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Abstract

The thesis is devoted to adaptive parametric toanmsf based methods in digital signal proc-
essing and logic design. It is organized as aodfiction to the topic followed by six original
publications presenting the main scientific results

The introductory part begins with an overviewuoified approaches to fast Discrete Or-
thogonal Transforms (DOTSs) such as the well-knovast F~ourier Transform (FFT), Fast
Haar Transform (FHT), and Fast Reed-Muller TramefdFRMT). Then, a new unified ap-
proach is presented based on introduction of nemiliess of parametric transforms with fast
algorithms having a unified structure. This progbparametric transforms allow not only to
generalize many well-known fast DOTs but also tatlsgsize an infinite number of new ones
that can be adapted to given application and gimpnt signal by selecting or defining a
proper set of parameters. In particular, one ofptegosed fast parametric transforms is the
Parametric Haar-like Transform (PHT), which wasigtd in applications to important practi-
cal areas, such as image compression and signg#iah@noising. Other examples are para-
metric fast logic transforms such as the Binary dRiiller Haar-like (BRMH), Hybrid
Reed-Muller Haar (HybRMH), Ternary Haar-like Tramshs (THT), which were success-
fully studied in applications to logic design.

The introductory part of the thesis continuethwa short discussion on image compres-
sion techniques. Afterwords, our research aiminget@al the potential of the proposed class
of Haar-like parametric transforms in improving fexrformance of fixed block transforms in
image compression is presented. This has resuitéaa new algorithmsThe nature of the
proposed schemes is such that their performanae lesast as good as that of conventional
Discrete Cosine Transform (DCT) based schemes.

Thereatfter, the application of parametric tfarms in signal/image denoising is pre-
sented. After a short overview of transform basedge denoising methods, two new PHT
based algorithms are described. In these algorjtpost-processing steps using PHT are ap-
plied in combination with the well-known waveletrésholding based denoising. The per-
formance of the proposed methods shown a signfficaprovement in noise reduction com-
pared to the wavelet based techniques.

Finally, the application of parametric transfer in digital logic design is explored.
Many problems in analysis, synthesis, testing gfitali devices have simpler solutions in



spectral than in original domain. Examples of atadsspectral transforms widely used in
digital logic design and communications are Wals&éar, Reed-Muller, arithmetic transforms
that gained popularity due to their simple andogfit in terms of space and time fast imple-
mentations important for practical applications.tthe thesis new binary, ternary as well as
hybrid parametric transforms combining some knorvamgforms were introduced. The pro-
posed spectral transforms are signal adaptivearséimse that they are designed as a result of
analysis of the signal to be processed. New sdaoethods utilizing these transforms were
developed in order to improve their performanceampact representation of binary and ter-
nary logic functions. The proposed methods werdyaed experimentally showing good re-
sults compared to classical transforms. The praptrs@sforms are of interest in logic design
due to their flexible features such as signal adiépt fast implementation and low-
complexity.



Acknowledgements

The work presented in this thesis has been caoueat the Department of Signal Processing,
Tampere University of Technology, during the yez0084-2009.

First, | would like to express my deepest gratittml®rof. Jaakko Astola, my thesis super-
visor, for the possibility to work in an internatal environment at the Department of Signal
Processing, for encouraging me to work on the somichis thesis, for his expertise, valuable
guidance and support during these years.

| express my gratitude to Prof. Karen Egiazaride, leader of Transforms and Spectral
Techniques research group, for his guidance anghlséd advices. It was both pleasure and
honor to work in that group. My special thanks to David Guevorkian for his inspirational
guidance, continuous patience and support durirggrésearch. | would like to express my
appreciation also to Prof. Radomir Stankovic fag &dvices, collaboration and inspiration.
My great gratitude goes also to Prof. Hakob Saraiha from the Institute of Informatics
and Automation Problems (IIAP), National AcademySafences of Armenia.

| express my acknowledgments to Prof. David Akogiad Prof. Ing. Francescomaria Ma-
rino, reviewers of this thesis, for their recommatimhs and constructive comments.

| am thankful to Pirkko Ruotsalainen, Virve Larmaélad Elina Orava for their assistance in
practical matters.

My sincere thanks to all my colleagues and frieadthe university, especially, to Andriy
Bazhyna, German Gomez Herrero, Ekaterina Pogosad@have shared the office with me,
to Robert Bregovic for helping me preparing thesthdor publication, as well as to Dmytro
Rusanovskyy, Alessandro Foi, Andrey Norkin, Artengtkin, Atanas Boev, Stanislav Stan-
kovic and others for making a warm, friendly andenivorking atmosphere.

My great gratitude goes to my parents, Silva andr@g for everything they did for me. |
am thankful to my lovely sisters, Anna and Lilibr ftheir love, support and continuous belief
in me. | express my great gratitude also to myesamvel and my aunt Zhanna for introduc-
ing me to the world of science and for their uniedilove | am always surrounded with.

Tampere, May 2010
Susanna Minasyan






Contents

ABSTRARCT ..eiictiinmssmssenssanssssssssssssssssssssssssssssssssssssssssssssssassssssssssssnsssas sasasssassasssssasssassssnsssnsssansssns I
ACKNOWLEDGEMENTS. ....coiitmismmsanmsssmssanssanmsssnssansssssssssssassssssssssssssssassssssssssssassssssssansssssssanssansss III
L0010 009\ V
ABBREVIATIONS. ... cctiistmisnisanissnisssnssanssssssssssssssssssssssssssssssssssssssssssssssssssssssssasssssassssssssssssasssansss VII
LIST OF PUBLICATIONS ....ooiiitismisanmssnmssenssssssssnsssssssssssssssssssassssssssssssssssassssssssassssssssssssassssnsssnns IX
1 INTRODUCTION....cociismmsnmsnmssnmssnnssansssssssansssssssssssnsssssssssssssssssssssssssasssssssssssssssssssssansssnsssssssas 1
2 DISCRETE ORTHOGONAL TRANSFORMS: BACKGROUND .....ccoconmsmmsnmssanssansssnsssnnsses 5
2.1 Basic Concepts of Discrete Orthogonal Transforms .........cccceeeveiriiseiiniiiniinnnnninns e sssssaeeseas 5
2.2 Karhunen-Loeve TransfOrm ......ccciiiiiiiniiiiiniiiiniesssssns e sse s ssssans s s s sas s ssssasesesssnssssssasasssns 8
2.3 Fast Orthogonal TransfOrmMs ........cciiiiiiiiiiiiiiiiiinrin e s sas e s s s sas e s e sanessns 9
2.3.1 Discrete Fourier transform and fast algorithm ..........ccooiiiiiiiiiiii e 9
2.3.2 Discrete cosine transform and fast algorithm .........coooiiiiiiiiiiiiii e 13
2.3.3  Discrete Walsh-Hadamard transform and fast algorithm ..........cccooeciiiiiiiiiiiiiiic e, 16
2.3.4 Discrete Haar transform and fast algorithm..........ocooiiiiiiiiii e 18
2.3.5  Discrete sIant transformM... .. e e et e e b e s e e 20
24 Unified Approaches to Fast Transform Algorithms and Parametric Transform Families .................... 21
3 APPLICATIONS OF TRANSFORMS IN DIGITAL IMAGE COMPRESSION.........cccsueu 29
31 Image Compression Techniques based on Fixed Transforms ..........cccceeivveeininveinnininininisnnnnnennnsnsnnens 29
3.1.1  The DCT based QPPrOACNES ......cciiiiiieciiiiiiee e sttt e e e e sttt e e e e s st ae e e e e e e s ssatbbaaeeeeaeesssnsbaneeaaesssnnnes 31
3.1.2  Wavelet based apPrOaChEs ......ciiii ittt e e e e e s s e e e e e e e st rareeaaeeeananes 32



3.2 Multiple Transform based Image CodiNg ........ccccviivieiiiiiiiiiniiiieiiinirinneesssar s sase s s sases 34

3.3 Parametric Transform based Compression TechNiqUes.........cccceivveeiiiiieiinininininieennernsee e 35
4 APPLICATIONS OF TRANSFORMS IN SIGNAL AND IMAGE DENOISING.........ccsueu 39
4.1 CONCEPL Of DENOISING...ceiiiiuriiiiiiiiiiriiiiiiiieisiit st s s s sss s s sas s s e s sans e s e as e ssssasesesssnsessssnnessssnnens 39
4.2 General Transform Based Denoising TEChNIQUES .........ccceiiiiiiiiiiiiiiniiiiniirinee s 40
4.2.1  Utilized thresholding FUIES.........ueiii i e e e e s e e e e e e s seaabaaeeaaaeeas 41
4.2.2  Local transform based dENOISING ........cccuviiiiiieeii ittt e e e e e s bae e e e e e e seenabraeeaaeeeas 42
4.3 PHT BASED Denoising Techniques and Experimental Results..........ccceevveiiiiiveiniiiieiinisininnnieensssenenns 44
4.3.1 1D signal denoising based on PHT transform .........uvviiiiiiiiiiciiiieee et e e e 45
4.3.2 Image denoising based on PHT transforMi.......cciiciiiiiiiee e e e earee e e e 46
4.3.3  EXPEIIMENTAl FESUITS...eiiiiiiiiiiiiieei ettt e et e e e e s et e e e e e e s sttt aeeeaaeeeasasbbaeeeaeeesannssaneeaaaeeas 46
5 SPECTRAL METHODS/TRANSFORMS IN LOGIC DESIGN........cccocusumsmmsnssnssnssnssnssessens 49
5.1 Functional Representations of Switching Functions: AND-EXOR EXPressions..........ccceeeveeeeessunessssnnens 50
5.2 WOrd-Level EXPrESSIONS........eeeeiiiiiiiiiineiniiiiiiiisiteeeeiisssssssseeesssssssssssesssssssssssssssssssssssssssssssessssssssssnsens 55
5.3 Spectral Approach: Boolean vs. Transform DOmain ........ccccceeiiiiveeininnieinninnnininnenssinsessssesssssssesssnns 56
5.4 Reed-Muller Transform for Multiple-Valued LOGIC.........ccceeriveiriisieiiiinneiinininisinensssnnssssanssssssasesens 57
5.5 Reed-Muller Haar Transform ... ssssssssssssssssssssasssssssssssssssssesssssnsess 58
5.6 HYDBFId TransfOrmMS ......ueeiiiiiiiiieieetiiiicicrenneeeteessesssnneessessssssssnsesssssssssssnnsesssssssssssssnsessssssssssnnsesasssssssnn 59
5.6.1 Hybrid Reed-Muller Haar transfOrm.........cciiiiciiiieiiie ettt e e et e e e e e s s e saaaaeeeaaesssanes 60
5.6.2  Binary hybrid Reed-Muller Haar-like transform..........cccoecuiiiiiieii i e 61
5.7 Ternary Haar-like Transform........uic i ieiiiiicciicneeeenessccceneeesssssssssnnesesessssssssnnsssesssssssssssnsssnsssssnns 62
5.7.1  Application of HybRMH, BRMH and THT transforms ...........ueeieeiiiiiiiiiiiiee e cciieeee e e ssiineee e e e e e 62
6 SUMMARY OF PUBLICATIONS ....ccismisunssanssssmsssnssassssssssasssansssssssssssassssssssssssasssassssnsssansas 65
7  BIBLIOGRAPHY .....coiiiiismisnnssnisssmsanssssisssnssssssssssssssssssssssssssssassssssssssssssssassasasssassnsssssnnssansns 67

Vi



Abbreviations

AWGN
BF
BPHT
CDMA
CTF
1D/2D
DD
DFT
DOT
DCT
DST
DHT
DWT
DWHT
DPCM
ECG
EZW
EBCOT
FDCT
FFT
FFT-LF
FHT
FPRM
FPRMH
FWHT
GF
GRM
HVS
HybRMH
IDFT

Additive White Gaussian Noise
Boolean Function

Binary Parametric Haar-like Transform
Code Division Multiple Access
Customized Thresholding Function
One/Two Dimensional

Decision Diagram

Discrete Fourier Transform

Discrete Orthogonal Transform
Discrete Cosine Transform

Discrete Slant Transform

Discrete Haar Transform

Discrete Wavelet Transform

Discrete Walsh-Hadamard Transform
Differential Pulse Code Modulation
Electrocardiogram

Embedded Zerotree Wavelet Encoding
Embedded Block Coding with Optimizedification
Fast DCT

Fast Fourier Transform

Fast Fourier Transform-ordered — lteffi
Fast Haar Transform

Fixed Polarity Reed-Muller

Fixed Polarity Reed-Muller Haar

Fast Walsh-Hadamard Transform
Galois Field

Generalized Reed-Muller

Human Visual System
Hybrid Reed-Muller Haar

Inverse Discrete Fourier Transform

vii



Iics
JPEG
KLT
LT
LTD
MBR
MSE
MTIC
MVL
NPRM
PHT
PPRM
RM
RMH
SOP
SPIHT
ST
THT
TI
VLSI
WHT

viii

Iterative Image Compression Scheme
Joint Photographic Expert Group
Karhunen-Loeve transform
Lapped Transform
Local Transform based Denoising
Multiple Bases Representation
Mean Square Error
Multiple Transform Image Compression
Multiple Valued Logic
Negative Polarity Reed-Muller
Parametric Haar-like Transform
Positive Polarity Reed-Muller
Reed-Muller
Reed-Muller Haar
Sum-of-Products
Set Partitioning in Hierarchical Trees
Slant Transform
Ternary Haar-like Transform
Translation Invariant
Very Large Scale Integration
Walsh-Hadamard Transform



List of Publications

The thesis consists of introductory part and tHeecoon of the following publications, which
are referred to as [P1]-[P6].

[P1]

[P2]

[P3]

[P4]

[P5]

[P6]

S. Minasyan, R. Stankovic, K. Egiazarian, stofa, "Hybrid Reed-Muller Haar Repre-
sentations of Logic FunctionsJpurnal of Multiple-Valued Logic and Soft Computing
vol.15, pp. 341-359, 20009.

S. Minasyan, J. Astola, D. Guevorkid@n a Class of Parametric Transforms and its
Application to Image CompressiorEURASIP Journal on Advances in Signal Proc-
essing vol. 2007, 14 pages.

S. Minasyan, R. Stankovic, J. Astola, “Ternbigar-like Transform and its Application
in Reduction of Spectral Representation of Ternayed functions, Eurocast 2009
Workshop on Simulation and Formal Methods in SystBesign and Engineering &
LNCS 2009, pp. 518-529.

S. Minasyan, J. Astola, R. Stankovic, D. Gu&ian, "Reduction of the number of co-
efficients in Reed Muller Haar-like spectruniiit. Workshop on Spectral Methods and
Multirate Signal ProcessingMMSP 200,/Moscow, Russia, Sept., 2007, pp. 69-74.

S. Minasyan, K. Egiazarian, J. Astola, D. Gu&ian, “Signal Denoising based on Pa-
rametric Haar-like Transformslint. Conf. on Signal Processing and Multimedia Appl
cations,SIGMAP 2006 Setubal, Portugal, August, 2006, pp. 134-139.

S. Minasyan, J. Astola, K. Egiazarian, D. Garkian, “Parametric Haar-like Trans-
forms in Image Denoising’int. Conf. on Image Processing, ICIP 20@8lanta, USA,
October, 2006, pp. 2629-2632.






Chapter 1

Introduction

During the last two decades there were seriousred&in the theory and practice of digital
signal and image processing resulting in many famgdystems and devices such as digital
television, mobile phones, computers, digital caamsenavigation devicesgfc. In this sense,
digital signal and image processing have becomentagral part of human daily life. The
more they are integrated in our daily life, thegber are the requirements on them and the
more efficient methods for designing such systenasdevices need to be developed.

For example, one of the most important digital imggocessing applications is image
compression the aim of which is to represent digitages with as little information (in terms
of number of bits) as possible and at the same tinpeeserve the visual quality of images as
high as possible. Analyzing this application, oa@ ootice that in early digital cameras one
or two megapixel resolution images were considéoggroduce enough quality, whereas no-
wadays even ten megapixel resolution images arsidened to be of only moderate quality.
At the same time, the number of images taken andessed by people has dramatically in-
creased. All these images need to be stored asdfbrvia communication links, often wire-
less. Even though the storage capacities as weéleasommunication bandwidths have also
significantly increased, it is clear that for eifint handling of the enormous amount of large
images, there is a great demand for image compredschniques that would reduce the
amount of the information representing images glér and higher rates.

Similarly, analyzing another important signal anthge processing application, the noise
removal (or denoising), one can notice that mo more advanced techniques are needed
with the growing user experience resulting in highser expectations from one side and the
growing range of signal and image processing dewace systems introducing different kinds
and different levels of noise from another side.

One of the most important toolsets widely usedigma and image processing applica-
tions, in particular, in signal and image compressand denoising, is based on the classical
mathematical theory of spectral techniques. Indhegshniques, the actual processing of a
signal or image is implemented in the spectral donta which the original signal or image is
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transferred using a spectral transformation. Téigseful in many cases since some features
of the signal or image are better representederspectral domain than in the original time or
spatial domain. For example, in signal and imageoténg, transferring to the spectral do-
main helps separating a white noise from the signahage since the signal is highly corre-
lated and is concentrated in low frequency comptmehthe spectrum while the noise being
uncorrelated is concentrated mainly in the higlgdency components. Similarly, in image
compression, transferring to the spectral domalipsheeparating image details from the prin-
cipal content. In the cases where the detail caigmered or weakly presented this means a
possibility of presenting the principal contenttbé image with less components in the fre-
guency domain compared to the original spatial domepresentation.

However, to make a spectral technique efficienbrie or another application the correct
choice of the spectral transformation is very int@ot. In signal/image compression and de-
noising applications, mainly Discrete Orthogonasforms (DOTSs) (see,g.[1], [10], [49])
and Discrete Wavelet Transforms (DWTSs) (s&eg,[26],[28],[37],[55]) are used. Among the
DOTs, the most popular are the Discrete Fourien3iam (DFT), Discrete Cosine Trans-
form (DCT), Discrete Walsh-Hadamard Transform (DWHDiscrete Haar Transform
(DHT), Discrete Slant transform (DST). It should inentioned that for each input signal or
image there is the most optimal DOT. However, gigime optimal DOT for each input in
practical applications is often impossible. On dtker hand, signals or images can be com-
bined in groups represented by stochastic procebsébat case, instead of considering the
optimal DOT for each input, a single transform dogroup of inputs could be considered. For
example, it is known that natural images can beeatealdas first order Markov processes with
high correlation coefficienp, o <(0.9,0.95) and the optimal DOT, both in image compres-
sion and denoising applications, is the well-kndtarthunen-Loeve Transform (KLT), which
is formed from the eigenvectors of the covarianegrmmof this process [10],[49]. Though, in
some cases this may be useful, in practice th@UKRT is rather restricted due to computa-
tional complexity reasons. Instead, suboptimatgferms such as DCT or WHT are used
which can be computed with much lower complexitingsvell-known fast transform algo-
rithms [68]. These transforms (especially DCT) hiwrey been successfully used in the above
mentioned applications. However, a further improgatmof the performance of signal and
image compression as well as denoising applicatismather difficult to expect using any
fixed transform since it has become clear that rafribem can be suitable to the large variety
of different signals and images processed nowaddysefore, recently adaptive spectral me-
thods have gained popularity. This theory is stithe beginning of development but had al-
ready given some results. For example, in [65]y&dficient image compression method was
developed by varying only the size of the DCT tfans.

Another important field of application of specttathniques is digital logic design, which
is very valuable ing.g. Boolean function (BF) analysis for classificatias well as finding
fictive variables, in digital circuit synthesisic [6],[34],[44]-[46],[50]-[52],[66],[69],[100].

In this field, the spectral transforms are used aléh the aim of reducing the number of non-
zero spectral coefficients for input function reggptation. Most often used transforms are the
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Reed-Muller transform and (unnormalized) Haar ti@ms and their different generaliza-
tions/extensions [51],[52],[79],[84]. Similarly, tbe case of signal and image processing, also
in this application one can expect a significamfgrenance improvement by utilizing adap-
tive spectral methods since none of the fixed faanss can match the characteristics of all
kinds of logical functions. The large area of apgtiions of spectral techniques in terms of
theory of logic design may be found in [45], [588].

In this thesis, parametric transforms based adapectral methods are investigated in
applications to signal/image compression and dempisas well as logic design. Parametric
transforms are described with matrices involvingadgarameters. In this way, a parametric
transform represents a family of transforms fromcltihe desirable one can be chosen using
an appropriate set of parameters. This gives ailplitysto adapt the transform features dy-
namically during processing with the aim to bestahaup the transform to the given task and
the given input characteristics. Another advantaigparametric transforms is the possibility
to implement large families of transforms with afiel software/hardware that is efficient for
each representative of the family and may be ttoe¢de desired transform. Parametric trans-
form based adaptive spectral techniques were ndiest sufficiently, though they may offer a
significant new breakthrough in improving efficignaf many applications.

The aim of the present research is to improve thgency and enlarge the scope of dif-
ferent applications of signal processing and ladgsign by using fast adaptive parametric
transforms. With this aim, new parametric transf®@nd new methods utilizing these trans-
forms in different applications, such as signalfy@arocessing and circuit design were de-
veloped. In particular, in this thesis, a fast pagtric Haar-like transform that is input adapted
and can be designed according to the certain paeasns proposed. For this transform we
introduced a methodology to define parameters @h suway that the matrix of the resulting
transform involves predefined rows.

The proposed Haar-like transform was efficientlplagal in signal/image compression and
denoising applications. With respect to logic fumctprocessing methods, three approaches
were proposed for reduction of the spectral repag®ns of logic functions. The first ap-
proach is based on the proposed fast binary Hiartiansform. The second approach is
based on the proposed fast hybrid Reed-Muller aasform defined for different algebraic
structures, in particular, Galois fields of ordrand 3. For these transforms fast calculation
algorithms based on classical theory of FFT-likgoathms have also been developed. The
third approach is based on the synthesis of agtrnansform for processing of ternary logic
functions. Transforms and methods that were deeeldpr processing of logic functions can
also be useful in solving other problems of logésign and communications.






Chapter 2

Discrete Orthogonal Transforms:
Background

In this chapter a short overview on the fast digscathogonal transform theory is presented.
After a general background on discrete orthogaaaisforms presented in Section 2.1, defini-
tions of most widely used transforms with their meglevant properties are given in Sections
2.2 and 2.3. This is followed by a short overviewdifferent unified approaches to fast trans-
form algorithms and new parametric transform sysitheethods presented in Section 2.4.

2.1 BASIC CONCEPTSOF DISCRETE ORTHOGONAL TRANS
FORMS

Let Hy be a unitary(NxN) -matrix, i.e. Hp -H*N = H*N ‘Hyn=I N Where HT\| is a conju-
gate transpose of the matriky. For an(Nx1) input vectorx =[xy, X, ..., xN_l]T (subscript

T denotes the transposition operator), (Nx1) vectory =[yg, ¥y, -.-, yN_l]T
y=H X (2.1.2)

is called a Discrete Orthogonal Transform (DOT)ofThe vectory is also referred to as the
spectrum ofx . Equation (2.1.1) is, in essence, a representatian arbitrary vectoy as a
linear combination of columns of matrid , , which form a set obasis functionsn a new

coordinate system.
The inverse to (2.1.1) DOT is defined as

x=Hy=H}v. (2.1.2)
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In (2.1.2) the input vectox is represented as a linear combination of therno&iof the ma-

trix HT\| with the coefficients being the components of sect.

Equations (2.1.1) and (2.1.2) corresponding toathe-dimensional (1D) transform can be
extended to the two-dimensional (2D) transform.phactice, separable 2D transforms are
mostly used where first a 1D transform is appliecéach column of the input matrix and
then the same or another 1D transform is appliegath row of the resulting matrix. Thus, a
separable 2-D transform over &N x M) input matrix X is defined as follows:

Y =H\XQp (2.1.3)

where Hy and Qp, are unitary matrices of sizgN x N) and (M x M), respectively. In

many practical applications, the case whisre M and Q) = HT\, is used.

The inverse separable 2D transform over(Brk M) matrix Y is then given as follows:

X=HNYQuy . (2.1.4)

Let us note that equations (2.1.3) and (2.1.4)reésdly mean the representation of the
matrix on the left sideY and X, respectively) as a linear combination of so chbasis im-
ages of the corresponding transform, which are éarms products of columns of the left ma-

trix (H,, and H},) with the rows of the right matrix@,, andQ,, , respectively) [49].

Few examples of the most often used (classicalsfoams are:
— Discrete Fourier Transform (DFT)
— Discrete Cosine Transform (DCT) of Type-Il
— Discrete Walsh-Hadamard Transform (DWHT)
— Discrete Haar Transform (DHT)
— Slant transform (ST)
— Wavelet transforms (WTs)
— Lapped transforms (LTs).

DOTs constitute the base of spectral methods widesd in many applications of digital
signal and image processing such as compressltarjniy, pattern recognition, communica-
tions, etc [49],[53],[90].

In a spectral method, the input signal is firsnsferred to the spectral domain using a
transform. Most often a DOT is performed, which nadgo be considered as a transferring the
input signal to a new coordinate system. This im&ersal idea and can be applied to solve a
large variety of theoretical and practical probldijs(such as compression, denoising). Then,
a computational procedure is applied in the spedtrenain. After that, the inverse transform
may be performed to convert the result back ine témporal or spatial domain if it is re-
quired by the application.

The DOTs are linear, easy invertible, and posdessriergy conservatioproperty which
means that the energy in the original and spedoaiains are the same. This means that for
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an input signalx and its spectruny obtained as the result of a DOT, the following rexp
sion known, as the Parseval’s relation, is satisfie

N2 & 2
_Z_llml =_le>4| : (2.1.5)

Many of the DOTs have also a goedergy compactioproperty. This implies that in the
transform domain they concentrate most of the gnefgan input signal into few transform
coefficients. It should also be mentioned that mber of efficient algorithms for fast imple-
mentation of many DOTs have been developed. Thessoane of the reasons why DOTs are
attractive to many researchers and why they arelwigsed.

When applying a spectral method to solve a problmimmediate question of selecting
the most appropriate transform naturally evolveactEtransform has its specific area of ap-
plications, which is determined by several factdr& quality of processing, computational
complexity, memory demandstc. For a given class of signals or applications réage trans-
form is optimal. Therefore, the choice of the tfan®: depends on the application and on the
class of inputs to be processed or analyzed usagpectral method. For example, in image
compression, a typical digital image contains ahldggree of redundant data, implying the
presence of some correlation between neighborirglgiTherefore, the main benefit of any
transform used in image compression is the remoefrrgdundancy by decorrelating the data
in the transform domain, that iscampactnessf a transform. In many applications, the theo-
retically optimal transform is the Karhunen-Loevansform (KLT) [49]. However, the KLT
is an input dependent and computationally very detimg transform as it does not possess a
fast algorithm. In practice, signal independertvaqtimal transforms allowing fast imple-
mentations are used instead of the optimal buttidependent and computationally demand-
ing one like KLT.

Generally, two types of transforms may be considlere

1. Fixed transformsvith matrices having constant entries.

2. Parametric transformsvith matrices described in a unified form involgia set of pa-

rameters.

Among the large variety of fixed transforms, the caled classical transforms such as
DFT, DCT, DWHT and DHT and ST are used most oft@ne common feature of the listed
transforms, making them useful, is that there efsist algorithms for computation of each of
them. Analysis of these fast algorithms shows #iaof them can be presented in a unified
factorization form which describes a family of tsforms, among which the desired one can
be chosen using the appropriate values of parameierthis sense, parametric transforms
take an intermediate place between the fixed toamsf and KLT. In some applications or in
some methods, parameters describing the transfambe fixed once thus making the trans-
form input independent. On the other hand, in sother applications or methods, using pa-
rametric transforms offers a possibility to make thansform input-dependent by varying the
set of parameters describing the transform. Thisgya great opportunity to improve the per-

7
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formance of fixed transform based spectral methaydsiaking use of adaptive spectral meth-
ods where the transform can be changed even dprimgessing a single input. Potentially,
even KLT may thus be outperformed because KLTfiged transform for a fixed input sig-
nal. At the same time the computational complegitya parametric transform will approxi-
mately be the same as that of a fixed transform.

2.2 KARHUNEN-LOEVE TRANSFORM

The Karhunen-Loeve Transform (KLT) [49] is an omgboal transform which produces un-
correlated coefficients from a correlated signaubing the information on signal statistics.

Let u be an Nx1) real-valued random vectorhe basis vectors of the KLT are given by
the normalized eigenvectors of its covariance ma®j, such that,

Ru(pk:/lk(pk, ngg N_l, (221)

where {4} and{gy} are the eigenvalues and eigenvectorRpf respectively.

The KLT of vectoru is defined as
v=0'.u (2.2.2)

and the inverse KLT is defined as

N-1
u:<I>-v:kz v(K)oy. (2.2.3)
=0

where @y is the kth column of matrix®. The unitary matrix®' is known as the KLT ma-

trix.
The matrix® reducesR to its diagonal form, that is,

®"R,® =D =diag{ 4}, (2.2.4)

where D is the diagonal matrix with eigenvalues locatedlse main diagonal in decreasing
order. All these eigenvalues are always nonnegaitigecorrespond to variances of the trans-
form coefficients. The diagonalization of covarieanmatrix of the transform coefficients
means the decorrelation of input data.

In many cases, signal statistics is unknown. Hemég approximated with different statis-
tical models. For example, the statistics of snsdly, 8x8) blocks of natural images can be
described by a first order Markov process with ghhiorrelation coefficient. The covariance
matrix of a first order stationary Markov sequerggiven by
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» 2 N
P 1 P pN_z

R=| . . . lp<1. (2.2.5)
_pN—l pN—Z pN—3 1 |

For natural imageg is between 0.9 and 0.95 meaning that neighborixgjgare on average
similar to each other.

Properties of KLT:

1. KLT is a signal-dependent transform designed frbmihput signal at hand (it needs a
priori information of signal statistics which magtralways be available).

2. KLT has the highest energy compaction comparedyofixed transform (DCT, DFT,
WHT, etc). In this sense, it is the optimal transform.

3. KLT matrix computation needé)(N3) and KLT itself need@(Nz) operations. Due to

the computational complexity, it is not always fe&sto use KLT even if the necessary
a priori information is available.

The KLT plays the fundamental role in many diggajnal processingpplications such as
face recognition, feature extraction, ECG signalkessing.

2.3 FAST ORTHOGONAL TRANSFORMS

When utilizing a particular spectral transform irsignal processing application, one should
take into account the transform’s computational glexity including the number of arith-
metical operations, that is, additions and multigiions. The need of reduction of computa-
tional requirements brought to development of fgorithms derived for different DOTSs.
The following subsections describe most widely uB&iTs and their fast computational al-
gorithms.

2.3.1 Discrete Fourier transform and fast algorithm

The discrete Fourier transform (DFT) is a complakied transform. The direct DFT and the
inverse DFT (IDFT) of alN-point complex-valued vectot = {Xy, %, ..., Xy_1} are defined by

N-1
Ym= > XWN', m=0,...,N-1 (2.3.1)
n=0

N-1
Xn= > YaWN™, n=0,..,N-1
m=0
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whereWy = e 127/N  theN-th root of unity, is called awiddle factor

The expressions (2.3.1) may be rewritten in a xagctor product form as follows

y =FnX
(2.3.2)
x=FNY,
where the entries ofN x N) matricesFy and F,Z,l are given by
[FN ]nm :W“m’
-1 1..,-nm - .
[Fn] _NWN , n,m=0,1,....N- : (2.3.3)

with n and m denoting the indices for entries of the matriégg, F,(,l.
The DFT is the base of many signal processing eledammunications algorithms related

to spectral analysis, convolution, filtering, sigmaconstruction, compression, communica-
tionsetc[49], [100].

Fast Fourier Transform

The computation of direct transforms is inefficiehte to large number of computations re-

quired. The direct computation dEpoint DFT (2.3.1) require©(N?) operations. In prac-

tice, the fast Fourier transform (FFT) is used. Tits¢ fast algorithm for DFT of orded was
developed by Cooley and Tukey in 1965 [29]. Themidea of FFT consists of splitting the

calculation of arN-point DFT into DFTs of smaller sizes. That is, tNe= 2"-point DFT is
decomposed into twd\{2)-point DFTs followed by the multiplications witviddle factors,
and then /2) 2-point DFTs. Similar algorithm is applied reswely until the entire DFT is
obtained for 2-point DFTs. This brings to signifitaeduction of computation complexity.

In principle, the FFT decomposition by Cooley ank&y may be implemented for the in-
put sequence of sidd, which is a composite numbir= pg, by decomposing the sequence

into p sequences of sizg, then computing-point DFT for each sequence and multiplying

the resulting sequences twiddle factors The sequences are then reorderedgapdrallelp-
point DFTs are computed.

In general, FFT may also be derived by using md&ctorization. For example, the matrix
factorization corresponding to one of the most knd#Ts, the Decimation In Time (DIT)

FFT of orderN = 2" without normalization factors is presented as [3&§

Fyn :E:ij[;(lzi OF @1 gi1)(l 3 ®T 4 )]Q (2.3.4)
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I:_1 1
2711 1|

l r/2 Or/2

r
i , O<k<—,j=v-1
Oy, exp[—@kj 2 :

where

T, =diag

Q= nl:[2(| on-2-i @Pjva ’2),

i=0

where ‘®’ stands for the Kronecker product y,0 are the identity and zero matrix of or-
der N, respectively;Py » is the permutation matrix that reorders the ingdtor into a vec-
tor with even and odd indices, that is,

y=Py.2 (X X11---’XN—1)T = (%0 %0 K 2 %0 X X )T
With the representation (2.3.4) of mati, in the form of the product of sparse matrices
F :(lz. ®F2®I2n_i_l)(l 4 ®T ), the DFT
Y =FonX

may be computed im stages where at each stagel,...n a computationally simple trans-

form with the sparse matrie") is implemented:
Xg = QX;
xi=F("D.x_4, i=1..n (2.3.5)
Y =Xp.

It can be seen that the structure of matrie€ ™" is such that the multiplication of them to
an input vector means the implementationNof2 basic operations over pairs of input com-

k+2-1-1
stagei =1,...n. Each basic operation consists of pre-multiplyting componenb to a twid-

. . T . . T
ponents|a, b]T {){(‘1, %1 J of the vectorxi_l:[x'o‘l,...,%\l‘}l} being the input to

! The Kronecker product of two matrices\:[a(m n)] and B=[b(k,|)] is the block matrix
C=A®B=[a(m nB]J-
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e—]27zk/2

dle factor according to the matri;él i ®T2-) and then implementing a 2-point

2n— |

DFT to the resulting pair according (d)zn_i ®F2®|2_1). That is, the basic operation con-

sists of forming a new pafc, d] such thatc= a+ € 12/ pandd = a— ¢ 12™/? b. Thus

at each stage aboWll /2 multiplications and N addition/subtractions are implemented.
Since there aren=log N stages, the total complexity of the fast transfailgorithm (2.3.5)
is estimated a®©(Nlog N) operations.

The FFT algorithm corresponding to the represestafl.3.4) can be mapped into the
flowgraph as shown in Figure 2.1 for the ca$ée-8. As in (2.3.5), the Figure 2.1 consists of
several stages, each corresponding to multipliodtipone sparse matrix in the matrix repre-
sentation meaning a permutation of input componentsrder to form corresponding pairs
[a, b]T = [ >{<_1, )ik:—]-Zi_l—JT followed by N /2 basic operations.

It should be noted that there are many versiorisFdf algorithms with different computa-
tional complexities and structures [38],[71], [8/44], [96]. Of our particular interest is the so
called constant geometry algorithm, which as wasvshin [2] is based on a DFT matrix fac-
torization in the form of the product of block-d@wl matrices (presented as direct sums of
kernels) and special permutation matrices thatatochange from stage to stage. This repre-
sentation corresponds to a unified representatiesgnted in Section 2.4 as the base for syn-
thesizing new large class of parametric transforms.

x(0)

v

X(0)

v

X(1)

O NV

v

v

Wi W 3
x(1) —a — > X(4)
x(5) — . ! > X(5)
. DO AN
e > N ©)
X(7) > X(7)

Figure 2.1 FFT foN=8.

The basic building block used in FFT is the operatialledbutterfly, given in Figure 2.2,
wherec=a+ bW andd =a- bW, r=0,..,N-1
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Figure 2.2 Butterfly diagram for FFT.

Properties of FFT{Cooley-Tukey FFT of ordeN = 2"):
1. n=log, N stagesN/2 butterflies per stage

2. (N/2)logp N complex multiplications; Nlog, N complex additions; totally

O(Nlog, N) operations.

2.3.2 Discrete cosinetransform and fast algorithm

The discrete cosine transform (DCT) was first idtreed in 1974 by Ahmed et al [9]. Four
types of DCT have been defined [47], [72]. Here,amesider the Type Il DCT since this is
the one used both in digital image compressioniargignal/image denoising. In what fol-
lows we refer to Type Il DCT as DCT. It was showattDCT transform is very close to the
KLT derived from covariance matrix of first orderakkov process with high correlation de-
gree (0 >0.9). The DCT has excellent decorrelation and eneoygpaction properties [10].

The 1D DCT is an orthogonal transform
y=CyX
with the matrixC,, having the following real-valued entries:

_zk(2n+1)
T 2N

2
c(k,m=4an co k,n=0,...,N-1 2.3.6
(k) N (2.3.6)
where N is the size of the transform, andy are theN x1 input and output vectors, respec-
tively, and

1
a(n ={2’

1, otherwise.

fork=0

The DCT matrix of ordeiN =8 is the following
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[0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 B635 0.3536]
0.4904 0.4157 0.2778 0.0975- 0.0975 0.2778 97/41-0.4904
0.4619 0.1913 - 0.4619- 0.4619- 0.4619 0.1913 0319 0.4619
0.4157 - 0.0975 - 0.4904- 0.2778 0.2778 0.4904 0.0979.4157
0.3536 —0.3536 - 0.3536 0.3536 0.3536- 0.3536 86350.3536|
0.2778 —-0.4904 0.0975 0.4157- 0.4157 0.0975 049-0.2778
0.1913 -0.4619 0.4619- 0.1913- 0.1913 0.4619  ©0A6 0.1913
|0.0975 - 0.2778 0.4157 — 0.4904 0.4904 (G4l 0.2778 - 0.097%

The 2D direct and invers®CT for a matrix X of size NxN with elements
[X],,,=Xm 1 is defined as follows:

vind= K3 z z kmrcos[”r@““)}co{“(z””ﬂ

(2'\" ) (22'\' ) (2.3.7)
zr (2m+ zs(2n+
(mi-% s momwrb:os[ D |cog T

where Y is the matrix of the DCT spectral coefficients wfatrix X, with elements
[Y] s=MYrsl;and p(r) and p(s), 0<r,s<N-1 are defined as follows:

The 2D DCT of(N X N) matrix X is a separable transform that may be expressed as:

The 64 basis images of size (8x8) for the 2D DQT ibustrated in Figure 2.3 a). Essentially,
when implementing a transformation of an image i DCT, the image is presented as a
linear combination of these images.

I

.
a) b)

Figure 2.3 Basis images of 2D transformsNeB: a) DCT, b) WHT, c) DHT.
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The DCT is quite useful in many applications, fostance, in compression, denoising,
adaptive filtering [93], [97], [99], [100].

Fast DCT

Many fast DCT (FDCT) algorithms are presented tierditure [47]. In particular, the FDCT
by Chenet al [25] is one of the most known ones. It is basedhe following matrix repre-
sentation (without normalization factor):

_(c 0
Cy=Py| 2 = |By, (2.3.9)
0 RN

whereP_l\I IS a permutation matrix which permutes the evemsron decreasing order in the

lower half; EN/2 is derived from the matrbR,, by reversing the orders of both the rows
and columns oR . The entryr;, (i,k =1,...,N) of the matrixR is

Qi+1)(X+ V7

I, = COS ;
K 4N
B\ is the following butterfly matrix:
| |
B, =|_V2 M| (2.3.10)
Iniz —ly)s
where |, and In/2 are the identity and counter identity matricesoader N/2, respec-
tively.
cos(z /4) o
%o j /\ cos(r /4) > Yo
cos(z /4) R
N/ »
sin(z /8) >
X \\\ /// / 1 _COQS;Q/[ ,)8) > V2
cos(z /8
sin(z /16)

y

:: NN s ><:\sosenm))/_c E)SMG) t z:
TN o
. / B \ oS ><v/&’s(3” /}@kcos@ 1o,

=) sin(z 116) yr
Figure 2.4 Forward FDCT algorithm fd=8 by Chen.
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The flowgraph of FDCT of ordeN =8, given in Figure 2.4, is the mapping of FDCT ma-
trix decomposition (2.3.9). The decomposition (2)3may be reduced to the product of
block-diagonal and permutation matrices, the flaapdr of which has a regular constant-
geometry structure [14], [87].

Properties of FDCT

FDCT flowgraph in Figure 2.4 has the FFT-like stume. The complexity of FDCT is
O(Nlog, N), whereN is the power of two [10], [47], [72]. FON =8 the FDCT in Figure
2.4 has 20 multiplications and 26 additions.

2.3.3 Discrete Walsh-Hadamard transform and fast algorithm

The Discrete Walsh-Hadamard Transform (WHT) isa, reymmetric and orthogonal trans-
form of orderN =2",n=1,2,... The basis functions of the WHT are rectangular eotain

only two non-zero values {+1,-1} normalized accaoglio transform size.
The WHT matrix is generated recursively from theecamatrix

W = 111 1
2_5{1 —1}

as

1
Wl:[l], WN Er—

= (2.3.11)

Wy Wy2
Wy —Wyy2

Another definition of WHT is;Wy =W, @ Wy, = W,*".
The WHT matrix of ordemN =8 is the following:

-1 1 -1 1-1 1-
1-1-11 1-1-
-1 -1 1 1-1-1

11 1 11 1 1
1 -1 1-11-1 1-
11 -1-11 1-1-
111 -1 -1 1 1-1-1
Wg -7
gl1 1 1 1 1 1 1
1
1
1

Depending on the ordering method of Walsh functidhere are different versions of Walsh
transform,e.g Walsh-Paley, Rademacher-Walsh transforms [30],[ibe WHT consists of
the complete set of orthogonal Walsh functionsraged in Hadamard ordering [45]. Only the
WHT matrix (2.3.11) has a recursive Kronecker padiructure. Since the WHT matrix is
symmetric, the direct and inverse transforms aestidal up to a normalization factor. The
basis images of the 2D WHT fdd =8 are shown in Figure 2.3 b).
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Another definition of WHT matrixWy can be derived as follows. Forj €{0,1,...N - },
the value of each elemerwy (i,j) of Wy is defined based on the binary expansions

<ig,iq,---ip—1> @and < jg, j1,--.in—1> Of its indicesi and j, respectively. This results in

S imim
- - nj:o
Wi (i, 1) = (-1)

The WHT is useful in many different applications si§nal/image processing, such as
power spectrum analysis, filtering, image codingl @mhancement, processing of medical
signals (e.g. ECG), communication technologies (G)Mogical design and analysis [23],
[45], [51], [52].

Fast WHT

In practice, fast WHT (FWHT) with a structure siamilto that of FFT-like algorithm is util-
ized. There exist many FWHTs. The matrix repregemtaf a FWHT of ordelN = 2" is

Wy =1 (12 ©W,®14) (2.3.12)
i=1

wherel, is the identity matrix of order .

The FWHT matrix decomposition (2.3.11) for order=8, mapped into a flowgraph is
given in Figure 2.5, a). Similarly to the case &fTF-the expression (2.3.12) can be reduced to
a decomposition form including block-diagonal amdrputation matrices at each iteration [2].
Such representation is important since it is theelbaf a unified representation for synthesiz-
ing a wide class of new parametric transforms Geetion 2.4).

]

<
VIS4 NV
XX N XX/
RS> XX\ .

VARV VAN —

a) b)
Figure 2.5 Fast algorithms of ord&r=8: a) FWHT, b) FHT.

v

X
X

v
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Properties of FWHT
The FWHT has an FFT-like structure similar to time an Figure 2.1. The only difference be-
tween FFT and FWHT is that the latter consists olfy cadditions. The FWHT of order

N =2", may be implemented witin=1log, N iterations. The computational complexity of

FWHT is O(NlogN). Particularly, forN =8 the FWHT given in Figure 2.5 a) consists of 3
iterations, at each of which the 4 butterfly openat of order 2 are performed.

2.3.4 Discrete Haar transform and fast algorithm

The Haar functions [10] constitute an orthogonataagular basis similar to the Walsh func-
tions. The set of Haar basis functions was firstouced by the Hungarian mathematician
Alfred Haar. The continuous Haar functions are rikdi on the time intervak<[0,1), as fol-

lows:

fo,0() = = Xe 0.1),

1 (2.3.13)
hy q(X) = —=—1{ - <
0, otherwise forx e [0,1],

wherep is a degree of Haar function, is an order of a Haar function, and

N=2", 0< p<n-1,
q=0,1 forp=0 and 4q< P fop= .

The discrete Haar functions are defined by samphgg(x) at N =2" points x= M for

Na
m=0,...,N—- 1. The obtained functions are the rows of the Haamsform matrixH . For
example, the Haar transform matrix of order 8 &ftllowing:

1 1 1 1 1 1 1 1
1 1 1 1 -1 -1 -1 -1
V2 J2 J2 V2 0o o o o
H,-L/ 0 0 0 o0 J2 V2 V2 2
V8|2 2 0o 0o 0 0 0 0
O 0 2 -2 0 0O 0 O
O 0 0 0 2 -2 0 O
o 0 0 0 0 0 2 -2
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The basis images of the 2D DHT for =8 are illustrated on Figure 2.2 c).
Unlike Walsh transform, the Haar transform matroegn’'t have a recursive Kronecker
product structure. It is defined as

_1|HNa® 1 ]
Hn _\/ELN_]_ ® [1 _]J (2.3.14)

The Haar transform is a local transform comparethéoWalsh transform which is a global
transform in the sense that in a Walsh transforrtrimall the entries of basis functions are
nonzero, while in a Haar transform matrix all bl ffirst two basis functions have zero en-
tries. The nonzero entries are localized in eawh fidherefore, the Haar spectral coefficients,
besides the first two coefficients, contain a lan&rmation about the transformed signal.

Fast Haar Transform

In practice, a fast DHT (FHT) algorithm is oftereds The matrix representation correspond-
ing to FHT of orderN = 2", without normalization, may be given as

1y®L 1 0, 4u
Hznzl;[ |2r®[1_]] , (2.3.15)
O

2n_2r+1 I 2n_ 2r+1

whereO, and |, are the zero and identity matrices of orderespectively.

The FHT matrix decomposition (2.3.15) can be mappedthe FHT flowgraph illustrated
in Figure 2.5 b) for the ca$¢=8.

It was shown in [2] that the DHT matrix may alsodezomposed into a product of block-
diagonal and permutation matrices, which correspdnda unified representation used for
synthesizing parametric transforms, as discuss&gation 2.4.

Properties of FHT

The low computational and memory requirements ef BT made it the fastest transform
among the classical DOTs. The FHT is useful in @iggand image processing, logic design,
pattern recognition, communications as well as enynVLSI design applications [5], [6],
[10], [44], [45], [50], [51], [52].

The FHT has an FFT-like structure. However, thiofeing features make it different from
other FFT-like structures. Unlike the FFT-like alifjoms, implementation of FHT requires

only O(N) arithmetic operations [10]. The FHT of ordsr=2" may be implemented with
n=log, N iterations. One can see that from iterationecaition only half of the information

is passed for processing. Therefore, the numbepefations (additions, subtractions) is re-
duced by a factor of two from stage to stage.
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2.3.5 Discrete Slant transform
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The Nx N Slant Transform (ST) matrices are defined by tiewing recursion [10]:

0

l(N/2)-2

0

l(N/2)-2

|
(N/2)y-2 Fn—l (2.3.16)

0

—T(nj2)-2]

1 0
a, by

g -1 °
n“J21 0 1
b, a,

0

where N =2", |, denotesM xM identity matrix, and

111 1
Sl_ﬁ{l —1}'
The parameters,, andb,, are defined as follows
2 2
a an? . n2o1 ) o
Holanzoe) 0 M a2

The ST is a real and orthogonal transform. It hgseaewise linear basis functions like
Walsh transform. ST has one constant basis veitterfist row of a slant matrix is a constant
basis vector). Besides, it has one slant basiowréitte second row of a slant matrix is a slant
basis vector). The ST has the highest energy caiopagmongst the non-sinusoidakt or-
thogonal transforms, especially, for images wittpragimately constant (or uniformly)
changing grey levels over a large area. The STbhas used for signal compression, pattern
recognition, image watermarking [42], [67] and imdl’'s ‘Indo’ video compression algorithm
[10], [54]. Other modified versions of ST may beufal in [3], [4],[41],[98].

As an example, the ST matrix of ord&r=4 is the following:

1 1 1 1

3 1 -1 -3
1|5 V5 J5 5
27501 1 1 1]
3 3 -1

5 V5 V5 V5

Properties of FST

The ST has a fast Cooley-Tukey type algorithm wltiah be implemented wit®(Nlog N)
operations on aNx1 vector [11].
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2.4 UNIFIED APPROACHESTO FAST TRANSFORM ALGORITHMS
AND PARAMETRIC TRANSFORM FAMILIES

In this section we present a short overview ofiadifipproaches to fast algorithms of discrete
orthogonal transforms. A unified approach allowssenting many fast transforms using a
single parameterized representation so that aedesiansform can be selected by an appro-
priate parameter selection. Moreover, by varyirgyghrameters of the unified representation
many new transforms may be derived. In fact, a @rapethodology of selecting parameters
means a possibility of utilizing adaptive transfomathods wherein the transform features are
adapted with respect to the application on handvatidrespect to the input signal.
The computational complexities of both the dired®D(2.1.1) and the inverse DOT

(2.1.2) are, in a general case, estimate@@30T) = O N2) operations. In practical applica-

tions, much faster real-time computation is neededpresented in previous sections, numer-
ous fast algorithms have been developed for diffefiked DOTs,e.g the well-known FFT,
FDCTs, FWHT, FHTetc. (see e.g. [1], [5],[6],[10],[49]). Analyzing thesdgorithms one can
see that most of them can be described in a uniffedm. In [1],[2],[5],
[71,[8],[10],[53],[82],[83],[90],[92] several uniéd representations of the fast transform algo-
rithms were described. These representations aedban presenting the transform matrix of

order N in the form of a product of sparse matride§!), j =1,...m and permutation matri-

cesP(), (j=1,....m+ Das:

1 . .
Hy = P™D [ (PG, (2.4.1)
J=m

Transform (2.1.1) with a matri y presented in the form of (2.4.1) may be computed
with a fast algorithm im stages as follows:

Xp =X
X | :H(j)-(P(j)Xj_l), j=1,..m (2.4.2)

Computation of thej th stage of the fast transform algorithne.(finding x; from xj_l)
consists of the following: permutation of the campnts with the matriP()) and imple-
mentation of the transform with a sparse matiX) . After m stages, the final resujt is ob-

tained by permutation of,, with the matrix P™Y)  The total arithmetic complexity
C(FDOT) of the Fast DOT (FDOT) algorithm is defined as them of complexities

C(H(j)), j =1,...m, of the transforms by sparse matrices:
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C(FDOT)= ¥ c(HD) (2.4.3)

j=

In [1],[5],[8],[10],[53],[82],[83],[90],[92] the sprse matrices were represented as Kro-
necker products of identity matrices of approprisiees with one small sized (typically of
order 2) kernel. In this way each sparse matrix e@sstructed using only a single kernel.
Though many classical fast transform algorithmsjuiding FFT, FWHT and FDCTs can be
represented by using a single kernel within ea@drsgpmatrix, however, this is not the case
for the FHT.

In order to increase the number of fast transfopmessented in a unified form, in [92],
sparse layered matrices were considered wherelagehis a Kronecker product of identity
matrices with a single kernel. This has increasednumber of fast transforms presented in a
unified form but the representation has become moreplex. In addition, all the mentioned
representations use only several specific pernwtatiatrices, which also restricts signifi-
cantly the number of represented fast transfornas amore importantly, is inconvenient from
implementation point of view, especially when calesing parallel implementations or map-
ping the algorithms to hardware accelerators.

Another restrictive feature of the above unifiedtferansform representations is that they

all are valid only for transforms of ordets = r™ with r andm being positive nonzero inte-
gers (in fact, mainly the cage= 2 and sometimes the case-3 were considered).
In [2],[7] , the above mentioned representationsengeneralized. First, arbitrary orders of

transformsN =rr,..r - were allowed. Second, arbitrary permutation mesriwere allowed.

Third, the sparse matrices were presented as bliagonal matrices with arbitrary kernels:

N

. I .
H() I(@O(v(lﬁ)) i=1,..m, (2.4.4)

where “®” stands for direct sum of matrices and)® are the spectral kernels, which may
be different. Since the complexity of a transforfrocder r is upper bounded byj2 opera-

tions, the complexity of the fast algorithm presehin the form of (2.4.1), (2.4. 4) is upper
bounded by

P N S AL
c(FDOT)= > cH)=3 ¥ cvUN< Ny 7. (2.4.5)
j=1 j=1s=0 j=1
In [2],[7],[17] within the classH of transforms that are representable in the fofm o
(2.4.1) and (2.4.4), two families of transformsmady, the familyH of uniformly bounded
(or Hadamard-like or Fourier-like) fast transforanrgd the familyH of unbounded (or Haar-

like) transforms were introduced. In the case aofarmly bounded transforms, all the spectral
kernels in the representation (2.4.1) and (2.4rd)uaitary matrices with all nonzero entries.



UNIFIED APPROACHES TO FAST TRANSFORM ALGORITHMS 23

Classical representatives of this family are theT#d WHT. In the case of unbounded
. j-1 _

transforms, all the spectral kerne\l/s“'s), j=1,..m, s=0,.,IT k-1 (ry=0), are again

t=0

unitary with all nonzero entries but the spectrakrriels V(j's), j=1..m,

j-1 -1 m1 _ ) ) " . . .

s=1I k.,...I[L & TI r—1, are all identity matrices. In addition, permutatimatrices in
t=0 t=0 I=j+1

(2.4.1) are such that

PPl 1,

N-TT &
t=0

; . -1 . . . .
where PU) is a permutation matrix of ord€f] r; . The classical representative of this family
t=0
is the FHT.

It is easy to see from the definition that the ctarpy of uniformly bounded transforms
achieves the upper bound of (2.4.5) (sir@é\/(j's)): O( rjz) for all s=0,...,N; — 1) while
the complexity of unbounded transforms is lineathwespect to the transform order (since

C(V(j's)):O(er) only for s:O,l,...(rorl..rj_l—;l but C(V(j's)):o for

S= ( rorl...rj_l) NG = )

m 5 ) —
Ol NX ri if Hy eH
C(Hy) = { ,-:11} N (2.4.6)

O(N)  ifHyeH.

Figure 2.6 illustrates the generic flowgraph ot falgorithms described by the unified rep-
resentation (2.4.1), (2.4.4). As can be seen,sitsheery regular simple structure where at each
of m stages a permutation followed By, = N/, transforms by spectral kernels of order

ry, j=1,...m, are implemented. Let us note that all the fastsfiam flowgraphs presented

in Section 2.3 are particular cases of this gerféawegraph. From the definition of the fami-
lies H gng H_ the flowgraphs of uniformly bounded transform afe‘semirectangular”

form (in the sense that there is approximatelysds@e number of nodes at each stage) whe-
reas the flowgraphs of unbounded transforms asewiitriangular form (the number of nodes
reduces approximately linearly from stage to stage)

The unified representation (2.4.1), (2.4.4) co&rghe classical fast transforms of Section
2.3. This was shown in [2],[7],[17] by finding, feach of these (and some other) transforms,
closed form solutions for spectral kernels and pgation matrices that when being used in
(2.4.1), (2.4.4) result into the matrix of the @sponding transform.
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Therefore, many important fast transforms can lesgmted in a unified form, which al-
lows designing unified implementations of famil@sransforms where the desired transform
can be selected by specifying the spectral keranedspermutation matrices corresponding to
this transform. Here the spectral kernels and ptatiom matrices become parameters.
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Figure 2.6 Generic flow-graph of the unified fastnsform
algorithm (N = gry.r,, Ny =N/ ).

By varying these parameters not only all clasdastl transforms may be obtained but also
an infinite number of new transforms may be synissthat a priori will be possible to im-
plement with a fast algorithm of a unified struetutet us note that the resulting transform
implemented by a fast algorithm of the form (2.4(2)4.4) is unitary provided all the spectral
kernels in (2.4.4) are unitary.

Several generalizations of the unified fast trarmsfoepresentation (2.4.1), (2.4.4) were al-
so proposed by allowing arbitrary functions to bepped to the nodes of the flowgraph corre-
sponding to the fast algorithm (see Figure 2.6)emd of only the linear transforms with spec-
tral kernels. In particular, in [20], replacing tleear transforms by sorting operations, a fam-
ily of so called FFT-LF filters was synthesizedttbambines good noise reduction properties
of linear and non-linear filters. Another extensiohthe representation (2.4.1), (2.4.4) was
proposed in [17], where binary transforms were usdtie nodes of the flowgraph. This way
a new family of fast binary polynomial transformiscluding the classical conjuctive (Reed-
Muller) transform, were synthesized.

The unified representation (2.4.1), (2.4.4) is veoyvenient from implementation point of
view as it was shown in [2],[7],[17],[18],[20], [$58],[60]. However, high efficiency is
achieved only for transform ordef¢ = r,..r, with mbeing large. Even though the composite

number can formally be an arbitrary positive integkee efficiency of the corresponding fast
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algorithm is not high for numbers presented winaller number of factors. In particular, in
an extreme case wheme is a prime number the corresponding "fast” alfomitbecomes, in
fact, the direct matrix-vector multiplication methavith the computational complexity of
O(N?).

In our early work [57] the representation (2.4.(P.4.4) was modified so that fast trans-
form algorithms of arbitrary ordelN are introduced with complexity that does not deben
the number of factors oll. In this representation, the sparse matrices agepited as direct
sum of spectral kernels of order two.Nf is odd, in addition to spectral kernels of ordeo t
the identity matrix of order one is involved intoetdirect sum. That is, the sparse matrices
involved in (2.4.1) are presented in the form:

: K . N/2-1

H(J){@v(l-s)j@ll_Nmodz@p @1 v‘mj, j=1,..m, (2.4.7)
s=0 skl

where k is a parameter that may arbitrarily be selectedthiwi the range

ke{0,1..[N/2-1 vUs) are (2x2) matrices calledspectral kernels| p is either an

identity matrix of orderd if p=1 or an empty matrix ifp=0, and the sigrja| stands for

the smallest integer larger or equaktdNote that now the number of stages in the faststr
form flowgraph does not have a direct relatiorhi arder of transforniN.
The class of transforms representable in the for(2.4.1), (2.4.7) is denoted . Since

the matrix H (), j=1,...m, contains at mos#| N/2]|~ 2N nonzero entries, the complexity of
the corresponding fast algorithm is estimatedOgsnN) operations at the most instead of

O(N?) in the direct method. Thus, the transforms frenpossess fast algorithms.

Fast transform algorithms of the form (2.4.1), (2)4nay nicely be presented by the flow-
graph, generically illustrated in Figure 2.6 withlypkernels of order two (or one) being used,
that is, in this case, nodes represent sir@gh@int discrete orthogonal transforms or “butter-
fly” operations implying the multiplication of 2x2 unitary matrix with a 2-point vector. Re-
call that the general form of an orthogo8a&P matrix is

Y, :{” V} (2.4.8)
VvV —u
whereu? +v? =1 and the “minus” sign may float to each one amdwgfour entries.

Similarly to the case of the clag$ also within the clas€ the family Q of uniformly
bounded or Hadamard-like orthogonal transformstaedamily Q of unbounded transforms
are introduced. For the transforms framall the spectral kernels are unitary with all nemz
entries. The classical WHT and DFT of ordér= 2" belong to the familyx of Hadamard-

like transforms. An example of a new Hadamard-likst transform flow-graph of order
N=11 is shown in Figure 2.7.
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Note that for transforms fromQ, each matrix H()) j=1,..m, contains exactly
4 N/2|~ 2N nonzero entries. Therefore, for transforms fronthe complexity of the corre-

sponding fast algorithm is estimated@@nN).

Unbounded or Haar-like transforms within the cl&ssare defined so that they are repre-
sentable in the form of (2.4.1), (2.4.7) wherespkctral kernels are unitary and:

« all entries of the spectral kernelgS) | j=1,...m, are nonzero
j times

for s=0,..,N; - 1, whereN, :H( N/ZW/ZW/---/ZW
o VUS_j,f0r s=N;,..[N2]-1, j=1..m
o P :Pl(j) DIN-N; - wherePl(j) is a permutation matrix of ordey ;.

The Haar transform is a classical representative oAn example of a new Haar-like fast

transform flowgraph of orde¥=11 is shown in Figure 2.8. It should be noted thatHaar-
like (and Hadamard-like) transform of any order rbaydesigned in a similar way.
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Figure 2.7 Fast Hadamard-like transfois,11.



UNIFIED APPROACHES TO FAST TRANSFORM ALGORITHMS 27

Xo=X X3 Y=X4
o ey
Ly o veol T e

.—:— :': :': :'

: v @ RN :

—— T+ 1 —e

I RVAE) P !

L v @2 NS B

o - Lol gt o

| ve NS |

o :': :': e

- IR .

i v @3 y o ! | )

4 o] -

T v e M B
X0 : E': o E' Y10

' HO HO H® & ip@! | H@ |

1 4 a 2 2@ 3 3,0
HO =10 @ VES) HP =) @ v @1 HO=1 0V B0y |4,

HO =v@E0 gy PO-p@=p O, p @, ,0pPN10),P C=pshewI
Figure 2.8 Fast Haar-like transforniN=11.

Note that for transforms froma, the matrix H), j=1,...m, contains only
4N; =N /2172 nonzero entries. Therefore, the complexity ofdbeesponding fast algorithm
is estimated a®(N) . Thus, the transforms from possess fast algorithms, which are even

faster than those for the family, for which the complexity i©(mN) .

This can also be noted from the structures of lih&-graphs. While the flowgraphs of Ha-
damard-like transforms have a “semirectangulatictire (equal number of nodes or butter-
flies at each stage), the flowgraphs of Haar-likensforms have “semitriangular” structure
(approximately twice reduced number of nodes froma stage to the next). These two struc-
tures were utilized in designing new Haar-like &tatlamard-like transforms [57].

Let us note that that the number of stagesis an independent parameter. For most of

classical transforms frorm, m=log Nwhich is a logical but not a compulsory choice.

Let us also note that the complexity of the fagbathms described by (2.4.1) and (2.4.7)
does not depend on the number of factordl @i any of its other properties rather than the
value.

Concluding this section let us consider the casa olass of transforms of ordét = 2"
where all the permutation matrices are fixed ang orthogonal kernels of order 2 are used.
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Figure 2.9. The geometrical place of all kermélsrder 2.

Each such kernel has the following form:

10 o
V[COSQJ e SIW)],F\/_ZL,

sing el cosp

where ¢ and & are parameters. Varying these parameters oneyo#imesize different bases.
The kernel of this type (see [32], [82], [83]) deises a rotation by angle in the horizontal
plane and by angl@ in the vertical plane. Therefore, there is a anette correspondence
between the orthogonal spectral kernels of ordendthe points on the sphere of radius one
(see Figure 2.9). The classical transforms cormpo only few points on the sphere. On the
other hand, the whole surface of the sphere cartilmed to synthesize new transforms.

Thus, the representation (2.4.1), (2.4.7) givesngportant possibility of synthesizing an
infinite number of new fast transforms. In ordemtake a practical benefit out of this possi-
bility, there is a need for developing efficienttimeds of parameter selection in order to syn-
thesize fast transforms with desired featuresulslipation [P1], a method (first introduced in
our early work [57], [58]) is described for syntlesg fast transforms with predefined basis

functions. More precisely, an algorithm is proposeat given a set of orthogonélx N)-
vectorsg,,d,,....0,, K< N, produces an orthogonal matret, such that it has the vectors

0,,9,,...,0, inits first k rows and it can be presented in the form of (3,42.4.7). More-
over, one can select whether the correspondingfoen is Haar-like or Hadamard-like. The
vectors g,,0,,....0, are called generating vectors. In our parametaosform based algo-

rithms for signal/image compression or denoising, mainly utilize the case where only a
single generating vector is used to synthesize@esfast transform.



Chapter 3

Applications of transforms in digi-
tal Image compression

Image compression is one of the classical probletaded to compact representation of im-
ages. In computer systems, digital images repredemt terms of pixels require a huge
amount of storage. Typically, digital images aréuredant. The aim of an image compression
technique is to remove the redundancy in an imtdg,is, to represent the image data more
compactly before storage or transmission. Trad#iomage compression methods are based
on spectral techniques which have been one of @ia tools in signal analysis and are the
base of many signal compression algorithms. Théptdr summarizes the transform based
image coders.

3.1 IMAGE COMPRESSION TECHNIQUESBASED ON FIXED
TRANSFORMS

The goal of image compression is to reduce thengalcy of an image data in order to be
able to store or transmit it more efficiently. T¢@mpression methods are divided into lossless
and lossy ones. In lossless compression the recwhst image is an exact copy of the origi-
nal source image. Normally, only a small amountahpression may be achieved by a loss
less compression method. Such methods are useftdriexample, medical imaging,

astronomical image processimjc where any visible distortion is unacceptable.ldssy
compression methods, the redundant informationsisadded as much as possible while still
keeping acceptable visual quality of the imagesTdnables a much higher compression. At
the same time, no visible artifacts may be notigeder normal viewing conditions (visually
lossless).

Early image compression schemes use predictivengoth predictive coding, existing in-
formation is used to predict future values, and/ahé difference is coded. Differential Pulse
Code Modulation (DPCM) is one particular examplgddictive coding. On the other hand,

29
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transform coding first transfers an image fromspstial domain representation to a spectral
domain representation using a well-known transfoang then codes the transformed coeffi-
cients. This method provides more data compressionpared to predictive methods at the
expense of more computation.

The traditional transform based lossy image congiwegdecompression scheme is pre-
sented in Figure 3.1.

Quanization Lossles Channel
— 3| DOT » and hard » coding storage
threshold
< IDOT D tization Lossles
< equantization« decoding

Figure 3.1. Conventional simple image coder/decod

In this diagram, the input, which may be a wholag® or one of its blocks, is first trans-
ferred into a spectral domain. In principle, argnsforme.g.fixed DOT (block or global) or a
parametric transform may be used. A properly sett@OT concentrates most of the image
energy in few spectral coefficients only, thattiansferring an original image into a spectral
domain results in energy compaction or concentnadiblow-frequency data in the transform
domain. The quantization process applied afterridnesform uses this phenomenon. It care-
fully quantizes the significant (low-frequency) emimation and removes the remaining (high-
frequency) coefficients while preserving main comtef the image. At this step information
loss takes place, which is the source of a distorin the image after it is reconstructed. This
step brings to bit-rate reduction. At the next stbp quantized spectral coefficients are com-
pressed using any lossless coder. This leads ndisantly higher compression rates as com-
pared to using the lossless coder directly to itiegie in the spatial domain. The coded result
is either stored or sent via a channel and is teeanstructed in the decoder, which has the
reverse order of inverse operations compared teribeder.

The first image compression systems were baseglating images into fixed-size blocks
and applying a fixed block transform to each bloEkis leads to occurrence of the blocking
artifacts caused by mismatches between neighbbiogks. One of the popular DOTSs in im-
age compression is the DCT, which is included imynstandards, such as the JPEG image
compression standard [68], [97], and which offerseptable compression gain for not very
high compression rates. Image compression usirgedé wavelet transform (DWT) gained
special attention due to the good decorrelation landlization properties of DWT. The re-
search in this direction brought to the JPEG2008gencompression standard [68], [80]. It
was shown that the DWT based methods provide bqttality than other fixed transform
based methods for high compression ratios. Howeleruse of JPEG2000 in modern sys-
tems is limited. This is mainly due to the comptg>af DWT which is applied to the large
regions or to the whole image. Unlike to JPEG, tirimgs not only to big memory demand
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but also to use of huge amount of computationaluess. Due to this, the development of
improved image compression methods in a block-basmoher is still an actual task. More-
over, the block transform based methods still rey®tential of being improved by making
them more adaptive to image content.

The following subsections give a short overviewimage compression techniques based
on DCT and wavelet based compression.

3.1.1 TheDCT based approaches

DCT based compression schemes are widespread angheatbases of many compression
standards. The most well-known compression stanbdasgd on the DCT is the JPEG still
image compression standard [68].

An important point of the JPEG is that it speciftedy the decoder, thus allowing for pos-
sible improvements of the encoder. The JPEG stdndamsists of four modes: sequential or
baseline JPEG; progressive encoding; hierarchivadding (pyramidal encoder); lossless en-
coding (does not use the DCT, and it is based edigtive encoding).

The transform coding for the baseline JPEG stansasdhematically presented in Figure
3.2. The input is assumed to be 8 bits (or 12.b@s)ors are treated separately. The JPEG is
operating in a block-wise manner where the imag®is into small non-overlapping blocks
and the DCT is applied to each of these blocks. @@icentrates most of the energy into few
coefficients, with the largest one being the DCfficient located at the top-left corner of the
transformed image block.

DCT-based encoder

8x8 image . entropy | | Channel
blocks ~——| DCT » Quantizer —p . oqer » storage [
| A ? :
: entropycocer
Quantizer tablee table

Figure 3.2. Transform encoding in JPEG.

After the DCT transform the quantization is perfedraccording to a quantization table
(where each entry is an integer from {1,...,255}). tAts step, the DCT coefficients are di-
vided by quantization table entries, and, then,ratended towards the nearest integer. The
guantization tables which are based on visual ex@ts can also be specified by a user. Af-
ter the quantization, 2D image blocks are rearrdrigeo 1D vectors according to a zigzag
scanning order. The DC coefficients are differdiytiaencoded, that is, differences
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A, =DC, - DG , are coded to remove some of the correlations etxC coefficientsDC,
and DC, , of consecutive blocklsandl-1, respectively. Finally, the entropy coding based

Huffman coding with a table specified by a user default tables) is performed. JPEG de-
coder operates in the inverse order.

The JPEG image compression method has the followthgntages: high efficiency in
compression of textural regions of images and tsipility of using the special quantization
tables that allow imitating and regulating the Hummé&sual System (HVS) properties. Be-
sides, JPEG allows also lossless compression whiahportant in some applications (e.g.
medical image codinggtc). Disadvantages of JPEG are blocking artifactsetonstructed
images and ineffective compression of edges arallsi@t images.

In literature, various modifications of the JPEGiagach have been developed [21],[70],
[99]. In one of them [21] authors proposed thermation of the quantization table based on
HVS for a class of images and different viewing a@itions. Another DCT based method was
presented in [99] where the embedded zerotree (etallee) coding of DCT coefficients
have been performed. However, the drawback of nieshod is that due to the algorithm
structure it requires the same memory requiremenBWT based methods.

In [65], a block-based DCT image compression us3@g 32 block is proposed that out-
performs JPEG 2000 by up to 1.9dB. This methodddwithe quantized DCT coefficients in-
to bit-planes. Then, the bits are coded accordingdbability models considering the correla-
tion between the neighboring block coefficientsagedl as between values of corresponding
coefficients of neighboring blocks. Finally, a D@ased post-processing or filtering is ap-
plied in order to remove blocking artifacts.

In the next section we will shortly describe thevelat based methods where the blocking
artifact is not present.

3.1.2 Wavelet based approaches

Starting from mid 1990s wavelet transforms haveohee very popular, in particular in image
compression application. A variety of wavelet basedpression techniques have been de-
veloped. The most popular examples are EZW [81]H$H76], JPEG2000 [80], EBCOT
[86], [80]. These techniques are briefly overvievisetow.

EZW (Embedded Zerotree Wavelet Encoding)

The wavelet transform allows a multiresolution gea of images, meaning different repre-
sentations of the same image with many levels ¢tdiderhe EZW algorithm [81] was the
first algorithm that utilized the multiresolutiomgperty of a wavelet transform, resulting in a
compact representation of significant coefficiefiise main idea of EZW is based on the fol-
lowing assumption: if a wavelet coefficient at@acser level is insignificant with respect to
some threshold, then all the wavelet coefficierftthe same orientation in the same spatial
location at the finer resolution, will be most likensignificant with respect to that threshold.
In result, a set of insignificant wavelet coeffitie called a zero-tree is obtained. Based on
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that zero-tree, one can get a very compact repasam of significant coefficients (signifi-
cance map). In EZW the bits in the output bit sttesre generated in order of importance,
resulting in a fully embedded code. Thus, the eacaday terminate the encoding at any
point, after achieving a target bit rate.

SPIHT (Set Partitioning in Hierarchical Trees Algorithm)

The SPIHT algorithm was proposed by Said and Pearlfvi6] and is considered as an im-
proved version of the EZW algorithm. SPIHT uses shene concepts as EZW, that is, the
coding of significant wavelet coefficients with pest to a given threshold and then, succes-
sive improvement in selecting the significant cméfhts. In addition, the following three
concepts are used in SPIHT: partial ordering by mitade of the transformed coefficients
with a set partitioning sorting algorithm; ordeigtplane transmission of refinement bits; and
exploitation of self-similarity of the image waveteansform across different resolution levels
of an image. As in EZW, the set partitioning ridedividing the coefficients into the set of
significant and insignificant subsets aiming inabing a large amount of insignificant coef-
ficients. It was shown that the SPIHT algorithmmsfigantly outperforms the EZW.

JPEG 2000

The development of image compression techniquesghitous to JPEG 2000 that was ac-
cepted as a standard [80] thought not widely useddb browsers. The Figure 3.3 illustrates
the main steps of JPEG 2000.

Image [ DC — entropy
= Tiling = |evel —|_DWT_|—> Quantization—p o » codestream
shift A A

Rate alloction [¢

Figure 3.3. Basic block diagram of JPEG 2000.

A

The main features of JPEG 2000 are the following:

e Better compression performancEor grayscale images, at low bitrates (<0.25bpp)
JPEG2000 provides less visible artifacts (due toTD¥értain entropy encoding algo-
rithm, etc) and almost no blocking as compared to JPEG.

e Multiple resolution representatiodPEG2000 decomposes the image into a multiple
resolution representation during its compressi@tess.

e Progressive transmissiofor decodingby pixel and image resolution accuracy). This
means that after receiving a part of the file, tfever may see a version of the final
image in a lower quality. Then, by downloading mbits from the source, the image
guality is progressively improved.

e Lossless and lossy compressidime JPEG2000 standard provides both lossless and
lossy compression similarly to JPEG. Two differesvelets are used by JPEG2000:
Cohen-Daubechies-Feauveau (CDF) 9/7 for lossy cesspn and CDF 5/3 for loss-
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less coding.
e« Random code-stream accesRegion Of Interest (ROI). It gives possibility tocaess
and process different parts of an image.
One of the main advantages of JPEG 2000 is théifligx of code-stream, meaning the abil-
ity to truncate at any point the code-stream olethiafter compression in order to obtain a
lower resolution image. However, at the expensinaif flexibility the JPEG2000 needs more
complex and computationally demanding coder/decotieis explains why nowadays there
are just few consumer digital cameras based on JRIBG.

EBCOT (Embedded Block Coding with Optimized Truncation)

The Embedded Block Coding with Optimized TruncaiBBCOT) algorithm is related to the
earlier developed scalable image compression tgubai Scalable compression is related
with the generation of a bit-stream that contambedded subsets, each of which represents
an efficient compression of the original image akeduced resolution (or increased distor-
tion). In other words, EBCOT allows resolution sdality and SNR scalability. The resolu-
tion scalability means that the compressed data Ibeaglecompressed with a lower spatial
resolution, while the SNR scalability allows thacdder reconstructs the image with different
gualities (some subsets of the bit stream is decesspd independently). The EBCOT algo-
rithm has been included in JPEG 2000 due to thelmity of getting these scalable forms
and a modest complexity.

3.2 MULTIPLE TRANSFORM BASED IMAGE CODING

In this section we give a brief description of somaltiple transform based approaches.
These techniques have been studied during théwastlecades in order to improve the cod-
ing performance of conventional block transform poession techniques.

In literature, there are several interesting atfpons devoted to multibase transform coding
of images [12],[43], [88]. Such techniques implyadaptive transform coding of images that
uses an appropriate transform with respect to @aalge block, which results in more effi-
cient coding than non-adaptive methods. In mulgbaansform coding proposed in [12],
[43], the image blocks are represented in a mutkdhsional space, for example, as points in
the 64-D space. They are classified into diffedusters or classes where the blocks of each
class are compressed by different transforms. Thasato partition image data (or blocks) in
such a way that the overall compression ratio igimazed. The applied transforms may be
either fixed or designed in an adaptive manne[12j, [43], adaptive methods were used for
creating different sets of KLTs. The adaptatiorrtstérom an initial set of KLTs which are
then improved in an adaptation process. During d@achtion, all the blocks are compressed
with all transforms (along with DCT) and those sfamms are selected that give the best
compression results. The corresponding transformsijadated before next iteration. The se-
lection of the best transform is done in suboptimay according to a criterion that combines
both the bit-rate and distortion.
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A problem in multibase transform systems is theafsifferent classes of blocks. This in-
troduces overhead information needed to be setitet@lecoder. In [43] authors explain the
effect of border translations for transform codwgich becomes important for systems with
several transforms. It is noted that this kind afittbase transform coding is in an intermedi-
ate stage between normal transform coding and vgaoemntization.

In another work on multibase transform coding [&R]thors developed a hybrid technique
referred to as the Multiple Bases RepresentatioBRMthat combines several transforms
coding, vector quantization and predictive codifitpree transforms were used in MBR,
namely, DCT, Haar and identity transform (IDT). é&ftapplying corresponding transforms to
each block the statistical modeling is used to metarize the coefficients and vector prob-
ability density functions (pdfs). Then, the coda#itts are quantized for minimum mean
square error based on parameterized pdf modelgediter, the quantized coefficients are
entropy coded using modified Huffman coder. Thailktesshow that, for example, coding of
Lena image with the MBR method can produce gooditguander 1bpp.

An approach utilizing the possibility to adjust &dly the transform similar to [88] and re-
moving the blocking artifacts using the multires@mo decomposition by wavelet transform is
proposed in [12]. The transformed image represemt&cavelet tree-like manner is reorgan-
ized in a block-wise manner. Then, the conventiomaltibase transform coding of images is
applied to the block-wise representation. The detation is, then, performed in a wavelet
transform domain. In this algorithm, the contentdifferent blocks is mixed by filtering
across the bounds of blocks. Since the filtering gart of the transform, there is no need for
post-filtering to remove the blocking effects otdenpressed images. The algorithm uses the
best features from the combination of multibase wadelet transforms. An approach for fast
multibase transform based on optimal multiscanroangeordering method is presented in
[13].

3.3 PARAMETRIC TRANSFORM BASED COMPRESSION TECH-
NIQUES

In general, there exist a potential of further impng the performance of image compression
methods by adapting the different transforms téeddint classes of image blocks instead of
applying a fixed transform to all image blocks €mone of the fixed transforms may be op-
timal for all kinds of possible image blocks. Frahis point of view, the use of parametric
transforms described in Section 2.4 for image c@sgion is of an interest.

In our publication [P2], performance of the propbparametric Haar-like transform in ap-
plication to image compression is studied. Theegalrgoal of our work in [P2] is to analyze
the potential advantages of adaptive transformdasage compression methods over the
fixed transform based ones. With this aim, two peetic Haar-like transform based adaptive
image compression algorithms are proposed and pleeformances are compared to the per-
formance of the similar algorithm that is basedtlom fixed DCT. In both algorithms, the
classical DCT is used along with new transforms #ra synthesized according to the input
image within the class of transforms defined bygheametric Haar-like transform.
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The first algorithm calledterative image compression sche(€S) [59] [P2], is based on
an iterative scheme where the classical DCT is a$ebe first iteration and then, several it-
eratively synthesized Haar-like transforms are ustethe following iterations to refine the
compression quality. At each iteration, new Halke-liransform is synthesized according to
the generating vector that is obtained from theldonot efficiently compressed at the previ-
ous iteration. The process is iterated as longrasvarding performance improvement may be
achieved.

In the second algorithm, calledultiple transform image compressiWTIC) [15], image
blocks are first classified according to their “qamessibility” by DCT (image blocks that are
similarly distorted when compressed by DCT at daterate are grouped together). For each
class of blocks a suitable Haar-like transform ystisesized. These Haar-like transforms
along with the DCT are applied in parallel to eacm-overlapping block of the input image.
The transform that achieves the best result is skedetted to be assigned to the corresponding
block.

It should be noted that both compression schemegoped in [P2] have a performance
that is at least as good as that of the DCT basatpression scheme. Extensive simulations
were conducted to compare the performance of tmenperic Haar-like transform based
adaptive image compression methods with the pedooa of the similar algorithm that is
based on fixed DCT. Several types of images weee.usor example, Figure 3.4 illustrates
PSNR vs. bit-rate plots obtained after applyingposed methods to imagesompound”’and
“cameraman’ The simulation results for other imagesy. Lenaand medical imagkidney
are also discussed in [P2]. As we expected, thpgsed techniques are better or at least as
good as that of the DCT based compression methqueriinents illustrated a moderate per-
formance improvement for natural images and sigaifi performance improvement for im-
ages of certain types, such as medical images @amglex images consisting of fragments of
essentially different types.

Beside compression, PHT based methods performbdded classification. In Figure 3.5
b) one can see not only black and white levelsit#Ensity of blocks but also grey levels. The
black blocks correspond to flat regions, which emenpressed using DCT transform, while
white and grey blocks (non-flat regions) corresptmdlifferent parametric Haar-like trans-
forms.
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Dear Pam,

I was delighted to hear from you last week, Patti and [ had a
wonderful time during our week-long summer vacation, The wea-
ther was excellent, and the food was sbsolutely exquisite, I
hope that we can repeat this next year and that you will join
us too,

Me came back with a lot of fantastic memories. which we would

like to share with you through some snapshots that we took,

Our Favorite is this picture of us aboard the "Top Hat", which I

have pasted into this letter using some really neat advanced dig-
ital imaging technology on my home computer, be will ship the

rest to you on 3 CO-ROM =oon, Wishing you the best,

Love,

Suzan

a) b)
Figure 3.5 a) originatlompoundmage; b) block classification (MTIC)



Chapter 4

Applications of Transforms in Sig-
nal and Image Denoising

Digital images are produced by several physicala#svsuch as digital image and video cam-
era, radar, x-rays. They are used, particularhysdence, industry, medicine, military, secu-
rity, advertisements, astronomy. In many casesg@wanay be distorted while being taken or
when transmitted or received through a communioatleannel. There are several reasons for
this, for example, blurring (due to shaking or nmgva camera), noise corruptiett. Image
distortion is introduced also by processing metapplied to image.g quantization, smooth-
ing, compression. Similarly, 1D signals createddimjtal devices are often corrupted, for ex-
ample, due to measurement errors, quantizationsrmgsion. In many practical both 1D and
2D cases, the corruption may be modelled as a manddditive white Gaussian noise
(AWGN).

It is important to develop efficient methods foceastructing useful information about the
original 1D signal or 2D image from a corruptednoisy observation taken by a digital de-
vice. Reconstructing a signal or an image fromydeta or, in other words, denoising, is one
of the important problems of signal/image analygigch has been intensively studied for
many years.

4.1 CONCEPT OF DENOISING

The aim of signal/image denoising is to find arineate X of a signal/image corrupted ob-
servation Z. In the cases, when the corruption can be modelledAWGN, that is,
W~N(0,5°), the observation is given as:

z(i) = x(i) + w(i), (4.1.1)

z(i, ) =x(, })+w(,j), 1j=1.N (4.1.2)

39
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Z=X+W, (4.1.3)

where (4.1.1) and (4.1.2) correspond to the catd®asignal and 2D images, respectively,
and (4.1.3) is the general case that represents bot

The targeted estimat® of the noise-free signal should minimize the exagmn of the
mean square error (MSE) between the original signathage X and its estimateX . In re-
sult, an estimated signal will have reduced amad@inbise or in the ideal case will contain no
noise and be the exact copy of the original signal.

In general, the denoising methods are divided linear and non-linear ones. The wavelet-
based thresholding based techniques [35]-[37] mmexample of a non-linear method. An ex-
ample of linear denoising method is Wiener filtgr[d9]. The linear methods tend to smooth
the details (edges) after denoising. Along with Neiefiltering, the Bayesian estimate me-
thod, which is an extension of Wiener method thdizes the knowledge of signal point sta-
tistics, became popular because the resulting immage sharper and less noisy than Wiener
filtered images.

The denoising may be performed in spatial or tamsfdomain. Transform domain de-
noising methods can be subdivided according totyphe of basis chosen in the denoising
method. Currently, one of the most popular oneswareelet based denoising methods pro-
posed by Donoho and Johnstone in [35]-[37]. Anothegpular class of transform based de-
noising methods are based on the sliding transtamneept [63],[64].

The above mentioned transform based denoising metae summarized in the next sec-
tion. The proposed signal and image denoising nastloe described in Section 4.3.

4.2 GENERAL TRANSFORM BASED DENOISING TECHNIQUES

A general transform domain denoising technique istsf the following three steps:
1. Transform the noisy image into the correspondiaggform domain:

Y =HZHT, (4.2.1)

whereZ is an observed noisy imagd#,is a transform an¥ is the transformed image.

2. Apply a non-linear function on the transformed imagpr example, the soft or hard
thresholding function. This will suppress thoseftioents that are smaller than a cer-
tain amplitude:

Y=F(Y(i,j)t) or (4.2.2)
Y=F(Y(i,i)t)

where Y(i,j) and Y(i, j) are the entries of the matricas and Y , respectively, and
F.(k,t)and F,(k,t) are the non-linear soft and hard thresholding tions:
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F(t) =15 M2 g (g = SIMON-D. [K= € (4.2.3)
0, |k|<t 0, |k|<t
3. TransformY back into the original domain:
X=HYHT™T (4.2.4)

One of the most utilized transforms for denoisimpplecations is the wavelet transform
[62]. However, any other discrete transform maypplied.

The main drawback of the wavelet transform basguiagehes is the presence of artefacts
around discontinuities called pseudo-Gibbs phenam&ue to this, Coifman and Donoho
proposed the translation-invariant (T1) wavelet @ising method presented in [28]. Authors
suggested to apply the following scheme:

For a range of shiftS={ $}iN:1 the signal is first shifted bg , denoised, and then shifted
back, that is,

Unshift(Denoise(Shift(signal))).

Finally, all the shifted estimates correspondingltdts s are averaged to obtain the esti-

mated signal which is smoother and has considenasly Gibbs phenomena compared to
conventional transform based denoising.

4.2.1 Utilized thresholding rules

As mentioned in the previous section, the most f@mon-linear functions used in transform
based denoising techniques are soft and hard tidest functions. However, other non-
linear functions may perform better than either oh¢hese two. In our works [P5],[P6] the
customized thresholding function (CTF) introduced9l1] has been used:

X=sgr(x)(L-a)i if X[,
Fe() =10 if X<y (4.2.5)

k(‘ x- Y)2( )M Y) +4 —o} otherwise
=Y

where y is the cut-off valuefD<y <1, and0<«a <1 defines the shape.
The CTF can be considered as a linear combinaticsofd and hard thresholding func-
tions, that is,« - F,(X) + (1-«)- F,(x). Figure 4.1 illustrates these functions:
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Figure 4.1 Thresholding functions: a) hard thadgimg, b) soft thresholding, and
c) customized thresholding for various valuesaaf

4.2.2 Local transform based denoising

The transform based denoising may be further imgulovhen applied rather locally, that is,
in a sliding window. Local transform based denas{bTD) methods have certain advan-
tages. They can be performed using locally varyiagameters, for example, varying trans-
form basis, thresholding scheme, etc. They can adsothe varying transform support (win-
dow size).

The general LTD method applied to an ima@a{;j}, i=0,...N-1j=0,..M- of

size (N x M) consists of the following steps:
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1. Transform a local portion of an input image witlsirmoving window Kxl) located at
(i,j)-th pixel:

Y:(,))=T(ZG.) ),
for ie{0,..N-k-13,je{0,.M-I-1 (4.2.6)
where Z(i, j) is the data portion of the noisy observation waittiie window
Z(i,j)=[zG.j)...z{+p.j+r ) p=10,.k ,r= 0,1,

and T is a local transform of sizé&k +1,1 + 1).
2. Modify the local transform coefficients according & functionrn (for example, a

thresholding function or element-wise multiplicatito constants function) and per-
form the inverse transform:

Xe(,§) =m0 )Y ()
:(i,1)=T X;0,j)

3. Combine the resulting estimates of each sampleir@atarom all window locations
that involve that sample. The combination is perfed by simple averaging procedure
that is very similar to that performed in shift anant (TI) wavelet denoising [28].

The sliding window strategy can be modified to theving window strategy by allowing
jumps with shifts up to the transform size thatresponds to the non-overlapping case. In the
extreme case of non-overlapping blocks a singlenas¢ for each input sample will be ob-
tained that will result in blocking artefacts, wéhilin the other extreme case of moving the
running window with single shifts, the computatiboamplexity will be increased signifi-
cantly. With this respect, the shift may be consdeas an additional parameter in a denois-
ing method. In a wavelet-denoising, this strategygalled partial cycle-spinning based on av-
eraging over the range of shifts instead of periognfull TI wavelet denoising [28].

In literature, there are many works related to lstiding window transform based denois-
ing [33],[39],[63],[64],[75],[93]. In [64] the lodsy adaptive sliding window image denoising
which often outperforms the wavelet-based denoisieghod is introduced.

In [63] local adaptive denoising with adaptivelyryiag local transform support size was
presented. Authors use the concept of interseafoconfidence intervals rule for selecting
the optimum local windows sizes. The algorithm pdes a significant noise reduction com-
pared to the denoising based on fixed optimum kizal DCT transform, Wiener filter, Tl
wavelet shrinkage, and other methods.

Another denoising method was proposed in the 3bsfoam domain [33]. This method for
still image denoising based on sliding window tfan® and block-matching was proposed.
The algorithm performs processing of blocks inidisf) way using block similarity concept
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according to a certain criterion. The denoised iesaghow good results in terms of objective
criteria and visual quality.

The local adaptive filtering in transform domain femoving the mixed noise (white and
impulsive) was proposed in [39]. The method firstattts the “salt-and-pepper” impulses with
Min and Max filters and then replaces these immulg a weighted average or K-nearest
neighbour estimate of remaining pixels within theadow. Then, in each window, the local
transform based filter is used in order to remdwewhite noise. As a multibase transform the
combination of different transformg.g Haar and DCT, Haar and Daubechies wavelet as
well as their translation-invariant versions hawei used. The idea of using the multibase
transform is to find the “best” basis or transfanot globally, for the whole image, but to find
it locally, for each image block. The criterion feelecting a transform is the decorrelation
feature or the number of non-zero spectral coeiffits.

In [75] a new 3D DCT video denoising of video sitgnaorrupted by additive Gaussian
noise is presented. The video signal is locallteféd in sliding 3D windows consisting of
highly correlated spatial layers taken from consgeuvideo frames selected with block-
matching technique. The denoising in local windasvgerformed by hard thresholding of 3D
DCT coefficients of each 3D array. Then, the finatimates of reconstructed pixels are ob-
tained by a weighted average of local estimates) fadl sliding (overlapping) windows. The
experiments show an improved performance compardatie wavelet based state-of-the-art
video denosing methods in terms of both PSNR aswViappearance.

In [P3], [P4] we used the parametric transform Hadenoising using sliding window strat-
egy. It can be expected that the use of signaltadaparametric transforms can improve the
performance of transform based signal/image dempisin the next section, we describe
shortly the proposed parametric Haar-like transfbamed 1D and 2D signal denoising meth-
ods.

4.3 PHT BASED DENOISING TECHNIQUESAND EXPERIMENTAL
RESULTS

As it was mentioned before, the main aim of tramef®ased denoising consists in a separa-
tion of the original signal and the noise, in tipecrum of the corrupted input signal. If the
noise is AWGN, then it is uniformly distributed ihe spectrum of an orthogonal transform.
Therefore, a transform with a higher energy compacseparates better the signal from
AWGN. One of such transforms could be KLT. Howevielis computationally demanding
since besides being signal adaptive it has noalgsirithm. Therefore, other transforms such
as DCT which is the closest to KLT transform casodde used. Many DOTs such as Fourier,
wavelets, DCT, lapped, Haar as well as the comioinaif transforms (DCT+Haar) with their
specific features are utilized in many algorithams[P5], [P6] we investigated the perform-
ance of PHTs in the noise reduction resulting io tlenoising methods.
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4.3.1 1D signal denoising based on PHT transform

In our publication [P5] a new denoising approactplisposed based on using parametric
transform instead of one or more fixed transforine Thain goal of the proposed approach is
to improve the performance of fixed transform badedoising methods, in particular, the
wavelet transform based approach, by utilizing &gapmethods. The main idea of the pro-
posed approach is to apply different locally addgtansforms to different local parts of the
input signal for better decorrelation between tiggnal and the noise. Intuitively, it is clear
that significantly better performance may be ackdelay utilizing a correct transform for each
local part of the signal. The problem consistsimihg that correct transforms. In our pro-
posed algorithms parametric Haar-like transformdT$) described in Section 2 are used.
Thus, the problem is reduced to finding correctegating vectors better fitting to each local
context of the signal. In the ideal case, if th@egating vectors were the local parts of the
noiseless signal, perfect decorrelation would falkee. Unfortunately, the noiseless signal is
what is searched and is not available. Therefoifegrent estimates of the noiseless signal
have to be used. In particular, the PHT based #itgorproposed in [P5] uses the result of
classical wavelet denoising method as an estimiatkeosignal. Thus, in this algorithm the
local content within a sliding or moving windowdsnoised using a new PHT that is synthe-
sized specifically for the content of the windoweatch location on the signal. These new pa-
rametric transforms are synthesized using gengragtors obtained from the estimate of the
original signal being the result of wavelet denagsof the input noisy signal. It should be
noted that the result of any other traditional deing algorithm, in particular, any linear de-
noising algorithm or any transform based denoisilggrithm could also be utilized. The pro-
posed algorithm (Wavelet-PHT denoising algorithna@yrbe described by Figure 4.2.

primary Trarsferring estinated
noisy _| Wavelet| SSUMae | PHT into PHT | [Thresholding e | Sional
signal " | Denois. ™ synthesis [»| transform | operation » ear
domain

Figure 4.2 Diagram for PHT-based signal denoisilggrithm.

The algorithm in Figure 4.2 may be formulated do¥es:

1. The input noisy signal is denoised by a waveletdiam in order to find a primary
estimate of an uncorrupted signal.

2. Input noisy signal is transferred, window by windanto the domain of PHT trans-
forms that are synthesized on the base of the astiof the original signal in the cor-
responding window. For this, both the original yoggnal and its primary estimate
are divided into non-overlapping windows. For eashdow of the primary estimate,
new PHT containing the corresponding window conganits first row is synthesized.
Then, this transform is applied to the window od tiriginal noisy signal at the same
location.
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3. Some thresholding function is applied. In our methee used the CTF (see Section
4.2.2), applied to each transformed window.
4. Each thresholded window is transformed back byiritierse PHTSs.

4.3.2 Image denoising based on PHT transform

The idea of this approach, presented in our puiidiodP6], is similar to the one described in
the previous section for denoising 1D signals (Feg4.2). However, the sliding window ap-
proach along rows and columns is used in this cas@. primary estimate the output from TI-
wavelet based image denoising is utilized here.

The proposed algorithm may be briefly describetbfsws:

1. The given noisy imagé, is denoised by Tl wavelet method to get an estrhat
using, for example, harthresholding scheme.

2. The PHTs are synthesized based on the estimat&or each subrow and each sub-
column of the input image within a moving windowa@nn PHP is synthesized with
the generating vector being a corresponding sulwpwubcolumn of the estimate
obtained at Step 1. The synthesized PHTs are apai¢he corresponding subrows
and subcolumns of the sliding window.

3. Thresholding is applied to the transformed windawgach sliding location. In ex-
periments, again the CTF was used.

4. The rows and the columns of each thresholded windmwtransformed back with
inverse PHTs. The inverse PHTs may be computedfasgthalgorithms.

5. In result, several estimates for each sample ofotiiggnal image will be obtained
(totally w? estimates per sample in the middle of the imadddss at the edges with
w being the window width). The final estimate fockeaample is obtained by aver-
aging over all its estimates.

4.3.3 Experimental results

Results on proposed signal denoising method

The proposed 1D signal denoising method has bestead®n many artificial signals such as
Blocks Bumps HeaviSine The signals were corrupted by additive Gauss@isenwith sig-
nal-to-noise-ratio (SNR) 7 dB, and then denoisedHgyproposed algorithm [P5]. In all the
experiments, the Daubechies asymmetric wavelet 8vitanishing moments and 8 decompo-
sition levels was used at Step 1 of the algorithhe results of the experiments were averaged
over 30 runs. The parameters. andy of the utilized thresholding function were chossn-
pirically. The results show that mostly the progbseethod reduces significantly the noise
content from the original test signals. It can bersfrom [P5], that the proposed method re-



PHT BASED DENOISING TECHNIQUES AND EXPERIMENTABBETS 47

duces noise significantly in terms of MSE and visagpearance is close to the noiseless sig-
nal.

Results on proposed image denosing method

The proposed image denoising method has also lestedton many noisy observations of
images such akeng Peppers CameramanHouse The images have been corrupted with
AWGN with noise levelso =15 and o = 20. For test images the noisy observation images
have been denoised with TI Symmlet wavelet wittaBishing moments and 4 decomposition
levels. The obtained wavelet coefficients were rediby, for example, hard thresholding

function with universal threshold value proposeddmnoho and Johnstone,q = o+/2-logn?

wheren? is the image size. This wavelet-based estimatéas used as a start up for calcu-
lating of parametric Haar-like transforms (PHT) described above. After transferring the
noisy image into PHT transform domain, the transied coefficients have been thresholded

with customized threshold function using the thodgvalue A ¢ = c-cs\/ZIong wherew

is the size of the sliding window. Experiments shitnat our denoising methods outperform
significantly the performance of Wiener filteringcathe wavelet based method.






Chapter 5

Spectral methods/transforms in
logic design

In the design of digital devices, there are mamyous ways to describe the input and output
signals. The inputs and outputs are usually mattieally modelled by functions, while the
input and output relations may be represented leyatprs in some properly selected function
space. In digital design, a system is represenyeisblogic function, namely, Boolean or

switching function (BF). The BF af variablesx, x,,...,%, is a mappingf :{0,3" —{0,3.

The classical representations of a BF are the talites, Kaurnaugh map, canonical sum-of-
products (SOP) which is the analytical represemtatif BFs, and the graphical representation
of BFs by Decision Diagrams (DD) [24], [77],[79]nAther way is the spectral representation
[77], [45]. The conversion from the original domamio an equivalent spectral domain repre-
sentation is performed through a spectral transfointh has an inverse transform to ensure
the possibility of obtaining the original domairpresentation back from its spectrum without
loss of information. In general, spectral transferane orthogonal. One of the reasons to use
the spectral representation is due to the factgbatetimes the spectral coefficients provide
more valuable information about the input featurem just its Boolean representation. This
aspect was used in many areas of logic designnaatiion and testing of digital circuits [45],
[52]. It helps to solve many problems ([44],[45F]452]), such as BF classification into
equivalent classes, Boolean matching, disjoint dgmsition of Boolean functions, spectral
based network synthesis, fault detection.

Another aspect of spectral methods in logic dessgiine transformation of Boolean func-
tions from AND-OR into AND-XOR circuits which areasily testable and reduce the hard-
ware costs (number of logic gates) compared tditstecircuit realization [74].

Many spectral transforms have been widely usedalyais, synthesis and testing of logic
functions. Among them the most popular are ReediM{RM), Haar, Walsh and Arithmetic
transforms as well as their generalizatioagy(generalized Haar [5], Vilenkin-Chrestenson

49
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[52]). The RM transform is found to be useful inns of area, speed and testability [46],[51]
[74],[78]. In [69] the symmetric functions were liegad as RM expressions. The RM spectral
representation represents flexibility for descoptiof the binary as well as multiple-valued
circuits. The rows of RM transform are the well-lkmo error-correcting codes called RM

codes.

The Walsh transform is widely used, for examplefamlt detection [45]. The Haar trans-
form is also quite useful, for example, in VLSI @gs fault detection [44],[52],[50] and also
in signal/image processing and pattern recognitioa to its low computations and memory
requirements. In the following sections, we willsdabe briefly different existing as well as
proposed spectral representations of logic funstion

5.1 FUNCTIONAL REPRESENTATIONS OF SWITCHING FUNC-
TIONS: AND-EXOR EXPRESSIONS

In algebraic approach to logic design, switchingctions are usually considered as elements
of vector spaceGF,(C}), where GF, denotes the finite Galois filed of order 2, GF(@yd

CJ is the finite dyadic group of orde”, consisting of{(x;, Xp.....%,) | % €{ 0,} ®}, where

n
'@" is the modulo 2 addition or EXOR operation, &@§i= x Cp,where C, =({0,3} @) is
i=1
the basic cyclic group of order 2. This formulatmiswitching functions is convenient due to
the benefits of EXOR representations. AND-XOR dis(realizing EXORS) are easily test-
able and less costly (see [74]) compared to AND-€Buits (realizing SOPs). Moreover,
they may be easily extended to multiple-valued fioms. AND-EXOR representations are

considered as Fourier series-like expansiorGRa(C5) .
Any n-variable switching functionf = f (X, Xo,...,%,) can be represented in one of the
following EXOR expansion forms:

f=%fo®x% f, Shannon(§
f="1y@®xfo, positive Davio(pD)
f=foXf,, negative DaviqnD)
where
fo=T0q - %-1.%=0.X1,0% F flx= 0
and

f = FOQ e Xo1f = Lxozooh & FOG=D)
are co-factors with respect to variablge and

fp=fo® fy.
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(S)-expansion

The ©)-expansion rule may be applied recursively tdtal variablesx, i=1,...n, of func-

tion f bringing to the complete SOP form of [77], [79].
In matrix notation, Shannon expansion may be exgess:

f=[% X]{; ﬂ“ﬂ (5.1.1)

or, after denoting the basic matrices

X(1)=[% x],s(:){; ﬂ and F{ﬂ,

1
we have:
f = X(l)B(l)F. (5.1.2)

In matrix notation, the recursive application 8j-éxpansion to alh variables of functiori
resulting in complete SOP form of functibmay be expressed by the Kronecker product as:

f =X (n)B(n)F :Lélx(l)][éls(1)]p (5.1.3)

It should be noted that matrix notation is convanier transferring from SOP into, for ex-
ample, polynomial expression of switching functidfor this approach, different basic matri-
ces B(1)can be chosen to produce different expressions.

(pD)-expansion

The (ED)-expansion may be formed from thH®-expansion by using properties of the Boo-
lean logic. For example, after substitutich=x ©1 we have

f:(].@xl)fc)@)ﬂ flzl' fo@)F fo@ )( f]_:
:1f0®)(,(f0® fl)

In general,
f=cop® X, (5.1.4)

where ¢y = fy and ¢ = fy @ f; are the RM spectral coefficients. In the matrirnio(5.1.4)
may be expressed as
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v 3]

f =Xg(YR(YF.

(5.1.5)

The recursive application opD) rule to a functionf (x, Xo,..., %, ) with respect to all the

variables produces thBositive Polarity Reed-Mulle(PPRM) expansion or the so called
Zegalkin polynomial [19],[77] :

f=Co@c® CrX®- ¢ }®

(5.1.6)
DX Xo® 3% X3 D G- p ¥ 18D+ Cop X Xp ¥

In matrix notation PPRM is the following:

f = Xp(N)R(n)F :[éx R(l)}[élR(l)}F. (5.1.7)

The PPRM represents AND-EXOR expression where gaghble is uncomplemented, that
is, with positive polarity. Each switching functiecan be written in the form of PPRM.

As we can see in (5.1.7), the PPRM expression megjuhe Kronecker product of basic
kernelsR(1). The product terms, mentioned above in (5.X®%).7), are generated symboli-
cally as the Kronecker product of (1x2) vectfksx], i =1,...n, related to each switching

variable, given by
n
Xq :@1[1 xi], (5.1.8)
For example, when=2, we have

Xr(2)=[1 %]®[1 %]=[1 % % XX (5.1.9)

These product terms represent particular switchingtions, whose truth vectors are the col-
umns of the RM transform matri®(n) shown in Table 5.1.1.

Table 5.1.1 Truth vectors for products in Reedidfiexpressions
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(nD)-expansion

Similar to the PPRM ({D)-expansion), the NPRM (D)-expansion) may be derived from
(9-expansion by the relatiog =X ©1. In matrix notation, the NPRM is given as

f=[1 z]ﬁ ﬂ“‘j (5.1.10)

Both the PPRM and NPRM expressions may be includiedthe so-calledixed-polarity
Reed-Muller(FPRM) expression. The FPRM is a generalizatioRBRM (NPRM), that for
each variable of function allows to choose any ad tlecomposition rulespD) or (nD). It
means that each variable should appear in one offik@d polarities,e.g. either positive or
negative, but never both at the same time. ireariable functionf there are 2 possible
choices for polarities. Therefore, there ataliferent FPRM polynomial representations ffor

variable function. With this respect, the polanitgctorh = (hy,h,,..., hy), h €{0,1} with
h =0 (positive polarity of variable) anth =1 (negative polarity of variable) is introduced
that relates to polarity of variables fndenoted as:

x, h=0

‘@h:{x, h=1

In particular, the PPRM representation is the RMregsion for zero-polarity vector
h=(0,0,...,0] that often requires less number of product teftras the SOP which is AND-

OR expression. The polarity vectbwith minimal number of nonzero coefficients is edll
the minimal polarity and the FPRM correspondinghat minimal polarity is called the mi-
nimal FPRM expression for a functioh As in (5.1.7), the FPRM of function

f (%, Xo,-...%,) for polarity vectoth may be written as
h h n n
f =XR(N)RMN(n)F = \®1xg 0 ‘|®1Rih ) |F, (5.1.11)
1= =
whereXrF‘2 = [1 xih J and the Kronecker product of basic matrices cawiitéen as

n
R'= @ RN (1), (5.1.12)
i=1

where h=(h, hp,....lp) is the polarity vectorhy € {0, ,i=1,...n is a polarity value for va-

riable ¥, and matrixR" (1) is one of following two RM matrices:
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h 1
RN ()= (5.1.13)

The generalization of FPRM gives the mixed polaRged-Muller (MPRM), also referred
to as the Kronecker expression, that allows a flerce for each variable among the three
decomposition rules, namel§)( (pD) and @D), with no products consisting of the same set
of variables. In this case, we have three kernbd, is, identity kernel, PPRM and NPRM

and, therefore, three choices. Thus, for each fmaif n variables3" possible Kronecker
expansions will be obtained.

The more is the number of possible expressionsiribie is the possibility of getting the
expression with smaller number of products. Howefiading an optimal expression of a
function with a minimal number of products is an N&td problem [77].

In generalized RMGRM) the polarity of each variable may be diffdrendifferent prod-

uct terms. There aré”zml possible generalized RM expressions fomarariable function.
The set of variables in product terms is uniquat i there are no products with the same set
of variables.

The GRM expression for function nfvariables has the following form:

F=Co@aX® %® - g%® a0 63%%® £ 4 X 180 G X% o

whereg €{0,1} and & is eitherx or X .
Another AND-EXOR expression is the EXOR sum of pratdexpressions (ESOPs) which

are the most general class of expressions defiseth &£ XOR sum of arbitrary product terms
of the form:

f = @)?1?2)% ,
S

whereSis the set of all possible products asigdis 1, x or X .

There IS the following relation between different xpeessions:
PPRMc FPRMc GRMc= ESO [79]. These expressions provide different numbér o
products (or nonzero spectral coefficients) in ctien from left to right. That is, on average,
for many BFs, the PPRM produces the largest numbproducts, while the ESOP gives the
least number of products.
In the above described expressions, the specteffi@ents ¢, and the basis functions are

logic 0 and 1. Such expressions where coefficiants basis functions take values in a finite
field are calledbit-level expressionshe bits may be binary as well as multiple-valdadhe
case of RMs the calculations are modulo 2 or owateffield GF(2). In the following section
we discuss thevord-level expressionsaving real or complex-valued coefficients.
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5.2 WORD-LEVEL EXPRESSIONS

Examples of word-level expressions are the Arithenétvalsh and Haar expressions [79].
Arithmetic expressions are derived from RMs wheeraions over GF(2) are replaced, for
example, by the operations over the field of ralarumbers).

In general, the following relation exists betweegit (disjunction V', conjunction ‘A’
negation —’, EXOR ‘@) and arithmetic operations (addition, subtractiowltiplication):

XA Y= Xy

XV Y= X+ y— Xy
X® y= X+ y-2 Xy
X=1-X

(5.2.1)

An arithmetic expression may be obtained fr@ndxpansion by using the last substitution
in (5.2.1). In this case, the arithmetic expangmecomposition) rule with respect to variable

X Is:
f =1 fo-i-Xi '(— f0+ fl) (522)

Fornvariable functiorf the arithmetic expression similar to (5.1.7)hie following:

f =X a(n)A(n)F :Licg)lXA(l)}[C:glA(l)}F, (5.2.3)

N

1 0
where X 5 (1) =[1 x| with integer values 0 and 1 of, and A_l(l):{ L J is the basic

arithmetic transform kernel.
Another word-level expression is the Walsh expossThe columns of the basic Walsh

1 1
transformW (1) = L J may be represented with switching variable{:la&— Zq] and

f=2h 1 Zq]E _ﬂ“‘j:_;(l(fw W)+ (E %)(fo- ) (5.2.4)

This expression is called Walsh expansion rule wedpect to variable. The recursive
application of Walsh rule to all variables will githe following:

f = Xy (M)W ()F :(éxw(l)}[c%lw(1)]a (5.2.5)

i

where Xy (1) =[1 1= %].
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5.3 SPECTRAL APPROACH: BOOLEAN VS. TRANSFORM DOMAIN

A logic function can be represented by many baBks.choice of a basis plays an important
role in solution of analysis and synthesis problamsg spectral representations of logic
functions, particularly, it determines the numbémonzero spectral coefficients which, in
turn, determines the complexity of implementatidrogic functions. In this section, we give
a short description of RM, arithmetic and Walsmsfarms which have a Kronecker product
structure allowing fast FFT-like calculation foethtransform matrices (see Chapter 2).

Reed-Muller transform

The RM transform performs the transformation of & iBom its original domain into the
Reed-Muller domain, and vice versa. The expresgioh.7) may be represented in matrix
form as following:

f =X R(N)F,
where F=[f(0), f (2),....f O— 1]T is the truth vector oh-variable switching functionf and
R(n) is the RM transform matrix of ordeM = 2":

RN = ®RA), RE=|® ° (5.3.1)
=i ' _L J e

The RM transform of orde2" x 2" is recursively defined as

R(n):{R(n—l) O(n—l)},

R(n-1) R(n-1)

where O(n-1) is the zero matrix of orde2™l. The elements d®(n) are the logical 0 and 1,
and the calculations are done owBF(2). The matrix R(n) is self-inverse, therefore,
R™(n) =R(n).

For a truth vectoF of n variable switching functioh the forward and inverse RM trans-
forms are:

R; =R(n)xF

5.3.2
F=R(n)xRj, ( )
where the calculations are performed over the fi&f{2).
The forward and inverse transforms are given bystrae matrix, since the RM transform
matrix R(n) is self-inverse oveGF(2). The relations (5.3.2) form the RM transfornirpa
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Arithmetic Transform

The arithmetic transform is defined as
S, =A(n)F, (5.3.3)

where S, and F are the arithmetic spectrum and truth vector, @esygely. Arithmetic trans-
form matrix A(n), as Walsh and RM transforms, is derived recurgiasl

A(n-1) O(n-1)

: (5.3.4)
-A(n-1) A(n-1)

10
A(l){_1 J, A(n):{
or, alternatively,A(n) = i(%)lA(l) =A@

It should be noticed that the inverse of arithmétimsformA (1), formally, is the same
as theR(1) containing the logical values of 0 and 1. Howetke, values ofA (1) are inte-
ger 0 and 1 values.

Walsh transform

The Walsh transform is defined as
S, = W(n)F, (5.3.5)

where S,, and F are the Walsh spectrum and truth vector, respdgtiVéalsh transform ma-
trix W(n) is derived recursively (see also (2.3.3)):

w(1)=E ﬂ W(n):m(n_l) W(n-1) (5.3.6)
- (n-1) -W(n-1)

or, alternatively,W(n) = -C%W(l) =W (@)°".

For some applications, in computing the Walsh tiams of a BF, it is convenient to per-
form the following encoding: the elementsFoére sometimes encoded from {0, 1} to {1, -1},
where logic 0 is encoded as -1 and logic 1 is eeda$ +1.

54 REED-MULLER TRANSFORM FOR MULTIPLE-VALUED LOGIC

The Reed-Muller domain can be extended from biragyc, related to Boolean algebra, to
the multiple-valued logic (MVL) suggesting much radrenefits. It was shown that MVL cir-
cuits enhance circuit performance in terms of &g, operation speed and power consump-
tion. Any function f with p-valued inputs ang-valued outputs may be considered as a
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mapping: f:{0,1,2,....p— ' ->{0,1,2,...,p0— 1}. The PPRM forp-valued function f with
truth vectorF has the following form:

frp (X) = X (Mx RGN xF,

n
where X, (n)= ®[1 X . ¥ 1 and R:! is a matrix over GH).
rp ) 4 p

Here we consider an example of the simplest casauitiple-valued logic, the case of

three-valued input, three-valued output functibr{0,1, 2}" —{0,1, 2} . The PPRM transform
for such function is

G=R3(n)xF over GF(3), (5.4.1)

whereF andG are the ternary truth vector and the PPRM spectritiength 3", respectively;
R5(n) is a3"x3" PPRM transform matrix over GF(3) defined as

R3(n) = .(;)1R3(1) and R3(1) = (5.4.2)

N O B
N N O
N - O

For example, the PPRM expression for a truth veletof a 3-valued functiohof n variables
is given as follows:

f.300 = X, (NxRy(NxF,

100
n
where X, (n) = ® [1 % f} and Rgl(l): 11 1),
= 121
It should be noted that the addition and multigima operations over GF(3) are modulo 3
addition and multiplication. However, this is naie for the general Gp) case.

5.5 REED-MULLER HAAR TRANSFORM

This section describes the matrix representatioRedd-Muller Haar transform (RMH) for
different algebraic structures. The idea of the RM&hsform can be found in more detail in
[84]. Here we bring only briefly the definition tfat transform.

Denote byP(G) the space of the functions:G — P, whereG (domain) is a finite group
andP (range) is a field that may be the complex fi€ladr a finite (Galois) fieldGF(p). In
this notation, we consider the spacenovariable switching function&F,(C)), defined in
section 5.1.
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For a function f € GF,(Cp) given by its truth vectoF =[f(0),...,f (p" - 1)]' the Haar
spectrum and the series expansion are defined as:

St =HY(n)F

5.5.1
F:H(n)Sf ) ( )

where S; is the vector of Haar spectral coefficients araboading to definition, Haar func-

tions in GFp(CB) are defined by the columns of the following matrix

H(n-1)®q |

H(n)= I(n_?)®ql , (5.5.2)

1 (n-1)®q, 4|

whereq;, i =0,...,0— lare rows of basic matriQ’ (1) for P=GF(p), and I (r) is the identity
matrix of orderr .

For example, depending on the orge®,3,4 of the finite filedGF(p) the following basic

matrices (kernelsRT (1) for definition of Haar functions are possible:

1000
10 L oo 11 1 1

R(1)= GF (=1 1 16F, (@
()LJ 3()12164():1231
1321

In particular, forp=3 the RMH of orde" is the following:

THT(n-1) ®;[1 1 1
TH(N)=| I(n-3) ®; [01 2], (5.5.3)
I(n-) ®;[011

where TH (1) = (G F3(1))T is the RMH transform of order 3, ar&; is the Kronecker product
modulo 3.

5.6 HYBRID TRANSFORMS

In this section we introduce briefly the proposetid spectral transforms based techniques
that were designed in order to suit better the s@dd particular application. The basis func-
tions of the hybrid transforms are designed aftalysis of the features of an input logic

function. Each transform has both more or less gqmogerties when used in certain task or
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application. In order to use the best featuresiftérént transforms, many new transforms are
designed that combine these features [3],[41],[63],

5.6.1 Hybrid Reed-Muller Haar transform

In [P1], [61], a new Hybrid Reed-Muller Haar Tramsh (HybRMH) transform was proposed
which is a hybrid transform obtained by combinihg RM and RMH transforms. We give
also a fast calculation algorithm for this transfior

The forward (0-polarity) HybRMH transform of ordéf = 2" an integer parametar is
defined as

T(nr)=R(r)®H(n-r), 0<r <n (5.6.1)

where R(r) is the Reed-Muller transform of ord&l and H (n— r) is the Reed-Muller Haar

transform of orde"".
The parameter can be selected appropriately to best exploitféhéures of the function
to be represented. In the case Othe hybrid transform coincides with the RMH tramsio

while in caser =n the hybrid transform coincides with the RM tramsioof order2".
Forn= 3 andr = 1, the hybrid transform matrix(3,1) is the following:

T(3)=R()®H(2=

O r kP O RFr k- Bk
O r OO O EFr O Oo
P Ok, O Fr O Fr O
R O O O r O O O
O r P P OO O Oo
o r O O O O O O

R O FPr O O O O O
= O 0 0 0 0 o O

Both the RM and RMH transforms have a fast caleusalgorithm. The fast algorithm for
the RM transform has a structure similar to thathef Hadamard transform, while the flow-
graph of the RMH transform is similar to that oétfast Haar transform. The butterfly dia-
gram of hybrid transform has a structure of fast&taard-Haar transform in the sense that
some of the flowgraph stages are similar to thdastf Hadamard transform while the others
are similar to that of fast Haar transform. The bemof additions of fast hybrid RM-RMH
transform of ordeN and the parameter, is 2" -(N/2 —1)+r- (N /2). The computational

costs are different for different values of In other words, for =1,2,...n— 1the number of

additions in the fast algorithm is between the nendf additions corresponding to the RMH
and RM transforms.
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The fixed-polarity expression for HypbRMH transforsndefined in [P1]. Fast implementa-
tion algorithm can be derived also for the fixedapiby HybRMH transform.

The binary HybRMH transform may be generalizedhe tase of multiple-valued func-
tions. In particular, the ternary hybrid transfowith definitions of ternary fixed-polarity hy-
brid expressions is described in [P1].

5.6.2 Binary hybrid Reed-Muller Haar-like transform

In [P4] we presented another new Haar-like tramsfogferred to as the Binary Reed-Muller
Haar-like (BRMH) transform over Galois fields ofd@r 2.

The proposed forward (and inverse) BRMH transfasmilarly to the HybRMH, is a dis-
crete binary transform which may be defined a®ted:

T(n,k)=R(n- K@ H (K (5.6.2)

where R(n- k) is the RM transform matrix of orde?™ X and H,(k) is the Binary Paramet-

ric Haar-like Transform (BPHT) matrix of orde to be defined later. By varying the pa-
rameterk one may get different transformsg., RM (k=0), RMH (=n) as well as other bi-
nary transforms corresponding to intermediate \&bfgparametek.

The BPHT is a PHT transform over GF(2) designedetach given input signal by taking
into account specific features of the input binsignal. Like PHT, the BPHT has the fast al-
gorithm with the structure similar to that of tteest Haar transform.

Similar to the PHT, the BPHT is based on a genagatector which is an input to a fast
implementation algorithm flowgraph (Figure 2.5 H)).our method, a switching truth vector
serves as such a generating vector and an inghatdlowgraph. As in the case of FHT algo-

rithm, the fast BPHT of ordeN = 2" hasm= log, N stages, with thg th stage,j =1,...m,

consisting ofN; = N/2j butterflies.

The design of the fast BPHT transform starts froralgzing each pai[u v]T of the input
binary truth vector of a logic function. At eactagé of the fast algorithm (Figure 2.5), for

each paifu v]T of an input binary vector a kern¥! is specified in such a way that
V-[u v]T =[d O]T , whered= (

In particular, for each stage and for each pai[u v]T of the input vector, theth kernel is
defined in the following way:
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10| .
1 1_, |f ulS:VlS: 1
1 0 .
V(:LS) — |:O 1 , IfulS — 1(1'5: O, OU:LS: VlS: (
0 1] .
L o/ if g = Ovys= 1

These spectral kernels form the block-diagonal wedrin (2.4.4). The resulting BPHT
matrix is constructed according to (2.4.1). The BRsithen combined with RM by Kroneck-
er product operation to get a new transform (5.6.2)

5.7 TERNARY HAAR-LIKE TRANSFORM

In [P3], the spectral technique based on prioryammslof input logic function and its further
processing by a new local ternary Haar-like transf¢THT) is proposed. The THT is a line-
arly independent transform over the finite Galaéddf GF(3) and a sighal adaptive parametric
transform allowing to use specific features ofgnal during construction of the transform. It
also has a fast implementation algorithm in strreesimilar to that of the fast ternary Haar
transform. Given an input signal, we specify thegpaetric THT by its fast computation algo-
rithm allowing an iterative analysis of the sighgl its decomposition into input steps of fast
algorithm. For each step, the set of suitable patara €.g ternary butterflies and permuta-
tions) are specified depending on the structurtghefinput signal at that step. The construc-
tion of parametric THT (as in the case of PHT) asdxd on a generating vector which is the
input to the fast implementation algorithm. In onethod, a ternary signal serves as such an
input. The proposed transform have been utilizedoimpact representation of ternary logic
functions containing the logic values {0, 1, 2} indGF(3).

The design of fast THT transform starts from exangreach triple[u % vv]T of the input

ternary truth vector of a logic function. For east of components in an input triple, a kernel
V is specified in such a way that

V-[UVV\]T:[dO qT , whered= (

With this respect, in [P3] as parameters, a libaryof four different kernels and permutation
matrices were specified in order to get a structimglar to that of the fast ternary Haar-like
algorithm.

5.7.1 Application of HypRMH, BRMH and THT transforms

The HybRMH transform (with fixed polarity expressg) and the BRMH were utilized in
compact representation of different binary benchnfanctions in order to reduce the hard-
ware requirements. The THT transform based appreachtested on arbitrary selected ter-
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nary logic functions. The proposed methods showrgrovement in reduction of number of
nonzero coefficients. The results were comparetd ®¥, RMH (also FPRM, FPRMH), ter-

nary transforms [40] and show that on average theber of products is smaller for the pro-
posed transforms. The results of the proposed rdethtay be found in tables of [P1] and
[P4].
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The thesis is based on six publications given éligt of publications. The first two publica-
tions are journal papers whilst the others aree@mice papers.

In [P1] we propose a new transform which is a coration of two transforms, namely,
Reed-Muller and Reed-Muller Haar, called hybrid é&R&&uller-Haar transform (HybRMH).
We show that the matrix of the HybRMH transform ntegyfactorized, which provides a fast
calculation algorithm based on the classical thexr{¥FT-like algorithms. As one of many
potential applications of this transform, we comesithe reduction of the number of nonzero
coefficients in HypRMH expressions. The extensibigbRMH to multiple-valued case, in
particular, the ternary case is considered as well.

In [P2] a class of parametric transforms that aseld on a unified representation of trans-
form matrices in the form of sparse matrix produstdescribed. Parametric transform allows
controlling some of transform features by properap#eter selection. In our work, a method
for parameter selection is proposed that allowsh®gizing specific transforms with matrices
containing predefined row(s). Furthermore, differiimilies of transforms are defined within
the introduced class of parametric transforms iB].[RAll transforms of one family can be
computed with fast algorithms similar in structtioeeach other. In particular, the family of
parametric Haar-like transforms has been introdubaticonsists of discrete orthogonal trans-
forms of arbitrary order such that they all maydeenputed with a fast algorithm that is in
structure similar to the classical fast Haar tramsf Also the potential of the proposed class
of Haar-like parametric transforms to improve tlegfprmance of fixed block transforms in
image compression is investigated in [P2]. Withstipurpose, two image compression
schemes are proposed where a number of Haar-8ksforms are synthesized, each adapted
to a certain set of blocks within an image.

In [P3] a signal-adaptive Haar-like transform, defi over the field GF(3), that is intended
for processing ternary functions is presented. gimgposed transform possesses a fast com-
putation algorithm similar to the fast algorithnms the classical Haar transform on finite dy-
adic groups as well as the generalized Haar tramsfdor multiple-valued functions. The
proposed transform is utilized in reduction of thember of nonzero coefficients in spectral
representations of ternary functions.

65
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The [P4] presents three methods for reduction @filimber of nonzero coefficients in the
spectra of binary vectors using newly introduceeédMuller Haar-like transform. The trans-
form, used to transfer a given truth vector of atcwng function into the spectral domain, is
based on the Kronecker product of the Reed-Mulket binary parametric Haar-like trans-
forms (BPHT) which is a signal adapted discreteatyrvalued transform that may be com-
puted with a fast algorithm having the structureiksir to that of classical fast Haar transform.
The new hybrid transforms introduced in this papembine properties of both the Reed-
Muller and BPHT transforms, due to which they pdavimproved reduction of the number of
nonzero coefficients in spectral representatiorsaatfiching functions.

In [P5] the capability of parametric Haar-like tsfmrms in 1D signal denoising application
is explored. A new PHT based post-processing algarfor 1D signal denoising is proposed
which may be combined with another denoising methaatder to improve the quality of the
output signal. Here the basic wavelet thresholdiaged signal denoising method was com-
plemented with the proposed post-processing algarit

The aim of work [P6] is to study a potential usepafametric Haar-like transforms in im-
age denoising. A PHT-based post-processing methgaoposed which may improve a de-
noising method based on fixed transforms. In paldig it is shown that the proposed method
may significantly improve the performance of wavelgesholding based image denoising.
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