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Abstract

The large number of practical applications involving digital images
has motivated a significant interest towards restoration solutions that
improve the visual quality of the data under the presence of various
acquisition and compression artifacts. Digital images are the results
of an acquisition process based on the measurement of a physical
quantity of interest incident upon an imaging sensor over a specified
period of time. The quantity of interest depends on the targeted
imaging application. Common imaging sensors measure the number
of photons impinging over a dense grid of photodetectors in order to
produce an image similar to what is perceived by the human visual
system. Different applications focus on the part of the electromag-
netic spectrum not visible by the human visual system, and thus
require different sensing technologies to form the image. In all cases,
even with the advance of technology, raw data is invariably affected
by a variety of inherent and external disturbing factors, such as the
stochastic nature of the measurement processes or challenging sensing
conditions, which may cause, e.g., noise, blur, geometrical distortion
and color aberration.

In this thesis we introduce two filtering frameworks for video and
volumetric data restoration based on the BM3D grouping and collab-
orative filtering paradigm. In its general form, the BM3D paradigm
leverages the correlation present within a nonlocal group composed
of mutually similar basic filtering elements, e.g., patches, to attain an
enhanced sparse representation of the group in a suitable transform
domain where the energy of the meaningful part of the signal can be
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thus separated from that of the noise through coefficient shrinkage.
We argue that the success of this approach largely depends on the
form of the used basic filtering elements, which in turn define the
subsequent spectral representation of the nonlocal group. Thus, the
main contribution of this thesis consists in tailoring specific basic fil-
tering elements to the the inherent characteristics of the processed
data at hand. Specifically, we embed the local spatial correlation
present in volumetric data through 3-D cubes, and the local spatial
and temporal correlation present in videos through 3-D spatiotem-
poral volumes, i.e. sequences of 2-D blocks following a motion tra-
jectory. The foundational aspect of this work is the analysis of the
particular spectral representation of these elements. Specifically, our
frameworks stack mutually similar 3-D patches along an additional
fourth dimension, thus forming a 4-D data structure. By doing so, an
effective group spectral description can be formed, as the phenomena
acting along different dimensions in the data can be precisely local-
ized along different spectral hyperplanes, and thus different filtering
shrinkage strategies can be applied to different spectral coefficients to
achieve the desired filtering results. This constitutes a decisive differ-
ence with the shrinkage traditionally employed in BM3D-algorithms,
where different hyperplanes of the group spectrum are shrunk subject
to the same degradation model.

Different image processing problems rely on different observation
models and typically require specific algorithms to filter the corrupted
data. As a consequent contribution of this thesis, we show that
our high-dimensional filtering model allows to target heterogeneous
noise models, e.g., characterized by spatial and temporal correlation,
signal-dependent distributions, spatially varying statistics, and non-
white power spectral densities, without essential modifications to the
algorithm structure. As a result, we develop state-of-the-art meth-
ods for a variety of fundamental image processing problems, such
as denoising, deblocking, enhancement, deflickering, and reconstruc-
tion, which also find practical applications in consumer, medical, and
thermal imaging.
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Notation and Abbreviations

For the sake of convenience, Table 1 and Table 2 contain the recurring
mathematical notations and abbreviations used throughout the thesis
alongside their corresponding meanings and explanation. References
to relevant papers are also included when needed.

ii.d. independent and identical distributed

Y Noise-free data

z Noisy data

i Estimated noise-free data

N (u, %) Gaussian distribution with mean p and standard
deviation o

P(N) Poisson distribution of parameter A

R(v,0) Rice distribution of parameters v and o [115]

E{z} Expected value of z

E{z|y} Expected value of z conditioned on y

var{z} Variance of z

var{z|y} Variance of z conditioned on y

T Transform operator

T Shrinkage operator

Table 1. List of notations.
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1-D, 2-D, 3-D
AWGN
BM3D
CCD
CMOS
dB
DCT
FPA
FPN
LWIR
MRI
MAD
MRI
MSE
NLM
PSD
PSNR
SSIM
VST

Notation and Abbreviations

One-, Two-, Three- Dimensional
Additive White Gaussian Noise
Block-Matching and 3-D filtering [24]
Charge Coupled Semiconductor Devices
Complementary Metal-Oxide Semiconductor
Decibel

Discrete Cosine Transform

Focal Plane Arrays

Fixed-Pattern Noise

Long Wave Infrared

Magnetic Resonance Imaging

Median Absolute Deviation [57, 41]
Magnetic Resonance Imaging

Mean Squared Error

Nonlocal Means [14]

Power Spectral Density

Peak Signal-to-Noise Ratio

Structural Similarity Index [124]
Variance-Stabilizing Transformation [6]

Table 2. List of Abbreviations.



Chapter 1

Introduction

Imaging plays an ever increasing role for a plethora of fundamental
applications in, e.g., science, engineering, and medicine. However, the
raw data collected by imaging sensors is invariably contaminated by
noise, blur, blocking, ringing, flickering, and other acquisition or com-
pression artifacts. The massive growth in production as well as con-
sumption of digital media demands for improved and more efficient
acquisition processes, and thus motivates the interest in restoration
or enhancement algorithms. Restoration algorithms aim to improve
the quality of the observed signal in order to obtain a reliable esti-
mate of the original (unknown) noise-free data without introducing
filtering artifacts.

The statistical nature of the noise present within raw images typ-
ically depends on the particular imaging technique and sensor that
has acquired the data. Currently, the most common imaging sensors
are Charge Coupled Semiconductor Devices CCD [11] and Comple-
mentary Metal-Oxide Semiconductor CMOS [99] which are in essence
arrays of photodetectors whose task is to accumulate and count im-
pinging photons. Imaging techniques that detect light belonging to
part of the electromagnetic spectrum not visible to the human visual
system, rely on different sensing technologies or even different ac-
quisition strategies altogether: prominent applications of this kind,
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which are also of interest for the purpose of this thesis, are Mag-
netic Resonance Imaging MRI [29] and Long Wave Infrared LWIR
thermography and hyperspectral imaging.

The difference in sensing technology, as well as in the physical pro-
cesses involved, requires specific statistical models for the observed
data. The physical process of photon counting in CCD and CMOS
is inherently stochastic and typically modeled as a Poisson random
variable whose random fluctuations are referred to as “shot noise”
[67]. Different noise sources, such as thermal and electronic cam-
era noise, can be approximated as white Gaussian random variables
[60, 100]. Raw images acquired by focal plane arrays (FPA), such
as Complementary Metal-Ozxide Semiconductor CMOS [99] sensors
or bolometers [110], tend to be also affected by fixed-pattern noise
(FPN) because of the nonuniformities in the response of each FPA
photodetector [95]. Magnetic resonance (MR) signals are detected by
a system of scanner detectors that retrieve the phase and frequency
information of the protons resonating after a short radio frequency
pulse is emitted to the scanned body. The acquired MR signal is
thus constituted by k-space samples having a real and imaginary
part, and is assumed to be corrupted by signal-independent complex
white Gaussian noise [55, 76, 37]. Once enough samples are acquired,
the inverse Fourier transform can be eventually used to reconstruct
the magnitude MR image which is assumed to be corrupted by Rician
noise [73, 74].

Recently, the restoration community witnessed an exponential
spread of a new breed of filtering methods relying, at some level, on
the nonlocal self-similarity of small patches located at different posi-
tions within the data [62, 59, 69, 94]. The correlation of self-similar
patches is then leveraged by some filtering operator to separate the
noise-free portion of the observed data from the effects of the noise.
The first successful nonlocal algorithm, the NonLocal Means (NLM)
[14], depends on the nonlocal patch similarity to constitute an adap-
tive set of weights for the estimation of every pixel, which is thus ob-
tained as a convex combination of, in principle, all other pixels in the
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image. At the moment, the most effective filtering strategy is based
on the so-called grouping and collaborative filtering paradigm [25], in
which mutually similar patches extracted from the noisy data are first
stacked in a nonlocal higher-dimensional structure called group and
then filtered in transform domain. The local and nonlocal correla-
tion of the group allows to compact the energy of the meaningful part
of the signal in a small number of large-magnitude coefficients and
thus the noise can be effectively filtered by thresholding the group
spectrum.

1.1 Focus and Contribution of the The-
SiS

The focus of this thesis is the study and development of restora-
tion frameworks designed for high-dimensional data, i.e. volumetric
images and videos. The main contribution of this research work is
focused on the data structures used during the filtering, as we ar-
gue that properly capturing and distinguishing the different types of
correlation within the processed data is an essential factor of suc-
cessful filtering methods. In particular, we embed the local spatial
and temporal correlation in videos through sequences of 2-D blocks
following a motion trajectory, i.e. 3-D spatiotemporal volumes; dif-
ferently, we use 3-D cubes to capture the local spatial correlation in
volumetric images. The 3-D cubes and volumes are the basic filter-
ing elements in our frameworks and constitute the foundations of our
filtering models. Nonlocality also plays a central role of our frame-
works, as mutually similar 3-D basic filtering elements are stacked
along an additional fourth dimension embodying the nonlocal corre-
lation, thus forming 4-D data structures. The rationale behind this
modeling consists in leveraging the transform-domain representations
of the data such that the effects of the signal as well as those of the
noise can be precisely localized along the different spectral dimen-
sions. As a result, specific spectral hyperplanes, as well as specific



4 Chapter 1. Introduction

coefficients within each hyperplane, can be selectively manipulated
to attain different filtering results.

The proposed frameworks have been leveraged to tackle differ-
ent classic imaging processing problems such as video and volumetric
data denoising, reconstruction of incomplete volumetric images, as
well as the deblocking, deflickering, and enhancement of degraded
sequences. As consequent contribution, we target these problems es-
sentially using the same algorithmic structure even though the corre-
sponding degradation models exhibit a significant difference. In par-
ticular, beside the classic case of i.i.d. white Gaussian noise, we con-
sider noise characterized by spatial and temporal correlation, signal-
dependent distributions, colored power spectral density, or spatially
varying statistics.

1.2 Structure of the Thesis

Chapter 2 covers the necessary background for the remainder of the
thesis by discussing the observation models for all the considered
problems as well as by presenting a brief review of the current state
of the art in signal restoration. In Chapter 3 we introduce the fil-
ter used for volumetric data denoising and reconstruction, whereas
in Chapter 4 we present a video filtering framework and its corre-
sponding applications. Final remarks and future research directions
are eventually given in Chapter 5.

1.3 Link to Publications

The thesis encompasses five publications whose contribution is con-
densed in Chapter 3 and Chapter 4. In particular, the volumetric
filter described in Chapter 3 has been presented in Publication IV,
whereas its extension to the case of spatially varying noise has been
described in Publication II. The video filter described in Chapter
4 has been originally presented in its basic form in Publication I
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and later used for the filtering of different corrupting artifacts and
noise characteristics in Publications III and V. The author of the
thesis is the first author for all the aforementioned publications and
thus in charge of the analysis, implementation, experimental evalu-
ation, as well as the scientific writing of the presented methods. 1
wish especially to acknowledge the substantial contribution of En-
rique Sanchez-Monge in the development and implementation of the
algorithm presented in Publication V.
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Chapter 2

Preliminaries

This chapter covers the concepts and notions that will serve as back-
ground for the remainder of the thesis. At first in Section 2.1 we
briefly discuss the main sources of noise in digital images; then in Sec-
tion 2.2 we present an overview of denoising methods, and in Section
2.4 we discuss the typical strategies employed for high-dimensional
filtering. Subsequently, we dedicate Section 2.3 to the block-matching
and collaborative filtering paradigm [25], and finally in Section 2.5
we briefly mention the most common metrics used for image quality
assessment.

2.1 Observation Models

Digital data is acquired through a process typically (but not neces-
sarily) involving a solid-state image sensor, such as CCD or CMOS,
and an optical system of lenses. The lenses focus the light irradiated
by the physical scene which is then captured by a 2-D array of opto-
electronic semiconductor elements whose task is to absorb and count
the impinging photons.

During the exposure, each cell in the 2-D array accumulates the
electrons of the absorbed photons into electrical charge until the en-
ergy of the photons is large enough to convert such charge into an

7
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analogue quantity (voltage). Subsequently, after such quantity is am-
plified, an analogue-to-digital converter discretizes (quantizes) the
voltage into a digital number which finally corresponds to the raw
intensity value at a determined pixel position. Raw data is invari-
ably subjected to a variety of degradation factors; thus, a typical
image processing pipeline involves denoising, demosaicing, enhance-
ment, white balancing, gamma correction, compensation of lens dis-
tortion, as well as image compression, in order to generate the final
image [108].

One of the most significant source of noise is the intrinsic random-
ness of the photon emission physical process: in fact, given a fixed
exposure time, and even if the light irradiated from the scene is con-
stant, there are still random fluctuations in the number of photons
reaching each detector in the sensor. Furthermore, not all photons
reaching the sensor are converted in electrical charge, and the per-
centage of those who do, i.e. the quantum efficiency, is a complex
function of the photodetector depending the wavelength of the light
as well as the absorption characteristics of the sensors [52]. These
factors result in the so-called shot noise which is signal dependent
and typically modeled by a Poisson distribution whose mean would
be the ideal signal value [67].

Imperfections and physical characteristics of the imaging hard-
ware induce other degradation in the form of thermal noise, flicker
noise, readout noise and fixed-pattern noise. Specifically, thermal
noise (or Johnson-Nyquist noise) consists in the erroneous accumu-
lation of charge in the photodetectors caused by thermal agitation
(60, 100].

Flicker noise (or 1/f noise or pink noise) is noise present in all
electronic devices having a pink power spectral density spectrum, i.e.
with power inversely proportional to the frequency f of the signal,
and thus its effects are mostly visible in the low-frequency features
of the signal [127].

Readout noise and fixed-pattern noise (FPN) are caused by spatial
and temporal nonuniformities in the response of each photodetector
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in the sensor, as well as imperfections in the amplifier and in the
analogue-to-digital converter. FPN is a spatially correlated and tem-
porally invariant phenomena which results in a structured pattern
superimposed to the image and in extreme cases it can also mani-
fest as impulse noise (or salt-and-pepper noise), i.e. pixels that can
only correspond to either the maximum or the minimum value of the
intensity range of the data [54].

A different observation model relates to compressed-sensing prob-
lems where an unknown signal of interest is observed through a lim-
ited number of linear functionals; this is particularly relevant for med-
ical imaging applications such as computed tomography and magnetic
resonance imaging (MRI). MRI uses a strong and uniform magnetic
field to detect radio frequency information emitted from the scanned
tissues. In particular, the hydrogen protons align along the magnetic
field of the scanner and precess at a particular frequency modulated
by a gradient field in the scanner. Then a radio frequency (RF') pulse
excite a particular slice of protons in the scanned body, and within
the scanned slice, two additional orthogonal gradients are used to en-
code frequency and phase information of the protons precession. The
acquired MR signal is thus constituted by a set of k-space samples
having a real and imaginary part, and is assumed to be corrupted
by signal-independent complex white Gaussian noise. Different pulse
sequences can be used to acquire the k-space samples, and such se-
quence is known as the k-space “trajectory” [74]. Since the acquisi-
tion process is rather slow, few k-space measurements are typically
acquired. The inverse Fourier transform can be used to reconstruct
the image, and the reconstructed magnitude image is thus modeled
with a Rician distribution possibly having spatially varying statistics

[55, 76, 37).

In this section we describe different observation models for data
corrupted by Gaussian noise (Section 2.1.1), signal-dependent noise
(Section 2.1.2), colored noise (Section 2.1.3), as well as the observa-
tion model for the compressed sensing problem (Section 2.1.4).
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2.1.1 Gaussian Noise

Analyzing individually all different types of noise corrupting the sensed
data is not practicable, however the central limit theorem (CLT) [103]
states that, under mild conditions, the normalized sum of k indepen-
dent random variables Zi,--- , Z; each having individual mean p;
and variance o2, defined as

1
_Z(Zi — i) (2.1)

S <
=1

with 52 = 3% | 02, converges in distribution to the standard normal
distribution N'(0, 1) as k — oo. Thus, the CLT allows us to consider
the combined effects of different heterogeneous random sources as a
single random variable following a Gaussian distribution. This fact,
with the additional assumption of noise additivity, is the foundation
of the most common observation model in the field of image pro-
cessing [54], i.e. the ii.d. additive white Gaussian noise (AWGN)
model

2(2) = y(x) + (), (2.2)
where z is the noisy data, y is the unknown noise-free data, r € X C
7% is a d-dimensional pixel coordinate denoting a position in the do-
main X, and 7(-) ~ N(0,0?) is a Gaussian random variable having
zero mean and standard deviation o. Estimators for the standard
deviation ¢ have been thoroughly studied especially in the context
of transform-domain representations [38, 30]. The model (2.2) has
been shown to be a good approximation for the effects caused by
signal-independent noise sources [98], however, in practice, the noise
corrupting raw data has a form that invalidates the AWGN assump-
tions.

2.1.2 Signal-Dependent Noise

In this section, we explore the most common observation models char-
acterized by noise components having distributions different than the
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sole Gaussian featured in the classic AWGN model (2.2); specifically
we discuss the Poissonian noise model, a mixed model comprising
both Poissonian and Gaussian noise, and the Rician noise model.
Observe that signal-dependent observations can undergo a variance-

stabilizing transformation (VST) which transform the variance of the
noise to an almost-constant signal-independent value and thus allow
the use of traditional homoskedastic algorithms [6]. Specifically, at
first the noisy data is stabilized by a VST, then the stabilized data is
denoised by a homoskedastic filter (e.g., designed for AWGN) using
a constant value of standard deviation, and finally an inverse VST,
denoted as VST~!, is applied to the filtered data to obtain the final
estimate. Note that VST is not the trivial algebraic inverse of VST
as it should compensate the bias induced by the nonlinearities of the
forward transformation. Different unbiased VST formulae have been
proposed for Poissonian noise [86, 85|, Poisson-Gaussian noise [88],
and Rician noise [47].

Poissonian Noise

A classic model alternative to (2.2) ignores the signal-independent
corrupting sources and assumes that all the noise within the raw
data is due to signal-dependent factors following a Poissonian distri-
bution. Formally, each observation z(z) in the noisy signal can be
defined as an independent random variable drawn from a Poissonian
distribution

z(z) ~ P(y(z)), (2.3)
where the noise-free value y(z) > 0 is the distribution parameter.
The aim of restoration algorithms is to estimate the parameter y(z),
i.e. the expected value of the Poissonian variable (2.3). However, the
expected value of (2.3) is also equal to its variance

E{z(2)ly(z)} = var{z(z)ly(z)} = y(2),

thus showing that the Poissonian noise

n(z) = z(x) — E{z(x)[y(x) }
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is signal dependent. From the statistics of (2.3), E{n(z)|y(z)} = 0
and var{n(z)|y(z)} = y(x), we note that the signal-to-noise ratio
grows with the square root of the signal: thus, despite the standard
deviation grows with the signal, the effects of the noise becomes rel-
atively weaker as the signal intensity increases (and vice versa).

Poissonian noise might be modeled with a special signal-dependent
Gaussian distribution N (0, y(x)); this approximation is rather accu-
rate because, whenever the photon count is large enough, a Poissonian
distribution approaches a Gaussian [51].

Poissonian-Gaussian Noise

A more accurate observation model should simultaneously consider
both signal-dependent and signal-independent noise sources. This is
accomplished by combining two mutually independent components:
a multiplicative Poissonian variable describing the shot noise, and
an additive Gaussian variable capturing the effects of all other noise
factors [72, 51]. Formally the Poissonian-Gaussian model is denoted
as [b1]

2(x) = xp(x) + ny (), (2.4)

where each observation z(x) is the realization of a random Poisso-
nian process p(z) ~ P(y(z)), whose expectation is the noise-free
value y(z), scaled by a positive gain value xy > 0 and corrupted by
Gaussian noise nn(-) ~ N(0,0%). The total variance for (2.4) is
signal dependent and has an affine relation with the unknown pa-
rameters Y and o2 which depends on the hardware characteristic of
the imaging sensor and on the acquisition settings such as quantum
efficiency, pedestal parameter, analog gain, and ISO value [51]. The
affine parameters can be robustly estimated from a single raw image
[51].

We can note that the signal-to-noise ratio of z(x) grows linearly
with the signal, and thus, in the case of small signal values, it is
bounded by the signal-independent components whereas the signal-
dependent one dominates at large intensities. A more sophisticated
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version of (2.4) also takes into account the effects of clipping, i.e.
under- and over-exposures of the signal caused by the limited dynamic
range of the sensor [51, 46].

Rician Noise

Raw complex MR data acquired in transform domain (k-space) can
be modeled as a complex Gaussian distribution with a diagonal co-
variance matrix; the MR image can be obtained by applying an in-
verse Fourier transform, which, being linear and orthonormal, pre-
serves the i.i.d. Gaussianity. However, the extraction of the mag-
nitude of the complex MR image involves nonlinear operations and
hence changes the distribution of the noise. Specifically, noise in
magnitude MR images is assumed to follow a Rician distribution
[55, 76, 37] whose observation model can be formally defined as [47]

2(z) = \/ (cry(@) + o (@) () + (eiy(x) + o(@)ni(2)*,  (2.5)

where z is again a d-dimensional coordinate belonging to the do-
main X of the image, ¢, and ¢; are arbitrary constants such that
0<¢, <1=c+c, and n.(),m(-) ~ N(0,1) are i.i.d. ran-
dom variables following the standard normal distribution. In this
way, z(z) ~ R (y(x),o(x)) represents the raw magnitude of the data
modeled as a Rician distribution R of parameters y and o : X — R™,
which denote the (unknown) original noise-free signal and the spa-
tially varying standard deviation, respectively. A thorough presen-
tation of the Rice distribution in the context of MRI together with
derivations of estimators of the distribution parameters can be found
e.g. in [115, 47, 87, 88, 37].

2.1.3 Colored Noise

So far the noise considered in all observation models, despite having
different distributions, has always been characterized as white, i.e.
its power spectral density (PSD) is always assumed to be constant in
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frequency. The term “white” echoes the physical definition of white
light, as white light contains nearly every wavelength of the visible
electromagnetic spectrum in equal proportion.

Formally, the PSD is defined as the frequency representation (e.g.,
Fourier domain) of the autocorrelation function, and thus describes
how the energy of the signal is distributed in frequency domain. In
general, if the signal is correlated, its PSD exhibits some structure;
conversely, the more unpredictable is the process, the more spread is
its PSD. A random process is called white noise if its PSD is flat or,
equivalently, its autocorrelation function is shaped as a Dirac delta.
The AWGN model (2.2) includes the even stronger assumptions of
statistical independence which thus implies uncorrelated noise. Dif-
ferently, the presence of statistical dependencies between noise sam-
ples results in a different autocorrelation functions and hence a non-
constant PSDs. Non-constant PSDs are helpful to model the spa-
tial correlation characteristics caused by pink noise, fixed-pattern
noise, or even post-processing techniques such as interpolation, de-
mosaicing, enhancement, and compression. A precise modeling of
non-constant noise PSDs needs to be taken into account in order to
properly match the underlying sensor characteristics and/or the re-
construction processes forming the image [54]. Therefore, observation
models featuring colored PSDs are needed by denoising methods to
effectively handle the correlation within the noise.

The PSD is commonly estimated resorting to parametric or non-
parametric (also known as classical) approaches. The former strate-
gies hypothesize a model for the data in order to establish a para-
metric formulation for its spectrum which thus should ease the es-
timation task. The latter ones rely directly on the distribution of
the power of the signal over frequency to estimate the PSD without
any assumption on the structure of the data. The spectral density
is typically estimated from the squared magnitude of Fourier coeffi-
cients. A complete overview of spectral estimation can be found, e.g.,
in [119]. However, when estimating the PSD of the noise from noisy
signals, one should take into account that the estimated PSD would
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not only capture the power spectrum of the noise but would be also
affected by the structures (e.g., edges and textures) of the underlying
noise-free data, thus yielding biased results. In such cases, the esti-
mation algorithms should make use of uniform segments of patches
containing only noise or, whenever such patches are unavailable or
not in sufficient number, should leverage multiscale transforms to se-
lectively extract the information better suited to describe the noise
[106, 102].

2.1.4 Compressed Sensing

Compressed sensing studies the conditions under which a signal can
be perfectly reconstructed using a fewer number of samples than what
is required by the Nyquist-Shannon sampling theorem. This is mo-
tivated by the desire to minimize the number of acquired samples
only during the acquisition stage, instead of wastefully acquiring all
redundant information from the original signal. This is particularly
relevant in applications where data acquisition is expensive or time
consuming. In this context, we are primarily interested in an obser-
vation model

0="TI(f)+mn, (2.6)

where the representations 6 of the original signal f depend on a linear
sensing operator 7, being 1 the corrupting noise in the system. The
model (2.6) allows to describe different sensing modalities such as the
MRI acquisition process which considers 7 as the Fourier transform
[74]. Essentially, a measurement is not a single point sample, but
corresponds to some linear functional of the signal. Let €2 be the
support of the available portion of . We define a sensing operator
S as the characteristic (indicator) function ygq, which is 1 over Q
and 0 elsewhere. By means of S, we can split the spectrum in two
complementary parts as

9:56-9+(1—5)-9, (2.7)
1 s
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where 0 and 6, are the observed (known) and unobserved (unknown)
portion of the spectrum 6, respectively. Our goal is to recover (re-
construct) an estimate f of the unknown f from the observed incom-
plete and noisy measurements 6;. Note that if we had the complete
spectrum 6, we could trivially obtain f by applying the inverse trans-
formation on the complete noisy spectrum as |7 *(6)|.

In general a direct application of the inverse operator 7! can-
not reconstruct the original signal because we consider cases where
the available data is much smaller than what is required according
to standard sampling techniques. However, stable (and even exact)
reconstruction is made possible by assuming that the signal can be
sparsely represented with respect to some suitable basis, and that
the measurement basis is sufficiently “incoherent”, i.e. radically dif-
ferent, with respect to the basis in which the signal is sparse. Thus,
the signal of interest should be compactly represented in a suitable
domain, and, within the same domain, the representation of sensing
operator, unlike that of the signal, should be extremely dense; in fact,
if the two basis are somehow too closely correlated, it would not be
possible to recover the signal from few measurements. For example,
the time-frequency domain pair enjoys maximum incoherence.

Compressed sensing is a two-step procedure, at first the informa-
tion of the signal is compressed in few coefficients by using a stable
sensing basis, and then a reconstruction procedure is used to recover
the original signal from such sparse measurements. The reconstruc-
tion is an underdetermined problem admitting infinite solutions that
can be however solved exactly with high probability through the fun-
damental constraint that the original signal is sparse in a domain
incoherent with respect to the measurement basis. The smaller the
coherence between sensing and representation basis, the fewer sam-
ples are needed [17, 39]. The solution of such underdetermined system
can be found by minimizing the number of its non-zero components,
i.e. the fy-norm of the solution which however is numerical unstable
and computationally intractable problem. Thus, minimization of the
{1-norm is typically used because such formulation can be efficiently
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solved by linear programming being a convex optimization problem
and it has proven to lead to the exact recovery of sparse signals with
high probability [17].

2.2 Overview of Denoising Methods

In this section we discuss the denoising techniques proposed in the
literature relevant in the scope of this thesis. The focus is here mainly
given to images because we are interested in the foundational aspects
of the denoising problem, but let us note that similar methods can
be applied to higher-dimensional signals as well; in particular, follow-
ing the categorization of [62], we discuss local and nonlocal methods
(Section 2.2.1), transform-domain filtering (Section 2.2.2), and mul-
tipoint estimation (Section 2.2.3). We finally conclude with a brief
discussion on the optimal performance bounds of the image denoising
problem (Section 2.2.4).

2.2.1 Local and Nonlocal Filtering

A denoising algorithm is called local if an estimate of the noise-free
signal is obtained through a local combination of the noisy data us-
ing weights which depends on some relation between the estimation
point and the observation points [97, 126]. This strategy is incarnated
in its basic form by, e.g., a limited bandwidth Gaussian smoothing
kernel. A different strategy relies on modeling local image neighbor-
hoods with adaptive local polynomial approximation (LPA) kernels
[20, 4]. A prominent example of local denoising algorithm is the bilat-
eral filter [120], which combines both the structure information and
the photometric similarity during the filtering thus awarding larger
weights to the most similar pixels. Local techniques do not take into
account the information of the data falling outside the support of the
chosen denoising kernel, and thus are not able to exploit the high
degree of auto-correlation and repeated patterns at different location
within natural signals [111, 117]. Conversely, imaging methods are
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called nonlocal whenever the redundancy and self-similarity of the
data is leveraged during the denoising [62, 69, 94].

The nonlocal paradigm, pioneered within the context of texture
synthesis in [43], in the recent past has been one of the most influen-
tial ideas in the field of image restoration, as more than a thousand
papers on this subject can be currently found in the literature [69].
The idea of reducing noise from the self-similarity of the data has
been briefly discussed in the technical report [35], but the first al-
gorithm for image denoising embedding the nonlocality principle is
considered to be NonLocal Means (NLM) [14]. A method embody-
ing the same essential principles has been independently presented
in [5] where the authors propose to restore images using the similar-
ity of the content within different image patches. Intuitively, NLM
replaces the values in a noisy observation at a given reference pixel
by an adaptive convex combination including —in principle— all pix-
els in the image, and the weights of the combination depend on the
similarity between local patches associated to the reference and tar-
get pixels. In particular, the similarity is measured as a windowed
quadratic point-by-point distance, and, naturally, the higher is the
similarity the larger are the corresponding weight. This strategy al-
lows all pixels to contribute during the estimation of every other
point in the image, and even distant pixels can have a large contri-
bution to the final estimate provided that they exhibit a sufficient
similarity with the reference one. In practice, the nonlocal search
is restricted to smaller neighborhoods because, beside increasing the
computational cost, an exhaustive search might even lead to perfor-
mance losses [113]. Many modifications and extensions of NLM have
been proposed. In particular, adaptive mechanisms based on local
image statistics can be used to estimate the aggregation weights and
the size of the search neighborhoods [63, 64], as well as the shape of
the patches [36].
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2.2.2 Transform-Domain Filtering and Sparse Rep-
resentation

A significant interest has been given to approaches that are able to
compact the redundancy and self-similarity of natural images by dis-
assembling the data with respect to a specific set of elementary basis
functions. In fact, signals that admit a sparse representation within
a suitable transform domain can be entirely described using a small
set of transform coefficients. Popular transform operators decompose
the data into oscillatory waveforms which eventually allow to provide
a sparse representation for certain class of signals. For example the
DCT or Fourier transform are efficient in describing uniformly reg-
ular signals, and the Wavelet transform can also sparsely represent
localized and/or transient phenomena [34, 89).

The sparsity induced by a decorrelating transformation is com-
monly exploited by thresholding the spectrum of the noisy data in
transform domain. Such strategy is composed of three steps: at
first a forward transformation is applied to the noisy data, then the
spectrum coefficients are thresholded following a particular nonlinear
shrinkage operator, and finally the inverse transformation is applied
to the thresholded spectrum. The complete process can be formally

defined as
g=T" (T(T(z)>>, (2.8)

being z and g the noisy and estimated data, 7 a chosen decorrelating
transform operator, and T a shrinkage operator. The threshold oper-
ator should preserve the energy of the signal while at the same time
suppressing that of the noise. This is achieved by using a decorre-
lating transform 7 which should compact the significant information
of the signal in a small number of large magnitude coefficients, and
spread the effect of the noise in the the remaining coefficients having
as small magnitude as possible. This is often referred to as energy
compaction.

In [40, 38, 41], multiscale wavelet transforms are used to decorre-
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late images corrupted by Gaussian noise, and the filtering is achieved
by hard- or soft-thresholding the transformed spectrum. The choice
of the threshold value has a significant impact in the efficacy on the
denoising procedure, and, if the exact form of neither the underlying
noise-free signal nor the statistics of the noise are known, its setting
becomes a non-trivial task. Several approaches have been proposed
to select a proper threshold, one of the most widely adopted is the
“universal threshold” oy/2log(n) [40], being o the standard devia-
tion of the Gaussian noise and n the size of the data, which has been
proven to be very close to an ideal solution [40]. Another popular
shrinkage operator, optimal in the MSE sense and widely used in the
remainder of this thesis, is the empirical Wiener filter defined as

T ()
1T + o2

T(T(z)) = T(z)-

where z is the noisy data, ¢ is an empirical noise-free estimate ob-
tained, e.g., by prefiltering z, T is a transform operator, o2 is the
variance of the corrupting additive noise, and - denotes element-wise
multiplication [130].

Different approaches apply the transform operator on local image
patches rather than globally on the whole image. In this context,
the DCT transform is a well established tool because of its near-
optimal decorrelating properties which are even close to those of the
Karhunen-Loeve transform (KLT). The KLT is a linear transform
having basis functions that adapt to the statistical properties of the
data, but, despite being optimal in the sense of signal decorrelation
and energy compaction, its usage is limited because the KLT is not
separable and the computation of its basis is very demanding. Thus,
other transforms, such as the DCT or the Fourier transform, are more
practicable alternatives. Particularly, in [56] the DCT is applied in a
sliding window fashion on every N x N blocks in the image, and then
each DCT-block spectrum is separately filtered in transform domain
eventually providing an estimate of the block. However the perfor-
mance decays in the presence of discontinuities in the data which are
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not effectively described by the block DCT, thus in [49] the authors
overcome this problem by utilizing a shape-adaptive DCT transform
applied on blocks having anisotropic support determined by the local
features in the image.

There is no single transform general enough to guarantee a good
sparsification for all kinds of signal. A solution can be thus adapting
the transformation to the known features of the processed data. This
idea is leveraged in [45], where the authors present a technique based
on dictionaries trained from either the noisy image or a database of
natural images. The filtering is implemented within a Bayesian for-
mulation whose prior consists in the existence of a representation of
every patch in the noisy image which is sparse with respect to the
trained dictionary. The method iteratively finds the optimal descrip-
tion of each patch as a sparse combination of atoms in the dictionary,
and consequently updates the atoms in the same dictionary using the
singular value decomposition (SVD) to better fit the data.

Finally, we cite the sophisticated strategy presented in [107], where
the image is first disassembled in a set of subbands by a multi-
scale multi-oriented wavelet transform, and then local neighboring
coefficients within each subband are modeled as a scale mixture of
Gaussians [123]. Hence, assuming AWGN, denoising of the transform
coefficients is operated by Wiener filtering within a Bayesian least-
squares formulation. Once all transform coefficients are estimated,
the final noise-free image estimate can be reconstructed by inverting
the original transform operator.

2.2.3 Multipoint Filtering

In general, a denoising algorithm uses a set of observation points dur-
ing the estimation process at a any given (reference) position. Such
algorithm is called a pointwise estimator if, despite using multiple
points, the result of each estimation process consists of one single
(reference) point. An example is NLM [14], which uses a set of simi-
lar patches to produce the estimation of a single pixel. Conversely, a
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filtering algorithm is called multipoint if it gives an estimate for all
points involved in the estimation process. A typical example is [56]
which filters the data as image blocks in DCT domain and returns
an estimate for all pixels in the transformed block. In other words,
for each estimation process, multipoint methods return a set of es-
timates, whereas pointwise approaches return the estimate of the a
single (reference) point [62].

Observe that, in the multipoint approach, the estimation for dif-
ferent reference points are likely to use overlapping sets of observation
points. Thus, a typical multipoint filtering paradigm is composed of
three steps: at first some kind of data windowing is applied through
spatial or transform domain analysis, then multipoint data estimation
is performed within each window, and finally an aggregation function
is used to fuse all overlapping estimates [62]. This redundancy typi-
cally yields to more accurate estimation results because, in principle,
it allows to overcome the filtering artifacts due to singularities in the
signal, without necessarily resorting to shape-adaptive techniques,
translational invariant filtering such as cycle spinning [21], nor trans-
forms tailored to specific nonuniformities in the data (e.g., directional
wavelets [2], curvelets [16, 118], etc.).

The design of an optimal aggregation function, which combines
different estimates into a single final value, is not a trivial task. Typi-
cally, the final estimate for each point in the data consists in a convex
combination of all the available estimates for that point. The easi-
est formulation for the weights in the convex combination, leveraged
by many works in the literature [62], simply awards equal weights
to all contributions, however a significant advantage can be achieved
by promoting the values originating by the most reliable estimates
[101, 56]. Hence an effective aggregation strategy, also used in the
remainder of this thesis, assigns weights inversely proportional to the
total mean variance of the estimate, which is approximated from the
spectrum coefficients retained after shrinkage [62]. For example, in
the case of hard thresholding, the variance of the estimate can be
approximated from the number of the retained non-zero coefficients.
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2.2.4 Optimal Denoising Bounds

Multipoint methods based on patch-wise processing seem to provide
the best denoising results. In particular, the current state of the art
in image denoising have been even shown to achieve near-optimal
theoretical denoising results [19, 70, 69, 94]. The fundamental ques-
tion that these papers aim to answer also titles [19]: “Is Denoising
Dead?”. In order to provide an answer, in [70] the authors designs an
algorithm based on NLM that uses a database of 10'° patches, pre-
viously extracted from thousands of different natural images, instead
of the image itself only. Through extensive experimentation on such
patch space, the authors evaluate the best-possible estimation error
attainable by any patch-based denoising methods. The final claim of
[70] states that the current state-of-the-art patch-based methods are
close to optimality; conversely in [19] it is shown that there is still
room for improvement. However such analysis does not take into
account aggregation strategies that are used to combine overlapping
estimates of different patches [69], even tough this practice is proven
to provide a substantial improvement in the denoising performance
as discussed in Section 2.2.3. In conclusion, a complete axiomatic
theory for the image restoration problem is extremely hard (and may
be not possible) to formulate. Notwithstanding that, according to
[19, 70] the current state of the is arguably very close to achieve
optimum performance.

2.3 Block-Matching and Collaborative Fil-
tering

In this section we discuss the Block-Matching and Collaborative Fil-
tering (BM3D) paradigm [25], being a foundational aspect for the re-
mainder of this thesis. The BM3D paradigm encompasses three steps,
namely grouping, collaborative filtering, and aggregation. These
steps are performed for every (reference) patch in the image. The
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rationale behind BM3D consists in exploiting the local and nonlocal
correlation within the data to generate an enhanced sparse represen-
tation in transform domain, and then leveraging the overcompleteness
of the estimated data to eventually produce the final estimate.

2.3.1 Grouping

During the grouping, d+1-dimensional data structures, i.e. “groups”,
are built from mutually similar d-dimensional patches (e.g., 2-D blocks)
extracted from the noisy data. The groups are characterized by local
correlations between the pixels within each patch, as well as nonlocal
correlation between corresponding pixels of different patches. These
groups are obtained by a nonlocal matching procedure which evalu-
ates the similarity between the reference patch and any other patch
in the data. The similarity is typically measured as the ¢2-norm of
the patch difference but other metrics are of course admissible.

2.3.2 Collaborative Filtering

The correlation within and among the grouped patches enables an
enhanced sparse representation of the group in transform domain.
Thus, as we have already discussed for (2.8), denoising can be effec-
tively achieved via coefficients shrinkage in the sparsifying transform
domain. In BM3D, this is referred to as collaborative filtering, and
consists of three steps: application of a linear d+ 1-dimensional trans-
form to the group, thresholding of the group spectrum by coefficients
shrinkage, and application of the inverse d 4 1-dimensional transform
to obtain an estimate of all the grouped patches.

Collaborative filtering reveals fine details shared by the grouped
patches while preserving their individual features because each of
the grouped patches influences the filtering of all the others. The
linear transform employed by the collaborative filtering is built as a
separable decomposition of lower-dimensional linear transforms. The
performance is greatly influenced by the choice of the used transform



2.3. Block-Matching and Collaborative Filtering 25

operators, and those should include a constant basis function, i.e. the
DC term [25]. After the coefficients shrinkage, only a small number
of coefficients remain in the thresholded spectrum, and most of them
are concentrated around the DC.

2.3.3 Aggregation

The collection of d-dimensional patch estimates is an overcomplete
representation of the original data because estimates belonging to
different groups, as well as estimates within each group, are likely
to overlap. The redundancy is not predictable as it depends on the
grouping and on the data, thus in order to compute a final estimate of
the original signal, the overlapping patch estimates originating from
all (d 4 1)-dimensional groups need to be aggregated. The aggrega-
tion is performed via a convex combination with adaptive weights
depending on the total residual variance of the group, as motivated
in Section 2.2.3. Intuitively, the sparser is the shrunk spectrum, the
larger is the corresponding weight in the combination.

2.3.4 Implementation

The BM3D algorithm is implemented with two cascading stages, each
including the aforementioned grouping, collaborative filtering, and
aggregation [25]. In the first stage, the grouping of mutually similar
patches is performed within the noisy data and coefficients shrink-
age is implemented as a hard-thresholding operator with threshold
value depending on the variance of the noise standard deviation. Af-
ter aggregating all filtered groups, a basic estimate is produced. In
the second stage, the basic estimate resulting from the first stage of
filtering is used to refine the matching and build new groups: the
grouping is repeated by testing the patch similarity within the basic
estimate, and the coordinates of similar patches are used to build two
groups, one formed by patches extracted from the noisy data and the
other by patches extracted from the basic estimate. Collaborative
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filtering is then implemented as an empirical Wiener filter applied
on the noisy group using the corresponding groups extracted from
the basic estimate as pilot signal. After aggregation of the overlap-
ping estimates of the patches, the final denoised image is eventually
obtained.

The BM3D paradigm, originally presented in [25], has also later
extended to allow for shape-adaptive patches and improved transform
operators based on principal component analysis [28]. This strategy
has proven state-of-the-art performance and even near-optimal the-
oretical denoising results [19, 70]. The BM3D image model has also
been applied to the raw data denoising [9, 33], color filtering [25],
video denoising [24], joint image sharpening and denoising [26] via
“alpha rooting” [1], image and video super-resolution [31], image de-
blurring [27, 32], and also noise estimation [30].

2.4 High-Dimensional Filtering

We focus on the problem on restoring high-dimensional imaging data
such as 3-D volumetric images and videos. The degradation factors
introduced in the beginning of this chapter still apply to this case,
but the additional dimension of the data introduces further artifacts
which thus need to be properly modeled and targeted during the
filtering.

2.4.1 Volumetric Filtering

The literature on volumetric filtering is mainly focused on MR image
restoration, as MRI is among the most prominent applications using
volumetric data. One of the earliest approach in MRI denoising sim-
ply relies on Gaussian filtering [3], but has the obvious drawback of
removing the high-frequency features of the signal together with the
noise. Alternative classical approaches embed anisotropic diffusion
filters [53] in the presence of either Guassian or Rician noise [68].
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Transform-domain techniques have also been studied in the con-
text of multiscale wavelet representation [104] or local sliding-window
transforms [56]. In particular, the method in [56] uses a sliding
overcomplete linear transforms, such as the DCT, and coefficient
thresholding to estimate the noise-free image within local patches
of the data. Recent advances in volumetric denoising combine and
extend the approaches presented in [130, 56, 14] to nonlocal 3-D
filtering as well as non-Gaussian noise removal. In particular, the
most successful approaches in volumetric denoising embed the nonlo-
cal paradigm [14], leveraging the self-similarity of higher-dimensional
patches [129, 23, 90|, and include a mechanism to correct the bias
caused by the asymmetry of the Rician distribution in order to ef-
fectively handle Rician noise in the data. A similar technique has
also been extended for the case of spatially varying noise levels, i.e.
noise with non-uniform statistics [91]. In [22], the amount of filtering
is adapted to the particular image content by aggregating a set of
estimates obtained using different filtering parameters in multiscale
transform domain. In [90], the authors use both voxel value and lo-
cal mean to assess the similarity of 3-D patches, thus allowing for
an efficient nonlocal matching procedure which is also rotationally
invariant and resistant to noise.

2.4.2 Video Filtering

Video denoising filters exploit the spatiotemporal redundancy be-
tween consecutive frames [58, 125]. The similarity along the motion
trajectories is typically much stronger than the nonlocal similarity
existing within an individual frame because of the strong temporal
smoothness present in videos [9]. Thus, we argue that the temporal
dimension should be explicitly considered during the filtering, and
failing to do so would result in suboptimal denoising results, or even
generate temporal filtering artifacts especially whenever the same
moving feature is inconsistently estimated along time [12].

Different strategies have been proposed to exploit the redundancy
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present along the temporal dimension and typically include a motion
estimator to compensate the data and a filter acting along the motion
trajectories in spatial [42, 71] or transform domain [84, 61]. Particu-
larly, in [71] denoising is achieved by integrating an optical flow oper-
ation with the nonlocal paradigm in spatiotemporal domain, whereas
wavelet [61] or adaptive transforms [84] are used to induce sparsity
and denoise the data in transform domain. A motion detection tech-
nique can be used to trigger spatial (e.g., frame-by-frame) filtering, if
the temporal information is insufficient or not reliable enough [105].
We reckon that the estimation of motion is a hard and computation-
ally intensive problem and it is further complicated by imperfections
of the motion model, temporal discontinuities (e.g., occlusions in the
scene), and by the presence of the noise [7]. Therefore, methods
that do not explicitly account for motion information have also been
investigated in, e.g., [66, 13, 112, 10, 24], where local spatial or spa-
tiotemporal 3-D patches within the video are adaptively filtered in
spatial or transform domain using the local and nonlocal information
in the video.

The nonlocal paradigm is leveraged in video filtering by first find-
ing mutually similar patches within a spatiotemporal search neigh-
borhood, and then by estimating the noise-free data exploiting the
information within matched patches. The size and shape of the spa-
tiotemporal neighborhoods which in turn define the nonlocal weights
in the combination [14] can be also adaptive [10]. Nonlocal self-
similarity is embedded in the recent filter [59] where the noise is
removed from a stack of similar patches through a low rank matrix
completion problem solved with a nuclear norm minimization [15].
This approach has the advantage to require minimal assumptions on
the corrupting noise, which can thus deviate from the classical white
Gaussian distribution.

At the moment, one of the most successful strategies is provided
by the V-BM3D algorithm [24], which is a filter based on the BM3D
filtering paradigm introduced in Section 2.3. The innovative idea
of V-BM3D lies in the grouping step, where the search for similar
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blocks is not restricted only to a single image but it also covers sev-
eral consecutive frames in order to simultaneously exploit spatial and
temporal redundancy. In particular, since an exhaustive spatiotem-
poral search would be computationally not feasible, V-BM3D uses a
technique based on a data-adaptive predictive-search block-matching
procedure which progressively refines the position and size of the
search neighborhoods using the information of the blocks matched in
the previous frames.

2.5 Assessing Image Quality

In this thesis we mainly restrict to the peak signal-to-noise ratio
(PSNR), being widely-used in the field of image restoration and thus
allowing for an easy comparison with respect to methods proposed
in the literature. The PSNR is formally defined in logarithmic scale

as
2

I

being [,.x the maximum intensity value of the signal, hence express-
ing the ratio between the maximum possible power of the signal

versus the power of the corrupting noise as measured by the mean
squared error (MSE)

1 N2
MSE = X > (yla) = (@),

zeX

which corresponds to the dissimilarity magnitude between the origi-
nal signal y and the estimated one ¢ averaged over all image domain
X, being | X| the cardinality of X.

However, a high PSNR (or low MSE) value does not always cor-
respond to a signal with perceptually high quality. Image quality
assessment (IQA) aims at measuring the quality of a given image
using objective metrics designed to agree with human visual judg-
ment. This is by itself a difficult problem and still an open research
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topic, and thus many IQA algorithms have been proposed by many
researchers [18], with the final goal to define a procedural metric
able to objectively measure the quality of different image estimates
while also providing a quality assessment that correlates to human
perception. In the remainder of this thesis, we make also use of ob-
jective metrics that are expected to be more consistent with human
judgment, i.e. the structural similarity SSIM index [124] and the
motion-based video integrity evaluation MOVIE index [114].



Chapter 3

Volumetric Filtering

In this chapter we introduce a denoising filter for volumetric data
based on the BM3D filtering paradigm [25]. In the proposed algo-
rithm, denoted BM4D, we naturally utilize cubes of voxels as basic
filtering elements, and hence we form 4-D groups by stacking together
mutually similar cubes. The fourth dimension, along which the cubes
are stacked, embodies the nonlocal correlation across the data. The
groups are collaboratively filtered by simultaneously exploiting the
local correlation present among voxels in each cube as well as the
nonlocal correlation between the corresponding voxels of different
cubes. Thus, the spectrum of the group is highly sparse, leading to
a very effective separation of signal and noise by coefficient shrink-
age. After inverse transformation, we obtain the estimates of each
grouped cube, which are then aggregated at their original locations
using adaptive weights.

We apply the BM4D algorithm for noisy data corrupted by Gaus-
sian as well as Rician noise, leveraging the VST approach proposed
in [47]. Adaptive noise variance estimation is also implemented by
exploiting the sparsity of the representation of the group in transform
domain, where the local groupwise standard deviation is accurately
estimated from the outcome of robust median operations applied to
the coefficients of the group spectrum [30].

31
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Additionally, we apply BM4D as a regularizer operator for the re-
construction of incomplete volumetric data. In several inverse imag-
ing applications, and particularly in MRI, the observed (acquired)
measurements are a severe subsample of a transform-domain repre-
sentation of the original unknown signal. The most popular recon-
struction techniques are formulated as a convex optimization, usually
solved by mathematical programming algorithms, that yields the so-
lution most consistent with the available data. The optimization is
typically constrained by a penalty term expressed as ¢y or £; norms,
which are exploited to enable the sparsity of the assumed image priors
[39, 74, 75, 122]. Differently, the proposed procedure addresses the
reconstruction of volumetric data having non-zero phase from a set
of incomplete and noisy transform-domain measurements, replacing
the common parametric modeling of the solution with a nonpara-
metric one implemented by the use of a spatially adaptive denoising
filter. Our reconstruction procedure works iteratively. In each itera-
tion the missing part of the spectrum is excited with random noise;
then, after transforming the excited spectrum to the voxel domain,
the BM4D filter attenuates the noise present in both magnitude and
phase of the data, thus disclosing even the faintest details from the
incomplete and degraded observations. The overall procedure can
be interpreted as a progressive approximation in which the denoising
filter directs the stochastic search towards the solution.

In Section 3.1 we will first introduce the formalization and imple-
mentation of the basic BM4D volumetric filter, and then in Section
3.2 and 3.3 we will present its application in volumetric data denois-
ing and reconstruction, respectively.

3.1 Basic Algorithm

The basic BM4D algorithm comprises grouping, collaborative filter-
ing and aggregation [25], with an optional additional step for the
groupwise noise variance estimation, which is enabled whenever the
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Figure 3.1. Schematic illustration of the BM4D grouping procedure.
The reference cube “R” is shown in blue.

variance of the noise is unknown. In what follows, we describe the
general steps of the algorithm for the filtering of data corrupted by
either Gaussian (2.2) or Rician noise (2.5). Note that, the noise vari-
ance estimation can be also used to change the filtering strength in
the presence of spatially varying noise, as the estimation is performed
in a groupwise fashion and thus adapts to the local characteristics of
the noise.

3.1.1 Grouping

In the grouping step, any given reference 3-D cube C(zg) of 3-D
spatial coordinate zp € X C Z* are extracted from the noisy data
z and then tested for similarity against all cubes within a local 3-D
neighborhood around the reference voxel xr. The similarity between
two blocks is typically measured using a distance metric, e.g., the /o-
norm of the cubes difference, and two blocks are considered similar
if such distance is smaller than or equal to a predefined threshold. A
schematic illustration of the grouping is provided in Fig. 3.1.

As a result, for each reference cube C(zg), a group G(zg) is build
by stacking together mutually similar 3-D cubes along an additional
fourth dimension, hence creating a 4-D group.
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3.1.2 Adaptive Groupwise Noise Variance Esti-
mation

Assuming that the noise variance is slowly varying, and since the
grouped cubes have typically nearby coordinates, we can reasonably
treat the noise level within each group as a constant. Therefore, only
a single noise variance estimate is needed for each group. A precise
estimation of the variance is a crucial task, because the amount of
filtering operated on the noisy observations is proportional to the
strength of the corrupting noise.

After the application of a sparsifying 7;p transform, the energy of
the signal and that of the noise are well localized in the low- and high-
frequencies portions of the group spectrum, respectively. Thus, in the
case of Gaussian noise, an accurate groupwise variance estimation can
be directly obtained from the median of absolute deviation [57, 40]
(MAD) of the high-frequencies coefficients of the group spectrum
[30]. Differently, if the noise follows a Rician distribution, we first
need to estimate the mean-variance pair of the median value of the
underlying noise-free group so that we can univocally and directly
obtain a robust estimate of the scale parameter of the Rician noise
in (2.5) [47].

3.1.3 Collaborative Filtering

Before the collaborative filtering, if the noise is Rician, a VST specif-
ically designed for the Rice distribution [47] is applied to the group
in order to remove the dependencies between the noise and the un-
derlying data [6]. In this way, the stabilized group can be filtered
using the constant standard deviation value induced by the VST.
During collaborative filtering, the group is first transformed by
a decorrelating separable four-dimensional transform 7;p, then the
coefficients of the so-obtained spectrum are thresholded through a
coefficient shrinkage operator (e.g., hard thresholding or Wiener fil-
tering) scaled by the noise standard deviation level. An estimate of
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the group is eventually produced by inverting the original 4-D trans-
form, and therefore contains the individual estimates of each grouped
cube.

Finally, in case of Rician noise, the filtered group undergoes the
exact unbiased inverse VST [47] that simultaneously inverts the VST
and produces an unbiased estimate of the underlying noise-free data.
Observe that, in the case of Rician noise with uniform (non-spatially
varying) standard deviation, equivalent results can be produced by
first applying the VST globally on the volumetric image before the
denoising, and then inverting the VST after the final estimate is
obtained from the denoising filter.

3.1.4 Aggregation

Since the cubes in the different group estimates (as well as the cubes
within the same group) are likely to overlap, we may have multiple
estimates for the same voxel. Therefore the final volumetric estimate
is obtained through a convex combination as explained in Section
2.3.3.

3.2 Volumetric Data Denoising

The denoising performance of BM4D are evaluated using a synthetic
BrainWeb phantom [121] corrupted by synthetic noise having uni-
form or spatially varying variance accordingly to (2.2) and (2.5). In
the case of spatially varying noise, we multiply such uniform noise re-
alization by a volumetric noise modulation map [91]. Noise-free and
noisy phantoms with uniform and spatially varying Gaussian noise
are shown in Fig. 3.2, Fig. 1 (p. 97) in Publication II, and Fig. 3
(p. 121) in Publication IV.

Real cross-sectional MR data from the Open Access Series of
Imaging Studies (OASIS) database [92] is also considered. The noise
in this case is assumed to be Rician-distributed and its standard devi-
ation, estimated as described in [47], is approximately o ~ 4% of the
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Figure 3.2. Noise-free (left), noisy cross-section of the BrainWeb phan-
tom [121] corrupted by Gaussian noise with uniform standard deviation
o = 15% (center), and spatially varying standard deviation o ranging
between 15% and 45% (right). The standard deviation is defined with
respect to the maximum intensity value of the noise-free data.

Figure 3.3. Cross-section of the OASIS phantom [92]. The noise is
Rician-distributed and has approximately standard deviation o ~ 4% of
the maximum intensity value of the data.

maximum intensity value of the data. A cross-sections of such OASIS
phantom is shown in Fig. 3.3 and Fig. 3 (p. 121) in Publication IV.

In Fig. 3.4, Fig. 2 (p. 98) in Publication II, and Fig. 4 (p. 123)
in Publication IV we show the denoising results provided by BM4D
for the denoising of the BrainWeb phantom corrupted by Gaussian
noise having uniform or spatially varying statistics, as well as for the
denoising of the OASIS phantom. Specifically, we use the BrainWeb
phantom corrupted by synthetic Gaussian noise and the real OASIS
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Figure 3.4. Denoising results of BM4D applied to the BrainWeb phan-
tom corrupted by Gaussian noise with standard deviation o = 15% (left),
BrainWeb phantom corrupted by spatially varying Gaussian noise with
standard deviation o € [15% ~ 45%] (center), and the OASIS phantom
corrupted by Rician noise with standard deviation o ~ 4% (right).

phantom corrupted by noise assumed to follow a Rician distribution.
From a subjective point of view, BM4D achieves an excellent visual
quality, as can be seen from the smoothness in flat areas, the details
preservation along the edges, and the accurate preservation of the
intensities in the restored phantom.

The proposed BM4D has been proven to be the state of the art in
volumetric filtering under the presence of either Rician and Gaussian
noise with uniform or spatially varying statistics. Subjective and
objective results, measured as the PSNR (2.9) and an extension of
SSIM [124] to 3-D data [90], consistently provide the best visual and
numeric performances for BM4D in all considered cases, as shown by
Table II (p. 122) in Publication IV and Table 2 (p. 98) in Publication
II.



38 Chapter 3. Volumetric Filtering

3.3 Volumetric Data Reconstruction

The proposed BM4D filter can be leveraged as a regularizer opera-
tor for the reconstruction of data observed as incomplete and noisy
measurements acquired in transform domain. The general form of
the observation model follows (2.6), and for our purposes it can be
specialized by setting f = ye'® being 0 the transform-domain 7 rep-
resentations of the unknown data having magnitude y and absolute
(unwrapped) phase ¢, and n(-) ~ N (0, 0?) being i.i.d. complex Gaus-
sian noise with zero mean and standard deviation o. In practice, the
transform operator T is the Fourier transform.

The reconstruction is carried out within an iterative process where
an estimate of the unobserved portion of the spectrum is improved
via a stochastic search driven by the action of the BM4D denoising
filter [44, 32]. We recall from (2.7) that the only available data is the
spectrum portion #; measured through an operator S which acts as
a MR k-space sensing trajectory.

The initial estimate of the unobserved portion of the spectrum 6,
is set to zero, thus the initial estimate is generated by back-projection.
Subsequently, for each iteration (k), the reconstruction is carried out
through three cascading steps: noise addition (excitation), volumetric
filtering, and data reconstruction. The iterative procedure can be
either stopped after a pre-specified number of iterations, or whenever
the current magnitude estimate does not differ significantly from that
obtained in the previous iteration.

3.3.1 Noise Addition

The estimate of the unobserved portion of the spectrum ég(k) is first
extracted from the denoised magnitude and regularized phase pro-
duced in the previous iteration. Then, we excite the unobserved por-
tion of the spectrum by injecting i.i.d. complex Gaussian noise having

zero mean and standard deviation Jéizite leaving 6; unaltered. The
(k)

standard deviation o,

typically has an exponential decay with re-
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spect to the iteration number k& and should converge to the standard
deviation of the noise ¢ in the initial measurements.

3.3.2 Volumetric Filtering

The coefficients of the excited spectrum égﬁlite are then modified by

independently denoising its magnitude and phase, thus obtaining §*)
and gis(k), respectively. Intuitively, whenever the excited coefficients
correspond to features that satisfy the sparsification induced by the
grouping and collaborative filtering, these features will be preserved
or enhanced, otherwise they will be attenuated. The excited magni-
tude is distributed accordingly to the Rician observation model (2.5)
from the fact the noise in the corresponding excited spectrum is i.i.d.
complex Gaussian. Conversely, for the sake of simplicity, the phase is
assumed to obey the Gaussian observation model (2.2) with standard
deviation equal to that of the excitation noise.

3.3.3 Data Reconstruction

The sequence of filtering estimates might get trapped in local op-
tima because the data piloting the regularization, i.e. the available
spectrum 6, is corrupted by noise. Thus, in order to escape from pos-
sible degenerate solutions, we aggregate all estimates in a complex
recursive convex combination gj(k)el‘z’(k) which fuses all ¢ ™ using
weights inversely proportional to the variances of the corresponding
excitation noise.

3.3.4 Discussion

Observe that the sequence of estimates produce by the denoising fil-
ter gj(’“)e“;’(k) is not convergent, but it approaches the sample mean
of gj(k)e"i’(k) over k, and thus gj(k)e”;(k) can be interpreted as an ap-
proximation of the expectation of g)(k)ewg(k) over k. Thus, g]("’)ez‘i’(k)
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plays a crucial role in enabling convergence to the expectation of the
non-convergent g](k)e"i’(k).

Even though in principle the existence of the expectation of §®*)
can be guaranteed only if the excitation noise vanishes sufficiently fast
with k&, we note that in practice, due to the denoising and to the given
observations 61, such expectation is typically well defined, leading to
a stable convergence of §*). We observe also that if the spectrum of
the noisy phantom is completely available and the excitation noise
has constant value of standard deviation for all k, the reconstruction
algorithm coincides with a one-time application of the denoising filter,
because the inputs of each iteration do not vary with k.

Thus, the proposed algorithm generalizes both the iterative re-
construction algorithm implemented in [44, 32] to the case of noisy
observations, as well as the BM4D filter to the case of incomplete
measurements.

3.3.5 Results

The 3-D sampling operator S can be either a multi-slice stack of
identical 2-D trajectories, or a single 3-D sampling trajectory. In
the former case the measurements are taken as a multi-slice stack
of 2-D cross-sections transformed in k-space domain, each of which
undergo the sampling induced by the corresponding 2-D trajectory
of S. In the latter case, the observation is directly sampled in 3-D
Fourier transform domain. Fig. 6 (p. 128) of Publication IV illustrates
different examples of k-space trajectories.

In Table IV (p. 128) and Fig. 9 (p. 130) of Publication IV, we
present the objective and subjective reconstruction performance af-
ter 1000 iterations from a set of incomplete noisy or noise-free k-
space measurements with either zero or non-zero phase ¢ illustrated
in Fig. 5 (p. 127) of Publication IV. The reconstruction is always
able to improve significantly the visual appearance of the phantom,
even in those cases when the image information of the initial back-
projection is extremely limited and the phase is distorted by multiple
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Figure 3.5. Initial back-projections (left) and final magnitude estimate
(right) after 1000 iterations of the BrainWeb phantom reconstructed from
noisy measurements (o = 5%) sensed with Radial trajectory and sampling
ratio 30%.

erroneous jumps. In Fig. 3.5 we show the reconstructed BrainWeb
magnitude after 1000 iterations in the case of initial noisy k-space
measurements and non-zero phase sampled with Radial trajectory.
Fig. 8 (p. 129) of Publication IV gives a deeper insight on the
PSNR progression with respect to the number of iterations. In ev-
ery experiment, the reconstruction algorithm is able to substantially
ameliorate the initial back-projections in terms of both objective and
subjective visual quality. We observe that in many cases, particularly
those where 0 = 0, the PSNR grows almost linearly, in accordance
with the exponential decay of the standard deviation of the excita-
tion noise. The figure empirically shows that the ratio between the
PSNR of 4 and §® approaches one, as motivated in Section 3.3.4.
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Chapter 4

Video Filtering

In this chapter we introduce a powerful video filtering framework
based on an overcomplete nonlocal representation of the video using
motion-compensated 3-D spatiotemporal volumes as basic filtering
elements. The filter is designed to sparsify these volumes in spa-
tiotemporal transform domain leveraging the redundancy of the data
in a fashion similar to the BM3D algorithm [25]. The spatiotemporal
volumes are 3-D structure formed by a sequence of blocks following
a specific motion trajectory obtained, for example, by concatenation
of motion vectors along time [61]. Then, a nonlocal search proce-
dure matches and subsequently stacks together mutually similar spa-
tiotemporal volumes into 4-D groups. The group is transformed by a
4-D separable spatiotemporal transform leveraging the local spatial
correlation between pixels in each block of a volume, local temporal
correlation between blocks of each volume, as well as the nonlocal
spatial and temporal correlation between volumes of the same group.
The 4-D spectrum conveniently describes the characteristics of the
grouped data, allowing to adapt the filtering by coefficient shrinkage
with respect to the peculiar frequency information encoded within
each 4-D spectrum coefficient. The richness of our spectral descrip-
tion is the fundamental building block in the development of the
proposed video restoration framework.

43
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The remainder of this chapter is organized as follows. At first in
Section 4.1 we define the core elements of our spatiotemporal frame-
work. Then, in Section 4.2 we describe the proposed V-BM4D filter
and its implementation for the denoising, deblocking, sharpening,
and deflickering of grayscale and color videos. Finally, in Section 4.3
we describe a second filter, termed RF3D, which targets the problem
of denoising videos corrupted by spatially and temporally correlated
noise.

4.1 Basic Algorithm

In this section we introduce the general spatiotemporal framework
that stands as foundation of the proposed video filters. We denote a
noisy video as z : X xT — R

z(x,t) = y(x,t) + n(x,t) (4.1)

where y is the original (unknown) video, 7 is the noise, and (x,t) is
a 3-D voxel coordinates belonging to the spatial domain X C Z? and
time domain 7' C 7Z, respectively.

4.1.1 Spatiotemporal Volumes

The spatiotemporal volumes are built as a sequence of 2-D N x N
blocks following a motion trajectory of the video, which is essentially
a set of spatiotemporal coordinates defining blocks that supposedly
contain the same moving feature of the video along time. Each block
is extracted from a different frame and all frames spanned by the tra-
jectory are consecutive in time. Thus, assuming that the trajectory
for any given reference block B(xg, t) is known, one can easily define
the corresponding motion-compensated spatiotemporal volume as a
3-D structure V (xg, tg) composed by the (reference) blocks defining
the motion trajectory.
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Figure 4.1. Schematic illustration of a spatiotemporal volume. The
blocks of the volume are grey with the exception of the reference block
“R”, which is blue.

An accurate motion estimation strategy is of paramount inter-
est to our framework, because the temporal correlation in the spa-
tiotemporal volumes is vital to provide a sparse spectral description of
the data which in turn translates to improved filtering results. The
motion trajectories can be either known a-prior:, or built in-loop,
e.g., from the motion information produced by a coding module [61].
The motion estimation technique needs to be also tolerant to noise
[7, 10, 71]. In Fig. 4.1, we show a schematic illustration of a spa-
tiotemporal volume. In the figure, the reference block B(xg,tr) is
shown in blue and occupies the middle position, the other blocks of
the volume are shown in grey.

4.1.2 Grouping

Each (reference) spatiotemporal volume V(xg,tr) in the video is
tested for similarity against all volumes within a nonlocal search
neighborhood using a distance operator such as the f5-norm of the
volumes difference. The group G(xg,tr) associated to the reference
volume V'(xg,tg) is a 4-D data structure composed by stacking to-
gether mutually similar 3-D volumes along an additional fourth di-
mension, and thus the groups constitute the nonlocal elements of
the framework. Fig. 4.2 shows an example of spatiotemporal volume
(left) and group (right).
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Figure 4.2. Illustration of a spatiotemporal volume (left), and a group
of mutually similar volumes (right).

The spatiotemporal volumes have a fixed temporal extent H; how-
ever shorter volumes are also formed whenever an occlusion or a scene
change arise in the video. We implicitly deal with such cases by
requiring each block in the volume to provide at least a minimum
similarity value with respect to the reference one. The trajectories
are stopped either when the maximum temporal extent is reached or
whenever it is not possible to find a block with the required minimum
similarity. Consequently, different volumes might have different tem-
poral extents. However, since the volumes within each group must
have the same temporal extent, during the grouping we only con-
sider volumes having extent greater than or equal to the one of the
reference volume and then we extract from the longer volumes a sub-
volume having length equal to the one of the reference one. There
are many ways to extract such subvolumes, and for the sake of sim-
plicity we constrain that each volume in the group to be temporally
synchronized with all the others.



4.1. Basic Algorithm 47

4.1.3 Spatiotemporal Filtering

During the spatiotemporal filtering, similarly to (2.8), the group
G(xg,tg) is first transformed via a decorrelating separable linear
transform 7yp, then a shrinkage operator T modifies the magnitude of
the spectrum coefficients to attenuate the noise. This strategy lever-
ages the sparse spectral description of the 4-D group induced by 7yp.
An estimate of the noise-free data G (Xg,tr) is eventually obtained
after inverting the transform 7;p on the thresholded spectrum. The
data is collaboratively filtered thus generating individual estimates of
each noise-free 3-D volume (and 2-D block) in the group. The trans-
form Tip is a 4-D separable composition of a spatial Top transform,
a Tip transform in the temporal dimension, and an additional 7;p in
the fourth (grouping) dimension.

In particular, the spatiotemporal volume is characterized by local
spatial correlation within each block and temporal correlation along
its third dimension. The 3-D spectrum of the spatiotemporal volume
is obtained by applying a 2-D spatial transform to each patch in the
volume followed by a 1-D temporal transform along the third (tem-
poral) dimension. Thus, the temporal DC plane encodes the features
shared among the blocks in the volume. The nonlocal correlation is
localized along the grouping dimension of the group with respect to
the ulterior 1-D linear transform. Consequently, the 4-D spectrum
is structured according to the four dimensions of the corresponding
group, i.e. two local spatial, one local temporal, and one for the non-
local similarity. In particular, it includes a 2-D plane corresponding
to the DC terms of the two 1-D transforms used for decorrelating
the temporal and non-local dimensions of the group, and 3-D volume
corresponding to the DC term of the 1-D temporal transform.

4.1.4 Aggregation

The groups constitute a very redundant representation of the video,
consequently the overlapping estimates are aggregated through the
usual convex combination as described in Section 2.3.3.
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Foreman Tennis

Figure 4.3. From top to bottom: noise-free frame, noisy frame, and V-
BM4D denoising results for the grayscale and color sequence Foreman and
Tennis. The sequences have intensity range of [0,255] and are corrupted
by i.i.d. additive white Gaussian noise with standard deviation o = 40.

4.2 Filtering in 4-D Transform Domain

We originally implemented the video denoising framework as a grayscale
denoising filter V-BM4D and then, leveraging the spatiotemporal
modeling, we have extended V-BM4D to allow for video deblocking,
sharpening as well as multi-channel (color) filtering.
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4.2.1 Denoising

The proposed V-BM4D, as described in the previous section, can be
directly applied for the denoising of videos corrupted as in (2.2), i.e.
specifying the noise in 4.1 as n(-,-) ~ N(0,0?). Multi-channel (e.g.,
RGB) videos corrupted by AWGN can be also filtered in luminance-
chrominance color space. The motion estimation and grouping infor-
mation of the luminance channel are reused within the chrominance
channels to increase the efficiency of the filter [25].

We compare the V-BM4D grayscale and color denoising perfor-
mances against those of the state-of-the-art V-BM3D algorithm [24].
Objective results in term of PSNR (2.9) and MOVIE index [114]
demonstrate that V-BM4D outperforms V-BM3D with a substan-
tial improvement in nearly every experiment as reported by Table II
(p. 109) in Publication III. Subjective visual results for grayscale and
color denoising are shown in Fig. 4.3, Fig. 6 (p. 111) and Fig. 10
(p. 112) in Publication III, and Fig. 6 (p. 89) in Publication I sub-
stantiate the excellent numeric performances: as a subjective quality
assessment, V-BM4D better preserves textures, without introducing
disturbing artifacts in the restored video, even under the presence of
high level of noise.

4.2.2 Deblocking

Most video compression algorithms, such as MPEG-4 [116] or H.264
[128], make use of block-transform coding and thus may suffer, es-
pecially at low bitrates, from several compression artifacts due to
the motion compensation and the coarse quantization of the block-
transform coefficients. Inspired by [49] we treat the blocking artifacts
as additive noise. This choice allows us to model the compressed
video z as AWGN data (2.2), with y now corresponding to the un-
compressed video, and 1 being noise with variance o describing the
compression artifacts. In practice, we relate o to the actual compres-
sion artifacts parametrized by the average bit-per-pixel (bpp) rate of
the compressed video and the quantization parameter ¢ [116]. Ob-
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Figure 4.4. From top to bottom: original frame, compressed frame, and
deblocking results of V-BM4D for the sequence Foreman and Coastguard
compressed using the MPEG-4 encoder with quantization parameter ¢ =
25.

serve that such value of ¢ is not an estimate of the noise variance in
the compressed videos, but it is the assumed value of the variance of
an hypothetical Gaussian noise 1 which would be filtered using the
same level o necessary to remove the blocking artifacts.

We compare the V-BM4D deblocking filter against the MPlayer
accurate deblocking filter, as, to the best of our knowledge, this is

one of the most effective deblocking algorithm. Numerical results
reported in Table III (p. 110) of Publication III show that V-BM4D
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significantly outperforms Mplayer in all the experiments in terms of
PSNR, whereas interestingly the MOVIE index [114] often prefers
the non-filtered blocky sequences over the deblocked counterparts
thus showing a general preference towards piecewise smooth images,
a behavior that contradicts its purpose of acting in agreement with
human visual judgement. Fig. 4.4 and Fig. 7 (p. 111) of Publica-
tion III presents the V-BM4D deblocking visual results, showing a
significant improvement of the image quality.

4.2.3 Enhancement

Enhancement techniques are used to improve the image quality by
sharpening the image features characterized by low contrast. A crit-
ical issue of enhancement algorithms is the amplification of the noise
together with the sharpening of image details [93, 1], an effect that
becomes more severe as the amount of applied sharpening increases.
In order to overcome this problem, a joint application of a denoising
and sharpening filter is often recommendable, and in particular this
practice has been investigated in [26].

Among the existing enhancement techniques, we choose the so-
called alpha-rooting [1], which induces sharpening by scaling the
large coefficients relatively to the small ones by raising the magni-
tude of each spectrum coefficient to a power 1/, with o > 1. We
combine the V-BM4D denoising with the alpha-rooting operator, in
order to simultaneously reduce the noise and sharpen the original
signal [26, 82]. The V-BM4D sharpening filter includes the hard-
thresholding stage only, and the alpha-rooting is operated on the
spectrum coefficients right after the thresholding. Fig. 4.5 and Fig. 8
(p. 111) of Publication III show the visual performances of the joint
application of denoising and sharpening, demonstrating a good de-
tail enhancement together with an excellent noise suppression using
different values of the parameter a.

The 4-D spectral representation induced by the 3-D spatiotempo-
ral volumes can be exploited to selectively process different portions
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Figure 4.5. Top row: noise-free (left) and noisy (right) frame of the
sequence Bus having intensity range of [0,255] corrupted by i.i.d. addi-
tive white Gaussian noise with standard deviation ¢ = 25. Bottom row:
sharpening results of V-BM4D using o = 1.1 (left) and o = 1.25 (right).

of the 4-D spectrum. Hence, the value of a can be decreased for the
coefficients that belong to the temporal AC coefficients, in order to
attenuate the temporal flickering artifacts. In Fig. 9 (p. 111) of Pub-
lication III, we show the enhancement results of V-BM4D applied
to the test sequence Miss America. We use either a unique value
apc = aac = 1.25 for the whole 4-D spectrum, or different values
apc = 1.25 and axc = 0.625 to apply a different level of sharpening
of the temporal DC and AC coefficients. One can clearly notice that
the sequence processed using apc # aac is dramatically less affected
by flickering artifacts because the intensities of the background in
the temporal difference are extremely smooth. Thus, a non-uniform
sharpening of the 4-D spectrum allows V-BM4D to significantly at-
tenuate the flickering, yet maintaining excellent enhancement (sharp-
ening) and noise reduction properties.
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4.2.4 Discussion

The improved effectiveness of V-BM4D indicates the importance of
separately treating spatial and temporal correlation, and, in particu-
lar, of explicitly accounting the motion information. Let us analyze
the PSNR performances of the algorithms when a temporal-based or
nonlocal-based grouping is encouraged. In Fig. 11 (p. 115) of Publi-
cation III we present the PSNR of the results provided by V-BM4D
using different combinations of grouping parameters. The analysis
empirically demonstrates that the nonlocal spatial correlation does
not dramatically affect the global performances, and highlights the
dramatic improvement as the size of the spatiotemporal volume, and
thus the amount of temporally correlated data, increases. Thus we
pinpoint the importance of the spatiotemporal volumes and tempo-
ral correlation in conjunction with our filtering framework as a basic
filtering elements during video restoration.

4.3 Random and Fixed-Pattern Noise Re-
moval

In this section, we present a denoising algorithm for videos jointly
corrupted by spatially correlated (i.e. non-white) random noise and
spatially correlated fixed-pattern noise. Thus, for the case considered,
the noise in the generic observation model (4.1) becomes

n(x,t) = nrnp (X, 1) + 7epN (X, 1), (4.2)

where ngnp and nrpn are colored Gaussian random and fixed-pattern
noise having individual non-uniform PSDs o2y and o&py defined
with respect to a 2-D spatial transform 73p. The PSDs oy and
oZpy can be separated into their normalized time-invariant counter-
parts Wgrnp, VYrpn, Which are are assumed to be known and fixed,
and their corresponding unknown time-variant scaling factors ¢ixp
and ¢py. This model can be practically used to describe the raw
output of microbolometers LWIR cameras.
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Our approach, denoted as RF3D, is essentially based on the spa-
tiotemporal filtering framework described in Section 4.1 but, based
on the analysis in Section 4.2.4, we disable the nonlocal feature, i.e.
the grouping, and we only use the volumes as basic elements for the
filtering; as a result the 4-D transform used in V-BM4D, reduces to a
3-D transform in RF3D. However, let us note that RF3D can be easily
adapted to the general case of 4-D filtering by first grouping mutually
similar spatiotemporal volumes and then decorrelating them through
an additional transform along the fourth dimension. In order to ad-
dress the spatial and temporal correlation of the noise in (4.2), the
coefficient shrinkage in RF3D relies on a 3-D array of variances to
be used as threshold parameters during the collaborative filtering.
The idea of applying different shrinkage strategies within different
hyperplanes can be traced back already in [82] where a similar to
that described in Section 4.2.3 is leveraged to improve the contrast
and reduce the noise in videomicroscopy sequences. RF3D is imple-
mented in two cascading stages, namely the hard-thresholding and
the Winer-filtering stage.

4.3.1 Noise Estimation

Assuming that the fixed-pattern noise (FPN) is roughly constant in
time, a spatial high-pass filtering of the video captures both random
and fixed-pattern noise components, whereas a temporal high-pass fil-
ter captures only the random one. Thus, we can estimate the PSDs
by applying the median absolute deviation (MAD) [57, 41] of all T3p
high-frequency block coefficients of every frame within a specified
temporal window. Once an estimate of the global (i.e. random and
fixed-patter noise) PSD and the PSD of the random noise are ob-
tained, we can calculate the scaling factors ¢Ayp and ¢Zpy of the two
noise components using the estimated PSDs and the known Wgyp,
Uppn through a non-negative least-squares optimization.
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4.3.2 Motion-Adaptive 3-D Spectrum Variances

The shrinkage operator T in the collaborative filtering modulates the
applied filtering strength relying on the variances of the 73p-spectrum
coefficients. However, due to the presence of the FPN, the relative
spatial alignment of the blocks in the filtered volume has an impact
on the variance of the spectrum coefficients and thus needs to be
taken into account for the design of the threshold coefficients. Thus,
we use a 3-D threshold array of variances defined accordingly to the
characteristics of the spatiotemporal volume.

If all blocks are perfectly overlapping, the FPN component, being
the same across all blocks, accumulates through averaging in the 2-D
temporal DC plane of the 3-D volume spectrum. Thus the variances
of the temporal DC plane contain the contributions of the random
noise and the accumulated FPN, whereas the AC coefficients contain
only the random noise. Conversely, if all blocks have different spa-
tial positions and their relative displacement is such that the FPN
exhibits uncorrelated patterns over different blocks, then, restricted
to the volume, the FPN behaves just like another random compo-
nent and the variances of the coefficients can be simply obtained as
the sum of the two noise components. All the intermediate cases for
which any number of blocks in the volume are aligned or partially
aligned with any of the others are approximated with an interpolation
formula.

4.3.3 Enhanced Fixed-Pattern Suppression

We also propose an enhancement of RF3D, denoted E-RF3D, in
which the fixed-pattern (FP), i.e. the actual realization of the FPN,
is first progressively estimated using the data previously filtered, and
then subtracted from the subsequent noisy frames. The flowchart of
both RF3D and E-RF3D is shown in Fig. 4 (p. 137) of Publication
V.

According to the additive model (4.1) and noise (4.2), also assum-
ing that g is a perfect estimate of y and that the FPN is time-invariant
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within any short temporal extent, the FP can be simply estimated
by averaging the noise residuals obtained from a set of consecutive
filtered frames. However, the FP estimate is still corrupted by a new
random noise component and, thus, a new estimation of the standard
deviation and the PSD of the updated FPN component becomes nec-
essary. We model the PSD of the updated FPN as a convex combi-
nation of the original PSDs Wgnp and Wgpy, then we estimate the
scaling factors of the mixed PSDs as the solutions of a non-negative
least-squares problem similar to that used in the case without FP
subtraction. Finally, the estimated scaling factors are used to com-
pute the parameter used in the convex combination determining the
contributions of the original PSDs.

4.3.4 Results

In our experiments, both videos corrupted by synthetic noise (4.2)
and real LWIR thermography sequences acquired using a FLIR Tau
320 camera are considered. In Table I and Table II (p. 142) in Pub-
lication V, we report the objective experimental evaluation of the
proposed RF3D and E-RF3D compared with the same algorithm us-
ing different a-priori assumptions on the corrupting noise, as well
as against state-of-the-art denoising algorithms BM4D presented in
Chapter 3 and V-BM3D [24]. Numeric performances demonstrate
that RF3D and E-RF3D consistently outperform the results obtained
by the compared methods with a substantial PSNR improvement in
nearly every experiment.

In Fig. 4.6 and Fig. 11 (p. 144) of Publication V, we show the
visual denoising results obtained by the proposed method applied on
data corrupted by synthetic noise having ¢gnp = sppny = 15 over
an intensity range of [0,255]. As one can see, RF3D and E-RF3D
generate more visually pleasant images, as the artifacts of the FPN
are dramatically reduced and many high-frequency features are nicely
preserved. We also use the proposed method for the denoising of two
real LWIR thermography sequences acquired using a FLIR Tau 320
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Figure 4.6. Top row: noise-free (left) and noisy (right) frame of Foreman
corrupted by random and fixed-pattern noise having ¢qgnp = sppn = 15
over an intensity range of [0,255]. Bottom row: denoised results of RF3D
(left) and E-RF3D (right).

camera. The noise in the acquired data corresponds to ¢gnp ~ 6.5
and ¢ppy & 4.3 for a [0,255] range. The visual denoising results of
real LWIR data, shown in Fig. 14 (p. 146) of Publication V, confirm

the previous analysis.



o8

Chapter 4. Video Filtering



Chapter 5

Conclusions

5.1 Summary of the thesis

We introduced two restoration frameworks for high-dimensional data.
The main contribution of the thesis consists in establishing a design
for the patches used as basic filtering elements, and in leveraging
such design during the filtering. In the context of volumetric data
and video filtering, we characterize the basic elements to be 3-D cubes
and 3-D spatiotemporal volumes respectively. Specifically, the cubes
are a natural extension of the concept of block in 3-D domain, whereas
the volumes are defined as a sequences of blocks following a motion
trajectory in the video. In doing so, the local spatial correlations
within the cubes or the local spatial and temporal correlation within
the volumes, combined with the nonlocal correlation provided by the
grouping of mutually similar elements, allows a decorrelating trans-
formation to disclose a highly descriptive spectral representation of
the filtering structure at hand.

In this thesis we demonstrate that the spectral representation of
groups based on cubes or volumes can be used to selectively manip-
ulate the transform coefficients along the different spectral dimen-
sions. In particular, the shrinkage strategies can be adapted with re-
spect to the spectral hyperplane as well as to the specific coefficients

99
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Table 5.1. Summary of the contributions of this thesis in term of foun-
dational aspects and developed algorithms.

FOUNDATIONAL ASPECTS

High-dimensional filtering model based on 4-D groups
of mutually similar 3-D cubes and 3-D spatiotemporal
volumes.

Adaptive shrinkage of the 4-D groups in transform do-
main using the information coded within specific spec-
tral hyperplanes.

Filtering model allowing for noise characterized by spa-
tial and temporal correlation.

DEVELOPED ALGORITHMS

Denoising of volumetric data with adaptive noise esti-
mation.

Reconstruction of volumetric data from incomplete and
noisy transform-domain measurements.

Denoising, deblocking, deflickering, and enhancement
for grayscale and color videos.

within each hyperplane: this allows to consider heterogenous obser-
vation models for the corrupted data featuring noise characterized by
signal-dependent distributions, spatial or temporal correlation, non-
white power spectral densities, or spatially varying statistics. Thus,
our modeling is leveraged to develop a wide range of algorithms —
summarized in Table 5.1— which are among the state of the art for
several fundamental image processing problems.

The developed algorithms have already found practical use in sev-
eral imaging fields. In particular, the volumetric filter is naturally
employed in medical [65, 132] and hyperspectral imaging [109] as a
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powerful filtering tool to improve the data for subsequent process-
ing tasks. The video filter has been successfully applied in thermal
imaging [50] where the spatial correlation is a primal characteristic
of the corrupting noise, as well as in biomedical imaging to facilitate
the tracking of features in videomicroscopy sequences corrupted by
heavy noise and flickering [82].

5.2 Future Research Directions

As covered in this thesis, assessing image redundancy and nonlocal
self-similarity is of fundamental importance for several image pro-
cessing applications, however traditional metrics are not always con-
sistent with the human visual system as images perceived as identical
by a human observer can have a large point-by-point difference; this
is especially true in the case of textured content. Textures are ubiq-
uitous in natural signals, and can be loosely defined as an almost
identical repetition of elementary components within an almost reg-
ular pattern at approximately the same scale. The preliminary study
on the relation of texture and noise in [80] shows the potential of using
statistical features to assess patch similarity in the presence of noise,
hence a future research direction focuses on embedding elements of
human perception theory into restoration algorithms. Recent stud-
ies tackle this problem through the nonlocal paradigm by exploiting
external databases, i.e. sets of noise-free natural patches, to denoise
structured, e.g., textured, patches characterized by strong signal fea-
tures [96]. Differently, in [131] the authors model natural stochastic
textures as a Gaussian self-similar process to form a prior for different
imaging application such as super-resolution and denoising.

The mismatch between traditional patch-matching strategies and
the human visual system can be also addressed by embedding foveation
principles during the filtering. Foveated imaging is an image process-
ing technique that takes into account the inability of the human visual
system to perceive high resolution visual signals outside the fovea, i.e.
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the fixation point of the eye. Recently, foveation has been studied in
the context of image denoising as a tool to define a similarity metric
which computes the distance between foveated patches [48]; this is
implemented by using point spread functions of spread that increases
accordingly to the spatial distance from the center of the patch. The
foveated distances used in place of the common point-by-point dis-
tance in NLM [14] has lead to remarkable improvements in the final
image estimate. Thus, another research direction focuses on embed-
ding foveated imaging within the collaborative filtering frameworks,
further adapting it to high-dimensional patches.

Furthermore, the proposed frameworks can be extended to the
direct filtering of complex-valued data which is not natively han-
dled in our current approaches. Our methods extract magnitude and
phase from the complex data, and independently process each compo-
nent; this strategy might be improved by embedding complex-domain
operations, such as the Fourier transform, throughout the filtering.
Along a similar line of research, in the context of processing signals
with non-zero phase, the work [8] has shown the potential of pre-
filtering the data before performing phase unwrapping, which is an
operation of paramount interest for several imaging applications such
as for example tomography, spectroscopy, interferometry, and MRI.
The problem is to reconstruct the absolute phase from the wrapped
measurements caused by 27 discontinuities in the acquired data at
the extreme values —7 and 7. Thus, the proposed volumetric fil-
tering framework can be also leveraged for the prefiltering and the
reconstruction of data characterized by wrapped phase. Additionally,
the same filter can be adapted for higher-dimensional applications,
such as videos of 3-D volumetric data, diffusional MRI, as well as
multispectral imaging.

On a more practical side, given the size of the data processed
by the proposed method and the high computational demand of few
operations therein (e.g., block matching), efficient implementations
exploiting many-core architectures (such as GPUs) are of paramount
interest for both desktop and mobile applications.
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Video denoising using separable 4-D nonlocal
spatiotemporal transforms

Matteo Maggioni®, Giacomo Boracchi*, Alessandro Foi°, Karen Egiazarian®

°Department of Signal Processing, Tampere University of Technology, Finland,;
*Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

ABSTRACT

‘We propose a powerful video denoising algorithm that exploits temporal and spatial redundancy characterizing
natural video sequences. The algorithm implements the paradigm of nonlocal grouping and collaborative filtering,
where a higher-dimensional transform-domain representation is leveraged to enforce sparsity and thus regularize
the data. The proposed algorithm exploits the mutual similarity between 3-D spatiotemporal volumes constructed
by tracking blocks along trajectories defined by the motion vectors. Mutually similar volumes are grouped
together by stacking them along an additional fourth dimension, thus producing a 4-D structure, termed group,
where different types of data correlation exist along the different dimensions: local correlation along the two
dimensions of the blocks, temporal correlation along the motion trajectories, and nonlocal spatial correlation
(i.e. self-similarity) along the fourth dimension. Collaborative filtering is realized by transforming each group
through a decorrelating 4-D separable transform and then by shrinkage and inverse transformation. In this way,
collaborative filtering provides estimates for each volume stacked in the group, which are then returned and
adaptively aggregated to their original position in the video. Experimental results demonstrate the effectiveness
of the proposed procedure which outperforms the state of the art.

Keywords: Video denoising, nonlocal methods, adaptive transforms, motion estimation

1. INTRODUCTION

The large number of practical applications involving digital videos has motivated a significant interest in denoising
solutions, and the literature contains a plethora of such algorithms (see®'? for a comprehensive overview). At
the moment, the most effective approach in restoring images or videos exploits the redundancy given by the
nonlocal similarity between patches at different locations within the data.® Algorithms based on this approach
have been proposed for various signal processing problems, and mainly for denoising.>"'> Among these methods,
we especially mention the BM3D algorithm,” which represents the state of the art in image denoising. BM3D
relies on the so-called grouping and collaborative filtering paradigm: the observation is processed in a blockwise
manner and mutually similar 2-D image blocks are stacked into a 3-D group (grouping), which is then filtered
through a transform-domain shrinkage (collaborative filtering), simultaneously providing different estimates for
each grouped block. These estimates are then returned to their respective locations and eventually aggregated
into the estimate of the image. In doing so, BM3D leverages the spatial correlation of natural images both at
the nonlocal and local level, due to the abundance of mutually similar patches and to the high correlation of
image data within each patch, respectively. The BM3D filtering scheme has been applied successfully to video
denoising (V-BM3D),® as well as to several other applications including image and video super-resolution,! 13
image sharpening,'® and image deblurring.'

In V-BM3D, groups are 3-D arrays of mutually similar blocks extracted from a set of consecutive frames of
the video sequence. A group may include multiple blocks from the same frame, naturally exploiting in this way
the nonlocal similarity. However, it is typically along the temporal dimension that most mutually similar blocks
can be found. It is well known that motion-compensated videos'® are extremely smooth along the temporal axis
and this fact is exploited by nearly all modern video-coding techniques. As shown by the experimental analysis

This work was supported by the Academy of Finland (project no. 213462, Finnish Programme for Centres of Excel-
lence in Research 2006-2011, project no. 118312, Finland Distinguished Professor Programme 2007-2010, and project no.
129118, Postdoctoral Researcher’s Project 2009-2011).
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in,” even when motion is present, the similarity along the motion trajectories is much stronger than the nonlocal
similarity existing within an individual frame. In spite of this, in V-BM3D the blocks are grouped regardless
of whether their similarity is due to the tracking of motion along time or to the nonlocal spatial self-similarity
within each frame. In other words, the filtering in V-BM3D is not able to distinguish between temporal versus
spatial nonlocal similarity. We recognize it as a conceptual as well as practical weakness of the algorithm: as
simple experiments can demonstrate, increasing the number of spatially self-similar blocks in a V-BM3D group
does not lead to an improvement in the final result and instead it most often leads to a systematic degradation.

This work proposes V-BM4D, a novel video-denoising approach that, to overcome the above weaknesses,
separately exploits the temporal and spatial redundancy in the video sequence. For the sake of clarity and
because of space limitation, we present V-BM4D for denoising only, although it can be implemented for a variety
of other video filtering applications. The core element of V-BM4D is the spatiotemporal volume, a 3-D structure
formed by a sequence of blocks extracted from the noisy video following a specific trajectory (obtained, for
example, by concatenating motion vectors along time).!6:17 Thus, contrary to V-BM3D, V-BM4D does not
group blocks, but mutually similar spatiotemporal volumes according to a nonlocal search procedure. Hence,
these groups are 4-D stacks of 3-D volumes and the collaborative filtering is then performed via a separable
4-D spatiotemporal transform. The transform takes advantage of the following three types of correlation that
characterize natural video sequences:

e the local spatial correlation between pixels in each block of a volume;

e the local temporal correlations between blocks of each volume;

e the nonlocal spatial and temporal correlation between grouped volumes.
The 4-D group spectrum is thus highly sparse, which makes the shrinkage more effective than in V-BM3D and
results in the superior performance of V-BM4D in terms of noise reduction.

The paper is organized as follows: Section 3 presents a formal definition of the fundamental steps of the
algorithm, while Section 4 describes the implementation aspects, with particular attention to the computation
of motion vectors; experiments are illustrated and discussed in Section 5.

2. OBSERVATION MODEL

We consider the observed video as a noisy image sequence z : X x T'— R defined as
z2(x,t) = y(x,t) + n(x, ), rzeX, teT, (1)

where y is the original video, 7(-,-) ~ N(0,0?) is i.i.d. Gaussian noise, and (x,t) are the 3-D spatiotemporal
coordinates belonging to the spatial domain X C Z? and time domain T C Z, respectively. The frame of the
video z at time index ¢ is denoted by z(X,t).

3. BASIC ALGORITHM

The aim of the proposed algorithm is to provide an estimate ¢ of the original video y from the observed data
z. According to the BM3D paradigm, the V-BM4D algorithm comprises three fundamental steps, specifically
grouping, collaborative filtering and aggregation. These steps are performed for every spatiotemporal volume of
the video.
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Figure 1. Illustration of trajectory and associated volume (left), and group of mutually similar volumes (right) calculated
for the sequence Tennis corrupted by white Gaussian noise with o = 20.

3.1 Spatiotemporal Volumes

Let B.(xo,to) denote a square block of fixed size N x N extracted from the noisy video z; without loss of
generality, the coordinates (x¢, o) identify the top-left pixel of the block in the frame z(X, ). A spatiotemporal
volume is the 3-D sequence of blocks built following a specific trajectory along time. The trajectory associated

to (xo,to) is defined as
ht

2

where the elements (x;,ty + j) are time-consecutive coordinates, each of these represents the position of the
reference block B, (xo, tg) within the neighboring frames z(X,ty+j), j = —h™,...,h™". For the sake of simplicity,
in this section it is assumed h~ = h* = h for all (x,t) € X x T and the considerations concerning the general
case are postponed in Section 4.

Traj(xo, to) = { (xj,to +5) |

j=—h— ’

The trajectories can be either computed from the noisy video (as shown in Section 4.1), or, when given a
coded video, they can be obtained by concatenating motion vectors. In what follows we assume that, for each
(x0,t0) € X x T, a trajectory Traj(xo, o) is given and thus the 3-D spatiotemporal volume in (xo,%p) can be
determined as

V.(x0,t0) = { B:(xi, i) : (xi,t:) € Traj(xo,t0)}, 3)
where the subscript z specifies that the volumes are extracted from the noisy video. The length of a volume
V. (xi,t;) is defined as

Li=h"+h"+1. (4)

3.2 Grouping

Groups are stacks of mutually similar volumes and constitute the nonlocal element of V-BM4D. Mutually similar
volumes are determined with a nonlocal search procedure as in.” Let Ind(xg, ty) be the set of indexes identifying
volumes that, according to a distance operator ¢V, are similar to V. (X, to):

Ind(xo,t0) = {(xi, ) : 6¥(Vz(xo0,t0), Vz(%i, ti)) < Tmateh }- (5)

The parameter Tyatch > 0 controls the minimum degree of similarity among volumes; the distance §" is typically
the £2-norm of the difference between two volumes.

The group associated to the reference volume V. (xg,to) is then
G- (%0, t0) = {Va(xi, i) : (x4, 1) € Ind(xo0,%0) }- (6)

In (6), we implicitly assume that the 3-D volumes are stacked along a fourth dimension, and hence the groups
are 4-D data structures. Note that since 6¥(V,,V,) = 0, every group G.(xo, %) contains, at least, its reference
volume V;(xq, tg). Figure 1 shows examples of trajectories, volumes and groups.
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3.3 Collaborative Filtering

In the general formulation of the grouping and collaborative-filtering approach for a d-dimensional signal,” groups
are (d-+1)-dimensional structures of similar d-dimensional elements, which are then jointly filtered. In particular,
each of the grouped elements influences the filtered output of all the other elements of the group: this is the
basic idea of collaborative filtering. It is typically realized with the following steps: firstly a (d + 1)-dimensional
separable linear transform is applied to the group, then the transformed coeflicients are shrunk, for example by
hard-thresholding or by Wiener filtering, and finally the (d + 1)-dimensional transform is inverted to obtain an
estimate for each grouped element.

The core elements of V-BM4D are the spatiotemporal volumes (d = 3), and thus the collaborative filtering
performs a 4-D separable linear transform 7;p on each 4-D group G (xo,to), and provides an estimate for each
grouped volume V. :

Gy(x0,t0) = T;p (T (Tip (G2 (x0,t0))) ), (7)

where T denotes a generic shrinkage operator. The filtered 4-D group Gy (%0, to) is composed of volumes Vy(x, t)
Gy (%0, to) = {Vy(xi, ;) : (x4, t;) € Ind(x0,%0)}, (8)
with each Vy being an estimate of the corresponding volume V), extracted from the original video y.

3.4 Aggregation

The groups Gy constitute a very redundant representation of the video, because in general the volumes Vy overlap
and, within the overlapping parts, the collaborative filtering provides multiple estimates at the same coordinates
(x,t). For this reason, the estimates are aggregated through a convex combination with adaptive weights. In
particular, the estimate ¢ of the original video is computed as

E(xo,tg)eXxT (Z(x,.t,)EInd(xu,tU) w(xU,to)Vy(xzﬁti))
Z(xu.to)eX xT ( Z(x,.tl)elnd(xu.to) W(xo,t0) X (x: -,tl))

9)

g =
where we assume Vy (x4, i) to be zero-padded outside its domain, X (x, ) : X x T'— {0, 1} is the characteristic
function (indicator) of the support of the volume Vy (xi,t;), and the aggregation weights w(y,¢,) are different
for different groups. The particular choice of the aggregation weights depends on the result of shrinkage in the
collaborative filtering: typically the weights are defined so that the sparser is the shrunk 4-D spectrum G (xo, to),

the larger is the weight w(y, ). In particular, the weights can be effectively defined to be inversely proportional
to the total sample variance of the estimate of the corresponding groups.”

4. IMPLEMENTATION ASPECTS
4.1 Computation of the Trajectories

In our implementation, we construct trajectories by concatenation of motion vectors which are defined as follows.

4.1.1 Similarity criterion

Motion of a block is generally tracked by identifying the most similar block in the subsequent (and precedent)
frame. However, since we deal with noisy signals, prior information about motion smoothness can be exploited
to improve the tracking. In particular, provided a rough guess X;(t;) of the future (or past) location of the block
B, (xi,t;) at the time t; = t; + 1 (t; = t; — 1), we define the similarity between B, (x;,t;) and B, (x;,t;), through
a penalized quadratic difference

_ 1Bs(xi 1) = Bo(x5,

t)ll; .
JE +7all%i(t;) — %5ll5, (10)

0P (Ba(x4, t:), Bo(x, 1))
where X;(t;) is the predicted position of B.(x;,;) in the frame z(X,t;), and 74 € R* is the penalization
parameter. Whenever X;(t;) is not available, we consider the lack of motion as the most likely condition and we
set X;(t;) = X;.
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Figure 2. Effect of different

1 2 ; \ K
penalties vq = 0.025 (left) and 74 = 0 (right) on the background textures of the sequence
Tennis corrupted by Gaussian noise with o = 20. The initial positions at time ¢t = 1 are equal in both experiments.

V-BM4D repeatedly uses the minimization of (10) to construct the trajectory (2). Formally, the motion of
B.(xi,t;) from time ; to t; + 1 is determined by the position x; that minimizes (10)

Xj = arg min {6b (Bz(xi,t,;), B, (xk, t; + 1)) < Ttraj} s (11)
TR eN

where N is a restriction in the frame z(X,t; + 1) applied by an adaptive search neighborhood (further details
are given in Section 4.1.3). Nevertheless, even though a minimizer for (10) can always be found, we interrupt
the trajectory whenever the corresponding minimum distance J® exceeds a fixed parameter Teraj € RT, which
determines the minimum accepted similarity along spatiotemporal volumes, to effectively deal with occlusions
and changes of scene. Figure 2 illustrates trajectories estimated using different penalization parameters. Observe
that the penalization term is essential when tracking blocks belonging to areas covered by homogeneous texture,
in fact, as shown in the right image of Figure 2, without a position-dependent distance metric, the trajectories
would be mainly determined by noise, and, for this reason, the collaborative filtering would be less effective.

4.1.2 Location prediction

As soon as the motion of a block at two consecutive spatiotemporal locations (x;_1,t; — 1) and (x;,t;) has been
determined, we can define the motion vector (velocity) v(x;,t;) = x;—1 — x;. Hence, under the assumption of
smooth motion, we define the guess %X;(t; + 1) as

Xi(ti +1) =% + 7 - V(x4 ti), (12)

where 7, € [0,1] is a weighting factor of the prediction. Analogous prediction can be made for X;_1(¢; — 1), when
we look for precedent blocks in the sequence.

4.1.3 Search neighborhood

Because of the penalty term v, ||%;(t;) — X;]|,, the minimizer of (10) is likely close to %;(t;). We therefore restrict
the minimization of (10) to a spatial search neighborhood N centered at %;(t;). The size Npr x Npg of this
neighborhood can be adapted based on the velocity (magnitude of motion vector) of the tracked block by setting

_lveeantoli3
Npp = Ns - (1 e X A > ; (13)

where Ng is the maximum size of N, 7, € [0,1] is a scaling factor and o, > 0 is a tuning parameter. As the
velocity increases, Nppg approaches Ng accordingly to o,,; conversely, when the velocity is zero Npg = Ng(1—7y,).
By setting a proper value of o, we can control how fast the exponential term approaches zero, or, in other words,
how permissive is the window shrinkage with respect to the velocity of the tracked block. For instance, considering
the same velocity v for a given block and using increasing values of o, in (13), we would obtain smaller windows,
because the decay of the function would be slower.
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4.2 Sub-volume Extraction

So far, the number of frames spanned by all the trajectories has been assumed fixed. However, because of
occlusions, scene changes or heavy noise, any trajectory Traj(x;, t;) can be interrupted at any time, as determined
by the parameter 7y,,j. Thus, if [t,; —h,ti + hﬂ is the temporal extent of the trajectory Traj(x;,t;), we have
that

0<h; <h, O0<hf<h, (14)
where h denotes the maximum forward and backward extent of trajectories (and thus volumes) allowed in the
algorithm.

As a result, during grouping, V-BM4D may stack together volumes having different lengths. Nevertheless,
because of the separability of the transform T;p, every group G.(x;,t;) has to be composed of volumes of equal
length. Thus, in the current implementation of grouping we consider, for each reference volume V. (x¢, o), only
volumes V;(x;,t;) such that t; = to, h; > hy and h; > hd. In this case, V-BM4D extracts from V;(x;,#;) the
sub-volume with temporal extent [to — hg . to + k¢ ], denoted as £r,, (V. (x;,t;)). There are obviously many other,
less restrictive, possibilities for extracting sub-volumes of length Ly from longer volumes, however, the one we
implemented aims at limiting the complexity while maintaining a high correlation within the grouped volumes.

In the grouping, the distance operator 4" is the £2-norm of the difference between time-synchronous volumes
normalized with respect to their lengths

2
6% (Va(x0, to), Va(xi, t:)) = ||Vz(x0, to) — Ery (Va(xi, ti), o) | |5/ Lo, (15)
thus providing larger weight to the volumes belonging to groups having sparser representation in 7yp domain.

4.3 Two-Stage Implementation with Collaborative Wiener Filtering

The general procedure described in Section 3 is implemented in two cascading stages, both composed of the
grouping, collaborative filtering and aggregation steps.

4.3.1 Hard-thresholding stage

In the first stage, volumes are extracted from the noisy video z, and groups are then formed using the simi-
larity measure §-operator (15), and the predefined threshold T‘mmh. Collaborative filtering is realized by hard
thresholding in 4-D transform domain each group G (x,t):

Gl t) = TS (T (T (G (x0.t0)))) . (x.1) € X x T, (16)

where 72}:‘] is the 4-D transform and TP is the hard-threshold operator with threshold oAsp.

The outcome of hard-thresholding stage, 7", is obtained by aggregation of all the estimated groups C‘Zt (x,t).
ht 17
(x0,t0) s ;0,10)
cients of the corresponding hard-thresholded group G,ly“(on, to):

The weights w in the aggregation (9) are inversely proportional to the number NN, (1 of non-zero coeffi-

1
ht
w = —=.
(x0,t0) ht
e N(me/o)

(17)

4.3.2 Wiener filtering stage

In the second stage, new trajectories Trajsm are extracted from the basic estimate §"*, and the grouping is

performed on the new volumes V. Volume matching is still performed through the ¢¥-distance, but using a
different threshold 741 ;. The set of volume indexes Indgm (x,t) resulting from similarity search are used to
construct two sets of groups G, and G, composed by volumes extracted from the noisy video z and from the

estimate y"*, respectively.
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Table 1. Parameter settings of V-BM4D for the first (hard-thresholding) and the second (Wiener-filtering) stage. The
parameters Yd, Ttraj and Tmatch vary according to the noise, as shown in Figure 3.

| Stage [N Ns|[Ne[h|[ M| Mp [ % [ Yw | 0w | Netep | Yd | Tornj | Twateh |
‘ Hard thr. H 8 ‘ ‘ 19 ‘ ‘ 32 ‘ 2.7 ‘ ‘ 6 ‘ ~a(o) ‘ Ttraj(0) ‘ Tmatch (0) ‘
(Wi [ 7] 2 27 4 8 (w1 ™3| L T 0005 1 [ 135 ]

Collaborative filtering is hence performed using an empirical Wiener filter in 7} E§° transform domain, whose
shrinkage coefficients are computed from the energy of the 4-D spectrum of the basic estimate group G

| T35 (G (%0, t0)
| Tae (G g (%0, t0)) ‘2 ot

W (x0, to) = (18)

Shrinkage is realized as element-by-element multiplication between the 4-D transform coefficients of the group
G ,(x0,t0) extracted from the noisy video z and the Wiener coefficients W (xo, to). Subsequently, we obtain the
group of volumes estimates by inverting the 4-D transform as

Gy (xo,t0) = THe (W(xo.to) - TR (G- (x0, t0)) ). (19)

Awie

The global final estimate §%° is computed by the aggregation (9), using the weights

Wit 0y = W0, t0)l15 7 (20)

Xo,to

5. EXPERIMENTS

In this section we present the experimental results obtained with a C/MATLAB implementation of the V-
BM4D algorithm, and we compare it against V-BM3D*, as it represents the state of the art in video denoising.
Observations z are obtained by synthetically adding Gaussian noise to greyscale image sequences, according to
(1). The denoising performance is measured using the PSNR as a global measure for the whole processed video:

PSNR = ~10logy, | 255 2IX1T Y. (u((x.t) —(x.8) " |, (21)
(x,t)eX T

where |X| and |T

The transforms employed in the collaborative filtering are similar to those in:"*® in the hard-thresholding
stage 7-41‘5 is a 4-D separable composition of 1-D biorthogonal wavelet in both spatial dimensions, 1-D DCT in
the temporal dimension, and 1-D Haar wavelet in the fourth (grouping) dimension while, in the Wiener filtering
stage, 71‘36 uses a 2-D DCT for the spatial dimension. Note that, because of the Haar transform, the cardinality
M of each group must be a power of 2. In order to reduce the complexity of the grouping phase, we restrict
the search of similar volumes within a Ng x Ng neighborhood centered around the coordinates of the reference
volume, moreover, to lighten the computational complexity of the grouping, a step of Ny.p € N pixels in both
horizontal and vertical directions separates each processed volume. Notwithstanding the trajectory of every
possible volume in the video must be computed beforehand, because any volume is a potential candidate element
of every group.

stand for the cardinality of X and T, respectively.

The two stages share some of the parameters such as: the search neighborhoods for the trajectory calculation
Ng, the temporal extent h, the weights v, of (12) and 7., 0 of (13), while the block size N, the grouping
window Ng, the group size M, and the processing step Ny, are different, and Ayp is used in the first stage
only. Observe that we restrict the volumes contained in the groups to be the largest power of 2 smaller than or
equal to the minimum value between the original cardinality of the groups and M itself.

“Matlab code at http://www.cs.tut.fi/~foi/GCF-BM3D/.
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Figure 3. Parameters depending on o in the hard-thresholding stage. The functions are the quadratic polynomials
approximation of the optimum parameters obtained from the Nelder-Mead simplex direct search algorithm applied on a
set of test sequences corrupted by white Gaussian noise having different values of . The functions are built such that
their coefficients maximize the average PSNR of the test sequences along each value of o. In particular we use Salesman,
Tennis, Flower Garden Miss America, Coastguard, Foreman, Bus, and Bicycle.

(a) Original y (b) Noisy z (c) Result y™ of the first (d) Result y“® of the
stage second stage

Figure 4. Visual comparison of the sequence Coastguard corrupted by white Gaussian noise with standard deviation
o = 40, denoised after the first and second stage of V-BM4D.

The parameters involved in the motion estimation and in the grouping, that is 74, Tiraj and Timaten, vary with
o. Intuitively, in order to compensate the effects of the noise, the larger o is, the larger the thresholds controlling
blocks and volumes matching become. The behavior of such parameters w.r.t. o is determined following an
empirical approach. First we compute the parameters that maximize the V-BM4D restoration performance
(PSNR) on a set of sequences, where o is known. Then the restoration performance is maximized using the
Nelder-Mead simplex direct search algorithm'® ' in a multivariate space, thus finding the optimum value of the
triplet (Ya, Tiraj, Tmateh) for eight test video corrupted by i.i.d. white Gaussian noise having eight different value
of o, ranging from 5 to 70. Subsequently, we approximate the behavior of the three parameters as a function of
o using a quadratic polynomial for each variable in the domain (V4, Ttraj, Tmaten) maximizing the total PSNR of
the test sequences. The resulting fit is

Ya(o) = 0.0005 - 0% — 0.0059 - & + 0.0400, (22)
Teeaj (o) = 0.0047 - 02 + 0.0676 - o + 0.4564, (23)
Tmateh(0) = 0.0171 - 0% + 0.4520 - o + 47.9294. (24)

The above functions are shown in Figure 3: experimentally they were found to be a good approximation of the
optimum (Y4, Tiraj, Tmateh). Note that during the second stage such parameters can be considered constants
independent of &, because in the processed sequence ™ the noise is considerably lower than in the observation
z; this is evident when looking at the second and third image of Figure 4. Moreover, since in this stage the



88 Publication I

20 I I I I |
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Figure 5. Frame-by-frame PSNR output of Tennis (top) and Bus (bottom) denoised by V-BM4D (thick line), and V-BM3D
(thin line). The sequences are corrupted by i.i.d. white Gaussian noise with standard deviation o = 20.

Table 2. Comparison between the PSNR (dB) outputs obtained from the proposed V-BM4D algorithm (top number
in each cell), and the V-BM3D algorithm tuned with its default parameters® (bottom number in each cell). The test
sequences are corrupted by i.i.d. Gaussian noise with zero mean and three different standard deviations o.

Video: Salesm. | Tennis | Fl. Gard. | Miss Am. | Coastg. | Foreman Bus Bicycle
o | Res.: 288%352 | 240%352 | 240x352 | 288x360 | 144x176 | 288x352 | 288%352 | 576x 720
Frames: 50 150 150 150 300 300 150 30
‘10 ‘ V-BM4D ‘ 37.30 ‘ 35.22 ‘ 32.81 ‘ 40.09 ‘ 35.54 ‘ 36.94 ‘ 34.26 ‘ 37.66 ‘
V-BM3D 37.21 34.68 32.11 39.61 34.78 36.46 33.32 37.62
‘20 ‘v.nmm ‘ 33.79 ‘ 31.59 ‘ 28.63 ‘ 37.98 ‘ 31.94 ‘ 33.67 ‘ 30.26 ‘ 34.10 ‘
V-BM3D | 34.04 31.20 28.24 37.85 31.71 33.30 29.57 34.18
‘40 ‘V—BI\MD ‘ 30.35 ‘ 28.49 ‘ 24.60 ‘ 35.47 ‘ 28.54 ‘ 30.52 ‘ 26.72 ‘ 30.10 ‘
V-BM3D 29.93 27.99 24.33 35.45 28.27 29.97 26.28 30.02

trajectories and the grouping are determined from the basic estimate ", there is no a straightforward relation
with o, the standard deviation of the noise corrupting the observation z.

The comparison against V-BM3D?® is carried out using the set of parameters reported in Table 1. Table
2 compares the denoising performance in terms of PSNR of the two algorithms, applied to a set of standard
video sequences corrupted by white Gaussian noise with increasing standard deviation o = {10,20,40}, which
is assumed known. Further details concerning the original sequences, such as the resolution and number of
frames, are shown in the header of the table. As one can see, V-BM4D outperforms V-BM3D in nearly all the
experiments, with PSNR improvement of up to 1 dB. It is particularly interesting to observe that V-BM4D
handles effectively the sequences characterized by rapid motion and frequent scene changes, especially under
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Original frame Noisy frame V-BM3D V-BM4D

Figure 6. Visual comparison of the sequences, from top to bottom, Bus, Flower Garden and Tennis corrupted by white
Gaussian noise with standard deviation o = 40, denoised by the proposed algorithm V-BM4D and the V-BM3D algorithm.

heavy noise, as Tennis, Flower Garden, Coastquard and Bus. In particular, Figure 5 shows that as soon as the
sequence presents a significant change in the scene, the denoising performance decreases significantly for the two
algorithms, but, in these situations, V-BM4D requires much less frames to recover high PSNR values, as shown
by the lower peaks at frame 30 and 90 of Tennis and around frame 75 of Bus.

Figure 6 offers a visual comparison of the performance of the two algorithms. As a subjective quality
assessment, V-BM4D better preserves the textures, without introducing significant artifacts in the restored
video: this is clearly visible in the tree leaves of the Bus sequence.

6. DISCUSSION AND CONCLUSIONS

Experiments show that V-BM4D outperforms V-BM3D in terms of measured performance (PSNR), and of visual
appearance (Figure 6), thus achieving state-of-the-art results in video denoising. In particular, V-BM4D can
restore much better than V-BM3D fine image details, even in sequences corrupted by heavy noise (o = 40):
this difference is clearly visible in the processed frames shown in Figure 6. Moreover, the comparison between
V-BM3D and V-BM4D highlights that the temporal correlation is a key element in video denoising, and that it
has to be adequately handled when designing nonlocal video restoration algorithms. We wish to remark that the
computational complexity in V-BM4D is obviously higher than in V-BM3D, mainly because V-BM4D processes
higher-dimensional arrays. Thus, V-BM4D can be a viable alternative to V-BM3D especially in applications
where the highest restoration quality is paramount. Ongoing work addresses the parallelization of V-BM4D,
leveraging GPU hardware.
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ABSTRACT

‘We propose an extension of the BM4D volumetric filter to the denoising of data corrupted by spatially non-
uniform noise. BM4D implements the grouping and collaborative filtering paradigm, where similar cubes of voxels
are stacked into a four-dimensional “group”. Each group undergoes a sparsifying four-dimensional transform,
that exploits the local correlation among voxels in each cube and the nonlocal correlation between corresponding
voxels of different cubes. Thus, signal and noise are effectively separated in transform domain. In this work
we take advantage of the sparsity induced by the four-dimensional transform to provide a spatially adaptive
estimation of the local noise variance by applying a robust median estimator of the absolute deviation to the
spectrum of each filtered group. The adaptive variance estimates are then used during coefficients shrinkage.
Finally, the inverse four-dimensional transform is applied to the filtered group, and each individual cube estimate
is adaptively aggregated at its original location.

Experiments on medical data corrupted by spatially varying Gaussian and Rician noise demonstrate the
efficacy of the proposed approach in volumetric data denoising. In case of magnetic resonance signals, the
adaptive variance estimate can be also used to compensate the estimation bias due to the non-zero-mean errors
of the Rician-distributed data.

Keywords: Volumetric data denoising, nonlocal methods, adaptive transforms, non-uniform noise, variance
estimation, magnetic resonance imaging

1. INTRODUCTION

The most powerful methods for image restoration rely on the self-similarity and nonlocality characteristics of
natural images. The state-of-the-art BM3D image denoising algorithm! couples the nonlocal filtering paradigm
proposed in?? with the grouping and collaborative filtering approach. The method leverages an enhanced sparse
representation in transform domain enabled by the grouping of similar 2-D image patches into 3-D data arrays
which are called “groups”. Collaborative filtering includes three successive steps: 3-D transformation of a group,
shrinkage of transform spectrum, and inverse 3-D transformation. Due to the similarity between the grouped
blocks, the transform can achieve a highly sparse representation of the true signal so that the noise can be
effectively attenuated by shrinkage. In this way, the collaborative filtering reveals even the finest details shared
by grouped fragments and at the same time it preserves the essential unique features of each individual fragment.

The grouping and collaborative paradigm can be also effectively exploited in volumetric data restoration and,
in particular, it is the foundation of recently proposed BM4D volumetric denoising algorithm.* Instead of using
blocks of pixels as basic data patches, BM4D naturally utilizes similar 3-D cubes of voxels which are stacked
together to form the 4-D group. The local correlation present among voxels in each cube as well as the nonlocal
correlation between the corresponding voxels of different cubes induce a sparse representation of the group in
transform domain. After collaborative filtering and inverse transformation, we obtain individual estimates of the
grouped cubes, which are then aggregated at their original locations using adaptive weights.

This work was supported by the Academy of Finland (project no. 213462, Finnish Programme for Centres of Excel-
lence in Research 2006-2011, project no. 129118, Postdoctoral Researcher’s Project 2009-2011, and project no. 252547,
Academy Research Fellow 2011-2016), and by Tampere Graduate School in Information Science and Engineering (also
known as TISE).
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The original BM4D volumetric denoising algorithm has been utilized in the denoising of magnetic resonance
(MR) images corrupted by either Gaussian- or Rician-distributed noise having uniform variance.* However, in
some applications, e.g., parallel acquisition techniques such as sensitivity encoding (SENSE)® or generalized au-
tocalibrating partially parallel acquisitions (GRAPPA),% the noise corrupting the observed data is characterized
by a spatially varying variance. In literature, the approaches addressing this problem generally adhere to the
following scheme: at first, the variance of the noise is locally estimated, then, a filtering technique, adjusted de-
pending on the strength of the estimated noise, is adaptively applied to the data. For example, in” the variance
is estimated using the noise distribution map and the denoising is performed via anisotropic diffusion kernels.
A different approach, presented in,® relies on the high-frequency subband of the wavelet coefficients to estimate
the variance, and on a coeflicients shrinkage in transform domain to filter the noisy observation. A limitation of
both approaches is the assumption of data corrupted by additive zero-mean Gaussian noise. The optimized 3-D
nonlocal means filter proposed in? also addresses the Rice distribution, and it proposes to estimate the variance
from the minimum distance between the high-pass components of noisy patches. This approach exploits the
relation between the expectation of the squared #?-distance and the variance of the noise.?

In this work, we present an extension of the BM4D denoising algorithm to data corrupted by either Gaussian
or Rician noise having spatially varying variance. Exploiting the sparsity of the representation of the group
in transform domain, the noise variance is accurately estimated from the outcome of robust median operations
applied to the spectrum coefficients. Subsequently, the estimate is used during the collaborative filtering and the
aggregation to calibrate the amount of coefficients shrinkage and the adaptive weights, respectively. Experimental
results on volumetric data from the BrainWeb database demonstrate the state-of-the-art denoising performance
of the proposed algorithm. In particular, our filter outperforms the method proposed in,® which is currently,
to the best of our knowledge, the best-performing denoising method for volumetric data corrupted by spatially
varying noise.

The remainder of paper is organized as follows. In Section 2 we define the adopted observation models, for both
Gaussian and Rician noisy observations. Section 3 is devoted to the formal description of the fundamental steps
of the algorithm, together with the techniques used to estimate the variance of the noise of both distributions.
The implementation of the spatially adaptive BM4D algorithm is then formalized in Section 4. The results of the
experimental validation of the proposed method are reported in Section 5, and the final discussions and general
conclusions are summarized in Section 6.

2. OBSERVATION MODELS
2.1 Gaussian-Distributed Noise

We consider the noisy volumetric Gaussian observation z : X — R as
v (@) =y(z) + (), zeX, m

where z = (21,72, 3) is a 3-D coordinate belonging to the domain X C Z3, y is the (unknown) original noise-free
signal, and 7(z) ~ N (0,02(x)) is independent additive white Gaussian noise having spatially varying standard
deviation o : X — R¥.

2.2 Rician-Distributed Noise

The observation model of a Rician observation zg : X — Rt is

2r(@) =/ (ey(@) + 0@ (@) + (@) + o@m(@)?, e X, @)

where 2 = (1,72, 23) is again a 3-D coordinate belonging to the domain X C Z3, ¢, and ¢; are constants such
that 0 < ¢, ¢; < 1=c2+c2, and 0,(-),n:(-) ~ N(0,1) are i.i.d. random vectors following the standard normal
distribution. In this way, zg (z) ~ R (y(x),o(z)) represents the raw magnitude MR data, modeled as a Rician
distribution R of parameters y and o : X — RT, which denote the (unknown) original noise-free signal and the
spatially varying standard deviation, respectively.
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3. BASIC ALGORITHM

The aim of the proposed algorithm is to provide an estimate ¢ of the original volumetric signal y from the
observed data zy or zg. The proposed adaptive BM4D algorithm comprises the grouping, collaborative filtering
and aggregation step as in,* with an additional step performed after the grouping, devoted to the groupwise
estimation of the noise variance.

3.1 Grouping

Let C7, denote a cube of L x L x L voxels, with L € N, extracted from the generic observation z at the 3-D
coordinate g € X, which identifies its top-left-front corner. The 4-D groups are formed by stacking together,
along an additional fourth dimension, 3-D cubes similar to C7, . Specifically, the similarity between two cubes
is measured via the squared ¢?>-norm of the intensities difference of their voxels, normalized with respect to the
size of the cube: H ||2
o -
a(cz, C3) = T, 3)

The set containing the indices of the cubes extracted from z that are similar to C7 is defined as
Sz, = {0 € X 1 d(C3,,C2) < Taten @)

thus, two cubes are considered similar if their distance (3) is smaller or equal than a predefined threshold Tiagch-
The set S7 . is consequently used to build the group associated to the reference cube C;  as the disjoint union
of the matched cubes

2 _ 2

5, 1 o (5)

©:€5z,

Observe that each set G2

% necessarily contains the reference cube C7 | because d(C;, ,C7 ) = 0.

TR YT
3.2 Groupwise Variance Estimation

We assume that the noise level in the groups (5) can be treated as constant. This is a reasonable assumption
since the map o is typically a slowly varying function, and the grouped cubes have usually nearby coordinates.
Consequently, only a single standard deviation estimate &, , is needed for each group. We remark that a precise
estimation of the variance is a crucial step during the denoising, because the amount of filtering operated on the
noisy observations is proportional to the strength of the corrupting noise.

The groups are sparsely represented in transform domain as the energies of the signal and the noise are well
localized in the low- and high-frequencies portions of the spectrum, respectively. Thus, an accurate groupwise
variance estimation can be obtained from the median of absolute deviation!®:'! (MAD) of the high-frequencies
coefficients in the 4-D group spectrum.'?

3.2.1 Gaussian-distributed data

In case of Gaussian-distributed data (z = zxr), we apply an orthonormal separable 4-D transform T,p to the
group (5), obtaining

Do =H (Tup (G2y)). (6)
R =R
where # is a high-pass filter that discards the DC hyperplane of the transform applied to the fourth dimension
of the group.
A robust estimate 65, of the standard deviation is consequently calculated as

v 1L ) N\ 1 ) . | B . .
o T MAD (<I>S£,I«?/) =05 median ({ o 111ed1an(<l>s;,1~?)

}) s Ok € Pgy, (M)

where ¢, is the k™" coefficient of the high-passed spectrum @g:5. The orthonormality of Typ ensures that the
noise standard deviation in transform and spatial domain coiI‘Tcidc. Even though this would strictly require
the independence of the data, i.e. non overlapping cubes,'? we have experimentally found that the potential
underestimation due to overlaps does not significantly affect the final denoising quality.
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3.2.2 Rician-distributed data

If the data follows the Rician distribution (z = zg), we first estimate the mean-variance pair (fig,,, Sfm) of the
median value of y over the Rician group G;?R as
TR
fig, = median (GZ?R) , (8)
TR
R 1
Sur = oo MAD (€55 ) )

where ®g:x is the 4-D spectrum calculated as in (6). It can be shown that from the pair (fig,, §2,) one can
R
univocally and directly obtain a robust estimate 637 of the parameter o in (2).

3.3 Collaborative Filtering

The first phase of collaborative filtering, executed on Rician observations only, is the application of a variance
stabilization transform (VST) specifically designed for the Rice distribution,'® in order to remove the dependen-
cies between the noise and the underlying grouped data. In this way, the stabilized data can be filtered using
the constant standard deviation value ¢ > 0 induced by the VST.

During collaborative filtering, each group is first transformed by a decorrelating separable four-dimensional
transform 73p, then the coefficients of the so-obtained spectrum are thresholded through a generic shrinkage
operator YT (e.g., hard thresholding or Wiener filtering) parametrized by the estimated noise level s. The filtered
group Gggﬁ is eventually produced by inverting the original four-dimensional transform as

(e (T (63:,))) =6s, = T cx. (10)

€57,

where 7Tp is the combination of four 1-D linear transform that are separately applied to each dimension of the
group, and s = 63% or s = c if the noise is Gaussian- or Rician-distributed, respectively. The shrinkage is never
applied on the DC coefficient of the 4-D spectrum, in order to preserve the mean value of the group. Each C’gL
is an estimate of the original C¥. extracted from the unknown volumetric data y.

Finally, in case of Rician noise, the filtered group undergoes the exact unbiased inverse variance stabilization
transform as in'® that simultaneously inverts the VST and produces an unbiased estimate for the underlying y.

3.4 Aggregation
Since the cubes in the different group estimates G4, (as well as the cubes within the same group) are likely to

R
overlap, we may have multiple estimates for the same voxel. Therefore the final volumetric estimate ¢ is obtained
through a convex combination with adaptive weights formulated as

Ponex (Daes: We Cgl)
ZQ: TRE ( Ti€ TR R , (11)
Z.T,REX (Zm,es;R szle)

where each cube estimate CAgl is assumed to be zero-padded outside its domain, and x,, : X — {0, 1} denotes the
characteristic function of the domain of a cube égl located at x;. In other words, x,, = 1 over the coordinates
of the voxels of Cgl and X, = 0 elsewhere. The aggregation weights w, , are defined to be the reciprocal of the

total residual noise variance in the estimate of the corresponding groups.
4. IMPLEMENTATION

The general procedure described in Section 3 is implemented in two cascading stages, each composed of the
grouping, noise variance estimation, collaborative filtering and aggregation steps.
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4.1 Hard-Thresholding Stage
In the first stage, the cubes are extracted from the generic observation z, and the group G%. is then formed
-

testing the similarity measure (3) with a predefined threshold Tlll‘]tmlr After the standard deviation &3; of the

noise is estimated from the group G%. as described in Section 3.2, collaborative filtering is realized by hard
TR

thresholding the coefficients of the spectra in (10) with an adaptive threshold value 6, - A4p in case of Gaussian

noise, or ¢+ A\yp in case of Rician noise, being ¢ the value of the stabilized standard deviation. In the latter case,

the group undergoes a forward and inverse VST before and after the filtering (10), respectively.

The outcome of hard-thresholding stage, ¢, is obtained by aggregating the estimated cubes obtained ob-
tained from collaborative filtering via the convex combination (11). The adaptive weights wg, in (11) are
reciprocal to the residual noise variance in the estimate which, in case of hard thresholding is approximated with
the number N2 of coefficients retained after thresholding times the estimated variance as

h ~—2prht ™!
wlt, = 2N (12)
thus penalizing groups having higher estimated variance of the corrupting noise, as well as rewarding sparser
groups. Note that NJ‘E’; > 1, since at least the DC coefficients is retained.

4.2 Wiener-Filtering Stage

In the Wiener-filtering stage, the grouping is performed within the hard-thresholding estimate g, thus for each
reference cube Cg: with zp € X we look for similar cubes in ™ via (4) using a similarity threshold 7i¢ .
Since the noise is considerably reduced after the first stage, the cube-matching in §"* is far more accurate. The
improved correlation properties of the group are consequently beneficial to collaborative filtering because they

enable a better sparsification of the data in transform domain.
The set of coordinates S;/:; is used to form two groups: one from the observation z, and the other from the
~ht
basic estimate §", termed GZV@M and GZ”"“ respectively. The standard deviation 6, of the noise is estimated
£ 7

R
from the noisy data grouped in G; - and collaborative filtering is consequently realized through an empirical

TR
Wiener filter. Element by element, the group spectrum is multiplied by the Wiener shrinkage coefficients, defined
from the energy of the transformed spectrum of the basic estimate group as

- 2
7—wie Gy‘“
4D g
TR

3
. ;ht

v | 4Dle( . Ahf) ‘ 52

S. R

9
z

W =

S (13)

where s = 6,, or s = ¢ when the noise follows a Gaussian or Rician distribution, respectively. As usual, the
Rician-distributed data is first stabilized by a VST that shall be eventually inverted after the filtering.

swie

The final estimate §™'*© is produced through (11) using aggregation weights defined as

) -2
wyy =67 ; (14)

WSZE:

2
which, similarly to (12), give an estimate of the total residual noise variance of the corresponding Wiener filtered
group.!

5. EXPERIMENTS

We evaluate the denoising performances of the proposed algorithm, termed BM4D-AV, on magnetic resonance
(MR) images. As quality measure, we compute the PSNR of the denoised data as

A D?|X]|
PSNR (y,9) = 101 el ol I 15
(v,9) 0810 (ZLEX @) — y(‘L)>2) (15)
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Figure 1. From left to right: original cross-section of the BrainWeb phantom; noise modulation map, with modulation
factors ranging from 1 (black) to 3 (white); noisy BrainWeb phantom corrupted by Gaussian noise with standard deviation
o € [15% ~ 45%)] varied with the modulation map; realization of the spatially varying Gaussian noise.
Table 1. Standard deviation values maximizing the PSNR denoising performance of the non-adaptive ODCT3D,'* PRI-
NLM3D,"* and BM4D* filters applied to the BrainWeb phantom corrupted by spatially varying noise.

Noi Filt ‘ l

‘ olse TN [1% ~ 8% 3% ~ 0% 5% ~ 16% | 7% ~ 21%] 9% ~ 27% | 1% ~ 38% 13% ~ 39%| 15% ~ 45% |

ODCT3Dy | 2.33% | 6.86% | 11.34% | 15.62% | 10.91% | 24.70% | 29.01% | 38.61%

Gauss. || PRINLM3Dy | 2.35% | 6.30% | 10.00% | 15.11% | 10.00% | 23.39% | 28.47% | 32.83%

BM4Dy [ 225% | 6.08% | 11.62% | 1680% | 21.60% | 27.22% | 32.07% | B38.25%

ODCT3Dr | 2.33% | 5.96% | 9.59% | 12.64% | 15.60% | 1888% | 22.37% | 25.21%

Rician || PRE-NLM3Dg | 2.18% | 5.06% | 9.45% | 12.64% | 15.60% | 10.22% | 22.23% | 25.49%

BM4Dr | 2.25% | 6.30% | 9.37% | 12.86% | 1552% | 19.39% | 2243% | 2587%

where D is the peak of y, X = {z € X : y(z) > 10 - D/255} (in order not to compute the PSNR on the
background as in'4), and |)2' | is the cardinality of X. Additionally, we evaluate the results of denoising via the
3-D extension of the structure similarity index (SSIM),'4 !> which should better agree with subjective perceptual
quality.

The observations used in our experiments are corrupted by either Gaussian or Rician noise, and the volumetric
test data is the T1 brain phantom of size 181 x 217 x 181 voxels from the BrainWeb database.!® According to
(1) and (2), we synthetically generate the noisy observations zy and zx by adding spatially varying Gaussian
and Rician noise having different ranges of standard deviation o, expressed as percentage of the maximum value
of the signal y. Specifically, we first generate a realization of Gaussian or Rician noise with uniform standard
deviation o, then we multiply each sample of such realizations by a volumetric noise modulation map as in,”
which smoothly increases the amount of noise from the extrema to the center of the volume up to a factor of
3. Figure 1 illustrates an example of noisy observation obtained by a modulated Gaussian noise with varying
standard deviation o € [15% ~ 45%).

As a comparison, we validate the denoising performances of the proposed BM4D algorithm against the
optimized adaptive blockwise nonlocal means OB-AR-NLM3D-WM.? The BM4D is tuned as proposed in,* and
the noise-variance estimation and the collaborative filtering steps use the same transform, i.e. Ta4p = T4p, both
in the hard-thresholding and Wiener-filtering stages. In this way, the groups need to be transformed only once.
We also present the performances of the current best-performing non-adaptive methods. In particular, we test
the BM4D,* ODCT3D,!* and PRI-NLM3D! filters, using constant standard deviation values found maximizing
the restored quality in terms of PSNR. Table 1 reports the optimum values of standard deviation used by the
three non-adaptive algorithms during the denoising of the BrainWeb phantom corrupted by spatially varying
noise having eight different ranges of standard-deviation. Moreover, we present the results obtained by an Oracle
filter, namely the state-of-the-art BM4D,* having exact knowledge on the varying standard deviation o(z) for
each z € X.

As one can clearly see, both the objective performances reported in Table 2 and the visual appearance of the
denoised phantoms shown in Figure 2, substantiate the superior quality of the results produced by the proposed
BM4D-AV. In particular, BM4D-AV outperforms the state-of-the-art adaptive filter OB-AR-NLM3D-WM and
the non-adaptive state-of-the-art filter BM4D with PSNR improvements of up to 2.5dB and 0.5dB in case of
Gaussian observations, and about 0.2dB in case of Rician observations. Let us remark that BM4D-AV performs
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Table 2. PSNR (left value in each cell) and SSIM'® (right value in each cell) denoising performances on the volumetric
test data from the BrainWeb database'® of the non-adaptive ODCT3D,' PRI-NLM3D,'* BM4D* filters, the adaptive
OB-AR-NLM3D-WM? filter, and the proposed adaptive BM4D-AV (tuned with the modified profile as in*). Two kinds
of observations are tested, corrupted by spatially varying Gaussian and Rician noise, synthetically generated according to
the observation models (1) and (2), respectively. Both cases are tested under different ranges of standard-deviations o,
expressed as percentage relative to the maximum intensity value of the original volumetric data. The ranges of variation
for o are shown in the header of the table. The PSNR and SSIM values of the noisy data, and of the denoised phantoms
produced by an Oracle, namely BM4D with exact knowledge of the varying o, are also shown for comparison. The
subscripts N (Gaussian) and R (Rician) denote the addressed noise distribution.

Noise Filter ‘ il |
| 1% ~3% [ 3% ~ 9% [ 5% ~ 15% | 7% ~ 21% | 9% ~ 27% [11% ~ 33% | 13% ~ 39% [15% ~ 45% |
Noisy data, 34.34]0.90 | 24.80]0.62 [ 20.36]0.44 | 17.44[0.33 | 15.26]0.25 | 13.51/0.20 | 12.06]0.16 | 10.82]0.13
ODCT3D xr 40.04[0.98 | 34.09]0.94 | 31.43[0.90 | 29.69[0.86 | 28.42]0.83 | 27.40[0.80 [ 26.52]0.77 | 25.74[0.74
PRI-NLM3D 40.71]0.98] 34.50[0.94 | 31.75[0.91 | 29.95]0.87 | 28.60[0.83 | 27.49]0.80 | 26.55]0.77 | 25.79]0.74
Gauss. BMA4D 40.42]0.98 | 34.90[0.95 | 32.57[0.92 | 31.05]0.89 | 29.91[0.87 | 28.99]0.85 | 28.23]0.83 | 27.56]0.81
OB-AR-NLM3D-WM, | 40.38]0.98 | 34.50[0.94 | 31.57[0.89 | 20.61]0.83 | 28.11[0.78 | 26.89]0.73 | 25.86]0.68 | 24.95]0.64
BM4D-AV 40.45]0.98 | 35.48[0.96 | 33.10[0.93 | 31.48[0.90 | 30.24[0.87 | 29.22[0.85 | 28.35[0.82 | 27.59[0.79
Oraclen 40.96]0.98 | 35.56|0.96 | 35.14]0.93 | 31.56]0.91 | 30.36]0.88 | 29.40[0.86 | 28.58]0.84 | 27.87]0.82
Noisy data, 34.35[0.90 | 24.87]0.62 [ 20.50[0.44 | 17.64[0.33 | 15.50]0.25 | 13.78[0.19 | 12.32(0.15 | 11.04]0.12
ODCT3Dr 39.70(0.98 [ 33.13[0.92 | 20.58]0.86 | 26.92]0.79 [ 24.72[0.74 | 22.85[0.70 | 21.12]0.66 | 19.47|0.62
PRI-NLM3Dr 40.53[0.98] 33.21]0.93 | 29.29[0.87 | 26.21]0.80 | 23.71]0.74 | 21.68[0.69 | 19.88]0.65 | 18.21[0.61
Rician BM4Dx 40.34]0.98 | 33.76]0.93 | 30.19[0.86 | 27.37]0.80 | 24.95[0.73 | 22.89]0.68 | 21.07]0.63 | 19.39]0.59
OB-AR-NLM3D-WMr | 40.28[0.98 | 34.29]0.94 | 31.16[0.87 | 28.73[0.81 | 26.43]0.74 | 24.17|0.67 | 22.00]0.60 | 20.00]0.54
BM4D-AV 40.43]0.98 | 34.41[0.94[31.27]0.89[28.80]0.82[26.55[0.74 | 24.210.67 | 22.11[0.61 | 20.01[0.56
Oracler 40.90[0.98 | 34.85]0.95 | 31.59]0.91 | 28.990.85 | 26.82]0.76 | 24.55]0.70 | 22.43]0.65 | 20.37]0.61

ODCT3D PRI-NLM3D BM4D OB-AR-NLM3D-WM BM4D-AV

Figure 2. From left to right, denoising results of the ODCT3D, PRI-NLM3D, BM4D, OB-AR-NLM3D-WM, and the
proposed BM4D-AV filter applied to the BrainWeb phantom corrupted by spatially varying Gaussian noise with standard
deviation o € [15% ~ 45%]. The original and corrupted data can be seen in Figure 1. For each algorithm, both the 3-D
and 2-D transversal cross-section of the phantom are presented in the top and bottom row, respectively.
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only marginally worse than the Oracle filter, which, not surprisingly, always achieves the best performances.
Figure 2 confirms the objective results. We observe that the denoised phantom produced by OB-AR-NLM3D-
WM is considerably affected by residual noise, thus suggesting that the variance is underestimated during the
filtering. The non-adaptive filters behave reasonably well, even though the effects of a fixed level of noise are
clearly visible. In particular, the center of the phantom is under-smoothed as the applied amount of filtering is
not sufficient to completely remove the noise. Conversely, the peripheral areas are over-smoothed.

6. CONCLUSIONS

Experiments show that the proposed adaptive BM4D-AV achieves state-of-the-art performances in volumetric
data denoising under condition of spatially varying Gaussian- or Rician-distributed noise in terms of objective
(Table 2) and subjective visual (Figure 2) quality. The groupwise noise estimation embedded in the proposed
BM4D-AV allows for a correct filtering of the noisy data in any section of the phantom. As a matter of fact,
our filter is able to simultaneously preserve the edges of fine details and the smoothness of flat areas. We also
wish to remark that the proposed algorithm exhibits the most gentle performance decay as the level of noise
increases. Thus, BM4D-AV can be a viable and effective tool in medical image processing when there is no
precise knowledge about the statistics of the noise corrupting the observed data.
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Video Denoising, Deblocking and Enhancement
Through Separable 4-D Nonlocal Spatiotemporal
Transforms

Matteo Maggioni, Giacomo Boracchi, Alessandro Foi, Karen Egiazarian

Abstract—We propose a powerful video filtering algorithm that
exploits temporal and spatial redundancy characterizing natural
video sequences. The algorithm implements the paradigm of
nonlocal grouping and collaborative filtering, where a higher-
di 1 transform-d. repr ation of the observations
is leveraged to enforce sparsity and thus regularize the data:
3-D spatiotemporal volumes are constructed by tracking blocks
along trajectories defined by the motion vectors. Mutually similar
volumes are then grouped together by stacking them along an
additional fourth di thus producing a 4-D structure,
termed group, where different types of data correlation exist
along the different dimensions: local correlation along the two
dimensions of the blocks, temporal correlation along the motion
trajectories, and nonlocal spatial correlation (i.e. self-similarity)
along the fourth dimension of the group. Collaborative filtering is
then realized by transforming each group through a decorrelating
4-D separable transform and then by shrinkage and inverse
transformation. In this way, the collaborative filtering provides
estimates for each volume stacked in the group, which are then
returned and adaptively aggregated to their original positions
in the video. The proposed filtering procedure addresses several
video processing applications, such as denoising, deblocking, and
enhancement of both grayscale and color data. Experimental
results prove the effectiveness of our method in terms of both
subjective and objective visual quality, and shows that it outper-
forms the state of the art in video denoising.

Index Terms—Video filtering, video denoising, video deblock-
ing, video enhancement, nonlocal methods, adaptive transforms,
motion estimation.

I. INTRODUCTION

EVERAL factors such as noise, blur, blocking, ringing,
S and other acquisition or compression artifacts, typically
impair digital video sequences. The large number of practical
applications involving digital videos has motivated a signifi-
cant interest in restoration or enhancement solutions, and the
literature contains a plethora of such algorithms (see [3], [4]
for a comprehensive overview).

At the moment, the most effective approach in restoring
images or video sequences exploits the redundancy given by
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the nonlocal similarity between patches at different locations
within the data [5], [6]. Algorithms based on this approach
have been proposed for various signal-processing problems,
and mainly for image denoising [4], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15]. Specifically, in [7] has been introduced
an adaptive pointwise image filtering strategy, called non-
local means, where the estimate of each pixel x; is obtained
as a weighted average of, in principle, all the pixels x; of
the noisy image, using a family of weights proportional to
the similarity between two neighborhoods centered at x; and
x;. So far, the most effective image-denoising algorithm is
BM3D [10], [6], which relies on the so-called grouping and
collaborative filtering paradigm: the observation is processed
in a blockwise manner and mutually similar 2-D image blocks
are stacked into a 3-D group (grouping), which is then filtered
through a transform-domain shrinkage (collaborative filtering),
simultaneously providing different estimates for each grouped
block. These estimates are then returned to their respective
locations and eventually aggregated resulting in the denoised
image. In doing so, BM3D leverages the spatial correlation
of natural images both at the nonlocal and local level, due
to the abundance of mutually similar patches and to the high
correlation of image data within each patch, respectively. The
BM3D filtering scheme has been successfully applied to video
denoising in our previous work, V-BM3D [11], as well as to
several other applications including image and video super-
resolution [14], [15], [16], image sharpening [13], and image
deblurring [17].

In V-BM3D, groups are 3-D arrays of mutually similar
blocks extracted from a set of consecutive frames of the
video sequence. A group may include multiple blocks from
the same frame, naturally exploiting in this way the nonlocal
similarity characterizing images. However, it is typically along
the temporal dimension that most mutually similar blocks
can be found. It is well known that motion-compensated
videos [18] are extremely smooth along the temporal axis
and this fact is exploited by nearly all modern video-coding
techniques. Furthermore, experimental analysis in [12] shows
that, even when fast motion is present, the similarity along
the motion trajectories is much stronger than the nonlocal
similarity existing within an individual frame. In spite of this,
in V-BM3D the blocks are grouped regardless of whether their
similarity comes from the motion tracking over time or the
nonlocal spatial content. Consequently, during the filtering, V-
BM3D is not able to distinguish between temporal and spatial
nonlocal similarity. We recognize this as a conceptual as well
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as practical weakness of the algorithm. As a matter of fact,
the simple experiments reported in Section VIII demonstrate
that the denoising quality do not necessarily increase with
the number of spatially self-similar blocks in each group; in
contrast, the performances are always improved by exploiting
the temporal correlation of the video.

This work proposes V-BM4D, a novel video-filtering ap-
proach that, to overcome the above weaknesses, separately
exploits the temporal and spatial redundancy of the video
sequences. The core element of V-BM4D is the spatiotemporal
volume, a 3-D structure formed by a sequence of blocks
of the video following a specific trajectory (obtained, for
example, by concatenating motion vectors along time) [19],
[20]. Thus, contrary to V-BM3D, V-BM4D does not group
blocks, but mutually similar spatiotemporal volumes according
to a nonlocal search procedure. Hence, groups in V-BM4D
are 4-D stacks of 3-D volumes, and the collaborative filtering
is then performed via a separable 4-D spatiotemporal trans-
form. The transform leverages the following three types of
correlation that characterize natural video sequences: local
spatial correlation between pixels in each block of a volume,
local temporal correlation between blocks of each volume, and
nonlocal spatial and temporal correlation between volumes of
the same group. The 4-D group spectrum is thus highly sparse,
which makes the shrinkage more effective than in V-BM3D,
yielding superior performance of V-BM4D in terms of noise
reduction.

In this work we extend the basic implementation of V-
BM4D as a grayscale denoising filter introduced in the con-
ference paper [1] presenting its modifications for the de-
blocking and deringing of compressed videos, as well as for
the enhancement (sharpening) of low-contrast videos. Then,
leveraging the approach presented in [10], [21], we generalize
V-BM4D to perform collaborative filtering of color (multi-
channel) data. An additional, and fundamental, contribution
of this paper is an experimental analysis of the different types
of correlation characterizing video data, and how these affect
the filtering quality.

The paper is organized as follows. Section II introduces the
observation model, the formal definitions, and describes the
fundamental steps of V-BM4D, while Section III discusses
the implementation aspects, with particular emphasis on the
computation of motion vectors. The application of V-BM4D
to deblocking and deringing is given in Section IV, where it is
shown how to compute the thresholds used in the filtering from
the compression parameters of a video; video enhancement
(sharpening) is presented in Section V. Before the conclusions,
we provide a comprehensive collection of experiments and a
discussion of the V-BM4D performance in Section VI, and a
detailed analysis of its computational complexity in Section
VIIL

II. BASIC ALGORITHM

The aim of the proposed algorithm is to provide an estimate
of the original video from the observed data. For the algorithm
design, we assume the common additive white Gaussian noise
model.

Fig. 1. Tllustration of a trajectory and the associated volume (left), and a
group of mutually similar volumes (right). These have been calculated from
the sequence Tennis corrupted by white Gaussian noise with o = 20.

A. Observation Model

We consider the observed video as a noisy image sequence
z: X xT — R defined as
2(x,t) = y(x,t) + n(x, t), xeX, teT, (1)
where y is the original (unknown) video, 7(-, ) ~ N(0, 0?) is
i.i.d. white Gaussian noise, and (x,t) are the 3-D spatiotem-
poral coordinates belonging to the spatial domain X C 72
and time domain T C Z, respectively. The frame of the video
z at time ¢ is denoted by z(X, ).

The V-BM4D algorithm comprises three fundamental steps
inherited from the BM3D paradigm, specifically grouping
(Section II-C), collaborative filtering (Section II-D) and ag-
gregation (Section II-E). These steps are performed for each
spatiotemporal volume of the video (Section II-B).

B. Spatiotemporal Volumes

Let B.(xo,to) denote a square block of fixed size N x N
extracted from the noisy video z; without loss of generality,
the coordinates (xo, to) identify the top-left pixel of the block
in the frame z(X,ty). A spatiotemporal volume is a 3-D
sequence of blocks built following a specific trajectory along
time, which is supposed to follow the motion in the scene.
Formally, the trajectory associated to (X, to) is defined as

ht
Trai(xo, to) = {05yt +9)}

2

where the elements (x;,to + j) are time-consecutive coordi-
nates, each of these represents the position of the reference
block B (x0,to) within the neighboring frames z(X,to + j),
j = —h",...,h". For the sake of simplicity, in this section
it is assumed h~ = h* = h for all (x,t) € X x T.

The trajectories can be either directly computed from the
noisy video, or, when a coded video is given, they can be
obtained by concatenating motion vectors. In what follows
we assume that, for each (x¢,tp) € X x T, a trajectory
Traj(xo, to) is given and thus the 3-D spatiotemporal volume
associated to (xo, to) can be determined as

Vz(x0,t0) = {B:(xi, 1) : (x4, t:) € Traj(xo,t0)},  (3)

where the subscript z specifies that the volumes are extracted
from the noisy video.

C. Grouping

Groups are stacks of mutually similar volumes and consti-
tute the nonlocal element of V-BM4D. Mutually similar vol-
umes are determined by a nonlocal search procedure as in [10].
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Specifically, let Ind(xq,%o) be the set of indices identifying
those volumes that, according to a distance operator ¢, are
similar to V(xo,t0):
Ind(x0,t0) = {(xi,£:) : 6" (Va(x0,t0), Va (%, t:)) < Tamateh }-
The parameter Tmaeh > 0 controls the minimum degree of
similarity among volumes with respect to the distance 4°,
which is typically the ¢2-norm of the difference between two
volumes.

The group associated to the reference volume V. (xo, to) is
then

G.(x0,t0) = {Vz(xi,t,j) s (xi,t) € Ind(xo,tg)}. @

In (4) we implicitly assume that the 3-D volumes are stacked
along a fourth dimension; hence the groups are 4-D data
structures. The order of the spatiotemporal volumes in the 4-D
stacks is based on their similarity with the reference volume.
Note that since 6*(V;,V,) = 0, every group G (x¢,tp) con-
tains, at least, its reference volume V. (xo, to). Figure 1 shows
an example of trajectories and volumes belonging to a group.

D. Collaborative Filtering

According to the general formulation of the grouping and
collaborative-filtering approach for a d-dimensional signal
[10], groups are (d + 1)-dimensional structures of similar
d-dimensional elements, which are then jointly filtered. In
particular, each of the grouped elements influences the filtered
output of all the other elements of the group: this is the basic
idea of collaborative filtering. It is typically realized through
the following steps: firstly a (d + 1)-dimensional separable
linear transform is applied to the group, then the transformed
coefficients are shrunk, for example by hard thresholding or by
Wiener filtering, and finally the (d+ 1)-dimensional transform
is inverted to obtain an estimate for each grouped element.

The core elements of V-BM4D are the spatiotemporal
volumes (d = 3), and thus the collaborative filtering performs
a 4-D separable linear transform 7;p on each 4-D group
G ,(x0, o), and provides an estimate for each grouped volume
V.:

Gy(x0,t0) = T;p (T (Tap (G=(x0,0))) ),

where T denotes a generic shrinkage operator. The filtered
4-D group Gy (%o, o) is composed of volumes V(x,t)

Gy(x0,t0) = {Vy(xi,t:) : (xi,t:) € Ind(x0,%0) },

with each Vy being an estimate of the corresponding unknown
volume V/, in the original video y.

E. Aggregation

The groups @y constitute a very redundant representation
of the video, because in general the volumes Vy overlap
and, within the overlapping parts, the collaborative filtering
provides multiple estimates at the same coordinates (x, t). For
this reason, the estimates are aggregated through a convex
combination with adaptive weights. In particular, the estimate
y of the original video is computed as

_ Z(xo.tD)EXXT ( Z(xl,fl)elnd(xo.to) W, t) Vy (i ti))

2 (xorto)EXXT ( 22 (st Elnd(c0,t0) Wik to) X (xi .t,)) )

<
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where we assume ‘}}J(x,;,ti) to be zero-padded outside its
domain, x(x, +,) : X xT — {0, 1} is the characteristic function
(indicator) of the support of the volume Vy(x,,ti), and the
aggregation weights w(y, ¢, are different for different groups.
Aggregation weights may depend on the result of the shrinkage
in the collaborative filtering, and these are typically defined
to be inversely proportional to the total sample variance of
the estimate of the corresponding groups [10]. Intuitively, the
sparser is the shrunk 4-D spectrum Gy(Xg,to), the larger is
the corresponding weight w(x, +,)- Such aggregation is a well-
established procedure to obtain a global estimate from different
overlapping local estimates [22], [23].

III. IMPLEMENTATION ASPECTS
A. Computation of the Trajectories

In our implementation of V-BM4D, we construct trajectories
by concatenating motion vectors which are defined as follows.
1) Location prediction: As far as two consecutive spa-
tiotemporal locations (x;—1,¢; — 1) and (x;,t;) of a block
are known, we can define the corresponding motion vector
(velocity) as v(x;,t;) = x;_1 — X;. Hence, under the assump-
tion of smooth motion, we can predict the position %X;(¢; + 1)
of the block in the frame z (X, ¢; + 1) as
Xi(ti+ 1) = xi + 7, - v(xi, ta), (6)
where v, € [0,1] is a weighting factor of the prediction. In
the case (x;_1,t; — 1) is not available, we consider the lack
of motion as the most likely situation and we set X;(t; +
1) = x;. Analogous predictions can be made when looking
for precedent blocks in the sequence.

2) Similarity criterion: The motion of a block is generally
tracked by identifying the most similar block in the subsequent
or precedent frame. However, since we deal with noisy signals,
it is advisable to enforce motion-smoothness priors to improve
the tracking. In particular, given the predicted future X; (t;+1)
or past X;(t; — 1) positions of the block B (x;,t;), we define
the similarity between B.(x;,t;) and B (x;,; & 1), through
a penalized quadratic difference

B.(xi, t;) — Ba(x;,t; £ 1)||2
5b(Bz(xi«,ti)7Bz(x.ivtii1)) = [1B5(xs, 1) 0, £ Dl

N2
+all®i(ti £1) = xjll,, (D
where X;(t; £ 1) is defined as in (6), and v, € R is the
penalization parameter. Observe that the tracking is performed
separately in time ¢; + 1 and ¢; — 1.

V-BM4D constructs the trajectory (2) by repeatedly mini-
mizing (7). Formally, the motion of B (x;,t;) from time ¢; to
t; £ 1 is determined by the position x;4; that minimizes (7)
as

xi1 = argmin {6 (B, (xi, ), Ba(xi, i £ 1) |,
xr €N
where N is an adaptive spatial search neighborhood in
the frame z(X,¢; £ 1) (further details are given in Section
1I1-A3). Even though such x;1; can be always found, we
stop the trajectory construction whenever the corresponding
minimum distance 6° exceeds a fixed parameter Ty, € RT,
which imposes a minimum amount of similarity along the
spatiotemporal volumes. This allows V-BM4D to effectively
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Fig. 2. Effect of different penalties v, = 0.025 (left) and v, = 0 (right)
on the background textures of the sequence 7Tennis corrupted by Gaussian
noise with & = 20. The block positions at time ¢ = 1 are the same in both
experiments.

deal with those situations, such as occlusions and changes of
scene, where consistent blocks (in terms of both similarity and
motion smoothness) cannot be found.

Figure 2 illustrates two trajectories estimated using different
penalization parameters 7,. Observe that the penalization term
becomes essential when blocks are tracked within flat areas
or homogeneous textures in the scene. In fact, the right image
of Figure 2 shows that without a position-dependent distance
metric the trajectories would be mainly determined by the
noise. As a consequence, the collaborative filtering would
be less effective because of the badly conditioned temporal
correlation of the data within the volumes.

3) Search neighborhood: Because of the penalty term
va lI%i(ti £1) — x4]|,, the minimizer of (7) is likely close to
X;(t;£1). Thus, we can rightly restrict the minimization of (7)
to a spatial search neighborhood N; centered at X;(t; £1). We
experienced that it is convenient to make the search-neighbor
size, Npr X Nppg, adaptive on the velocity of the tracked
block (magnitude of motion vector) by setting

_IvGesta) 113
NPR:NS'<1*%;‘€ > >7

where Ng is the maximum size of A, v, € [0,1] is a
scaling factor and o,, > 0 is a tuning parameter. As the
velocity v increases, Npp approaches Ng accordingly to o,,;
conversely, when the velocity is zero Npr = Ng(1 — 7,,).
By setting a proper value of o,, we can control the decay rate
of the exponential term as a function of v or, in other words,
how permissive is the window contraction with respect to the
velocity of the tracked block.

B. Sub-volume Extraction

So far, the number of frames spanned by all the trajectories
has been assumed fixed and equal to h. However, because
of occlusions, scene changes or heavy noise, any trajectory
Traj(x;,t;) can be interrupted at any time, i.e. whenever the
distance between consecutive blocks falls below the threshold
Tuaj- Thus, given a temporal extent [t; — h; ,t; + h] for the
trajectory Traj(x;,t;), we have that in general 0 < h; < h
and 0 < hf < h, where h denotes the maximum forward and
backward extent of the trajectories (thus of volumes) allowed
in the algorithm.

As a result, in principle, V-BM4D may stack together
volumes having different lengths. However, in practice, be-
cause of the separability of the transform 7T;p, every group
G.(x;,t;) has to be composed of volumes having the same
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length. Thus, for each reference volume V. (%o, o), we only
consider the volumes V. (x;,t;) such that t; = to, h; > hg
and h > h{. Then, we extract from each V. (x;,;) the sub-
volume having temporal extent [ty — hy , to + h,ar], denoted as
Ery (Vl(xi, ti)). Among all the possible criteria for extracting
a sub-volume of length Ly = hy + hy + 1 from a longer
volume, our choice aims at limiting the complexity while
maintaining a high correlation within the grouped volumes,
because we can reasonably assume that similar objects at
different positions are represented by similar volumes along
time.

In the grouping, we set as distance operator &' the (-
norm of the difference between time-synchronous volumes
normalized with respect to their lengths:

HVz(Xm to) — €L, (Vz(xz, t1>) ‘ |§
Lo :

8" (V(x0, o), Va(xi, ;) =
®)

C. Two-Stage Implementation with Collaborative Wiener Fil-
tering

The general procedure described in Section II is imple-
mented in two cascading stages, each composed of the group-
ing, collaborative filtering and aggregation steps.

1) Hard-thresholding stage: In the first stage, volumes are
extracted from the noisy video z, and groups are then formed
using the §"-operator (8) and the predefined threshold 72 .

Collaborative filtering is realized by hard thresholding each
group G(x,t) in 4-D transform domain:

GM(x,t) = T (T (TR (Ga(x0,10)))) , (x,8) € X x T,

where T/ is the 4-D transform and Y™ is the hard-threshold
operator with threshold o A4p.

The outcome of the hard-thresholding stage, §, is obtained
by aggregating with a convex combination all the estimated
groups G‘g‘(x, t), as defined in (5). The adaptive weights used
in this combination are inversely proportional to the number

(h,‘m’to) of non-zero coefficients of the corresponding hard-
thresholded group ég‘(xm to): that is w:‘;odo) = }/N(h:lco,to)’
which provides an estimate of the total variance of Gi‘/‘(x, t). In
such a way, we assign larger weights to the volumes belonging
to groups having sparser representation in 74p domain.

2) Wiener-filtering stage: In the second stage, the motion
estimation is improved by extracting new trajectories Traju
from the basic estimate §™, and the grouping is performed
on the new volumes V. Volume matching is still performed
through the §"-distance, but using a different threshold ’Txi:mh.
The indices identifying similar volumes Indgn (x,t) are used
to construct both groups G and G, composed by volumes
extracted from the noisy video z and from the estimate 3",
respectively.

Collaborative filtering is hence performed using an em-
pirical Wiener filter in 7} transform domain. Shrinkage is
realized by scaling the 4-D transform coefficients of each
group G (xo,tp), extracted from the noisy video z, with the
Wiener attenuation coefficients W (xo, ),

| T35 (G (x0,t0)) !2
T35 (Ggn(xo, t0)) ‘2 + 02

W(xo,t0) =
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Fig. 3. V-BMA4D two stage denoising of the sequence Coastguard. From left
to right: original video y, noisy video z (o = 40), result of the first stage y™
(frame PSNR 28.58 dB) and final estimate y™'¢ (frame PSNR 29.38 dB).

that are computed from the energy of the 4-D spectrum of the
group Ggn(xo, to). Eventually, the group estimate is obtained
by inverting the 4-D transform as

évy"c(xmt(>) =Top (W(xo,t0) - T2 (G=(x0,t0)) ),
where - denotes the element-wise product. The final global
g*'¢ is computed by the aggregation (5), using the

estimate
weights w'® HW(xo,tU)ng, which follow from con-

it S Wik to) — . i R
siderations similar to those underlying the adaptive weights

used in the first stage.

D. Settings

The parameters involved in the motion estimation and in
the grouping, that is v, Tiaj and Tmach, depend on the noise
standard deviation o. Intuitively, in order to compensate the
effects of the noise, the larger is o, the larger become the
thresholds controlling blocks and volumes matching. For the
sake of simplicity we model such dependencies as second-
order polynomials in o: 7,(0), Tij(0) and Tmaen(o). The
nine coefficients required to describe the three polynomials
are jointly optimized using the Nelder-Mead simplex direct
search algorithm [24], [25]. As optimization criterion, we
maximize the sum of the restoration performance (PSNR) of
V-BM4D applied over a collection of test videos corrupted
by synthetic noise having different values of o. Namely, we
considered Salesman, Tennis, Flower Garden, Miss America,
Coastguard, Foreman, Bus, and Bicycle corrupted by white
Gaussian noise having o levels ranging from 5 and 70. The
resulting polynomials are

Yq(0) = 0.0005 - % — 0.0059 - & + 0.0400, &)
Tuaj(07) = 0.0047 - 0% + 0.0676 - o + 0.4564, (10)
Tmaeh(0) = 0.0171 - 02 +0.4520 - o + 47.9294.  (11)

The solid lines in Figure 4 show the above functions. We
also plot, using different markers, the best values of the
three parameters obtained by unconstrained and independent
optimizations of V-BM4D for each test video and value of o.
Empirically, the polynomials demonstrate a good approxima-
tion of the optimum (7,4, Tiraj» Tmawch)- Within the considered
o range, the curve (9) is “practically” monotone increasing
despite its negative first-degree coefficient. We refrain from
introducing additional constraints to the polynomials as well as
from considering additional o values smaller than 5, because
the resulting sequences would be mostly affected by the noise
and quantization artifacts intrinsic in the original test-data.
During the second stage (namely, the Wiener filtering) the
V> Ttraj and Tryen parameters can be considered as constants
and independent, because in the processed sequence §"™ the
noise has been considerably reduced with respect to the
observation z; this is evident when looking at the second and
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third image of Figure 3. Moreover, since in this stage both the
trajectories and groups are determined from the basic estimate
9™, there is no a straightforward relation with o, the noise
standard deviation in z.

IV. DEBLOCKING

Most video compression techniques, such as MPEG-4 [26]
or H.264 [27], make use of block-transform coding and thus
may suffer, especially at low bitrates, from several com-
pression artifacts such as blocking, ringing, mosquito noise,
and flickering. These artifacts are mainly due to the coarse
quantization of the block-transform coefficients and to the
motion compensation. Moreover, since each block is processed
separately, the correlation between pixels at the borders of
neighboring blocks is typically lost during the compression,
resulting in false discontinuities in the decoded video (such as
those shown in the blocky frames in Figure 8).

A large number of deblocking filters have been proposed
in the last decade; among them we mention frame-based en-
hancement using a linear low-pass filter in spatial or transform
domain [28], projection onto convex sets (POCS) methods
[29], spatial block boundary filter [30], statistical modeling
methods [31] or shifted thresholding [32]. Additionally, most
of modern video coding block-based techniques, such as
H.264 or MPEG-4, embed an in-loop deblocking filter as an
additional processing step in the decoder [26].

Inspired by [33], we treat the blocking artifacts as additive
noise. This choice allows us to model the compressed video
z as in (1), where y now corresponds to the original uncom-
pressed video, and 7 represents the compression artifacts. In
what follows, we focus our attention on MPEG-4 compressed
videos. In this way, the proposed filter can be applied reliably
over different types of data degradations with little need of
adjustment or user intervention.

In order to use V-BM4D as a deblocking filter, we need
to determine a suitable value of o to handle the artifacts
in a compressed video. To this purpose, we proceed as in
the previous section and we identify the optimum value of
o for a set of test sequences compressed at various rates.
Figure 5 shows these optimum values plotted against the
average bit-per-pixel (bpp) rate of the compressed video and
the parameter ¢ that controls the quantization of the block-
transform coefficients [26] (Figure 5(a)). Let us observe that
both the bpp and ¢ parameters are easily accessible from
any given MPEG-4 coded video. These plots suggest that a
power law may conveniently explain the relation between the
optimum value of ¢ and both the bpp rate and ¢. Hence, we fit
such bivariate function to the optimum values via least-squares
regression, obtaining the adaptive value of o for the V-BM4D
deblocking filter as

a(bpp, q) = 0.09 - ¢*1* - bpp~216 4+ 3.37 12)

The function o (bpp, ¢) is shown in Figure 5 (right). Note that
in MPEG-4 the parameter ¢ ranges from 2 to 31, where higher
values correspond to a coarser quantization and consequently
lower bitrates. As a matter of fact, when ¢ increases and/or
bpp decreases, the optimum o increases, in order to effectively
cope with stronger blocking artifacts. Clearly, a much larger
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From left to right, the second-order polynomials (9), (10), and (11) describing the relation between the parameters v,, Tij and Tmaeh and the

noise standard deviation o. The nine coefficients of the three polynomials have been determined by maximizing the sum of the PSNR of the test sequences
Salesman (+), Tennis (o), Flower Garden (x), Miss America (X), Coastguard (OJ), Foreman (), Bus (A), and Bicycle (V), corrupted by white Gaussian
noise having o ranging between 5 and 70. As comparison, we superimpose the optimum parameter for each test sequence and o.

bpp

o5 ; Ts
bpp

(a) Optimum values of o plotted against the bit-per-pixel (bpp) rate (top-
left) and quantization parameter g (top-right). The bottom plots show the

corresponding residual absolute errors.

Fig. 5.
Bicycle (V).

value of ¢ could result in oversmoothing, while much smaller
values may not suffice for effectively reducing the compression
artifacts. While in this paper we mostly deal with short test
sequences, and we compute the bpp as the average rate over
the whole sequence, we argue that in practice this rate should
be computed as the average over a limited set of frames,
namely the so-called group of pictures (GOP) built around
each intra-coded frame. In principle, one could learn a model
for o together with all the remaining V-BM4D parameters
at once (possibly achieving better results); but this would
have increased the risk of overfitting the many parameters to
the peculiarities of this compression method, and would have
complicated the optimization task.

Let us remark that V-BM4D deblocking can be straightfor-
wardly applied also to videos compressed by other encoders
than MPEG-4, because the ¢ parameter can be both estimated
as a subjective quality metric for compressed videos, or as an

1.4 5

bpp
(b) Fitted curve of the optimum values of o as a bivariate function
o (bpp, g) (12) used by the V-BM4D deblocking filter.

The sequences used in the fitting are Salesman (+), Tennis (o), Flower Garden (), Miss America (x), Coastguard (OJ), Foreman ({), Bus (A), and

objective measurement [34] on the impairing artifacts to be
filtered out.

V. ENHANCEMENT

Enhancement is used to improve the video quality, so that
the filtered video becomes more pleasing to human subjec-
tive judgment and/or better suited for subsequent automatic
interpretation tasks, as segmentation or pattern recognition.
In particular, by enhancement we refer to the sharpening
of degraded details in images (frames) characterized by low
contrast.

Among the existing enhancement techniques we mention
methods based on histogram manipulation [35], linear and
non-linear unsharp masking [36], [37], [38], fuzzy logic
[39], and weighted median filter [40], [41]. Transform-domain
methods generally apply a nonlinear operator to the transform
coefficients of the processed image/video in order to accentu-
ate specific portions of the spectrum, which eventually results
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in sharpening of details [42], [43], [35], [13]. One of the
most popular technique is alpha-rooting [42], which raises the
magnitude of each transform coefficient ¢; of the processed
spectrum P to a power é, with & > 1 as

1
ng _ ) sign [¢J |¢0} ‘%0| o if gy #0,
bis
where ¢, is the DC term and ¢, is the resulting sharpened
coefficients. Observe that o > 1 induces sharpening, as
it scales the large coefficients relatively to the small ones,
i.e. those carrying high-frequency information [42]. Although
(13) assumes real-valued transform coefficients, it can be
generalized to complex-valued ones, observing that alpha-
rooting preserves the sign in the former case, and the phase
in the latter.

A critical issue in enhancement is the amplification of the
noise together with the sharpening of image details [44], [42],
an effect that becomes more severe as the amount of applied
sharpening increases. In order to cope with this problem,
a joint application of a denoising and sharpening filter is
often recommendable, and in particular this practice has been
investigated in [13], [39].

Enhancement of digital videos, following the approach
proposed in [13], can be easily performed by combining the
V-BMA4D filter with the alpha-rooting operator (13), in order
to simultaneously reduce the noise and sharpen the original
signal. The V-BM4D sharpening algorithm still comprises the
grouping, collaborative filtering and aggregation steps, and it
is carried out through the hard-thresholding stage only. The
alpha-rooting operator is applied on the thresholded coeffi-
cients within the collaborative filtering step, before inverting
the 4-D transform. Note that, since the alpha-rooting amplifies
the group coefficients, the total variance of the filtered group
changes, thus the aggregation weights cannot be estimated
from the number of retained non-zero coefficients N(h;;,tn)'
A simple estimator is devised in [13], and can be used to
define the weights of (5) as

13)

otherwise,

1
S aiyzo wio?

har _
Wixo,to) =

having

2
1 _2
w=[1- 2= b
wi ( a) %0

where @ is the transformed spectrum of the group Gt (xy, o)
resulting from hard thresholding, and ¢, is its corresponding
DC coefficient. The DC-term is not alpha-rooted, thus its
contribution to the total variance of the sharpened group should
be 0. However, in order to avoid completely flat blocks being
awarded with excessively large weights, the weight for the
DC-term is set equal to the weight of the smallest retained
coefficients, i.e. those having magnitude o A\sp as

2
1 _2 2 1
wp = <1_E) [0l = loAap|™ +§\0)\4D\

The separability of the 4-D transform can be exploited to
extend this approach, by treating in a different way different
portions of the thresholded 4-D spectrum. Let us remind
that the 4-D spectrum is structured according to the four

2 1 2_9 2-2
d’z|“+(72‘¢z“’ léol™ =,

2
«

o, o2
[dol™ .
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dimensions of the corresponding group, i.e. two local spatial,
one local temporal, and one for the non-local similarity. In
particular, it includes a 2-D surface (face) corresponding to
the DC terms of the two 1-D transforms used for decorrelating
the temporal and non-local dimensions of the group, and 3-D
volume corresponding to the DC term of the 1-D temporal
transform. Hence, the value of « can be decreased for the
coefficients that do not belong to this 3-D volume, in order to
attenuate the temporal flickering artifacts. Likewise, the por-
tion of spectrum in the 2-D surface can be used to characterize
the group content as proposed in [45], for example by using
lower values of « on flat regions to avoid noise accentuation.

We introduce the sharpening operator in the first stage
(hard thresholding) only, as this guarantees excellent subjective
results, and we address to future work the application of alpha-
rooting during Wiener filtering.

VI. EXPERIMENTS

In this section we present the experimental results obtained
with a C/MATLAB implementation of the V-BM4D algorithm.
The filtering performance is measured using the PSNR, com-
puted on the whole processed video as

2552| X ||T

S enexr @6 1) = 5(x. 1)

(14
where |X| and |T| stand for the cardinality of X and T,
respectively. Additionally, we measure the performance of
V-BM4D by means of the MOVIE index [46], a recently
introduced video quality assessment (VQA) metric that is
expected to be closer to the human visual judgement than
the PSNR, because it concurrently evaluates space, time and
jointly space-time video quality.

The transforms employed in the collaborative filtering
are similar to those in [10], [11]: 72‘5 (used in the hard-
thresholding stage) is a 4-D separable composition of 1-D
biorthogonal wavelet in both spatial dimensions, 1-D DCT in
the temporal dimension, and 1-D Haar wavelet in the fourth
(grouping) dimension while, 7,%¢ (used in the Wiener-filtering
stage) differs from T[%, as in the spatial dimension it performs
a 2-D DCT. Note that, because of the Haar transform, the
cardinality M of each group is set to a power of 2. To
reduce the complexity of the grouping phase, we restrict the
search of similar volumes within a Ng x Ng neighborhood
centered around the coordinates of the reference volume, and
we introduce a step of Ny, € N pixels in both horizontal and
vertical directions between each reference volume. Although
we set Nyep > 1, we have to compute beforehand the
trajectory of every possible volume in the video, since each
volume is a potential candidate element of every group. Table
I provides a complete overview of the parameters setting in
V-BM4D.

The remaining part of this section presents the results of
experiments concerning grayscale Denoising (Section VI-A),
Deblocking (Section VI-B), Enhancement (Section VI-C), and
Color Filtering (Section VI-D).

PSNR(g,y) = 10log;o
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TABLE I
PARAMETER SETTINGS OF V-BM4D FOR THE FIRST (HARD-THRESHOLDING) AND THE SECOND (WIENER-FILTERING) STAGE. IN THE
HARD-THRESHOLDING STAGE, THE THREE PARAMETERS 74, T1rass AND Tyatcn VARY ACCORDING TO THE NOISE STANDARD DEVIATION.

[ Sage [N Ns|No|h]M] ‘o

Hard thr. 8 19
Wiener filt. 7 1 27 4
TABLE IT

DENOISING PERFORMANCE OF V-BM3D AND V-BM4D. THE PSNR (DB) AND MOVIE INDEX [46] (THE LOWER THE BETTER) VALUES ARE REPORTED
IN THE LEFT AND RIGHT PART OF EACH CELL, RESPECTIVELY. IN ORDER TO ENHANCE THE READABILITY OF THE RESULTS, EVERY MOVIE INDEX HAS
BEEN MULTIPLIED BY 10%. THE TEST SEQUENCES ARE CORRUPTED BY WHITE GAUSSIAN NOISE WITH DIFFERENT VALUES OF STANDARD DEVIATION 0.

‘ Tp ‘ Yw ‘ Tw ‘ Nytep ‘ Yd ‘ T traj ‘ Tmatch ‘
05 1 ‘ 6 ‘ 74(0) ‘ Ttraj (o) ‘ Tmatch (7) ‘
) [ 4 10005 ] 1 | 135 ]

Unused

Video: Salesm. Tennis Fl. Gard. | Miss Am. Coastg. Foreman Bus Bicycle
o | Res.: 288x352 | 240x352 | 240x352 | 288x360 | 144x176 | 288x352 | 288x352 | 576x720
Frames: 50 150 150 150 300 300 150 30
5 V-BM4D | 41.00(0.02 | 39.02(0.03 | 37.24/0.02 | 42.16/0.03 | 39.27(0.02 | 40.34/0.03 | 38.35/0.04 | 41.04|0.02
V-BM3D | 40.44|0.02 | 38.47(0.03 | 36.46(0.02 | 41.58/0.03 | 38.25/0.03 | 39.77|0.04 | 37.55/0.05 | 40.89/0.02
10 V-BM4D | 37.30/0.09 | 35.22(0.12 | 32.81|0.07 | 40.09/0.08 | 35.54/0.09 | 36.94|0.11 | 34.26/|0.14 | 37.66(0.09
V-BM3D | 37.21/0.09 | 34.68]|0.15 | 32.11/0.09 | 39.61|0.11 | 34.78|0.13 | 36.46[0.13 | 33.32(0.20 | 37.62|0.09
15 | V-BM4D 35.25|0.24 | 33.04/0.34 | 30.34/0.14 | 38.85/0.17 | 33.41[0.19 | 35.03]0.21 | 31.87(0.32 | 35.61|0.19
V-BM3D | 35.44/0.21 | 32.63]0.37 | 29.81(0.18 | 38.64/0.20 | 33.00[0.25 | 34.64/0.24 | 31.05/0.45 | 35.67|0.17
2 V-BM4D | 33.79|0.46 | 31.59(0.60 | 28.63(0.23 | 37.98(0.27 | 31.94(0.32 | 33.67|0.33 | 30.26/0.53 | 34.10/0.30
V-BM3D | 34.04/0.46 | 31.20/0.73 | 28.24/0.28 | 37.85/0.31 | 31.71|0.41 | 33.30/0.38 | 29.57|0.72 | 34.18/0.27
25 V-BM4D | 32.66/0.75 | 30.56]0.85 | 27.35|0.33 | 37.24/0.37 | 30.81/0.48 | 32.61|0.46 | 29.10/0.73 | 32.89(0.42
V-BM3D | 32.79/0.93 | 30.11|1.10 | 27.00[0.39 | 37.10/0.44 | 30.62[0.65 | 32.19]0.55 | 28.48|1.00 | 32.90/0.39
30 | VBM4D 31.75/1.07 | 29.72/1.10 | 26.29|0.45 | 36.58/0.48 | 29.90/0.66 | 31.80(0.60 | 28.17(0.94 | 31.83|0.56
V-BM3D | 31.68|1.56 | 29.22|1.46 | 25.89(0.55 | 36.41]0.58 | 29.68|0.96 | 31.27|0.75 | 27.59|1.30 | 31.77|0.54
35 V-BM4D | 30.99|1.41 | 29.04(1.33 | 25.40(0.59 | 35.98(0.59 | 29.17|0.88 | 31.11/0.74 | 27.39|1.15 | 30.92(0.72
) V-BM3D | 30.72]2.36 | 28.56[1.85 | 25.16/0.70 | 35.87|0.74 | 28.92|1.36 | 30.56/0.98 | 26.91|1.61 | 30.85/0.73
40 V-BM4D | 30.35|1.76 | 28.49(1.56 | 24.60/0.75 | 35.47|0.70 | 28.54|1.13 | 30.52|0.89 | 26.72|1.37 | 30.10(0.89
V-BM3D | 29.93]3.09 | 27.99|2.17 | 24.33|0.92 | 35.45/0.89 | 28.27|1.86 | 29.97|1.21 | 26.28]1.93 | 30.02|0.94
»
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Fig. 6. From top to bottom, visual comparison of the denoising performance
of V-BM4D and V-BM3D on the sequences Bus, Flower Garden and Tennis
corrupted by white Gaussian noise with standard deviation o = 40.

A. Grayscale Denoising

We compare the proposed filtering algorithm against V-
BM3D [11], as this represents the state of the art in video
denoising and we refer the reader to [11] for comparisons with
other methods that are less effective than V-BM3D. Table II
reports the denoising performance of V-BM3D and V-BM4D
in terms of PSNR and MOVIE index. In our experiments
the two algorithms are applied to a set of test sequences
corrupted by white Gaussian noise with increasing standard
deviation o, which is assumed known. Observations z are
obtained by synthetically adding Gaussian noise to grayscale

Fig. 7. Frame-by-frame PSNR (dB) output of the sequences Tennis (left)
and Bus (right) corrupted by white Gaussian noise with standard deviation
o = 40 denoised by V-BM4D (thick line) and V-BM3D (thin line).

video sequences, according to (1). Further details concerning
the original sequences, such as the resolution and number of
frames, are reported in the header of the tables.

As one can see, V-BM4D outperforms V-BM3D in nearly all
the experiments, with PSNR improvement of almost 1 dB. It
is particularly interesting to observe that V-BM4D effectively
handles the sequences characterized by rapid motions and
frequent scene changes, especially under heavy noise, such
as Tennis, Flower Garden, Coastguard and Bus. Figure 7
shows that, as soon as the sequence presents a significant
change in the scene, the denoising performance decreases



Original frame Compr. frame MPlayer V-BM4D
Fig. 8.  Deblocking: visual comparison of V-BM4D and MPlayer on few
frames. The test sequences (from top to bottom, Foreman, Tennis and Coast-
guard) have been compressed with the MPEG-4 encoder with quantization
parameter g = 25.

significantly for both the algorithms, but, in these situations,
V-BM4D requires much less frames to recover the previous
PSNR values, as shown by the lower peaks at frame 90 of
Tennis.

Finally, Figure 6 offers a visual comparison of the perfor-
mance of the two algorithms. As a subjective quality assess-
ment, V-BM4D better preserves textures, without introducing
disturbing artifacts in the restored video: this is clearly visible
in the tree leaves of the Bus sequence or in the background
texture of Tennis. Such improvement well substantiates the
considerable reduction in the MOVIE index values reported
in Table II.

B. Deblocking

Table III compares, in terms of objective measurements,
the V-BM4D deblocking filter against the MPlayer accurate
deblocking filter', as, to the best of our knowledge, it repre-
sents one of the best deblocking algorithm. Eight sequences
compressed by the MPEG-4 encoder with different values of
the quantization parameter ¢ have been considered: additional
details and the bit-per-pixel rates concerning these sequences
are reported in the table. Numerical results show that V-BM4D
outperforms Mplayer in all the experiments, with improvement
peaks of almost 2dB in terms of PSNR. For the sake of
completeness, we also report the MOVIE index. Observe
that, MOVIE often prefers the compressed observation rather
than the filtered sequences, thus showing a general preference
towards piecewise smooth images. However, let us observe
that such results do not conform to the visual quality of the
deblocked videos.

Figure 8 shows the results of V-BM4D deblocking on
the Foreman, Tennis and Coastguard sequences, encoded at
aggressive compression level (¢ = 25). The visual quality
of the filtered videos has been significantly improved, since
the compression artifacts, such as blocking or ghosting, have
been successfully filtered without losing fine image details. In
particular, we can note how the face in Foreman, the player and
the white poster in Tennis, and the stone-wall in Coastguard,
sharply emerge from their blocky counterparts, while almost-
uniform areas, such as the white striped building in Foreman,

'Source  code and  documentation can be found at
http://sourceforge.net/projects/ffdshow-tryout/ and
http://www.mplayerhg.hu/
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Original frame

Noisy frame a=1.1 a=1.25

Fig. 9. Visual comparison of V-BM4D algorithm using different value of
«. The test sequences, (Foreman and Bus), have been corrupted by white
Gaussian noise with standard deviation o = 5 (top) and o = 25 (bottom),
and have been jointly denoised and sharpened by V-BM4D.

i

Original frame Noisy frame apc = aac apc = 2aa¢
Fig. 10.  Joint V-BM4D denoising, enhancement and deflickering of the
sequence Miss America corrupted by white Gaussian noise with standard
deviation ¢ = 10. From left to right, the bottom row shows the temporal
differences between the frames presented in the top row and the preceding
frames in the original, noisy, and enhanced sequences. The right-most column
shows the sharpening result using different a c in the temporal DC and AC
coefficients of the groups spectra, thus obtaining an effective deflickering yet
maintaining spatial sharpness. The images in the bottom row are all drawn
with respect to the same gray colormap, which is stretched 4 times in order
to improve the visualization.

or the table and the wall in Tennis, have been pleasingly
smoothed without introducing blur.

C. Enhancement

In the enhancement experiments we use the same settings
reported in Table I, testing two values of «, i.e. the parameter
that controls the amount of sharpening in the alpha-rooting.
Figure 9 presents the results of the V-BM4D enhancement
filter applied on the Foreman and Bus sequences, corrupted by
white Gaussian noise having standard deviation o € {5,25},
and sharpened using a = 1.1, and a = 1.25. As the images
demonstrate, the combination of V-BM4D and alpha-rooting
produces satisfying results, as the fine details are effectively
preserved together with a fairly good noise suppression. Such
properties allowed the application of the V-BM4D enhance-
ment filter in biomedical imaging, to facilitate the tracking
of microtubules in RFP-EB3 time-lapse videomicroscopy se-
quences corrupted by heavy noise [2].

In particular, V-BM4D sharpens fine details, such as the tree
leaves in Bus, and reveals barely visible information hidden in
the noisy videos, as the background building of Foreman. The
proposed enhancement filter is minimally susceptible to noise
even when strong sharpening is performed (i.e., « = 1.25), as
shown by the smooth reconstruction of flat areas like the hat
of Foreman and the bus roof of Bus.
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TABLE III
DEBLOCKING PERFORMANCE OF V-BM4D AND MPLAYER ACCURATE DEBLOCKING FILTER. THE PSNR (DB) AND MOVIE INDEX [46] (THE LOWER
THE BETTER) VALUES ARE REPORTED IN THE LEFT AND RIGHT PART OF EACH CELL, RESPECTIVELY. IN ORDER TO ENHANCE THE READABILITY OF THE
RESULTS, EVERY MOVIE INDEX HAS BEEN MULTIPLIED BY 103. THE PARAMETER g CONTROLS THE QUANTIZATION MATRIX OF THE MPEG-4
ENCODER AND BPP DENOTES THE AVERAGE BIT-PER-PIXEL RATE OF THE COMPRESSED VIDEO. AS A REFERENCE, WE ALSO SHOW THE PSNR AND
MOVIE INDEX OF THE UNFILTERED COMPRESSED (COMPR.) VIDEOS.

As explained in Section V, the spectrum coefficients of the
group can be treated differently along the temporal dimension
to attenuate video temporal artifacts such as flickering. In Fig-
ure 10 we show the enhancement results of V-BM4D applied
to the video Miss America corrupted by white Gaussian noise
with ¢ = 10 using two settings for the sharpening parameter
a. In the former experiment a fixed aypcacy = 1.25 is
used to sharpen the whole spectrum of the groups, while in
the latter different values of « are used in the temporal DC
and AC planes. In particular, the temporal DC coefficients
are sharpened using apc = 1.25, and the temporal AC are
sharpened using the halved value aac = 0.625. By using
different values of «, V-BM4D significantly attenuates the
flickering artifacts without compromising the effectiveness of
neither the sharpening nor the denoising. In Figure 10, the
flickering artifacts of the non-uniform intensities within the
temporal difference in the background are clearly visible when
the sequence is processed using apc = aac. In contrast, the
sequence processed using a modified values of « exhibits a
better temporal consistency as demonstrated by the smooth
background in the temporal difference, yet maintaining excel-
lent enhancement and noise reduction properties.

Video: Salesm. Tennis Fl. Gard. Miss Am. Coastg. Foreman Bus Bicycle
q | Res.: 288x352 | 240x352 | 240x352 | 288x360 | 144x176 | 288x352 | 288x352 | 576x720
Frames: 50 150 150 150 300 300 150 30
bpp 0.3232 0.5323 1.4824 0.0884 0.4609 0.3005 0.7089 0.4315
5 | V-BM4D 35.95/0.16 | 34.41|0.18 | 33.54/0.05 | 39.51]0.15 | 34.75(0.13 | 36.49(0.16 | 35.05(0.13 | 38.01/0.08
Mplayer | 35.14/0.17 | 33.79|0.17 | 32.73|0.07 | 38.58|0.14 | 34.00(0.13 | 35.60(0.14 | 34.36(0.10 | 36.53/0.11
Compr. 35.28(0.17 | 33.87/0.17 | 32.81/0.07 | 39.03|0.13 | 34.12(0.13 | 35.70/0.14 | 34.45/0.10 | 36.71|0.11
bpp 0.1319 0.2249 0.7288 0.0399 0.1926 0.1276 0.3285 0.2076
10 | YBM4D 32.12|0.87 | 30.39/0.83 | 27.93/0.26 | 37.30/0.48 | 30.75(0.50 | 32.91/0.49 | 30.69(0.43 | 33.54|0.36
Mplayer | 31.66|1.08 | 29.87]0.89 | 27.40/0.31 | 36.61]0.53 | 30.23]0.53 | 32.16/0.52 | 30.11]0.41 | 32.45/0.46
Compr. 31.54/0.86 | 29.84(0.78 | 27.41/0.29 | 36.66/0.46 | 30.19(0.51 | 32.09(0.48 | 30.07|0.36 | 32.37|0.46
bpp 0.0865 0.1326 0.4470 0.0318 0.1184 0.0812 0.2039 0.1333
15 V-BM4D | 30.06/1.89 | 28.48(1.49 | 25.15/0.58 | 36.13|0.82 | 28.731.01 | 31.10/0.90 | 28.48|0.85 | 31.16/0.79
Mplayer | 29.65|2.39 | 28.03|1.52 | 24.68]0.68 | 35.59|0.90 | 28.30[1.10 | 30.36]0.98 | 27.89|0.83 | 30.12/0.95
Compr. 29.48(1.78 | 27.97|1.39 | 24.67|0.63 | 35.41|0.81 | 28.18|1.03 | 30.27(0.90 | 27.83]0.71 | 30.00/0.98
bpp 0.0661 0.0943 0.3058 0.0280 0.0852 0.0625 0.1453 0.0985
2 V-BM4D | 28.66(3.03 | 27.24|2.07 | 23.34]0.95 | 35.02[1.21 | 27.42[1.73 | 29.85[1.38 | 26.96|1.38 | 29.52|1.26
Mplayer | 28.31|3.76 | 26.82(2.12 | 22.90|1.12 | 32.93|1.58 | 27.04[1.96 | 29.12|1.55 | 26.42|1.42 | 28.60|1.56
Compr. 28.11]2.71 | 26.76]1.93 | 22.88|1.02 | 34.21|1.21 | 26.90|1.73 | 29.03|1.37 | 26.35|1.16 | 28.43|1.58
bpp 0.0546 0.0710 0.2225 0.0257 0.0679 0.0523 0.1121 0.0846
25 | V-BM4D 27.63|4.19 | 26.34|2.55 | 22.07|1.38 | 34.31|1.54 | 26.47[2.53 | 29.01|1.87 | 25.93[1.96 | 28.32|1.78
Mplayer | 27.30|5.09 | 25.96/2.57 | 21.63|1.64 | 33.66]1.70 | 26.11|2.95 | 28.25|2.13 | 25.38]2.04 | 27.35[2.18
Compr. 27.07|3.63 | 25.85|2.38 | 21.62|1.49 | 33.45|1.57 | 25.98|2.45 | 28.10[1.86 | 25.27|1.66 | 27.22|2.20
bpp 0.0477 0.0604 0.1697 0.0244 0.0584 0.0480 0.0921 0.0676
30 | V-BM4D 26.84|5.38 | 25.59(2.99 | 21.08/1.86 | 33.25[1.90 | 25.72(3.53 | 28.30|2.33 | 25.06|2.57 | 27.40|2.34
: Mplayer | 26.51|6.31 | 25.26[3.02 | 20.65[2.24 | 32.80[2.08 | 25.38|4.20 | 27.57|2.68 | 24.55[2.70 | 26.54|2.88
Compr. 26.28(4.59 | 25.11]2.77 | 20.64|1.99 | 32.39|1.97 | 25.25|3.31 | 27.37|2.31 | 24.41|2.19 | 26.35|2.88
TABLE IV

COLOR DENOISING PERFORMANCE OF V-BM3D AND V-BM4D IN TERMS
OF PSNR (DB) AND MOVIE INDEX [46] (THE LOWER THE BETTER)
VALUES ARE REPORTED IN THE LEFT AND RIGHT PART OF EACH CELL,
RESPECTIVELY. IN ORDER TO ENHANCE THE READABILITY OF THE
RESULTS, EVERY MOVIE INDEX HAS BEEN MULTIPLIED BY 103. THE
TEST SEQUENCES ARE CORRUPTED BY WHITE GAUSSIAN NOISE WITH
DIFFERENT VALUES OF STANDARD DEVIATION 0.

Video: Tennis Coastg. Foreman Bus

o | Res. 240x352 | 144x176 | 288x352 | 288x352
Frames: 150 300 300 150

5 V-BM4D | 39.98(0.01 | 41.13]0.01 | 41.38/0.01 | 40.21/0.01
V-BM3D | 39.45[0.01 | 40.18/0.01 | 40.56/0.01 | 39.07|0.01

10 | V-BM4D 36.42/0.04 | 37.28(0.03 | 37.92/0.05 | 36.23/0.05
V-BM3D | 36.040.04 | 36.82]0.03 | 37.52/0.04 | 34.96]0.07

2 V-BM4D | 32.88/0.17 | 33.61]0.13 | 34.62(0.15 | 32.27/0.20
V-BM3D | 32.54[0.18 | 33.39|0.14 | 34.49|0.16 | 31.03|0.32

40 V-BM4D | 29.52(0.70 | 30.00/0.42 | 31.30/0.44 | 28.32/0.70
V-BM3D | 29.20[0.82 | 29.99]0.63 | 31.17|0.56 | 27.34]1.32

D. Color Filtering

The proposed V-BM4D algorithm can be extended to color
filtering using the same approach of the Color-BM3D image
denoising algorithm [10], [21]. We consider the denoising
of noisy color videos, such as a RGB videos, having each



V-BM3D

Noisy frame
Comparison of V-BM3D and V-BM4D color denoising perfor-
mances. The test sequences (from top to bottom, Foreman, Tennis, Bus and
Coastguard) have been corrupted by white Gaussian noise with standard
deviation o = 40.

Original frame
Fig. 11.

V-BM4D

channel independently corrupted by white Gaussian noise with
variance o2.

The algorithm proceeds as follows. At first, the RGB
noisy video is transformed to a luminance-chrominance color
space, then, both the motion estimation and the grouping are
computed from the luminance channel only, as this usually
has the highest SNR and carries most of the significant infor-
mation. In fact, image structures do not typically vary among
different channels, and the results of the motion estimation
and the grouping on the luminance can be directly reused
in the two chrominance channels as well. Once the groups
are formed, each channel undergoes the collaborative filtering
and aggregation independently, and three individual estimates
are produced. Eventually, the final RGB estimate is produced
by inverting the color space transformation. Such approach is
a reasonable tradeoff between the achieved denoising qual-
ity and the required computational complexity. Figure 11
compares the denoising performances of V-BM4D against
the state-of-the-art V-BM3D filter, on the color sequences
Foreman, Tennis, Bus, and Coastguard, corrupted by white
Gaussian noise having standard deviation ¢ = 40. As a
subjective assessment, V-BM4D better preserves fine details,
such as the face and the background building in Foreman,
the background texture in Tennis, the leaves in Bus and
the grass in Coastguard. From an objective point of view,
as reported in Table IV, V-BM4D performs better than V-
BM3D in every experiment, with PSNR gains of up to 1.5dB.
The MOVIE index confirms the superior performances of V-
BM4D, especially when the observations are corrupted with
high level of noise.

VII. COMPLEXITY

In our analysis the complexity of the algorithm is measured
through the number of basic arithmetic operations performed;
other factors that may also influence the execution time, such
as the number of memory accesses or memory consumption,
have not been considered.

Each run of V-BM4D involves the execution of the hard-
thresholding stage (whose complexity is C{‘([BM4D), of the
Wiener-filtering stage (whose complexity is Cy'gyup)> and two
runs of the motion estimation algorithm (whose complexity is
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TABLE V
SUMMARY OF THE PARAMETERS INVOLVED IN THE COMPLEXITY
ANALYSIS.
[ Parameter | Notes
T Total number of frames in the video.
n Number of pixels per frame (i.e. #X).
N Size of the 2-D square blocks.
h Temporal extent of the volumes in V-BMA4D, size of the
temporal search window in V-BM3D, corresponding to
(2Npg +1) in [11].
Ng Size of the motion estimation window.
M Size of the groups, that is the number of grouped volumes
in V-BM4D or the number of grouped blocks in V-
BM3D.
Na Size of the window used in the grouping.
Nitep Processing step (refer to Section VI for further details).
Clm,p.n) Numeric operations required by a multiplication between
matrices of size m X p and p x n (i.e. the cost of a linear
transformation).

Ccr). Hence, the V-BM4D overall complexity is:
(15)

Differently, V-BM3D does not require any motion estimation,
and thus its complexity (Cv.pmsp) is given by the sum of
the complexity of its hard-thresholding (C{‘,EBM3D) and Wiener-
filtering (Cy5psp) stages:

ht wie
Cv-amap = 2Cct + Cyipyup + CVBman-

(16)

Table V shows a comprehensive summary of the parame-
ters involved in the complexity analysis, as well as a brief
description of their role in the algorithm. To provide a fair
comparison, we assume that in V-BM4D the number of
blocks in any spatiotemporal volume (referred as h) coincides
with the size of temporal search window Npgr in V-BM3D;
similarly, we assume that the number of grouped volumes in
V-BM4D (referred to as M) corresponds to the number of
grouped blocks in V-BM3D.

__ pht wie
Cv-em3p = Cyigmsp + CviBmip-

A. Computation of the Trajectory

The computation of the trajectory requires searching for the
most similar block within an adaptive search window of size
Ng x Ng once for each of the preceding and following frames,
ie. h — 1 times. Computing the ¢? distance between a pair of
blocks consists in 3N? operations, as it requires two additions
and one multiplication for each of the corresponding pixel.
Since a trajectory is constructed for each pixel in every frame
of the video, the total cost is

Cer = nT(h —1)NZ (3N?) . (17)

B. Hard-Thresholding Stage

In the hard-thresholding stage, for each processed block
according to Ngep, at most M similar volumes are first
extracted within a search window of size Ng X Ng, then
stacked together in a group, and finally transformed by a
separable 4-D transform. Observe that the hard-thresholding,
which is performed via element-wise comparison, requires one
arithmetical operation per pixel. Eventually, the basic estimate
is obtained by aggregating the inverse 4-D transform of the
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filtered groups. Thus, we obtain:

ht n 2 o7 A2
Cwn = =T ( NE3AN
step ~——

Grouping

+2 (2MEC(N,N,N) + MC N2y + C(M,M.hN2))

Forward and Inverse Transformations
+ MAN® + MQN? )

RalGA RN A

Thresholding
where the symbol C(...) stands for the cost of a matrix
multiplication operation, as explained in Table V, and the
factor 3 in the grouping complexity is due to the computation
of the ¢2 distance between two 3-D volumes of size N x N x h.
The cost of the is the sum of four matrix multiplications, one
for each dimension of the group, as this is linear and separable

18)

Aggregation

In V-BM3D, the grouping is accomplished by predictive-
search block-matching [11]: briefly it performs a full-search
within a Ng X Ng window in the first frame to extract the
Np best-matching blocks, then, in the following h frames, it
inductively searches for other Np best-matching blocks within
windows of size Npr x Npr (with Npr < Ng) centered
at the position of the previous Np blocks. Furthermore, since
the fourth dimension is missing, the algorithm performs a 3-D
transform of the M blocks of each group. The complexity of
this stage is:

Cann = 3= T( (V& + NphNg) 3N°
Niep oo — ———
Grouping

+2 (ZJ\JC(N,N_N) + C(}\,{{]\,{Jvz))

Forward and inverse transformations
+ UN? + MN? )
—— ——
Thresholding

19)

Aggregation

C. Wiener-filtering Stage

The complexity of the Wiener-filtering stage can be ex-
pressed as that of hard-thresholding stage in (18), with the
exception that the transformation involves two groups having
equal size, and that the coefficients shrinkage (performed via
element-wise multiplication) involves the computation of a set
of weights, which requires 6 arithmetic operations per pixel:

C\“/’-i]gMétD = NLQT( NC2;37LN2
step ~——
Grouping

+4 (QAJEC(N,N,N) + MC N2y + C(M,M,BN?))

Forward and Inverse Transformations
+6MAN?+ MRN? )
—_— —\—
Shrinkage

(20)

Aggregation

Analogously, in V-BM3D the complexity of Wiener-filtering
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TABLE VI
SCALABILITY OF THE V-BM4D DENOISING ALGORITHM. THE TEST
SEQUENCE IS Tennis, CORRUPTED BY WHITE GAUSSIAN NOISE HAVING
o = 25. THE PARAMETERS M, N¢g, AND Ngrgp = 6 HAVE BEEN USED IN
BOTH THE HARD-THRESHOLDING AND WIENER-FILTERING STAGE. TWO
DIFFERENT MOTION ESTIMATION STRATEGIES HAVE BEEN EMPLOYED: A
FAST DIAMOND SEARCH [47] MODIFIED IN ORDER TO INCORPORATE THE
PENALTY TERM DESCRIBED IN SECTION III-A2 INTO THE BLOCK

MATCHING, AND THE ONE PROPOSED IN SECTION III-A. THE TIME
REQUIRED TO FILTER A SINGLE FRAME, AND (IN PARENTHESIS) THE TIME
SOLELY SPENT DURING THE MOTION ESTIMATION ARE REPORTED IN THE

LAST COLUMN.

[ Mot est. | M | Ng ][ PSNR ]| 17/ fps |
1 1 29.88 3.07 (2.8)
Mod. [47] | 1 | 19 | 2988 | 736 (2.8
2| 19 | 3017 | 1457 ©28)
T 1 ] 3007 | 242 220D
Sec. LA | 1 | 19 || 3007 | 2676 (22.1)
32 19 3032 | 3399 (22.1)

stage is
e n . . .
C¥win = 5T ( (V& + NohNpp) N2
step —

Grouping
+4 (2MC(n.n.N) + Car,a.N2))

Forward and Inverse Transformations
L 6MN%+ MN? )
—— —
Shrinkage

@n

Aggregation

D. Comparative Analysis

The complexities of V-BM3D and V-BM4D scale linearly
with the number of processed pixels, thus both algorithms are
O(n). However, it is worth carrying out a deeper analysis since
different multiplying factors may have a remarkable impact on
the final cost of the two algorithms. In this comparison we as-
sume that V-BM3D and V-BM4D share the same parameters.
In this manner, we can analyze the complexities by comparing
the corresponding terms of the cost expansions (18) and (19).
At first, we observe that costs of the grouping can be neglected
since they are similar in both algorithms. Differently, in V-
BMA4D the coefficients shrinkage (in the Wiener stage) and the
aggregation (in both the Wiener and hard-thresholding stages)
require exactly & times more operations than in V-BM3D. We
can easily compare the complexity of the transformation, as in
V-BM4D it involves the additional dimension corresponding
to the spatiotemporal volumes. Therefore we can conclude
that the overall cost due to the transformation is more than
h times the corresponding cost in V-BM3D. An analogous
inference can be made also for the costs of the Wiener-
filtering stage given in (20) and (21). In conclusion, we can
state that in these conditions, V-BM4D is at least h times
computationally more demanding than V-BM3D. However, V-
BMA4D is also burdened by the motion-estimation step, whose
cost is expanded in (17). Let us observe that this cost can
be entirely eliminated when the input video is encoded with
a motion-compensated algorithm, such as MPEG-4 or H.264,
since the motion vectors required to build the spatiotemporal
volumes can be directly extracted from the encoded video.

Table VI reports the PSNR values and the corresponding
seconds per frame required by V-BM4D to process the video
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Tennis (CIF resolution) on a single 3GHz core. We use
different settings to quantify the computational load of the
grouping and the filtering, by modifying in both stages the
size of the search window N¢g and the number of grouped
volumes M, respectively. Then, we analyze two different
motion estimation strategies, specifically the predictive search
described in Section III-A and the fast diamond search algo-
rithm presented in [47] modified to incorporate the penalty
term described in Section III-A2 into the block matching.
Finally, we fix Ny, = 6 in both stages to keep the average
frame-per-second (fps) count unbiased. All the remaining V-
BM4D parameters are set as in Table I. The speed-ups induced
by the fast motion estimation algorithm (~8x), the smaller
search window (~15x), or the smaller group size (~2.5x),
correspond to marginal PSNR losses, thus demonstrating the
good scalability properties of the proposed V-BM4D. Note
that, when the nonlocality features are disabled (i.e. M = 1
and Ng = 1) the motion estimation does not need to be
performed for every block in the video, because only one block
every Nyep in both spatial directions is actually processed
during the filtering. Thus, by skipping the motion estimation
of the useless blocks, it is possible to achieve an additional
speed-up of ~12x that allows V-BM4D to process nearly 4 fps
without affecting the final reconstruction quality.

VIII. DISCUSSION

As anticipated in the introduction, a severe limitation of V-
BM3D lies in the grouping step, because it does not distinguish
between the nonlocal and temporal correlation within the
data. The improved effectiveness of V-BM4D indicates the
importance of separately treating different types of correlation,
and of explicitly accounting the motion information. In what
follows we analyze how the PSNR provided by the two
algorithms change when a temporal-based or nonlocal-based
grouping is encouraged by varying the parameters that control
the grouping strategy (both int the hard-thresholding and
Wiener-filtering stage), i.e. (M,h) in V-BM4D and (Ng,NrRr)
in V-BM3D. In these experiments we consider two videos:
Salesman and Tennis, being representative of a static and a
dynamic sequence, respectively.

We recall that for a given pair (M,h) V-BM4D builds
volumes having temporal extent up to 2h+1 and stacks up to
M of such volumes in the grouping step. In this analysis,
we consider the pairs (M,h) = (1,7), which yields groups
composed of a single volume having temporal extent 15,
and (M,h) = (16,0), which yields groups composed of 16
volumes of extent having temporal extent 1. These settings
correspond to a temporal-based grouping strategy in the former
case, and to a nonlocal-based grouping strategy in the latter.
The results reported in Table VII show that, although the
temporal-based groups have a smaller number of blocks than
the nonlocal-based groups, they yield a PSNR improvement
of about 17% in Salesman and 13% in Tennis with respect to
the basic configuration (M ,h) = (1,0). In contrast, the PSNR
improvement inducted by nonlocal-based groups is only about
4% in Salesman and 3% in Tennis. Note that the size of the
groups in V-BM4D can be reduced down to one, somehow
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resembling V-BM3D, without suffering from a substantial
loss in terms of restoration quality. As a matter of fact, the
PSNR values shown in Table VII when M =1 are only less
than 0.2dB worse than the corresponding results reported in
Table II, obtained using bigger values of M. Interestingly, the
sequence Salesman shows a regular loss in performance for
every h > 3 as the dimension of the groups M increases, thus
manifesting that in stationary videos the nonlocality actually
worsen the correlation properties of the groups.

To reproduce the nonlocal-based grouping strategy in V-
BM3D, we increase the parameter Np, controlling the number
of self-similar blocks to be followed in the adjacent frames,
and further we set ds = 0 to give no preference towards
blocks belonging to different frames (i.e. blocks having the
same coordinates of the reference one [11]). Additionally we
fix the maximum size of the groups to Ny = 16, so that
bigger groups can be formed as Nrr and/or Np increase. We
stress that the group composition in V-BM3D is not known
when Np X Nrpr > Na, since the number of potential block
candidates is greater than the maximum size of the group,
and such candidates are unpredictably extracted from both
the nonlocal and temporal dimension. Figure 12 illustrates
the V-BM3D denoising performance. Similarly to V-BM4D,
the graph shows a consistent PSNR improvement along the
temporal dimension (i.e. as Npp increases), and an almost
regular loss along the nonlocal dimension (i.e. as Np becomes
larger).

This analysis empirically demonstrates that, 1) in our
framework, the nonlocal spatial correlation within the data
does not dramatically affect the global PSNR of the restored
video, although it becomes crucial in sequences in which the
temporal correlation can not be exploited (e.g., having frequent
occlusions and scene changes), and 2) a grouping based only
on temporal-correlated data always guarantees, both in V-
BM4D and V-BM3D, higher performance than a grouping
that only exploits nonlocal spatial similarity. Additionally,
if the volumes are composed by blocks having the same
spatial coordinate (i.e. zero motion assumption, or equivalently
Y4 = 00), the denoising quality significantly decreases: in the
case of Flower Garden and o = 25, the PSNR loss is ~2.5dB.

IX. CONCLUSIONS

Experiments show that V-BM4D outperforms V-BM3D both
in terms of objective (denoising) performance (PSNR, MOVIE
index), and of visual appearance (as shown in Figure 6 and
11), thus achieving state-of-the-art results in video denoising.
In particular, V-BM4D can restore fine image details much
better than V-BM3D, even in sequences corrupted by heavy
noise (o = 40): this difference is clearly visible in the pro-
cessed frames shown in Figure 6. However, the computational
complexity of V-BM4D is obviously higher than V-BM3D,
because of the motion-estimation step and the need to process
higher-dimensional data. Our analysis of the V-BM4D and V-
BM3D frameworks highlights that the temporal correlation
is a key element in video denoising, and that it represents
an effective prior that has to be exploited when designing
nonlocal video restoration algorithms. Thus, V-BM4D can
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TABLE VII
PSNR (DB) oUTPUTS OF V-BM4D TUNED WITH DIFFERENT SPACE (M) AND TIME (h) PARAMETERS COMBINATIONS. RECALL THAT THE TEMPORAL
EXTENT IS DEFINED AS 2h + 1. THE TEST SEQUENCES Salesman AND Tennis HAVE BEEN CORRUPTED BY WHITE GAUSSIAN NOISE WITH STANDARD
DEVIATION o = 20.
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14

‘ M | Video “ h ‘
1 2 3 4 5 6 7 8
1 Salesm. || 29.22 | 32.22 | 33.12 | 33.54 | 33.78 | 33.93 | 34.03 | 34.10 | 34.16
Tennis 28.04 | 30.38 | 31.04 | 31.33 | 31.48 | 31.56 | 31.61 | 31.64 | 31.65
o | Salesm. 29.70 | 32.19 | 3290 | 33.20 | 33.37 | 33.45 | 33.50 | 33.52 | 33.52
Tennis 28.42 | 30.54 | 31.15 | 31.42 | 31.55 | 31.62 | 31.65 | 31.67 | 31.67
4 Salesm. || 30.08 | 32.32 | 3292 | 33.14 | 3322 | 3324 | 3322 | 33.18 | 33.13
Tennis 28.63 | 30.62 | 31.18 | 31.42 | 31.52 | 31.56 | 31.57 | 31.56 | 31.53
8 Salesm. || 3035 | 32.51 | 33.11 | 33.36 | 33.46 | 33.49 | 3348 | 3345 | 33.40
Tennis 28.74 | 30.65 | 31.21 | 31.44 | 31.55 | 31.60 | 31.61 | 31.60 | 31.57
16 | Satesm. 30.47 | 32.65 | 3329 | 33.57 | 33.72 | 33.79 | 33.82 | 33.81 | 33.80
Tennis 28.78 | 30.66 | 31.21 | 31.45 | 31.56 | 31.63 | 31.65 | 31.66 | 31.65
TABLE VIII

PSNR (DB) OUTPUTS OF V-BM3D TUNED WITH DIFFERENT SPACE (Np) AND TIME (N ) PARAMETERS COMBINATIONS. THE SIZE OF THE 3-D
GROUPS HAS BEEN SET TO N2 = 16 IN BOTH WIENER AND HARD-THRESHOLDING STAGES; ADDITIONALLY WE SET THE DISTANCE PENALTY TO ds = 0.
THE TEST SEQUENCES Salesman AND Tennis HAVE BEEN CORRUPTED BY WHITE GAUSSIAN NOISE WITH STANDARD DEVIATION o = 20.

Ng | Video Nrr
1 3 5 7 9 11 13 15 17
1 Salesm. | 29.21 | 30.83 | 32.43 | 32.39 | 33.43 | 33.46 | 33.48 | 33.46 | 33.96
Tennis 27.89 | 29.29 | 30.42 | 30.40 | 30.93 | 30.94 | 30.94 | 30.93 | 31.04
3 Salesm. | 29.50 | 32.06 | 32.53 | 32.99 | 33.24 | 33.37 | 33.51 | 33.64 | 33.75
N Tennis 28.13 | 29.78 | 30.29 | 30.39 | 30.61 | 30.70 | 30.79 | 30.87 | 30.96
7 Salesm. | 29.84 | 31.90 | 32.43 | 3278 | 33.04 | 33.20 | 33.36 | 33.50 | 33.61
Tennis 2831 | 29.64 | 30.07 | 30.27 | 30.51 | 30.62 | 30.72 | 30.82 | 30.91
I Salesm. | 30.15 | 31.83 | 32.39 | 32.75 | 33.02 | 33.18 | 33.34 | 33.49 | 33.60
Tennis 28.45 | 29.58 | 30.03 | 30.25 | 30.50 | 30.61 | 30.71 | 30.81 | 30.90
s Salesm. | 30.15 | 31.81 | 32.38 | 32.75 | 33.02 | 33.18 | 33.34 | 3348 | 33.59
Tennis 2845 | 29.56 | 30.02 | 30.25 | 30.50 | 30.60 | 30.71 | 30.81 | 30.90
N 3H:G\,R M .z‘a‘gh M szo‘zh
V-BM3D V-BM4D V-BM4D
Salesman Tennis
Fig. 12.  PSNR (dB) surface plot of the V-BM4D and V-BM3D restoration performance for the sequence Salesman and Tennis reported in Table VII and
Table VIIL.

be a viable alternative to V-BM3D especially in applications
where the highest restoration quality is paramount or when the
separation of the four dimensions is essential.

V-BM4D can be also used as a joint denoising and sharp-
ening filter, as well as a deblocking filter providing ex-
cellent performance on both objective and subjective visual
quality. Additionally, by exploiting the separability of the
4-D transform, spatiotemporal artifacts (such as flickering)
can be alleviated by acting differently on different transform
coefficients. Furthermore, we remark that V-BM4D can be

extended to color data filtering in each of its applications,
namely denoising, deblocking and sharpening.
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A Nonlocal Transform-Domain Filter for Volumetric Data
Denoising and Reconstruction

Matteo Maggioni, Vladimir Katkovnik, Karen Egiazarian, Alessandro Foi

Abstract—We present an extension of the BM3D filter to volumetric
data. The proposed algorithm, BMA4D, i the
grouping and collaborative filtering paradigm, where mutually similar
d-dimensional patches are stacked together in a (d + 1)-dimensional
array and jointly filtered in transform domain. While in BM3D the
basic data patches are blocks of pixels, in BM4D we utilize cubes of
voxels, which are stacked into a four-dimensional “group”. The four-
dimensional transform applied on the group simultaneously exploits the
local correlation present among voxels in each cube and the nonlocal
correlation between the corresponding voxels of different cubes. Thus,
the spectrum of the group is highly sparse, leading to very effective
separation of signal and noise through coefficients shrinkage. After
inverse transformation, we obtain estimates of each grouped cube, which
are then adaptively aggregated at their original locations. We evaluate
the algorithm on denoising of volumetric data corrupted by Gaussian
and Rician noise, as well as on reconstruction of volumetric phantom
data with non-zero phase from noisy and incomplete Fourier-domain (k-
space) measurements. Experimental results demonstrate the state-of-the-
art denoising performance of BM4D, and its effectiveness when exploited
as a regularizer in volumetric data reconstruction.

Index Terms—Volumetric data denoising, volumetric data reconstruc-
tion, compressed sensing, magnetic resonance imaging, computed tomog-
raphy, nonlocal methods, adaptive transforms

I. INTRODUCTION

The past six years have witnessed substantial developments in
the field of image restoration. In particular, for what concerns
image denoising, starting with the adaptive spatial estimation strategy
termed nonlocal means (NLmeans) [1], it soon became clear that self-
similarity and nonlocality are the characteristics of natural images
with by far the biggest potential for image restoration. In NLmeans,
the basic idea is to build a pointwise estimate of the image where
each pixel is obtained as a weighted average of pixels centered at
regions that are similar to the region centered at the estimated pixel.
The estimates are nonlocal because, in principle, the averages can be
calculated over all pixels of the image. One of the most powerful and
effective extensions of the nonlocal filtering approach is the grouping
and collaborative filtering paradigm embodied by the BM3D image
denoising algorithm [2]. This algorithm is based on an enhanced
sparse representation in transform domain. The enhancement of the
sparsity is achieved by grouping similar 2-D fragments of the image
into 3-D data arrays which are called “group”. Such groups are
processed through a special procedure, named collaborative filtering,
which consists of three successive steps: firstly a 3-D transformation
is applied to the group, secondly the transformed group coefficients
are shrunk, and finally a 3-D group estimate is obtained by inverting
the 3-D transformation. Due to the similarity between the grouped
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fragments, the noise can be well separated by shrinkage because
the 3-D transformation discloses a highly sparse representation of
the true signal in transform domain. In this way, the collaborative
filtering reveals even the finest details shared by the jointly filtered
2-D fragments preserving at the same time their essential unique
features. The BM3D algorithm presented in [2] represents the current
state of the art in 2-D image denoising, demonstrating a performance
significantly superior to that of all previously existing methods.
Recent works discuss the near-optimality of this approach and offer
further insights about the rationale of the algorithm [3], [4].

In this work, we present an extension of the BM3D algorithm to
volumetric data denoising. While in BM3D the basic data patches
are blocks of pixels, in the proposed algorithm, denominated BM4D,
we naturally utilize cubes of voxels. The group formed by stacking
mutually similar cubes is hence a four-dimensional orthope (hy-
perrectangle) whose fourth dimension, along which the cubes are
stacked, embodies the nonlocal correlation across the data. Thus,
collaborative filtering simultaneously exploits the local correlation
present among voxels in each cube as well as the nonlocal correlation
between the corresponding voxels of different cubes. As in BM3D,
the spectrum of the group is highly sparse, leading to a very effective
separation of signal and noise by either thresholding or Wiener
filtering. After inverse transformation, we obtain the estimates of each
grouped cube, which are then aggregated at their original locations
using adaptive weights.

Further we exploit BM4D as a regularizer operator for the re-
construction of incomplete volumetric data. The proposed procedure
generalizes [S], [6], as it addresses the reconstruction of volumetric
data having non-zero phase from a set of incomplete noisy transform-
domain measurements. Our reconstruction procedure works itera-
tively. In each iteration the missing part of the spectrum is excited
with random noise; then, after transforming the excited spectrum to
the voxel domain, the BM4D filter attenuates the noise present in both
magnitude and phase of the data, thus disclosing even the faintest
details from the incomplete and degraded observations. The overall
procedure can be interpreted as a progressive approximation in which
the denoising filter directs the stochastic search towards the solution.

Experimental results on volumetric data from the BrainWeb
database [7] demonstrate the state-of-the-art performance of the pro-
posed algorithm. In particular, we report significant improvement over
the results achieved by the optimized volumetric implementations of
the NLmeans filter [8], [9], [10], [11], which, to the best of our
knowledge, are the most successful approaches in magnetic resonance
(MR). We also test BM4D against real MR data provided by the
OASIS database [12]. As for the reconstruction experiments, our
iterative procedure achieves excellent performance for both the 3-D
Shepp-Logan [13], [14] and BrainWeb phantoms sampled by various
trajectories.

The remainder of paper is organized as follows. In Section II we
formally define the observation model, the BM4D implementation,
and the adopted parameters. The denoising experiments are analyzed
in Section IIL. In Section IV we first describe the volumetric recon-
struction procedure, and then in Section V we report its experimental
validation. Concluding remarks are given in Section VI.
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Hard-thresholding estimate ring estimate
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Fig. 1. Flow-diagram of the proposed BM4D algorithm. In both Hard-thresholding (left box) and Wiener-filtering (right box) stage, the grouping, collaborative
filtering and aggregation steps are performed for each reference cube of the observed volumetric data.

II. BM4D ALGORITHM
A. Observation Model

For the development of the BM4D algorithm, we consider noisy
volumetric observation z : X — R of the form

zeX, @

where y is the original, unknown, volumetric signal, « is a 3-D coor-
dinate belonging to the signal domain X C Z*, and n(-) ~ N'(0,0?)
is independent and identically distributed (i.i.d.) Gaussian noise with
zero mean and known standard deviation o.

(@) = y(z) +n(z),

B. Implementation

The objective of the proposed BM4D is to provide an estimate ¢ of
the original y from the noisy observation z. Similarly to the BM3D
algorithm, BM4D is implemented in two cascading stages, namely a
hard-thresholding and a Wiener-filtering stage, each comprising three
steps: grouping, collaborative filtering, and aggregation. The flow-
diagram of the BM4D implementation is illustrated in Fig. I.

1) Hard-thresholding stage: Let C7 . denote a cube of L x L x L
voxels, with L € N, extracted from z at the 3-D coordinate zr € X,
which identifies its top-left-front corner. In the hard-thresholding
stage, the four-dimensional groups are formed by stacking together,
along an additional fourth dimension, (three-dimensional) noisy cubes
similar to C7 .. Specifically, the similarity between two cubes is
measured via the photometric distance

llez, - <zl
d(C,.C5,) = R, ®
where || - |3 denotes the sum of squared differences between corre-

sponding intensities of the two input cubes, and the denominator >
serves as normalization factor. No prefiltering is performed before the
cube-matching, therefore the noisy observations are directly tested for
similarity.

In the grouping step, a group consisting of mutually similar cubes
extracted from z is built for every (reference) cube C7 .. Two cubes
are considered similar if their distance (2) is smaller than or equal
to a predefined threshold 7\, which thus controls the minimum
accepted cube-similarity. Formally, we first define a set containing
the indices of the cubes similar to C7 , as

Sin = { € X 1d(C2 CL) < Thha} - ®
Then, such (3) is used to build the four-dimensional group
Gy, = I <. @

1683,

being ] the disjoint union operation. This process is exemplified
in Fig. I, where the reference cube, denoted by “R”, is matched to
a series of similar cubes located anywhere within the 3-D data. In
particular, the coordinate xr and the various x; in (3) correspond
to the tails and the heads of the arrows connecting the cubes,
respectively. Observe that, since the distance of any cube to itself
is always zero, from the definition of (3) follows that each group (4)
necessarily contains at least the reference cube C7 .

During the collaborative filtering step, four 1-D decorrelating linear
transform, which we denote as a joint four-dimensional transform
TH,, are separately applied to every dimension of the group (4).
The so-obtained 4-D group spectrum is then shrunk coefficient by
coefficient by a hard-thresholding operator Y™ with threshold value

oD as
(7 (65,).

The transform 7% is assumed to have a DC term, which is never

shrunk during the collaborative filtering so that the mean value of the

group is preserved. Eventually, the filtered group, denoted as G";y s
S¥p

5)

is produced by inverting the four-dimensional transform as

7 (0 (b (e52,))) = 6%, = 11 e

@i €55,

(©6)

being each égl an estimate of the original C¥, extracted from the
unknown volumetric data y.

The groups (6) are an overcomplete representation of the denoised
signal, because cubes in different groups, as well as cubes within the
same group, are likely to overlap; as a result, within the overlapping
regions, different cubes provides multiple, and in general different, es-
timates for the same voxel. In the aggregation step, such redundancy
is exploited through an adaptive convex combination to produce the
basic volumetric estimate

bt Ay
Sonex (Deiess, whaCt,)
:
ht
Tonex (Toess, whaxs)
ht

where wf,, are group-dependent weights, x., : X — {0,1} is the
characteristic (indicator) function of the domain of é’f;{t (i.e. xo; =1
over the coordinates of the voxels of C'fﬁ{i and x.; = 0 elsewhere),
and every C’fl is assumed to be zero-padded outside its domain. Note
that, whereas in BM3D a 2-D Kaiser window of the same size of the
blocks is used to alleviate blocking artifacts in the aggregated estimate
[2], in the proposed BM4D we do not perform such windowing,
because of the small size of the cubes. The weights in (7) are defined
as

~ht

(]

Wt =
op = )
R 0‘2 N;}"R

®)
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where ¢ is the standard deviation of the noise in z, and N;“R
denotes the number of non-zero coefficients in (5). Since the DC
coefficient is always retained after thresholding, i.e. NL"R > 1, the
denominator of (8) is never zero. Note that the number N,‘;‘R has a
double interpretation: on one hand it measures the sparsity of the
thresholded spectrum (5), and on the other, as explained in [2], it
approximates the total residual noise variance of the group estimate
(6). Thus, those groups exhibiting a high degree of correlation are
rewarded with larger weights, whereas others having a large residual
noise are penalized by smaller weights.

2) Wiener-filtering stage: In the Wiener-filtering stage, the group-
ing is performed within the basic estimate j™. We expect the obtain
a more accurate and reliable matching because the noise level in
9™ is considerably smaller than that in z. We are interested in
improving the matching because a better grouping leads to a more
effective sparsification of the group spectrum, which in turn results
in a superior denoising quality. Formally, for each reference cube
C‘;?: extracted from the basic estimate ", we build the set of the
coordinates of its similar cubes as

sP = {z eX:d (C;R,n;?':‘) < T"W,;fch} , ©)

where d(-, ) is defined as in (2).
The collaborative filtering is 1mplemented as an empirical Wmer
filter. Analogously to (4), at first a group G s is extracted from §™

using the set of coordinates (9), then from lhe energy of its spectrum
we define the empirical Wiener filter coefficients as

. Aht 2
ie v
|72 (67 )]
ght =— S:LH
Sy

Y e (@i V[P o2 a0
(e )| +o

where o denotes the standard deviation of the noise, and 7,7 i

a transform operator composed by four 1-D linear transformatlons,

which are in general different than those in 77%. Subsequently, we

use the same set (9) to extract a second (noisy) group, termed G* it s

from the observation z. The coefficients shrinkage is 1mpleme}ned
as element-by-element multiplication between the spectrum of the
noisy group and the Wiener-filter coefficients (10). The estimate of

the group
o 7 (03))

is finally produced by applying the inverse four-dimensional trans-
form 7,75 ™" to the shrunk spectrum

The final estimate §** is produced through a convex combination,
analogous to (7), in which the sets (3) are replaced with (9), and the
aggregation weights for a specific group estimate (11) are defined
from the energy of the Wiener-filter coefficients (10) as

& =T (W an

TR

-2

wly =02 |W |, (12)
st

2
where o is the standard deviation of the noise in z. In this way, as in

[2], each (12) gives an estimate of the total residual noise variance
of the corresponding group (11).

III. DENOISING EXPERIMENTS

We validate the denoising capabilities of BM4D' using noisy mag-
netic resonance phantoms, because we recognize medical imaging to

'MATLAB code available at http:/www.cs.tut.fi/~foi/GCF-BM3D/
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be one of the most prominent applications based on volumetric data.
We measure the objective quality of the denoising trough its PSNR

D?|X|
Yeex (@) —y@)* )’

where D is the peak of y, X = {z € X : y(z) > 10- D/255}
(in order not to compute the PSNR on the background as in [8]),
and | X| is the cardinality of X. We also evaluate our experiments
with the structure similarity index (SSIM), that is a metric originally
presented for 2-D images in [15] and extended to 3-D data in [8] that
better relates to the human visual system than traditional methods
based on the mean squared error such as the PSNR. In what follows,
without loss of generality, we assume to deal with real-valued signals
normalized to the intensity range [0,1] (i.e. D = 1).

The experiments are made under both Gaussian- and Rician-
distributed noise. In the former case, the noisy observations z are
distributed accordingly to (1); in the latter, the noisy observations
z: X — RT follow the definition

(@) = \/(ery(@) + on (@) + (ciy(@) + o (@)’ (13)

where z is a 3-D coordinate belonging to the domain X C Z°, ¢, and
¢; are constants satisfying the condition 0 < ¢,,¢; < 1 = 2+,
and 7,(-),mi(-) ~ N(0,1) are i.i.d. random vectors following the
standard normal distribution. In this way, z ~ R (y,o) represents
the raw magnitude MR data, modeled as a Rician distribution R of
parameters y and o, denoting the (unknown) original noise-free signal
and the standard deviation of the Rician noise, respectively [16].

Leveraging a recently proposed method of variance-stabilization
(VST) [16] for the Rician distribution, BM4D can be successfully
applied to data distributed as in (13) without incorporating any
adaptation to the algorithm. The purpose of the VST is to remove
the dependency of the noise variance on the underlying signal before
the denoising, and compensate the effects of the bias in the produced
filtered estimate. Formally, the denoising of Rician data via the BM4D
algorithm is expressed as

PSNR (y,9) = 10log; (

= VST~ (BMAD(VST (2,0) , ovsr) ), a4

where VST™! denotes the inverse variance-stabilization transforma-
tion, ovsr is the stabilized standard deviation induced by the VST,
and o is the standard deviation of the noise in (13). Thus, the noisy
Rician data z is first stabilized by the VST and then filtered by BM4D
using a constant noise level oysr; the final estimate is finally obtained
by applying the inverse VST to the output of the denoising. Note that
this inverse is not the trivial algebraic inverse of the forward VST,
but it includes further nonlinearities in order to compensate both the
bias due to forward stabilization and the bias due to the non-zero
mean of the Rician noise [16].

The volumetric test data y is the T1 BrainWeb phantom of size
181 x 217 x 181 voxels having 1mm slice thickness, 0% noise, and
0% intensity non-uniformity [7]. We synthetically generate the noisy
observations z accordingly to (1) and (13) using different values of
standard deviation o, ranging from 1% to 19% of the maximum value
D of the original signal y.

In order to provide relevant comparisons, we validate the denoising
performance of the BM4D algorithm against the optimized blockwise
nonlocal means OB-NLM3D [10], the optimized blockwise nonlocal
means with wavelet mixing OB-NLM3D-WM [11], the oracle-based
3-D DCT ODCT3D [8], and the prefiltered rotationally invariant
nonlocal means PRI-NLM3D [8]. To the best of our knowledge,
ODCT3D and PRI-NLM3D represent the state of the art in MR image
denoising. The OB-NLM3D, OB-NLM3D-WM, ODCT3D, and PRI-
NLM3D algorithms exist in separate implementations developed for
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TABLE 1
PARAMETER SETTINGS FOR THE PROPOSED BM4D ALGORITHM.
Stage
Parameter Hard thresholding || Wiener filiering
Normal ‘ Modif. H Normal ‘ Modif.
Cube size | L 4 4 1 5
Group size | M R 32
Step | Nstep 3
Search-cube size Ng 11
Similarity thr. | Tmach 29 [ 246 [ 04 6.7
Shrinkage thr. | As4p 2.7 ‘ 2.8 H Does not apply
v " v
a2t 420"
\ \
aof- ok
~— 38 b — 38 b
=] N a N
Z =4 Z 34
QZ: 3 ‘8, Z. 34 ‘8,
% =N @ 7y
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Fig. 2. PSNR denoising performance of BM4D under the normal (o) and

modified (3) profile applied to the BrainWeb phantom [7] corrupted by i.i.d.
Gaussian noise (left) and Rician noise (right) with varying level of o.

Gaussian- and Rician-distributed noise, thus we decorate their names
with a subscript “A\” (Gaussian) and “R” (Rician) to denote the noise
distribution addressed by the specific algorithm implementation.

A. Algorithm Parameters

We set the size of the cubes in BM4D in such a way that the
cubes contain roughly as many voxels as the number of pixels in the
2-D blocks in BM3D. In this manner, we are able to successfully
utilize most of the settings originally optimized for BM3D. Since the
BM3D algorithm is presented under two sets of parameter, namely
the normal and modified profile in which the blocks have size 8 and
11 [2], we correspondingly define for BM4D two analogous profiles
having cube size L =4 and L = 5.

The separable four-dimensional transforms of BM4D are similar
to those in [2]. In the hard-thresholding stage 775 is a composition
of a 3-D biorthogonal spline wavelet in the cube dimensions (note
that, due to the small L, this transform is actually equivalent to a 3-D
Haar separable transform) and a 1-D Haar wavelet in the grouping
dimension; in the Wiener-filtering stage 7,7y embeds a 3-D discrete
cosine transform (DCT) in the cube dimensions and, again, a 1-D
Haar wavelet in the grouping dimension. The Haar transform in the
fourth dimension restricts the cardinality of the groups to be a power
of two, but, since such cardinality is not known a priori, we constrain
the number of grouped cubes to be the largest power of 2 smaller
than or equal to the minimum value between the original cardinality
of the groups and a predefined value M. Then, in order to reduce the
computational complexity of the algorithm, the grouping is performed
within a three-dimensional window of size Ns X Ng X Ng centered
at the coordinate of the current reference cube, and all such reference
cubes are separated by a step Ngep € N in every spatial dimension.
Table I summarizes the role and the value of all parameters utilized
by BM4D.
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TABLE IIT
ACQUISITION DETAILS OF THE OASIS “OAS1_0108_MR1” MRI
CROSS-SECTIONAL DATA.

MP-RAGE OAS1_0108_MRI1 sequence

TR (msec) 9.7

TE (msec) 4.0

Flip angle (deg) 10

TI (msec) 20

TD (msec) 200

Orientation Sagittal
Dimension (voxels) | 256 x 256 x 128
Resolution (mm) 1.0 x 1.0 x 1.25

In the modified profile, following the comments suggested in [17],
we increase the values of the similarity thresholds 7, the group
size M, the cube size L, and the hard-threshold value A\4p. The
rationale behind such modifications consists in improving both the
reliability of the matching by using larger cubes, and the effectiveness
of the collaborative filtering by promoting the formation of bigger
groups. The denoising performance of BM4D under both the normal
and modified profile with increasing values of standard-deviation
o (for both Gaussian- and Rician-distributed data) is illustrated in
Fig. 2. As one can see, the modified profile consistently provides
the best PSNR performance, especially in cases when the noise
variance is large, i.e. ¢ > 15%. The results present a consistent
behavior with Figure 9 in [2], where the two different profiles are
compared in 2-D image denoising. These results are explained by
the nature of MR images, as modeled by the BrainWeb phantom,
predominantly characterized by low-frequency content, abundance of
similar patches, and a vast smooth background. The modified profile
leverages such attributes because, on one hand, it tends to form groups
having maximum cardinality, and, on the other, it applies a slightly
more aggressive smoothing through the larger A4p. That being so, we
choose to always utilize the modified parameters for our experimental
evaluation.

B. Denoising of BrainWeb Phantom

Table II reports the PSNR and SSIM performance for the OB-
NLM3D, OB-NLM3D-WM, ODCT3D, PRI-NLM3D, and BM4D
filters. The proposed BM4D algorithm always achieves the best
results both in case of Gaussian- and Rician-distributed noise, with
PSNR improvements on the current state-of-the-art filters [8] roughly
ranging between 0.5dB and 1.4dB. Additionally, we observe that,
among the considered algorithms, the PSNR and SSIM performance
of BM4D exhibits the most graceful degradation as noise level o
increases. Fig. 8 shows a cross-section of the BrainWeb phantom,
denoised by all algorithms; the illustrated noisy observation, shown
in Fig. 7(c), has been corrupted by i.i.d. Gaussian noise having
o = 15%. From a subjective point of view, BM4D achieves an
excellent visual quality, as can be seen from the smoothness in
flat areas, the details preservation along the edges, and the accurate
preservation of the intensities in the restored phantom.

C. Denoising of Real Magnetic Resonance Data

The denoising algorithms have been also tested on real cross-
sectional MR data made publicly available by the Open Access Series
of Imaging Studies (OASIS) database [12]. The T1-weighted mag-
netization prepared rapid gradient-echo (MP-RAGE) 16-bit images
have been acquired via a 1.5-T Vision scanner (Siemens, Erlangen,
Germany) in a single imaging session, additional details on the
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TABLE II

PSNR (LEFT VALUE IN EACH CELL) AND SSIM [15], [8] (RIGHT VALUE IN EACH CELL) DENOISING PERFORMANCES ON THE VOLUMETRIC TEST DATA
FROM THE BRAINWEB DATABASE [7] OF THE PROPOSED BM4D (UNDER THE MODIFIED PROFILE) AND THE OB-NLM3D [10], OB-NLM3D-WM [11],
[18], ODCT3D [8], AND PRI-NLM3D [8] FILTERS. TWO KINDS OF OBSERVATIONS ARE TESTED, ONE CORRUPTED BY I.I.D. GAUSSIAN AND THE OTHER

BY SPATIALLY HOMOGENOUS RICIAN NOISE ACCORDING TO THE OBSERVATION MODELS (1) AND (13). BOTH CASES ARE TESTED UNDER DIFFERENT

STANDARD-DEVIATIONS &, EXPRESSED AS PERCENTAGE RELATIVE TO THE MAXIMUM INTENSITY VALUE OF THE ORIGINAL VOLUMETRIC DATA. VST

REFERS TO THE VARIANCE-STABILIZATION FRAMEWORK DEVELOPED FOR RICIAN-DISTRIBUTED DATA [16]. THE SUBSCRIPTS A/ (GAUSSIAN) AND R

(RICIAN) DENOTE THE ADDRESSED NOISE DISTRIBUTION.

Noise Filter l =
1% 3% 5% 7% 9% 11% 13% 15% 17% 19%
(Noisy data) 40.00]0.97 [ 30.46]0.81 | 26.02]0.66 | 23.10/0.53 | 20.91]0.43 | 19.17]0.36 | 17.72|0.30 | 16.48]0.25 | 15.39]0.22 | 14.42(0.19
OB-NLM3Dxr 42.47]0.99 | 37.57|0.97 | 34.73]0.95 | 32.82(0.92 | 31.42]0.90 | 30.32]0.87 | 29.40]|0.84 | 28.61]0.82 | 27.91|0.79 | 27.28(0.77
Gauss. OB-NLM3D-WMu/ 42.52]0.99 | 37.75|0.97 | 35.01]0.95 | 33.13]0.93 | 31.73]0.90 | 30.61]0.88 | 29.68|0.85 | 28.88]0.83 | 28.18]0.80 | 27.55(0.78
ODCT3D »r 43.78(0.99 | 37.53]0.97 | 34.89]0.95 | 33.18/0.93 | 31.91]0.91 | 30.90/0.89 | 30.07|0.88 | 29.35|0.86 | 28.73]0.85 | 28.18[0.83
PRI-NLM3D 44.04/0.99 | 38.26/0.98 | 35.51|0.96 0.94 | 32.37]0.92 | 31.29]0.90 | 30.40(0.89 | 29.65|0.87 | 28.99/0.85 | 28.40|0.84
BM4D 44.09]0.99 | 38.39]0.98 | 35.95]0.96 0.95|33.21/0.93 | 32.28/0.92 | 31.50/0.91 | 30.82(0.90 | 30.23|0.88 | 29.70(0.87
(Noisy data) 40.00]0.97 [30.49]0.81 ] 26.09]0.66 | 23.20]0.53 | 21.04[0.43 ] 19.32]0.36 | 17.880.30] 16.65]0.25 | 15.57]0.21 | 14.60[0.18
OB-NLM3D7. 42.4110.99 | 37.45|0.97 | 34.54/0.94 | 32.51]0.91 | 30.97]0.88 | 29.71]0.85 | 28.62|0.81 | 27.64/|0.78 | 26.74|0.74 | 25.91]0.70
VST + OB-NLM3D 42.48(0.99 | 37.45[0.97 | 34.40/0.94 | 32.26/0.91 | 30.65|0.88 | 29.34|0.85 | 28.23|0.81 | 27.25]0.78 | 26.37]0.74 | 25.57(0.71
OB-NLM3D-WMz. 42.4410.99 | 37.54/0.97 | 34.66/0.95 0.92 | 31.01]0.88 | 29.69]0.85 | 28.53/0.81 | 27.50(0.77 | 26.57|0.74 | 25.71|0.70
Rician VST + OB-NLM3D-WMr |42.53/0.99 | 37.68|0.97 | 34.75]0.95 | 32.66]0.92 | 31.06]0.89 | 29.770.86 | 28.68|0.83 | 27.71]0.80 | 26.84]0.76 | 26.04/0.73
ODCT3DRr 42.96]0.99 | 37.38/0.97 | 34.70]0.95 0.93{31.53]0.90 | 30.41]0.88 | 29.48]0.86 | 28.67]0.84 | 27.95]0.82 | 27.30|0.80
VST + ODCT3Dar 43.74]0.99 [ 37.51]0.97 | 34.79]0.95 0.93{31.59]0.90 | 30.47]0.88 | 29.52]0.86 | 28.71]0.84 | 27.98|0.82 | 27.31]0.80
PRI-NLM3D7 43.970.99 | 38.19]0.98 | 35.34/0.96 | 33.37(0.94 | 31.94|0.91 | 30.74]0.89 | 29.75|0.87 | 28.88|0.85 | 28.10/0.82 | 27.39]0.80
VST + PRI-NLM3D s |44.21]0.99 | 38.20(0.98 | 35.34]0.96 | 3 0.94|31.90/0.91 | 30.71]0.89 | 29.71|0.87 | 28.88|0.85 | 28.13|0.82 | 27.46/0.80
VST + BM4D 44.08/0.99 | 38.34(0.98 | 35.83/0.96 0.94 | 32.89(0.93 | 31.82]0.91 | 30.90/0.89 | 30.06/0.88 | 29.29|0.86 | 28.57|0.84

acquisition process are summarized in Table III. The (anonymous) test
subject is a 25-years old right-handed male with no brain damages.
The noise has been assumed to be Rician-distributed, and its standard
deviation, estimated as described in [16], is approximately o ~ 4%
of the maximum intensity value of the data. The acquired phantom is
shown in Fig. 7(d), whereas Fig. 8 shows the corresponding denoised
results produced by the OB-NLM3D, OB-NLM3D-WM, ODCT3D,
PRI-NLM3D, and BMA4D filters. It is not possible to give objective
measurement of the denoising quality because the ground-truth data
is unknown; however, from a subjective point of view, we note that
the visual quality of the restored phantom has been significantly
improved by every algorithm, as the noise has been removed without
introducing disturbing artifacts. Given the relatively mild standard
deviation of the corrupting noise, all algorithms produce good-quality
estimates, nevertheless we note that fine details in the phantoms
restored by OB-NLM3D and OB-NLM3D-WM are slightly over-
smoothed whereas the estimates obtained from ODCT3D, PRI-
NLM3D, and BM4D have comparable visual quality.

D. Computational Complexity and Scalability

The current single-threaded MATLAB/C implementation of the
BM4D algorithm under the modified profile requires about 11 min-
utes to denoise the BrainWeb phantom on a machine with a 2.66-
GHz processor and 8GB of RAM. About 30% of the computa
time is spent during the hard-thresholding stage, and the remaining
is spent during the Wiener-filtering stage. We remark that the cube-
matching nonlocal search procedure, mainly parametrized by the size
of the 3-D search window Ns and by the step between neighboring
processed cubes Niep, is by far the most time-consuming task. In
our current implementation only the 1-D transform applied to the
fourth (grouping) dimension uses a fast algorithm, whereas the 3-
D separable transform used for each cube is computed via matrix
multiplications; therefore BM4D could be accelerated by employing
fast transform algorithms also for the cube dimensions. Table IV
shows the PSNR performance, together with the execution times, of
BM4D tuned with different combinations of Ns and Niep.

Significant accelerations can be induced by decreasing Ns. In

TABLE IV
PSNR DENOISING PERFORMANCES OF BM4D TUNED WITH DIFFERENT
COMBINATIONS OF THE PARAMETERS CONTROLLING THE

CUBE-MATCHING, NAMELY THE SIZE OF THE 3-D SEARCH WINDOW Ng

AND THE STEP BETWEEN NEIGHBORING PROCESSED CUBES Nirep; THE
LAST COLUMN SHOWS THE MEAN EXECUTION TIMES OF THE DENOISING
PROVIDED BY A SINGLE-THREADED MATLAB/C IMPLEMENTATION. THE
HARDWARE USED TO EXECUTE THE EXPERIMENTS IS A MACHINE WITH A

2.66-GHZ PROCESSOR AND 8GB OF RAM. THE TEST DATA IS THE
BRAINWEB PHANTOM, CORRUPTED BY L.1.D. GAUSSIAN NOISE WITH

STANDARD DEVIATIONS . THE PERFORMANCES OF BM4D UNDER THE
DEFAULT SETTINGS Ng = 11 AND Nsrgp = 3 ARE REPORTED IN ITALIC

FONT.

‘ Param. H o H Sec
[ Ns [ Nee | 7% [ 11% [ 15% | 19% || :
5 27.71 | 24.39 | 22.08 | 20.31 4.0

1 4 30.99 | 28.57 | 26.93 | 25.70 6.2
3 31.82 | 29.58 | 28.10 | 27.00 13.6

5 32.81 | 30.51 | 28.90 | 27.66 || 49.7

3 4 33.36 | 31.13 | 29.57 | 28.37 91.2
3 33.54 | 31.31 | 29.76 | 28.57 || 210.5

5 33.68 | 31.58 | 30.13 | 29.00 107.8

5 4 33.95 | 31.85 | 3041 | 29.30 204.9
3 34.05 | 31.97 | 30.53 | 29.42 || 455.8

5 33.90 | 31.81 | 30.36 | 29.24 118.5

7 4 34.17 | 32.08 | 30.63 | 29.51 228.5
3 34.26 | 32.18 | 30.74 | 29.63 || 524.1

5 33.98 | 31.89 | 30.42 | 29.27 || 139.5

9 4 34.24 | 32.13 | 30.68 | 29.55 || 253.5
3 34.34 | 3225 | 30.80 | 29.68 || 604.3

5 34.00 | 31.86 | 30.37 | 29.21 155.1

11 4 34.27 | 32.17 | 30.69 | 29.56 289.8
3 34.38 | 32.28 | 30.83 | 29.70 || 676.7

5 34.01 | 31.84 | 30.34 | 29.16 199.1

13 4 34.30 | 32.18 | 30.70 | 29.55 || 372.7
3 34.40 | 32.30 | 30.83 | 29.70 || 870.5

5 34.03 | 31.86 | 30.34 | 29.15 || 257.7

15 4 34.31 | 32.18 | 30.69 | 29.53 || 4825
3 34.42 | 32.30 | 30.82 | 29.68 || 1130.1
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fact, referring to Table IV, the setting Ns = 1 is roughly between
50x and 150x faster than the default size Ns = 11. However,
Ns =1 de facto disables the grouping procedure, because in such
case the search windows, and consequently the groups, contain one
and only one element, that is the reference cube itself. As a result, the
sparsification induced by the collaborative filtering is less effective
because the nonlocal correlation is missing in the grouped data. The
repercussions are evident in the corresponding PSNR performance,
which is about up to 5dB worse than those of the default case.
In general, whenever N5 is enlarged and Ny, does not vary, the
execution time grows by roughly a factor of 1.2x without producing
a dramatic PSNR improvement. Interestingly, the PSNR sometimes
worsen as Ns > 11, thus suggesting that bigger search windows do
not always improve the denoising quality.

Conversely, keeping Ns fixed, and excluding the case limit
Ns = 1, we observe that the execution time roughly halves at
every increment of Ny with a performance degradation of only
about 0.4dB. Anyway the step should not be carelessly enlarged
because whenever Nyep > L any pair of adjacent reference cubes are
separated by a gap of L — Nyep voxels in each dimension, and since
there is no guarantee that every voxel in those gaps will be covered by
non-reference cubes, the final denoised volume may contain missing
estimates. In the experiments reported in Table IV, we substitute the
occurring missing estimates with the corresponding values of the data
used in the grouping, i.e. the z in the hard-thresholding stage and §™
in Wiener-filtering stage.

In conclusion, we have verified that BM4D gracefully scale with
different tuning of the search-window size Ns and the step Nep
parameters, which in turn affect the complexity of the cube-matching
search procedure. However, optimal filtering results are achieved
when Ngs > 3 and Nyep < L, to enable a better grouping and avoid
possible missing estimates in the final denoised volume.

IV. ITERATIVE RECONSTRUCTION FROM INCOMPLETE
MEASUREMENTS

In several inverse imaging applications, such as magnetic reso-
nance imaging (MRI), the observed (acquired) measurements are
a severe subsample of a transform-domain representation of the
original unknown signal. In this section, we propose an iterative
procedure, designed for the joint denoising and reconstruction of
incomplete volumetric data, that uses the proposed BM4D algorithm
as a regularizer operator.

A. Problem Setting

In volumetric reconstruction, an unknown signal of interest is
observed through a limited number linear functionals. In compressed-
sensing problems, these observations can be considered as a limited
portion of the spectrum of the signal in transform domain. In general,
a direct application of an inverse operator cannot reconstruct the
original signal, because we consider cases where the available data
is much smaller than what is required according to the Nyquist-
Shannon sampling theorem. However, it is shown that whenever the
signal can be represented sparsely in a suitable transform domain,
stable (and even exact) reconstruction of the unknown signal is still
possible [19], [20]. The most popular reconstruction techniques are
formulated as a convex optimization, usually solved by mathematical
programming algorithms, that yields the solution most consistent with
the available data. The optimization is typically constrained by a
penalty term expressed as {o or {1 norms, which are exploited to
enable the sparsity of the assumed image priors [21], [22], [23], [20].
Our approach, inspired by [5], [6], [24], replaces such parametric
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modeling of the solution with a nonparametric one implemented by
the use of a spatially adaptive denoising filter.

In MRI the non-uniform coil sensitivity and inhomogeneities of
the magnetic field, causing frequency shifts and distortions in both
intensity and geometry of the acquired data, generate (complex)
images with a non-zero phase component [31], [32], [33]. It is
generally assumed that the magnitude contains most of the structural
information of the underlying data and the phase is smooth varying
[25], [26], [27], [28]. Thus, even though the real and imaginary parts
could be processed simultaneously, e.g., enforcing smoothness priors
on the complex representation of the image, in our approach the
magnitude and phase of the data are independently regularized in
order to preserve their unique and individual features.

B. Observation Model

The observation model for the volumetric reconstruction problem
is given by
0=T (ye“’) +, (15)

where 6 is the transform-domain representations of the unknown
volumetric data having magnitude y : X — RT and absolute
(unwrapped) phase ¢ : X C Z*® — R, 1 is the imaginary unit, 7~
is, for our purposes, the Fourier transform, and n(-) ~ N (0, 02) is
ii.d. complex Gaussian noise with zero mean and standard deviation
o.
Let €2 be the support of the available portion of the spectrum 6. We
define a sampling operator S’ as the characteristic (indicator) function
xa, which is 1 over 2 and 0 elsewhere. By means of S, we can split
the spectrum in two complementary parts as
0=5-0+(1-S)-0,
~
01 PS

where 0 and 6 are the observed (known) and unobserved (unknown)
portion of the spectrum 6, respectively. Our goal is to recover an
estimate ¢ of the unknown underlying magnitude y from the observed
noisy measurements ¢;. Note that if we had the complete spectrum
6, we could trivially obtain § by applying a volumetric denoising
filter, such as BM4D, on the (exact) noisy magnitude z = ‘T’I(G)}.
However, since only a small portion of the spectrum 6 is available and
since such portion contains noisy measurements, the reconstruction
task of the magnitude y is an ill-posed problem.

In Section IV-C, we first introduce the algorithm in its more general
form, suitable for data having non-zero phase. Then, in Section IV-D,
we consider the simplifications to the algorithm that are relevant to
the special case where the phase component is zero. In both cases,
the ultimate goal consists in reconstructing the magnitude of the
incomplete volumetric image.

C. Reconstruction of Volumetric Data with Non-Zero Phase

The reconstruction is carried out by an iterative procedure where
the estimate of the unobserved spectrum 62 is improved via a
stochastic search driven by the action of an adaptive denoising filter
[5], [6], [24]. Specifically, we denote such filter as ®(-,-) whose
inputs are the (real) noisy data to be filtered and the assumed noise
standard deviation of this data. In what follows, we consider ® to be
the BM4D filter.

At first, the estimate of the unobserved spectrum 6 is set to zero
to generate the initial back-projection 7' (61 + (1 — S) - 0) which
is then used to obtain the magnitude and phase components as

Z;(0) — 17(0) — ?]e(fc)ilt _ ‘7——1(91 +(1-5) '0) ,

30 = 3O Z 3O _ (91 1 (1-8) .0)4

Pexcite
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90 = 5O = 5O@ = ’T,l (91 +(1-9)- o) '
30 =60 =30, = 2T (01 +(1-5)-0 >
k=1 s
while k < kg .
6" = T(W*U&“ VY-a-s) ;
0 =0 +6,% + -5 " 6
e = (59,) 7
e = 2T (050 s
9% = VST (@ (VST (30, ol ) sovst) ol ) )

Jon k

o*) :mod( (mod (G’im.cﬂ‘ ) (- ]) vﬂixc)uc) =¢®, (=
(krz) ! (krz

o, o, 1"

S
A = (A excite excite

ke—1%excite

g(k)em _ )\kg(kfl)ew;\(k R (1- /\k)g(k)eu;!(k) »
k+—k+1 13
end "
Algorithm 1. Pseudo-code of the iterative reconstruction algorithm. The input

parameters are the available spectrum 61, the 3-D trajectory S, the excitation
NOISE Texcite» and the number of iterations Kgnq. By ® we denote the denoising
algorithm used during the reconstruction, and VST is a variance-stabilization
transformation for Rician-distributed data.

Subsequently, for each iteration k& > 1, which we shall denote by
a superscript (k), the reconstruction is carried out through three
cascading steps:
1) Noise Addition (Excitation): The estimate of the unobserved
portion of the spectrum is first extracted as

A(k) T( =1 ¢’~ ]))-S,

where g“H) and ¢~V are the denoised magnitude and
regularized phase produced in the previous iteration (k — 1).
Subsequently, we synthetically generate the excited spectrum

16)

0 =0 +6," +a-

excite

S) - (k)

Mexcite? an
by injecting (16) with i.i.d. complex Gaussian noise nffczm
with zero mean and standard deviation am)m Eventually, the
volumetric (excited) magnitude

(k) k
e =77 (6%

(18)
and (excited) phase

e = 2T (0%2) a9

excite

are obtained by extracting the absolute value (modulus) and
angle from the inverse-transformed spectrum (17), respectively.
2) Volumetric Filtering: The missing coefficients of the spectrum
0, previously excited in (17), are then modified by the action
of the independent denoising of the excited magnitude (18) and
excited phase (19). Intuitively, whenever the excited coefficients
correspond to features that satisfy the sparsification induced by
the grouping and collaborative filtering, these features will be
preserved or enhanced, otherwise they will be attenuated.
The excited magnitude (18) is distributed accordingly to the
Rician observation model as in (13) because the noise in the
corresponding excited spectrum (17) is i.i.d. complex Gaussian.
Thus, we need to apply a variance-stabilization transform
(VST), analogously to (14), during the filtering of (18) as

~(k —1 k k k
§® = vsT (‘1’ (VST (!/ixc)..cx focf.c) JVST) ’Hixc)ilc) ,
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where (re(fczm is the standard deviation of the excitation noise
added in (17).

On the other hand, for the sake of simplicity, the phase is
assumed to follow the Gaussian observation model (1) with
noise standard deviation créfc)im. To ensure proper filtering, in
particular along phase-jumps, we add before denoising and then
subtract after denoising a random phase shift ¢ () ag

d;(k):mod( (mod( :Z)"c C<k),(—7T,7r]),U:,:CCz't)_C(k)v(_TrJr])v

where ¢(®) ~ U(—m,7) is a random variable uniformly
distributed between —7r and 7 defining the phase shift applied
to every voxel of ¢ . and mod(-, (—m,7]) realizes the
wrapping on the interval (—m, 7). Such phase-shift moves
the position of the phase jump at different spatial positions
at each instance of filtering and in this way (Z)“") eventually
approximates, modulo 27, the result of filtering the absolute
unwrapped phase.

Data Reconstruction: The sequence of estimates ) might get
trapped in local optima because the data that pilots the regu-
larization, i.e. the available spectrum 01, is corrupted by noise.
Thus, in order to escape from possible degenerate solutions, we
aggregate the estimates 5™ and o™ in a complex recursive
convex combination as

3

(k) 0d®) (k—1) 23k—D
Gt — xgt0ed® Y (g

=)0t
where g](’” >= 0, and -7 < <Z><’“) < m for all k > 0. The
aggregation weights 0 < A < 1 are recursively defined as

(k) -)" O

Texcite excite 7

(20)

(@28}
1. The explicil formulae for (20)

A(z m<’)
Z e ;

=0

12
A = (A;ila(k D7,

excite

with initial condition \g =

k
~(k) 1d() _ (O
e = (3ol

i=0

and for (21)

(i)~2 (k)~2

illustrate that each estimate g“’ contributes to the combinaliozn
(20) with a weight inversely proportional to the variance ac(xzm
of its excitation noise.

The iterative procedure can be either stopped after a pre-specified
number of iterations Kfna, or when two magnitude estimates produced
at subsequent iterations do not significantly differ from each other.
For instance, this can be done via the normalized p-norm as

X% Hym §*- 1)“ <e,

where |X| is the cardinality of the domain X, and ¢ € R" is the
desired tolerance value. The pseudo-code of the iterative procedure
is shown in Algorithm 1.

To illustrate the role of the two separate recursive volumetric
estimates y(k) and ‘(’“) let us assume that C X and that
(rexkjlt — 0. There are essentially two cases. Flrst if 0 > 0,
the system is kept <pcrmancntly under excitation, which means that
in practice ’l/(k)(‘m is not able to conver},e However, under the
same assumptlons we have that A\, ~ k="' for large k, and thus
7 e pr# approaches the sample mean of §*) e over k. Thus,
g "7’ can be interpreted as an approximation of the expectation
gMe 1) over k (i.e. over the excitation noise). Second, if o = 0,
(’“) 29" can converge to some estimate yf”” and §Me B

Yy
of ¢
then 7
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will eventually converge to the same estimate. In summary, in the
ideal case where the observed §([)ectrum 6, is noise-free, the two
estimates g}<k)e"°(k) and §*) e " become equivalent; conversely,
when observed spectrum is noisy, g(k)e’*”(k) plays a crucial role
in enabling convergence to the expectation of the non-convergent
POEEE)

Even though in principle, for an arbitrary operator ®, the existence
of the expectation of y”(k) can be guaranteed only if the excitation
noise vanishes sufficiently fast with k, we note that in practice, due
to the denoising and to the given observations 6, such expectation
is typically well defined, leading to a stable convergence of ).

We observe also that if the spectrum 6 of the noisy phantom is
completely available (i.e. #; = 6, Q = X, and thus no subsampling
is performed) and af,ﬁ)“e = o for all k, Algorithm I coincides with
a one-time application of the filter ® on § %}, = |77 (0)] with
assumed noise standard deviation o, because the inputs yifc:w of each
iteration do not vary with k. On the other hand, if the whole spectrum
is not available (i.e. Q € X) and oM o= 0, as observed above

° excite R
we have that g“%”"(k ") ™ Thus, Algorithm 1

approaches Jo
generalizes both the iterative reconstruction algorithm implemented
in [5], [6] to the case of noisy observations, as well as the BM4D

filter to the case of incomplete measurements.

D. Reconstruction of Volumetric Data with Zero Phase

In this section we discuss the reconstruction of volumetric data
under the assumption that its phase component is null, i.e. ¢ = 0.
Since in such case the magnitude {yem| is equal to the real com-
ponent Re(ye'?) = y, the reconstruction procedure described in the
previous section can be greatly simplified.

Initially, we set the initial estimate of the missing portion of the
spectrum to zero, then we extract the back-projection as

i = Re (T (01 +(1-5)-0)).
Note that the extraction of the absolute value is no longer needed
because the underlying data y is real; however since the output of
7! is in general complex due to the noise in the data or numerical
errors of the computation, we still need to extract the real component
after the inverse transformation because the denoising filter @ is
implemented for real inputs.

Subsequently, for each iteration & > 1, the following steps are
performed:

1) Noise Addition (Excitation): The estimated unobserved part
ﬁz(k) of the spectrum is excited to produce the excited spectrum

0 =0, +6,"% 1 -

excite

(k)
) excie:
where nc(xkc)m is again i.i.d. complex Gaussian noise with zero
mean and standard deviation ac(fczw Then, the (spatial-domain)
excited volumetric data is obtained by taking the real part of

the inverse transformation 7 " applied to the excited spectrum

(22)

(22) as
Ak —1 [k
i =Re (T (05) )- @3)
2) Volumetric Filtering: The volumetric excited data (23) is de-

noised by the filter ® as

i — (,m (k) ) (24)

Yexcite? excite

being oifgue is the standard deviation of the excitation noise
in (22). Observe that the application of the VST is no longer
needed because (23) takes the real part and not the modulus
of 771 (é(k)

excile), and thus its excited observation model agrees
with (1).
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Fig. 3. Original phase ¢ used for the reconstruction experiments (black and
white correspond to —7 and m, respectively).

3) Data Reconstruction: The volumetric reconstruction is eventu-
ally produced by the convex combination

7™ = Mg* Y+ (1= 8®, (25)

whose weights A\ are defined as in (21). Observe that, (25)
is the particular case of (20) obtained by setting to zero every
phase estimate A",

V. VOLUMETRIC RECONSTRUCTION EXPERIMENTS

We show the reconstruction results of the iterative procedure
described in Section IV, recalling that BM4D is used in place of
the generic volumetric filter ®. The parameters of the filter are the
same reported in Section III-A, but only the hard-thresholding stage
is performed during the reconstruction.

As already said, the excitation noise nc(fc)ne is chosen to be i.i.d.
complex Gaussian noise with zero mean and variance

(k) —k=8
Texcite = O to

(26)

where & > 0 and 3 > 0 are parameters chosen so that the excitation
noise lessens as the iterations increase, and o is the standard deviation
of the noise 7 in (15). The variance (26) (exponentially) decreases in
order to diminish the aggressiveness of the filtering as the iterations
increase. Moreover, the additive term o ensures that the excitation
noise level in (16) converges to the initial noise level in (15). In
this manner, the noise standard deviation assumed by the denoising
filter is never smaller than that of the noise corrupting the observed
measurements.

In our experiments we consider volumetric data having either zero
or non-zero phase ¢. We synthetically generate ¢ by first applying
a low-pass filter to a 3-D i.i.d. zero-mean Gaussian field, and then
wrapping the result to the interval (—, 7). Fig. 3 illustrates the so-
obtained phase ¢. Note that the sharp variations from black to white
correspond to phase jumps from —7 to 7.

Considerable freedom is given for the design of the 3-D sampling
operator .S, which can be either a multi-slice stack of identical 2-D
trajectories, or a single 3-D sampling trajectory. In the former case the
measurements are taken as a multi-slice stack of 2-D cross-sections
transformed in Fourier (k-space) domain, each of which undergo
the sampling induced by the corresponding 2-D trajectory of S. In
the latter case, the observation is directly sampled in 3-D Fourier
transform domain. The sampling trajectories are in general classified
as Cartesian and non-Cartesian. Cartesian trajectories are extremely
popular as they are less susceptible to system imperfections, and
the relative reconstruction task is simple. On the other hand, non-
Cartesian trajectories usually require more complicated reconstruction
algorithms, but they allow for a higher under-sampling and faster
acquisition times [29]. For these reasons, in our experiments we
use the non-Cartesian trajectories Radial, Spiral, Logarithmic Spiral,
Limited Angle and Spherical. Examples of such trajectories are
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Radial \ Spiral \

Logarithmic Spiral ‘

Limited Angle ‘ Spherical

Fig. 4. Examples of different sampling trajectories. These trajectories define which k-space coefficients will be retained during the MR acquisition process.

TABLE V
PSNR (LEFT VALUE IN EACH CELL) AND SSIM [15], [8] (RIGHT VALUE
IN EACH CELL) RECONSTRUCTION PERFORMANCES AFTER kpnar = 1000
ITERATIONS OF THE BRAINWEB AND THE SHEPP-LOGAN PHANTOM OF
0 1 SIZE 128 X 128 X 128 VOXELS. THE TESTS ARE MADE ON BOTH NOISY
9 9 (o = 5%) AND NOISE-FREE MEASUREMENTS, HAVING SAMPLING RATIO
< < 0%.
5] 5]
. Zero phase ‘ Non-zero phase ‘
Traj. Data ‘
‘ v ‘ ‘\azo% [ 0=5% | 0=0% | 0=5% |
0 200 400 600 800 1000 0 200 400 600 800 1000 -
e iy e i, Radial | BrainWeb [['37.22[0.97 [ 31.00[0.91 [ 41.00[0.99 [ 30.57[0.91
Shepp-Log. || 77.01/1.00 | 31.82|0.98 | 70.12[1.00 | 32.03|0.98
Fig. 5. Standard deviation oy Of the excitation noise (26) for noisy (left) Spiral BrainWeb || 34.75]0.96 | 19.60(0.66 | 16.75/0.48 | 21.99]0.74
and noise-free (right) data of parameters o = 1.01, 3 = 500, and o = 5%. Shepp-Log. || 58.23[1.00 | 21.22]0.55 | 24.27|0.65 | 26.220.92
Loe. Sp. BrainWeb || 40.92/0.99 | 31.83]0.92 | 41.89]0.99 | 31.20/0.92
8P| Shepp-Log. || 77.511.00 | 32.04]0.98 | 69.36(1.00 | 31.91]0.98
illustrated in Fig. 4. The rationale behind these settings is to sim- - BrainWeb || 32.48]0.94 | 27.17]0.85 | 17.93]0.54 | 20.74]0.65
ulate the acquisition process of the most common medical imaging Lim. An. Shepp-Log. || 42.45/1.00 | 28.31|0.95 | 21.75|0.57 | 24.47/0.77
applications [29]. ) Sonorie. | BrainWeb || 41.670.99 | 32.46[0.93 | 42.99]0.99 | 31.88[0.93
The metrics used to measure the performance of the reconstruction pheric. Shepp-Log. || 77.85]1.00 | 31.72/0.98 | 62.56(1.00 | 31.50/0.98

are again the PSNR and SSIM. We present the reconstruction perfor-
mance after kgna = 1000 iterations from a set of incomplete noisy or
noise-free k-space measurements. We also consider data having both
zero and non-zero initial phase. The trajectories have sampling ratio
|92]|X| ™" = 30%, where |Q] is the cardinality of the sampled voxels
and | X| is the total number of voxels in the phantom. The parameters
of the excitation noise (26) are a = 1.01 and 8 = 500, for all
experiments. Even though in principle different sampling strategies
could benefit from different excitation profiles, we use a fixed setting
for v and 3 to enable a more direct comparison between the various
experiments. Finally, we set the standard deviation of the noise in
the observed measurements as o = 5%. Fig. 5 illustrates (26) used
for the noisy (left) and noise-free (right) case. The test data of our
experiment is the BrainWeb and 3-D Shepp-Logan phantom of size
128 x 128 x 128 voxels; cross-sections of both original phantoms are
shown in Fig. 7(b) and Fig. 7(a), respectively. The Shepp-Logan is
widely used in medical imaging [13], [34], [14] but, being a piecewise
constant signal, it admits a very sparse representation in transform
domain which can in turn ease the reconstruction task. Thus, we
also perform the reconstruction experiments on the more challenging
BrainWeb phantom, as it is a more realistic model of MR data.
Fig. 6 gives a deeper insight on the PSNR progression with respect
to the number of iterations. We first notice that, in every experiment,
the reconstruction algorithm is able to substantially ameliorate the
initial back-projections in terms of both objective and subjective
visual quality. We observe that in many cases, particularly those
where o = 0, the PSNR grows almost linearly, in accordance with the
exponential decay of the standard deviation of the excitation noise.
Fig. 6 also empirically demonstrates that the ratio between the PSNR
of ;z](") and @(") approaches one, as motivated in Section IV-C.
The PSNR and SSIM performance of the reconstruction is reported

in Table V. As one can see, the objective performance is almost
always excellent; Additionally, the results for o = 5% often approach
those obtained in the denoising experiments reported in Table II, that
correspond to the ideal conditions of complete sampling and zero
phase. Interestingly, the reconstruction performance of the BrainWeb
phantom under the Spiral and Limited Angle sampling are higher in
the noisy case. In fact, as the ill-conditioning of the reconstruction
problem increases, the best results can be achieved using excitation
schedule 7excie characterized by larger values of standard deviation
because a larger variance in the excitation noise leads to a stronger
filtering and, consequently, a stronger regularization.

The visual appearance of the reconstructed BrainWeb and Shepp-
Logan phantoms with non-zero phase and initial noise ¢ = 5%
are shown in Fig. 9 and Fig. 10, respectively. Let us remark how
the reconstruction is always able to improve significantly the visual
appearance of the phantom, even in those cases when the image
information of the initial back-projection is extremely limited and
the phase is distorted by multiple erroneous jumps.

We stress that the sampling ratio ||| X |~ is not a fair measure of
the difficulty of the reconstruction task, because different trajectories
having the same |Q[|X |~ extract different coefficients from the
Fourier domain. As a matter of fact, the energy of MR images is
concentrated in the centre (DC term) of the k-space, thus trajectories
such as Spherical having denser sampling near the DC term are more
advantaged than others, such as Spiral or Limited Angle, not giving
any preference for the central part of the spectrum. Such differences
are clearly visible from the visual appearance of the back-projections
shown in Fig. 9 and Fig. 10 and from the final objective reconstruction
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Fig. 6. PSNR progression for the iterative reconstruction of the noisy and noise-free BrainWeb having zero or non-zero phase. The plots in the top row

illustrate the PSNR progressions of §(¥), whereas the plots in the bottom row illustrate the progression of the ratio between the PSNR of §(¥) and §(*). The
sampling trajectories are Radial (o), Spiral (+), Logarithmic Spiral (0), Limited Angle (A), and Spherical (x). The sampling ratio is in all cases 30%.

results reported in V, because, as expected, the worst objective and
subjective reconstruction results are obtained under the Spiral or
Limited Angle sampling, whereas the Spherical trajectory emerges
as the best-performing sampling strategy. However, a significant
drawback of the Spherical sampling is the higher scanning time
ion proci

required to complete the acqu

VI. DISCUSSION AND CONCLUSIONS
A. Video vs. Volumetric Data Filtering

Both volumetric data and videos are defined over a 3-D domain.
The first two dimensions always identify the width and the height
of the data, but the connotation of the third dimension embodies
completely different meanings. In the case of volumetric data the third
dimension represents an additional spatial dimension (the depth),
whereas in the case of videos it represents the temporal index along
the the frame sequence (the time). We remark the importance of

designing algorithms that are able to leverage the specific connotation
of the data to be filtered, i.e. the local spatial similarity in volumetric
data and the motion information of videos.

To support our claim, we apply BM4D and the state-of-the-art
video filter V-BM4D [35] to the BrainWeb phantom and the test
videos Tennis, Salesman, Flower Garden, and Miss America. For
all cases, the corrupting noise is i.i.d. Gaussian with zero mean
and standard deviation o € {7%, 11%, 15%, 19%}. We recall that
in V-BM4D mutually similar 3-D spatiotemporal volumes, built
concatenating blocks along the direction defined by the motion
vectors, are first grouped together and then jointly filtered in a 4-
D transform domain [35]. Analogously, each cube in BM4D can
be interpreted as a spatiotemporal volume built along null motion
vectors, i.e. a sequence of blocks extracted from consecutive frames
at the same spatial coordinate.

Table VI reports the PSNR and SSIM results of our tests. As
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TABLE VI
PSNR (LEFT VALUE IN EACH CELL) AND SSIM [15], [8] (RIGHT VALUE
IN EACH CELL) DENOISING PERFORMANCES OF BM4D AND V-BM4D
[35] APPLIED TO THE BRAINWEB PHANTOM AND THE STANDARD VIDEO
TEST SEQUENCES Tennis, Salesman, Flower Garden, AND Miss America
CORRUPTED BY 1.1.D. GAUSSIAN NOISE WITH DIFFERENT STANDARD
DEVIATION & (%).

" o

Data | Filter % 1% 5% 9%

ramias | BMAD || 34.38[0.95 | 32.28[0.92 | 30.82[0.90 | 29.70[0.87
T | voeMaD || 33.4110.93 | 31.25(0.89 | 29.80[0.86 | 28.71[0.83
s | BMHD || 3175]0.84 [ 29.6910.78 | 28.22[0.73 | 27.36[0.70
M vaeM4D || 32.00(0.85 | 29.88]0.78 | 28.56]0.73 | 27.59]0.70
sute BM4D || 34.48(0.91 | 32.29]0.87 | 30.72/0.83 | 29.86]0.81
@ V4D || 34.280.90 | 32.01]0.85 | 30.50/0.81 | 29.38]0.78
1 Gart | BMAD [ 28.42]093 [ 25.90[0.88 | 22.96]0.81 | 22.3710.77
- U4 ] vpmap || 29.21]0.93 | 26.60/0.89 | 24.79]0.84 | 23.34/0.79
s am | BMAD || 38.47/0.92 | 37.00(0.91 | 35.75/0.90 | 35.30/0.90
A vpMap || 38.13]0.92 | 36.57]0.90 | 35.37/0.88 | 34.40/0.86

expected, for volumetric data the PSNR performance of BM4D is
consistently about 1dB higher than those of V-BM4D; conversely, as
for video denoising, an interesting behavior occurs. We observe that
the BM4D model is more effective whenever the corrupted video is
characterized by low motion activity and the standard deviation of the
noise is large. In fact, when the signal-to-noise ratio is very low, the
motion estimation is likely to match the random patterns of the noise
rather than the underlying structures to be tracked. For this reason,
the zero-motion assumption, intrinsically enforced by BM4D, is an
effective prior for the motion estimation of stationary videos, such as
Miss America and Salesman, especially when o is large. However,
as motion activity gets higher, e.g., in Tennis and Flower Garden,
V-BMA4D clearly emerges as the best filtering paradigm.

B. Conclusions

The contributions of this work are twofold: first, we have intro-
duced a powerful volumetric denoising algorithm, termed BM4D,
which embeds the grouping and collaborative filtering paradigm;
second, we have presented an iterative system for the reconstruction
of incomplete volumetric data, enabled by the action of the afore-
mentioned BM4D filter.

Experimental results on simulated brain phantom data show that
the proposed BM4D filter significantly outperforms the current state
of the art in volumetric data denoising. In particular, the denoising
performance on MR images corrupted by either Gaussian- or Rician-
distributed noise demonstrates the superiority of the proposed ap-
proach in terms of both objective (PSNR and SSIM) and subjective
visual quality [4]. BM4D has been also successfully tested on the
denoising of real MRI data, made publicly available by the OASIS
database [12].

The viability of the volumetric reconstruction procedure has been
tested using different volumetric phantoms measured in transform
domain according to various sampling trajectories. The reconstruction
has been evaluated using data with either zero or non-zero phase
from incomplete, and possibly noisy, Fourier-domain (k-space) mea-
surements. Experimental results on the Shepp-Logan and BrainWeb
phantoms demonstrate the objective (PSNR and SSIM) and subjective
effectiveness of the proposed method applied to under-sampled data.

Additional features, which can be embedded in BM4D, as is
done for BM3D, include sharpening (a-rooting), non-white noise
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removal (thus leading to a 3-D deblurring procedure as in [36]), and
multichannel/multimodal filtering.
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(a) 3-D Shepp-Logan phantom (b) BrainWeb phantom [7]. (c) Noisy BrainWeb phantom (d) OASIS phantom [12].
[13], [14]. (Gaussian noise o = 15%).

Fig. 7. Volumetric phantoms used in the denoising and reconstruction experiments. The 3-D and 2-D transversal cross-section of each phantom are presented
in the top and bottom row of each subfigure, respectively.

OB-NLM3D OB-NLM3D-WM ODCT3D PRI-NLM3D BM4D

Fig. 8. From left to right, denoising results of the OB-NLM3D, OB-NLM3D-WM, ODCT3D, PRI-NLM3D, and the proposed BM4D filter applied to the
BrainWeb phantom corrupted by i.i.d. Gaussian noise with standard deviation o = 15% (top) and the OASIS phantom (bottom) corrupted by Rician noise
with standard deviation o ~ 4% estimated as proposed in [16]. The corresponding noisy phantoms can be seen in Fig. 7(c), and Fig. 7(d), respectively. For
each algorithm and phantom, both the 3-D and 2-D transversal cross-section are presented.
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Fig. 9. Initial back-projections and final estimates of the magnitude and phase after kgzq = 1000 iterations of the noisy reconstruction of the BrainWeb
phantom (0 = 5%) subsampled with ratio 30%. The original magnitude and phase volumes are shown in Fig. 7(b) and Fig. 3, respectively.
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Fig. 10. Initial back-projections and final estimates of the magnitude and phase after kfpy = 1000 iterations of the noisy reconstruction of the Shepp-Logan
phantom (o = 5%) subsampled with ratio 30%. The original magnitude and phase volumes are shown in Fig. 7(b) and Fig. 3, respectively.
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Joint Removal of Random and Fixed-Pattern Noise
through Spatiotemporal Video Filtering

Matteo Maggioni, Enrique Sanchez-Monge, Alessandro Foi

Abstract—We propose a framework for the denoising of
videos jointly corrupted by spatially correlated (i.e. non-white)
random noise and spatially correlated fixed-pattern noise. Our
approach is based on motion- d 3-D spati poral
volumes, i.e. a sequence of 2-D square patches extracted along
the motion trajectories of the noisy video. First, the spatial
and temporal correlations within each volume are leveraged to
sparsify the data in 3-D spatiotemporal transform domain, and
then the coefficients of the 3-D volume spectrum are shrunk
using an adaptive 3-D threshold array. Such array depends on
the particular motion trajectory of the volume, the individual
power spectral densities of the random and fixed-pattern noise,
and also the noise variances which are adaptively estimated in
transform domain. Experimental results on both synthetically
corrupted data and real infrared videos demonstrate a superior
suppression of the random and fixed-pattern noise from both an
objective and a subjective point of view.

Index Terms—Video denoising, spatiotemporal filtering, fixed-
pattern noise, power spectral density, adaptive transforms, ther-
mal imaging.

I. INTRODUCTION

IGITAL videos may be degraded by several spatial and
temporal corrupting factors which include but are not
limited to noise, blurring, ringing, blocking, flickering, and
other acquisition, compression or transmission artifacts. In
this work we focus on the joint presence of random and
fixed-pattern noise (FPN). The FPN typically arises in raw
images acquired by focal plane arrays (FPA), such as CMOS
sensors or thermal microbolometers, where spatial and tem-
poral nonuniformities in the response of each photodetector
generate a pattern superimposed on the image approximately
constant in time. The spatial correlation characterizing the
noise corrupting the data acquired by such sensors [1], [2],
[3] invalidates the classic AWGN assumptions of independent
and identically distributed (i.i.d.) —and hence white— noise.
The FPN removal task is prominent in the context of
long wave infrared (LWIR) thermography and hyperspectral
imaging. Existing denoising methods can be classified into

Copyright © 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the TEEE by sending a request to pubs-permissions @ieee.org.
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reference-based (also known as calibration-based) or scene-
based approaches. Reference-based approaches first calibrate
the FPA using (at least) two homogeneous infrared targets,
having different and known temperatures, and then linearly
estimate the nonuniformities of the data [4], [S]. However,
since the FPN slowly drifts in time, the normal operations of
the camera need to be periodically interrupted to update the
estimate which has become obsolete. Differently, scene-based
approaches are able compensate the noise directly from the
acquired data, by modeling the statistical nature of the FPN;
this is typically achieved by leveraging nonlocal self-similarity
and/or the temporal redundancy present along the direction of
motion [6], [7], [8], [9], [10], [11].

We propose a scene-based denoising framework for the
joint removal of random and fixed-pattern noise based on
a novel observation model featuring two spatially correlated
(non-white) noise components. Our framework, which we
denote as RF3D, is based on motion-compensated 3-D spa-
tiotemporal volumes characterized by local spatial and tem-
poral correlation, and on a filter designed to sparsify such
volumes in 3-D spatiotemporal transform domain leveraging
the redundancy of the data in a fashion similar to [12], [13],
[14], [15]. Particularly, the 3-D spectrum of the volume is
filtered through a shrinkage operator based on a threshold array
calculated from the motion trajectory of the volume and both
from the individual power spectral densities (PSD) and the
noise variances of the two noise components. The PSDs are
assumed to be known, whereas the noise standard deviations
are adaptively estimated from the noisy data. We also propose
an enhancement of RF3D, denoted E-RF3D, in which the
realization of the FPN is first progressively estimated using the
data already filtered, and then subtracted from the subsequent
noisy frames.

To demonstrate the effectiveness of our approach, we evalu-
ate the denoising performance of the proposed method and the
current state of the art in video and volumetric data denoising
[13], [15] using videos corrupted by synthetically generated
noise and also real LWIR therm sequences acquired with a
FLIR Tau 320 microbolometer camera. We implement RF3D
(and E-RF3D) as a two-stage filter: in each stage use the same
multi-scale motion estimator to build the 3-D volumes but
a different shrinkage operator for the filtering. Specifically,
we use a hard-thresholding operator in the first stage and an
empirical Wiener filter in the second. Let us remark that the
proposed framework can be also generalized to other filtering
strategies based on a separable spatiotemporal patch-based
model.

The remainder of the paper is organized as follows. In
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Section II we formalize the observation model, and in Section
III we analyze the class of spatiotemporal transform-domain
filters. Section IV gives a description of the proposed denois-
ing framework, whereas Section V discusses the modification
required to implement the enhanced fixed-pattern suppression
scheme. The experimental evaluation and the conclusions are
eventually given in Section VI and Section VII, respectively.

II. OBSERVATION MODEL

We consider an observation model characterized by two
spatially correlated noise components having distinctive PSDs
defined with respect to the corresponding spatial frequencies.
Formally, we denote a noisy video z: X x T"— R as

2(x,t) =y (x,t) + nrp (X, 1) + 1Een (X, 1), €8}

where (x,t) € X x T is a voxel of spatial coordinate x €
X C 7? and temporal coordinate t € T C Z, y: X x T — R
is the unknown noise-free video, and nepy @ X X T — R
and 7rnp : X X T'— R denote a realization of the FPN and
zero-mean random noise, respectively.

In particular, we model ngrnp and 7gpn as colored Gaussian
noise whose variance can be defined as

var{'ED (o (1)) (€) }

orwn (1)

= Gtnp (8) Trap (6) . ()
var{ T () (€) } = o €10

=hn () Vren (£), )

where Top is a 2-D transform, such as the DCT, operating
on N x N blocks, & belongs to the 7,p domain Z, aﬁND and
o2y are the time-variant PSDs of the random and fixed-pattern
noise defined with respect to T;p; the time-variant PSDs can
be separated into their normalized time-invariant counterparts
WrnD, Uppn @ Z — R and the corresponding time-variant
scaling factors sayp, sy @ T — R. We observe that the
PSDs Wrnp and Wppy are known and fixed; moreover the
random noise component 7gnp is independent with respect to
t, whereas the fixed-pattern noise component 7gpy is roughly
constant in time, that is

17}
¢ 1PN (x,t) = 0. 4)

The model (1) is much more flexible than the standard i.i.d.
AWGN model commonly used in image and video denoising.
In this paper we successfully use (1) to describe the raw output
of a LWIR microbolometer array thermal camera; specifically,
Fig. 1 and Fig. 2 show the PSDs of the random and fixed-
pattern noise of video acquired by a FLIR Tau 320 camera.
The power spectral densities in the figures are defined with
respect to the global 2-D Fourier transform and the 8 x 8 2-
D block DCT, respectively. As can be clearly seen from the
figures, the two noise components are not white and instead
are characterized by individual and nonuniform PSDs.
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Fig. 1. Normalized root power spectral densities of the random (left) and
fixed-pattern (right) noise components computed with respect to the global
2-D Fourier transform. The DC coefficient is located in the center (0,0) of
the grid.

- A

Fig. 2. Power spectral densities of the random (left) and fixed-pattern (right)
noise components calculated with respect to the 2-D block DCT of size 8 x 8.
The DC coefficient is located in the top corner.

III. SPATIOTEMPORAL FILTERING

In this section we generally analyze the class of spatiotem-
poral video filters, and, in particular, those characteristics of
spatiotemporal filtering that are essential to the proposed noise
removal framework.

A. Related Work

Natural signals tend to exhibit high auto correlation and
repeated patterns at different location within the data [16],
thus significant interest has been given to image denoising
and compression methods which leverage redundancy and self-
similarity [17], [18], [19], [20], [21]. For example, in [18]
each pixel estimate is obtained by averaging all pixels in
the image within an adaptive convex combination, whereas in
[12] self-similar patches are first stacked together in a higher
dimensional structure called “group”, and then jointly filtered
in transform domain. Highly correlated data can be sparsely
represented with respect to a suitable basis in transform
domain [22], [23], where the energy of the noise-free signal
can be effectively separated from that of the noise through
coefficient shrinkage. Thus, self-similarity and sparsity are the
foundations of modern image [18], [12], video [13], [20], [14],
and volumetric data [24], [15] denoising filters.

For the case of video processing, self-similarity can be
naturally found along the temporal dimension. In [25], [26],
[14] it has been shown that natural videos exhibit a strong
temporal smoothness, whereas the nonlocal spatial redundancy
only provides a marginal contribution to the filtering quality
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3-D Volume Tip-spectra
Tip
Tsp
Tp Top
Tip

Tap-spectra Tsp-spectrum

Fig. 3. Separable T3p DCT transform applied to the 3-D volume illustrated
in the top-left position. The magnitude of each 3-D element is proportional
to its opacity. Whenever the temporal 7yp transform is applied, we highlight
the 2-D temporal DC plane with a yellow background. Note that 7ip-spectra
is sparse outside the temporal DC plane, and 7zp-spectra becomes sparser
as we move away from the spatial DC coefficients (top-right corner of each
block). Consequently, the energy of T3p-spectrum is concentrated around the
spatial DC of the temporal DC plane.

[14]. Methods that do not explicitly account motion informa-
tion have also been investigated [27], [28], [29], [30], but
motion artifacts might occur around the moving features of
the sequence if the temporal nonstationarities are not correctly
compensated. Typical approaches employ a motion estimation
technique to first compensate the data and then apply the
filtering along the estimated motion direction [31], [32], [14].
A proper motion estimation technique is required to overcome
the imperfections of the motion model, computational con-
straints, temporal discontinuities (e.g., occlusions in the scene),
and the presence of the noise [33].

In this work, we focus on spatiotemporal video filters,
so that the peculiar correlations present in the spatial and
temporal dimension can be leveraged to minimize filtering
artifacts in the estimate [34].

B. Filtering in Transform Domain

The spatiotemporal volume is a sequence of 2-D blocks
following a motion trajectory of the video, and thus, in a
fashion comparable to the “group” in [12], is characterized
by local spatial correlation within each block and temporal
correlation along its third dimension. As in [12], [13], [14],
[15], the filtering is formalized as a coefficient shrinkage
in spatiotemporal transform domain after a separable linear
transform is applied on the data to separate the meaningful
part of the signal from the noise. We use an orthonormal 3-
D transform 73p composed by a 2-D spatial transform Tap
applied to each patch in the volume followed by a 1-D
temporal transform 7ip applied along the third dimension.

The Tip transform should be comprised of a DC (direct
current) coefficient representing the mean of the data, and a
number of AC (alternating current) coefficients representing
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Fig. 4. Flowchart of random and fixed-pattern joint noise removal framework
RF3D and the enhanced E-RF3D. A complete overview of RF3D is given in
Section IV, while the modifications required to implement E-RF3D, illustrated
as dashed lines, are described in Section V.

the local changes within the data. The 2-D temporal DC
plane obtained after the application of the 1-D temporal
transforms along the third dimension of the volume is of
particular interest, as it encodes the features shared among
the blocks, and thus can be used to capture the FPN present
in the spatiotemporal volume. Fig. 3 provides a schematic
representation of the 3-D spectrum obtained after applying a
Tip, Top, and Tsp DCT transforms on a typical spatiotemporal
3-D volume. The magnitude of each spectrum coefficient is
directly proportional to its opacity, thus coefficients close to
zero are almost transparent. The 2-D temporal DC plane in
Tip-spectra and T3p-spectrum is highlighted with a yellow
background, whereas the spatial DC coefficients in 7,p-spectra
are located at the top-right corner of each 2-D spectrum. Thus,
the 3-D DC coefficient of the T3p-spectrum is located at the
top-right corner of the temporal DC plane. Note how the data is
differently sparsified in the different spectrum: in 7jp-spectra
the energy is concentrated in the temporal DC plane, in Top-
spectra the energy is concentrated around each spatial DC
coefficients, and consequently in 73p-spectrum the energy is
concentrated around the spatial DC of the temporal DC plane.
The PSDs of the noise in (1) are defined with respect to
the 2-D spatial transform 7,p. For example, in Fig. 2 we
show the root PSDs of the random and fixed-pattern noise,
obtained from a 2-D DCT of size 8 x 8. These PSDs provide
the variances of the two noise components within each 2-D
block coefficients before the application of the 1-D temporal
transform to the spatiotemporal volume. The analogies with
the corresponding PSDs defined with respect to the 2-D
Fourier transform can be appreciated by referring to Fig. 1.

IV. JOINT NOISE REMOVAL FRAMEWORK

In this section, we describe the proposed RF3D framework
for the joint removal of random and fixed-pattern noise. The
RF3D works as follows: first a 3-D spatiotemporal volume is
built for a specific position in the video (Section IV-A), and
then the noise standard deviations are estimated from a set of
frames (Section IV-B). Finally, the 3-D volume is filtered in
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spatiotemporal transform domain (Section IV-C) using adap-
tive shrinkage coefficients (Section IV-D). A flowchart of the
framework is illustrated in Fig. 4. This generic algorithm and
its various applications are the object of a patent application
[35].

The model (1) is simplified by (2) and (3), where we
assume that the PSDs of nrnp and 7ppx are fixed modulo
normalization with the corresponding scaling factors 2y, and
GZn- As a result, the PSDs do not need to be periodically
estimated, but can be treated as known parameters. During the
filtering, such parameters are scaled with the scaling factors
to obtain the actual PSDs of the noise components corrupting
the video. Further, we assume that the time-variant scaling
factors of (2) and (3) vary slowly with time, so that they
can be treated as constant within the local temporal extent of
each spatiotemporal volume. Formally, we define the following
conditions on the partial derivatives of ¢rnp and ¢epy With
respect to time:

17} 17}
agRND (t) =0, &(FPN (t) =~ 0. )

A. Spatiotemporal Volumes

The proposed framework is based on motion-compensated
3-D spatiotemporal volumes composed by a sequence of 2-D
blocks following a motion trajectory of the video [12], [13],
[14]. Let B(x,t) be a 2-D N x N block extracted from the
noisy video z, whose top-right corner is located at the 3-D
coordinate (x,t). Formally, a motion trajectory corresponding
to a (reference) block B(xg,tr) is a sequence of coordinates
defined as

ht

T(xrta) = {(at)} ©
where x; is the spatial location of the block within the frame
at time ¢; with i = h—, ..., h*, and each voxel is consecutive
in time with respect to the precedent, i.e. t;11 —t; = 1 Vi.
Note that in (6) we do not restrict the reference coordinate
(xR, tR) to occupy a predefined position in the sequence, thus
the trajectory can be grown backward and/or forward in time,
ie. tp- < tr < tp+. Finally, we call H = t;,+ — t;- the
temporal extent of the volume.

Assuming that the trajectory for any given reference block
B(xpg,tr) is known, we can easily define the corresponding
motion-compensated 3-D spatiotemporal volume as

V(xg,tr) = {B(xi,ti) St € F(xR,tR)}. %)

The trajectories can be either known a-priori, or built in-loop,
e.g., by concatenating motion vectors along time. However,
let us stress that the motion estimation technique needs to be
tolerant to noise [33], [29], [32], [14].

In Fig. 5, we show a schematic illustration of a spatiotem-
poral volume (7). In the figure, the reference block B(xp,tr)
is shown in blue and occupies the middle position, the other
blocks of the volume are shown in grey.
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Fig. 5. Schematic illustration of a spatiotemporal volume. The blocks of the
volume are grey with the exception of the reference block “R”, which is blue.

B. Noise Estimation

The noise can be estimated leveraging the fact that the FPN
is roughly constant in time (4): thus a spatial high-pass filtering
of the video captures both random and fixed-pattern noise
components, whereas a temporal high-pass filter captures only
the random one.

The overall PSD ¢ of the random and fixed-pattern noise
is simply defined as the sum of (2) and (3)

(&) = s (1) Yrao (€) + i (8) Yren (€), ®)

being Wrpn and Wrnp the only known terms of the equation.

Firstly we estimate o as the median absolute deviation
(MAD) [36], [37] of the Tp-coefficients of all the blocks
having temporal coordinates within [¢;,—,¢,+] 3 t as

5(6.0) = 5o+ MAD <73D(B(Xa7))(£)>a ©

t,— STty 4

because 7op also embeds some high-pass filters and both ¢rnp
and ¢ppy are slowly varying in time (5). Then, we estimate
ornp through a similar MAD on a temporal high-pass version
of the video, obtained by differentiating consecutive blocks:
Grp(€,8) = . MAD (Tm (B (x,7+ 1))(g>
xeX

t

1
0.6745

e ST<ty4

~Tao(B(x) (@)
(10)

We recognize that the MAD scaled by the usual factor 0.6745
(from the inverse cumulative Gaussian distribution at 3/4) is
designed for Gaussian data. Even though in the practice the
distribution of the noise in (1) may deviate from a Gaussian,
the MAD/0.6745 is nevertheless a viable estimator for (9)
and (10) because it is not applied directly on the observed
data but on the 7>p transform coefficients. Each transform
coefficient is obtained as a linear combination involving many
data samples (e.g., 64 samples when using a linear 8 x 8
Tap), a “Gaussianization” kicks in, analogous to the central
limit theorem. This makes the MAD/0.6745 an unbiased
estimator of the standard deviation of each individual subband
of transformed coefficients. In other words, we can safely use
the MAD to estimate the root-PSD.

According to (2) and (3), 02yp and o,y must be re-
spectively equal to Wrnp and Wgpy modulo the non-negative
scaling factors sayp and 2y, and as can be seen from (8)
an analogous condition applies to o2. However, up to this
point neither 62 nor 63y, are guaranteed to satisfy such
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scaling property. To find such scaling factors, we resort to
the following non-negative least-squares optimization, whose
solutions 2 and ¢2 . as
solutions ¢Zyp(t) and ¢y (t) are defined as

mm{ > (Frww (€) shro(®)
S (20 ( gez
S (£)>0

o (€) o (1) — 7 (6:1) ) w2(©)

+ Z (‘I’RND (&) sk (t) — Grnp (€5 1) )2w§(§)},
ge=
(1)

where wy,wy : = — R give different weights to each
coefficients fed to (9) and (10), and in practice can be used as
logical operators to select linearly independent high-frequency
coefficients in the 7>p domain.

C. Spatiotemporal Filtering

During the spatiotemporal filtering, the volume (7) is first
transformed from its voxel representation to a new domain via
a separable linear transform 73p, then a shrinkage operator
T such as the hard thresholding modifies the magnitude of
the spectrum coefficients to attenuate the noise. This strategy
leverages the sparsification of the 3-D volume induced by T3p
as illustrated in Fig. 3. An estimate of the noise-free volume
is eventually obtained after inverting the transform 73p on the
thresholded spectrum. The complete process can be formally
defined as

Vxntr) = T (X (To (Vi tm)) ). 12

which in turn generates individual estimates of each noise-
free patch in the volume. This strategy is referred to as
collaborative filtering, and a deeper analysis of its rationale
can be found in [12], [13], [19], [14].

D. Motion-Adaptive 3-D Spectrum Variances

The shrinkage operator Y in (12) modulates the applied
filtering strength relying on the variances siﬂ,,/y(g,ﬁ) of
the Tip-spectrum coefficients, where ¢ € {1,...,H} C N
indicates the coefficient position with respect to the 7ip spec-
trum, ¥ = 1 corresponding to the temporal DC. Observe that
5% .t CODStitutes a 3-D array of variances. Each 53, , (£, 9)
depends on the T;p-PSDs (8) of each block B(x;,t;) in the
volume (7) through the 7ip transform. Since both ¢rxp and
srpn are slowly varying in time, we can use their respective
estimates at the time ¢ for the whole volume V(xg,tg).
However, due to the FPN, the relative spatial alignment of
the blocks has an impact on the variance of the 73p spectrum
coefficients and thus needs to be taken into account for the
design of the threshold coefficients.

To understand this phenomenon, let us consider the follow-
ing two extreme cases. In one case all blocks are perfectly
overlapping, i.e. they share the same spatial position x; for
all ¢; in (7), such as when no motion is detected. Thus the
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FPN component, being the same across all blocks, accumulates
through averaging in the 2-D temporal DC plane of the 3-D
volume spectrum, shown in yellow in Fig. 3. For this reason
the variances of temporal DC plane and AC coefficients are
different:

521 (€1) = Ganp (tR) Wrap (€) + Hefon (tr) Prpn(£),

Sk ptn(€9) = G (tr) Vran(€),

13)
with ¥ € {2,..., H}. In the other extreme case all blocks have
different spatial positions and their relative displacement is
such that the FPN exhibits uncorrelated patterns over different
blocks. Thus, restricted to the volume, the FPN behaves just
like another random component and the variances of the
coefficients can be simply obtained as

Sanin(&19) = Rnp(tr) UrnD (€) + ston Uren (€),

for all ¥ € {1,..., H}.

We stress that the variances of the 3-D spectrum coefficients
depend not only on the two PSDs and on the temporal extent
H of the spatiotemporal volume, but also on the relative spatial
alignment of the blocks within the volume, on the temporal
position of the coefficients within the 3-D spectrum, and on the
unknown covariance matrices of the overlapping blocks which
however are impracticable to compute. Nevertheless we resort
to a formulation that interpolates (13) and (14), approximating
all the intermediate cases for which any number of blocks
in the volume is aligned or partially aligned with any of the
others.

For a spatiotemporal volume of temporal extent H, let
Ly < H, with 1 < h < H, be the number of blocks sharing
the same spatial coordinates as the h-th block in the volume,
and let L = maxj<p<py {Lp}, with 1 < L < H, denote
the maximum number of perfectly overlapping blocks. With
this, we approximate the variances of the 3-D spatiotemporal
coefficients by interpolating (13) and (14) with respect to L
as

14)

Fntn (1) = Gip(tr) Tran (€)

I?’+H-L .
g Sen(tr) Ve (8), (15)
82 i (€0) = Gap(tr) Yrnn(€)
L(L-1)7 .
+ [1 — m} Gon(tr)Tren(€), (16
with ¢ € {2,..., H}. By construction, the variances (15) and

(16) reduce to the exact formulae (13) for L = H and to
(14) for L = 1, but observe that (15) is also exact in the
configuration where L blocks are perfectly overlapping and
the other H — L are completely displaced. In order to attain
exact results in every configuration, (15) and (16) should have
taken into account the basis coefficients of the 7p temporal
transform as well as the spatiotemporal position of the volume
coefficients. The chosen formula (16) is such that the total 7>p
noise spectrum, given by the sum of (15) with H — 1 times
(16), is the same for all values of L and is equal to H times
(14). Other approximate formulae are possible.
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V. ENHANCED FIXED-PATTERN SUPPRESSION

In this section, we discuss the enhanced noise removal
framework E-RF3D. Leveraging the fact that the fixed-pattern
noise component varies slowly with time (4), it is possible to
exploit its actual realization, i.e. the fixed pattern (FP), in a
progressive fashion. In particular, the FP is first estimated from
the noise that has been removed during previous filtering, and
then subtracted from the following noisy frames to ease the
denoising task (Section V-A). Consequently, the PSDs and the
noise standard deviation of the data after the subtraction of the
FP are updated (Section V-B). The modifications required to
implement E-RF3D are illustrated as dashed lines in Fig. 4.

A. Fixed-Pattern Estimation

According to (1) and assuming that § is a good estimate of
y, the noise realization at any position (x,t) € X x T can be
estimated as

fEen(X, t) + frap (X, 1) = 2(x, ) — §(x,t). (17)

Since the FPN component 7gpy is assumed to be time-
invariant within any short temporal extent (4), an estimate
firpn (X, ) of the FP can be simply obtained by averaging the
noise residuals (17) of the previous M(t) € N frames as

fin(0e1) = 70 > (- ieen). a8

T=t—M(t)—1
for every position x € X and time ¢ € T". Furthermore, if we
assume that our estimate of the video is perfect, i.e. § = ¥,
then

fppn (X, ) = nEpn (X, ) + Trnp (X, 1), (19)

where 7rnp is an average random component which has the
same distribution and spatial correlation of nrnp/+/M (). In
this case, (18) is unbiased:

]E{ﬁFPN (x, t)} = neen(X, 1)

The number of frames M (t) in (18) can be adjusted in
different manners. In this work, we empirically set M (t) to
be approximately proportional to &2y (£)/éZs (¢)- Thus, M (t)
adapts conveniently to the current noise characteristics by bal-
ancing the accuracy of (18) with respect to its variance, which
is proportional to ¢Zyp(t)/M (t). Note that the estimation of
the FP is performed continuously during denoising in order to
adapt to possible changes (drift) in the FP component.

Since ¢ is never perfectly identical to y, (17) may contain
structures belonging to the noise-free signal. This is partic-
ularly problematic whenever the video is stationary, because
the static image content may accumulate into the FP (18).
To counteract the consequent risks of fading and/or ghosting
in the denoised signal, we select only those frames where
motion is present. In particular, we use the displacement of the
blocks between consecutive frames, since this information is
readily available from (6): if the absolute mean displacement
exceeds a certain threshold, we reckon that there is enough
motion between the frames which can thus be used for the FP
estimation.
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Fig. 6. Mixture of power spectral densities Wrpnpew (20) describing the
updated FPN component after the fixed-pattern subtraction. The power spectral
densities are computed with respect to the 2-D DCT transform 73p of size
8 x 8 and three different values for ~y.

B. Noise Estimation with Mixed Power Spectral Density

We observe from (19) that the FP estimate (18) is still
corrupted by an average random component distributed as
nrnp/+/ M (t). Thus, after subtraction of 7jppn(-,¢t) from
2(+,t), a new estimation of the standard deviation and the PSD
of the updated FPN component becomes necessary.

Firstly, we model the PSD of the updated FPN Wgpnpey as
a convex combination of the original PSDs Wrnp and Wrpn

YkpNnew (€, 1) = 7(t) Yrnp (§) + (1 - “/(f))‘I’FPN(E)-, (20)

where the parameter y € [0, 1] determines the contributions of
the original PSDs. In Fig. 6 we present few PSDs combinations
obtained with different values of +: obviously, at the extreme
values v = 1 and v = 0 (20) reduces to the original Wgrnp
and Wgpn, respectively.

Secondly, similar to (11), we estimate the scaling factors
of the mixed PSDs as the solutions {3p(t), SFonmix(t): and
&Znpmix (1) of the non-negative least-squares problem

arg min { 3 (‘I’RND (&) stnp(t) + ren (€) SEonmix ()
Sp()>0 | gez

Sivmin ()20
Sitnpmis ()20

i () shnomn (1)~ 7 (6.0) ) w3 (©)

+ 3 (rn (€) Eo (1) — FRnn (6,0 )Zw%<£>}7
ge=E 1)

where 6 and Grnp are obtained from the MAD of the high-
frequency coefficients scaled by the weights w;,ws : E — R
as in (9) and (11). The optimization (21) aims to find the
best non-negative solutions in the least-squares sense for the
updated scaling factors using their definition (2) and (3). Note
that the updated Sppnnew (¢) can be simply obtained from (21)
as
SEornew (£) = SEonmix (1) + Rnpmix (1)

Lastly, we compute the updated PSD (20) using a parameter
v defined as

A(t) = Sitnpmix (£) )
i (£) + SR (£)
Note also that the updated Wrpnnew and Sppanew are used for

computing the adaptive threshold array (15)-(16) in place of
Wepyn and SppN, respectively.
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Fig. 7. Frames from the noise-free sequences Foreman (left) and Miss America
(right).

VI. EXPERIMENTS

We compare the filtering results of RF3D and E-RF3D
against those obtained using the same spatiotemporal filter but
with different a-priori assumptions on the observation model:

o WR: data corrupted by one additive white random noise
component and no FPN component. In this case, Spnp
reduces to a weighted average of (9) and (10) over Z,
because in the non-negative least-squares minimization
(11) we assume sgpy = 0 and Wrnp(€) = 1 forall £ € E.
CR: data corrupted by one additive colored random noise
component and no FPN component. The PSD of such
noise is assumed equal to

Sitnp ZRND + Sy Trex
Sitnp + SN
thus treating the FPN as another random component.
Again, gnp reduces to a weighted average of (9) and
(10) over Z, because we assume ¢gpy = 0.
WRWEF: data corrupted by two additive white noise
components, namely random and fixed-pattern noise, with
PSDs assumed as Wgrnp(€) = Pppn(€) = 1 forall £ € E.
Under this assumption, ¢gnp and Sppy are given by (11).

Each of these simplified —and rough— assumptions reduce
RF3D to an elementary algorithm that is unable to deal
with the specific features of the actual noise model at hand.
In particular, under the WR and CR assumptions, the FPN
component is ignored and thus the filter is not able to account
for the possible accumulation of FPN in the DC plane of the 3-
D spectrum, which may hence remain unfiltered. Conversely,
WRWEF does model both the RND and FPN but ignores the
spatial correlations that exist in the two noise components;
thus filtering faces a particularly serious compromise between
preservation of details and attenuation of noise. Additionally,
we test the denoising performances of the state of the art in
video and volumetric data denoising, namely V-BM3D [13]
and BM4D [15], which are however designed for AWGN or,
equivalently, for the WR assumption with i.i.d. Gaussian noise
having standard deviation oawgN.

In our experiments both synthetically corrupted sequences
and real LWIR thermography data are considered. The objec-
tive denoising quality is measured by the peak signal-to-noise
ratio (PSNR) of the estimate g

Lol XIIT]
10logy, . 5 |
ngX,l,gT (y(xv t) —y(x, t))
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where I, is the maximum intensity value (peak) of the
signal, y is the noise-free data, and | X|, |T'| are the cardinality
of X and T, respectively. The data is hereafter considered to
be in the range [0,255], i.e. Iymax = 255. We consider the
standard sequences Foreman, Coastguard, Miss America, and
Flower Garden corrupted as in (1) with different combinations
of rnp and epn. In Fig. 7, we show two noise-free frames
of Foreman and Miss America.

The remainder of this section is organized as follows. In
Section VI-A we discuss the implementation details, param-
eter settings, and computational complexity of the proposed
denoiser; in Section VI-B we present the denoising results for
synthetic data; then, in Section VI-C, we show the denoising
results of real thermography sequences to demonstrate that the
proposed model (1) can appropriately describe the output of
LWIR imagers.

A. Implementation Details

1) Motion Estimation: The proposed framework is rel-
atively independent from the particular strategies used for
the motion estimation. In our implementation, we use a
coarse-to-fine two-scale motion estimator. First the sequence is
downsampled by a factor of two; then the motion trajectories
are computed using a fast diamond search [38] where the
distance function is defined as the fo-norm difference of
blocks of size N x N, which thus cover an image area two
times larger than that at the original resolution. Note that
the downsampling increases the signal-to-noise ratio, and thus
makes the motion estimation less impaired by noise. Finally,
the found motion trajectories are refined on the full-resolution
video using the same search process. For the refinement we
employ a penalization term in the distance functional [14] to
promote the matching of the blocks at the position predicted
within the coarser scale.

2) Two-Stage Filtering: Similar to other algorithms [12],
[13], [14], [15], we employ two cascading stages which differ
for the particular shrinkage operator Y (12): specifically we
use a hard-thresholding operator in the first stage and an empir-
ical Wiener filter in the second. The hard-thresholding stage is
intended to provide a basic estimate which will serve as a pilot
for the Wiener-filtering stage and uses an adaptive threshold
array equal to the square root of the 3-D variances s;‘mlR
scaled by a constant factor Asp [22], [12]. In both stages, the
estimates of volumes are obtained after applying the inverse 3-
D transform on their thresholded spectra, and then are returned
in their original location. Overlapping estimates are finally
aggregated through an adaptive convex combination using
(15)—(16) as in [12]. This implementation can be interpreted
either as the V-BM3D algorithm [13] with the block matching
performed only along the temporal dimension, or as the V-
BM4D algorithm [14] without the 4-D nonlocal grouping.

3) PSD Normalization: Without loss of generality, both
PSDs Wrnp and Wppy are normalized with respect to their
highest frequency coefficient. In Fig. 2, the highest frequency
coefficients are located at the bottom corner, diametrically
opposite to the DC coefficients. Observe in the figure that the
magnitude of the highest-frequency coefficients is among the
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Fig. 8. Average PSNR (dB) obtained by WR (dashed line), CR (dot-dashed
line), WRWF (dotted line), RF3D (thin solid line), and E-RF3D (thick solid
line) as a function of the threshold factor A3p. The markers denote the global
maxima.

smallest of their respective PSDs Wgnp and Wepy; thus, the
values of ¢rnp and cppn constitute only a rough quantitative
indication of the actual strength of the two noise components,
whose average standard-deviation can in fact be much larger
than ¢rnp and Gppw.

4) Parameter Settings: We set the maximum temporal
extent of the spatiotemporal volumes to H = ty+ —t,—- =9
with the reference block located in the middle, the size of the
the 2-D blocks to N x N = 8 x 8, and the threshold factor to
Asp = 2.7. As transform T3p we utilize a separable 3-D DCT
of size N x N x H.

The factor Azp is crucial: a too small or too large value
may cause undersmoothing or oversmoothing of the data. In
Fig. 8 we show the average PSNR obtained by the different
methods for the denoising of the considered test videos and
noise levels as A\3p varies. We exclude Miss America from such
average-value analyses because most of the sequence consists
of a large smooth stationary background and thus its PSNR
remains high even when a large Asp causes oversmoothing.
The chosen Asp = 2.7 approximately yields the PSNR peak
for both RF3D and E-RF3D; conversely, for WR, CR, and
WRWEF the best \sp needs to be larger (4.5, 6.15, and 4.65,
respectively) to compensate the deficiencies of their assumed
observation models. Note that A\3p = 2.7 is equal to that
used in [12] and is also not far from the universal threshold
v/2log(NNH) [22].

Both BM4D [15] and V-BM3D [13] modulate their filter-
ing strength with the standard deviation oawgn of the i.i.d.
Gaussian noise assumed to corrupt the data; however, because
of the mismatch between the AWGN model and the actual
observations (1), there is no ideal value of oawgn. We aim
to compare the proposed algorithm against the best possible
BM4D and V-BM3D results; thus, we use “oracle” oxwgn
values that maximize the output PSNR individually in each
experiment. Details are given in the Appendix.

The block size 8 x 8 is widely used in many image-
processing applications because it enables the use of fast
transform implementation (e.g., DCT or FFT) and also allows
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Fig. 9. Effect of different block sizes on the PSNR performance for the
proposed method under different noise conditions. The area of the disks
represents the average PSNR over different test videos for a specific noise
level and block size, and each color represents a particular block size. The
disks in each column are ordered in decreasing PSNR value from top to
bottom; for each noise level we also report the best and worst PSNR value.

for a good data sparsification (e.g., BM3D denoising [12] or
JPEG/MPEG compression). The denoising performances of
the proposed E-RF3D using different block sizes are evaluated
in Fig. 9; the performance is measured as average PSNR
over the test sequences considered in our experiments, again
minus Miss America, using Asp = 2.7. The area of each disk
is proportional to the average PSNR (bigger disks indicate
higher PSNR), and each color represents a particular block
size. The disks in each column are ordered in descending
PSNR value, and as one can clearly see, the best performance
is always attained by 8 x 8 blocks (blue disks) with PSNR
improvements ranging between 0.5dB and 1.5dB with respect
to the worst case. Note that also V-BM3D as well as all
others considered algorithms employ 8 x 8 blocks as basic
data structures, whereas BM4D uses cubes of size 4 x 4 x 4.

Our single-threaded MATLAB implementation! of the pro-
posed algorithm used for the reported experiments processes
a CIF-resolution sequence (i.e. 352 x 288) at approximately 1
frame per second on an Intel®) i7-2640M CPU at 2.80-GHz.

B. Synthetic Data

The synthetic noisy sequences are generated according to
the observation model (1) with the PSDs defined in (2) and
(3) and shown in Fig. 2; cgnp and gpn are both simulated to
remain constant in time. In order to present the best possible
performances, every compared method use the optimized value
of A3p discussed in Section VI-A4.

1) Joint Random and Fixed-Pattern Noise Removal: The
PSNR denoising results under static and drifting FP are
reported in Table I and Table II, respectively. Table II only
includes E-RF3D because the other methods only exploit the
PSD of the FPN, and not the actual realization FP, and thus
are unaffected by the drift. In fact, the PSNR of such methods
under static or drifting FP only differ by +0.1dB. Observe
that a drift in the FP complicates the estimation (18), and thus
the results of E-RF3D reported in Table II are not always as
good as those obtained in case of static FP.

Referring to the PSNR results in Table I, RF3D and E-RF3D
consistently outperform the results obtained under the less

'MATLAB code downloadable at http:/www.cs.tut.fi/~foi/GCF-BM3D/.
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PSNR (DB) DENOISING PERFORMANCE OF V-BM3D [13], BM4D [15], AND THE PROPOSED RF3D AND E-RF3D APPLIED TO DATA CORRUPTED BY
SYNTHETIC NOISE AS IN (1) HAVING DIFFERENT COMBINATIONS OF ggpN AND rND. THE SAME DATA IS ALSO FILTERED ASSUMING WHITE RANDOM
NOISE (WR), COLORED RANDOM NOISE (CR), OR WHITE RANDOM AND WHITE FIXED-PATTERN NOISE (WRWF). THE FP IS STATIC IN TIME.

Video Foreman Coastguard Miss America Flower Garden
Resolution 352 x 288 176 x 144 360 x 288 352 x 240
Frames 300 300 150 150

seen | Filter 5 0 ] 15 | 2 5 0] 15 [ 20 5 0 ] 15 | 2
V-BM3D | 33.89 | 33.20 | 32.11 | 3088 || 32.11 | 31.47 | 30.59 | 29.58 3225 | 3009 2673
BMAD | 33.18 | 3272 | 31.84 | 3083 || 3227 | 31.66 | 3077 | 209.86 3137 | 29.18 2575
WR 3441 | 3326 | 3194 | 30.80 || 3227 | 31.26 | 30.18 | 29.16 27.02 | 25.83 2358
5 | cr 3442 | 3273 | 3122 | 30,03 || 3203 | 30.90 | 2077 | 2875 2655 | 2527 23.04
WRWE | 3532 | 3371 | 3232 | 3115 || 33.45 | 3196 | 3079 | 29.76 3136 | 29.19 2587
RE3D | 3614 | 3452 | 33.16 | 3200 || 3402 | 3275 | 3165 | 30.68 3223 | 30.04 2687
ERF3D | 38.52 | 3544 | 33.53 | 3215 || 35.74 | 33.83 | 32.22 | 3103 3302 | 3042 | 2844 | 2692
V-BM3D | 20.87 | 20.77 | 29.67 | 29.50 || 28.35 | 28.27 | 28.14 | 27.96 2804 | 2741 | 2661 | 25.73
BMAD | 2012 | 2012 | 20.11 | 2002 || 27.70 | 27.68 | 27.67 | 27.57 2652 | 2599 | 2529 | 24.49
WR 2940 | 29.84 | 30.03 | 29.89 || 28.00 | 2825 | 2821 | 27.99 2546 | 2478 | 23.95 | 23.12

10 | cr 3072 | 30.58 | 30.00 | 29.30 || 28.77 | 28.68 | 28.32 | 27.83 2520 | 2439 | 23.47 | 2261
WRWF | 3192 | 3133 | 3068 | 3009 || 20.95 | 20.26 | 28.68 | 28.20 27.94 | 27.02 | 25.96 | 24.95
RE3D | 3301 | 3234 | 3155 | 3081 || 30.55 | 3004 | 2047 | 28.97 2864 | 27.80 | 26.82 | 25.89
E-RF3D | 37.10 | 3478 | 3312 | 3182 || 33.01 | 3207 | 3122 | 3034 3076 | 2927 | 27.81 | 2643
V-BM3D | 27.83 | 27.81 | 27.77 | 27.72 || 26.23 | 2620 | 26.16 | 26.10 2501 | 2479 | 2451 | 24.13
BMAD | 26.54 | 2655 | 2659 | 2667 || 25.18 | 25.19 | 25.21 | 25.26 23.19 | 23.05 | 2281 | 2251
WR 2562 | 26,18 | 2679 | 27.31 || 24.62 | 25.02 | 25.43 | 2573 2375 | 2341 | 2292 | 2238
15 | cr 2746 | 27.96 | 28.15 | 28.02 || 25.80 | 2620 | 26.41 | 26.40 2375 | 2328 | 22.66 | 22.00
WRWE | 20.68 | 2034 | 28.98 | 28.64 || 27.77 | 27.36 | 2697 | 26.64 2540 | 2495 | 2436 | 23.73
RE3D | 3106 | 3064 | 3013 | 2059 || 28.58 | 28.27 | 27.89 | 27.51 2605 | 25.69 | 2520 | 24.65
E-RF3D | 35.24 | 33.93 | 32.56 | 3142 || 30.84 | 3070 | 3019 | 2044 29.07 | 27.99 | 2699 | 25.99
V-BM3D | 2650 | 2650 | 2648 | 2646 || 24.83 | 24.83 | 2480 | 24.78 272 | 2263 | 2250 | 2232
BMAD | 2624 | 2623 | 2618 | 2612 || 23.34 | 23.35 | 2340 | 23.42 2076 | 2072 | 20.64 | 20.53
WR 2273 | 2316 | 2381 | 2447 || 2196 | 2231 | 2279 | 2327 2.1 | 2195 | 2171 | 21.39
20 | cr 2481 | 2540 | 2602 | 2637 || 2334 | 2382 | 2436 | 2474 242 | 214 | 2174 | 2127
WRWE | 28.15 | 27.87 | 27.59 | 27.35 || 26.19 | 25.93 | 25.65 | 25.41 2353 | 2326 | 22.90 | 22.49
RE3D | 2078 | 2045 | 2002 | 28.60 || 27.23 | 27.02 | 2673 | 2644 2420 | 2401 | 2374 | 23.42
E-RF3D | 33.77 | 3298 | 3193 | 30.93 || 20.98 | 30.03 | 20.40 | 28.86 27.60 | 2694 | 2617 | 2543

TABLE II

PSNR (DB) DENOISING PERFORMANCE OF E-RF3D APPLIED TO DATA CORRUPTED BY SYNTHETIC NOISE AS IN (1) HAVING DIFFERENT COMBINATIONS
OF GppN AND GrNp. THE FP PRESENTS A DRIFT IN TIME. IN THIS CONDITION V-BM3D, BM4D WR, CR, WRWF, AND RF3D OBTAIN RESULTS
COMPARABLE (£0.1DB) TO THE ONES REPORTED IN TABLE I, AND THUS ARE NOT SHOWN.

Video Foreman Coastguard Miss America Flower Garden
Resolution 352 x 288 176 x 144 360 x 288 352 x 240
Frames 300 300 150 150
x| Filter SRND
5 10 15 20 5 10 15 20 5 10 15 5 10 15 20

5 E-RF3D | 37.87 | 35.10 | 33.32 | 32.00 35.30 | 33.43 | 31.95 | 30.80 37.89 | 37.28 32.88 | 30.30 | 28.35 | 26.90
10 E-RF3D | 35.61 | 34.07 | 32.61 | 31.43 31.97 | 31.40 | 30.53 | 29.69 36.11 | 3577 30.46 | 28.95 | 27.58 | 26.32
15 E-RF3D | 33.28 | 32.76 | 31.75 | 30.76 || 29.70 | 29.67 | 29.18 | 28.59 34.29 | 34.20 28.57 | 27.58 | 26.64 | 25.71
20 E-RF3D | 31.31 | 31.26 | 30.74 | 30.04 || 28.29 | 28.33 | 28.10 | 27.65 32.55 | 3233 26.87 | 2647 | 2575 | 24.97

accurate WR, CR, and WRWF assumptions with a substantial
PSNR improvement in almost every experiment. Similarly, the
state-of-the-art V-BM3D and BMA4D filters (which we remark
are designed for AWGN) are outperformed by the RF3D
and E-RF3D methods. This demonstrates the importance of
correctly modeling and appropriately filtering the two different
components of the noise. It is interesting to notice that when-
ever ¢ppN is large enough (> 10), the PSNR of WR and CR
increase as ¢gnp increases. This apparent counterintuitive be-

havior is explained by the fact that neither WR nor CR model
the FPN component, which may accumulate in the temporal
DC plane of the 3-D volume spectrum. Such accumulation is
particularly significant when motion is absent, as shown by
(13), and corresponds to DC-plane coefficients having much
larger noise variance than the rest of the spectrum. WR and
CR make no distinction between DC-plane coefficients and
AC coefficients, thus an increase of the RND noise component
results in a higher filtering strength, which partly compensates
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Fig. 10. Frame-by-Frame PSNR (dB) output of the videos Foreman and Miss America corrupted by synthetic noise having sxp = sppn = 15 with either
static FP (top row) or drifting FP (bottom row). We show the results of V-BM3D (+), BM4D (¢), WR (0), CR (o), WRWEF (%), RF3D (v), and E-RF3D

(2).

their model deficiency. The sequence Flower Garden is an
exception: being a fast moving scene there is no accumulation
of FPN and thus the PSNR naturally decreases with the
increase of ¢gnp. An additional remark about Table I regards
the results of RF3D and E-RF3D for Miss America under
high levels of ¢rpn: since the sequence presents little motion,
E-RF3D is challenged to get a reliable estimate of the FP
under strong FPN, and thus it is not able to provide the same
performance gain as that of the other cases. As a matter of
fact RF3D and E-RF3D provide the same PSNR results at
sepn = 20.

Fig. 10 shows the frame-by-frame PSNR of Foreman and
Miss America corrupted by random and fixed-pattern noise
having rnp = SppN = 15. Miss America and the first half of
Foreman have low motion activity, whereas the second half
of Foreman exhibits a high motion activity because of a fast
transition in the scene. In good accord with the numerical
results of Table I and Table II, E-RF3D (2) always outperform
the results obtained under WR (0), CR (o), and WRWF (x)
assumptions, as well as those of V-BM3D (+4) and BM4D
(0). RF3D (v) is in few cases marginally inferior to V-BM3D
(+). The advantage of the enhanced fixed-pattern suppression
is clearly visible in all experiments, with the immediate and
substantial PSNR improvement after the first estimate of the
FP is subtracted (around the 10th frame in Foreman and
between the 50th and the 75th frame in Miss America).

In Fig. 11, we show a denoised frame from Foreman and
Miss America corrupted by synthetic noise having ¢rnp =
SrpN = 15, as well as the FP estimate obtained by E-RF3D.
The noise-free data is shown in Fig. 7. Under the WR and
CR assumptions the filter is unable to properly remove the
FPN component, whose residual artifacts can be easily spotted
within the denoised frames. In the WRWF results, we notice
a good suppression of the random noise, but the structures
of the FPN are still clearly visible. Conversely, RF3D and E-

RF3D generate more visually pleasant images, as the artifacts
of the FPN are dramatically reduced and many high-frequency
features, such as the hair and facial features of Foreman or the
wrinkles in the clothes of Miss America, are nicely preserved.
The results obtained by the V-BM3D and BM4D algorithms
are separately presented in Fig. 12: as one can clearly see, the
visual quality is significantly inferior those of RF3D and E-
RF3D because of the remaining artifacts due to the FPN and
the excessive loss of details.

2) Separate Random and Fixed-Pattern Noise Removal:
The proposed filter is designed to jointly remove the random
and fixed-pattern noise components, but for this set of exper-
iments we modify it such that the two noise components are
suppressed one at a time in two cascading passes. In other
words the modified filter is applied twice on the observed
data, first suppressing the random noise and then the FPN,
or viceversa. From Fig. 13 it can be seen that whenever the
FPN is suppressed before the random noise, the visual quality
of the denoised videos is comparable or even slightly better
to that obtained by the joint denoising strategy (at the obvious
expense of a doubled computational load). The improvement
is due to the assumption of zero random noise made in the
first pass: if gnp = 0 the number M of frames required for
the FP estimation is small and thus the FP estimate can be
obtained faster. Conversely, the reversed schema, implemented
by suppressing the FPN after the random noise, is not as
effective. In fact, as can be seen from the cheek of Foreman in
Fig. 13, the corresponding denoising results exhibit significant
FP artifacts.

3) Additive White Gaussian Noise Removal: In the final set
of experiments using synthetic noise, we evaluate the proposed
method against sequences corrupted solely by i.i.d. additive
(white) Gaussian random noise with standard deviation oawGN,
which is assumed to be known. The proposed RF3D operates
according to the WR assumption with {gnp = oawon. The
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Foreman Miss America

Fig. 11. From top to bottom: denoising results of WR, CR, WRWF, RF3D, E-RF3D, and the FP estimate obtained from E-RF3D for Foreman and Miss
America corrupted by synthetic noise having crgNp = <ppN = 15.
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Foreman

Miss America

Fig. 12. From top to bottom: denoising results of V-BM3D (Foreman 27.77 dB, Miss America 32.84 dB) and BM4D (Foreman 26.59 dB, Miss America
32.37 dB). The synthetic correlated noise is characterized by srxp = sppy = 15.

Q

Foreman

Miss America

Fig. 13. Denoising results for Foreman and Miss America corrupted by synthetic correlated noise having crnp = <ppn = 15 using E-RF3D to separately
remove the two noise components. Top: first suppression of random noise and then FPN (Foreman 31.23dB, Miss America 33.37dB); bottom first suppression
of the FPN and then random noise (Foreman 32.02dB, Miss America 34.29dB). For comparison, as can be seen in Table I, E-RF3D with joint-noise suppression

provides 32.56dB for Foreman and 34.24dB for Miss America.

TABLE III
PSNR (DB) DENOISING PERFORMANCE OF V-BM3D, BM4D, AND RF3D
FOR DATA CORRUPTED BY LI.D. GAUSSIAN NOISE WITH STANDARD
DEVIATION GAWGN -

Video Foreman Coastg. | Miss Am. | FI. Gard.
oawon | Res. 352 x 288 | 176 x 144 | 360 x 288 | 352 x 240
Frames 300 300 150 150
V-BM3D | 30.84 3833 3150 36.53
5 BM4D 39.77 38.87 42.02 36.09
RF3D 40.27 39.43 41.98 36.58
V-BM3D | 36.55 3482 39.64 3215
10 | BM4D 36.38 3531 40.28 31.39
RF3D 36.88 3577 40.19 32.06
V-BM3D | 3340 3176 37.95 2830
20 | BM4D 3327 3213 3833 27.27
RE3D 3372 3236 38.40 28.00
V-BM3D | 29.99 2828 35.46 2434
40 | BM4D 30.39 29.08 36.03 23.40
RE3D 30.61 29.09 36.23 2421

rationale of these experiments is to compare RF3D against

V-BM3D and BM4D on data where the latter two methods
operate in ideal conditions; the results for different values
of oawgn are reported in Table III. From the table we can
notice that the best-performing method is not the same for
all experiments: while RF3D yields the best results in most
of the cases, it also sometimes falls behind. The gap between
the highest and lower PSNR values is at most 1.1dB, and
typically much smaller; overall, these three methods perform
comparably. Thus, the significant advantage (often several dB)
of RF3D and especially E-RF3D in the case of correlated and
fixed-pattern noise reported in Table I is a result of a correct
modeling of the observed data, and not of an intrinsically more
powerful algorithm.

C. LWIR Thermography Data

In this section we demonstrate the appropriateness of the
proposed method through the denoising of two real LWIR
thermography sequences acquired using a FLIR Tau 320
camera: the first sequence, Matteo, is characterized by high
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Matteo Laptop

Fig. 14. From top to bottom: denoising results of WR, CR, WRWF, RF3D, E-RF3D, and the FP estimate obtained from E-RF3D for LWIR thermography
sequences Matteo and Laptop acquired by a FLIR Tau 320 camera.
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Matteo

Laptop

Fig. 15. Temporal cross-section of the noisy (top row) and E-RF3D denoised (bottom row) Matteo and Laptop sequences acquired by a FLIR Tau 320 camera.
Both sequences consists of 300 frames. The artifacts of the FPN and the random noise are evident from the roughly constant streaks in time (horizontal

direction) and space (vertical direction), respectively.

motion activity, whereas the second, Laptop, contains a more
static scene?. The noise in the acquired data is characterized by
D A 2.3 and gpy A~ 1.5 over a [6010, 6100] range, which
corresponds to srap & 6.5 and ¢ppy & 4.3 for a [0, 255] range.

Objective assessments cannot be made because the ground-
truth is not available, however, referring to Fig. 14, we can
observe that under the WR, CR and WRWF assumptions
the filter is not able to remove the noise, and that the best
visual quality is obtained by the proposed RF3D and its
enhancement E-RF3D. In particular, E-RF3D provides the best
FPN suppression, which is evident from smooth areas such as
the background of Matteo, and the best detail preservation, as
can be seen from the folds in the tee-shirt of Matteo or the
grid and letters in Laptop.

In the last row of Fig. 14 we show the FP estimate
obtained from E-RF3D. As can be noticed, in the case of
the static sequence Laptop part of the signal leaks into the
residuals and is accumulated into the FP estimate. This is
explained by the difficulty of unambiguously distinguishing
the static information of the signal from the pattern of the
FPN without the aid of motion (as described in Section
V-A). In such cases the estimate of the FP (18) is likely
to be less accurate, and thus isolating the noise component
may be challenging. However, in spite of this mild leakage,
the quality of the E-RF3D estimate is clearly superior to
that of the compared methods (including RF3D), with better
preservation of details and suppression of noise. In Fig. 15,
we illustrate the effects of the random and fixed-pattern noise
from the temporal cross-section of Matteo and Laptop (i.e.
the horizontal dimension represents time, and the vertical
dimension represents a particular cross-section of each frame).
The effects of the noise structure of the FPN and RND can be
respectively noticed from the horizontal and vertical streaks
in the noisy data, whereas in the denoised counterparts these
artifacts are effectively removed while preserving the fine
(temporal) details, such as the three “claws” in the second
half of Marteo and the “waves” in Laptop.

2This paper has supplementary downloadable material available at http://
ieeexplore.ieee.org, provided by the authors. This includes the raw and filtered
LWIR sequences of Matteo and Laptop as uncompressed AVI format movie
clips. The material as GZIP Tar Archive file is 143 MB in size.

TABLE IV
MINIMUM (LEFT VALUE IN EACH CELL) AND MAXIMUM (RIGHT VALUE IN
EACH CELL) VALUES OF THE ORACLE 0y PARAMETERS OF BM4D
AND V-BM3D FOR EACH COMBINATION OF NOISE SCALING FACTORS
SFPN AND GRND-

T SRND. |
seen | Filter 5 10 15 20
‘ min__max ‘ min _ max | min _max | min _max ‘
5 V-BM3D | 10 26 14 27 19 30 25 38
BM4D 10 28 14 29 19 33 25 41
10 V-BM3D | 16 57 19 60 23 60 27 59
BM4D 17 189 19 160 23 152 27 150
15 V-BM3D | 24 93 26 92 30 91 32 90
BM4D 25 274 27 272 30 268 32 264
20 V-BM3D | 34 124 35 123 39 120 40 120
BM4D 35 385 37 380 39 371 40 352

VII. CONCLUSION

The contribution of this work is twofold. First, we developed
an observation model for data corrupted by a combination of
two spatially correlated components, i.e. random and fixed-
pattern noise, each having its own non-flat PSD. This obser-
vation model can characterize several imaging sensors, and
is particularly successful in describing the output of LWIR
imagers. Second, we embed such observation model within
a filtering framework based on 3-D spatiotemporal volumes
built by stacking a sequence of blocks along the motion
trajectories of the video. The volumes are then sparsified
by a decorrelating 3-D transform, and then filtered in 3-D
transform domain through a shrinkage operator based on both
the PSDs of the noise components and on the relative spatial
position of the blocks in the volume. Extensive experimental
analysis demonstrates the subjective and objective (PSNR)
effectiveness of the proposed framework for the denoising
of synthetically corrupted videos, as well as the high visual
quality achieved by the filtering of real LWIR thermography
sequences. We further showed the capabilities of online FP
estimation and subtraction to improve the denoising results.

APPENDIX

The denoising results of V-BM3D and BM4D in Table I are
obtained with a default implementation of those algorithms
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[13], [15] and an “oracle” value ojyy Of the assumed noise
standard deviation. In particular, for each video and for each
separate combination of ¢gnp and <ppn under either static or
drifting FPN, we have optimized o;yy such that it yields the
maximum PSNR value in each individual experiment. Due to
length limitation and for the sake of illustration simplicity,
in Table IV we report only the minimum and maximum of
such optimum oy Values for all combination of noise
scaling factors. As can be clearly seen, the difference between
the maximum and minimum values notably increases with
SrpN, thus indicating the impossibility of compensating the
mismatch in the observation model by a simple tuning of the
filter’s parameters. Also, note how the maximum values tend
to be very large in order to compensate the accumulated FPN
in the volume spectra as quantified in (13).
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