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ABSTRACT

Model-based testing is a testing methodology in which the creation of tests can be

performed automatically instead of manually. This is achieved by creating a test

model, which is a formal description of the aspects of systemto be tested. In practice,

a test model for a realistic system is often too large and complicated to create all at

once. It is therefore usually a better idea to create a numberof smaller and simpler

model components which can be combined into the test model.

The flexibility of model-based testing can be improved by assembling the compo-

nents into a model library. From the library a tester can choose a number of model

components to be composed into a test model. This way, tests can be generated from

a model which best corresponds to current testing needs.

This thesis focuses on the design, implementation and use ofa model library for GUI

(graphical user interface) testing of smartphone applications. Modern smartphones

can run complex applications which interact with each other; moreover, different

phones communicate with each other, adding a further level of concurrency. As such,

smartphone applications present a challenging domain for testing.

We present the special considerations to be taken into account when creating model

components intended to become a part of a model library, and our technical and

methodological solutions to them. Flexibility is especially important: the model com-

ponents have to be usable in different combinations according to the testing needs.

This way features irrelevant to the tests to be generated canbe left out of the model.

Conversely, it is possible to create complex test models to test a variety of applica-

tions concurrently, or to test several devices and the communication between them.

Furthermore, properly designed model components can be used in many different

products, which can greatly reduce the effort needed for thecreation of the models.

Our experiences and case studies show that a well-designed model library can fulfill

these needs.
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1. INTRODUCTION

To begin, we will examine software testing and test automation, leading to model-

based testing. Special attention will be paid to testing through a GUI (graphical user

interface) and in the domain of smartphone applications. Wewill also introduce the

particulars of the research, including tools, research methods, related work and the

publications included in the thesis.

1.1 Software Testing

Software testing is the process of examining and exercisingsoftware in ways likely

to uncover potential errors in it. In practice it is the primary method of ensuring the

viability of the software. Methods based on the examinationof design artifacts are

calledstatic testing, while those based on running the software or parts of it are called

dynamic testing. In practice, the term ‘testing’ is often used to refer specifically to

dynamic testing.

Dynamic testing can be roughly divided into two categories:black-box testingand

white-box testing[9]. Black-box testing is based solely on the observable behavior

of the system under test (SUT). Conversely, white-box makesuse of the implemen-

tation of the SUT, in practice the source code. Sometimes a third category,grey-box

testing, is used to denote methods which make use of limited information on the

implementation but cannot be considered pure white-box testing.

Testing can also be classified according to the level of the software development pro-

cess it focuses on [9].Unit testingconsiders a single class, module or other relatively

small component of the software. Increasingly large combinations of the units are

tested inintegration testing, which eventually leads tosystem testingwhen the whole

software has been assembled. Typically this process beginswith white-box testing

and gradually moves to black-box testing as the SUT increases in complexity. One
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special case isGUI testing, which focuses on testing through the graphical user in-

terface of the software.

Testing focusing on functional requirements of the software is calledfunctional test-

ing. Its purpose is to ensure that the software does what it is supposed to. There

are also various kinds ofnon-functional testing, such asperformance testing, which

makes sure that the software works fast enough;stress testing, which tests the soft-

ware under difficult conditions like exceptional workloads; and usability testing,

which focuses on the ease of use.

Dynamic testing is generally performed viatest cases. A test case is a description

of the inputs to be given to the SUT and the outputs the SUT is expected to yield.

The level of abstraction can vary, from cases which are little more than guidelines to

manual testers, to a detailed enumeration of every single step.

Regardless of the methods used, testing is an expensive process. Intuitively, the re-

sources required for proper testing increase faster than the size of the SUT. With the

ever more complex modern software it is necessary to find somemeans for reducing

these expenses.

1.2 Test Automation

One way to reduce the costs of testing is to automate parts of it. Traditionally test

automationhas focused on automating the execution of test cases. Over time, various

approaches have been developed [10].

Capture and replaytechnologies were the first test automation methods. Their idea

was to record a manually performed test, which could then be repeated automatically.

The results were mixed. The method was only capable of automatically executing

tests which had already been performed manually, which effectively limited it to

regression testing. Furthermore, even the smallest changein the SUT could render

the recordings obsolete and new ones had to be created from scratch.

The worst shortcomings of the capture and replay methods arefixed inprogrammatic

scripts. They are essentially small programs designed to perform anindividual test

run. A script can be written based on documentation, withouthaving to perform the

test on the SUT; moreover, an obsolete script can be updated to match the current
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state of the product. Finally, programmatic control structures such as branches and

loops enabled the design of more complex tests in a more concise form.

Many programmatic scripts can be improved by separating thetest case information

from the execution logic. That is, the contents of the test are described using a sepa-

rate simple format, and executed with a program designed forthat format. The most

important benefit of thesedata-driven scriptsis that the execution logic can be cre-

ated by programmers, and testers can concentrate on designing effective tests. The

simple format also reduces maintenance effort somewhat.

One way to further improve maintainability is to separate the tested functionality and

its implementation. The test cases are defined withaction words, which describe the

functionality of the SUT in an abstract level. An action wordmight, for example, de-

note launching an application or checking that the results of a calculation are correct.

Every action word has its implementation defined inkeywords, which correspond

to the user interface (UI) or application programming interface (API) events, such as

pressing a key or reading the contents of a text field. A singleaction word can be used

in several test cases, while its implementation needs to be defined only once. This

means that any changes to the UI/API only require updates to the implementations of

the action words, whereas the test cases only need to be modified if functionality is

altered. These ideas are described in [6, 10], though the terminology is used slightly

differently.

1.3 Model-Based Testing

As explained above, the traditional test automation focuses on automating test execu-

tion. However, the tests are still created manually.Model-based testingis a method-

ology which seeks to automate this part of the testing process.

Model-based testing is based on a formal description of the SUT, called atest model.

The model may contain information on such things as available commands, expected

responses, legal and illegal data values, and so on. What is modeled depends on the

type of the SUT and the aspects to be tested. The tests are thengenerated based on

the modeled information.

There are two basic methods of model-based testing [14]. Thesimpler one is called

off-line testing. Its idea is to use the model to generate a sequence of actions, which
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are then treated and executed as traditional test cases. Thus, off-line testing fits easily

into traditional testing process as a replacement for or a supplement to manual test

creation.

A more advanced alternative isonline testing, in which tests are executed as they are

being generated. Separate test cases are not used at all. When an action is chosen in

the model, it is sent to the SUT for execution. The results of execution are then re-

turned to test generation, where they may affect the selection of the future test steps.

This methodology makes online testing especially well suited for testing nondeter-

ministic systems, where the results of execution are not always known beforehand.

For example, if the SUT includes a communication channel that may occasionally

fail, an online test can automatically adapt to a failure andtry again. The down-

side is that online testing does not fit as well into traditional testing process, and test

generation may be more difficult.

Model-based testing offers two main advantages over manualtest creation. First, a

model-based test can examine the modeled aspects of the SUT in any combination.

Such tests are not limited to the creativity of human designers, and may exercise

the SUT in ways no one has considered. The second advantage ismaintainability.

Models can contain a large amount of information in a very concise form. An up-

date which might cause modifications to dozens of test cases in a test suite might be

performed by a single change to the model.

Although model-based testing is compatible with automatedtest execution, combin-

ing the two is not necessary: it is perfectly possible to use the models to generate

abstract, manually executable tests. This may be a useful technique if automatic exe-

cution of tests is very difficult or expensive to arrange. In practice, though, automatic

test execution is immensely valuable, and if it is availablethere is ample reason to

design the models to take advantage of it.

1.4 GUI Testing

If the SUT includes a GUI, it is important to perform testing through it. This does

not mean just testing the GUI widgets; rather, the purpose ofGUI testing is to test

the whole SUT as the user experiences it. GUI testing is usually the last part of the

testing process, since it touches all parts of the SUT. GUI testing can be functional or
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non-functional; here we will focus on the former.

GUIs also present a greater challenge to automatic test execution than textual UIs

and APIs do [21]. The most obvious problem is evaluating outputs. Instead of an

unambiguous textual or programmatic value, the output of a GUI is an image. The

simplest way to handle this would be to define a specific image as the expected output.

However, such a solution is impractical, since even insignificant differences in the

image will cause a test to fail. Some method for extracting the relevant information

is needed.

In the best case the SUT offers an API, possibly one designed specifically for testing,

through which the contents of its display can be queried. This will effectively enable

GUI testing through an API. In practice, it does not work quite perfectly, though. In

many cases the display contents returned through the API arenot an exact match for

what is actually visible on the display; for example, text ina window partially hidden

behind another might still be considered fully visible.

An alternative is to take a screenshot of the display and to use optical character recog-

nition (OCR) to extract the text from it. In theory, this willexactly yield the actual

contents of the display. However, OCR tends to be somewhat unreliable, occasionally

missing or misreading characters, though these problems may be mitigated by ma-

nipulating the image. Processing images is also significantly slower than API calls.

This is particularly significant in online testing, where execution times may affect the

choice of test generation algorithms [34].

1.5 Testing Smartphone Applications

Our research has focused on model-based online functional GUI testing of smart-

phone applications. Modern smartphones are akin to handheld computers, capable

of executing programs, creating and presenting multimedia, and so on. Thus, their

applications require the same kind of testing as PC software.

There are many different types of smartphones, orproducts. Each product has a set

of applicationsit can execute, such as Messaging and Calendar. Many applications

are available on several different products. However, the applications may have very

different UIs on different products, even if the underlyingfunctionality is mostly the

same. In contrast, the different physical phones of an individual product, ordevices,
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can be considered identical except for some identifying traits such as phone numbers.

Products can be grouped together intoproduct families, such as Symbian [35] or

MeeGo [29] phones.

The smartphone market tends to emphasize short lead times and the simultaneous

development and production of several different products within a single product

family [3]. This poses an extra difficulty for the use of model-based testing in the

smartphone domain, since creating new models from scratch for every product be-

comes impractical. As such, the models should be designed with reusability in mind.

Preferably at least product families should be able to sharethe same models for func-

tionality, even if the specifics of the GUIs have to be modeledseparately. With careful

design models may be reused even in different product families.

1.6 Toolset Overview

In our research, we have developed a toolset for facilitating online model-based test-

ing, called the TEMA toolset. TEMA stands for Test Modeling Using Action Words,

the name of the project in which most of the tools were first developed [44]. The

toolset has been designed for the smartphone domain, but could be used with other

domains as well. Figure 1 illustrates the architecture of the toolset.

The first part of the toolset is concerned with test modeling.The main tool here is

Model Designer, which is used to create and organize the models. Test modeling also

makes use of various model utilities to analyze the created models. The main output

here is amodel libraryconsisting of various model components; their nature will be

explained later.

Once the models are ready, the tools of the Test Design portion are used to design

and launch the execution of a model-based test. This is generally done through Web

GUI [P1], which can be used to examine the available models and to createtest con-

figurations. A test configuration defines an executable model-based test, including

what kinds of devices are involved, how the test model is to beassembled, what kind

of a test is to be generated, and according to which parameters. Usually test config-

urations are executed through the Web GUI using Test Controller, but they can also

be packed into atest execution script, which can later be used to generate the test

without using Web GUI, for example in a continuous integration cycle [11].



1.6. Toolset Overview 7
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Fig. 1. The TEMA toolset and the associated user roles [P7].

Actual test generation is performed in its own portion of thetoolset. Here the com-

ponents in the model library are first configured by Test Configurer to match the re-

quirements of the test as defined in a test configuration, and then composed by Model

Composer into a test model. Test Engine can then begin the execution according to

the parameters defined in the test configuration.

The automatic execution of the test requires a method for connecting into the SUT.

This is the responsibility of the Keyword Execution portion. The actual communica-

tion is handled by an appropriate Connectivity Component, whose nature depends on

the product family of the SUT. Between it and Test Engine is Adapter, which takes

the keywords executed in the test model and converts them into a form understood by

Connectivity Component, and feeds the results of the execution back to Test Engine.

The result of keyword execution is a simple Boolean value representing the success

or failure of execution. A difference between the received result and the one expected

by the test model indicates an error, either in the SUT or in the model.

Test Engine records the events of the test run into atest log, which is stored into Web

GUI. The log can be used to examine what has been tested, but ismore importantly
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needed by the Test Debugging portion of the toolset, which isused to locate the cause

of any errors and inconsistencies occurring during the testruns. There are various

debug tools to ease this process. Of particular note is VideoRecorder, which is used

to record footage of the smartphone display during the test run. This footage can be

a great help in debugging.

Figure 1 also shows the roles of the various people involved in the model-based test-

ing process. First, the test modeler is responsible for the creation and maintenance

of the models. Second, the test designer defines what kinds oftests are to be created

and oversees their execution. Third, the test engineer takes care of the physical de-

vices and prepares them for testing, and also sets Video Recorder to record them as

needed. Fourth, test debugger is responsible for tracing any anomalies found back to

their cause. Finally, chief tester oversees the whole testing process.

This distribution of concerns has significant advantages. Most importantly, it allows

specialization; for example, most of the testing personnelneed not have any under-

standing of the models or their creation. Furthermore, sensitive prototype devices

need not ever be given into the hands of most of the testing personnel, and possibly

not even shown if the documentation is extensive enough. As aconsequence, differ-

ent parts of the process need not be performed at the same location; for example, it

is possible to generate tests for phones connected to a network in another country.

Of course, it is still perfectly possible and sometimes desirable for a single person to

assume more than one role.

1.7 Related Work

The practical aspects of model-based testing are describedin great detail by Utting

and Legeard [46]. Utting et al. [47] have also developed a taxonomy for model-based

testing. A detailed analysis of how our methodology would beclassified can be found

in [24]; in short, we use transition-based test models of theenvironment to generate

online tests, either randomly or according to requirementsor model coverage.

Much of model-based testing research has focused on testingthrough APIs, such as

protocol testing in [45]. Model-based GUI testing has been researched for example

by Robinson [41], who used existing GUI test automation tools for executing model-

based tests, and Ostrand et al. [37], who developed their owntesting tool based on
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capture-and-replay methodologies. Memon [31] also developed his own framework

for GUI testing.

The formal methods used in the handling of the models owe muchto research in

software verification, which seeks to mathematically prove the correctness of the

SUT. Many of our methods specifically are originally based onCSP (Communicating

Sequential Processes) [42], and further developed by Helovuo and Valmari [16] and

Karsisto [22]. More generally, our methodology is based on work by Helovuo and

Leppänen [15], and Kervinen and Virolainen [24, 25]. The work presented in this

thesis has been applied outside of our research group for example by Mikkola [33].

Other modeling formalisms [26] can also be used in model-based testing. For exam-

ple, there has been research on model-based testing using UML (Unified Modeling

Language) [36] models. This approach can be seen side by sidewith ours in [30].

The UML-based approach also has commercial tool support, such as Conformiq Tool

Suite [8,17].

Yet another approach can be seen in the NModel framework [32]developed by Mi-

crosoft. It is based onmodel programs, which are executable specifications for the

SUT, written in C#. The framework is described in [20]. NModel offers a simple

method for combining several model programs into a more complex one, which can

be used for testing several applications concurrently. Themethodology is somewhat

less flexible than ours, though; in particular, while model programs can be inter-

leaved, there is no inbuilt mechanism for controlling the switches between them. Mi-

crosoft also makes use of another model-based testing tool called Spec Explorer [7].

Apart from different formalisms, there are variations in what is modeled. For in-

stance, Belli et al. [1, 2] have proposed a holistic modelingmethod, in which the

system models describing how the SUT functions are supplemented with fault mod-

els which describe how it does not function. This would enable a more comprehen-

sive testing of faulty inputs, whose handling is often a secondary concern in product

development and implementation. Bouquet et al. [4] annotated their model with re-

quirement information in order to trace the generated testsback to requirements; this

is in contrast to our approach, where requirements can be expressed in terms of the

model, but not as a part of it. Model-based testing can also beused to generate test

data instead of or in addition to control decisions, such as in [5,27,28], where Legeard

et al. describe the generation of boundary-value test cases.
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1.8 Research Method

The research described in this thesis has been conducted mostly as practical exper-

imentation using a constructive research method. This has involved creating tools

and models, running tests, and analyzing the results. The analysis has been mostly

qualitative because of the difficulties involved in proper quantitative analysis.

Quantitative analysis could be performed for example by testing a new product con-

currently with traditional and model-based methods and comparing the results. This

would show whether the model-based testing process can find the bugs revealed by

the traditional methods, and whether it can find bugs the traditional methods miss, as

well as providing a comparison between the efforts requiredfor each approach. How-

ever, in practice this is difficult to arrange. Performing such experiments within the

ordinary development process would double the workload, which is rather impracti-

cal at least in the smartphone domain with the short lead times of product creation.

Conversely, performing the experiments externally would require giving outsiders

access to prototypes, something product developers are reluctant to allow. Some

measure of quantitative analysis might also be achieved by examining the reports of

found bugs and estimating whether the model-based methods could or would have

found them, but this approach faces similar confidentialityproblems.

Despite the lack of quantitative analysis, case studies with the industrial partners have

been a valuable addition to the research. They have allowed us to try our methods

in a realistic environment and occasionally with prototypes to which we would not

otherwise have access. Likewise, the experiences of new users have been of great

value in tool development, such as in [33].

1.9 Included Publications and Author’s Contributions

This thesis includes seven publications. The author has made several contributions

to the TEMA toolset and publications, mostly related to modeling. He developed the

concept of model library, created most of the models used in the research, developed

many of the modeling techniques, and made some contributions to the model formal-

ism originally developed by Antti Kervinen [24]. The work onproper model libraries

was begun in the author’s Master’s Thesis [18], which introduced the Model Designer
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tool. The author also developed and implemented some utility tools for analyzing the

models, and contributed to the Test Configurer and debug tools. Furthermore, he has

had an active part in executing and debugging tests, and has participated in all of the

case studies mentioned in this thesis. He has also taken an active part in the writing

of the publications.

[P1], “Model-based testing service on the web,” presents a web interface (Web GUI of

the TEMA toolset) designed to offer the means to ‘order’ a model-based test, meaning

generating and executing the test without having to deal with the models directly. The

author’s contributions concerned the presentation of the models and their actions in

the interface; he also wrote the sections concerning the modeling formalism and the

toolset in the publication. The interface was implemented by Henri Heiskanen, and

has seen significant use during the research projects. A second version based on

the first was developed later on to enable more flexible test generation and better

usability.

[P2], “Creating a test model library for GUI testing of smartphone applications,”

presents the author’s creation of an open-source model library for testing of smart-

phone applications, with focus on presenting the structureof a working model library

and the techniques used to create it. The formalism used in modeling was designed

by Antti Kervinen with minor contributions by the author, while the practical mod-

eling techniques described in the publication were developed by the author during

the modeling process. The main content of the publication isbased on the author’s

Master’s Thesis.

[P3], “Synthesizing test models from test cases,” presentsa methodology for creating

a test model by combining existing test cases at common action sequences. The basic

principle was first proposed by Antti Valmari, and Antti Kervinen developed a tool

to support it. However, while the principle was sound, it proved insufficient in com-

bining real test cases, which were often irreconcilable dueto simple differences in

setup. The author developed a method and rudimentary tools for separating the setup

information from the test cases so that they could be effectively combined, and reat-

taching the information afterward. The improved process was successfully applied to

a number of real-world test cases in a case study and producedan executable model.

In the publication, the author wrote the sections on the synthesizing process and the

case studies.
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[P4], “Filtering test models to support incremental testing,” addresses the problem of

models containing functionality that cannot be executed onthe SUT. This may occur

during development when the models are completed before implementation, or after

testing when functionality is found faulty. The publication presents a method and

tools for filtering unexecutable functionality out of the models without making them

infeasible for test generation. The research was done and the publication written

entirely by the author.

[P5], “Debug support for model-based GUI testing,” presents two practical meth-

ods for debugging model-based tests: a video recording method, in which the test

run is recorded on video and synchronized with test log material in order to give a

human debugger a clearer idea of the events of the test, and a trace incrementation

method, in which progressively larger portions of the errortrace are executed until

the error is reproduced. The main part of the research was done by Henri Heiskanen

with help and supervision from the author. The author contributed in the design and

implementation of both methods, and wrote the section on model-based testing and

the comparisons between the trace minimization techniquesin the publication. The

developed debugging methods have since proven very useful in the case studies.

[P6], “Automatic GUI test generation for smartphone applications – an evaluation,”

presents an overview of the model-based testing research performed in the TEMA

project, with focus on executing long-period tests on S60 smartphones. The author’s

main contributions were the creation of the model library, the modeling tools, and

the modeling techniques. The author also made some smaller contributions to the

model semantics and the tools handling the models before andduring test generation,

and participated in the case studies. The author’s contribution to the writing of the

publication was minor.

[P7], “Model-based GUI testing of smartphone applications: Case S60 and Linux,”

presents two case studies of the use of our methodology on testing applications on

different platforms. The presentation of the former is an elaboration on the work

described more briefly in [P6]. The author created the test models for S60 and Mobile

Linux smartphone applications, and also developed methodsfor model-based testing

of real-time properties. Tommi Takala developed the adaptation tools which allow

the automated execution of the generated tests. In the publication, the author wrote

the sections on the theory of modeling and test generation, as well as the ones on the

modeling in the case studies.
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1.10 Structure of the Thesis

The remainder of the thesis is structured as follows: Chapter 2 presents the formalism

used in creating the models, and the semantics related to their use. Chapter 3 details

various modeling techniques developed and used during the research, as well as an

example of a model library. Chapter 4 gives a detailed description on how the models

are used throughout the testing process. Finally, Chapter 5draws the conclusions.
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2. MODEL FORMALISM

The TEMA toolset is designed to work with test models composed of numerous

model components, each of which depicts only a small part of the SUT. The reason

for this is complexity: the test model for even a small SUT is likely to be prohibitively

large when viewed as a whole, and therefore very difficult to create and maintain all

at once. It is much easier to create a number of smaller and simpler components,

and then combine them automatically into a working test model. In this chapter,

we will examine the structure of the individual components and the methods used in

combining them, as well as test data.

2.1 Model Components

Individual model components are used to describe specific and limited aspects of the

SUT. Such an aspect might be a specific view in an application,such as the images

view in the Gallery application, or a specific task, such as creating a multimedia

message. This section presents the formal definition of the model components and

explains how we use them.

2.1.1 Behavioral Models

The model components are behavioral models depicting the functionality of the SUT.

Although many different formalisms can be used to express behavior, all of them can

be reduced to state machines: the model is always in some specific state, and there

are ways to move it to different states. A formalism may emphasize the states or the

transitions between them, or include information on both. Our choice of formalism

is the labeled state transition system (LSTS), which belongs to the last category, as

its name implies [13]. An LSTS is defined as follows:
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Definition 1 (LSTS):

A labeled state transition system, abbreviated LSTS, is defined as a sextuple

(S,Σ,∆, ŝ,Π,val) where S is the set ofstates, Σ is the set ofactions(transition la-

bels),∆ ⊆ S×Σ×S is the set oftransitions, ŝ∈ S is theinitial state, Π is the set of

attributes(state labels) and val: S−→ 2Π is theattribute evaluation function, whose

value val(s) is the set of attributes in effect in state s.

In practice we use LSTS mostly as a transition-based formalism. The actions encode

the inputs as well as the expected outputs; thus, the models function as the test oracle.

The attributes serve various secondary roles: some act as shorthand for recurring

model structures, others mark important states for test generation, and yet others

exist merely to improve the legibility of the models. Note that while transitions are

always labeled with exactly one action, a state may have any number of attributes.

Given its general nature, models of other behavioral formalisms can be easily con-

verted into LSTSs. This allows us to use other formalisms where they are useful.

However, Test Engine handles all models in LSTS form.

2.1.2 Component Types

The TEMA toolset divides the model components into two main categories:action

machinesand refinement machines. The division corresponds to action words and

keywords. Each application on the SUT is modeled in one or more action machines,

which describe the functionality of those applications in action words. Apart from

action words, the action machines also contain many synchronization actions, with

which they can be connected to other action machines when a test model is com-

posed. Figures 2 and 3 show examples of action machines. Likeaction words, action

machines are independent of the UI. This enables using the same action machines on

many different products, which makes both modeling and maintenance easier.

Correspondingly, refinement machines are used to define the GUI implementation

of the functionality of the SUT. Each action machine has one or more refinement

machines, in which the implementations of the action words are specified using key-

words. Unlike action machines, refinement machines are product-specific, since the

same functionality may be implemented differently on different products. A typical

refinement machine has the action refinements as loops on its initial state, as shown
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awStartMessaging

awExitMessaging

SLEEPts

WAKEts

WAKEts

SLEEPts

SLEEPapp<ToInbox>

WAKEapp<ToMain>

Fig. 2. A simple action machine for the main screen of the Messaging application, with sleep-

ing states colored blue.

awToInbox

awLeaveInbox

SLEEPts

WAKEts

WAKEapp<ToInbox>

SLEEPapp<ToMain>

Fig. 3. An action machine for opening and closing the inbox in the Messaging application.

in Figure 4. Most refinements are simple linear sequences, but branches and loops are

also possible. An individual action refinement is bracketedby a starting and ending

synchronization that define which action word it refines.

Action machines are designed so that only one of them isactiveat a time, and the

others aresleeping. This is modeled by dividing the states of the action machineinto

active and sleeping states (the latter are generally markedwith the attributeSleep-

State, represented with blue coloring in the figures of this thesis). Action words are

placed solely between active states; thus, only the active action machine can perform

actions on the SUT. Other actions are used to synchronize action machines with each

other. Depending on the type, they may be placed between active states (queries
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kw_PressHardKey 

<SoftLeft>
kw_SelectMenu ’Exit’

start_awStartMessaging

end_awStartMessaging

end_awExitMessaging start_awExitMessaging

Fig. 4. A refinement machine for the Messaging Main action machine shown in Figure 2.

The action wordawStartMessagingcan be given an empty implementation, since the

application is launched automatically with the activationof the action machine.

and messages), between sleeping states (responses to the former), going from active

to sleeping states (sending the current action machine to sleep), or from sleeping to

active states (activating the action machine). The separation of sleeping and active

states is part of the well-formedness rules and has no semantic effect, with the excep-

tion of one graph transformation which makes use of theSleepStateattribute. The

primary purpose of the separation is to make the models easier to understand, though

the attributes may also be useful in test generation.

The active action machine can yield control either to another action machine directly

or to a task switcher. A task switcher is a special action machine which acts as a

scheduler for a single device, ortarget, with the ability to activate any action machine

prepared to take control. It also has its own refinement machine, which automatically

activates the appropriate application on the SUT when another action machine is

activated. This ensures that further keywords will affect the correct application. Task

switchers are usually generated automatically based on theother model components

involved. However, it would also be possible to create one manually in order to

customize the possible switches between the components.

Following are the definitions of the generated task switcherand its refinement ma-

chine. In the definitions, string literals are written within quotation marks; “.*” means

an arbitrary string of characters as in Python regular expressions [40]. The symbol

‘&’ denotes string concatenation. Figure 5 shows an exampleof a task switcher.
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WAKEtsWAKE<Main>

WAKEtsWAKE<Inbox>

SLEEPtgts<K>

TARGET_ACTIVATED<Main>

TARGET_DEACTIVATED

TARGET_DEACTIVATED

TARGET_ACTIVATED<Inbox>

WAKEtsCANWAKE<Main>

WAKEtsCANWAKE<Inbox>

WAKEtgtsWAKE<K>WAKEtgtsCANWAKE<K>

ACTIVATED<Main>
ACTIVATED<Inbox>

SLEEPts<Main>

SLEEPts<Inbox>

awActivate<Messaging>

awActivate<Messaging>

Fig. 5. An example task switcher, generated for target K with model components Main and

Inbox (Figures 2 and 3). The purple and yellow coloring in thestates mark the at-

tributesMain runningand Inbox running, respectively.
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Definition 2 (Generated task switcherTsSK,an):

TsSK,an(L1, . . . ,Ln) is thegenerated task switcherfor the target K with the action ma-

chine LSTSs L1, . . . ,Ln, with theactivation name functionan : {L1, . . . ,Ln} −→“ .*”.

TsSK,an(L1, . . . ,Ln) = (S,Σ,∆, ŝ,Π,val), where

• S= {si ,s′i ,s
′′
i ‖0≤ i ≤ n}

• Σ = {“ WAKEtgtsCANWAKE<” &name(K)& “ >” ,

“ WAKEtgtsWAKE<” &name(K)& “ >” ,“ SLEEPtgts<” &name(K)& “ >” ,

“ TARGET_DEACTIVATED” }∪
{“ WAKEtsCANWAKE<” &name(Li)& “ >” ,

“ awActivate<” &an(Li)& “ >” ,“ WAKEtsWAKE<” &name(Li)& “ >” ,

“ SLEEPts<” &name(Li)& “ >” ,“ ACTIVATED<” &Li& “ >” ,

“ TARGET_ACTIVATED<” &name(Li)& “ >” ‖1≤ i ≤ n}

• ∆ = {(s,a,s′) ∈ S×Σ×S‖
(s= s0∧a =“ WAKEtgtsCANWAKE<” &name(K)& “ >” ∧s′= s′0)∨
(s= s′0∧a =“ WAKEtgtsWAKE<” &name(K)& “ >” ∧s′ = s′′0)∨
(s= s′′0∧a =“ SLEEPtgts<” &K& “ >” ∧s′= s0)∨
∃i;1≤ i ≤ n :

(s= s′′0∧a =“ WAKEtsCANWAKE<” &name(Li)& “ >” ∧s′ = si)∨
(s= si ∧a =“ awActivate<” &an(Li)& “ >” ∧s′ = s′i)∨
(s= s′i ∧a =“ WAKEtsWAKE<” &name(Li)& “ >” ∧s′ = s′′i )∨
(s= s′′i ∧a =“ SLEEPts<” &name(Li)& “ >” ∧s′ = s′′0)∨
(∃ j;1≤ j ≤ n∧ j 6= i :

s= s′′j ∧a=“ ACTIVATED<” &name(Li)& “ >” ∧s′ = s′′i )∨
(s= s0∧a =“ TARGET_ACTIVATED<” &name(Li)& “ >” ∧s′ = s′′i )∨
(s= s′′i ∧a =“ TARGET_DEACTIVATED” ∧s′= s0)}

• ŝ= s0

• Π = {name(Li)& “ running” ‖1≤ i ≤ n}

• val(s) = {name(Li)& “ running” ‖1≤ i ≤ n∧s= s′′i }

Definition 3 (Generated task switcher refinementTsSan− rm):

TsSan − rm(L1, . . . ,Ln) is the generated task switcher refinementfor the
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LSTSs L1, . . . ,Ln, with the activation name function an: {L1, . . . ,Ln} −→“ .*”.

TsSan− rm(L1, . . . ,Ln)= (S,Σ,∆, ŝ,Π,val), where

• S= {s0}∪{si ,s′i ‖1≤ i ≤ n}

• Σ = {“ start_awActivate<” &an(Li )& “ >” ,

“ kw_LaunchApp ’” &an(Li)& “ ’ ” ,“ end_awActivate<” &an(Li)& “ >” ‖
1≤ i ≤ n}

• ∆ = {(s,a,s′) ∈ S×Σ×S‖∃i;1≤ i ≤ n :

(s= s0∧a =“ start_awActivate<” &an(Li)& “ >” ∧s′ = si)∨
(s= si ∧a =“ kw_LaunchApp ’” &an(Li)& “ ’ ” ∧s′ = s′i)∨
(s= s′i ∧a =“ end_awActivate<” &an(Li)& “ >” ∧s′ = s0)}

• Π = /0

• val(s) = /0

It is possible to create test models which act on multiple targets at once, such as

modeling one phone sending a text message to another. Test Configurer will auto-

matically create individual copies of the model componentsand the task switcher for

each target. These are combined with another automaticallygenerated model com-

ponent calledtarget switcherwhich acts as a scheduler for different devices just as

the task switchers act for the model components of their respective devices. The

structure of the target switcher is correspondingly very similar to that of the task

switchers, with targets substituted for model components.The automatically gener-

ated target switcher and its refinement machine are defined below, with an example

shown in Figure 6. Using multiple targets also requires one more automatically gen-

erated model component calledsynchronizer, which is used in forming connections

between model components on different targets.

Definition 4 (Generated target switcherTgtS):

TgtS(K1, . . . ,Kn) is the generated target switcherfor the targets K1, . . . ,Kn.

TgtS(K1, . . . ,Kn) = (S,Σ,∆, ŝ,Π,val), where

• S= {s0}∪{si ,s′i ,s
′′
i ‖1≤ i ≤ n}
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SLEEPtgts<K>

WAKEtgtsWAKE<K>

awActivate<K>

WAKEtgtsCANWAKE<K>

Fig. 6. An example target switcher, generated for target K. The state colored red has the

attributeK running.

• Σ = {“ WAKEtgtsCANWAKE<” &name(Ki)& “ >” ,

“ awActivate<” &name(Ki)& “ >” ,“ WAKEtgtsWAKE<” &name(Ki)& “ >” ,

“ SLEEPtgts<” &name(Ki)& “ >” ,“ ACTIVATED<” &Ki& “ >” ‖1≤ i ≤ n}

• ∆ = {(s,a,s′) ∈ S×Σ×S‖∃i;1≤ i ≤ n :

(s= s0∧a =“ WAKEtgtsCANWAKE<” &name(Ki)& “ >” ∧s′ = si)∨
(s= si ∧a =“ awActivate<” &name(Ki)& “ >” ∧s′ = s′i)∨
(s= s′i ∧a =“ WAKEtgtsWAKE<” &name(Ki)& “ >” ∧s′ = s′′i )∨
(s= s′′i ∧a =“ SLEEPtgts<” &name(Ki)& “ >” ∧s′ = s0)∨
(∃ j;1≤ j ≤ n∧ j 6= i :

s= s′′j ∧a=“ ACTIVATED<” &name(Ki)& “ >” ∧s′ = s′′i )}

• ŝ= s0

• Π = {name(Ki)& “ running” ‖1≤ i ≤ n}

• val(s) = {name(Ki)& “ running” ‖1≤ i ≤ n∧s= s′′i }

Definition 5 (Generated target switcher refinementTgtS− rm):

TgtS− rm(K1, . . . ,Kn) is the generated target switcher refinementfor the targets

K1, . . . ,Kn. TgtS− rm(K1, . . . ,Kn)= (S,Σ,∆, ŝ,Π,val), where

• S= {s0}∪{si ,s′i ‖1≤ i ≤ n}
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• Σ = {“ start_awActivate<” &name(Ki )& “ >” ,

“ kw_SetTarget $(OUT=” &name(Ki)& “ .id)$” ,

“ end_awActivate<” &name(Ki )& “ >” ‖1≤ i ≤ n}

• ∆ = {(s,a,s′) ∈ S×Σ×S‖∃i;1≤ i ≤ n :

(s= s0∧a =“ start_awActivate<” &name(Ki)& “ >” ∧s′ = si)∨
(s= si ∧a =“ kw_SetTarget $(OUT=” &name(Ki)& “ .id)$” ∧s′ = s′i)∨
(s= s′i ∧a =“ end_awActivate<” &name(Ki)& “ >” ∧s′ = s0)}

• Π = /0

• val(s) = /0

2.1.3 Special Semantics

Specific action names may have properties beyond what is usual for actions of their

category. These include static text replacements, data access, and negated actions.

Some model structures are also generated based on attributes placed in the models.

The strings “@PARENT” and “@TARGET” occurring in action names get replaced

before the model is executed. “@PARENT” is replaced by the name of the applica-

tion it belongs to, and “@TARGET” by the name of the target themodel is assigned

to. Their main use is to keep synchronizations unambiguous.For example, if a model

component containing the actionALLOWtgt<@TARGET:X>is assigned to two dif-

ferent targets, the text replacement will cause it to be synchronized with a different

action on each, as opposed toALLOWtgt<X>, which might get synchronized with

any suitable action regardless of targets.

Ordinarily the execution of a keyword is expected to succeed; a failure indicates a

failed test run. However, a keyword can benegatedby adding a “∼” in front of the

action name, in which case its execution is expected to fail.For example, ifkwVeri-

fyTextchecks that a specific text is visible on the display of the SUT, ∼kwVerifyText

checks that the text is not visible. A special case is a situation where both ordinary

and negated versions of a keyword begin from the same state. This is abranching

keyword, which is allowed to succeed or fail. When either transition is selected for

execution in the model, the keyword is sent to Test Engine forexecution. If the

execution succeeds, the ordinary version of the keyword is executed in the model,
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otherwise the negated one. Thus, branching keywords allow the action refinements

to adapt to the state of the SUT, which is useful in testing nondeterministic systems.

Obviously this is only useful in online testing.

Branching can also be applied to action words. Whether the action word succeeds

or fails depends on its refinement: a negated ending synchronization means a failed

action word. While the effects of branching keywords are limited to within a single

action word implementation, branching action words can alter the course of the whole

test run. This property, while often useful, can make test generation much more

difficult.

Some attributes are used to generate actions and transitions into the model compo-

nents. Attributes whose names begin with “sv”, so-calledstate verifications, are

shorthand for simple action loops. A state containing the state verificationsvX is

provided with a looping action by the same name. These are treated semantically

just like action words, but can be useful as markers in test generation; for example,

they might be always executed whenever encountered in orderto verify the state of

the SUT as often as possible. There are alsotarget allowattributes of the formtaX,

which cause the generation of the actionALLOW<X> from all states with theSleep-

Stateattribute to the state with the target allow. An individual target allow attribute

may be placed in only a single state.

2.2 Parallel Composition

Individual model components are of little use separately. To be used, they must

be combined into a test model through a process called parallel composition. In

our methodology parallel composition serves two purposes.First, it combines all

the model components of an individual application into a unified whole, where each

component acts in its specific role. Second, it combines the model components of the

different applications in such a way that their actions can be interleaved, which allows

effective concurrency testing. This section will explain the composition process and

the parameters with which we use it.
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2.2.1 Definition

The model components are combined together with process algebraicparallel com-

position. Parallel composition allows us to treat a number of model components as a

single composite model. The states and transitions of the composite model are com-

binations of the corresponding elements of the model components. The actions of

the composite model likewise correspond to those of the model components; execut-

ing an action in the composite model means executing specificactions in the model

componentssynchronously.

There are many different methods of parallel composition, mostly differing on how

they synchronize the actions of the model components. The version we use is based

on a rule set which explicitly defines the synchronizations [22]. The formal definition

is the following:

Definition 6 (Parallel composition‖R):

‖R (L1, . . . ,Ln) is the parallel composition of LSTSs L1, . . . ,Ln, Li =

(Si ,Σi,∆i , ŝi ,Πi ,vali), according torulesR, such that∀i, j;1≤ i < j ≤ n : Πi∩Π j = /0.

Let ΣR be a set of resulting actions and
√

a pass symbol such that

∀i;1 ≤ i ≤ n :
√

/∈ Σi . The rule set R⊆ (Σ1 ∪ {
√})× ·· · × (Σn ∪ {

√})× ΣR.

Now‖R (L1, . . . ,Ln) = repa((S,Σ,∆, ŝ,Π,val)), where

• S= S1×·· ·×Sn

• Σ = ΣR

• ((s1, . . . ,sn),a,(s′1, . . . ,s
′
n)) ∈ ∆ if and only if there is(a1, . . . ,an,a) ∈ R such

that for every i(1≤ i ≤ n) either

– (si ,ai ,s′i) ∈ ∆i or

– ai =
√

and si = s′i

• ŝ= (ŝ1, . . . , ŝn)

• Π = Π1∪ ·· ·∪Πn

• val((s1, . . . ,sn)) = val1(s1)∪ ·· ·∪valn(sn)

• repa is a function restricting LSTS to contain only the states which are reach-

able from the initial statês.
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start_svX

end_svX

Fig. 7. Creating state verification loops. The state marked in greenhas the attributesvX.

2.2.2 Graph Transformations

We do not apply parallel composition directly on the model components, but first

perform some automatic graph transformations on the actionmachines. The trans-

formation rules are listed below. They are used in the given order to all applicable

model structures; thus, branching action words will be handled before non-branching

ones. In the rules,A MATCHESB means thatA must match the Python regular ex-

pression [40] defined byB.

• Expand state verifications:

∀s∈ S: ∀π ∈ val(s);π MATCHES “sv.*”:

– S←− S∪{ss,π}

– Σ←− Σ∪{“start_”&π,“end_”&π}

– ∆←− ∆∪{(s,“start_”&π,ss,π),(ss,π,“end_”&π,s)}

States with state verifications are provided with corresponding two-part loops.

In the composed model the refinement for the state verification will appear

between the two parts (Figure 7).

• Split branching action words:

∀a∈ Σ;a MATCHES “aw.*”: ∀s,s′,s′′ ∈ S;(s,a,s′) ∈ ∆∧ (s,“∼”& a,s′′) ∈ ∆ :

– S←− S∪{ss,a}

– Σ←− Σ∪{“start_”&a,“end_”&a,“∼end_”&a}
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awX

start_awX

end_awX

~awX

~end_awX

Fig. 8. Splitting branching action words.

– ∆←− ∆−{(s,a,s′),(s,“∼”& a,s′′)}∪
{(s,“start_”&a,ss,a),(ss,a,“end_”&a,s′),(ss,a,“∼end_”&a,s′′)}

Branching action words are split into two parts, the first of which is shared

between both branches (Figure 8). The old actions are not removed, but will

not pass through parallel composition.

• Split other action words:

∀(s,a,s′) ∈ ∆;a MATCHES “aw.*”:

– S←− S∪{ss,a}

– Σ←− Σ∪{“start_”&a,“end_”&a}

– ∆←− ∆−{(s,a,s′)}∪{(s,“start_”&a,ss,a),(ss,a,“end_”&a,s′)}

The remaining action words are split into two parts (Figure 9).

• Split WAKEtstransitions:

∀(s,a,s′) ∈ ∆;a =“WAKEts”:

– S←− S∪{ss,a}

– Σ←− Σ∪{“WAKEtsCANWAKE” ,“WAKEtsWAKE” }
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awX

start_awX end_awX

Fig. 9. Splitting nonbranching action words.

WAKEts

WAKEtsCANWAKE WAKEtsWAKE

Fig. 10. SplittingWAKEts transitions.

– ∆←− ∆−{(s,a,s′)}∪
{(s,“WAKEtsCANWAKE” ,ss,a),(ss,a,“WAKEtsWAKE” ,s′)}

The WAKEtstransitions are split into two parts. In the composed model the

activation sequence of the model component, as defined in thetask switcher,

will appear between the two parts (Figure 10).

• Expand target allows:

∀s,s′ ∈ S;“SleepState”∈ val(s) :

∀x;x MATCHES “.*”: ∀π ∈ val(s′);π =“ta”& x :

– Σ←− Σ∪{“ALLOW<”& x&“>” }

– ∆←− ∆∪{(s,“ALLOW<”& x&“>” ,s′)}

New allow transitions from sleeping states into a specifically marked state are

created (Figure 11).
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ALLOW<X>

Fig. 11. Creating ALLOW transitions for the target allow attribute. The state marked in

orange has the attributetaX.

2.2.3 Rules

In theory, the ability to explicitly define the synchronizations offers great flexibility.

In practice, though, defining the rules separately for each action in the model compo-

nents would not be worth the effort, and would make understanding the models much

more difficult. Because of these, the rule set is generated automatically based on the

actions occurring in the model components.

Thesegeneration rulesare given below. The formulae describe the generation of

rulesR for the componentsL1, . . . ,Ln, Li = (Si ,Σi,∆i , ŝi ,Πi ,vali). The name of an

individual componentL is referred to withname(L).

In the verbal explanations and figuresX is used to mark arbitrary character strings in

action names,A andB are names for action machines,A-rm is a name for a refinement

machine, andK andL are names for test targets. The given explanations may be

narrower than the formal rules; in these cases they signify the intended way to use the

actions in question. The figures likewise describe a typicaluse of the rule in question.

In the figures, transition colors other than black are used tosignify synchronously

executed actions, and dashed transitions mean sequences ofactions irrelevant to the

pertinent synchronization.

The composition rules are generated in two phases. First thefollowing generation

rules are applied to the model components belonging to an individual target:

• Action words and state verifications:

∀i, j;1≤ i, j ≤ n∧name(L j) MATCHESname(Li)&“-rm.*”:

∀s;s MATCHES “(start|∼?end).*”∧s∈ Σi ∩Σ j :
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start_awX end_awX

end_awXstart_awX

K/A:start_awX K/A:end_awX

K/A K/A-rm

Fig. 12. Action word synchronization.

∃(σ1, . . . ,σn,σR) ∈ R :

σi = σ j = s∧σR = name(Li)&“:”& s∧∀k;1≤ k≤ n∧k 6= i∧k 6= j : σk =
√

The split action words and state verificationsstartX, endXand∼endXin action

machineA are executed synchronously with actions of the same name in a

refinement machineA-rm (Figures 12 and 13). Refinements for the actions of

a single action machine may be placed into several refinementmachines.

• Keywords:

∀i;1≤ i ≤ n : ∀s;sMATCHES “∼?(kw|vw).*”∧s∈ Σi :

∃(σ1, . . . ,σn,σR) ∈ R : σi = σR = s∧∀ j;1≤ j ≤ n∧ j 6= i : σ j =
√

The keywordskwX, vwX, ∼kwX and∼vwX in the refinement machineR are

executed alone (Figure 14).

• Task switcher synchronizations:

∀i, j;1≤ i, j ≤ n∧name(Li) MATCHES “TaskSwitcher.*”:

∀s;s MATCHES “SLEEPts|WAKEtsCANWAKE|WAKEtsWAKE”∧
s&“<”& name(L j )&“>” ∈ Σi ∧s∈ Σ j :

∃(σ1, . . . ,σn,σR) ∈ R : σi = σR = s&“<”& name(L j )&“>” ∧σ j = s∧
∀k;1≤ k≤ n∧k 6= i∧k 6= j : σk =

√



2.2. Parallel Composition 31

start_awX

end_awX

end_awX
start_awX

K/A:start_awX

K/A:end_awX

K/A K/A-rm

~end_awX

~end_awX

K/A:~end_awX

Fig. 13. Branching action word synchronization.

kwX

K/A-rm

kwX

Fig. 14. Keyword synchronization.

The task switcher synchronizations are used to activate anddeactivate model

components through the task switcher.WAKEtsCANWAKE<A>in the task

switcher is executed synchronously withWAKEtsCANWAKEin action machine

A; WAKEtsWAKEandSLEEPtsfunction in a similar way (Figure 15).

• Activation synchronizations:
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K/A K/TaskSwitcher

WAKEtsCANWAKE

SLEEPts

WAKEtsWAKE

SLEEPts<A>

WAKEtsWAKE<A>

awActivate<A>

SLEEPts<A>

WAKEtsWAKE<A>

awActivate<A>

WAKEtsCANWAKE<A>

WAKEtsCANWAKE<A>

Fig. 15. Task switcher synchronizations.

∀i, j,k;1≤ i, j,k≤ n∧name(Lk) MATCHES “TaskSwitcher.*”∧
“ACTIVATED<”& name(L j)&“>” ∈ Σk :

∀s;“SLEEPapp<”&s&“>” ∈ Σi∧“WAKEapp<”& s&“>” ∈ Σ j :

∃(σ1, . . . ,σn,σR) ∈ R : σi =“SLEEPapp<”&s&“>” ∧
σ j =“WAKEapp<”& s&“>” ∧σk =“ACTIVATED<”& name(L j)&“>”

σR = name(Li)&“ ACTIVATES ”& name(L j)&“: ”& s∧
∀l ;1≤ l ≤ n∧ l 6= i∧ l 6= j ∧ l 6= k : σl =

√

The activation synchronizations switch control directly between action ma-

chines of the same target.SLEEPapp<X> in action machineA is exe-

cuted synchronously withWAKEapp<X>in action machineB, with the task
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SLEEPapp<X>

K/A K/B

WAKEapp<X>

K/A ACTIVATES K/B: X

ACTIVATED<B>

K/TaskSwitcher

Fig. 16. Activation synchronization.

switcher keeping track of the currently active action machine by executing

ACTIVATED<B>(Figure 16).

• Request synchronizations:

– ∀i, j;1≤ i, j ≤ n : ∀s;“REQ<”& s&“>” ∈ Σi∧“ALLOW<”& s&“>” ∈ Σ j :

∃(σ1, . . . ,σn,σR) ∈ R : σi =“REQ<”& s&“>” ∧
σ j =“ALLOW<”& s&“>” ∧
σR = name(L j)&“ ALLOWS ”& name(Li)&“: ”& s∧
∀k;1≤ k≤ n∧k 6= i∧k 6= j : σk =

√

– ∀i;1≤ i ≤ n : ∀s;“REQALL<”& s&“>” ∈ Σi :

∃(σ1, . . . ,σn,σR) ∈ R : σi =“REQALL<”& s&“>” ∧
σR = name(Li)&“ WAS ALLOWED: ”& s∧
∀ j;1≤ j ≤ n∧ j 6= i :

(“ALLOW<”& s&“>” ∈ Σ j → σ j =“ALLOW<”& s&“>” )∧
(“ALLOW<”& s&“>” /∈ Σ j → σ j =

√
)

The request synchronizations allow action machines to enquire or change the

states of other action machines of the same target without switching control

to them. REQ<X> in one action machine is executed synchronously with

ALLOW<X> in another (Figure 17).REQALL<X> is executed synchronously

with ALLOW<X> in all other action machines whose set of actions contains

it (Figure 18). In particular, if there are no action machines with action

ALLOW<X>, REQALL<X>is executed alone.
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REQ<X>

K/A K/B

ALLOW<X>

K/B ALLOWS K/A: X

Fig. 17. Request synchronization.

REQALL<X>

K/A K/B1

ALLOW<X>

K/A WAS ALLOWED: X

K/Bn

ALLOW<X>

Fig. 18. Request all synchronization.

• Comments:

∀i;1≤ i ≤ n : ∀s;“--”& s∈ Σi :

∃(σ1, . . . ,σn,σR) ∈ R : σi =“--”& s∧σR = name(Li)&“: --”& s∧
∀ j;1≤ j ≤ n∧ j 6= i : σ j =

√

Comments--X are executed alone (Figure 19).

Once all the rules for individual targets have been generated, the second phase gen-

erates the rules for synchronizations between the targets.At this phase, the model

components of different targets are identified by prefixing their names with the name

of the target separated with a slash. The target switcher andsynchronizer do not

belong to any target, and the latter thus requires a separateversion of some rules.

• Target switcher synchronizations:
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--X

K/A

K/A:--X

Fig. 19. Comment synchronization.

∀t : ∀i, j;1≤ i, j ≤ n∧name(Li) MATCHES “TargetSwitcher.*”∧
name(L j) MATCHES t&“/TaskSwitcher.*”:

∀s;s MATCHES

“(SLEEPtgts|WAKEtgtsCANWAKE|WAKEtgtsWAKE)<”&t&“>” ∧
s∈ Σi ∩Σ j :

∃(σ1, . . . ,σn,σR)∈R: σi = σ j = σR = s∧∀k;1≤ k≤ n∧k 6= i∧k 6= j : σk =
√

The target switcher synchronizationsWAKEtgtsCANWAKE, WAKEtgtsWAKE

and SLEEPtgts connect the target switcher to the task switchers.

WAKEtgtsCANWAKE<K>in the target switcher is executed synchronously

with the action of the same name in the task switcher ofK; WAKEtgtsWAKE

andSLEEPtgtsfunction in a similar way (Figure 20).

• Target activation synchronizations:

– ∀t, t ′; t 6= t ′ : ∀i, j,k, l ,m;1≤ i, j,k, l ,m≤ n∧
name(Li) MATCHES t&“/.*” ∧name(L j) MATCHES t ′&“/.*” ∧
name(Lk) MATCHES t&“/TaskSwitcher.*”∧
name(Ll ) MATCHES t ′&“/TaskSwitcher.*”∧
name(Lm) MATCHES “TargetSwitcher.*”:

∀s;“SLEEPtgt<”&s&“>” ∈ Σi∧“WAKEtgt<”& s&“>” ∈ Σ j ∧
“TARGET_DEACTIVATED”∈Σk∧
“TARGET_ACTIVATED<”& name(L j)&“>” ∈ Σl ∧
“ACTIVATED<”& t ′&“>” ∈ Σm :

∃(σ1, . . . ,σn,σR) ∈ R : σi =“SLEEPtgt<”&s&“>” ∧
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K/TaskSwitcher TargetSwitcher

WAKEtgtsCANWAKE

SLEEPtgts

WAKEtgtsWAKE

SLEEPtgts<K>

WAKEtgtsWAKE<K>

awActivate<K>

SLEEPtgts<K>

WAKEtgtsWAKE<K>

awActivate<K>

WAKEtgtsCANWAKE<K>

WAKEtgtsCANWAKE<K>

Fig. 20. Target switcher synchronizations.

σ j =“WAKEtgt<”& s&“>” ∧σk =“TARGET_DEACTIVATED”∧
σl =“TARGET_ACTIVATED<”& name(L j)&“>” ∧
σm =“ACTIVATED<”& t ′&“>” ∧σR = t&“ ACTIVATES ”& t ′&“: ”& s∧
∀p;1≤ p≤ n∧ p 6= i∧ p 6= j ∧ p 6= k∧ p 6= l ∧ p 6= m : σp =

√

– ∀t : ∀i, j,k;1≤ i, j,k≤ n∧name(Li) MATCHES t&“/.*” ∧
name(L j) MATCHES t&“/.*” ∧
name(Lk) MATCHES t&“/TaskSwitcher.*”:

∀s;“SLEEPtgt<”&s&“>” ∈ Σi∧“WAKEtgt<”& s&“>” ∈ Σ j ∧
“ACTIVATED<”& name(L j)&“>” ∈ Σk :

∃(σ1, . . . ,σn,σR) ∈ R : σi =“SLEEPtgt<”&s&“>” ∧
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σ j =“WAKEtgt<”& s&“>” ∧σk =“ACTIVATED<”& name(L j)&“>” ∧
σR = name(Li)&“ ACTIVATES ”& name(L j)&“: ”& s∧
∀l ;1≤ l ≤ n∧ l 6= i∧ l 6= j ∧ l 6= k : σl =

√

– ∀t : ∀i, j,k;1≤ i, j,k≤ n∧name(Li) MATCHES t&“/.*” ∧
name(L j) =“Synchronizer”∧
name(Lk) MATCHES t&“/TaskSwitcher.*”:

∀s;“SLEEPtgt<”&s&“>” ∈ Σi∧“WAKEtgt<”& s&“>” ∈ Σ j ∧
“TARGET_DEACTIVATED”∈Σk :

∃(σ1, . . . ,σn,σR) ∈ R : σi =“SLEEPtgt<”&s&“>” ∧
σ j =“WAKEtgt<”& s&“>” ∧σk =“TARGET_DEACTIVATED”∧
σR = t&“ ACTIVATES Synchronizer: ”&s∧
∀l ;1≤ l ≤ n∧ l 6= i∧ l 6= j ∧ l 6= k : σl =

√

– ∀t : ∀i, j,k;1≤ i, j,k≤ n∧name(Li) MATCHES “Synchronizer”∧
name(L j) MATCHES t&“/.*” ∧
name(Lk) MATCHES t&“/TaskSwitcher.*”:

∀s;“SLEEPtgt<”&s&“>” ∈ Σi∧“WAKEtgt<”& s&“>” ∈ Σ j ∧
“TARGET_ACTIVATED<”& name(L j)&“>” ∈ Σk :

∃(σ1, . . . ,σn,σR) ∈ R : σi =“SLEEPtgt<”&s&“>” ∧
σ j =“WAKEtgt<”& s&“>” ∧
σk =“TARGET_ACTIVATED<”& name(L j)&“>” ∧
σR =“Synchronizer ACTIVATES ”&t&“: ”& s∧
∀l ;1≤ l ≤ n∧ l 6= i∧ l 6= j ∧ l 6= k : σl =

√

The target activation synchronizations switch control between action machines

which may be on different targets. They always synchronizeSLEEPtgt<X>in

action machineA on targetK andWAKEtgt<X> in action machineB on target

L. If K andL are the same target, its task switcher executesACTIVATED<B>,

just as in an activation synchronization. IfK and L are different targets,

the task switcher ofK executesTARGET_DEACTIVATED, the task switcher

of L executesTARGET_ACTIVATED<B>, and the target switcher executes

ACTIVATED<L> (Figure 21). Finally, the synchronizer requires its own ver-

sions of these generation rules since it does not belong to any target. The same

also applies to the target switcher, but it does not need activation synchroniza-

tions.
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SLEEPtgt<X>

K/A L/B

WAKEtgt<X>

K ACTIVATES L: X

K/TaskSwitcher L/TaskSwitcher

ACTIVATED<L>

TargetSwitcher

TARGET_DEACTIVATED TARGET_ACTIVATED<B>

Fig. 21. Target activation synchronization.

• Target request synchronizations:

– ∀i, j;1≤ i, j ≤ n :

∀s;“REQtgt<”&s&“>” ∈ Σi∧“ALLOWtgt<”& s&“>” ∈ Σ j :

∃(σ1, . . . ,σn,σR) ∈ R : σi =“REQtgt<”&s&“>” ∧
σ j =“ALLOWtgt<”& s&“>” ∧
σR = name(L j)&“ ALLOWS ”& name(Li)&“: ”& s∧
∀k;1≤ k≤ n∧k 6= i∧k 6= j : σk =

√

– ∀i;1≤ i ≤ n : ∀s;“REQALLtgt<”& s&“>” ∈ Σi :

∃(σ1, . . . ,σn,σR) ∈ R : σi =“REQALLtgt<”& s&“>” ∧
σR = name(Li)&“ WAS ALLOWED: ”& s∧
∀ j;1≤ j ≤ n∧ j 6= i :

(“ALLOWtgt<”& s&“>” ∈ Σ j → σ j =“ALLOWtgt<”& s&“>” )∧
(“ALLOWtgt<”& s&“>” /∈ Σ j → σ j =

√
)

The target request synchronizationsREQtgt<X>, REQALLtgt<X> and

ALLOWtgt<X> transmit information between action machines which may be

on different targets (Figures 22 and 23). Apart from that, they function just like

request synchronizations.
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REQtgt<X>

K/A L/B

ALLOWtgt<X>

L/B ALLOWS K/A: X

Fig. 22. Target request synchronization.

REQALLtgt<X>

K/A L1/B1

ALLOWtgt<X>

K/A WAS ALLOWED: X

Ln/Bn

ALLOWtgt<X>

Fig. 23. Target request all synchronization.

No rules other than the ones described above are generated. Figure 24 shows part of

a test model composed from the action machines for the main and inbox screens of

the Messaging application (Figures 2 and 3), the appropriate task and target switchers

(Figures 5 and 6), and the corresponding refinement machines(the one belonging to

the Main model shown in Figure 4).

2.3 Test Data

LSTSs are not very well suited for modeling data. Although data values can be

encoded into action names, they are difficult to change during testing and can clutter

the models. Also, using states to keep track of variable values may easily lead into

a serious state explosion problem [48]. Because of this, we have other means of
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K/Main:start_awStartMessaging

K/Main:end_awStartMessaging

K/Main:start_awExitMessaging

kw_PressKey <SoftLeft>

kw_SelectFromMenu ’Exit’

K/Main:end_awExitMessaging

K/Main ACTIVATES Inbox: ToInbox

K/Main:start_awToInbox

kw_PressKey <SoftLeft>

K/Main:end_awToInbox

K/Main:start_awLeaveInbox

kw_PressKey <SoftRight>

K/Main:end_awLeaveInbox

K/Inbox ACTIVATES Main: ToMain

Fig. 24. An example of a composed test model. The parts related to the task and target

switchers have been abstracted away to keep the model understandable, and are

represented with dashed lines. Attributes are also not marked.
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modeling data: localization tables and data tables.

2.3.1 Localization Tables

The simpler form of data islocalization tables. They consist of a list of symbolic

names and one oflocales, with a text string defined for each name in each locale.

The symbolic names can be referred to in action names (usually keywords) with

“§SYMBOLIC_NAME§”. When the action is executed, the name gets replaced with

the corresponding text for the appropriate locale. Currently our tools require the

locale to be defined when the test run is begun, but ideally thelocale could be also

changed during the test run.

As the name implies, the main use for localization tables is to enable testing with

different language variants without altering the models. Localization tables are asso-

ciated with specific products, just as refinement machines. This makes them useful

also for defining product-specific constants, such as the coordinates of a specific but-

ton in some application.

2.3.2 Data Tables

More complex data, such as complete contact information, requires the use ofdata

tables. Data tables contain a structural definition and a list of elements matching that

definition. For example, the table

contacts(firstName, lastName,phoneNumber) : \
[(“John”, “Doe”,12345678),(“Jane”, “Doe”,87654321)]

defines that each element has the fields firstName, lastName and phoneNumber, and

lists two such elements. A single element of the table is selected at any moment;

accessing and changing the selected element is performed via data statements.

Data statementsare parts of action names of the form “$(data statement)$”. The

statement consists of Python [39] code, namely a list of simple statements, which are

executed before the action they are a part of. If the execution of the data statement

results in a variable named “OUT”, its value will be substituted for the statement in

the action name; otherwise the statement is replaced with anempty string.
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The currently selected element of a data table may be accessed by the name of the

table and its substructure by the names of its fields. The selected element can be

changed with the functionsfirst, next and any, which select the first element, the

element following the currently selected one (wrapping around if necessary), and an

arbitrary element, respectively. As an example of using a data statement, the action

kw_Type ’$(next(contacts); OUT = contacts.firstName)$’selects the next element of

the contacts table and types the first name of the newly selected contact.

Data tables and statements can also be used to perform more complex variation of

data, such as the testing of boundary values. Suitable values can be placed into a data

table, or generated on the fly in a data statement. Likewise, they can be used to test

real-time properties by using data statements to store and compare time stamps.
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In this chapter we will examine the modeling techniques involved in the creation

of model components. The components are assembled into a model library, from

which some of them can be picked for composition into a test model. Thus, it is

necessary to ensure that they function correctly both together and separately. We

will first examine the techniques for avoiding name clashes,and continue into the

features required by coverage requirements and test generation. We will also present

guidelines for dividing functionality into model components, and for making those

components usable on several different products. Finally,we will take a look at a

model library created during the research.

3.1 Avoiding Name Clashes

Some basic rules are necessary simply to avoid name clashes.While a modeler could

come up with suitable names as he works, it is better to have a consistent guideline.

This is especially important if there are several modelers.

Most important naming rules concern synchronization labels. Differentiating the la-

bels of different applications with “@PARENT” is a good beginning; the rest of the

label should make clear what the synchronization does within the application. As an

example,SLEEPapp<@PARENT:ToMain>might activate the main model compo-

nent of the application in question. Synchronizations between different applications

obviously cannot use “@PARENT”, and therefore need otherwise unambiguous la-

bels.

Any Python variables created within data statements need likewise unique names.

This is not strictly necessary for a variable which is only needed during the execu-

tion of a single action word, since interleavings are not possible until the execution is

finished. However, anything stored for a longer term is at risk. Since all model com-
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ponents share the same Python environment, the risk of name clashes comes not only

from different applications on the same device, but also from the same application

and model components on different devices.

A unique identifier for a variable can be created by includingboth “@TARGET” and

“@PARENT” in it. Unfortunately, they cannot be used directly to name a variable,

because they may contain whitespace or other characters illegal in a variable name.

A simple method is to use the unique identifier as a key to thelocals dictionary,

for example “$(locals()[’@TARGET@PARENTVariable’] = value)$”. More elegant

solutions are possible with some preparation.

3.2 Supporting Coverage Requirements

In our approach, tests are often generated according tocoverage requirements, which

are explained in detail in Subsection 4.3.2. A coverage requirement describes the

goal of the test in terms of specific structures in the models.The structures most

commonly used for this purpose are actions and attributes, the labels for transitions

and states, respectively. This is because the labels can be made readable to human

testers, whereas states and transitions themselves can usually be uniquely identified

only with numerical information. Thus, it is important thatactions and attributes are

given clear names; specifically, their purpose should be understandable given only

their name and the name of the model component they are a part of.

Even the most expressive label names cannot always convey all the necessary infor-

mation to the testers, or to other modelers for that matter. Because of this, Model

Designer also offers the option to write comments to the actions; the comments are

visible in Web GUI during the creation of a test configuration. In comments the mod-

eler may give more details about the intended use of the action as needed. Finally,

actions and attributes can be designated as interesting. The distinction is somewhat

arbitrary, but as a rule of thumb, ordinary use cases should be definable in terms of

interesting labels. For example, essential actions such aslaunching an application or

opening a received message are interesting, whereas incidental ones such as scrolling

down a list of items are not. A tester using Web GUI may choose to view only the

interesting labels, which can make the creation of a coverage requirement easier.

Coverage requirements are meant to be freely combinable with the operators de-
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scribed in Subsection 4.3.2. However, even though requirements cannot be inherently

contradictory, it is in principle possible that the execution of one would necessarily

make the execution of another impossible. To prevent this from happening, the test

model is required to bestrongly connected, meaning that all of its states must be

reachable from all other states. This ensures that all combinations of executable cov-

erage requirements are also executable; if nothing else, the model may be taken back

to the initial state after one coverage requirement is finished and the execution of the

next one begun from there.

3.3 Supporting Test Generation

Strong connectivity is important in test generation, too. Even if a coverage require-

ment is executable in principle, finding a way to execute it ina model not strongly

connected can be extremely difficult. This is because executing any action in such

a model may lead to a part of the model from where there is no return; thus, no ac-

tion may be safely executed unless it is known to leave the coverage requirement still

fulfillable. In practice, this would make online testing impossible, since a safe route

to the very end of the test would have to be computed before anything could be exe-

cuted. With a strongly connected test model these problems do not exist, because no

action has irreversible effects. The guidance algorithm may therefore safely concen-

trate on one part of the coverage requirement at a time, perform random deviations,

or guess the best direction for the test.

While strong connectivity ensures that the guidance algorithm cannot irreversibly

ruin the test run, other features of the model can still make reaching the designated

goals difficult. Branching actions are a notable case, sincethe guidance algorithm

cannot reliably predict where their execution will lead. Figure 25 illustrates a partic-

ularly problematic structure, where algorithms may easilyget stuck forever.

The simplest solution is to store the information the branching action depends on into

amemory model. Memory models such as the one in Figure 26 are model components

with a specific structure designed to store just such information. Figure 27 shows

how a memory model can be used in practice. The memory model effectively tells

the guidance algorithm what must be done in order to reach thedesired part of the

model. However, as useful as they are, memory models cannot solve all problems

caused by branching. We have yet to develop a truly general solution, but it will most
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awVerifyMessagesExist awOpenMessage

~awVerifyMessagesExist

Fig. 25. A problematic structure with the branching actionawVerifyMessagesExist, which

will fail every time if no messages exist. In that case an optimistic algorithm seeking

to executeawOpenMessageends up checking the existence of messages repeatedly,

rather than creating a new message.

ALLOW<ToMessagesMayExist>

ALLOW<ToMessagesMayExist>

ALLOW<ToMessagesExist>

ALLOW<ToMessagesExist>

ALLOW<ToNoMessagesExist>

ALLOW<ToNoMessagesExist>

ALLOW<ToMessagesExist>

ALLOW<ToMessagesMayExist>

ALLOW<ToNoMessagesExist>

ALLOW<AtMessagesMayExist>

ALLOW<AtMessagesExist>

ALLOW<AtNoMessagesExist>

Fig. 26. A memory model with the potential valuesMessagesExist, NoMessagesExistand

MessagesMayExist. The third one reflects an unknown situation, and acts as the

initial value.
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awVerifyMessagesExist

awOpenMessage

~awVerifyMessagesExist

REQ<AtMessagesMayExist>

REQ<ToMessagesExist>REQ<ToNoMessagesExist>

REQ<AtMessagesExist>

Fig. 27. A better solution to the situation shown in Figure 25, makinguse of the memory

model in Figure 26. The existence of messages can only be checked when unknown,

and becomes known after checking. This forces the guidance algorithm to actually

create a message.

likely involve both improvements to guidance algorithms and new requirements for

models.

3.4 Dividing Functionality into Components

One of the most important design choices in the creation of a test model library is

the division of the modeled functionality into model components. A naive approach

would be to create a component for each application. However, in practice most

applications are far too complicated to handle as a single entity, and must therefore

be divided into several model components. These componentscan be connected to

each other by means of activation synchronizations.

A good starting point in dividing an application into model components is to create

a separate component for each important view of the application. For example, in

Messaging these could be Main, Inbox, Create SMS and Create MMS (SMS and

MMS stand for Short Message Service and Multimedia Messaging Service, and refer

to text messages and multimedia messages, respectively). For Messaging, we also

need a memory model, Messages, to keep track of whether thereare any messages in

the inbox.

It may also make sense to separate into its own model component any functionality

that is especially complicated or used in several places. Inmessaging, such function-

ality includes the sending and reception of messages and finding a recipient from the
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list of contacts; these can be modeled with components Sender, Receiver and Add

Recipient. All three contain complex synchronization sequences, which would sig-

nificantly impair the readability of the core models. As separate components, Sender

and Add Recipient can also be easily accessed from both Create SMS and Create

MMS, and thus their functionality does not need to be modeledtwice.

It is not always entirely clear to which model component an individual action be-

longs. For example, is the action wordawToInbox, which opens the inbox, part of

the Main model (since it is executed in the main view) or the Inbox model (since it

activates the inbox view)? It is generally preferable to place such an action into the

model component to whose functionality it is more closely related, in this example

Inbox. For one thing, it ensures that if Inbox is left out of the composed test model,

awToInboxwill also be left out, which is probably as desired. On the other hand, this

approach may in some cases lead to more complicated models, so the modeler should

use his judgment.

3.5 Modeling for Multiple Products

If action machines are designed properly, they can be used inmultiple products with-

out any changes. For example, creating an SMS consists of designating the receiver

and writing the message text, no matter what kind of device isused to do it. Taking

advantage of this property can save a lot of work in modeling and maintenance.

In general, designing action machines usable on multiple products is not difficult; the

most important thing to remember is to not include references to the UI, but only to

the functionality accessed through it. On the other hand, itis perfectly possible to

include action words for functionality that is not implemented on all products. They

can be left without implementation in the corresponding refinement machine, which

will prevent their execution in the model. Of course, care should be taken that their

loss does not break the strong connectivity of the model.

Sometimes the differences between products are not limitedto the UI, but extend

into the functionality. For example, Messaging might offeraudio messages on one

product but not on another. Such issues can often be solved with the use of unimple-

mented or branching action words. However, such solutions tend to make the models

less readable. The need for them can also be difficult to anticipate, leading to the
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need to modify existing action machines each time a new product is introduced.

At some point, it becomes more sensible to create entirely different action machines

rather than trying to refit one to serve two purposes. Where this point occurs de-

pends on tool support. With poor tools, the only way to introduce a choice of action

machines may be to create two entirely separate versions of the whole application,

which should obviously be the last resort. On the other hand,the task can be quite

simple with proper tools. For example, in Model Designer it is easy to include an

action machine in the application for some products only; this way, multiple versions

can be created and a suitable one chosen for each product. In such a case several

simple action machines are probably preferable to a single complicated one.

3.6 Example

The first model library designed using these semantics and techniques was created

during the TEMA project [P2]. It focused on modeling the applications of a product

of the S60 product family. It was mostly created over three months of time by the

author. The library is available from the TEMA website [44] under the MIT Open

Source License.

The model library contains 13 applications: Bluetooth, Calendar, Contacts, File Man-

ager, Gallery, Log, Messaging, Music Player, Notes, RealPlayer, Rotate, Telephony

and Voice Recorder. The thoroughness of modeling varies; the Gallery models con-

tain most of the functionality of the application, while theBluetooth models only

offer the option to turn Bluetooth on or off.

The applications are modeled in about 110 action machines, which contain approxi-

mately 1700 actions, 1300 states and 3200 transitions. The corresponding refinement

machines contain roughly 3000 actions, 3000 states and 4100transitions. The esti-

mated number of reachable states in a test model composed from all of the compo-

nents on a single device would be somewhere around 1019 states.

The model library had success in finding bugs from the tested products, which were

already in the mass markets at the time. About two thirds of the issues were found

during the careful examination of the SUT in the modeling phase, with the remaining

third found during test execution. Incidentally, we also found several bugs in the

adapter framework we used for automated execution [P6].
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Fig. 28. A model library in Model Designer, with the Smartphones domain structure in the

view on top left. Some application and product names have been redacted for confi-

dentiality reasons.

More recently we have been working on a new version of the model library, with the

intention of applying what we learned in the making of the first one. The new library

does not yet span as many applications as the original one, but it does include several

products from different product families. Figure 28 shows the library open in Model

Designer.
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In a model-based testing process, models pass through a number of phases, from their

creation and deployment through test generation and execution to debugging. In this

chapter we will examine these phases in more detail.

4.1 Creation

Model-based testing begins with the creation of the models,which has been discussed

in the previous chapters. The models may be based on a varietyof software design

artifacts, from requirements or specifications documentation to a working SUT. In

general, the use of higher level artifacts is preferable, both because it enables the

static testing of these artifacts and because it allows the modeling to begin earlier,

at least in a V-model type of development process. Differentmethods have been

compared in [30].

Creating models based on requirements documentation brings model-based testing

into the development process at the earliest possible stage. This is very useful because

it enables testing the design specifications against the model and locating errors be-

fore implementation. It can also act as static testing of therequirements themselves,

highlighting problems in them. Technically, it might be possible to use requirements-

based models as the specification for implementation. In practice this may be diffi-

cult, because it presumes model-literate programmers. Also, while requirements can

be used to create action machines, they do not contain the UI information needed

for refinement machines. If automatic test execution is desired, refinement machines

must be created separately based on some other design artifacts.

The second option is to use the design specifications as the basis for models. This

is likely to be easier than requirement-based modeling, because specifications tend

to be far more detailed. Of course, in practice no specification is complete, so there
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will be room for interpretation in the modeling process. However, modeling can act

as a way to validate the specifications: the level of detail required in the models is

high, and seeking to fill in those details can bring to light ambiguous or contradictory

specifications.

The third approach is to create the models by reverse-engineering a (perhaps par-

tially) working SUT. This technique greatly resembles exploratory testing [21]. It is

especially suited for forms of testing where the effects of actions are readily apparent,

such as GUI testing. Furthermore, it suffers from the same problems of ambiguity

and interpretation as modeling based on design specifications, since there is no way

to know for sure what the SUT is supposed to do. That is not to say that it is ineffec-

tive, though. In practice, erroneous functionality would have to be both logical and

consistent in order to pass unnoticed: illogical functionality should be recognized as

erroneous by the modeler, and inconsistent functionality can be discovered in test ex-

ecution. Furthermore, models reverse-engineered from applications which work fine

separately can still reveal concurrency issues.

One more option is to create test models by synthesizing themfrom test cases [P3].

This testing approach is not totally model-based, since at least some test cases have

to be created manually. However, it can serve to expand the functionality covered by

conventional testing, and may act as a way to introduce model-based testing into the

product development process.

While modeling can be started early on in the design process,it might seem that

the actual test generation would have to wait until the SUT isclose to complete.

After all, tests generated from a complete model are not necessarily executable on an

incomplete SUT. However, this is not an insurmountable problem, since appropriate

tools can be used to limit test generation to the features ready for testing [P4].

Model-based testing is compatible with incremental and iterative software design

processes. This can be accomplished simply through iterative modeling: adding new

features to the models as they are added to the software. Of course, requirements

and solutions may be incorporated into the models in advanceinasmuch as they are

known.
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4.2 Deployment

Once the model components have been created, they have to be prepared for exe-

cution. The simplest way to do this would be to create the models directly in the

testing environment and compose them all. Such an approach has definite disadvan-

tages, though. First, it would result in needlessly large and complicated test models

for simple tests. Second, the assembled model components would be limited to one

specific configuration of test targets (such as a single phone).

In theory, these problems can be avoided by manually tweaking the parallel compo-

sition. Excluding unneeded model components can reduce thesize of the model, and

multiple targets could be added to the test by including the model components several

times and by suitably modifying the task switcher. But as thenumber of components

and potential configurations increases the manual approachbecomes untenable. Our

solution is twofold: an annotated collection of model components, and tool support

for its automated handling.

All the model components are assembled into a model library.In addition to the com-

ponents themselves, the library also contains associated organizational information,

such as which components comprise an application on which product, and which

components are dependent on each other. Collecting and organizing this information

is the philosophy behind Model Designer.

From a complete model library it is possible to assemble and configure the compo-

nents needed for a specific test. This task is performed by Test Configurer and guided

by Web GUI or a script it has generated. Web GUI is used to definea number of

test targets, assign model components for each of them, and finally associate a device

for each target. Based on this information, Test Configurer assembles the necessary

model components for each target, and generates the structures needed to combine

them into a single test model, such as the task switchers and the target switcher. At

simplest, the result may be a test model for a single application on a single device. On

the other hand, it is possible to assemble a model for half a dozen devices, some of

them of different types, with a unique combination of applications on each. Finally,

Model Composer sets up the parallel composition by creatingthe rule set according

to the generation rules; the actual composition will be performedon the flyduring

the test run, since it may easily result in a test model too large to compute all at

once [48], as seen in the example of Section 3.6. On-the-fly composition means that
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the composed model is only computed around the current stateto the degree neces-

sary for test generation. Thus, this methodology allows us to create a single artifact,

the model library, which can nonetheless be efficiently usedfor a large variety of

different testing purposes.

4.3 Test Generation

The composed test model is ready for execution by Test Engine. However, before

the actual test generation begins, it is necessary to define what kind of a test is to be

generated. Only then can we begin executing actions in the model.

4.3.1 Testing Modes

The first thing to do in generating a model-based test is to decide what the test should

do. The different goals for the tests can be divided into three categories: use cases,

coverage and bug hunting. The testing modes were first presented in somewhat dif-

ferent form in [23].

Use case testsare generated to test specific functionality of the SUT. Their goal is

expressed as a combination of the actions of the models, usually action words. At

simplest this means a linear sequence of actions. More complicated cases may con-

tain alternative paths or combine a number of use cases, perhaps even an entire test

suite, into a single test run. It is important to note that there is no need to specify

every single step of the test run, but only those which are theactual purpose of the

test. The test will be automatically generated to include whatever other actions are

necessary to reach the specified ones (assuming the specifiedones are at all reach-

able in the model, of course). For example, if the definition of a use case test includes

entering the inbox in the model shown in Figure 24, the test execution will also auto-

matically include the launching of Messaging, because its execution is the only way

to reach the desired functionality in the model. On the otherhand, a sparsely defined

test is more difficult to generate, since the sought-after actions are farther apart in the

model. Thus, there is a trade-off between the ease of definition and generation of

tests.

Coverage testsseek to traverse specific types of model structures, such as actions or

transitions. They are a good way to ensure that the basic functionality of the SUT
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works as intended, and have the added benefit of producing clear metrics. 100%

action word coverage can be considered the very minimum of model-based testing,

since it will show that all of the functionality of the modelsworks at least some of

the time. Using state and transition coverages can produce very thorough tests, but

may be unfeasible in large test models.

Bug huntis a general name for testing with no or few predefined directions. The idea

is to exercise the SUT in a way likely to uncover bugs. Bug huntcan act as additional

robustness testing after the use cases have been passed and the sought-after coverages

fulfilled.

4.3.2 Coverage Requirements

Use case tests are defined with coverage requirements [23]. Acoverage requirement

is an expression which combines model actions with the operatorsTHEN , AND and

OR, and parentheses.A THEN B means thatB must be executed at some point after

A has been executed. ThusTHEN defines action sequences, and is the operator most

commonly used in individual use cases.A AND B requires that bothA andB are

executed, in either order or even interleaved, if they are expressions.AND is less

common in use cases, but can be used to combine several of theminto a test suite.

A OR B states that at least one ofA andB must be executed. In practice,OR is not

used very often.

Notably there is no operatorNOT or another way to forbid actions. Likewise,

A THEN B only requires thatB gets executed afterA, but does not forbid the exe-

cution ofB beforeA. This is because coverage requirements are meant to define only

what must be done, whereas the model defines what may be done. As a consequence,

coverage requirements may be freely combined with any operators with no danger of

contradiction.

Individual actions are written into coverage requirementsin the formaction action-

nameor actionsactionname, whereactionnameis a Python regular expression [40].

The two forms require the execution of one action matching the expression and all

such actions, respectively. Use cases are normally defined using the first form with

exact action names as regular expressions. The latter allows coverage requirements to

express some coverage mode goals, such as executing all action words in the model.
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In the future, coverage requirements may be extended to alsorefer to model structures

other than actions.

As an example of a coverage requirement, a use case for entering the inbox and

then leaving Messaging in the model of Figure 24 could be expressed asaction

.*end_awToInboxTHEN action .*end_awExitMessaging. The action names refer

to the end parts of the action words to ensure that their implementations get executed

before the coverage requirement is fulfilled. In this case the names of the model com-

ponents can be safely abstracted into “.*”, since the actionnames remain unique even

without them.

4.3.3 Guidance Algorithms

With the goal of the test defined, it is the task of aguidance algorithmto fulfill that

goal. There are many different kinds of algorithms that can be used, with different

strengths and weaknesses. Most, though not all, seek out specific targets in the test

model such as actions, states or more complex model structures. Different algorithms

are compared in [34].

The simplest algorithm is the completely random one. While the actual guidance

is minimal, a random algorithm does have the advantage of being very fast. This

property can make it useful in coverage mode tests that look for common targets

such as states. Random guidance can raise the coverage quickly early on, especially

on a fast SUT capable of executing dozens of actions per second or more. It is not

very effective in taking the coverage very high, though, andshould be swapped for

another algorithm at some point. Finally, random guidance is a good choice for bug

hunt, where there are no specific targets to look for anyway.

Tabu guidance is a slightly more complicated algorithm. Like random, it picks one

of immediately available transitions without calculatingahead. However, it seeks

to avoid targets which it has visited recently. Thus, tabu guidance is more likely

to explore new areas in the model. It is suited to much the sametasks as random

guidance.

Use case mode tests require a true graph search algorithm which can seek the desired

targets from deeper within the model. The simplest version of these is the breadth-

first search, which will seek out the closest desired target.Apart from use case tests,
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it also works fairly well in coverage mode.

Another graph search algorithm is the fixed depth search. Such an algorithm searches

the model in all directions until it reaches a specific distance from its starting point,

and then chooses the best of all the paths thus covered. Its advantage over breadth-

first search is that it can recognize target-rich areas of themodel, whereas breadth-first

search stops looking when it finds the first one. Fixed depth search can be a very good

choice for use case and coverage mode tests. However, large search depths can make

it very slow.

Bug hunt works well with random algorithms. It can also make use of graph search

algorithms with suitably defined targets, such as switches between pairs of applica-

tions. More specialized algorithms are possible, with properties such as keeping a

large number of applications in execution simultaneously.

4.4 Keyword Execution

If the test is generated off-line, it is merely necessary to create a list of executed

actions. This list becomes a script which can be executed on the SUT later on. In

online testing, the execution happens concurrently with generation. In both cases,

only keywords are executed on the SUT.

Keywords are first sent to Adapter, which translates them into a form understood by

Connectivity Component. Often the translation can be fairly simple, such as with

keywords designating key presses. On the other hand, Adapter may provide complex

features far beyond those offered by Connectivity Component, such as a keyword

which automatically selects the desired item from a multilayered menu. While such

composite actions could be implemented within the model, they would have to be

implemented separately in every case where they are needed,whereas Adapter only

needs to implement them once. Thus, it is usually most efficient to implement in the

Adapter any complicated action sequences that are needed even occasionally.

Once the keyword has been executed in the SUT, Connectivity Component tells

whether the execution succeeded or not by returning a Boolean value, which Adapter

conveys to Test Engine. With some keywords such as key presses the return value is

mostly a formality, but with others such as text verifications it is the very purpose of

the keyword.
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In off-line testing, it is only necessary to check that the returned value is what the

script defines it should be; if not, the test has failed. In online testing there is a further

possibility of a branching keyword, in which case the returnvalue determines the

continued direction of the test.

One thing to take into account is that keywords’ effects may not fully play out by the

time the success or failure of execution is clear and returned. For example, a launched

application may require several seconds before it is ready for use. In such a case it

may be necessary to wait a while before executing the next keyword. In practice it is

most convenient to add a suitable delay for each keyword in the Adapter, depending

on how much time is usually required for all the effects to play out. If exceptional

delays are needed, such as for a key press moving an application to a view which

takes several seconds to open, the delay is best specified in the model.

4.5 Debugging

When testing pays off and an error is found, it is necessary tofind out what caused it.

Model-based testing can cause some extra difficulties in this process. First, especially

online model-based tests can be very long, possibly hours ordays in duration. Find-

ing the cause of the error in such a long trace of execution canbe difficult. Second,

since the test model can be quite complex, it may not be easy totell whether the error

is in the model or in the SUT.

The main debug information comes from the test log, which lists all the actions exe-

cuted during the test run. However, debugging a test from thelog alone is not always

easy. Especially helpful in GUI testing is the ability to seewhat is happening on the

SUT. This can be done in several ways, such as using a suitableapplication to record

the GUI or taking periodic screenshots. If nothing else, it is possible to use a separate

camera to record the SUT. Such recordings can be very valuable in debugging. For

example, if the error is caused by a battery notification appearing in the middle of a

keyword execution, the cause can be nigh on impossible to determine from the log

yet immediately apparent from the recording.

Another approach to handling a long error trace is to try to create a shorter trace

which nonetheless reproduces the error. There are various methods for finding such

traces, such as removing loops from the original error trace. One option is to simply
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execute parts of the error trace until one that reproduces the error is found. These

debugging methods, as well as video recording, are exploredin detail in [P5].
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In this thesis we have presented the approach of using a modellibrary for online GUI

testing. The model library is a collection of model components, each of which depicts

some part or aspect of the SUT. Components from the library can be composed into

a test model, which can then be used to generate tests. The ability to choose the

components according to the needs of testing makes the approach very flexible. Test

models can include exactly the components for the applications of interest, and may

be created to span one or more devices, possibly of differenttypes, each with its own

assembly of model components.

The TEMA toolset we have developed offers support in every phase of the model-

based testing process, from the creation and maintenance ofthe models through test

generation and execution to debugging. From the point of view of the model library

the most important tools are Model Designer, which is used inits creation, and Web

GUI, which controls the assembly of test models and test generation.

Our experiences show that a functional model library can be created with reasonable

effort, and used effectively. Modeling does require some expertise, though, and may

be best left to a designated test modeler. In contrast, generating and executing tests

with TEMA toolset does not require insight into the structure of the models or the

generation algorithms.

Our methodology has proven quite flexible as far as the domainof application is

concerned. At first our focus was solely on the S60 smartphones on the Symbian

platform [P6], but the methods have since been successfullyused also on various

Mobile Linux platforms such as Android [12] in several case studies [P7] [19, 43].

There is no reason why the methodology would not work well outside the smartphone

domain as well; in [38] it is used to test a Java Swing application.

The case studies we have conducted have shown not only the adaptability of our

methodology, but also its effectiveness. In many cases we have been able to find bugs
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in products which have already been through testing and released to mass market.

Notably the majority of the bugs have been found during the modeling phase; a clear

advantage, since modeling can be done much earlier in the product lifecycle than

automated test execution.

This far our case studies and experiments have employed almost purely qualitative

metrics. Although proper quantitative analysis of our methods would be extremely

valuable, it is also very difficult to arrange in practice. Still, we might seek at least

some kind of quantitative metrics in the future.

Another task for the future is the further development of thetools. Although quite

serviceable as they are, there are several aspects in which they could be improved. For

example the support for combining model components createdby different modelers

into a single library is currently seriously lacking in Model Designer. Likewise, Web

GUI is under constant development in order to improve the ease and flexibility of test

generation.

Although there is still much room for development, our approach has clearly shown

its effectiveness in terms of flexibility, maintainability, and the ability to find bugs.

Hopefully it can in its part further the practical adoption of model-based testing, and

thereby improve the quality of software.
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Abstract. Model-based testing (MBT) seems to be technically superiorto con-
ventional test automation. However, MBT features some difficulties that can ham-
per its deployment in industrial contexts. We are developing a domain-specific
MBT solution for graphical user interface (GUI) testing of Symbian S60 smart-
phone applications. We believe that such a tailor-made solution can be easier to
deploy than ones that are more generic. In this paper, we present a service con-
cept and an associated web interface that hide the inherent complexity of the test
generation algorithms and large test models. The interfaceenables an easy-to-use
MBT service based on the well-known keyword concept. With this solution, a
better separation of concerns can be obtained between the test modeling tasks
that often require special expertise, and test execution that can be performed by
testers. We believe that this can significantly speed up the industrial transfer of
model-based testing technologies, at least in this context.

1 Introduction

A widespread problem in software development organizations is how to cut down on the
money, time, and effort spent on testing without compromising the quality. A frequent
solution is to automate the execution of predefined test cases using test automation tools.
Unfortunately, especially in graphical user interface (GUI) testing, test automation often
does not find the bugs that it should and the tools provide a return on the investment
only in regression type of testing. One of the main reasons for this is that the predefined
test cases are linear and static in nature – they do not include the necessary variation to
cover defected areas of the code, and they (almost) never change. Moreover, since GUI
is often very volatile, it takes time to update the test suites to test the new version of the
system under test (SUT). Hence, costly but flexible manual testing is still often chosen
as the primary method to ensure the quality, at least in the context of mass consumer
products, where GUIs are extremely important.

Model-based testing (MBT) practices [1] that generate tests automatically can in-
troduce more variance to the tests, or even generate an infinite number of different tests.
Moreover, maintenance of the testware should become easierwhen only the models



have to be maintained and new updated tests can be generated automatically. Further-
more, developing the test models may reveal more bugs than the actual test execution
based on those models. Since model development can be started long before the SUT
is mature enough for automatic test execution, detection ofbugs early in the product
lifecycle is supported.

Concerning industrial deployment of MBT, it has been reported, for instance, that
several Microsoft product groups use an MBT tool (called Spec Explorer) on a daily ba-
sis [2]. However, it seems that large-scale industrial adoption of the methodology is yet
to be seen. If MBT is technologically superior, why has it notovercome conventional
ways of automating tests? Based on some earlier studies [3, 4] as well as our initial
experience, it seems that there are some non-technologicalobstacles to large-scale de-
ployment. These include the lack of easy-to-use tools and necessary skills. Moreover,
since the roles of the testing personnel are affected by thisparadigm change, the test
organization needs to be adapted as well [5].

In this paper, we tackle the first of these issues, i.e. matching the skills of the testers
with easy-to-use tools. We think that one problem with the first generation MBT tools
was that they were too general in trying to address too many testing contexts at the
same time. We believe that the possibilities of success in MBT deployment will im-
prove with a moredomain-specific solutionthat is adapted to a specific context. In our
case, the context is the GUI testing of Symbian smartphone applications. There have
been cumulatively over 150 million Symbian smartphones shipped [6]. We concentrate
on the devices with the S60 GUI framework [7], which is the most commonly found
application platform in the current phone models. In addition to device manufacturers,
there are a large number of third party software developers making applications on top
of Symbian S60. Compared to a more generic approach, based onUML and profiles,
for instance [8], our tools should effect a higher level of usability and automation in this
particular context.

The background of our approach has been introduced previously in [5, 9–11]. In this
paper, based on earlier work [12, 13], the MBT service interface is presented in detail.
Our approach is based on a simple web GUI that can be used for providing a model-
based testing service. The interface supports setting up MBT sessions. In a session, the
server sends a sequence ofkeywordsto the client, which executes them on the SUT. For
each received keyword, the client returns to the server a Boolean return value: either the
execution of the keyword succeeded or not. Thison-line approachenables the server
to generate tests based on the responses of the client, in a way somewhat similar to the
Spec Explorer tool [2].

Our scheme should facilitate industrial deployment by minimizing the tasks of the
testers. In addition to the service interface, this paper presents an overview of the associ-
ated open source tools. The remainder of the paper is structured as follows: In Section 2,
we present the background of this paper, i.e., domain-specific MBT for S60 GUI test-
ing. Sections 3 and 4 describe the modeling formalism and theassociated tool set. In
Section 5, the service concept is introduced in detail including the interfaces that we
have defined. Finally, Section 6 concludes the paper with a final discussion including
ideas for future work.



2 Domain-specific MBT

Research on model-based testing (MBT) has been conducted widely in both indus-
try and academia. From the practical perspective, the fundamental difference between
MBT and non-MBT automation is that, in the latter case, the tests are scripted in some
programming or scripting language. In the former case, on the other hand, the tests are
generated based on a formal model of the SUT. The model describes the system from
the perspective of testing at a high level of abstraction. However, the definition of a
“model” varies greatly, depending on the approach [1]. In our approach, a model is a
parallel composition of Labeled State Transition Systems (LSTSs). This formalism en-
ables us to generate tests that introduce variation in the testedbehavior, for instance,
by executing different actions in many different orders allowed by the SUT. In some
other MBT approaches, the goal might be to generate all possible data values for some
type of parameters. Thus, there are many different types of MBT solutions that do not
necessarily have much in common. The algorithms for generating tests from the models
may be significantly different, depending on the formalism and the testing context.

However, a common goal in many MBT schemes is to execute high volumes of
different tests. Once the MBT regime has been set up and running, the generation of
newtests based on the models is as easy as running the same old tests again and again.
Obviously, old tests can still be repeated for debugging purposes if necessary.

In spite of these benefits, the industrial adoption of this technology has been slow.
Robinson [3] states that the most common problems in deployment are the managerial
difficulties, the making of easy-to-use tools, and the reorganization of the work with the
tools. Hartman [4] reports problems with the complexity of the provided solution and
counter-intuitive modeling. Our early experiences support these findings. Moreover, it
must be acknowledged that modeling needs a special kind of expertise that may not
be available in a testing organization. However, such expertise might be available as a
service, especially when operating in a specialized domainsuch as testing smartphone
applications.

We think that a problem with the first generation MBT tools wasthat they were too
general. These tools tried too much to address many testing contexts at the same time,
for instance by generating tests based on UML models that could describe almost any
type of SUT. We believe that the chances of success in MBT deployment will improve
with more domain-specific solutions that are adapted to specific contexts. In our case,
the context is the GUI testing of Symbian S60 [7, 6] smartphone applications. Symbian
is the most widely spread operating system for smartphones and S60 is a GUI platform
built on the top of it. There are a large number of third party software developers making
applications on top of Symbian S60. One driving force in any automation solution for
this product family setting is the ability to reuse as many tests as possible when a new
product of the family is created. Thus, we have built our testmodel library to support
the reuse of test models.

In addition, in terms of industrial adoption, MBT needs to beadapted to the ex-
isting testing processes that are shifting towards more agile practices [14] from the
traditional ones based on the V-model [15] and its variations. In agile contexts, on the
one hand, developers are already relying on test automationto support refactoring and
generally understand its benefits as compared to manual testing. On the other hand, it



seems especially important to provide easy-to-use tools and services that do not place
an additional burden, such as that of test modeling, on the project personnel. We have
identified a minimum of three modes [11] to be supported in agile processes:smoke
testingshould be performed in each continuous integration cycle; user stories can be
tested in ause-case testingmode; and there should be abug huntingmode, whose only
purpose is to support finding defects efficiently in long testruns.

Concerning domain-specific issues, the Symbian S60 domain entails the following
problems, among others, from the testing point of view:

– How to make sure the application under test works with pre-installed applications
such as calendar, email, and camera?

– How to test the interactions between the different applications running on the phone?
How to make sure that the phone does not crash if a user installs a third-party appli-
cation? What happens if, for instance, some application attemps to delete an MP3
file that is being played by another application?

– How to test that your software works with different keyboards and screen resolu-
tions?

The domain concepts of Symbian S60 testing can be described usingkeywordsand
action words[16, 17]. Action words describe the tasks of the user, such asopening
the camera application, dialing a specified number, or inserting the number of the re-
cipient to a message. Keywords, on the other hand, correspond to physical interaction
with the device such as the key presses and observations. Each action word needs to be
implemented by at least one sequence of keywords. For example, starting a camera ap-
plication can be performed using a short-cut key or a menu, for instance, and verifying
that a given string is found from the screen. The verificationenables checking that the
state of the model and state of the SUT match each other duringthe test run.

Keywords and similar concepts are commonly used in GUI testing tools. We believe
that using these concepts in conjunction with MBT can help todeploy the approach in
industrial settings. Since testers are already familiar with the keyword concept we just
need to hide the inherent complexity of the solution and provide as simple a user in-
terface as possible. The existing test execution tools thatalready implement keywords
should be adaptable to receive a sequence of keywords from a server. The role of the
server is to encapsulate the test model library and the associated test generation heuris-
tics. Based on a single keyword execution on the SUT, the client tool returns to the
server a Boolean value based on success or failure of the execution. The server then
selects the next keyword to be sent to the client based on thisreturn value.

3 Modeling Formalism

In this section, the fundamentals of our modeling formalismare presented for the inter-
ested reader. As already mentioned, we use Labeled State Transition Systems (LSTSs)
as our modeling formalism. This is an extension of the Labeled Transition System (LTS)
format with labels added to states as well as to transitions.The formal definition is pre-
sented below. It should be noted that while each transition is associated with exactly
one action, any number of attributes may be in effect in a state.



Definition 1 (LSTS). A labeled state transition system, abbreviated LSTS, is defined
as a sextuple(S,Σ,∆, ŝ,Π,val) where S is the set ofstates, Σ is the set ofactions
(transition labels),∆ ⊆ S×Σ×S is the set oftransitions, ŝ∈ S is theinitial state,
Π is the set ofattributes(state labels) and val: S−→ 2Π is theattribute evaluation
function, whose value val(s) is the set of attributes in effect in state s.

It should be noted that while each transition is associated with exactly one action,
any number of attributes may be in effect in a state.

In our approach, the models are divided into four categoriesaccording to their uses:
action machines, refinement machines, launch machinesand initialization machines.
Action machines are used to model the SUTs on the action word level. Thus, they
are the main focus of the modeling work. Keyword implementations for action words
are defined in refinement machines. Together, these machinesform most of the model
architecture; the remaining two types are focused on supportive tasks. Launch machines
define keyword sequences required to start up an action machine, such as switching to
a specific application. Initialization machines, on the other hand, define sequences for
setting the SUT into the initial state assumed by action machines and are executed
before the actual test run. They can also be used to return theSUT back to a known
state after the test. Both of these functions have simple default actions. Hence, explicitly
defined launch and initialization machines are rarely needed.

Concerning the keywords, many of them require one or more parameters to define
their function. Sometimes these are fixed to the GUI, such as aparameter that defines
which key to press, but sometimes they represent real-worlddata: a date or a phone
number, for example. Embedding such information directly into the models is problem-
atic, because they would be limited to a fixed set of data values and possibly tied to
a specific test configuration. Another problem with the use ofdata is that storing it in
state machines requires duplicate states for each possiblevalue of data, which quickly
results in a state space explosion [18]. To solve these problems, we have developed two
methods of varying the data in models: localization data anddata statements.

The basic function oflocalization datais to hold the text strings of the GUI in dif-
ferent languages, so that the models need not be tied to any specific language variant of
the SUT. The data is incorporated into the model by placing a special identifier in a key-
word. When the keyword is executed, the identifier is replaced with the corresponding
element from the localization tables. More complicated useof data can be accomplished
by placingdata statements(Python [19] code) in actions. These statements may be used
in any actions, not just keywords. Data provided by externaldata tablescan be used in
these data statements.

In order to be used in a test run, the models must be combined inparallel compo-
sition. The models involved in this process are action machines, refinement machines,
launch machines (both explicitly defined and automaticallygenerated), and a special
model called thetask switcher. The latter is generated to manage some of the synchro-
nizations between the models. In the composition, the models are examined and rules
generated for them according to the domain-specific semantics to determine what ac-
tions can be executed in a given state. As usual, the composition can be used to create
one large test model that combines all the various components, or it can be performed
on the fly during the test run. We have found the latter method to be preferable, since



combining a large number of models can easily result in a serious state explosion prob-
lem. The definition of the parallel composition, extended from [20] for LSTSs, is the
following:

Definition 2 (Parallel composition‖R). ‖R (L1, . . . ,Ln) is theparallel compositionof
LSTSs L1, . . . ,Ln, Li = (Si ,Σi ,∆i , ŝi ,Πi ,vali), according torulesR;∀i, j;1≤ i < j ≤
n : Πi ∩Π j = /0. Let ΣR be a set of resulting actions and

√
a “pass” symbol such

that ∀i;1≤ i ≤ n :
√

/∈ Σi . The rule set R⊆ (Σ1∪{√})× ·· · × (Σn∪{√})×ΣR.
Now‖R (L1, . . . ,Ln) = (S,Σ,∆, ŝ,Π,val), where

– S= S1×·· ·×Sn

– Σ = {a∈ ΣR | ∃a1, . . . ,an : (a1, . . . ,an,a) ∈ R}
– ((s1, . . . ,sn),a,(s′1, . . . ,s

′
n)) ∈ ∆ if and only if there is(a1, . . . ,an,a) ∈ R such

that for every i(1≤ i ≤ n) either
• (si ,ai ,s′i) ∈ ∆i or
• ai =

√
and si = s′i

– ŝ= (ŝ1, . . . , ŝn)
– Π = Π1∪·· ·∪Πn

– val((s1, . . . ,sn)) = {π ∈ Π | ∃i;1≤ i ≤ n : π ∈ vali(si)}

The composition is based on a rule set which explicitly defines the synchronizations
between the actions. An action of the composed LSTS can be executed only if the
corresponding actions can be executed in each component LSTS, or if the component
LSTS is indifferent to the execution of the action. In some, extreme cases an action may
require the cooperation of all the component LSTSs, or a single component LSTS may
execute an action alone. In practice, however, most actionsin our models are executed
singly or synchronized between two components, though larger synchronizations also
exist.

An important concept in the models is the division of states into runningandsleep-
ing states. In more detail, running states contain the actual functionality of the mod-
els, whereas sleeping states are used to synchronize the models with each other. The
domain-specific semantics ensure that exactly one model is in a running state at any
time, as is the case with Symbian applications. As testing begins, the running model is
always the task switcher. Running and sleeping states are defined implicitly according
to the transitions in the models.

4 Overview of the Tools

In this section, we provide an overview of the toolset supporting our approach. The
toolset is currently under construction. The tool architecture is illustrated in Figure 1.
The toolset can be divided into four parts plus a database. The first is the model design
part, which is used for creating the component models and data tables. The second is
the test control part, where tests are launched and observed. The third is the test gen-
eration part that is responsible for assembling the tests and controlling their execution.
The fourth is the keyword execution part, whose task is to communicate with the SUT
through its GUI.



Fig. 1. Test tool architecture.

Concerning the model design part of the toolset, the tools are used to create the test
models and prepare them for execution. There are two primarydesign tools: Model De-
signer [13] and Recorder [21]. The latter is an event capturing tool designed to create
keyword sequences out of GUI actions; these sequences can then be formed into refine-
ment machines. Model Designer, on the other hand, is the maintool for creating action
machines and data tables. The latter is also responsible forassembling the models into
a working set ready for testing; even refinement machines created with Recorder pass
through Model Designer. The elements of this working set areplaced into the model
repository.

After the models with their associated information have been prepared with the
design tools, the focus moves to the test control part. This part contains a web GUI
which is used to launch the test sessions. Once a test sessionhas been set up, the Test



Control tool in the test generation part of the toolset takesover. First, it checks the
coverage requirement(a formal test objective) that it received and determines what
model components are required for the test run. These are given to Model Composer,
which combines them into a single model on-the-fly. The modelis managed by Test
Engine, which determines what to do next, based on the parameters it receives from
Test Control. Both Test Control and Test Engine report the progress of the test run into
a test log, which may be used for observing, debugging, or repeating the test.

As keywords are executed in the model, Test Engine relays them to the keyword
execution part. The purpose of this part is to handle their execution in the SUT. The SUT
responds with the success status (true or false) of the keyword, which is then relayed
back to Test Engine. The first link in the communication between Test Engine and the
SUT is handled by a specific adapter tool, which translates the keywords into a form
understood by the receiver and manages the gradual execution of some more complex
keywords. The next part in the chain is the test tool which directly interacts with the
SUT. The nature of this tool depends on the SUTs in question and is not provided
alongside the toolset. The users of the toolset must providetheir own test tool and
use the simple interface offered by the adapter. In our case,we have used commercial
components, namely Mercury Functional Testing for Wireless (MFTW) and Mercury
QuickTest Professional (QTP) [22].

We have designed the architecture to support the plugging-in of different test gen-
eration heuristics. Currently, we have implemented three heuristics which allow us to
experiment with the tools: a purely random heuristics that can be used in bug hunting
mode, and two heuristics based on game-theory [11] to be usedin the use case test-
ing mode: a single thread and a two thread version. The difference between the two
is that the latter continues to search an optimal path to a state fulfilling the coverage
requirement, while the other thread waits for a return valuefrom the client executing a
keyword.

It is anticipated that in deploying our approach the testingpersonnel should consist
of the following roles (see Figure 1): test manager, test modeler, and test model exe-
cution specialist. The test manager defines the entry and exit criteria for the test model
execution, and defines which metrics are gathered. The test manager should also focus
on communicating the testing technology aspects. This includes explaining how model-
based testing compares to conventional testing methods andadvocating reasons for and
against using it for management and testing personnel. In these respects, model-based
testing is similar to any new process initiation.

The main goal of the test modeler is to update and maintain thetest model library
using the Model Designer and Recorder tools based on productspecifications if such
exist. The test modeler can also be responsible for designing the execution of the model
and setting up the environment accordingly.

The test model execution specialist orders the test sessions from the web GUI ac-
cording to the chosen test strategy. He/she also observes the test execution to ensure
that the models are used according the agreed principles andtest data. Another focus of
this role is in reporting the results and faults onward. The purpose is to document the
test model usage and testware in a way that enables its reuse.
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5 Providing a Symbian S60 Test Service

In this section, the service scheme is presented in detail. The following subsections
describe the interfaces provided by our server.

5.1 Server and Clients

The architecture of the toolset described earlier enables aclient-server scheme where
the keyword execution and test generation parts are separated. To facilitate the deploy-
ment of model-based GUI testing in the context of Symbian S60applications, we have
set up a prototype version of the server that implements the test generation part. It pro-
vides testers an easy interface to the MBT tools.

The server is accessed through three interfaces. First, there is an interface through
which test modelers update the test model components on the server. Second, there is a
web interface through which test execution specialists canset up tests. Finally, there is
an interface for sending keywords to adapters which executethe corresponding events
on actual devices. Figure 2 illustrates the scheme.

Although the MBT server could be installed as a local application in the client ma-
chine, there are some practical reasons for dedicating a separate PC for that purpose.
The most important reason is that some of our test generationalgorithms, i.e. the ones
based on game heuristics, can produce better results given more processor time and
memory. Fortunately, computing power is very cheap nowadays but it still pays off
to have a dedicated machine. Moreover, the server provides ashared platform for test
modelers to update the model library and test execution specialists to set up tests. Fur-
thermore, all the users of the server do not need to know the details of the SUT, for
instance the physical form or other design issues that may beconfidential at the time of
testing. For the purposes of test modeling, it should be enough to know what previously
tested member of the product family this new member resembles the most and what the
differences are concerning the modeled behavior.



5.2 Test Setup Interface

There are a number of parameters that need to be given in orderto start a test run. The
most important ones are:

1. SUT types: which phone models will be used in the test run? This affects the auto-
matic selection of test model components.

2. Test model: which applications will be used in the test run? Based on this choice,
the test model components are selected and composed together to form a single test
model that will be used in the test run.

3. Test mode: the test can be executed in smoke test, bug hunt,and use-case testing
mode. In each mode, a coverage criterion should also be given. The criterion defines
when the test run can be stopped, but it can also be used to guide the test generation
as in the case of use-case testing mode.

4. Number of clients: how many clients can be used to execute the test? Using more
than one client can often improve the time in which the test isfinished. For example,
a complicated coverage criterion can often be divided into smaller criteria that can
be fulfilled in concurrent test executions.

5. The test generation algorithm, connection parameters, and logging system.

To support different types of testing in the various phases of the testing process, the
server supports the three testing modes mentioned above. Inthe smoke testing mode
the server generates tests in a breadth-first search fashionuntil the coverage criterion
has been fulfilled; for instance, 30 minutes have passed or 1000 keywords have been
executed. In the use case mode, the tester inputs a use case (in the form of a sequence
of action words) to the server, which then generates tests tocover that use case using
the game heuristics. As already discussed, the main motivation for this mode is compat-
ibility with the existing testing processes: the tests are usually based on requirements
and the test results can be reported based on the coverage of the requirements. In the
bug-hunting mode, in addition to purely random generation,the server could generate a
much longer sequence of keywords that tries to interleave the behavior of the different
applications as much as possible in order to detect hard-to-find bugs related to mutual
exclusion, memory leaks, etc.

When the test setup is ready, the corresponding test model isautomatically built
from components of the model library. After that, the given coverage criterion could be
split so that there is a chunk for every client to cover. Finally, one test engineprocess
per every client could be launched to listen to a TCP/IP connection. A test engine will
serve a client until its part of the coverage criterion has been covered or it is interrupted.
Now the MBT server is ready for the real test run, during whichthe clients and the
server communicate through the test execution interface.

5.3 Test Execution Interface

To start a test run, the test execution specialist starts thedevices to be used as targets
in the tests as well as the clients and adapters. The adaptersare configured so that they
connect to the test engines waiting on the server. Test execution on the client starts
immediately when its adapter has been connected to the test engine.



During the execution, a test engine repeats a loop where it first sends a keyword to
an adapter. The adapter, with the help of the test execution tool it is controlling, converts
the keyword into an input event or an observation on the SUT. As already discussed,
there are different keywords for pushing a button on the phone keypad and verifying
that a given string is found on the screen, for instance. After that, the adapter returns
the status of the keyword execution, i.e. a Boolean value denoting success or failure, to
the test engine. In a normal case, when the status of the keyword execution is allowed
by the test model, the server loops and sends a new keyword to the adapter.

Otherwise, unexpected behavior of the SUT is detected, maybe due to a bug in the
SUT, and the server starts a shutdown or recovering sequence. It informs the adapter
that it has found an anomaly. The adapter may then save screenshots, a memory dump
or other information useful for debugging. It also sends an acknowledgement of having
finished operations to the server. Finally, the test engine may either close the connection,
or try to recover from the error by sending some keywords again, for instance to reboot
the SUT.

Regardless of the mode, during a test session a log of executed keywords is recorded
for debugging purposes. When a failure is noticed, the log can be used for repeating the
same sequence of keywords in order to reproduce the failure.

GUI testing can sometimes be slow, even with the most sophisticated tools. In order
to cope with this, we should extend our solution to support the concurrent testing of
several target phones using one server. Testing a new Symbian S60 application could
be done so that one client is used for testing the applicationin isolation from other
applications, while other clients are testing some application interactions.

5.4 Using the Web GUI

The testers interact with the server using a web interface. The interface has been im-
plemented in AJAX [23] and it consists of several different views. In the following, we
will introduce the basic usage of the interface step by step.

When the tester wants to start a test session, he or she first logs into the system.
After that, the system offers two alternatives: either to start a session by repeating a
log from some previous session or simply from scratch. In thelatter case, a model con-
figuration must next be selected. Such a configuration can consist of models of certain
applications whose interactions should be tested, for instance. Next, a view called the
coverage requirement editor is opened (see Figure 3). In this view, the tester can con-
struct a new coverage requirement from actions of the model components included in
this configuration. Since the number of different actions can be large, there is a possi-
bility to limit the shown actions to those marked “interesting” by the test modelers. The
coverage requirement is composed of actions and operatorsTHEN, AND, andOR, as
well as parentheses. As an example, consider a requirement for sending a multimedia
message (MMS) from one SUT to another with an attachment:

action Messaging1-Main:NewMMS THEN
action Messaging1-MMS:InsertObject THEN
action Messaging1-MMS:Select THEN
action Messaging1-Sender:Send THEN



Fig. 3. Coverage requirement editor.

action Messaging2-Receiver:Show THEN (
action Messaging1-Main:ExitMessaging AND
action Messaging2-Main:ExitMessaging

)

In the example, Messaging1 is the SUT that should send the MMSand Messaging2
the one that should receive it. Once the message has been composed, sent, received and
opened, both SUTs should return to the main menu in a non-specified order. The right
hand side of Figure 3 shows the corresponding coverage requirement in the case of one
SUT. In the one phone configuration, the sender and the receiver are the same device,
while in the two phone configuration they are different. Replacing operator AND with
OR would simply mean that either one of the phones should return to the main menu. If
the requirement under construction if not well-formed, therequirement turns red and an
error message is displayed. The coverage language is presented in more detail in [11].

Since constructing long coverage requirements can take some effort and time, there
is a view where they can be saved and loaded (see Figure 4). Moreover, there is an
option to upload and download coverage requirements if the tester wants to use another
editor.



Fig. 4. Coverage requirement menu.

In the next view, the tester can set the parameters for the test session. First of all,
there are different heuristics corresponding to the different testing modes. Moreover,
there are some other parameters to be selected based on the heuristics used. For in-
stance, using the game heuristics in the requirement coverage mode requires the depth
of the search tree. There are naturally default values available, but based on the model
complexity, better results, i.e. reaching the coverage requirement faster, can be achieved
by carefully selecting the parameters. In addition to these, the tester can specify the seed
for the random number generator.

Another important selection to be made in this view is the data and localization
tables to be used in the test runs. For this purpose, the tester is presented with a list of
predefined files in the server.

Finally, the tester can choose to start the test run in the next view. There is also
a selection on how detailed a log is displayed during the testrun. In any case, the
tester can always choose to view all the logged information.The log is automatically
saved so that the test run can be repeated for debugging purposes, for instance. When
the test execution specialist presses the “Start” button, the server starts waiting for a



Fig. 5. Test setup with two SUTs.

connection from a client where the SUTs have been connected using Bluetooth or a
USB connection. An example test setup with two targets is shown in Figure 5. On the
right hand side the test log in the web GUI is shown. The clientmachine on the left
hand side has two targets connected using a Bluetooth connection.

After the test session is finished, the web interface turns either green or red, based
on success or failure. In the latter case, the tester may wantto download the log for
reporting or debugging. In the former case, the tester can report that the requirement in
question has now been tested. The interested reader can viewa video of the test session
described in the above example athttp://www.cs.tut.fi/~teams.

6 Discussion

In this paper we have described a model-based GUI testing service for Symbian S60
smartphone applications. The approach is based on a test server that is currently in the
prototype stage. We are implementing the tools we have described and are releasing
new versions under the MIT Open Source Licence. A download request can be made
through the URL mentioned above.

In our solution, the server encapsulates the domain-specific test models and the
associated test generation heuristics. The testers, or test execution specialists, order



tests from the server, and the test adapter clients connect to the phone targets under
test. The main benefit of this approach compared to more generic approaches is that it
should be easier to deploy in industrial environments; in practice, the tasks of the tester
are minimized to specifying the coverage requirement as well as some parameters for
heuristics, etc. We are developing the web interface to be asusable as possible and plan
to conduct usability surveys in the future.

How then could the service model be used? The organization oftesting services
affects what kind of testing process could be used. This demands a flexible approach
for ease of coordination [24]. In industrial practice, it would be important to get reliable
service based on the current testing needs. This is in line with the current trends of
the software industry [25]. At best, there would be several providers for the service to
fulfill the needs of different end-users. Beside technical competence, communication
skills are emphasized in order to provide transparency to the details of the solution.

Case studies on using the service concept are on the way. We have already used
the web GUI internally for several months. In these experiments, the SUT has been the
S60 Messaging application, including features such as short message service (SMS)
and multimedia messages (MMS). The former supports sendingonly textual messages,
while the latter supports attaching photos, video and audioclips. So far we have per-
formed testing with configurations of one to two phones. Based on the positive results
of this internal use, we are working towards transferring this technology to our indus-
trial partners. One of the partners has already successfully tried out our test server in
actual test runs without the web GUI. We anticipate that the web GUI will help us in
conducting wider studies in the future.
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Abstract

Smartphones are becoming increasingly complex, and
the interactions between the different applications make
testing even more difficult given the time-to-market pres-
sures and the limits of current test automation systems. To-
wards these ends, we have built an open source test model
library for Symbian S60 GUI testing. This paper describes
and analyzes our experiences in building the library.

1 Introduction

Unlike many other areas of engineering, most software
defies formal analysis due to its great complexity. The ver-
ification and validation of software is mostly performed
by extensive testing, which can never yield 100% cer-
tainty. When developing products for mass consumer mar-
kets, testing is often done through a graphical user interface
(GUI). While GUI testing is sub-optimal in many respects
compared to other kinds of tests, it is still considered impor-
tant when checking the functionality and performance from
the viewpoint of the end-user experience.

An attempt to decrease the costs of GUI testing has been
made by partially automating the process. The results have
been varied, from early capture and replay methods yield-
ing few practical benefits to data-driven scripts which have
proven reasonably efficient in some forms of testing [4].
However, they have usually proved inefficient in finding
new defects in the software. Some of these problems may
be solved with model-based testing (MBT) [12].

In MBT the essential functionality of the system under
test (SUT) is formally modeled, and then tests are gener-
ated from the model. Unlike script-based testing, where test
cases are run automatically but must be designed manually,
MBT can be used to automatically generate the test cases as
well. However, it requires a viewpoint very much different
from traditional test automation.

We are developing a model-based GUI testing solution
and trying to find ways in which it could be adopted as a

testing method in practice. One of the core ideas isdomain-
specificity, as it should ease the adoption process. In our
case, the domain is GUI testing of Symbian smartphone ap-
plications. There have been cumulatively over 150 million
Symbian smartphones shipped [10]. We concentrate on de-
vices with the S60 GUI platform, the most commonly found
framework among the current phone models. In addition to
device manufacturers, a large number of third party soft-
ware developers make applications on top of the platform.

We have also created a test model library that enables the
testing of new smartphone applications in conjunction with
others, including the predefined ones. In [9] we reported
our initial experiences in testing this domain; most of the
issues found in the SUTs were concurrency related. With
the help of such a model library, the testing of new applica-
tions can be facilitated: the library can be easily extended
with new model components to be included in the final test
models. Such test model libraries could allow device and
platform manufacturers to set common quality requirements
for third-party application in a way similar to the Symbian
Signed program [11]. Another example is the TTCN-3 SIP
Test Suite [3] available for conformance testing.

The background of our approach has been introduced
previously in [6, 7, 8, 9]. In this paper, based on [5], we
concentrate on the test model library. In Section 2 we re-
view the background of our contributions. In Section 3 we
discuss our experiences in creating the test models and the
contents of the test model library. Section 4 contains some
concluding remarks.

2 Background

2.1 Action words and keywords

A solution to some of the problems of automated GUI
testing is to separate the functionality of the SUT from its
implementation [2]. The functionality is described inac-
tion words, which correspond to the actions the SUT can
perform. The level of detail and complexity of action words
can vary greatly, from simple ones that denote little more



than a key press to very complicated ones that correspond
to whole use cases. However, no matter what they describe,
action words should never be directly tied into the specifics
of the interfaces, graphical or otherwise.

Where action words describe the functionality of the
SUT, keywordsare used to describe the implementation of
that functionality. Each keyword corresponds to some ba-
sic event in the interface of the SUT, such as pressing a key
or verifying that the text output matches expectations. Just
as action words should be independent of interfaces, key-
words should be independent of any functionality they may
be used to implement. While generally simple, keywords
may also be complex in nature; for example, a keyword to
type text into a phone may perform the equivalent of a very
complicated series of key presses. Because of this, there is
no hard line between action words and keywords in terms of
what they can express, as a complex keyword may be more
complicated than a simple action word. The true difference
is in how they are used.

In the context of testing mobile applications, a typical
action word could correspond to a user opening an appli-
cation for sending SMS messages when the phone is in
the idle state. In this case the action could be refined to
a sequence of keywords corresponding to the key strokes
needed to open the application in the real phone. There may
be multiple ways for opening such an application (short cut,
menu, etc.), and each of these could be encoded as a sepa-
rate sequence implementing the same action word.

The advantage of using action words and keywords is
that test cases can be created as sequences of action words.
In this way, they are no longer tied directly to volatile inter-
faces, but rely on the relatively more stable functionalityof
the SUT. When the interface changes, only the implementa-
tions of the action words must be modified to match. Only a
change in the functionality of the system may require mod-
ifications in the test cases, but such changes are much less
common. Therefore, by using action words and keywords,
one very significant problem of automated testing, namely
maintenance, can be avoided.

2.2 Modeling formalism

The test models are in Labeled State Transition System
(LSTS) format as defined in [6]. They are divided into
four categories according to their uses:action machines, re-
finement machines, launch machinesandinitialization ma-
chines. Action machines are used to model the SUTs on
the action word level; as such, they are the main focus of
the modeling work. Keyword implementations for action
words are defined in refinement machines. Together ac-
tion machines and refinement machines form most of the
model architecture. The remaining two types are more spe-
cialized. Launch machines define keyword sequences re-

quired to start up an action machine, such as switching to
a specific application. Initialization machines, on the other
hand, define sequences for setting the SUT into the initial
state assumed by action machines. Initialization machines
are executed before the actual test run, and they can also
be used to return the SUT back to a known state after the
test. Both of these functions have simple default actions; as
a consequence, explicitly defined launch and initialization
machines are rarely needed.

In order to be used in a test run, the model components
must be combined into a test model inparallel composi-
tion. The components involved are action machines, refine-
ment machines and launch machines (explicitly defined and
automatically generated), as well as two automatically cre-
ated models called thetask switcherand thesynchronizer.
The task switcher manages the synchronizations between
the model components of a single testing target, whereas the
synchronizer helps in the handling of synchronizations be-
tween multiple targets. In the composition, the model com-
ponents are examined and rules generated for them accord-
ing to the semantics in order to determine what actions can
be executed in a given state. The composition can be used
to create one large test model that combines all the various
components, or it can be performed on the fly during the test
run. The latter method has been found preferable, because
combining a large amount of models can easily result in a
state explosion problem [13] serious enough to overpower
any computer. The definition of parallel composition for
LSTSs can be found in [6].

An important concept in the models is the division of
states intorunningandsleeping states. Running states con-
tain the actual functionality of the models, whereas sleeping
states are used to synchronize the models with each other.
The semantics ensure that exactly one model is in a running
state at any time. As testing begins, the running model is
the task switcher. Running and sleeping states are defined
implicitly according to the transitions in the models.

2.3 Action types

The actions to be used in the creation of the models
can be divided into five types. These are action words,
keywords, action machine synchronizations, action word
synchronizations and comments (which have no semantic
meaning). The action machine synchronizations can be fur-
ther divided into task switcher synchronizations, activation
synchronizations and request synchronizations.

Action wordsare used to describe the functionality of
the modeled systems and therefore form the core of the test
models. Generally action words must be executed correctly
in a well-functioning SUT, since they describe its valid use.
However, it is also possible to use so-called failing action
words to cope with nondeterministic SUTs by directing the
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model into a different state in case of failure in execution.
The success or failure of an action word’s execution is de-
termined by its keyword implementation.

The other cornerstone of the models are thekeywords,
which describe events in the SUT and are used to refine
the action words. Just as action words, keywords may be
required to succeed or allowed to fail as need be. In addi-
tion, they may be required to fail, such as in verifying that
a given text has disappeared from the screen. Their success
of execution depends directly on SUT events.

The first category of action machine synchronizations,
task switcher synchronizations, contains exactly two ac-
tions: WakeTS andSleepTS. WakeTS may only go from a
sleeping state to running state and allows the task switcher
to grant control to this model.SleepTS, conversely, goes
from a running state to sleeping state and gives up control
to the task switcher.

Activation synchronizationsalso change control between
the component models. Very much like task switcher syn-
chronizations in most respects, activation synchronizations,
however, bypass the task switcher and switch control di-
rectly between the two models.

Request synchronizationscome in three distinct types:
Allow, Reqand ReqAll. They handle communication be-
tween test models.Reqmust be executed synchronously
with a correspondingAllow, and ReqAll with all corre-
spondingAllows. If the requiredAllow(s) cannot be exe-
cuted, then neither can theReq/ReqAll. Depending on their
placement, request synchronizations can be used to ask for
permission for an operation, for instance.

Action word synchronizationsare used to synchronize
keywords to action words. They are rarely placed man-
ually, however, but are created by the modeling tools as
needed. The only action word synchronization commonly
placed manually isreturn, which is used in relation to fail-
ing action words.

2.4 Machine semantics

As explained earlier, the four types of machines created
by the test modeler are action machines, refinement ma-
chines, launch machines and initialization machines. Apart
from the action semantics, the only common semantic re-
quirement for all four types is that they must bedeterminis-
tic, meaning that no state may have more than one outgoing
transition labeled by the same action.

An action machine must bestrongly connected, i.e., each
of its states must be reachable from every other state. In ef-
fect, this means that the machine may not containdeadlock
states(states with no outgoing transitions) unless it con-
sists of only a single state. Action machines may have ac-
tion words and action machine synchronizations as actions.
They may also havestate verifications, which are state la-

bels with a special semantic meaning. A state verification
will be refined by the appropriate refinement machine just as
action words; the resulting action sequence becomes a loop
in the state where the state verification was placed. This
feature can be useful in verifying that the model state corre-
sponds to the state of the SUT.

Refinement machines consist of implementations for ac-
tion words. The implementing keyword sequences are usu-
ally constructed as loops in a single central state, begin-
ning and ending with action word synchronizations. Such a
structure ensures that all action words can always be refined,
since a refinement machine should not restrict the function-
ality of an action machine. The sequences may contain
branches and even loops, though the latter are strongly dis-
couraged. Like action machines, keyword machines must
be strongly connected.

Though they are used in different situations, launch ma-
chines and initialization machines have exactly the same se-
mantics. Unlike action and refinement machines, they are
not strongly connected; instead, a deadlock state must be
reachable from each of the machine’s possible states. When
the execution reaches a deadlock state, its task is considered
to be finished. These types of models may only contain key-
words as actions. Their have essentially the same structure
as the keyword sequences in refinement machines.

2.5 Data integration

Typically, many keywords require one or more parame-
ters to define their function. Sometimes these parameters
represent real-world data; a date or a phone number, for ex-
ample. Embedding such information directly into the mod-
els is not advisable, because they would be limited to a fixed
set of data values and possibly tied to specific test config-
uration. Furthermore, storing data into state machines can
drastically increase the number of states in the composed
model. To solve these problems, we have developed two
methods of varying the data in models: localization data
and data statements with data tables.

Localization datafunctions as a simple text replacement,
where an identifier in an action is replaced by a text string
from a localization table. As the name implies, localization
tables are usually used to hold GUI text strings in different
languages. However, they may also be used with other kinds
of data, if text replacement is all that is needed.

More complicated use of data can be accomplished by
placing data statementsinto actions. The statements are
Python [1] statement lists which may use any Python func-
tionality. They can also accessdata tables, which are lists
of structured data elements created for this purpose. The
data statements can be used to create a text string to replace
the statement in the action and to alter the persistent stateof
the Python interpreter for the following data statements.
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3 Building the S60 GUI test model library

3.1 Observations in modeling

As we began the development of our methodology one of
the tasks was the creation of test models for applications in
S60 phones. While we had earlier experience in modeling
and verification, our primary modeler had done little or no
modeling apart from drawing class diagrams. This may not
have been an entirely bad thing, as it allowed us to begin
from scratch and it led to some new innovations.

Throughout the whole modeling process we never used
any specifications for the applications we modeled. There-
fore, instead of specifications, the models were based on ob-
servations and, to some extent, common sense. Obviously,
up to date specification would have been potentially helpful
in model creation. However, we think that the lack of spec-
ifications gave us a rather realistic setting; nowadays pop-
ular agile methods do not encourage detailed specification,
instead the implementation is seen as the most important ar-
tifact. Moreover, this led us to use some exploratory testing
practices to develop the models, and we were also able to
find some real defects [9].

When modeling an application, we would begin by start-
ing the application in a phone, moving it through its major
screens and trying out its functionality. Once we had an idea
of how the application worked, we would create models to
cover its basic behavior and then add in functionality until
the models appeared sufficiently detailed. Without specifi-
cations we could not always be certain whether the appli-
cation was functioning correctly or not. In general, if the
behavior was consistent and logical, we would assume that
everything was working as intended. In these cases, more
than anywhere else, good specifications might have been
useful.

After some practice in drawing small single-purpose
models, we took on the true task of creating a relatively
complete set of test models for the S60 platform applica-
tions. We began with the Calendar application, as it ap-
peared quite simple compared to many others. We soon
discovered that even in its relative simplicity the applica-
tion was too complex to fit neatly into a single model. As
a solution, we divided the Calendar functionality into sev-
eral portions and created test models for each, individually.
Apart from the base model for the application, the models
could not be woken by the task switcher but only through
direct synchronizations from the other Calendar models. In
this way, each model became simple enough to understand.

As the model of the Calendar application was split, the
resulting action machines seemed to fall into three cate-
gories, according to how they were synchronized into the
whole. While this division has since prevailed in most of
our modeling work, it is intuitive rather than formal. In the

first category are structural models that describe the major
lines of an application. These models typically contain little
functionality in themselves. What they do have is synchro-
nizations with other models; our model library even con-
tains a few structural models that consist of nothing else.
Their internal functionality is mostly concerned with mov-
ing through the different windows of their application, al-
though they sometimes contain simple actions within those
windows, usually small enough to be modeled with a sin-
gle action word. The base models of applications are nearly
always structural models, and a complex application may
have several structural models describing its major parts.

The second type of model is the subroutine model. Such
a model describes one or more actions that can be per-
formed in a certain state of the modeled application. Their
great advantage is that they can be easily connected to mul-
tiple points in structural models. Subroutine models resem-
ble subroutines of programming languages: they are wo-
ken through an activation synchronization, perform a lim-
ited series of actions and finally give up control through an-
other synchronization. While they may contain an initial
choice of actions, each action generally proceeds in a linear
fashion to its end. Significant branches and loops are quite
rare. Long actions can typically be interrupted in the middle
and the control given to the task switcher; apart from these
cases, synchronizations are uncommon, though sometimes
requests may be necessary to determine what actions can
be performed. There has been one notable exception to this
rule, where a subroutine model was created to take care of
a particularly complicated series of synchronizations.

The final model category consists of memory models.
The original model semantics had no method for data han-
dling, and the only persistent information was the current
states of the models. Therefore, when memory was needed,
the solution was to create a model that would record the
necessary information in its state when sent to sleep. A
memory model, typically, has a few waking states, most
commonly just two, and an equivalent number of sleeping
states. Normally the only actions are ones that change the
current state of memory. The sleep states usually haveAl-
low synchronizations so that the state of the model can be
observed from the outside, and sometimes others that let
the state be changed as well. One drawback of the memory
models is their effect on state space: a two-state memory (a
single bit) effectively doubles the size of the whole model.

Figure 1 shows an example of how the models of dif-
ferent categories relate to each other. The example is from
the part of the Gallery application that deals with images.
At top left there are three structural models for the Gallery
main screen, the image selection screen and the image view
screen. The last of these is connected to a subroutine model
below for attaching an image to a contact, and two mem-
ory models on the right for managing the zoom level and
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Figure 1. Example of model structure from
the Gallery application.

the normal/full screen status. Note that the model pictures
in the figure are not actual state machines; rather the state
structures shown are iconic for models of their categories,
with filled circles corresponding to sleeping states.

It was clear that memory beyond the rather limited pos-
sibilities offered by memory models would be useful. In
Calendar the problem was in keeping track of the number
of calendar entries. The exact number of entries could be
practically stored in states only when it was very small; oth-
erwise both the model and the state space would grow pro-
hibitively large. However, we were unwilling to impose an
artificial limit on the number of entries that could be created
using the Calendar models, especially if the limit was to be
a very low one. Because of these factors, we decided to ig-
nore the exact number of entries and limit ourselves to three
states: one in which entries were known not to exist, another
in which they were known to exist, and the last one where
entries might or might not exist. This solution was not en-
tirely satisfactory, either; a notable deficiency was that two
entries could not be deleted without creating a new one in
between, as there was no way of knowing that another entry
still existed after one was deleted. The solution was feasible
only because of the possibility of deleting all entries at once,
which made bringing the model back to initial state always
possible. Eventually, these problems led to the concept of
action words that are allowed to fail. The later advent of
data statements has allowed us to dispose of some memory
models, though others are still necessary.

3.2 Advances in semantics

Modeling the next application, Contacts, yielded one sig-
nificant addition to the model semantics. The application
holds the contact information and provides shortcuts for
making phone calls and sending messages. While we did
not yet model the sending and receiving of messages at that
point, we did notice that it was possible to send a message

to several receivers simultaneously. The basic method of re-
laying the information about the message to another model,
the Reqsynchronization, was obviously not feasible with
multiple recipients. The solution was theReqAllsynchro-
nization, which allowed the synchronization of more than
two models at once. The semantics ofReqAllwere defined
in such a way that it could be set up to act as the exact nega-
tion of Req, a feature which has proven very useful at times.
Another good characteristic ofReqAll is that it works re-
gardless of the number of correspondingAllow actions in
the component models, none or a dozen. Because of this,
ReqAllcan be used as an announcement of sorts, with all
interested models always allowing its execution, but react-
ing to it with non-loopingAllow transitions.

Another realization brought on by Contacts was that
some way of incorporating data into the models would be
eventually required. In Calendar, it did not really matter
how the entries were named; what variance was wanted
could be achieved by using alternate keywords with dif-
ferent parameters. However, if Contacts was to be used
for sending messages, it was clearly not sensible to embed
names and phone numbers directly into the model. These
requirements led eventually to the incorporation of localiza-
tion data and, finally, data tables into the model semantics.

The modeling of Calendar and Contacts had brought out
all the major requirements in model semantics. One later
addition was the use of state verifications. These special
state labels could be transformed into keyword sequences
that would check that the SUT is in the correct state.

As the third application, Gallery, was being modeled,
it finally became apparent that combining the model com-
ponents resulted in a serious state space explosion prob-
lem. The early versions of Gallery, together with the more
complete Calendar and Contacts, yielded a huge state ma-
chine with millions of states. Later attempts to combine
yet more models proved impossible as our computers ran
out of memory. Because of these problems, the use of pre-
combined test models was mostly abandoned and parallel
composition was performed on the fly for the portion of the
model where it was required. While huge models could be
handled in this way, the enormous state spaces still proved
to be a difficult challenge for the test generation algorithms.

Later on, the modeling of the Messaging application
brought to light an entirely new problem. While Messaging
may be the logical application for sending text (SMS) and
multimedia (MMS) messages, many others also had this ca-
pability: Contacts could send a message to a selected con-
tact, Gallery could send a selected image as a message, and
so on. In every case the actual creation and sending of the
message worked in the same way, apart from some field
possibly being filled from the start. Creating all but identi-
cal models for so many applications did not seem sensible;
not only would that have created more work, but the redun-
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dancy would also have caused difficulties in maintaining the
model library. Setting all of the applications to use the same
model, on the other hand, would not have allowed several
applications to write messages at the same time; a dubious
choice, as testing the interactions between the applications
was a high priority.

The solution was the creation oftemplate models. One
model would act as a template, and the individual applica-
tions would automatically receive suitably modified copies
of the template for their own use. The template system is en-
tirely separate from our informal action machine classifica-
tion, as any kind of action machine can be made into a tem-
plate. Once the method was in use, we went back to several
of the applications we had modeled earlier and converted
their models into templates where possible. However, tem-
plate models have since been replaced with another method
called linked models, thanks to the automated model man-
agement features of Model Designer. Linked models re-
move the need for a separate template, with the equivalent
models connected directly to each other.

3.3 The current state of the library

As the first big modeling phase reached its end, we had
all the major pre-installed applications of our S60 phones
modeled. In some cases the models were somewhat specu-
lative in nature, as we did not yet have actual adapter sup-
port for all the functionality required; we could not handle
multiple phones in test runs, for example. However, all the
changes made since then have been minor in nature, as the
broad lines of the applications had been correctly modeled.

An example of an action machine from the library can be
seen in Figure 2, which shows the model for the zoom func-
tionality in the images section of the Gallery application.
According to the informal action machine classification pre-
sented earlier, the zoom action machine is a memory model:
the figure shows four different levels of zoom in which the
image may be set and left as the zoom model rescinds con-
trol. The zoom level may be increased or decreased incre-
mentally, and from all levels except the first (no zoom) it is
possible to return directly to the first. However, the latter
functionality is only available when the image is in normal
screen mode, as opposed to full screen mode. The reason
for the restriction is that in full screen mode the key press
which would reset the zoom level leaves full screen instead;
the zoom model has to take this into account.

A refinement machine for the zoom action machine is
presented in Figure 3. As is usual with refinement ma-
chines, the initial state at the center is the single ready state
from which all the refinement loops for the action words
begin. Also note that there are refinements for each of the
state verifications defined in the action machine, with which
one can verify that the SUT does indeed currently have the

Figure 2. The action machine
Gallery:ImagesZoom

expected level of zoom.

At the time, the model library contained 11 different ap-
plications: Calendar, Contacts, File Manager, Gallery, Log,
Messaging, Music Player, Notes, RealPlayer, Telephony
(the phone call application) and Voice Recorder. The appli-
cations were modeled in some 110 action machines, with a
corresponding number of refinement machines. Separately,
the action machines contained about 1300 states, 1700 ac-
tions (perhaps 40% of them action words) and 3200 tran-
sitions. Refinement machines added roughly 3000 states,
3000 actions and 4100 transitions to the totals. The main
modeling effort had taken about two months, starting com-
pletely from scratch; another month was spent in thoroughly
checking and debugging the models and their interactions.

Ideally, we might have used the whole model library at
once to run some extremely varied tests, since all signifi-
cant application interactions had been modeled. However,
the sheer size of the combined test model proved too much
for our tools. Computational limits prevented us from cal-
culating the exact magnitude of the combined state space
of the model library, but even careful estimates gave a state
count in excess of 1021. And while the size of the test model
was not a great limit for the on-the-fly parallel composition,
it brought some of our more sophisticated test generation
tools practically to a halt. This forced us to limit the model
components in use to those belonging to the application(s)
under test or, even better, just the necessary models.
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Figure 3. The refinement machine Gallery:ImagesZoom-rm

4 Conclusions

In this paper we have described how we developed a
domain-specific GUI test model library for testing of Sym-
bian S60 smartphone applications. The library is available
under the MIT Open Source License. The library already
covers the basic functionality of most pre-installed applica-
tions and can be easily extended to cover new applications.
The interested reader can view a video of a test session us-
ing the library athttp://www.cs.tut.fi/~teams.

Such a library could be used not only for testing individ-
ual applications but also for setting quality requirementsfor
new third-party applications. Ensuring high quality and in-
teroperability with the default applications is in the mutual
interests of the application developers, as well as the device
and platform manufacturers. While some quality assurance
programs are already in effect [11], we believe that model-
based approaches can significantly contribute to finding de-
fects that are out of reach of conventional approaches.

As already suggested in [9], test modeling seems like a
very effective defect finding method, especially when com-
bined with the idea of exploratory testing. Modeling needs
accuracy and makes the modeler think about different in-
terleavings between concurrent applications. Obviously,it
is also possible to start test modeling much earlier in the
process than the actual test execution, since automated test
execution works only with a SUT of sufficient maturity. In
the future, test execution is expected to reveal more defects.
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Abstract. In this paper we describe a methodology for synthesizing test mod-
els from test cases. The context of our approach is model-based graphical user
interface (GUI) testing of smartphone applications. To facilitate the deployment
of model-based testing practices, existing assets in test automation should be uti-
lized. While companies are interested in the benefits of new approaches, they
may have already invested heavily in conventional test suites. The approach pre-
sented in this paper enables using such suites for creating complex test models
that should have better defect detection capability. The synthesis is illustrated
with examples from two small case studies conducted using real test cases from
industry. Our approach is semi-automatic requiring user interaction. We also out-
line planned tool support to enable efficient synthesis process.

1 Introduction

Model-based software testing [1] has several obvious advantages over conventional test
suite testing where test cases are crafted manually. For instance, on-line tests generated
from state machines can reach significantly higher coveragein testing non-deterministic
systems under test (SUTs) than linear and static test suites. Moreover, maintenance of
large test suites is more difficult when changes occur in the SUT. Frequent changes
are common especially in graphical user interface (GUI) testing that is typically used
to check the functionality of the SUT from the perspective ofthe end users before a
release is made.

The problems with conventional test automation approacheshave resulted in many
bad experiences, and manual testing is still widely considered as the primary quality
assurance method at the system and acceptance level testingof GUI-intensive software
[2]. While unit and integration level test automation can significantly improve code
quality and enable efficient refactoring, system level testautomation entails much more
challenges. This is due to thedomain-specific natureof system level testing; at the unit
and integration levels all SUTs seem more or less similar, depending on the program-
ming language used; the same white-box testing and static analysis techniques work
across different domains. At the system level, however, thecontext comes into play:
testing a banking system can be quite different from testinga set-top box.

The deployment of model-based system testing has been hampered in many contexts
in spite of its many benefits [3, 4]. In our earlier work, we have developed a domain-
specific solution to the GUI testing of S60 [5] smartphone applications that should be



easier to deploy than more generic methodologies [6, 7]. Theapproach consists of a
domain-specific modeling language based on LSTSs (Labeled State Transition Sys-
tems) augmented with S60 specific restrictions, a model-library containing test models
for the basic smartphone applications such as calendar, contacts, camera, and messag-
ing, and tools for on-line test generation. In on-line testing, the idea is to generate tests
while they are executed, thus testing can be seen as a game between the test automation
system and the SUT [8].

In the course of developing our approach we have identified another problem in de-
ployment: companies may have invested huge sums of money to craft test suites and
thus can be unwilling to invest to the development of test models replacing the former
way of working. Thus, in order to facilitate the deployment of our approach, we have
developed a semi-automatic method for synthesizing test models from test cases. This
enables utilizing the existing assets when moving from testsuite testing to model-based
one. The method is domain-specific to enable a higher level ofautomation in the syn-
thesis and promote the usefulness of the resulting models. However, a similar method
could presumably be developed for some other domain, using similar principles.

In this paper we describe the method and the case studies we have conducted. In ad-
dition, since model synthesis is quite different from the traditional way of creating mod-
els, and we compare the synthesized model to a one crafted by hand using a top-down
approach [9]. A tool support for the synthesis is also outlined; its implementation will
be future work. The remainder the paper is structured as follows: Section 2 describes
the context of our contributions, i.e., model-based GUI testing of mobile applications.
Then, we move on to present our approach for model synthesis in Section 3. Sections 4
and 5 present the case studies and discuss the results and thefuture work.

2 Model-Based GUI Testing of Mobile Software

Action words and keywords [10, 11] are commonly used concepts in software test au-
tomation, especially in GUI testing. The basic idea is to separate different concerns:
whatare the important actions to be tested andhowthey are implemented. Action words
are high level descriptions of functionality; in the smartphone context there can be dif-
ferent action words for opening the messaging application,taking a photo with the
camera, or adding a new contact, for instance. Keywords, on the other hand, specify the
exact sequence of events that are needed to implement the functionality described by
an action word. In S60 GUI, for instance, there can be multiple ways of opening a mes-
saging application (short cut, menu, some other application). Each of the different ways
can be encoded as a separate sequence of key strokes that accomplish the action. Fur-
thermore, to receive input from the SUT, some keywords can bededicated to verifying
that a given text string is found on the display, for instance.

The main benefit of action words and keywords is in enabling non-technical testers
to design action word level tests without deep knowledge of the underlying keyword
implementations. Moreover, they ease the tedious maintenance tasks often hindering
the use of GUI test automation; in many cases minor GUI changes can be restricted to
the keyword level. Action words and keywords can be used in conventional approaches
so that the keywords are implemented as a library of functions, one function for each



keyword. Action words are then specified using spread sheets, for instance, that list the
sequences of keywords needed to implement the corresponding action word. Finally,
test cases can be encoded as sequences of action words using spread sheets as in the
previous step.

However, linear and static tests are limited in their ability to find new defects. Thus,
the true power of the action words and keywords is realized when combined with auto-
matic test generation based on behavioral models. For this purpose, we have chosen to
use Labeled State Transition Systems (LSTSs) [12] for test modeling. LSTS is an ex-
tension of the more common Labeled Transition System (LTS) formalism where labels
have been added to states as well as transitions. Action words and keywords are used as
transition labels in the models. The formal definition for LSTS is as follows:

Definition 1 (LSTS). A labeled state transition system, abbreviated LSTS, is defined
as a sextuple(S,Σ,∆, ŝ,Π,val) where S is the set ofstates, Σ is the set ofactions
(transition labels),∆ ⊆ S×Σ×S is the set oftransitions, ŝ∈ S is theinitial state,
Π is the set ofattributes(state labels) and val: S−→ 2Π is theattribute evaluation
function, whose value val(s) is the set of attributes in effect in state s.

Notation of internal transitions makes no sense in test modeling, because our behav-
ioral models have to be strictly deterministic for test generation. Our definition differs
from the original one in that respect.

Actions can be divided into three categories according to how they deal with the
SUT: input, outputandsetup actions. Input actions correspond to user input, and output
actions get information from the SUT. Setup actions affect the SUT just as input actions,
but in ways not accessible to an ordinary user. Setup actionsmight, for example, directly
create or remove files in memory or alter internal settings. Action words often combine
aspects of more than one category, whereas keywords usuallyfall neatly into one or
another.

To enable modular and compositional test modeling,parallel compositionis used
for combining test model components. The parallel composition of LSTSs [12] is based
on a rule set explicitly defining which actions are executed synchronously. An action of
the composed LSTS can be executed only if the corresponding actions can be executed
in each component LSTS, or if the component LSTS is indifferent to its execution.
The following definition is slightly modified in two respects; internal transitions are not
needed and handling of state propositions is made more straightforward:

Definition 2 (Parallel composition‖R). ‖R (L1, . . . ,Ln) is theparallel compositionof
LSTSs L1, . . . ,Ln, Li = (Si ,Σi ,∆i , ŝi ,Πi ,vali), according torulesR, with∀i, j;1≤ i <
j ≤ n : Πi ∩Π j = /0. LetΣR be a set of resulting actions and

√
a “pass” symbol such

that ∀i;1≤ i ≤ n :
√

/∈ Σi . The rule set R⊆ (Σ1∪{√})× ·· · × (Σn∪{√})×ΣR.
Now‖R (L1, . . . ,Ln) = repa((S,Σ,∆, ŝ,Π,val)), where

– S= S1×·· ·×Sn

– Σ = ΣR

– ((s1, . . . ,sn),a,(s′1, . . . ,s
′
n)) ∈ ∆ if and only if there is(a1, . . . ,an,a) ∈ R such

that for every i(1≤ i ≤ n) either
• (si ,ai ,s′i) ∈ ∆i or



• ai =
√

and si = s′i
– ŝ= (ŝ1, . . . , ŝn)
– Π = Π1∪·· ·∪Πn

– val((s1, . . . ,sn)) = val1(s1)∪·· ·∪valn(sn)
– repa is function restricting LSTS to contain only the stateswhich are reachable

from the initial stateŝ.

Parallel composition offers tools for implementing rudimentary variables, which the
basic LSTS formalism lacks. A variable can be created as a single component model,
whose states correspond to different values. The actions insuch avariable modelare
synchronized to those of the other component models so that different values allow
different actions. These synchronized actions can be used to test the value of the variable
or to change it. The idea of using compositional test modeling and separate variable
components is motivated by existing tools, that proof the concept [13].

To hide the complexity inherent in test models and test generation algorithms, and
so to facilitate the deployment of our model-based testing methodology, we have intro-
duced a web based testing service [7]. The idea is that test service users can order tests
using a simple web interface specifying the desired coverage requirements. The cover-
age requirements are then used for driving on-line test generation based on an extensive
model library containing test models for basic S60 applications [9].

We believe that such a service can greatly ease the adoption of model-based testing
in smartphone application testing. However, companies have existing assets in conven-
tional test suites, and they might prefer to utilize them when migrating from traditional
test suite based automation to a model-based one. This led usto research an approach
for synthesizing test models from test cases.

3 Synthesis of Test Models

The synthesis process we have developed allows the creationof a single test model
from a number of test cases. The cases must be strictly linearto begin with; they should
also be specific in detail. The resulting model will have the same level of abstraction
(action word/keyword) as the original cases. Test cases which verify the state of the
SUT often may be easier to handle, but the process is designedto also work with few
or no verifications.

The process has five distinct phases. In the first phase the relevant actions are listed
and parameterized. The second phase consists of creating variables to hold some of the
state information of the SUT. The third phase takes care of the initialization sequence
of the SUT. In the fourth phase recurring states within the test cases are marked and
labeled. Finally, the fifth phase sees the test cases merged together with the variables
and the initialization to form a new test model.

Although the phases are presented consecutively, their order is not fixed. Only the
merging phase is dependent on the others and must therefore be performed last. The oth-
ers may be performed in any order, and it may even be a good ideato consider them side
by side. Throughout the process description we will presenta running example, starting
with the three imaginary action word level test cases in Figure 1. In the first the phone
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Fig. 1.The three initial example test cases.

sends an SMS to itself, in the second it receives and opens an automatically generated
SMS, and in the third it first sends an SMS and then receives it.Note that the actions
CreateSMSandGenerateSMSperform the same task, as do the actionsCloseMessag-
ing andExitMessaging. They are used to demonstrate the effects of different actions
sequences corresponding to the same functionality.

3.1 Action Definition

The first thing to do is to list all the actions used within the source test cases. Possible
parameters should not be included. Once listed, each actionis assigned two values:
weight and idempotence status.

An action’s weight represents its situational specificity.An action with a high weight
is one whose execution with a certain parameter is likely to lead the SUT into the
same state every time. This may be either because the action is only executable in
very few states or because it resets parts of the SUT. An action with a low weight, on
the other hand, is one which can be executed in many differentsituations and whose
effects depend on the current situation. Weights are used inthe merging of test cases. If
identical action sequences taken from different test casesor different parts of the same
test case have a high combined weight, it is likely that the sequences are related to the
same functionality of the SUT. If this is the case, the two test cases may be merged
at the points after the sequences, giving them two differentways to proceed from that
point. The comparison is made with sequences instead of single actions because a long
series of actions is likely to be far more situationally specific than any of its actions
individually.

Actions may be marked as idempotent. The execution of an idempotent action
leaves the SUT in the state it had before the execution. Most idempotent actions are
used to get information out of the SUT. An idempotent action can be discarded from a
test case without breaking it, although the testing value ofthe case may drop.

Finding the right weights is not an exact process. Action words should generally be
given high weights, whereas keywords’ weights vary case by case. In our running exam-
ple all actions are action words. This means they have a high situational specificity, and
we can give all of them maximal weights. VerifyNoMessaging and VerifyMessaging
are idempotent, the rest are not.



Following are some examples with keywords: A keyword for resetting the SUT
has a very high weight, since by default it always leaves the SUT in the same state.
It is clearly not idempotent. A keyword which verifies that a given text is visible on
the screen is idempotent and has a relatively high weight, since the same text does not
very often occur in different situations. A keyword indicating that nothing should be
done for a period of time has minimal weight, since waiting isalways possible. It is
not idempotent, because it is generally used in situations where the state of the SUT is
expected to change during the wait.

3.2 Variable Definition and Integration

Embedding a part of the state of the SUT into variables is an important part of the
synthesizing process. Without separate variables, the states of the test cases may contain
so much information that they can never be merged together. The first, most difficult
task is to identify the variables to be created. As a general rule, those properties of the
SUT which are independent of the current screen of the SUT yetaffect execution should
be moved to variables. Having too few variables reduces the number of potential merge
points and thereby limits the functionality of the final model. Too many variables mean
more work in creating them and may increase the size of the final model, but should not
reduce its quality.

After the variables have been determined, each is given a number of possible values.
The number of values should be kept as small as possible, because they can cause
exponential growth in the final model. Once the values have been chosen, each may be
given one or more setup actions asassignment actions. In the final model, the execution
of the assignment action will automatically set the variable into the designated value.
A single action may act as an assignment action for multiple values, as long as they
do not belong to the same variable. Finally, for each variable one of its values may be
chosen as the initial value. The initial value should eitherhave an assignment action or
be otherwise guaranteed when testing begins. A variable maybe left uninitialized, but
then no action based on it can be taken until it has been given avalue during a test run,
and the size of the resulting model is also somewhat increased.

Once the variable definitions are ready, variable models arecreated for them. For
this purpose we have made a simple Python script which reads in the variable definitions
in CSV (Comma Separated Values) format and automatically produces an LSTS for
each variable. The script also creates avariable initialization modelwhich can set the
variables to specific values before a test run by using the assignment actions.

The ready variables must be integrated into the test cases. This is performed by
adding preconditions and postconditions to the actions in the test cases. Preconditions
specify the values of the variables necessary for the successful execution of the action.
Postconditions, conversely, define the changes of values caused by the execution of the
action. Assignment actions do not require explicit postconditions, but are synchronized
directly into appropriate variables. For optimal result, pre- and postconditions should
be placed right around the relevant action, not around a whole action sequence.

In our running example, we create a single variable to recordwhether there is a mes-
sage on its way to the phone, so that we will be free to merge thetest cases at the main
screen, regardless of whether messages have been sent or not. We use GenerateSMS
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Fig. 2. The example test cases with pre- and postconditions added.

as an assignment action for the value True and pick False as the initial value, which
should be safe for a new test run. Figure 2 shows the variable model and the variable
initialization model, and above them the test cases with pre- and postconditions marked
with braces.

3.3 Initialization Sequence Definition

In order to automatically set the SUT into its initial state before a test run, an initial-
ization sequence is defined. The sequence contains those setup actions which should
always be executed before a test run. They could, for example, reset the SUT, disable
features that might interfere with testing, and create suitable data. Variable initialization
should not be included here. As a rule, all setup actions should be within the initializa-
tion sequence or act as an assignment action for a variable. If a setup action belongs to
neither group, more variables might be needed.

The rest of the initialization phase could be performed automatically with the in-
formation from the earlier phases, although we do not currently have tools for it. The
initialization sequence is made into ageneral initialization model. All non-idempotent
setup actions are removed from the beginnings of the test cases (by now they are all in
the general initialization model or the variable initialization model), and synchroniza-
tion is added to connect them into the initialization models.

The changes made into the test cases in the example are very minor, as Figure 3
shows. The only setup action is ClearInbox, which has been moved into a model of its
own.

3.4 State Label Definition and Assignment

The existence of the variables allows the test cases to be merged with relative freedom,
but there is no guarantee that suitable merging points can beautomatically identified.
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Fig. 3.The example test cases with setup actions separated.
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Fig. 4. The example test cases with filled states marking the main screen.

For this purposestate labelsare added into the test cases. The important states of the
SUT are identified and a name is given to each. Especially important are the starting and
ending states of the test cases (ideally the same state); thebasic states of other major
SUT screens visited during the test cases are also good choices. Properties included in
variables should be ignored.

Once the important states have been selected, state labels with suitable parameters
are placed into test cases at every point in which the SUT is ina chosen state. The
state labels can be handled as LSTS attributes; alternatively they can be interpreted as
idempotent actions with maximal weights. Either way, merges will always be attempted
at their points of execution. They can be easily removed fromthe final model so that
they do not interfere with its execution.

In our example, we decide that the only noteworthy state is the main screen of the
phone and label it, as shown in Figure 4. The states in question have been filled.

3.5 Merging of the Component Models

Now that the test cases have been prepared we can perform the actual merging. This is
done with the merger program, which looks for identical sequences of sufficient weight
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Fig. 5. The model merged from example test cases.

within the test cases and suggests merging their destination states. The program may
also offer false suggestions, i.e. merges that would resultin an erroneous model. Be-
cause of this, the legality of each merge must be manually checked to ensure the validity
of the model. The merging results in acontrol modelwhich contains the functionality of
the original test cases, but without the information encoded into variables. The merged
model, variable models and initialization models are then passed through parallel com-
position, which creates an executable test model.

While the test model obtained this way is usable, it may pose difficulties for test gen-
eration. That is because the model is likely to contain many paths leading to deadlocks,
i.e. states with no outgoing transitions, resulting eitherfrom a denied precondition or
the end of a test case that could not be merged anywhere. The model may be cleaned by
removing all the dead paths, but this is not always a good idea. If the test cases could be
looped back into themselves and deadlocks occur only or mostly in places where a pre-
condition fails, the clean-up procedure should be safe to perform. Conversely, if many
test cases ended in unique states and caused deadlocks at theend, the clean-up could
remove relevant functionality. In this case the model may bebetter left as-is, and the
test generation algorithm must take care not to guide the execution toward a deadlock
prematurely.

Figure 5 shows the model obtained from our example test cases. Merges have been
performed at matching actions and state labels. Adding the initialization models and the
variable model in parallel composition results in the usable model depicted in Figure
6. It would seem that in this case the cleaned model (Figure 7)would be more useful,
since the dead end on the right likely serves no practical purpose; it depicts a situation
where a new message is created with one already on its way, causing the preconditions
to block its sending.

4 Case Studies

We have performed two small scale case studies to test our synthesizing methodology.
The original sequences were linear keyword level test casespicked from a much larger
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set of test cases for S60 applications developed by one of ourindustrial partners. The
first case study used seven test cases for the Phonebook application. The second one had
nine for the Messaging application, concentrating on shortand multimedia messages
(SMS and MMS). Both case studies used the same set of 30 keywords. The Phonebook
test cases had 193 actions altogether, the Messaging test cases 363. Three of the test
cases for the Messaging case study can be seen in Figure 8, with some changes made
for readability and to adapt them for a single phone.

Both case studies used the same set of keywords, which we werealready familiar
with from our earlier work. Giving keywords their weights was therefore easily done,
though the values were somewhat arbitrary; we had yet to perform enough experiments
to find the best values. The Phonebook case proved to require seven variables, six to
hold information about existing contacts and groups and onefor incoming messages.
The Messaging case required six variables, two for the existence of messages and re-
ports and the rest for various settings. The first case labeled the idle state and the con-
tacts and groups screens, the latter labeled the idle state and the screens for SMS and
MMS writing.

After the merge, the Phonebook model had 126 and the Messaging model 192 states.
Parallel composition and cleanup brought state counts to 12523 and 2327, respectively.
The Phonebook case shows the potentially exponential growth caused by variables.
This happened because the variables controlled relativelysmall portions of the model
and had little to do with each other. Conversely, the variables in the Messaging case
were interconnected to some degree, and affected control toa much greater extent; for
example, many individual test cases specified certain settings before sending a message.
As a result, large portions of the control model were reachable only with certain variable
values. Figure 9 shows an overview of the final Messaging model, illustrating its scope
and complexity. Although the models are too large for human understanding, their size
is not a problem for our automated test generation tools.

The quality of the final models appeared to be comparable to the test models in our
test model library [9] created by hand from scratch, although not quite equal to them.
The synthesized models contained less functionality, but this was a result of the original
choice of test cases, not a failing of the method itself. A notable difference was the
higher granularity of the synthesized models: often actions which could be performed
separately in hand-made models were forcibly chained together in synthesized ones.
However, this tendency did not seem to reach truly detrimental levels, and the number
of possible action sequences was still magnitudes higher than in the original linear test
cases. The final difference between the synthesized models and our old models was
that keyword level test cases naturally became a single keyword level model, not a
combination of keyword and action word level models as in ourmodel library. The
action word level might be added using the bottom-up modeling technique presented
in [6]. Presumably action word level test cases could be combined into an action word
level model and the action words then refined as in original test cases, though we have
yet to attempt that.

In both case studies, most of the effort during the synthesizing process went into
variable definition and integration. In the Phonebook case,this was mostly manual
work: the variables were simple, but referenced often. WithMessaging the situation
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Fig. 9. The final Messaging model.

was different. There much time was spent in deciding what exactly should be modeled
into variables, and how exactly would they be integrated into the test cases. Placing the
pre- and postconditions also took considerable time, mostly because the complexity of
the variables demanded great care in integrating them into control. We found merging to
be relatively easy, but it might pose more difficulties to someone not used to test mod-
eling. It definitely requires some understanding of the implemented variables, which
implies that the whole process might be best performed by a single person.

Both of the case studies were performed by a single person andeach required less
than a day to complete. It seems quite reasonable to us that with good tools a person
familiar with the process could synthesize a model of considerably greater size within
a single day. That would be notably faster than creating a comparable test model from
scratch, and would not require a similar expertise in modeling. Fortunately the most
time-consuming phase, variable definition and integration, seems likely to scale rea-
sonably well with the number of test cases (probably linear effort or less). The least
scalable phase by far is merging of the component models (potentially quadratic or
even exponential effort), which at least might be fully automatable.

5 Discussion

In this paper we have described an approach for synthesizingtest models from test
cases. In addition, we presented the results of two small case studies where the approach



was applied for creating test models from existing test cases in the domain of S60 GUI
testing. The synthesis is semi-automatic and thus requiresuser interaction to achieve
useful results. A tool supporting this interaction was alsosketched.

Our approach is domain-specific in the sense that the set of keywords and the cor-
responding weight values must be decided based on the domainknowledge. In our case
studies this was easy because the same person who had built our model library con-
ducted the experiments. However, the other phases of the synthesis process should be
applicable also in other contexts.

There exists a large body of knowledge about the synthesis process. While most, if
not all, of the existing approaches have been originally developed for design, analysis
and code generation purposes, they may be useful for test model synthesis also. Amyot
and Eberlein have compared twenty-six solutions for constructing design models from
scenarios [14]. Moreover, Liang, Dingel, and Diskin have developed comparison crite-
ria for comparing different algorithms and applied the criteria to compare twenty-one
different approaches [15]. However, it seems that domain knowledge can improve the
synthesis; we first experimented with a more generic approach [16], but decided to de-
velop our own to better fit the needs of our context. An extensive study would be needed
to analyze the other existing approaches for their applicability to test model creation,
but this lies outside the scope of this paper.

Some of the currently manual phases in our synthesizing process might be au-
tomated, most notably initialization and parts of modelingof variables. The action
weights and state labels must be set manually. The defining and integration of vari-
ables also requires user input, but actual variable models can be created automatically.
It might also be possible to automate merging totally, not just finding the potential merge
points. In the two case studies, potential merge points occurring at state labels were al-
ways mergeable; this seems likely to be a general rule, as long as the labels have been
placed well. The merge points based on action sequences varied, some being mergeable
and others not. However, in these cases the sequence merges did nothing that could not
have been replicated with well-placed state labels. Based on these observations, it might
be possible to automate the merging to always merge at labelsand disregard sequences
altogether, but more testing is required before implementing such changes.

Although the most work-intensive part of the process, the creation and integration
of variables, cannot be truly automated, it could be substantially eased by proper tools.
These should offer both an easy way to define variables, preferably hiding the models
altogether, and a simple method for setting pre- and postconditions. Some algorithm for
suggesting potential variables would be a highly useful feature, but difficult to design.

In the future, in addition to developing tool support, thereis also the need to conduct
wider case studies and to compare the test coverage that can be achieved with hand-
crafted versus synthesized test models in actual on-line test generation.
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Abstract. Model-based testing can be hampered by the fact that a
model depicting the system as designed does not necessarily correspond
to the product as it is during development. Tests generated from such a
model may be impossible to execute due to unimplemented features and
already known errors. This paper presents a solution in which parts of
the model can be filtered out and the remainder used to generate tests for
the implemented portion of the product. In this way model-based testing
can be used to gradually test the implementation as it becomes available.
This is particularly important in incremental testing commonly used in
industry.
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1 Introduction

Traditionally software test automation has focused on automating the execution
of tests. A newer approach, model-based testing, allows the automation of the
creation of tests by generating them from a formal model which depicts the
expected functionality of the system under test (SUT). An excellent approach in
theory, widespread deployment of model-based testing is nonetheless hindered
by a number of practical issues.

One such issue is fitting model-based testing into the product life cycle. The
error-detection capability of model-based testing is based on the correspondence
between the model and the SUT; a difference between the two indicates an error
in one or the other. However, testing should begin before a fully functional SUT
is available, which means that this correspondence is in practice broken.

The problem first appears during the early implementation of the product.
The test model can be created based on the design plans, and is likely to be
ready long before all the features of the SUT have been fully implemented, since
modeling is a good method of static testing. In this case, the tests generated from
the model may span the whole system under development, even though the SUT
only contains limited functionality. Developing and updating the model alongside
the product is possible but impractical; it should be possible to model the whole



system before it is fully implemented. How, then, can we use a model of the
complete system to generate tests just for the current implementation?

A similar situation is encountered when the testing pays off and an error is
found. Fixing the error may take some time, especially if it is particularly com-
plicated or not very serious. Testing, of course, should be continued immediately.
But how can we ensure that new generated tests do not stumble on the same,
already known issue?

In these cases, the problem is that the model contains functionality that
cannot be executed on the SUT, yet we need to generate actually executable
tests. The magnitude of the problem depends on how the tests are generated. If
the process is cheap, it may be possible to generate an overabundance of tests
and discard the unfeasible ones. However, if test generation is complicated and
costly, it will be necessary to ensure that as little effort as possible is wasted on
unproductive tests.

This paper presents a solution based on filtering the test model in such a way
that unimplemented or faulty functionality is effectively removed. The remainder
of the model can then be used to generate tests for the implemented functionality.
As new features are implemented they can be allowed into the model and test
generation; as erroneous functionality is uncovered it can be filtered out until
fixed. Using this method, a complete test model can be used to generate tests as
soon as the product is mature enough for automatic test execution. The challenge
is to ensure that the filtered model remains suitable for test generation.

The rest of the paper is structured as follows: Section 2 provides an overall
presentation on our approach to model-based testing. Section 3 explains our
filtering methodology in detail, and Section 4 presents a case study based on it.
Finally, Section 5 concludes the paper.

2 Background

Model-based testing is a testing methodology which automates the generation
of tests. This is done with the help of a test model, which describes the behavior
desired in the tests. Depending on the approach, this may mean the behavior of
the SUT or its user, or both combined.

There are two ways to execute the generated tests. In off-line testing the
model is first used to create the test cases, which are then executed just as if
they had been designed manually. In the alternate approach, online testing, the
tests are executed as they are being generated. The latter method is especially
well suited for testing nondeterministic systems, since the results of the execution
can be continuously fed back into test generation, which can then adapt to the
behavior of the SUT.

Our research focuses on online testing based on behavioral models. The for-
malism in our models is labeled state transition system (LSTS), a state machine
with labeled states and transitions. LSTS is a simple formalism and other behav-
ioral models can be easily converted into it, which allows us to create models also
in other formalisms, if need be. The formal definition of LSTS is the following:



Definition 1 (LSTS).
A labeled state transition system, abbreviated LSTS, is defined as a sextu-
ple (S, Σ, ∆, ŝ, Π, val) where S is the set of states, Σ is the set of actions
(transition labels), ∆ ⊆ S × Σ × S is the set of transitions, ŝ ∈ S is the
initial state, Π is the set of attributes (state labels) and val : S −→ 2Π is
the attribute evaluation function, whose value val(s) is the set of attributes
in effect in state s.

Creating a single model to depict the whole SUT is virtually impossible
for any practical system. Therefore we create several model components, each
depicting a specific aspect of the SUT, and combine these into a test model
in a process called parallel composition. We use a parallel composition method
developed in [7], generalized from CSP (Communicating Sequential Processes)
[11]. It is based on a rule set which explicitly specifies which actions are executed
synchronously. The formal definition is as follows:

Definition 2 (Parallel composition ‖R).
‖R (L1, . . . , Ln) is the parallel composition of LSTSs L1, . . . , Ln, Li =
(Si, Σi, ∆i, ŝi, Πi, vali), according to rules R, such that ∀i, j; 1 ≤ i < j ≤
n : Πi ∩Πj = ∅. Let ΣR be a set of resulting actions and

√
a “pass” symbol

such that ∀i; 1 ≤ i ≤ n :
√

/∈ Σi. The rule set R ⊆ (Σ1 ∪ {√})× · · · × (Σn ∪
{√}) × ΣR. Now ‖R (L1, . . . , Ln) = repa((S, Σ, ∆, ŝ, Π, val)), where

– S = S1 × · · · × Sn

– Σ = ΣR

– ((s1, . . . , sn), a, (s′
1
, . . . , s′n)) ∈ ∆ if and only if there is (a1, . . . , an, a) ∈

R such that for every i (1 ≤ i ≤ n) either
• (si, ai, s

′

i) ∈ ∆i or
• ai =

√
and si = s′i

– ŝ = (ŝ1, . . . , ŝn)
– Π = Π1 ∪ · · · ∪ Πn

– val((s1, . . . , sn)) = val1(s1) ∪ · · · ∪ valn(sn)
– repa is a function restricting LSTS to contain only the states which are

reachable from the initial state ŝ.

The parallel composition allows us to use a relatively small number of simple
model components to create a huge test model. In practice, the test model may
well be too large to calculate in its entirety, so the parallel composition is usually
performed on the fly for the needed portion of the model. The available model
components comprise a model library [6], from which individual components can
be composed into a suitable test model.

The model components are divided into two tiers corresponding to the con-
cepts of action words and keywords [1, 4]. Action words define user actions, such
as those commonly used in use case definitions. Accordingly, the upper tier mod-
els based on action words, called action machines, describe the functionality of
the SUT. Action words and action machines are independent of implementation,
and can often be reused in testing other similar systems.



Keywords describe UI events, such as pressing keys or a text appearing on a
display. The lower tier models, refinement machines, use keywords to define im-
plementations for the action words in the action machines. Refinement machines
are specific to implementation, so every different type of SUT requires its own.

The execution of a keyword returns a Boolean value, which tells whether
the SUT executed the keyword successfully or not. Usually a certain value is
expected, and a different result indicates an error. However, in online testing of
nondeterministic systems it may be reasonable to accept either value, since the
exact state of the SUT may not be known. This is modeled by adding a separate
transition for successful and unsuccessful execution. The actions of such transi-
tions are negations of each other. These branching keywords allow the implemen-
tations of action words to adapt to the state of the SUT. If the nondeterminism
affects the execution of the test beyond a single action word, a similar branching
action word is needed. Such action words can be used to direct an online test
into an entirely different direction depending on the state of the SUT. Branching
actions do not fit well into the linear sequences of off-line testing, though, and
the unpredictability especially at the action word level makes the generation of
online tests somewhat more difficult.

Tests are generated with guidance algorithms based on coverage require-
ments. A coverage requirement [8] defines the goal of the test, such as executing
all actions in the model or a sequence of actions corresponding to a use case.
A guidance algorithm is a heuristics whose task is to decide how the test will
proceed. A straightforward algorithm may simply seek to fulfill the coverage re-
quirement as quickly as possible. Others may perform additional tasks on the
side, such as continuously switching between different applications in order to
exercise concurrency features; yet another may be completely random.

Facilitating such diverse goals and methods places some requirements for the
test model. The most important of these is that the model must be strongly con-
nected, that is, all states must be reachable from all other states. A test model
that is not strongly connected poses great difficulties for test generation, since
the execution of any transition may render portions of the model unreachable for
the remainder of the test run. Coverage requirements can no longer be combined
freely, since their combination may be impossible to execute even if they are
individually executable. Finally, online test generation becomes effectively im-
possible, because the only way to ensure that the whole test can be executed is to
calculate it out entirely before beginning the execution and making potentially
irreversible choices.

If strong connectivity is for some reason broken, it must be restored by limit-
ing the model to the maximal strongly connected portion of the model containing
the initial state, which we will call the initial strong component. Unfortunately,
finding the initial strong component can be difficult if the model is too large to
calculate in its entirety. In particular, strong connectivity of model components
does not in itself guarantee strong connectivity in the composed test model.

Ensuring the strong connectivity and general viability of the models is in the
end up to the test modeler, who is responsible for the creation and maintenance



of the models. The test designers, who are responsible for the actual test runs,
should be able to use the models for test generation without needing to worry
about their internal structure. Such distribution of concerns relieves most of the
testing personnel from the need of specialized modeling expertise [9].

3 Filtering

In this section we present our filtering method. First we go through some basic
requirements for the method, and then present a solution based on those. After
that, we examine implementation issues concerning the filtering process, espe-
cially regarding strong connectivity. Following is some analysis of the algorithm
used in implementation, and finally an example of its use.

3.1 Basic Criteria

A method for filtering out unwanted functionality from the models should fulfill
the following criteria:

1. The execution of faulty or unimplemented transitions can be prevented.

2. The model should not be restricted more than necessary.

3. The model must remain strongly connected.

4. Filtering may not require modeling expertise or familiarity with the models.

5. The manual effort involved in the process may not be excessive.

6. Filtering must be performed without modifications to the models themselves.

The first three criteria define the desired result for the filtering process.
Criterion 1 is the very goal of the filtering process. Criterion 2 is likewise ob-
viously necessary, since we want to keep testing the SUT as extensively as pos-
sible. Criterion 3 ensures that the process does not break the basic requirement
placed on the test model. As a consequence, the filtering cannot be performed
by just banning (refusing to execute) problematic transitions or actions, since
such a strategy might effectively lead to deadlocks or otherwise break the strong
connectivity necessary for test generation.

The next two criteria are procedural requirements. Criterion 4 requires that
the filtering process can be performed with no manual involvement with the
models. Ideally, the process would be carried out by test designers, who may
not be familiar with the models or the formal methods involved [9]. Since the
process may need to be carried out often and repeatedly, Criterion 5 states that
it may not require much manual effort.

Finally, Criterion 6 is an implementation requirement. Modifying the models
for filtering purposes would require extensive tool support, so that individual
changes could be made and rolled back as needed, all without breaking the
models. Enabling such a feature might also place additional requirements on the
structure of the models.



3.2 Methodology

There are a number of potential methods by which the tester might perform the
filtering of banned functionality. Most of these require additional actions in order
to keep the model strongly connected, as per Criterion 3; however, with properly
designed models such actions can be automated. The examined methods are:

1. Ban the execution of specific transitions of the composed test model.
2. Ban the execution of specific transitions within model components.
3. Ban the execution of specific actions.
4. Remove model components from the composition.

Actions are general labels for the events of the SUT, whereas transitions
represent the SUT moving from a specific state to another through such an
event; therefore, banning an individual action corresponds to banning all of
the transitions labeled with it. Likewise, banning a transition from a model
component may correspond to banning several transitions from the composed
test model.

Method 1 fulfills all of the specified criteria except Criterion 5, where it fails
spectacularly. An individual faulty transition in a model component is likely
to correspond to many transitions in the test model. Even if the problem is a
concurrency issue and appears only with a specific combination of applications,
it is unlikely to be limited to a situation where all of the tested applications are
in exactly specific states. As such, the method is thoroughly impractical.

Method 2 is more promising, since removing the faulty transition from a
model component will remove all of its instances from the test model. This
method is no longer minimal (Criterion 2): in case of a concurrency issue, this
method may remove more functionality than is strictly necessary. However, it
does not greatly limit continued testing; furthermore, a more specific method
based on multiple components at once would likely require a deeper understand-
ing of the models, violating Criterion 4. Another problem is that transitions do
not have inherent identifiers, although they can be uniquely identified by their
source state and action. States are only identified with numbers, whose use would
at the very least require some inspection of the model components.

In practice, Method 3 works very much the same as Method 2. It may restrict
the models more, but only if the model component uses the same action in
multiple places, only one of which actually fails. Unlike transitions, actions are
clearly labeled and test designers will work with them in any case, so they can
be easily used also for this purpose.

Finally, Method 4 is also easy to use. In fact, it might well be worth imple-
menting for other purposes such as limiting the size of the test model. However,
removing whole components from the model goes against Criterion 2, since it
could drastically reduce the amount of functionality available for testing. It does
have one additional benefit: it is relatively easy to design the models so that the
removal of a component leaves the rest of the test model strongly connected.

Of these four, Method 3, based on banning actions, appears to be the best. It
does not restrict the models much more than is necessary and is quite easy to use.



It does require some additional effort in order to retain the strong connectivity
of the models, though.

In contrast, Methods 1 and 2 involve serious procedural issues and in practice
do not leave much more of the model available. On the other hand, Method 4 is
considerably more restrictive than necessary. However, as mentioned, it may be
worth implementing anyway for other reasons, in which case it can be also used
to filter models where suitable.

3.3 Banning Actions

There are three implementation issues to take care of. First, we need a means to
obtain a test model with individual actions removed without altering the original
models, as per Method 3 and Criterion 6. Second, we must devise a method for
restoring the strong connectivity of the test model (Criterion 3), since removing
individual actions may break it. Third, we must take into account the branching
actions, whose both branches must be retained or removed together.

The simplest way to obtain a modified test model is to create a modified copy
of the rules of parallel composition such that banned actions will not show up
in the test model. This method is simple to implement and limits modifications
to one place. Alternatively, modified copies of the model components could be
created with banned actions removed, and then composed as usual. However,
such an approach would require modifications in several places, and modifying
a model component is liable to be more difficult than removing rules from a list.

Ensuring the strong connectivity of the test model is more difficult. It is
obviously not possible to design all models so that any actions could be removed
without breaking strong connectivity. As for automation, in a general case it is
not possible to determine whether a test model is strongly connected without
calculating it entirely, which may be impossible due to the potential size of the
model. As a solution, our filtering algorithm seeks to deduce the initial strong
component from the model components and the rule set, but without calculating
the parallel composition. The result is an upper bound for the initial strong
component, that is, a limited portion of the original model which contains the
initial strong component. The algorithm is based on the following principles:

1. an action must be banned if it labels a transition which leads away from the
initial strong component of a model component

2. an action may be banned if it does not label any transition within the initial
strong component of a model component

3. an action may be banned if there remain no rules which allow its execution
4. a rule may be removed if any of its component actions is banned

The first principle is the most important: leaving the initial strongly con-
nected component of a model component cannot be allowed, since there would
be no way back, and the strong connectivity of the test model would be broken.
In contrast, the other three principles ban actions and remove rules which could
not be executed in the test model anyway. Actions outside the initial strong



components are effectively unreachable, an action without rules does not appear
in the composed test model, and a rule without all of its actions can never be
applied. Therefore, these three do not limit the models needlessly. They are also
not useful in themselves, but may allow greater application of the first principle.

Based on these principles, we have developed Algorithm 1 and implemented
it as a part of the TEMA open source toolset [10]. The lines from 1 to 11 set the
initial values for the data structures, as well as marking for handling the initially
banned actions and removed rules. The loop on line 12 additionally marks for
handling those actions for which there are no rules. The three main parts of
the algorithm are within the loop on line 16. First, the loop on line 18 handles
banned actions, removing any rule which requires them. Second, the loop on
line 24 handles rules in a similar way, banning all actions for which there are no
rules left. Third, the loop on line 32 calculates the initial strong components of
the model components and marks for handling those actions which lead outside
the component or cannot be reached within it. These three are repeated until
no more actions can be banned or rules removed. The calculation of the strong
components, which can be performed for example by Tarjan’s algorithm [13], is
the most time-consuming part of the algorithm. It is therefore only performed
when no other method for progress is available.

The algorithm returns both a set of removed rules and one of banned actions;
either can be used to perform the actual filtering. The list of banned actions is
also useful to the modeler, since it can be used to estimate the effects of filtering.
This is important because the algorithm does not necessarily yield the exact
initial strong component but only an upper bound for it. The rest will be up to
the modeler, who should design the models so that the bound is in fact exact,
and there is no way out of the initial strong component.

The nature of the algorithm makes it easy to define not only an initial set of
banned actions, but also one of removed rules. This may be occasionally useful,
for example to remove some kinds of actions across the model components.

Specific model semantics may require some changes or additions to the basic
algorithm. Branching actions are such a case: if one branch gets banned, the
other one must, too. To take this into account, we modify the algorithm such
that every time an action is marked to be handled, we check for other branches
and mark them also. It might also be useful to allow the modeler to define similar
dependencies on a case-by-case basis, where strong connectivity demands it; we
have yet to implement such a method, however.

3.4 Analysis

Following is a brief analysis of the time requirements of Algorithm 1. For an arbi-
trary model component m ∈ M , we will mark m = (Sm, Σm, ∆m, ŝm, Πm, valm).
All set operations used in the algorithm (addition and removal of elements, check
for membership or emptiness) can be performed in amortized constant time.

The handling of each rule requires O(|M |) time: it may get marked for han-
dling by each action it refers to, and may have to mark for handling each of



Algorithm 1 The filtering algorithm for the set of model components M com-
posed with the rules R, with the rules remove ∈ R initially removed and the
actions ban(m) ∈ Σm of model components m ∈ M initially banned.

banned_actions, unhandled_actions, removed_rules := ∅
unhandled_rules := remove
changed_models := M
for all model components m ∈ M do

5: for all actions a ∈ ban(m) do

add (m, a) to unhandled_actions
for all actions a of m do

remaining_rules(m,a) := ∅
for all rules r ∈ R do

10: for all actions a of model components m in r do

add r to remaining_rules(m,a)
for all model components m ∈ M do

for all actions a of m do

if remaining_rules(m,a) = ∅ then

15: add (m, a) to unhandled_actions
while unhandled_actions 6= ∅ or unhandled_rules 6= ∅ do

while unhandled_actions 6= ∅ or unhandled_rules 6= ∅ do

for all model-action pairs (m, a) ∈ unhandled_actions do

for all rules r ∈ remaining_rules(m,a) do

20: if r /∈ removed_rules then

add r to unhandled_rules
add (m, a) to banned_actions

unhandled_actions := ∅
for all rules r ∈ unhandled_rules do

25: for all actions a of model components m in r do

remove r from remaining_rules(m,a)
if remaining_rules(m,a) = ∅ and (m, a) /∈ banned_actions then

add (m, a) to unhandled_actions
add m to changed_models

30: add r to removed_rules
unhandled_rules := ∅

while changed_models 6= ∅ and unhandled_actions = ∅ do

m := any element from changed_models
remove m from changed_models

35: reachables := ∅
isc := the initial strong component of m with banned actions removed
for all transitions (s, a, s′) of m do

if s within isc then

add a to reachables
40: if s′ not within isc and (m, a) /∈ banned_actions then

add (m, a) to unhandled_actions
add m to changed_models

for all actions a of m do

if a /∈ reachables and (m, a) /∈ banned_actions then

45: add (m,a) to unhandled_actions
add m to changed_models

return removed_rules, banned_actions
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Fig. 1. Two example model components and their composition with the rules
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√
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√
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those actions. For all rules, this gives O(|R||M |). In addition to this, the han-
dling of each action takes only constant time, yielding O(

∑
m∈M |Σm|). Calcu-

lating the strong components of a single model m ∈ M with Tarjan’s algorithm
takes Θ(|Sm| + |∆m|) time. However, since we are only interested in the ini-
tial strong component, effectively |Sm| ≤ |∆m| + 1, resulting in Θ(|∆m|). The
subsequent handling requires Θ(|∆m| + |Σm|) = Θ(max(|∆m|, |Σm|)). The cal-
culation is carried out for each model only after new actions have been banned;
since all unreachable actions get banned on the first (compulsory) time, the cal-
culation will be performed at most min(|Σm|, |∆m|) + 1 times. The result is
O(

∑
m∈M min(|Σm|, |∆m|)max(|∆m|, |Σm|)) = O(

∑
m∈M |Σm||∆m|).

Putting the above figures together, we get O(|R||M | +
∑

m∈M |Σm||∆m|).
This means linear dependence on the number of rules times the size of a single
rule, plus quadratic dependence on what is essentially the sizes of the model
components. The first term is quite reasonable, since the same time is required
to simply write out the rules. The second term, while not insignificant, is still
perfectly manageable if individual model components are kept small enough.

3.5 Example

We will now present an example of Algorithm 1 with the models in Figure 1,
combined with the rules R = {(a,

√
, a), (b,

√
, b), (c, c, c), (d,

√
, d), (e, e, e)}. Let

us assume that the implementation of action d of Model 1 is faulty and initially
ban (1, d).

Since the action (1, d) is banned, we remove the rule (d,
√

, d) which refers to
it. After that, we must calculate strong connectivity; we shall do it for Model 1
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Fig. 2. Filtered versions of the example model components and their composition with
the filtered rules R = {(a,

√
, a)}.

(calculating the strong connectivity for Model 2 would not yield anything new
anyway). We notice that in Model 1 the action c leads out of the initial strong
component and ban (1, c). Consequently, we also remove (c, c, c) and then, be-
cause there are no longer any rules for it, (2, c).

Again we must calculate strong connectivity. This time, we do not learn any-
thing from calculating it for Model 1, but in Model 2 we notice that (2, e) is
unreachable and ban it. Following that, we remove (e, e, e) and ban (1, e). We
note that now the action b breaks the strong connectivity of Model 1, and ban
(1, b) and remove (b,

√
, b). Finally, Model 2 has changed since our last connec-

tivity calculation for it, so we perform one, but learn nothing new. At this point
the algorithm returns the results and terminates.

In the end, we have banned the actions b, c, d and e from Model 1; banned the
actions c and e from Model 2; and removed the rules (b,

√
, b), (c, c, c), (d,

√
, d)

and (e, e, e). All that is left of the model components is a two-a loop in Model 1,
which is also exactly what will show up in the test model composed with the
single remaining rule (a,

√
, a), as seen in Figure 2. Looking at the original com-

posed model in Figure 1, it is easy to see that this is what should happen with
the action d banned.

3.6 Other Composition Methods

If the algorithm is to be used with a different method of parallel composition, it
will be necessary to create a rule set that implements corresponding functionality.
For example, the basic parallel composition where actions of the same name are
always executed synchronously would correspond to the rules

R = {(σ1, . . . , σn, σR) ∈ (Σ1 ∪ {√}) × · · · × (Σn ∪ {√}) × (Σ1 ∪ · · · ∪ Σn) |
∀i; 1 ≤ i ≤ n : (σR ∈ Σi → σi = σR) ∧ (σR /∈ Σi → σi =

√
)}

Although the rule set is needed for the execution of the algorithm, it is
not necessary to actually implement rule-based parallel composition. The list of
banned actions the algorithm returns can be used to perform filtering within the
model components, and these can then be combined with the original method
of composition.



4 Case Study

As a case study, we will examine the process of modifying models from an existing
model library to conform to the requirements of filtering. The purpose is to
ensure that test models composed from the library can be relied on to remain
strongly connected when arbitrary actions are filtered out; afterward, filtering
can be performed automatically. First, we will present the model library and
how its model components might in practice be filtered. We will then examine
the actual modifications made to the models of one application in the library,
and finally analyze the results.

4.1 Setup

The model library we will examine has been designed for the testing of smart-
phone applications [5]. The latest version contains models for eight applications
such as Contacts and Messaging, over four different phone models, on differ-
ent platforms such as S60 and Android. The model components in the library
have been designed to yield a usable test model even if only some of them are
included in the composition, as long as specified dependencies are met. How-
ever, they have not been designed to withstand the arbitrary removal of actions
gracefully.

In this case study we will focus on the models of the Contacts application.
It consists of six action machines and a corresponding number of refinement
machines, and has about 330 states altogether. As such it is one of the smaller
applications in the library, and simple enough to be a comprehensible example.

When examining the effects of filtering, we can safely limit ourselves to ban-
ning action words in the action machines, since they represent the (potentially
unavailable) functionality of the SUT. The task is performed by banning action
words one at a time and examining the results with the help of the filtering
algorithm. From the results we can determine whether the composed test model
would remain strongly connected or not.

4.2 Modifications

An initial execution of the algorithm with no actions banned yields a list of a
few unimplemented actions; these appear in the action machines but have no
implementation. Such actions would not appear in the test model anyway, so
they can be safely banned. We then proceed to banning individual action words,
and find two problematic situations.

The first problem we encounter is in the model component depicting the func-
tionality of the list of contacts (Figure 3). The only action word in the model,
awVerifyContactsExist , is a branching action word used to find out whether
there are any contacts in the application (the negative branch is prefixed with
a ‘∼’). This action can only be executed if we are unsure of the current situa-
tion regarding contacts; the preceding synchronization actions check from other
model components whether we know anything about the existence of contacts.
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Fig. 3. The Contacts List action machine, with the action word awVerifyContactsExist

on the right.

The filter algorithm quite intuitively suggests that if the action word is
banned, the action WAKEapp<ReturnVerifyContactsExist: Unknown> should
also be banned to preserve strong connectivity. However, that would actually
cause a deadlock elsewhere in situations where the existence of contacts really is
unknown. The solution here is to add a transition with a new comment action
from the state on the right between the synchronization and the action word
back to the central state on the middle left. A comment action can be executed
with no effect to the other model components or the SUT, allowing us to bypass
the verification of contacts’ existence. Now the synchronizing action no longer
needs to be removed with the action word, and strong connectivity is preserved.

The second problem spot is also related to the way the models keep track
of the number of contacts. The existence of contacts is abstracted into three
categories: contacts exist, contacts do not exist, and unknown, with unknown
used as the initial value. The problem shows up in the model component re-
sponsible for the deletion of contacts (Figure 4), if we ban one of the actions
awToggleContact , awAttemptDelete or awDelete.

The immediate result of the ban is that contacts can no longer be removed
individually (or at all for awDelete). However, the individual removal of contacts
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Fig. 4. The Delete Contacts action machine, with the action words awToggleContact

and awAttemptDelete at the right side of the octagon, and awDelete at the bottom
left. awAttemptDelete fails if no contacts are selected.

is the only way that the existence of contacts, once known, can become unknown
again. This means that their existence cannot ever be allowed to become known,
which results in banning every action related to their creation and handling. The
test model becomes next to useless, though is does remain strongly connected.
Despite the apparent complexity of the problem, the solution is simple: modify
the models so that the knowledge of the existence of contacts can be ‘forgotten’,
moving us back into the unknown state.

4.3 Results

All in all, the Contact models withstood the banning of action words fairly well.
The first described problem is likely typical, with complex synchronizations be-
tween the model components resulting in a deadlock whose existence the fil-



tering algorithm cannot deduce. The second problem shows that broken strong
connectivity is not the only potential issue; one should also consider whether
connectivity could be preserved with lesser limitations.

The filtering algorithm was very useful in finding the problematic situations
in the models. While the first problem would have been easy enough to spot
in manual inspection, the second was more obscure and might have been easily
missed. Using the algorithm to calculate the effects of removing actions was also
much faster than manual examination would have been.

Making the necessary modifications to the models clearly requires some mod-
eling expertise. This is not a serious issue, since they would usually be made by
the original modeler, as part of the normal modeling process. In this case the
whole modification process took less than an hour, and was performed man-
ually apart from using the filtering algorithm. Thus, there should not be any
significant increase in the modeling effort.

5 Discussion

Using model-based testing in the early phases of product implementation can be
difficult, because the product does not yet correspond to the model depicting the
entire system. The problem can be solved by altering the model so that unimple-
mented or faulty functionality is removed and no tests are generated for it. This
way the model can be matched to the product throughout its implementation.

Model transformations [2] can be used to modify the test models as needed;
their use to keep the test models up to date during development is described in
[12]. The use of parallel composition to limit the model to specific scenarios is
mentioned in [3, 14], although no mention is made of ensuring the viability of
the resulting models. All in all, there does not appear to be much previous work
on restricting the functionality of test models and the consequences thereof.

The basic method presented in our paper is very simple, based on banning the
actions corresponding to unexecutable functionality in the models or removing
the rules acting on them in the parallel composition. The greatest challenge is
ensuring that the model remains conducive to test generation; specifically that
it remains strongly connected. The algorithm presented in the paper seeks to
estimate the initial strong component of the model as well as possible without
actually calculating the composed test model. The rest is left up to the modeler.

Our case study showed that modifying existing models to withstand filtering
without losing strong connectivity is feasible; by extension, so is designing models
to match the same requirement from the first. The filtering algorithm proved very
useful in the task, since it can be used to show the effects of banning specific
actions and thus reveal problematic structures in the models.

The filtering algorithm takes advantage of the explicit set of synchronization
rules used by our method of parallel composition. It can also be used with other
parallel composition methods, if a suitable rule set is created to describe the
synchronizations. The practical issues related to this are left for future work.



Likewise for the future are left the methods for filtering non-behavioral models
and test data.
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Abstract

The fact that model-based testing has not yet attained a
high rate of adoption in industry can in part be attributed to
the perceived difficulty of debugging long error traces often
produced by the online version of this technology. Given the
extensive manual labor commonly involved in the debugging
phase, automating parts of this process could yield con-
siderable productivity benefits. This paper presents viable
debugging strategies applicable in model-based graphical
user interface testing, from which two methods were refined
and experimented with. The first is based on superimposing
log-derived, synchronized subtitles on recorded test run
footage, while the second addresses error trace shortening.
The results obtained from applying these methods in real-
life case studies demonstrate the practical utility of these
methods.

1. Introduction

It is commonly recognized that testing and debugging
consume a considerable amount of time and resources in
software projects due to the great manual work needed in
these tasks. Especially black-box testing and the fault analy-
sis and localization related to this type of testing are highly
context-sensitive activities, which accounts for the limited
number of approaches working across different contexts
[1]. However, if we could develop techniques to automate
parts of the laborious fault analysis and localization process
at least in some widely used context, such as graphical
user interface (GUI) testing, this could potentially have
significant benefits in the productivity of software production
at least in that specific context.

Model-based testing (MBT)[2] offers many advantages
relative to traditional script-based approaches. However,
MBT is not widely spread and has as yet been adopted pri-
marily by technological innovators. This low adoption rate
of MBT is due to both technological and non-technological
reasons [3], [4]. As a technology, MBT has been under active
research in recent years, during which the paradigm has
spawned numerous practical applications, e.g. [5], [6], [7]. It
is obvious that the success of these technologies depends toa
great extent on the ability to correctly analyze and localize
discovered faults, i.e., the debugging of model-based test
runs is vitally important and factors greatly into the degree

to which these technologies provide value to their users. The
work described in this paper addresses the difficulties of fault
analysis and localization that are inevitable when engaging
in automated test generation based on behavioral models.

Since MBT allows long-period testing where new se-
quences of events are constantly input to the system under
test (SUT) instead of just repeating the same test cases as
in conventional test automation approaches, theexecution
traces, i.e. sequences of executed actions, produced by this
technology can be very long. When an execution trace has
given rise to a failure, it is known as anerror trace; the
failure can be due to the SUT functioning incorrectly or
some other reason. Such a trace can often be automatically
obtained from a test log. The purpose of debugging, in
the instance of MBT, is to establish the cause of failure
by examining the error trace or by some other means.
The significance of this process is emphasized by the fact
that, depending on the interface in use for test execution,
it might be possible to execute a sequence of millions
of events in a short period of time: in a few hours, for
instance. In the instance of GUI testing, the focus of this
paper, test execution is usually slower than when using
software application programming interfaces (APIs) or test-
specific interfaces; we consider long sequences to consist of
thousands of events, which can mean a tedious debugging
task without any tool support.

Debugging has recently received growing interest from
the research community, with techniques such as dynamic
program slicing [8], execution backtracking and delta de-
bugging [9] having been researched to a moderate degree.
However, one area that has not been extensively researched
so far is the debugging in the context of model-based test
automation technologies.

In this paper, we explore solutions for debugging long
error traces produced by model-based GUI testing. Some
of these approaches have already been applied in different
contexts, but in addition to these methods, two promising
approaches were conceived and implemented during our
research, and case studies were conducted to assess their
practical utility. The results obtained from these case studies
establish the usefulness of these methods in the target
context.

The remainder or this paper is structured as follows: In
Section 2 an overall presentation of MBT is provided. In
Section 3 we introduce methods for debugging long error



traces. The results of the case studies are presented in
Section 4 and conclusions drawn in Section 5.

2. Model-Based Testing

In general, MBT can be defined as a testing approach
where not only the execution, but also the generation of tests
is automated. The level and depth of test generation may
vary between different techniques. The tests are generated,
at whatever level, from a formaltest model, such as a
state machine, the contents and purpose of which also
vary between different approaches. The test model may be
based on system requirements or specifications, or reverse-
engineered from the SUT.

There are two basic methods for using the test model to
create tests. In one approach,offline testing, the model alone
is used to create a finite sequence of actions according to
some predefined criteria. This sequence is then treated as
a traditional test script, and may be executed at some later
point. The other approach isonline testing, where tests are
created and executed simultaneously. Every time an action
is selected in the model, it is also executed in the SUT.
Separate scripts are not created at all. Online testing has
two advantages over offline testing. First, since selected
actions are executed immediately, the results of the execution
can affect the progress within the model and thereby the
selection of the following actions. This allows the effective
modeling and testing of nondeterministic systems. Second,
an online test may be unlimited in length since there is no
need to prepare a complete script beforehand.

The selection of actions in the model is performed by a
guidance algorithm, whose task is to select the actions to be
added to a script or executed, depending on the approach.
Useful tests can be generated even with a totally random
algorithm, but more complicated heuristics and parameters
allow the generation of different kinds of tests, based on use
cases, for instance. The parameters defining the objective of
the test are called thecoverage requirement. For example,
a test corresponding to a use case might be generated by
using a graph search heuristic with a coverage requirement
representing the use case. The semantics we use for such a
coverage requirement is described in [10]; essentially the
requirement is an expression of model actions combined
with operators AND, OR and THEN. For example, the
expressionA THEN (B OR C) would require the execution
of action A, followed by the execution of eitherB or
C. Other actions could be executed in between; coverage
requirements do not restrict executable actions. A graph
search algorithm would seek to fulfill the requirement by
first searching the model for a path to a transition labeled
with A. Once a path is found, it is executed in the model
and on the SUT. Next, a path leading to either ofB or C is
searched for and executed. With strongly connected models
a path to any transition can always be found.

In comparison with traditional script-based testing, MBT
has many advantages. First, provided that the test model is
perfected so that it contains all the necessary functionality
of the SUT, it is possible to automatically generate test
cases far more inventive and intricate than a human tester
could design. In other words, automatically generated test
cases can describe scenarios that never would have occurred
to a human tester. Second, the modeling process itself
can uncover many faults in the test target, possibly even
more than what could be discovered as a result of running
the actual tests based on the created test models. Last,
maintainability is facilitated as there is no need to update
test cases when the SUT changes, the changes needed can
usually be limited to few component models.

Maintainability can be further enhanced by separating
the models into two levels of abstraction, based onaction
words and keywords[11]. Action words depict the func-
tionality of the SUT, that is, what actions the SUT can
perform. Keywords, on the other hand, depict user interface
(UI) events, for example, key presses and onscreen text
verifications. Models based on action words describe the
functionality of the system as a whole and define what
kinds of tests can be generated. Models based on keywords
contain the implementations for the action words. Since
the functionality of the SUT is relatively stable during
development, as compared to the often more volatile UI, the
necessary maintenance effort can be focused on the keyword
level. For a more thorough description of our approach and
the associated open source toolset called TEMA, the reader
is referred to [7].

Automatic execution of model-based tests is enabled by
an adapter, a component which transforms the actions of
the test sequence into actual events on the SUT. The adapter
determines the set of keywords available in modeling; the
set is based on what access the adapter has to the SUT.

The whole MBT and debugging process is illustrated in
Figure 1. Models may be based on the requirements or
specifications of the system, or reverse-engineered from a
working SUT. The test model is used to generate tests, which
are relayed to the SUT via the adapter for execution. When
the test results (including the test log) indicate errors inthe
system, they are debugged in order to establish their source,
so that they can be fixed.

3. Debugging Long Error Traces

Even though MBT features many advantages, it poses new
challenges to the process of debugging run tests, especially
when these tests have been long. This section treats the
debugging issues stemming from the complexity of the MBT
paradigm, focusing particularly on the aggravated problems
with longer test runs. At the outset, some general consid-
erations and possibilities in debugging MBT are discussed,
continued by the introduction to two prospective debugging
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methods and a brief look at a few alternate, potential
debugging methods. The implementations of the identified
two methods are thereafter presented in more detail.

The first of the two implemented methods is particularly
applicable in GUI testing, exploiting both video footage of
a test run and the test log of that particular test run, whereas
the second method draws on a simple principle of executing
the original test gradually in subsequences of the original
trace. This process is carried out with an ascending number
of actions included in the subsequences, starting from the
very last action of the original test, while the actual execution
of events is still carried out with a guidance algorithm.

3.1. Debugging Model-Based Test Runs

In general, it can be stated that the most common reason
for a MBT test failure is a conflict between the SUT behavior
and the modeled behavior, i.e., the test model does not, to
some degree, describe the behavior of the SUT as it should.
This may be due to incorrect modeling or a real fault in the
SUT.

In our approach, another very common cause of failure in
performed test runs has been the delay between executing
certain keywords on the SUT, which could be pinned on both
the SUT and the test model. For example, when sending two
consecutive key presses within a short enough interval to the
SUT, the second one cannot be processed by the SUT while

the execution of the first one is still in progress, resultingin
a test run disruption. This is, on the one hand, a property of
any computing device, but on the other hand, an oversight
in the model design process, as it is possible to reckon with
such eventualities by adjusting a proper delay in the models.
This delay would then occur always after the execution of
certain keywords, thus insuring the SUT recovery.

As far as debugging is concerned, the issues originating
in the test model are probably those most susceptible to
systematic debugging procedures. Conversely, faults origi-
nating from somewhere else are more difficult to detect by
any systematic method, as the nature of these faults could
vary substantially.

The two aforementioned model-related fault areas, timing
issues and conflicts between the test model and the SUT,
are easiest to notice when it is possible to simultaneously
view the actual test run and the events recorded in the test
log of that particular test run. This would make it possible
to instantly notice when the events occurring in the test run
no longer check with those suggested by the test log. This
is a viable option especially in GUI testing, as tests based
on this paradigm can easily be recorded and viewed anytime
later.

Then again, some real faults in the SUT could require
long action sequences in order for them to manifest them-
selves, which necessitates a different debugging approach
that would address error trace shortening.

3.2. Prospective Methods

Two methods were conceived as tentative options in
debugging test runs based on the concepts and methods
of our MBT approach, as described in Section 2. These
methods could be adapted to other contexts and approaches
as well, and their applicability to external contexts will be
contemplated as the methods are introduced in more detail.
Even though both of these methods are based on simple,
common-sense debugging principles, their application in the
context of MBT has not been reported before.

3.2.1. Test Run Video Synchronization with Log Data.
The first and more pragmatic of these methods taps into
existing video footage of a test run and the test log of that
particular test in order to create a synchronized visual trace
of the test run. In practice, this is achieved by gleaning the
most relevant information from the test log and presenting it
as a sequence of timed subtitles, superimposed on the video
footage. This would afford remarkable ease for debugging as
the test run could be viewed as many times as necessary at its
critical points with synchronized event data being displayed
simultaneously. Accordingly, this method would facilitate
the debugging process by enabling the viewer to instantly
distinguish when the actual events performed on the SUT
no longer agree with those suggested by the test log data.



This would be especially helpful with long test runs, as the
video could be either rewound or fast-forwarded toward the
point where the video events no longer square with those
implied by the log data, with no need to view the entire
video. Furthermore, this method is relatively universal in
nature, enabling fault detection in the SUT as well as all
parts of the test tool architecture.

As to the application of this method, it would not fit any
other testing context except GUI testing on account of its
visual nature, and, for instance, debugging API tests with
this method would be nonsensical. It should, however, be
applicable to other MBT approaches as well, in addition to
the one pursued by us, regardless of whether it is online or
offline testing or based on action words and keywords, as
long as there is some event data with timestamps available.

3.2.2. Trace Incrementation. The second identified method
is based on the concept of gradually executing a failed test
run in subsequences. More precisely, the actions of an error
trace would be compiled into a new coverage requirement
starting from the very last action of the error trace while
gradually increasing the number of included actions until
the whole trace has been included. The method requires
a suitable guidance algorithm for executing the resulting
coverage requirement. It places no restrictions on how the
original trace was formed, however.

In the increase phase of the method the number of
included actions would be either multiplied by some coeffi-
cient, or alternately increased by adding a constant number
of new actions to the total. The action subsequences are
formed in reverse order to their appearance in the error
trace (from end to beginning), while the contents of the
subsequences would retain the same order as during the
original test execution. The purpose of this process is to
discover as short a subsequence of the error trace as possible
that still causes the same failure as the original test run did.
When executing the new coverage requirement the shortest
subsequences, which only contain actions from the end of
the trace, will be executed first. If they fail to reproduce
the error, the execution will proceed into larger and larger
subsequences, which also contain actions from the beginning
of the trace. Since the final subsequence is the original error
trace, the failure will eventually be reproduced.

The following are the definitions for the additive and
multiplicative versions oftrace incrementation:

Def. 1 (Additive trace incrementationInc+).
Inc+(A, k) is the additive trace incrementation
of the trace A = a1a2 . . . an with the
incrementk ∈ N, k ≥ 1 such thatInc+(A, k) =

(THEN⌈n/k⌉−1
i=1 (an−ik+1 THEN an−ik+2 THEN

. . . THEN an)) + A

Def. 2 (Multiplicative trace incrementationInc×).
Inc×(A, c) is the multiplicative trace incremen-
tation of the trace A = a1a2 . . . an with the

coefficient c ∈ R, c > 1 such thatInc×(A, c) =

(THEN⌈log
c
(n)⌉−1

i=0 (an−⌊ci⌋+1 THEN an−⌊ci⌋+2

THEN . . . THEN an)) + A

This method is especially useful when the exact cause
of failure is unknown and the functionality that induces
that specific failure cannot be deduced from thorough trace
scrutiny. This method also lends itself to debugging long test
runs.

An additional advantage of this method is that it would
retain its applicability when transitioning to testing of an-
other type. In other words, it would be possible to debug
API tests with this method and MBT testing of any other
kind as well, provided that there were, again, some existing
event data on the test run.

3.3. Related Work

The underlying principle of the trace incrementation
method has already been applied to debugging before, for
example in [12], where randomized unit test cases are
minimized by exploiting the dependencies between the state-
ments involved in the failure, and in [9], which presents a
general minimization algorithm to aid debugging, known as
delta debugging. However, these two approaches are not,
as such, applicable in our context. The approach described
in [12] is applicable with program code, but in our case
the dependencies between the abstract actions involved in a
failure cannot be readily established. The delta debugging
approach presented in [9] would not meet our needs either
since it involves executing a great number of succeeding
and failing subtraces in an effort to find a minimal error
trace. In our case this would take an excessive amount
of manual effort, because our SUTs cannot automatically
recover from failure. Trace incrementation is the closest
working equivalent: starting from the smallest subtrace, and
increasing its size along the route most likely to reproduce
the error until a failure manifests itself.

In addition, there are a few other known debugging
methods that could be adapted to the needs of MBT and
that are viable options in the debugging of model-based test
runs. Of these known methods, there are two approaches
that are especially applicable to MBT. These methods are
next introduced briefly, after which they will be evaluated
against the two methods presented earlier.

3.3.1. Alternate Methods. The first of the alternate methods
could be used to detect conflicts between the SUT and
the test model without having to repeat the entire error
trace. In practice, this would be achieved by setting the
SUT into the state where the test execution was prior to
the execution of the last action of a test, followed by the
execution of that particular action. Since executable actions
equate to test model transitions, the last action would be
performed by traversing the last transition in the test model
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Figure 2. Simple example model.

and executing the corresponding action on the SUT. Now,
if the last action could not be executed on the SUT, it
would suggest a fault either in the model or in the SUT.
The underlying principle of thistransition-specific search
method has been applied in debugging before, for example
in [13], where the search of failure-inducing state changesis
automated. The paramount advantage of this method consists
in discovering circumstance-dependent failures that might
otherwise be difficult to uncover. For example, some failure
might manifest itself only when multiple applications are
running at a time or the state of the SUT is otherwise
propitious for the failure to occur.

The second prospective debugging method is also closely
related to models, as it is about removing loops from the
traces executed on them. Supposing that the test execution
deviates from the path necessary for some failure to occur,
executing some other extraneous actions before reverting to
the original path, this unnecessary loop of actions would
only lengthen the necessary sequence of actions for the
failure to occur. If these redundant loops were removed
from the trace of executed actions, the sequence of necessary
actions to execute in order to reproduce the failure could be
considerably shortened. Accordingly, with thisloop removal
methodit is possible to shorten the error trace when it con-
tains extraneous action loops. The principle of this method
has already been successfully applied in other debugging
areas, for instance in [14], and it would suit the special needs
of MBT as well.

3.4. Examples and Comparison

In order to compare the transition-specific search, trace
loop removal and trace incrementation methods, we will use
the example model depicted in Figure 2. As an example error
trace we will useABACDX , where the final actionX has
failed. We will examine four different potential causes which
might induce the failure:

1) Action X is faulty and always fails.
2) Action X fails when executed in state2.
3) SequenceDX fails, but actionsD and X work

individually.
4) Action X fails if actionA has been executed at some

earlier point.

In all cases where relevant, we assume a perfect guidance
algorithm capable of finding the optimal path fulfilling the
given coverage requirement.

With the given error trace, transition-specific search will
seek to bring the model into state2, where the failed action
was executed, and then executeX . This results in the
simple traceCX . This is the optimal solution in the second
examined case of error causes, that is, it reproduces the error
with the shortest trace possible. It also reproduces the error
in the first case, though with a non-optimal solution. It fails
to reproduce the error in cases three and four.

Trace loop removal will directly result in an executable
traceACX . This is an optimal solution for reproducing the
error in case four, along withABX . It also reproduces the
error in cases one and two, but not optimally. Just as with
transition-specific search, it will not reproduce the errorin
case three.

Trace incrementation, used with an additive increment of
3, will produce the coverage requirement

(C THEN D THEN X) THEN

(A THEN B THEN A THEN C THEN D THEN X)

The guidance algorithm would fulfill it with the trace
CDXABACDX , which, incidentally, contains exactly the
same actions. The actual execution will naturally stop as
soon as the error is reproduced. With a multiplicative coef-
ficient of 2 we would get the coverage requirement

(X) THEN

(D THEN X) THEN

(A THEN C THEN D THEN X) THEN

(A THEN B THEN A THEN C THEN D THEN X)

and the traceXCDXACDXABACDX . These traces re-
produce the error in all four cases. The additive version gives
the optimal solution in the third case and the multiplicative
in the first case. Notably, trace incrementation is the only
one of the examined methods which can reproduce the error
in case three.

In general, transition-specific search and trace loop re-
moval may fail to reproduce the error in some cases, but
are reasonably efficient. Both produce a path, which is
necessarily bounded by the size of the model. In transition-
specific search the path is (with ideal guidance) the shortest
possible from the initial state to the target transition, whereas
trace loop removal may produce any path up to the longest
possible in the model. However, the latter should reproduce
any error that the former would and more.

In contrast, trace incrementation will always reproduce
the error with any error trace, but its efficiency can vary
wildly. In the worst case, the very first action in the error
trace is necessary to reproduce the error, which may lead to
a situation where the error is reproduced only on the last
iteration of the incrementation.



Execution time for such a trace will be long compared to
the original error trace; longer for additive incrementation
than for multiplicative. Furthermore, the error trace may
already be very long compared to the size of the model
since trace incrementation is most useful in debugging long
and unwieldy traces. However, trace incrementation does
have the unique advantage of providing a lower bound to
the sequence necessary to reproduce the error, that is, it
shows that the increment before the last is not sufficient to
reproduce the error.

3.5. Implementation

The two identified methods, based on video synchroniza-
tion and trace incrementation, were implemented in order to
assess their practical utility in real-life error scenarios. These
two debugging tools will next be presented and analyzed at
greater length.

3.5.1. Video Synchronization Method. The first developed
debugging method consolidates existing video footage on
a test run and the test log of that specific test run into a
synchronized whole. This method has proved very efficient
in debugging test runs performed during the research.

The exact process of using this debugging method consists
of three different phases. First, the test run to be debugged
must be recorded. Second, the subtitle file must be generated
by collecting the most interesting events from the test log
of that particular test. In the instance of our approach, the
most interesting events in a test log for debugging purposes
are sending keywords to the adapter, executing keywords on
the SUT and commencing the execution of a new action
word, which is accomplished by executing a certain number
of keywords, depending on the state the SUT is in when
the execution of the action word commences. These events
impart much value in the way of debugging the test run,
as it is easy to see when a keyword is sent to the adapter
and whether that keyword will be executed on the SUT.
Furthermore, the progress of the test can easily be tracked
as action words are displayed on the screen at the beginning
of their execution. When this information is displayed in
close synchronization with the video footage, it is easy to
notice any discrepancies between the recorded log actions
and the real actions executed on the SUT.

Apart from the aforementioned events gathered from the
test log, their timestamps are also included in the subtitle
file to indicate the exact moment when the event associated
with the timestamp occurred during the actual test run. This
is especially useful when searching for a particular event on
the video, as the timestamps act as subtitle identifiers. For
the process of creating the subtitle file we have developed
a program named Log2Srt. This program creates aSubRip
file for the subtitles, a format widely supported by software

media players, by collecting the desired events and their
timestamps from the test log.

Finally, with an existing video file and the subtitle file
generated expressly for it, the only phase left in the debug-
ging process is to play the video file on a player capable of
displaying SubRip-formatted subtitles, for example MPlayer
[15], which is a well-advised choice for debugging ends.
This is mostly due to some features of this player that
are instrumental in debugging, such as the possibility to
increase or decrease the playback speed, particularly useful
when the rate of successive events is so rapid that it is
difficult to monitor the test progress. The importance of this
is emphasized in situations where the decisive malfunction
occurs at a moment when there are many events happening
within a brief period of time, rendering it very difficult to
discern what the cause of the ensuing test disruption is.

This approach is illustrated in Figure 3, which presents a
point in one of the test runs conducted during the research
where a smartphone is acting as the SUT, as viewed on
MPlayer. At this particular point, the test run commences
the execution of a new action word that is about writing text
in a multimedia slide, as displayed in the upper subtitle. In
this case, the action word is translated into a sequence of
keywords that begins with a typing keyword with the desired
text as its parameter, as presented in the lower subtitle.
The question mark following the keyword denotes sending
it to the SUT, whereas the lack of it would indicate the
completed execution of the keyword. As mentioned before,
the keyword subtitles are also equipped with timestamps
originally generated when the data was written into the test
log. The inclusion of timestamps might be helpful when
attempting to locate some specific test log data on the video.
In other words, the timestamps act as subtitle identifiers and
linkers between the video subtitles and the original test log.

At present, the entire process of creating a synchronized,
subtitled video of a test run is automated except for one
part: the start of video capturing is not synchronized with
the test adapter. In other words, when the adapter starts to
execute keywords on the SUT, the video recording must be
started manually at around the same time. Later on, when
creating the subtitle file, it must be manually determined as
to whether there is a delay between the subtitles and the
events on the video and how long the delay is. Usually,
a rough estimate in seconds is adequate for achieving a
close enough synchronization. This part could, though, be
automated as well, if the adapter had built-in video recording
functionality or were otherwise able to control the video
recording process.

3.5.2. Trace Incrementation Method. The second imple-
mented method for debugging model-based GUI test runs is
named trace incrementation method for the principle of its
operation described earlier. In our experiments, we opted for
multiplicative trace incrementation with the coefficient of 2.



Figure 3. Video synchronization debugging approach

The actual subsequence creation process is performed
by extracting a given number of actions from the end of
the test log, retaining the original order of the extracted
actions. When all subsequences have been derived, they
will be parenthesized and concatenated by THEN operators
so that all potential failure-inducing subsequences can be
tested at once, with no need to repeatedly perform the
same process for every single subsequence. For example,
with the multiplicative approach and coefficient of 2, an
error trace of eight actions would be processed into a
subsequence concatenation by forming subsequences from
the last action, the last two actions, the last four actions
and, finally, all the eight actions of the original trace, in
that specific order, followed by the concatenation of the
parenthesized subsequences with THEN operators.

In practice, this whole process is carried out on a program
named Sequencer, which was developed during the research.
This program forms the action subsequences by extracting
actions from a given test log and concatenates them in the
manner described before. Once the complete concatenation
of subsequences has been produced, it will be executed in a
fashion similar to the execution of ordinary coverage require-
ments. Once the failure has been reproduced, it can be seen
from the output which subsequence of the concatenation was
responsible for that specific failure.

On the whole, this method serves its purpose well in
condensing the failure-inducing trace, rendering it a viable
option in debugging long test runs.

4. Case Studies

The two implemented methods were tested and applied to
failed test runs. These experiments yielded positive results,

thereby establishing the value of these methods. Through a
careful study of the results of these experiments, faults were
detected in test models, the adaptation component and the
SUT itself. The most common cause of test failure was a
conflict between the test model and the SUT, i.e., the models
in use were outdated or otherwise incompatible with the
SUT behavior. Nevertheless, many faults were detected in
the SUT, some of which were more serious in nature, while
other findings were only minor issues and inconsistencies,
scarcely classifiable as faults [16].

Of all the detected faults, two interesting cases will be
presented in more detail in this section as concrete case
studies conducted with the implemented methods and our
TEMA toolset, presented in greater detail in [7]. The first
case, caused by a modeling issue, will be presented at the
outset, followed by the second case, which is related to a
real fault in the SUT. In conclusion, the results of these
experiments will be summarized and further discussed.

4.1. Case Study I: Video Synchronization

The first case study discusses a test run that was conducted
during the research in an attempt to gain experience with
long test runs. In the instance of this particular test run to
be presented in detail in this case study, it was decided to
use the video synchronization method to help determine the
real cause of failure.

The test run was conducted with a smartphone as the SUT,
from whose functionality the most important multimedia
properties were included in the test model that was used
in the test run. In other words, the test run was intended
to cover functions such as creating and sending multimedia
messages, playing audio and video files, recording sounds
and creating presentations. The smartphone was then con-
nected to the adapter, which in turn executed actions on
the smartphone. These actions were randomly selected by a
random guidance algorithm since the test run was intended
to be infinite in duration.

Eventually, the test run ended after three hours and forty-
five minutes. At the beginning of this timespan there were
no anomalies and the test run proceeded smoothly. Then,
at around 3:45, the course of the test run was deflected,
followed by an abrupt termination of the test. At the be-
ginning of the series of events that ultimately led to the
deflection, the SUT was playing an audio file on its media
player, when it suddenly received a center push keyword,
which corresponds to pressing the center button commonly
found in many smartphones. The controls of the SUT media
player are mapped so that pressing the center button either
pauses or continues to play the audio file that the player was
playing at the time. When the SUT received the center push
keyword, it was playing the audio file and as a result of the
received keyword it paused the audio file.



Figure 4. The SUT attempts to play the audio file in the
background

Now, around one second after receiving the center push
keyword, the SUT was sent another center push keyword.
However, this keyword was not registered by the SUT due
to its proximity to the first received center push keyword,
i.e., the SUT had not recovered from the execution of the
first center push by the time it was sent the second. These
contiguous keywords disrupted the test run, as a result of
which the test execution was eventually terminated. The
disruption itself was manifested by the subsequent events
of the test run, which had now paused the audio file, while
it should have been playing that file had the SUT executed
the second center push.

Shortly after the second center push, the SUT attempted to
play the audio file in the background, which would ordinarily
appear as an option in the media player menu. This is
illustrated in Figure 4. This menu is accessible by pressing
the key mapped to the Options text, found in the lower left
corner of the screen. This time, however, the media player
had paused the audio file and the contents of the menu were
different from what they would have been had the file been
playing. Now, there was no option of playing the audio file
in the background since there was no audio file playing at
the time; the SUT attempted in vain to locate an option that
was not found in the menu, disrupting the test run.

This is one of those cases where the video synchronization
debugging approach was indispensable, as without it, distin-
guishing the ultimate cause of failure would have required
time-consuming log scrutiny, after which it might still have
been unclear as to what actually induced the failure. In that
case, the only means of further investigation would have
been manually repeating the same actions on the SUT as
were performed by the test run. This, however, might not
reveal the real cause of failure if the person carrying out

this process did not suspect a timing issue.
Fortunately, the video synchronization method dispensed

with these time-consuming manual processes, and with this
method it could be immediately distinguished when the
video and the test log data became desynchronized. Once the
exact onset of desynchronization had been localized, it was
relatively easy to notice the underlying timing issue aftera
closer study of the events preceding that specific point. This
was further aided by the capability of MPlayer to decrease
the playback speed, which enables viewing of the most
critical moments at a suitable pace and is thereby highly
conducive to fault detection. Overall, debugging this testrun
was relatively easy with the help of the video synchroniza-
tion method, whereas it might have been substantially more
difficult if conducted manually, without any assisting tools.

4.2. Case Study II: Trace Incrementation

The second case study1 considers a more challenging and
intricate debugging scenario relative to the one presented
in the previous section. There were attempts to debug this
particular test failure with both the video synchronization
debugging method and manual procedures. However, with
neither of these approaches was it possible to determine the
real cause of failure, and hence it was decided to shorten
the error trace instead of determining the cause behind it, as
it could not be accomplished in this case. For this purpose,
the trace incrementation method was employed.

As for the test run itself, it was conducted with a similar
test setting as in the first case study, with the random
guidance algorithm randomly selecting actions to execute
and a smartphone acting as the SUT. This time, however, the
included functionality to test was limited to a mere calendar
application. The purpose of this was to attain as long tests
in duration as possible, without any failures whatsoever.
This is easiest when there are the smallest possible number
of interrelating components involved in the test run. With
just the calendar application, which is arguably one of the
simplest applications of most smartphones functionalitywise,
it was possible to attain long test runs.

However, this test run ended abruptly less than two hours
after its beginning, which can be regarded as a short time
in the instance of a test run with relatively limited func-
tionality. Moreover, the failure that terminated the test run
was a system error of the SUT, which is definitely serious,
especially in an application as simple as the calendar.

More precisely, the test run was around one hour and
forty-nine minutes in duration, most of which consisted
in creating calendar entries of various kinds, switching
between different calendar views, verifying the onscreen
user interface texts and closing and opening the calendar
application itself. Everything was proceeding without issue,

1. Some details have been omitted due to confidentiality reasons.



until the test execution decided to create a new memo entry
in the calendar, which resulted in the system error.

Before attempting to create the entry, there were several
existing entries that might conceivably have clashed with
the entry that could not be created. This observation was
further sustained by the fact that the system error could
not be reproduced when there were no existing entries in
the calendar at the time of attempting the creation of the
final memo entry. However, despite a number of rational
conjectures as to the cause of the system error, the attempts
to determine the real reason for the failure were ineffectual.
On these grounds, it was decided to resort to the trace
incrementation method in order to shorten the error trace,
as the cause of failure remained unknown.

After creating the concatenation of action subsequences
on Sequencer, it was run on the SUT. This experiment im-
mediately yielded positive results, as the error trace leading
to that specific system error could be substantially shortened
from around 1850 keywords to approximately 100 keywords.
This is a major improvement, as the shorter the error trace
is, the easier it is for developers to determine the underlying
cause of failure. In this case, the reduction of 1750 keywords
is a huge amount of functionality, accounting for around
95 percent of the original error trace, which could now
be ignored, as that functionality did not have any impact
on the occurrence of the failure. The significance of this
accomplishment is further illustrated by the fact that when
running the downsized keyword sequence, this actual test
run lasted only for around six minutes, which is very brief
next to the near two-hour duration of the original test run.

This case study is an example of a scenario where the
underlying fault of a system is so obscure that it cannot
be readily accounted for. In these situations any debugging
attempts to identify the cause of failure are of no avail and
the only reasonable course of action is to shorten the error
trace in order to facilitate the process of identifying the
seemingly inexplicable fault. To this end, any functionality
that can be disregarded in the original error trace can be
beneficial in terms of further inquiries into the failure.

The approach based on trace incrementation is one that
effectively pursues this end, and in this case study it removed
approximately 95 percent of the original functionality from
the error trace. It is considerably easier to determine the
fault from the residual five-percent trace fragment than from
the entirety of the original trace. Thus, this method had a
great facilitating impact on the process of determining the
underlying fault.

4.3. Discussion

The case studies presented two very common scenar-
ios in debugging: a situation where reproducing the error
would require much effort if carried out manually due to
a long test log, and a scenario where the fault cannot be

readily determined or located, leaving trace shortening the
only viable option for debugging. These are both relatively
common phenomena in online MBT, as tests based on this
paradigm often tend to be long in duration, although this
depends in great measure on the guidance algorithm in use
for governing the test execution. The long duration of tests
is, however, adverse in terms of debugging, and many faults
uncovered by thorough testing can be difficult to account for,
especially those related to concurrency and timing issues.

On the probability that either one or the other of the afore-
mentioned scenarios occurs, it could require a considerable
amount of resources to better appreciate what the underlying
cause is without any supportive debugging methods. The
debugging methods that were used in the case studies to
address the described difficulties considerably facilitated
the debugging process, enabling rapid fault detection and
better insight into the functionality and sequence of events
responsible for the failure.

The debugging problems that emerged were in them-
selves, however, not specific to MBT, as the difficulties that
the developed debugging methods were created to negotiate
are not caused by any MBT-specific feature. Instead, they
are the product of the long test runs that the online MBT
paradigm often produces due to the automatic and dynamic
test generation. Thus, it can be argued that MBT was not the
reason for the difficulties encountered during the research,
and those same difficulties could have emerged with any
automated testing methodology in use.

5. Conclusion

MBT features many advantages relative to the former
generations of software testing. Regardless of these benefits,
MBT has not been assimilated by the software testing
industry to any large degree, and it is still relatively unknown
as a paradigm. One reason for the low adoption rate of
MBT may well be the drawbacks involved, one of which
is the difficulty of debugging tests, which is especially true
of online MBT.

As far as debugging is concerned, MBT as such does not,
however, essentially differ from any other automated testing
approach. Model-based tests are not intrinsically difficult to
debug, but the difficulties stem from the long duration of
the tests enabled by online MBT, and from the potentially
complex combinations of functionality under test, especially
those related to concurrency.

However, even though these issues may add to the per-
ceived difficulty of debugging model-based tests, they can
be effectively addressed by debugging methods expressly
designed to counteract these difficulties in the MBT con-
text, although based on common principles. The debugging
methods developed during our research provide an efficient
means to debug model-based GUI tests, which might prove
difficult to accomplish by ordinary means. This is often



the case when the test run has been long and the failure
has occurred far before its end, or the cause of failure
cannot be readily understood, leaving trace shortening the
best available course of action.

Of these methods, the video synchronization approach has
proven very efficient when debugging long test runs where
the failure and the sequence of events leading to it cannot be
discerned firsthand, and a more thorough retrospect of the
test run is needed. With this method it has been substantially
easier and faster to discover the failure in a test run,
particularly when the actual failure has occurred sometime
before the immediate end of the test run. This finding was
further sustained by the first case study.

The trace incrementation method was created to address
scenarios where the underlying cause of failure is so difficult
to comprehend that the only remaining option is to shorten
the error trace that produces the failure. This method can
considerably fast-track the process of determining the min-
imal sequence of actions necessary for the failure to recur,
which was substantiated in the second case study.

These two methods outperform the two other debug-
ging methods based on loop removal and transition-specific
search in the context of GUI testing, as in this context the
video synchronization method is especially applicable and
the trace incrementation method can always reproduce the
error, whereas this is not the case with the other methods.

The results obtained from the case studies act as an
argument for the fact that debugging is not a bigger issue
in MBT than in any automated testing approach. As this
notion was reinforced by the results of the case studies, it
can be argued that the difficulty of debugging is not an
impediment to the prospective wider utilization of MBT.
Furthermore, with the developed debugging methods the
debugging process itself can be facilitated, even in relatively
challenging error scenarios. While the usefulness of the
video synchronization method is limited to GUI testing,
future work includes more case studies to find the limitations
of the trace incrementation method.
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Abstract

We present the results of an evaluation where we studied
the effectiveness of automatic test generation for graphical
user interface (GUI) testing of smartphone applications. To
describe the context of our evaluation, the tools and the test
model library we have developed for the evaluation are also
presented. The library contains test models for basic S60
applications, such as camera, contacts, etc. The tools in-
clude an on-line test generator that produces sequences of
so called keywords to be executed on the test targets. In our
evaluation, we managed to find over 20 defects from appli-
cations that had been on the market for several months. We
also describe the problems we faced during the evaluation.

1. Introduction

Software test automation systems offer benefits over
manual testing and are found useful in regression testing,
especially at unit and integration testing levels. While con-
ventional tools have automated the test execution phase,
newer ones are also able to automate the test generation
(i.e. the test design) phase. Deployed successfully, auto-
matic test generation could bring benefits in lower testing
costs not only in the form of reduced test design but also
in maintenance, since the updated tests can be re-generated
easily.

However, the industrial deployment of such tools has so
far been hampered mainly by non-technical issues, such
as poor usability of the tools and organizational obstacles
[11, 30]. Moreover, studies supporting the transition from
manual to automatic test design are few [24]. Thus, there is

a need to develop easy-to-use tools, techniques, processes,
etc. to support the deployment of the technology and run
case studies to evaluate their effectiveness.

In this paper we concentrate on tools and techniques and
evaluate an automatic test generation solution for graph-
ical user interface (GUI) testing of smartphone applica-
tions. The basic approach is well known: generating tests
from state machines modeling expected behavior. Smart-
phone applications, such as calendar, contacts, calculator,
and camera differ, however, somewhat from standard desk-
top applications when considering GUI testing. Since em-
bedded devices running such applications are limited in
the physical size of their display and keyboard, as well as
the processing power, the GUIs are usually simpler than
their desktop counterparts. Moreover, since the tested prod-
ucts conform to the concepts of software product line, the
reusability of the test artifacts and results is very important.

Unfortunately, testing through a GUI is usually much
harder than using some test-specific interface of even an
application programming interface (API). In order to run a
test, we need to be able to input the parameters, data values
etc. and check the outputs. However, not all operating sys-
tems provide direct access to the GUI resources, meaning
that bitmap comparisons or optical character recognition
(OCR) may be needed. In addition, GUIs are often volatile,
i.e. they often reflect the changes in the requirements, thus
increasing the test maintenance effort [17]. Nevertheless,
many organizations developing smartphone applications for
mass customer markets prefer to test the application behav-
ior through GUIs from the point of view of the end-user
experience. Manually testing all the language versions, for
instance, could also be very expensive and time consuming.

The background of our approach has been introduced al-



ready in [14, 15, 19, 20, 21]. The contributions of this pa-
per are in presenting the results of the evaluation and the
experiences we gained in long-period testing. However, we
first review the earlier results in order to explain our con-
text. The remainder of this paper is structured as follows:
In Section 2 the background of our study is presented in de-
tail. Sections 3 and 4 introduce the goals of the study and
describe the modeling approach, as well as the associated
toolset. Sections 5 and 6 discuss running long-period tests
and the results of our evaluation. Finally, Sections 7 and 8
review the related work and summarize the lessons learned.

2. Background

In this section we present the background of our evalua-
tion. The system under test (SUT) is an application running
on S60 [32], the most widely spread smartphone platform,
with almost 200 million installations. An S60 phone resem-
bles more a desktop computer than a regular phone, since a
user can install his/her own applications.

2.1. Automatic test generation

While traditional test automation tools automate the exe-
cution of tests, new ones also automate the generation of
tests. The basic idea in most of these tools is to derive
tests based on high-level descriptions, ortest models, of the
SUT. The anticipated benefits of automatic test generation
include better test coverage and reduced maintenance com-
pared to the traditional test suites. Moreover, many defects
can be found already in the modeling phase before execut-
ing any tests [21].

There are many types of approaches to automatic test
generation (see [37] for a taxonomy). Our test-specific
models specify the behavior of the GUI from the end-used
perspective. These transition-based models are determinis-
tic, untimed, and discrete. Moreover, the tests can be gener-
atedon-lineconcurrently with the test execution. This is re-
garded as beneficial, especially in testing non-deterministic
reactive systems like smartphones, whose response to a
given input may be hard to predict due to concurrency and
an uncontrollable environment like network. There are no
test cases in the conventional sense and testing can be seen
as a game between the tool and the SUT [23].

Alternatively, in off-line testing the test suites are first
generated from the models and executed in a separate phase.
This solution is more compatible with conventional think-
ing as well as existing development processes. In addition,
it provides a means to generate conformance testing suites
to be executed by 3rd parties using pre-existing tools, for in-
stance. Spec Explorer [6], reportedly being used by several
Microsoft product groups on a daily basis, is an example of
a tool supporting both of these approaches.

In either case, the generated tests are usually too ab-
stract to be executed directly. Hence, a transformation is
needed that converts the tests to a form understood by the
SUT. In the off-line case, a separate transformation phase is
needed after generating the abstract test suite. However, in
the on-line case, a special SUT adapter translates messages
between the test generation tool and the SUT (or a test tool
accessing the SUT).

2.2. Choosing the right test interface

System level software test automation needs to access
the SUT using some interface enabling communication be-
tween the two. In practice, such communication includes
setting up the state of the SUT prior to a test run, inputting
the events and data values as specified in the test, and check-
ing the actual results against the expected ones.

There are basically three options when considering
which interface to use for this kind of communication. A
test-specific interface can be designed just for the purposes
of supporting test automation. Unfortunately, test automa-
tion engineers seldom have the luxury of testing a system
with a built-in test interface.

On the other hand, system level test automation can be
implemented through a high-level application programming
interface (API). The benefits of using such an interface in-
clude stability and performance. APIs that have been pub-
lished for third party developers are usually stable enough.
They also provide efficient implementation of functionality
to access systems. However, compared to the test-specific
interfaces, extra work is required to implement the function-
ality needed by the test automation tool.

The third alternative is the user interface, which is usu-
ally a graphical one in most modern applications. However,
GUIs are much more volatile than APIs, since changes in
the requirements are often reflected in the user interface. In
addition, the performance and accuracy can be poor if, for
instance, comparison of the test results involves low-level
techniques such as bitmap comparisons or OCR. On the
other hand, automated GUI testing does not always require
separate middleware for adaptation, at least in a standard
UI environment such as MS Windows. Moreover, since the
end users interact with the system through the GUI, using
the same interface for testing is likely to focus on relevant
behavior. It can also reveal problems related to GUI-specific
issues that would be hard to detect otherwise [21].

Different types of testing complement each other. Com-
bined with automated unit and integration tests, as well as
advanced manual techniques such as exploratory GUI test-
ing [17], the choice between the three alternative interfaces
needs to be done on a case-by-case basis. This decision can
be affected by the availability of appropriate tools and ex-
pertise as well as non-obvious organizational issues.



2.3. GUI test automation in S60

Automating GUI testing is often not considered an opti-
mal solution, mainly due to many bad experiences with so
called capture/replay tools [8, 17]. These first generation
tools captured GUI events and produced low-level scripts
that were hard to understand and maintain. Even the slight-
est change in the GUI forced a recapturing of the script.
These tools seldom provided a positive return on the invest-
ment and often ended up as shelfware.

It was soon realized that scripts need to be structured
and modularized like any other code of sufficient size [8].
Moreover, with the introduction of the so-called data-driven
approach, it was possible to reuse the same test execution
engine with different data-values that were commonly sep-
arated on a spreadsheet. This facilitated localization testing
for different languages, for instance.

The state of the art in automated GUI testing is repre-
sented by so calledkeywordsandaction words[5, 8]. They
help in separating concerns by abstracting from the concrete
GUI. The idea is to map the user requirements, captured
for instance in use cases, to high-level events called action
words. In the smartphone context, such action words can
include events for opening a Calendar application, adding
a contact to the list of contacts, or sending an SMS. On
the other hand, keywords corresponding to key presses and
GUI navigation provide the lower level of abstraction. For
instance, a keywordkwPressKey<Center> corresponds to
pushing the centre button that usually chooses the current
selection in the menu. Checking the results is done using
keywords such askwVerifyText<’string’>, which verifies that
a given string argument is visible on the display.

The separation of concerns provided by action words and
keywords enables non-technical testers to develop tests by
creating action word sequences based on requirements. Test
automation engineers, on the other hand, can concentrate
on implementing the keywords in the particular SUT. Key-
words and action words and similar abstractions are com-
monly found in commercial GUI testing software.

2.4. Software product line testing

According to [34] a software product line is “a set of
software-intensive systems that share a common, managed
set of features satisfying the specific needs of a particular
market segment or mission and that are developed from a
common set of core assets in a prescribed way”. Software
product lines enable the introduction of new software prod-
ucts at a pace much faster than traditional approaches. This
poses a challenge to testing, since tests should also be seen
as reusable assets [36]. However, it can be very hard to
determine what tests to skip just because they were exe-
cuted for the previous product. Moreover, re-testing using

the same artifacts may not be directly possible because of
differences in features and GUIs between the products.

In our context, it can be assumed that the basic function-
ality provided by the GUI stays the same across the prod-
uct line of smartphones. Some devices have larger displays
or extended keyboards, but still provide the same look and
feel as well as the basic set of applications. Due to the
openness of S60, there are plenty of third party applications
available. To enforce quality guidelines for such applica-
tions and to support network operator requirements, there
are some common test requirements [35].

From the GUI testing perspective, the reusability and
maintainability of test artifacts is seen as extremely impor-
tant. There is a need to reflect in the test artifacts the sepa-
ration of concerns between the things that stay the same and
those that change across the product line. On the one hand,
it should be possible to reuse the existing tests as much as
possible when testing a new product. On the other hand,
things that tend to change, such as keyboard related test au-
tomation code, should be modularized in a way that enables
easy adaptation.

A solution to this problem is provided by action and key-
word techniques. The implementation of keyboard related
issues can be separated at the keyword level and the ba-
sic functionality can be encoded as action words. For each
key in the keyboard, there could be a separate keyword.
However, the number of possible action words can be much
greater, which can pose new maintainability problems if not
managed properly.

3. Goals of the evaluation

Our approach to evaluation was more qualitative than
quantitative. On the one hand, it would have been more
convincing to be able to provide exact data and to com-
pare different approaches (see, for instance, [27]). On the
other hand, since testing is a context-sensitive activity with
no best practices working across different contexts [17],
we rather concentrated on providing the kind of evidence
our industrial partners requested, i.e. a proof-of-concept.
Hence, we had several goals and some of the more general
ones were simply related to trying out automatic test gen-
eration in the domain of smartphone applications and dis-
seminating experiences to the partners. Towards this end,
there was a need to have a prototype version of the toolset
running as soon as possible, in order to be able show de-
mos and promote discussion with technical experts using
conventional test automation tools in this domain.

We also had more concrete goals. The first requirement
was to be able to run tests that use two phones instead of just
one (sender and receiver of a SMS message, for instance).
The second requirement was to include test data in the test
runs in an easy-to-use way. The third requirement was to



run tests on different products of the same product line in
order to assess the reusability of the test models in a product
line setting. Finally, the fourth requirement was to try to
derive test models from design models. All in all, during the
actual test runs, we wanted to find real defects that would
be out of reach of conventional testing tools.

In the beginning we also anticipated that we could train
test engineers to build test models. However, this require-
ment was later abandoned, as will be explained.

4. Model library and the toolset

Since there were no suitable tools available when the
evaluation started, we had to develop our own. We did not
want to invent new theories; instead, we wanted to apply
existing ones in the particular domain at hand. This section
describes the tools and techniques that were developed to-
wards this end. The solutions are domain-specific, i.e., they
are tailored for smartphone application testing. However,
most solutions should be adaptable to other domains also.
Based on [14, 20], we begin by presenting our approach to
test modeling and then describe the tools we have built.

4.1. Modeling

Domain-specific modeling languages (DSMLs) are gain-
ing popularity in the area of model-driven development. In-
stead of using standard generic languages such as UML,
the idea is to specify a new modeling language for a certain
application area. In principle, this enables domain experts
without programming skills to create high quality models.
Moreover, custom-made code generators mapping the mod-
els to code can produce more efficient implementation on
the target platform than generic ones. There are some indus-
trial success stories in deploying DSMLs that report huge
improvements in productivity [7]. Since building custom-
made tools requires expertise, time and effort, the domain
needs to be stable in order to obtain the return for the in-
vestment in the long run. Moreover, an organization lacking
the expertise to create a customized language and the asso-
ciated tools may become too dependent on a specific tool
vendor. Nevertheless, the growing tool support for DSMLs
will enable easier customization in the future.

Taking into consideration the trade-offs involved, the use
of DSMLs is regarded as beneficial also in testing [12].
System level testers are usually not familiar with generic
modeling languages such as UML or even testing languages
such as TTCN-3. Hence, a DSML built on the concepts and
abstractions of the problem domain, using keywords and ac-
tion words, for instance, can be seen as a better option.

Our domain-specific approach for testing S60 applica-
tions combines two very different techniques. First, the idea
of keywords and action words is adopted from GUI testing.

The set of keywords is fixed and chosen to fit in the S60 do-
main. Action words, on the other hand, can be chosen freely
by the modeler. Second, LSTSs (Labeled State Transition
Systems, that is, digraphs with labeled edges and nodes and
one of the nodes marked as a special “initial state”) and their
parallel composition are chosen as the underlying modeling
formalism. Synchronizations in the parallel composition,
which is generalized [18] from CSP [31] parallel composi-
tion, are defined to support modeling S60 applications and
their interactions. However, the parallel composition and
some of the LSTSs are hidden from the users of the lan-
guage. The formal definition for LSTS is as follows:

Definition 1 (LSTS). A labeled state transition sys-
tem, abbreviated LSTS, is defined as a sextuple
(S,Σ,∆, ŝ,Π,val) where S is the set ofstates, Σ is the
set of actions(transition labels),∆ ⊆ S×Σ×S is the
set of transitions, ŝ∈ S is theinitial state, Π is the set
of attributes(state labels) and val: S−→ 2Π is the
attribute evaluation function, whose value val(s) is the
set of attributes in effect in state s.

The parallel composition of LSTSs [10] is based on a
rule set explicitly defining which actions are executed syn-
chronously. An action of the composed LSTS can be exe-
cuted only if the corresponding actions can be executed in
each component LSTS, or if the component LSTS is indif-
ferent to its execution. The following definition is slightly
modified in two respects: internal transitions are not needed
and handling of state propositions is more straightforward:

Definition 2 (Parallel composition‖R). ‖R (L1, . . . ,Ln) is
the parallel compositionof LSTSs L1, . . . ,Ln, Li =
(Si ,Σi ,∆i , ŝi ,Πi ,vali), according torulesR; ∀i, j;1 ≤
i < j ≤ n : Πi ∩ Π j = /0. Let ΣR be a set of re-
sulting actions and

√
a “pass” symbol such that

∀i;1 ≤ i ≤ n :
√

/∈ Σi . The rule set R⊆ (Σ1 ∪
{√})×·· ·× (Σn∪{√})×ΣR. Now‖R (L1, . . . ,Ln) =
repa((S,Σ,∆, ŝ,Π,val)), where

• S= S1×·· ·×Sn

• Σ = ΣR

• ((s1, . . . ,sn),a,(s′1, . . . ,s
′
n)) ∈ ∆ if and only if

there is(a1, . . . ,an,a) ∈ R such that for every i
(1≤ i ≤ n) either

– (si ,ai,s′i) ∈ ∆i or
– ai =

√
and si = s′i

• ŝ= (ŝ1, . . . , ŝn)

• Π = Π1∪·· ·∪Πn

• val((s1, . . . ,sn)) = val1(s1)∪·· ·∪valn(sn)

• repa is function restricting LSTS to contain only
the states which are reachable from the initial
stateŝ.



Action and keyword tiers consist of test model compo-
nents (LSTSs). The components in these tiers are calledac-
tion machinesandrefinement machines, respectively. They
are used for building test models. Action machines model
the user actions at the high level using action words. Refine-
ment machines transform the action words into sequences
of keywords, i.e., executable events in the user interface.
Next, the tiers will be discussed in detail.

4.2. Action tier

Action machines in the action tier model applications of
the SUT at a high level of abstraction. The machines contain
action words, the executions of which can be interleaved
to the extent defined in this tier. This enables testing joint
behaviors of different applications running concurrently.

As indicated above, interleaving the executions of the ac-
tion machines is an important part of our domain-specific
modeling approach. Applications running on S60 should al-
ways be interruptible. User actions, such as received phone
calls and messages, may stop the ordinary execution of the
application at any time. However, implementing an applica-
tion that behaves properly in every situation is very hard due
to the inherent complexity imposed by concurrency. More-
over, the number of event interleavings that could be tested
is far beyond the capabilities of ordinary linear and static
test cases. To allow the easy creation of test models with
automatically interleaved action machines, the concepts of
sleepingandrunningaction machines were introduced.

In Figure 1 CameraAM is a simple action machine for
testing the Camera application. The states of action ma-
chines can be divided into running (in the foreground in the
figure) and sleeping (in the background) states. The seman-
tics for the running and sleeping action machines has been
adopted from the platform, a multi-tasking operating sys-
tem sharing one processor for several processes. Exactly
one action machine at a time is in a running state. The run-
ning action machine can be changed only if it is in a running
state from which there is aSleep transition to a sleeping
state. During the test run, it depends on the test generation
algorithm if this transition is executed. Action words can be
executed only between the running states.

The initial state of the CameraAM action machine in
Figure 1 is the filled node in the background. When it
is switched to a running state (WakeTS), the test genera-
tion algorithm can choose between starting the Camera ap-
plication (awStartCam) or immediately switching back to
the sleep mode (SleepTS). In the former case it has to
be verified that the application seems to be running cor-
rectly (awVerifyCam), after which there are three possibil-
ities: taking a picture (awTakePhoto), quitting the appli-
cation (awQuit), or leaving the application running in the
background and switching to another application (SleepTS).

In addition to the genericSleepTS-WakeTS primitives, af-
ter which any action machine able to executeWakeTS can
be taken to a running state, it is possible to useSleepApp-
WakeApp primitives, which wake up explicitly specified ac-
tion machines instead of just any. Both sleeping and wak-
ing primitives were inspired by the two possible ways the
user can activate an application in S60. The former corre-
sponds to the situation where a task switching application,
modeled by an automatically generated task switching ac-
tion machine, is used for activating some application run-
ning in the background. On the other hand, the latter is
used for modeling the user activating a specific application
directly from another application. For instance, it is possi-
ble to activate the Gallery application just by choosing “Go
to Gallery” from the menu of the Camera application.

There is also a communication mechanism defined for
exchanging information on shared resources between ac-
tion machines. For this purpose, primitives for requesting
(Req) and giving permissions (Allow) are used. The former
can be executed in running states and the latter in sleeping
states. However, these primitives cannot wake up a sleeping
action machine or put a running one to sleep. For example,
CameraAM in Figure 1 allows other action machines the use
of the image it just took by executingAllow<UseImage>.

It should be noted that the machine could have been
drawn using the UML state machine notation, if so desired.
In fact, a modeling tool could be used for customizing the
visual appearance of the state machine according to which
notation is the most familiar one to the test modeler. Thus,
the exact visual notation is not an important part of this
DSML. Instead, the core is in conventions for naming the
labels of the model components and in the associated se-
mantics, enabling simple maintenance and rapid develop-
ment of new test model components when necessary.

4.3. Keyword tier

The executable test model is obtained using action and
refinement machines. The purpose of the latter is to refine
the action words in action machines to sequences of exe-
cutable events in the GUI of the SUT.

As discussed above, in a product line context reusability
is paramount. To support the testing of different products of
the same product line, the functionality must be separated
from the GUI events. This allows reusing action machines
with SUTs supporting the same operations but with a dif-
ferent GUI. For example, the Camera application can have
exactly the same functionality in two devices, one having a
regular keyboard and the other an extended one. However,
designing an action machine is far from trivial: it requires
much effort and insight into what is worth testing. Nev-
ertheless, after designing an action machine, defining the
corresponding refinement machines should be much easier.
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Figure 1. Camera action machine (Camera AM ) and one of its refinement machines.

In Figure 1, CameraRM is a refinement machine for the
Camera application. In its initial state (the filled circle)
the machine is able to refine starting the Camera appli-
cation (awStartCam). The application can be started by
two different keyword sequences: by selecting it from the
menu (kwPressKey<SoftLeft> opens the menu andkwSe-
lectMenu<Camera> chooses the menu item), or by using
a shortcut (kwPressKey<SoftRight>, “SoftRight” key is the
shortcut).

Keywords serve two purposes: generating input events
and making observations. In a test run, keyword execu-
tion always either succeeds or fails. For example,kwVeri-
fyText<’Camera’> fails if the text “Camera” cannot be found
on the display. Sometimes the failure is allowed or is even
required behavior. The allowed results are expressed us-
ing the labels of the transitions. If the keyword starts with
(without) a tilde, then the failure (successful execution)is
allowed in the starting state of the transition. The next state
after execution depends on the execution result.

The keyword tier consists of several refinement ma-
chines, each of which interacts with a single action machine
on the action tier. Usually, the refinement is as simple as a
macro expansion: every transition labeled with the same ac-
tion word is replaced with the same sequences of keywords.
On the other hand, sometimes the sequences may vary, de-
pending on the action words executed earlier. For example,
the keyword sequences implementing “activate the Camera
application” are different, depending on whether the appli-
cation is already running in the background or not.

The refinement is not allowed to change the behavior
(safety and liveness properties) of the action machine. To
be more exact, a valid refinement machine contains neither
deadlocks (and should not cause them when composed in
parallel with its action machine) nor infinite sequences of
keywords, i.e., directed loops of keyword transitions. Veri-

fying this automatically is straightforward.
Many keywords require one or more parameters. Some-

times these parameters are fixed to the GUI, such as a pa-
rameter defining which key to press; sometimes they rep-
resent real-world data: a date or a phone number, for in-
stance. Embedding this information directly into the mod-
els would be problematic; they would be limited to a fixed
set of data values and possibly tied to a specific test config-
uration. Another major problem with data is that storing it
in state machines means duplicating states for each possi-
ble value of data, quickly resulting in a state space explo-
sion [38]. To solve these problems, we have developed two
methods for varying the data in models: so calledlocaliza-
tion data and data statements. The basic function of the
former is to store the text strings of the GUI in different lan-
guages. This way the models need not be dependent on any
specific language variant of the SUT. In practice, the data is
incorporated into the model by placing a special identifier in
a keyword. When that keyword is executed, the identifier is
replaced with the corresponding element from the localiza-
tion tables. Even more complicated use of data can be ac-
complished by placingdata statements(Python [28] code)
in actions. Such statements may be used in any actions, not
just keywords. Moreover, data provided by externaldata
tablescan be used in these data statements.

4.4. Example

As a concrete example, consider testing a Camera appli-
cation. Besides testing its features alone, its interoperabil-
ity with some other applications should be tested. There are
several modes in the Camera application, like timer, video
capturing and file renaming, all of which should correctly
recover from interrupts caused by incoming messages and
phone calls, for example.



When a new version of the Camera application arrives in
a test lab, it may not be wise to start a full interoperability
test right away. It may take hundreds of testing steps to
detect a simple error, because the number of possibilities
from which the test generation algorithm can choose is very
large. Instead, it may be better to test first all the featuresof
the application separately. After passing the first test, itis
time to start a new and longer test that interrupts the Camera
application with incoming calls and messages in all modes.

In an interoperability test case a test model could in-
clude model components for testing Camera, Messaging,
and Telephone applications. This means that the action ma-
chines corresponding to the applications are composed in
parallel with the refinement machines whose purpose is to
refine the action words in the action machines for the partic-
ular device that is being tested. In addition to those LSTSs,
a bogus application model could be included in the parallel
composition causing incoming calls and messages. More-
over, an automatically generated task switcher action ma-
chine switches between the four possible applications. In
the initial state of the test model, the task switching action
machine is the running action machine while the other ac-
tion machines are asleep. It is up to test generation algo-
rithms to decide which action machine is woken up first.

4.5. Test generation and modeling tools

Figure 2 illustrates the toolset architecture that consists
of four parts and a database. The first one is the model de-
sign part, which is used for creating the component models
and data tables. The second is the test control, where tests
are launched and observed. The third one is the test genera-
tion part responsible for assembling the tests and controlling
test execution. The fourth is the keyword execution part that
communicates with the SUT through its GUI.

The model design part consists of two primary design
tools: Model Designer [13] and Recorder [33]. The latter is
an event capturing tool that has been designed to create key-
word sequences. The sequences can then be formed into re-
finement machines. Model Designer is the tool for creating
action machines and data tables. In addition, it is responsi-
ble for assembling the models into a working set ready for
testing. The model repository is used for storing the ele-
ments of this working set.

After the models have been prepared, the focus moves
to the test control part that contains a web GUI used for
launching test sessions. Once a test session has been set up
using the web GUI, the Test Control tool (in the test gen-
eration part) takes over. First, the tool checks thecoverage
requirement(a formal test objective, see [19] for details)
that it received and determines which model components
are needed for the test run. These are then given to Model
Composer that combines them into a single model on the

fly. Test Engine manages the model and determines what to
do next. For this purpose, it receives parameters from Test
Control. Both Test Control and Test Engine write into a test
log, which may be used for observing, or repeating the test
for debugging purposes.

Moving on to the keyword execution part, as keywords
are executed in the model, Test Engine relays them to this
part, whose purpose is to handle their execution in the SUT.
The SUT responds with the success status of the keyword,
i.e. true or false, which is then relayed back to Test Engine.
First, a specific adapter tool translates the keywords into a
form understood by the receiver. Moreover, it manages the
gradual execution of some more complex keywords. The
next part in the communication chain is the test tool, which
directly interacts with the SUT and is thus SUT specific.
Hence, it is not provided alongside the toolset, but the users
of the toolset must provide their own test tool.

The architecture has been designed to support the
plugging-in of different test generation heuristics. Initially,
we implemented three heuristics, which allowed us to ex-
periment with the tools. The first one is a purely random
heuristics that can be used in bug hunting. The two other
heuristics are based on game-theory and are to be used in
use case driven testing [19]; we have implemented a sin-
gle thread and a two thread version. Moreover, the duration
of a test run can be limited, allowing, for instance, smoke
testing in a continuous integration cycle [9]. The difference
between the two game heuristics is that the latter continues
searching an optimal path to a state that fulfills the cover-
age requirement, while the other thread waits for a return
value from keyword execution. Unfortunately, we ran into
performance problems even with the two thread version.

Towards solving these performance problems, we de-
veloped yet another test generation algorithm that searches
for the shortest (loopless) path, whose execution changes
the coverage value. The algorithm outperforms the game-
theoretic ones in many cases. However, having imple-
mented several test generation algorithms, it seems that
none of them is better than others in every case. Their per-
formance, when measured as the growth of the coverage in
the function of time, depends on the size of the model, the
coverage requirement and the speed of keyword execution,
i.e., the speed of the adapter layer and the SUT. Hence, an
optimal algorithm should be able to change the strategy au-
tomatically.

5. Running long-period tests

Already at the beginning of the evaluation it was realized
that we needed to run long-period tests to find new defects.
The applications under test were already thoroughly tested
using conventional methods. Some of them had been on the
market for several months before we obtained them. Short



Figure 2. Test tool architecture (adapted from [14]).

tests were just unlikely to find any defects.
As already mentioned, we had performance problems

with the test generation heuristics that we were able to
solve. However, the most difficult part was the development
of a suitable tool adaptation for the keyword execution part.
The problem lay in finding a suitable third party test tool
that would be reliable enough for running long-period tests.
A lot of time was spent on trying to get a certain test tool
to work with our tools, until this solution was abandoned.
Since the tool was not open source and we had no access
to the source code, we were depending on the vendor to fix
certain problems. We also considered developing our own
tool for accessing the SUTs, but this idea was dropped due
to the great complexity of the task. Before we started to use

another tool, i.e. ASTE [25], we were only able to run tests
that lasted a few minutes.

After solving the adapter problems, another unantici-
pated problem arose: the Bluetooth connection used for ac-
cessing the smartphones from a PC running the keyword ex-
ecution part was cut after about 50 hours of test execution.
A solution was to replace Bluetooth with an USB connec-
tion that proved to be more reliable.

6. Results of the evaluation

As already mentioned, we had several goals in our eval-
uation. One of the general goals was to have a prototype



version of the toolset running as soon as possible. This suc-
ceeded in spite of the problems in test generation perfor-
mance and the third party test tool: we were able to show
short demos to the technical experts. The results regarding
the more concrete goals are described below.

Ability to run tests that use two phones instead of just
one: We identified problems in our modeling methodology
that made it quite difficult to compose arbitrary test model
components to be run on two test targets. The reason was
that the keywords used for switching between the target
devices were not modeled initially. Moreover, we needed
to copy some model components in the case of testing the
same application in both targets. These issues were solved
and this requirement was fulfilled.

Inclusion of test data to the test runs in an easy-to-use
way: this was achieved with localization data and data state-
ments, as discussed above.

Running tests on different products of the same prod-
uct line: The test model library was developed originally
for versions 2 and 3.0 of the S60 platform. However, by
the time long-period testing become possible, our primary
test target conformed to version 3.1 of the platform. We
were able to use most of the model library as such, and the
maintenance efforts were restricted mainly to the keyword
models, as anticipated. Thus, the requirement was satis-
fied. However, we identified a certain problem related to
the variability between versions 3.1 and 3.2, which needs
special attention in the next generation model library.

Derivation of test models from design models: This re-
quirement was not fulfilled. In principle, we could tag
UML design models with stereotypes in order to identify
keywords and action words. However, finding suitable de-
sign models for the purposes of such a transformation is
not easy; generally, they do not lend themselves to be used
as input for our test modeling. The design models do not
model the behavior of the applications in concurrency set-
ting and the models are either too generic or too detailed.
Thus, instead of specifications, our models were based on
observations and, to some extent, common sense. The lack
of specifications gave us a rather realistic setting; nowadays
popular agile methods do not encourage detailed specifica-
tion, instead the implementation is seen as the most impor-
tant artifact. This also led us to use some exploratory testing
practices to develop the models, and we were also able to
find some real defects while modeling.

During the evaluation, we also identified a need to de-
velop new metrics and testing processes for test manage-
ment that could be used in deployment of this technology.
However, these requirements were not included in this eval-
uation, but left as future work.

We also wanted to find real defects that would be out of
reach of conventional tools, thus proving the effectiveness
of automatic test generation. In total, 21 defects of different

severities and priorities were found from built-in applica-
tions in S60 smartphones, such as Gallery, Music Player,
Flash Player, Messaging, Notes, and Voice Recorder. Some
of these defects existed in more than one smartphone model.
The most severe of the defects caused the phone to hang
with “System error” message on the display. To reproduce
this particular case, a test run of around 110 minutes and
1850 keywords was needed. Later, a much shorter run of
around 6 minutes and 100 keywords was found.

About two thirds of the defects were discovered while
modeling (exploratory testing), and the remaining third by
executing the tests. Most of the defects had already been
previously found in traditional testing (both manual and au-
tomatic test execution), but they had not been fixed for some
reason. However, there were also some that were totally
new. Many of the defects were related to concurrency is-
sues: performing some multimedia-related functionality in
one application and then switching to another application
causes unexpected behaviors in some circumstances. This
conforms to our earlier findings [21]. In addition to defects
found in applications, some were found in both proprietary
and commercial test tools, which was considered rather sur-
prising, as these tools were quite mature.

The most surprising results of this study were that the
modeling was easier than anticipated but the adapter devel-
opment took much more time than planned. The model li-
brary (see [15] for details) contains 11 different applications
that were modeled in some 110 action machines, with a
corresponding number of refinement machines. Separately,
the action machines contain about 1300 states, 1700 actions
(perhaps 40% of them action words) and 3200 transitions.
Refinement machines add roughly 3000 states, 3000 ac-
tions and 4100 transitions to the totals. The first version
of the model library took about two months to build by a
talented student with no prior experience in modeling. An-
other month was spent on debugging and maintaining the
library. We envisioned in the beginning that testers would
be able to build high quality models using our DSML. How-
ever, it was realized that it is much better to have a separate
expert role dedicated to modeling. Some testers may want
to learn modeling skills, but another new role of test model
execution specialist may be an easier option.

7. Related work

Concerning related work, the idea of using general pur-
pose GUI test automation tools for automatic test genera-
tion originates from Robinson [29]. Ostrand et al. [26] pro-
posed a visual test design environment to create, edit, and
maintain test scripts. They used a commercial test tool to
capture GUI information and replay that information back
to the SUT. Memon [22] proposed a framework for testing
GUI applications. The framework is based on knowledge of



GUI components. The author derives test cases from GUI
structure and usage, measures test coverage and determines
the correct actions of the GUI using an oracle based on pre-
viously generated test cases and run-time execution infor-
mation. Belli [2, 3] extended state machines to show not
only correct GUI actions, but also incorrect transitions.

Use cases (or sequence diagrams) as well as more ex-
pressive formalisms, such as state machines [1, 16], have
been previously suggested to drive test generation. Trace-
ability between requirements and model-based tests has
also been studied before. For instance, Bouquet et al. [4]
present an approach where the idea is to annotate the model
used for test generation with requirement information. The
formal model is tagged with identifiers of the requirements,
allowing model coverage to be stated in terms of require-
ments. This allows automatic generation of a traceability
matrix showing relations between the requirements and the
generated test suite.

As already mentioned, our primary objective was not to
invent new theories on GUI testing. Instead, existing ones
were adapted to facilitate the deployment of automated test
generation in the particular testing context. This was the
reason for extending the keyword and action word tech-
niques with model-based practices. Compared to Buwalda’s
approach [5, 8], the main methodological differences are in
using LSTSs and their parallel composition to enable auto-
matic creation of keyword sequences; in [5] state machines
and decision tables expressed in spreadsheets are recom-
mended for test generation. LSTSs offer a visual formal-
ism that should be quite easy to grasp and parallel com-
position enables automatic generation of concurrency re-
lated tests provided the test models have been created with
the domain-specific synchronization mechanisms discussed
earlier. Moreover, it seems that use-case driven test guid-
ance using sequences of action words has not been consid-
ered before, at least in this context. There are also some
minor differences in the terminology: in our approach, low-
level action words are referred to as keywords. In prac-
tice, the most generic keywords can be considered as action
words in the sense of functionality. Thus, the main differ-
ence is in the purpose of use and the level of abstraction.

8. Conclusions

To summarize the results of our evaluation, we managed
to reach most of the original goals. Most importantly, there
is now some evidence that automatic test generation can
find defects effectively from smartphone applications: we
were able to find issues from applications after they had
been on the market for several months and heavily tested
using conventional methods before release. This provides a
good basis for future studies, since more technical experts
are becoming interested in this new technology. Moreover,

we have set up a web-based test service, where the inherent
complexity of the test models and algorithms is hidden from
the end user (test model execution specialist) [14]. The idea
is to use an expert test modeler for maintaining and extend-
ing the model library. Using such a service, if a new appli-
cation is introduced and modeled, it is fairly easy to test its
interworking with the built-in S60 applications. Obviously,
in an open development environment such as S60, this is
important both from the point of view of the platform and
individual applications. The tools described in this paperas
well as the model library are available under the MIT open
source license.

Modeling was easier than anticipated, but the adapter de-
velopment took much more time than originally planned.
The first version of the model library took about two months
to build by a student with no prior experience in modeling;
another month was spend on debugging and maintaining the
library. The negative result from our study was that design
models seem to be very difficult to use as input for test mod-
eling, at least in this context.

In spite of the easy-to-use test generation service, there
are still severe obstacles in the deployment of this tech-
nology in the smartphone applications domain. Many of
these issues relate to organizational changes, the need to de-
velop new metrics and processes, etc. that remain as future
work. However, management support for pursuing these
new goals is easier to obtain now that there exists a proof-
of-concept showing the effectiveness of the technology.
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