

Tampereen teknillinen yliopisto. Julkaisu 968
Tampere University of Technology. Publication 968

Sanna Määttä

Modelling Embedded Applications for On-Chip
Multiprocessing Platforms

Thesis for the degree of Doctor of Science in Technology to be presented with due
permission for public examination and criticism in Tietotalo Building, Auditorium TB109,
at Tampere University of Technology, on the 3rd of June 2011, at 12 noon.

Tampereen teknillinen yliopisto - Tampere University of Technology
Tampere 2011

ISBN 978-952-15-2579-7 (printed)
ISBN 978-952-15-2617-6 (PDF)
ISSN 1459-2045

ABSTRACT

The complexity of state-of-the-art embedded systems requires designers to

focus on abstraction levels much higher than Register Transfer Level (RTL).

As the designers are familiar with using RTL, system design often starts at

levels of abstraction that are too close to implementation.Higher levels of ab-

straction substantially reduce the amount of details designers need to consider

enabling complex system design in shorter time.

Modelling and simulation are essential methods in state-of-the-art embedded

system design. In model-based design, a system model is the key element of

the design process from the specification to the implementation. Modelling

helps designers to manage complex systems, better understand the system

under development, visualise a system, specify the structure and behaviour of

the system, validate the system behaviour, and document thedesign decisions.

Moreover, modelling reduces development time and costs.

This thesis describes a model-based approach for embedded application mod-

elling and validation together with an on-chip multiprocessing platform. The

aim of the work was to facilitate the programming of multiprocessing sys-

tems as well as to enable early system validation, design space exploration,

and performance evaluation.

ii Abstract

PREFACE

The work presented in this thesis has been carried out in the Department of

Computer Systems at Tampere University of Technology, Finland during the

years 2005-2010 and in the Institute of Microelectronic Systems at Technical

University Darmstadt, Germany during the academic year 2007-2008.

I would like to thank my supervisor Prof. Jari Nurmi for his guidance and

encouragement through all these years as well as for providing such a posi-

tive atmosphere in the Team Nurmi. Moreover, I would like to express my

gratitude to my ”surrogate” advisor Dr. Leandro Soares Indrusiak, who took

me under his wings during my stay in Germany and from that timeon. Also,

many thanks to Prof. Manfred Glesner who enabled my stay at MES. I am

also grateful to the reviewers of this thesis Prof. Johan Lilius and Prof. Lisane

Brisolara for providing constructive comments on this thesis.

I would like to thank my parents and brother as well as all my friends for their

tolerance and support. I would also like to thank all the members of Team

Nurmi for all kinds of co-operation and all entertaining (especially coffee ta-

ble) conversations. Also, many thanks to Dr. Luciano Ost andM.Sc. Leandro

Möller for their wonderful company in Germany and for never letting me

swim alone. . .

This thesis was financially supported by the Tampere Graduate School in

Information Science and Engineering (TISE), the SYSMODEL project, and

Tampereen kaupungin tiederahasto, which are gratefully acknowledged.

Tampere, May 2011

Sanna M̈aättä

iv Preface

TABLE OF CONTENTS

Abstract . i

Preface. iii

Table of Contents . v

List of Figures . ix

List of Tables . xi

List of Abbreviations. xiii

1. Introduction . 1

1.1 Objective and Scope of Research 2

1.2 Thesis Outline . 3

2. Rising Above RTL: System Description at Higher Levels of Abstrac-

tion . 5

2.1 Levels of Abstraction . 5

2.2 System Design and Modelling 6

2.3 Design Space Exploration . 8

2.4 Model Accuracy versus Simulation Speed 9

2.5 Heterogeneity and Models-of-Computation 11

2.6 System (Level) Design Languages 12

2.7 UML . 13

vi Table of Contents

2.7.1 UML Profiles . 14

2.7.2 Repetitive Structure Modelling using MARTE 16

2.7.3 UML Diagrams . 16

3. Ptolemy II: A Software Framework for Actor Oriented Experimenting 21

3.1 The Ptolemy Project . 22

3.2 Actor Orientation and Hierarchical Heterogeneity 23

3.3 Advantages of the Ptolemy II Framework 25

4. More and Less Abstract Models of Network-on-Chip Interconnects 27

4.1 HERMES: The RTL Reference Model 28

4.2 RENATO: Modelling the HERMES Switch Using UML In-

teractions . 29

4.3 JOSELITO: Number of Model Details Versus Simulation Speed 32

4.4 BOÇA: Analytical Calculation of Communication Latency . . 33

5. UML Extension to the Ptolemy II Framework. 35

5.1 Encapsulating UML Sequence Diagrams Inside Composite

Actors . 35

5.2 Simulating UML Sequence Diagrams within Executable Sys-

tem Models . 37

6. Simulating Embedded Applications Together with on-ChipMultipro-

cessing Platforms . 41

6.1 An Approach for Embedded Application Modelling for on-

Chip Multiprocessing Platforms 42

6.2 Application Modelling . 43

6.3 Platform Modelling . 47

6.4 Mapping Application Models on Platform Models 48

Table of Contents vii

6.5 Enabling Joint Validation of Application and Platform Models 49

6.5.1 Basic Principles . 49

6.5.2 Interaction Between the Different Elements of the Sys-

tem . 50

6.6 Creating Hierarchically Heterogeneous Application Models . . 56

6.7 UML Profiling . 60

7. Case Studies. 65

7.1 Case Study of Joint Simulation of Application and Platform

Models . 67

7.2 Case Study of Application Validation on Multi-Abstraction

Platform Models . 70

7.3 Case Study of Evaluating Communication and Computation

Costs . 75

7.4 Case Study of Modelling with Priorities and Timing Constraints 79

7.5 Case Study of Simulating Heterogeneous System Models . .. 82

7.6 Discussion . 86

8. Conclusions . 91

8.1 Future Development . 91

Bibliography . 93

viii Table of Contents

LIST OF FIGURES

1 Y-chart [63] c©IEEE, 1999 9

2 The abstraction pyramid depicts the trade-off between themod-

elling effort and level of detail [57]c©A.C.J. Kienhuis, 1999 . 10

3 UML extension mechanisms: stereotypes, constraints, and

tagged values . 14

4 A 3x3 torus topology described using the RSM notation 17

5 UML sequence diagram and the corresponding communica-

tion diagram . 18

6 Vergil workspace showing composite and atomic actors and

executive and local directors 24

7 RENATO’s UML interactions [46]c©IEEE, 2008 31

8 Encapsulating a UML sequence diagram inside a composite

actor [44] c©IEEE, 2006 . 36

9 Actors connected to the input and output ports of a composite

actor [44] c©IEEE, 2006 . 37

10 UML editor extension to the Ptolemy II framework 38

11 Sequence diagrams describing an autonomous vehicle appli-

cation . 45

12 Speed controlling sequence diagram connected to application

actors . 46

13 Platform description using the RSM notation 48

x List of Figures

14 Application and platform models [67]c©IGI Global, 2010 . . 51

15 Sequence diagram of the application elements’ interaction dur-

ing simulation . 52

16 A sequence diagram with its corresponding message graph .. 53

17 Hierarchical description style of the Ptolemy II framework . . 57

18 Hierarchical heterogeneity (Modified from [65]c©IEEE, 2010) 59

19 Composite structure diagram of the application model (Ex-

tended from [64]c©IEEE, 2009) 62

20 UML sequence diagrams of an autonomous vehicle applica-

tion [66] c©IEEE, 2008 . 68

21 Communication latency of the sequence diagrams using dif-

ferent network configurations 69

22 UML sequence diagrams of an autonomous vehicle applica-

tion [67] c©IGI Global 2010 72

23 Worst case communication latency for each sequence diagram

using 2 different random mappings for each NoC model 75

24 Latency error of JOSELITO and BOÇA in comparison with

RENATO using two different mappings 76

25 Average latency of critical and all communication and com-

putation using different platform configurations and random

(R) and static (S) mapping 79

26 Percentage of critical messages violating timing constraints . . 83

27 Average timing constraint violation in milliseconds 84

28 Heterogeneous application model (Modified from [65]c©IEEE,

2010) . 85

LIST OF TABLES

1 Stereotypes describing the application and platform elements

(Extended and modified from [64]c©IEEE, 2009) 61

2 Parameters for the UML sequence diagrams (Extended from

[65] c©IEEE, 2010) . 63

3 Communication latency for each sequence diagram of the ap-

plication model [66]c©IEEE, 2008 69

4 Worst case latencies of each sequence diagram in millisec-

onds for mapping 1 (Modified from [67]c©IGI Global, 2010) . 73

5 Worst case latencies of each sequence diagram in millisec-

onds for mapping 2 (Modified from [67]c©IGI Global, 2010) . 73

6 Average latency of critical and all communication and com-

putation in milliseconds [64]c©IEEE, 2009 78

7 Worst case latency for each message for all configurations in

milliseconds [64]c©IEEE, 2009 80

8 Percentage of messages of each platform configuration vio-

lating timing constraints . 81

9 Average timing constraint violation of each platform configu-

ration in milliseconds . 82

xii List of Tables

LIST OF ABBREVIATIONS

AMS Analogue and Mixed Signal

ANSI American National Standards Institute

CF Combined Fragment

CSP Concurrent Sequential Processes

CT Continuous Time

DE Discrete Event

DSP Digital Signal Processor

EDA Electronic Design Automation

ESL Electronic System Level

FIFO First In First Out

flit Flow Control Digit

ForSyDe Formal System Design

FSMD Finite State Machine with Datapath

GPS Global Positioning System

HDL Hardware Description Language

HDTV High-Definition Television

xiv List of Abbreviations

HetSC Heterogeneous Specifications using SystemC

HW Hardware

IP Intellectual Property

ITRS International Technology Roadmap for Semiconductors

JVM Java Virtual Machine

LUT Look-Up Table

MARTE Modelling and Analysis of Real-Time and Embedded Sys-

tems

MESCAL Modern Embedded Systems, Compilers, Architectures, and

Languages

MoC Model of Computation

MPEG Moving Picture Experts Group

MPSoC Multiprocessor System-on-Chip

MSC Message Sequence Chart

NoC Network-on-Chip

PAT Payload Abstraction Technique

PBD Platform Based Design

PE Processing Element

PTRT Packet Trailer Release Time

RT Register Transfer

RTE Real-Time and Embedded

RTL Register Transfer Level

xv

RSM Repetitive Structure Modelling

SDF Synchronous Data Flow

SoC System-on-Chip

SPT Schedulability, Performance and Time

SW Software

SysML Systems Modelling Language

TLM Transaction Level Modelling

UML Unified Modelling Language

VHDL Very High Speed Integrated Circuit Hardware Description

Language

VOPD Video Object Plain Decoder

XML Extensible Markup Language

xvi List of Abbreviations

1. INTRODUCTION

Embedded systems, such as consumer electronics, kitchen appliances, mobile

phones, medical systems, and traffic control systems, can befound every-

where. Embedded systems are dedicated to perform a certain function. They

are often portable devices and targeted to mass production.Most of them also

interact continuously with their embedding environment. Thus, they need to

be energy efficient, small, low cost, and operate in real-time [25] [69].

The diversity and complexity of applications, increased number of nonfunc-

tional requirements, increased need for integration and networking, increased

heterogeneity of products, increased flexibility, and shortened time to market

characterise the state-of-the-art embedded systems and set requirements for

their design [25].

State-of-the-art embedded systems are complex and heterogeneous, contain-

ing for example analogue and digital parts, as well as hardware (HW) and

software (SW) [26]. The hardware-driven design flow poorly addresses the

dominance of SW in embedded systems [32]. The integration ofthe HW

and SW late in the design flow might lead to a system that does not work

at all, does not work as it should, or does not meet its performance require-

ments. Therefore, it is important to model the whole system already early at

the design process in order to validate its correct functionality and explore the

design space in order to make necessary trade-offs for instance in terms of

area, speed, and power consumption.

System complexity can be addressed by raising the level of abstraction above

the Register Transfer Level (RTL) [50]. Higher levels of abstraction are usu-

ally closer to human way of reasoning. For instance, it is very difficult to catch

2 1. Introduction

the system functionality when it is described as a schematicor by a Hardware

Description Language (HDL). Furthermore, system level methodologies nar-

row the gap between application and hardware designers, since the application

designer can validate the whole embedded system without detailed knowledge

about system manufacturing [29].

The increasing complexity of embedded systems cannot lead to increasing

design costs. The design cannot be based on for instance repetitive proto-

typing, since it is expensive and time consuming. More systematic and well-

defined approaches are necessary in order to make systems meet their require-

ments [25].

1.1 Objective and Scope of Research

This thesis presents an approach for modelling and validating embedded ap-

plications together with on-chip multiprocessing platforms. This approach

relies on executable specifications; however, without excluding (semi) formal

description of the application. Even if the main focus is on embedded sys-

tems, the application modelling approach does not exclude general purpose

applications.

The novelty of this approach is it being fully model-based using actor orienta-

tion and executable Unified Modelling Language (UML) sequence diagrams.

Moreover, neither code generation nor HW emulation is required when simu-

lating applications on a multiprocessing Network-on-Chip(NoC) platform.

The scope of the thesis is modelling at high levels of abstraction (that is, sys-

tem level). Thus, this thesis considers neither the HW/SW division nor the

process of system refinement into lower levels of abstraction. SW means ex-

clusively application SW, operating systems or middlewareare not addressed.

To summarize, the main contributions of this thesis are the following:

• An approach for joint modelling and validation of application and plat-

form models using UML sequence diagrams, actor orientation, Java,

1.2. Thesis Outline 3

and the Ptolemy II framework

• Implementation of a mapping between the application and platform

models

• Implementation of Processing Elements (PEs) to be connected to the

NoC switches

• Design space exploration of application models mapped on different

platform models and configurations

• Describing the application model using the UML profile for Modelling

and Analysis of Real-Time and Embedded Systems (MARTE) and defin-

ing a few necessary extension to the MARTE profile

• Describing the platform model using the MARTE profile and itsRepet-

itive Structure Modelling (RSM) notation

1.2 Thesis Outline

This thesis is a monograph, which contains some unpublishedmaterial, but

is mainly based on the author’s publications [64], [65], [66], and [67]. Pub-

lications [47], [83], and [84] are directly complementary,whereas publica-

tion [85] is used as a reference only.

This thesis can be divided in three parts: background theory(Chapters 2 – 3),

closely related previous work not carried out by the author (Chapters 4 and

5), and the actual contribution of this thesis (Chapters 6 – 7).

Chapter 2 gives an overview of the concepts and terminology the author con-

sidered relevant for the rest of this thesis. Chapter 2 first presents differ-

ent abstraction levels. Then, it introduces the terminology and concepts of

system design and modelling, design space exploration, heterogeneity, and

Models-of-Computation (MoCs). Moreover, Chapter 2 discusses the effect of

the accuracy of a simulatable model on the simulation speed.Finally, Chapter

4 1. Introduction

2 presents a few system level design and modelling languages, from which

UML is discussed in more detail, since it is relevant for the rest of this thesis.

Chapter 3 gives first an overview of a few system level modelling frameworks

and approaches. The emphasis of Chapter 3 is on academic approaches that

are freely available. Chapter 3 then presents the Ptolemy IIframework, within

which the application modelling approach presented in thisthesis is imple-

mented.

One of the contributions of this thesis is the joint validation of application and

platform models. Therefore, Chapter 4 presents the models of NoC intercon-

nects used as a part of the platform models (the PEs are presented in Chapter

6). Chapter 4 presents first the reference interconnect, HERMES, since the

more abstract models are based on it. Then, Chapter 4 presents three models

of NoC interconnects, RENATO, JOSELITO, and BOÇA that are all imple-

mented on system level yet still presenting different levelof accuracy. The

work presented in this Chapter is not carried out by the author.

Chapter 5 describes the previous work on creating executable application

models using UML sequence diagrams within the Ptolemy II framework. The

work presented in this Chapter is not carried out by the author.

Chapter 6 describes the contribution of this thesis and explains the application

modelling approach for on-chip multiprocessing platforms.

Chapter 7 presents a few case studies in which the application modelling ap-

proach is demonstrated. Finally, Chapter 8 draws conclusions and presents

some future work.

2. RISING ABOVE RTL: SYSTEM DESCRIPTION AT

HIGHER LEVELS OF ABSTRACTION

According to the International Technology Roadmap for Semiconductors (IT-

RS) the cost effective and reliable design of such a complex system on a

single chip that is possible with the current technology would need a fifty-fold

increase in design productivity. Hence, the specification,design, verification,

and design space exploration of complex systems require a level of abstraction

that is above the RTL [50].

Despite the clear need for system level design, neither industry nor academia

has been able to sufficiently formalise a system level designtechnology or

methodology [29]. In fact, the term system level does not even have a clear

or unified definition [91] [96]. Usually system level is described to be a level

above RTL including both HW and SW [50] [96].

2.1 Levels of Abstraction

As the definition of the term system level is not unified, neither is the termi-

nology describing the rest of the abstraction levels: Rabaey et al. divide the

abstraction levels in digital circuit design from the lowest level to the highest

in device, circuit, gate, functional module, and system levels [93], whereas

Gajski et al. call them circuit, logic, processor, and system levels [29]. At

the device level, the basic component of the models is a transistor, whereas

circuit level components are standard cells consisting of them. Further, at the

gate level (or logic level according to Gajski et al. [29]), components are logic

gates and flip-flops building register transfer components.At the functional

6 2. Rising Above RTL: System Description at Higher Levels of Abstraction

module level (or processor level) systems are described using components

such as adders that compose bigger systems (such as processors) that are used

at the system level [29] [93].

RTL is a low level of abstraction and is usually associated with HDLs, such as

Very High Speed Integrated Circuit Hardware Description Language (VHDL)

or Verilog [34]. At the Register Transfer (RT) level, a design has clocked

behaviour described in terms of data transfers between storage elements (such

as registers) [40].

Transaction Level and Electronic System Level (ESL) are notexactly lev-

els of abstraction, even though both of them are placed in a level above

RTL [34] [59] [99]. Transaction Level Modelling (TLM) is a high level mod-

elling style that enables the separation between the implementation of the

communication functionality and the functional units thatuse the commu-

nication functions. Especially SystemC [41] advocates theuse of TLM, in

which the communication functionality is modelled as channels and the Sys-

temC modules can request a transaction by calling the interface functions of

other modules [34].

ESL is an intermediate design phase above RTL (or rather a new”buzzword”

in the Electronic Design Automation (EDA) industry). The raise of the ab-

straction level has been a trend during the past few years; therefore, the EDA

industry has had room for a new definition [59] [99]. ITRS defines ESL to be

a level above RTL that consists of behavioural and architectural levels. At the

behavioural level the system functions have not yet been partitioned into SW

and HW, whereas at the architectural level this partitioning has been already

done [49].

2.2 System Design and Modelling

Benini and de Micheli define a system to be a collection of components pro-

viding a useful service when operating together [9]. Systemdesign is the

process of refining a functional specification of a system into the final system

2.2. System Design and Modelling 7

implementation [91]. However, the gap between the system specification and

implementation is too large to be closed in a single step. Thus, closing the

gap requires a successive stepwise refinement of system models [29].

A model is a simplification of reality. Building models helpsus to better vi-

sualise and understand the system we are designing. Especially complex sys-

tems cannot easily be comprehended without an abstract model of them [10].

An abstract model is a source of nondeterministic behaviourand the imple-

mentation process makes it a deterministic system [56]. Hence, according

to Selic, the main purpose of models is to understand the aspects of a com-

plex system before constructing it [98]. Systems models canbe created many

ways, most of the ways being ad hoc. However, without modelling it is likely

to either build a malfunctioning system or fail building it at all [10].

Modelling is an accepted engineering technique [10]. It is the process of

creating or generating models. According to ITRS, modelling aims at sup-

porting technology development and optimisation as well asreducing devel-

opment time and costs [51]. Modelling also enables the analysis of existing

systems, for instance when it is too impractical to experiment with the actual

system [98].

Models have a central role in model-based design, model-integrated engi-

neering [100], and model-driven architecture [75]. All of them depict the

same idea using models; how it is called depends on the user. For instance,

the Mathworks has adopted the concept of model-based design, in which a

system model is used as an executable specification throughout the devel-

opment process [70]. Furthermore, according to Sztipanovits and Karsai,

model-integrated engineering uses models as a backbone forthe development

of computer-based systems. Though, they claim that model-integrated com-

puting uses models in a more general sense than model-based design. In

model-integrated computing models do not only capture for instance the SW

architecture but also its environment [100]. The Object Management Group’s

(OMG) model-driven architecture is targeted mostly to SW domain, since it

considers a platform-independent model to be a base of the application devel-

opment [75].

8 2. Rising Above RTL: System Description at Higher Levels of Abstraction

Regardless of how the use of models is called, usually a single model is not

sufficient for the whole system design process. Hence, we need different

models at different levels of abstraction [29] [91]. A modelserves as a speci-

fication of the desired functionality to be implemented in the next lower level

of abstraction and as a description for the validation of thedesign decisions

through simulation or analysis [29].

2.3 Design Space Exploration

The early stages of any system design process can be characterised by in-

completeness and exploration. Therefore, system level design deals with in-

complete and inconsistent information and the evaluation of different design

decisions based on it [91].

Plantin and Stoy emphasise the importance of models to capture the existing

knowledge of the system, even if the knowledge is incomplete. The incom-

plete system level models are the base of making trade-offs between available

system solutions [91]. The process of finding out the trade-offs by testing dif-

ferent solutions and optimising the design under a set of constraints is called

design space exploration [29]. Hence, the purpose of systemdesign is to re-

alise a desired functionality while satisfying design constraints that delimit

the design space and making trade-offs between system performance versus

costs [9].

The Y-chart method, depicted in Figure 1 emphasises the separation of archi-

tecture and application models, which facilitates the design space exploration.

Different methods can be used for designing and refining the application mod-

els and platform architecture separately until the mappingof the application

models onto different architectures for performance evaluation [58] [63].

Design space exploration is easier and faster at the system level than at the

lower levels of abstraction. Too detailed simulation, suchas cycle accurate

simulation, is not very suitable for design space exploration of for instance

state-of-the-art embedded systems. As their design space is large, simulators

2.4. Model Accuracy versus Simulation Speed 9

Fig. 1. Y-chart [63] c©IEEE, 1999

get too complicated and are too slow [90]. Even though at the system level

designers need to trade-off between the simulation speed and accuracy, it is

not always necessary to sacrifice accuracy for speed, as shown for instance

in [43].

2.4 Model Accuracy versus Simulation Speed

Modelling systems at the higher levels of abstraction reduces the number of

objects designers need to consider by an order of magnitude [29]. Moreover,

at the system level, designers can exploit all the freedom without making any

design decisions, such as the HW/SW partitioning [56]. However, when using

higher level models, designers need to trade-off between the simulation speed

and accuracy.

Ideally, the designers should start the system design process by using fast

but not very accurate system models, and stepwise refine the models towards

more accurate ones at the expense of the simulation speed. However, very of-

ten the RTL model exists before the more abstract models. Nevertheless, this

enables the back-annotation of for instance timing information to the more

10 2. Rising Above RTL: System Description at Higher Levels of Abstraction

Fig. 2. The abstraction pyramid depicts the trade-off between the modelling effort

and level of detail [57]c©A.C.J. Kienhuis, 1999

abstract models making them also more accurate.

Figure 2 depicts the abstraction pyramid. The bottom of the pyramid presents

the whole design space, whereas the top of the pyramid is the designer’s orig-

inal idea about the system. The abstraction pyramid addresses various mod-

elling issues: cost of modelling and evaluation, opportunity to change, level

of detail, and accuracy. On top of the pyramid, system modelsare very ab-

stract, meaning that their level of detail is low. However, the possibility to

explore various design choices is high, because the more detailed the system

description is, the more difficult and costly it is to change it [57].

When refining the system model towards the bottom of the abstraction pyra-

mid, the modelling and evaluation costs increase: the number of different

design choices increases making the system simulation and design space ex-

ploration more time consuming [57].

2.5. Heterogeneity and Models-of-Computation 11

2.5 Heterogeneity and Models-of-Computation

State-of-the-art embedded systems are often heterogeneous containing for in-

stance analogue, digital, and mixed-signal parts as well ashardware and soft-

ware [20] [33]. The various domains of heterogeneous systems require mod-

elling and design using different MoCs.

According to Keutzer et al. a MoC refers to a mathematical model that de-

scribes the system behaviour in terms of specifying the semantics of compu-

tation and concurrency [56]. The definition of a MoC has been often refined

to apply for instance to the context it is used in: For example, Eker et al. de-

fine a MoC to be a framework that specifies the interaction of components in

a subsystem covering both the flow of data and the flow of control between

them [26], whereas Jantsch and Sander describe a MoC to represent time and

the semantics of communication and synchronisation between processes in a

process network [54].

Even though MoCs have been described in detail [53], compared [62], and

categorized [24], it is difficult to model or implement a system using various

MoCs. However, it is beneficial to choose the right MoC and to understand

the impact of different MoCs on the design and implementation choices [53].

MoCs provide the designers with useful properties, such as determinism and

deadlock protection [54]. Therefore, choosing a MoC has a significant impact

on the quality of the system design [13]. Moreover, an appropriate MoC

speeds up the simulation of the system since only the issues relevant to that

particular MoC need to be simulated [54].

MoCs can be either timed or untimed. Timed MoCs (such as Discrete Event

(DE) or Continuous Time (CT)) have temporally ordered events, whereas un-

timed MoCs (such as Synchronous Data Flow (SDF)) have only partially or-

dered events [15] [24] [59].

The DE MoC is often used in HDL simulators, synchronous languages, and in

general in all time oriented models of systems (such as communication net-

works or digital hardware). The CT MoC is suitable for systems requiring

12 2. Rising Above RTL: System Description at Higher Levels of Abstraction

continuous time, such as analogue circuits, mechanical systems, or embedded

systems interacting with continuous environments. The CT MoC supports

continuous time mixed-signal modelling because a model in the CT domain

can include both continuous signals and discrete events. The SDF MoC suits

for modelling simple dataflow systems without complicated flow of control,

such as signal processing systems. The execution order of actors in the SDF

domain (and the number of produced and consumed data samplesof each ac-

tor) is statically determined prior to execution. This results in minimal execu-

tion overhead, bounded memory use, and the occurrence of no deadlocks [15].

The modelling languages and frameworks need to support system modelling

and design using multiple MoCs. Whereas SpecC supports various MoCs

(such as Concurrent Sequential Processes (CSP), Finite State Machine with

Datapath (FSMD), and DE) [30], the SystemC standard simulation kernel

supports only the simulation of DE models [41]. This poorly addresses the

heterogeneity of the state-of-the art embedded systems.

Heterogeneous specifications in SystemC (HetSC) [36], Analogue and Mixed-

Signal extensions to SystemC (SystemC-AMS) [102], SysteMoC [27], and

SystemC kernel extensions [86] [87] enable the simulation of hybrid and

mixed-signal SystemC models. The latter approach modifies the SystemC

kernel directly, whereas HetSC, SystemC-AMS, and SysteMoCare built on

top of SystemC. Also Verilog-AMS [2] and VHDL-AMS [39] enable the ana-

logue and mixed-signal description and simulation.

Besides languages, also some frameworks, such as the FormalSystem Design

(ForSyDe) [94] or Ptolemy II [26] (described in more detail in Chapter 3)

enable heterogeneous system modelling using multiple MoCs.

2.6 System (Level) Design Languages

System design languages need to capture not only the behaviour of the HW

but also to enable the description of the system SW [34] [96].Sangiovanni-

Vincentelli points out that the current industrial approaches of system level de-

2.7. UML 13

sign address either HW or SW but not both. HW approaches, suchas VHDL

or Verilog, have poor or no support for SW, whereas SW languages, such as

C or C++ are not able to describe concurrency and time [96].

C and C++ are popular among SW engineers for creating executable specifi-

cations. However, although they execute fast, they lack thenotion of concur-

rency and time, which are supported by for instance the American National

Standards Institute (ANSI) C based SpecC [30] or C++ based SystemC [41].

One of the main goals of the development of SystemC was to enable system

level modelling of systems that include both HW and SW [34]. SpecC is a

system level design language that facilitates the specification and design of

digital embedded systems containing both HW and SW [22] [30].

HDL based system level languages, such as System Verilog [42], preserve all

the features of the underlying language [42], but might be hard to use by SW

engineers [96]. For instance, System Verilog is built on topof the Verilog

2001 standard [42]. While preserving all the Verilog features it also supports

system level and object oriented modelling as well as the specification, design,

and verification of HW [1] [42]. However, it does not enable the modelling of

system SW.

The proportion and complexity of SW in embedded systems haveincreased

in recent years [16]. This increasing dominance of SW in embedded systems

needs to be addressed with other methods than using traditional HDLs. One

potential approach is UML [68].

2.7 UML

UML is a standardised modelling language for visualising, specifying, con-

structing, and documenting especially software intensivesystems. Hence, one

of the ideas behind the development of UML was to bring some stability to

the object oriented marketplace in forms of a unified and mature modelling

language and tools [10].

14 2. Rising Above RTL: System Description at Higher Levels of Abstraction

Class_name
{tagged_value1
tagged_value2}

method1()
method2()
method3()

{constraint}

<<Stereotype >>
Name

Fig. 3. UML extension mechanisms: stereotypes, constraints, and tagged values

UML can be applied to various types of systems, domains, methods, or pro-

cesses [4]. The growing interest of the embedded systems andreal-time com-

munities in UML, UML’s extension mechanisms, and support for object ori-

entation among others are considered the strengths of the language. The short-

comings, such as the lack of platform models or mapping methodology [68],

are later addressed for instance by the MARTE profile [78].

2.7.1 UML Profiles

A metamodel defines UML syntax and semantics. UML can be extended

by defining new metaclasses, extending the existing metaclasses, or defining

new constraints or more precise semantics. UML extension mechanisms (that

do not alter the UML metamodel) are stereotypes, constraints, and tagged

values [10] [80], whose syntax is shown in Figure 3.

Stereotypes extend the vocabulary of UML and allow the creation of new

building blocks. Furthermore, constraints extend the semantics of UML build-

ing blocks and enable the definition of new rules, whereas tagged values ex-

tend the properties of UML building blocks. The extensions can be arranged

as profiles. A profile is a set of stereotypes, constraints, and tagged values that

customise UML to a specific domain [10] [80].

Sangiovanni-Vincentelli points out that UML profiling can be considered ei-

2.7. UML 15

ther a strength or a weakness of the language. The over 300 existing UML

profiles will for sure customise UML for various needs while they most likely

also overlap [96]. Well known UML profiles include the Systems Modelling

Language (SysML) [76], a profile for Schedulability, Performance and Time

(SPT) [79], and the MARTE profile [78].

The UML profile for MARTE customises UML for model-driven develop-

ment of real-time and embedded systems [78]. Already MARTE’s predeces-

sor, the SPT profile extended UML with periodic tasks, schedulable objects,

timing, and concurrency aspects [79].

The MARTE profile supports the specification, design, and validation stages

of embedded system design. MARTE extends UML to provide constructs

for modelling Real-Time and Embedded (RTE) SW applications, high-level

RTE HW, and their non-functional properties. Moreover, MARTE provides

designers with necessary extension units in order to address performance and

schedulability analysis of RTE systems [78].

The MARTE profile is organised into a set of packages, such as founda-

tions, design model, and analysis model. The foundation package contains

basic elements for modelling non-functional properties, timing, and general

resources. Moreover, an allocation concept associates application functions

with the execution platform resources. The design model package includes

elements for modelling generic components, software and hardware compo-

nents, and the application. Finally, the analysis package contains modelling

capabilities for scheduling and performance analysis and enables designers

to perform for instance timing analysis directly from the UML description

instead of building a separate model for analysis [78].

Several approaches use the UML extensibility through profiles in order to cus-

tomise UML for embedded system design. For example, Kukkalaet al. intro-

duce a UML 2.0 profile for embedded system design [60], whereas Arpinen

et al. explore the embedded SW platform modelling using thatprofile [5].

Moreover, Brisolara et al. show the benefit of using the MARTEprofile when

defining the same system with and without the profile [12]. Boulet et al. and

16 2. Rising Above RTL: System Description at Higher Levels of Abstraction

Cuccuru et al. demonstrate the expressiveness of the MARTE profile’s nota-

tion for describing repetitive structures [11] [17].

2.7.2 Repetitive Structure Modelling using MARTE

The MARTE profile has also high level modelling constructs todescribe (par-

allel) data computations using several computation units.The RSM notation

provides a compact way to depict the regularity of such repetitions of struc-

tural elements connected via a regular connection pattern [17] [78].

The RSM notation extends the UML multiplicity concept in order to enable

to specify a shape of the repetitive structure elements. TheRSM modelling

aspects can be used to model HW platforms, applications, andthe allocation

of the application onto the HW platform [17] [78].

Figure 4 illustrates a 3x3 torus network using the RSM notation. The<<Hw-

CommunicationResource>> stereotype (which inherits from the<<HwRe-

source>> stereotype) describes NoC switches. The repetitionSpaceDepen-

dence attribute defines the relative position of an adjacentinstance for each

element (a vector{1,0} means that the adjacent instance is one hop along the

x-axis and zero hops along the y-axis, while{0,1} is zero hops along the x-

axis and one hop along the y-axis). The modulo attribute describes whether

the topology is cyclic (modulo is true) or not (modulo is false). In the case

depicted in Figure 4, a true modulo value means a torus topology, whereas a

false modulo value would mean a mesh topology.

RSM is necessary for describing massive regular parallelism: it makes the

model more compact, readable, and maintainable. However, it only handles

regular topologies [17].

2.7.3 UML Diagrams

The earlier version of UML, UML 1.1, included nine differentdiagrams:

class, object, component, and deployment diagrams depict the system struc-

2.7. UML 17

Fig. 4. A 3x3 torus topology described using the RSM notation

ture while use case, activity, statechart, sequence, and collaboration diagrams

depict the system behaviour [10]. Later, in UML 2.0 the number of diagrams

has increased to thirteen: composite structure and packagediagrams are the

additional structural diagrams, whereas timing and interaction overview di-

agrams are behavioural. Also the collaboration diagram is nowadays called

communication diagram and the statechart diagram state machine diagram.

Moreover, some of the behavioural diagrams (sequence, communication, tim-

ing, and interaction overview diagrams) are subcategorised into interaction

diagrams [77]. The sequence diagram is described next in more detail, since

it is used to create the executable application models as explained in Chapters

5 and 6.

UML sequence diagram is an interaction diagram and depicts the time order-

ing of messages. Booch defines an interaction to be a behaviour that consists

of a set of messages exchanged among a set of objects. Moreover, a message

specifies a communication between the objects [10]. Figure 5illustrates a

18 2. Rising Above RTL: System Description at Higher Levels of Abstraction

StabilityControl SpeedSensor SpeedControl

getSpeed()

setSpeed()

Sequence diagram

StabilityControl

SpeedSensor

SpeedControl

1: getSpeed()

2: setSpeed()

Communication diagram

Fig. 5. UML sequence diagram and the corresponding communication diagram

sequence diagram that has three lifelines and two messages.In the sequence

diagram, each object has a lifeline that describes its existence over a period of

time. The messages represent the communication between theobjects.

Some of the UML diagrams are almost overlapping, as can be seen from Fig-

ure 5. The lower part of Figure 5 depicts the corresponding communication

diagram. While the sequence diagram emphasises the temporal ordering of

messages, the communication diagram emphasises the structural organisation

of objects. These two diagrams are semantically equivalent[10]: as can be

seen from Figure 5 both diagrams contain the same objects andmessages, and

no information is lost when converting one to the other.

A sequence diagram is one variant of Message Sequence Charts(MSCs).

MSCs are a visual formalism used to capture system requirements during the

early design stages. MSCs specify scenarios that describe interaction patterns

between processes or objects [35].

2.7. UML 19

However, as much as the visual notation of UML is expressive and the dia-

grams have underlying formalism, the UML diagrams can be misinterpreted.

For instance Graaf et al. have noticed that in many companiesUML is used

for drawing instead of modelling and the interpretation of the drawings (not

always being syntactically correct or consistent) might get obscured [32].

Therefore, executable models are necessary.

20 2. Rising Above RTL: System Description at Higher Levels of Abstraction

3. PTOLEMY II: A SOFTWARE FRAMEWORK FOR

ACTOR ORIENTED EXPERIMENTING

System design at various levels of abstraction requires support from design

automation tools, but they are hardly mature enough for system level design

[50]. Moreover, system level design tools lack universal applicability [53] and

instead of creating a unified flow from the system level specification to the

implementation, they are merely a bunch of unlinked tools requiring informal

techniques and human intervention during the design flow [8].

Several methods and frameworks exist for embedded system design. Plat-

form Based Design (PBD) aims at reducing system design costsby reusing

applications and architectures [28] [56]. The ForSyDe framework aims at het-

erogeneous system modelling using multiple MoCs and the development of

transformational design refinement methodology for embedded systems and

Systems-on-Chip (SoCs) [94] [95].

Polis is an approach for the design and verification of control dominated reac-

tive systems. Polis is a full design methodology and a designframework for

HW/SW co-design of embedded system [7]. Metropolis continues the work

done within Polis. Metropolis is a design environment for heterogeneous sys-

tems designed to support PBD [8] [96] [101]. The goal of the development of

Metropolis has been to obtain a unified environment for unambiguous system

presentation at various levels of abstraction [101].

MILAN is a model-based simulation framework facilitating the design and

optimisation of embedded systems [6]. The Modern Embedded Systems,

Compilers, Architectures, and Languages (MESCAL) projectaims at creat-

ing a disciplined approach to produce reusable architectural platforms [72].

22 3. Ptolemy II: A Software Framework for Actor Oriented Experimenting

Artemis and SESAME are frameworks aiming at efficient designspace ex-

ploration of heterogeneous embedded systems architectures at multiple ab-

straction levels [89] [90]. The Ptolemy II framework [21] [26] is presented

next in further detail.

3.1 The Ptolemy Project

The Ptolemy project of the University of California at Berkeley aims at mod-

elling, simulating, and designing of concurrent, real-time embedded systems

[21]. The first outcome of the project was the Gabriel software for signal

processing at 1986. Gabriel included a code generator to produce efficient

assembly code for Digital Signal Processors (DSPs) as well as a HW/SW

co-simulator. Early 1990s, the project announced Ptolemy Classic, which

is a modelling environment supporting multiple MoCs. At 1996 the project

started working on the Ptolemy II software framework [13].

Although the Ptolemy II framework used some of Ptolemy Classic’s capa-

bilities, it also introduced several new features: data anddomain polymor-

phism, new MoCs, a new visual editor (called Vergil), actor oriented classes

and subclasses, and the use of the Extensible Markup Language (XML) for

representing models [13].

Whereas Gabriel was implemented in Lisp and Ptolemy Classicin C++, the

Ptolemy II’s implementation language was changed to Java due to its capa-

bility to for instance built-in threading and building userinterfaces. Even

though Java has several advantages, which is why it was chosen to implement

the Ptolemy II framework in the first place [13], the fact thatit runs over the

Java Virtual Machine (JVM) is also one of its biggest shortcomings. The sim-

ulation of Ptolemy II models may be slow in some cases and alsodependent

on the size of the Java heap space.

One of the aim of the Ptolemy project is to create an environment for actor

oriented experimenting [21].

3.2. Actor Orientation and Hierarchical Heterogeneity 23

3.2 Actor Orientation and Hierarchical Heterogeneity

An actor is a component that communicates with its environment by sending

and receiving data tokens (that encapsulate messages) via ports using chan-

nels [13] [61]. The actor model derives from the mathematical model of con-

current computation [37] and later from the formal models ofconcurrency [3].

The development of actors is influenced by the concept of objects in the Sim-

ula language [3]. Agha defines that each actor has an independent thread of

control and the actors communicate via asynchronous message passing [3].

Actor orientation is the theoretical foundation behind thePtolemy II frame-

work. Thus, Lee at al. have further refined the concept of actor orientation:

Even though the actors are still parallel, they can share thethread of con-

trol and the message passing does not necessarily need to be asynchronous.

Moreover, each actor can run in its own thread or the whole system can run

sequentially in a single thread [61].

Ptolemy II actors belong to a domain, which defines both a receiver and a

director. The receiver implements the communication of data tokens and can

be either a QueueReceiver (containing a First In First Out (FIFO) queue) or

a Mailbox (a FIFO with a capacity of one). The director is an object that

defines the interaction semantics of components. Thus, a director controls

the communication and execution of actors in the domain defining when the

actors communicate and update their internal state (thus following the rules

defined by a MoC) [13] [14] [26].

Ptolemy II actors can be either atomic or a composition of other actors (called

composite actors). Atomic actors are primitive and cannot contain other ac-

tors. Composite actors contain other composite actors, atomic actors, or both.

Opaque composite actors have a local director, whereas transparent compos-

ite actors do not and their execution follows the rules of theexecutive di-

rector [13] [26]. Figure 6 depicts executive and local directors as well as a

composite actor and atomic actors (Actor1, Actor2, and Actor3).

Lee et al. consider the most important advantage of actor orientation to be

24 3. Ptolemy II: A Software Framework for Actor Oriented Experimenting

Fig. 6. Vergil workspace showing composite and atomic actors and executive and

local directors

the use of MoCs in the actor interaction [61]. A MoC defines thedetails

of scheduling and communication and how the actors are related if they are

related. The actors themselves do not do that, unlike objects in object oriented

design. This increases reusability and the model can be easier analysed and

understood [26]. The use of MoCs in actor interaction is necessary in order

to comprehend the heterogeneity of the state-of-the-art embedded systems.

The Ptolemy II framework, as targeted at the design of heterogeneous em-

bedded systems, enables the integration of various MoCs by using hierarchi-

3.3. Advantages of the Ptolemy II Framework 25

cal heterogeneity. That is, the composite actors can encapsulate subsystems,

whose components’ interaction a MoC controls, as seen in Figure 6. Further-

more, the MoC also turns the subsystem into a component that can be used

in other systems. This hierarchical heterogeneity enablesthe analysis and

modification of subsystems without affecting the overall systems [26].

3.3 Advantages of the Ptolemy II Framework

Various Ptolemy II frameworks characteristics have been useful for the appli-

cation modelling approach presented in this thesis:

• The Ptolemy II framework is open source and can be modified andex-

tended. For instance, as described in further detail in Chapter 5, the

visual editor has been extended with a UML editor, in which UML se-

quence diagrams can be drawn.

• The Ptolemy II framework defines a large, domain polymorphiccompo-

nent library from which components can be selected to the workspace

of the visual editor.

• The Ptolemy II framework enables the definition of more components.

For instance, the Ptolemy II composite actor has been modified in order

to enable it to encapsulate a UML sequence diagram.

• One of the objectives of the Ptolemy II is to enable modellingusing

different MoCs. Various directors supporting different MoCs can be

selected from the component library and the implementationof new

ones is ongoing work.

• The Ptolemy II framework enables the creation of new directors. For

instance, the implementation of two additional directors was necessary

in order to define total and partial order execution semantics for the

UML sequence diagrams.

26 3. Ptolemy II: A Software Framework for Actor Oriented Experimenting

• One of the Ptolemy II framework’s advantage over other system level

design methods and tools is the visual editor, called Vergil. Vergil and

the component library make the building of models fast and quite ef-

fortless.

• Using the Ptolemy II framework, both application and platform mod-

els can be described and simulated in the same model using thevisual

editor.

• Ptolemy II can also be set up with Eclipse software development en-

vironment [23] making the programming of user defined components

convenient.

4. MORE AND LESS ABSTRACT MODELS OF

NETWORK-ON-CHIP INTERCONNECTS

A platform has various definitions depending on the domain ofapplication

[96]. In the context of PBD, a platform is an abstraction thatcovers several

possible lower level refinements [97] or a library of both computational and

communication components that can be composed to a design ata certain

level of abstraction. The selected parameterised components form a platform

instance [96]. Jantsch and Tenhunen define a NoC platform to include not

only the communication infrastructure, but also middleware and operating

system communication services, and a design methodology and tools to map

applications onto a NoC platform [55].

Traditional von Neumann uniprocessor architectures will not meet the power,

performance, and cost requirements of the state-of-the artand future systems

[56] [81]. Thus, multiprocessor systems are needed in orderto increase the

performance without increasing the power consumption of a processor [81].

When programming multiprocessing system, we try to exploitparallelism in

order to achieve increased performance. The increase in parallelism causes

also increasing communication overhead [88]. Therefore, the interconnection

network has a central role in state-of-the-art multiprocessing systems.

The design and verification of the inter-task communicationof applications

is hard if the interconnect is a bus based system due to the unpredictabil-

ity of the communication performance [55]. Even though on-chip buses are

cost efficient and have high performance, they do not scale when the number

of communicating components increases. This makes their behaviour unpre-

dictable. The concept of a NoC replaces ad hoc wiring with a more structured

28 4. More and Less Abstract Models of Network-on-Chip Interconnects

approach and increases predictability [18] [55].

In this thesis, a platform denotes a NoC based multiprocessing platform that

consists of one of the models of a NoC interconnect describedin the next

subsections and Processing Elements (PEs) connected to local ports of the

NoC switches.

The rest of this Chapter describes first a RT level reference model of a NoC

infrastructure called HERMES and then three different system level models

based on it. The modelling and implementation of the NoC interconnects

are not carried out by the author and are therefore not a contribution of the

thesis. The models of the NoC interconnects are presented here, because

the system level models RENATO, JOSELITO, and BOÇA are usedas the

platform interconnects in the case studies described in more detail in sections

7.1 – 7.5.

4.1 HERMES: The RTL Reference Model

HERMES is an infrastructure for low area overhead packet-switching NoC. A

switch is the basic element of the network and can be connected to four other

switches and to a local Intellectual Property (IP) core implementing especially

2D mesh topologies [74].

Each HERMES switch contains routing control logic and five bi-directional

input ports that establish the connection to four adjacent switches and to the

local core. Each port uses input buffering for incoming packets. The ar-

bitration logic gives a priority to the port, which has been granted routing

longest time ago. The routing control logic implements the routing strategy,

arbitration logic, and a packet switching algorithm with wormhole switching

mode [74].

The routing strategy chosen for HERMES is XY routing [74]. Inthe XY rout-

ing flow control digits (flits) are first routed in the X direction until the right

X-coordinate is found and then in the Y direction until the right Y-coordinate

is found.

4.2. RENATO: Modelling the HERMES Switch Using UML Interactions 29

HERMES switches use wormhole switching because it allows efficient use of

buffers, resulting in less buffer space needed than for instance in cut-through

switching. Moreover, wormhole switching is able to multiplex a physical

channel into more than one logical channel [19]. However, inHERMES

switches, only one logical channel is used of one physical channel in order

to reduce the switch complexity and cost [74]. In wormhole switching, pack-

ets are divided into entities called flits [19].

The flit size in HERMES can be parameterised, but the number offlits in a

packet is fixed to be 2f lit size in bits. The first and second flits of the packet form

the header and contain the address of the target switch of thepacket and the

size of the payload in flits respectively. The payload is carried by the rest of

the flits, which do not contain any routing information. Therefore, the payload

flits must follow the same path as the header flits. Each switchhas a unique

address expressed as X and Y coordinates corresponding the horizontal and

vertical position of the switch in the network. This representation facilitates

the XY routing of the packet [74].

HERMES aims at small design size and a NoC switch with low latency. The

HERMES switch is described in VHDL and prototyped on FPGA Virtex II.

A NoC configuration having a fixed flit size of 10 bits (2 bits forcontrol and

8 bits data), buffer size 8, and 5x5 mesh topology has 500 Mbits per second

peak performance at 25 MHz operation frequency. With this configuration,

the switch area is 555 Look-Up Tables (LUTs) [74].

4.2 RENATO: Modelling the HERMES Switch Using UML

Interactions

RENATO is an actor oriented system-level NoC model written in Java within

the Ptolemy II framework. RENATO is based on the UML interactions that

describe the functionality of the HERMES switch [46]. The interactions are

illustrated as UML sequence diagrams in Figure 7. These interactions only

visualise the RENATO model’s behaviour and are not associated with the ex-

30 4. More and Less Abstract Models of Network-on-Chip Interconnects

ecutable UML sequence diagrams for the application modelling explained in

Chapters 5 and 6.

The leftmost sequence diagram in Figure 7 describes an arbitration request

of an input buffer in a switch. An input buffer requests arbitration if it has

received a packet. The buffer sends the packet’s header flit to the router con-

troller and waits for a response (denoted by a synchronous message in the

sequence diagram). The controller requests arbitration from the arbiter for

the packet the header flit belongs to [46].

The arbiter handles all incoming requests and grants arbitration to one of the

buffers requesting it according to an arbitration scheme, such as round robin.

If the arbitration is granted, the arbiter sends the flit to the router that deter-

mines which of the 5 output ports the flit should be sent to. After the routing

is done, the router controller verifies that the chosen output port is free. If it is

free, the input buffer can establish the connection to the output port and send

the flit, otherwise the connection is refused and the input buffer has to request

for arbitration again [46].

The rightmost sequence diagram in Figure 7 describes the transmission of a

flit between two adjacent routers. The controller receives the flit from the local

input buffer and determines to which output port it belongs to. After sending

the flit to the correct output port, the controller waits for an acknowledgement.

After a positive acknowledgement, the controller removes the flit from the

source router’s input buffer, whereas a negative acknowledgement causes re-

sending of the flit [46]. Since there is only one condition in the last two

interactions of the rightmost sequence diagram, the alt combined fragments

could also be replaced with opt combined fragments.

Originally, RENATO was untimed. In order to increase its accuracy, timing

information extracted from the cycle accurate HERMES modelwas annotated

to RENATO’s interactions. The simulation results of RENATOhave been

compared to the results of HERMES using various traffic scenarios and NoC

configurations. For a long lasting traffic, the error is up to 10 per cent. This

can be considered as a good result since the actor oriented model is based on

4.2. RENATO: Modelling the HERMES Switch Using UML Interactions 31

Fig. 7. RENATO’s UML interactions [46]c©IEEE, 2008

32 4. More and Less Abstract Models of Network-on-Chip Interconnects

only the interactions and works without a synchronising clock signal [46].

4.3 JOSELITO: Number of Model Details Versus Simulation

Speed

JOSELITO is a simplified NoC model that uses Payload Abstraction Tech-

nique (PAT) and allows the performance evaluation of a NoC using both sim-

ulation and analytical methods. Even if JOSELITO uses the same UML in-

teractions as RENATO, it is more abstract. The PAT decreasesthe simula-

tion time of JOSELITO in comparison with RENATO, because it reduces the

number of communication events by abstracting the payload and therefore

omitting the flit by flit payload forwarding. Whereas RENATO forwards all

packets flit by flit, JOSELITO defines the packet as a header anda trailer and

uses an analytical method for denoting the transmission time of the payload,

which is actually the packet trailer release time (PTRT) [85].

Using JOSELITO, three different transmission scenarios are possible: block-

ing free, header blocking, or header and trailer blocking. In the blocking free

scenario no resource conflicts occur. Therefore, the latency and throughput

can be measured with no loss of accuracy. The packet header can be blocked

if the input buffer of the next router on the header’s way is full or the output

port of the current router is used by another packet. If the header cannot pro-

ceed further within the time the trailer is released and reaches the header, also

the trailer is blocked. Both blocking situations increase the possibility of the

loss of accuracy in the latency evaluation, because either the header or trailer

may block other packets [85].

JOSELITO performs in average 2.3 times faster than RENATO in88 per

cent of the test cases. Moreover, when compared to the results of HER-

MES, JOSELITO has 5.26 per cent error in latency and 0.1 per cent error

in throughput [85]. Moreover, the difference in the averageenergy consump-

tion between HERMES and JOSELITO is close to zero per cent (0.001247

mJ) [82].

4.4. BOÇA: Analytical Calculation of Communication Latency 33

4.4 BOÇA: Analytical Calculation of Communication

Latency

BOÇA is a fully analytical model and the most abstract of theNoC models

used in the simulation cases used in Chapter 7. A BOÇA model is parame-

terised with the network topology and it uses that information to analytically

calculate the latency of each communication that happens. BOÇA disregards

any interference between different traffic. Although beinga very simplified

model, BOÇA enables fast simulation and early analysis of the effect of the

network topology or different application mappings [67].

When simulating an application model on the abstract platform models, hun-

dreds of actors are simulated. As the simulation case in section 7.2 indicates,

there is a clear need for more abstract models, such as BOÇA,at least as long

as the system is modelled and simulated within the Ptolemy IIframework.

34 4. More and Less Abstract Models of Network-on-Chip Interconnects

5. UML EXTENSION TO THE PTOLEMY II

FRAMEWORK

This Chapter covers first how UML sequence diagrams can be encapsulated

inside the Ptolemy II’s composite actors and then how the execution semantics

are assigned to the sequence diagrams in order to create executable UML

models. The work and ideas presented in this Chapter are not carried out

by the author; the starting point of the contribution of thisthesis was the

already existing idea and work of simulating UML sequence diagrams within

the Ptolemy II framework.

Most attempts of using UML as a system level language use either static

analysis, code generation, or manual transformation into an executable form.

Static analysis provides designers with information they can use when build-

ing models for instance with SystemC or implementing systems, whereas

code generation requires model transformation. A manual transformation is

however a slow and error-prone task. Even though UML lacks execution

semantics, actor-orientation has the coexistence of multiple execution seman-

tics as its major feature. Therefore, it is reasonable to have a joint approach

of UML and actor orientation where the shortcomings of one ofthem are

compensated by the strengths of the other [45].

5.1 Encapsulating UML Sequence Diagrams Inside

Composite Actors

Figure 8 depicts a UML sequence diagram with one asynchronous and one

synchronous message (messages x and y respectively). When the sequence

36 5. UML Extension to the Ptolemy II Framework

Fig. 8. Encapsulating a UML sequence diagram inside a composite actor [44]

c©IEEE, 2006

diagram is encapsulated inside a composite actor, input andoutput ports are

created for each message so that one input and output port is created for the

asynchronous message (ports Ax and Bx in Figure 8), whereas two input and

output ports are created for each synchronous message (ports By, Cy, Cyr, and

Byr in Figure 8).

The input ports are connected to the source of the message while output ports

are connected to the receiver of the message, as depicted in Figure 9 [44].

This can be used for the creation of generic communication patterns that are

reusable in various application domains in a similar way that Gamma defines

in [31].

Each lifeline of the UML sequence diagram represents an application actor:

As seen in Figures 8 and 9, lifeline A represents the actor ”source A”, life-

line B the actor ”filter B”, and lifeline C the actor ”adaptation C”. Moreover,

the messages between the lifelines in the sequence diagram contain the data

tokens that the actors send to each other. The sequence diagram defines the

sequence of the messages between actors and the director associated with the

sequence diagram enforces their ordering [44].

5.2. Simulating UML Sequence Diagrams within Executable System Models 37

Fig. 9. Actors connected to the input and output ports of a compositeactor [44]

c©IEEE, 2006

The Ptolemy II framework’s visual editor, Vergil, was extended to support

the description of UML sequence diagrams as seen in Figure 10[44]. In the

Figure, all directors on the left, the lifelines, messages (both synchronous and

asynchronous), and the Combined Fragments (CFs) belong to the extension:

the directors PO SD Director and Lin SD Director, lifelines,messages, and the

parallel CF (par) were added within the work described in [44]. The directors

Total Order, Partial Order, optional, loop, and alternative CFs (as well as the

functionality of all the CFs) were added later, within the work described from

Chapter 6 onwards.

5.2 Simulating UML Sequence Diagrams within Executable

System Models

Indrusiak et al. describe how to directly validate UML models by combining

them with executable system models in [44], [45], and [48]. The Ptolemy

II framework’s hierarchically heterogeneous modelling style that allows the

38 5. UML Extension to the Ptolemy II Framework

Fig. 10. UML editor extension to the Ptolemy II framework

5.2. Simulating UML Sequence Diagrams within Executable System Models 39

inclusion of different execution semantics for each hierarchical level enables

the execution of UML sequence diagrams.

When UML sequence diagrams are encapsulated inside composite actors, in

addition to the creation of the input and output ports, the sequence diagrams

need to implement a firing scheme so that it can be simulated with other actors

and commanded by a director. The firing scheme depends on the precedence

of messages (the precedence of the message occurrence specification within

a lifeline). The formalism behind sequence diagrams does not formally de-

termine the precedence between messages that are not sent and received by

the same lifeline. However, in that case, a total ordering ofmessages can be

achieved by taking into account the messages’ position on the y-axis of the

lifeline, since a lifeline has a temporal dimension. That is, time passes when

going downwards along the lifeline [45].

The firing scheme determines in which order the tokens arriving at the input

ports of the composite actor containing the sequence diagram are forwarded to

the respective output ports of the actor. On each firing, the sequence diagram

triggers all messages that have tokens in their respective input port and whose

all preceding messages have been triggered. The firing scheme of each opaque

composite actor is modelled by a director. It is possible to create directors

implementing different firing schemes, such as total order (director Lin SD

Director in Figure 10) or partial order (director PO SD Director) [45].

In Ptolemy II, a director defines the execution semantics of actors. The Lin SD

Director defines the messages’ firing order to be dependent onthe messages’

position on the y-axis: a message that is higher on the axis istriggered before

a message located lower on the axis. The PO SD Director maintains a total

order within each lifeline, but a partial order among messages on different

lifelines [45]. This means that in case two messages are sentand received by

completely different lifelines, their execution order does not depend on their

position on the y-axis (that is, on the lifeline). But if theyhave at least one

common lifeline as a sender of receiver, their position of the y-axis defines

their firing order.

40 5. UML Extension to the Ptolemy II Framework

The simulation of the same sequence diagram with both total and partial order

directors show that the input buffers can be slightly smaller in partial order.

However, the implementation of total order is simpler and the precedence

can be determined in advance (can be simply a round robin arbiter), whereas

partial order requires dynamic analysis of the precedence [45].

6. SIMULATING EMBEDDED APPLICATIONS

TOGETHER WITH ON-CHIP MULTIPROCESSING

PLATFORMS

According to ITRS, to increase the performance of the SW execution requires

heterogeneous parallel processing using various application-specific proces-

sors for system functions. Moreover, ITRS emphasises the importance of exe-

cutable specifications written in a formal language, since they reduce the ver-

ification effort by allowing automated verification early atthe design process

at high levels of abstraction. However, more research and solutions for both

heterogeneous parallel processing and executable specifications are needed in

the near future [50].

The programming environment for multicore systems should be application-

centric [38]. Even though the application programmers should be aware of the

characteristics of the hardware to better exploit the capabilities of it [88], they

should be protected from as many HW features as possible [38]. A compiler

can parallelise sequential code, but this is not the most optimal solution. In

order to achieve highest possible performance of a multiprocessor system, the

programmers need to change to a parallel programming model [81].

This Chapter presents the approach for modelling and validating embedded

application models together with on-chip multiprocessingplatforms. This ap-

proach addresses the need for application-centric parallel programming meth-

ods by using actor orientation and UML. The approach enablesjoint valida-

tion of the application and platform models by simulation; therefore, it ad-

dresses the need of executable specifications and awarenessof the underlying

HW without excluding any (semi) formal definition of the application mod-

42 6. Simulating Embedded Applications Together with on-ChipMultiprocessing Platforms

els. Moreover, the simulation within the Ptolemy II framework provides the

means for creating heterogeneous system models.

6.1 An Approach for Embedded Application Modelling for

on-Chip Multiprocessing Platforms

The previous work explained in Chapter 5 enabled the simulation of applica-

tion models within the Ptolemy II framework. However, it didnot allow the

simulation of the application models mapped on platform models.

Following terminology is used from now on:

• A message represents a communication between two actors. Moreover,

within this work, it also represents application tasks. Messages are pa-

rameterisable and the delay parameter set by the application designer

indicates how long each task would be executed by a real processor.

• Communication latency of a message is the time that the packet(s) cor-

responding to that message spends on the network. The latency consists

of the model time during which the packets are either routed between

switches or waiting for routing in a buffer. The communication latency

of messages depends on network congestion, data size of the corre-

sponding packet, and the mapping (that is, if the sending andreceiving

actors of the packet are mapped to nodes that are close to eachother or

not).

• Computation latency is the time that a task would execute on aproces-

sor. Since the level of abstraction of the work this thesis describes is

system level, the processors are modelled as PEs. The PEs take into

account the latency by delaying the delivery of the messagesuntil the

computation time is over.

• Firing or executing a message happens when the composite actor encap-

sulating a sequence diagram has an incoming data token that indicates

6.2. Application Modelling 43

that two application actors want to communicate. The message firing

or execution means that a PE creates a packet containing the message,

delays the packet according to the computation delay, and sends it to

the receiver.

• Active actor can initialise communication.

• Passive actor never initialises communication but can respond to a re-

ceived communication.

• Firing period indicates how often active actors are fired (that is, how

often they initialise communication).

The next three sections describe the application model, platform model, and

the mapper in more detail.

6.2 Application Modelling

Using the application modelling approach presented in thisthesis, the appli-

cation models are described using UML sequence diagrams. Even though for

instance UML state machine or activity diagrams would also enable the de-

scription of application behaviour, sequence diagrams have a clear advantage

over them: the time ordering of messages.

Even though the sequence diagram is the only diagram that canbe simulated,

other diagrams are not excluded: as a sequence diagram present only a part of

the application behaviour, a composite structure diagram is used to illustrate

the structure of the whole application model and all connections between ap-

plication actors. Moreover, the composite structure diagram is also extended

with the ordering of the communication between actors, as explained later in

this Chapter in section 6.7.

The application modelling process starts with defining the application be-

haviour using sequence diagrams. Figure 11 depicts an autonomous vehicle

44 6. Simulating Embedded Applications Together with on-ChipMultiprocessing Platforms

application model that is used as an example to demonstrate the potential of

this modelling approach. The application model consists ofnine sequence

diagrams: navigation controlling, pressure controlling,speed controlling, ob-

stacle recognition 1, obstacle recognition 2, ultrasonic sensing, Global Po-

sitioning System (GPS) sensing, speed sensing, and vibration sensing. The

vehicle can determine its speed, location, vibration, and whether there are

obstacles ahead so that it can avoid collisions. The vehiclecan adjust its di-

rection and speed according to the obstacles shown in the obstacle databases

and its tyre pressure according to the information receivedfrom the vibration

sensor.

After the sequence diagrams are defined, they are drawn to theUML editor

that extends the Ptolemy II’s visual editor. In the sequencediagrams depicted

in Figure 11 lifelines represent application actors and messages between the

lifelines communication between actors. The sequence diagrams are encapsu-

lated inside composite actors and input and output ports arecreated for each

message of the sequence diagram. Each application actor is connected to these

input and output ports, as shown in Figure 12, which depicts the speed con-

trolling sequence diagram and its encapsulating compositeactor connected to

application actors.

A director defines the execution semantics of the sequence diagrams main-

taining the order of the messages. Two different directors are implemented:

total order and partial order. They implement either total or partial ordering of

messages and are based on the Lin SD Director and PO SD Director described

in Chapter 5.

Even though this application model is a synthetic example (the sequence di-

agrams do not depict any real-life vehicle), it can be parameterised to have

realistic delays and workloads. For instance, the messagescarrying and pro-

cessing images are bigger and have longer delays in comparison with mes-

sages carrying sensor readings or control information.

The application can run either independently from a platform as a stand-alone

model or if the platform and mapper exist, mapped on the platform.

6.2.
A

pplication
M

odelling
45

NavigationControl GPSInterface ObstacleDB SpeedControl DirectionControl

PAR

FrameBuffer1 FrameProcessor1 Photogrammetry ObstacleDB

StabilityControl SpeedSensor SpeedControl

StabilityControl TPMSSensor PressureControl

UltrasonicSensor ObstacleDB GPSInterface Photogrammetry SpeedSensor NavigationControl

NAVIGATION CONTROLLING

OBSTACLE RECOGNITION 1

SPEED CONTROLLING

PRESSURE CONTROLLING

SPEED SENSINGULTRASONIC SENSING GPS SENSING

m1

m2

m3

m4

m5

m1

m2

m1

m2

m1 m1 m1

m1

m2

m3

VibrationSensor StabilityControl

VIBRATION SENSING

m1

FrameBuffer1 FrameProcessor1 Photogrammetry ObstacleDB

OBSTACLE RECOGNITION 2

m1

m2

m3

F
ig.11.

S
e

q
u

e
n

ce
d

iag
ra

m
s

d
e

scrib
in

g
a

n
a

u
to

n
o

m
o

u
s

ve
h

icle
a

p
p

lic
a

tio
n

46 6. Simulating Embedded Applications Together with on-ChipMultiprocessing Platforms

Sensor
Speed

Stability
Control

Speed
Control

m1

m2

Stability
Control Sensor

Speed Speed
Control

Director

CONTROLLING
SPEED

Fig. 12. Speed controlling sequence diagram connected to application actors

6.3. Platform Modelling 47

6.3 Platform Modelling

As defined in Chapter 4, a platform denotes a NoC based multiprocessing

platform that consists of one of the models of a NoC interconnect and PEs

connected to local ports of the NoC switches. The PEs described next were

implemented within the contribution of this thesis.

The PEs are high level models of processors. Together with a model of a

NoC interconnect they form a platform model. Each PE is attached to a NoC

switch. The PEs actually consist of two actors: a producer and a consumer.

The producer is sending packets, whereas the consumer is receiving them.

The PEs also include the network interface: they are responsible of creating

packets, which carry the messages. The PEs buffer the messages until they are

packetized and sent in case the PE is still executing a previous message. The

PEs can also handle message priorities, executing higher priority messages

before lower priority messages.

Due to the different packet forwarding methods of the different NoC models,

different PEs were implemented. The RENATO PEs send packetsflit by flit,

whereas the JOSELITO PEs abstract the payload, thus sendingonly the packet

header and trailer. The BOÇA PEs are sending packets flit by flit but the flits

are not sent over the NoC but rather forwarded to the consumerwithout a

delay.

In this thesis, the use of the MARTE profile and especially itsRSM nota-

tion was expanded to cover also the visualisation of the platform model (even

though the platform modelling is otherwise not a contribution of this thesis).

Using the RSM notation the platform models can be described in a compact

manner. This reduces the effort of drawing all NxN network nodes and pro-

cessing elements, since all of them are similar. Figure 13 illustrates a NxN

platform model, in which the NoC switches are arranged as a regular mesh

topology.

48 6. Simulating Embedded Applications Together with on-ChipMultiprocessing Platforms

Fig. 13. Platform description using the RSM notation

6.4 Mapping Application Models on Platform Models

In order to establish a connection between the application model and the plat-

form, a mapper needed to be implemented. A mapper maps each lifeline

of the sequence diagrams on a PE of the platform. Since lifelines represent

application actors, each actor is therefore mapped on a PE. Moreover, each

application actor has tasks, which are then executed by the PE the actor is

mapped on.

The mapping has a significant impact on the communication costs; therefore,

the implementation of the mapper is flexible enabling different mapping algo-

rithms and heuristics [66]. In the case studies presented inChapter 7, usually

only a random mapping strategy is used (that is, each lifeline is mapped ran-

domly to one of the PEs and the mapping cannot be changed afterit is done

for one simulation). The purpose of the work this thesis describes was not

to evaluate different mapping heuristics. Hence, Ost et al.have implemented

several heuristics (greedy incremental, simulated annealing, and taboo search)

in [83] and [84], which complement the author’s work.

6.5. Enabling Joint Validation of Application and PlatformModels 49

6.5 Enabling Joint Validation of Application and Platform

Models

This subsection first presents some basic principles how theapplication and

platform models can run in the same model. Then it describes the interaction

between all the model elements in further detail.

6.5.1 Basic Principles

The following principles hold when encapsulating sequencediagrams inside

Ptolemy II composite actors [48] [66]:

• The composite actors encapsulating sequence diagrams (actors SD1 and

SD2 in Figure 14) must have a director (D2 and D3 in Figure 14) that

defines the execution semantics of the sequence diagram.

• The director of the composite actor ensures that the delivery of the mes-

sages follows the ordering defined by the sequence diagram.

• The composite actors encapsulating sequence diagrams musthave input

and output ports to allow the communication with other actors.

• For each asynchronous message, one input and an output port are cre-

ated to the composite actor that encapsulates a sequence diagram. For

synchronous messages, two additional ports must be createdto repre-

sent the return message.

• The receivers of each port can be configured with the desired buffering

behaviour (for instance bounded or unbounded FIFO buffer ora mail-

box).

• Each lifeline of a sequence diagram (lifelines L1 to L5 in Figure 14)

represents one application actor (actors named with letters a to e in

Figure 14).

50 6. Simulating Embedded Applications Together with on-ChipMultiprocessing Platforms

• Each message (messages M1 to M6 in Figure 14) between lifelines

represents the communication between two actors of the application

model.

In order to jointly simulate the application and platform models, the applica-

tion actors need to be mapped on the platform. In other words,the mapper

assigns each lifeline of the sequence diagrams on a PE of the platform (PE1

to PE9 in Figure 14) [67]. Thus, each lifeline must be mapped on a PE; how-

ever, a PE may have more than one (or zero) lifelines mapped onit. For

instance, considering the actors and PEs in Figure 14, the mapper maps each

actor (actors a to e in Figure 14) to one of the processing elements (PE1 to

PE9 in Figure 14) according to a given mapping heuristic (as explained in

more detail in section 6.4).

6.5.2 Interaction Between the Different Elements of the System

Figure 15 illustrates the interaction between different elements of the sys-

tem model. These interactions are described as a UML sequence diagram;

however, this diagram is not encapsulated inside a composite actor and not

executed like the sequence diagrams describing the application model. The

sequence diagram in Figure 15 only depicts how the simulation of the system

proceeds within the Ptolemy II framework.

The UML sequence diagrams describing the application model(see Figure

11) are first transformed into acyclic, directed message graphs. The SDDi-

rector (from which the total and partial order directors inherit) calls the cre-

ateGraph() method of all the total and partial order directors (depicted as the

Director lifeline in Figure 15). The directors then pass this request to the

precedence graph classes that create the precedence graphsof the messages

according to their ordering in the sequence diagrams. Therefore, each total

and partial order director is associated with one precedence graph. An exam-

ple of a sequence diagram and its corresponding message graph can be seen

in Figure 16.

6.5. Enabling Joint Validation of Application and PlatformModels 51

Fig. 14. Application and platform models [67]c©IGI Global, 2010

52
6.

S
im

ulating
E

m
bedded

A
pplications

Togetherw
ith

on-C
hip

M
ultiprocessing

P
latform

s

Director PrecedenceGraph Mapper Producer NcC Switch Consumer

fire()

sendMsg()

data_out(packet)

data_in(packet)

notify(id, time)

fireMsg(msg)

sendMsg()

CompositeActor SDDirector

alt [noMapper]

[Mapper]

loop

fire()

precedence()

precedence()

notify()

createGraph()

newGraph()

getMapper()

performMapping()

loop

notify()

opt [precedence]

opt [precedence]

[token]

[token]

opt

opt

F
ig.15.S

e
q

u
e

n
ce

d
iag

ra
m

o
fth

e
a

p
p

lica
tio

n
e

le
m

e
n

ts’in
te

ra
ctio

n
d

u
rin

g
sim

u
la

tio
n

6.5.
E

nabling
JointValidation

ofA
pplication

and
P

latformModels
53

NavigationControl GPSInterface ObstacleDB SpeedControl DirectionControl

PAR

NAVIGATION CONTROLLING SEQUENCE DIAGRAM

m1

m2

m3

m4

m5

NAVIGATION CONTROLLING
MESSAGE GRAPH

m1

m2

m3

m4 m5

F
ig.16.

A
se

q
u

e
n

ce
d

iag
ra

m
w

ith
its

co
rre

sp
o

n
d

in
g

m
e

ssage
g

ra
p

h

54 6. Simulating Embedded Applications Together with on-ChipMultiprocessing Platforms

All total and partial order directors then find out whether the application is

simulated as a platform independent stand-alone model or whether it is run-

ning on a platform. The method call getMapper() invoked by the director to its

super class returns the mapper if it exists, otherwise it returns null. The map-

per implements the mapping of application actors to the platform resources.

As depicted in Figure 15 if the noMapper condition is true, the execution

of the application model follows the interactions described inside the uppert

part of the alternative CF. Thus, the application is simulated as a stand-alone

model without the platform. If there is a mapper, the application is simulated

mapped on a platform model and the lower part of the alternative CF describes

the interactions.

If there is no mapper, the composite actor, inside which an application se-

quence diagram is encapsulated, can fire the director using the fire() methods

as soon as an incoming token in its input port indicates that two application

actors need to communicate. The director then checks whether the precedence

for that message is satisfied using the precedence() method.

The precedence of a message is satisfied if the message has notbeen fired

on that execution round and all its preceding messages have been fired on

that round. Alternative, optional, loop, and parallel CFs set some restrictions

for that rule. If there is an alternative CF, the precedence of that message is

satisfied, whose alternative condition is true (only one condition can be true;

thus, there can be two or more conditions. In case of only one condition, the

optional CF can be used). Likewise, if a message is inside an optional CF,

the precedence is satisfied if that optional branch condition is true. Moreover,

if a message is inside a loop CF, the precedence can be satisfied even if the

message has been fired on that execution round as long as the loop condition

is still true. If a message is inside a parallel CF, the precedence is satisfied

even if preceding messages inside the same parallel CF have not been fired.

Otherwise the precedence of the message is not satisfied and the token at the

input port of the composite actor is stored until the message’s precedence is

satisfied.

6.5. Enabling Joint Validation of Application and PlatformModels 55

For instance considering the sequence diagram and message graph in Figure

16, communication defined by messages m1 and m2 must happen before m3

can happen, and m1, m2, and m3 need to happen before m4 and m5. Messages

m4 and m5 are parallel meaning that the communication between actors can

happen either simultaneously or in any order. A new execution round of the

diagram can start either as soon as the current round has finished, or when

in pipelined mode, any time after the current round has started (new round(s)

cannot overtake any of the older ones, though).

If the message’s precedence is satisfied, the total or partial order director no-

tifies the precedence graph using the notify() method to update the status of

the message graph. In other words, the precedence graph changes the sta-

tus of a node containing the message to be fired on that execution round. If

the precedence was not satisfied, the notify() method is not called and only a

new token at the input port of the composite actor can make theexecution to

proceed. This procedure is repeated in a loop until the simulation is stopped.

If the application is simulated together with the platform,the lower part of the

alternative fragment in Figure 15 depicts the application simulation with the

platform. First, the director calls the performMapping() method of the mapper

to let it map application actors on the PEs. Then if the composite actor has

an incoming token, it fires the total or partial order director (fire() method),

which checks the message’s precedence (precedence() method).

If the precedence is satisfied, the total or partial order director asks the map-

per to communicate with the platform. The total and partial order directors

are unaware of the mapping of application actors on the platform, therefore,

they do not communicate with the platform directly. Since each lifeline rep-

resents an application actor, a message between two lifelines in a sequence

diagram indicates a packet sent by the PE’s producer, where the sending actor

is mapped and received by the PE’s consumer, where the receiving actor is

mapped. For instance, considering the application actors and the PEs in Fig-

ure 14, if actor a is mapped on PE 1 and actor b on PE 5, a message between

lifelines L1 and L2 causes PE 1 to send a packet containing themessage to

PE 5.

56 6. Simulating Embedded Applications Together with on-ChipMultiprocessing Platforms

When the mapper calls the producer’s sendMsg() method asking it to send

a message, the following procedure happens: First, the producer creates a

packet containing the message as payload and the receiving PE’s address

among other header information. Because each message also describes the

computational workload (the preCompTime parameter in Figure 19) imposed

by the application task to a processor, the producer delays the sending of the

packet as long as the computation time indicates. After thatthe packet is

passed through an output port dataout to the NoC that delivers the packet to

the correct consumer.

When the consumer receives a packet through its input port data in, it notifies

the mapper that the packet is delivered correctly. It passesthe packet id (that

identifies each packet) and the receive time of the packet as parameters of the

notify() method. Then the mapper notifies the total or partial order director

about the received message (fireMsg() method). Finally, thedirector notifies

the precedence graph to set status of a node containing the message into fired

on that execution round (notify() method). This procedure described in the

last 3 paragraphs is repeated in a loop until the simulation is stopped.

6.6 Creating Hierarchically Heterogeneous Application

Models

The execution of the sequence diagrams encapsulated insidecomposite actors

is enabled by the hierarchical modelling style of the Ptolemy II framework. It

enables different execution semantics at different hierarchical levels as seen

in Figure 17, which is a screen capture of the Vergil visual editor. The low-

est window visible on the top left corner presents the top level of hierarchy,

whereas the window on the right side presents the application actors and the

composite actors encapsulating sequence diagrams that rununder DE (thus,

on the second level of hierarchy). The window on the bottom left corner

presents the pressure controlling sequence diagram (the sequence diagrams

are located at the third level of hierarchy).

6.6. Creating Hierarchically Heterogeneous Application Models 57

Fig. 17. Hierarchical description style of the Ptolemy II framework

58 6. Simulating Embedded Applications Together with on-ChipMultiprocessing Platforms

The hierarchical description style is used further when creating heterogeneous

application models using different MoCs for different parts of the application

model. The total and partial order directors still execute the sequence dia-

grams, but the application actors are not necessarily executed under the DE

MoC, as seen in Figure 18. The DE Director at the top level of hierarchy

defines the MoC of the whole model to be DE unless otherwise defined at

the lower levels of hierarchy. Therefore, the platform model runs under DE,

which is typical for communication networks [15]. The application SDF ac-

tors run under the SDF MoC, application CT actors under the CTMoC, and

application DE actors under the DE MoC. The mapper is an attribute and not

an actor and is therefore not subject to the DE execution semantics; the map-

per operates based on method calls by the total and partial order directors and

PEs.

The different parts of the autonomous vehicle application model are divided

to run under different MoCs: The controller logic controlling the vehicle’s

speed, stability, and tyre pressure is simulated under the DE MoC, whereas

the application parts requiring signal processing are run under the SDF MoC.

Moreover, the physical characteristics, such as speed, acceleration, and posi-

tion of the vehicle are modelled in the CT domain [65].

The application actors and the composite actors containingthe sequence di-

agrams are located at the second level of hierarchy with either the SDF or

CT director (or no local director making the actors run underthe DE MoC).

The sequence diagrams are at the third level of hierarchy, asshown in Figure

18 [65].

The obstacle recognition sequence diagrams in Figure 11 rununder SDF,

whereas the speed controlling of the vehicle is modelled using the CT MoC.

The rest of the sequence diagrams shown in Figure 11 run underDE [65].

6.6. Creating Hierarchically Heterogeneous Application Models 59

NOC
PLATFORM

APPLICATION
SDF

DE DIRECTOR

CONTROL
STABILITY

CONTROL
SPEEDSPEED

SENSOR

MAPPER

TOP LEVEL

3RD LEVELTOTAL ORDER

2ND LEVEL

M1

M2

STABILITY
CONTROL

SPEED
CONTROL

SPEED
SENSOR

CT
APPLICATION APPLICATION

DE
APPLICATION

CT

SPEED
CONTROL−
LING

Fig. 18. Hierarchical heterogeneity (Modified from [65]c©IEEE, 2010)

60 6. Simulating Embedded Applications Together with on-ChipMultiprocessing Platforms

6.7 UML Profiling

In order to extensively characterise the application model, the UML profile

for MARTE with a few extensions are used [64]. For instance, using only

UML it is impossible to define the firing periods of active actors, which is

one reason the MARTE profile was needed. Furthermore, UML canhandle

message concurrency only if the messages are in the same sequence diagram,

but using the firing periods, messages in different diagramscan be fired in

parallel if they have the same firing period.

Various MARTE profile’s stereotypes are used to describe theapplication and

platform model elements. Table 1 lists the MARTE stereotypes and the ad-

ditional ones necessary for UML sequence diagrams [64]. The<<TimedE-

vent>> stereotype describes an event whose occurrences are bound to clocks

[78]. In the application model it defines the execution period of active actors,

that is, how often they fire [64]. The real-time unit<<RtUnit>> resem-

bles UML’s active object (runs when needed and calls or delegates passive

objects). A RtUnit owns one or more schedulable resources. The RtUnit’s

schedulable resource needs to invoce the services providedby the protected

passive unit<<PPUnit>> [78]. In the application model RtUnit and PpUnit

describe active and passive actors respectively [64]. The attributes of the RtU-

nit and PpUnit are so far disregarded, thus the stereotypes are otherwise used

as defined in the MARTE profile’s specification.

The<<hwProcessor>> and<<hwCommunicationResource>> stereotypes

present a computing resource and communication resource respectively [78].

They are used for PEs and NoC switches, whereas the<<Allocate>> con-

cept depicts the allocation of platform resources for application tasks [64]

(the actual allocation (that is, the mapping process) is explained in further

detail in 6.4). The attributes of the<<hwProcessor>> stereotype are so far

disregarded, thus the stereotype is otherwise used as defined in the MARTE

profile’s specification.

The MARTE profile needed to be extended in order to extensively describe all

6.7. UML Profiling 61

Table 1. Stereotypes describing the application and platform elements (Extended and

modified from [64] c©IEEE, 2009)

Stereotype Used for

MARTE <<TimedEvent>> Firing active actors

<<RtUnit>> Active actors

<<PPUnit>> Passive actors

<<hwProcessor>> Processing Element

<<hwCommunicationResource>> NoC switch

<<Allocate>> Resource allocation

EXTENSION <<Sequence>> Sequence actors

<<Message>> Messages

the elements of the application model. For instance, MARTE neither defines

a stereotype for a composite actor that encapsulates a UML sequence diagram

nor a stereotype for the sequence diagram’s messages.

Table 1 depicts the stereotypes<<Sequence>> and<<Message>>. The

<<Sequence>> stereotype describes the composite actors encapsulating se-

quence diagrams (denoted as sequence actors in Table 1) thatare semantically

linked to the composite structure diagram connectors. The<<Message>>

stereotype describes the sequence diagram messages with all their parameters

as can be seen in Figure 19 (for the sake of clarity, only one active and passive

actor and one sequence diagram are shown in the Figure and only 4 actors are

allocated to the PEs) [64].

A composite structure diagram visualises the structure of the whole applica-

tion model including all the application actors. It also describes, which actors

are connected together and that all actors are mapped to the platform (that

is, platform resources are allocated for the application tasks). Figure 19 de-

picts a composite structure diagram presenting the application actors. The

62 6. Simulating Embedded Applications Together with on-ChipMultiprocessing Platforms

Fig. 19. Composite structure diagram of the application model (Extended from [64]

c©IEEE, 2009)

6.7. UML Profiling 63

Table 2. Parameters for the UML sequence diagrams (Extended from [65] c©IEEE,

2010)

Constraint Element Used for

Name Application Identification

Period Active actor Workload modelling

Time unit Active actor Workload modelling

Name Message Identification

Computation time Message Workload modelling

Time unit Message Workload modelling

Data size Message Workload modelling

Data size unit Message Workload modelling

Priority Message Scheduling and arbitration

Deadline Message Workload modelling

actors are depicted by big squares having a stereotype and the actors’ names

inside them and their input and output ports as small white and grey squares

respectively [64].

Moreover, in Figure 19 the lines connecting the input and output ports corre-

spond to the communication between the actors. All the actors that are con-

nected to a contiguous set of line segments participate on a communication

pattern. Hence, the ordering of the messages exchanged within each pattern

is described by the corresponding sequence diagram [64].

Table 2 depicts the necessary parameters that characterisethe application

model. Applicationnameidentifies the application sequence diagram. Active

actors need aperiod and time unit indicating how often they are executed,

that is, how often they initiate communication. Messages’nameidentifies

them and thecomputation timeand time unit indicate the computation time

64 6. Simulating Embedded Applications Together with on-ChipMultiprocessing Platforms

the corresponding task would need to execute on a processor.Data sizeand

data size unitdefine the size of the packet that carries the message in the NoC.

Thedeadlinedefines the longest time a message’s computation and commu-

nication can take, whereas thepriority can be adjusted higher for messages

requiring faster access to platform resources [64].

7. CASE STUDIES

This Chapter presents various case studies that have been conducted using the

proposed application modelling approach.

The direct validation and execution of the application models mapped on the

platform models enable a fast and less error prone design flow. Moreover, the

validation of the whole system early at the design flow reduces errors, speeds

up the design flow, and decreases the time-to-market. The direct validation of

executable application models mapped on the platform models is addressed

in the case study of ”Joint Simulation of Application and Platform Models”

presented in section 7.1.

As soon as the modelling approach evolved to be capable of jointly validat-

ing the application and platform models, the case study of ”Application Val-

idation on Multi-Abstraction Platform Models” presented in section 7.2 was

conducted in order to perform design space exploration and trade-off between

simulation speed and accuracy.

Besides validating the correct behaviour of the application, the abstract mod-

els can be used also for early performance evaluation. However, at system

level it is hard to get any accurate area or power consumptionfigures. The

lack of early performance estimations complicate the selection of resources

and may lead to over- or underestimations of the resources [59]. Hence, at

system level it is possible to get early performance figures in terms of latency

and throughput. Both computation and communication latencies are covered

in the case study of ”Evaluating Communication and Computation Costs”

presented in section 7.3

Within the case study of ”Modelling with Priorities and Timing Constraints”

66 7. Case Studies

presented in section 7.4 the application model is further parameterised show-

ing the potential and flexibility of the application modelling approach.

The modelling of heterogeneous concurrent applications for embedded sys-

tems is challenging [71], as proved also by the case study of ”Simulating

Heterogeneous System Models” presented in section 7.5. Furthermore, it is

also difficult to find a programming model for heterogeneous multiprocessor

platforms. The task of implementing heterogeneous applications on hetero-

geneous architectures requires the modelling of concurrency and using MoCs

for formally capturing of the concurrent communication [71].

Following terminology is used from now on:

• Simulation means the act of executing a model in a simulator.

• Simulation time is the current time of the model. In the case studies

presented in this Chapter the simulation time means the overall time

that the simulation took.

• Wall clock time means the actual time.

• In the context of simulation, real-time means that the simulation time

equals wall clock time. That is, the simulation runs real-time.

• Real-time system means a system whose correct behaviour depends not

only the correct results of computation but also meeting thedeadlines.

All case studied presented in this Chapter are simulated fornine hundred mil-

lion clock ticks within the Ptolemy II framework. When the clock frequency

is assumed to be 50 MHz, this corresponds 18 seconds of wall clock time.

However, depending on the platform model, the simulation time could have

been even up to 24 hours.

7.1. Case Study of Joint Simulation of Application and Platform Models 67

7.1 Case Study of Joint Simulation of Application and

Platform Models

The following case study was presented in [66]. The purpose of the case study

was to test the proposed modelling approach and to demonstrate its function-

ality as well as to evaluate the communication costs of packets using different

platform configurations. Using the simulation results, platform configurations

that are not likely to meet the application requirements canbe ruled out and

configurations having more promising results can be furtheroptimised and

evaluated.

Figure 20 shows the sequence diagrams of the autonomous vehicle applica-

tion used in this case study. The application model consistsof three sequence

diagrams: direction adjustment, obstacle recognition, and tyre pressure ad-

justment.

Different configurations of the RENATO platform were used inorder to ex-

plore the effect of the platform configuration on the communication latencies.

The communication latency was extracted for each message ofthe sequence

diagram when running the application on a platform arrangedas either a 2x4,

3x3, 3x4, or 4x4 mesh topology. Furthermore, in order to alsoget preliminary

measures of the effect of different mappings on the communication latencies,

two different random mappings for the 3x3 mesh topology wereused, whereas

only one random mapping was used for all other configurations[66].

Each sequence diagram was executed at a particular rate, which was 0.4 sec-

onds for the obstacle recognition, 1.0 seconds for the direction adjustment,

and 2.0 seconds for the tyre pressure adjustment diagrams. The simulation

had 50 MHz operation frequency and lasted 18 seconds of wall clock time.

Thus, the obstacle recognition diagram was executed 45 times, direction ad-

justment diagram 18 times, and the tyre pressure adjustmentdiagram nine

times [66].

The communication latency for every message of the sequencediagram was

extracted. Furthermore, from the extracted communicationlatencies the aver-

68
7.

C
ase

S
tudies

getFrame()

getFrame()

filter()

getObjects()

getUltrasonicDistanceReading()

Obstacle Recognition

Direction Adjustment

Tyre Pressure Adjustment

ObstacleDatabase SensorInterfaceMainController DirectionControl

getGPSSensorReading()

getDirection()

getObstacleList(Direction d)

setDirection()

getVibrationSensorReading()

getPressure()

setPressure()

TyrePressureControlSensorInterfaceMainController

edgeDetection()

PhotogrammetryObstacleDatabase SensorInterface ImageProcessing FrameBuffer FrameBuffer

getFeatures()

getImages()

F
ig.20.U

M
L

se
q

u
e

n
ce

d
iag

ra
m

s
o

f
a

n
a

u
to

n
o

m
o

u
s

ve
h

icle
a

p
p

lica
tio

n
[6

6
]

c©
IE

E
E

,2
0

0
8

7.1. Case Study of Joint Simulation of Application and Platform Models 69

Table 3. Communication latency for each sequence diagram of the application model

[66] c©IEEE, 2008

Pattern 2x4 3x3 (I) 3x3 (II) 3x4 4x4

Obstacle Recognition 569,4 448,1 446,9 460,0 455,4

Direction Adjustment 323,5 362,4 296,8 372,5 311,6

Tyre Pressure Adjustment429,0 515,4 500,0 410,2 517,4

OR DA TPA
0

100

200

300

400

500

600

Application sequence diagram

C
o

m
m

u
n

ic
a

ti
o

n
 l
a

te
n

c
y

2x4 mesh topology
3x3 mesh topology (I)
3x3 mesh topology (II)
3x4 mesh topology
4x4 mesh topology

Fig. 21. Communication latency of the sequence diagrams using different network

configurations

age latency of the execution rounds for each sequence diagram was calculated.

Table 3 illustrates the average latencies for each sequencediagram using 2x4,

3x3, 3x4, and 4x4 mesh topologies. 3x3 (I) and 3x3 (II) stand for the two

different mappings (the same notation is used in Figure 21) [66].

The obstacle recognition diagram’s messages carry the largest amount of data

70 7. Case Studies

(because they transfer images), which explains the long latency. The tyre pres-

sure adjustment diagram is executed least frequently and its messages need to

wait longer for the routing since the messages of the two other diagrams al-

ready occupy the routers at the same time [66].

The two different mappings for 3x3 topology have the biggesteffect on the

direction adjustment pattern. In the mapping II, the lifelines of the diagram

happened to be mapped into adjacent switches, which decreases the network

latency by for instance decreasing the length of the path from the traffic pro-

ducer to the consumer [66].

The simulation results are also presented in Figure 21. In the Figure, OR

means the obstacle recognition sequence diagram, DA the direction adjust-

ment diagram, and TPA the tyre pressure adjustment diagram,whereas 2x4,

3x3(I), 3x3(II), 3x4, and 4x4 indicate the size of the mesh topology (the I

and II of the 3x3 configuration indicate the two different mappings). As can

be seen from Figure 21, none of the configurations clearly outperforms the

others.

The 3x3 configuration with routing II is the best for the obstacle recogni-

tion and direction adjustment diagrams, but the 2x4 and 3x4 topologies are

clearly better for the tyre pressure adjustment. Smaller topologies cause more

congestion to the NoC links, whereas bigger topologies increase the distance

between the sender and the receiver. When 2 parameters (in this case the map-

ping and NoC size) change, it is impossible to say, whose effect is bigger on

the communication latency.

7.2 Case Study of Application Validation on

Multi-Abstraction Platform Models

The following case study was presented in [67]. The purpose of the case study

was to successively map the application model onto various abstract platform

models. Therefore, the usefulness of the more abstract platform models in

7.2. Case Study of Application Validation on Multi-Abstraction Platform Models71

comparison with the less abstract platform models could be explored. The re-

sults obtained from the simulation of the same application model mapped on

various platform models facilitate the system designers tochoose and param-

eterise a platform model so that the platform model satisfiesthe application

requirements.

The application model used in this case study is depicted in Figure 22. The

application model is extended from the model presented in the case study in

section 7.1. The extended model consists of five sequence diagrams: pho-

togrammetry, snapshot request, obstacle recognition, direction adjustment,

and tyre pressure adjustment.

The application model was simulated using two different random mappings

on three different platform models, RENATO, JOSELITO, and BOÇA, all of

them having a 4x4 mesh topology. In this simulation, the packet size was

limited to 48 flits (each flit being 16 bits) and bigger packetswere divided

into multiple subpackets. This packet size is considered tobe a good trade-off

between the overhead the multiple packet headers generate and the occupation

of platform resources, such as channels and buffers [67].

The communication latency was extracted for each message ofthe sequence

diagrams when simulating with 50 MHz operation frequency for 18 seconds

of wall clock time. The photogrammetry, obstacle recognition, and direction

adjustment were executed once every two seconds, while tyrepressure adjust-

ment and snapshot request were executed once a second [67].

Tables 4 and 5 present the simulation results. The RENATO model is back-

annotated with the timing information from the HERMES modeland is there-

fore used as a reference model in the simulations. BOÇA is the most abstract

of the simulated models and is not back-annotated with the timing delays from

the HERMES RTL model. Therefore, BOÇA has a significant error for the

worst case latency, in average 46 per cent in comparison withRENATO [67].

Also JOSELITO has a high average latency error, 30 or 31 per cent in compar-

ison with RENATO. However, both BOÇA and JOSELITO are useful models,

since BOÇA simulated 402 and 492 faster and JOSELITO simulated 2.8 and

72 7. Case Studies

Fig. 22. UML sequence diagrams of an autonomous vehicle application[67] c©IGI

Global 2010

7.2. Case Study of Application Validation on Multi-Abstraction Platform Models73

Table 4. Worst case latencies of each sequence diagram in milliseconds for mapping

1 (Modified from [67] c©IGI Global, 2010)

RENATO JOSELITO BOÇA

Direction Adjustment 0.39 0.27 (31%) 0.24 (38%)

Obstacle Recognition 0.12 0.09 (25%) 0.07 (42%)

Photogrammetry 1.41 0.99 (30%) 0.54 (62%)

Snapshot Request 1.35 0.94 (30%) 0.90 (33%)

Tyre Pressure Adjustment 0.14 0.09 (36%) 0.08 (55%)

Average 3.41 2.38 (30%) 1.83 (46%)

Table 5. Worst case latencies of each sequence diagram in milliseconds for mapping

2 (Modified from [67] c©IGI Global, 2010)

RENATO JOSELITO BOÇA

Direction Adjustment 0.38 0.26 (32%) 0.25 (34%)

Obstacle Recognition 0.10 0.07 (30%) 0.07 (30%)

Photogrammetry 1.37 0.95 (31%) 0.52 (62%)

Snapshot Request 1.31 0.90 (31%) 0.89 (32%)

Tyre Pressure Adjustment 0.11 0.08 (27%) 0.05 (55%)

Average 3.27 2.26 (31%) 1.78 (46%)

3.0 times faster with the two different mappings than RENATO[67].

Figure 23 shows the worst case communication latency for each sequence dia-

gram. The DA, OR, P, SR, and TPA stand for the sequence diagrams Direction

Adjustment, Obstacle Recognition, Photogrammetry, Snapshot Request, and

Tyre Pressure Adjustment. As can be seen from the results Figure 23 depicts,

there is a clear difference between the worst case latenciesof the sequence

74 7. Case Studies

diagrams using the RENATO platform in comparison with JOSELITO and

BOÇA platforms. The bigger data size the packets are carrying, the bigger the

difference in worst case communication latencies. The sizeof the photogram-

metry sequence diagram’s messages is bigger (they are carrying images) than

of the other sequence diagrams. As the bigger packets are divided into smaller

subpackets (having maximum size of 48 flits), bigger packetscause more traf-

fic in the network and cause more difference in the worst case latencies of

also JOSELITO and BOÇA. When simulating the sequence diagrams having

small-sized messages (obstacle recognition and tyre pressure adjustment) the

difference between the worst case latencies of the different platform models

is close to negligible even though the error percentage figures might seem to

illustrate otherwise in Figure 24.

As seen from Figure 24, the error percentage of BOÇA is much bigger than

the error percentage of JOSELITO particularly in the photogrammetry se-

quence diagram. The more packets occupy the network, the faster the BOÇA

model is, since no flits are actually routed in the network. The big difference

of the error percentages of the tyre pressure adjustment diagrams can be ex-

plained with the relatively short simulation times of the diagram; therefore,

even a small difference in the simulation times (see Tables 4and 5) makes a

huge difference in the error percentages.

Several observability and debugging features (referred asscopes) facilitated

the analysis of the simulations. The scopes are actors that monitor the traffic

in the NoC, collect data from the network, and display it graphically. The

scopes are implemented to analyse buffer occupation (BufferScope), capture

the input and output channel activity of the NoC routers (InputScope and

OutputScope respectively), or analyse the power consumption of the routers

(PowerScope). Moreover, the HotSpotScope detects blockedpackets indicat-

ing network congestions, the EndToEndScope depicts which network nodes

are communicating with each other, and the PointToPointScope illustrates the

complete path the packets use in the NoC [67].

The scopes are graphical and the displays are updated as the simulation pro-

ceeds, resulting in full observability of the behaviour of the NoC models [67].

7.3. Case Study of Evaluating Communication and Computation Costs 75

DA OR P SR TPA
0

0.5

1

1.5

Application sequence diagram

W
or

st
 c

as
e

co
m

m
un

ic
at

io
n

la
te

nc
y

RENATO
RENATO
JOSELITO
JOSELITO
BOÇA
BOÇA

Fig. 23. Worst case communication latency for each sequence diagramusing 2 dif-

ferent random mappings for each NoC model

However, simulating even more actors than what the application and platform

models already include, slows down the simulation speed. Thus, the scopes

can also be turned off. The scopes are presented in further detail in [73].

7.3 Case Study of Evaluating Communication and

Computation Costs

The following case study was presented in [64], which also presented a set of

modelling constructs that can extensively characterise the application model.

76 7. Case Studies

DA OR P SR TPA
0

10

20

30

40

50

60

Application sequence diagram

E
rr

or
 p

er
ce

nt
ag

e

JOSELITO
JOSELITO
BOÇA
BOÇA

Fig. 24. Latency error of JOSELITO and BOÇA in comparison with RENATO using

two different mappings

The set of constructs was organised as a UML profile (as presented at the end

of Chapter 6). The purpose of the case study was to consider also the effect

of computation latency of the platform; all the previous cases have dealt with

only the communication latency. When both the communication and com-

putation costs are considered, the evaluation of whether the platform models

satisfy the application requirements is more extensive.

This case study uses the most evolved autonomous vehicle application model

(see Figure 11). The autonomous vehicle application sequence diagrams pre-

sented in the previous two Chapters are further divided intonine sequence

diagrams: navigation controlling, pressure controlling,speed controlling, ob-

7.3. Case Study of Evaluating Communication and Computation Costs 77

stacle recognition 1 and 2, ultrasonic sensing, GPS sensing, speed sensing,

and vibration sensing.

The platform used for the simulation was the JOSELITO model having 3x3,

3x4, and 4x4 mesh topologies and two different mappings. Thefirst mapping

was totally random and the other mapped those actors that communicate the

most with each other onto adjacent processing elements (referred as static

mapping) [64].

The simulation was using 50 MHz operation frequency and lasted 18 seconds

of wall clock time [64]. The pressure controlling, navigation controlling, and

GPS sensing sequence diagrams were executed twice a second;ultrasonic

sensing, vibration sensing, speed sensing, and speed controlling diagrams 10

times a second; and both the obstacle recognition diagrams 25 times a second.

Both the communication and computation latencies were extracted as well

as the worst case execution latency for each message of the sequence dia-

grams [64]. Table 6 depicts the average latency for criticalcommunications

and for all communications as well as average latencies for critical tasks and

all tasks using two different mappings (Random and Static).The parts of the

vehicle that control its speed and direction are consideredas critical (the navi-

gation controlling, obstacle recognition, speed controlling, and speed sensing

sequence diagrams in Figure 11) [64].

As can be seen from Figure 25, the critical communication hasremarkably

shorter latency in comparison with all communication. On the contrary, the

critical computation has much longer latency than all computation when using

the smaller topologies.

In bigger topologies task execution is divided among more PEs thus causing

shorter delays. The scheduling strategy was nonpre-emptive and all the mes-

sages had the same priority. Consequently, if a noncriticaltask has already

reserved a PEs resources, a critical task needs to wait. Thisis one reason for

longer latencies of the critical tasks in comparison with all tasks.

Another reason for the longer average latencies of the critical tasks is the

long communication and computation latencies of the obstacle recognition

78 7. Case Studies

Table 6. Average latency of critical and all communication and computation in mil-

liseconds [64] c©IEEE, 2009

Topology Random Static
3x3 Critical communication 0,077 0,075

All communication 0,507 0,510
Critical tasks 0,390 0,245
All tasks 0,063 0,191

3x4 Critical communication 0,097 0,075
All communication 0,491 0,509
Critical tasks 0,199 0,005
All tasks 0,084 0,027

4x4 Critical communication 0,074 0,074
All communication 0,480 0,510
Critical tasks 0,002 0,005
All tasks 0,003 0,005

diagrams’ messages. The critical messages having long latencies also de-

lays other critical messages’ execution; in bigger networktopologies it is less

likely that many critical tasks are mapped onto the same PEs.

In this simulation case, the 4x4 network configurations perform the best, since

the computation delays are minimal in comparison with the smaller configu-

rations.

In some cases the random mapping slightly outperforms the static mapping

as can be seen from Tables 6 and 7 as well as from Figure 25. In those cases

the actors that communicate the most with each other were randomly mapped

onto the same PE. This minimises the communication costs thus increasing

the computation latency. Therefore, choosing the right mapping is a trade-off

between communication and computation costs [64].

Table 7 shows the worst case latency of each message of the sequence dia-

grams. The mapping or the topology has only a minor effect on the worst

case latency of each message and none of the configurations outperforms the

7.4. Case Study of Modelling with Priorities and Timing Constraints 79

3x3 (R) 3x3 (S) 3x4 (R) 3x4 (S) 4x4 (R) 4x4 (S)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Configuration

S
im

ul
at

io
n

tim
e

Critical communication
All communication
Critical computation
All computation

Fig. 25. Average latency of critical and all communication and computation using

different platform configurations and random (R) and static(S) mapping

others. Messages M9 and M12 carry the picture frames from thevehicle’s

cameras causing longer latencies of the messages due to their bigger size [64].

7.4 Case Study of Modelling with Priorities and Timing

Constraints

The following case study is previously unpublished. The purpose of the

case study was to extend the application modelling approachwith different

scheduling policies and timing constraints, such as priority based scheduling

80 7. Case Studies

Table 7. Worst case latency for each message for all configurations inmilliseconds

[64] c©IEEE, 2009

3x3 3x4 4x4
Message Random Static Random Static Random Static
M1 0,027 0,027 0,037 0,028 0,027 0,027
M2 0,014 0,013 0,014 0,013 0,014 0,014
M3 0,109 0,112 0,107 0,112 0,106 0,112
M4 0,027 0,027 0,027 0,027 0,025 0,027
M5 0,106 0,062 0,053 0,062 0,053 0,060
M6 0,424 0,423 0,424 0,424 0,424 0,424
M7 0,027 0,027 0,027 0,027 0,027 0,027
M8 0,014 0,014 0,014 0,014 0,014 0,014
M9 4,096 3,968 3,968 3,968 3,776 3,968
M10 0,212 0,379 0,213 0,380 0,212 0,379
M11 0,096 0,053 0,054 0,053 0,051 0,053
M12 4,096 3,968 3,968 3,968 3,968 3,968
M13 0,213 0,379 0,212 0,379 0,212 0,379
M14 0,096 0,053 0,054 0,053 0,054 0,053
M15 0,054 0,076 0,054 0,053 0,064 0,074
M16 0,054 0,054 0,053 0,054 0,054 0,054
M17 0,011 0,012 0,011 0,011 0,012 0,017
M18 0,021 0,021 0,021 0,021 0,021 0,021
M19 0,029 0,038 0,025 0,024 0,014 0,038

and deadlines. Moreover, the application model was extended with several

new sequence diagrams increasing the number of simulated application ac-

tors and workload on platform resources.

In this case study the autonomous vehicle application (depicted in Figure 11)

was simulated with Video Object Plane Decoder (VOPD), High-Definition

Television (HDTV), and Moving Picture Experts Group (MPEG)4 decoder.

The platform model was JOSELITO having 3x3, 4x4, 5x5, and 6x6mesh

topologies.

For reference, the application model was first simulated without priority-

7.4. Case Study of Modelling with Priorities and Timing Constraints 81

Table 8. Percentage of messages of each platform configuration violating timing con-

straints

Scheduling 3x3 4x4 5x5 6x6

First in first served 48.9 45.0 37.8 39.4

Priority based 46.7 46.2 37.2 39.4

based scheduling using the first-in-first-served scheduling policy. Then higher

priority was set to the critical application messages. The messages used for

controlling the vehicle’s speed or direction were considered as critical. Both

scheduling policies were nonpre-emptive. The same static mapping was used

for both scheduling policies.

The simulation was using 50 MHz operation frequency and lasted 18 seconds

of wall clock time. The pressure controlling, navigation controlling, and GPS

sensing sequence diagrams were executed twice a second; ultrasonic sensing,

vibration sensing, speed sensing, and speed controlling diagrams 10 times a

second; and both the obstacle recognition diagrams 25 timesa second. The

HDTV sequence diagram was executed once in every 1.5 secondsand the

VOPD and MPEG diagrams once in every 1.2 seconds.

This case study showed how many timing constraint violations happen for

critical messages using different scheduling policies anddifferent platform

configurations. A timing constraint violation means that a message exceeds

its deadline. The deadlines are set as parameters of the messages, as shown in

Table 2 in Chapter 6.

Table 8 depicts how many per cent of the critical messages violate the timing

constraints and Table 9 shows the average violation time in milliseconds for

all topologies.

As can be seen from the Tables and also from Figures 26 and 27, usually a

bigger network results in less and shorter violations (witha few exceptions).

Especially, the 5x5 configuration performs clearly better than the 3x3 and 4x4

82 7. Case Studies

Table 9. Average timing constraint violation of each platform configuration in mil-

liseconds

Scheduling 3x3 4x4 5x5 6x6

First in first served 0.78 0.44 0.15 0.38

Priority based 0.82 0.58 0.16 0.38

configurations and slightly better than the 6x6 configuration. Bigger topolo-

gies have more PEs and fewer tasks are executed on the same PE.However,

bigger topologies result in longer communication latency due to longer dis-

tance between the packets’ sources and destinations.

The priority based scheduling does not outperform the first-in-first-served

scheduling in this simulation case. This is due to the small number of tasks

mapped onto a same PE and different firing periods of the sequence diagrams’

active actors. Therefore, more than one message is seldom processed at the

same time by each PE and the priority based scheduling does not improve the

simulation results much.

7.5 Case Study of Simulating Heterogeneous System Models

The following case study was presented in [65]. The purpose of the case study

was to build heterogeneous application models in order to respond to the need

of heterogeneity of today’s embedded systems. The refinement of the abstract,

high level model containing various MoCs to a lower level implementation,

where only the DE MoC is used is out of the scope of this thesis.

Within this case study, four different cases were simulatedusing the same ap-

plication model, which is presented in Figure 11. The first case is a reference

case, a homogeneous, nonhierarchical model using only the DE MoC (that is,

all application actors are at the top level of hierarchy and the sequence dia-

grams at the second level of hierarchy). The second case is a homogeneous

7.5. Case Study of Simulating Heterogeneous System Models 83

3x3 4x4 5x5 6x6
0

5

10

15

20

25

30

35

40

45

50

Network configuration

P
er

ce
nt

ag
e

of
 ti

m
in

g
co

ns
tr

ai
nt

 v
io

la
tio

ns

First in first served
Priority based

Fig. 26. Percentage of critical messages violating timing constraints

but hierarchical model using only the DE MoC (that is, the application actors

are at the second level of hierarchy and the sequence diagrams at the third

level of hierarchy). The third case is a hybrid model using the DE and SDF

MoCs. The fourth case is a hybrid, mixed-signal model using CT, SDF, and

DE MoCs (depicted in Figure 18). These cases show how much theartificial

layer of hierarchy affects the simulation time and whether the use of multiple

MoCs is beneficial [65].

Figure 28 depicts the simulation setup for connecting the CTand DE actors.

A CT subsystem models the speed of the vehicle (the setup was inspired by

an example of a car tracking application [92]), a periodic sampler compo-

84 7. Case Studies

3x3 4x4 5x5 6x6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Network configuration

A
ve

ra
ge

 ti
m

in
g

co
ns

tr
ai

nt
 v

io
la

tio
n

First in first served
Priority based

Fig. 27. Average timing constraint violation in milliseconds

nent converts the continuous signal into a discrete one and that discrete value

controls the speed of the vehicle (the control logic is modelled in the DE

domain). After the speed has been changed, the discrete value is converted

back into a continuous signal using a zero order hold component. Then the

speed, acceleration, and position of the vehicle can be monitored using timed

plotters [65].

The overall simulation time of each of the model were compared to the refer-

ence model (which is the nonhierarchical homogeneous model). The second

case, which is the hierarchical homogeneous model is 0.989 per cent slower

and the third case, the hierarchical hybrid model is 1.34 percent slower than

7.5.
C

ase
S

tudy
ofS

im
ulating

H
eterogeneous

S
ystem

M
odels

85

DE DIRECTOR

APPLICATION
CTCT

APPLICATION

ZERO ORDER
HOLD

PERIODIC
SAMPLER

TOP LEVEL

2ND LEVEL

APPLICATION
DE

2ND LEVEL CT DIRECTORCT DIRECTOR

GRANDMA
SIMULATOR CAR MODEL

F
ig.28.

H
e

te
roge

n
e

o
u

s
a

p
p

lica
tio

n
m

o
d

e
l(M

o
d

ifie
d

fro
m

[6
5

]
c©

IE
E

E
,2

0
1

0
)

86 7. Case Studies

the reference model [65].

Interestingly, the hierarchical hybrid model is 0.347 per cent slower than the

hierarchical homogeneous model (meaning that the static scheduling does not

speed-up the simulation). Nevertheless, in an approximately 24 hour simu-

lation (wall clock time), the simulation speed difference is negligible (only

about 5 minutes) [65].

The fourth case, which is the mixed-signal model using DE, SDF, and CT

MoCs was not able to simulate until the end due to the restricted size of Java

heap space [65].

The extra layer of hierarchy when building a heterogeneous application model

has a negligible impact on the simulation time. Moreover, even though the

static scheduling of SDF was not advantageous regarding thesimulation time,

selecting a feasible MoC has still several other advantages, as discussed ear-

lier in Chapter 2 [65].

7.6 Discussion

Embedded system designers need methods to validate application-specific

functionality together with different platform configurations. In an ideal case,

this should happen at as early stage of the design process as possible, so that

designers can explore the design space before committing tospecific proces-

sor architectures or custom hardware implementation [66].

The first case study presented in this Chapter demonstrated the proposed mod-

elling approach, in which the application and platform can be validated to-

gether in the same model. This addresses the problem of separated HW and

SW design flows in embedded system design, which is often caused by the

use of different languages for HW and SW modelling.

The Ptolemy II framework enables the implementation of execution semantics

for UML sequence diagrams. This makes it possible to model the application

7.6. Discussion 87

and platform using different modelling styles (UML for the application and

Java for the platform), yet still simulate the whole system in the same model.

The design space of a multiprocessing system based on NoC interconnects is

huge. Considering the interconnect structure only, the design space includes

for instance buffering and flow control mechanisms, networktopology, packet

structure and size, buffer size, as well as routing and arbitration algorithms.

Therefore, abstract platform models that simulate fast should be used at the

early stages of the design flow in order to perform rough performance evalua-

tions and to rule out poorly performing platform configurations and to delimit

the design space. More accurate models can then be used for fine-tuning plat-

form parameters and for choosing the best mapping.

The application modelling approach can handle the successive refinement of

platform models modelled at different level of accuracy. The second case

study presented in this Chapter demonstrated the joint validation of one appli-

cation model successively mapped on three different platform models. This

case study also facilitates the trading-off between the model accuracy, ob-

servability, and simulation speed. The successive mappingof applications on

different platform models is an effortless plug-and-play operation. The plat-

form templates as well as different mapping heuristics can be chosen from a

library.

Performing the second case study, the application simulation on the RENATO

platform took over 20 hours (and the simulation time corresponds only 18 sec-

onds of wall clock time); therefore, achieving over 400 times faster simulation

when using the BOÇA platform model is worth sacrificing a little accuracy,

especially when the correct behaviour of the system is not sacrificed. Thus, in

order to simulate the system and explore its design space within a reasonable

time, it is necessary to either strictly delimit the design space or use more

abstract executable models.

Until regarding also the computation latency caused by the application execu-

tion on processors, the best mapping of the application model on the platform

would be to map all application actors on a single PE. This would minimise

88 7. Case Studies

the communication latency. The third case study of this Chapter considered

also the impact of computation latency, which means that minimising com-

munication latency maximises the computation latency. This motivates the

evaluation of different mapping heuristics (which is out ofthe scope of this

thesis).

Also, the third and fourth case studies presented in this Chapter demonstrated

how important it would be to have enough platform resources:it is not tol-

erable that in some cases almost half of the critical messages exceeded their

deadlines. Nevertheless, it is not enough that a platform barely supports just

the current application (and as the case study showed, if even that), it should

also support the future evolutions of the application [56].Therefore, the plat-

form performance should not be let to restrict the application design and fu-

ture evolution. Instead, applications that require more powerful platforms will

set the requirements for the future platform development.

The last case study presented in this Chapter demonstrated that even if the

Ptolemy II framework suits well for heterogeneous, multi-MoC modelling, it

is still not easy to fully benefit from its capabilities. The particular application

model does not benefit from for example the static schedulingof SDF regard-

ing to simulation time. But then again, the artificial layer of hierarchy caused

by the hierarchical heterogeneity did have only a negligible adverse impact

on the simulation time.

The last case study also showed the limitations of the Ptolemy II framework.

The simulation of hundreds of actors using different MoCs slows down the

simulation engine significantly or even prevents the simulation of complex,

mixed-signal models.

The results obtained in the case studies presented in sections 7.1 – 7.4 cannot

be really compared to any other approach, since there is no similar work using

this kind of application modelling approach. Academic approaches often rely

on presenting the application models as task graphs as seen for instance in

[52], which not only may lead to ambiguous application description but also

requires code generation or manual transformation into an executable form.

7.6. Discussion 89

Industrial tools are not capable of simulating UML sequencediagrams and as

not being open source, it would be hard or impossible to extend them with the

execution semantics for UML diagrams. Using code generation from UML

diagrams to an executable language could be one possible approach to make

the results comparable to the results achieved using the approach presented in

this thesis.

Hence, the purpose of the case studies has been to demonstrate the usefulness

of this system modelling approach. The approach is flexible and extensible: it

enables the use different platform models, different application models, differ-

ent mappings, and different parameters for the applicationmodels. Important

model characteristics can be added, the approach evolved from being capable

of capturing only the communication latency to be capable ofdepict also the

computation latency, timing constraints, and priorities.

This system modelling approach is used as a part of a model-based design

flow, as described in further detail in [83] and [84]. Moreover, [47] describes

how to obtain accurate communication latency figures using this approach.

Even though this approach is based on validation by simulation, any formal

description of the application model is not excluded, as seen in [67].

90 7. Case Studies

8. CONCLUSIONS

This thesis presented an approach for application modelling and joint vali-

dation with on-chip multiprocessing platform models usingactor orientation

and UML within the Ptolemy II framework. The approach enables design

space exploration as well as the extraction of performance figures in terms of

for instance communication and computation latency.

Raising the level of abstraction and creating executable system models using

UML and actor orientation can be considered useful in many ways. First,

model-based design especially at the system level increases design productiv-

ity and facilitates the comprehending of complex systems. Second, UML is

widely understood by SW and HW designers. Thus, the increasing proportion

of embedded SW encourages the use of approaches usually associated with

SW engineering. Third, actor orientation enables the use ofMoCs in actor

interaction and is therefore suitable for heterogeneous embedded system de-

sign. Finally, executable models can be validated by simulation. Thus, the

behaviour of the system is easier to understand by simulating a model than by

reading a written description of it.

8.1 Future Development

Executable models enable the system validation by simulation. However, this

approach has several shortcomings: Simulation is much slower than the actual

design, even though the simulatable model is a trade-off between simulation

speed and system accuracy. Moreover, all possible cases cannot be simulated

92 8. Conclusions

anyway. Therefore, the application modelling approach presented in this the-

sis could benefit also from formal verification.

The application mapping on the platform was only static (andrandom). The

implementation of different mapping heuristics as well as dynamic mapping

is left as future work.

The Ptolemy project and the Ptolemy II framework have reallysolid ground.

Moreover, the framework is easy to learn and use, above all due to the vi-

sual editor (Vergil), which allows the creation of models bysimply dragging

and dropping components on the workspace; this kind of user interfaces are

completely missing from system design languages such as SystemC or Sys-

tem Verilog. However, the underlying JVM restricts the speed and available

memory of the simulation. Therefore, it would be beneficial to run the models

in an environment without the virtual machine layer.

BIBLIOGRAPHY

[1] System Verilog 3.1a Language Reference Manual, Accellera, 2004.

[2] Verilog-AMS: Language Reference Manual Version 2.3.1, Accellera,

2009.

[3] G. A. Agha, ACTORS: A Model of Concurrent Computation in Dis-

tributed Systems. Cambridge: MIT Press, 1986.

[4] S. S. Alhir,UML in a Nutshell. O’Reilly & Associates, Inc., 1998.

[5] T. Arpinen, M. Seẗalä, P. Kukkala, E. Salminen, M. Ḧannik̈ainen, and

T. D. Hämäläinen, “Modeling embedded software platforms with a

UML profile,” in Forum on Specification and Design Languages, 2007,

pp. 237–242.

[6] A. Bakshi, V. K. Prasanna, and A. Ledeczi, “MILAN: A modelbased

integrated simulation framework for design of embedded systems,” in

ACM SIGPLAN Workshop, 2001, pp. 82–93.

[7] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Jurecska, L. Lavagno,

C. Passerone, A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki,

and B. Tabbara,Hardware-Software Co-Design of Embedded Systems

– The Polis Approach. Kluwer Academic Publishers, 1997.

[8] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and

A. Sangiovanni-Vincentelli, “Metropolis: an integrated electronic sys-

tem design environment,”Computer, vol. 36, no. 4, pp. 45–52, 2003.

94 Bibliography

[9] L. Benini and G. de Micheli, “System-level power optimization tech-

niques and tools,”ACM Transaction on Design Automation of Elec-

tronic Systems, vol. 5, no. 2, pp. 115–192, 2000.

[10] G. Booch, J. Rumbaugh, and I. Jacobson,The Unified Modeling Lan-

guage User Guide. Addison Wesley, 1999.

[11] P. Boulet, P. Marquet, E. Piel, and J. Taillard, “Repetitive allocation

modeling with MARTE,” inForum on Specification and Design Lan-

guages, 2007, pp. 280–285.

[12] L. Brisolara, M. E. Kreutz, and L. Carro, “UML as front-end language

for embedded systems design,” inBehavioral Modeling for Embedded

Systems and Technologies: Applications for Design and Implementa-

tion, L. Gomes and J. M. Fernandes, Eds. IGI Global, 2009, pp. 1–23.

[13] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao,

and H. Zheng, “Heterogeneous Concurrent Modeling and Design

in Java (Volume 1: Introduction in Ptolemy II),” Department

of Electrical Engineering and Computer Sciences, University

of California at Berkeley, Tech. Rep., 2008. [Online]. Avail-

able: http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-

28.html

[14] ——, “Heterogeneous Concurrent Modeling and Design in Java

(Volume 2: Ptolemy II Software Architecture),” Department

of Electrical Engineering and Computer Sciences, University

of California at Berkeley, Tech. Rep., 2008. [Online]. Avail-

able: http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-

29.html

[15] ——, “Heterogeneous Concurrent Modeling and Design in

Java (Volume 3: Ptolemy II Domains),” Department of

Electrical Engineering and Computer Sciences, Universityof

Bibliography 95

California at Berkeley, Tech. Rep., 2008. [Online]. Avail-

able: http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-

37.html

[16] J. R. Burch, R. Passerone, and A. L. Sangiovanni-Vincentelli, “Using

multiple levels of abstraction in embedded software design,” in EM-

SOFT, 2001, pp. 324–343.

[17] A. Cuccuru, J.-L. Dekeyser, P. Marquet, and P. Boulet, “Towards UML

2 extensions for compact modeling of regular complex topologies,”

in Conference on Model Driven Engineering Languages and Systems,

2005, pp. 445–459.

[18] W. J. Dally and B. Towles, “Route packets, not wires: On-chip in-

terconnection networks,” inProc. Conference on Design Automation,

June 2001, pp. 684–689.

[19] ——, Principles and Practices of Interconnection Networks. Morgan

Kaufmann Publishers, Inc., 2004.

[20] M. Damm, J. Haase, C. Grimm, F. Herrera, and E. Villar, “Bridging

MoCs in SystemC specifications of heterogeneous systems,”EURASIP

Journal on Embedded Systems, vol. 2008, 2008, 16 pages.

[21] Ptolemy II Home Page. Department of Electrical Engineering and

Computer Sciences, University of California at Berkeley. [Online].

Available: http://ptolemy.berkeley.edu/ptolemyII/

[22] R. Dömer, A. Gerstlauer, and D. Gajski, “SpecC Language Reference

Manual Version 2.0,” SpeC Technonology Open Consortium, Tech.

Rep., 1990. [Online]. Available: http://www.cecs.uci.edu/specc/

[23] The Eclipse Foundation open source community website.Eclipse.

[Online]. Available: http://www.eclipse.org

96 Bibliography

[24] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli,

“Design of embedded systems: Formal models, validation, and synthe-

sis,” IEEE, vol. 85, no. 3, pp. 366–390, 1997.

[25] L. Eggermont, Ed.,Embedded Systems Roadmap 2002. Technology

Foundations (STW), 2002.

[26] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neun-

dorffer, S. Sachs, and Y. Xiong, “Taming heterogeneity – thePtolemy

approach,”IEEE, vol. 91, no. 1, pp. 127–144, 2003.

[27] J. Falk, C. Haubelt, and J. Teich, “Efficient representation and sim-

ulation of model-based designs in SystemC,” inProc. International

Forum on Specification and Design Languages, September 2006, pp.

129–134.

[28] A. Ferrari and A. Sangiovanni-Vincentelli, “System design – tradi-

tional concepts and new paradigms,” inInternational Conference on

Computer Design, 1999, pp. 2–12.

[29] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner,Embedded Sys-

tem Design – Modeling, Synthesis and Verification. Springer, 2009.

[30] D. D. Gajski, J. Zhu, R. D̈omer, A. Gerstlauer, and S. Zhao,SpecC:

Specification Language and Methodology. Kluwer Academic Pub-

lishers, 2000.

[31] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patterns:

Elements of Reusable Object-Oriented Software. Addison Wesley,

1995.

[32] B. Graaf, M. Lormans, and H. Toetenel, “Embedded software engi-

neering: the state of the practice,”IEEE Software, vol. 20, no. 6, pp.

61–69, 2003.

Bibliography 97

[33] C. Grimm, A. Jantsch, S. Shukla, and E. Villar, “C-baseddesign of

heterogeneous embedded systems,”EURASIP Journal on Embedded

Systems, vol. 2008, 2008, 2 pages.

[34] T. Grötker, S. Liao, G. Martin, and S. Swan,System Design with Sys-

temC. Kluwer Academic Publishers, 2002.

[35] D. Harel and P. S. Thiagarajan, “Message sequence charts,” in UML for

Real: Design of Embedded Real-Time Systems, L. Lavagno, G. Martin,

and B. Selic, Eds. Kluwer Academic Publisher, 2003, pp. 77–105.

[36] F. Herrera and E. Villar, “A framework for heterogeneous specification

and design of electronic embedded systems in SystemC,”ACM Trans-

actions on Design Automation of Electronic Systems, vol. 12, no. 3, pp.

1–31, 2007.

[37] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular ACTOR

formalism for artificial intelligence,” inProc. of the 3rd international

joint conference on Artificial intelligence, 1973, pp. 235–245.

[38] W. Hwu, K. Keutzer, and T. G. Mattson, “The concurrency challenge,”

IEEE Design & Test of Computers, vol. 25, no. 4, pp. 312–320, 2008.

[39] IEEE Standard 1076.1: VHDL Analog and Mixed-Signal Extensions,

IEEE, 1999.

[40] IEEE Standard for VHDL Register Transfer Level (RTL) Synthesis,

IEEE Computer Society, 2004.

[41] IEEE Standard SystemCR© Language Reference Man-

ual, IEEE Computer Society, 2006. [Online]. Available:

http://standards.ieee.org/getieee/1666/download/1666-2005.pdf

[42] IEEE Standard for System Verilog – Unified Hardware Design, Speci-

fication, and Verification Language, IEEE Computer Society, 2009.

98 Bibliography

[43] L. S. Indrusiak and O. M. dos Santos, “Fast and accurate transaction-

level model of a wormhole network-on-chip with priority preemptive

virtual channel arbitration,” inDesign, Automation & Test in Europe,

March 2011.

[44] L. S. Indrusiak and M. Glesner, “SoC specification usingUML and

actor-oriented modeling,” inInternational Baltic Electronics Confer-

enc, October 2006, pp. 1–6.

[45] ——, “Specification of alternative execution semanticsof UML se-

quence diagrams within actor-oriented models,” inThe 20th Annual

Symposium on Integrated Circuits and Systems Design, September

2007, pp. 330–335.

[46] L. S. Indrusiak, L. Ost, L. M̈oller, F. Moraes, and M. Glesner, “Apply-

ing UML interactions and actor-oriented simulation to the design space

exploration of networks-on-chip interconnects,” inIEEE Computer So-

ciety Annual Symposium on VLSI, April 2008, pp. 491–494.

[47] L. S. Indrusiak, L. Ost, F. G. Moraes, S. Määtẗa, J. Nurmi, L. M̈oller,

and M. Glesner, “Evaluating the impact of communication latency on

applications running over on-chip multiprocessing platform,” in Inter-

national Conference on Industrial Electronics, July 2010, pp. 148–153.

[48] L. S. Indrusiak, A. Thuy, and M. Glesner, “Executable system-level

specification models containing UML-based behavioral patterns,” in

Design, Automation & Test in Europe, April 2007, pp. 1–6.

[49] 2004 update Design. International Technology

Roadmap for Semiconductors. [Online]. Available:

http://www.itrs.net/Links/2004Update/200401 Design.pdf

[50] 2009 edition Design. International Technology

Roadmap for Semiconductors. [Online]. Available:

http://www.itrs.net/Links/2009ITRS/2009Chapters2009Tables/2009

Design.pdf

Bibliography 99

[51] 2009 edition Modeling & simulation. International Tech-

nology Roadmap for Semiconductors. [Online]. Available:

http://www.itrs.net/Links/2009ITRS/2009Chapters2009Tables/2009

Modeling.pdf

[52] A. Jalabert, S. Murali, L. Benini, and G. D. Micheli, “xpipesCompiler:

A tool for instantiating application specific networks on chip,” in De-

sign, Automation and Test in Europe, 2004, pp. 884–889.

[53] A. Jantsch,Modeling Embedded Systems and SoCs – Concurrency and

Timing in Models of Computation. Morgan Kaufman Publishers,

2003.

[54] A. Jantsch and I. Sander, “Models of computation and languages for

embedded system design,”IEE Proceedings of Computers and Digital

Techniques, vol. 152, no. 2, pp. 114–129, 2005.

[55] A. Jantsch and H. Tenhunen, Eds.,Networks on Chip. Kluwer Aca-

demic Publishers, 2003.

[56] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. Sangiovanni-

Vincentelli, “System level design: orthogonalization of concerns and

platform-based design,”IEEE Transactions on Computer-Aided De-

sign of Circuits and Systems, vol. 19, no. 12, pp. 1523–1543, 2000.

[57] A. Kienhuis, “Design Space Exploration of Stream-based Dataflow Ar-

chitectures: Methods and Tools,” Ph.D. dissertation, Delft University

of Technology, Delft, The Netherlands, 1999.

[58] B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf, “An

approach for quantitative analysis of application-specific dataflow ar-

chitectures,” inProc. IEEE International Conference on Application-

Specific Systems, July 1997, pp. 338–349.

[59] T. Kogel, R. Leupers, and H. Meyr,Integrated System-Level Modeling

of Networks-on-Chip Enabled Multiprocessor Platforms. Springer,

2006.

100 Bibliography

[60] P. Kukkala, J. Riihim̈aki, M. Hännik̈ainen, T. D. Ḧamäläinen, and

K. Kronlöf, “UML 2.0 profile for embedded system design,” inDe-

sign, Automation and Test in Europe, 2005, pp. 710–715.

[61] E. A. Lee, S. Neundorffer, and M. J. Wirthlin, “Actor-oriented design

of embedded hardware and software systems,”Journal of Circuits, Sys-

tems, and Computers, vol. 12, no. 3, pp. 231–260, 2003.

[62] E. A. Lee and A. Sangiovanni-Vincentelli, “A frameworkfor compar-

ing models of computation,”IEEE Transaction on Computer Aided De-

sign of Integrated Circuits and Systems, vol. 17, no. 12, pp. 1217–1229,

1998.

[63] P. Lieverse, P. van der Wolf, E. Deprettere, and K. Vissers, “A method-

ology for architecture exploration of heterogeneous signal process-

ing systems,” inProc. IEEE Workshop on Signal Processing Systems,

1999, pp. 181–190.

[64] S. Määtẗa, L. S. Indrusiak, L. Ost, L. M̈oller, M. Glesner, F. G.

Moraes, and J. Nurmi, “Characterising embedded applications using

a UML profile,” in International Symposium on System-on-Chip, Oc-

tober 2009, pp. 172–175.

[65] ——, “A case study of hierarchically heterogeneous application mod-

elling using UML and Ptolemy II,” inInternational Symposium on

System-on-Chip, September 2010, pp. 68–71.

[66] S. Määtẗa, L. S. Indrusiak, L. Ost, L. M̈oller, J. Nurmi, M. Glesner,

and F. Moraes, “Validation of executable application models mapped

onto network-on-chip platforms,” in3rd International Symposium on

Industrial Embedded Systems, June 2008, pp. 118–125.

[67] S. Määtẗa, L. Möller, L. S. Indrusiak, L. Ost, M. Glesner, J. Nurmi,

and F. Moraes, “Joint validation of application models and multi-

abstraction network-on-chip platforms,”International Journal of Em-

Bibliography 101

bedded and Real-Time Communication Systems, vol. 1, no. 1, pp. 85–

100, 2010.

[68] G. Martin, “UML for embedded systems specification and design: mo-

tivation and overview,” inProc. Conference on Design, Automation

and Test in Europe, 2002, pp. 773–775.

[69] P. Marwedel,Embedded System Design. Springer, 2006.

[70] Model-Based Design – MATLAB & Simulink Solutions. The

MathWorks. [Online]. Available: http://www.mathworks.com/model-

based-design/

[71] A. Mihal and K. Keutzer, “Mapping concurrent applications onto archi-

tectural platforms,” inNetworks on Chip, A. Jantsch and H. Tenhunen,

Eds. Kluwer Academic Publishers, 2003, pp. 39–59.

[72] A. Mihal, C. Kulkarni, M. Moskewicz, M. Tsai, N. Shah, S.Weber,

Y. Jin, K. Keutzer, K. Vissers, C. Sauer, and S. Malik, “Developing

architectural platforms: a disciplined approach,”IEEE Design & Test

of Computers, vol. 19, no. 6, pp. 6–16, 2002.

[73] L. Möller, L. S. Indrusiak, and M. Glesner, “NoCScope: a graphical in-

terface to improve networks-on-chip monitoring and designspace ex-

ploration,” inDesign and Test Workshop, 2009, pp. 1–6.

[74] F. Moraes, N. Calazans, A. Mello, L. M̈oller, and L. Ost, “HERMES:

an infrastructure for low area overhead packet-switching networks on

chip,” Integration VLSI Journal, vol. 38, no. 1, pp. 69–93, 2004.

[75] MDA. Object Management Group. [Online]. Available:

http://www.omg.org/mda/

[76] OMG SysML. Object Management Group. [Online]. Available:

http://www.omgsysml.org/

[77] UML. Object Management Group. [Online]. Available:

http://www.uml.org/

102 Bibliography

[78] A UML profile for MARTE: Modeling and analysis of real-time

embedded systems. Object Management Group. [Online]. Available:

http://www.omgmarte.org/Documents/Specifications/08-06-09.pdf

[79] UML profile for schedulability, performance, and

time. Object Management Group. [Online]. Available:

http://www.omg.org/technology/documents/formal/schedulability.htm

[80] UML profile specifications. Object Man-

agement Group. [Online]. Available:

http://www.omg.org/technology/documents/profilecatalog.htm

[81] K. Olukotun and L. Hammond, “The future of microprocessors,”

Queue, vol. 3, no. 7, pp. 26–29, 2005.

[82] L. Ost, “Abstract Models of NoC-Based MPSoCs for DesignSpace

Exploration,” Ph.D. dissertation, Pontifı́cia Universidade Católica do

Rio Grande do Sul, Porto Alegre, Brazil, 2010.

[83] L. Ost, G. Guindani, L. S. Indrusiak, S. M̈aätẗa, and F. Moraes, “Using

abstract power estimation models for design space exploration in NoC-

based MPSoCs,”IEEE Design & Test, vol. 28, pp. 16–29, 2011.

[84] L. Ost, L. S. Indrusiak, S. M̈aätẗa, M. Mandelli, J. Nurmi, and F. G.

Moraes, “Model-based design flow for NoC-based MPSoCs,” inIEEE

International Conference on Electronics, Circuits and Systems, De-

cember 2010.

[85] L. Ost, L. Möller, L. S. Indrusiak, F. Moraes, S. M̈aätẗa, J. Nurmi,

and M. Glesner, “A simplified executable model to evaluate latency

and throughput of networks-on-chip,” in21st Symposium on Integrated

Circuits and System Design, September 2008, pp. 170–175.

[86] H. Patel and S. Shukla,SystemC Kernel Extension for Heterogeneous

System Modeling - A Framework for Multi-MoC Modeling & Simula-

tion. Kluwer Academic Publishers, 2004.

Bibliography 103

[87] H. D. Patel and S. K. Shukla, “Towards a heterogeneous simulation

kernel for system-level models: a SystemC kernel for synchronous data

flow models,”IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, vol. 24, no. 8, pp. 1261–1271, 2005.

[88] D. A. Patterson and J. L. Hennessy,Computer Organization & Design:

The Hardware/Software Interface, 2nd ed. Morgan Kaufmann Pub-

lishers, Inc., 1998.

[89] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic approach to ex-

ploring embedded system architectures at multiple abstraction levels,”

IEEE Transactions on Computers, vol. 55, no. 2, pp. 99–112, 2006.

[90] A. D. Pimentel, L. O. Hertzberger, P. Lieverse, P. van der Wolf,

and E. F. Deprettere, “Exploring embedded-systems architectures with

Artemis,” Computer, vol. 34, no. 11, pp. 57–63, 2001.

[91] J. Plantin and E. Stoy, “Aspects of system-level design,” in Proc. Work-

shop on Hardware/Software Codesign, 1999, pp. 209–210.

[92] Ptolemy II CT domain. Ptolemy Project, UC Berkeley, EECS.

[Online]. Available: http://ptolemy.berkeley.edu/ptolemyII/ptIIlatest

/ptII/ptolemy/domains/ct/doc/index.htm

[93] J. M. Rabaey, A. Chandrakasan, and B. Nikolic,Digital Integrated Cir-

cuits – A Design Perspective, 2nd ed. Prentice Hall / Pearson Educa-

tion International, 2003.

[94] ForSyDe: Formal System Design. Royal Institute of Technology,

School of Information and Communication Technology. [Online].

Available: http://www.ict.kth.se/forsyde/

[95] I. Sander and A. Jantsch, “System modeling and transformational de-

sign refinement in ForSyDe,”IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 23, no. 1, pp. 17–32,

2004.

104 Bibliography

[96] A. Sangiovanni-Vincentelli, “Quo vadis SLD: reasoning about trends

and challenges of system-level design,”Proceedings of the IEEE,

vol. 95, no. 3, pp. 467–506, March 2007. [Online]. Available:

http://chess.eecs.berkeley.edu/pubs/263.html

[97] A. Sangiovanni-Vincentelli and G. Martin, “Platform-based design and

software design methodology for embedded systems,”IEEE Design &

Test, vol. 18, no. 6, pp. 23–33, 2001.

[98] B. Selic, “Models, software models and UML,” inUML for Real: De-

sign of Embedded Real-Time Systems, L. Lavagno, G. Martin, and

B. Selic, Eds. Kluwer Academic Publisher, 2003, pp. 1–16.

[99] S. K. Shukla, G. Smith, and C. Pixley, “Guest editor’s introduction:

The true state of the art of ESL design,”IEEE Design & Test of Com-

puters, vol. 23, no. 5, pp. 335–337, 2006.

[100] J. Sztipanovits and G. Karsai, “Model-integrated computing,” IEEE

Computer, vol. 30, no. 4, pp. 110–111, 1997.

[101] Metropolis: Design Environment for Heterogeneous Systems.

University of California, Berkeley, The Donald O. Peder-

son Center for Electronic Systems Design. [Online]. Available:

http://embedded.eecs.berkeley.edu/metropolis/

[102] A. Vachoux, C. Grimm, and K. Einwich, “Towards analog and mixed-

signal SoC design with SystemC,” inProc. Workshop on Electronic

Design, Test and Applications, January 2004, pp. 97–102.

