

1) The relationship between the signatures and the SHG susceptibility, which de-

pends on the material symmetry and system geometry; 2) The polarization signa-

tures that can be uniquely determined by the degrees of freedom available with the

experiment. This is very useful for the planning of experimental methodology for a

sample of given symmetry as well as interpretation of unexpected results.
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3.3 Multipolar SHG from layered structures

In this section, we will address MP SHG from a thin nonlinear layer embedded be-

tween dielectric media. A common method for the study of MP SHG from isotropic

materials involves utilizing two non-collinear excitation beams, and studying the

SHG process where one of the fundamental photons originate from each of the

beams [64, 83]. Using this method, it is possible to separate the MP bulk contri-

bution from the ED surface contribution to SHG [67, 84�86]. In the following, we

will derive the expressions for the ED and MP SHG arising jointly from two non-

collinear beams. As before, we will consider an in-plane isotropic nonlinear material

for the ED SHG process. However, for simplicity, we assume the material to be fully

isotropic for the MP SHG case and that the MP SHG arises primarily from the δ′

term in Eq. (3.24). This is justi�ed by the fact that, within the context of this work,

it is su�cient to study the signatures of the presence of MP SHG rather than fully

characterize the complete MP response. In addition, the other contributions are not

strictly of bulk origin.

Figure 3.3: A schematic of the relationship between the beam coordinates and material
system coordinates for two-beam con�guration.

We begin by considering two non-collinear plane waves, denoted by a and b, at

the same frequency but di�erent angles of propagation. The beams approach the

nonlinear layer from medium 1 so that their wave vectors are in the same the plane

of incidence. The only di�erences between the beams are the quantities that depend

on the angle of propagation. These quantities include the angle of propagation, the

components of the wave vector, the polarization coordinate system and the Fresnel

coe�cients. In order to account for this, a subscript a or b is added to all these

quantities (see Fig. 3.3). Aside from that, both beams can be treated with the

previous analysis for plane waves in layered structures. Using this approach, the

individual �elds inside the nonlinear layer ET,a/b(r) can be written in terms of their
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polarization component amplitudes right before the upper interface Ep/s
a/b,0 as

ET,a/b(r) = (ET,a/b,+e
iwa/b,+z + ET,a/b,−e

iwa/b,−z)eika/b,xx

=
[(

p̂a/b,+E
p
T,a/b,+ + ŝEs

T,a/b,+

)
eiwa/b,+z

+
(
p̂a/b,−E

p
T,a/b,− + ŝEs

T,a/b,−

)
eiwa/b,−z

]
eika/b,xx,

(3.42)

with

E
p/s
T,a/b,+ = K

p/s
a/b,+E

p/s
a/b,0 = e2iwa/bDtp/sa/b,12r

p/s
a/b,23C

p/s
a/bE

p/s
a/b,0 and (3.43)

E
p/s
T,a/b,− = K

p/s
a/b,−E

p/s
a/b,0 = t

p/s
a/b,12C

p/s
a/bE

p/s
a/b,0. (3.44)

for beam a/b. The above equations fully describe the electric �elds of the two beams

inside the nonlinear layer.

Let us �rst consider the ED SHG by following an approach almost identical to the

single beam case. The total electric �eld inside the medium is given by E = Ea+Eb

and the ED source polarization depends on the square of the total electric �eld

P = ε0χ
(2)E2. By using Eq. (3.42), the ED source polarization can be seen to

consist of three terms with di�erent transverse spatial behavior: 2ka,x, 2kb,x and

ka,x+kb,x. Only the last term corresponds to the case where a photon is annihilated

from each of the beams which, as discussed in the beginning of this section, results

in new information. Thus, the two former terms are neglected and the squared �eld

can be written as

E2(r) =
[
Ea(z)Eb(z) + Eb(z)Ea(z)

]
ei(ka,x+kb,x)x. (3.45)

The generated unre�ected ED SHG �eld for the two-beam case can be determined
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by substituting the above equations to Eqs. (2.32), yielding

EED(0) = ε0e
ikxx
(∫ 0

−D
G(0− z0)ei(wa,++wb,+)z0dz0 · χ(2) · ET,a,+ET,b,+

+

∫ 0

−D
G(0− z0)ei(wa,++wb,−)z0dz0 · χ(2) · ET,a,+ET,b,−

+

∫ 0

−D
G(0− z0)ei(wa,−+wb,+)z0dz0 · χ(2) · ET,a,−ET,b,+

+

∫ 0

−D
G(0− z0)ei(wa,−+wb,−)z0dz0 · χ(2) · ET,a,−ET,b,−

)
+ [a↔ b] and

(3.46)

EED(−D) = ε0e
ikxx
(∫ 0

−D
G(−D − z0)ei(wa,++wb,+)z0dz0 · χ(2) · Ea,+Eb,+

+

∫ 0

−D
G(−D − z0)ei(wa,++wb,−)z0dz0 · χ(2) · Ea,+Eb,−

+

∫ 0

−D
G(−D − z0)ei(wa,−+wb,+)z0dz0 · χ(2) · Ea,−Eb,+

+

∫ 0

−D
G(−D − z0)ei(wa,−+wb,−)z0dz0 · χ(2) · Ea,−Eb,−

)
+ [a↔ b],

(3.47)

where kx = ka,x+kb,x and [a↔ b] denotes an additional term identical to the previous

one but with a and b interchanged. By substituting Eq. (2.27) and carrying out the

integration, the total s-polarized ED SHG �eld leaving the nonlinear layer can be

written as

Es
out,ED(−D) = eiwD

ω2

2c2w
ts23
∑
φβγ

ŝ · χ(2)Ks
φΦ′φ,βγ ·

(
p̂a,βp̂b,γK

p
a,βK

p
b,γE

p
a,0E

p
b,0

+ ŝp̂b,γK
s
a,βK

p
b,γE

s
a,0E

p
b,0 + p̂a,β ŝK

p
a,βK

s
b,γE

p
a,0E

s
b,0

+ ŝŝKs
a,βK

s
b,γE

s
a,0E

s
b,0

)
+ [a↔ b]

(3.48)

where

Φ′φ,β,γ =
1− e−i(−wφ+wa,β+wb,γ)D

−wφ + wa,β + wb,γ
. (3.49)

It is worth noting that the form of Eq. (3.48) is very similar to that of Eq. (3.37).

In addition, the parameters that appear here are analogous to those de�ned for the

single beam case and carry similar convenient physical insights within them.
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Lastly, let us consider the MP SHG arising from the two fundamental beams. Once

more, we will begin by examining the transverse pro�le of the source polarization

by substituting the total �eld into the δ′ term in Eq. (3.24), which yields [64]

(E · ∇)E = iei2ka,xx(Ea · ka)Ea + iei2kb,xx(Eb · kb)Eb

+ iei(ka,x+kb,x)x((Ea · kb)Eb + (Eb · ka)Ea).

(3.50)

Again, we see that the �rst two terms arise exclusively from individual beams and

only consider the latter two terms. Continuing with an approach identical to the

one for ED SHG, the unre�ected SHG �elds can now be obtained by substituting

Eqs. (3.24 and 3.50) into Eqs. (2.32), yielding

E(0) = ε0iδ
′nω

c
eikxx

(∫ 0

−D
G(0− z0)ei(wa,++wb,+)z0dz0 · (ET,a,+ · k̂b,+)ET,b,+

+

∫ 0

−D
G(0− z0)ei(wa,++wb,−)z0dz0 · (ET,a,+ · k̂b,−)ET,b,−

+

∫ 0

−D
G(0− z0)ei(wa,−+wb,+)z0dz0 · (ET,a,− · k̂b,+)ET,b,+

+

∫ 0

−D
G(0− z0)ei(wa,−+wb,−)z0dz0 · (ET,a,− · k̂b,−)ET,b,−

)
+ [a↔ b] and

(3.51)

E(−D) = ε0iδ
′nω

c
eikxx

(∫ 0

−D
G(−D − z0)ei(wa,++wb,+)z0dz0 · (ET,a,+ · k̂b,+)ET,b,+

+

∫ 0

−D
G(−D − z0)ei(wa,++wb,−)z0dz0 · (ET,a,+ · k̂b,−)ET,b,−

+

∫ 0

−D
G(−D − z0)ei(wa,−+wb,+)z0dz0 · (ET,a,− · k̂T,b,+)Eb,+

+

∫ 0

−D
G(−D − z0)ei(wa,−+wb,−)z0dz0 · (ET,a,− · k̂b,−)ET,b,−

)
+ [a↔ b],

(3.52)

which can be integrated by utilizing Eq. (2.27). The resulting s polarized �eld

leaving the nonlinear medium can be written as

Es
out(−D) = eiwDiδ′

nω

c

ω2

2c2w
ts23
∑
φβγ

Ks
φΦ′φβγK

s
b,γ

(
Kp
a,β(p̂a,β · k̂b,γ)Es

b,0E
p
a,0

+Ks
a,β(ŝ · k̂b,γ)Es

b,0E
s
a,0

)
+ [a↔ b],

(3.53)
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where (ŝ · k̂b,γ) = 0. Thus, the expression further simpli�es into

Es
out(−D) = eiwDiδ′

nω

c

ω2

2c2w
ts23

×
∑
φβγ

Ks
φΦ′φβγK

s
b,γK

p
a,β(p̂a,β · k̂b,γ)Es

b,0E
p
a,0 + [a↔ b].

(3.54)

Finally, the total s-polarized SHG �eld leaving the nonlinear layer can be written

for the two-beam case as

Es
out(−D) = eiwD

ω2

2c2w
ts23

×
∑
φβγ

Ks
φΦ′φβγ

[
ŝ · χ(2) ·

(
p̂a,βp̂b,γK
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a,βK

p
b,γE

p
a,0E

p
b,0

+ ŝp̂b,γK
s
a,βK

p
b,γE

s
a,0E

p
b,0 + p̂a,β ŝK

p
a,βK

s
b,γE

p
a,0E

s
b,0

+ ŝŝKs
a,βK

s
b,γE

s
a,0E

s
b,0

)
+ iδ′

nω

c
Ks
b,γK

p
a,β(p̂a,β · k̂b,γ)Es

b,0E
p
a,0

]
+ [a↔ b],

(3.55)

which is the primary result of this section. Once more, our general notation proves

convenient as it allows for a relatively easy comparison between the contributions

from ED and MP processes to the total two-beam SHG.
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4. EXPERIMENTS AND SAMPLES

In this Chapter, we describe our experimental methodology for the characterization

of the SHG response for the single- and two-beam schemes analyzed in Chapter 3,

apply them to a variety of material geometries, connect the experiments with the

previous analysis and discuss their weaknesses and strengths. In addition, we will

describe the materials and samples studied in this work, describe our motivation

for studying them and provide a brief overview on the role of the said materials in

optics.

4.1 Single-beam setup

In this section, we will describe the experimental methodogy for the study of ED

SHG. We begin by describing the setup itself, followed by the description and exam-

ination of the di�erent experiments it enables. We will also consider the connection

between the experiments and the analysis as well as certain approximations that are

useful for particular geometries used in the actual experiments.

The setup used for the single-beam nonlinear characterization is illustrated in (Fig.

4.1). A pulsed Nd:YAG laser (Ekspla PL 2200) with a wavelength of 1064 nm, rep-

etition rate of 1 kHz and pulse length of 70 ps was used as the light source. After

leaving the laser, the beam power was controlled by a half-wave plate (HWP), fol-

lowed by a linear polarizer (LP). Finally, before the sample, the polarization state

of the laser can be controlled with a motorized quarter-wave plate (QWP) in con-

junction with the aforementioned LP. In order to control the angle of incidence, the

sample holder was placed on a motorized rotation stage. Lastly, prior to the detec-

tion of SHG with a (Hamamatsu H6779-01) photomultiplier tube (PMT) connected

to an oscilloscope, the polarization state of the detected SHG was chosen with a LP.

In order to ensure that only SHG is detected and that all of the detected SHG is

generated from the sample, visible-blocking and infrared-blocking �lters were placed

immediately before and after the sample, respectively. In addition, a lens was placed



36 4. Experiments and samples

Figure 4.1: Schematic of the single-beam setup, with the following notation: HWP -
half-wave plate, LP - linear polarizer, QWP - quarter-wave plate, VIS block - visual �lter,
IR block - infrared �lter, PMT - photomultiplier tube. The red and green lines denote
beams at 1064 nm and 532 nm, respectively.

before the polarization control in order to focus the beam weakly on the sample for

increased SHG. The spot size at the sample was estimated to be a few hundred mi-

crometers. Finally, both of the motorized stages and the oscilloscope are controlled

by a computer running a measurement automatization software so that polarization

and angle of incidence controlled experiments can be realized.

The motorized control of the incident polarization and the angle of incidence enables

two types of measurements depending on which quantity is varied. Let us �rst

consider a measurement where the control variable is the angle of incidence while

the polarization control is kept constant. This, the more traditional of the two, is

known as the Maker fringe experiment [57,58]. In principle, the Maker fringe method

enables quantitative determination of SHG response and has been used widely for

second-order nonlinear characterization [87�90]. Unfortunately, there are technical

challenges for such characterization as it is di�cult to perform measurements where

absolute ratio between the SHG power and the power of the fundamental beam is

obtained. In addition, it is common for a sample to have more than one source of

SHG, e.g., the two interfaces for a plate of glass. However, the latter phenomenon

can be convenient because if the SHG susceptibility is known for one of the sources,

the unknown SHG susceptibility can be obtained by carefully analysing the fringes

resulting from a varying phase-mismatch between the two SHG �elds as the angle

of incidence changes. Indeed, this is often the case for thin �lm samples, as they

are usually fabricated on a glass substrate of some kind, and it is often su�cient to

only consider SHG from the thin �lm and from the back surface of the substrate. In

this case, the dependence of the varying phase mismatch on the angle of incidence
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depends only on the dispersion of the substrate between the sources. As the SHG

�elds from the two sources interfere, the resulting irradiance can be written as

I ∝
∣∣ESHG

1 + ESHG
2 eiφ(θ)

∣∣2 , (4.1)

where I is the total SHG irradiance, ESHG
1 is the generated SHG �eld from the

material of interest, ESHG
2 is the generated SHG from the substrate and φ(θ) is

an angle of incidence dependent phase factor which will span over multiple rounds

of 2π for a thick substrate, resulting in fringes in a measurement versus varying

angle of incidence. Using the results of Section 3.2, the SHG �elds can be expanded

in terms of the susceptibility components, and the unknown SHG susceptibility

can be determined. From here on, this is called substrate referenced Maker-fringe

experiment.

The above notwithstanding, it is very complicated to determine the SHG suscep-

tibility of a thin source from the corresponding SHG signal using a Maker fringe

experiment. Due to the fact that the angle of incidence varies, the convenient formu-

lation of polarization signatures described in Section 3.3 loses some of its usefulness

as the polarization signatures denoted by f ζ,η,κ depend on the angle of incidence in

an extremely complex manner. However, this unfortunate problem can be mitigated

by applying certain approximations. If an approximate signal magnitude estimation

is su�cient and the nonlinear system of interest lays on a substrate with known

nonlinear behavior, it is possible to consider the unknown thin source as an e�ective

surface as well as neglect the tensorial nature of SHG altogether. As a result, the

ratio of the SHG �elds itself is the quantity of interest, and the analysis reduces to

solving the ratio of �elds in Eq. (4.1) by examining the visibility of the fringes. It

should be noted though, that this is a very rough approximation and suitable only

for the analysis of general trends and signal levels. From here on this is called scalar

approximation.

Another useful approximation is to neglect some or all of the re�ections and the

resulting phenomena, which are the main source of complexity in the problem. This

can be done conveniently by setting the appropriate Fresnel re�ection coe�cients

to zero, e�ectively removing the summation over propagation directions φ, β γ in

Eq. (3.41) so that few or even only one term remains. Consequently, by choosing

the polarizations for the fundamental beam and the detected SHG well, only a

few terms remain nonzero in the summation over i, j, k for a material with high
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symmetry.

Lastly, for nonlinear materials with high indices of refraction at both the funda-

mental and SHG frequencies or relatively small dispersion, some of the otherwise

independent SHG tensor components may become de facto non-independent and

thus inseparable in practice. In order to overcome this di�culty, a measurement

scheme with more degrees of freedom can be used, such as one where polarization

states for both fundamental beam as well as that of the detected SHG are controlled.

The other option is to settle for the separable tensor components.

As mentioned above, the other type of experiment for the SHG characterization

consists of a measurement or measurements where the polarization state of the fun-

damental beam is controlled while the angle of incidence and the polarization state

of the SHG beam are kept constant. Here, we will label this method as the po-

larization controlled experiment. With the polarization controlled experiment, the

polarization signatures and thus the SHG susceptibility can be fully characterized

for in-plane isotropic samples provided, that the polarization space for the funda-

mental and SHG beams is su�ciently comprehensive [26,91]. This involves multiple

measurements if only the polarization state of the fundamental beam is varied within

an experiment [91]. For example, four experiments with particular combinations of

polarization states for the fundamental beam before the wave-plate and detected

SHG are su�cient in conjunction with a rotating QWP to uniquely determine the

relative values of polarization signatures fp,p,p, fp,s,s and fp,p,s + fp,s,p as well as

f s,p,p, f s,s,s, f s,p,s + f s,s,p [91, 92].

The above result does not depend on the system geometry or the symmetry of the

material. For a surface response, these signatures can be uniquely connected to the

non-vanishing surface SHG tensor components by

f = U · χ(2)
V , (4.2)

where f is a vector containing the polarization signatures mentioned above, χ(2)
V

is a vector containing all the nonvanishing tensor components and U is a matrix

whose elements only depend on the linear material properties and the geometry

of the experiment and can thus be calculated beforehand [93]. The above is also

true for bulk SHG from a thin in-plane isotropic layer with the only change being

di�erent values for the elements of U. The elements of U are given by the terms

of the summation over i, j, k of Eq. (3.41), again highlighting the usefulness of the
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separation of variables in Eq. (4.2).

It is worth noting, that polarization controlled experiments are best suited for the

characterization of the relative SHG tensor structure, rather than the absolute values

for susceptibility. This is due to the aforementioned fact that it is very di�cult to

measure absolute power levels accurately with a PMT without a proper reference.

In addition, it is not possible to reference the SHG from the nonlinear material to

the SHG from the substrate surface using the visibility of Maker fringes since the

angle of incidence is constant. To circumvent this problem, it is possible to use

a known nonlinear crystal such as crystalline quartz as reference. The results of

Section 3.2 can be easily modi�ed for this as well. Nonetheless, the polarization

controlled measurements are suitable only if there is one clear dominating SHG

source, because then the other interfering sources can be neglected.

4.2 Two-beam setup

In this section, we will describe the experimental method to study the presence

of MP SHG using a setup with two non-collinear beams, as discussed in Section

3.3. Using the labels de�ned in the previous section, our two-beam experiment is

a polarization controlled experiment. In other words, in a single measurement the

polarization state of one of the beams incident on the sample is varied continuously

while the polarization state of the other incident beam as well as that of the detected

SHG beam is kept constant. In addition, the angles of incidence and thus, detection,

are kept constant.

A schematic of the two-beam setup is shown in (Fig. 4.2). The two-beam setup

is similar to the single-beam setup described in the previous section, except for

the division of the fundamental beam into two parts with a beam splitter (BS).

A delay line is added to one of the beams, labelled b, to ensure that the pulses

coincide temporally at the sample. The other beam is labelled a. Before coinciding

spatially at the sample, both of the beams pass a weakly focusing lens (gray ellipses

in Fig. 4.2), power and polarization control optics (blue boxes in Fig. 4.2) and a

visible-blocking �lter, in that order (black bars in Fig. 4.2). In a measurement,

the polarization state of beam b is continuously varied with a motorized QWP. It

should be noted that �ltering of the infrared light prior to the polarization control

for SHG is not necessary, since neither of the incident beams propagates towards

that direction.
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Figure 4.2: A schematic of the two-beam setup with the following notation: BS - beam
splitter, HWP - half-wave plate, LP - linear polarizer, mQWP - motorized quarter-wave
plate, PMT - photomultiplier tube. The blue boxes responsible for power and polarization
control, and are preceded by lenses (gray ellipses) and succeeded by visible-blocking �lters
(black bars). The red and green lines denote beams at 1064 nm and 532 nm, respectively.
The beam with narrower (wider) angle of incidence is labelled beam b (a).

For thick samples, the two-beam experiment is known to be able to separate the

ED surface SHG response from the MP bulk SHG response in a single measurement

if proper polarizations for beam b prior to the QWP, beam a and detected SHG

beam are chosen [64,66,67]. By examining Eq. (3.55), it can be seen that the same

holds true for the separation of ED SHG and MP SHG arising from δ′, although the

relative contribution from the material parameters is quantitatively di�erent.

4.3 Multilayer composite materials

The requirement for non-centrosymmetry is one of the most fundamental problems

in the search for materials with high second-order nonlinearity. Certain crystals

are an obvious class of materials with a low symmetry, but it would be highly

bene�cial to expand the range of nonlinear materials suitable for applications. Mul-

tiple approaches have been found to break the symmetry of otherwise centrosym-

metric materials, including for example external poling [31�33], applied directional

strain [36�38], and the nonuniform inclusion of plasmonic metal particles within the

material [94]. The two latter approaches are enabled by the fact that they essentially
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morph the material to have e�ective layers, and even for fully centrosymmetric ma-

terials, the symmetry always breaks at interfaces that belong to the symmetry group

C∞v or lower. Thus, another obvious solution is to fabricate composite materials

with multiple di�erent thin layers stacked on top of each other. If the layers are

ordered in a cycle, then, provided that a su�ciently large stack of su�ciently thin

layers can be fabricated, the system acts as an e�ective material with C∞v symmetry.

Here, we label such a material as a multilayer composite material (MCM).

In this work, we studied MCMs consisting of cycles of three materials. This is the

simplest possible system since, for a cycle of two, the system has a center of inversion

along the interface normal in the middle of either of the sublayers in the bulk of the

MCM. For the cycle of three MCM studied in this work, we denote the constituent

materials with A, B and C, which results in a composite where the stack [A-B-C]

is repeated (see Fig. 4.3a). We note that this approach to break centrosymmetry

has already been demonstrated [40]. Our goal is to expand on the earlier work by

improving the e�ciency of the nonlinear process as well as by examining the material

space and its e�ect on the SHG e�ciency.

Figure 4.3: a) Schematic of the MCM stack consisting of [A-B-C] cycles. b) Diagram of
the two sources present in substrate referenced SHG measurement from a MCM �lm on a
glass substrate.

The studied sample consists of layers of TiO2 (A), Al2O3 (B) and In2O3 (C) with

refractive indices of nA = 2.1, nA = 1.5-1.7 and nA = 2.2, respectively [95�97]. The

motivation behind the choice of materials is that, as a rule of thumb, the surface

nonlinearity is connected with the refractive index contrast between the surrounding

media [70]. The layers were deposited as successive [A-B-C] cycles using atomic layer

deposition (ALD). This process suits our purposes well as it can produce su�ciently

thin layers and is compatible with nanophotonic circuitry [98].

Three MCM �lms with total thickness of 2.1 nm, 25 nm and 50 nm were fabricated
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on a borosilicate glass substrate (Schott BOROFLOAT33) with a thickness of 0.5

mm. The samples were fabricated at Ghent University-IMEC using ALD. The

deposition process was enhanced by cleansing the system periodically with pulses

of oxygen plasma (radio frequency (RF) power: 200 W, frequency: 13.56 MHz,

pressure: 1.2×10−5 bar, temperature: 120◦C) between pulses of the respective metal-

organic precursor (pressure: 6.0×10−5 bar). In addition, we pumped the chamber to

a high vacuum between each gas pulse. The precursors used for materials A, B and

C were (dimethylamido)titaniuma, Trimethylaluminium, Tris(2,2,6,6-tetramethyl-

3,5-heptanedionato) indium(III), respectively.

Before the nonlinear experiments, ellipsometric measurements were conducted in or-

der to determine the refractive indices of the MCMs. The nonlinear characterization

was conducted using a substrate referenced Maker-fringe experiment (see Fig. 4.3b)

using a setup similar to the single-beam setup described in Section 4.1. However,

for this experiment, a Ti:sapphire laser (Mai Tai HP, Spectra-Physics; wavelength:

980 nm; pulse duration: 100 fs) was used instead of the Nd:YAG laser, a parabolic

mirror was used to focus the beam (focal length: 5 cm) instead of a lens, and a

femtowatt detector (Thorlabs PDF10A) in conjunction with a collecting lens was

used for the detection. p polarized light was used for the fundamental beam and the

polarization of the detected SHG was not controlled.

The SHG suceptibility tensor components can be obtained by accounting for sym-

metry, applying proper approximations and using Eqs. (3.36 and 3.37) both for the

MCM �lm and for the back surface of the glass substrate.

4.4 Silicon nitride

Silicon nitride (SiN) is a material that is compatible with the complementary metal-

oxide semiconductor (CMOS) platform and has been recently shown to possess sig-

ni�cant SHG response from the bulk of the material [71, 99, 100]. This is very

signi�cant, since many potential applications for photonic integrated circuits rely

on nonlinear processes including SHG and, as discussed above, SHG enabling non-

centrosymmetry is a di�cult requirement. However, despite some theories being

proposed, the physical origin of the symmetry breaking in SiN �lms is still unknown

[71,101�105]. For these reasons the recent research on the nonlinear optical proper-

ties of SiN fabricated with di�erent techniques has been extensive [71, 99,100,106].
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In this work, we expand on the previous research by studying whether SHG from

SiN �lms fabricated using plasma-enhanced chemical vapor deposition (PECVD)

technique can be further increased by the tuning of the chemical composition of the

�lms. PECVD was chosen as the fabrication method since although SiN fabricated

by sputtering has been shown to exhibit very strong SHG, the extreme sensitivity

of the SHG response and even the material symmetry towards material composi-

tion indicates that the fabrication process is di�cult to control [99, 100]. On the

other hand, SiN fabricated using PECVD has been shown to exhibit a consistent

SHG response and material symmetry [71, 106, 107]. In addition, we note that SiN

prepared using low pressure chemical vapor deposition (LPCVD) showed little SHG

compared to that observed from SiN fabricated using PECVD.

To study the composition dependence of the nonlinearity, �ve samples, labelled

S10, S20, S30, S35 and S40, were fabricated on silica substrates using the PECVD

process. The fabrication of samples S10, S20, S30 and S40 was carried out at

Tampere University of Technology (Plasmalab 80 plus, Oxford Instruments) using

a gas mixture consisting of 2% SiH4/N2 and NH3. To adjust the composition of the

fabricated �lm, the �ow rate of 2% SiH4/N2 was kept constant at 1000 sccm, while

the �ow rate of NH3 was varied for di�erent samples: 10 sccm - S10, 20 sccm - S20,

30 sccm - S30 and 40 sccm - S40. The process pressure was 1000 mTorr, deposition

temperature was 300◦C, and the plasma was created using a RF �eld with 13.56 MHz

frequency and 20 W power. The S35 sample was fabricated at Ghent University-

IMEC (Advanced Vacuum Vision 310 PECVD) with a gas mixture of SiH4 - 40 sccm,

N2 - 1960 sccm and NH3 - 35 sccm. For the fabrication of S35 sample, the process

pressure and temperature were 650 mTorr and 300◦C, respectively, and the plasma

was generated with a cycle of one second of RF �eld (power: 30 W, frequency: 13.73

MHz) and �ve seconds of low frequency �eld (power: 50 W, frequency: 100-300 kHz).

Again, ellipsometric measurements were carried out prior to the nonlinear charac-

terization in order to determine the refractive indices and exact thicknesses of the

�lms. The nonlinear characterization consisted of two di�erent experiments: 1) a po-

larization controlled single-beam measurement for the characterization of the SHG

tensor structure and 2) a quartz referenced Maker fringe experiment to calibrate the

absolute values for the tensor components.

In the polarization controlled experiment, four measurements were carried out with

an angle of incidence of 60◦ and four di�erent combinations of initial polarization of
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the fundamental beam prior to the QWP and detected SHG polarization in order to

uniquely determine the relevant polarization signatures [71, 91, 92]: (p̂ + ŝ)/
√

2, p̂;

(p̂− ŝ)/
√

2, p̂; (p̂+ ŝ)/
√

2, (p̂+ ŝ)/
√

2; (p̂− ŝ)/
√

2, (p̂+ ŝ)/
√

2. These polarization

signatures are then linear combinations of the non-vanishing SHG susceptibility

tensor components as per Eq. (3.41).

In the Maker fringe measurement, p polarized SHG was detected with s polarized

fundamental �eld. The polarizations were chosen as such in order to have only one

SHG susceptibility tensor component, χ(2)
zxx, contribute to the SHG, which simpli�es

the analysis. The quartz measurement was carried out using a sample with a small

wedge and at normal incidence so that both the polarization of the fundamental

�eld and the polarization of the detected SHG were aligned along the quartz X

axis, again ensuring simplicity of the analysis. Lastly, while measuring SHG, the

quartz was moved slowly along the wedge so that the phase-matching was optimized,

eliminating the forward phase-mismatch term (Φ−−−) altogether. By �tting both

of these measurements together and scaling for power, the absolute value of χ(2)
zxx for

SiN can be obtained.

In addition, motivated by the previously reported strong ED SHG and the possible

additional degrees of freedom that MP SHG could provide, we studied the SiN �lm

from Ref. [71] with the two-beam experiment. This sample is essentially identical to

Sample S30 except for thickness of 800 nm. To separate the ED and MP contribu-

tions to s polarized SHG, the two-beam experiment was performed with polarization

of the beam a being (p̂− ŝ)/
√

2, polarization of the beam b prior to the QWP being

p̂ and the angles of incidence for beam a and beam b being θa = 58.3◦ and θb = 32.0◦,

respectively. By �tting this measurement with Eq. (3.55), the relative values of δ′

and χ(2)
xxz can be obtained [64,66,85].

4.5 Indium selenide

Chalcogenide glasses are an interesting group of materials due to the fact that many

of their properties, such as optical nonlinearity and band gap, can be tuned by

material composition [108]. In addition, chalcogenide glasses exhibit high refractive

index, high nonlinearity and high photosensitivity [109�113]. Indium selenide (InSe),

a chalcogenide glass and a group III-VI semiconductor, has recently gained attention

due to its possible applications in energy conversion and in opto-electronics [114�

116]. Importantly for the scope of this work, InSe can exist in di�erent phases
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depending on the stoichiometric ratio of the constituent elements [73]. As such,

di�erent types of SHG sources can arise in InSe due to di�erent symmetry properties

of the di�erent phases.

Three InSe thin �lms with varying thickness (40 nm, 100 nm and 190 nm) were

fabricated using a cost-e�ective thermal evaporation technique. The InSe �lms were

evaporated from a bulk InSe source to BK7 glass substrates using a melt quenching

method described in Ref. [117] with vacuum chamber pressure of 10−5 Torr and

temperature of 300 ◦C. The thickness was controlled by the evaporation time. The

bulk source was fabricated by melting a mixture of 62% Se and 38% In (Sigma

Aldrich, 5N purity) at the temperature of 1000 ◦C. Finally, the chemical composition

and surface roughness were veri�ed using energy-dispersive X-ray spectroscopy and

atomic force microscopy, respectively.

Once more, ellipsometric measuments were carried out to determine the linear prop-

erties and precise thicknesses of the samples. Preliminary experiments indicated,

that the sample was in-plane isotropic and that the interference between the SHG

signals from the �lm and the back surface of the substrate could not be neglected.

Thus, the samples were characterized with the substrate referenced Maker fringe

experiment with p polarized fundamental beam and p polarized SHG detection.

Similarly to the case of MCM �lms, The SHG suceptibility can be characterized

with Eqs. (3.36 and 3.37) for both sources.

4.6 Nanoisland �lms

Metal nanostructures and metal-dielectric composites (collectively labelled MNS)

have been under intense study due to their highly tunable optical properties. This is

due to the fact that their optical properties are governed by localized surface plasmon

resonances and subsequent intense local �elds (LF), whose distribution, spectrum

and strength depend sensitively on the size and shape of the MNS, the surrounding

environment and the metal in question [118�120]. These advantageous properties

have been utilized in various applications, including solar cells, Raman spectroscopy

and thin optical components [121�123]. From the perspective of our work, MNS are

especially interesting since the nonlinear e�ects scale with a high power of the �eld,

enabling extremely high tuning and enhancement of the nonlinearity [74, 119, 124�

126]. Our goal was to investigate the enhancement of MNS coated with a dielectric

by tuning the coating thickness.
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As mentioned above, we studied gold nanoisland �lms deposited on a glass substrate

and coated with thin layers of TiO2 in order to determine whether the LFs, and thus,

the SHG response can be tuned by varying the coating thickness. For this purpose,

gold nanoisland �lms were prepared by �rst depositing a 5 nm thick solid gold �lm

onto a fused silica substrate, followed by air annealing at 500 ◦C for 120 minutes.

As a result, gold nanoparticles shaped like truncated spheres with truncation angle

of 50◦, average diameter of 20 nm and relatively high size variation were formed on

the substrate. These �lms were subsequently coated with various thicknesses (from

3.2 nm to 97.9 nm) of TiO2 by using ALD (Beneq TFS-200 reactor). The spectra

of the coated nanoisland �lms were measured with a spectrophotometer (Specord

50). A schematic of a truncated and coated gold sphere and an SEM image of the

nanoisland �lm with a diameter distribution diagram are shown in (Fig. 4.4).

Figure 4.4: a) Schematic of a truncated sphere with a radius r and truncation angle θ
coated with h thick layer of TiO2. b) SEM image of the nanoisland �lm. Inset: Diameter
distribution of the nanoislands.

A �lm of truncated spheres coated with a layer of dielectric whose thickness is of

the order of the sphere diameter is an extremely complicated structure for a proper

nonlinear analysis. Thus, a substrate referenced Maker fringe experiment with scalar

approximation was used to estimate the e�ective signal level. As a result, all of the

obtained signal levels from the �lm are estimated with respect to the signal level

from the back surface of the substrate. This is justi�ed by the fact that we are

mainly interested in the relative magnitude of SHG from �lms with di�erent TiO2

coating thicknesses. This simple analysis can be carried out by using only Eq. (4.1)

and setting the �elds as scalar.
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5. RESULTS

In this Chapter, we present the results of the experiments described in Chapter 4

and assess them by applying the analysis derived in Chapters 2 and 3. This Chapter

is split and ordered according to the publications as they represent the key results of

our research and stand on their own as evidenced by the fact that they are published

separately. Finally, we will discuss brie�y the scienti�c impact of the results from

the perspective of the general motivations of this research as laid out in Chapter 1.

5.1 SHG from multilayer structures

In this section, we outline the results reported in Publication I. The nonlinear

response of MCM �lms was characterized using a substrate referenced Maker-fringe

experiment described in Section 4.3. In addition, preliminary measurements were

carried out to support the analysis of the results. The preliminary measurements

consisted of ellipsometry and nonlinear measurements on the glass substrate.

Table 5.1: Results from the ellipsometric measurements for MCM �lms and the surface
SHG susceptibility values for glass [93].

Refractive index Surface SHG susceptibility ×10−22m2/V

navMCM 1.97 χ
(2),sf
glass,xxz 14.6

navMCM 2.10 χ
(2),sf
glass,zxx 7

navglass 1.4633 χ
(2),sf
glass,zzz 93

navglass 1.4766

The ellipsometric measurements were carried out in order to determine the refractive

indices of the MCMs and revealed that the MCM �lms exhibit a small birefringence

that our model cannot account for. Thus, the average refractive indices were used

in the analysis. The refractive indices are shown in Table 5.1. The surface suscep-

tibility of glass has been studied previously for BK7 glass [93]. The nonlinear mea-

surements on BK7 and borosilicate glass showed almost identical nonlinear signals,
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indicating that the SHG susceptibility values of BK7 can be used for the borosilicate

substrates of our samples. The surface SHG susceptibility values of glass used for

the nonlinear characterization are shown in Table 5.1.

The Maker-fringe measurements were carried out for three MCM samples of 50 nm,

25 nm and 2.1 nm thickness fabricated on top of a borosilicate glass substrate. In

addition, a bare substrate was studied for reference. The results of the Maker-fringe

measurements are shown in (Fig. 5.1a), where the zero thickness refers to the bare

substrate. As expected, the increasing number of interfaces results in an increased

signal as the thickness grows. This is in line with our interpretation that the MCM

can be treated as an e�ective �lm with C∞v symmetry that is the same symmetry

possessed by the glass surface. Thus, using Eq. (3.14), it can be seen that SHG from

p polarized excitation is fully p polarized for both the MCM �lm and the substrate

surface. As a result, both the surface SHG susceptibility of glass and the e�ective

bulk SHG susceptibility of the MCM medium can be written as

χ
(2)
j = 2χ

(2)
j,xxz cos θj sin θj cos θj + χ

(2)
j,zxx sin θj cos θj cos θj

+ χ
(2)
j,zzz sin θj sin θj sin θj.

(5.1)

where j denotes MCM or glass. Furthermore, using Eq. (4.1), the total irradiance

is

I = q|Ep
MCM + Ep

glass|
2, (5.2)

where q is a proportionality factor and with the SHG �eld from glass being [41,93]

Ep
glass =

ω2tp31(t
p
12)

2

c2
(tp32)

2

wglass

χ
(2)
glasse

2iwglassDglass(Ep
0)2. (5.3)

As discussed in Section 4.3, the re�ections occuring in the numerous layers of MCM

�lms are very di�cult to account for and are thus neglected. As a result, the SHG

�eld from the MCM �lm can be fully described by Eqs. (3.36 and 3.37). However, the

functional form can be simpli�ed further by noting that the samples are extremely

thin. Thus, by using Eq. (3.35), the phase mismatch factor can be approximated as

Φ ≈ iDMCM, yielding

Ep
MCM =

ω2tp31(t
p
12)

2

c2
tp32

wMCM

DMCMχ
(2)
MCMe

iwglassDglass(Ep
0)2. (5.4)



5.1. SHG from multilayer structures 49

Figure 5.1: a) Substrate referenced Maker-fringe experiment results from MCM �lms
with thickness of 50 nm - red diamonds, 25 nm - blue triangles 2.1 nm - green circles and
0 nm - gray crosses deposited on a borosilicate glass substrate. The markers represent
experimental data and the lines represent �tted curves. b) Maker-fringe measurements
from two samples attached to each other: Red - [ABC]-glass-glass-[CBA]; Blue - glass-
[ABC]-[CBA]-glass; Gray - glass-glass. The �gure is based on the results of Publication
I.

Lastly, we note that it is extremely di�cult to separate the two o�-diagonal SHG

tensor components χxxz and χzxx using a Maker-fringe measurement with our polar-

ization con�guration unless the material shows extremely high dispersion. Indeed,

if the angles of incidence at the fundamental and SHG frequencies are identical

θ ≈ θ, the two o�-diagonal components are inseparable. Thus, we limit ourselves

to �tting the results using three free parameters: Azx = 2χ
(2)
MCM,xxz + χ

(2)
MCM,zxx,

χ
(2)
MCM,zzz and the proportionality factor of Eq. (5.2). To connect the o�-diagonal

component to the SHG, Kleinman symmetry can be assumed to obtain an estimate

χ
(2)
MCM,xxz = χ

(2)
MCM,zxx = Azx/3.

The results of the Maker-fringe experiments �tted using the above analysis are

shown in (Fig. 5.1a). The acquired values for the studied SHG components for the

25 nm and 50 nm thick MCMs are shown in Table 5.2. The 2.1 nm thick MCM

was omitted due to the fact that we cannot verify whether the glass SHG or the

MCM SHG dominates since the signal level is too close to the one from the bare

substrate. The discrepancy between the acquired values for o�-diagonal component

Azx is most likely due to the approximations and due to the signal being dominated

by the diagonal component χ(2)
zzz. Taking the above into account, we feel that it is

safe to report a value of the dominant component χ(2)
zzz of 5± 2 pm/V.

Lastly, to verify that the observed nonlinearity is of bulk origin, we also measured

SHG from glass-[ABC]-[CBA]-glass and [ABC]-glass-glass-[CBA] structures, and
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Table 5.2: Separable SHG component values determined for MCM �lms of 25 nm and
50 nm thickness using substrate referenced Maker-fringe experiment.

25 nm MCM 50 nm MCM

Azx 1.44± 0.16 pm/V 0.78± 0.07 pm/V
χ
(2)
zzz 6.0± 0.8 pm/V 6.1± 0.4 pm/V

compared the signal to that from two substrates put together. Results of these

experiments are shown in (Fig. 5.1b). SHG from the glass-[ABC]-[CBA]-glass sam-

ple is almost as weak as that of the double substrate. This is expected for bulk

nonlinearity since the [ABC]-[CBA] system has a center of inversion in the middle.

On the other hand, the dispersion in the thick glass layer allows for much higher

SHG with a smaller period of oscillation for the [ABC]-glass-glass-[CBA] case, and

the imperfect visibility is explained by the temporal walko� of the short femtosecond

pulses. To summarize, these �ndings support the interpretation of the MCM �lm

behaving like a e�ective bulk �lm.

In conclusion, we demonstrated high SHG nonlinearity of the order of 5± 2 pm/V

for the dominant tensor component from our MCM �lms. This value is comparable

to many common nonlinear materials [6]. As such, our results strongly support

the proof of concept reported in Ref. [40] of multilayer structures as an e�ective

new type of nonlinear material, for example, for use in conjunction with CMOS-

compatible photonic components. Lastly, we note that the optimization could be

taken further by increasing the refractive index contrast between the three materials

or by fabricating thinner constituent layers, resulting in even higher nonlinearity [70].

5.2 Multipolar SHG from thin �lms

In this section, we outline the results reported in Publication II. In order to

characterize the presence of MP SHG nonlinearity, we expanded the traditional

two-beam method derived for thick samples to thin �lms and tested it for a SiN

thin �lm. Preliminary experiments were unnecessary, since we used the SiN thin

�lm from Ref. [71]. Thus, the SiN thin �lm was known to exhibit C∞v symmetry,

have thickness of D = 800 nm and refractive indices of n = 1.94 and n = 1.99 for

the fundamental and SHG wavelengths, respectively [71]. Lastly, the SHG signal

from the SiN �lm is su�ciently strong so that SHG from the glass substrate could

be neglected.
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The traditional two-beam approach is based on the fact that by studying the s

polarized SHG generated jointly from two non-collinear beams with particular po-

larizations, the MP contribution to the signal governed by δ′ can be separated from

the ED contribution to the signal governed by χ(2)
xxz [64, 66, 85, 127]. The method

is based on the unique determination of polarization signatures f s,p,s and f s,s,p and

solving their relationship with ED and MP contribution.

Although the above method was developed for thick samples where re�ections can

be largely ignored, the result holds qualitatively for thin �lms as well. Indeed, by

using Eq. (3.55) with Es ∝ f s,p,sEp
a,0E

s
b,0 + f s,s,pEs

a,0E
p
b,0 the relationship between

the polarization signatures can be written as[
f s,p,s

f s,s,p

]
=

[
u11 u12

u21 u22

][
χ
(2)
xxz

kδ′

]
, (5.5)

where the matrix elements are given by (see Section 3.3 for notation)

u11 = 2F sin θa
∑
β,γ

(Φ′−βγ + r21Φ
′
+βγ)K

p
a,βK

s
b,γ (5.6)

u12 = iF
∑
β,γ

(Φ′−βγ + r21Φ
′
+βγ)K

p
a,βK

s
b,γsign(γ) sin [θa − sign(β)sign(γ)θb] (5.7)

u21 = 2F sin θb
∑
β,γ

(Φ′−βγ + r21Φ
′
+βγ)K

s
a,βK

p
b,γ (5.8)

u22 = −iF
∑
β,γ

(Φ′−βγ + r21Φ
′
+βγ)K

s
a,βK

p
b,γsign(γ) sin [θa − sign(β)sign(γ)θb] , (5.9)

with sign(i) = ±1 for i = ± and

F = eiwD
ω2ts23C

s

2cw
. (5.10)

If re�ection-related e�ects are ignored, i.e., all the Fresnel re�ection coe�cients are

set to zero, the matrix elements in Eqs. (5.6-5.9) become

u11 = 2F ′ sin θat
p
a,12t

s
b,12 (5.11)

u12 = −iF ′tpa,12tsb,12 sin(θa − θb) (5.12)

u21 = 2F ′ sin θbt
s
a,12t

p
b,12 (5.13)

u22 = iF ′tsa,12t
p
b,12 sin(θa − θb), (5.14)
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Figure 5.2: Simulations and results of two-beam polarization controlled experiment
from a SiN thin �lm. a)-c): Simulation for the case a) without MP SHG and neglecting
re�ections, b) with 10% MP contribution to SHG and neglecting re�ections and c) without
MP SHG with re�ections taken into account. d)-f): Experimental results (markers), �tted
(lines) with d) no MP contribution allowed and neglecting re�ections, e) MP contribution
allowed and neglecting re�ections (predicted MP contribution: 7%) and f) MP contribution
allowed and re�ections taken into account (predicted MP contribution: 0%). Dashed lines
are guides for eyes only. The �gure is based on the results of Publication II.

with

F ′ = eiwD
ω2ts23Φ

′
−,−,−

2cw
, (5.15)

which is almost identical to the thick sample case [67]. The important thing to note

here is that the phase di�erence between f s,p,s and f s,s,p and the resulting signature

in the measured signal arises exclusively from the MP parameter [64]. Simulations

of this signature for a case without (a) and with (b) MP contribution are shown in

(Fig. 5.2a and Fig. 5.2b). However, if the re�ections are properly accounted for

and Eqs. (5.6-5.9) are used, a phase di�erence between f s,p,s and f s,s,p is present

even without a MP contribution. This situation is simulated in (Fig. 5.2c) with the

dashed lines being guides for the eye to indicate the peak heights in the graph. A

di�erence in peak heights is evidence of either MP contribution or a phase di�erence

originating from something else, such as re�ections.
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The �ndings were veri�ed experimentally by studying our SiN �lm with a polariza-

tion-controlled two-beam experiment discussed in Chapter 4, and �tting the results

both by neglecting re�ections and by taking them fully into account. The results

are shown in (Fig. 5.2d-f). The results were �tted by neglecting re�ections and

allowing only ED contribution (Fig. 5.2d), by neglecting re�ections and allowing

both ED and MP contributions (Fig. 5.2e) and by taking the re�ections into account

and allowing both ED and MP contribution (Fig. 5.2f). As expected, there is no

peak height di�erence without re�ections nor MP contribution (Fig. 5.2d) and the

analysis predicts 7%MP contribution if they are allowed and re�ections are neglected

(Fig. 5.2e). However, if the re�ections are taken into account, the analysis yields

essentially zero MP contribution and the phase di�erence is completely explained

by ED SHG and re�ections.

In summary, we have extended the analytical treatment of MP two-beam SHG

from thick material systems to thin �lms with thicknesses of the order of optical

wavelengths. The most important di�erence between the models is the presence of

re�ection-based phenomena, which must be taken into account. We showed theo-

retically and experimentally that neglecting these e�ects will result in qualitatively

erroneous results outside the case of a dominating multipolar contribution and quan-

titatively erroneous results for all cases. We highlight that even though this analysis

was conducted for the case with nonvanishing bulk-type dipolar SHG response, our

result still holds for thin �lm samples where the dipolar SHG response is limited to

the surfaces.

5.3 SHG from InSe thin �lms

In this section, we outline the results reported in Publication III. The characteri-

zation of the nonlinear response of InSe �lms was carried out using a method almost

identical to the one used for MCM �lms. Thus, the analysis follows closely to the

analysis presented in Section 5.1. Preliminary measurements included ellipsometry

for the determination of refractive indices and preliminary nonlinear polarization

experiments to verify in-plane isotropy of the �lms.

The ellipsometric measurements revealed that the InSe �lms exhibit signi�cant ab-

sorption at the SHG wavelength, which can be represented with a complex refrac-

tive index. The obtained refractive indices were n = 2.63 and n = n′ + in′′, with

n′ = 3.02 and n′′ = 0.28 for the fundamental and SHG frequencies, respectively.
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Due to the real parts of the refractive indices being extremely high, the propaga-

tion angles within the �lm remain relatively small even for large angles of incidence.

As a result, the sines of the propagation angles are also small. The contribution

from χ
(2)
zzz depends on three sine factors (see Eq. 5.1), and can thus be neglected.

As a result, following the reasoning of Section 5.1, the only experimentally sepa-

rable SHG component is Azx = 2χ
(2)
xxz + χ

(2)
zxx. Once more, the o�-diagonal SHG

susceptibility components can be estimated by assuming Kleinman symmetry as

χ
(2)
MCM,xxz = χ

(2)
MCM,zxx = Azx/3.

The Maker-fringe measurements were carried out for three InSe thin �lms of 40

nm, 100 nm and 190 nm thickness and the results are shown in (Fig. 5.3). As

stated above, the analysis follows closely to what was used for MCM �lms. Here, we

neglect phase-mismatched beams and consider only the forward phase-matched SHG

(Φ−−−), but we do account for re�ections by including etalon coe�cients (Cp)2 and

Cp at fundamental and SHG frequency, respectively. We also account for absorption

by rewriting the z component of the wave vector at SHG frequency as w → w′ =

w + iα, with α = (ωn′′)/(c cos θ). Now, the SHG �elds from InSe and glass can be

written as

Ep
InSe =

ω2tp31(t
p
12)

2

c2
tp32
w′InSe

(Cp)2CpΦ−−−χ
(2)
InSee

iwglassDglass(Ep
0)2 (5.16)

and

Ep
glass =

ω2tp31(t
p
12)

2

c2
(tp32)

2

wglass

(Cp)2χ
(2)
glasse

2iwglassDglass(Ep
0)2, (5.17)

with χ(2)
InSe containing only the Azx term, χ(2)

glass term being given by Eq. (5.1), and

the total SHG irradiance given by Eq. (5.2). The SHG components obtained from

the �tting process for the three samples are Azx = 2.9 ± 0.4 pm/V for 40 nm,

Azx = 4.0±0.5 pm/V for 100 nm, Azx = 4.1±0.5 pm/V for 190 nm. We believe that

the disagreement of the SHG component value obtained for the 40 nm thick �lm with

the ones obtained for the 100 nm and 190 nm �lms is due to the neglect of the phase-

mismatched SHG. While this contribution is generally relatively small compared to

the forward generated SHG, for a sample as thin as 40 nm its contribution may play a

larger role. Thus, we believe that the strong agreement between the values obtained

for the 100 nm and 190 nm �lms indicates that those values better represent reality.

To summarize, we performed nonlinear Maker-fringe characterization for InSe thin

�lms. The obtained value for the dominant SHG component was of the order of
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Figure 5.3: Results of the Maker-fringe experiment on InSe thin �lms of 40 nm (green),
100 nm (blue) and 190 nm (red) thicknesses. Markers denote the measurement points and
the lines denote �tting curves. The �gure is based on the results of Publication III.

4 pm/V, a value that is of the same order with many nonlinear crystals [6]. Although

the third-order nonlinearity is common in chalcogenide glasses [111, 128], second-

order e�ects being forbidden under centrosymmetry are much less common. As

such, amorphous InSe, especially considering the cost-e�ectiveness of the fabrication,

could well be an interesting material for photonic applications.

5.4 Tuning SHG from SiN by material composition

In this section, we outline the results reported in Publication IV. The nonlinear

characterization of SiN thin �lms was carried out using quartz referenced polariza-

tion controlled experiment as described in Section 4.4. Five thin �lms, labeled S10,

S20, S30, S35 and S40, of di�erent material composition were studied. The sym-

metry of the samples was tested with preliminary nonlinear polarization mapping

that indicated a C∞v symmetry, as expected [71]. The refractive indices at the fun-

damental and SHG frequencies as well as exact thicknesses were determined using

ellipsometry for all �ve samples. The ellipsometric results are shown in Table 5.3.

The results of the polarization controlled experiment for the di�erent polarization

combinations of the initial excitation beam and the detected SHG beam are shown

in (Fig. 5.4). The results were analysed by using Eq. (4.2) in conjunction with

Eqs. (3.14 and 3.41). As a result, the relationship between the polarization signa-
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Table 5.3: Results from the ellipsometric measurements for SiN �lms. For each �lm,
thickness and refractive indices both at fundamental and SHG frequency were determined.

Sample D (nm) n n

S10 662 2.174 + 0.002i 2.354 + 0.022i
S20 604 2.005 + 0.000i 2.099 + 0.007i
S30 537 1.945 + 0.000i 1.989 + 0.002i
S40 500 1.969 + 0.000i 2.027 + 0.002i
S50 505 1.902 + 0.000i 1.951 + 0.001i

tures and the nonvanishing SHG tensor components was found to be



fp,p,p

fp,s,s

fp,p,s + fp,s,p

f s,p,p

f s,s,s

f s,p,s + f s,s,p


=



u11 u12 u13 u14 u15 u16 u17

u21 u22 u23 u24 u25 u26 u27

u31 u32 u33 u34 u35 u36 u37

u41 u42 u43 u44 u45 u46 u47

u51 u52 u53 u54 u55 u56 u57

u61 u62 u63 u64 u65 u66 u67





χ
(2)
xxz

χ
(2)
xzx

χ
(2)
yyz

χ
(2)
yzy

χ
(2)
zxx

χ
(2)
zyy

χ
(2)
zzz


, (5.18)

with

uξτ = eiwD
ω2

2c2w
tξ23
∑
φβγ

Lξ,τ,φχ
(2)
τ ΦφβγLξ,τ,βLξ,τ,γK

ξ
φK

τ
βK

τ
γ , (5.19)

where ξ and τ are the indices of permutations of ζ, η, κ ∈ {p, s} and permutations

of i, j, k ∈ {x, y, z}, i.e., indices of the vectorizations f and χ
(2)
V in Eq. (4.2), respec-

tively. The particular choice of this indexing is arbitrary; for example, our choice

in Eq. (5.18) has ξ = 2 ↔ (p, s, s) and τ = 3 ↔ (y, y, z), since u23 describes the

relationship between fp,s,s and χ(2)
yyz.

By examining Eq. (5.19) and combining the non-independent SHG tensor compo-

nents, Eq. (5.18) can be written as fp,p,p

fp,s,s

f s,s,p + f s,p,s

 =

m′11 m′12 m′13
0 m′22 0

m′31 0 0


χ

(2)
xxz

χ
(2)
zxx

χ
(2)
zzz

 , (5.20)
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Figure 5.4: a)-e) The results from the polarization controlled measurements for samples
a) S10, b) S20, c) S30, d) S35 and e) S40. The polarization combinations of the initial
excitation beam and the detected SHG beam are: Black - (p̂ + ŝ)/

√
2 in, p̂ out; Blue -

(p̂+ ŝ)/
√
2 in, (p̂+ ŝ)/

√
2 out; Red - (p̂− ŝ)/

√
2 in, p̂ out; Green: (p̂− ŝ)/

√
2 in, (p̂+ ŝ)/

√
2

out. f) An example of the calibration measurement of sample S30, which was subsequently
compared to SHG from quartz. The �gure is based on the results of Publication IV.

with

u′11 = u11 + u12 (5.21)

u′12 = u15 (5.22)

u′13 = u17 (5.23)

u′22 = u26 (5.24)

u′31 = u33 + u34, (5.25)

where the matrix elements can be calculated using Eq. (5.19) and the remaining

polarization signatures can be uniquely solved with our measurement scheme as

discussed in Section 4.4. In order to obtain the SHG tensor structure of SiN, the four

polarization controlled measurements can be �tted simultaneously to the relative

tensor components and a scaling factor using the above analysis.

For the calibration with respect to quartz, the p polarized SHG arising from s polar-

ized excitation was measured with varying angle of incidence. Only χ(2)
zxx contributes
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to the generated SHG, as governed by m′22, and the SHG �eld can be written as

Ep
SiN = tp31u26(E

s
0)2, (5.26)

which can then be compared to SHG from quartz. Using Eq. (3.36) with perpen-

dicular incidence, polarizations of the excitation beam and the detected SHG beam

being parallel to the X axis of the quartz, neglecting re�ections and maximizing the

phase-matching (Φ−−− = 2/(w − 2w)), the SHG from quartz is given by

Ep
Q =

tp21(t
p
12)

2

nQ(nQ − 2nQ)
χ
(2)
Q,XXX(Ep

0)2. (5.27)

The absolute value of χ(2)
zxx can now be obtained with respect to the known SHG

susceptibility of quartz χ(2)
Q,XXX = 0.80 pm/V [129]. The neglect of re�ections for

quartz measurement is justi�ed by the thickness and wedged shape of the crystal,

making the assumption of in�nite re�ections unphysical. The SHG susceptibility

tensor components obtained with the above analysis in conjunction with the polar-

ization controlled experiment are shown in Table 5.4.

Table 5.4: Results from the nonlinear measurements for SiN �lms. For each �lm, the
SHG tensor structure was determined by a polarization controlled experiment and the
absolute SHG tensor values were calibrated by the quartz reference experiment.

Sample χ
(2)
xxz (pm/V) χ

(2)
zxx (pm/V) χ

(2)
zzz (pm/V)

S10 1.60 1.40 5.10
S20 0.87 0.72 1.70
S30 0.40 0.34 1.10
S40 0.20 0.21 0.66
S50 0.23 0.22 0.80

In conclusion, we conducted a full tensorial characterization of SiN thin �lms with

varying composition. The SHG response was found to increase by as much as 6-fold

with increasing silicon content. The highest SHG susceptibility component of χ(2)
zzz =

5.10 pm/V is once again comparable to well-known nonlinear materials, highlighting

the potential applicability of SiN especially considering its CMOS compatibility. In

addition, the PECVD method was found to produce extremely high-quality samples

consistenty, which is useful from the characterization perspective. To answer the

question about the microscopic origin of the bulk nonlinearity, proposed theories

including intrinsic strain introduced in the fabrication process, presence of static

�elds and formation of small nanocrystals could be further studied for example
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by studying the e�ects of external strain on the SHG response, by an external

application of a static �eld on the �lm or by di�raction techniques, respectively.

5.5 Non-resonant enhancement of SHG from metal-dielectric

composites

In this section, we outline the results reported in Publication V. The nonlinear

responses from the gold nanoisland �lms coated with TiO2 were estimated using a

substrate-referenced Maker-fringe experiment. The purpose of this experiment was

to study the dependence of the local-�eld enhancement of the nonlinearity on the

coating thickness. To support our analysis, absorption spectra were measured using

a spectrophotometer.

The absorption spectra and results from Maker-fringe measurements are shown in

(Fig. 5.5a) and (Fig. 5.5b), respectively. The relative SHG signals from the coated

�lms were estimated from the visibility of the fringes using the scalar approximation

of Eq. (4.1) and by assuming that one of the sources, e.g., the back surface of the

substrate, is common for all samples. The resulting relative SHG signal values are

shown in (Fig. 5.5c).

To analyze the results, the local �eld factors describing the relative enhancement of

the electric �eld were calculated using a numerical model for a truncated nanosphere

coated by TiO2. The details of the modeling are reported in Refs. [130�132]. These

local �eld factors can be connected to the enhancement of SHG as [133]

ISHG =∝ JJ2, (5.28)

where J and J are the local �eld factors at the fundamental and SHG frequencies,

respectively. The SHG enhancement predicted by the model is shown in (Fig. 5.5d)

and the individual local �eld factors at the fundamental and SHG frequencies are

shown in the inset of (Fig. 5.5d). We note that while the thickness dependence is

well explained by the model, the absolute magnitude of the enhancement predicted

by the model di�ered from the observed enhancement. We believe that this is mostly

due to the size distribution of the nanoparticles.

To conclude, we studied SHG response of gold nanoisland �lms coated with various

thicknesses of TiO2 using a Maker-fringe experiment under the scalar approxima-
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Figure 5.5: a) Absorption spectra of gold nanoisland �lms coated with di�erent thick-
nesses of TiO2. b) Maker-fringe measurement results for the said �lms. c) Estimated SHG
signal levels from the said �lms. d) Numerically calculated total local �eld enhancement
for said �lms. Inset: Numerically calculated local-�eld factors at the fundamental and
SHG frequencies. The �gure is based on the results of Publication V.

tion. Firstly, we showed that coating of nanoparticles a�ects the absorption spectra

depending on the coating thickness. Secondly, we showed both experimentally and

numerically that despite the detuning of the resonance with respect to the SHG

frequency and thus weakening of the local-�eld factor at SHG frequency, the en-

hancement of the local-�eld factor at fundamental frequency can dominate the total

contribution to SHG. To our understanding, such non-resonant enhancement has

not been reported previously outside our research and is not limited to this context,

possibly opening new ways to optimize nanostructures.
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6. CONCLUSIONS

In this Thesis, we developed a thorough analytical model to treat second-harmonic

generation from material systems of sub-wavelength thickness both for the case of a

single excitation beam and for the case of two non-collinear excitation beams. The

model was successfully applied to various traditional methods in the characterization

of several potential nonlinear materials: Multilayer composite �lms, silicon nitride,

indium selenide and metal-dielectric composites.

This work was motivated by the ongoing search for novel nonlinear materials for

di�erent optical applications. Indeed, many of the applications in, for example,

the �eld of integrated photonics rely on nonlinear phenomena. Many of these phe-

nomena are elusive by nature, few more so than second-harmonic generation, and

thus potential materials are few and far in between. With the ever-growing interest

towards the miniaturization of optical devices driven by the advances in nanopho-

tonics, the need for expanding the range of applicable nonlinear materials has never

been more compelling.

In pursuit of our goal, we demonstrated the potential of silicon nitride and indium

selenide as novel second-order nonlinear materials with a second-harmonic response

of the order comparable to traditional nonlinear crystals. In addition, the �exibility

of the physical parameters of indium selenide allows for further optimization and

the CMOS compatibility of silicon nitride is highly advantageous with the material

needs of nanophotonics in mind. Our results also show that multilayered composite

materials consisting of numerous extremely thin centrosymmetric dielectric layers

can circumvent the non-centrosymmetry requirement of second-harmonic generation

e�ectively and exhibit competitive second-harmonic responses.

Lastly, methods to further improve existing strong second-harmonic response were

explored. We reported a six-fold increase in the second-harmonic susceptibility of

silicon nitride by tuning the material composition via the fabrication process, as

well as a 40-fold enhancement in the second-harmonic response of gold nanoparticle
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�lms coated with titanium dioxide by tuning the coating thickness.

In addition to its utility in the analysis of experimental results, the derivation of

the analytical model itself works towards our objectives. The general nature of the

model ensures that it can be used for the treatment of second-harmonic generation

from any thin layer, as evidenced by its wide usage in the various experimental

schemes of this work. The main advantage of the model compared to the common

approaches is the full inclusion of re�ections for the cases of single- and two-beam

excitations in thin layers in conjunction with the aforementioned generality. Re-

�ections can often be and even more often are neglected for thick systems due to

the tedious calculus associated with their inclusion. However, for thin systems, it

is absolutely paramount that they are accounted for as the failure to do so will re-

sult in both quantitative and qualitative errors, as demonstrated for the separation

of multipolar SHG in this work. In addition, great attention was given to writ-

ing the model in a compact form with parameters clearly associated with physical

phenomena. Particularly, the model explicitly addresses the relationship between

the experimental polarization signatures and the SHG susceptibility tensor, allow-

ing for a speci�c design of experiments, analysis of any kind of experiment as well

as optimization of SHG by the geometrical design for thin systems. Thus, we be-

lieve that our theoretical work is invaluable for any researcher attempting to treat

second-harmonic generation process in thin layers.

Despite the results of this Thesis, no work is ever complete. Besides the obvious

trials for new materials, continuation of this work might involve a more thorough

nonlinear characterization of multilayer structures and gold-titanium dioxide com-

posites, broadening the experimental methodology and further expansion of the

analytical model. Nonlinear materials transparent in the ultraviolet region such as

certain plastics would be especially interesting due to most materials being opaque

for ultraviolet light.

The characterization of multilayer structures and gold-titanium dioxide compos-

ites could be expanded by conducting a full polarization-controlled experiment to

complement the current results. Such an experiment could address all of the suscep-

tibility tensor components and improve the accuracy of the results. This is especially

true for the gold-titanium dioxide composites given the simplicity of their analysis.

However, great care should be taken to account for the non-negligible SHG from

the back surface of the substrate as it is di�cult to account for this using only a
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polarization-controlled scheme. A potential solution would be to analyse both a

Maker-fringe experiment and a polarization-controlled experiment simultaneously.

An alternative would be to fabricate thicker samples that produce more SHG so

that the SHG from the substrate would become negligible.

The main ways to improve the experimental methodology would be to utilize a

range of excitation frequencies for the nonlinear characterization or to introduce

ways to control several parameters simultaneously in the experiment. The former is

far more ambitious, as it requires a tunable source, achromatic optics and a detec-

tor capable of detecting a su�ciently wide spectrum of SHG with high sensitivity.

However, the bene�ts of studying the spectral behaviour of the nonlinear suscep-

tibility would provide great insights on the material nonlinearity and its origins.

The latter option of introducing simultaneous control is considerably easier to im-

plement as, besides some minor practical challenges, a modest �nancial investment

and an updated automatization algorithm are all that are required. The main ben-

e�t aside from the convenience of the researcher is that the simultaneous control of

the polarizations and the angle of incidence would allow for a more reliable joint

Maker-fringe/polarization-controlled experiments.

Lastly, the analytical model could be further expanded in a variety of ways. Firstly,

the full description of the total multipolar SHG could be derived as opposed to

the signature-of-presence -approach used in this work. The derivation of the said

expressions would be a straightforward but tedious process, perhaps one suitable for

a M.Sc. thesis project. Secondly, the model could be expanded to systems of multiple

thin nonlinear layers. This problem is less straightforward, since the complexity of

the treatment of the interplay of re�ections grows rapidly if the approach presented

in this work is used. A good alternative might be to use some variation of the

transfer matrix formalism, although the exact details would have to be assessed.

Lastly, the model could be expanded to higher-order nonlinear e�ects such as third-

harmonic generation. Once more, this should be a relatively straightforward task

given the obvious analogies between second- and third-harmonic generation with

one of the greatest challenges possibly being running out of letters to denote the

indices present in the formulae.
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We report the fabrication of artificial unidimensional 
crystals exhibiting an effective bulk second-order 
nonlinearity. The crystals are created by cycling atomic 
layer deposition of three dielectric materials such that the 
resulting metamaterial is non-centrosymmetric in the 
direction of the deposition. Characterization of the 
structures by second-harmonic generation Maker-fringe 
measurements shows that the main component of their 
nonlinear susceptibility tensor is about 5 pm/V which is 
comparable to well-established materials and more than 
an order of magnitude greater than reported for a similar 
crystal [L. Alloatti et al., Appl. Phys. Lett. 107, 121903 
(2015)]. Our demonstration opens new possibilities for 
second-order nonlinear effects on CMOS-compatible 
nanophotonic platforms.  

OCIS codes: (190.4400) Nonlinear optics, materials, (190.4720), Optical 
nonlinearities of condensed matter, (190.4350) Nonlinear optics at 
surfaces 

http://dx.doi org 

Second-order nonlinear optical response of materials gives rise to useful 
effects, including nonlinear wave mixing and the Pockels effect, with 
applications such as light generation in optical parametric oscillators 
and electro-optic modulation. Some of these applications have been 
miniaturized using various technologies. More recently, a goal has been 
to integrate optical functionalities on nanophotonic chips that are 
compatible with CMOS fabrication, which is the standard in 
micro/nanoelectronics. As a result, optical parametric oscillators [1,2] 
and fast modulators [3] have been reported. Since silicon and silicon 
nitride, which are the two main CMOS-compatible photonics platforms, 
lack a second-order nonlinearity, those realizations were based on the 
third-order nonlinearity or carrier effects. This resulted in a modest 
improvement in terms of energy consumption and efficiency over 
simpler second-order nonlinear devices widely used in free space 
nonlinear optics. Therefore, it would be highly desirable to be able to 
induce a second-order nonlinear response in a material otherwise 
lacking that property.  

To date, common methods to artificially create a second-order 
nonlinearity include poling in silica glass [4] or polymers [5], 
strain [6], plasmonic surface enhancement [7], and alternate 
stacking of organic films [8]. In addition, even materials expected 
to lack a second-order response may in some cases exhibit a 
significant response, but the origin remains unknown [9,10]. In 
any case, the inversion symmetry of the material structure must 
somehow be broken to induce a second-order nonlinear 
response.  
In this letter, we utilize the symmetry breaking mechanism which was 
also implemented by Alloatti et al. in 2015 [11] to induce a substantial 
second-order nonlinear response, as described by the second-order 
susceptibility χ(2). We deposit very thin layers of three distinct 
transparent amorphous materials A, B, and C and repeat that structure 
many times to form a thick layer of a composite ABC material. In such a 
system, each interface between any two materials breaks the symmetry 
resulting in an effective bulk χ(2) for the overall structure. Whereas [11] 
reported a relatively low second-order response, we demonstrate that 
such an ABC approach can result in a large χ(2), comparable to that of 
well-known second-order materials. Our characterization is based on 
second-harmonic generation (SHG) Maker-fringe measurements that 
allow the nonlinearity of the ABC layer to be separated unambiguously 
from that of the substrate. We verified that the SHG contributions of 
each of the 3 interfaces A-B, B-C, and C-A do not sum up to 0 as would be 
expected for an AB system.  
It is important to understand that our approach is well suited for 
integration with existing CMOS-compatible nanophotonics platforms. 
Indeed, the deposition method, ALD, is conformal, requires low 
temperature, and has been proven to integrate perfectly with existing 
nanophotonic circuitry [12]. Moreover, as the symmetry of the ABC 
structure is broken along its normal, the nonlinearity requires electric 
field components along the normal direction, which occurs for p-
polarized light at non-normal incidence (see figure 1a). This implies 
that, for the case of widely used planar or rib waveguides, the 
nonlinearity would be the greatest for a TM-mode such as illustrated in 
figure 1b.  
In the present proof of principle, the three materials were chosen to be 
(A) TiO2, (B) Al2O3, and (C) In2O3. While detailed theories exist to predict 
second-order nonlinearities of superlattices of crystalline materials 
[13], we are not aware of such theories existing for stacks of amorphous 
materials. In choosing our particular materials, we therefore used  







does not produce SHG. This results in strong SHG with fringes 
exhibiting similar visibility as the blank sample.  However, the 
visibility is still reduced for the reasons mentioned above. Finally, the 
last curve (circles) corresponds to those two same ABC-coated 
substrates but facing each other on their coated side. The nonlinear 
material has thus a restored symmetry as its cycling structure is now 
ABC…ABC-CBA…CBA and it is expected to result in negligible SHG. 
Indeed, while the SHG contributions from the air-glass interfaces of 
course remain, the curves indicate that the contributions from the 
ABC layers vanish to a large extent.  
We should note that the samples of the present study were far from 
being optimized. In addition, our experimental setup was not yet 
optimized for the most precise measurements. While this affects 
mainly the weaker non-diagonal tensor components, both the 
diagonal and non-diagonal components are partly coupled through 
our fitting procedure. In order to take this remaining uncertainty into 
account, we believe that it is safe to state that the value of the 
dominant component is  χzzz is 5 ± 2 pm/V. 
Nevertheless this value for the main tensor component is greater by 
more than an order of magnitude than the 0.26 pm/V reported by 
Alloatti et al. [11] for a similar system. We note that only one material 
is different in the ABC composite in [11]: HfO2 is used where we have 
In2O3. Since χ(2) is expected to be proportional to the density of 
interfaces, we also assess this quantity in both cases. Each ABC period 
is 2.7 nm in [11] as compared to 2.1 nm in our study, so we find it can 
only explain for a difference of a factor 1.3 for the second-order 
susceptibility. This seems to indicate that the materials chosen, and 
likely also the deposition parameters, have a considerable influence 
on the effective bulk second-order susceptibility. Finally we want to 
mention that in [11] the surface nonlinearity of the glass substrate, 
and thus the interference between SHG from the front and back 
surfaces, is not accounted for; despite the fact that the Rayleigh range 
is much thicker than the sample. This can result in an underestimation 
of the nonlinearity when operating in a Maker-fringe minimum. 
However, it cannot accommodate for an order of magnitude 
difference. We think an important future study would be to 
investigate the possible correlation between the linear and/or 
nonlinear susceptibilities of many combinations of ABC materials and 
the resulting effective second-order susceptibility. 
In conclusion, we have demonstrated an artificial nonlinear material 
relying on the principle of surface induced symmetry breaking. We 
believe that this new class of nonlinear material is promising as our 
proof of principle indicates a second-order nonlinearity reaching 
5 ± 2 pm/V for its main tensor component. We believe that such a 
second-order nonlinearity could be used in combination with 
nanophotonic waveguides based on CMOS-compatible materials that 
lack significant second-order nonlinearity. We envisage sub-micron 
SiN waveguides with guided modes overlapping over 50% with the 
ABC composite coated on top of the waveguide. Furthermore, the 
possibilities to increase the nonlinearity of the ABC composite are 
numerous ranging from thinner individual layers to optimization of 
the contrast between the materials involved [14].  
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Abstract: We use two-beam second-harmonic generation to address thin 
films of silicon nitride (SiN). This technique is able to distinguish between 
the dipolar and higher-multipolar (magnetic and quadrupolar) contributions 
to the nonlinearity, as earlier shown for bulk samples. Our results for the 
SiN films exhibit strong multipolar signatures. Nevertheless, the results can 
be fully explained by the strong dipolar response of SiN once multiple 
reflections of the fundamental and second-harmonic fields within the film 
are properly taken into account. The results show that the recognition of 
multipolar nonlinearities requires extreme care for samples typically used 
for the characterization of new materials. 
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1. Introduction 

Second-order nonlinear optical processes provide the basis for frequency conversion and 
electro-optic modulation of light. A prime example here is second-harmonic generation 
(SHG), i.e., conversion of light at a fundamental frequency ω  to light at the doubled 
frequency 2 .ω  Within the electric-dipole approximation of the light-matter interaction, 
second-order processes can occur only in non-centrosymmetric materials. This is a crucial 
limitation in the search for new second-order materials. On the other hand, the 
centrosymmetry of any material is broken at its surface, giving rise to an electric-dipole-
allowed surface nonlinearity. This has found several applications in surface spectroscopy [1–
3]. More recently, it has been shown that by elaborate stacking of several surface layers, one 
can even build up artificial metamaterials with appreciable second-order response [4,5]. 

The symmetry properties of magnetic-dipole and electric-quadrupole interactions are 
different from those of electric-dipole interactions. In consequence, such higher-multipolar 
interactions can allow second-order effects even in the centrosymmetric bulk [6–9]. In 
principle, higher-multipolar responses could lead to completely new types of second-order 
materials, but their design guidelines are poorly understood. Nanostructured materials, where 
the higher multipoles should be interpreted in terms of effective (Mie-type) response, could 
provide an avenue forward [10,11]. Multipole interactions have also other important uses, 
e.g., in directional optical antennas [12], sensing [13], and third-order nonlinear optics [14]. 

In spite of these opportunities, the separation between the dipolar surface and multipolar 
bulk nonlinearity has been a long standing problem [3,6,7]. A breakthrough was achieved by 
SHG using two non-collinear beams at the fundamental frequency. This technique provides 
relatively simple, yet distinct signatures for the dipolar surface and multipolar bulk responses 
[15,16] and was subsequently used to quantify the dipolar and multipolar responses of bulk 
glasses and gold films [10,17–19]. In all these works, the sample was such that the reflections 
between its front and back surfaces could be excluded from the analysis. New materials, 
however, are often convenient to characterize as thin films, and need to be analyzed using 
models that account for the multiple reflections between the various interfaces [20]. Although 
conceptually straight-forward, such models are tedious to implement. 

In this paper, we show that thin films provide additional challenges in the recognition of 
higher-multipolar nonlinearities. More specifically, SHG from a thin film of silicon nitride 
(SiN), which has strong dipolar second-order nonlinearity, gives rise to signatures of apparent 
multipolar origin when analyzed using the model justified for bulk samples. We further show 
that these signatures arise from multiple reflections within the thin film and can be fully 
explained by considering only the dipolar nonlinearity. These results emphasize the 
importance of using the most complete models to describe nonlinear processes, which further 
complicate the recognition of potential materials with strong higher-multipolar responses. 

2. Two-beam second-harmonic generation 

The dipolar surface and multipolar bulk contributions to SHG from isotropic materials can be 
separated by two-beam SHG [15,16]. In this arrangement, two non-collinear beams at the 
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fundamental frequency and in the same plane of incidence are applied on the sample and the 
SHG signal generated jointly by the two beams is detected [Fig. 1]. For symmetry reasons, 
the multipolar response can only be accessed by using the two non-collinear beams. In 
addition, the dipolar and multipolar SHG signals behave very differently when their 
dependence on the polarizations of the fundamental beams is considered. For sufficiently 
thick bulk samples, the two fundamental beams can be made to cross at the front interface in 
such a way that they are separated at the back surface and the back reflections miss the 
interaction volume [Fig. 1]. 

 

Fig  1  Schematic of two-beam SHG measurement and the used notation  

We choose z-axis perpendicular to the sample surface and x-axis (y-axis) parallel 
(perpendicular) to the plane of incidence. Lower (upper) -case letters denote quantities at ω  

( 2ω ). The electric fields are a  and b  for the fundamental beam with larger ( )aθ and smaller 

( )bθ  angle of incidence, respectively. Such geometry is best analyzed in the ( )ˆ ˆ,p s  basis, 

where p (s) polarization is in (perpendicular to) the plane of incidence. 
The surface of an isotropic material has vC∞  symmetry, and thus the dipolar surface 

susceptibility tensor has three independent nonvanishing components zzzχ , zxx zyyχ χ= , and 

xxz xzx yyz yzyχ χ χ χ= = =  [18]. The SHG source polarization for s-polarized SHG signal can 

then be shown to be of the form [17] 

 ( )2 sin sin ,d
s xxz s p b p s aP a b a bχ θ θ= +  (1) 

where the fields are evaluated inside the nonlinear medium. The superscript d refers to dipolar 
origin of the source polarization and the subscripts s and p describe the beam polarizations. 

The higher-multipole contributions are usually analyzed in terms of effective polarization. 
By accounting for the symmetry of the magnetic and quadrupole tensors, one finds that the 
effective polarization for isotropic media is of the form [8,9,16] 

 ( ) ( ) ( )MP ' ,β γ δ= ∇ ⋅ + ∇ ⋅ + ⋅∇P e e e e e e  (2) 

where β , γ and δ ′ are nonlinear material parameters, e  denotes the total fundamental field 
and MP refers to higher multipoles. The first term in Eq. (2) makes no contribution and the 
second contributes to the effective surface response [6–9]. The distinguishable bulk 
contribution ( )δ ′  gives rise to the following s-polarized source [17] 

 ( )( )' 'sin ,s a b s p p sP ik a b a bδ δ θ θ= − −  (3) 

where k is the wavenumber of the fundamental field. Note that in Eq. (1) the terms s pa b and 

p sa b are in-phase when the incident angles have the same sign contrary to Eq. (3), where 

these terms are out-of-phase. This difference is crucial for the separation of the dipolar and 
multipolar contributions as the polarizations of the fundamental beams are modulated. 

#256193 Received 28 Dec 2015; revised 3 Feb 2016; accepted 3 Feb 2016; published 26 Feb 2016 
© 2016 OSA 7 Mar 2016 | Vol  24, No  5 | DOI:10 1364/OE 24 004972 | OPTICS EXPRESS 4974 



In order to extend this formalism for thin films, we assume that the dipolar nonlinearity is 
still associated with vC∞  symmetry (with the tensor components given above), but could 
extend through the whole film, i.e., is not limited to surface only. This is compatible with the 
known structure of the SiN films, where such dipolar nonlinearity has “bulk” origin [21]. 
However, we assume that the possible higher-multipolar contributions can still be described 
by Eq. (3), based on isotropy in three dimensions. Such assumption is sufficient because any 
deviation of the measurements from the dipolar model would provide evidence of higher-
multipole contributions. 

 

Fig  2  Schematic of the two main consequences of reflections in thin samples  a) Multiple 
reflections contributing to the total field strength  b) SHG generated into two directions in the 
nonlinear medium  

The additional complications for thin-film samples arise from the fact that the width of the 
beams is generally much larger than the film thickness. As a result, parts of the beams 
reflected at both interfaces of the medium cannot be separated from another. Thus, the total 
field must be treated as an infinite series of upward and downward propagating partial waves 
[Fig. 2(a)]. In addition, a SHG source sheet at any given location emits waves both in the 
downward ( − ) and upward ( + ) directions, which again both undergo multiple reflections at 
the top and bottom interfaces [Fig. 2(b)]. The total SHG signal is then obtained by integrating 
the source sheets through the thickness of the nonlinear film (D). 

In order to account for all the reflections, each fundamental incident field (a or b) gives 
rise to upward ( +a and +b ) and downward ( −a and −b ) propagating fields inside the film. 

These fields are 0 eiw zC ±
± ±=e e , where 

 
2

13 32 13
2 2

31 32 31 32

e
, and .

1 e 1 e

i w D

i w D i w D

t r t
C C

r r r r
+ −= =

− −
   (4) 

Here w is the z-component of the wave vector ( cos / ,w n cω θ= where n is the refractive 
index at the fundamental wavelength and c is the speed of light), t (r) is transmission 
(reflection) Fresnel coefficient and indices 1 (air), 3 (film) and 2 (glass substrate) denote 
respective media. The SHG field exhibits similar behavior, but only gives rise to an overall 
scaling factor since we limit ourselves to only s-polarized signal. Note that all quantities need 
to be evaluated separately for beams a and b. 

The local nonlinear polarization acts as a source for upward and downward propagating 
SHG fields. Phase-matching considerations are most conveniently accounted for by Green’s 
function formalism for nonlinear optics [22]. The total SHG field amplitude in the medium 
can then be written as 

 ( ) ( )
{ }

( )'
, 31 ,

, ,

, , ' ,d s
s s sE P a b P a b G R Gδ

α β α β α β α β
α β∈ + −

 ∝ + +   (5) 

where 

 
( )( )

( )
( )( )

( )
, , , ,

, ,

, , , ,

1 exp 1 exp
, and '

a b a b

a b a b

i w w W D i w w W D
G G

i w w W i w w W

α β α β
α β α β

α β α β

− − + + − − + −
= =

+ + + −
(6) 
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and subscripts { }, ,α β ∈ + − denote the direction of propagation of the partial beams related to 

a and ,b respectively, 2 cos( ) /W N cω= Θ (N and Θ are the refractive index and the angle of 
incidence at the second-harmonic wavelength, respectively). Finally, by combining Eqs. (2), 
4–6), the s-polarized SHG field can be written as 

 ,s s p s s s pE h a b k a b∝ +  (7) 

where sh and sk are linear combinations of xxzχ  [Eq. (1)] and 'kδ  [Eq. (3)], and can be 
written as 

 11 12

21 22

, where
'

s xxz

s

h m m

k m m k

χ
δ

     
=     

   
  (8a) 
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 (8b) 

and 1 1.± = ± The relationship between auxiliary coefficients ( ),s sh k  and material parameters 

( ), 'xxz kχ δ  depends only on the geometry of the experiment, and the matrix ijm    describing 

it can be fully determined beforehand. 
In the limit where all reflections are neglected, sh and sk are 

 
( )
( )

, ,
13 13

, ,
13 13

2 sin( ) 'sin ,

2 sin( ) 'sin

a p b s
s xxz a a b

a s b p
s xxz b a b

h ik t t

k ik t t

χ θ δ θ θ

χ θ δ θ θ

= − −  
= + −  

 (9) 

which can also be obtained directly from Eqs. (1) and (3). Thus, sh and sk are perfectly in-

phase when the multipolar parameter 'kδ is zero. However, the complete expression of Eq. 
(8) can give rise to a phase difference between sh and sk even when 'kδ  vanishes. 

 

Fig  3  Three simulations of a measurement: a) reflections neglected, no multipole 
contribution; b) reflections neglected, 10% multipole contribution; c) 5° phase difference 
between hs and ks, no multipole contribution  

The separation of the dipolar and multipolar responses relies on simultaneous control of 
the relative phase and amplitude between factors p sa b and .s pa b This can be accomplished 

when one fundamental beam is linearly polarized along direction ( )ˆ ˆ ˆ 2= −a p s and the 
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other is initially linearly polarized ˆ ˆ ,=b p and then varied by a rotating quarter-wave plate 

[16]. If reflections are neglected, any phase difference between sh and sk would: 1) be seen as 
a difference between peak heights in the measured graph and 2) indicate a nonvanishing 
multipole response [Figs. 3(a) and 3(b)]. However, if reflections are taken into account, 
similar phase difference can arise strictly from the multiple reflections in the film [Fig. 3(c)]. 
Thus, neglecting reflections for thin films can lead to incorrect values for nonlinear 
parameters or even false positives for the multipole response. 

3. Experimental results 

To verify our findings experimentally, we studied an 800 nm thick film of SiN previously 
verified to have vC∞  symmetry and dipolar bulk nonlinearity [21]. The film was fabricated by 
plasma enhanced chemical vapour deposition on a fused silica substrate. The SHG 
experiments were performed with a setup described by Rodriguez et al. in [17], which uses a 
pulsed Nd:YAG laser (wavelength 1064 nm, pulse length 60 ps, pulse energy 0.15 mJ and 
pulse repetition rate 1000 Hz). The initial powers and polarizations of the control (a) and 
probe (b) beams were set using linear polarizers and half-wave plates. The polarizations of 

the beams were initially set to ( )ˆ ˆ ˆ 2= −a p s and ˆ ˆ ,=b p  and the angles of incidence were 

58.3aθ = °  and 32.0bθ = ° , i.e., same sign but different magnitude. During the measurement, 
the probe polarization was varied using a motorized quarter-wave plate while measuring the 
s-polarized SHG in transmission using an analyzer and a photomultiplier tube. 

 

Fig  4  Experimental data fitted in three different ways: a) traditional model without multipole 
contribution; b) traditional model with multipole contribution and c) detailed model without 
multipole contribution  

The experimental data was fitted using both models: the simplified one described by Eq. 
(9) [Figs. 4(a) and 4(b)] and the detailed one described by Eq. (8) without multipolar 
contribution [Fig. 4(c)]. The traditional (simplified) model predicts a multipolar response due 
to difference between the peak heights and yields a multipolar contribution of approximately 
7% with respect to xxzχ , with a mean squared error (MSE) of 3.6 in arbitrary units. However, 
the detailed model based on the dipolar response, multiple reflections, and propagation 
effects, produces a better fit (MSE 2.9) even though there are less free parameters. 

4. Conclusions 

We have presented a careful theoretical and experimental analysis of two-beam second-
harmonic generation in addressing magnetic and quadrupole contributions to the second-order 
nonlinearity of films with sub-wavelength thickness. Our results show that a simplified 
analysis of the results may lead to apparent multipolar responses of significant magnitude. 
However, the results can be fully explained by the dipolar response when multiple reflections 
and propagation effects within the nonlinear film are properly taken into account. The results 
underline the importance of using detailed theoretical models in analyzing the nonlinear 
responses of thin films. Reliable recognition of multipolar responses is likely to require a 
more extensive set of experiments to be performed and fully analyzed. 

#256193 Received 28 Dec 2015; revised 3 Feb 2016; accepted 3 Feb 2016; published 26 Feb 2016 
© 2016 OSA 7 Mar 2016 | Vol  24, No  5 | DOI:10 1364/OE 24 004972 | OPTICS EXPRESS 4977 



Acknowledgments 

The authors would like to thank Outi Hyvärinen from the Optoelectronics Research Centre at 
Tampere University of Technology, for the sample preparation. We also acknowledge the 
Academy of Finland (265682, 287886 and 287651) for funding. K.K. acknowledges the 
Väisälä foundation for funding a personal fellowship. 

#256193 Received 28 Dec 2015; revised 3 Feb 2016; accepted 3 Feb 2016; published 26 Feb 2016 
© 2016 OSA 7 Mar 2016 | Vol  24, No  5 | DOI:10 1364/OE 24 004972 | OPTICS EXPRESS 4978 





Publication III

Bulk second-harmonic generation from thermally evaporated indium selenide thin

�lms

Kalle Koskinen, Abdallah Slablab, Sasi Divya, Robert Czaplicki, Semen

Chervinskii, Madanan Kailasnath, Padmanabhan Radhakrishnan and Martti

Kauranen

Optics Letters 42, 1076-1079 (2017)

c© 2017 Optical Society of America.

Reprinted with permission.





Bulk second-harmonic generation from thermally-
evaporated indium selenide thin films 

KALLE KOSKINEN,1,# ABDALLAH SLABLAB,1,*,# SASI DIVYA,2 ROBERT 

CZAPLICKI,1 SEMEN CHERVINSKII,3,4 MADANAN KAILASNATH,2 

PADMANABHAN RADHAKRISHNAN,2 AND MARTTI KAURANEN1 
1Laboratory of Photonics, Tampere University of Technology, FI-33101 Tampere, Finland 
2International School of Photonics, Cochin University of Science and Technology, Cochin 682022, India 
3Institute of Photonics, University of Eastern Finland, FI-80101 Joensuu, Finland 
4Institute of Physics, Nanotechnology and Telecommunications, St.Petersburg Polytechnic University, 195251 St.Petersburg, Russia 
#These authors contributed equally to this work. 
*Corresponding author: abdallah.slablab@tut.fi 

Received 3 January 2017; revised 10 February, 2017; accepted 12 February 2017; posted 13 February 2017 (Doc. ID 283997); published 6 March 
2017 

 
We investigate bulk second-order nonlinear optical 
properties of amorphous indium selenide thin films 
fabricated by thermal evaporation. Such films are shown 
to exhibit strong and photostable second-harmonic 
generation (SHG). We report strong thickness-
dependence of the second-harmonic signals as 
characterized by the Maker-fringe method. The absolute 
value of the nonlinear susceptibility tensor of the film is 
addressed by analyzing the interference of SHG signals 
from the film and the glass substrate. The value of the joint 
non-diagonal component of the susceptibility is found to 
be 4 pm/V, which is comparable to that of widely used 
second-order nonlinear materials. © 2017 Optical Society 
of America 

OCIS codes: (190.0190) Nonlinear optics; (190.4400) Nonlinear optics, 
materials; (310.6860) Thin films, optical properties.  
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There is continuing interest in the development of thin film 
materials with strong nonlinear optical response, motivated by the 
possibility of fabricating compact and flexible nanometer scale 
nonlinear optical devices, such as tunable light sources [1], optical 
parametric oscillators [2] and electro-optical modulators [3]. The 
development of second-order nonlinear materials is particularly 
difficult due to their non-centrosymmetry requirement [4]. 
Traditionally, such materials are based on appropriate crystals or 
poled polymer films. Recently, however, it has been found that 
relatively simple thin film growth techniques, such as plasma 
enhanced chemical vapor deposition (PECVD) [5], pulsed laser 
deposition [6] or thermal evaporation [7], can lead spontaneously 

to a strong second-order response. Indeed, silicon nitride (SiN) films 
fabricated using PECVD were reported to possess a strong second-
order response, with the dominant nonlinear susceptibility for 

second-harmonic generation (SHG) of 
zzz ~2.5 pm/V [5], which is 

comparable to that of traditional second-order crystals [4]. Even 
higher values have been reported for SiN [8] and it has already been 
used in nonlinear waveguides [9]. 

Chalcogenide glasses (ChGs) are an interesting family of 
materials, which show promise for various optical and photonic 
applications [10]. Diverse physical properties of ChGs, such as the 
index of refraction or energy band gap, can be easily tailored by 
varying the elemental composition of the glass. ChGs are also 
known for high third-order nonlinearity and exceptional 
transmission in the infrared region [11,12]. 

Among the large variety of ChGs, indium selenide (InSe), a group 
III-VI semiconductor, has gained attention due to its anisotropic 
optical, electronic and mechanical properties enabling possible 
applications in energy conversion [13] and in nano- and opto-
electronics [14]. The optical properties of InSe are particularly 
interesting because it can exist in several different phases and 
crystal structures for a given stoichiometric ratio of the atomic 
constituents [15]. The nonlinear optical response of thin films of 
crystalline InSe reveals different possible contributions of the 
surface and bulk effects to the SHG response. Depending on how the 
film is fabricated, the origin and the strength of SHG may be due to 
surface roughness, broken inversion symmetry of the layered 
structure, stacking of separate monolayers with different domain 
orientations or even the presence of small nanocrystals with 
different crystalline domains [16,17]. Recently, the strength of the 
SHG was explored by controlling the thickness of the film, showing 
interplay between surface and bulk contributions to SHG [18]. 
While the second-order response of InSe is tied to the fabrication 



method, manufacturing crystalline InSe at large scale remains a 
tedious and costly process. Thus, addressing the second-order 
response of InSe films fabricated using simpler and more cost-
effective techniques is an important issue. 

In this letter, we use simple and inexpensive thermal evaporation 
to fabricate amorphous InSe thin films and study their second-order 
properties by SHG. We show that the films have a significant and 
photostable nonlinear response. The response depends on film 
thickness, suggesting bulk origin of the response. The magnitude of 
the second-harmonic (SH) susceptibility of the samples is 
addressed by analyzing the interference of the SHG signals from the 
InSe film and the glass substrate, and is found to be comparable to 
that of amorphous SiN [5]. 

The samples were fabricated by thermal evaporation [19]. Glass 
substrates (plain microscope slides) were placed in a vacuum 
chamber (pressure 10-5 Torr) and located above a bulk InSe source 
prepared by the well-known melt quenching method [20]. The 
source constituents were weighted beforehand according to their 
atomic percentages (Se: 62%, In: 38%, Sigma Aldrich, 5N purity) 
and were melted at 1000°C, thereby forming a bulk InSe source. The 
source was then heated up to the temperature of ~300°C. The 
vaporized gas mixture coated the substrates with the speed of 1 Å/s 
and the film thickness was controlled by the deposition time. 
Samples with thicknesses from 40 nm to 190 nm were fabricated. 
The chemical composition of the samples was confirmed by energy-
dispersive X-ray spectroscopy (EDS; not shown). The elemental 
analysis of the sample confirmed the purity of the deposited films 
by showing the presence of only In and Se. 

The surface homogeneity and thickness of the samples were 
addressed by atomic force microscopy (AFM) for different sample 
areas. The results (not shown) confirm that the films are 
homogenous with an estimated thickness variance of ±4 nm. The 
optical transmission spectra of the films [Fig. 1(a)] were 
determined using a spectrophotometer. As expected, the 
transmission decreases with increasing thickness for wavelengths 
below about 700 nm, which is the range including SHG in our 
experiments. The slightly reduced transmission for longer 
wavelengths arises from interference within the sub-wavelength 
thick film. The linear optical properties were subsequently 
measured by ellipsometry. This confirmed that absorption is 
negligible for wavelengths above 1 µm, a known feature of 
chalcogenide materials. Thus, we neglect absorption at the 
fundamental wavelength of our laser source (1064 nm) but take it 
into account at the SH wavelength (532 nm). We further neglect 
birefringence and use an isotropic model for the ellipsometry. This 
approach was found to perform adequately, yielding the refractive 
indices of 3.02+i0.28 at 532 nm and 2.63 at 1064 nm, respectively, 
for the 190 nm film. Due to the homogeneity of the surface 
properties and elemental composition between the samples, we 
assume that there is little variation in the refractive index for 
different samples. Hence, we use the above values in the 
forthcoming numerical fitting of the experimental results.  

To measure the SHG response, we used an experimental setup 
identical to the one in [5], with the following parameters: laser 
wavelength 1064 nm, pulse length 70 ps, repetition rate 1 kHz and 
spot size of the weakly focused beam at the sample ~400 µm. In 
order to perform the SHG Maker-fringe characterization [21], the 
sample was placed on a high precision motorized rotation stage, 
which allows the angle of incidence to be varied. 

First, we verified the SHG origin of the signal by studying p 
polarized SHG generated by p polarized incident beam from the 
sample at 60° angle of incidence [for notation, see Fig. 1(b)]. The 
quadratic power dependence confirms the SHG origin of the signal, 
as indicated in Fig. 1(c). It is also clear that the SHG signal increases 
significantly with the film thickness under identical experimental 
conditions. Such result suggests that the SHG has bulk origin. From 
our experience, thermal instability and laser damage are typical 
issues for thermally evaporated thin films. Thus, we studied the 
photostability of the signal by illuminating the sample with a 
focused beam at different positions under average incident power 
of 20 mW for up to 15 minutes. The measured signal remained 
constant with a high signal-to-background ratio and none of the 
typical instability or damage issues were observed. 

 

Fig. 1. (a) Transmission spectra of InSe films with different thicknesses: 
40 nm (blue), 100 nm (magenta) and 190 nm (red). (b) Schematic of the 
cross-section of the sample with incident and SH beams. (c) Quadratic 
dependence of SHG intensity versus incident laser power for different 
samples. (d) s-polarized SHG intensity of 190 nm thick film as a function 
of polarization state of incident beam modulated by a HWP. 

In order to analyze the SHG from the InSe films, the symmetry of 
the sample was determined by studying the s- and p-polarized SHG 
as a function of the linear polarization of the fundamental beam. We 
found that the s-polarized signal vanishes for both s- and p-
polarized fundamental light [Fig. 1(d)], which suggests that the 

sample is at least in-plane isotropic (symmetry group 
,vC

) [22]. 

Thus, the non-vanishing SHG susceptibility tensor components are 

limited to zzz ,
xxz xzx yyz yzy       and 

zxx zyy  , where z-

axis is perpendicular to the surface of the sample and x- and y- axes 
are the two equivalent in-plane directions. 

The qualitative polarization-dependent experiment is not 
sufficient to distinguish between in-plane isotropy (tensor 
components defined for the bulk of the material) and full three-
dimensional isotropy (tensor components defined for surface-type 
response). Therefore, we characterized the sample by the Maker-
fringe technique, where the interference between the SHG signals 
from the InSe film and the back surface of the substrate lead to 
fringes [Fig. 2(a)]. The Maker fringes are easily distinguishable for 
all samples and the signal is significantly stronger than the one from 
the substrate. In fact, even the lowest signal, from 40 nm thick film, 
is 4 times higher than that from the substrate, which suggests that 
the SHG is from the bulk of the film. In order to estimate the strength 



of SHG, the signal from the 100 nm thick sample was compared to 
the signal from a SiN film of the same thickness [5]. The SHG signals 
from InSe and SiN are comparable, with the signal from SiN being 
slightly higher than the one from InSe. 

 

Fig. 2. (a) Maker-fringes of substrate (gray), 190 nm InSe (red), 100 nm 
InSe (magenta), 40 nm InSe (blue) and 100 nm SiN (black). (b) 
Experimental SHG (blue circles) and theoretical fit (solid red line) versus 
InSe thickness. 

In order to confirm our findings, we studied the thickness 
dependence of the SHG signal while taking into account the infinite 
number of reflections of both beams within the film [23]. This can 
be done by utilizing the Green’s function formalism for nonlinear 
optics with complex index of refraction [24,25]. In principle, both 
the upward and downward (positive and negative z-component of 
the wave-vector, respectively) propagating fundamental beams act 
as a source to SHG which also has an upward and downward 
propagating component. However, the contribution from upward 
propagating fundamental beams to downward propagating SHG is 
negligible due to poor phase-matching and low irradiance of the 
reflected fundamental beams. In addition, the upward propagating 
SHG is attenuated due to the longer propagation path in the 
absorptive medium and lower irradiance due to reflection at the 
film-air interface, and can also be neglected. Thus, the SHG 
irradiance outside the sample can be expressed as 
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where L3 is the film thickness, α is the absorption coefficient for the 
SH field, w3 (W3) is the z-component of the wave-vector for 
fundamental (SH) wavelength, Δk = W3 - 2w3 is the phase-
mismatch, and the factors tij (Tij) and rij (Rij) are the transmission and 
reflection Fresnel coefficients of the interface between media i and j 
for the fundamental (SH) wavelength, respectively. Note that Eq. (1) 
does not yet take into account surface SHG from the back substrate-
air interface which interferes with SHG from the film and causes 
fringes with varying angles of incidence. For representative signal 
levels, we averaged the SHG responses between the extrema about 
a given nominal angle of incidence and included respective error 
bars to illustrate the maximum error due to interference. 

The experimental SHG data for samples of different thicknesses 
fitted using Eq. (1) is shown in Fig. 2(b). Note that our fit uses only 
an overall scaling factor as free parameter. The blue dots illustrate 
the experimental data corresponding to the highest value of the SHG 
intensity for different film thicknesses given by Maker-fringe 
measurements. The model (red line) predicts a thickness 
dependence with a particular shape. The signal increases 

quadratically for small thicknesses until absorption effects and 
phase effects of reflected beams come into play, distorting the 
quadratic shape. A similar effect was also observed for van der 
Waals InSe crystalline films [18]. Due to the experimental values 
being explained well by the model, the assumption of bulk-type SHG 
response is well founded. The small film thickness variation and 
identical SHG response from different parts of the sample suggest 
that the bulk-type response could arise from atomic layers with 
preferred crystalline orientations formed during the growth of InSe 
clusters in the fabrication process. 

To address the SHG tensor components quantitatively, the 
Maker-fringe results were analyzed using a method similar to 
reported previously [26,27]. However, we take into account 
multiple reflections [23] and absorption. Furthermore, the 
refractive indices of the film at both wavelengths are very high, and 
thus the coupling between the sample z-coordinate and the p-
polarized beam components is extremely weak. As a result, any 

noise will break the statistical independence between zzz  and the 

non-diagonal components. Therefore, we neglect zzz  as it cannot 

be reliably addressed. We thus write the SH field as 
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where 3  3 is the propagation angle inside the nonlinear 

medium for the fundamental (SH) wavelength, respectively, c is the 
speed of light and  is the angular frequency of the fundamental 

beam. As discussed in [27], it is extremely difficult to separate xxz  

from 
zxx  with a Maker-fringe experiment. Instead, we follow an 

approach similar to the one presented in [27]: We assume 
Kleinman symmetry in the numerical analysis and calculate the 
value of the joint non-diagonal tensor component

2xz xxz zxxA    . Note that this joint component is alternatively 

obtained from Eq. (2) by neglecting dispersion, i.e., by assuming that 
the propagation angles at the two frequencies are equal. By 
comparing these alternative approaches, we find that they result in 
at most 11% error for the value of the joint component. 

Similarly, we have for the SHG from the substrate back surface: 
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where glass is the surface SHG susceptibility of a standard BK7 

glass ( glass

xxz  = 14.6, glass

zxx  = 7, glass

zzz  = 93, all in 10-22 m2/V, based 

on the susceptibility of quartz of quartz

xxx  = 0.80 pm/V [28]). In the 



experiment, the SHG from InSe and glass interfere, and the total SHG 
irradiance detected outside the sample can be written as 

 2 2 2 2
2

2
,

iW L i w L

film glassI E e E e        (4) 

where w2 is the z-component of the wave-vector in the substrate for 
the fundamental wavelength, and L2 is the thickness of the 
substrate. The absolute value of the SHG susceptibility of the film is 
then obtained from the modulation depth of the interference [27]. 
The experimental results fitted using Eq. (4) are shown in Fig. 3. The 
results (solid lines) are in excellent agreement with the measured 
data for all samples, reproducing the modulation depth and period 
of the fringes correctly. The obtained values of the joint non-

diagonal tensor component 
xzA  are 4.1 ± 0.5 pm/V, 4.0 ± 0.5 pm/V 

and 2.9 ± 0.4 pm/V for 190 nm, 100 nm and 40 nm thick InSe films, 
respectively. 

 

Fig. 3. Experimental SHG signal (circles) and fitting curves (lines) as a 
function of the angle of incidence for 40 nm (blue), 100 nm (magenta) 
and 190 nm (red) thick InSe films. 

Remarkably, the values of the non-diagonal tensor components 
are of the same order of magnitude as for most well-known 
nonlinear crystals [4]. The acquired values are consistent for the 
two thickest samples with the 40 nm sample having about 25% 
smaller susceptibility.  This may be due to the choice to neglect the 
upward propagating beams. Although such contributions would be 
small due to the poor phase-matching and SHG absorption within 
the film for the thicker samples, they may be non-negligible for the 
40 nm sample. It is also possible that the slightly higher surface 
roughness of the 40 nm sample causes the error. Another 
interesting result is the shift in the angle corresponding to the 
maximum SHG signal level neglecting the interference for samples 
of different thicknesses (Fig. 3). Intuitively, this could be interpreted 
as change in the tensor structure, but the fitting is done only to a 
single tensor component as the measurement is insensitive to the 
diagonal component and the difference between the two non-
diagonal components. Thus, the shift is fully explained by the 
reflection and absorption effects, highlighting the need for a 
sufficiently rigorous analysis when drawing conclusions from SHG 
experiments. 

In summary, we have characterized amorphous InSe thin films 
fabricated using thermal evaporation. We report a strong, thickness 
dependent SHG from the samples. A detailed study on films of 
varying thicknesses yielded the value of the joint non-diagonal 
tensor component of the SHG susceptibility to be around 4 pm/V. 
Our results suggest that an amorphous InSe is a promising 
nonlinear optical material with potential applicability for photonic 
devices. In addition, our results provide general guidelines for the 
determination of the second-order susceptibility of amorphous and 
absorptive thin films. 
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We present a comprehensive tensorial characterization of 
second-harmonic generation from silicon nitride films 
with varying composition. The samples were fabricated 
using plasma-enhanced chemical vapor deposition, and 
the material composition was varied by the reactive gas 
mixture in the process. We found a six-fold enhancement 
between the lowest and highest second-order 
susceptibility, with the highest value of approximately 5 
pm/V from the most silicon-rich sample. Moreover, the 
optical losses were found to be sufficiently small (below 6 
dB/cm) for applications. The tensorial results show that 
all samples retain in-plane isotropy independent of silicon 
content, highlighting the controllability of the fabrication 
process. © 2017 Optical Society of America 
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High-performance complementary metal oxide semiconductor 
(CMOS) compatible materials are essential elements for advanced 
on-chip photonic devices to realize the future progress in all-optical 
processing. The ultra-fast speed and high bandwidth of integrated 
photonic networks continuously require new materials possessing 
excellent linear and nonlinear optical properties [1, 2]. Although 
silicon (Si) is still the most commonly used CMOS material, the 
intrinsic drawbacks of Si, such as its narrow bandgap and centro-
symmetric structure highly limit its future applications especially in 
the visible and ultraviolet spectral regimes [2, 3]. Thus, exploring 
novel CMOS-compatible materials with wide bandgap and strong 

optical nonlinearities is very important for future integrated 
devices. 

Many photonic applications rely on nonlinear optical effects. One 
of the limitations of many nonlinear materials for CMOS-compatible 
platforms is the lack of second-order nonlinearity due to 
centrosymmetry. The problem can be overcome by poling [4, 5], 
straining the material [3] or by using multilayer composites [6-8]. 
Unexpectedly, CMOS-compatible amorphous silicon nitride films 
(SiN) have been shown to possess a bulk second-order nonlinearity 
by measuring strong second-harmonic generation (SHG) from thin 
films [9-11]. Although the exact reason for this strong SHG response 
remains unclear, it is believed that the complicated composition, 
crystalline phase and defects in the film during the deposition may 
be responsible [10, 12-16]. 

In this Letter, we show that the strong second-harmonic signal 
from SiN films can be further enhanced by varying the composition 
of the films prepared with plasma-enhanced chemical vapor 
deposition (PECVD). Furthermore, we demonstrate that such 
composition tuning does not compromise the linear optical 
properties or optical losses of the material for applications. Our 
results are crucial for the comprehensive understanding of the 
linear and nonlinear optical properties in SiN films with different 
structures, opening the path for further optimization of SiN for on-
chip devices. 

We recognize that there have been previous studies yielding 
different values for the SHG susceptibility of SiN [9, 10, 11, 17, 18]. 
Samples prepared by sputtering can yield very high values of the 
susceptibility. Unfortunately, the susceptibility value depends 
extremely sensitively on material composition [9] or the samples 
possess varying symmetry [11]. These results suggest that the 
sputtering process can be poorly controlled. In contrast, our PECVD 
process is consistent, maintaining sample isotropy about the 
surface normal [10, 17, 19]. PECVD is also compatible with the 



thermal budget of finished CMOS-circuits. Sample composition is 
also an important parameter for electric-field-enhanced SHG [18], 
but this preliminary study reported only a scalar value for the 
susceptibility. Our tensorial results, obtained through a very 
advanced model, combined with loss measurements are thus 
crucial in addressing the suitability of SiN in various photonic 
applications. 

SiN films of thicknesses of approximately 500 nm and of different 
compositions were grown on fused silica substrates using the 
PECVD technique. Four samples (S10, S20, S30 and S40) were 
fabricated in the Laboratory of Photonics (Tampere University of 
Technology) with the reactive gas mixture of 2% SiH4/N2 and NH3, 
process pressure of 1000 mTorr, and deposition temperature of 
300°C (Plasmalab 80 plus, Oxford Instruments). For these four 
samples, the plasma was generated using a RF field with frequency 
of 13.56 MHz and power of 20 W. The material composition of the 
samples was controlled by adjusting the flow rate of NH3 (10, 20, 30 
and 40 sccm for samples labeled S10, S20, S30 and S40, 
respectively) while simultaneously applying a constant flow rate of 
2% SiH4/N2 of 1000 sccm. In order to further address the role of the 
fabrication procedure, we prepared one additional sample (S35, 35 
sccm of NH3) with PECVD (Advanced Vacuum Vision 310 PECVD) 
at Ghent University-imec using a gas mixture of SiH4 (40 sccm), NH3 
(35 sccm) and N2 (1960 sccm) under deposition temperature of 
270°C and process pressure of 650 mTorr. For the S35 sample, the 
plasma was generated using an exciting field alternating between 
one second period of high frequency field (13.73 MHz, 30 W) and 
five second period of low frequency field (~100-300 kHz, 50 W). We 
also addressed a SiN thin film fabricated using low pressure 
chemical vapor deposition (LPCVD). However, the SHG response 
from the LPCVD sample was found to be extremely weak and it will 
not be discussed any further here. 

 

Fig. 1. Normalized transmittance spectra of samples with different 
compositions. 

The fabricated samples were characterized by linear optical 
spectroscopy (UV-VIS-NIR spectrophotometer, Shimadzu UV-
3600) for wavelengths from 300 nm to 1500 nm (Fig. 1). As the 
silicon content increases (with the lower flow rate of NH3), the 
transmittance threshold shifts towards shorter wavelengths in 
good agreement with previous studies [9]. The oscillatory behavior 
of the transmittance at longer wavelengths can be ascribed to 
interference between beams reflected at the interfaces of the SiN 
film. The optical bandgap energies were estimated from a Tauc plot 
(not shown) to be between ~3 and ~2 eV from the least to the most 
silicon rich sample. 

The wavelength dependent refractive index and thickness of the 
samples were determined by ellipsometric measurements. The real 
and imaginary parts of the refractive index are shown in Figs. 2(a) 

and 2(b), respectively. The refractive indices at the fundamental and 
second-harmonic wavelengths as well as film thicknesses are 
shown in Table 1 for all of the studied samples. 

Table 1. Thicknesses and refractive indices at fundamental 
(n) and second-harmonic (N) wavelengths from ellipsometric 

measurements. The number in the sample name refers to 
NH3 sccm, as described in the text. 

sample thickness [nm] n @ 1064 nm N @ 532 nm 
S10 662 2.174+0.002i 2.354+0.022i 
S20 604 2.005+0.000i 2.099+0.007i 
S30 537 1.945+0.000i 1.989+0.002i 
S35 500 1.969+0.000i 2.027+0.002i 
S40 505 1.902+0.000i 1.951+0.001i 

 

Fig. 2. Real (a) and imaginary (b) parts of refractive indices of the studied 
SiN thin films with different compositions. 

To assess the potential of SiN for applications, we carried out 
optical loss measurements for all samples at the 633 nm and 1550 
nm wavelengths. All samples were found to exhibit losses of less 
than 6 dB/cm, decreasing further below 3 dB/cm for samples S10 
and S20, which is in line with the values previously reported for SiN 
[20]. 

The nonlinear measurements were conducted using the setup 
described in [10]. A mode-locked Nd:YAG laser with a wavelength 
of 1064 nm, pulse duration of 70 ps, and repetition rate of 1 kHz was 
used as the source of fundamental light. The spot diameter at the 
sample was estimated to be a few hundred micrometers. The 
polarization state of the fundamental beam was controlled with a 
high-quality polarizer and a motorized quarter-wave plate (QWP). 
The polarization of the detected SHG signal was selected using 
another polarizer in front of a photomultiplier tube. 

In order to characterize the nonlinear susceptibility, we first 
illuminated the film at an oblique incidence and studied the 
polarization signatures of the SHG process for four different 
polarization controlled measurements. This method is known to 
uniquely address the relative values of the non-vanishing SHG 

susceptibility tensor components for samples of vC  symmetry 

[21-23], which is compatible with the known structure for SiN films 
fabricated using PECVD [10]. Subsequently, we carried out a fifth 
measurement for fixed polarization states of the incident beam and 
detected SHG while varying the angle of incidence, followed by a 
reference measurement from a quartz plate with a known SHG 
susceptibility to calibrate the value of a single tensor component in 
absolute units. By combining these two sets of experiments, the 
values of all nonvanishing SHG susceptibility tensor components 
can be determined. 



For the polarization measurements, we write the SHG field 
outside the sample as [24] 

   
2 2

SHG
ˆˆ ˆ ,p p p s s p sf e g e h e e  E P P S   (1) 

where P̂  ( Ŝ ) is the unit vector of the polarization components of 

the SHG field parallel (perpendicular) to the plane of incidence, pe  

( se ) is the amplitude of the polarization component of the 

fundamental field parallel (perpendicular) to the plane of incidence 

evaluated prior to the sample, and pf , pg , and sh  are auxiliary 

expansion coefficients describing the polarization signatures of the 
SHG response. 

The expansion coefficients pf , pg , and sh  have been 

previously shown to be linear combinations of the non-vanishing 

SHG susceptibility tensor components, which for samples of 
vC

 

symmetry are 
xxz xzx yyz yzy      , 

zxx zyy  , and 
zzz  [22], 

where z is the sample normal and x, y are the two orthogonal in-
plane directions [23]. However, it was recently discovered that in 
order to properly characterize a film with thickness much smaller 
than the spot size of the fundamental beam, effects arising from 
multiple reflections within the films can significantly influence the 
final results [25]. Thus, we utilize a complete model based on the 
Green’s function formalism for nonlinear optics, which includes all 
effects arising from reflections [26]. Even in this case, the expansion 
coefficients can be written as functions of the SHG tensor 
components as 
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  (2)  

where the matrix M  depends only on the experimental geometry 
and the linear material parameters of the nonlinear film and the 
substrate. The evaluation of M  is a straightforward process but 
requires arduous calculus, and its full description is omitted due to 
the extreme length of the mathematical expressions. 

 

Fig. 3. (a) Experimental data (markers) from polarization controlled 
SHG (black: p+s in, p out; blue: p+s in, p+s out; red: p-s in, p out; green: p-
s in, p+s out) for sample S30 and analytical fits (lines) to the tensor 
components. (b) Experimental data of p-polarized SHG signal arising 
from sample S30 with s-polarized input versus angle of incidence from 
the calibration experiment (blue circles) and analytical fit (red line). 
Similar results were obtained for samples S10, S20, S35 and S40. 

To probe the polarization signatures of the SHG process, we 
chose the four different combinations of polarizations for the 
detected SHG beam and the initial fundamental beam incident to 
the QWP to be the same as in [10] and an angle of incidence of 60°. 
The results from all four measurements were simultaneously fitted 

for relative values of 
xxz , 

zxx  and 
zzz  and are shown in Fig. 3(a) 

for the S30 sample. The absolute values of the SHG susceptibility 
were determined by comparing an angle of incidence controlled 
calibration measurement of p-polarized SHG generated from s-
polarized input to a measurement from ~1 mm thick Y-cut quartz 
crystal wedge plate with a known SHG susceptibility of 

0.80 pm/VQ

xxx   [(Fig. 3(b)] [27]. Note also the lack of 

interference fringes in the angle of incidence controlled 
measurements [Fig. 3(b)], confirming that the SHG is indeed of bulk 
origin. If that were not the case, the surface SHG signal from SiN 
would have to be multiple orders of magnitude higher than that of 
the substrate back-surface, which is implausible. Similar behavior 
was observed for all samples. 

The determined values of the SHG susceptibility tensor 
components of the SiN films of varying composition are shown in 
Table 2. Our results show that the second-order response can be 
greatly enhanced by adjusting the flow rate of NH3 during the 
PECVD fabrication process, showcasing the tunable nature of SiN as 
a material. Furthermore, the highest bulk-susceptibility of the 
studied SiN compositions (sample S10) was found to be about 5 
pm/V, which is a reasonable value for potential applications. 
Another interesting result was the discrepancy between the 
determined susceptibility for S30 sample (for example, 

1.10 pm/Vzzz  ) and the value previously reported for a SiN film 

prepared under identical conditions ( 2.47 pm/Vzzz  ) [10]. We 

believe that the difference is due to our present analysis being based 
on a more advanced model taking reflection effects into account for 
all experiments, whereas the analysis reported in [10] was based on 
a simpler approach. This result further highlights the crucial role of 
a sufficiently detailed model in the nonlinear characterization of 
thin films.  

Note also that the results for the silicon poor samples (S40 and 

S35) essentially fulfill the Kleinman symmetry 
xxz zxx  , as 

expected for non-resonant nonlinearity, whereas the silicon-richer 
samples (S30, S20, and S10) start deviating from this symmetry as 
the resonance for the second-harmonic wavelength is approached 
(see Fig. 1). 

The results also show that the nonlinear response depends 
sensitively on the fabrication conditions as the sample S35, 
fabricated at Ghent University, deviates from the general trend of 
the remaining samples, fabricated at Tampere University of 
Technology. 

Table 2. The calibrated values of second-order susceptibility 
tensor components of the studied SiN thin films with different 

compositions. 

sample  [pm/V]zzz
 

 [pm/V]xxz
 

 [pm/V]zxx
 

S10 5.10 1.60 1.40 
S20 1.70 0.87 0.72 
S30 1.10 0.40 0.34 
S35 0.66 0.20 0.21 
S40 0.80 0.23 0.22 

 



In conclusion, we have conducted a comprehensive analysis 
using a detailed analytical model of the SHG response from SiN thin 
films fabricated using the PECVD method in order to study the 
dependence of the response on material composition and to 
determine the optimal composition for nonlinear photonic 
applications. We have done so by studying five different samples 
fabricated in two different laboratories with varying fabrication 
parameters resulting in varying material composition.  

Our results show that silicon nitride can be optimized for efficient 
bulk-type second-harmonic generation response through the 
material composition at least by a factor of 6 in terms of 
susceptibility. The value of the highest susceptibility component 
was found to be approximately 5 pm/V corresponding to the most 
silicon-rich sample, a number that is comparable to that of 
traditional nonlinear crystals. Furthermore, the optical losses were 
found to be sufficiently low for viable applications. We believe that 
our results, combined with favorable linear properties as well as 
CMOS–compatibility of SiN, further open the path towards using 
SiN in a variety of new nonlinear optical applications. 
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ALD process. These differences have no influence on the
main results of our work.
The optical spectra of the nanoisland films covered with

TiO2 layers of different thicknesses (Fig. 1) show that the
LSPR peak shifts toward longer wavelengths, as known for
covered nanoparticles [24 26]. Additionally, the peak
becomes more intense with increasing TiO2 thickness.
Both trends saturate after the thickness of about 30 nm
when the electric field of the plasmon is completely inside
the covering layer [19]. The peak growth is similar to that
of metal nanoparticles when they are embedded in more
polarizable media [23,27], and this behavior is theoretically
well understood [28]. For the two samples with TiO2

thickness exceeding 30 nm (51.9 and 97.9 nm), the spectra
exhibit some irregularities compared to the monotonic
trend for thinner TiO2 films. We relate these irregularities
to the very long ALD times of the thickest covers, which
could influence the size of the gold nanoislands, and
interference effects within the thickest TiO2 films.
Nevertheless, even in these cases, saturation of both the
spectral shift and the absorption peak is evident.
The SHG responses of bare TiO2 films and TiO2 covered

gold nanoisland samples with different TiO2 thicknesses
were characterized using the Maker fringe technique [29].
A laser with 70 ps pulses at 1064 nm was used as the source
of fundamental light [20,30]. Both the fundamental and
SH beams were p polarized, which typically gives rise to
the strongest SH signals. The experiments result in inter
ference fringes between the SH signals from the sample and
the back surface of the substrate as the incident angle is
varied, as detailed in the Supplemental Material [20].
Representative Maker fringes from our samples are shown
in the Fig. 2 inset, where the SH response increases by a
factor of 45 with increasing TiO2 thickness. We emphasize
that the SH signals from bare TiO2 films of any thickness

were about the same and comparable to the signal from the
silica substrate, approximately 80 times weaker than the
signal from gold nanoislands with no TiO2 coating. This
proves that the TiO2 films are amorphous as expected from
ALD [31].
The dependence of SHG from gold nanoisland films on

TiO2 thickness is shown in Fig. 2. The signal is normalized
to that from the nanoisland film without cover. The SH
signal saturates at about 30 nm film thickness, near the
range where the LSPR spectral shift saturates [19].
Importantly, the SH response grows with the TiO2 thick
ness despite the detuning Δλ λLSPR 532 nm of the
LSPR wavelength from the SH wavelength (532 nm); see
the magnitudes of the resonance offset indicated near the
data markers in Fig. 2. A small decrease in the SH signal
for the thickest TiO2 cover is probably related to the effect
of the temperature on the gold nanoparticles in the long
ALD process.
Physical insight into the observed effects can be obtained

by considering the polarizability of a spherical particle of
radius R [32],

α R3
εme εout
εme þ 2εout

R3
ðεme þ 2εoutÞ 3εout

εme þ 2εout
; ð1Þ

where εme is the permittivity for the metal and εout that
for the embedding medium. By assuming that εout is real
and by separating εme into its real and imaginary parts
εme ε0me þ iε00me, it is evident that the polarizability
exhibits a resonance when ε0me 2εout. The absorption
cross section of the particles, which is of interest here,
depends on the imaginary part of the polarizability

FIG. 1. Absorption spectra of the samples with gold nanoisland
film coated with TiO2 layers of different thicknesses (indicated
near the curves). The spectra of the 51.9 and 97.9 nm samples,
which demonstrate irregularities, are dotted and dashed, respec
tively. Inset: SEM image of the nanoisland film.

FIG. 2. SH response from gold nanoisland films coated with
TiO2 layers as a function of the TiO2 layer thickness. The
resonance offsets Δλ (nm) between the LSPR and SH wavelength
are indicated near the corresponding data markers. The SH
intensity is normalized by the SH signal from the nanoisland
film without the TiO2 cover. The line is a guide for the eye only.
Inset: SHG Maker fringe patterns from representative samples.
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[σabs ∝ ImðαÞ] [33]. The imaginary part of the resonant
polarizability is, thus,

ImðαresÞ 3R3
εout
ε00me

; ð2Þ

i.e., it is proportional to the permittivity of the outer medium.
The real part ε0me for metals becomes more negative
with increasing wavelength. By then treating the layer of
the embedding medium by effective permittivity, which
increases with film thickness, it becomes clear that the
resonance shifts to longer wavelengths and becomes more
intense as the layer thickness increases. Note that the
imaginary part ε00me for metals is assumed to be small, which
allowed neglecting the real part of the resonant polarizability.
It is less evident, however, that this thickness dependent

scaling is not limited to the line center of LSPR.
Equation (1) typically leads to a Lorentzian line shape.
If its linewidth does not change much with the thickness of
the outer medium, the tails of the LSPRmust increase in the
same proportion as at the line center. We applied this simple
model for small gold spheres using the Johnson Christy
data [34] for the permittivity of gold. The results are
illustrated in Fig. 3 for the imaginary part of the polar
izability. When the effective permittivity is increased, the
resonance shifts and becomes more intense, as observed
experimentally (Fig. 1). Furthermore, the increase also
affects the tails of the LSPR, reaching the fundamental
wavelength of the laser. Finally, similar effects occur also
for the real part of the polarizability. The changes in the LFs
arise from both the real and imaginary parts of the polar
izability and are, therefore, fully carried through to the tails
of the resonance.
For a more detailed treatment of the observed effects, we

need both the linear polarizability of the gold nanoparticles
and the local field factors (LFFs) near the particles. For
this, we use an approach [19,35] where the polarizability
and corresponding electric potential of a truncated

nanosphere on a substrate [see Fig. 4(a)] are calculated
in quasistatic approximation. In the following, we present
the results for the case where the field is polarized along the
glass surface. The normal polarization components are
known to exhibit similar behavior albeit scaled by a factor
that depends on the truncation angle [36].
We applied this model to small gold nanoparticles with

radius R by using the Johnson Christy data for the
permittivity of gold [34]. The truncation angle was taken
to be θ 50° [Fig. 4(a)]. The permittivity of TiO2 was
taken to be εcoat 5.5 and its thickness h was varied.
The permittivity of the glass substrate was taken to be
εsub 2.25. The absorption spectrum [Fig. 4(b)] is seen to
depend on the ratio h/R.
The general behavior again follows that of the absorption

presented in Fig. 1. The LSPR is seen to shift toward longer
wavelengths and become more intense with increasing
cover thickness. The shift has been discussed elsewhere
[19,37], while not much attention has been paid to the
growth in polarizability [38]. A key difference between the
experiments and simulations is that the latter exhibit higher
LSPR quality factors. This is because the simulations did
not account for deviations in the size and shape of the
particles in the real samples or for the mutual interaction
between the particles. The trend in the polarizability is
similar to the one for spherical particles in a medium with

FIG. 3. Influence of outer medium permittivity (εout) on the
dispersion of the imaginary part of the polarizability of a
spherical gold nanoparticle of radius R.

FIG. 4. (a) Schematic of a truncated gold nanosphere on a glass
substrate and covered with a TiO2 layer, θ truncation angle.
(b) Influence of the TiO2 (εcoat 5.5) cover of different thickness
(h) on the imaginary part of the polarizability of a truncated gold
sphere (truncation angle ∼50°) of radius R placed on a substrate
with εsub 2.25; the h/R ratio is labeled near the curves. Inset:
Polarizability at the fundamental wavelength 1064 nm vs the h/R
ratio. Dispersions of the substrate and the cover are neglected.

PHYSICAL REVIEW LETTERS 120, 113902 (2018)

113902 3



effective polarizability (Fig. 3). The polarizability at our
fundamental wavelength, i.e., the far tail of the LSPR,
grows rapidly with the TiO2 cover thickness and starts
saturating at the ratio h/R of about 3 [inset of Fig. 4(b)]. For
our nanoisland samples with average radius of ∼9 nm, this
corresponds to ∼30 nm thick TiO2 cover, in very good
agreement with the experiment (Fig. 1 inset).
We next apply this model to interpret our experimental

results for SHG. For this, we need the LFFs at the
fundamental and SH wavelengths. For nanoparticles, the
LFFs are space dependent, describing the redistribution of
optical energy to “hot spots,” and tensorial, because the LFs
can contain polarization components not present in the
incident field. Keeping these limitations in mind, the source
polarization for SHG can be written as [39]

P2ω χð2ÞeffL2ωL2
ωE2

0ω; ð3Þ
where χð2Þeff is the effective second order susceptibility, Lω

and L2ω are the LFFs at the fundamental and SH frequen
cies, respectively, and E0ω is the incident field at the
fundamental frequency. Thus, the SHG intensity depends
on the LFFs as

ISHG ∝ L2
2ωL

4
ω: ð4Þ

It is crucial that the dependence at the fundamental
frequency is to the fourth power and at the SH frequency, it
is to the second power.
The application of Eqs. (3) and (4) depends greatly on

how the effective susceptibility χð2Þeff is chosen. We assume
that the SH response arises from the surface nonlinearity of
the gold particles and that the dominant tensor component

of the surface susceptibility is χð2ÞS;⊥⊥⊥, where⊥ refers to the
normal component, as justified in a number of works
[40 42]. This local response, thus, needs to be integrated
over the shape of the nanoparticle. Therefore, the LFF for
frequency Ω is defined as

L⊥
Ω

hjE⊥
Ωðr RÞjiθ;ϕ

jE0
Ωj

; ð5Þ

where E0
Ω is the incident electric field, E⊥

Ωðr RÞ the local
normal component of the field on the particle surface, and
h� � �iθ;ϕ denotes angular averaging, with θ and ϕ being
spherical coordinates for the truncated nanosphere.
The SH intensity calculated according to Eq. (4) as a

function of dielectric coating thickness h for truncated gold
nanoparticles of radius R is shown in Fig. 5, while the
powers of calculated LFFs Lω and L2ω [Eq. (3)] are
presented in the inset.
The expected resonant behavior of the LFF at the SHG

frequency L2ω is evident in the inset in Fig. 5. The LSPR
passes through the SH wavelength (λ 532 nm) for very
thin coatings, but this resonance is quickly lost as the

coating thickness increases. The fundamental wavelength
(λ 1064 nm), on the other hand, is at the far tail of the
LSPR, and the LFF Lω monotonically grows with the
coating thickness. Obviously, these differences are accen
tuated for the higher powers of the LFFs. The average
particle radius in our case is about 9 nm [19], so the h/R
ratio for the maximum cover thickness of 100 nm is about
11. All the LFFs for SHG [Eq. (4)] are combined in Fig. 5.
The contribution of the monotonic growth of Lω is seen to
override any resonant features of L2ω. This, of course,
arises because the scaling with Lω is to the fourth power,
whereas with L2ω, it is only to the second power.
The qualitative agreement for the SH signal strength

between the experimental results (Fig. 2) and theory
(Fig. 5) is seen to be very good. The main difference is
that the experimental enhancement is about a factor of 45,
whereas the theory predicts a factor of 240 for h/R 11.
The factor of 5 discrepancy in SH intensity, however,
corresponds to only a factor of 1.5 difference in field
amplitude. This difference can be, for example, due to the
size distribution of the nanoparticles and due to Fresnel
reflections at the air TiO2 interfaces, which could be
remedied by antireflection coatings on the interfaces.
Our results have links to nonlinear composite materials

[43,44]. The focus in that area has been on bulk type
composite materials with different dielectric properties. In
addition, the role of a host material with high permittivity
on enhancing nonlinear properties has been emphasized
[45]. On the other hand, for metal dielectric composites,
only the role of plasmon resonances is usually considered
[46 49]. The present work goes beyond these earlier results
by highlighting how systematic variations in the dielectric
environment affect the nonlinear responses and how the
local field effects at nonresonant wavelengths can com
pletely overrule the role of any resonant effects.

FIG. 5. Calculated SH intensity for truncated spherical
gold nanoparticles (50° truncation angle) on a glass surface
(εsub 2.25) as a function of the TiO2 (εcoat 5.5) coating
thickness. The intensity is normalized by the SH signal from bare
gold nanoparticles (h 0). Inset: Calculated LFFs at the funda
mental and SH frequencies. Dispersions of the substrate and the
cover are neglected.
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It is evident that the theoretical analysis of the present
results can be significantly improved. In particular, we
describe the local nonlinearity of the metal dielectric
interface by a single component of the susceptibility tensor.
By more extensive modeling, additional components could
be included, as has been done for nonlinear scattering
[42,50] and numerical description of nonlinear metamate
rials [41]. A more important future question, however, is to
consider how the local field effects influence the overall
response of our samples. It is likely that due to the
anisotropy of our thin film structure, the local field effects
are different for different polarization components of the
fundamental and SH beams. Such effect would then
influence different tensor components of the sample in
different ways, whereas the present results were discussed
only in terms of an effective scalar SH susceptibility.
However, such additional factors have no influence on
the main results of the present Letter.
In conclusion, we showed that covering metal nano

particles with a dielectric coating allows the efficiency of
second harmonic generation to be enhanced, independent
of the spectral position of the localized surface plasmon
resonance of the particles. The enhancement was observed
for gold nanoislands covered with a dielectric layer of
amorphous titanium dioxide of varying thickness. We
modeled and explained this phenomenon by the growth
of the local field factors at the fundamental wavelength.
This growth dominates the decrease in the local field
factors at the second harmonic wavelength caused by the
shift of the plasmon resonance away from the second
harmonic wavelength. The importance of the LFFs at the
fundamental wavelength over those at the second harmonic
wavelength arises because the second harmonic signal is
proportional to the second power of the local field factors at
the second harmonic wavelength and to the fourth power of
those at the fundamental wavelength. We believe that this
phenomenon is of great importance and can be observed in
a variety of contexts, independent of the particular shape or
even size of the nanoparticles. In addition, the effect is not
limited to second harmonic generation but should open
new opportunities in all cases where the tailoring of the
local fields can be used to advantage in photonic
applications.
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