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Abstract 

The thesis is devoted to adaptive parametric transforms based methods in digital signal proc-
essing and logic design. It is organized as an introduction to the topic followed by six original 
publications presenting the main scientific results. 

   The introductory part begins with an overview of unified approaches to fast Discrete Or-
thogonal Transforms (DOTs) such as the well-known Fast Fourier Transform (FFT), Fast 
Haar Transform (FHT), and Fast Reed-Muller Transform (FRMT). Then, a new unified ap-
proach is presented based on introduction of new families of parametric transforms with fast 
algorithms having a unified structure. This proposed parametric transforms allow not only to 
generalize many well-known fast DOTs but also to synthesize an infinite number of new ones 
that can be adapted to given application and given input signal by selecting or defining a 
proper set of parameters. In particular, one of the proposed fast parametric transforms is the 
Parametric Haar-like Transform (PHT), which was studied in applications to important practi-
cal areas, such as image compression and signal/image denoising. Other examples are para-
metric fast logic transforms such as the Binary Reed-Muller Haar-like (BRMH), Hybrid 
Reed-Muller Haar (HybRMH), Ternary Haar-like Transforms (THT), which were success-
fully studied in applications to logic design. 

    The introductory part of the thesis continues with a short discussion on image compres-
sion techniques. Afterwords, our research aiming to reveal the potential of the proposed class 
of Haar-like parametric transforms in improving the performance of fixed block transforms in 
image compression is presented. This has resulted in two new algorithms. The nature of the 
proposed schemes is such that their performance is at least as good as that of conventional 
Discrete Cosine Transform (DCT) based schemes. 

    Thereafter, the application of parametric transforms in signal/image denoising is pre-
sented. After a short overview of transform based image denoising methods, two new PHT 
based algorithms are described. In these algorithms, post-processing steps using PHT are ap-
plied in combination with the well-known wavelet thresholding based denoising. The per-
formance of the proposed methods shown a significant improvement in noise reduction com-
pared to the wavelet based techniques. 

    Finally, the application of parametric transforms in digital logic design is explored. 
Many problems in analysis, synthesis, testing of digital devices have simpler solutions in 
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spectral than in original domain. Examples of classical spectral transforms widely used in 
digital logic design and communications are Walsh, Haar, Reed-Muller, arithmetic transforms 
that gained popularity due to their simple and efficient in terms of space and time fast imple-
mentations important for practical applications. In the thesis new binary, ternary as well as 
hybrid parametric transforms combining some known transforms were introduced. The pro-
posed spectral transforms are signal adaptive in the sense that they are designed as a result of 
analysis of the signal to be processed. New spectral methods utilizing these transforms were 
developed in order to improve their performance in compact representation of binary and ter-
nary logic functions. The proposed methods were analyzed experimentally showing good re-
sults compared to classical transforms. The proposed transforms are of interest in logic design 
due to their flexible features such as signal adaptivity, fast implementation and low-
complexity. 
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Chapter 1 

1 Introduction 

During the last two decades there were serious advances in the theory and practice of digital 
signal and image processing resulting in many familiar systems and devices such as digital 
television, mobile phones, computers, digital cameras, navigation devices, etc. In this sense, 
digital signal and image processing have become an integral part of human daily life. The 
more they are integrated in our daily life, the tougher are the requirements on them and the 
more efficient methods for designing such systems and devices need to be developed. 

For example, one of the most important digital image processing applications is image 
compression the aim of which is to represent digital images with as little information (in terms 
of number of bits) as possible and at the same time to preserve the visual quality of images as 
high as possible. Analyzing this application, one can notice that in early digital cameras one 
or two megapixel resolution images were considered to produce enough quality, whereas no-
wadays even ten megapixel resolution images are considered to be of only moderate quality. 
At the same time, the number of images taken and processed by people has dramatically in-
creased. All these images need to be stored and/or sent via communication links, often wire-
less. Even though the storage capacities as well as the communication bandwidths have also 
significantly increased, it is clear that for efficient handling of the enormous amount of large 
images, there is a great demand for image compression techniques that would reduce the 
amount of the information representing images at higher and higher rates. 

Similarly, analyzing another important signal and image processing application, the noise 
removal (or denoising), one can notice that more and more advanced techniques are needed 
with the growing user experience resulting in higher user expectations from one side and the 
growing range of signal and image processing devices and systems introducing different kinds 
and different levels of noise from another side. 

One of the most important toolsets widely used in signal and image processing applica-
tions, in particular, in signal and image compression and denoising, is based on the classical 
mathematical theory of spectral techniques. In these techniques, the actual processing of a 
signal or image is implemented in the spectral domain, to which the original signal or image is 
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transferred using a spectral transformation. This is useful in many cases since some features 
of the signal or image are better represented in the spectral domain than in the original time or 
spatial domain. For example, in signal and image denoising, transferring to the spectral do-
main helps separating a white noise from the signal or image since the signal is highly corre-
lated and is concentrated in low frequency components of the spectrum while the noise being 
uncorrelated is concentrated mainly in the high frequency components. Similarly, in image 
compression, transferring to the spectral domain helps separating image details from the prin-
cipal content. In the cases where the detail can be ignored or weakly presented this means a 
possibility of presenting the principal content of the image with less components in the fre-
quency domain compared to the original spatial domain representation.  

However, to make a spectral technique efficient in one or another application the correct 
choice of the spectral transformation is very important. In signal/image compression and de-
noising applications, mainly Discrete Orthogonal Transforms (DOTs) (see, e.g. [1], [10], [49]) 
and Discrete Wavelet Transforms (DWTs) (see, e.g. [26],[28],[37],[55]) are used. Among the 
DOTs, the most popular are the Discrete Fourier Transform (DFT), Discrete Cosine Trans-
form (DCT), Discrete Walsh-Hadamard Transform (DWHT), Discrete Haar Transform 
(DHT), Discrete Slant transform (DST). It should be mentioned that for each input signal or 
image there is the most optimal DOT.  However, using the optimal DOT for each input in 
practical applications is often impossible. On the other hand, signals or images can be com-
bined in groups represented by stochastic processes. In that case, instead of considering the 
optimal DOT for each input, a single transform for a group of inputs could be considered. For 
example, it is known that natural images can be modeled as first order Markov processes with 

high correlation coefficient ,ρ  (0.9,0.95),ρ ∈  and the optimal DOT, both in image compres-

sion and denoising applications, is the well-known Karhunen-Loeve Transform (KLT), which 
is formed from the eigenvectors of the covariance matrix of this process [10],[49]. Though, in 
some cases this may be useful, in practice the use of KLT is rather restricted due to computa-
tional complexity reasons.  Instead, suboptimal transforms such as DCT or WHT are used 
which can be computed with much lower complexity using well-known fast transform algo-
rithms [68]. These transforms (especially DCT) have long been successfully used in the above 
mentioned applications. However, a further improvement of the performance of signal and 
image compression as well as denoising applications is rather difficult to expect using any 
fixed transform since it has become clear that none of them can be suitable to the large variety 
of different signals and images processed nowadays. Therefore, recently adaptive spectral me-
thods have gained popularity. This theory is still in the beginning of development but had al-
ready given some results. For example, in [65], very efficient image compression method was 
developed by varying only the size of the DCT transform.  

Another important field of application of spectral techniques is digital logic design, which 
is very valuable in, e.g. Boolean function (BF) analysis for classification as well as finding 
fictive variables, in digital circuit synthesis, etc. [6],[34],[44]-[46],[50]-[52],[66],[69],[100]. 
In this field, the spectral transforms are used also with the aim of reducing the number of non-
zero spectral coefficients for input function representation. Most often used transforms are the 
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Reed-Muller transform and (unnormalized) Haar transform and their different generaliza-
tions/extensions [51],[52],[79],[84]. Similarly, to the case of signal and image processing, also 
in this application one can expect a significant performance improvement by utilizing adap-
tive spectral methods since none of the fixed transforms can match the characteristics of all 
kinds of logical functions. The large area of applications of spectral techniques in terms of 
theory of logic design may be found in [45], [52],[89]. 

In this thesis, parametric transforms based adaptive spectral methods are investigated in 
applications to signal/image compression and denoising, as well as logic design. Parametric 
transforms are described with matrices involving set of parameters. In this way, a parametric 
transform represents a family of transforms from which the desirable one can be chosen using 
an appropriate set of parameters. This gives a possibility to adapt the transform features dy-
namically during processing with the aim to best match up the transform to the given task and 
the given input characteristics. Another advantage of parametric transforms is the possibility 
to implement large families of transforms with a unified software/hardware that is efficient for 
each representative of the family and may be tuned to the desired transform. Parametric trans-
form based adaptive spectral techniques were not studied sufficiently, though they may offer a 
significant new breakthrough in improving efficiency of many applications. 

The aim of the present research is to improve the efficiency and enlarge the scope of dif-
ferent applications of signal processing and logic design by using fast adaptive parametric 
transforms. With this aim, new parametric transforms and new methods utilizing these trans-
forms in different applications, such as signal/image processing and circuit design were de-
veloped. In particular, in this thesis, a fast parametric Haar-like transform that is input adapted 
and can be designed according to the certain parameters is proposed. For this transform we 
introduced a methodology to define parameters in such a way that the matrix of the resulting 
transform involves predefined rows. 

The proposed Haar-like transform was efficiently applied in signal/image compression and 
denoising applications. With respect to logic function processing methods, three approaches 
were proposed for reduction of the spectral representations of logic functions. The first ap-
proach is based on the proposed fast binary Haar-like transform. The second approach is 
based on the proposed fast hybrid Reed-Muller Haar transform defined for different algebraic 
structures, in particular, Galois fields of orders 2 and 3. For these transforms fast calculation 
algorithms based on classical theory of FFT-like algorithms have also been developed. The 
third approach is based on the synthesis of a ternary transform for processing of ternary logic 
functions. Transforms and methods that were developed for processing of logic functions can 
also be useful in solving other problems of logic design and communications. 
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Chapter 2 

2 Discrete Orthogonal Transforms: 
Background 

In this chapter a short overview on the fast discrete orthogonal transform theory is presented. 
After a general background on discrete orthogonal transforms presented in Section 2.1, defini-
tions of most widely used transforms with their main relevant properties are given in Sections 
2.2 and 2.3. This is followed by a short overview of different unified approaches to fast trans-
form algorithms and new parametric transform synthesis methods presented in Section 2.4. 

2.1 BASIC CONCEPTS OF DISCRETE ORTHOGONAL TRANS-
FORMS 

Let NH  be a unitary ( x )N N -matrix, i.e. * * ,N N N N N⋅ = ⋅ =H H H H I  where *
NH  is a conju-

gate transpose of the matrix .NH  For an ( x1)N  input vector 0 1 1[ , ,..., ]TNx x x
−

=x  (subscript 

T  denotes the transposition operator), the ( x1)N  vector 0 1 1[ , ,..., ]TNy y y
−

=y   

 N= ⋅y H x  (2.1.1) 

is called a Discrete Orthogonal Transform (DOT) of x . The vector y  is also referred to as the 

spectrum of x . Equation (2.1.1) is, in essence, a representation of an arbitrary vector y  as a 

linear combination of columns of matrix NH , which form a set of basis functions in a new 

coordinate system. 

The inverse to (2.1.1) DOT is defined as 

 1 .NN
− ∗

⋅= = ⋅x H y H y  (2.1.2) 
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In (2.1.2) the input vector x  is represented as a linear combination of the columns of the ma-

trix *
NH  with the coefficients being the components of vector .y  

Equations (2.1.1) and (2.1.2) corresponding to the one-dimensional (1D) transform can be 

extended to the two-dimensional (2D) transform. In practice, separable 2D transforms are 

mostly used where first a 1D transform is applied to each column of the input matrix X  and 

then the same or another 1D transform is applied to each row of the resulting matrix. Thus, a 

separable 2-D transform over an )( MN ×  input matrix X  is defined as follows: 

 N M=Y H XQ , (2.1.3) 

where NH  and MQ  are unitary matrices of sizes )( NN ×  and )( MM × , respectively. In 

many practical applications, the case where MN =  and T
M N=Q H  is used. 

The inverse separable 2D transform over an )( MN ×  matrix Y  is then given as follows: 

 * *
N M=X H YQ . (2.1.4) 

Let us note that equations (2.1.3) and (2.1.4) essentially mean the representation of the  

matrix on the left side (Y  and X , respectively) as a linear combination of so called basis im-

ages of the corresponding transform, which are formed as products of columns of the left ma-

trix ( NH  and *
NH ) with the rows of the right matrix (MQ  and *

MQ , respectively) [49]. 

Few examples of the most often used (classical) transforms are: 

    – Discrete Fourier Transform (DFT)  

    – Discrete Cosine Transform (DCT) of Type-II  

    – Discrete Walsh-Hadamard Transform (DWHT) 

    – Discrete Haar Transform (DHT)  

    – Slant transform (ST) 

    – Wavelet transforms (WTs) 

    – Lapped transforms (LTs). 

DOTs constitute the base of spectral methods widely used in many applications of digital 

signal and image processing such as compression, filtering, pattern recognition, communica-

tions, etc. [49],[53],[90]. 

In a spectral method, the input signal is first transferred to the spectral domain using a 

transform. Most often a DOT is performed, which may also be considered as a transferring the 

input signal to a new coordinate system. This is a universal idea and can be applied to solve a 

large variety of theoretical and practical problems [1] (such as compression, denoising). Then, 

a computational procedure is applied in the spectral domain. After that, the inverse transform 

may be performed to convert the result back into the temporal or spatial domain if it is re-

quired by the application. 

The DOTs are linear, easy invertible, and possess the energy conservation property which 

means that the energy in the original and spectral domains are the same. This means that for 
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an input signal x  and its spectrum y  obtained as the result of a DOT, the following expres-

sion known, as the Parseval’s relation, is satisfied: 

 2 2

1 1

n n

i i
i i

x y
= =

=∑ ∑ . (2.1.5) 

Many of the DOTs have also a good energy compaction property. This implies that in the 

transform domain they concentrate most of the energy of an input signal into few transform 

coefficients. It should also be mentioned that a number of efficient algorithms for fast imple-

mentation of many DOTs have been developed. These are some of the reasons why DOTs are 

attractive to many researchers and why they are widely used.  

When applying a spectral method to solve a problem, an immediate question of selecting 

the most appropriate transform naturally evolves. Each transform has its specific area of ap-

plications, which is determined by several factors: the quality of processing, computational 

complexity, memory demands, etc. For a given class of signals or applications a certain trans-

form is optimal. Therefore, the choice of the transform depends on the application and on the 

class of inputs to be processed or analyzed using the spectral method.  For example, in image 

compression, a typical digital image contains a high degree of redundant data, implying the 

presence of some correlation between neighboring pixels. Therefore, the main benefit of any 

transform used in image compression is the removing of redundancy by decorrelating the data 

in the transform domain, that is, a compactness of a transform. In many applications, the theo-

retically optimal transform is the Karhunen-Loeve transform (KLT) [49].  However, the KLT 

is an input dependent and computationally very demanding transform as it does not possess a 

fast algorithm.  In practice, signal independent suboptimal transforms allowing fast imple-

mentations are used instead of the optimal but input dependent and computationally demand-

ing one like KLT. 

Generally, two types of transforms may be considered: 

1. Fixed transforms with matrices having constant entries. 

2. Parametric transforms with matrices described in a unified form involving a set of pa-

rameters. 

Among the large variety of fixed transforms, the so called classical transforms such as 

DFT, DCT, DWHT and DHT and ST are used most often. One common feature of the listed 

transforms, making them useful, is that there exist fast algorithms for computation of each of 

them. Analysis of these fast algorithms shows that all of them can be presented in a unified 

factorization form which describes a family of transforms, among which the desired one can 

be chosen using the appropriate values of parameters. In this sense, parametric transforms 

take an intermediate place between the fixed transforms and KLT. In some applications or in 

some methods, parameters describing the transform can be fixed once thus making the trans-

form input independent. On the other hand, in some other applications or methods, using pa-

rametric transforms offers a possibility to make the transform input-dependent by varying the 

set of parameters describing the transform. This gives a great opportunity to improve the per-
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formance of fixed transform based spectral methods by making use of adaptive spectral meth-

ods where the transform can be changed even during processing a single input. Potentially, 

even KLT may thus be outperformed because KLT is a fixed transform for a fixed input sig-

nal. At the same time the computational complexity of a parametric transform will approxi-

mately be the same as that of a fixed transform.  
 

2.2 KARHUNEN-LOEVE TRANSFORM 

The Karhunen-Loeve Transform (KLT) [49] is an orthogonal transform which produces un-

correlated coefficients from a correlated signal by using the information on signal statistics. 

Let u  be an (Nx1) real-valued random vector. The basis vectors of the KLT are given by 

the normalized eigenvectors of its covariance matrix uR , such that, 

 ,     0 1,u k k k k Nλ= ≤ ≤ −R φ φ  (2.2.1) 

where { }kλ  and { }kφ  are the eigenvalues and eigenvectors of uR , respectively. 

The KLT of vector u  is defined as 

 T
⋅=v Φ u  (2.2.2) 

and the inverse KLT is defined as 

 
1

,
0

( )
N

k
k

v k
−

=

= ⋅ = ∑u Φ v φ  (2.2.3) 

where kφ  is the k th column of matrix Φ . The unitary matrix TΦ  is known as the KLT ma-

trix. 
The matrix Φ  reduces uR  to its diagonal form, that is, 

 { },T
u kdiag λ= =Φ R Φ D  (2.2.4) 

where D  is the diagonal matrix with eigenvalues located on the main diagonal in decreasing 

order. All these eigenvalues are always nonnegative and correspond to variances of the trans-

form coefficients. The diagonalization of covariance matrix of the transform coefficients 

means the decorrelation of input data.  

In many cases, signal statistics is unknown. Hence, it is approximated with different statis-

tical models. For example, the statistics of small (say, 8x8) blocks of natural images can be 

described by a first order Markov process with a high correlation coefficient. The covariance 

matrix of a first order stationary Markov sequence is given by 
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2 1

2

1 2 3

1 ...

1 ...

. ... ...

.

... 1

N

N

N N N

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

−

−

− − −

         

=R , 1 .ρ <  (2.2.5) 

For natural images ρ  is between 0.9 and 0.95 meaning that neighboring pixels are on average 

similar to each other. 
 

Properties of KLT: 

 

1. KLT is a signal-dependent transform designed from the input signal at hand (it needs a 
priori information of signal statistics which may not always be available).  

2. KLT has the highest energy compaction compared to any fixed transform (DCT, DFT, 
WHT, etc.). In this sense, it is the optimal transform. 

3. KLT matrix computation needs 3( )O N  and KLT itself needs 2( )O N  operations. Due to 

the computational complexity, it is not always feasible to use KLT even if the necessary 
a priori information is available.   
 

The KLT plays the fundamental role in many digital signal processing applications such as 
face recognition, feature extraction, ECG signal processing. 

2.3 FAST ORTHOGONAL TRANSFORMS  

When utilizing a particular spectral transform in a signal processing application, one should 
take into account the transform’s computational complexity including the number of arith-
metical operations, that is, additions and multiplications. The need of reduction of computa-
tional requirements brought to development of fast algorithms derived for different DOTs. 
The following subsections describe most widely used DOTs and their fast computational al-
gorithms. 

2.3.1 Discrete Fourier transform and fast algorithm 

The discrete Fourier transform (DFT) is a complex-valued transform. The direct DFT and the 

inverse DFT (IDFT) of an N-point complex-valued vector { }0 1 1, ,..., Nx x x
−

=x are defined by 

 
1

0

,    0,..., 1
N

mn
m n N

n

y x W m N
−

=

= = −∑  (2.3.1) 

 
1

0

,   0,..., 1,
N

mn
n m N

m

x y W n N
−

−

=

= = −∑   
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where 2j N
NW e π−
= , the N-th root of unity, is called a twiddle factor. 

The expressions (2.3.1) may be rewritten in a matrix-vector product form as follows 

 
1 ,

N

N
−

=

=

y F x

x F y
 (2.3.2) 

where the entries of ( )N N×  matrices NF  and 1
N
−F   are given by 

 [ ] , nm
N Nnm

W=F   

 [ ] 1 1
,   , 0,1,..., 1nm

N NW n m N
N

− −
= = −F  (2.3.3) 

with n  and m  denoting the indices for entries of the matrices NF , 1
N
−F . 

The DFT is the base of many signal processing and telecommunications algorithms related 
to spectral analysis, convolution, filtering, signal reconstruction, compression, communica-
tions etc.[49], [100]. 
 

Fast Fourier Transform 
 
The computation of direct transforms is inefficient due to large number of computations re-

quired. The direct computation of N-point DFT (2.3.1) requires 2( )O N  operations. In prac-

tice, the fast Fourier transform (FFT) is used. The first fast algorithm for DFT of order N was 
developed by Cooley and Tukey in 1965 [29]. The main idea of FFT consists of splitting the 

calculation of an N-point DFT into DFTs of smaller sizes. That is, the 2nN = -point DFT is 

decomposed into two (N/2)-point DFTs followed by the multiplications with twiddle factors, 
and then (N/2) 2-point DFTs. Similar algorithm is applied recursively until the entire DFT is 
obtained for 2-point DFTs. This brings to significant reduction of computation complexity. 

In principle, the FFT decomposition by Cooley and Tukey may be implemented for the in-

put sequence of size N, which is a composite numberN pq= , by decomposing the sequence 

into p  sequences of size q , then computing q-point DFT for each sequence and multiplying 

the resulting sequences by twiddle factors. The sequences are then reordered and q  parallel p-
point DFTs are computed.  

In general, FFT may also be derived by using matrix factorization. For example, the matrix 
factorization corresponding to one of the most known FFTs, the Decimation In Time (DIT) 

FFT of order 2nN =  without normalization factors is presented as (see [31]) 

 ( ) ( )1

1
22 2 2 2 2

0
,n i n i i n i

n

i
− − −

−

=

 = ⊗ ⊗ ⊗∏  F I F I I T Q  (2.3.4) 
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where 

 
2

1   1
,

1 1

 =  − F
 

 

2 2

2

,   0 , 1,2
2exp

r r

r
r

r
diag k jj

k
r

π

    = ≤ < = −   −      

I O

T
O

 

 ( )2

2 2
0

2 2 ,2
,

n

n i i
i

−

− − +
=

= ⊗∏Q I P  

where ‘⊗ ’ stands for the Kronecker product1; ,N NI O  are the identity and zero matrix of or-

der ,N  respectively; ,2NP  is the permutation matrix that reorders the input vector into a vec-

tor with even and odd indices, that is, 

 ( ) ( ),2 0 1 1 0 2 2 1 3 1, ,..., , ,..., , , ,..., .
T T

N N N Nx x x x x x x x x
− − −

= ⋅ =y P  

With the representation (2.3.4) of matrix 2nF  in the form of the product of sparse matrices 

( ) ( )1
( )

22 2 22i i n in i
i

−− −
= ⊗ ⊗ ⊗F I F I I T , the DFT  

 2n=y F x  

may be computed in n  stages where at each stage 1,...,i n=  a computationally simple trans-

form with the sparse matrix ( )n i−F  is implemented: 

 0 ;=x Qx  

 ( )
1,    1,..., ;n i

i i i n−

−= ⋅ =x F x  (2.3.5) 

 .n=y x  

It can be seen that the structure of matrices ( )n i−F  is such that the multiplication of them to 

an input vector means the implementation of / 2N  basic operations over pairs of input com-

ponents [ ] 1 1
12 1

, ,
TT i i

ik k
a b x x− −

−+ −
 =     of the vector 1 1

1 0 1,...,
Ti i

i Nx x− −

− −
 =  x  being the input to 

stage 1,...,i n= . Each basic operation consists of pre-multiplying the component b  to a twid-

                                                             
1 The Kronecker product of two matrices [ ]( , )a m n=A  and [ ]( , )b k l=B  is the block matrix 

[ ]( , )a m n= ⊗ =C A B B .  
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dle factor 2 /2ij ke π−  according to the matrix ( )2 2n i i−
⊗I T  and then implementing a 2-point 

DFT to the resulting pair according to ( )122 2n i i− −
⊗ ⊗I F I . That is, the basic operation con-

sists of forming a new pair [ , ]Tc d  such that 2 /2ij kc a e bπ−= +  and 2 /2ij kd a e bπ−
= − . Thus 

at each stage about / 2N  multiplications and N  addition/subtractions are implemented. 

Since there are logn N=  stages, the total complexity of the fast transform algorithm (2.3.5) 

is estimated as ( log )O N N  operations. 

The FFT algorithm corresponding to the representation (2.3.4) can be mapped into the 

flowgraph as shown in Figure 2.1 for the case 8N = . As in (2.3.5), the Figure 2.1 consists of 

several stages, each corresponding to multiplication by one sparse matrix in the matrix repre-
sentation meaning a permutation of input components in order to form corresponding pairs 

[ ] 1 1
12 1

, ,
TT i i

ik k
a b x x− −

−+ −
 =     followed by / 2N  basic operations. 

It should be noted that there are many versions of FFT algorithms with different computa-
tional complexities and structures [38],[71], [85], [94], [96]. Of our particular interest is the so 
called constant geometry algorithm, which as was shown in [2] is based on a DFT matrix fac-
torization in the form of the product of block-diagonal matrices (presented as direct sums of 
kernels) and special permutation matrices that do not change from stage to stage. This repre-
sentation corresponds to a unified representation presented in Section 2.4 as the base for syn-
thesizing new large class of parametric transforms. 
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Figure 2.1   FFT for N=8. 

 
The basic building block used in FFT is the operation called butterfly, given in Figure 2.2, 

where r
Nc a bW= +  and ,   0,..., 1.r

Nd a bW r N= − = −  
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 a 

b 

c 

d r
NW 1−

 
Figure 2.2   Butterfly diagram for FFT. 

 
 

Properties of FFT (Cooley-Tukey FFT of order 2nN = ): 

1. 2logn N=  stages, 2N  butterflies per stage 

2. ( ) 22 logN N  complex multiplications; 2logN N  complex additions; totally 

2( log )O N N  operations. 

2.3.2 Discrete cosine transform and fast algorithm 

The discrete cosine transform (DCT) was first introduced in 1974 by Ahmed et al [9]. Four 
types of DCT have been defined [47], [72]. Here, we consider the Type II DCT since this is 
the one used both in digital image compression and in signal/image denoising. In what fol-
lows we refer to Type II DCT as DCT. It was shown that DCT transform is very close to the 
KLT derived from covariance matrix of first order Markov process with high correlation de-

gree ( 0.9ρ > ). The DCT has excellent decorrelation and energy compaction properties [10]. 

The 1D DCT is an orthogonal transform 

 N=y C x   

with the matrix NC  having the following real-valued entries: 

 
2 (2 1)

( , ) ( ) cos ,
2

k n
c k n a n

NN

π +
=   , 0,..., 1,k n N= −  (2.3.6) 

where N  is the size of the transform, x  and y  are the 1N×  input and output vectors, respec-

tively, and 

 
1 ,   for 0

( ) 2
1,   otherwise. 

k
a n



=
=  

The DCT matrix of order 8N =  is the following 
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0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536

0.4904 0.4157 0.2778 0.0975 0.0975 0.2778 0.4157 0.4904

0.4619 0.1913 0.4619 0.4619 0.4619 0.1913 0.1913 0.4619

0.4157 0.0975 0.4904 0.2778 0.2778 0.4904 0.0975
8

− − − −

− − − −

− − −
=C

0.4157

0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536 0.3536

0.2778 0.4904 0.0975 0.4157 0.4157 0.0975 0.4904 0.2778

0.1913 0.4619 0.4619 0.1913 0.1913 0.4619 0.4619 0.1913

0.0975 0.2778 0.4157 0.4904 0.4904 0.41

−

− − − −

− − − −

− − − −

− − − 57 0.2778 0.0975−

           

. 

The 2D direct and inverse

 

DCT for a matrix X  of size N N×  with elements 

[ ] , [ , ]
m n

x m n=X  is defined as follows: 

 

1 1

0 0
1 1

0 0

(2 1) (2 1)
2 2

(2 1) (2 1)
[ , ] ( ) ( ) [ , ]cos cos

2 2

[ , ] ( ) ( ) [ , ]cos cos ,

N N

m n
N N

r s

r m s n
M N

r m s n
y r s p r p s x m n

M N

x m n p r p s y r s π π

π π− −
= =

− −          = =
+ +

+ +   = ∑ ∑       
= ∑ ∑

 (2.3.7) 

where Y  is the matrix of the DCT spectral coefficients of matrix X , with elements 

[ ] , [ , ]
r s

y r s=Y ; and  ( ) p r and ,( )p s  0 , 1,r s N≤ ≤ −  are defined as follows: 

 

2
, 1 1

( )
1

,  0.         

r N
N

p r

r
N

 ≤ ≤ −=  =
 

The 2D DCT of ( )N N×  matrix X  is a separable transform that may be expressed as: 

 .T
NN=Y C XC  (2.3.8) 

The 64 basis images of size (8x8) for the 2D DCT are illustrated in Figure 2.3 a). Essentially, 
when implementing a transformation of an image with the DCT, the image is presented as a 
linear combination of these images. 
 

    

 a) b) c) 

Figure 2.3   Basis images of  2D transforms for N=8: a) DCT, b) WHT, c) DHT. 
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The DCT is quite useful in many applications, for instance, in compression, denoising, 
adaptive filtering [93], [97], [99], [100]. 
 

Fast DCT 
 
Many fast DCT (FDCT) algorithms are presented in literature [47]. In particular, the FDCT 
by Chen et al  [25] is one of the most known ones. It is based on the following matrix repre-
sentation (without normalization factor): 

 
/2

/2

,
N

N N N
N

 =    
C 0

C P B
0 R

 (2.3.9) 

where NP  is a permutation matrix which permutes the even rows in decreasing order in the 

lower half;   /2NR  is derived from the matrix NR  by reversing the orders of both the rows 

and columns of NR . The entry ,i kr  ( , 1,...,i k N= ) of the matrix NR  is 

 ,
(2 1)(2 1)

cos ;
4i k

i k
r

N

π+ +
=  

NB  is the following butterfly matrix: 

 
/2/2

/2 /2

,
NN

N
N N

 =   − 
I I

B
I I

 (2.3.10) 

where /2NI  and /2NI  are the identity and counter identity matrices of order 2N , respec-

tively. 
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Figure 2.4   Forward FDCT algorithm for N=8 by Chen. 
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The flowgraph of FDCT of order 8N = , given in Figure 2.4, is the mapping of FDCT ma-

trix decomposition (2.3.9). The decomposition (2.3.9) may be reduced to the product of 
block-diagonal and permutation matrices, the flowgraph of which has a regular constant-
geometry structure [14], [87]. 
 
Properties of FDCT 

FDCT flowgraph in Figure 2.4 has the FFT-like structure. The complexity of FDCT is 

2( log )O N N , where N is the power of two [10], [47], [72]. For 8N =  the FDCT in Figure 

2.4 has 20 multiplications and 26 additions. 

2.3.3 Discrete Walsh-Hadamard transform and fast algorithm 

The Discrete Walsh-Hadamard Transform (WHT) is a real, symmetric and orthogonal trans-

form of order 2 , 1,2,....nN n= =  The basis functions of the WHT are rectangular and contain 

only two non-zero values {+1,-1} normalized according to transform size. 
The WHT matrix is generated recursively from the core matrix 

 2

1 11  
2 1 1

    
=

−
W  

as 

 [ ] 2 2
1

2 2

1
1 ,   .

2
  

N N
N

N N

 =    
=

−

W W
W W

W W
 (2.3.11) 

Another definition of WHT is: 2 2 2
n

N N
⊗⊗ ==W W W W . 

The WHT matrix of order 8N =  is the following: 

 
8

1  1  1  1 1  1  1  1

1 1  1 1 1 1   1 1

1  1 1 1  1  1 1 1

1 1 1  1  1 1 1   11
.

1   1   1  1  1   1  1   18
1 1  1 1  1 1  1 1

1   1 1 1  1   1 1 1

1 1 1   1  1 1 1   1

  − − − −  − − − − − − − − =   − − − −  − − − − − − − −  

W
 

Depending on the ordering method of Walsh functions, there are different versions of Walsh 
transform, e.g. Walsh-Paley, Rademacher-Walsh transforms [30],[45]. The WHT consists of 
the complete set of orthogonal Walsh functions arranged in Hadamard ordering [45]. Only the 
WHT matrix (2.3.11) has a recursive Kronecker product structure. Since the WHT matrix is 
symmetric, the direct and inverse transforms are identical up to a normalization factor. The 

basis images of  the 2D WHT for 8N =  are shown in Figure 2.3 b). 
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Another definition of WHT matrix NW  can be derived as follows. For { }, 0,1,..., 1i j N∈ − , 

the value of each element ( ),N i jW  of NW  is defined based on the binary expansions 

0 1 1, ,..., ni i i
−

< >  and 0 1 1, ,..., nj j j
−

< >  of its indices i  and ,j  respectively. This results in 

 ( ) ( )
1

0
, 1 .

n

m m
m

i j

N i j

−

=

∑
= −W  

The WHT is useful in many different applications of signal/image processing, such as 
power spectrum analysis, filtering, image coding and enhancement, processing of medical 
signals (e.g. ECG), communication technologies (CDMA), logical design and analysis [23], 
[45], [51], [52]. 
 

Fast WHT 
 
In practice, fast WHT (FWHT) with a structure similar to that of FFT-like algorithm is util-

ized. There exist many FWHTs. The matrix representation of a FWHT  of order 2nN =  is 

 ( )1 22 2
1

,i n i

n
N

i
− −

=

= ⊗ ⊗∏W I W I  (2.3.12) 

where rI  is the identity matrix of order r . 

The FWHT matrix decomposition (2.3.11) for order 8,N =  mapped into a flowgraph is 

given in Figure 2.5, a). Similarly to the case of FFT, the expression (2.3.12) can be reduced to 

a decomposition form including block-diagonal and permutation matrices at each iteration [2]. 

Such representation is important since it is the base of a unified representation for synthesiz-

ing a wide class of new parametric transforms (see Section 2.4). 

 

 

 

 

 

 
 a) b) 

Figure 2.5   Fast algorithms of order 8N = : a) FWHT, b) FHT. 
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Properties of FWHT 

The FWHT has an FFT-like structure similar to the one in Figure 2.1. The only difference be-

tween FFT and FWHT is that the latter consists of only additions. The FWHT of order 

2nN = , may be implemented with 2logn N=  iterations. The computational complexity of 

FWHT is O(NlogN). Particularly, for 8N =  the FWHT given in Figure 2.5 a) consists of 3 

iterations, at each of which the 4 butterfly operations of order 2 are performed. 

2.3.4 Discrete Haar transform and fast algorithm 

The Haar functions [10] constitute an orthogonal rectangular basis similar to the Walsh func-

tions. The set of Haar basis functions was first introduced by the Hungarian mathematician 

Alfred Haar. The continuous Haar functions are defined on the time interval [0,1),x∈  as fol-

lows: 

 

0,0

/2

/2
,

 

1( ) , [0,1),

1 1 / 2
2 ,

22
1 / 21( ) 2 ,

22
0,   [0,1],

p
p

p
p q p

otherw ise for

h x x
N

q q
xp

q qh x xpN

x



= ∈

− −≤ ≤

−= − ≤ <

∈

 (2.3.13) 

where p is a degree of Haar function, q  is an order of a Haar function, and 

 
.

2 ,  0 1,

0,1  for  0   and    1 2  for  0

n

p

N p n

q p q p

= ≤ ≤ −

= = ≤ ≤ ≠
 

The discrete Haar functions are defined by sampling ( ), xp qh  at 2nN =  points ,mx
N
=  for 

0,..., 1m N= − . The obtained functions are the rows of the Haar transform matrix .NH  For 

example, the Haar transform matrix of order 8 is the following: 

 8

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

2 2 2 2 0 0 0 0

1 0 0 0 0 2 2 2 2
8 2 2 0 0 0 0 0 0

0 0 2 2 0 0 0 0

0 0 0 0 2 2 0 0

0 0 0 0 0 0 2 2

  − − − −  − −  − −=  −  − −  − 

H  
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The basis images of the 2D DHT for 8N =  are illustrated on Figure 2.2 c). 

Unlike Walsh transform, the Haar transform matrix doesn’t have a recursive Kronecker 
product structure. It is defined as 

 
[ ]
[ ] .

 1  11 1
  1  12 1

N
N

N

    
⊗−=
⊗ −−

H
H

I
 (2.3.14) 

The Haar transform is a local transform compared to the Walsh transform which is a global 
transform in the sense that in a Walsh transform matrix all the entries of basis functions are 
nonzero, while in a Haar transform matrix all but the first two basis functions have zero en-
tries. The nonzero entries are localized in each row. Therefore, the Haar spectral coefficients, 
besides the first two coefficients, contain a local information about the transformed signal. 
 

Fast Haar Transform 
 
In practice, a fast DHT (FHT) algorithm is often used. The matrix representation correspond-

ing to FHT of order 2nN = , without normalization, may be given as 

 

[ ]
[ ]

1

1 1

2 2 21

2 2
0

2 2 2 2

1    1   

1 1 ,

     

r n r

n r

n r n r

n

r

+

+ +

−

=

 ⊗ −  = ⊗ −∏    − − 

I O

H I

O I

 (2.3.15) 

where rO  and  rI  are the zero and identity matrices of order ,r  respectively. 

The FHT matrix decomposition (2.3.15) can be mapped into the FHT flowgraph illustrated 
in Figure 2.5 b) for the case N=8. 

It was shown in [2] that the DHT matrix may also be decomposed into a product of block-
diagonal and permutation matrices, which corresponds to a unified representation used for 
synthesizing parametric transforms, as discussed in Section 2.4. 
 
Properties of FHT 

The low computational and memory requirements of the DHT made it the fastest transform 
among the classical DOTs. The FHT is useful in signal and image processing, logic design, 
pattern recognition, communications as well as in many VLSI design applications [5], [6], 
[10], [44], [45], [50], [51], [52]. 

The FHT has an FFT-like structure. However, the following features make it different from 
other FFT-like structures. Unlike the FFT-like algorithms, implementation of FHT requires 

only )(NO  arithmetic operations [10]. The FHT of order 2nN =  may be implemented with 

2logn N=  iterations.  One can see that from iteration to iteration only half of the information 

is passed for processing. Therefore, the number of operations (additions, subtractions) is re-

duced by a factor of two from stage to stage. 
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2.3.5 Discrete Slant transform 

The N N×  Slant Transform (ST) matrices are defined by the following recursion [10]: 

 
( 2) 2 ( 2) 2 1
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 (2.3.16) 

where 2nN = , MI  denotes M M×  identity matrix, and 

 1
1   11

2 1 1

    
=

−
S . 

The parameters na  and nb  are defined as follows 

 

1 2 1 22 2

1 12 2
3 1
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N N
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N N
+ +

   −= = =      − −   
 

The ST is a real and orthogonal transform. It has a piecewise linear basis functions like 
Walsh transform. ST has one constant basis vector (the first row of a slant matrix is a constant 
basis vector). Besides, it has one slant basis vector (the second row of a slant matrix is a slant 
basis vector). The ST has the highest energy compaction amongst the non-sinusoidal fast or-
thogonal transforms, especially, for images with approximately constant (or uniformly) 
changing grey levels over a large area. The ST has been used for signal compression, pattern 
recognition, image watermarking [42], [67] and in Intel’s ‘Indo’ video compression algorithm 
[10], [54]. Other modified versions of ST may be found in [3], [4],[41],[98]. 

As an example, the ST matrix of order 4N =  is the following: 

 2

1 1 1 1

3 1 1 3
5 5 5 51

2 1 1 1 1

1 3 3 1
5 5 5 5

           

− −

=
− −

− −

S . 

 
Properties of FST 

The ST has a fast Cooley-Tukey type algorithm which can be implemented with ( log )O N N  

operations on an Nx1 vector [11]. 
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2.4 UNIFIED APPROACHES TO FAST TRANSFORM ALGORITHMS 
AND PARAMETRIC TRANSFORM FAMILIES 

In this section we present a short overview of unified approaches to fast algorithms of discrete 
orthogonal transforms. A unified approach allows presenting many fast transforms using a 
single parameterized representation so that a desired transform can be selected by an appro-
priate parameter selection. Moreover, by varying the parameters of the unified representation 
many new transforms may be derived. In fact, a proper methodology of selecting parameters 
means a possibility of utilizing adaptive transform methods wherein the transform features are 
adapted with respect to the application on hand and with respect to the input signal. 

The computational complexities of both the direct DOT (2.1.1) and the inverse DOT 

(2.1.2) are, in a general case, estimated as 2)( ) (C DOT O N=  operations. In practical applica-

tions, much faster real-time computation is needed. As presented in previous sections, numer-

ous fast algorithms have been developed for different fixed DOTs, e.g. the well-known FFT, 

FDCTs, FWHT, FHT, etc. (see e.g. [1], [5],[6],[10],[49]). Analyzing these algorithms one can 

see that most of them can be described in a unified form. In [1],[2],[5], 

[7],[8],[10],[53],[82],[83],[90],[92]  several unified representations of the fast transform algo-

rithms were described. These representations are based on presenting the transform matrix of 

order N  in the form of a product of sparse matrices ,
( )jH 1,...,j m=  and permutation matri-

ces ( ) ,jP  ( 1,..., 1)j m= + as: 

 
1( 1) ( ) ( ).m j j

N
j m

+

=
= ∏H P H P  (2.4.1) 

Transform (2.1.1) with a matrix NH  presented in the form of (2.4.1) may be computed 

with a fast algorithm in m stages as follows: 

 0 =x x  

 ( )( )( )
1 ,    1,...,jj

j j j m−= ⋅ =x H P x  (2.4.2) 

 ( 1) .m
m

+
=y P x  

Computation of the j th stage of the fast transform algorithm (i.e. finding jx  from 1j−x ) 

consists of the following:  permutation of the components with the matrix ( )jP  and imple-

mentation of the transform with a sparse matrix ( )jH . After m stages, the final result y  is ob-

tained by permutation of mx  with the matrix ( 1)m+P . The total arithmetic complexity 

(FDOT)C  of the Fast DOT (FDOT) algorithm is defined as the sum of complexities   

( )( )jC H , 1,..., ,j m=  of the transforms by sparse matrices: 
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 ( )( )

1
.(FDOT)

m j

j
C C

=

= ∑ H  (2.4.3) 

In [1],[5],[8],[10],[53],[82],[83],[90],[92] the sparse matrices were represented as Kro-

necker products of identity matrices of appropriate sizes with one small sized (typically of 

order 2) kernel. In this way each sparse matrix was constructed using only a single kernel. 

Though many classical fast transform algorithms, including FFT, FWHT and FDCTs can be 

represented by using a single kernel within each sparse matrix, however, this is not the case 

for the FHT. 

In order to increase the number of fast transforms presented in a unified form, in [92], 

sparse layered matrices were considered where each layer is a Kronecker product of identity 

matrices with a single kernel. This has increased the number of fast transforms presented in a 

unified form but the representation has become more complex. In addition, all the mentioned 

representations use only several specific permutation matrices, which also restricts signifi-

cantly the number of represented fast transforms and, more importantly, is inconvenient from 

implementation point of view, especially when considering parallel implementations or map-

ping the algorithms to hardware accelerators. 

Another restrictive feature of the above unified fast transform representations is that they 

all are valid only for transforms of orders 
mN r=  with r and m being positive nonzero inte-

gers (in fact, mainly the case 2r =  and sometimes the case 3r =  were considered). 

In [2],[7] , the above mentioned representations were generalized. First, arbitrary orders of 

transforms 1 2... mN r r r=  were allowed. Second, arbitrary permutation matrices were allowed. 

Third, the sparse matrices were presented as block diagonal matrices with arbitrary kernels: 

 ( )1
( ) ( , )

0

k

N
r

j j s
k

−

=
=
⊕H V

, 
1,..., ,j m=  (2.4.4) 

where “⊕ ” stands for direct sum of matrices and ( , )j sV  are the spectral kernels, which may 

be different. Since the complexity of a transform of order jr  is upper bounded by 2jr  opera-

tions, the complexity of the fast algorithm presented in the form of (2.4.1), (2.4. 4) is upper 

bounded by 

 
1

( ) ( , ) 2

1 1 1
(FDOT) ( ) ( )

0

jNm m mj j s
j

j j j
C C C N r

s

−

= = =

= = ≤∑ ∑ ∑ ∑
=

H V . (2.4.5) 

In [2],[7],[17] within the class H  of transforms that are representable in the form of 

(2.4.1) and (2.4.4), two families of transforms, namely, the family H  of uniformly bounded 

(or Hadamard-like or Fourier-like) fast transforms and the family H  of unbounded (or Haar-

like) transforms were introduced. In the case of uniformly bounded transforms, all the spectral 

kernels in the representation (2.4.1) and (2.4.4) are unitary matrices with all nonzero entries. 
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Classical representatives of this family are the DFT and WHT. In the case of unbounded 

transforms, all the spectral kernels ( , ) ,j sV  1,...,j m= , 
1

0
0,..., 1,

j

t
t

s r
−

=

= −∏  ( 0 0r = ), are again 

unitary with all nonzero entries but the spectral kernels ( , )j sV , 1,...,j m= , 

1 1 1

0 0 1
,..., 1

j j m

l
t t l j

s r r rt t
− − −

= = = +
= −∏ ∏ ∏ , are all identity matrices. In addition, permutation matrices in 

(2.4.1) are such that 

 1

0

( )( )
1 ,j

t
t

jj

N r
−

=

−∏
= ⊕P P I  

where ( )jP  is a permutation matrix of order 
1

0

j

t
t

r
−

=
∏ . The classical representative of this family 

is the FHT. 
It is easy to see from the definition that the complexity of uniformly bounded transforms 

achieves the upper bound of (2.4.5) (since ( ) ( )( , ) 2j s
jC O r=V  for all 0,..., 1js N= − ) while 

the complexity of unbounded transforms is linear with respect to the transform order (since 

( , ) 2( ) ( )j s
jC O r=V  only for ( )0 1 10,1,..., ... 1js r r r

−
= −  but ( )( , ) 0j sC =V  for 

( )0 1 1... ,..., 1j js r r r N
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 (2.4.6) 

Figure 2.6 illustrates the generic flowgraph of fast algorithms described by the unified rep-
resentation (2.4.1), (2.4.4). As can be seen, it has a very regular simple structure where at each 

of m  stages a permutation followed by /j jN N r=  transforms by spectral kernels of order 

jr , 1,..., ,j m=  are implemented. Let us note that all the fast transform flowgraphs presented 

in Section 2.3 are particular cases of this generic flowgraph. From the definition of the fami-

lies H  and  H  the flowgraphs of uniformly bounded transform are of “semirectangular” 

form (in the sense that there is approximately the same number of nodes at each stage) whe-
reas the flowgraphs of unbounded transforms are of semitriangular form (the number of nodes 
reduces approximately linearly from stage to stage). 

The unified representation (2.4.1), (2.4.4) covers all the classical fast transforms of Section 
2.3. This was shown in [2],[7],[17] by finding, for each of these (and some other) transforms, 
closed form solutions for spectral kernels and permutation matrices that when being used in 
(2.4.1), (2.4.4) result into the matrix of the corresponding transform. 
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Therefore, many important fast transforms can be presented in a unified form, which al-
lows designing unified implementations of families of transforms where the desired transform 
can be selected by specifying the spectral kernels and permutation matrices corresponding to 
this transform. Here the spectral kernels and permutation matrices become parameters. 
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Figure 2.6   Generic flow-graph of the unified fast transform 

 algorithm 1 2( ... mN r r r= , /j jN N r= ). 

 
By varying these parameters not only all classical fast transforms may be obtained but also 

an infinite number of new transforms may be synthesized that a priori will be possible to im-

plement with a fast algorithm of a unified structure. Let us note that the resulting transform 

implemented by a fast algorithm of the form (2.4.1), (2.4.4) is unitary provided all the spectral 

kernels in (2.4.4) are unitary.  

Several generalizations of the unified fast transform representation (2.4.1), (2.4.4) were al-

so proposed by allowing arbitrary functions to be mapped to the nodes of the flowgraph corre-

sponding to the fast algorithm (see Figure 2.6) instead of only the linear transforms with spec-

tral kernels. In particular, in [20], replacing the linear transforms by sorting operations, a fam-

ily of so called FFT-LF filters was synthesized that combines good noise reduction properties 

of linear and non-linear filters. Another extension of the representation (2.4.1), (2.4.4) was 

proposed in [17], where binary transforms were used in the nodes of the flowgraph. This way 

a new family of fast binary polynomial transforms, including the classical conjuctive (Reed-

Muller) transform, were synthesized. 

The unified representation (2.4.1), (2.4.4) is very convenient from implementation point of 

view as it was shown in [2],[7],[17],[18],[20], [57],[58],[60]. However, high efficiency is 

achieved only for transform orders 1... mN r r=  with mbeing large. Even though the composite 

number can formally be an arbitrary positive integer, the efficiency of the corresponding fast 
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algorithm is not high for numbers presented with a smaller number of factors. In particular, in 

an extreme case where N  is a prime number the corresponding "fast" algorithm becomes, in 

fact, the direct matrix-vector multiplication method with the computational complexity of 
2 .( )O N   

In our early work [57] the representation (2.4.1), (2.4.4) was modified so that fast trans-

form algorithms of arbitrary order N  are introduced with complexity that does not depend on 

the number of factors of .N  In this representation, the sparse matrices are presented as direct 

sum of spectral kernels of order two. If N  is odd, in addition to spectral kernels of order two, 

the identity matrix of order one is involved into the direct sum. That is, the sparse matrices 

involved in (2.4.1) are presented in the form: 

 ( , )
2 1

( ) ( , )
1 mod2

0 1

j s
Nkj j s

N
s s k

  −
−

= = +

  = ⊕ ⊕ ⊕ ⊕      
H V I V ,  1,..., ,j m=  (2.4.7) 

where k  is a parameter that may arbitrarily be selected within the range 

{ }0,1,..., 2 1 ,k N  ∈ −  ( , )j sV  are (2x2)  matrices called spectral kernels, pI  is either an 

identity matrix of order 1 if  1p=  or an empty matrix if 0p = , and the sign a    stands for 

the smallest integer larger or equal to a. Note that now the number of stages in the fast trans-

form flowgraph does not have a direct relation to the order of transform .N  
The class of transforms representable in the form of (2.4.1), (2.4.7) is denoted by Ω . Since 

the matrix ( ) , 1,..., ,j j m=H  contains at most 4 2 2N N≈    nonzero entries, the complexity of 

the corresponding fast algorithm is estimated as ( )O mN  operations at the most instead of 

2( )O N  in the direct method. Thus, the transforms from Ω  possess fast algorithms.  

Fast transform algorithms of the form (2.4.1), (2.4.7) may nicely be presented by the flow-

graph, generically illustrated in Figure 2.6 with only kernels of order two (or one) being used, 

that is, in this case, nodes represent simple 2-point discrete orthogonal transforms or “butter-

fly” operations implying the multiplication of a 2x2 unitary matrix with a 2-point vector. Re-

call that the general form of an orthogonal 2x2 matrix is 

 
u v

v u

 =  − V  (2.4.8) 

where 2 2 1u v+ =  and the “minus” sign may float to each one among the four entries.  

Similarly to the case of the class H  also within the class Ω  the family Ω  of uniformly 

bounded or Hadamard-like orthogonal transforms and the family Ω  of unbounded transforms 

are introduced. For the transforms from Ω  all the spectral kernels are unitary with all nonzero 

entries. The classical WHT and DFT of order 2mN =  belong to the family Ω  of Hadamard-

like transforms. An example of a new Hadamard-like fast transform flow-graph of order 

N=11 is shown in Figure 2.7. 
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Note that for transforms from Ω , each matrix ( ) , 1,..., ,jH j m=  contains exactly 

4 2 2N N≈    nonzero entries. Therefore, for transforms from Ω  the complexity of the corre-

sponding fast algorithm is estimated as ( ).O mN   

Unbounded or Haar-like transforms within the class Ω  are defined so that they are repre-

sentable in the form of (2.4.1), (2.4.7) where all spectral kernels are unitary and:  

• all entries of the spectral kernels ( , )j sV , 1,..., ,j m=  are nonzero 

for  0,..., 1js N= − , where

 

2 2 2

j times

jN N =      
644474448

L  

• ( , )
2

j s
=V I  for  ,..., 2 1js N N  = − , 1,...,j m=  

• ( )( )
1 j

jj
N N−= ⊕P P I , where ( )

1
jP  is a permutation matrix of order .jN  

The Haar transform is a classical representative of Ω . An example of a new Haar-like fast 

transform flowgraph of order N=11 is shown in Figure 2.8. It should be noted that the Haar-

like (and Hadamard-like) transform of any order may be designed in a similar way. 
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Figure 2.7   Fast Hadamard-like transform, N=11. 
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Figure 2.8   Fast Haar-like transform, N=11. 
 
 

Note that for transforms from Ω , the matrix ( ) , 1,..., ,jH j m=  contains only 
24 / 2j

jN N −
=  nonzero entries. Therefore, the complexity of the corresponding fast algorithm 

is estimated as ( )O N . Thus, the transforms from Ω  possess fast algorithms, which are even 

faster than those for the family Ω , for which the complexity is ( )O mN .  

This can also be noted from the structures of the flow-graphs. While the flowgraphs of Ha-
damard-like transforms have a “semirectangular” structure (equal number of nodes or butter-
flies at each stage), the flowgraphs of Haar-like transforms have “semitriangular” structure 
(approximately twice reduced number of nodes from one stage to the next). These two struc-
tures were utilized in designing new Haar-like and Hadamard-like transforms [57]. 

Let us note that that the number of stages m  is an independent parameter. For most of 

classical transforms from ,  logm NΩ = which is a logical but not a compulsory choice. 

Let us also note that the complexity of the fast algorithms described by (2.4.1) and (2.4.7) 
does not depend on the number of factors of N or any of its other properties rather than the 
value. 

Concluding this section let us consider the case of a class of transforms of order 2mN =  
where all the permutation matrices are fixed and only orthogonal kernels of order 2 are used. 
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Figure 2.9.   The geometrical place of all kernels of order 2. 

 
 
Each such kernel has the following form: 
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sin cos

j

j

e
j

e

θ

θ
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  = − − 
V  

where ϕ  and θ  are parameters. Varying these parameters one can synthesize different bases. 

The kernel of this type (see [32], [82], [83]) describes a rotation by angle ϕ  in the horizontal 

plane and by angle θ  in the vertical plane. Therefore, there is a one-to-one correspondence 

between the orthogonal spectral kernels of order 2 and the points on the sphere of radius one 
(see Figure 2.9). The classical transforms correspond to only few points on the sphere. On the 
other hand, the whole surface of the sphere can be utilized to synthesize new transforms. 

Thus, the representation (2.4.1), (2.4.7) gives an important possibility of synthesizing an 
infinite number of new fast transforms. In order to make a practical benefit out of this possi-
bility, there is a need for developing efficient methods of parameter selection in order to syn-
thesize fast transforms with desired features. In publication [P1], a method (first introduced in 
our early work [57], [58]) is described for synthesizing fast transforms with predefined basis 

functions. More precisely, an algorithm is proposed that given a set of orthogonal ( )1 N× -

vectors 1 2, ,..., kg g g , k N< , produces an orthogonal matrix NH  such that it has the vectors  

1 2, ,..., kg g g  in its first k  rows and it can be presented in the form of (2.4.1), (2.4.7). More-

over, one can select whether the corresponding transform is Haar-like or Hadamard-like. The 

vectors 1 2, ,..., kg g g  are called generating vectors. In our parametric transform based algo-

rithms for signal/image compression or denoising, we mainly utilize the case where only a 
single generating vector is used to synthesize a single fast transform. 
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Chapter 3 

3 Applications of transforms in digi-
tal image compression  

Image compression is one of the classical problems related to compact representation of im-
ages. In computer systems, digital images represented in terms of pixels require a huge 
amount of storage. Typically, digital images are redundant. The aim of an image compression 
technique is to remove the redundancy in an image, that is, to represent the image data more 
compactly before storage or transmission. Traditional image compression methods are based 
on spectral techniques which have been one of the main tools in signal analysis and are the 
base of many signal compression algorithms. This chapter summarizes the transform based 
image coders. 

3.1 IMAGE COMPRESSION TECHNIQUES BASED ON FIXED 
TRANSFORMS 

The goal of image compression is to reduce the redundancy of an image data in order to be 
able to store or transmit it more efficiently. The compression methods are divided into lossless 
and lossy ones. In lossless compression the reconstructed image is an exact copy of the origi-
nal source image. Normally, only a small amount of compression may be achieved by a loss
 less compression method. Such methods are useful in, for example, medical imaging, 
astronomical image processing etc, where any visible distortion is unacceptable. In lossy 
compression methods, the redundant information is discarded as much as possible while still 
keeping acceptable visual quality of the image. This enables a much higher compression. At 
the same time, no visible artifacts may be noticed under normal viewing conditions (visually 
lossless).  

Early image compression schemes use predictive coding. In predictive coding, existing in-
formation is used to predict future values, and only the difference is coded. Differential Pulse 
Code Modulation (DPCM) is one particular example of predictive coding. On the other hand, 
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transform coding first transfers an image from its spatial domain representation to a spectral 
domain representation using a well-known transform, and then codes the transformed coeffi-
cients. This method provides more data compression compared to predictive methods at the 
expense of more computation.  

The traditional transform based lossy image compression/decompression scheme is pre-
sented in Figure 3.1. 
 

 
Figure 3.1.   Conventional simple image coder/decoder. 

 
In this diagram, the input, which may be a whole image or one of its blocks, is first trans-

ferred into a spectral domain. In principle, any transform e.g. fixed DOT (block or global) or a 
parametric transform may be used. A properly selected DOT concentrates most of the image 
energy in few spectral coefficients only, that is, transferring an original image into a spectral 
domain results in energy compaction or concentration of low-frequency data in the transform 
domain. The quantization process applied after the transform uses this phenomenon. It care-
fully quantizes the significant (low-frequency) information and removes the remaining (high-
frequency) coefficients while preserving main content of the image. At this step information 
loss takes place, which is the source of a distortion in the image after it is reconstructed. This 
step brings to bit-rate reduction. At the next step, the quantized spectral coefficients are com-
pressed using any lossless coder. This leads to significantly higher compression rates as com-
pared to using the lossless coder directly to the image in the spatial domain. The coded result 
is either stored or sent via a channel and is then reconstructed in the decoder, which has the 
reverse order of inverse operations compared to the encoder. 

The first image compression systems were based on splitting images into fixed-size blocks 
and applying a fixed block transform to each block. This leads to occurrence of the blocking 
artifacts caused by mismatches between neighboring blocks. One of the popular DOTs in im-
age compression is the DCT, which is included in many standards, such as the JPEG image 
compression standard [68], [97], and which offers acceptable compression gain for not very 
high compression rates. Image compression using discrete wavelet transform (DWT) gained 
special attention due to the good decorrelation and localization properties of DWT. The re-
search in this direction brought to the JPEG2000 image compression standard [68], [80]. It 
was shown that the DWT based methods provide better quality than other fixed transform 
based methods for high compression ratios. However, the use of JPEG2000 in modern sys-
tems is limited. This is mainly due to the complexity of DWT which is applied to the large 
regions or to the whole image. Unlike to JPEG, this brings not only to big memory demand 
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but also to use of huge amount of computational resources. Due to this, the development of 
improved image compression methods in a block-based manner is still an actual task.  More-
over, the block transform based methods still have a potential of being improved by making 
them more adaptive to image content. 

The following subsections give a short overview on image compression techniques based 
on DCT and wavelet based compression. 

3.1.1 The DCT based approaches 

DCT based compression schemes are widespread and are the bases of many compression 
standards. The most well-known compression standard based on the DCT is the JPEG still 
image compression standard [68].  

An important point of the JPEG is that it specifies only the decoder, thus allowing for pos-
sible improvements of the encoder. The JPEG standard consists of four modes:  sequential or 
baseline JPEG; progressive encoding; hierarchical encoding (pyramidal encoder); lossless en-
coding (does not use the DCT, and it is based on predictive encoding).  

The transform coding for the baseline JPEG standard is schematically presented in Figure 
3.2. The input is assumed to be 8 bits (or 12 bits). Colors are treated separately. The JPEG is 
operating in a block-wise manner where the image is split into small non-overlapping blocks 
and the DCT is applied to each of these blocks. DCT concentrates most of the energy into few 
coefficients, with the largest one being the DC coefficient located at the top-left corner of the 
transformed image block. 

 

 
Figure 3.2.   Transform encoding in JPEG. 

 
After the DCT transform the quantization is performed according to a quantization table 

(where each entry is an integer from {1,…,255}). At this step, the DCT coefficients are di-
vided by quantization table entries, and, then, are rounded towards the nearest integer. The 
quantization tables which are based on visual experiments can also be specified by a user. Af-
ter the quantization, 2D image blocks are rearranged into 1D vectors according to a zigzag 
scanning order. The DC coefficients are differentially encoded, that is, differences 
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1l l lDC DC
−

∆ = −  are coded to remove some of the correlations between DC coefficients lDC  

and 1lDC
−

 of consecutive blocks l and l-1, respectively. Finally, the entropy coding based on 

Huffman coding with a table specified by a user (or default tables) is performed. JPEG de-
coder operates in the inverse order. 

The JPEG image compression method has the following advantages: high efficiency in 
compression of textural regions of images and the possibility of using the special quantization 
tables that allow imitating and regulating the Human Visual System (HVS) properties. Be-
sides, JPEG allows also lossless compression which is important in some applications (e.g. 
medical image coding, etc.). Disadvantages of JPEG are blocking artifacts in reconstructed 
images and ineffective compression of edges and details in images. 

In literature, various modifications of the JPEG approach have been developed [21],[70], 
[99]. In one of them [21] authors proposed the optimization of the quantization table based on 
HVS for a class of images and different viewing conditions. Another DCT based method was 
presented in [99] where the embedded zerotree (wavelet-like) coding of DCT coefficients 
have been performed. However, the drawback of this method is that due to the algorithm 
structure it requires the same memory requirements as DWT based methods. 

In [65], a block-based DCT image compression using 32 32×  block is proposed that out-

performs JPEG 2000 by up to 1.9dB. This method divides the quantized DCT coefficients in-
to bit-planes. Then, the bits are coded according to probability models considering the correla-
tion between the neighboring block coefficients as well as between values of corresponding 
coefficients of neighboring blocks. Finally, a DCT based post-processing or filtering is ap-
plied in order to remove blocking artifacts.  

In the next section we will shortly describe the wavelet based methods where the blocking 
artifact is not present. 

3.1.2 Wavelet based approaches 

Starting from mid 1990s wavelet transforms have become very popular, in particular in image 
compression application. A variety of wavelet based compression techniques have been de-
veloped. The most popular examples are EZW [81], SPIHT [76], JPEG2000 [80], EBCOT 
[86], [80]. These techniques are briefly overviewed below. 
 

EZW (Embedded Zerotree Wavelet Encoding) 
The wavelet transform allows a multiresolution analysis of images, meaning different repre-
sentations of the same image with many levels of detail. The EZW algorithm [81] was the 
first algorithm that utilized the multiresolution property of a wavelet transform, resulting in a 
compact representation of significant coefficients. The main idea of EZW is based on the fol-
lowing assumption:  if a wavelet coefficient at a coarser level is insignificant with respect to 
some threshold, then all the wavelet coefficients of the same orientation in the same spatial 
location at the finer resolution, will be most likely insignificant with respect to that threshold. 
In result, a set of insignificant wavelet coefficients called a zero-tree is obtained. Based on 
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that zero-tree, one can get a very compact representation of significant coefficients (signifi-
cance map). In EZW the bits in the output bit stream are generated in order of importance, 
resulting in a fully embedded code. Thus, the encoder may terminate the encoding at any 
point, after achieving a target bit rate. 
 

SPIHT (Set Partitioning in Hierarchical Trees Algorithm) 
The SPIHT algorithm was proposed by Said and Pearlman [76] and is considered as an im-
proved version of the EZW algorithm. SPIHT uses the same concepts as EZW, that is, the 
coding of significant wavelet coefficients with respect to a given threshold and then, succes-
sive improvement in selecting the significant coefficients. In addition, the following three 
concepts are used in SPIHT: partial ordering by magnitude of the transformed coefficients 
with a set partitioning sorting algorithm; ordered bitplane transmission of refinement bits; and 
exploitation of self-similarity of the image wavelet transform across different resolution levels 
of an image.  As in EZW, the set partitioning rule is dividing the coefficients into the set of 
significant and insignificant subsets aiming in obtaining a large amount of insignificant coef-
ficients. It was shown that the SPIHT algorithm significantly outperforms the EZW. 
 

JPEG 2000 
The development of image compression techniques brought us to JPEG 2000 that was ac-
cepted as a standard [80] thought not widely used by web browsers. The Figure 3.3 illustrates 
the main steps of JPEG 2000. 
 

 
Figure 3.3.   Basic block diagram of JPEG 2000. 

 
The main features of JPEG 2000 are the following: 

• Better compression performance. For grayscale images, at low bitrates (<0.25bpp) 
JPEG2000 provides less visible artifacts (due to DWT, certain entropy encoding algo-
rithm, etc.) and almost no blocking as compared to JPEG. 

• Multiple resolution representation. JPEG2000 decomposes the image into a multiple 
resolution representation during its compression process.  

• Progressive transmission (or decoding by pixel and image resolution accuracy). This 
means that after receiving a part of the file, the viewer may see a version of the final 
image in a lower quality. Then, by downloading more bits from the source, the image 
quality is progressively improved. 

• Lossless and lossy compression. The JPEG2000 standard provides both lossless and 
lossy compression similarly to JPEG. Two different wavelets are used by JPEG2000: 
Cohen-Daubechies-Feauveau (CDF) 9/7 for lossy compression and CDF 5/3 for loss-
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less coding. 

• Random code-stream access or Region Of Interest (ROI). It gives possibility to access 
and process different parts of an image. 

One of the main advantages of JPEG 2000 is the flexibility of code-stream, meaning the abil-
ity to truncate at any point the code-stream obtained after compression in order to obtain a 
lower resolution image. However, at the expense of that flexibility the JPEG2000 needs more 
complex and computationally demanding coder/decoder. This explains why nowadays there 
are just few consumer digital cameras based on JPEG 2000. 
 

EBCOT (Embedded Block Coding with Optimized Truncation) 
The Embedded Block Coding with Optimized Truncation (EBCOT) algorithm is related to the 
earlier developed scalable image compression techniques. Scalable compression is related 
with the generation of a bit-stream that contains embedded subsets, each of which represents 
an efficient compression of the original image at a reduced resolution (or increased distor-
tion). In other words, EBCOT allows resolution scalability and SNR scalability. The resolu-
tion scalability means that the compressed data may be decompressed with a lower spatial 
resolution, while the SNR scalability allows that decoder reconstructs the image with different 
qualities (some subsets of the bit stream is decompressed independently).The EBCOT algo-
rithm has been included in JPEG 2000 due to the simplicity of getting these scalable forms 
and a modest complexity.  

3.2 MULTIPLE TRANSFORM BASED IMAGE CODING 

In this section we give a brief description of some multiple transform based approaches. 
These techniques have been studied during the last two decades in order to improve the cod-
ing performance of conventional block transform compression techniques. 

In literature, there are several interesting algorithms devoted to multibase transform coding 
of images [12],[43], [88]. Such techniques imply an adaptive transform coding of images that 
uses an appropriate transform with respect to each image block, which results in more effi-
cient coding than non-adaptive methods. In multibase transform coding proposed in [12], 
[43], the image blocks are represented in a multidimensional space, for example, as points in 
the 64-D space. They are classified into different clusters or classes where the blocks of each 
class are compressed by different transforms. The aim is to partition image data (or blocks) in 
such a way that the overall compression ratio is maximized. The applied transforms may be 
either fixed or designed in an adaptive manner. In [12], [43], adaptive methods were used for 
creating different sets of KLTs. The adaptation starts from an initial set of KLTs which are 
then improved in an adaptation process. During each iteration, all the blocks are compressed 
with all transforms (along with DCT) and those transforms are selected that give the best 
compression results. The corresponding transforms are updated before next iteration. The se-
lection of the best transform is done in suboptimal way according to a criterion that combines 
both the bit-rate and distortion. 
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A problem in multibase transform systems is the use of different classes of blocks. This in-
troduces overhead information needed to be sent to the decoder. In [43] authors explain the 
effect of border translations for transform coding which becomes important for systems with 
several transforms. It is noted that this kind of multibase transform coding is in an intermedi-
ate stage between normal transform coding and vector quantization. 

In another work on multibase transform coding [88], authors developed a hybrid technique 
referred to as the Multiple Bases Representation (MBR) that combines several transforms 
coding, vector quantization and predictive coding. Three transforms were used in MBR, 
namely, DCT, Haar and identity transform (IDT). After applying corresponding transforms to 
each block the statistical modeling is used to parameterize the coefficients and vector prob-
ability density functions (pdfs). Then, the coefficients are quantized for minimum mean 
square error based on parameterized pdf models. Thereafter, the quantized coefficients are 
entropy coded using modified Huffman coder. The results show that, for example, coding of 
Lena image with the MBR method can produce good quality under 1bpp. 

An approach utilizing the possibility to adjust locally the transform similar to [88] and re-
moving the blocking artifacts using the multiresolution decomposition by wavelet transform is 
proposed in [12]. The transformed image represented in wavelet tree-like manner is reorgan-
ized in a block-wise manner. Then, the conventional multibase transform coding of images is 
applied to the block-wise representation. The decorrelation is, then, performed in a wavelet 
transform domain. In this algorithm, the content of different blocks is mixed by filtering 
across the bounds of blocks. Since the filtering is a part of the transform, there is no need for 
post-filtering to remove the blocking effects of decompressed images. The algorithm uses the 
best features from the combination of multibase and wavelet transforms. An approach for fast 
multibase transform based on optimal multiscanning or reordering method is presented in 
[13]. 

3.3 PARAMETRIC TRANSFORM BASED COMPRESSION TECH-
NIQUES 

In general, there exist a potential of further improving the performance of image compression 
methods by adapting the different transforms to different classes of image blocks instead of 
applying a fixed transform to all image blocks since none of the fixed transforms may be op-
timal for all kinds of possible image blocks. From this point of view, the use of parametric 
transforms described in Section 2.4 for image compression is of an interest.  

In our publication [P2], performance of the proposed parametric Haar-like transform in ap-
plication to image compression is studied.  The general goal of our work in [P2] is to analyze 
the potential advantages of adaptive transform based image compression methods over the 
fixed transform based ones. With this aim, two parametric Haar-like transform based adaptive 
image compression algorithms are proposed and their performances are compared to the per-
formance of the similar algorithm that is based on the fixed DCT.  In both algorithms, the 
classical DCT is used along with new transforms that are synthesized according to the input 
image within the class of transforms defined by the parametric Haar-like transform.  
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The first algorithm called iterative image compression scheme (IICS) [59] [P2], is based on 
an iterative scheme where the classical DCT is used at the first iteration and then, several it-
eratively synthesized Haar-like transforms are used at the following iterations to refine the 
compression quality. At each iteration, new Haar-like transform is synthesized according to 
the generating vector that is obtained from the blocks not efficiently compressed at the previ-
ous iteration. The process is iterated as long as a rewarding performance improvement may be 
achieved. 

In the second algorithm, called multiple transform image compression (MTIC) [15], image 
blocks are first classified according to their “compressibility” by DCT (image blocks that are 
similarly distorted when compressed by DCT at a certain rate are grouped together). For each 
class of blocks a suitable Haar-like transform is synthesized. These Haar-like transforms 
along with the DCT are applied in parallel to each non-overlapping block of the input image. 
The transform that achieves the best result is then selected to be assigned to the corresponding 
block. 

It should be noted that both compression schemes proposed in [P2] have a performance 
that is at least as good as that of the DCT based compression scheme. Extensive simulations 
were conducted to compare the performance of the parametric Haar-like transform based 
adaptive image compression methods with the performance of the similar algorithm that is 
based on fixed DCT. Several types of images were used. For example, Figure 3.4 illustrates 
PSNR vs. bit-rate plots obtained after applying proposed methods to images “compound” and 
“cameraman”. The simulation results for other images, e.g. Lena and medical image kidney 
are also discussed in [P2]. As we expected, the proposed techniques are better or at least as 
good as that of the DCT based compression method. Experiments illustrated a moderate per-
formance improvement for natural images and significant performance improvement for im-
ages of certain types, such as medical images and complex images consisting of fragments of 
essentially different types. 

Beside compression, PHT based methods perform also block classification. In Figure 3.5 
b) one can see not only black and white levels of intensity of blocks but also grey levels. The 
black blocks correspond to flat regions, which are compressed using DCT transform, while 
white and grey blocks (non-flat regions) correspond to different parametric Haar-like trans-
forms. 
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a) 

 
b) 

Figure 3.4   Experimental results of proposed methods: a) compound image (method IICS); 
b) cameraman (method MTIC). 
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 a) b) 

Figure 3.5   a) original compound image; b) block classification (MTIC) 
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Chapter 4 

4 Applications of Transforms in Sig-
nal and Image Denoising 

Digital images are produced by several physical devices such as digital image and video cam-
era, radar, x-rays. They are used, particularly, in science, industry, medicine, military, secu-
rity, advertisements, astronomy. In many cases, images may be distorted while being taken or 
when transmitted or received through a communication channel. There are several reasons for 
this, for example, blurring (due to shaking or moving a camera), noise corruption etc. Image 
distortion is introduced also by processing method applied to image e.g. quantization, smooth-
ing, compression. Similarly, 1D signals created by digital devices are often corrupted, for ex-
ample, due to measurement errors, quantization, transmission. In many practical both 1D and 
2D cases, the corruption may be modelled as a random additive white Gaussian noise 
(AWGN).  

It is important to develop efficient methods for reconstructing useful information about the 
original 1D signal or 2D image from a corrupted or noisy observation taken by a digital de-
vice. Reconstructing a signal or an image from noisy data or, in other words, denoising, is one 
of the important problems of signal/image analysis which has been intensively studied for 
many years. 

4.1 CONCEPT OF DENOISING 

The aim of signal/image denoising is to find an estimate X%  of a signal/image corrupted ob-
servation Z . In the cases, when the corruption can be modelled as AWGN, that is, 

W~N(0,σ 
2), the observation is given as: 

 ( ) ( ) ( ),z i x i w i= +  (4.1.1) 

 ( , ) ( , ) ( , ),    , 1,...,z i j x i j w i j i j N== +  (4.1.2) 
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 ,  Z = X + W  (4.1.3) 

where (4.1.1) and (4.1.2) correspond to the cases of 1D signal and 2D images, respectively, 
and (4.1.3) is the general case that represents both. 

The targeted estimate X%  of the noise-free signal should minimize the expectation of the 

mean square error (MSE) between the original signal or image X  and its estimate X% . In re-
sult, an estimated signal will have reduced amount of noise or in the ideal case will contain no 
noise and be the exact copy of the original signal.  

In general, the denoising methods are divided into linear and non-linear ones. The wavelet-
based thresholding based techniques [35]-[37] are an example of a non-linear method. An ex-
ample of linear denoising method is Wiener filtering [49]. The linear methods tend to smooth 
the details (edges) after denoising. Along with Wiener filtering, the Bayesian estimate me-
thod, which is an extension of Wiener method that utilizes the knowledge of signal point sta-
tistics, became popular because the resulting images are sharper and less noisy than Wiener 
filtered images. 

The denoising may be performed in spatial or transform domain. Transform domain de-
noising methods can be subdivided according to the type of basis chosen in the denoising 
method. Currently, one of the most popular ones are wavelet based denoising methods pro-
posed by Donoho and Johnstone in [35]-[37]. Another popular class of transform based de-
noising methods are based on the sliding transform concept [63],[64]. 

The above mentioned transform based denoising methods are summarized in the next sec-
tion. The proposed signal and image denoising methods are described in Section 4.3. 

4.2  GENERAL TRANSFORM BASED DENOISING TECHNIQUES 

A general transform domain denoising technique consists of the following three steps: 
1. Transform the noisy image into the corresponding transform domain: 

 ,T
=Y HZH  (4.2.1) 

where Z is an observed noisy image, H is a transform and Y is the transformed image. 
2. Apply a non-linear function on the transformed image, for example, the soft or hard 

thresholding function. This will suppress those coefficients that are smaller than a cer-
tain amplitude: 

 ( )( ), ,hF i j t=Y Y    or (4.2.2) 

 ( )( ), ,sF i j t=Y Y  

where ( , )i jY  and ( , )i jY  are the entries of the matrices Y  and Y , respectively, and 

( ),hF k t and ( ),sF k t  are the non-linear soft and hard thresholding functions: 
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,  
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F k t

k t

 ≥=  <
 and ( ) sgn( )( ),   

,  .
0,                      s

k k t k t
F k t

k t

 − ≥=  <
 (4.2.3) 

3. Transform Y  back into the original domain: 

 1 1T− −

=X H YH  (4.2.4) 

One of the most utilized transforms for denoising applications is the wavelet transform 
[62]. However, any other discrete transform may be applied.  

The main drawback of the wavelet transform based approaches is the presence of artefacts 
around discontinuities called pseudo-Gibbs phenomena. Due to this, Coifman and Donoho 
proposed the translation-invariant (TI) wavelet denoising method presented in [28]. Authors 
suggested to apply the following scheme: 

For a range of shifts { } 1

N

i i
S s

=
=  the signal is first shifted by is , denoised, and then shifted 

back, that is, 

 Unshift(Denoise(Shift(signal))). 

Finally, all the shifted estimates corresponding to shifts is  are averaged to obtain the esti-

mated signal which is smoother and has considerably less Gibbs phenomena compared to 
conventional transform based denoising.   

4.2.1 Utilized thresholding rules 

As mentioned in the previous section, the most popular non-linear functions used in transform 
based denoising techniques are soft and hard thresholding functions. However, other non-
linear functions may perform better than either one of these two. In our works [P5],[P6] the 
customized thresholding function (CTF) introduced in [91] has been used: 

 

 

( )

( )(1 )λ                          if | |λ
( )  0                                                   if 

2( ) { 3 ( ) 4 } otherwise

c

x sgn x

F x x

x x

 − −α ≥= ≤ γ − γ − γαλ α − + −α λ − γ λ − γ

x
 (4.2.5) 

where γ  is the cut-off value, 0 γ λ< < , and 0 1α≤ ≤   defines the shape. 

The CTF can be considered as a linear combination of soft and hard thresholding func-

tions, that is, ( ) (1 ) ( )h sF x F xα α⋅ + − ⋅ . Figure 4.1 illustrates these functions: 
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Figure 4.1   Thresholding functions: a) hard thresholding, b) soft thresholding, and  

c) customized thresholding for various values of  .α  

4.2.2 Local transform based denoising  

The transform based denoising may be further improved when applied rather locally, that is, 
in a sliding window. Local transform based denoising (LTD) methods have certain advan-
tages. They can be performed using locally varying parameters, for example, varying trans-
form basis, thresholding scheme, etc. They can also use the varying transform support (win-
dow size). 

The general LTD method applied to an image { }, ,  0,..., 1, 0,..., 1i jz i N j M= = − = −Z  of 

size ( )N M× consists of the following steps: 
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1. Transform a local portion of an input image within a moving window (kxl) located at 
(i,j)-th pixel: 

 ( , ) ( ( , )),T i j i j=Y T Z  

 for      { } { }0,..., 1 ,  0,..., 1 ,i N k j M l∈ − − ∈ − −  (4.2.6) 

where ( , )i jZ  is the data portion of the noisy observation within the window 

 [ ]( , )= ( , ),..., ( , ) , 0,..., ,   0,..., ,i j z i j z i p j r p k r l+ + = =Z  

and T  is a local transform of size ( 1, 1)k l+ + . 

2. Modify the local transform coefficients according to a function η  (for example, a 

thresholding function or element-wise multiplication to constants function) and per-
form the inverse transform: 
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3. Combine the resulting estimates of each sample obtained from all window locations 
that involve that sample. The combination is performed by simple averaging procedure 
that is very similar to that performed in shift invariant (TI) wavelet denoising [28]. 

The sliding window strategy can be modified to the moving window strategy by allowing 
jumps with shifts up to the transform size that corresponds to the non-overlapping case. In the 
extreme case of non-overlapping blocks a single estimate for each input sample will be ob-
tained that will result in blocking artefacts, while, in the other extreme case of moving the 
running window with single shifts, the computational complexity will be increased signifi-
cantly. With this respect, the shift may be considered as an additional parameter in a denois-
ing method. In a wavelet-denoising, this strategy is called partial cycle-spinning based on av-
eraging over the range of shifts instead of performing full TI wavelet denoising [28]. 

In literature, there are many works related to local sliding window transform based denois-
ing [33],[39],[63],[64],[75],[93]. In [64] the locally adaptive sliding window image denoising 
which often outperforms the wavelet-based denoising method is introduced. 

In [63] local adaptive denoising with adaptively varying local transform support size was 
presented. Authors use the concept of intersection of confidence intervals rule for selecting 
the optimum local windows sizes. The algorithm provides a significant noise reduction com-
pared to the denoising based on fixed optimum size local DCT transform, Wiener filter, TI 
wavelet shrinkage, and other methods. 

Another denoising method was proposed in the 3D transform domain [33]. This method for 
still image denoising based on sliding window transform and block-matching was proposed. 
The algorithm performs processing of blocks in a sliding way using block similarity concept 
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according to a certain criterion. The denoised images show good results in terms of objective 
criteria and visual quality. 

 
The local adaptive filtering in transform domain for removing the mixed noise (white and 

impulsive) was proposed in [39]. The method first detects the “salt-and-pepper” impulses with 
Min and Max filters and then replaces these impulses by a weighted average or K-nearest 
neighbour estimate of remaining pixels within the window. Then, in each window, the local 
transform based filter is used in order to remove the white noise. As a multibase transform the 
combination of different transforms, e.g. Haar and DCT, Haar and Daubechies wavelet as 
well as their translation-invariant versions have been used. The idea of using the multibase 
transform is to find the “best” basis or transform not globally, for the whole image, but to find 
it locally, for each image block. The criterion for selecting a transform is the decorrelation 
feature or the number of non-zero spectral coefficients. 

In [75] a new 3D DCT video denoising of video signals corrupted by additive Gaussian 
noise is presented. The video signal is locally filtered in sliding 3D windows consisting of 
highly correlated spatial layers taken from consecutive video frames selected with block-
matching technique. The denoising in local windows is performed by hard thresholding of 3D 
DCT coefficients of each 3D array. Then, the final estimates of reconstructed pixels are ob-
tained by a weighted average of local estimates from all sliding (overlapping) windows. The 
experiments show an improved performance compared to the wavelet based state-of-the-art 
video denosing methods in terms of both PSNR and visual appearance. 

In [P3], [P4] we used the parametric transform based denoising using sliding window strat-
egy. It can be expected that the use of signal adapted parametric transforms can improve the 
performance of transform based signal/image denoising. In the next section, we describe 
shortly the proposed parametric Haar-like transform based 1D and 2D signal denoising meth-
ods. 

4.3 PHT BASED DENOISING TECHNIQUES AND EXPERIMENTAL 
RESULTS 

As it was mentioned before, the main aim of transform based denoising consists in a separa-
tion of the original signal and the noise, in the spectrum of the corrupted input signal. If the 
noise is AWGN, then it is uniformly distributed in the spectrum of an orthogonal transform. 
Therefore, a transform with a higher energy compaction separates better the signal from 
AWGN. One of such transforms could be KLT. However, it is computationally demanding 
since besides being signal adaptive it has no fast algorithm. Therefore, other transforms such 
as DCT which is the closest to KLT transform can also be used. Many DOTs such as Fourier, 
wavelets, DCT, lapped, Haar as well as the combination of transforms (DCT+Haar) with their 
specific features are utilized in many algorithms. In [P5], [P6] we investigated the perform-
ance of PHTs in the noise reduction resulting in two denoising methods. 
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4.3.1 1D signal denoising based on PHT transform  

In our publication [P5] a new denoising approach is proposed  based on using parametric 
transform instead of one or more fixed transform. The main goal of the proposed approach is 
to improve the performance of fixed transform based denoising methods, in particular, the 
wavelet transform based approach, by utilizing adaptive methods. The main idea of the pro-
posed approach is to apply different locally adapted transforms to different local parts of the 
input signal for better decorrelation between the signal and the noise. Intuitively, it is clear 
that significantly better performance may be achieved by utilizing a correct transform for each 
local part of the signal. The problem consists in finding that correct transforms. In our pro-
posed algorithms parametric Haar-like transforms (PHTs) described in Section 2 are used. 
Thus, the problem is reduced to finding correct generating vectors better fitting to each local 
context of the signal. In the ideal case, if the generating vectors were the local parts of the 
noiseless signal, perfect decorrelation would take place. Unfortunately, the noiseless signal is 
what is searched and is not available. Therefore, different estimates of the noiseless signal 
have to be used. In particular, the PHT based algorithm proposed in [P5] uses the result of 
classical wavelet denoising method as an estimate of the signal. Thus, in this algorithm the 
local content within a sliding or moving window is denoised using a new PHT that is synthe-
sized specifically for the content of the window at each location on the signal. These new pa-
rametric transforms are synthesized using generating vectors obtained from the estimate of the 
original signal being the result of wavelet denoising of the input noisy signal. It should be 
noted that the result of any other traditional denoising algorithm, in particular, any linear de-
noising algorithm or any transform based denoising algorithm could also be utilized. The pro-
posed algorithm (Wavelet-PHT denoising algorithm) may be described by Figure 4.2. 
 

 
Figure 4.2   Diagram for PHT-based signal denoising algorithm. 

 
The algorithm in Figure 4.2 may be formulated as follows: 
1. The input noisy signal is denoised by a wavelet transform in order to find a primary 

estimate of an uncorrupted signal. 
2. Input noisy signal is transferred, window by window, into the domain of PHT trans-

forms that are synthesized on the base of the estimate of the original signal in the cor-
responding window. For this, both the original noisy signal and its primary estimate 
are divided into non-overlapping windows. For each window of the primary estimate, 
new PHT containing the corresponding window content as its first row is synthesized. 
Then, this transform is applied to the window of the original noisy signal at the same 
location. 
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3. Some thresholding function is applied. In our method, we used the CTF (see Section 
4.2.2), applied to each transformed window. 

4. Each thresholded window is transformed back by the inverse PHTs.  

4.3.2 Image denoising based on PHT transform  

The idea of this approach, presented in our publication [P6], is similar to the one described in 
the previous section for denoising 1D signals (Figure 4.2). However, the sliding window ap-
proach along rows and columns is used in this case. As a primary estimate the output from TI- 
wavelet based image denoising is utilized here. 

The proposed algorithm may be briefly described as follows: 

1. The given noisy image In is denoised by TI wavelet method to get an estimate Iwd, 
using, for example, hard thresholding scheme. 

2. The PHTs are synthesized based on the estimate Iwd. For each subrow and each sub-
column of the input image within a moving window an own PHP is synthesized with 
the generating vector being a corresponding subrow or subcolumn of the estimate 
obtained at Step 1. The synthesized PHTs are applied to the corresponding subrows 
and subcolumns of the sliding window. 

3.  Thresholding is applied to the transformed windows at each sliding location. In ex-
periments, again the CTF was used. 

4. The rows and the columns of each thresholded window are transformed back with 
inverse PHTs. The inverse PHTs may be computed with fast algorithms.   

5. In result, several estimates for each sample of the original image will be obtained 
(totally w2 estimates per sample in the middle of the image but less at the edges with 

w  being the window width). The final estimate for each sample is obtained by aver-

aging over all its estimates.    

4.3.3 Experimental results  

Results on proposed signal denoising method 
The proposed 1D signal denoising method has been tested on many artificial signals such as 
Blocks, Bumps, HeaviSine. The signals were corrupted by additive Gaussian noise with sig-
nal-to-noise-ratio (SNR) 7 dB, and then denoised by the proposed algorithm [P5]. In all the 
experiments, the Daubechies asymmetric wavelet with 8 vanishing moments and 8 decompo-
sition levels was used at Step 1 of the algorithm. The results of the experiments were averaged 
over 30 runs. The parameters α, λ and γ of the utilized thresholding function were chosen em-
pirically. The results show that mostly the proposed method reduces significantly the noise 
content from the original test signals. It can be seen from [P5], that the proposed method re-
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duces noise significantly in terms of MSE and visual appearance is close to the noiseless sig-
nal. 
 

Results on proposed image denosing method 
The proposed image denoising method has also been tested on many noisy observations of 
images such as Lena, Peppers, Cameraman, House. The images have been corrupted with 

AWGN with noise levels 15σ =  and 20σ = . For test images the noisy observation images 

have been denoised with TI Symmlet wavelet with 5 vanishing moments and 4 decomposition 
levels. The obtained wavelet coefficients were modified by, for example, hard thresholding 

function with universal threshold value proposed by Donoho and Johnstone  22 logwd n= ⋅λ σ  

where 2n   is the image size. This wavelet-based estimate has been used as a start up for calcu-

lating of parametric Haar-like transforms (PHT) as described above. After transferring the 
noisy image into PHT transform domain, the transformed coefficients have been thresholded 

with customized threshold function using the threshold value 22 logpht c wλ = ⋅σ   where w 

is the size of the sliding window. Experiments show that our denoising methods outperform 
significantly the performance of Wiener filtering and the wavelet based method. 
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Chapter 5 

5 Spectral methods/transforms in 
logic design 

In the design of digital devices, there are many various ways to describe the input and output 
signals. The inputs and outputs are usually mathematically modelled by functions, while the 
input and output relations may be represented by operators in some properly selected function 
space. In digital design, a system is represented by its logic function, namely, Boolean or 

switching function (BF). The BF of n variables 1 2, ,..., nx x x  is a mapping { } { }: 0,1 0,1
n

f → . 

The classical representations of a BF are the truth tables, Kaurnaugh map, canonical sum-of-

products (SOP) which is the analytical representation of BFs, and the graphical representation 

of BFs by Decision Diagrams (DD) [24], [77],[79]. Another way is the spectral representation 

[77], [45]. The conversion from the original domain into an equivalent spectral domain repre-

sentation is performed through a spectral transform which has an inverse transform to ensure 

the possibility of obtaining the original domain representation back from its spectrum without 

loss of information. In general, spectral transforms are orthogonal. One of the reasons to use 

the spectral representation is due to the fact that sometimes the spectral coefficients provide 

more valuable information about the input features than just its Boolean representation. This 

aspect was used in many areas of logic design, optimization and testing of digital circuits [45], 

[52]. It helps to solve many problems ([44],[45],[27],[52]), such as BF classification into 

equivalent classes, Boolean matching, disjoint decomposition of Boolean functions, spectral 

based network synthesis, fault detection. 

Another aspect of spectral methods in logic design is the transformation of Boolean func-

tions from AND-OR into AND-XOR circuits which are easily testable and reduce the hard-

ware costs (number of logic gates) compared to the first circuit realization [74]. 

Many spectral transforms have been widely used in analysis, synthesis and testing of logic 

functions. Among them the most popular are Reed-Muller (RM), Haar, Walsh and Arithmetic 

transforms as well as their generalizations (e.g. generalized Haar [5], Vilenkin-Chrestenson 
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[52]). The RM transform is found to be useful in terms of area, speed and testability [46],[51] 

[74],[78]. In [69] the symmetric functions were realized as RM expressions. The RM spectral 

representation represents flexibility for description of the binary as well as multiple-valued 

circuits. The rows of RM transform are the well-known error-correcting codes called RM 

codes.  

The Walsh transform is widely used, for example, in fault detection [45]. The Haar trans-

form is also quite useful, for example, in VLSI design, fault detection [44],[52],[50] and also 

in signal/image processing and pattern recognition due to its low computations and memory 

requirements. In the following sections, we will describe briefly different existing as well as 

proposed spectral representations of logic functions.   

5.1 FUNCTIONAL REPRESENTATIONS OF SWITCHING FUNC-
TIONS: AND-EXOR EXPRESSIONS 

In algebraic approach to logic design, switching functions are usually considered as elements 

of vector space  2 2( )nGF C , where 2GF  denotes the finite Galois filed of order 2, GF(2), and 

2
nC  is the finite dyadic group of order 2n , consisting of { }{ }1 2( , ,..., ) |  0,1 ,n ix x x x ∈ ⊕ , where 

' '⊕  is the modulo 2 addition or EXOR operation, and 2 2
1
 ,

n
n

i

C C
=

= × where { }( )2 0,1 ,C = ⊕  is 

the basic cyclic group of order 2. This formulation of switching functions is convenient due to 
the benefits of EXOR representations. AND-XOR circuits (realizing EXORs) are easily test-
able and less costly (see [74]) compared to AND-OR circuits (realizing SOPs). Moreover, 
they may be easily extended to multiple-valued functions. AND-EXOR representations are 

considered as Fourier series-like expansions in 2 2( )nGF C . 

Any n-variable switching function 1 2( , ,..., )nf f x x x=  can be represented in one of the 

following EXOR expansion forms: 

 0 1,i if x f x f= ⊕  Shannon (S) 

 0 2,if f x f= ⊕  positive Davio (pD) 

 1 2,if f x f= ⊕  negative Davio (nD) 

where 

 0 1 1 1( ,..., , 0, ,..., ) ( 0)i i i n if f x x x x x f x− += = = =  

and 

 1 1 1 1( ,..., , 1, ,..., )i i i nf f x x x x x− += = = ( 1)if x =  

are co-factors with respect to variable ,ix  and 

 2 0 1.f f f= ⊕  
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(S)-expansion 
 

The (S)-expansion rule may be applied recursively to all the variables ,   1,..., ,ix i n=  of func-

tion f bringing to the complete SOP form of  f   [77], [79]. 
In matrix notation, Shannon expansion may be expressed as: 

 [ ] 0

1

1 0
  ,

0 1i i
f

f x x
f

  =        (5.1.1) 

or, after denoting the basic matrices 

 ( ) [ ] ( ) 1 0
1   ,  1

0 1i ix x
 = =   X B   and  0

1
,

f

f

 =   F  

we have: 

 ( ) ( )1 1 .f = X B F  (5.1.2) 

In matrix notation, the recursive application of (S)-expansion to all n variables of function f 
resulting in complete SOP form of function f may be expressed by the Kronecker product as: 

 ( ) ( ) ( ) ( )
1 1

1 1 .
n n

ì ì
f n n

= =

  = = ⊗ ⊗      
X B F X B F  (5.1.3) 

It should be noted that matrix notation is convenient for transferring from SOP into, for ex-
ample, polynomial expression of switching function.  For this approach, different basic matri-
ces B(1) can be chosen to produce different expressions. 

 

(pD)-expansion 
 
The (pD)-expansion may be formed from the (S)-expansion by using properties of the Boo-

lean logic. For example, after substitution  = 1i ix x ⊕  we have 

 
( )

( )
0 1 0 0 1

0 0 1

1 1

    = 1 .

i i i i

i

f x f x f f x f x f

f x f f

= ⊕ ⊕ = ⋅ ⊕ ⊕ =
⋅ ⊕ ⊕

 

In general, 

 0 1 ,if c c x= ⊕  (5.1.4) 

where 0 0c f=  and 1 0 1c f f= ⊕  are the RM spectral coefficients. In the matrix form (5.1.4) 

may be expressed as 
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[ ]

( ) ( )

0

1

1 0
1  ,

1 1

1 1 .

i

R

f
f x

f

f

  =      

= X R F

 (5.1.5) 

The recursive application of (pD) rule to a function 1 2( , ,..., )nf x x x  with respect to all the n 

variables produces the Positive Polarity Reed-Muller (PPRM) expansion or the so called 
Zegalkin polynomial [19],[77] : 

 0 1 1 2 2

12 1 2 13 1 3 1 1 12... 1 2      ... .
n n

n n n n n n

f c c x c x c x

c x x c x x c x x c x x x
− −

= ⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕

L

L L

 (5.1.6) 

In matrix notation PPRM is the following: 

 ( ) ( ) ( ) ( )
1 1

1 1 .
n n

R R
ì ì

f n n
= =

   = = ⊗ ⊗        
X R F X R F  (5.1.7) 

The PPRM represents AND-EXOR expression where each variable is uncomplemented, that 
is, with positive polarity. Each switching function can be written in the form of PPRM.  

As we can see in (5.1.7), the PPRM expression requires the Kronecker product of basic 
kernels R(1). The product terms, mentioned above in (5.1.6), (5.1.7), are generated symboli-

cally as the Kronecker product of (1x2) vectors [1  ]ix , 1,..., ,i n=  related to each switching 

variable, given by 

 
1

1  ,R

n

ii
x

=
 = ⊗  X  (5.1.8) 

For example, when n=2, we have 

 [ ] [ ] [ ]1 2 2 1 1 2(2) 1    1    1          .R x x x x x x= ⊗ =X  (5.1.9) 

These product terms represent particular switching functions, whose truth vectors are the col-

umns of the RM transform matrix ( )nR  shown in Table 5.1.1. 

 
Table 5.1.1   Truth vectors for products in Reed-Muller expressions 

   1 2x x    1   2x  1x    1 2x x  

00 1 0 0 0 

01 1 1 0 0 

10 1 0 1 0 

11 1 1 1 1 
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(nD)-expansion 
 
Similar to the PPRM ((pD)-expansion), the NPRM ( (nD)-expansion) may be derived from 

(S)-expansion by the relation = 1i ix x ⊕ .  In matrix notation, the NPRM is given as  

 [ ] 0

1

0 1
1  .

1 1i
f

f x
f

  =        (5.1.10) 

Both the PPRM and NPRM expressions may be included into the so-called fixed-polarity 

Reed-Muller (FPRM) expression. The FPRM is a generalization of PPRM (NPRM), that for 
each variable of function allows to choose any of two decomposition rules, (pD) or (nD). It 
means that each variable should appear in one of two fixed polarities, e.g. either positive or 
negative, but never both at the same time. For n variable function f there are 2n possible 
choices for polarities. Therefore, there are 2n different FPRM polynomial representations for n 

variable function. With this respect, the polarity vector h = (h1,h2,…, hn), { }0,1ih ∈  with 

0ih =  (positive polarity of variable) and 1ih =  (negative polarity of variable) is introduced 

that relates to polarity of variables in  f  denoted as: 

 
,  0

,  1.
i i

i i
i i

x h
x h

x h

=⊕ =  =  

In particular, the PPRM representation is the RM expression for zero-polarity vector 

(0,0,...,0)h =  that often requires less number of product terms than the SOP which is AND-

OR expression. The polarity vector h with minimal number of nonzero coefficients is called 
the minimal polarity and the FPRM corresponding to that minimal polarity is called the mi-
nimal FPRM expression for a function f.  As in (5.1.7), the FPRM of function 

( )1 2, ,..., nf x x x  for polarity vector h  may be written as 

 ( ) ( ) ( ) ( )
1 1

1 1 ,i i
n n

h hh h
R iR

ì ì
f n n

= =

  = = ⊗ ⊗      
X R F X R F  (5.1.11) 

where 1  i ih h
iR x =   X  and the Kronecker product of basic matrices can be written as 

 
1

(1)i
n

hh

i=
= ⊗R R , (5.1.12) 

where ( )1 2, ,..., nh h h h=  is the polarity vector, { }0,1 , 1,..., ,ih i n∈ =  is a polarity value for va-

riable ,ix  and matrix (1)ihR  is one of following two RM matrices: 
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1 0
, 0

1 1
(1)

0 1
, 1.

1 1

i

i
h

i

h

h

  =  =   =  

R  (5.1.13) 

The generalization of FPRM gives the mixed polarity Reed-Muller (MPRM), also referred 
to as the Kronecker expression, that allows a free choice for each variable among the three 
decomposition rules, namely, (S), (pD) and (nD), with no products consisting of the same set 
of variables. In this case, we have three kernels, that is, identity kernel, PPRM  and NPRM 

and, therefore, three choices. Thus, for each function of n  variables 3n  possible Kronecker 
expansions will be obtained. 

The more is the number of possible expressions, the more is the possibility of getting the 
expression with smaller number of products. However, finding an optimal expression of a 
function with a minimal number of products is an NP-hard problem [77]. 

In generalized RM (GRM) the polarity of each variable may be different in different prod-

uct terms. There are 
122

nn −

 possible generalized RM expressions for an n variable function. 
The set of variables in product terms is unique, that is, there are no products with the same set 
of variables. 

The GRM expression for function of n variables has the following form: 

 0 1 1 2 2 12 1 2 13 1 3 1 1 12... 1 2... ,n n n n n n n nf c c x c x c x c x x c x x c x x c x x x
− −

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕% % % % % % % % % % % %L L L  

where { }0,1ic ∈  and ix%  is either ix  or ix . 

Another AND-EXOR expression is the EXOR sum of product expressions (ESOPs) which 
are the most general class of expressions defined as an EXOR sum of arbitrary product terms 
of the form: 

 1 2... n
S

f x x x=⊕% % % , 

where S is the set of all possible products and  ix%  is 1,  ix  or  ix . 

There is the following relation between different expressions: 

 PPRM FPRM GRM ESOP⊂ ⊂ ⊂  [79]. These expressions provide different number of 

products (or nonzero spectral coefficients) in direction from left to right. That is, on average, 
for many BFs, the PPRM produces the largest number of products, while the ESOP gives the 
least number of products. 

In the above described expressions, the spectral coefficients ic  and the basis functions are 

logic 0 and 1. Such expressions where coefficients and basis functions take values in a finite 
field are called bit-level expressions. The bits may be binary as well as multiple-valued. In the 
case of RMs the calculations are modulo 2 or over finite field GF(2). In the following section 
we discuss the word-level expressions having real or complex-valued coefficients.  
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5.2 WORD-LEVEL EXPRESSIONS 

Examples of word-level expressions are the Arithmetic, Walsh and Haar expressions [79]. 
Arithmetic expressions are derived from RMs when operations over GF(2) are replaced, for 
example, by the operations over the field of rational numbers Q. 

In general, the following relation exists between logic (disjunction ‘∨ ’, conjunction ‘∧ ’, 

negation ‘¬ ’, EXOR ‘⊕ ’) and arithmetic operations (addition, subtraction, multiplication): 

 
2

1 .

x y xy

x y x y xy

x y x y xy

x x

∧ ≡
∨ ≡ + −
⊕ ≡ + −
≡ −

 (5.2.1) 

An arithmetic expression may be obtained from (S)-expansion by using the last substitution 
in (5.2.1). In this case, the arithmetic expansion (decomposition) rule with respect to variable 

ix  is: 

 ( )0 0 11 .if f x f f= ⋅ + ⋅ − +  (5.2.2) 

For n variable function f  the arithmetic expression similar to (5.1.7) is the following: 

 ( ) ( ) ( ) ( )
1 1

1 1 ,
n n

A A
ì ì

f n n
= =

  = = ⊗ ⊗      
X A F X A F  (5.2.3) 

where ( ) [ ]1 1  A ix=X  with integer values 0 and 1 of ix , and ( )1   1 0
1

1 1
−  =  − A  is the basic 

arithmetic transform kernel. 
Another word-level expression is the Walsh expression. The columns of the basic Walsh 

transform 
1   1

(1)
1 1

 =  − W   may be represented with switching variables as [ ]1  1 2 ix−  and 

 [ ] ( ) ( )( )( )0
0 1 0 1

1

1   11 1
1  1 2 1 1 2 .

1 12 2i i
f

f x f f x f f
f

  = − = ⋅ + + − −  −     (5.2.4) 

This expression is called Walsh expansion rule with respect to variable ix . The recursive 

application of Walsh rule to all variables will give the following: 

 ( ) ( ) ( ) ( )
1 1

1 1 ,
n n

W W
ì ì

f n n
= =

  = = ⊗ ⊗      
X W F X W F  (5.2.5) 

where ( ) [ ]1 1  1 2W ix= −X . 
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5.3 SPECTRAL APPROACH: BOOLEAN VS. TRANSFORM DOMAIN 

A logic function can be represented by many bases. The choice of a basis plays an important 
role in solution of analysis and synthesis problems using spectral representations of logic 
functions, particularly, it determines the number of nonzero spectral coefficients which, in 
turn, determines the complexity of implementation of logic functions. In this section, we give 
a short description of RM, arithmetic and Walsh transforms which have a Kronecker product 
structure allowing fast FFT-like calculation for their transform matrices (see Chapter 2). 

 

Reed-Muller transform 
 

The RM transform performs the transformation of a BF from its original domain into the 
Reed-Muller domain, and vice versa. The expression (5.1.7) may be represented in matrix 
form as following: 

 ( ) ,Rf n= X R F  

where [ ](0), (1),..., ( 1)
T

f f f n= −F  is the truth vector of  n-variable switching function f  and 

( )nR  is the RM transform matrix of order 2nN = : 

 
1

( ) (1)
n

i
n

=
= ⊗R R ,   

1 0
(1)

1 1

    
=R  (5.3.1) 

The RM transform of order 2 2n n×  is recursively defined as 

  ,
( 1) ( 1)

 ( )
( 1) ( 1)

n n
n

n n

    
− −

=
− −

R O
R

R R
 

where ( 1)n−O  is the zero matrix of order 12n− .  The elements of R(n) are the logical 0 and 1, 

and the calculations are done over GF(2). The matrix ( )nR  is self-inverse, therefore, 

1( ) ( )n n−
=R R . 

For a truth vector F of n variable switching function f  the forward and inverse RM trans-

forms are: 

 
( )    

( ) ,

f

f

n

n

= ×

= ×

R R F

F R R
 (5.3.2) 

where the calculations are performed over the field GF(2).  
The forward and inverse transforms are given by the same matrix, since the RM transform 

matrix R(n) is self-inverse over GF(2). The relations (5.3.2) form the RM transform pair. 
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Arithmetic Transform 
 
The arithmetic transform is defined as 

 ( ) ,A n=S A F  (5.3.3) 

where AS  and F  are the arithmetic spectrum and truth vector, respectively. Arithmetic trans-

form matrix ( )nA , as Walsh and RM transforms, is derived recursively as 

 ,
  1 0

(1)
1 1

    
=

−
A

     
 ,

( 1) ( 1)
 ( )

( 1) ( 1)

n n
n

n n

    
− −

=
− − −

A O
A

A A
 (5.3.4) 

or, alternatively, 
1

( ) (1) (1)
n

n

i
n ⊗

=
= ⊗ =A A A . 

It should be noticed that the inverse of arithmetic transform, 1(1)−A , formally, is the same 

as the (1)R  containing the logical values of 0 and 1. However, the values of 1(1)−A  are inte-

ger 0 and 1 values. 
 

Walsh transform 
 
The Walsh transform is defined as 

 ( ) ,W n=S W F  (5.3.5) 

where WS  and F  are the Walsh spectrum and truth vector, respectively. Walsh transform ma-

trix ( )nW  is derived recursively (see also (2.3.3)): 

 ,
1   1

(1)
1 1

    
=

−
W

     
 

( 1) ( 1)
 ( )

( 1) ( 1)

n n
n

n n

    
− −

=
− − −

W W
W

W W
 (5.3.6) 

or, alternatively, 
1

( ) (1) (1)
n

n

i
n ⊗

=
= ⊗ =W W W . 

For some applications, in computing the Walsh transform of a BF, it is convenient to per-
form the following encoding: the elements of F are sometimes encoded from {0, 1} to {1, -1}, 
where logic 0 is encoded as -1 and logic 1 is encoded as +1. 

5.4 REED-MULLER TRANSFORM FOR MULTIPLE-VALUED LOGIC 

The Reed-Muller domain can be extended from binary logic, related to Boolean algebra, to 
the multiple-valued logic (MVL) suggesting much more benefits. It was shown that MVL cir-
cuits enhance circuit performance in terms of chip area, operation speed and power consump-
tion. Any function   f  with p-valued inputs and p-valued outputs may  be considered as a 
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mapping:  :{0,1,2,..., 1} {0,1,2,..., 1}.nf p p− → −  The PPRM for p-valued function  f  with 

truth vector F has the following form: 

 1( ) ( ) ( ) ,prp rpf x n n−= × ×X R F  

where ( )   
2 3 1

 
1
[1    ]p

i i i

n

rp i
i

n x x x x −

=

= ⊗X K  and 1
p
−R  is a matrix over GF(p). 

Here we consider an example of the simplest case of multiple-valued logic, the case of 

three-valued input, three-valued output function :{0,1,2} {0,1,2}nf → . The PPRM transform 

for such function is 

 3( )n= ×G R F     over    GF(3), (5.4.1) 

where F and G are the ternary truth vector and the PPRM spectrum of length 3n , respectively; 

3( )nR  is a 3 3n n×  PPRM transform matrix over GF(3) defined as 

 3 3
1

 ( ) (1)
n

i
n

=

= ⊗R R   and  3

1 0 0

(1) 0 2 1 .

2 2 2

  =    
R  (5.4.2) 

For example, the PPRM expression for a truth vector F of a 3-valued function f of n variables 
is given as follows: 

 33( ) ( ) ( )rrf x n n= × ×X R F , 

where 2

1
( ) 1     

n

r i i
i

n x x
=

 = ⊗  X  and 1
3

1 0 0

(1) 1 1 1 .

1 2 1

−

  =    
R

 

It should be noted that the addition and multiplication operations over GF(3) are modulo 3 

addition and multiplication. However, this is not true for the general GF(p) case. 

5.5 REED-MULLER HAAR TRANSFORM 

This section describes the matrix representation of Reed-Muller Haar transform (RMH) for 

different algebraic structures. The idea of the RMH transform can be found in more detail in 

[84]. Here we bring only briefly the definition of that transform.  

Denote by ( )P G  the space of the functions :f G P→ , where G (domain)  is a finite group 

and P (range)  is a field that may be the complex field C or a finite (Galois) field GF(p). In 

this notation, we consider the space of n variable switching functions 2 2( )nGF C , defined in 

section 5.1. 
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For a function ( )n
p pf GF C∈  given by its truth vector [ (0),..., ( 1)]n Tf f p= −F  the Haar 

spectrum and the series expansion are defined as: 

 
( )

( )
1  

  ,

f

f

n

n

−
=

=

S H F

F H S
 (5.5.1) 

where fS  is the vector of Haar spectral coefficients and, according to definition, Haar func-

tions in ( )n
p pGF C  are defined by the columns of the following matrix: 

 ( )
( )
( )

( )

0

1

1

1

1

1 p

n

n
n

n

       − 

− ⊗
− ⊗

=

− ⊗

H q

I q
H

I q

M
, (5.5.2) 

where iq , 0,..., 1i p= − are rows of basic matrix ( )1TQ  for P=GF(p), and ( )rI  is the identity 

matrix of order r . 

For example, depending on the order p=2,3,4 of the finite filed ( )GF p  the following basic 

matrices (kernels) ( )1TQ  for definition of Haar functions are possible: 

 ( ) 3 4

1 0 0 0
1 0 0

1 0 1 1 1 1
1 , (1) 1 1 1 , (1) .

1 1 1 2 3 1
1 2 1

1 3 2 1

                           

= = =R GF GF  

In particular, for p=3 the RMH of order 3n  is the following: 

 ( )
( )

( )
( )

     3

 3

 3

1 [1   1   1]

,   1       [0  1  2]

   1       [0  1  1]

T n

n n

n

      

− ⊗
= − ⊗

− ⊗

TH

TH I

I

 (5.5.3) 

where ( ) ( )31 (1)
T

=TH GF  is the RMH transform of order 3, and 3⊗  is the Kronecker product 

modulo 3. 

5.6 HYBRID TRANSFORMS 

In this section we introduce briefly the proposed hybrid spectral transforms based techniques 
that were designed in order to suit better the needs of a particular application. The basis func-
tions of the hybrid transforms are designed after analysis of the features of an input logic 
function. Each transform has both more or less good properties when used in certain task or 
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application. In order to use the best features of different transforms, many new transforms are 
designed that combine these features [3],[41],[61],[73]. 

5.6.1 Hybrid Reed-Muller Haar transform 

In [P1], [61], a new Hybrid Reed-Muller Haar Transform (HybRMH) transform was proposed 
which is a hybrid transform obtained by combining the RM and RMH transforms. We give 
also a fast calculation algorithm for this transform. 

The forward (0-polarity) HybRMH transform of order 2nN =  an integer parameter r  is 
defined as  

 ( ) ( ) ( ), , 0n r r n r  r n= ⊗ − ≤ ≤T R H  (5.6.1) 

where ( )rR  is  the Reed-Muller transform of order 2r and ( )n r−H  is the Reed-Muller Haar  

transform of order .2n r−  
The parameter r  can be selected appropriately to best exploit the features of the function 

to be represented. In the case 0r = the hybrid transform coincides with the RMH transform, 

while in case r n=  the  hybrid transform coincides with the RM transform of order .2n   

For n = 3 and r = 1, the hybrid transform matrix ( )3,1T  is the following: 

 ( ) ( ) ( )3,1 1 2= ⊗ =T R H

1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

1 0 0 0 1 0 0 0

1 0 1 0 1 0 1 0

1 1 0 0 1 1 0 0

0 0 1 1 0 0 1 1

               

 

Both the RM and RMH transforms have a fast calculation algorithm. The fast algorithm for 
the RM transform has a structure similar to that of the Hadamard transform, while the flow-
graph of the RMH transform is similar to that of the fast Haar transform. The butterfly dia-
gram of hybrid transform has a structure of fast Hadamard-Haar transform in the sense that 
some of the flowgraph stages are similar to that of fast Hadamard transform while the others 
are similar to that of fast Haar transform. The number of additions of fast hybrid RM-RMH 

transform of order N and the parameter ,r  is 2 ( / 2 1) ( / 2)r rN r N⋅ − + ⋅ . The computational 

costs are different for different values of .r  In other words, for 1,2,..., 1r n= −  the number of 

additions in the fast algorithm is between the number of additions corresponding to the RMH 

and RM transforms. 
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The fixed-polarity expression for HybRMH transform is defined in [P1]. Fast implementa-

tion algorithm can be derived also for the fixed polarity HybRMH transform. 

The binary HybRMH transform may be generalized to the case of multiple-valued func-

tions. In particular, the ternary hybrid transform with definitions of ternary fixed-polarity hy-

brid expressions is described in [P1].  

5.6.2 Binary hybrid Reed-Muller Haar-like transform 

In [P4] we presented another new Haar-like transform referred to as the Binary Reed-Muller 

Haar-like (BRMH) transform over Galois fields of order 2.  

The proposed forward (and inverse) BRMH transform, similarly to the HybRMH, is a dis-

crete binary transform which may be defined as follows: 

 1( , ) ( ) ( )n k n k k= − ⊗T R H  (5.6.2) 

where ( )n k−R  is the RM transform matrix of order 2n k−  and 1( )kH  is the Binary Paramet-

ric Haar-like Transform (BPHT) matrix of order 2k  to be defined later. By varying the pa-

rameter k one may get different transforms, i.e., RM (k=0), RMH (k=n) as well as other bi-

nary transforms corresponding to intermediate values of parameter k. 

The BPHT is a PHT transform over GF(2) designed for each given input signal by taking 

into account specific features of the input binary signal. Like PHT, the BPHT has the fast al-

gorithm with the structure similar to that of the fast Haar transform.   

Similar to the PHT, the BPHT is based on a generating vector which is an input to a fast 

implementation algorithm flowgraph (Figure 2.5 b)). In our method, a switching truth vector 

serves as such a generating vector and an input to that flowgraph. As in the case of FHT algo-

rithm, the fast BPHT of order 2nN =  has 2logm N=  stages, with the j th stage, 1,...,j m= , 

consisting of 2 j
jN N=  butterflies. 

The design of the fast BPHT transform starts from analyzing each pair [ ] T
u v of the input 

binary truth vector of a logic function. At each stage of the fast algorithm (Figure 2.5), for 

each pair [ ] T
u v of an input binary vector a kernel V  is specified in such a way that 

 [ ] [ ]  0 ,  where  0.T T
u v d d⋅ = ≠V  

In particular, for each stage j  and for each pair [ ] T
u v  of the input vector, the sth kernel is 

defined in the following way: 
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These spectral kernels form the block-diagonal matrices in (2.4.4). The resulting BPHT 

matrix is constructed according to (2.4.1). The BPHT is then combined with RM by Kroneck-

er product operation to get a new transform (5.6.2).  

5.7 TERNARY HAAR-LIKE TRANSFORM 

In [P3], the spectral technique based on prior analysis of input logic function and its further 

processing by a new local ternary Haar-like transform (THT) is proposed. The THT is a line-

arly independent transform over the finite Galois field GF(3) and a signal adaptive parametric 

transform allowing to use specific features of a signal during construction of the transform. It 

also has a fast implementation algorithm in structure similar to that of the fast ternary Haar 

transform. Given an input signal, we specify the parametric THT by its fast computation algo-

rithm allowing an iterative analysis of the signal by its decomposition into input steps of fast 

algorithm. For each step, the set of suitable parameters (e.g. ternary butterflies and permuta-

tions) are specified depending on the structure of the input signal at that step. The construc-

tion of parametric THT (as in the case of PHT) is based on a generating vector which is the 

input to the fast implementation algorithm. In our method, a ternary signal serves as such an 

input. The proposed transform have been utilized in compact representation of ternary logic 

functions containing the logic values {0, 1, 2} from GF(3). 

The design of fast THT transform starts from examining each triple [ ]  T
u v w of the input 

ternary truth vector of a logic function. For each set of components in an input triple, a kernel 

V  is specified in such a way that 

 [ ] [ ]   0 0 ,  where  0.T TV u v w d d⋅ = ≠  

With this respect, in [P3] as parameters, a library out of four different kernels and permutation 

matrices were specified in order to get a structure similar to that of the fast ternary Haar-like 

algorithm. 

5.7.1 Application of HybRMH, BRMH and THT transforms 

The HybRMH transform (with fixed polarity expressions) and the BRMH were utilized in 

compact representation of different binary benchmark functions in order to reduce the hard-

ware requirements. The THT transform based approach was tested on arbitrary selected ter-
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nary logic functions. The proposed methods show an improvement in reduction of number of 

nonzero coefficients. The results were compared with RM, RMH (also FPRM, FPRMH), ter-

nary transforms [40] and show that on average the number of products is smaller for the pro-

posed transforms. The results of the proposed methods may be found in tables of [P1] and 

[P4]. 
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6 Summary of Publications 

The thesis is based on six publications given in the list of publications. The first two publica-

tions are journal papers whilst the others are conference papers. 

In [P1] we propose a new transform which is a combination of two transforms, namely, 

Reed-Muller and Reed-Muller Haar, called hybrid Reed-Muller-Haar transform (HybRMH). 

We show that the matrix of the HybRMH transform may be factorized, which provides a fast 

calculation algorithm based on the classical theory of FFT-like algorithms. As one of many 

potential applications of this transform, we consider the reduction of the number of nonzero 

coefficients in HybRMH expressions. The extension of HybRMH to multiple-valued case, in 

particular, the ternary case is considered as well.  

In [P2] a class of parametric transforms that are based on a unified representation of trans-

form matrices in the form of sparse matrix products is described. Parametric transform allows 

controlling some of transform features by proper parameter selection. In our work, a method 

for parameter selection is proposed that allows synthesizing specific transforms with matrices 

containing predefined row(s). Furthermore, different families of transforms are defined within 

the introduced class of parametric transforms in [P2]. All transforms of one family can be 

computed with fast algorithms similar in structure to each other. In particular, the family of 

parametric Haar-like transforms has been introduced that consists of discrete orthogonal trans-

forms of arbitrary order such that they all may be computed with a fast algorithm that is in 

structure similar to the classical fast Haar transform. Also the potential of the proposed class 

of Haar-like parametric transforms to improve the performance of fixed block transforms in 

image compression is investigated in [P2]. With this purpose, two image compression 
schemes are proposed where a number of Haar-like transforms are synthesized, each adapted 

to a certain set of blocks within an image. 

In [P3] a signal-adaptive Haar-like transform, defined over the field GF(3), that is intended 

for processing  ternary functions is presented. The proposed transform possesses a fast com-

putation algorithm similar to the fast algorithms for the classical Haar transform on finite dy-

adic groups as well as the generalized Haar transforms for multiple-valued functions. The 

proposed transform is utilized in reduction of the number of nonzero coefficients in spectral 

representations of ternary functions.  
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The [P4] presents three methods for reduction of the number of nonzero coefficients in the 

spectra of binary vectors using newly introduced Reed-Muller Haar-like transform. The trans-

form, used to transfer a given truth vector of a switching function into the spectral domain, is 

based on the Kronecker product of the Reed-Muller and binary parametric Haar-like trans-

forms (BPHT) which is a signal adapted discrete binary valued transform that may be com-

puted with a fast algorithm having the structure similar to that of classical fast Haar transform. 

The new hybrid transforms introduced in this paper combine properties of both the Reed-

Muller and BPHT transforms, due to which they provide improved reduction of the number of 

nonzero coefficients in spectral representations of switching functions.  

In [P5] the capability of parametric Haar-like transforms in 1D signal denoising application 

is explored. A new PHT based post-processing algorithm for 1D signal denoising is proposed 

which may be combined with another denoising method in order to improve the quality of the 

output signal. Here the basic wavelet thresholding based signal denoising method was com-

plemented with the proposed post-processing algorithm.  

The aim of work [P6] is to study a potential use of parametric Haar-like transforms in im-

age denoising. A PHT-based post-processing method is proposed which may improve a de-

noising method based on fixed transforms. In particular, it is shown that the proposed method 

may significantly improve the performance of wavelet thresholding based image denoising. 
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