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ABSTRACT

Model-based testing is a testing methodology in which tleation of tests can be
performed automatically instead of manually. This is aghieby creating a test
model, which is a formal description of the aspects of sydtebe tested. In practice,
a test model for a realistic system is often too large and ticatpd to create all at
once. It is therefore usually a better idea to create a numibsmaller and simpler
model components which can be combined into the test model.

The flexibility of model-based testing can be improved byeassling the compo-
nents into a model library. From the library a tester can skamnumber of model
components to be composed into a test model. This way, testsecgenerated from
a model which best corresponds to current testing needs.

This thesis focuses on the design, implementation and usenaidel library for GUI
(graphical user interface) testing of smartphone apjtinat Modern smartphones
can run complex applications which interact with each gtimeoreover, different
phones communicate with each other, adding a further ldwalrcurrency. As such,
smartphone applications present a challenging domaire$ing.

We present the special considerations to be taken into atedwen creating model
components intended to become a part of a model library, andezhnical and
methodological solutions to them. Flexibility is espelgianportant: the model com-
ponents have to be usable in different combinations acegridi the testing needs.
This way features irrelevant to the tests to be generatededeft out of the model.
Conversely, it is possible to create complex test modelegbd variety of applica-
tions concurrently, or to test several devices and the comration between them.
Furthermore, properly designed model components can ki insmany different
products, which can greatly reduce the effort needed focteation of the models.
Our experiences and case studies show that a well-desigoéedl tibrary can fulfill
these needs.
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1. INTRODUCTION

To begin, we will examine software testing and test autoonatieading to model-

based testing. Special attention will be paid to testingugh a GUI (graphical user
interface) and in the domain of smartphone applications.willealso introduce the

particulars of the research, including tools, researcthaus, related work and the
publications included in the thesis.

1.1 Software Testing

Software testing is the process of examining and exercisifigvare in ways likely
to uncover potential errors in it. In practice it is the prijmanethod of ensuring the
viability of the software. Methods based on the examinatibdesign artifacts are
calledstatic testingwhile those based on running the software or parts of italted
dynamic testing In practice, the term ‘testing’ is often used to refer sfieally to
dynamic testing.

Dynamic testing can be roughly divided into two categorielsick-box testingand
white-box testing9]. Black-box testing is based solely on the observableatbiein
of the system under test (SUT). Conversely, white-box malsesof the implemen-
tation of the SUT, in practice the source code. Sometimegadhtegorygrey-box
testing is used to denote methods which make use of limited infdonatn the
implementation but cannot be considered pure white-bdinges

Testing can also be classified according to the level of thievace development pro-
cess it focuses on [9lUnit testingconsiders a single class, module or other relatively
small component of the software. Increasingly large cowtfidns of the units are
tested inintegration testingwhich eventually leads teystem testingvhen the whole
software has been assembled. Typically this process begihsvhite-box testing
and gradually moves to black-box testing as the SUT inceesseomplexity. One
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special case i§UI testing which focuses on testing through the graphical user in-
terface of the software.

Testing focusing on functional requirements of the sofenarcalledfunctional test-
ing. Its purpose is to ensure that the software does what it ipcagal to. There
are also various kinds afon-functional testingsuch agperformance testingvhich
makes sure that the software works fast enowfress testingwhich tests the soft-
ware under difficult conditions like exceptional workloadmd usability testing
which focuses on the ease of use.

Dynamic testing is generally performed Mi@st cases A test case is a description
of the inputs to be given to the SUT and the outputs the SUT pe&bed to yield.
The level of abstraction can vary, from cases which arelittbre than guidelines to
manual testers, to a detailed enumeration of every singfe st

Regardless of the methods used, testing is an expensivegstomtuitively, the re-
sources required for proper testing increase faster thesitle of the SUT. With the
ever more complex modern software it is necessary to find sneans for reducing
these expenses.

1.2 Test Automation

One way to reduce the costs of testing is to automate parts draditionally test
automationhas focused on automating the execution of test cases. vanarious
approaches have been developed [10].

Capture and replayechnologies were the first test automation methods. THed i
was to record a manually performed test, which could therpeated automatically.
The results were mixed. The method was only capable of auicalig executing
tests which had already been performed manually, whictctaffdy limited it to
regression testing. Furthermore, even the smallest chantpe SUT could render
the recordings obsolete and new ones had to be created fratolsc

The worst shortcomings of the capture and replay method&akin programmatic
scripts They are essentially small programs designed to perforindividual test
run. A script can be written based on documentation, withawing to perform the
test on the SUT; moreover, an obsolete script can be updatethtch the current
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state of the product. Finally, programmatic control stioes such as branches and
loops enabled the design of more complex tests in a more s®fmim.

Many programmatic scripts can be improved by separatingetstecase information
from the execution logic. That is, the contents of the testdascribed using a sepa-
rate simple format, and executed with a program designeth&rformat. The most
important benefit of thesdata-driven scriptss that the execution logic can be cre-
ated by programmers, and testers can concentrate on desigifiéctive tests. The
simple format also reduces maintenance effort somewhat.

One way to further improve maintainability is to separatetésted functionality and
its implementation. The test cases are defined action words which describe the
functionality of the SUT in an abstract level. An action wongght, for example, de-
note launching an application or checking that the restilésaalculation are correct.
Every action word has its implementation definedkeywords which correspond
to the user interface (Ul) or application programming iftee (API) events, such as
pressing a key or reading the contents of a text field. A siagiien word can be used
in several test cases, while its implementation needs tceliaatl only once. This
means that any changes to the UI/API only require updatdeetimiplementations of
the action words, whereas the test cases only need to be ewbiifunctionality is
altered. These ideas are described in [6, 10], though tha@relogy is used slightly
differently.

1.3 Model-Based Testing

As explained above, the traditional test automation fogaseautomating test execu-
tion. However, the tests are still created manuditpdel-based testing a method-
ology which seeks to automate this part of the testing psoces

Model-based testing is based on a formal description of g Salled atest model
The model may contain information on such things as avalabimmands, expected
responses, legal and illegal data values, and so on. Whaideled depends on the
type of the SUT and the aspects to be tested. The tests arge¢herated based on
the modeled information.

There are two basic methods of model-based testing [14].sifhpler one is called
off-line testing Its idea is to use the model to generate a sequence of aatibith
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are then treated and executed as traditional test cases, dffiiine testing fits easily
into traditional testing process as a replacement for ompglement to manual test
creation.

A more advanced alternative dsline testingin which tests are executed as they are
being generated. Separate test cases are not used at afl. aWlaetion is chosen in
the model, it is sent to the SUT for execution. The resultsxetation are then re-
turned to test generation, where they may affect the setecti the future test steps.
This methodology makes online testing especially welleslifor testing nondeter-
ministic systems, where the results of execution are noaydviknown beforehand.
For example, if the SUT includes a communication channdl ity occasionally
fail, an online test can automatically adapt to a failure &mdagain. The down-
side is that online testing does not fit as well into tradiiloiesting process, and test
generation may be more difficult.

Model-based testing offers two main advantages over maesggatreation. First, a
model-based test can examine the modeled aspects of therSahl icombination.
Such tests are not limited to the creativity of human desgnend may exercise
the SUT in ways no one has considered. The second advantagaritainability.
Models can contain a large amount of information in a verycggmform. An up-
date which might cause modifications to dozens of test casasdst suite might be
performed by a single change to the model.

Although model-based testing is compatible with automagstiexecution, combin-
ing the two is not necessary: it is perfectly possible to ieerhodels to generate
abstract, manually executable tests. This may be a usefutitgue if automatic exe-
cution of tests is very difficult or expensive to arrange. lagbice, though, automatic
test execution is immensely valuable, and if it is availablere is ample reason to
design the models to take advantage of it.

1.4 GUI Testing

If the SUT includes a GUI, it is important to perform testiflgdugh it. This does
not mean just testing the GUI widgets; rather, the purpos8 I testing is to test
the whole SUT as the user experiences it. GUI testing is lysthad last part of the
testing process, since it touches all parts of the SUT. Gdliirtg can be functional or
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non-functional; here we will focus on the former.

GUIs also present a greater challenge to automatic tesugaedhan textual Uls
and APIs do [21]. The most obvious problem is evaluating aistp Instead of an
unambiguous textual or programmatic value, the output ofJ& i& an image. The
simplest way to handle this would be to define a specific imadleaexpected output.
However, such a solution is impractical, since even indicgmt differences in the
image will cause a test to fail. Some method for extractirggrtievant information
is needed.

In the best case the SUT offers an API, possibly one desigmeifically for testing,

through which the contents of its display can be querieds Wili effectively enable

GUI testing through an API. In practice, it does not work guperfectly, though. In
many cases the display contents returned through the ARictr@n exact match for
what is actually visible on the display; for example, texaiwindow partially hidden
behind another might still be considered fully visible.

An alternative is to take a screenshot of the display ande¢mptcal character recog-
nition (OCR) to extract the text from it. In theory, this wékactly yield the actual
contents of the display. However, OCR tends to be somewhaliable, occasionally
missing or misreading characters, though these problenysbeanitigated by ma-

nipulating the image. Processing images is also significatawer than API calls.

This is particularly significant in online testing, wheresextion times may affect the
choice of test generation algorithms [34].

1.5 Testing Smartphone Applications

Our research has focused on model-based online functiobalté€sting of smart-
phone applications. Modern smartphones are akin to hatdlwehputers, capable
of executing programs, creating and presenting multimeatid so on. Thus, their
applications require the same kind of testing as PC software

There are many different types of smartphonegroducts Each product has a set
of applicationsit can execute, such as Messaging and Calendar. Many ajplisa
are available on several different products. However, f@ieations may have very
different Uls on different products, even if the underlyiiagctionality is mostly the
same. In contrast, the different physical phones of an iddal product, odevices
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can be considered identical except for some identifyinigsteaich as phone numbers.
Products can be grouped together iptoduct families such as Symbian [35] or
MeeGo [29] phones.

The smartphone market tends to emphasize short lead tingetharsimultaneous
development and production of several different produdthimva single product
family [3]. This poses an extra difficulty for the use of motalsed testing in the
smartphone domain, since creating new models from scratclvery product be-
comes impractical. As such, the models should be designibdretisability in mind.

Preferably at least product families should be able to st@reame models for func-
tionality, even if the specifics of the GUIs have to be modskghrately. With careful
design models may be reused even in different product fesili

1.6 Toolset Overview

In our research, we have developed a toolset for faciligatinline model-based test-
ing, called the TEMA toolset. TEMA stands for Test Modelingitl Action Words,
the name of the project in which most of the tools were firstettgyed [44]. The
toolset has been designed for the smartphone domain, blat bewsed with other
domains as well. Figure 1 illustrates the architecture efttolset.

The first part of the toolset is concerned with test modelifige main tool here is
Model Designer, which is used to create and organize the Isobiest modeling also
makes use of various model utilities to analyze the createdefs. The main output
here is anodel libraryconsisting of various model components; their nature véll b
explained later.

Once the models are ready, the tools of the Test Design poatie used to design
and launch the execution of a model-based test. This is giyneone through Web
GUI [P1], which can be used to examine the available modald@uareatdest con-
figurations A test configuration defines an executable model-baseditettiding
what kinds of devices are involved, how the test model is tagsmbled, what kind

of a test is to be generated, and according to which parasadtisually test config-
urations are executed through the Web GUI using Test Cdertrdiut they can also
be packed into @est execution scriptwhich can later be used to generate the test
without using Web GUI, for example in a continuous integnattycle [11].
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Fig. 1. The TEMA toolset and the associated user roles [P7].

Actual test generation is performed in its own portion of thelset. Here the com-
ponents in the model library are first configured by Test Caméigto match the re-
guirements of the test as defined in a test configuration,l@mdomposed by Model
Composer into a test model. Test Engine can then begin thrigxe according to
the parameters defined in the test configuration.

The automatic execution of the test requires a method fonecting into the SUT.
This is the responsibility of the Keyword Execution portidrhe actual communica-
tion is handled by an appropriate Connectivity Componehfyse nature depends on
the product family of the SUT. Between it and Test Engine igptdr, which takes
the keywords executed in the test model and converts thenaifttirm understood by
Connectivity Component, and feeds the results of the ei@tback to Test Engine.
The result of keyword execution is a simple Boolean valueasgnting the success
or failure of execution. A difference between the receivesiitt and the one expected
by the test model indicates an error, either in the SUT orémtiodel.

Test Engine records the events of the test run irtesalog which is stored into Web
GUI. The log can be used to examine what has been tested, imarésimportantly
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needed by the Test Debugging portion of the toolset, whicisésl to locate the cause
of any errors and inconsistencies occurring during thertesd. There are various
debug tools to ease this process. Of particular note is ViRlEmorder, which is used
to record footage of the smartphone display during the test This footage can be
a great help in debugging.

Figure 1 also shows the roles of the various people involagtie model-based test-
ing process. First, the test modeler is responsible for thation and maintenance
of the models. Second, the test designer defines what kinestsfare to be created
and oversees their execution. Third, the test enginees tede of the physical de-
vices and prepares them for testing, and also sets Videor&ac record them as
needed. Fourth, test debugger is responsible for tracipguaomalies found back to
their cause. Finally, chief tester oversees the wholenggifocess.

This distribution of concerns has significant advantagesstNvimportantly, it allows
specialization; for example, most of the testing persomeeld not have any under-
standing of the models or their creation. Furthermore, ife@gprototype devices
need not ever be given into the hands of most of the testirgppeel, and possibly
not even shown if the documentation is extensive enough. damsequence, differ-
ent parts of the process need not be performed at the sammigdar example, it
is possible to generate tests for phones connected to a mkeimvanother country.
Of course, it is still perfectly possible and sometimes idddé for a single person to
assume more than one role.

1.7 Related Work

The practical aspects of model-based testing are desdnbgeat detail by Utting
and Legeard [46]. Utting et al. [47] have also developed artary for model-based
testing. A detailed analysis of how our methodology wouldlassified can be found
in [24]; in short, we use transition-based test models oftidronment to generate
online tests, either randomly or according to requirementaodel coverage.

Much of model-based testing research has focused on taktioggh APIs, such as
protocol testing in [45]. Model-based GUI testing has besgearched for example
by Robinson [41], who used existing GUI test automationgdot executing model-
based tests, and Ostrand et al. [37], who developed theirtestimg tool based on
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capture-and-replay methodologies. Memon [31] also d@eslchis own framework
for GUI testing.

The formal methods used in the handling of the models owe ntucksearch in
software verification which seeks to mathematically prove the correctness of the
SUT. Many of our methods specifically are originally basedC&P (Communicating
Sequential Processes) [42], and further developed by iHeland Valmari [16] and
Karsisto [22]. More generally, our methodology is based amkwby Helovuo and
Leppéanen [15], and Kervinen and Virolainen [24, 25]. The kvpresented in this
thesis has been applied outside of our research group farggay Mikkola [33].

Other modeling formalisms [26] can also be used in modekdhdssting. For exam-
ple, there has been research on model-based testing usihg(UMfied Modeling
Language) [36] models. This approach can be seen side bynideurs in [30].
The UML-based approach also has commercial tool supparth, &1 Conformiq Tool
Suite [8,17].

Yet another approach can be seen in the NModel frameworkd@&2éloped by Mi-
crosoft. It is based omodel programswhich are executable specifications for the
SUT, written in C#. The framework is described in [20]. NMbdéers a simple
method for combining several model programs into a more ¢éexmgne, which can
be used for testing several applications concurrently. mbthodology is somewhat
less flexible than ours, though; in particular, while modedgsgams can be inter-
leaved, there is no inbuilt mechanism for controlling thétckes between them. Mi-
crosoft also makes use of another model-based testingateticSpec Explorer [7].

Apart from different formalisms, there are variations inaklis modeled. For in-
stance, Belli et al. [1, 2] have proposed a holistic modelimgthod, in which the
system models describing how the SUT functions are suppitedewvith fault mod-
els which describe how it does not function. This would eeabmore comprehen-
sive testing of faulty inputs, whose handling is often a selewy concern in product
development and implementation. Bouquet et al. [4] anedtéteir model with re-
guirement information in order to trace the generated testk to requirements; this
is in contrast to our approach, where requirements can bessgd in terms of the
model, but not as a part of it. Model-based testing can alsasbd to generate test
data instead of or in addition to control decisions, sucm§s,27,28], where Legeard
et al. describe the generation of boundary-value test cases
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1.8 Research Method

The research described in this thesis has been conductdly mepractical exper-
imentation using a constructive research method. This madvied creating tools
and models, running tests, and analyzing the results. Talgsis has been mostly
gualitative because of the difficulties involved in propaengtitative analysis.

Quantitative analysis could be performed for example btjrtgs new product con-
currently with traditional and model-based methods andgaring the results. This
would show whether the model-based testing process cantiendugs revealed by
the traditional methods, and whether it can find bugs thetibadl methods miss, as
well as providing a comparison between the efforts requisedach approach. How-
ever, in practice this is difficult to arrange. Performingls@xperiments within the
ordinary development process would double the workloadghvis rather impracti-

cal at least in the smartphone domain with the short leadstiofigoroduct creation.
Conversely, performing the experiments externally wowduire giving outsiders
access to prototypes, something product developers aretast to allow. Some
measure of quantitative analysis might also be achievedamming the reports of
found bugs and estimating whether the model-based mettmdd or would have

found them, but this approach faces similar confidentigdigblems.

Despite the lack of quantitative analysis, case studidstivé industrial partners have
been a valuable addition to the research. They have allowdd try our methods
in a realistic environment and occasionally with prototype which we would not
otherwise have access. Likewise, the experiences of nexg hage been of great
value in tool development, such as in [33].

1.9 Included Publications and Author’s Contributions

This thesis includes seven publications. The author hasreaderal contributions
to the TEMA toolset and publications, mostly related to nimde He developed the
concept of model library, created most of the models useddnmdsearch, developed
many of the modeling techniques, and made some contritsitithe model formal-
ism originally developed by Antti Kervinen [24]. The work proper model libraries
was begun in the author’s Master’s Thesis [18], which inticetl the Model Designer
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tool. The author also developed and implemented someyutiitls for analyzing the
models, and contributed to the Test Configurer and debug.t&olrthermore, he has
had an active part in executing and debugging tests, andamsijpated in all of the
case studies mentioned in this thesis. He has also takertiae part in the writing
of the publications.

[P1], “Model-based testing service on the web,” presentslaiwterface (Web GUI of
the TEMA toolset) designed to offer the means to ‘order’ a eldmhsed test, meaning
generating and executing the test without having to dedl thid models directly. The
author’s contributions concerned the presentation of thdets and their actions in
the interface; he also wrote the sections concerning thestimgdformalism and the
toolset in the publication. The interface was implementgdibnri Heiskanen, and
has seen significant use during the research projects. Ade@rsion based on
the first was developed later on to enable more flexible tesérgéion and better
usability.

[P2], “Creating a test model library for GUI testing of snpdrbne applications,”
presents the author’s creation of an open-source modahyilior testing of smart-
phone applications, with focus on presenting the struaifieeworking model library

and the techniques used to create it. The formalism used deling was designed
by Antti Kervinen with minor contributions by the author, ikehthe practical mod-

eling techniques described in the publication were dewldpy the author during
the modeling process. The main content of the publicatidraged on the author’s
Master’s Thesis.

[P3], “Synthesizing test models from test cases,” presemgthodology for creating
a test model by combining existing test cases at commonrestiguences. The basic
principle was first proposed by Antti Valmari, and Antti Keren developed a tool
to support it. However, while the principle was sound, itya insufficient in com-
bining real test cases, which were often irreconcilable tdugimple differences in
setup. The author developed a method and rudimentary tmodeparating the setup
information from the test cases so that they could be effelgtcombined, and reat-
taching the information afterward. The improved process sueccessfully applied to
a number of real-world test cases in a case study and pro@urcegecutable model.
In the publication, the author wrote the sections on thel®giting process and the
case studies.
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[P4], “Filtering test models to support incremental tegfimddresses the problem of
models containing functionality that cannot be executetherSUT. This may occur
during development when the models are completed beforkemegntation, or after
testing when functionality is found faulty. The publicatipresents a method and
tools for filtering unexecutable functionality out of the deds without making them
infeasible for test generation. The research was done ang@uhlication written
entirely by the author.

[P5], “Debug support for model-based GUI testing,” presemio practical meth-
ods for debugging model-based tests: a video recordingadeih which the test
run is recorded on video and synchronized with test log riadter order to give a
human debugger a clearer idea of the events of the test, aadeaibhcrementation
method, in which progressively larger portions of the etrace are executed until
the error is reproduced. The main part of the research was lopilenri Heiskanen
with help and supervision from the author. The author cbatdd in the design and
implementation of both methods, and wrote the section onefrloaised testing and
the comparisons between the trace minimization technigutse publication. The
developed debugging methods have since proven very usehi icase studies.

[P6], “Automatic GUI test generation for smartphone apmtiiens — an evaluation,”
presents an overview of the model-based testing researétrped in the TEMA
project, with focus on executing long-period tests on S6argphones. The author’s
main contributions were the creation of the model librahg modeling tools, and
the modeling techniques. The author also made some smalrilutions to the
model semantics and the tools handling the models beforedwanmuly test generation,
and participated in the case studies. The author’s cotiitbio the writing of the
publication was minor.

[P7], “Model-based GUI testing of smartphone applicatioBase S60 and Linux,”
presents two case studies of the use of our methodology tingegpplications on
different platforms. The presentation of the former is ambetation on the work
described more briefly in [P6]. The author created the testaisdor S60 and Mobile
Linux smartphone applications, and also developed metfuwdeodel-based testing
of real-time properties. Tommi Takala developed the adiptaools which allow
the automated execution of the generated tests. In thecatibl, the author wrote
the sections on the theory of modeling and test generatsowgel as the ones on the
modeling in the case studies.
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1.10 Structure of the Thesis

The remainder of the thesis is structured as follows: Chi&ypeesents the formalism
used in creating the models, and the semantics relateditaudee Chapter 3 details
various modeling techniques developed and used duringeiearch, as well as an
example of a model library. Chapter 4 gives a detailed detson on how the models
are used throughout the testing process. Finally, Chapdea\Bs the conclusions.
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Introduction




2. MODEL FORMALISM

The TEMA toolset is designed to work with test models comgosknumerous
model components, each of which depicts only a small pat@RUT. The reason
for this is complexity: the test model for even a small SUTkslly to be prohibitively
large when viewed as a whole, and therefore very difficultréatz and maintain all
at once. It is much easier to create a number of smaller anplesimomponents,
and then combine them automatically into a working test rhodie this chapter,
we will examine the structure of the individual componenid the methods used in
combining them, as well as test data.

2.1 Model Components

Individual model components are used to describe specifidianited aspects of the
SUT. Such an aspect might be a specific view in an applicatoch as the images
view in the Gallery application, or a specific task, such asating a multimedia
message. This section presents the formal definition of théeincomponents and
explains how we use them.

2.1.1 Behavioral Models

The model components are behavioral models depicting tieti@inality of the SUT.
Although many different formalisms can be used to exprebsyier, all of them can
be reduced to state machines: the model is always in somdisstate, and there
are ways to move it to different states. A formalism may ersjg®athe states or the
transitions between them, or include information on bothir €hoice of formalism
is the labeled state transition system (LSTS), which beddnghe last category, as
its name implies [13]. An LSTS is defined as follows:
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Definition 1 (LSTS):

A labeled state transition systenabbreviated LSTS, is defined as a sextuple
(SZ,A,8M,val) where S is the set ddtates X is the set ofactions(transition la-
bels),A C Sx X x S is the set ofransitions § € S is theinitial statg I is the set of
attributes(state labels) and valS — 2 is theattribute evaluation functigrwhose
value vals) is the set of attributes in effect in state s.

In practice we use LSTS mostly as a transition-based fosmalilrhe actions encode
the inputs as well as the expected outputs; thus, the madsdtidn as the test oracle.
The attributes serve various secondary roles: some actaathahd for recurring
model structures, others mark important states for teseérgéion, and yet others
exist merely to improve the legibility of the models. Notathvhile transitions are
always labeled with exactly one action, a state may have amper of attributes.

Given its general nature, models of other behavioral foisimed can be easily con-
verted into LSTSs. This allows us to use other formalismsrestiieey are useful.
However, Test Engine handles all models in LSTS form.

2.1.2 Component Types

The TEMA toolset divides the model components into two maitegories:action
machinesand refinement machinesThe division corresponds to action words and
keywords. Each application on the SUT is modeled in one oeraotion machines,
which describe the functionality of those applications @tian words. Apart from
action words, the action machines also contain many synctaton actions, with
which they can be connected to other action machines whest antedel is com-
posed. Figures 2 and 3 show examples of action machinesatti@n words, action
machines are independent of the UI. This enables using the aation machines on
many different products, which makes both modeling and teaance easier.

Correspondingly, refinement machines are used to define tHer®plementation

of the functionality of the SUT. Each action machine has onenore refinement
machines, in which the implementations of the action wordsspecified using key-
words. Unlike action machines, refinement machines areugtegpecific, since the
same functionality may be implemented differently on d#f& products. A typical
refinement machine has the action refinements as loops anitiéd state, as shown



2.1. Model Components 17

SLERP
awStart\lessaging

SLEEPapp<Tolnbox>

WAKEapp<ToMa>

Fig. 2. A simple action machine for the main screen of the Messagipfication, with sleep-
ing states colored blue.

olnbox> awTolpbox

SLEEPapp<ToMain> awlLegyeInbox

Fig. 3. An action machine for opening and closing the inbox in theddgmg application.

in Figure 4. Most refinements are simple linear sequencé$franches and loops are
also possible. An individual action refinement is brackdigd starting and ending
synchronization that define which action word it refines.

Action machines are designed so that only one of theativeat a time, and the
others aresleeping This is modeled by dividing the states of the action machite
active and sleeping states (the latter are generally maskidthe attributeSleep-
State represented with blue coloring in the figures of this thesigtion words are
placed solely between active states; thus, only the actitieramachine can perform
actions on the SUT. Other actions are used to synchronimmnantichines with each
other. Depending on the type, they may be placed betweeveasttites (queries
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start_awStagilessaging

kw_PresstefdKey
<goftLeft>

Menu 'Exit’

Fig. 4. A refinement machine for the Messaging Main action machinevshin Figure 2.
The action worcawStartMessagingan be given an empty implementation, since the
application is launched automatically with the activatiofthe action machine.

and messages), between sleeping states (responses tonlee) fagoing from active
to sleeping states (sending the current action machinee&p}lor from sleeping to
active states (activating the action machine). The separaf sleeping and active
states is part of the well-formedness rules and has no senadfiect, with the excep-
tion of one graph transformation which makes use ofSteepStatattribute. The

primary purpose of the separation is to make the modelsrdasiederstand, though
the attributes may also be useful in test generation.

The active action machine can yield control either to anadision machine directly

or to atask switcher A task switcher is a special action machine which acts as a
scheduler for a single device, @rget with the ability to activate any action machine
prepared to take control. It also has its own refinement nmachivhich automatically
activates the appropriate application on the SUT when anadltion machine is
activated. This ensures that further keywords will afféet torrect application. Task
switchers are usually generated automatically based ootktee model components
involved. However, it would also be possible to create oneualy in order to
customize the possible switches between the components.

Following are the definitions of the generated task switchat its refinement ma-
chine. In the definitions, string literals are written witljuotation marks; “.*” means
an arbitrary string of characters as in Python regular esgioas [40]. The symbol
‘& denotes string concatenation. Figure 5 shows an exarmpéetask switcher.
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WAKEtsOANWAKE<Main>

WAKE<K>  WAKEtg

ATED<Inbox>
>

ACTIVATED

SLEEPtgts<K>

WAKEtsCANYVAKE<Inbox>

TARGET_ACTNATED<Inbox>

Fig. 5. An example task switcher, generated for target K with modelgonents Main and
Inbox (Figures 2 and 3). The purple and yellow coloring in #tates mark the at-
tributesMain runningand Inbox running respectively.
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Definition 2 (Generated task switcherT s& an):

Ts% an(L1,...,Ln) is thegenerated task switchéar the target K with the action ma-
chine LSTSs4....,Ly, with theactivation name functioan: {Lg,...,Lp} —" .*".
TsKan(L1,....Ln) = (S Z,A,8,M,val), where

e S={s,5,§[0<i<n}

o > = {“WAKEtgtsCANWAKE<" & namgK)&" >" |
“ WAKEtgtsWAKE<" &naméK)&"“ >" ,“ SLEEPtgts& & naméK)&" >,
“TARGET_DEACTIVATED" } U
{“ WAKEtsCANWAKE<" & naméL;)&*“ >
“awActivate< &an(L;)&" >" ,* WAKEtSWAKE<” &naméL;)&">"
“ SLEEPtsZ &naméL;)&"“>" “ ACTIVATED<" &L;&"“ >"
“TARGET_ACTIVATED<" &naméL;)&"“>" || 1<i < }

e A={(s;a,s) eSxIx S
(s=soAa="WAKEtgtsCANWAKE<" &naméK)&"“ >" As' = §,) vV
(s= sy Aa="WAKEtgtsWAKE<" &naméK)&"“ >" AS = ) v
(s=syAa="SLEEPtgts&&K&">" A\S' = 5) V
Jdi;1<i<n:
(s=gyAa="WAKEtsSCANWAKE<" &naméL;)&"“>"As =s)V
=5 Aa="awActivate &an(L;)&"“>" AS =5) V
= § Aa="WAKEtSWAKE<" &naméL;)&"“>"As =¢') Vv
=g Na="SLEEPtsZ &naméL;)&">" \S = &) V
;1< j<nAj#i:
S= S’ Na="ACTIVATED<” &naméL;)&"“ >" As =g")V
(s=sAna="TARGET_ACTIVATED<" &naméL;)&"“>"As =g') V
(s=g ANa="TARGET_DEACTIVATED’ AS = )}

(
(s
(s
(

° §=So
o M= {naméL;)&" <n}
e val(s) = {naméL;)&" <i<nas=¢'}

Definition 3 (Generated task switcher refinementl sS, — rm):
TsSn — rm(Ly,...,L,) is the generated task switcher refinememor the
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LSTSs L,...,L,, with the activation name function an{L,...,L,} —".*".
TsSnh—rm(Ly,...,Ly)= (S Z,A,5M,val), where

e S={s}U{s,gll1<i<n}

o Y = {"start_awActivate¥&an(L;)&">",
“ kW_LaunChApp n &-an(L| )&u IRT] ’“ end_aWACtlvatEK& an(LI )&H >
1<i<n}

A={(s,a,s)eSxZx S| Fi;1<i<n:
(s=spAa="start_awActivate&an(L;)&"“>" NS =)V
(s=sAa="kw_LaunchApp” &an(L;j)&"“'" NS =§)V
(s= 5 Aa="end_awActivatex&an(L;j)&"“>" \S = 5)}

e MN=0

e val(s) =0

It is possible to create test models which act on multiplget at once, such as
modeling one phone sending a text message to another. Tafig@er will auto-
matically create individual copies of the model componamid the task switcher for
each target. These are combined with another automatigafigrated model com-
ponent calledarget switchemwhich acts as a scheduler for different devices just as
the task switchers act for the model components of theirecs@ devices. The
structure of the target switcher is correspondingly vemilsir to that of the task
switchers, with targets substituted for model component®e automatically gener-
ated target switcher and its refinement machine are defined/b&ith an example
shown in Figure 6. Using multiple targets also requires oneenautomatically gen-
erated model component callsginchronizerwhich is used in forming connections
between model components on different targets.

Definition 4 (Generated target switcherT gt9:
TotSKy,...,Ky) is the generated target switchefor the targets K,...,Kp.
TgtSKy,...,Ky) = (S Z,A,8M,val), where

e S={s}U{s, 5§ [|1<i<n}
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SLEEPtgig<K>

Fig. 6. An example target switcher, generated for target K. Theestaiored red has the
attributeK running

o X = {*WAKEtgtsCANWAKE<" &naméK;)&" >",
“awActivate< & naméK; )& >" “ WAKEtgtsWAKE<" & naméK;)&" >"
“ SLEEPtgts& & nameK;)&"“ >" “ ACTIVATED<” &Ki&" >" || 1<i < n}

e A={(s,a,s)eSxZIxS|I;1<i<n:
s=s9Aa="WAKEtgtsCANWAKE<" &naméK;)&"“ >" A =5V
(s=s Aa="awActivateX &naméK;)&"“ >" AS =) V
(s= g Aa="WAKEtgtsWAKE<" &naméK;)&“>" As =g') v
(s=¢g'Aa="SLEEPtgts&&naméK;)&" >" S = 5) V
Ghl<isnaj#ie
s=s/ Aa="ACTIVATED<" &naméK;)&" >" As = §')}

0§:%

e M= {naméK;)&" running

1<i<n}

e val(s) = {namé€K;)&" runnind

1<i<nAs=¢9}

Definition 5 (Generated target switcher refinementl gtS— rm):
TgtS—rm(Ky,...,K;,) is the generated target switcher refineméot the targets
Ki,...,Kn. TgtS—rm(Ky,...,Ky)= (S Z,A,$M,val), where

e S={s}U{s,gll1<i<n}
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e > = {“start_awActivateX& nameK;)&" >" |
“kw_SetTarget $(OUT=& nam€K;)&" .id)$’,
“end_awActivate¥&namékK;)&">" || 1<i <n}

o A={(sas)eSxZxS§|IW;1<i<n:
(s=spAa="start_awActivatex&nameK;)&"“>"As =)V
(s=s Aa="kw_SetTarget $(OUT=&naméK;)&".id)$' AS =)V
(s= g Aa="end_awActivatex& nameK;)&" >’ AS = 5)}

e MN=0

e val(s)=0

2.1.3 Special Semantics

Specific action names may have properties beyond what i¢ iggusctions of their
category. These include static text replacements, daesacand negated actions.
Some model structures are also generated based on airgdated in the models.

The strings “@PARENT” and “@TARGET” occurring in action namsget replaced
before the model is executed. “@PARENT” is replaced by threeaf the applica-
tion it belongs to, and “@TARGET" by the name of the targetiiadel is assigned
to. Their main use is to keep synchronizations unambigueosexample, if a model
component containing the actikL LOWtgt<@TARGET:X3s assigned to two dif-
ferent targets, the text replacement will cause it to be Isyorézed with a different
action on each, as opposedAbLOWigt<X> which might get synchronized with
any suitable action regardless of targets.

Ordinarily the execution of a keyword is expected to succeefhilure indicates a
failed test run. However, a keyword can begatedby adding a " in front of the
action name, in which case its execution is expected to Fait.example, ikw\eri-
fyTextchecks that a specific text is visible on the display of the SUKwVerifyText
checks that the text is not visible. A special case is a $itmathere both ordinary
and negated versions of a keyword begin from the same stdiis.isTabranching
keyword, which is allowed to succeed or fail. When eithengition is selected for
execution in the model, the keyword is sent to Test Engineef@cution. If the

execution succeeds, the ordinary version of the keyworceéswged in the model,



24 2. Model Formalism

otherwise the negated one. Thus, branching keywords alevattion refinements
to adapt to the state of the SUT, which is useful in testingdetgrministic systems.
Obviously this is only useful in online testing.

Branching can also be applied to action words. Whether tlieraword succeeds
or fails depends on its refinement: a negated ending synizat@mn means a failed
action word. While the effects of branching keywords ardtkoh to within a single

action word implementation, branching action words caer déitte course of the whole
test run. This property, while often useful, can make testegation much more
difficult.

Some attributes are used to generate actions and trassititmthe model compo-
nents. Attributes whose names begin with “sv”, so-cali¢ate verifications are
shorthand for simple action loops. A state containing tlaesverificationsvXis
provided with a looping action by the same name. These aatetfesemantically
just like action words, but can be useful as markers in teségion; for example,
they might be always executed whenever encountered in twdearify the state of
the SUT as often as possible. There are tdsget allowattributes of the forntaX,
which cause the generation of the act®oL OW<X>from all states with th&leep-
Stateattribute to the state with the target allow. An individuaiget allow attribute
may be placed in only a single state.

2.2 Parallel Composition

Individual model components are of little use separatelp. b& used, they must
be combined into a test model through a process called pacamposition. In
our methodology parallel composition serves two purpodésst, it combines all
the model components of an individual application into diadiwhole, where each
component acts in its specific role. Second, it combines tefrcomponents of the
different applications in such a way that their actions caimkterleaved, which allows
effective concurrency testing. This section will expldie tomposition process and
the parameters with which we use it.
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2.2.1 Definition

The model components are combined together with proces$raligparallel com-
position Parallel composition allows us to treat a number of modeimanents as a
single composite model. The states and transitions of thgosite model are com-
binations of the corresponding elements of the model compmtsn The actions of
the composite model likewise correspond to those of the rameponents; execut-
ing an action in the composite model means executing spexdifions in the model
componentsynchronously

There are many different methods of parallel compositioasthy differing on how
they synchronize the actions of the model components. Tisovewe use is based
on a rule set which explicitly defines the synchronizatid®®.[ The formal definition
is the following:

Definition 6 (Parallel composition ||r):

|lr (Li,...,Ln) is the parallel composition of LSTSs L...,L,, L =
(S,%,4i,5,M;,val), according taulesR, such thavi, j; 1 <i < j<n:M;NM; =0.
Let > be a set of resulting actions and/ a pass symbol such that
Vi;1<i<n:y/¢%. The rule set RC (Z1U{\/}) x -+ x (ZnU{y/}) X Zr.
Now|r (L1,...,Ln) =repa((S Z,A,$8,M,val)), where

° S:S.I.XXS‘I
o Z:ZR

e ((st,.--,%),a,(s,...,%,)) € Aif and only if there is(ay,...,an,a) € R such
that for every i(1 <i < n) either

- (s,a,5) €hor
—g=+ands=g
e $=(5,....,%)

° |'|:|'I1UU|_|n

e val((sy,...,S)) =vali(sy)U---Uval(sy)

e repa is a function restricting LSTS to contain only the statdich are reach-
able from the initial states.
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O
b

start_svX

end_svX

Fig. 7. Creating state verification loops. The state marked in gteesnthe attributesvX.

2.2.2 Graph Transformations

We do not apply parallel composition directly on the modahponents, but first
perform some automatic graph transformations on the actiachines. The trans-
formation rules are listed below. They are used in the giveleroto all applicable
model structures; thus, branching action words will be tethtlefore non-branching
ones. In the rulesh MATCHES B means thaA must match the Python regular ex-
pression [40] defined big.

e Expand state verifications:

Vse S:Vme val(s); TMATCHES “sv.*":

- S<— SU {557]'[}
— X« XU {"start_"&T“end_"&T1}
— A — AU{(s start_"&Tt Ssr), (Ss,“end_"&Tt,s) }
States with state verifications are provided with corredpantwo-part loops.
In the composed model the refinement for the state verificatitl appear
between the two parts (Figure 7).
e Split branching action words:

Vae Z;a MATCHES “aw.*”: Vs,s,s" € S(s,a,5) e AA (s ~"& a,S") € A:

- S<— SU {Ssﬁa}
- 2 U {“start_"&a,“end_"&a“~end_"&a}
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~aw. awX

end_awX

~end_awX

Fig. 8. Splitting branching action words.

-A—A—{(sa5),(s"~"&as")}U
{(s “start_"&a,Ssa), (Ssa,'end_"&a,s), (Ssa," ~end_"&a,s")}

Branching action words are split into two parts, the first dfieh is shared
between both branches (Figure 8). The old actions are natwedy but will
not pass through parallel composition.

e Split other action words:

V(s,a,s) € A;a MATCHES “aw.*”:

- S<— SU {55761}
~ T sU{“start_"&a‘end_"&a}

- A—A—{(sas)}U{(s"start_"&a a),(Ssa,'€nd_"&a,s)}
The remaining action words are split into two parts (Figure 9

e Split WAKEtstransitions:
V(s,a,s) € A;a="WAKEts”:

— S<— SU {S&a}
- 2 — JU{"WAKEtsCANWAKE" ,“WAKEtsWAKE”" }
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O————0O
C start_awX C end_awX C

Fig. 9. Splitting nonbranching action words.

o O
<

O WAKEtsCANWAKE m WAKEtsWAKE O

Fig. 10. SplittingWAKEts transitions.

-A—A—{(sa5S)}U
{(S“WAKEtsCANWAKE" ,Ss3), (Ssa,“WAKEtSWAKE” ,s)}

The WAKEtstransitions are split into two parts. In the composed mokel t
activation sequence of the model component, as defined itatieswitcher,
will appear between the two parts (Figure 10).
e Expand target allows:
Vs, s € S“SleepStateZ val(s) :
Vx;x MATCHES “*": Ve val(s); m="ta"& x:
— 2 +—— ZU{"ALLOW<"& Xx&">"
— A— AU{(s"ALLOW<"& x&">" |5}

New allow transitions from sleeping states into a specifiaalarked state are
created (Figure 11).
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@ O
&
90

Fig. 11. Creating ALLOW transitions for the target allow attribute. The state matka
orange has the attribut@aX.

2.2.3 Rules

In theory, the ability to explicitly define the synchronimats offers great flexibility.

In practice, though, defining the rules separately for eatibrain the model compo-
nents would not be worth the effort, and would make undedstgnthe models much
more difficult. Because of these, the rule set is generattmratically based on the
actions occurring in the model components.

Thesegeneration rulesare given below. The formulae describe the generation of
rulesR for the components,,..., Ly, L = (S,%,4,§,M;,val). The name of an
individual component is referred to witmaméL).

In the verbal explanations and figur€ss used to mark arbitrary character strings in
action namesA andB are names for action machinésymis a name for a refinement
machine, anK andL are names for test targets. The given explanations may be
narrower than the formal rules; in these cases they signéyritended way to use the
actions in question. The figures likewise describe a typisalof the rule in question.

In the figures, transition colors other than black are usesignify synchronously
executed actions, and dashed transitions mean sequenaesoois irrelevant to the
pertinent synchronization.

The composition rules are generated in two phases. Firdotlesving generation
rules are applied to the model components belonging to avidlugl target:

e Action words and state verifications:

Vi, j;1<i,j <nAnaméL;) MATCHES naméL;)&"-rm.*":
Vs, s MATCHES “(startp-?end).*As e 5N % :
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KIA K/A-rm

:: start_awX :: end_awX ::
:: K/A:start_awX :: C K/A:end_awX C

Fig. 12. Action word synchronization.

3(01,...,00,0R) € R:
0j = 0j =SAOR=naméL;)&" "& sAVK, 1 <k<nAk#iAk#]:ox=+/

The split action words and state verificati@tartX, endXand~endXin action
machineA are executed synchronously with actions of the same name in a
refinement machiné-rm (Figures 12 and 13). Refinements for the actions of
a single action machine may be placed into several refinemaahines.

o Keywords:

Vi;1<i<n:VssMATCHES “~?(kw|vw).*’ As € & :
3(01,...,0n,0r) ER: 0 =0r=SAV;1<j<nAj#i:0;j=+/

The keywordskwX, vwX, ~kwX and ~vwX in the refinement machin@ are
executed alone (Figure 14).

e Task switcher synchronizations:

Vi, j;1<i,j <nAnaméLl;) MATCHES “TaskSwitcher.*”:

Vs, s MATCHES “SLEEPts|WAKEtsCANWAKE|WAKEtsWAKEA
S&“<"& naméL)&">" € S As€ X

3(01,...,0n,0r) € R: 0} = Or = S&“<"& nam€L)&">" Agj = SA
Vk1<k<nAk#iAk#]: o=+
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K/IA K/A-rm

~end_awX end_awX

e

K/A:stgdrt_awX
C K/A:~end_awX C C K/A:end_awX C

Fig. 13. Branching action word synchronization.

K/A-rm

o Te
e
ST

Fig. 14. Keyword synchronization.

The task switcher synchronizations are used to activatedeadtivate model
components through the task switchaVAKEtsCANWAKE<A>Nn the task
switcher is executed synchronously WiAKEtsCANWAKIh action machine
A; WAKEtsWAKENdSLEEPtdunction in a similar way (Figure 15).

e Activation synchronizations:
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K/IA K/TaskSwitcher

(\WAKEtsCANWAKE<A> /)
_/ AN

A

SLEERts<A> awActijate<A>

O WAKEtsWAKE<A> C’)
SLEEPts
(\WAKEtsCANWAKE<A> /)

SLEERts<A> awActiate<A>

»Q‘ WAKEtsWAKE<A> C’)
/

\

~ 7

Fig. 15. Task switcher synchronizations.

Vi, j, k1 <i, ],k <nAnamély) MATCHES “TaskSwitcher.*A
‘ACTIVATED<"& naméL)&">" € 3 :

Vs, "SLEEPapp<"8s&">" € Zi\"WAKEapp<"&s&*>" € 3 .

3(01,...,0n,0R) € R: 0; =“SLEEPapp<"8&"“>" A

0; ="WAKEapp<'&s&">" Aoy ="ACTIVATED<"& naméL)&">"

or = namgL;)&"“ ACTIVATES "& naméL)&": "& sA

Vi<l <nAl#£iAN#£ AT #kio =/

The activation synchronizations switch control directigtbeen action ma-

chines of the same target.SLEEPapp<X>in action machineA is exe-
cuted synchronously witlVAKEapp<X>in action machineB, with the task
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KIA K/B K/TaskSwitcher

C SLEEPapp<X> . . WAKEapp<X> C C>A_CT|VATED<B>C
O K/A ACTIVATES K/B: X O

Fig. 16. Activation synchronization.

switcher keeping track of the currently active action maehby executing
ACTIVATED<B>(Figure 16).

e Request synchronizations:

—Vi,j;1<1i,j <n:VS'"REQ<"&S&">" € ZiA\"ALLOW<"& s&">" € 2!
3(01,...,0n,0R) € R: 0 ="REQ<"& S&">" A
0j ="ALLOW<"& s&">" A
OR= namQLj)&“ ALLOWS "& naméL;)&": "& sA
Vk;1<k<nAk#iAk#]: o=+

- Vi;1<i<n:Vs“REQALL<"& &">" € & :
3(01,...,0n,0R) € R: 0 ="REQALL<"& s&">" A
Or = naméL;)&" WAS ALLOWED: "& sA
Vi;l<j<nAj#i:
("ALLOW<"& s&">" € ¥j — 0j ="ALLOW<"& s&">" ) A
("ALLOW<"& s&*>" ¢ 3j — 0j = /)

The request synchronizations allow action machines toiem@u change the
states of other action machines of the same target withoitittsng control

to them. REQ<X> in one action machine is executed synchronously with
ALLOW<X>in another (Figure 17)REQALL<X>is executed synchronously
with ALLOW<X> in all other action machines whose set of actions contains
it (Figure 18). In particular, if there are no action mackineith action
ALLOW<X>, REQALL<X>is executed alone.
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KIA K/B

C REQ<X> C . ALLOW<X> .
Q K/B ALLOWS K/A: X O

Fig. 17. Request synchronization.

KIA K/B+ K/Bn

: :REQALL<X>: : . ALLOW<X> . . ALLOW<X> .
Q K/IA WAS ALLOWED: X O

Fig. 18. Request all synchronization.

e Comments:
Vi;1<i<n:ivs"--"&seZ;:
3(017"'>0n70R) €eR:0; ="--"&SA0OR= namél_i)&": --"& sSA
Viil<j<nAj#i:oj=

Comments - X are executed alone (Figure 19).

Once all the rules for individual targets have been gendyale second phase gen-
erates the rules for synchronizations between the tardétshis phase, the model
components of different targets are identified by prefixhmgjrtnames with the name
of the target separated with a slash. The target switchersgndhronizer do not
belong to any target, and the latter thus requires a sepagetion of some rules.

e Target switcher synchronizations:
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KIA

e
e
ol

Fig. 19. Comment synchronization.

Vt:vi, j;1<i,j <nAnamél;) MATCHES “TargetSwitcher.*A

naméL ;) MATCHESt&"/TaskSwitcher.*”:

Vs, s MATCHES
“(SLEEPtgts|WAKEtgtsCANWAKE|WAKEtgtsWAKE)<"&&"“>" A

SeEZiN Zj :

3(01,...,0n,0r) ER:0;=0j =0r=SAVK; L <K< nAK#iAK# j:Ok=+/
The target switcher synchronizatiomAKEtgtsCANWAKBNAKEtgtsWAKE
and SLEEPtgts connect the target switcher to the task switchers.
WAKEtgtsCANWAKE<K>in the target switcher is executed synchronously
with the action of the same name in the task switchek pf'WAKEtgtsWAKE
andSLEEPtgtfunction in a similar way (Figure 20).

e Target activation synchronizations:

- vttt AtV kILml<i j,kl,m<nA
naméL;) MATCHESt&"/.*" AnaméL;) MATCHESt'&"/.*" A
naméLy) MATCHESt&"“/TaskSwitcher.*"A
naméL,) MATCHESt'&"/TaskSwitcher.*’A
naméL,,,) MATCHES “TargetSwitcher.*":
Vs, “SLEEPtgt<"&s&“>" € Zj\"WAKEgt<"& s&*>" € Zj A
“TARGET_DEACTIVATED” € 2 A
“TARGET_ACTIVATED<"& namgL)&">" € 3 A
“ACTIVATED<"& t'&">" € Zp:
3(01,...,0n,0R) € R: 0; =“SLEEPtgt<"&s&">" A
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K/TaskSwitcher TargetSwitcher

(\WAKEtgtSCANWAKE<K>/>

A

SLEEP}gts<K> awActijate<K>

O WAKEtgts WAKE<K> C’)
SLEEPtgts
(\WAKEtgtSCANWAKE<K> /)

A

SLEEP}gts<K> awActijate<kK>

»Q WAKEtgtsWAKE<K> C’)
, <

\

~ 7

Fig. 20. Target switcher synchronizations.

0 ="WAKEtgt<"& s&“>" Aoy ="TARGET_DEACTIVATED" A
0] ="TARGET_ACTIVATED<"& naméL;)&">" A
Om ="ACTIVATED<"& t'&"“>" N\or =t&" ACTIVATES "& t'&": "& sA
Vpl< p<nAPAIAP#JAPEKAPAIAPEM:IOp=+/
— Vt:Vi,j,k1<i, j,k<nAnamédL;) MATCHESt&"/.*" A
naméLl;) MATCHESt&"/.*" A
naméLy) MATCHESt&"“/TaskSwitcher.*”:
Vs"SLEEPIgI<"&s&">" € ZiA“WAKEIGI<"& S&">" € 3 A
‘ACTIVATED<"& naméL)&">" € 3 :
3(01,...,0n,0Rr) € R: 0; =“SLEEPtgt<"&s&">" A
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0] ="WAKEtgt<"& s&">" Aoy =“ACTIVATED<'& naméL)&">" A
Or = NaméL;)&" ACTIVATES "& naméL)&": "& sA
V1< <nAl£iAl#£ AL £k =/

- Vvt:vi, j,k1<i,j,k<nAnamél;) MATCHESt&"/.*" A
naméL ;) ="Synchronizer
naméLy) MATCHESt&"/TaskSwitcher.*”:
Vs"SLEEPIgI<"&s&">" € ZiA“WAKEIGI<"& S&">" € 3 A
“TARGET_DEACTIVATED" € 2 :
3(01,...,0n,0R) € R: 0; =“SLEEPtgt<"&s&">" A
0 ="WAKEtgt<"& s&“>" Aok ="TARGET_DEACTIVATED" A
Or =t&" ACTIVATES Synchronizer: "&sA
VA<l <nAl#iIAN#£ AT #kio =/

- Vt:vi, j,k1<i,j,k<nAnaméLl;) MATCHES “SynchronizerA
nameL;) MATCHESt&"/.*" A
naméLy) MATCHESt&"/TaskSwitcher.*”:
Vs“SLEEPIQt<"&s&">" € 5 A\“WAKEHgt<"& s&“>" € 5 A
“TARGET_ACTIVATED<"& naméL)&">" € % :
3(01,...,0n,0R) € R: 0; =“SLEEPtgt<"&s&">" A
0j ="WAKEgt<"& s&*>" A\
ok ="TARGET_ACTIVATED<"& naméLj)&">" A
or ="Synchronizer ACTIVATES "&&": "& sA
V1<l <nAl#£iANl# AL #Ki0 =/

The target activation synchronizations switch controlsstn action machines
which may be on different targets. They always synchroB8izEEPtgt<X>in
action machiné on targetk andWAKEtgt<X>in action machind3 on target

L. If K andL are the same target, its task switcher execAte$IVATED<B>
just as in an activation synchronization. Kf and L are different targets,
the task switcher oK executesTARGET DEACTIVATEDhe task switcher
of L executesTARGET_ACTIVATED<B>and the target switcher executes
ACTIVATED<L> (Figure 21). Finally, the synchronizer requires its ownver
sions of these generation rules since it does not belongyttaaget. The same
also applies to the target switcher, but it does not needaditih synchroniza-
tions.
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KI/IA L/B TargetSwitcher
C SLEEPtgt<X> . .WAKEtgt<X>C CACTIVATED<L>C
K/TaskSwitcher L/TaskSwitcher

O TARGET_DEACTIVATED O O TARGET_ACTIVATED<B> O
O K ACTIVATES L: X O

Fig. 21. Target activation synchronization.

e Target request synchronizations:

- Vi,;1<i,j<n:
VS “REQtgt<"&s&“>" € ZiA"ALLOWIgt<"& s&“>" € Zj :
3(01,...,0n,0Rr) € R: 0; ="REQtgt<"&S&">" A
0j ="ALLOWItgt<"& s&">" A
or = naméL )& ALLOWS "& naméL;)&": "& sA
Vkil<k<nAk#ink#]j:ok=+

—Vi;1<i<n:Vs"REQALLtgt<"& s&*>" € & :
3(01,...,0n,0Rr) € R: 0 ="REQALLtgt<"& s&“>" A
Or = naméL;)&"“ WAS ALLOWED: "& sA
Vi, 1< j<nAj#i:
("ALLOWIgt<"& s&">" € 3j — 0j ="ALLOWIgt<"& s&">" ) A
("ALLOWIgt<"& S&*>" ¢ 3| — aj = /)

The target request synchronizatiomREQtgt<X> REQALLtgt<X> and
ALLOWtgt<X>transmit information between action machines which may be
on different targets (Figures 22 and 23). Apart from thatythunction just like
request synchronizations.
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K/IA L/B

C REQtgt<X> C . ALLOWtgt<X> .
O L/B ALLOWS K/A: X O

Fig. 22. Target request synchronization.

K/IA L1/B4 La/Bn

: :REQALLtgt<X>: : . ALLOWtgt<X> . . ALLOWtgt<X> .
O K/A WAS ALLOWED: X O

Fig. 23. Target request all synchronization.

No rules other than the ones described above are generagenle R4 shows part of
a test model composed from the action machines for the mainndnox screens of
the Messaging application (Figures 2 and 3), the appraptésk and target switchers
(Figures 5 and 6), and the corresponding refinement macftime®ne belonging to
the Main model shown in Figure 4).

2.3 Test Data

LSTSs are not very well suited for modeling data. Althoughadealues can be
encoded into action names, they are difficult to change duesting and can clutter
the models. Also, using states to keep track of variableeginay easily lead into
a serious state explosion problem [48]. Because of this, ave lother means of
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awStartMessaging

K/Main:start_z

K/Main:end #wLeavelnbox

kw_PressKey’<SoftLeft>

K/Main:end_gfTolnbox

Fig. 24. An example of a composed test model. The parts related tcatkeand target
switchers have been abstracted away to keep the model wadeable, and are
represented with dashed lines. Attributes are also not Btark
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modeling data: localization tables and data tables.

2.3.1 Localization Tables

The simpler form of data ifocalization tables They consist of a list of symbolic
names and one dbcales with a text string defined for each name in each locale.
The symbolic names can be referred to in action names (yskeyiwords) with
“8SYMBOLIC_NAMES”". When the action is executed, the namésgeplaced with
the corresponding text for the appropriate locale. Culyentir tools require the
locale to be defined when the test run is begun, but ideallyoitede could be also
changed during the test run.

As the name implies, the main use for localization table® isrtable testing with
different language variants without altering the modelscalization tables are asso-
ciated with specific products, just as refinement machinéss makes them useful
also for defining product-specific constants, such as thedowies of a specific but-
ton in some application.

2.3.2 Data Tables

More complex data, such as complete contact informatiaqyires the use ofiata
tables Data tables contain a structural definition and a list afnelets matching that
definition. For example, the table

contactsfirstNamelastNamephoneNumber: \
[(“John”,“Doe”,12345678, (“Jane”,“Doe”, 8765432]]

defines that each element has the fields firstName, lastNadnghameNumber, and
lists two such elements. A single element of the table iscsedeat any moment;
accessing and changing the selected element is perforraethta statements.

Data statementsire parts of action names of the form “$(data statement)$ie T
statement consists of Python [39] code, namely a list of Erefatements, which are
executed before the action they are a part of. If the exatutfidhe data statement
results in a variable named “OUT", its value will be subggtlfor the statement in
the action name; otherwise the statement is replaced wigmgoty string.
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The currently selected element of a data table may be actéystne name of the

table and its substructure by the names of its fields. Theteeleclement can be
changed with the functionfirst, nextand any, which select the first element, the
element following the currently selected one (wrappinguacbif necessary), and an
arbitrary element, respectively. As an example of usingta datement, the action
kw_Type '$(next(contacts); OUT = contacts.firstNamejdects the next element of
the contacts table and types the first name of the newly selecintact.

Data tables and statements can also be used to perform mopdecovariation of
data, such as the testing of boundary values. Suitables/ahrebe placed into a data
table, or generated on the fly in a data statement. Likewisy, ¢an be used to test
real-time properties by using data statements to store @amgare time stamps.



3. MODELING

In this chapter we will examine the modeling techniques Ived in the creation
of model components. The components are assembled into al titmé@ry, from
which some of them can be picked for composition into a testlehoThus, it is
necessary to ensure that they function correctly both kegednd separately. We
will first examine the techniques for avoiding name clasks| continue into the
features required by coverage requirements and test dgiemerd/e will also present
guidelines for dividing functionality into model componsnand for making those
components usable on several different products. Finakywill take a look at a
model library created during the research.

3.1 Avoiding Name Clashes

Some basic rules are necessary simply to avoid name clashdie a modeler could
come up with suitable names as he works, it is better to haemsistent guideline.
This is especially important if there are several modelers.

Most important naming rules concern synchronization mbBifferentiating the la-
bels of different applications with “@PARENT” is a good begjing; the rest of the
label should make clear what the synchronization does witteé application. As an
example,SLEEPapp<@PARENT:ToMainmight activate the main model compo-
nent of the application in question. Synchronizations leetwdifferent applications
obviously cannot use “@PARENT”", and therefore need ottswinambiguous la-
bels.

Any Python variables created within data statements néewvige unique names.
This is not strictly necessary for a variable which is onleaed during the execu-
tion of a single action word, since interleavings are nosjae until the execution is
finished. However, anything stored for a longer term is &t r&ince all model com-
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ponents share the same Python environment, the risk of niastees comes not only
from different applications on the same device, but alsmftbe same application
and model components on different devices.

A unique identifier for a variable can be created by includioth “@TARGET” and
“@PARENT" in it. Unfortunately, they cannot be used dirgdth name a variable,
because they may contain whitespace or other charactegaliiin a variable name.
A simple method is to use the unique identifier as a key toldlcals dictionary,
for example “$(locals()[ @ TARGET@PARENT Variable'] = va#)$”. More elegant
solutions are possible with some preparation.

3.2 Supporting Coverage Requirements

In our approach, tests are often generated accordioguerage requirementsvhich
are explained in detail in Subsection 4.3.2. A coverageirement describes the
goal of the test in terms of specific structures in the mod@élse structures most
commonly used for this purpose are actions and attribubeslabels for transitions
and states, respectively. This is because the labels caratie rmadable to human
testers, whereas states and transitions themselves caltyusei uniquely identified
only with numerical information. Thus, it is important thettions and attributes are
given clear names; specifically, their purpose should berataindable given only
their name and the name of the model component they are afpart o

Even the most expressive label names cannot always coriviine alecessary infor-
mation to the testers, or to other modelers for that mattecaBse of this, Model
Designer also offers the option to write comments to theoasti the comments are
visible in Web GUI during the creation of a test configuratiomcomments the mod-
eler may give more details about the intended use of theraeoneeded. Finally,
actions and attributes can be designated as interesting distinction is somewhat
arbitrary, but as a rule of thumb, ordinary use cases shaildefinable in terms of
interesting labels. For example, essential actions sutduashing an application or
opening a received message are interesting, whereasritalid®es such as scrolling
down a list of items are not. A tester using Web GUI may choosédw only the
interesting labels, which can make the creation of a coeeraguirement easier.

Coverage requirements are meant to be freely combinable thit operators de-
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scribed in Subsection 4.3.2. However, even though reqeinésicannot be inherently

contradictory, it is in principle possible that the exeontof one would necessarily

make the execution of another impossible. To prevent tois fnappening, the test

model is required to bstrongly connectedmeaning that all of its states must be
reachable from all other states. This ensures that all awamibins of executable cov-

erage requirements are also executable; if nothing eleentddel may be taken back
to the initial state after one coverage requirement is fedsénd the execution of the

next one begun from there.

3.3 Supporting Test Generation

Strong connectivity is important in test generation, toeelkif a coverage require-
ment is executable in principle, finding a way to execute i imodel not strongly
connected can be extremely difficult. This is because ekgrainy action in such
a model may lead to a part of the model from where there is nongethus, no ac-
tion may be safely executed unless it is known to leave thereme requirement still
fulfillable. In practice, this would make online testing iogsible, since a safe route
to the very end of the test would have to be computed beforthiaagycould be exe-
cuted. With a strongly connected test model these problenmotexist, because no
action has irreversible effects. The guidance algorithry tharefore safely concen-
trate on one part of the coverage requirement at a time, ppenfandom deviations,
or guess the best direction for the test.

While strong connectivity ensures that the guidance algmricannot irreversibly

ruin the test run, other features of the model can still ma&eehing the designated
goals difficult. Branching actions are a notable case, siheegguidance algorithm

cannot reliably predict where their execution will leadgiiie 25 illustrates a partic-
ularly problematic structure, where algorithms may eagdt/stuck forever.

The simplest solution is to store the information the bramglaction depends on into
amemory modelMemory models such as the one in Figure 26 are model componen
with a specific structure designed to store just such inftiona Figure 27 shows
how a memory model can be used in practice. The memory mofieitigély tells

the guidance algorithm what must be done in order to reaclkleki#ed part of the
model. However, as useful as they are, memory models caohat all problems
caused by branching. We have yet to develop a truly gendrlaa but it will most
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~ - awVerifyMessagesExist awOpenMessage
:m :Q» —>
— _/

~awVerifyMessagesExist

Fig. 25. A problematic structure with the branching actiemVerifyMessagesExistwvhich
will fail every time if no messages exist. In that case annigtic algorithm seeking
to executeawOpenMessagends up checking the existence of messages repeatedly,
rather than creating a new message.

ALLOW<ToMessagesMayExist> ALLOW<AtMessagesExist>

. ALLOW<ToMessagesExist> ‘

ALLOW<ToMessagesMayExist>
ALLOW<AtMessagesMayExI§

ALLOW<ToMessagesExist>

ALLOW<ToMessage ' ALYOW<T6NoMessagesExist>

ALLOW<ToNoMessagesExist> ALLOW<AtNoMessagesExist>

Fig. 26. A memory model with the potential valuetessagesExistNoMessagesExisind
MessagesMayExistThe third one reflects an unknown situation, and acts as the
initial value.
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REQ<AtMessagesExist> /\ awOpenMessage Q
:U > -

~awVerifyMessagesExist\J awVerifyMessagesExist

Fig. 27. A better solution to the situation shown in Figure 25, makirsg of the memory
model in Figure 26. The existence of messages can only bkethatien unknown,
and becomes known after checking. This forces the guiddgoetam to actually
create a message.

likely involve both improvements to guidance algorithmsl axew requirements for
models.

3.4 Dividing Functionality into Components

One of the most important design choices in the creation esarhodel library is

the division of the modeled functionality into model compats. A naive approach
would be to create a component for each application. Howeéngoractice most

applications are far too complicated to handle as a singityeand must therefore
be divided into several model components. These compogant®e connected to
each other by means of activation synchronizations.

A good starting point in dividing an application into modelngponents is to create
a separate component for each important view of the apglicat-or example, in
Messaging these could be Main, Inbox, Create SMS and CreM8 BMS and
MMS stand for Short Message Service and Multimedia Messp8arvice, and refer
to text messages and multimedia messages, respectivay)M@&ssaging, we also
need a memory model, Messages, to keep track of whetherdheeny messages in
the inbox.

It may also make sense to separate into its own model compangrfunctionality
that is especially complicated or used in several placemdssaging, such function-
ality includes the sending and reception of messages anddiadecipient from the
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list of contacts; these can be modeled with components $eRdeeiver and Add
Recipient. All three contain complex synchronization sewes, which would sig-
nificantly impair the readability of the core models. As sapacomponents, Sender
and Add Recipient can also be easily accessed from both€C&MdE and Create
MMS, and thus their functionality does not need to be modgidce.

It is not always entirely clear to which model component adhiviidual action be-
longs. For example, is the action woasvTolnbox which opens the inbox, part of
the Main model (since it is executed in the main view) or th@olbnmodel (since it
activates the inbox view)? It is generally preferable taplauch an action into the
model component to whose functionality it is more closebatet, in this example
Inbox. For one thing, it ensures that if Inbox is left out of tomposed test model,
awTolnboxwill also be left out, which is probably as desired. On thesotiand, this
approach may in some cases lead to more complicated modéhe shodeler should
use his judgment.

3.5 Modeling for Multiple Products

If action machines are designed properly, they can be usedlftiple products with-
out any changes. For example, creating an SMS consists igid¢isg the receiver
and writing the message text, no matter what kind of deviesél to do it. Taking
advantage of this property can save a lot of work in modelimdyraaintenance.

In general, designing action machines usable on multigddymts is not difficult; the
most important thing to remember is to not include refersrioghe Ul, but only to
the functionality accessed through it. On the other hanid, fierfectly possible to
include action words for functionality that is not implentedh on all products. They
can be left without implementation in the correspondingnexfient machine, which
will prevent their execution in the model. Of course, careuti be taken that their
loss does not break the strong connectivity of the model.

Sometimes the differences between products are not linbitetle Ul, but extend
into the functionality. For example, Messaging might offieidio messages on one
product but not on another. Such issues can often be soltbdhve use of unimple-
mented or branching action words. However, such solutiend to make the models
less readable. The need for them can also be difficult toipati, leading to the
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need to modify existing action machines each time a new tdduntroduced.

At some point, it becomes more sensible to create entiréigrdint action machines
rather than trying to refit one to serve two purposes. Whdeepbint occurs de-
pends on tool support. With poor tools, the only way to introgl a choice of action
machines may be to create two entirely separate versiorfseofhole application,
which should obviously be the last resort. On the other h#relfask can be quite
simple with proper tools. For example, in Model Designesitasy to include an
action machine in the application for some products oniig; way, multiple versions
can be created and a suitable one chosen for each productichnascase several
simple action machines are probably preferable to a sirgigpticated one.

3.6 Example

The first model library designed using these semantics arithigues was created
during the TEMA project [P2]. It focused on modeling the apgtions of a product

of the S60 product family. It was mostly created over threenti® of time by the

author. The library is available from the TEMA website [44ider the MIT Open

Source License.

The model library contains 13 applications: Bluetooth,gddhar, Contacts, File Man-
ager, Gallery, Log, Messaging, Music Player, Notes, Regkt| Rotate, Telephony
and Voice Recorder. The thoroughness of modeling variesGlery models con-
tain most of the functionality of the application, while tBéuetooth models only
offer the option to turn Bluetooth on or off.

The applications are modeled in about 110 action machinkesivwontain approxi-

mately 1700 actions, 1300 states and 3200 transitions. dinesponding refinement
machines contain roughly 3000 actions, 3000 states and #afgitions. The esti-
mated number of reachable states in a test model composadaft@f the compo-

nents on a single device would be somewhere aroufdistates.

The model library had success in finding bugs from the testedyets, which were
already in the mass markets at the time. About two thirds efistbues were found
during the careful examination of the SUT in the modelinggghavith the remaining
third found during test execution. Incidentally, we alsarid several bugs in the
adapter framework we used for automated execution [P6].
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Fig. 28. A model library in Model Designer, with the Smartphones dions&ructure in the
view on top left. Some application and product names have feetacted for confi-

dentiality reasons.

More recently we have been working on a new version of the idimtary, with the

intention of applying what we learned in the making of thetfinse. The new library
does not yet span as many applications as the original ohé,dmes include several
products from different product families. Figure 28 shohs library open in Model

Designer.
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In a model-based testing process, models pass through anofiihases, from their
creation and deployment through test generation and éredat debugging. In this
chapter we will examine these phases in more detail.

4.1 Creation

Model-based testing begins with the creation of the modéig;h has been discussed
in the previous chapters. The models may be based on a vafistftware design
artifacts, from requirements or specifications documeniaio a working SUT. In
general, the use of higher level artifacts is preferableh bb@cause it enables the
static testing of these artifacts and because it allows thdeting to begin earlier,
at least in a V-model type of development process. Differaathods have been
compared in [30].

Creating models based on requirements documentationsbnmuglel-based testing
into the development process at the earliest possible.stdgis very useful because
it enables testing the design specifications against theehawdl locating errors be-
fore implementation. It can also act as static testing ofrdggiirements themselves,
highlighting problems in them. Technically, it might be pitde to use requirements-
based models as the specification for implementation. latigeathis may be diffi-
cult, because it presumes model-literate programmer®, Alkile requirements can
be used to create action machines, they do not contain thafahnation needed
for refinement machines. If automatic test execution isrddsrefinement machines
must be created separately based on some other designtartifa

The second option is to use the design specifications as #ie flos models. This
is likely to be easier than requirement-based modelingalmee specifications tend
to be far more detailed. Of course, in practice no specifioas complete, so there
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will be room for interpretation in the modeling process. Hwear, modeling can act
as a way to validate the specifications: the level of detgjuired in the models is
high, and seeking to fill in those details can bring to lightéguous or contradictory
specifications.

The third approach is to create the models by reverse-emgiea (perhaps par-
tially) working SUT. This technique greatly resembles exatory testing [21]. It is
especially suited for forms of testing where the effectsotibas are readily apparent,
such as GUI testing. Furthermore, it suffers from the saneblpms of ambiguity
and interpretation as modeling based on design specifitsatgince there is no way
to know for sure what the SUT is supposed to do. That is notytdiss it is ineffec-
tive, though. In practice, erroneous functionality woult/é to be both logical and
consistent in order to pass unnoticed: illogical functldpahould be recognized as
erroneous by the modeler, and inconsistent functionaditylie discovered in test ex-
ecution. Furthermore, models reverse-engineered froticatipns which work fine
separately can still reveal concurrency issues.

One more option is to create test models by synthesizing fhem test cases [P3].
This testing approach is not totally model-based, sinceastlsome test cases have
to be created manually. However, it can serve to expand tieifunality covered by
conventional testing, and may act as a way to introduce rAoad testing into the
product development process.

While modeling can be started early on in the design prodessight seem that
the actual test generation would have to wait until the SUTldse to complete.
After all, tests generated from a complete model are notssecidy executable on an
incomplete SUT. However, this is not an insurmountable lerb since appropriate
tools can be used to limit test generation to the featuradyriea testing [P4].

Model-based testing is compatible with incremental andhitee software design
processes. This can be accomplished simply through iteratbdeling: adding new
features to the models as they are added to the software. Upde;orequirements
and solutions may be incorporated into the models in advarasmuch as they are
known.
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4.2 Deployment

Once the model components have been created, they have refwrqa for exe-
cution. The simplest way to do this would be to create the nsodieectly in the
testing environment and compose them all. Such an appraechdiinite disadvan-
tages, though. First, it would result in needlessly largd @@mplicated test models
for simple tests. Second, the assembled model componenits Wwe limited to one
specific configuration of test targets (such as a single ghone

In theory, these problems can be avoided by manually twegakie parallel compo-

sition. Excluding unneeded model components can reducgzbef the model, and

multiple targets could be added to the test by including tbdehcomponents several
times and by suitably modifying the task switcher. But asritmnber of components
and potential configurations increases the manual appfoeabmes untenable. Our
solution is twofold: an annotated collection of model comguats, and tool support
for its automated handling.

All the model components are assembled into a model libtargddition to the com-
ponents themselves, the library also contains associagghiaational information,
such as which components comprise an application on whigtiugt, and which
components are dependent on each other. Collecting andizirgathis information
is the philosophy behind Model Designer.

From a complete model library it is possible to assemble amfigure the compo-
nents needed for a specific test. This task is performed kyCie¥igurer and guided
by Web GUI or a script it has generated. Web GUI is used to definamber of
test targets, assign model components for each of them, raaily fassociate a device
for each target. Based on this information, Test Configussembles the necessary
model components for each target, and generates the s&sicitaeded to combine
them into a single test model, such as the task switchershenthitget switcher. At
simplest, the result may be a test model for a single apfitain a single device. On
the other hand, it is possible to assemble a model for halzamdevices, some of
them of different types, with a unique combination of apgticns on each. Finally,
Model Composer sets up the parallel composition by credtiagule set according
to the generation rules; the actual composition will be qrenedon the flyduring
the test run, since it may easily result in a test model togelao compute all at
once [48], as seen in the example of Section 3.6. On-the-flyposition means that
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the composed model is only computed around the current tetdbhe degree neces-
sary for test generation. Thus, this methodology allowsusate a single artifact,
the model library, which can nonetheless be efficiently used large variety of
different testing purposes.

4.3 Test Generation

The composed test model is ready for execution by Test Enditeevever, before
the actual test generation begins, it is necessary to defiia¢ kind of a test is to be
generated. Only then can we begin executing actions in thdemo

4.3.1 Testing Modes

The first thing to do in generating a model-based test is tmdeghat the test should
do. The different goals for the tests can be divided intodluategories: use cases,
coverage and bug hunting. The testing modes were first gegbé@nsomewhat dif-
ferent form in [23].

Use case testare generated to test specific functionality of the SUT. iTheal is
expressed as a combination of the actions of the models|lyswtion words. At
simplest this means a linear sequence of actions. More dceigdl cases may con-
tain alternative paths or combine a number of use casesape®”ven an entire test
suite, into a single test run. It is important to note thatrehis no need to specify
every single step of the test run, but only those which areatteal purpose of the
test. The test will be automatically generated to includetever other actions are
necessary to reach the specified ones (assuming the spexifiscare at all reach-
able in the model, of course). For example, if the definitiba ose case test includes
entering the inbox in the model shown in Figure 24, the testetion will also auto-
matically include the launching of Messaging, becausexigg@tion is the only way
to reach the desired functionality in the model. On the olf#erd, a sparsely defined
test is more difficult to generate, since the sought-aftéoias are farther apart in the
model. Thus, there is a trade-off between the ease of definithd generation of
tests.

Coverage testseek to traverse specific types of model structures, sucttiass or
transitions. They are a good way to ensure that the basidifumadity of the SUT
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works as intended, and have the added benefit of producirg oietrics. 100%
action word coverage can be considered the very minimum afefroased testing,
since it will show that all of the functionality of the modelsrks at least some of
the time. Using state and transition coverages can prodeigetirorough tests, but
may be unfeasible in large test models.

Bug huntis a general name for testing with no or few predefined divesti The idea
is to exercise the SUT in a way likely to uncover bugs. Bug lamtact as additional
robustness testing after the use cases have been passbd aadght-after coverages
fulfilled.

4.3.2 Coverage Requirements

Use case tests are defined with coverage requirements [23jveékage requirement

is an expression which combines model actions with the opes&HEN, AND and

OR, and parentheses THEN B means thaB must be executed at some point after
A has been executed. ThUBIEN defines action sequences, and is the operator most
commonly used in individual use case8.AND B requires that bottA andB are
executed, in either order or even interleaved, if they amessions.AND is less
common in use cases, but can be used to combine several ofirikeem test suite.

A OR B states that at least one AfandB must be executed. In practic®R is not
used very often.

Notably there is no operatalOT or another way to forbid actions. Likewise,
ATHEN B only requires thaB gets executed aftek, but does not forbid the exe-
cution of B beforeA. This is because coverage requirements are meant to define on
what must be done, whereas the model defines what may be demecansequence,
coverage requirements may be freely combined with any tgsravith no danger of
contradiction.

Individual actions are written into coverage requiremeéntdhe formaction action-
nameor actions actionnamewhereactionnamds a Python regular expression [40].
The two forms require the execution of one action matchimgekpression and all
such actions, respectively. Use cases are normally defisiad the first form with
exact action names as regular expressions. The lattersatloverage requirements to
express some coverage mode goals, such as executing afl actids in the model.
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In the future, coverage requirements may be extended toefksato model structures
other than actions.

As an example of a coverage requirement, a use case forrentde inbox and
then leaving Messaging in the model of Figure 24 could be esgqed a®ction
*end_awTolnboxTHEN action .*end_awExitMessaging The action names refer
to the end parts of the action words to ensure that their impfgations get executed
before the coverage requirement is fulfilled. In this cagai@mes of the model com-
ponents can be safely abstracted into “.*”, since the act@nes remain unique even
without them.

4.3.3 Guidance Algorithms

With the goal of the test defined, it is the task af@dance algorithnto fulfill that
goal. There are many different kinds of algorithms that caruged, with different
strengths and weaknesses. Most, though not all, seek ccifisgargets in the test
model such as actions, states or more complex model stesctiifferent algorithms
are compared in [34].

The simplest algorithm is the completely random one. WHike actual guidance
is minimal, a random algorithm does have the advantage oigbegry fast. This

property can make it useful in coverage mode tests that lookcdmmon targets
such as states. Random guidance can raise the coveragéy asdly on, especially
on a fast SUT capable of executing dozens of actions per demomore. It is not

very effective in taking the coverage very high, though, ahduld be swapped for
another algorithm at some point. Finally, random guidasca good choice for bug
hunt, where there are no specific targets to look for anyway.

Tabu guidance is a slightly more complicated algorithm.elLigindom, it picks one
of immediately available transitions without calculatinbead. However, it seeks
to avoid targets which it has visited recently. Thus, tabidguce is more likely

to explore new areas in the model. It is suited to much the dasies as random
guidance.

Use case mode tests require a true graph search algorithch wdm seek the desired
targets from deeper within the model. The simplest versiothese is the breadth-
first search, which will seek out the closest desired tawypart from use case tests,
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it also works fairly well in coverage mode.

Another graph search algorithm is the fixed depth searchh Saalgorithm searches
the model in all directions until it reaches a specific diseafrom its starting point,
and then chooses the best of all the paths thus covered. viasitagie over breadth-
first search is that it can recognize target-rich areas ahibdel, whereas breadth-first
search stops looking when it finds the first one. Fixed de@tcbecan be a very good
choice for use case and coverage mode tests. However, Eagehslepths can make
it very slow.

Bug hunt works well with random algorithms. It can also make of graph search
algorithms with suitably defined targets, such as switcled®den pairs of applica-
tions. More specialized algorithms are possible, with props such as keeping a
large number of applications in execution simultaneously.

4.4 Keyword Execution

If the test is generated off-line, it is merely necessaryreate a list of executed
actions. This list becomes a script which can be executeth@BUT later on. In
online testing, the execution happens concurrently withegation. In both cases,
only keywords are executed on the SUT.

Keywords are first sent to Adapter, which translates themarfiorm understood by
Connectivity Component. Often the translation can beyaiimple, such as with
keywords designating key presses. On the other hand, Adapteprovide complex
features far beyond those offered by Connectivity Compyreich as a keyword
which automatically selects the desired item from a muylited menu. While such
composite actions could be implemented within the modely thould have to be
implemented separately in every case where they are neetiedeas Adapter only
needs to implement them once. Thus, it is usually most efi¢@implement in the
Adapter any complicated action sequences that are needadevasionally.

Once the keyword has been executed in the SUT, Connectivitpgbnent tells
whether the execution succeeded or not by returning a Boel@lae, which Adapter
conveys to Test Engine. With some keywords such as key grésseeturn value is
mostly a formality, but with others such as text verificatidghis the very purpose of
the keyword.
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In off-line testing, it is only necessary to check that theumeed value is what the
script defines it should be; if not, the test has failed. Inrentesting there is a further
possibility of a branching keyword, in which case the retuatue determines the
continued direction of the test.

One thing to take into account is that keywords’ effects matyfully play out by the
time the success or failure of execution is clear and returRer example, a launched
application may require several seconds before it is readyde. In such a case it
may be necessary to wait a while before executing the nextde) In practice it is
most convenient to add a suitable delay for each keywordarAtifapter, depending
on how much time is usually required for all the effects toyptait. If exceptional
delays are needed, such as for a key press moving an appiidatia view which
takes several seconds to open, the delay is best specifiee imddel.

4.5 Debugging

When testing pays off and an error is found, it is necessafipndoout what caused it.
Model-based testing can cause some extra difficulties smttucess. First, especially
online model-based tests can be very long, possibly houtlays in duration. Find-
ing the cause of the error in such a long trace of executiorbeadifficult. Second,
since the test model can be quite complex, it may not be easyl tehether the error
is in the model or in the SUT.

The main debug information comes from the test log, whidis Bdl the actions exe-
cuted during the test run. However, debugging a test frontopalone is not always
easy. Especially helpful in GUI testing is the ability to seleat is happening on the
SUT. This can be done in several ways, such as using a suépplieation to record
the GUI or taking periodic screenshots. If nothing elses fidgssible to use a separate
camera to record the SUT. Such recordings can be very valuallebugging. For
example, if the error is caused by a battery notification appg in the middle of a
keyword execution, the cause can be nigh on impossible &rmate from the log
yet immediately apparent from the recording.

Another approach to handling a long error trace is to try #ata a shorter trace
which nonetheless reproduces the error. There are varietisoals for finding such
traces, such as removing loops from the original error tr@ee option is to simply
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execute parts of the error trace until one that reproduce®ttor is found. These
debugging methods, as well as video recording, are explardedtail in [P5].
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5. CONCLUSIONS

In this thesis we have presented the approach of using a rilm@del for online GUI
testing. The model library is a collection of model compdseaach of which depicts
some part or aspect of the SUT. Components from the librambeacomposed into
a test model, which can then be used to generate tests. Tiitg &bichoose the
components according to the needs of testing makes theaghprvery flexible. Test
models can include exactly the components for the apphicatof interest, and may
be created to span one or more devices, possibly of difféypet, each with its own
assembly of model components.

The TEMA toolset we have developed offers support in evegsphof the model-
based testing process, from the creation and maintenartbe aiodels through test
generation and execution to debugging. From the point eV akthe model library
the most important tools are Model Designer, which is usdtsioreation, and Web
GUI, which controls the assembly of test models and testrg¢ine.

Our experiences show that a functional model library canreated with reasonable
effort, and used effectively. Modeling does require someeeise, though, and may
be best left to a designated test modeler. In contrast, géngrand executing tests
with TEMA toolset does not require insight into the struetwf the models or the
generation algorithms.

Our methodology has proven quite flexible as far as the dor&epplication is
concerned. At first our focus was solely on the S60 smartghonethe Symbian
platform [P6], but the methods have since been successiigllyl also on various
Mobile Linux platforms such as Android [12] in several catgdges [P7] [19, 43].
There is no reason why the methodology would not work webioletthe smartphone
domain as well; in [38] it is used to test a Java Swing appticat

The case studies we have conducted have shown not only tip¢abdidy of our
methodology, but also its effectiveness. In many cases weleen able to find bugs
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in products which have already been through testing anégsetéto mass market.
Notably the majority of the bugs have been found during thdetiog phase; a clear
advantage, since modeling can be done much earlier in traugrdifecycle than
automated test execution.

This far our case studies and experiments have employedsajmicely qualitative
metrics. Although proper quantitative analysis of our mdthwould be extremely
valuable, it is also very difficult to arrange in practiceillStve might seek at least
some kind of quantitative metrics in the future.

Another task for the future is the further development oftiti@s. Although quite
serviceable as they are, there are several aspects in ikizbauld be improved. For
example the support for combining model components crdatatifferent modelers
into a single library is currently seriously lacking in Mdd@esigner. Likewise, Web
GUI is under constant development in order to improve the aad flexibility of test
generation.

Although there is still much room for development, our aggto has clearly shown
its effectiveness in terms of flexibility, maintainabilitgnd the ability to find bugs.
Hopefully it can in its part further the practical adoptioihnoodel-based testing, and
thereby improve the quality of software.
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Abstract. Model-based testing (MBT) seems to be technically supéoi@on-
ventional test automation. However, MBT features somedatlifffies that can ham-
per its deployment in industrial contexts. We are develggndomain-specific
MBT solution for graphical user interface (GUI) testing gffSbian S60 smart-
phone applications. We believe that such a tailor-maddisalgan be easier to
deploy than ones that are more generic. In this paper, wemprasservice con-
cept and an associated web interface that hide the inhevenilexity of the test
generation algorithms and large test models. The intedaables an easy-to-use
MBT service based on the well-known keyword concept. Witls #olution, a
better separation of concerns can be obtained betweenghentaleling tasks
that often require special expertise, and test executianddn be performed by
testers. We believe that this can significantly speed uprttiestrial transfer of
model-based testing technologies, at least in this caontext

1 Introduction

A widespread problem in software development organizati®how to cut down on the
money, time, and effort spent on testing without comprongjshe quality. A frequent
solution is to automate the execution of predefined tessaasag test automation tools.
Unfortunately, especially in graphical user interface (3bsting, test automation often
does not find the bugs that it should and the tools providewanain the investment
only in regression type of testing. One of the main reasonthfs is that the predefined
test cases are linear and static in nature — they do not ia¢h&necessary variation to
cover defected areas of the code, and they (almost) nevegehiloreover, since GUI
is often very volatile, it takes time to update the test suitetest the new version of the
system under test (SUT). Hence, costly but flexible manséing is still often chosen
as the primary method to ensure the quality, at least in tidegbof mass consumer
products, where GUIs are extremely important.

Model-based testing (MBT) practices [1] that generatestastomatically can in-
troduce more variance to the tests, or even generate arténfiininber of different tests.
Moreover, maintenance of the testware should become eabkiem only the models



have to be maintained and new updated tests can be genenaveabsically. Further-

more, developing the test models may reveal more bugs tleaadtual test execution
based on those models. Since model development can beddtartebefore the SUT
is mature enough for automatic test execution, detectidougt early in the product
lifecycle is supported.

Concerning industrial deployment of MBT, it has been reparfor instance, that
several Microsoft product groups use an MBT tool (calledcIpeplorer) on a daily ba-
sis [2]. However, it seems that large-scale industrial idapf the methodology is yet
to be seen. If MBT is technologically superior, why has it neércome conventional
ways of automating tests? Based on some earlier studie$ §3,well as our initial
experience, it seems that there are some non-technolagistdcles to large-scale de-
ployment. These include the lack of easy-to-use tools awdssary skills. Moreover,
since the roles of the testing personnel are affected byptiniadigm change, the test
organization needs to be adapted as well [5].

In this paper, we tackle the first of these issues, i.e. magcthie skills of the testers
with easy-to-use tools. We think that one problem with th&t fyeneration MBT tools
was that they were too general in trying to address too mastinte contexts at the
same time. We believe that the possibilities of success irT MBployment will im-
prove with a morelomain-specific solutiothat is adapted to a specific context. In our
case, the context is the GUI testing of Symbian smartphopécagpions. There have
been cumulatively over 150 million Symbian smartphoneppsd [6]. We concentrate
on the devices with the S60 GUI framework [7], which is the tremmmonly found
application platform in the current phone models. In additio device manufacturers,
there are a large number of third party software developeaigmg applications on top
of Symbian S60. Compared to a more generic approach, basedlarand profiles,
for instance [8], our tools should effect a higher level adliity and automation in this
particular context.

The background of our approach has been introduced prédyioJs, 9-11]. In this
paper, based on earlier work [12, 13], the MBT service iatezfis presented in detail.
Our approach is based on a simple web GUI that can be useddeidprg a model-
based testing service. The interface supports setting up B3sions. In a session, the
server sends a sequenceéefwordgo the client, which executes them on the SUT. For
each received keyword, the client returns to the server dadaoageturn value: either the
execution of the keyword succeeded or not. Tdnsline approactenables the server
to generate tests based on the responses of the client, ip soweewhat similar to the
Spec Explorer tool [2].

Our scheme should facilitate industrial deployment by miring the tasks of the
testers. In addition to the service interface, this papesgmts an overview of the associ-
ated open source tools. The remainder of the paper is staachs follows: In Section 2,
we present the background of this paper, i.e., domain-8p&BT for S60 GUI test-
ing. Sections 3 and 4 describe the modeling formalism andseciated tool set. In
Section 5, the service concept is introduced in detail iiclg the interfaces that we
have defined. Finally, Section 6 concludes the paper witha diiscussion including
ideas for future work.



2 Domain-specific MBT

Research on model-based testing (MBT) has been conductslywin both indus-
try and academia. From the practical perspective, the fmedsal difference between
MBT and non-MBT automation is that, in the latter case, tis¢stare scripted in some
programming or scripting language. In the former case, erother hand, the tests are
generated based on a formal model of the SUT. The model desdtie system from
the perspective of testing at a high level of abstractionweéler, the definition of a
“model” varies greatly, depending on the approach [1]. In&pproach, a model is a
parallel composition of Labeled State Transition Systelh®ISs). This formalism en-
ables us to generate tests that introduce variation in #tedbehavior for instance,
by executing different actions in many different orderewkd by the SUT. In some
other MBT approaches, the goal might be to generate all plessata values for some
type of parameters. Thus, there are many different types®f [gblutions that do not
necessarily have much in common. The algorithms for geingrtdsts from the models
may be significantly different, depending on the formalisnd ¢he testing context.

However, a common goal in many MBT schemes is to execute higdmes of
different tests. Once the MBT regime has been set up andngntiie generation of
newtests based on the models is as easy as running the sametslagaism and again.
Obviously, old tests can still be repeated for debuggingeses if necessary.

In spite of these benefits, the industrial adoption of thihit®logy has been slow.
Robinson [3] states that the most common problems in depoyigre the managerial
difficulties, the making of easy-to-use tools, and the ranization of the work with the
tools. Hartman [4] reports problems with the complexity lvé provided solution and
counter-intuitive modeling. Our early experiences supfiwse findings. Moreover, it
must be acknowledged that modeling needs a special kindperége that may not
be available in a testing organization. However, such diggemight be available as a
service, especially when operating in a specialized dosaéh as testing smartphone
applications.

We think that a problem with the first generation MBT tools whest they were too
general. These tools tried too much to address many testimigxis at the same time,
for instance by generating tests based on UML models thdt @rscribe almost any
type of SUT. We believe that the chances of success in MBTogepnt will improve
with more domain-specific solutions that are adapted toip@ontexts. In our case,
the context is the GUI testing of Symbian S60 [7, 6] smartghapplications. Symbian
is the most widely spread operating system for smartpham@$60 is a GUI platform
built on the top of it. There are a large number of third padfj\sare developers making
applications on top of Symbian S60. One driving force in ampmation solution for
this product family setting is the ability to reuse as marsig@s possible when a new
product of the family is created. Thus, we have built our tastlel library to support
the reuse of test models.

In addition, in terms of industrial adoption, MBT needs todmapted to the ex-
isting testing processes that are shifting towards morke ggactices [14] from the
traditional ones based on the V-model [15] and its variaidn agile contexts, on the
one hand, developers are already relying on test automttismpport refactoring and
generally understand its benefits as compared to manuage€in the other hand, it



seems especially important to provide easy-to-use to@ssarvices that do not place
an additional burden, such as that of test modeling, on tbgrpersonnel. We have
identified a minimum of three modes [11] to be supported ineagiocessessmoke
testingshould be performed in each continuous integration cyder stories can be
tested in ause-case testingiode; and there should béag huntingnode, whose only
purpose is to support finding defects efficiently in long tesis.

Concerning domain-specific issues, the Symbian S60 doméailethe following
problems, among others, from the testing point of view:

— How to make sure the application under test works with petailed applications
such as calendar, email, and camera?

— How to test the interactions between the different appbeetrunning on the phone?
How to make sure that the phone does not crash if a user mattiird-party appli-
cation? What happens if, for instance, some applicatiangis to delete an MP3
file that is being played by another application?

— How to test that your software works with different keybaaeahd screen resolu-
tions?

The domain concepts of Symbian S60 testing can be descritiegkeywordsand
action words[16, 17]. Action words describe the tasks of the user, suchpasing
the camera application, dialing a specified number, or fimgethe number of the re-
cipient to a message. Keywords, on the other hand, corrdgpaphysical interaction
with the device such as the key presses and observatiorts agaon word needs to be
implemented by at least one sequence of keywords. For exastplting a camera ap-
plication can be performed using a short-cut key or a menmun&tance, and verifying
that a given string is found from the screen. The verificatinables checking that the
state of the model and state of the SUT match each other dilméntgst run.

Keywords and similar concepts are commonly used in GUIrtgstiols. We believe
that using these concepts in conjunction with MBT can helgeploy the approach in
industrial settings. Since testers are already familidin wie keyword concept we just
need to hide the inherent complexity of the solution and jpl®@as simple a user in-
terface as possible. The existing test execution toolsaheady implement keywords
should be adaptable to receive a sequence of keywords frarvarsThe role of the
server is to encapsulate the test model library and the iaéeddest generation heuris-
tics. Based on a single keyword execution on the SUT, thatctaol returns to the
server a Boolean value based on success or failure of theitgtxecThe server then
selects the next keyword to be sent to the client based ongtiisn value.

3 Modeling Formalism

In this section, the fundamentals of our modeling formalés®presented for the inter-
ested reader. As already mentioned, we use Labeled Statsifloa Systems (LSTSs)
as our modeling formalism. This is an extension of the Latb&tansition System (LTS)
format with labels added to states as well as to transitibhe.formal definition is pre-
sented below. It should be noted that while each transiSamssociated with exactly
one action, any number of attributes may be in effect in &stat



Definition 1 (LSTS). A labeled state transition systerbbreviated LSTS, is defined
as a sextupléS 2, A § N, val) where S is the set dftatesZ is the set ofactions
(transition labels)A C Sx X x S is the set ofransitions§ € S is theinitial state
M is the set ofattributeg(state labels) and valS— 2" is theattribute evaluation
function whose value vé$) is the set of attributes in effect in state s.

It should be noted that while each transition is associatiétdl exactly one action,
any number of attributes may be in effect in a state.

In our approach, the models are divided into four categadesrding to their uses:
action machinesrefinement machingséaunch machinesand initialization machines
Action machines are used to model the SUTs on the action wewel.| Thus, they
are the main focus of the modeling work. Keyword impleme&atet for action words
are defined in refinement machines. Together, these madisimasnost of the model
architecture; the remaining two types are focused on stippdasks. Launch machines
define keyword sequences required to start up an action mgchich as switching to
a specific application. Initialization machines, on theesthand, define sequences for
setting the SUT into the initial state assumed by action rnmeshand are executed
before the actual test run. They can also be used to retur8WHeback to a known
state after the test. Both of these functions have simpkuiteictions. Hence, explicitly
defined launch and initialization machines are rarely ndede

Concerning the keywords, many of them require one or morarpeters to define
their function. Sometimes these are fixed to the GUI, suchgerameter that defines
which key to press, but sometimes they represent real-vetadd: a date or a phone
number, for example. Embedding such information direcitg the models is problem-
atic, because they would be limited to a fixed set of data ga&me possibly tied to
a specific test configuration. Another problem with the usdai# is that storing it in
state machines requires duplicate states for each possilie of data, which quickly
results in a state space explosion [18]. To solve these @mudlwe have developed two
methods of varying the data in models: localization datadatd statements.

The basic function ofocalization datais to hold the text strings of the GUI in dif-
ferent languages, so that the models need not be tied to anifispanguage variant of
the SUT. The data is incorporated into the model by placirngeaigl identifier in a key-
word. When the keyword is executed, the identifier is replagigh the corresponding
element from the localization tables. More complicatedafgtata can be accomplished
by placingdata statement@ython [19] code) in actions. These statements may be used
in any actions, not just keywords. Data provided by extediagh tablescan be used in
these data statements.

In order to be used in a test run, the models must be combingdrailel compo-
sition. The models involved in this process are action machinfisgraent machines,
launch machines (both explicitly defined and automaticgéiperated), and a special
model called theask switcherThe latter is generated to manage some of the synchro-
nizations between the models. In the composition, the nsoalel examined and rules
generated for them according to the domain-specific sepgattidetermine what ac-
tions can be executed in a given state. As usual, the conos#n be used to create
one large test model that combines all the various compsnentt can be performed
on the fly during the test run. We have found the latter metldaktpreferable, since



combining a large number of models can easily result in @geistate explosion prob-
lem. The definition of the parallel composition, extendearfr[20] for LSTSs, is the
following:

Definition 2 (Parallel composition||r). ||r (L1,...,Ln) is theparallel compositiorof
LSTSsL,...,Ln, Li =(S,Zi,4,§,Mj,val), according taulesR; Vi, j; 1 <i < j <
n:MiNM; =0. LetZr be a set of resulting actions and a “pass” symbol such
thatvi;1<i<n:¢Z%. Therule set R (Z1U{/}) x - x (ZnU{V/}) X ZRr.
Now||r (L1,...,Ln) = (S Z,A,5 M, val), where

— S= Sl X oo X S,]
- 2X={aeg|da,...,an: (a1,...,an,8) € R}
= ((s1,..-,%),3,(S},-..,9,)) € Aif and only if there is(ay,...,an,a) € R such
that for every i(1 <i < n) either
e (5,a,5) €jor
e =/ ands=g
— 8= (&%)
- MN=Mnu---UMy
—val((st,...,s)) ={meN|3i;1<i<n:meval(s)}

The composition is based on a rule set which explicitly defthe synchronizations
between the actions. An action of the composed LSTS can beud only if the
corresponding actions can be executed in each componerg, L& Tf the component
LSTS is indifferent to the execution of the action. In someteame cases an action may
require the cooperation of all the component LSTSs, or desicgmponent LSTS may
execute an action alone. In practice, however, most actipasr models are executed
singly or synchronized between two components, thougletagnchronizations also
exist.

An important concept in the models is the division of statésiunningandsleep-
ing states In more detail, running states contain the actual funetiionof the mod-
els, whereas sleeping states are used to synchronize thelsiwith each other. The
domain-specific semantics ensure that exactly one modelasrunning state at any
time, as is the case with Symbian applications. As testiggnisethe running model is
always the task switcher. Running and sleeping states direedemplicitly according
to the transitions in the models.

4 OQverview of the Tools

In this section, we provide an overview of the toolset suppgrour approach. The
toolset is currently under construction. The tool architez is illustrated in Figure 1.

The toolset can be divided into four parts plus a databasefifgt is the model design
part, which is used for creating the component models aral tables. The second is
the test control part, where tests are launched and obséFaedhird is the test gen-
eration part that is responsible for assembling the testantrolling their execution.

The fourth is the keyword execution part, whose task is toroomicate with the SUT

through its GUIL.
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Concerning the model design part of the toolset, the to@siaed to create the test
models and prepare them for execution. There are two prigdesign tools: Model De-
signer [13] and Recorder [21]. The latter is an event capfutool designed to create
keyword sequences out of GUI actions; these sequencesambétformed into refine-
ment machines. Model Designer, on the other hand, is the toairfior creating action
machines and data tables. The latter is also responsibés$embling the models into
a working set ready for testing; even refinement machinestetenith Recorder pass
through Model Designer. The elements of this working setpd@eed into the model
repository.

After the models with their associated information haverbpeepared with the
design tools, the focus moves to the test control part. Tais gontains a web GUI
which is used to launch the test sessions. Once a test séssidieen set up, the Test



Control tool in the test generation part of the toolset tatesr. First, it checks the
coverage requiremen(a formal test objective) that it received and determineatwh
model components are required for the test run. These aea givModel Composer,
which combines them into a single model on-the-fly. The maglehanaged by Test
Engine, which determines what to do next, based on the paeasnié receives from
Test Control. Both Test Control and Test Engine report tlogpss of the test run into
a test log, which may be used for observing, debugging, aratpg the test.

As keywords are executed in the model, Test Engine relayn thethe keyword
execution part. The purpose of this part is to handle th&icetion in the SUT. The SUT
responds with the success status (true or false) of the kelywdich is then relayed
back to Test Engine. The first link in the communication betw@est Engine and the
SUT is handled by a specific adapter tool, which translateskédywords into a form
understood by the receiver and manages the gradual exeaitsmme more complex
keywords. The next part in the chain is the test tool whicledly interacts with the
SUT. The nature of this tool depends on the SUTs in questichiamot provided
alongside the toolset. The users of the toolset must pravidie own test tool and
use the simple interface offered by the adapter. In our casdyave used commercial
components, namely Mercury Functional Testing for Wirel@dFTW) and Mercury
QuickTest Professional (QTP) [22].

We have designed the architecture to support the pluggimg-different test gen-
eration heuristics. Currently, we have implemented thmgristics which allow us to
experiment with the tools: a purely random heuristics tlzat lbe used in bug hunting
mode, and two heuristics based on game-theory [11] to be inséd use case test-
ing mode: a single thread and a two thread version. The diffex between the two
is that the latter continues to search an optimal path tota &afilling the coverage
requirement, while the other thread waits for a return vélam the client executing a
keyword.

Itis anticipated that in deploying our approach the testiagsonnel should consist
of the following roles (see Figure 1): test manager, testef@dand test model exe-
cution specialist. The test manager defines the entry andriteria for the test model
execution, and defines which metrics are gathered. The tsager should also focus
on communicating the testing technology aspects. Thisided explaining how model-
based testing compares to conventional testing methodadatating reasons for and
against using it for management and testing personnel esethespects, model-based
testing is similar to any new process initiation.

The main goal of the test modeler is to update and maintaitetstemodel library
using the Model Designer and Recorder tools based on pragecifications if such
exist. The test modeler can also be responsible for degighaexecution of the model
and setting up the environment accordingly.

The test model execution specialist orders the test sesfiom the web GUI ac-
cording to the chosen test strategy. He/she also obsergasghexecution to ensure
that the models are used according the agreed principleeandata. Another focus of
this role is in reporting the results and faults onward. Theppse is to document the
test model usage and testware in a way that enables its reuse.
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Fig. 2. MBT testing server, adapters, clients, and SUTSs.

5 Providing a Symbian S60 Test Service

In this section, the service scheme is presented in dethd. féllowing subsections
describe the interfaces provided by our server.

5.1 Server and Clients

The architecture of the toolset described earlier enabtdeat-server scheme where
the keyword execution and test generation parts are separgd facilitate the deploy-

ment of model-based GUI testing in the context of Symbian &fflications, we have

set up a prototype version of the server that implementsetstegeneration part. It pro-
vides testers an easy interface to the MBT tools.

The server is accessed through three interfaces. Firsg ithan interface through
which test modelers update the test model components orithersSecond, there is a
web interface through which test execution specialistssedip tests. Finally, there is
an interface for sending keywords to adapters which exdabeteorresponding events
on actual devices. Figure 2 illustrates the scheme.

Although the MBT server could be installed as a local apfilicein the client ma-
chine, there are some practical reasons for dedicatingaatepPC for that purpose.
The most important reason is that some of our test generalimmithms, i.e. the ones
based on game heuristics, can produce better results givea pnocessor time and
memory. Fortunately, computing power is very cheap nowsday it still pays off
to have a dedicated machine. Moreover, the server providbar@d platform for test
modelers to update the model library and test executionaipsts to set up tests. Fur-
thermore, all the users of the server do not need to know tteglslef the SUT, for
instance the physical form or other design issues that mapbfdential at the time of
testing. For the purposes of test modeling, it should be ghtmknow what previously
tested member of the product family this new member resentbéemost and what the
differences are concerning the modeled behavior.



5.2 Test Setup Interface

There are a number of parameters that need to be given intord&rt a test run. The
most important ones are:

1. SUT types: which phone models will be used in the test run® affects the auto-
matic selection of test model components.

2. Test model: which applications will be used in the test?rBased on this choice,
the test model components are selected and composed totgefitien a single test
model that will be used in the test run.

3. Test mode: the test can be executed in smoke test, bugdnehtjse-case testing
mode. In each mode, a coverage criterion should also be.givercriterion defines
when the test run can be stopped, but it can also be used te thaidest generation
as in the case of use-case testing mode.

4. Number of clients: how many clients can be used to exebetéeist? Using more
than one client can often improve the time in which the teihished. For example,
a complicated coverage criterion can often be divided imalker criteria that can
be fulfilled in concurrent test executions.

5. The test generation algorithm, connection parametedslayging system.

To support different types of testing in the various phaseéletesting process, the
server supports the three testing modes mentioned abotee Ismoke testing mode
the server generates tests in a breadth-first search faghtdrthe coverage criterion
has been fulfilled; for instance, 30 minutes have passed @0 k8ywords have been
executed. In the use case mode, the tester inputs a usemdise {orm of a sequence
of action words) to the server, which then generates testswter that use case using
the game heuristics. As already discussed, the main miotivitr this mode is compat-
ibility with the existing testing processes: the tests ageally based on requirements
and the test results can be reported based on the coverage &dquirements. In the
bug-hunting mode, in addition to purely random generatioe server could generate a
much longer sequence of keywords that tries to interleagdéhavior of the different
applications as much as possible in order to detect hafuddsugs related to mutual
exclusion, memory leaks, etc.

When the test setup is ready, the corresponding test modeitisnatically built
from components of the model library. After that, the givenerage criterion could be
split so that there is a chunk for every client to cover. Hinainetest engingrocess
per every client could be launched to listen to a TCP/IP cotioie. A test engine will
serve a client until its part of the coverage criterion hasrbepvered or it is interrupted.
Now the MBT server is ready for the real test run, during whicé clients and the
server communicate through the test execution interface.

5.3 Test Execution Interface

To start a test run, the test execution specialist startsi¢heces to be used as targets
in the tests as well as the clients and adapters. The adapéecenfigured so that they
connect to the test engines waiting on the server. Test &érecon the client starts
immediately when its adapter has been connected to thengistee



During the execution, a test engine repeats a loop wherstitsinds a keyword to
an adapter. The adapter, with the help of the test execwtait iis controlling, converts
the keyword into an input event or an observation on the SWTakkeady discussed,
there are different keywords for pushing a button on the phaypad and verifying
that a given string is found on the screen, for instance.rAftat, the adapter returns
the status of the keyword execution, i.e. a Boolean valuetitgnsuccess or failure, to
the test engine. In a normal case, when the status of the kdyaxecution is allowed
by the test model, the server loops and sends a new keywane exapter.

Otherwise, unexpected behavior of the SUT is detected, sdyb to a bug in the
SUT, and the server starts a shutdown or recovering sequitninorms the adapter
that it has found an anomaly. The adapter may then save stratsha memory dump
or other information useful for debugging. It also sends@mawledgement of having
finished operations to the server. Finally, the test engiamg@ither close the connection,
or try to recover from the error by sending some keywordsradar instance to reboot
the SUT.

Regardless of the mode, during a test session a log of extlceyavords is recorded
for debugging purposes. When a failure is noticed, the logogaused for repeating the
same sequence of keywords in order to reproduce the failure.

GUI testing can sometimes be slow, even with the most saphist tools. In order
to cope with this, we should extend our solution to suppatdbncurrent testing of
several target phones using one server. Testing a new Syr8Bia application could
be done so that one client is used for testing the applicatidsolation from other
applications, while other clients are testing some apptiodnteractions.

5.4 Using the Web GUI

The testers interact with the server using a web interfahe.ifiterface has been im-
plemented in AJAX [23] and it consists of several differeigws. In the following, we
will introduce the basic usage of the interface step by step.

When the tester wants to start a test session, he or she fisinto the system.
After that, the system offers two alternatives: either tartsh session by repeating a
log from some previous session or simply from scratch. Iddkter case, a model con-
figuration must next be selected. Such a configuration casistoof models of certain
applications whose interactions should be tested, foaits. Next, a view called the
coverage requirement editor is opened (see Figure 3). $rvibw, the tester can con-
struct a new coverage requirement from actions of the maateponents included in
this configuration. Since the number of different actions ba large, there is a possi-
bility to limit the shown actions to those marked “interagti by the test modelers. The
coverage requirement is composed of actions and operBEN, AND, andOR, as
well as parentheses. As an example, consider a requiremesefding a multimedia
message (MMS) from one SUT to another with an attachment:

action Messagi ngl- Mai n: NewWVS THEN
action Messagi ngl- MVS: I nsert Cbj ect THEN
action Messagi ngl- MVB: Sel ect THEN
action Messagi ngl- Sender: Send THEN
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Fig. 3. Coverage requirement editor.

action Messagi ng2- Recei ver: Show THEN (
action Messagi ngl- Mai n: Exi t Messagi ng AND
action Messagi ng2- Mai n: Exi t Messagi ng

)

In the example, Messagingl is the SUT that should send the ihdSViessaging2
the one that should receive it. Once the message has beesetdgent, received and
opened, both SUTs should return to the main menu in a norifgukorder. The right
hand side of Figure 3 shows the corresponding coveragerssgent in the case of one
SUT. In the one phone configuration, the sender and the rcaie the same device,
while in the two phone configuration they are different. Repig operator AND with
OR would simply mean that either one of the phones shouldrrétLthe main menu. If
the requirement under construction if not well-formed,rdsguirement turns red and an
error message is displayed. The coverage language is prdsamore detail in [11].

Since constructing long coverage requirements can take séfort and time, there
is a view where they can be saved and loaded (see Figure 4pdvier, there is an
option to upload and download coverage requirements ifdbtet wants to use another
editor.
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Fig. 4. Coverage requirement menu.

In the next view, the tester can set the parameters for thedssion. First of all,
there are different heuristics corresponding to the dsffértesting modes. Moreover,
there are some other parameters to be selected based onutiisite used. For in-
stance, using the game heuristics in the requirement cgeenade requires the depth
of the search tree. There are naturally default valuesablail but based on the model
complexity, better results, i.e. reaching the coverageirement faster, can be achieved
by carefully selecting the parameters. In addition to thiéetester can specify the seed
for the random number generator.

Another important selection to be made in this view is theadatd localization
tables to be used in the test runs. For this purpose, the tegisesented with a list of
predefined files in the server.

Finally, the tester can choose to start the test run in thé view. There is also
a selection on how detailed a log is displayed during the n@st In any case, the
tester can always choose to view all the logged informafidr log is automatically
saved so that the test run can be repeated for debuggingsas;pgfor instance. When
the test execution specialist presses the “Start” buttos server starts waiting for a



Fig. 5. Test setup with two SUTSs.

connection from a client where the SUTs have been connesied Bluetooth or a
USB connection. An example test setup with two targets isvehia Figure 5. On the
right hand side the test log in the web GUI is shown. The clieathine on the left
hand side has two targets connected using a Bluetooth ctomec

After the test session is finished, the web interface turtieeegreen or red, based
on success or failure. In the latter case, the tester may twashdwnload the log for
reporting or debugging. In the former case, the tester gqaort¢hat the requirement in
question has now been tested. The interested reader cama vielgo of the test session
described in the above examplehat p: / / www. cs. tut. fi/~t eans.

6 Discussion

In this paper we have described a model-based GUI testimicsedior Symbian S60
smartphone applications. The approach is based on a test deat is currently in the
prototype stage. We are implementing the tools we have itbestand are releasing
new versions under the MIT Open Source Licence. A downlogdest can be made
through the URL mentioned above.

In our solution, the server encapsulates the domain-spdest models and the
associated test generation heuristics. The testers, bexesution specialists, order



tests from the server, and the test adapter clients conodbetphone targets under
test. The main benefit of this approach compared to more geagproaches is that it
should be easier to deploy in industrial environments; acpice, the tasks of the tester
are minimized to specifying the coverage requirement atagefome parameters for
heuristics, etc. We are developing the web interface to hesalsle as possible and plan
to conduct usability surveys in the future.

How then could the service model be used? The organizatidesting services
affects what kind of testing process could be used. This désa flexible approach
for ease of coordination [24]. In industrial practice, itwl be important to get reliable
service based on the current testing needs. This is in litie tiie current trends of
the software industry [25]. At best, there would be severaviders for the service to
fulfill the needs of different end-users. Beside technicahpetence, communication
skills are emphasized in order to provide transparencydal#iails of the solution.

Case studies on using the service concept are on the way. Véealr@ady used
the web GUI internally for several months. In these expeniteighe SUT has been the
S60 Messaging application, including features such ast shessage service (SMS)
and multimedia messages (MMS). The former supports seruilygextual messages,
while the latter supports attaching photos, video and adlifis. So far we have per-
formed testing with configurations of one to two phones. Basethe positive results
of this internal use, we are working towards transferririg tachnology to our indus-
trial partners. One of the partners has already succegsfidtl out our test server in
actual test runs without the web GUI. We anticipate that tiee @UI will help us in
conducting wider studies in the future.
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Abstract testing method in practice. One of the core ideakimain-
specificity as it should ease the adoption process. In our
Smartphones are becoming increasingly complex, andcase, the domain is GUI testing of Symbian smartphone ap-
the interactions between the different applications make plications. There have been cumulatively over 150 million
testing even more difficult given the time-to-market pres- Symbian smartphones shipped [10]. We concentrate on de-
sures and the limits of current test automation systems. To-vices with the S60 GUI platform, the most commonly found
wards these ends, we have built an open source test modeframework among the current phone models. In addition to
library for Symbian S60 GUI testing. This paper describes device manufacturers, a large number of third party soft-
and analyzes our experiences in building the library. ware developers make applications on top of the platform.
We have also created a test model library that enables the
testing of new smartphone applications in conjunction with
1 Introduction others, including the predefined ones. In [9] we reported
our initial experiences in testing this domain; most of the
issues found in the SUTs were concurrency related. With
the help of such a model library, the testing of new applica-
tions can be facilitated: the library can be easily extended
with new model components to be included in the final test
models. Such test model libraries could allow device and
platform manufacturersto set common quality requirements
for third-party application in a way similar to the Symbian
Signed program [11]. Another example is the TTCN-3 SIP
Test Suite [3] available for conformance testing.
The background of our approach has been introduced

Unlike many other areas of engineering, most software
defies formal analysis due to its great complexity. The ver-
ification and validation of software is mostly performed
by extensive testing, which can never yield 100% cer-
tainty. When developing products for mass consumer mar-
kets, testing is often done through a graphical user interfa
(GUI). While GUI testing is sub-optimal in many respects
compared to other kinds of tests, it is still considered impo
tant when checking the functionality and performance from

the viewpoint of the end-user experience. reviously in [6, 7, 8, 9]. In this paper, based on [5], we
An attempt to decrease the costs of GUI testing has beer? y LT > Paper, . ’
concentrate on the test model library. In Section 2 we re-

made by partially automating the process. The results have

. . view the background of our contributions. In Section 3 we
been varied, from early capture and replay methods yield- . . : .
: . d ) ! : discuss our experiences in creating the test models and the
ing few practical benefits to data-driven scripts which have

. : : contents of the test model library. Section 4 contains some
proven reasonably efficient in some forms of testing [4].

However, they have usually proved inefficient in finding concluding remarks.
new defects in the software. Some of these problems may
be solved with model-based testing (MBT) [12]. 2 Background
In MBT the essential functionality of the system under
test (SUT) is formally modeled, and then tests are gener-2.1 Action words and keywords
ated from the model. Unlike script-based testing, whelte tes
cases are run automatically but must be designed manually, A solution to some of the problems of automated GUI
MBT can be used to automatically generate the test cases atesting is to separate the functionality of the SUT from its
well. However, it requires a viewpoint very much different implementation [2]. The functionality is described ac-
from traditional test automation. tion words which correspond to the actions the SUT can
We are developing a model-based GUI testing solution perform. The level of detail and complexity of action words
and trying to find ways in which it could be adopted as a can vary greatly, from simple ones that denote little more



than a key press to very complicated ones that correspondjuired to start up an action machine, such as switching to
to whole use cases. However, no matter what they describea specific application. Initialization machines, on theesth
action words should never be directly tied into the specifics hand, define sequences for setting the SUT into the initial
of the interfaces, graphical or otherwise. state assumed by action machines. Initialization machines
Where action words describe the functionality of the are executed before the actual test run, and they can also
SUT, keywordsare used to describe the implementation of be used to return the SUT back to a known state after the
that functionality. Each keyword corresponds to some ba-test. Both of these functions have simple default actioss; a
sic event in the interface of the SUT, such as pressing a keya consequence, explicitly defined launch and initializatio
or verifying that the text output matches expectationst Jus machines are rarely needed.
as action words should be independent of interfaces, key- In order to be used in a test run, the model components
words should be independent of any functionality they may must be combined into a test modelparallel composi-
be used to implement. While generally simple, keywords tion. The components involved are action machines, refine-
may also be complex in nature; for example, a keyword to ment machines and launch machines (explicitly defined and
type text into a phone may perform the equivalent of a very automatically generated), as well as two automatically cre
complicated series of key presses. Because of this, there isted models called thask switcheand thesynchronizer
no hard line between action words and keywords in terms of The task switcher manages the synchronizations between
what they can express, as a complex keyword may be morghe model components of a single testing target, whereas the
complicated than a simple action word. The true difference synchronizer helps in the handling of synchronizations be-
is in how they are used. tween multiple targets. In the composition, the model com-
In the context of testing mobile applications, a typical ponents are examined and rules generated for them accord-
action word could correspond to a user opening an appli-ing to the semantics in order to determine what actions can
cation for sending SMS messages when the phone is inbe executed in a given state. The composition can be used
the idle state. In this case the action could be refined toto create one large test model that combines all the various
a sequence of keywords corresponding to the key strokescomponents, or it can be performed on the fly during the test
needed to open the application in the real phone. There mayun. The latter method has been found preferable, because
be multiple ways for opening such an application (short cut, combining a large amount of models can easily result in a
menu, etc.), and each of these could be encoded as a sepatate explosion problem [13] serious enough to overpower
rate sequence implementing the same action word. any computer. The definition of parallel composition for
The advantage of using action words and keywords is LSTSs can be found in [6].
that test cases can be created as sequences of action words. An important concept in the models is the division of
In this way, they are no longer tied directly to volatile inte  states intaunningandsleeping statesRunning states con-
faces, but rely on the relatively more stable functionadity ~ tain the actual functionality of the models, whereas slegpi
the SUT. When the interface changes, only the implementa-states are used to synchronize the models with each other.
tions of the action words must be modified to match. Only a The semantics ensure that exactly one model is in a running
change in the functionality of the system may require mod- State at any time. As testing begins, the running model is
ifications in the test cases, but such changes are much lesthe task switcher. Running and sleeping states are defined
common. Therefore, by using action words and keywords, implicitly according to the transitions in the models.
one very significant problem of automated testing, namely
maintenance, can be avoided. 2.3 Action types

2.2 Modeling formalism The actions to be used in the creation of the models
can be divided into five types. These are action words,
The test models are in Labeled State Transition Systemkeywords, action machine synchronizations, action word
(LSTS) format as defined in [6]. They are divided into synchronizations and comments (which have no semantic
four categories according to their usastion machinege- meaning). The action machine synchronizations can be fur-
finement machinetaunch machineandinitialization ma- ther divided into task switcher synchronizations, actomt
chines Action machines are used to model the SUTs on synchronizations and request synchronizations.
the action word level; as such, they are the main focus of  Action wordsare used to describe the functionality of
the modeling work. Keyword implementations for action the modeled systems and therefore form the core of the test
words are defined in refinement machines. Together ac-models. Generally action words must be executed correctly
tion machines and refinement machines form most of thein a well-functioning SUT, since they describe its valid use
model architecture. The remaining two types are more spe-However, it is also possible to use so-called failing action
cialized. Launch machines define keyword sequences rewords to cope with nondeterministic SUTs by directing the



model into a different state in case of failure in execution. bels with a special semantic meaning. A state verification
The success or failure of an action word’s execution is de- will be refined by the appropriate refinement machine just as
termined by its keyword implementation. action words; the resulting action sequence becomes a loop
The other cornerstone of the models are kbgwords in the state where the state verification was placed. This
which describe events in the SUT and are used to refinefeature can be useful in verifying that the model state corre
the action words. Just as action words, keywords may besponds to the state of the SUT.
required to succeed or allowed to fail as need be. In addi- Refinement machines consist of implementations for ac-
tion, they may be required to fail, such as in verifying that tion words. The implementing keyword sequences are usu-
a given text has disappeared from the screen. Their succesally constructed as loops in a single central state, begin-
of execution depends directly on SUT events. ning and ending with action word synchronizations. Such a
The first category of action machine synchronizations, structure ensures that all action words can always be refined
task switcher synchronizationsontains exactly two ac-  since a refinement machine should not restrict the function-
tions: Wake s and Sleegs. Wake s may only go from a ality of an action machine. The sequences may contain
sleeping state to running state and allows the task switchetbranches and even loops, though the latter are strongly dis-
to grant control to this modelSleeps, conversely, goes couraged. Like action machines, keyword machines must
from a running state to sleeping state and gives up controlbe strongly connected.
to the task switcher. Though they are used in different situations, launch ma-
Activation synchronizatiorsso change control between chines and initialization machines have exactly the same se
the component models. Very much like task switcher syn- mantics. Unlike action and refinement machines, they are
chronizations in most respects, activation synchroropati not strongly connected; instead, a deadlock state must be
however, bypass the task switcher and switch control di- reachable from each of the machine’s possible states. When
rectly between the two models. the execution reaches a deadlock state, its task is coasdider
Request synchronizatiom®me in three distinct types: to be finished. These types of models may only contain key-
Allow, Regand RegAll They handle communication be- words as actions. Their have essentially the same structure
tween test modelsReqmust be executed synchronously as the keyword sequences in refinement machines.
with a correspondingAllow, and RegAll with all corre-
spondingAllows If the requiredAllow(s) cannot be exe- 2.5 Data integration
cuted, then neither can tliedRegAll Depending on their
placement, request synchronizations can be used to ask for Typically
permission for an operation, for instance. j
Action word synchronizationare used to synchronize

many keywords require one or more parame-
ters to define their function. Sometimes these parameters
> represent real-world data; a date or a phone number, for ex-
keywords to action words. They are rarely placed man- 456 Embedding such information directly into the mod-

ually, however, but are created by the modeling t00ls as g5 is not advisable, because they would be limited to a fixed
needed. The only action word synchronization commonly get of gata values and possibly tied to specific test config-

placed manually iseturn, which is used in refation to fail- - ation. Furthermore, storing data into state machines can
ing action words. drastically increase the number of states in the composed

model. To solve these problems, we have developed two
2.4 Machine semantics methods of varying the data in models: localization data

and data statements with data tables.

As explained earlier, the four types of machines created Localization datdunctions as a simple text replacement,
by the test modeler are action machines, refinement ma-where an identifier in an action is replaced by a text string
chines, launch machines and initialization machines. Apar from a localization table. As the name implies, localizatio
from the action semantics, the only common semantic re-tables are usually used to hold GUI text strings in different

quirement for all four types is that they mustdbeterminis- languages. However, they may also be used with other kinds
tic, meaning that no state may have more than one outgoingof data, if text replacement is all that is needed.
transition labeled by the same action. More complicated use of data can be accomplished by

An action machine must l&rongly connected.e., each  placing data statementsito actions. The statements are
of its states must be reachable from every other state. In efPython [1] statement lists which may use any Python func-
fect, this means that the machine may not conti@adlock  tionality. They can also accedsata tableswhich are lists
states(states with no outgoing transitions) unless it con- of structured data elements created for this purpose. The
sists of only a single state. Action machines may have ac-data statements can be used to create a text string to replace
tion words and action machine synchronizations as actionsthe statementin the action and to alter the persistentatate
They may also havstate verificationswhich are state la-  the Python interpreter for the following data statements.



3 Building the S60 GUI test model library first category are structural models that describe the major
lines of an application. These models typically contattelit

3.1 Observations in modeling functionality in themselves. What they do have is synchro-
nizations with other models; our model library even con-

tains a few structural models that consist of nothing else.
As we began the development of our methodology one of - . o .
Their internal functionality is mostly concerned with mov-

the tasks was the creation of test models for applications in. . : ; L

S60 phones. While we had earlier experience in modeling'ng through the different windows of their application, al-

and verification our primary modeler had done little or no though they sometimes contain simple actions within those
: ’ . . . windows, usually small enough to be modeled with a sin-

modeling apart from drawing class diagrams. This may not . .

have been an entirely bad thing, as it allowed us to begingle action word. The base models of appl|cat|or!s are nearly

from scratch and it led to some new innovations. always structural models, and a complex application may

Throughout the whole modeling process we never usedhave several structural models describing its major parts.

any specifications for the applications we modeled. There-  The second type of model is the subroutine model. Such
fore, instead of specifications, the models were based on ob@ Model describes one or more actions that can be per-
servations and, to some extent, common sense. Obviouslyf,ormed in a certain state of the modele(_JI application. Their
up to date specification would have been potentially helpful 9réat advantage is that they can be easily connected to mul-
in model creation. However, we think that the lack of spec- tiple points in structural models. Subroutine models resem
ifications gave us a rather realistic setting; nowadays pop-Pl€ subroutines of programming languages: they are wo-
ular agile methods do not encourage detailed specification k€N through an activation synchronization, perform a lim-
instead the implementation is seen as the most important aritéd series of actions and finally give up control through an-
tifact. Moreover, this led us to use some exploratory testin other synchronization. While they may contain an initial

practices to develop the models, and we were also able tgchoice of actions, each action generally proceeds in arlinea
find some real defects [9]. fashion to its end. Significant branches and loops are quite

When modeling an application, we would begin by start- 27€- Long action_s can typically be iqterrupted in the madd|
ing the application in a phone, moving it through its major and the control given to the task switcher; apart from thgse
screens and trying out its functionality. Once we had an ideaCaSes: synchronizations are uncommon, though sometimes
of how the application worked, we would create models to "€dUests may be necessary to determine what actions can
cover its basic behavior and then add in functionality until P& Performed. There has been one notable exception to this
the models appeared sufficiently detailed. Without specifi- "€, Where a subroutine model was created to take care of
cations we could not always be certain whether the appli- 2 particularly complicated series of synchronizations.
cation was functioning correctly or not. In general, if the ~ The final model category consists of memory models.
behavior was consistent and logical, we would assume thatThe original model semantics had no method for data han-
everything was working as intended. In these cases, morelling, and the only persistent information was the current
than anywhere else, good specifications might have beerstates of the models. Therefore, when memory was needed,
useful. the solution was to create a model that would record the

After some practice in drawing small single-purpose necessary information in its state when sent to sleep. A
models, we took on the true task of creating a relatively memory model, typically, has a few waking states, most
complete set of test models for the S60 platform applica- commonly just two, and an equivalent number of sleeping
tions. We began with the Calendar application, as it ap- states. Normally the only actions are ones that change the

peared quite simple compared to many others. We sooncurrent state of memory. The sleep states usually A&ve
discovered that even in its relative simplicity the applica 0w synchronizations so that the state of the model can be

tion was too complex to fit neatly into a single model. As observed from the outside, and sometimes others that let
a solution, we divided the Calendar functionality into sev- the state be changed as well. One drawback of the memory
eral portions and created test models for each, indiviguall models is their effect on state space: a two-state memory (a
Apart from the base model for the application, the models single bit) effectively doubles the size of the whole model.
could not be woken by the task switcher but only through  Figure 1 shows an example of how the models of dif-
direct synchronizations from the other Calendar models. Inferent categories relate to each other. The example is from
this way, each model became simple enough to understandthe part of the Gallery application that deals with images.
As the model of the Calendar application was split, the At top left there are three structural models for the Gallery
resulting action machines seemed to fall into three cate-main screen, the image selection screen and the image view
gories, according to how they were synchronized into the screen. The last of these is connected to a subroutine model
whole. While this division has since prevailed in most of below for attaching an image to a contact, and two mem-
our modeling work, it is intuitive rather than formal. In the ory models on the right for managing the zoom level and



h to several receivers simultaneously. The basic method of re
s laying the information about the message to another model,
D D 3 the Reqgsynchronization, was obviously not feasible with
ImagesZoom . .. .
multiple recipients. The solution was tfegAllsynchro-
Main Images ImagesViewer | - nization, which allowed the synchronization of more than

two models at once. The semanticsRé#qAllwere defined

in such a way that it could be set up to act as the exact nega-
ImagesScreen tion of Req a feature which has proven very useful at times.
Another good characteristic ®@egAllis that it works re-

v

I?:gif\f\adc?_ gardless of the number of correspondifiipw actions in
the component models, none or a dozen. Because of this,
RegAllcan be used as an announcement of sorts, with all
Figure 1. Example of model structure from interested models always allowing its execution, but react
the Gallery application. ing to it with non-loopingAllow transitions.

Another realization brought on by Contacts was that
some way of incorporating data into the models would be

the normal/full screen status. Note that the model picturesevemtlrj]aIIy rteqwred. In Caleg.darh Itt did not really matt?rd
in the figure are not actual state machines; rather the statJ‘OW € entries were named, what variance was wante

structures shown are iconic for models of their categories,?omdt be achletved blyl using alltfegat? k;eywordf V\gth d'f'd
with filled circles corresponding to sleeping states. erent parameters. - However, 1T Lontacts was o be use

It was clear that memory beyond the rather limited pos- for sending messages, it was .clearly.not sensible to embed
sibilities offered by memory models would be useful. In names and phone numbers d|rect_ly Into the_ model. These
Calendar the problem was in keeping track of the numberr_eqUIrementS Ie_d eventually to the_ incorporation of I“.
of calendar entries. The exact number of entries could bel©" data and,-fmally, data tables into the model semantics.
practically stored in states only when it was very smallzoth "€ modeling of Calendar and Contacts had brought out
erwise both the model and the state space would grow pro-2ll the major requirements in model semantics. One later
hibitively large. However, we were unwilling to impose an addition was the use of state verlf_|cat|ons. These special
artificial limit on the number of entries that could be create State labels could be transformed into keyword sequences
using the Calendar models, especially if the limit was to be that would check that the SUT is in the correct state.

a very low one. Because of these factors, we decided to ig- As the third application, Gallery, was being modeled,
nore the exact number of entries and limit ourselves to threeit finally became apparent that combining the model com-
states: one in which entries were known not to exist, anotherponents resulted in a serious state space explosion prob-
in which they were known to exist, and the last one where lem. The early versions of Gallery, together with the more
entries might or might not exist. This solution was not en- complete Calendar and Contacts, yielded a huge state ma-
tirely satisfactory, either; a notable deficiency was thatt  chine with millions of states. Later attempts to combine
entries could not be deleted without creating a new one inyet more models proved impossible as our computers ran
between, as there was no way of knowing that another entryout of memory. Because of these problems, the use of pre-
still existed after one was deleted. The solution was féasib combined test models was mostly abandoned and parallel
only because of the possibility of deleting all entries atan ~ composition was performed on the fly for the portion of the
which made bringing the model back to initial state always model where it was required. While huge models could be
possible. Eventually, these problems led to the concept ofhandled in this way, the enormous state spaces still proved
action words that are allowed to fail. The later advent of to be a difficult challenge for the test generation algorghm
data statements has allowed us to dispose of some memory Later on, the modeling of the Messaging application

models, though others are still necessary. brought to light an entirely new problem. While Messaging
may be the logical application for sending text (SMS) and
3.2 Advances in semantics multimedia (MMS) messages, many others also had this ca-

pability: Contacts could send a message to a selected con-
Modeling the next application, Contacts, yielded one sig- tact, Gallery could send a selected image as a message, and
nificant addition to the model semantics. The application so on. In every case the actual creation and sending of the
holds the contact information and provides shortcuts for message worked in the same way, apart from some field
making phone calls and sending messages. While we didpossibly being filled from the start. Creating all but identi
not yet model the sending and receiving of messages at thatal models for so many applications did not seem sensible;
point, we did notice that it was possible to send a messagenot only would that have created more work, but the redun-



dancy would also have caused difficulties in maintaining the '\‘

model library. Setting all of the applications to use the sam
model, on the other hand, would not have allowed several
applications to write messages at the same time; a dubious
choice, as testing the interactions between the applicatio
was a high priority.
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tirely separate from our informal action machine classifica

tion, as any kind of action machine can be made into a tem-
plate. Once the method was in use, we went back to severa
of the applications we had modeled earlier and converted
their models into templates where possible. However, tem-
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plate models have since been replaced with another methoc svzoom3
calledlinked modelsthanks to the automated model man- SLEEPaP“Re‘“rnlmagez°°m>
agement features of Model Designer. Linked models re-
move the need for a separate template, with the equivalent _. . .
b b q Figure 2. The action machine

models connected directly to each other.
Gallery:ImagesZoom

3.3 The current state of the library

As the first big modeling phase reached its end, we had
all the major pre-installed applications of our S60 phones expected level of zoom.
modeled. In some cases the models were somewhat specu-

lative in nature, as we did not yet have actual adapter sup- At the time, the model library contained 11 different ap-
port for all the functionality required; we could not handle plications: Calendar, Contacts, File Manager, Gallerg,Lo
multiple phones in test runs, for example. However, all the Messaging, Music Player, Notes, RealPlayer, Telephony
changes made since then have been minor in nature, as th@he phone call application) and Voice Recorder. The appli-
broad lines of the applications had been correctly modeled. cations were modeled in some 110 action machines, with a
An example of an action machine from the library can be corresponding number of refinement machines. Separately,
seen in Figure 2, which shows the model for the zoom func- the action machines contained about 1300 states, 1700 ac-
tionality in the images section of the Gallery application. tions (perhaps 40% of them action words) and 3200 tran-
According to the informal action machine classification-pre sitions. Refinement machines added roughly 3000 states,
sented earlier, the zoom action machine is a memory model:3000 actions and 4100 transitions to the totals. The main
the figure shows four different levels of zoom in which the modeling effort had taken about two months, starting com-
image may be set and left as the zoom model rescinds conpletely from scratch; another month was spent in thoroughly

trol. The zoom level may be increased or decreased increchecking and debugging the models and their interactions.
mentally, and from all levels except the first (no zoom) it is

possible to return directly to the first. However, the latter  Ideally, we might have used the whole model library at
functionality is only available when the image is in normal once to run some extremely varied tests, since all signifi-
screen mode, as opposed to full screen mode. The reasonant application interactions had been modeled. However,
for the restriction is that in full screen mode the key press the sheer size of the combined test model proved too much
which would reset the zoom level leaves full screen instead;for our tools. Computational limits prevented us from cal-
the zoom model has to take this into account. culating the exact magnitude of the combined state space

A refinement machine for the zoom action machine is of the model library, but even careful estimates gave a state
presented in Figure 3. As is usual with refinement ma- countin excess of 8. And while the size of the test model
chines, the initial state at the center is the single reaalg st was not a great limit for the on-the-fly parallel composition
from which all the refinement loops for the action words it brought some of our more sophisticated test generation
begin. Also note that there are refinements for each of thetools practically to a halt. This forced us to limit the model
state verifications defined in the action machine, with which components in use to those belonging to the application(s)
one can verify that the SUT does indeed currently have theunder test or, even better, just the necessary models.
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Synthesizing Test Models from Test Cases
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Abstract. In this paper we describe a methodology for synthesizingnesl-
els from test cases. The context of our approach is modeldbgsaphical user
interface (GUI) testing of smartphone applications. Tdlitate the deployment
of model-based testing practices, existing assets in téstetion should be uti-
lized. While companies are interested in the benefits of negraaches, they
may have already invested heavily in conventional tesesuithe approach pre-
sented in this paper enables using such suites for creatimglex test models
that should have better defect detection capability. Theh®sis is illustrated
with examples from two small case studies conducted usialgest cases from
industry. Our approach is semi-automatic requiring useraction. We also out-
line planned tool support to enable efficient synthesisgssc

1 Introduction

Model-based software testing [1] has several obvious adgas over conventional test
suite testing where test cases are crafted manually. Ramios, on-line tests generated
from state machines can reach significantly higher coveregsting non-deterministic
systems under test (SUTSs) than linear and static test siim®over, maintenance of
large test suites is more difficult when changes occur in tie&. $requent changes
are common especially in graphical user interface (GUKjrtgghat is typically used
to check the functionality of the SUT from the perspectivatef end users before a
release is made.

The problems with conventional test automation approakhes resulted in many
bad experiences, and manual testing is still widely comsmi@s the primary quality
assurance method at the system and acceptance level te@itgj-intensive software
[2]. While unit and integration level test automation cagndficantly improve code
quality and enable efficient refactoring, system level &esomation entails much more
challenges. This is due to tli®main-specific naturef system level testing; at the unit
and integration levels all SUTs seem more or less similgredding on the program-
ming language used; the same white-box testing and stagilysis techniques work
across different domains. At the system level, howeverctirgext comes into play:
testing a banking system can be quite different from testisgt-top box.

The deployment of model-based system testing has been hedipenany contexts
in spite of its many benefits [3, 4]. In our earlier work, we baleveloped a domain-
specific solution to the GUI testing of S60 [5] smartphoneliapfions that should be



easier to deploy than more generic methodologies [6, 7]. dg@oach consists of a
domain-specific modeling language based on LSTSs (Labedksé $ransition Sys-
tems) augmented with S60 specific restrictions, a modedljbcontaining test models
for the basic smartphone applications such as calendagasncamera, and messag-
ing, and tools for on-line test generation. In on-line tgtithe idea is to generate tests
while they are executed, thus testing can be seen as a gaweselnghe test automation
system and the SUT [8].

In the course of developing our approach we have identifiethan problem in de-
ployment: companies may have invested huge sums of monewfiotest suites and
thus can be unwilling to invest to the development of test e®deplacing the former
way of working. Thus, in order to facilitate the deploymefbar approach, we have
developed a semi-automatic method for synthesizing testefsdrom test cases. This
enables utilizing the existing assets when moving fromde#é testing to model-based
one. The method is domain-specific to enable a higher levaltifmation in the syn-
thesis and promote the usefulness of the resulting modelsektr, a similar method
could presumably be developed for some other domain, usimias principles.

In this paper we describe the method and the case studieswwebaducted. In ad-
dition, since model synthesis is quite different from tlaglitional way of creating mod-
els, and we compare the synthesized model to a one craftedrysing a top-down
approach [9]. A tool support for the synthesis is also oetlinits implementation will
be future work. The remainder the paper is structured asvisll Section 2 describes
the context of our contributions, i.e., model-based GUiingsof mobile applications.
Then, we move on to present our approach for model syntheSiedtion 3. Sections 4
and 5 present the case studies and discuss the results gntltteanvork.

2 Model-Based GUI Testing of Mobile Software

Action words and keywords [10, 11] are commonly used corxcigpsoftware test au-
tomation, especially in GUI testing. The basic idea is toasefe different concerns:
whatare the important actions to be tested Andithey are implemented. Action words
are high level descriptions of functionality; in the smédpe context there can be dif-
ferent action words for opening the messaging applicatiaking a photo with the
camera, or adding a new contact, for instance. Keyword$)y@nother hand, specify the
exact sequence of events that are needed to implement tbiofuality described by
an action word. In S60 GUI, for instance, there can be meltigdys of opening a mes-
saging application (short cut, menu, some other applicatieach of the different ways
can be encoded as a separate sequence of key strokes thapéskhdhe action. Fur-
thermore, to receive input from the SUT, some keywords cathelokicated to verifying
that a given text string is found on the display, for instance

The main benefit of action words and keywords is in enablingtechnical testers
to design action word level tests without deep knowledgéhefunderlying keyword
implementations. Moreover, they ease the tedious maintentasks often hindering
the use of GUI test automation; in many cases minor GUI change be restricted to
the keyword level. Action words and keywords can be used iiventional approaches
so that the keywords are implemented as a library of funstione function for each



keyword. Action words are then specified using spread shieetisistance, that list the
sequences of keywords needed to implement the corresppadiion word. Finally,
test cases can be encoded as sequences of action words prgiag sheets as in the
previous step.

However, linear and static tests are limited in their aptiit find new defects. Thus,
the true power of the action words and keywords is realizeenndombined with auto-
matic test generation based on behavioral models. For tinfgoge, we have chosen to
use Labeled State Transition Systems (LSTSs) [12] for testaling. LSTS is an ex-
tension of the more common Labeled Transition System (LoBh&lism where labels
have been added to states as well as transitions. Actiorsveordi keywords are used as
transition labels in the models. The formal definition forllSis as follows:

Definition 1 (LSTS). A labeled state transition systembbreviated LSTS, is defined
as a sextupléS 2, A,§ N, val) where S is the set dftatesZ is the set ofactions
(transition labels)A C Sx 2 x S is the set ofransitions$ € S is thenitial state
M is the set ofattributeg(state labels) and valS— 2" is theattribute evaluation
function whose value vés) is the set of attributes in effect in state s.

Notation of internal transitions makes no sense in test mgidoecause our behav-
ioral models have to be strictly deterministic for test gatien. Our definition differs
from the original one in that respect.

Actions can be divided into three categories according o tieey deal with the
SUT:input, outputandsetup actionsinput actions correspond to user input, and output
actions get information from the SUT. Setup actions affeet2UT just as input actions,
butin ways not accessible to an ordinary user. Setup aatmgist, for example, directly
create or remove files in memory or alter internal settinggioh words often combine
aspects of more than one category, whereas keywords ugathlheatly into one or
another.

To enable modular and compositional test modelpayallel compositioris used
for combining test model components. The parallel comosdf LSTSs [12] is based
on arule set explicitly defining which actions are executgtthronously. An action of
the composed LSTS can be executed only if the correspondtiana can be executed
in each component LSTS, or if the component LSTS is indiffete its execution.
The following definition is slightly modified in two respecisternal transitions are not
needed and handling of state propositions is made moregistfaiward:

Definition 2 (Parallel composition||r). ||r (L1,...,Ln) is the parallel compositiorof

LSTSsL,...,Ly, Li=(S,Z,4,5,M;,val), according taulesR, withvi, j; 1 <i <
j <n:MiNM;j =0. LetZr be a set of resulting actions arda “pass” symbol such
thatVvi;1<i<n:¢Z%. Therule set R (Z1U{/}) x -+ x (ZnU{V/}) X ZRr.
Now ||r (L1,...,Ln) =repa((S,Z,A,8,M,val)), where

— S= SEI_ X oo X S,|

- Z=2R

= ((s1,..-,%),a,(Sy,-..,9,)) € Aif and only if there is(ay,...,an,a) € R such

that for every i(1 <i < n) either
e (s5,&4,5) €hor



e 3=y ands=g
§=(%,...,%)
|_| == I_Ij_ U st U rln
val((sy,...,S)) = vah(s1) U---Uvakh(s)
repa is function restricting LSTS to contain only the statbgch are reachable
from the initial states.

Parallel composition offers tools for implementing rudimeay variables, which the
basic LSTS formalism lacks. A variable can be created asgesgomponent model,
whose states correspond to different values. The actiosadh avariable modelare
synchronized to those of the other component models so tfiatet values allow
different actions. These synchronized actions can be odedttithe value of the variable
or to change it. The idea of using compositional test modedind separate variable
components is motivated by existing tools, that proof thecept [13].

To hide the complexity inherent in test models and test geiwer algorithms, and
so to facilitate the deployment of our model-based testiethwdology, we have intro-
duced a web based testing service [7]. The idea is that tedtseisers can order tests
using a simple web interface specifying the desired coveraguirements. The cover-
age requirements are then used for driving on-line testrgéioa based on an extensive
model library containing test models for basic S60 applbeet[9].

We believe that such a service can greatly ease the adogitnadel-based testing
in smartphone application testing. However, companies leaisting assets in conven-
tional test suites, and they might prefer to utilize them whégrating from traditional
test suite based automation to a model-based one. This ledrasearch an approach
for synthesizing test models from test cases.

3 Synthesis of Test Models

The synthesis process we have developed allows the creazftiarsingle test model
from a number of test cases. The cases must be strictly liodsagin with; they should
also be specific in detail. The resulting model will have thme level of abstraction
(action word/keyword) as the original cases. Test caseshwerify the state of the
SUT often may be easier to handle, but the process is destgrado work with few

or no verifications.

The process has five distinct phases. In the first phase tnardlactions are listed
and parameterized. The second phase consists of creatiaglea to hold some of the
state information of the SUT. The third phase takes careefrtitialization sequence
of the SUT. In the fourth phase recurring states within ttst ¢ases are marked and
labeled. Finally, the fifth phase sees the test cases meogether with the variables
and the initialization to form a new test model.

Although the phases are presented consecutively, thegr @aot fixed. Only the
merging phase is dependent on the others and must therefpeformed last. The oth-
ers may be performed in any order, and it may even be a gooddaeasider them side
by side. Throughoutthe process description we will preaganhning example, starting
with the three imaginary action word level test cases in fadu In the first the phone



SMS-Send
VerifyMessagin VerifyNoMessaging

OpenMessaging CreateSMS Send CloseMessaging

SMS-Receive
GenerateSMS

itForMessage lessage
Clearlnbox ExitMessaging

SMS-Send-Receive
NewSMS Send CloseMessaging

itForMessage Message
OpenMessaging CloseMessaging

Fig. 1. The three initial example test cases.

sends an SMS to itself, in the second it receives and opengtamatically generated
SMS, and in the third it first sends an SMS and then receivéotie that the actions
CreateSMSndGenerateSMPerform the same task, as do the acti@gseMessag-
ing and ExitMessagingThey are used to demonstrate the effects of different e&tio
sequences corresponding to the same functionality.

3.1 Action Definition

The first thing to do is to list all the actions used within tloeice test cases. Possible
parameters should not be included. Once listed, each aistiassigned two values:
weight and idempotence status.

An action’s weight represents its situational specifiddy.action with a high weight
is one whose execution with a certain parameter is likelyetdIthe SUT into the
same state every time. This may be either because the astionly executable in
very few states or because it resets parts of the SUT. Anraeiith a low weight, on
the other hand, is one which can be executed in many diffesiardtions and whose
effects depend on the current situation. Weights are usttimerging of test cases. If
identical action sequences taken from different test casd#ferent parts of the same
test case have a high combined weight, it is likely that tlgpieaces are related to the
same functionality of the SUT. If this is the case, the twd teses may be merged
at the points after the sequences, giving them two diffeneyts to proceed from that
point. The comparison is made with sequences instead desiatjons because a long
series of actions is likely to be far more situationally sfie¢chan any of its actions
individually.

Actions may be marked as idempotent. The execution of an pdéent action
leaves the SUT in the state it had before the execution. Mieshpotent actions are
used to get information out of the SUT. An idempotent actian be discarded from a
test case without breaking it, although the testing valud@tase may drop.

Finding the right weights is not an exact process. Actionds@hould generally be
given high weights, whereas keywords’ weights vary casealsg.cln our running exam-
ple all actions are action words. This means they have a litigdti®nal specificity, and
we can give all of them maximal weights. VerifyNoMessagimgl &/erifyMessaging
are idempotent, the rest are not.



Following are some examples with keywords: A keyword foretésg the SUT
has a very high weight, since by default it always leaves tb& # the same state.
It is clearly not idempotent. A keyword which verifies that imem text is visible on
the screen is idempotent and has a relatively high weightesihe same text does not
very often occur in different situations. A keyword indicat that nothing should be
done for a period of time has minimal weight, since waitingliways possible. It is
not idempotent, because it is generally used in situatidrergithe state of the SUT is
expected to change during the wait.

3.2 Variable Definition and Integration

Embedding a part of the state of the SUT into variables is gpomant part of the
synthesizing process. Without separate variables, thesstthe test cases may contain
so much information that they can never be merged togetierfifst, most difficult
task is to identify the variables to be created. As a genetal those properties of the
SUT which are independent of the current screen of the SU@ffaatt execution should
be moved to variables. Having too few variables reducestingyer of potential merge
points and thereby limits the functionality of the final mbd®o many variables mean
more work in creating them and may increase the size of therfindel, but should not
reduce its quality.

After the variables have been determined, each is given dauaf possible values.
The number of values should be kept as small as possibleybedhey can cause
exponential growth in the final model. Once the values haeamlohosen, each may be
given one or more setup actionsassignment actionsn the final model, the execution
of the assignment action will automatically set the vagabto the designated value.
A single action may act as an assignment action for multiplees, as long as they
do not belong to the same variable. Finally, for each vagialle of its values may be
chosen as the initial value. The initial value should eitheere an assignment action or
be otherwise guaranteed when testing begins. A variablebmagft uninitialized, but
then no action based on it can be taken until it has been givaiua during a test run,
and the size of the resulting model is also somewhat incdease

Once the variable definitions are ready, variable modelseated for them. For
this purpose we have made a simple Python script which redtls variable definitions
in CSV (Comma Separated Values) format and automaticatigyes an LSTS for
each variable. The script also creategsiable initialization modelvhich can set the
variables to specific values before a test run by using thigrasent actions.

The ready variables must be integrated into the test ca$es.i§ performed by
adding preconditions and postconditions to the actionkentést cases. Preconditions
specify the values of the variables necessary for the saftdesxecution of the action.
Postconditions, conversely, define the changes of valuesedaby the execution of the
action. Assignment actions do not require explicit postiitions, but are synchronized
directly into appropriate variables. For optimal resuligpand postconditions should
be placed right around the relevant action, not around aevlction sequence.

In our running example, we create a single variable to reatrether there is a mes-
sage on its way to the phone, so that we will be free to mergtesieases at the main
screen, regardless of whether messages have been sent @enose GenerateSMS



SMS-Send
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VerifyMessagin {MessageOnltsWay == False} {MessageOnltsWay := True} VerifyNoMessaging
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Clearlnbox {MessageOnltsWay == True} o]
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BeginlnitVariable:
GenlprateSMS

Fig. 2. The example test cases with pre- and postconditions added.

as an assignment action for the value True and pick Falseeaisitial value, which
should be safe for a new test run. Figure 2 shows the variabtiehand the variable
initialization model, and above them the test cases withaumd postconditions marked
with braces.

3.3 Initialization Sequence Definition

In order to automatically set the SUT into its initial sta&fdre a test run, an initial-
ization sequence is defined. The sequence contains thage asdtons which should
always be executed before a test run. They could, for examgdet the SUT, disable
features that might interfere with testing, and createablétdata. Variable initialization
should not be included here. As a rule, all setup actionsldizriwithin the initializa-
tion sequence or act as an assignment action for a varidlaleetup action belongs to
neither group, more variables might be needed.

The rest of the initialization phase could be performed auatiically with the in-
formation from the earlier phases, although we do not ctlgrérave tools for it. The
initialization sequence is made intgganeral initialization modelAll non-idempotent
setup actions are removed from the beginnings of the tess¢lay now they are all in
the general initialization model or the variable initi@iion model), and synchroniza-
tion is added to connect them into the initialization models

The changes made into the test cases in the example are veoy, m$ Figure 3
shows. The only setup action is Clearlnbox, which has beerethimto a model of its
own.

3.4 State Label Definition and Assignment

The existence of the variables allows the test cases to bgeah&vrith relative freedom,
but there is no guarantee that suitable merging points caautmematically identified.
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Clearlnbox
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Fig. 3. The example test cases with setup actions separated.

SMS-Send

VerifyMessagin {MessageOnltsWay == False} {MessageOnltsWay := True} VerifyNoMessaging

OpenMessaging CreateSMS Send CloseMessaging

SMS-Receive
GenerateSMS WaitForMessage {MessageOnltsWay := False}

{MessageOnltsWay == True} o]

SMS-Send-Receive
NewSMS Send CloseMessaging WaitForMessage {MessageOnltsWay := False}

OpenMessaging {MessageOnltsWay == False} {MessageOnltsWay := True} {MessageOnltsWay == True} Oper Cl

Fig. 4. The example test cases with filled states marking the mageacr

For this purposetate labelsare added into the test cases. The important states of the
SUT are identified and a name is given to each. Especiallyitapbare the starting and
ending states of the test cases (ideally the same state)attie states of other major
SUT screens visited during the test cases are also goodeshélmoperties included in
variables should be ignored.

Once the important states have been selected, state laittelsuitable parameters
are placed into test cases at every point in which the SUT & @¢hosen state. The
state labels can be handled as LSTS attributes; alterhativey can be interpreted as
idempotent actions with maximal weights. Either way, meng#l always be attempted
at their points of execution. They can be easily removed ftloenfinal model so that
they do not interfere with its execution.

In our example, we decide that the only noteworthy stateésin screen of the
phone and label it, as shown in Figure 4. The states in quelstiee been filled.

3.5 Merging of the Component Models

Now that the test cases have been prepared we can perforrttiad merging. This is
done with the merger program, which looks for identical ssetues of sufficient weight
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Fig. 5. The model merged from example test cases.

within the test cases and suggests merging their destmatades. The program may
also offer false suggestions, i.e. merges that would réswh erroneous model. Be-
cause of this, the legality of each merge must be manuallgiatto ensure the validity
of the model. The merging results ircantrol modelwhich contains the functionality of
the original test cases, but without the information encaddéo variables. The merged
model, variable models and initialization models are thasspd through parallel com-
position, which creates an executable test model.

While the test model obtained this way is usable, it may pd&euties for test gen-
eration. That is because the model is likely to contain maikgpleading to deadlocks,
i.e. states with no outgoing transitions, resulting eitlhem a denied precondition or
the end of a test case that could not be merged anywhere. Tthel may be cleaned by
removing all the dead paths, but this is not always a good Ifi#e test cases could be
looped back into themselves and deadlocks occur only orlyriagtlaces where a pre-
condition fails, the clean-up procedure should be safe tiopa. Conversely, if many
test cases ended in unique states and caused deadlocksatlitee clean-up could
remove relevant functionality. In this case the model maypétter left as-is, and the
test generation algorithm must take care not to guide theutiamn toward a deadlock
prematurely.

Figure 5 shows the model obtained from our example test ciages have been
performed at matching actions and state labels. Addingiilielization models and the
variable model in parallel composition results in the usahbdel depicted in Figure
6. It would seem that in this case the cleaned model (Figureot)d be more useful,
since the dead end on the right likely serves no practicgqae; it depicts a situation
where a new message is created with one already on its wasingathe preconditions
to block its sending.

4 Case Studies

We have performed two small scale case studies to test othiesining methodology.
The original sequences were linear keyword level test gaisged from a much larger
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Fig. 6. The example model after parallel composition.
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Fig. 7. The final, cleaned model.



set of test cases for S60 applications developed by one dhdustrial partners. The

first case study used seven test cases for the Phonebootedimpli The second one had
nine for the Messaging application, concentrating on shod multimedia messages
(SMS and MMS). Both case studies used the same set of 30 kdgwitie Phonebook

test cases had 193 actions altogether, the Messaging sest 863. Three of the test
cases for the Messaging case study can be seen in Figureh8&amite changes made
for readability and to adapt them for a single phone.

Both case studies used the same set of keywords, which wealvegaly familiar
with from our earlier work. Giving keywords their weights svtherefore easily done,
though the values were somewhat arbitrary; we had yet toparénough experiments
to find the best values. The Phonebook case proved to redies variables, six to
hold information about existing contacts and groups andfoneéxcoming messages.
The Messaging case required six variables, two for the exxégt of messages and re-
ports and the rest for various settings. The first case ldlibkeidle state and the con-
tacts and groups screens, the latter labeled the idle stdtéha screens for SMS and
MMS writing.

After the merge, the Phonebook model had 126 and the Megpamgidel 192 states.
Parallel composition and cleanup brought state counts%@32nd 2327, respectively.
The Phonebook case shows the potentially exponential roatised by variables.
This happened because the variables controlled relatsrabll portions of the model
and had little to do with each other. Conversely, the vaeialih the Messaging case
were interconnected to some degree, and affected contaoitoch greater extent; for
example, many individual test cases specified certaimgstbefore sending a message.
As aresult, large portions of the control model were realshaibly with certain variable
values. Figure 9 shows an overview of the final Messaging modldstrating its scope
and complexity. Although the models are too large for humasheustanding, their size
is not a problem for our automated test generation tools.

The quality of the final models appeared to be comparablestteitt models in our
test model library [9] created by hand from scratch, althongt quite equal to them.
The synthesized models contained less functionalityHisttas a result of the original
choice of test cases, not a failing of the method itself. Aabtg difference was the
higher granularity of the synthesized models: often astihich could be performed
separately in hand-made models were forcibly chained hegen synthesized ones.
However, this tendency did not seem to reach truly detriaddetels, and the number
of possible action sequences was still magnitudes higlagriththe original linear test
cases. The final difference between the synthesized moddl®@r old models was
that keyword level test cases naturally became a single éetevel model, not a
combination of keyword and action word level models as in madel library. The
action word level might be added using the bottom-up modeithnique presented
in [6]. Presumably action word level test cases could be déoeathinto an action word
level model and the action words then refined as in origirsldases, though we have
yet to attempt that.

In both case studies, most of the effort during the syntlvegigrocess went into
variable definition and integration. In the Phonebook c#sis, was mostly manual
work: the variables were simple, but referenced often. Witssaging the situation
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Fig. 8. Three of the nine Messaging test cases.



Fig. 9. The final Messaging model.

was different. There much time was spent in deciding whattikahould be modeled
into variables, and how exactly would they be integrated ihe test cases. Placing the
pre- and postconditions also took considerable time, mbsitause the complexity of
the variables demanded great care in integrating them arttval. We found merging to
be relatively easy, but it might pose more difficulties to smme not used to test mod-
eling. It definitely requires some understanding of the enpénted variables, which
implies that the whole process might be best performed byglesperson.

Both of the case studies were performed by a single persoeactdrequired less
than a day to complete. It seems quite reasonable to us tHagend tools a person
familiar with the process could synthesize a model of caersidly greater size within
a single day. That would be notably faster than creating apawable test model from
scratch, and would not require a similar expertise in mogelFortunately the most
time-consuming phase, variable definition and integratieems likely to scale rea-
sonably well with the number of test cases (probably liné&rteor less). The least
scalable phase by far is merging of the component modelerfiatly quadratic or
even exponential effort), which at least might be fully ané&gable.

5 Discussion

In this paper we have described an approach for synthesiestgnodels from test
cases. In addition, we presented the results of two smatdlstaslies where the approach



was applied for creating test models from existing test£asthe domain of S60 GUI
testing. The synthesis is semi-automatic and thus requsesinteraction to achieve
useful results. A tool supporting this interaction was alketched.

Our approach is domain-specific in the sense that the setyofdeels and the cor-
responding weight values must be decided based on the ddmaiviedge. In our case
studies this was easy because the same person who had buittoole! library con-
ducted the experiments. However, the other phases of theesia process should be
applicable also in other contexts.

There exists a large body of knowledge about the synthesteps. While most, if
not all, of the existing approaches have been originallyetiged for design, analysis
and code generation purposes, they may be useful for testirmpathesis also. Amyot
and Eberlein have compared twenty-six solutions for cotitrg design models from
scenarios [14]. Moreover, Liang, Dingel, and Diskin haveedeped comparison crite-
ria for comparing different algorithms and applied theesid to compare twenty-one
different approaches [15]. However, it seems that domaowkedge can improve the
synthesis; we first experimented with a more generic apprfig], but decided to de-
velop our own to better fit the needs of our context. An extensiudy would be needed
to analyze the other existing approaches for their applicabo test model creation,
but this lies outside the scope of this paper.

Some of the currently manual phases in our synthesizingegsmight be au-
tomated, most notably initialization and parts of modelofgvariables. The action
weights and state labels must be set manually. The definidgrdegration of vari-
ables also requires user input, but actual variable modelde created automatically.
It might also be possible to automate merging totally, nstfinding the potential merge
points. In the two case studies, potential merge pointsroiogat state labels were al-
ways mergeable; this seems likely to be a general rule, @sderthe labels have been
placed well. The merge points based on action sequenceslyadme being mergeable
and others not. However, in these cases the sequence matgedhing that could not
have been replicated with well-placed state labels. Bas¢hase observations, it might
be possible to automate the merging to always merge at lahdlgisregard sequences
altogether, but more testing is required before implenmgrguch changes.

Although the most work-intensive part of the process, tleation and integration
of variables, cannot be truly automated, it could be sultisthneased by proper tools.
These should offer both an easy way to define variables, qatdfehiding the models
altogether, and a simple method for setting pre- and poditons. Some algorithm for
suggesting potential variables would be a highly usefulfier but difficult to design.

In the future, in addition to developing tool support, thisralso the need to conduct
wider case studies and to compare the test coverage thatcachieved with hand-
crafted versus synthesized test models in actual on-lsteyeneration.
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Abstract. Model-based testing can be hampered by the fact that a
model depicting the system as designed does not necessarily correspond
to the product as it is during development. Tests generated from such a
model may be impossible to execute due to unimplemented features and
already known errors. This paper presents a solution in which parts of
the model can be filtered out and the remainder used to generate tests for
the implemented portion of the product. In this way model-based testing
can be used to gradually test the implementation as it becomes available.
This is particularly important in incremental testing commonly used in
industry.

Keywords: Model-Based Testing, Test Modeling, Model Filtering, Model
Transformation, Strong Connectivity

1 Introduction

Traditionally software test automation has focused on automating the execution
of tests. A newer approach, model-based testing, allows the automation of the
creation of tests by generating them from a formal model which depicts the
expected functionality of the system under test (SUT). An excellent approach in
theory, widespread deployment of model-based testing is nonetheless hindered
by a number of practical issues.

One such issue is fitting model-based testing into the product life cycle. The
error-detection capability of model-based testing is based on the correspondence
between the model and the SUT; a difference between the two indicates an error
in one or the other. However, testing should begin before a fully functional SUT
is available, which means that this correspondence is in practice broken.

The problem first appears during the early implementation of the product.
The test model can be created based on the design plans, and is likely to be
ready long before all the features of the SUT have been fully implemented, since
modeling is a good method of static testing. In this case, the tests generated from
the model may span the whole system under development, even though the SUT
only contains limited functionality. Developing and updating the model alongside
the product is possible but impractical; it should be possible to model the whole



system before it is fully implemented. How, then, can we use a model of the
complete system to generate tests just for the current implementation?

A similar situation is encountered when the testing pays off and an error is
found. Fixing the error may take some time, especially if it is particularly com-
plicated or not very serious. Testing, of course, should be continued immediately.
But how can we ensure that new generated tests do not stumble on the same,
already known issue?

In these cases, the problem is that the model contains functionality that
cannot be executed on the SUT, yet we need to generate actually executable
tests. The magnitude of the problem depends on how the tests are generated. If
the process is cheap, it may be possible to generate an overabundance of tests
and discard the unfeasible ones. However, if test generation is complicated and
costly, it will be necessary to ensure that as little effort as possible is wasted on
unproductive tests.

This paper presents a solution based on filtering the test model in such a way
that unimplemented or faulty functionality is effectively removed. The remainder
of the model can then be used to generate tests for the implemented functionality.
As new features are implemented they can be allowed into the model and test
generation; as erroneous functionality is uncovered it can be filtered out until
fixed. Using this method, a complete test model can be used to generate tests as
soon as the product is mature enough for automatic test execution. The challenge
is to ensure that the filtered model remains suitable for test generation.

The rest of the paper is structured as follows: Section 2 provides an overall
presentation on our approach to model-based testing. Section 3 explains our
filtering methodology in detail, and Section 4 presents a case study based on it.
Finally, Section 5 concludes the paper.

2 Background

Model-based testing is a testing methodology which automates the generation
of tests. This is done with the help of a test model, which describes the behavior
desired in the tests. Depending on the approach, this may mean the behavior of
the SUT or its user, or both combined.

There are two ways to execute the generated tests. In off-line testing the
model is first used to create the test cases, which are then executed just as if
they had been designed manually. In the alternate approach, online testing, the
tests are executed as they are being generated. The latter method is especially
well suited for testing nondeterministic systems, since the results of the execution
can be continuously fed back into test generation, which can then adapt to the
behavior of the SUT.

Our research focuses on online testing based on behavioral models. The for-
malism in our models is labeled state transition system (LSTS), a state machine
with labeled states and transitions. LSTS is a simple formalism and other behav-
ioral models can be easily converted into it, which allows us to create models also
in other formalisms, if need be. The formal definition of LSTS is the following:



Definition 1 (LSTS).
A labeled state transition system, abbreviated LSTS, is defined as a sextu-
ple (S, X, A, 8, II,val) where S is the set of states, X' is the set of actions
(transition labels), A C S x X' x S is the set of transitions, § € S is the
initial state, IT is the set of attributes (state labels) and val : S — 27 is
the attribute evaluation function, whose value val(s) is the set of attributes
in effect in state s.

Creating a single model to depict the whole SUT is virtually impossible
for any practical system. Therefore we create several model components, each
depicting a specific aspect of the SUT, and combine these into a test model
in a process called parallel composition. We use a parallel composition method
developed in [7], generalized from CSP (Communicating Sequential Processes)
[11]. Tt is based on a rule set which explicitly specifies which actions are executed
synchronously. The formal definition is as follows:

Definition 2 (Parallel composition |/).
lr (L1,...,Ly) is the parallel composition of LSTSs Li,...,L,, L; =
(Si, Xi, Ai, i, I, valy), according to rules R, such that Vi, j;1 < i < j <
n:IL;NII; =0. Let X be a set of resulting actions and / a “pass” symbol
such that Vi; 1 <i<mn:+/ ¢ X;. The rule set R C (ZLU{/}) x - x (X, U
{V}) x Xr. Now ||g (L1,...,Ly) = repa((S, X, A, §,I1,val)), where
- S=85x-x8,
- XY =Xp
— (($15--+,8n),a,(8h,...,8))) € A if and only if there is (ai,...,an,a) €
R such that for every i (1 <i <n) either
° (si,ai, S;) e A; or
e a;, =+ ands;, =,
—§=(81,...,8n)
-I=1u---ull,
— val((s1,...,8n)) = vali(s1) U---Uvaly(sy)
— repa is a function restricting LSTS to contain only the states which are
reachable from the initial state §.

The parallel composition allows us to use a relatively small number of simple
model components to create a huge test model. In practice, the test model may
well be too large to calculate in its entirety, so the parallel composition is usually
performed on the fly for the needed portion of the model. The available model
components comprise a model library [6], from which individual components can
be composed into a suitable test model.

The model components are divided into two tiers corresponding to the con-
cepts of action words and keywords [1,4]. Action words define user actions, such
as those commonly used in use case definitions. Accordingly, the upper tier mod-
els based on action words, called action machines, describe the functionality of
the SUT. Action words and action machines are independent of implementation,
and can often be reused in testing other similar systems.



Keywords describe Ul events, such as pressing keys or a text appearing on a
display. The lower tier models, refinement machines, use keywords to define im-
plementations for the action words in the action machines. Refinement machines
are specific to implementation, so every different type of SUT requires its own.

The execution of a keyword returns a Boolean value, which tells whether
the SUT executed the keyword successfully or not. Usually a certain value is
expected, and a different result indicates an error. However, in online testing of
nondeterministic systems it may be reasonable to accept either value, since the
exact state of the SUT may not be known. This is modeled by adding a separate
transition for successful and unsuccessful execution. The actions of such transi-
tions are negations of each other. These branching keywords allow the implemen-
tations of action words to adapt to the state of the SUT. If the nondeterminism
affects the execution of the test beyond a single action word, a similar branching
action word is needed. Such action words can be used to direct an online test
into an entirely different direction depending on the state of the SUT. Branching
actions do not fit well into the linear sequences of off-line testing, though, and
the unpredictability especially at the action word level makes the generation of
online tests somewhat more difficult.

Tests are generated with guidance algorithms based on coverage require-
ments. A coverage requirement [8] defines the goal of the test, such as executing
all actions in the model or a sequence of actions corresponding to a use case.
A guidance algorithm is a heuristics whose task is to decide how the test will
proceed. A straightforward algorithm may simply seek to fulfill the coverage re-
quirement as quickly as possible. Others may perform additional tasks on the
side, such as continuously switching between different applications in order to
exercise concurrency features; yet another may be completely random.

Facilitating such diverse goals and methods places some requirements for the
test model. The most important of these is that the model must be strongly con-
nected, that is, all states must be reachable from all other states. A test model
that is not strongly connected poses great difficulties for test generation, since
the execution of any transition may render portions of the model unreachable for
the remainder of the test run. Coverage requirements can no longer be combined
freely, since their combination may be impossible to execute even if they are
individually executable. Finally, online test generation becomes effectively im-
possible, because the only way to ensure that the whole test can be executed is to
calculate it out entirely before beginning the execution and making potentially
irreversible choices.

If strong connectivity is for some reason broken, it must be restored by limit-
ing the model to the maximal strongly connected portion of the model containing
the initial state, which we will call the initial strong component. Unfortunately,
finding the initial strong component can be difficult if the model is too large to
calculate in its entirety. In particular, strong connectivity of model components
does not in itself guarantee strong connectivity in the composed test model.

Ensuring the strong connectivity and general viability of the models is in the
end up to the test modeler, who is responsible for the creation and maintenance



of the models. The test designers, who are responsible for the actual test runs,
should be able to use the models for test generation without needing to worry
about their internal structure. Such distribution of concerns relieves most of the
testing personnel from the need of specialized modeling expertise [9].

3 Filtering

In this section we present our filtering method. First we go through some basic
requirements for the method, and then present a solution based on those. After
that, we examine implementation issues concerning the filtering process, espe-
cially regarding strong connectivity. Following is some analysis of the algorithm
used in implementation, and finally an example of its use.

3.1 Basic Criteria

A method for filtering out unwanted functionality from the models should fulfill
the following criteria:

. The execution of faulty or unimplemented transitions can be prevented.

. The model should not be restricted more than necessary.

. The model must remain strongly connected.

. Filtering may not require modeling expertise or familiarity with the models.
. The manual effort involved in the process may not be excessive.

. Filtering must be performed without modifications to the models themselves.

SO W N

The first three criteria define the desired result for the filtering process.
Criterion 1 is the very goal of the filtering process. Criterion 2 is likewise ob-
viously necessary, since we want to keep testing the SUT as extensively as pos-
sible. Criterion 3 ensures that the process does not break the basic requirement
placed on the test model. As a consequence, the filtering cannot be performed
by just banning (refusing to execute) problematic transitions or actions, since
such a strategy might effectively lead to deadlocks or otherwise break the strong
connectivity necessary for test generation.

The next two criteria are procedural requirements. Criterion 4 requires that
the filtering process can be performed with no manual involvement with the
models. Ideally, the process would be carried out by test designers, who may
not be familiar with the models or the formal methods involved [9]. Since the
process may need to be carried out often and repeatedly, Criterion 5 states that
it may not require much manual effort.

Finally, Criterion 6 is an implementation requirement. Modifying the models
for filtering purposes would require extensive tool support, so that individual
changes could be made and rolled back as needed, all without breaking the
models. Enabling such a feature might also place additional requirements on the
structure of the models.



3.2 Methodology

There are a number of potential methods by which the tester might perform the
filtering of banned functionality. Most of these require additional actions in order
to keep the model strongly connected, as per Criterion 3; however, with properly
designed models such actions can be automated. The examined methods are:

. Ban the execution of specific transitions of the composed test model.
. Ban the execution of specific transitions within model components.

. Ban the execution of specific actions.

. Remove model components from the composition.

W N =

Actions are general labels for the events of the SUT, whereas transitions
represent the SUT moving from a specific state to another through such an
event; therefore, banning an individual action corresponds to banning all of
the transitions labeled with it. Likewise, banning a transition from a model
component may correspond to banning several transitions from the composed
test model.

Method 1 fulfills all of the specified criteria except Criterion 5, where it fails
spectacularly. An individual faulty transition in a model component is likely
to correspond to many transitions in the test model. Even if the problem is a
concurrency issue and appears only with a specific combination of applications,
it is unlikely to be limited to a situation where all of the tested applications are
in exactly specific states. As such, the method is thoroughly impractical.

Method 2 is more promising, since removing the faulty transition from a
model component will remove all of its instances from the test model. This
method is no longer minimal (Criterion 2): in case of a concurrency issue, this
method may remove more functionality than is strictly necessary. However, it
does not greatly limit continued testing; furthermore, a more specific method
based on multiple components at once would likely require a deeper understand-
ing of the models, violating Criterion 4. Another problem is that transitions do
not have inherent identifiers, although they can be uniquely identified by their
source state and action. States are only identified with numbers, whose use would
at the very least require some inspection of the model components.

In practice, Method 3 works very much the same as Method 2. It may restrict
the models more, but only if the model component uses the same action in
multiple places, only one of which actually fails. Unlike transitions, actions are
clearly labeled and test designers will work with them in any case, so they can
be easily used also for this purpose.

Finally, Method 4 is also easy to use. In fact, it might well be worth imple-
menting for other purposes such as limiting the size of the test model. However,
removing whole components from the model goes against Criterion 2, since it
could drastically reduce the amount of functionality available for testing. It does
have one additional benefit: it is relatively easy to design the models so that the
removal of a component leaves the rest of the test model strongly connected.

Of these four, Method 3, based on banning actions, appears to be the best. It
does not restrict the models much more than is necessary and is quite easy to use.



It does require some additional effort in order to retain the strong connectivity
of the models, though.

In contrast, Methods 1 and 2 involve serious procedural issues and in practice
do not leave much more of the model available. On the other hand, Method 4 is
considerably more restrictive than necessary. However, as mentioned, it may be
worth implementing anyway for other reasons, in which case it can be also used
to filter models where suitable.

3.3 Banning Actions

There are three implementation issues to take care of. First, we need a means to
obtain a test model with individual actions removed without altering the original
models, as per Method 3 and Criterion 6. Second, we must devise a method for
restoring the strong connectivity of the test model (Criterion 3), since removing
individual actions may break it. Third, we must take into account the branching
actions, whose both branches must be retained or removed together.

The simplest way to obtain a modified test model is to create a modified copy
of the rules of parallel composition such that banned actions will not show up
in the test model. This method is simple to implement and limits modifications
to one place. Alternatively, modified copies of the model components could be
created with banned actions removed, and then composed as usual. However,
such an approach would require modifications in several places, and modifying
a model component is liable to be more difficult than removing rules from a list.

Ensuring the strong connectivity of the test model is more difficult. It is
obviously not possible to design all models so that any actions could be removed
without breaking strong connectivity. As for automation, in a general case it is
not possible to determine whether a test model is strongly connected without
calculating it entirely, which may be impossible due to the potential size of the
model. As a solution, our filtering algorithm seeks to deduce the initial strong
component from the model components and the rule set, but without calculating
the parallel composition. The result is an upper bound for the initial strong
component, that is, a limited portion of the original model which contains the
initial strong component. The algorithm is based on the following principles:

1. an action must be banned if it labels a transition which leads away from the
initial strong component of a model component
2. an action may be banned if it does not label any transition within the initial
strong component of a model component
. an action may be banned if there remain no rules which allow its execution
4. a rule may be removed if any of its component actions is banned

w

The first principle is the most important: leaving the initial strongly con-
nected component of a model component cannot be allowed, since there would
be no way back, and the strong connectivity of the test model would be broken.
In contrast, the other three principles ban actions and remove rules which could
not be executed in the test model anyway. Actions outside the initial strong



components are effectively unreachable, an action without rules does not appear
in the composed test model, and a rule without all of its actions can never be
applied. Therefore, these three do not limit the models needlessly. They are also
not useful in themselves, but may allow greater application of the first principle.

Based on these principles, we have developed Algorithm 1 and implemented
it as a part of the TEMA open source toolset [10]. The lines from 1 to 11 set the
initial values for the data structures, as well as marking for handling the initially
banned actions and removed rules. The loop on line 12 additionally marks for
handling those actions for which there are no rules. The three main parts of
the algorithm are within the loop on line 16. First, the loop on line 18 handles
banned actions, removing any rule which requires them. Second, the loop on
line 24 handles rules in a similar way, banning all actions for which there are no
rules left. Third, the loop on line 32 calculates the initial strong components of
the model components and marks for handling those actions which lead outside
the component or cannot be reached within it. These three are repeated until
no more actions can be banned or rules removed. The calculation of the strong
components, which can be performed for example by Tarjan’s algorithm [13], is
the most time-consuming part of the algorithm. It is therefore only performed
when no other method for progress is available.

The algorithm returns both a set of removed rules and one of banned actions;
either can be used to perform the actual filtering. The list of banned actions is
also useful to the modeler, since it can be used to estimate the effects of filtering.
This is important because the algorithm does not necessarily yield the exact
initial strong component but only an upper bound for it. The rest will be up to
the modeler, who should design the models so that the bound is in fact exact,
and there is no way out of the initial strong component.

The nature of the algorithm makes it easy to define not only an initial set of
banned actions, but also one of removed rules. This may be occasionally useful,
for example to remove some kinds of actions across the model components.

Specific model semantics may require some changes or additions to the basic
algorithm. Branching actions are such a case: if one branch gets banned, the
other one must, too. To take this into account, we modify the algorithm such
that every time an action is marked to be handled, we check for other branches
and mark them also. It might also be useful to allow the modeler to define similar
dependencies on a case-by-case basis, where strong connectivity demands it; we
have yet to implement such a method, however.

3.4 Analysis

Following is a brief analysis of the time requirements of Algorithm 1. For an arbi-
trary model component m € M, we will mark m = (Sy,, X, A, Sm, L, valy,).
All set operations used in the algorithm (addition and removal of elements, check
for membership or emptiness) can be performed in amortized constant time.
The handling of each rule requires O(|M|) time: it may get marked for han-
dling by each action it refers to, and may have to mark for handling each of



Algorithm 1 The filtering algorithm for the set of model components M com-
posed with the rules R, with the rules remove € R initially removed and the
actions ban(m) € Xy, of model components m € M initially banned.

banned _actions,unhandled _actions, removed_rules := ()
unhandled rules := remove
changed models := M
for all model components m € M do
5: for all actions a € ban(m) do
add (m,a) to unhandled _actions
for all actions a of m do
remaining _rules(m,a) := ()
for all rules r € R do
10: for all actions a of model components m in r do
add r to remaining _rules(m,a)
for all model components m € M do
for all actions a of m do
if remaining rules(m,a) = 0 then
15: add (m,a) to unhandled _actions
while unhandled_actions # () or unhandled_rules # 0 do
while unhandled__actions # () or unhandled _rules # () do
for all model-action pairs (m,a) € unhandled _actions do
for all rules r € remaining rules(m,a) do
20: if r ¢ removed_rules then
add r to unhandled rules
add (m,a) to banned__actions
unhandled__actions := ()
for all rules r € unhandled_rules do
25: for all actions a of model components m in r do
remove r from remaining rules(m,a)
if remaining rules(m,a) = @ and (m,a) ¢ banned _actions then
add (m,a) to unhandled _actions
add m to changed models
30: add r to removed _rules
unhandled_rules := 0
while changed models # () and unhandled _actions = () do
m := any element from changed models
remove m from changed models
35: reachables := ()
isc := the initial strong component of m with banned actions removed
for all transitions (s,a,s’) of m do
if s within isc then
add a to reachables
40: if s’ not within isc and (m,a) ¢ banned_actions then
add (m,a) to unhandled _actions
add m to changed models
for all actions a of m do
if a ¢ reachables and (m,a) ¢ banned _actions then
45: add (m,a) to unhandled _actions
add m to changed models
return removed_rules,banned actions
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Fig.1. Two example model components and their composition with the rules

R= {(a7 \/7 a)7 (b7 \/7 b)7 (C7 C, C)7 (dv \/7 d)v (67676)}'

those actions. For all rules, this gives O(|R||M]|). In addition to this, the han-
dling of each action takes only constant time, yielding O(}_,,c s |Xm]). Calcu-
lating the strong components of a single model m € M with Tarjan’s algorithm
takes O(|Sm| + |Am|) time. However, since we are only interested in the ini-
tial strong component, effectively |Sp,| < |An|+ 1, resulting in ©(|A,,|). The
subsequent handling requires O(| Ay, | + |2 |) = O(maz(|An], | Xm])). The cal-
culation is carried out for each model only after new actions have been banned;
since all unreachable actions get banned on the first (compulsory) time, the cal-
culation will be performed at most min(|X,,|,|An|) + 1 times. The result is
O(S e ps M Zls | A Jma (| Ay | Zo)) = O ps [ Zonl| Ara).

Putting the above figures together, we get O(|R[|M| + > i/ 1ZmllAm]).
This means linear dependence on the number of rules times the size of a single
rule, plus quadratic dependence on what is essentially the sizes of the model
components. The first term is quite reasonable, since the same time is required
to simply write out the rules. The second term, while not insignificant, is still
perfectly manageable if individual model components are kept small enough.

3.5 Example

We will now present an example of Algorithm 1 with the models in Figure 1,
combined with the rules R = {(a,+/,a), (b,/,b),(¢c,c,c),(d,/,d), (e,e,e)}. Let
us assume that the implementation of action d of Model 1 is faulty and initially
ban (1,d).

Since the action (1, d) is banned, we remove the rule (d,+/, d) which refers to
it. After that, we must calculate strong connectivity; we shall do it for Model 1



Model 1 Model 2 Model 1 x Model 2
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Fig. 2. Filtered versions of the example model components and their composition with
the filtered rules R = {(a,+/,a)}.

(calculating the strong connectivity for Model 2 would not yield anything new
anyway). We notice that in Model 1 the action ¢ leads out of the initial strong
component and ban (1,¢). Consequently, we also remove (¢, ¢, ¢) and then, be-
cause there are no longer any rules for it, (2, ¢).

Again we must calculate strong connectivity. This time, we do not learn any-
thing from calculating it for Model 1, but in Model 2 we notice that (2,¢) is
unreachable and ban it. Following that, we remove (e, e, e) and ban (1,e). We
note that now the action b breaks the strong connectivity of Model 1, and ban
(1,b) and remove (b,+/,b). Finally, Model 2 has changed since our last connec-
tivity calculation for it, so we perform one, but learn nothing new. At this point
the algorithm returns the results and terminates.

In the end, we have banned the actions b, ¢, d and e from Model 1; banned the
actions ¢ and e from Model 2; and removed the rules (b, /,b), (¢, ¢, c¢), (d,+/,d)
and (e, e, e). All that is left of the model components is a two-a loop in Model 1,
which is also exactly what will show up in the test model composed with the
single remaining rule (a,+/, a), as seen in Figure 2. Looking at the original com-
posed model in Figure 1, it is easy to see that this is what should happen with
the action d banned.

3.6 Other Composition Methods

If the algorithm is to be used with a different method of parallel composition, it
will be necessary to create a rule set that implements corresponding functionality.
For example, the basic parallel composition where actions of the same name are
always executed synchronously would correspond to the rules

RZ{(Ul,...,Un,O'R)E(ElU{\/})X--'X(EnU{\/})X(ElU"-UEnH
Vi;lgigni(O'REEiHUi:UR)/\(UR%EZ—HO’i:\/)}

Although the rule set is needed for the execution of the algorithm, it is
not necessary to actually implement rule-based parallel composition. The list of
banned actions the algorithm returns can be used to perform filtering within the
model components, and these can then be combined with the original method
of composition.



4 Case Study

As a case study, we will examine the process of modifying models from an existing
model library to conform to the requirements of filtering. The purpose is to
ensure that test models composed from the library can be relied on to remain
strongly connected when arbitrary actions are filtered out; afterward, filtering
can be performed automatically. First, we will present the model library and
how its model components might in practice be filtered. We will then examine
the actual modifications made to the models of one application in the library,
and finally analyze the results.

4.1 Setup

The model library we will examine has been designed for the testing of smart-
phone applications [5]. The latest version contains models for eight applications
such as Contacts and Messaging, over four different phone models, on differ-
ent platforms such as S60 and Android. The model components in the library
have been designed to yield a usable test model even if only some of them are
included in the composition, as long as specified dependencies are met. How-
ever, they have not been designed to withstand the arbitrary removal of actions
gracefully.

In this case study we will focus on the models of the Contacts application.
It consists of six action machines and a corresponding number of refinement
machines, and has about 330 states altogether. As such it is one of the smaller
applications in the library, and simple enough to be a comprehensible example.

When examining the effects of filtering, we can safely limit ourselves to ban-
ning action words in the action machines, since they represent the (potentially
unavailable) functionality of the SUT. The task is performed by banning action
words one at a time and examining the results with the help of the filtering
algorithm. From the results we can determine whether the composed test model
would remain strongly connected or not.

4.2 Modifications

An initial execution of the algorithm with no actions banned yields a list of a
few unimplemented actions; these appear in the action machines but have no
implementation. Such actions would not appear in the test model anyway, so
they can be safely banned. We then proceed to banning individual action words,
and find two problematic situations.

The first problem we encounter is in the model component depicting the func-
tionality of the list of contacts (Figure 3). The only action word in the model,
aw VerifyContactsExist, is a branching action word used to find out whether
there are any contacts in the application (the negative branch is prefixed with
a ‘~’). This action can only be executed if we are unsure of the current situa-
tion regarding contacts; the preceding synchronization actions check from other
model components whether we know anything about the existence of contacts.
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Fig. 3. The Contacts List action machine, with the action word aw VerifyContactsExist
on the right.

The filter algorithm quite intuitively suggests that if the action word is
banned, the action WAKFEapp<ReturnVerifyContactsExist: Unknown> should
also be banned to preserve strong connectivity. However, that would actually
cause a deadlock elsewhere in situations where the existence of contacts really is
unknown. The solution here is to add a transition with a new comment action
from the state on the right between the synchronization and the action word
back to the central state on the middle left. A comment action can be executed
with no effect to the other model components or the SUT, allowing us to bypass
the verification of contacts’ existence. Now the synchronizing action no longer
needs to be removed with the action word, and strong connectivity is preserved.

The second problem spot is also related to the way the models keep track
of the number of contacts. The existence of contacts is abstracted into three
categories: contacts exist, contacts do not exist, and unknown, with unknown
used as the initial value. The problem shows up in the model component re-
sponsible for the deletion of contacts (Figure 4), if we ban one of the actions
awToggleContact, awAttemptDelete or awDelete.

The immediate result of the ban is that contacts can no longer be removed
individually (or at all for awDelete). However, the individual removal of contacts
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Fig. 4. The Delete Contacts action machine, with the action words awToggle Contact
and awAttemptDelete at the right side of the octagon, and awDelete at the bottom
left. awAttemptDelete fails if no contacts are selected.

is the only way that the existence of contacts, once known, can become unknown
again. This means that their existence cannot ever be allowed to become known,
which results in banning every action related to their creation and handling. The
test model becomes next to useless, though is does remain strongly connected.
Despite the apparent complexity of the problem, the solution is simple: modify
the models so that the knowledge of the existence of contacts can be ‘forgotten’,
moving us back into the unknown state.

4.3 Results

All in all, the Contact models withstood the banning of action words fairly well.
The first described problem is likely typical, with complex synchronizations be-
tween the model components resulting in a deadlock whose existence the fil-



tering algorithm cannot deduce. The second problem shows that broken strong
connectivity is not the only potential issue; one should also consider whether
connectivity could be preserved with lesser limitations.

The filtering algorithm was very useful in finding the problematic situations
in the models. While the first problem would have been easy enough to spot
in manual inspection, the second was more obscure and might have been easily
missed. Using the algorithm to calculate the effects of removing actions was also
much faster than manual examination would have been.

Making the necessary modifications to the models clearly requires some mod-
eling expertise. This is not a serious issue, since they would usually be made by
the original modeler, as part of the normal modeling process. In this case the
whole modification process took less than an hour, and was performed man-
ually apart from using the filtering algorithm. Thus, there should not be any
significant increase in the modeling effort.

5 Discussion

Using model-based testing in the early phases of product implementation can be
difficult, because the product does not yet correspond to the model depicting the
entire system. The problem can be solved by altering the model so that unimple-
mented or faulty functionality is removed and no tests are generated for it. This
way the model can be matched to the product throughout its implementation.

Model transformations [2] can be used to modify the test models as needed;
their use to keep the test models up to date during development is described in
[12]. The use of parallel composition to limit the model to specific scenarios is
mentioned in [3,14], although no mention is made of ensuring the viability of
the resulting models. All in all, there does not appear to be much previous work
on restricting the functionality of test models and the consequences thereof.

The basic method presented in our paper is very simple, based on banning the
actions corresponding to unexecutable functionality in the models or removing
the rules acting on them in the parallel composition. The greatest challenge is
ensuring that the model remains conducive to test generation; specifically that
it remains strongly connected. The algorithm presented in the paper seeks to
estimate the initial strong component of the model as well as possible without
actually calculating the composed test model. The rest is left up to the modeler.

Our case study showed that modifying existing models to withstand filtering
without losing strong connectivity is feasible; by extension, so is designing models
to match the same requirement from the first. The filtering algorithm proved very
useful in the task, since it can be used to show the effects of banning specific
actions and thus reveal problematic structures in the models.

The filtering algorithm takes advantage of the explicit set of synchronization
rules used by our method of parallel composition. It can also be used with other
parallel composition methods, if a suitable rule set is created to describe the
synchronizations. The practical issues related to this are left for future work.



Likewise for the future are left the methods for filtering non-behavioral models
and test data.
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Abstract to which these technologies provide value to their users. Th
work described in this paper addresses the difficultiesuf fa
The fact that model-based testing has not yet attained @analysis and localization that are inevitable when engpgin
high rate of adoption in industry can in part be attributed to in automated test generation based on behavioral models.
the perceived difficulty of debugging long error traces ofte  Since MBT allows long-period testing where new se-
produced by the online version of this technology. Given thejuences of events are constantly input to the system under
extensive manual labor commonly involved in the debuggingest (SUT) instead of just repeating the same test cases as
phase, automating parts of this process could yield conin conventional test automation approaches, é¢xecution
siderable productivity benefits. This paper presents @abl traces i.e. sequences of executed actions, produced by this
debugging strategies applicable in model-based graphicatechnology can be very long. When an execution trace has
user interface testing, from which two methods were refinedjiven rise to a failure, it is known as agrror trace the
and experimented with. The first is based on superimposinfpilure can be due to the SUT functioning incorrectly or
log-derived, synchronized subtitles on recorded test rursome other reason. Such a trace can often be automatically
footage, while the second addresses error trace shorteningbtained from a test log. The purpose of debugging, in
The results obtained from applying these methods in realthe instance of MBT, is to establish the cause of failure
life case studies demonstrate the practical utility of thes by examining the error trace or by some other means.

methods. The significance of this process is emphasized by the fact
that, depending on the interface in use for test execution,
1. Introduction it might be possible to execute a sequence of millions

of events in a short period of time: in a few hours, for

It is commonly recognized that testing and debuggingnstance. In the instance of GUI testing, the focus of this
consume a considerable amount of time and resources jpaper, test execution is usually slower than when using
software projects due to the great manual work needed igoftware application programming interfaces (APIs) ot-tes
these tasks. Especially black-box testing and the fauliyana specific interfaces; we consider long sequences to corfsist 0
sis and localization related to this type of testing are kigh thousands of events, which can mean a tedious debugging
context-sensitive activities, which accounts for the tedi  task without any tool support.
number of approaches working across different contexts Debugging has recently received growing interest from
[1]. However, if we could develop techniques to automatethe research community, with techniques such as dynamic
parts of the laborious fault analysis and localization pssc  program slicing [8], execution backtracking and delta de-
at least in some widely used context, such as graphicdlugging [9] having been researched to a moderate degree.
user interface (GUI) testing, this could potentially have However, one area that has not been extensively researched
significant benefits in the productivity of software prodant  so far is the debugging in the context of model-based test
at least in that specific context. automation technologies.

Model-based testing (MBT[R] offers many advantages In this paper, we explore solutions for debugging long
relative to traditional script-based approaches. Howeverrror traces produced by model-based GUI testing. Some
MBT is not widely spread and has as yet been adopted prief these approaches have already been applied in different
marily by technological innovators. This low adoption rate contexts, but in addition to these methods, two promising
of MBT is due to both technological and non-technologicalapproaches were conceived and implemented during our
reasons [3], [4]. As a technology, MBT has been under activeesearch, and case studies were conducted to assess their
research in recent years, during which the paradigm hapractical utility. The results obtained from these caseist
spawned numerous practical applications, e.g. [5], [G],/f7 establish the usefulness of these methods in the target
is obvious that the success of these technologies depeads t@ontext.
great extent on the ability to correctly analyze and logaliz  The remainder or this paper is structured as follows: In
discovered faults, i.e., the debugging of model-based tes$ection 2 an overall presentation of MBT is provided. In
runs is vitally important and factors greatly into the degre Section 3 we introduce methods for debugging long error



traces. The results of the case studies are presented inln comparison with traditional script-based testing, MBT

Section 4 and conclusions drawn in Section 5. has many advantages. First, provided that the test model is
perfected so that it contains all the necessary functignali
2. Model-Based Testing of the SUT, it is possible to automatically generate test

cases far more inventive and intricate than a human tester

In general, MBT can be defined as a testing approacicould design. In other words, automatically generated test
where not only the execution, but also the generation of testcases can describe scenarios that never would have occurred
is automated. The level and depth of test generation mao a human tester. Second, the modeling process itself
vary between different technigues. The tests are generatedan uncover many faults in the test target, possibly even
at whatever level, from a formalest model such as a more than what could be discovered as a result of running
state machine, the contents and purpose of which alsthe actual tests based on the created test models. Last,
vary between different approaches. The test model may bmaintainability is facilitated as there is no need to update
based on system requirements or specifications, or reverstest cases when the SUT changes, the changes needed can
engineered from the SUT. usually be limited to few component models.

There are two basic methods for using the test model to Maintainability can be further enhanced by separating
create tests. In one approacdff]ine testingthe model alone the models into two levels of abstraction, basedaation
is used to create a finite sequence of actions according twords and keywords[11]. Action words depict the func-
some predefined criteria. This sequence is then treated disnality of the SUT, that is, what actions the SUT can
a traditional test script, and may be executed at some latgrerform. Keywords, on the other hand, depict user interface
point. The other approach @nline testing where tests are (Ul) events, for example, key presses and onscreen text
created and executed simultaneously. Every time an actioverifications. Models based on action words describe the
is selected in the model, it is also executed in the SUTfunctionality of the system as a whole and define what
Separate scripts are not created at all. Online testing hddnds of tests can be generated. Models based on keywords
two advantages over offline testing. First, since selectedontain the implementations for the action words. Since
actions are executed immediately, the results of the eketut the functionality of the SUT is relatively stable during
can affect the progress within the model and thereby the&evelopment, as compared to the often more volatile Ul, the
selection of the following actions. This allows the effeeti necessary maintenance effort can be focused on the keyword
modeling and testing of nondeterministic systems. Secondevel. For a more thorough description of our approach and
an online test may be unlimited in length since there is ndhe associated open source toolset called TEMA, the reader
need to prepare a complete script beforehand. is referred to [7].

The selection of actions in the model is performed by a Automatic execution of model-based tests is enabled by
guidance algorithmwhose task is to select the actions to bean adapter a component which transforms the actions of
added to a script or executed, depending on the approacthe test sequence into actual events on the SUT. The adapter
Useful tests can be generated even with a totally randordetermines the set of keywords available in modeling; the
algorithm, but more complicated heuristics and parameterset is based on what access the adapter has to the SUT.
allow the generation of different kinds of tests, based an us The whole MBT and debugging process is illustrated in
cases, for instance. The parameters defining the objedtive & igure 1. Models may be based on the requirements or
the test are called theoverage requiremenfor example, specifications of the system, or reverse-engineered from a
a test corresponding to a use case might be generated yorking SUT. The test model is used to generate tests, which
using a graph search heuristic with a coverage requiremenire relayed to the SUT via the adapter for execution. When
representing the use case. The semantics we use for suchhe test results (including the test log) indicate errorghim
coverage requirement is described in [10]; essentially theystem, they are debugged in order to establish their spurce
requirement is an expression of model actions combinedo that they can be fixed.
with operators AND, OR and THEN. For example, the
expressiod THEN (B OR C) would require the execution 3. Debugging Long Error Traces
of action A, followed by the execution of eitheB or
C. Other actions could be executed in between; coverage Even though MBT features many advantages, it poses new
requirements do not restrict executable actions. A graplehallenges to the process of debugging run tests, especiall
search algorithm would seek to fulfill the requirement bywhen these tests have been long. This section treats the
first searching the model for a path to a transition labeledlebugging issues stemming from the complexity of the MBT
with A. Once a path is found, it is executed in the modelparadigm, focusing particularly on the aggravated proklem
and on the SUT. Next, a path leading to eithetbr C'is  with longer test runs. At the outset, some general consid-
searched for and executed. With strongly connected modekrations and possibilities in debugging MBT are discussed,
a path to any transition can always be found. continued by the introduction to two prospective debugging



Requirements

design

the execution of the first one is still in progress, resuliimg

a test run disruption. This is, on the one hand, a property of
any computing device, but on the other hand, an oversight
in the model design process, as it is possible to reckon with

such eventualities by adjusting a proper delay in the models
This delay would then occur always after the execution of

—» Specifications model
certain keywords, thus insuring the SUT recovery.
\ As far as debugging is concerned, the issues originating
implement model in the test model are probably those most susceptible to
ey systematic debugging procedures. Conversely, faults-orig
Sy L odets! e Adapter nating from somewhere else are more difficult to detect by
Test any systematic method, as the nature of these faults could
i vary substantially.
redesign e The two aforementioned model-related fault areas, timing
: issues and conflicts between the test model and the SUT,
re-implement Test Results fix remodel  are easiest to notice when it is possible to simultaneously
view the actual test run and the events recorded in the test
sobugomors Iog of that part_icular test run. This would _mal_<e it possible
J i J to instantly notice v_vhen the events occurring in the test run
Eror o Erore no longer check with those suggested by the test log. This
. in in in is a viable option especially in GUI testing, as tests based
SUT Model Adapter . . . . .
| Iort1 this paradigm can easily be recorded and viewed anytime
ater.

Then again, some real faults in the SUT could require
long action sequences in order for them to manifest them-
selves, which necessitates a different debugging approach

. _ that would address error trace shortening.
methods and a brief look at a few alternate, potential

debugging methods. The implementations of the identified; 5 Prospective Methods
two methods are thereafter presented in more detail. o

The first of the two implemented methods is particularly 1,0 methods were conceived as tentative options in

applicable in GUI testing, exploiting both video footage Ofdebugging test runs based on the concepts and methods
a test run and the test log of that particular test run, whereays or MBT approach, as described in Section 2. These
the second method draws on a simple principle of executinghethods could be adapted to other contexts and approaches
the original test gradually in subsequences of the originakg el and their applicability to external contexts wi# b
trace. This process is carried out with an ascending nUMb&lonemplated as the methods are introduced in more detail.
of actions included in the subsequences, starting from thg,an though both of these methods are based on simple

very last action of the original test, while the actual ex@u -, mmon-sense debugging principles, their applicatiomén t
of events is still carried out with a guidance algorithm. context of MBT has not been reported before.

Figure 1. Testing and debugging process.

3.1. Debugging Model-Based Test Runs 3.2.1. Test Run Video Synchronization with Log Data.

The first and more pragmatic of these methods taps into

In general, it can be stated that the most common reasoexisting video footage of a test run and the test log of that
for a MBT test failure is a conflict between the SUT behaviorparticular test in order to create a synchronized visuaetra
and the modeled behavior, i.e., the test model does not, tof the test run. In practice, this is achieved by gleaning the
some degree, describe the behavior of the SUT as it shouldaost relevant information from the test log and presenting i
This may be due to incorrect modeling or a real fault in theas a sequence of timed subtitles, superimposed on the video
SUT. footage. This would afford remarkable ease for debugging as

In our approach, another very common cause of failure irthe test run could be viewed as many times as necessary at its
performed test runs has been the delay between executimgitical points with synchronized event data being dispthy
certain keywords on the SUT, which could be pinned on bottsimultaneously. Accordingly, this method would faciléat
the SUT and the test model. For example, when sending twthe debugging process by enabling the viewer to instantly
consecutive key presses within a short enough intervalgo thdistinguish when the actual events performed on the SUT
SUT, the second one cannot be processed by the SUT whileo longer agree with those suggested by the test log data.



This would be especially helpful with long test runs, as the coefficientc € R, ¢ > 1 such thatlncy(A,c) =
video could be either rewound or fast-forwarded toward the (THENIS2-(1 Y, oy THEN @y, ot 1o
point where the video events no longer square with those THEN ... THEN a,)) + A

implied by the log data, with no need to view the entire  Thjs method is especially useful when the exact cause
video. Furthermore, this method is relatively universal ingf failure is unknown and the functionality that induces
nature, enabling fault detection in the SUT as well as alkhat specific failure cannot be deduced from thorough trace
parts of the test tool architecture. scrutiny. This method also lends itself to debugging lorsy te
As to the application of this method, it would not fit any ns.

other testing context except GUI testing on account of its  An additional advantage of this method is that it would
visual nature, and, for instance, debugging API tests withetain its applicability when transitioning to testing af-a
this method would be nonsensical. It should, however, bgther type. In other words, it would be possible to debug
applicable to other MBT approaches as well, in addition topp) tests with this method and MBT testing of any other

the one pursued by us, regardless of whether it is online ogind as well, provided that there were, again, some existing
offline testing or based on action words and keywords, agyent data on the test run.

long as there is some event data with timestamps available.

3.2.2. TraceIncrementation. The second identified method 3.3. Related Work

is based on the concept of gradually executing a failed test 1o underlying principle of the trace incrementation

run in subsequences._Mor_e precisely, the actions of an eMfethod has already been applied to debugging before, for
trace would be compiled into a new coverage requirement,ampie in [12], where randomized unit test cases are
starting from the very last action of the error trace while yinimized by exploiting the dependencies between the-state
gradually increasing the number of included actions “nt'lments involved in the failure, and in [9], which presents a
the whole trace has been included. The method requirégeneral minimization algorithm to aid debugging, known as
a suitable gult_jance algorithm for executing the resultingyq|tg debugging However, these two approaches are not,
coverage requirement. It places no restrictions on how thgg g,ch, applicable in our context. The approach described
original trace was formed, however. in [12] is applicable with program code, but in our case

_ In the increase phase of the method the number Of,o gependencies between the abstract actions involved in a
included actions would be either multiplied by some coeffi-¢jj re cannot be readily established. The delta debugging
cient, or aIt_ernater increased by add_lng a constant numb%{pproach presented in [9] would not meet our needs either
of new gctlons to the total. Th_e action subsequences &nce it involves executing a great number of succeeding
formed in reverse orde_r t(_) their appearance in the errog g failing subtraces in an effort to find a minimal error
trace (from end to beginning), while the contents of they,.e |n our case this would take an excessive amount

discover as short a subsequence of the error trace as @ossi orking equivalent: starting from the smallest subtracej a

that still causes the same failure as the original test rdn di increasing its size along the route most likely to reproduce
When executing the new coverage requirement the shortegt, orror until a failure manifests itself

subsequences, which only contain actions from the end of |, Jqgition. there are a few other known debugging

the trace, will be executed first. If they fail to reproduce ,athods that could be adapted to the needs of MBT and
the error, the execution will proceed into larger and largefy,; 4re viable options in the debugging of model-based test
subsequences, which also contain actions from the be@nnin,, <« of these known methods. there are two approaches
of the trace. Since the final subsequence is the originat errqy o+ 4re especially applicable to MBT. These methods are

trace, the failure will eventually be reproduced. next introduced briefly, after which they will be evaluated
The following are the definitions for the additive and against the two methods presented earlier.

multiplicative versions ofrace incrementation

Def. 1 (Additive trace incrementatiofnc..). 3.3.1. AlternateMethods. The first of the alternate methods
Inci (A, k) is the additive trace incrementation could be used to detect conflicts between the SUT and
of the trace A = ajaz...a, With the the test model without having to repeat the entire error
incrementk € N, k > 1 such thatlnc,(A,k) =  trace. In practice, this would be achieved by setting the
(THENEZ{M_I(anﬁkH THEN ay, ;12 THEN SUT into the state where the test execution was prior to
... THEN a,)) + A the execution of the last action of a test, followed by the

Def. 2 (Multiplicative trace incrementatiofncy). execution of that particular action. Since executableoasti

Incy (A, c) is the multiplicative trace incremen- equate to test model transitions, the last action would be
tation of the trace A = ajas...a, with the performed by traversing the last transition in the test rhode



In all cases where relevant, we assume a perfect guidance
algorithm capable of finding the optimal path fulfilling the
given coverage requirement.

With the given error trace, transition-specific search will
seek to bring the model into stae where the failed action
was executed, and then execule This results in the
simple traceC' X. This is the optimal solution in the second
examined case of error causes, that is, it reproduces tbe err
with the shortest trace possible. It also reproduces tha err
in the first case, though with a non-optimal solution. Itdail
to reproduce the error in cases three and four.
and executing the corresponding action on the SUT. Now, Trace loop removal will directly result in an executable
if the last action could not be executed on the SUT, ittrace ACX. This is an optimal solution for reproducing the
would suggest a fault either in the model or in the SUT.error in case four, along witll B.X. It also reproduces the
The underlying principle of thigransition-specific search €rror in cases one and two, but not optimally. Just as with
method has been applied in debugging before, for exampl&ansition-specific search, it will not reproduce the eiiror
in [13], where the search of failure-inducing state chariges case three.
automated. The paramount advantage of this method consists Trace incrementation, used with an additive increment of
in discovering circumstance-dependent failures that migh3, Will produce the coverage requirement
otherwise t_)e diﬁicult to uncover. For e_xample, some failure (C THEN D THEN X) THEN
might manifest itself only when multiple applications are
running at a time or the state of the SUT is otherwise(A THEN B THEN A THEN C THEN D THEN X)
propitious for the failure to occur. The guidance algorithm would fulfill it with the trace

The second prospective debugging method is also closely' D X ABAC DX, which, incidentally, contains exactly the
related to models, as it is about removing loops from thesame actions. The actual execution will naturally stop as
traces executed on them. Supposing that the test executi@don as the error is reproduced. With a multiplicative coef-
deviates from the path necessary for some failure to occuficient of 2 we would get the coverage requirement
executing some other extraneous actions before reveding t

Figure 2. Simple example model.

the original path, this unnecessary loop of actions would (X) THEN
only lengthen the necessary sequence of actions for the (D THEN X)) THEN
failure to occur. If these redundant loops were removed (A THEN C THEN D THEN X) THEN

from the trace of exgcuted actions, the sequence of Nneyessar, THEN B THEN A THEN C THEN D THEN X)

actions to execute in order to reproduce the failure could b

considerably shortened. Accordingly, with thi@p removal — and the traceXCDXACDX ABACDX. These traces re-
methodit is possible to shorten the error trace when it con-produce the error in all four cases. The additive versiorgiv
tains extraneous action loops. The principle of this methodhe optimal solution in the third case and the multiplicativ
has already been successfully applied in other debugginig the first case. Notably, trace incrementation is the only
areas, for instance in [14], and it would suit the speciabisee one of the examined methods which can reproduce the error

of MBT as well. in case three.
In general, transition-specific search and trace loop re-
3.4. Examples and Comparison moval may fail to reproduce the error in some cases, but

are reasonably efficient. Both produce a path, which is

In order to compare the transition-specific search, trac@ecessarily bounded by the size of the model. In transition-

loop removal and trace incrementation methods, we will usgpecific search the path is (with ideal guidance) the shortes
the example model depicted in Figure 2. As an example errgsossible from the initial state to the target transitiongvetas

trace we will useABAC DX, where the final actiodX’ has  trace loop removal may produce any path up to the longest

failed. We will examine four different potential causes @i possible in the model. However, the latter should reproduce

might induce the failure: any error that the former would and more.
1) Action X is faulty and always fails. In contrast, trace incrementation will always reproduce
2) Action X fails when executed in state the error with any error trace, but its efficiency can vary
3) SequenceDX fails, but actionsD and X work  wildly. In the worst case, the very first action in the error
individually. trace is necessary to reproduce the error, which may lead to

4) Action X fails if action A has been executed at some a situation where the error is reproduced only on the last
earlier point. iteration of the incrementation.



Execution time for such a trace will be long compared tomedia players, by collecting the desired events and their
the original error trace; longer for additive incremerdati timestamps from the test log.
than for multiplicative. Furthermore, the error trace may Finally, with an existing video file and the subtitle file
already be very long compared to the size of the modetenerated expressly for it, the only phase left in the debug-
since trace incrementation is most useful in debugging longing process is to play the video file on a player capable of
and unwieldy traces. However, trace incrementation doedisplaying SubRip-formatted subtitles, for example MRiay
have the unique advantage of providing a lower bound td15], which is a well-advised choice for debugging ends.
the sequence necessary to reproduce the error, that is, This is mostly due to some features of this player that
shows that the increment before the last is not sufficient t@re instrumental in debugging, such as the possibility to

reproduce the error. increase or decrease the playback speed, particularlylusef
when the rate of successive events is so rapid that it is
3.5. Implementation difficult to monitor the test progress. The importance o$ thi

is emphasized in situations where the decisive malfunction

h identified hods. based id hroni occurs at a moment when there are many events happening
The two identified methods, based on video synchronizag iy g prief period of time, rendering it very difficult to

tion and trace incrementation, were implemented in order tQiscern what the cause of the ensuing test disruption is

assess their_practical u_tility in real-life error scenaridhese This approach is illustrated in Figure 3, which presents a
two debugging tools will next be presented and analyzed gf,int in one of the test runs conducted during the research
greater length. where a smartphone is acting as the SUT, as viewed on
MPlayer. At this particular point, the test run commences
3.5.1. Video Synchronization Method. The first developed the execution of a new action word that is about writing text
debugging method consolidates existing video footage oin a multimedia slide, as displayed in the upper subtitle. In
a test run and the test log of that specific test run into ahis case, the action word is translated into a sequence of
synchronized whole. This method has proved very efficienkeywords that begins with a typing keyword with the desired
in debugging test runs performed during the research.  text as its parameter, as presented in the lower subtitle.
The exact process of using this debugging method consistbhe question mark following the keyword denotes sending
of three different phases. First, the test run to be debuggeid to the SUT, whereas the lack of it would indicate the
must be recorded. Second, the subtitle file must be generatgdmpleted execution of the keyword. As mentioned before,
by collecting the most interesting events from the test loghe keyword subtitles are also equipped with timestamps
of that particular test. In the instance of our approach, theriginally generated when the data was written into the test
most interesting events in a test log for debugging purposel®g. The inclusion of timestamps might be helpful when
are sending keywords to the adapter, executing keywords oattempting to locate some specific test log data on the video.
the SUT and commencing the execution of a new actiorin other words, the timestamps act as subtitle identifieds an
word, which is accomplished by executing a certain numbelinkers between the video subtitles and the original tegt lo
of keywords, depending on the state the SUT is in when At present, the entire process of creating a synchronized,
the execution of the action word commences. These eventstbtitied video of a test run is automated except for one
impart much value in the way of debugging the test run,part: the start of video capturing is not synchronized with
as it is easy to see when a keyword is sent to the adaptehe test adapter. In other words, when the adapter starts to
and whether that keyword will be executed on the SUT.execute keywords on the SUT, the video recording must be
Furthermore, the progress of the test can easily be trackestarted manually at around the same time. Later on, when
as action words are displayed on the screen at the beginningeating the subtitle file, it must be manually determined as
of their execution. When this information is displayed into whether there is a delay between the subtitles and the
close synchronization with the video footage, it is easy toevents on the video and how long the delay is. Usually,
notice any discrepancies between the recorded log actiors rough estimate in seconds is adequate for achieving a
and the real actions executed on the SUT. close enough synchronization. This part could, though, be
Apart from the aforementioned events gathered from theutomated as well, if the adapter had built-in video recaydi
test log, their timestamps are also included in the subtitldunctionality or were otherwise able to control the video
file to indicate the exact moment when the event associatecording process.
with the timestamp occurred during the actual test run. This
is especially useful when searching for a particular event 0 3.5.2. Trace Incrementation Method. The second imple-
the video, as the timestamps act as subtitle identifiers. Fanented method for debugging model-based GUI test runs is
the process of creating the subtitle file we have developedamed trace incrementation method for the principle of its
a program named Log2Srt. This program creat€xubRip  operation described earlier. In our experiments, we opied f
file for the subtitles, a format widely supported by softwaremultiplicative trace incrementation with the coefficieritz



thereby establishing the value of these methods. Through a
careful study of the results of these experiments, faultewe
detected in test models, the adaptation component and the
SUT itself. The most common cause of test failure was a
conflict between the test model and the SUT, i.e., the models
in use were outdated or otherwise incompatible with the
SUT behavior. Nevertheless, many faults were detected in
the SUT, some of which were more serious in nature, while
other findings were only minor issues and inconsistencies,
scarcely classifiable as faults [16].

Of all the detected faults, two interesting cases will be
presented in more detail in this section as concrete case
studies conducted with the implemented methods and our
TEMA toolset, presented in greater detail in [7]. The first
case, caused by a modeling issue, will be presented at the
outset, followed by the second case, which is related to a
real fault in the SUT. In conclusion, the results of these
experiments will be summarized and further discussed.

VoiceRecorderMMSSpecificTarget:
start_awSetSubject
0423144052.053: kw_Type 'Subject'...?

Figure 3. Video synchronization debugging approach

4.1. Case Study |: Video Synchronization

The actual subsequence creation process is performed
by extracting a given number of actions from the end of The first case study discusses a test run that was conducted
the test log, retaining the original order of the extractedduring the research in an attempt to gain experience with
actions. When all subsequences have been derived, thégng test runs. In the instance of this particular test run to
will be parenthesized and concatenated by THEN operatorige presented in detail in this case study, it was decided to
so that all potential failure-inducing subsequences can bese the video synchronization method to help determine the
tested at once, with no need to repeatedly perform theeal cause of failure.
same process for every single subsequence. For example,The test run was conducted with a smartphone as the SUT,
with the multiplicative approach and coefficient of 2, anfrom whose functionality the most important multimedia
error trace of eight actions would be processed into groperties were included in the test model that was used
subsequence concatenation by forming subsequences fram the test run. In other words, the test run was intended
the last action, the last two actions, the last four actiongo cover functions such as creating and sending multimedia
and, finally, all the eight actions of the original trace, in messages, playing audio and video files, recording sounds
that specific order, followed by the concatenation of theand creating presentations. The smartphone was then con-
parenthesized subsequences with THEN operators. nected to the adapter, which in turn executed actions on

In practice, this whole process is carried out on a progranthe smartphone. These actions were randomly selected by a
named Sequencer, which was developed during the researalandom guidance algorithm since the test run was intended
This program forms the action subsequences by extracting be infinite in duration.
actions from a given test log and concatenates them in the Eventually, the test run ended after three hours and forty-
manner described before. Once the complete concatenatidige minutes. At the beginning of this timespan there were
of subsequences has been produced, it will be executed inrlo anomalies and the test run proceeded smoothly. Then,
fashion similar to the execution of ordinary coverage regtui - at around 3:45, the course of the test run was deflected,
ments. Once the failure has been reproduced, it can be seéllowed by an abrupt termination of the test. At the be-
from the output which subsequence of the concatenation waginning of the series of events that ultimately led to the
responsible for that specific failure. deflection, the SUT was playing an audio file on its media

On the whole, this method serves its purpose well inplayer, when it suddenly received a center push keyword,
condensing the failure-inducing trace, rendering it a Mab which corresponds to pressing the center button commonly

option in debugging long test runs. found in many smartphones. The controls of the SUT media
player are mapped so that pressing the center button either
4. Case Studies pauses or continues to play the audio file that the player was

playing at the time. When the SUT received the center push
The two implemented methods were tested and applied tkeyword, it was playing the audio file and as a result of the
failed test runs. These experiments yielded positive tesul received keyword it paused the audio file.
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: this process did not suspect a timing issue.

0345 LREE L Fortunately, the video synchronization method dispensed
with these time-consuming manual processes, and with this
method it could be immediately distinguished when the
video and the test log data became desynchronized. Once the
exact onset of desynchronization had been localized, it was

Open Now playing: relatively easy to notice the underlying timing issue after

Random piay closer study of the events preceding that specific points Thi
;::;'_ was further aided by the capability of MPlayer to decrease
Usem::’ th?, playback speed, wh!ch enables viewing of the most
View details critical _moments at a swtable pace and |s.there_by highly

conducive to fault detection. Overall, debugging this test
was relatively easy with the help of the video synchroniza-
tion method, whereas it might have been substantially more

GalleryMusicPlayer: start_awPlaylnBackground e ; o
0425182028.786. kw SeloctManu ‘Play in background:..? difficult if conducted manually, without any assisting tsol

Figure 4. The SUT attempts to play the audio file in the 4.2. Case Study I1: Trace Incrementation

background The second case studgonsiders a more challenging and

intricate debugging scenario relative to the one presented

N d d aft ving th ; in the previous section. There were attempts to debug this
oW, around oneé second alter receiving the center pus(Earticular test failure with both the video synchronizatio

Ilfieyword, t?}? iUT Wa(\js sent anotht_ar cendtet: pl.;]shsks}/rwgr ebugging method and manual procedures. However, with
owever, t IS Keyword was not_reglstere y the Ueheither of these approaches was it possible to determine the

_to its proximity to the first received center push _keyword,real cause of failure, and hence it was decided to shorten

.e., the SUT had not recovered from the execution of th he error trace instead of determining the cause behing it, a

_ “OVEl g

first center push by the. time it was sent the second. Thesg .14 not pe accomplished in this case. For this purpose,
contiguous keywords disrupted the test run, as a result Ahe trace incrementation method was employed

which the test execution was eventually terminated. The As for the test run itself, it was conducted with a similar

disruption itself was manifested by the subsequent events setting as in the first case study, with the random
of the test run, which had now paused the audio file, while '

. . ! uidance algorithm randomly selecting actions to execute
it should have been playing that file had the SUT eXECUtE}(gmd a smartphone acting as the SUT. This time, however, the
the second center push. ' '

included functionality to test was limited to a mere calanda
Shortly after the second center push, the SUT attempted tQqsjication. The purpose of this was to attain as long tests
play the audio file in the background, which would ordinarily j, “qyration as possible, without any failures whatsoever.
appear as an option in the media player menu. This iSpjs s easiest when there are the smallest possible number
illustrated in Figure 4. This menu is accessible by pressing jnterrelating components involved in the test run. With
the key mapped to the Options text, found in the lower left gt the calendar application, which is arguably one of the
corner of the screen. This time, however, the media playegjnyjest applications of most smartphones functionaiigw
had paused the audio file and the contents of the menu wefg,, o< possible to attain long test runs.
different from what they would have been had the file been o ever, this test run ended abruptly less than two hours
playing. Now, there was no option of playing the audio file gger jts peginning, which can be regarded as a short time
in the background since there was no audio file playing aj, the instance of a test run with relatively limited func-
the time; the SUT attempted in vain to locate an option thatisnajity. Moreover, the failure that terminated the test r
was not found in the menu, disrupting the test run. 55 4 system error of the SUT, which is definitely serious,
This is one of those cases where the video synchron|zat|0é1specia||y in an application as simple as the calendar.
de_bugging apprpach was indispensable, as without itneli_sti More precisely, the test run was around one hour and
guishing the ultimate cause of failure would have requiretiorty-nine minutes in duration, most of which consisted
time-consuming log scrutiny, after which it might still '@&v in creating calendar entries of various kinds, switching
been unclear as to what actually |r_1duce_d th_e failure. In thagetween different calendar views, verifying the onscreen
case, the only means of further investigation would haveyser interface texts and closing and opening the calendar

been manually repeating the same actions on the SUT agypjication itself. Everything was proceeding withoutiss
were performed by the test run. This, however, might not

reveal the real cause of failure if the person carrying out 1. Some details have been omitted due to confidentialityoreas



until the test execution decided to create a new memo entrseadily determined or located, leaving trace shortenirg th
in the calendar, which resulted in the system error. only viable option for debugging. These are both relatively

Before attempting to create the entry, there were severalommon phenomena in online MBT, as tests based on this
existing entries that might conceivably have clashed withparadigm often tend to be long in duration, although this
the entry that could not be created. This observation wasglepends in great measure on the guidance algorithm in use
further sustained by the fact that the system error couldor governing the test execution. The long duration of tests
not be reproduced when there were no existing entries iis, however, adverse in terms of debugging, and many faults
the calendar at the time of attempting the creation of thaincovered by thorough testing can be difficult to account for
final memo entry. However, despite a number of rationalespecially those related to concurrency and timing issues.
conjectures as to the cause of the system error, the attemptsOn the probability that either one or the other of the afore-
to determine the real reason for the failure were ineffdctua mentioned scenarios occurs, it could require a considerabl
On these grounds, it was decided to resort to the tracamount of resources to better appreciate what the undgrlyin
incrementation method in order to shorten the error tracecause is without any supportive debugging methods. The
as the cause of failure remained unknown. debugging methods that were used in the case studies to

After creating the concatenation of action subsequenceaddress the described difficulties considerably facddat
on Sequencer, it was run on the SUT. This experiment imthe debugging process, enabling rapid fault detection and
mediately yielded positive results, as the error traceifgnd better insight into the functionality and sequence of event
to that specific system error could be substantially sheden responsible for the failure.
from around 1850 keywords to approximately 100 keywords. The debugging problems that emerged were in them-
This is a major improvement, as the shorter the error traceelves, however, not specific to MBT, as the difficulties that
is, the easier it is for developers to determine the undeglyi the developed debugging methods were created to negotiate
cause of failure. In this case, the reduction of 1750 keywordare not caused by any MBT-specific feature. Instead, they
is a huge amount of functionality, accounting for aroundare the product of the long test runs that the online MBT
95 percent of the original error trace, which could nowparadigm often produces due to the automatic and dynamic
be ignored, as that functionality did not have any impacttest generation. Thus, it can be argued that MBT was not the
on the occurrence of the failure. The significance of thisreason for the difficulties encountered during the research
accomplishment is further illustrated by the fact that whenand those same difficulties could have emerged with any
running the downsized keyword sequence, this actual testutomated testing methodology in use.
run lasted only for around six minutes, which is very brief
next to the near two-hour duration of the original test run. 5. Conclusion

This case study is an example of a scenario where the
underlying fault of a system is so obscure that it cannot MBT features many advantages relative to the former
be readily accounted for. In these situations any debuggingenerations of software testing. Regardless of these t&nefi
attempts to identify the cause of failure are of no avail andMBT has not been assimilated by the software testing
the only reasonable course of action is to shorten the errdndustry to any large degree, and it is still relatively uatum
trace in order to facilitate the process of identifying theas a paradigm. One reason for the low adoption rate of
seemingly inexplicable fault. To this end, any functioyali MBT may well be the drawbacks involved, one of which
that can be disregarded in the original error trace can bés the difficulty of debugging tests, which is especiallyetru
beneficial in terms of further inquiries into the failure. of online MBT.

The approach based on trace incrementation is one that As far as debugging is concerned, MBT as such does not,
effectively pursues this end, and in this case study it resdov however, essentially differ from any other automated nesti
approximately 95 percent of the original functionalityrfio approach. Model-based tests are not intrinsically diffitul
the error trace. It is considerably easier to determine thelebug, but the difficulties stem from the long duration of
fault from the residual five-percent trace fragment thamfro the tests enabled by online MBT, and from the potentially
the entirety of the original trace. Thus, this method had acomplex combinations of functionality under test, espicia
great facilitating impact on the process of determining thethose related to concurrency.

underlying fault. However, even though these issues may add to the per-
ceived difficulty of debugging model-based tests, they can
4.3. Discussion be effectively addressed by debugging methods expressly

designed to counteract these difficulties in the MBT con-
The case studies presented two very common scenatext, although based on common principles. The debugging
ios in debugging: a situation where reproducing the erromethods developed during our research provide an efficient
would require much effort if carried out manually due to means to debug model-based GUI tests, which might prove
a long test log, and a scenario where the fault cannot bdifficult to accomplish by ordinary means. This is often



the case when the test run has been long and the failurg3]
has occurred far before its end, or the cause of failure
cannot be readily understood, leaving trace shortening the
best available course of action.

Of these methods, the video synchronization approach ha$4]
proven very efficient when debugging long test runs where
the failure and the sequence of events leading to it cannot be
discerned firsthand, and a more thorough retrospect of thq5]
test run is needed. With this method it has been substantiall
easier and faster to discover the failure in a test run,
particularly when the actual failure has occurred sometime
before the immediate end of the test run. This finding was [6]
further sustained by the first case study.

The trace incrementation method was created to address
scenarios where the underlying cause of failure is so difficu
to comprehend that the only remaining option is to shorten
the error trace that produces the failure. This method can
considerably fast-track the process of determining the- min
imal sequence of actions necessary for the failure to recur,[8]
which was substantiated in the second case study.

These two methods outperform the two other debug-
ging methods based on loop removal and transition-specificl®]
search in the context of GUI testing, as in this context the
video synchronization method is especially applicable and
the trace incrementation method can always reproduce theo]
error, whereas this is not the case with the other methods.

The results obtained from the case studies act as an
argument for the fact that debugging is not a bigger issue
in MBT than in any automated testing approach. As this[11]
notion was reinforced by the results of the case studies, it
can be argued that the difficulty of debugging is not an
. . : . 98, [12]
impediment to the prospective wider utilization of MBT.
Furthermore, with the developed debugging methods the
debugging process itself can be facilitated, even in redjti
challenging error scenarios. While the usefulness of the
video synchronization method is limited to GUI testing, ;;
future work includes more case studies to find the limitation
of the trace incrementation method.
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Abstract a need to develop easy-to-use tools, techniques, processes
etc. to support the deployment of the technology and run
We present the results of an evaluation where we studiedcase studies to evaluate their effectiveness.
the effectiveness of automatic test generation for graphic  |n this paper we concentrate on tools and techniques and
user interface (GUI) testing of smartphone applicatiors. T evaluate an automatic test generation solution for graph-
describe the context of our evaluation, the tools and thie tes jcal user interface (GUI) testing of smartphone applica-
model library we have developed for the evaluation are also tions. The basic approach is well known: generating tests
presented. The library contains test models for basic S60from state machines modeling expected behavior. Smart-
applications, such as camera, contacts, etc. The tools in-phone applications, such as calendar, contacts, calculato
clude an on-line test generator that produces sequences ofand camera differ, however, somewhat from standard desk-
so called keywords to be executed on the test targets. In outop applications when considering GUI testing. Since em-
evaluation, we managed to find over 20 defects from appli-bedded devices running such applications are limited in
cations that had been on the market for several months. Wethe physical size of their display and keyboard, as well as
also describe the problems we faced during the evaluation. the processing power, the GUIs are usually simpler than
their desktop counterparts. Moreover, since the testedlpro
ucts conform to the concepts of software product line, the
1. Introduction reusability of the test artifacts and results is very imaott
Unfortunately, testing through a GUI is usually much
Software test automation systems offer benefits overharder than using some test-specific interface of even an
manual testing and are found useful in regression testing,application programming interface (API). In order to run a
especially at unit and integration testing levels. Whileco test, we need to be able to input the parameters, data values
ventional tools have automated the test execution phase€tc. and check the outputs. However, not all operating sys-
newer ones are also able to automate the test generatiofems provide direct access to the GUI resources, meaning
(i.e. the test design) phase. Deployed successfully, autothat bitmap comparisons or optical character recognition
matic test generation could bring benefits in lower testing (OCR) may be needed. In addition, GUIs are often volatile,
costs not only in the form of reduced test design but also i-€. they often reflect the changes in the requirements, thus
in maintenance, since the updated tests can be re-generatdficreasing the test maintenance effort [17]. Nevertheless
easily. many organizations developing smartphone applications fo
However, the industrial deployment of such tools has so mass customer markets prefer to test the application behav-
far been hampered mainly by non-technical issues, suchior through GUIs from the point of view of the end-user
as poor usability of the tools and organizational obstaclesexperience. Manually testing all the language versiorrs, fo
[11, 30]. Moreover, studies supporting the transition from instance, could also be very expensive and time consuming.
manual to automatic test design are few [24]. Thus, thereis The background of our approach has been introduced al-



ready in [14, 15, 19, 20, 21]. The contributions of this pa-  In either case, the generated tests are usually too ab-
per are in presenting the results of the evaluation and thestract to be executed directly. Hence, a transformation is
experiences we gained in long-period testing. However, weneeded that converts the tests to a form understood by the
first review the earlier results in order to explain our con- SUT. In the off-line case, a separate transformation plsase i
text. The remainder of this paper is structured as follows: needed after generating the abstract test suite. Howewer, i
In Section 2 the background of our study is presented in de-the on-line case, a special SUT adapter translates messages
tail. Sections 3 and 4 introduce the goals of the study andbetween the test generation tool and the SUT (or a test tool
describe the modeling approach, as well as the associatedccessing the SUT).

toolset. Sections 5 and 6 discuss running long-period tests

and the results of our evaluation. Finally, Sections 7 and 82,2, Choosing the right test interface

review the related work and summarize the lessons learned.

System level software test automation needs to access
2. Background the SUT using some interface enabling communication be-
tween the two. In practice, such communication includes
In this section we present the background of our evalua-setting up the state of the SUT prior to a test run, inputting
tion. The system under test (SUT) is an application running the events and data values as specified in the test, and check-
on S60 [32], the most widely spread smartphone platform, ing the actual results against the expected ones.
with almost 200 million installations. An S60 phoneresem-  There are basically three options when considering
bles more a desktop computer than a regular phone, since avhich interface to use for this kind of communication. A

user can install his/her own applications. test-specific interface can be designed just for the pugpose
of supporting test automation. Unfortunately, test automa
2.1. Automatic test generation tion engineers seldom have the luxury of testing a system

with a built-in test interface.

While traditional test automation tools automate the exe-  On the other hand, system level test automation can be
cution of tests, new ones also automate the generation ofmplemented through a high-level application programming
tests. The basic idea in most of these tools is to deriveinterface (API). The benefits of using such an interface in-
tests based on high-level descriptionstemt modelsof the clude stability and performance. APIs that have been pub-
SUT. The anticipated benefits of automatic test generationlished for third party developers are usually stable enough
include better test coverage and reduced maintenance comFhey also provide efficient implementation of functiongalit
pared to the traditional test suites. Moreover, many defect to access systems. However, compared to the test-specific
can be found already in the modeling phase before executinterfaces, extrawork is required to implement the funetio
ing any tests [21]. ality needed by the test automation tool.

There are many types of approaches to automatic test The third alternative is the user interface, which is usu-
generation (see [37] for a taxonomy). Our test-specific ally a graphical one in most modern applications. However,
models specify the behavior of the GUI from the end-used GUIs are much more volatile than APIs, since changes in
perspective. These transition-based models are determini the requirements are often reflected in the user interface. |
tic, untimed, and discrete. Moreover, the tests can be generaddition, the performance and accuracy can be poor if, for
atedon-lineconcurrently with the test execution. Thisis re- instance, comparison of the test results involves lowlleve
garded as beneficial, especially in testing non-detertignis techniques such as bitmap comparisons or OCR. On the
reactive systems like smartphones, whose response to ather hand, automated GUI testing does not always require
given input may be hard to predict due to concurrency and separate middleware for adaptation, at least in a standard
an uncontrollable environment like network. There are no Ul environment such as MS Windows. Moreover, since the
test cases in the conventional sense and testing can be seend users interact with the system through the GUI, using
as a game between the tool and the SUT [23]. the same interface for testing is likely to focus on relevant

Alternatively, in off-line testing the test suites are first behavior. It can also reveal problems related to GUI-specifi
generated from the models and executed in a separate phasissues that would be hard to detect otherwise [21].

This solution is more compatible with conventional think- Different types of testing complement each other. Com-
ing as well as existing development processes. In addition,bined with automated unit and integration tests, as well as
it provides a means to generate conformance testing suitegdvanced manual techniques such as exploratory GUI test-
to be executed by 3rd parties using pre-existing toolsyfori ing [17], the choice between the three alternative integac
stance. Spec Explorer [6], reportedly being used by severalneeds to be done on a case-by-case basis. This decision can
Microsoft product groups on a daily basis, is an example of be affected by the availability of appropriate tools and ex-

a tool supporting both of these approaches. pertise as well as non-obvious organizational issues.



2.3. GUI test automation in S60 the same artifacts may not be directly possible because of
differences in features and GUIs between the products.
Automating GUI testing is often not considered an Opti- In our context, it can be assumed that the basic function-
mal solution, mainly due to many bad experiences with so ality provided by the GUI stays the same across the prod-
called capture/replay tools [8, 17]. These first generation uct line of smartphones. Some devices have larger displays
tools captured GUI events and produced low-level scripts Or extended keyboards, but still provide the same look and
that were hard to understand and maintain. Even the slight-feel as well as the basic set of applications. Due to the
est change in the GUI forced a recapturing of the script. openness of S60, there are plenty of third party application
These tools seldom provided a positive return on the invest-available. To enforce quality guidelines for such applica-
ment and often ended up as shelfware. tions and to support network operator requirements, there
It was soon realized that scripts need to be structured@r® some common test requirements [35].
and modularized like any other code of sufficient size [8].  From the GUI testing perspective, the reusability and
Moreover, with the introduction of the so-called data-driv. ~ Maintainability of test artifacts is seen as extremely impo
approach, it was possibie to reuse the same test executioﬁﬁnt. There is a need to reflect in the test artifacts the sepa-
engine with different data-values that were commonly sep- ration of concerns between the things that stay the same and
arated on a spreadsheet. This facilitated localizatiinggs ~ those that change across the product line. On the one hand,
for different languages, for instance. it should be possible to reuse the existing tests as much as
The state of the art in automated GUI testing is repre- Possible when testing a new product. On the other hand,
sented by so callekeywordsandaction wordg5, 8]. They things that tend to change, such as keyboard related test au-
heip in Separating concerns by abstracting from the coacret tomation COd.e, should be modularized in a Way that enables
GUI. The idea is to map the user requirements, capturedeasy adaptation.
for instance in use cases, to high-level events calledractio A solution to this problem is provided by action and key-
words. In the smartphone context, such action words canword techniques. The implementation of keyboard related
include events for opening a Calendar application, addingissues can be separated at the keyword level and the ba-
a contact to the list of contacts, or sending an SMS. On sic functionality can be encoded as action words. For each
the other hand, keywords corresponding to key presses andf€y in the keyboard, there could be a separate keyword.
GUI navigation provide the lower level of abstraction. For However, the number of possible action words can be much
instance, a keywordwPresskey<Center> corresponds to ~ greater, which can pose new maintainability problems if not
pushing the centre button that usually chooses the currenfnanaged properly.
selection in the menu. Checking the results is done using
keywords such alswVerifyText<'string’>, which verifies that 3. Goals of the evaluation
a given string argument is visible on the display.

The separation of concerns provided by actionwordsand approach to evaluation was more qualitative than

keywprds e_nables non-technical testers to de\(elop tests bgsantitative. On the one hand, it would have been more
creating action word sequences based on requirements. Te nvincing to be able to provide exact data and to com-

aut_omatmn engineers, on the (_)ther hano_i, can concentrat?)are different approaches (see, for instance, [27]). On the
on implementing the keywords in the particular SUT. Key- gther hand, since testing is a context-sensitive activith w
words and a(_:tlon words _and 5|m|Iar_ abstractions are com-, pest practices working across different contexts [17],
monly found in commercial GUI testing software. we rather concentrated on providing the kind of evidence
our industrial partners requested, i.e. a proof-of-cohcep
2.4. Software product line testing Hence, we had several goals and some of the more general
ones were simply related to trying out automatic test gen-
According to [34] a software product line is “a set of eration in the domain of smartphone applications and dis-
software-intensive systems that share a common, managedeminating experiences to the partners. Towards this end,
set of features satisfying the specific needs of a particularthere was a need to have a prototype version of the toolset
market segment or mission and that are developed from arunning as soon as possible, in order to be able show de-
common set of core assets in a prescribed way”. Softwaremos and promote discussion with technical experts using
product lines enable the introduction of new software prod- conventional test automation tools in this domain.
ucts at a pace much faster than traditional approaches. This We also had more concrete goals. The first requirement
poses a challenge to testing, since tests should also be seamas to be able to run tests that use two phones instead of just
as reusable assets [36]. However, it can be very hard toone (sender and receiver of a SMS message, for instance).
determine what tests to skip just because they were exe-The second requirement was to include test data in the test
cuted for the previous product. Moreover, re-testing using runs in an easy-to-use way. The third requirement was to



run tests on different products of the same product line in The set of keywords is fixed and chosen to fit in the S60 do-
order to assess the reusability of the test models in a ptoducmain. Action words, on the other hand, can be chosen freely
line setting. Finally, the fourth requirement was to try to by the modeler. Second, LSTSs (Labeled State Transition
derive test models from design models. Allin all, during the Systems, that is, digraphs with labeled edges and nodes and
actual test runs, we wanted to find real defects that would one of the nodes marked as a special “initial state”) and thei
be out of reach of conventional testing tools. parallel composition are chosen as the underlying modeling
In the beginning we also anticipated that we could train formalism. Synchronizations in the parallel composition,
test engineers to build test models. However, this require-which is generalized [18] from CSP [31] parallel composi-

ment was later abandoned, as will be explained. tion, are defined to support modeling S60 applications and
their interactions. However, the parallel composition and
4. Model library and the toolset some of the LSTSs are hidden from the users of the lan-

guage. The formal definition for LSTS is as follows:

Since there were no suitable tools available when the pefinition 1 (LSTS). A labeled state transition sys-
evaluation started, we had to develop our own. We did not tem abbreviated LSTS, is defined as a sextuple
want to invent new theories; instead, we wanted to apply (S,=,A,$,M,val) where S is the set aftates s is the
existing ones in the particular domain at hand. This section set of actions(transition labels)A C Sx £ x S is the
describes the tools and techniques that were developed to-  set oftransitions § € S is theinitial state M is the set
wards this end. The solutions are domain-specific, i.ey, the of attributes(state labels) and valS — 27 is the
are tailored for smartphone application testing. However, attribute evaluation functignvhose value vas) is the
most solutions should be adaptable to other domains also.  set of attributes in effect in state s.

Based on [14, 20], we begin by presenting our approach to

test modeling and then describe the tools we have built. The parallel composition of LSTSs [10] is based on a
rule set explicitly defining which actions are executed syn-
4.1. Modeling chronously. An action of the composed LSTS can be exe-

cuted only if the corresponding actions can be executed in
Domain-specific modeling languages (DSMLs) are gain- €ach component LSTS, or if the component LSTS is indif-
ing popularity in the area of model-driven development. In- ferent to its execution. The following definition is slightl
stead of using standard generic languages such as UMLmodlfled in two respects: mte_r_nal tr_an5|t|0ns are not ndede
the idea is to specify a new modeling language for a certain@nd handling of state propositions is more straightforward
application area. In principle, this enables domain expert
without programming skills to create high quality models.
Moreover, custom-made code generators mapping the mod-
els to code can produce more efficient implementation on i<j<n:MNiNM;—0 LetSg be a set of re-
thetargetplatform thf?m generi<_: ones. There are some indus- sulting_actions anjd\/ a “pass’ symbol such that
Frlal success st_orles in dgploylng DSMLS thaj[ report huge Viil<i<n:y¢&3. The rule set RC (S1U
improvements in productivity [7]. Since building custom- (V1) % (EnU{V/}) x Zr. Now||r (L1,...,Ln) =
made tools requires expertise, time and effort, the domain repal(S,%,4,4, M, val)), where T
needs to be stable in order to obtain the return for the in- T ’
vestmentin the long run. Moreover, an organization lacking e S=5 %X+ X
the expertise to create a customized language and the asso- e >—73R
ciated tools may become too dependent on a specific tool : .
vendor. Nevertheless, the growing tool support for DSMLs ° ,Er(]sl"'."s")’a’ (gl""’sl‘”)% < Ah IIha?(fj only if .
will enable easier customization in the future. (1e<rei Ii(r?)lgi.tﬁ’earn’a) € It such that Tor every |
Taking into consideration the trade-offs involved, the use - =

Definition 2 (Parallel composition||g). ||r (L1,...,Ln) is
the parallel compositionof LSTSs L,...,L,, L =
(S,%,4,5,M;,val), according torulesR; Vi, j;1 <

of DSMLs is regarded as beneficial also in testing [12]. - (s.ai,§) €bor
System level testers are usually not familiar with generic —a=+ands=¢g
modeling languages such as UML or even testing languages o $=(&,....%)

such as TTCN-3. Hence, a DSML built on the concepts and

abstractions of the problem domain, using keywords and ac- o M=T1U---Uly

tion words, for instance, can be seen as a better option. e val((sy,...,5n)) = vali(s) U---Uval(s)
Our domain-specific approach for testing S60 applica- e repa is function restricting LSTS to contain only
tions combines two very different techniques. First, thesaid the states which are reachable from the initial

of keywords and action words is adopted from GUI testing. states.



Action and keyword tiers consist of test model compo- In addition to the generileeprs-Wakers primitives, af-
nents (LSTSs). The components in these tiers are catled ter which any action machine able to executekers can
tion machinesindrefinement machinesespectively. They  be taken to a running state, it is possible to G&pag,-
are used for building test models. Action machines model Wake,,, primitives, which wake up explicitly specified ac-
the user actions at the high level using action words. Refine-tion machines instead of just any. Both sleeping and wak-
ment machines transform the action words into sequencesng primitives were inspired by the two possible ways the
of keywords, i.e., executable events in the user interface.user can activate an application in S60. The former corre-

Next, the tiers will be discussed in detail. sponds to the situation where a task switching application,
modeled by an automatically generated task switching ac-
4.2. Action tier tion machine, is used for activating some application run-

ning in the background. On the other hand, the latter is
used for modeling the user activating a specific application
directly from another application. For instance, it is poss
ble to activate the Gallery application just by choosing “Go
to Gallery” from the menu of the Camera application.

There is also a communication mechanism defined for
As indicated above, interleaving the executions of the ac- e_xchangln_g |nformat|qn on shared resources between_ ac-

tion machines. For this purpose, primitives for requesting

tion machines is an important part of our domain-specific L -
. o , (Req) and giving permissionsA{low) are used. The former
modeling approach. Applications running on S60 should al- . . : .
can be executed in running states and the latter in sleeping

ways be interruptible. User actions, such as received phonestates However. these primitives cannot wake up a sleepin
calls and messages, may stop the ordinary execution of the . ™™ S P X P ping

L . ; . .__action machine or put a running one to sleep. For example,
application at any time. However, implementing an applica- - : :
. - . L Cameray in Figure 1 allows other action machines the use
tion that behaves properly in every situation is very harel du . L .

: L of the image it just took by executinglow<Uselmage>.

to the inherent complexity imposed by concurrency. More- It should b ted that th hi id h b
over, the number of event interleavings that could be testedOI shou the TJOMeL " ? N rrpac |ntetf:0u it a\(;e _ezn
is far beyond the capabilities of ordinary linear and static rawn using the state machiné notation, 1t So desired.

test cases. To allow the easy creation of test models with”.] fact, a modeling tool could be useq for custo_mizing th.e
automatically interleaved action machines, the concefpts o visual appearance of the state machine according to which
sleepingandrunningaction machines were introduced notation is the most familiar one to the test modeler. Thus,

. . . . . the exact visual notation is not an important part of this
In Figure 1 Camerg, is a simple action machine for

! A . DSML. Instead, the core is in conventions for naming the
testing the Camera application. The states of action ma- . .
. . . o . labels of the model components and in the associated se-
chines can be divided into running (in the foreground in the

figure) and sleeping (in the background) states. The semanmant'cs’ enabling simple maintenance and rapid develop-
tics for the running and sleeping action machines has beenment of new test model components when necessary.
adopted from the platform, a multi-tasking operating sys-
tem sharing one processor for several processes. Exactlyt-3- Keyword tier
one action machine at a time is in a running state. The run-
ning action machine can be changed only ifitisinarunning  The executable test model is obtained using action and
state from which there is 8leep transition to a sleeping refinement machines. The purpose of the latter is to refine
state. During the test run, it depends on the test generatiorthe action words in action machines to sequences of exe-
algorithm if this transition is executed. Action wordscan b cutable events in the GUI of the SUT.
executed only between the running states. As discussed above, in a product line context reusability
The initial state of the Camegg action machine in  is paramount. To support the testing of different produtts o
Figure 1 is the filled node in the background. When it the same product line, the functionality must be separated
is switched to a running stat&Vékers), the test genera- from the GUI events. This allows reusing action machines
tion algorithm can choose between starting the Camera apwith SUTs supporting the same operations but with a dif-
plication @wsStartCam) or immediately switching back to  ferent GUI. For example, the Camera application can have
the sleep modeSleeprs). In the former case it has to exactly the same functionality in two devices, one having a
be verified that the application seems to be running cor- regular keyboard and the other an extended one. However,
rectly (awVerifyCam), after which there are three possibil- designing an action machine is far from trivial: it requires
ities: taking a picture gwTakePhoto), quitting the appli- much effort and insight into what is worth testing. Nev-
cation @wQuit), or leaving the application running in the ertheless, after designing an action machine, defining the
background and switching to another applicatisieép-s). corresponding refinement machines should be much easier.

Action machines in the action tier model applications of
the SUT at a high level of abstraction. The machines contain
action words, the executions of which can be interleaved
to the extent defined in this tier. This enables testing joint
behaviors of different applications running concurrently
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Figure 1. Camera action machine (Camera am) and one of its refinement machines.

In Figure 1, Camesay is a refinement machine for the fying this automatically is straightforward.

Camera application. In its initial state (the filled circle) Many keywords require one or more parameters. Some-
the machine is able to refine starting the Camera appli-times these parameters are fixed to the GUI, such as a pa-
cation @wStartCam). The application can be started by rameter defining which key to press; sometimes they rep-
two different keyword sequences: by selecting it from the resent real-world data: a date or a phone number, for in-
menu kwPressKey<SoftLeft> opens the menu ankivSe- stance. Embedding this information directly into the mod-
lectMenu<Camera> chooses the menu item), or by using els would be problematic; they would be limited to a fixed

a shortcut kwPressKey<SoftRight>, “SoftRight” key is the  set of data values and possibly tied to a specific test config-
shortcut). uration. Another major problem with data is that storing it

Keywords serve two purposes: generating input eventsin state machines means duplicating states for each possi-
and making observations. In a test run, keyword execu-ble value of data, quickly resulting in a state space explo-
tion always either succeeds or fails. For exampleyeri-  sion [38]. To solve these problems, we have developed two
fyText<’Camera’> fails if the text “Camera” cannot be found methods for varying the data in models: so callechliza-
on the display. Sometimes the failure is allowed or is even tion dataanddata statements The basic function of the
required behavior. The allowed results are expressed usformer is to store the text strings of the GUI in differentdan
ing the labels of the transitions. If the keyword starts with guages. This way the models need not be dependent on any
(without) a tilde, then the failure (successful executien)  Specific language variant of the SUT. In practice, the data is

allowed in the starting state of the transition. The nexesta incorporated into the model by placing a special identifier i
after execution depends on the execution result. a keyword. When that keyword is executed, the identifier is

replaced with the corresponding element from the localiza-
tion tables. Even more complicated use of data can be ac-
complished by placinglata statementéPython [28] code)

The keyword tier consists of several refinement ma-
chines, each of which interacts with a single action machine

on the action tier. Usually, the refinement is as simple as a. ) Such b qi ,
macro expansion: every transition labeled with the same ac" actions. such statements may be used in any actions, not

tion word is replaced with the same sequences of keywords.JUSt keywords. Mqreover, data provided by exterdata
On the other hand, sometimes the sequences may vary, ddaPlescan be used in these data statements.

pending on the action words executed earlier. For example,

the keyword sequences implementing “activate the Camerad4.4. Example

application” are different, depending on whether the appli

cation is already running in the background or not. As a concrete example, consider testing a Camera appli-

The refinement is not allowed to change the behavior cation. Besides testing its features alone, its interdpkera
(safety and liveness properties) of the action machine. Toity with some other applications should be tested. There are
be more exact, a valid refinement machine contains neitherseveral modes in the Camera application, like timer, video
deadlocks (and should not cause them when composed irtapturing and file renaming, all of which should correctly
parallel with its action machine) nor infinite sequences of recover from interrupts caused by incoming messages and
keywords, i.e., directed loops of keyword transitions.iVer phone calls, for example.



When a new version of the Camera application arrives in fly. Test Engine manages the model and determines what to
a test lab, it may not be wise to start a full interoperability do next. For this purpose, it receives parameters from Test
test right away. It may take hundreds of testing steps to Control. Both Test Control and Test Engine write into a test
detect a simple error, because the number of possibilitieslog, which may be used for observing, or repeating the test
from which the test generation algorithm can choose is very for debugging purposes.
large. Instead, it may be better to test first all the featafes Moving on to the keyword execution part, as keywords
the application separately. After passing the first tesg it are executed in the model, Test Engine relays them to this
time to start a new and longer test that interrupts the Camergpart, whose purpose is to handle their execution in the SUT.
application with incoming calls and messages in all modes. The SUT responds with the success status of the keyword,

In an interoperability test case a test model could in- i.e. true or false, which is then relayed back to Test Engine.
clude model components for testing Camera, Messaging,First, a specific adapter tool translates the keywords into a
and Telephone applications. This means that the action maform understood by the receiver. Moreover, it manages the
chines corresponding to the applications are composed ingradual execution of some more complex keywords. The
parallel with the refinement machines whose purpose is tonext part in the communication chain is the test tool, which
refine the action words in the action machines for the partic- directly interacts with the SUT and is thus SUT specific.
ular device that is being tested. In addition to those LSTSs,Hence, it is not provided alongside the toolset, but theuser
a bogus application model could be included in the parallel of the toolset must provide their own test tool.
composition causing incoming calls and messages. More- The architecture has been designed to support the
over, an automatically generated task switcher action ma-plugging-in of different test generation heuristics. iadly,
chine switches between the four possible applications. Inwe implemented three heuristics, which allowed us to ex-
the initial state of the test model, the task switching actio periment with the tools. The first one is a purely random
machine is the running action machine while the other ac- heuristics that can be used in bug hunting. The two other
tion machines are asleep. It is up to test generation algo-heuristics are based on game-theory and are to be used in
rithms to decide which action machine is woken up first. ~ use case driven testing [19]; we have implemented a sin-

gle thread and a two thread version. Moreover, the duration

4.5. Test generation and modeling tools of a test run can be limited, allowing, for instance, smoke
testing in a continuous integration cycle [9]. The diffezen
between the two game heuristics is that the latter continues

Figure 2 illustrates the toolset architecture that cossist searching an optimal path to a state that fulfills the cover-
of four parts and a database. The first one is the model de- 9 P P

X - . age requirement, while the other thread waits for a return
sign part, which is used for creating the component models ! ;
: value from keyword execution. Unfortunately, we ran into
and data tables. The second is the test control, where tests . .
erformance problems even with the two thread version.

are launched and observed. The third one is the test genera[3 .
Towards solving these performance problems, we de-

tion part responsible for assembling the tests and coirtgpll ) .
. : . veloped yet another test generation algorithm that searche
test execution. The fourth is the keyword execution patt tha :
for the shortest (loopless) path, whose execution changes

communicates with the SUT through its GUI. :
. . : . the coverage value. The algorithm outperforms the game-
The model design part consists of two primary design : . Lo
theoretic ones in many cases. However, having imple-

tools: Model Designer [13] and Recorder [33]. The latter is mented several test generation algorithms, it seems that

an event capturing tool that has been designed to create ke none of them is better than others in every case. Their per-

! . ; . . %rmance, when measured as the growth of the coverage in
finement machines. Model Designer is the tool for creatmg the function of time, depends on the size of the model, the

action machines and data tables. In addition, it is responsi , .
; . ) coverage requirement and the speed of keyword execution,
ble for assembling the models into a working set ready for .
. ) ) ) i.e., the speed of the adapter layer and the SUT. Hence, an
testing. The model repository is used for storing the ele-

ments of this working set. optimal algorithm should be able to change the strategy au-

After the models have been prepared, the focus movestomatlca"y'
to the test control part that contains a web GUI used for ) .
launching test sessions. Once a test session has been set & Running long-period tests
using the web GUI, the Test Control tool (in the test gen-
eration part) takes over. First, the tool checks¢beerage Already at the beginning of the evaluation it was realized
requirement(a formal test objective, see [19] for details) that we needed to run long-period tests to find new defects.
that it received and determines which model componentsThe applications under test were already thoroughly tested
are needed for the test run. These are then given to Modelsing conventional methods. Some of them had been on the
Composer that combines them into a single model on themarket for several months before we obtained them. Short
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Figure 2. Test tool architecture (adapted from [14]).
tests were just unlikely to find any defects. another tool, i.e. ASTE [25], we were only able to run tests

As already mentioned, we had performance problemsthat lasted a few minutes.
with the test generation heuristics that we were able to  After solving the adapter problems, another unantici-
solve. However, the most difficult part was the development pated problem arose: the Bluetooth connection used for ac-
of a suitable tool adaptation for the keyword execution.part cessing the smartphones from a PC running the keyword ex-
The problem lay in finding a suitable third party test tool ecution part was cut after about 50 hours of test execution.
that would be reliable enough for running long-period tests A solution was to replace Bluetooth with an USB connec-
A lot of time was spent on trying to get a certain test tool tion that proved to be more reliable.
to work with our tools, until this solution was abandoned.
Since the tool was not open source and we had no acces% Results of the evaluation
to the source code, we were depending on the vendor to fix™"
certain problems. We also considered developing our own
tool for accessing the SUTSs, but this idea was dropped due As already mentioned, we had several goals in our eval-
to the great complexity of the task. Before we started to useuation. One of the general goals was to have a prototype



version of the toolset running as soon as possible. This suc-severities and priorities were found from built-in apptica
ceeded in spite of the problems in test generation perfor-tions in S60 smartphones, such as Gallery, Music Player,
mance and the third party test tool: we were able to show Flash Player, Messaging, Notes, and Voice Recorder. Some
short demos to the technical experts. The results regardingf these defects existed in more than one smartphone model.
the more concrete goals are described below. The most severe of the defects caused the phone to hang
Ability to run tests that use two phones instead of just with “System error” message on the display. To reproduce
one: We identified problems in our modeling methodology this particular case, a test run of around 110 minutes and
that made it quite difficult to compose arbitrary test model 1850 keywords was needed. Later, a much shorter run of
components to be run on two test targets. The reason waground 6 minutes and 100 keywords was found.
that the keywords used for switching between the target About two thirds of the defects were discovered while
devices were not modeled initially. Moreover, we needed modeling (exploratory testing), and the remaining third by
to copy some model components in the case of testing theexecuting the tests. Most of the defects had already been
same application in both targets. These issues were solve@reviously found in traditional testing (both manual and au
and this requirement was fulfilled. tomatic test execution), but they had not been fixed for some
Inclusion of test data to the test runs in an easy-to-usef€ason. However, there were also some that were totally
way: this was achieved with localization data and data-state New. Many of the defects were related to concurrency is-
ments, as discussed above. sues: performing some multimedia-related functionatity i
Running tests on different products of the same prod- °N€ application and then s_witc_hing to ar_10ther application_
uct line: The test model library was developed originally Causes unexpected .beh_aw.ors in some circumstances. This
for versions 2 and 3.0 of the S60 platform. However, by conformsto qurgarherfmdmgs [21]. In a}ddltlon to defects
the time long-period testing become possible, our primary found in applications, some were found in both proprietary
test target conformed to version 3.1 of the platform. We and commercial test tools, which was considered rather sur-
were able to use most of the model library as such, and theP"iSing, as these tools were quite mature.

maintenance efforts were restricted mainly to the keyword 1€ most surprising results of this study were that the
models, as anticipated. Thus, the requirement was satisinodeling was easier than anticipated but the adapter devel-

fied. However, we identified a certain problem related to ©Pment took much more time than planned. The model -

the variability between versions 3.1 and 3.2, which needsbrary (see [15] forde_tails) contains 11_different a_lppiin:m;_
special attention in the next generation model library. that were modeled in some 110 action machines, with a

corresponding number of refinement machines. Separately,
quirement was not fulfilled. In principle, we could tag the action machines contain about 1300 states, 1700 actions

UML design models with stereotypes in order to identify (pefhaps 40% of t_hem action words) and 3200 transitions.
keywords and action words. However, finding suitable de- Refinement machines add roughly 3000 states, 3000 ac-

sign models for the purposes of such a transformation iStlons and 4100 transitions to the totals. The first version

not easy; generally, they do not lend themselves to be used)fI the ?Ode(: I|braryhtook about two mont_hs to gul'.ld by a
as input for our test modeling. The design models do not talented student with no prior experience in modeling. An-

model the behavior of the applications in concurrency set- ‘?thef month was spent_ on debug_gm_g and maintaining the
ting and the models are either too generic or too detailed.lorary. We envisioned in the beginning that testers would

Thus, instead of specifications, our models were based orpe ab_le to build h|gh quall_ty_ models using our DSML. How-
observations and, to some extent, common sense. The lackVe" it was realllzed thatitis mgch better to have a separate
of specifications gave us a rather realistic setting; noysda €XPert role dedicated to modeling. Some testers may want
popular agile methods do not encourage detailed specifical© 162 modeling skills, but another new role of test model
tion, instead the implementation is seen as the most impor-EXecution specialist may be an easier option.

tant artifact. This also led us to use some exploratoryrtgsti

practices to develop the models, and we were also able to/. Related work

find some real defects while modeling.

During the evaluation, we also identified a need to de-  Concerning related work, the idea of using general pur-
velop new metrics and testing processes for test managepose GUI test automation tools for automatic test genera-
ment that could be used in deployment of this technology. tion originates from Robinson [29]. Ostrand et al. [26] pro-
However, these requirements were not included in this eval-posed a visual test design environment to create, edit, and
uation, but left as future work. maintain test scripts. They used a commercial test tool to

We also wanted to find real defects that would be out of capture GUI information and replay that information back
reach of conventional tools, thus proving the effectivenes to the SUT. Memon [22] proposed a framework for testing
of automatic test generation. In total, 21 defects of différ ~ GUI applications. The framework is based on knowledge of

Derivation of test models from design models: This re-



GUI components. The author derives test cases from GUlwe have set up a web-based test service, where the inherent
structure and usage, measures test coverage and determinesmplexity of the test models and algorithms is hidden from
the correct actions of the GUI using an oracle based on pre-the end user (test model execution specialist) [14]. Tha ide
viously generated test cases and run-time execution infor-is to use an expert test modeler for maintaining and extend-
mation. Belli [2, 3] extended state machines to show not ing the model library. Using such a service, if a new appli-
only correct GUI actions, but also incorrect transitions. cation is introduced and modeled, it is fairly easy to test it
Use cases (or sequence diagrams) as well as more exinterworking with the built-in S60 applications. Obviowsl
pressive formalisms, such as state machines [1, 16], haven an open development environment such as S60, this is
been previously suggested to drive test generation. Traceimportant both from the point of view of the platform and
ability between requirements and model-based tests hasndividual applications. The tools described in this pageer
also been studied before. For instance, Bouquet et al. [4]well as the model library are available under the MIT open
present an approach where the idea is to annotate the modedource license.
used for test generation with requirement information. The  Modeling was easier than anticipated, but the adapter de-
formal model is tagged with identifiers of the requirements, velopment took much more time than originally planned.
allowing model coverage to be stated in terms of require- The first version of the model library took about two months
ments. This allows automatic generation of a traceability to build by a student with no prior experience in modeling;
matrix showing relations between the requirements and theanother month was spend on debugging and maintaining the
generated test suite. library. The negative result from our study was that design
As already mentioned, our primary objective was not to models seem to be very difficult to use as input for test mod-
invent new theories on GUI testing. Instead, existing oneseling, at least in this context.
were adapted to facilitate the deployment of automated test  In spite of the easy-to-use test generation service, there
generation in the particular testing context. This was the are still severe obstacles in the deployment of this tech-
reason for extending the keyword and action word tech- nology in the smartphone applications domain. Many of
niques with model-based practices. Compared to Buwalda’sthese issues relate to organizational changes, the need to d
approach [5, 8], the main methodological differences are in velop new metrics and processes, etc. that remain as future
using LSTSs and their parallel composition to enable auto-work. However, management support for pursuing these
matic creation of keyword sequences; in [5] state machinesnew goals is easier to obtain now that there exists a proof-
and decision tables expressed in spreadsheets are recomf-concept showing the effectiveness of the technology.
mended for test generation. LSTSs offer a visual formal-
ism that should be quite easy to grasp and parallel com-
position enables automatic generation of concurrency re-
lated tests provided the test models have been created with
the domain-specific synchronization mechanisms discussed Partial funding from Tekes, Nokia, Conformiq Software,
earlier. Moreover, it seems that use-case driven test guid-F-Secure, and Plenware, as well as the Academy of Finland
ance using sequences of action words has not been considgrant number 121012), is gratefully acknowledged.
ered before, at least in this context. There are also some
minor dif_ferences in the terminology: in our approach, low- References
level action words are referred to as keywords. In prac-
tice, the most generic keywords can be considered as action
words in the sense of functionality. Thus, the main differ-
ence is in the purpose of use and the level of abstraction.
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