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Abstract

Microorganisms can be used in bioprocesses to produce various chemicals, such as
fuels, cosmetics and medical products, as an environmentally friendly alternative for
chemical synthesis. In these bioprocesses the raw materials (e.g. lignocellulose) can be
converted to compounds with high complexity with a minimum energy input and waste
material production. The metabolic capabilities and robustness of the bioprocess host
organism limit the yield and purity of the product. Molecules that currently cannot be
produced efficiently with robust microbial host organisms include wax esters, which have
several industrial applications and are currently produced with the Jojoba plant.

Acinetobacter baylyi ADP1 is a non-pathogenic soil bacterium that produces wax esters
that can readily incorporate foreign DNA into their genome and utilize various plant-de-
rived molecules as a carbon source. For these reasons, A. baylyi ADP1 has become a
model organism of bacterial genetics and metabolism, which has led to the accumulation
of a vast amount of information about its biology. This Doctor of Science thesis describes
experiments where the metabolism of A. baylyi ADP1 was engineered for improved
growth and wax ester production using lignocellulose-derived molecules as raw material.

With a gene knockout (rmlA) and expression of a foreign gene (pykF), it was possible to
double the growth rate of A. baylyi APD1 on glucose, double the molar wax ester yield
from glucose while improving product purity and collection of the cells. An additional gene
knockout (poxB) improved growth and wax ester production in the presence of acetate,
a common growth inhibitor found in lignocellulosic hydrolysates. A combination of these
modifications led to a strain that produced 0.45 g/l of wax esters in a medium containing
glucose, amino acids from casein hydrolysate and acetate as carbon sources. In addition,
a biodetoxification strain for the removal of inhibitors produced in the pretreatment of
lignocellulosic biomass was produced with a single gene knockout.

While significant improvements in growth and wax ester production of A. baylyi ADP1
from components of lignocellulosic hydrolysates were obtained with metabolic engineer-
ing, the wax ester production needs to be further improved if this strain is going to be
used in industrial applications. The strains that were produced here can be used as plat-
form for further improvements of wax ester production by A. baylyi ADP1.






Tiivistelma

Mikro-organismeja voidaan kayttaa erilaisten kemikaalien, esim. polttoaineiden, kosme-
tiikkatuotteiden ja ladkeaineiden, tuottamisessa bioprosesseissa, jotka tarjoavat ympa-
ristdystavallisemman vaihtoehdon kemialliselle synteesille. Tallaisissa bioprosesseissa
raaka-aineet (esim. lignoselluloosa) voidaan muuttaa monimutkaisiksi yhdisteiksi siten,
etta energiankulutus ja jatevirrat ovat minimaalisia. Bioprosesseissa tuotettujen yhdistei-
den saantoa ja puhtausastetta rajoittaa kaytetyn tuotto-organismin aineenvaihdunta ja
kasvuominaisuudet. Yhdisteisiin, joita hyvat kasvuominaisuudet omaavilla tuotto-orga-
nismilla ei voida talla hetkella tuottaa tehokkaasti, lukeutuu monia teollisia kayttékohteita
omaavat vahaesterit, joita talla hetkella tuotetaan Jojoba-nimisella kasvilla.

Acinetobacter baylyi ADP1 on ihmiselle vaaraton maaperabakteeri, joka tuottaa vahaes-
teita, kykenee liittamaan vierasperaista DNA:a genomiinsa ja pystyy kasvamaan useilla
kasviperaisilla hiilenlahteilld. Naista syista A. baylyi ADP1:sta on tullut yksi bakteerige-
netiikan ja —aineenvaihdunnan malliorganismeista, minka vuoksi on kertynyt erittain pal-
jon tietoa sen biologiasta. Tassa tekniikan tohtorin vaitdskirjassa esitelldan tulokset ko-
keista, joissa on muokattu A. baylyi ADP1:n aineenvaihduntaa tavoilla, jotka parantavat
sen kasvuominaisuuksia ja vahaesterintuottoa, kun lignoselluloosaperaisia yhdisteita
kaytetdan raaka-aineena.

Yhdella geenipoistolla (rmlA) ja yhta vierasgeenia (pykF) ilmentamalla pystyttiin kaksin-
kertaistamaan A. baylyi ADP1:n kasvunopeus ja vahaesterisaanto glukoosilla, paranta-
maan tuotteen puhtausastetta ja sen keraamisen helppoutta. Yhden geenipoiston (poxB)
lisddminen paransi kasvua ja vahaesterintuottoa asetaatin, mika on yleinen lignosellu-
loosahydrolysaattien kasvuinhibiittori, l1asndollessa. Nama muokkaukset yhdistavalla
kannalla pystyttiin tuottamaan 0,45 g/l vahaestereita kasvuliemessa, mika sisalsi glukoo-
sia, kaseiinihydrolysaatin aminohappoja ja asetaattia hiilenlahteina. Tuotettiin myds eril-
linen kanta lignoselluloosahydrolysaatin inhibiittorien poistamista varten yhdella geeni-
poistolla.

Vaikka merkittavid parannuksia pystyttiin tekemaan A. baylyi ADP1:n kasvuominaisuuk-
siin ja vahaesterientuottoon lignoselluloosahydrolysaatin komponenteista, vahaesterin-
tuottoa pitda kuitenkin vield parantaa, jotta tatd kantaa voitaisiin kayttaa teollisissa so-
velluksissa. Kehitetyt kannat luovat pohjan sille, etta A. baylyi ADP1:sta voidaan kehittaa
tallainen riittdvan tehokas vahaesterientuotto-organismi.
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1

Introduction

The production of chemicals with microorganisms offers an environmentally friendly alternative
to chemical synthesis. During the 20" century, bioprocesses were developed for the production
of various chemicals, such as solvents like acetone and butanol, amino acids, vitamins, and
antibiotics [31]. After the development of recombinant DNA technology, the range of products
that can be produced in bioprocesses increased dramatically [31]. Not only did genetic engineer-
ing allow production of new products in well-studied organisms, like insulin production in Esche-
richia coli [10], it enabled improving existing host organisms and thus allowed greater yields of
natural products to be achieved. Drugs produced with genetically engineered microorganisms
can be produced more reliably than those extracted from natural sources [143]. For example, a
precursor to the malaria drug, artemisinin, can be produced with genetically engineered yeast,
which is expected to even out fluctuations in the availability of the drug [143]. Although high-
value products, such as drugs, can be produced in an economically feasible way using refined
chemicals as a raw material, bulk chemicals need to be produced from less expensive raw ma-
terials. One such raw material is lignocellulosic biomass which includes wood and the inedible
parts of food crops. The utilization of lignocellulosic biomass requires that its components are
liberated in pretreatments, which also release compounds that can be inhibitory to the biopro-
cesses.

Wax esters (WE) are lipids that can be used in many applications including cosmetics, biofuel
production and in medical products [158]. WEs are currently produced from the Jojoba plant,
which grows primarily in deserts [158]. If WEs could be produced efficiently with microorganisms,
these lipids could be produced anywhere from inexpensive raw materials such as lignocellulose.
Acinetobacter baylyi ADP1 (ADP1) is a soil bacterium that naturally accumulates WEs for energy
and carbon storage [56]. It grows on various components of lignocellulosic hydrolysates and has
a metabolism that is easy to engineer [204]. Currently, the WE yields obtained with ADP1 are
not sufficiently high for economically feasible production of these storage lipids. In this thesis, it



was attempted to improve the growth and WE production of ADP1 using various components of
lignocellulosic hydrolysates as a carbon source by means of metabolic engineering.

In the Background section of this thesis, the composition and utilization of lignocellulosic biomass,
the use of metabolic engineering to improve host organisms for bioprocesses and the biology of
ADP1 are explained. Several excellent review articles have recently been published about ligno-
cellulosic hydrolysates [84], [85] metabolic engineering [93], [103], [131], [148], [203] and metab-
olism and genetics of ADP1 [29], [45], [204], and so they are covered here only briefly. The parts
of the metabolism of ADP1 studied in the Publications I-IV are discussed more thoroughly. The
metabolism of ADP1 has some peculiar aspects and it was attempted in the experiments to
engineer those metabolic steps to improve growth and WE production. While many aspects of
the metabolism of ADP1 have been studied extensively, there is no information available about
certain parts of its metabolism. Those aspects of its metabolism which are relevant to this thesis
are discussed with respect to the metabolism of E. coli, which is a fairly close relative of ADP1.
Since E. coli is probably the most studied model bacterium, the differences between ADP1 and
E. coli are also discussed. The hypotheses on which the experiments are based are described
in the Research Objectives and Questions section. Materials and Methods briefly explains how
the metabolic engineering and the experiments to test the engineered strains were performed.
In the Results and Discussion section, the results of the experiments carried out for Publications
| — IV are discussed and compared with the growth characteristics and WE yields of other micro-
organisms. In the Conclusions section, the overall success of the attempt to engineer the metab-
olism of ADP1 for improved growth and WE production is discussed. This section also includes
an evaluation of whether the work carried out here has taken ADP1 closer to being a realistic
choice as a host organism in bioprocesses where components of lignocellulosic hydrolysates are
converted to WEs. Finally, suggestions for further improvements that need to be carried out in
order to engineer ADP1 into an efficient WE producer are given.



2 Background

2.1 Lignocellulosic hydrolysates

Sugars and starch have been used in production of the first-generation biofuels, but since these
raw materials could be also used as human food, and as a feedstock for animals, lignocellulosic
biomass, which consists of the inedible parts of plants, has been considered as a better alterna-
tive [64]. Lignocellulosic biomass is also less expensive than starch, and can be cultivated with
less use of fertilizers and on different land areas than food crops [64]. The composition of ligno-
cellulosic biomass varies greatly depending on the plant it is produced from [21]. In general, it
can be said that it is preferable that the biomass should have a small and easily degradable lignin
content. The composition of the plant from which the lignocellulosic biomass is derived can also
be subjected to modification by means of genetic engineering [149]. The main sugar constituents
of lignocellulosic biomass (Figure 1) are glucose and xylose, while arabinose, galactose and
mannose are also present in smaller quantities.

. Pretreatment | ; i Detoxification ifi i
L|gnocellulose ngnoceIIuIOS|c Detoxified Fermentation Product

- Cellulose hydrolysate lignocellulosic - EtOH
- Hemicellulose - Sugars (glucose, xylose, arabinose, hyd rolysate - Biodiesel
- Lignin mannose, galactose) s -H2

- Sugars (glucose, xylose, -WE

- Organic acids (acetic acid, formic acid, -
- . arabinose, mannose, galactose) t
levulinic acid) - €lc.

- Aromatic compounds (phenol, 4-HB)
- Furanic compounds (furfural, 5-HMF)

FIGURE 1 A schematic presentation of lignocellulose utilization in bioprocesses. Examples of the prod-
ucts and lignocellulose components (in parentheses) are given below each phase.

Lignocellulosic biomass has to be pretreated prior to fermentation in order to release the fer-
mentable sugars [68]. The pretreatment methods can be divided into acid-based methods, mild
alkaline methods, oxidative methods, hydrothermal processing, chemical pulping processes, and



the use of alternative solvents [85]. These methods aim at hydrolysing or solubilizing hemicellu-
lose or removing lignin. Acid-based methods include a promising method, acid hydrolysis. In this
process, the lignocellulosic biomass is treated with mineral acids, organic acids or sulfur dioxide.
In hydrothermal processing, liquid water or water vapor at high pressure are used. Alkaline
pretreatments with mild alkali are less efficient but also produce less inhibitors than acid pretreat-
ment or hydrothermal processing. The oxidative methods aim at using oxidants to separate the
cellulose and hemicellulose from the lignin and to decrystallize the cellulose. In chemical pulping,
cellulose can be separated from hemicellulose and lignin, which are converted to liquors that can
be used for energy production or fermentation by, for example,e S. cerevisiae. In an alternative
solvent pretreatment, the lignocellulose components can be separated by disrupting their non-
covalent interactions without significant inhibitor formation. However, the collection of hemicellu-
lose and lignin fractions must be improved before this method can be used industrially.

The hydrolysis of the lignocellulosic biomass yields inhibitors in varying amounts and depends
on the source of the biomass and the pretreatment methods [179]. Different inhibitors are derived
from different lignocellulose components [85]. Hexose sugars can be degraded to 5-HMF and
pentose sugars to furfural. 5-HMF and furfural can be further degraded into levulinate and formic
acid, respectively. The aromatic inhibitors like 4-HB are derived from lignin, while acetate is de-
rived from hemicellulose. The presence of the inhibitors can usually be considered harmful to the
bioprocesses [84], but they can also be beneficial. For example, 3.3 g/l of a protonated form of
acetate was shown to increase the ethanol (EtOH) yield of S. cerevisiae by 20 % [180]. However,
when the protonated form of acetic acid was higher than 5 g/l the growth of S. cerevisiae was
inhibited [180]. When cultivated on xylose the acetate tolerance of S. cerevisiae has been shown
to be lower than when cultivated on glucose, which was considered to be due to the lower fer-
mentation rate of xylose [66]. The presence of acetate in the growth medium increases toxicity
of furfural to S. cerevisiae [138] and E. coli [206]. Also, acetate appears to be more toxic to E.
coli growing on glucose in a minimal medium [126] than in a rich medium [102]. Thus it can be
said that, while acetate is not very inhibitory in itself, it might be worthwhile to remove it from the
lignocellulosic hydrolysates with techniques like biodetoxification (see below), if inhibitors like
furfural are also present. Alternatively, tolerance of the host organism towards this organic acid
might be improved by adaptation or metabolic engineering.

The presence of lignocellulosic inhibitors and the sequential use of the sugars have been con-
sidered as one of the biggest problems in the production of second generation biofuels [191].
Most of the experiments carried out for this thesis were done using individual components of the
lignocellulosic hydrolysates, or a combination of these components, as carbon source. While
experiments carried out with actual lignocellulosic hydrolysates would have unarguably produced
data more relevant to real-life applications, using individual components in a synthetic medium
produces results that can be generalized more easily. One experiment was, however, carried out



with enzymatically hydrolysated rice straw (Publication Il), in order to show that the genetic mod-
ifications work with actual lignocellulosic hydrolysates. Glucose was used in all publications of
this thesis because it is often the most abundant carbon source found in lignocellulosic hydroly-
sates. Although not the most severe inhibitor of lignocellulosic hydrolysates, 4-hydroxybenzoate
(4-HB) was used as a model compound of aromatic inhibitors due to its abundance in many
lignocellulosic hydrolysates [139].

The host organism using lignocellulosic hydrolysates should be capable of catabolizing all the
carbon sources present in this raw material in order to maximize the product yield. This is espe-
cially important in bioprocesses where products like biofuels, which are of lower value, are pro-
duced. If the host organism is capable of catabolizing multiple carbon sources present in the raw
material, it would be of advantage if these would be consumed simultaneously because this
shortens the bioprocess running time [94]. However, in their natural environment, microorgan-
isms often benefit from sequential usage of the carbon sources. This allows them to consume
the best carbon source first, so that the competing microorganisms do not consume it before
them. The carbon catabolite repression of xylose and arabinose consumption by E. coli has been
particularly well characterized [32]. In the presence of glucose, arabinose and xylose, E. coli
consumes first glucose, then arabinose and only then xylose [32]. In this example, glucose pre-
vents the catabolism of both arabinose and xylose, and arabinose prevents the catabolism of
xylose. When catabolite repression occurs in this way in multiple layers, the metabolic engineer-
ing of a strain that consumes the sugars simultaneously becomes more difficult. An alternative
to engineering the metabolism of the host organism for simultaneous consumption of all carbon
sources is to engineer different strains of the host organism for consumption of only one carbon
source, and then use them in a mixed culture. This approach has been shown to be successful
in the consumption of glucose, arabinose and xylose simultaneously with three different strains
of E. coli C [201]. The simultaneous use of glucose and xylose, which would have otherwise
been consumed sequentially, has been achieved by encapsulating S. cerevisiae [191]. The sim-
ultaneous utilization of the carbon sources was caused by a gradient of glucose in the encapsu-
lated cell mass, and the low glucose concentration in the middle of the cell mass allowed xylose
consumption [191].

2.1.1 Biodetoxification of lignocellulosic hydrolysates

There are a large variety of techniques for removing the inhibitors produced in hydrolysis of lig-
nocellulosic biomass. These techniques differ greatly in their abilities to remove the inhibitors
without decreasing the sugar content of the hydrolysate, their physical characteristics, and in
their cost. These techniques can be divided into physical, chemical and biological methods [84].
Biodetoxification, which is one of the biological methods, is generally slower than the physical or
chemical methods but requires less energy and does not produce so much waste water [35].
Another advantage of using biodetoxification is that, unlike with physico-chemical methods, the
carbon of the inhibitory molecules is not lost in the process but can be used in the synthesis of



other valuable molecules as a side-stream of the actual fermentation where the detoxified ligno-
cellulosic hydrolysate is used as raw material. As biodetoxification competes with other, more
robust detoxification methods, it might be necessary to produce these valuable compounds with
the biodetoxification strain in order to make biodetoxification economically feasible. If the biode-
toxification organism could also perform other functions, such as the production of cellulases or
the removal of oxygen for anaerobic host organisms, this detoxification method might become a
more attractive alternative.

Biodetoxification can be carried out by isolating microorganisms capable of using the lignocellu-
losic inhibitors as a carbon source but which do not consume the lignocellulosic sugars [195], or
engineering such organisms from model organisms by knocking out the genes for sugar catab-
olism [100]. The tolerance of the host organism towards the inhibitors can also be achieved by
engineering the metabolic steps involved in inhibitor tolerance [194]. Many organisms in nature
are capable of growing on lignocellulosic inhibitors [58], [76], [196] and the genes for these func-
tions can be cloned from them. ADP1 can grow on many organic acids but cannot grow on any
other sugar than glucose as a sole carbon source. This creates an opportunity to convert ADP1
into a detoxification strain that consumes only the organic acids, which can be growth-inhibitory
to the bioprocess host microorganisms.

2.2 Growth rate

Bioprocesses benefit from a high growth rate in the host organism as long as the increased
growth rate does not decrease product formation, as this reduces the time needed to run the
bioprocess. This applies especially when lower value chemicals are produced. Thus, if other
parameters remain unchanged, an increase in the growth rate of the host organism is a goal
worth striving for. Bacterial growth can be divided into a lag phase, an acceleration phase, an
exponential phase, a retardation phase, a stationary phase, and a phase of decline [122]. The
most important phase with respect to WE production by A. baylyi is the stationary phase (when
growth is not limited by carbon) as WEs are synthesized most efficiently then [56]. Thus, in order
to increase the WE productivity of ADP1, shortening the lag and exponential growth phases can
be considered important. The lag phase has traditionally been considered to be due to the ad-
aptation of the metabolism of all the cells in the population to the presence of the carbon source
by synthesis of catabolic enzymes [122]. More recently, it has become evident that the lag phase
is also affected by the fact that only a part of the population of the cells present initially in the
growth medium start to grow, while the rest of the cells do not grow at all during the cultivation.
This has been shown to occur with E. coli K12 BW25113 after the carbon source is changed
from glycolytic to gluconeogenic [98]. The proportion of the cells starting to grow on a gluconeo-
genic carbon source depends on the gluconeogenic flux after the change in the carbon source
and could be affected by increasing the uptake of the gluconeogenic substrate [98]. If this is the



case, the lag phase could be reduced through metabolic engineering by increasing the carbon
source uptake rate. When ADP1 is cultivated on glucose as a sole carbon source, a significant
lag phase is caused by the fact that ADP1 has to convert glucose to gluconate prior to further
catabolism [188]. This lag phase could be shortened by increasing the activity or availability of
glucose dehydrogenase (GDH), which is responsible for this oxidation reaction [188] or by in-
creasing the amount of the inoculate (see Figure 4 in Publication | and Figure S5 in Publication
[II). However, it can be considered that the exponential growth phase is the most important de-
terminant of the total cultivation time in bioprocesses using ADP1 in WE production since it can-
not be increased by increasing the amount of inoculate. The exponential growth rate (u) can be
calculated as follows:
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where X; is the number of cells at timepoint t; and X, the number of cells at timepoint t.. The
exponential growth phase is the only phase of growth that can be reproducibly quantified [167].
Since the metabolic state of the bacterial cell, and thus the amount of the product formed from
the substrate, is highly dependent on the growth state of the cell, it has been considered highly
important to report exponential growth rates in the research articles [127]. This is especially true
for experiments measuring WE production by ADP1, since it produces WEs at different rates in
the exponential growth phase and in the stationary phase [56] and a small difference in the stage
of growth might have dramatic effects on the WE yields. Because of this, the experiments pre-
sented in this thesis that involve comparison of WE production by metabolically engineered
strains with wild type (WT) ADP1 have been carried out in the exponential growth phase and the
samples have been taken at time points where similar amounts of the substrate have been con-
sumed.

The growth rate of a bacterium depends on the carbon source, and some carbon sources allow
faster growth than others [111]. A generalization has been made that the metabolism of ADP1 is
geared towards the catabolism of carbon sources that enter its metabolism as intermediates of
the tricarboxylic acid (TCA) cycle, but it works less well on carbon sources that are processed
via glycolysis [12], [204]. This is in contrast to E. coli, which grows faster on carbon sources that
are processed via glycolysis than carbon sources that enter directly from the TCA cycle [7].
These characteristics can be influenced by means of metabolic engineering. The growth rate of
E. coli on pyruvate and succinate has been improved by increasing the expression levels of
phosphoenolpyruvate (PEP) synthase (pps) and PEP carboxykinase (pck) genes, respectively
[23]. The authors concluded that at least in the improvement of growth rate on pyruvate by over-
expression of pps, the improved growth has to be due to the enhanced synthesis of key biosyn-
thetic metabolites, rather than improved energy production [23]. Another example is the improved
growth rate of Gluconobacter oxydans on glucose after knocking out the genes responsible for
the formation of gluconate from glucose [99]. This improvement, however, resulted in acetate



formation [99]. The growth rate of ADP1 on glucose has already been improved by supplement-
ing the cells with extra pyrrolo-quinoline quinone (PQQ) (see Sugar metabolism) [188].

2.3 Biomass yield

The amount of bacterial cells in a growth medium can be determined by estimating the number
of the cells or measuring the dry weight of the bacterial biomass [122]. However, it has been
known for a century that the size and shape of a bacterial cell may change during different phases
of growth [67] and thus the measured biomass values do not necessarily reflect the number of
cells present in the cultivation. Since the titer and purity of the intracellularly accumulating WEs
depend on the final biomass obtained, not on the number of the cells, determination of the bac-
terial numbers in the cultivations is not discussed here.

In order to be economically feasible, bioprocesses usually have to allow the cells to grow to a
high cell density [155]. This is especially true in the case of products that have lower economic
value [192], but bioprocesses where more valuable products are produced also benefit if the cells
grow to a high density [174]. This is because the increased cell density allows the use of smaller
fermentors and downstream processing equipment like centrifuges, and less materials such as
purified water [174]. The density of bacterial cells in a growth medium is limited by the fact that
at a certain point the medium loses its fluidity [104]. The viscosity of E. coli B increases rapidly
when cell densities above 200 g/l are reached, and the medium loses fluidity at 220 g/l [124].
Thus, it can be said that the maximum cell density that can be obtained in bioreactors with this
bacterium is around 220 g/l [124]. Often, however, other problems start to limit the growth of
bacteria before this upper limit has been achieved. Some nutrient might start to limit the growth,
or the production of inhibiting metabolites might be triggered [174]. Many nutrients inhibit growth
at high concentrations, which is why batch cultivations are not for the best approach to achieving
high cell density. A major problem encountered when growing microorganisms to high cell den-
sity is the accumulation of growth-inhibiting side products, for example acetate with E. coli [174].
This problem can be prevented by modifying the growth conditions (e.g. by limiting the amount
of the carbon source in the growth medium) or by metabolic engineering [174].

Some bacteria secrete signalling molecules that, when accumulated to a threshold concentration,
induce a physiological change in the cell population. This phenomenon, which is often observed
at elevated cell densities, is referred to as quorum sensing [110]. Since WE-producing biopro-
cesses using ADP1 as a host organism should preferably produce high cell density, the possible
effects of quorum sensing on the metabolism of ADP1 might become relevant. ADP1 has been
shown to produce four quorum-sensing molecules in a minimal medium, produced mainly in the
stationary phase [63]. It has been suggested that quorum sensing controls the efficient utilization
of extracellular molecules produced by the bacteria, and that the cell density does not affect how



beneficial it is to produce intracellular molecules [28]. Quorum sensing has also been thought to
improve stress tolerance in high cell density cultivations [192]. However, since the functions of
these molecules are unknown, it cannot be speculated how they might affect WE production or
the biomass accumulation by ADP1.

2.4 Metabolic engineering

Since 1991, the sub-discipline of genetic engineering that involves the manipulation of metabolic
pathways has been referred to as metabolic engineering [11]. Systems metabolic engineering
uses the methods of systems biology and ‘omics’ technologies to achieve more complete control
over metabolism [103]. The Meta-Council on Emerging Technologies of the World Economic
Forum acknowledged systems metabolic engineering as one of the top 10 emerging technolo-
gies of 2016 [198]. As an environmentally friendly alternative to fossil fuels, metabolically engi-
neered organisms are used in biofuel production from renewable sources [148]. However, as
noted in the report [198], production by metabolically engineered organisms might be more suit-
able than chemical synthesis from petrochemicals when the products are complex organic mol-
ecules. One group of complex organic compounds that might more feasibly be produced with
metabolically engineered organisms, rather than with synthetic chemistry, are active pharmaceu-
tical ingredients, which have been divided by Keasling into three categories: alkaloids, polyke-
tides and isoprenoids [93]. Such compounds are currently extracted from natural sources be-
cause their chemical synthesis would be very complicated and expensive. Furthermore, unlike
in chemical synthesis where waste material is produced, bioprocesses using metabolically engi-
neered microorganisms can use waste materials from other industries as a raw material. These
waste materials include lignocellulosic biomass from, for example, agricultural industries. How-
ever, metabolically engineered organisms are not suitable for the production of chemicals that
are toxic to the host organism, and the metabolism of the host organisms limits the range of
chemicals that can be produced [93].

Metabolic engineering is often used to optimize the flow of carbon from the growth substrates to
the product formation. This means that the optimal bioprocess host organism has a metabolism
that converts the raw material as fast as possible, with as high a yield as possible, to as high a
titer as possible. Product yield and purity can be improved by eliminating pathways that result in
the formation of side-products, such as acetate with E. coli [140] or exopolysaccharides (EPS)
with ADP1 (see Results and Discussion). On the other hand, the addition of anabolic steps or
complete pathways allows the formation of products that the organism does not naturally produce,
and the incorporation of catabolic pathways allows broadening of the carbon source range used.
The addition of anabolic pathways can be used to tailor the product to better meet the require-
ments of a given application, or for the production of compounds that do not occur naturally in
the microorganisms. The addition of catabolic pathways can be used to allow more complete



10

utilization of complex raw materials such as lignocellulosic hydrolysates. Metabolic engineering
can also be used in improving the tolerance of the host organism towards toxic products, such
as solvents.

Although a lot of knowledge has been gained about engineering the metabolism of microorgan-
isms over recent decades, not much about the engineering principles has been drawn from this
research. As Yadav et al. have noted, most research has merely produced demonstrations of
how the technology could be applied [203]. A lot of research has concentrated on engineering
the central carbon metabolism, which refers to the uptake and oxidation of the metabolites and
includes pathways such as glycolysis, gluconeogenesis, the pentose phosphate pathway (PPP),
and the TCA cycle [142]. These pathways produce precursors for the anabolic pathways involved
in the synthesis of most of the products produced in bioprocesses. It is generally accepted that
all of the metabolites produced by microorganisms can be formed from 12 precursor metabolites
[132]. Since these precursors are part of multiple metabolic pathways, modifications that affect
one pathway inevitably also affect other pathways [129]. Thus, by modifying these pathways, it
is possible to optimize the capability of the host organism to produce the wanted product. All of
the metabolic engineering carried out in this thesis involves the central carbon metabolism by
affecting glycolysis (Publication Il), PEP-pyruvate-oxaloacetate node (Publication 1), acetate pro-
duction (Publication 1V), or gluconeogenesis (Publication IIl). The modifications carried out in
Publications I, 1ll and IV aim to maximize the amount of the WE synthesis precursor, acetyl-
coenzyme A (acetyl-CoA), by modifying the central carbon metabolism of ADP1, while the mod-
ification carried out in Publication Il completely eliminates the sugar metabolism.

The PEP-pyruvate-oxaloacetate node of E. coli has been much studied [165] and engineered
[107], but the PEP-pyruvate-oxaloacetate node of ADP1 has been studied only by Elbahloul &
Steinbuchel, who overexpressed its gene for PEP carboxylase, although this did not affect the
growth rate on gluconate [43]. As noted by Nielsen & Keasling, once the central carbon metab-
olism has been optimized for production of a precursor metabolite for some product, this strain
can be easily engineered to produce other metabolites using the same precursor [131]. Thus,
the metabolic engineering work carried out for this thesis, that is engineering central carbon me-
tabolism of ADP1 for WE synthesis, might also be of use when other metabolites are produced
from the precursor molecule acetyl-CoA. Engineering the central carbon metabolism might also
be used to improve the growth characteristics of the host organism, which is especially important
when producing WEs with ADP1, since this bacterium produces WEs mainly in the lag phase
and the final WE titer is limited by the dry cell weight (DCW) obtained (see Wax ester synthesis).
The growth rate can be improved by, for example, adding new metabolic steps, as is shown in
this thesis (Publication I), or by affecting the transcription factors that control the metabolic fluxes
[130]. The presence of a plasmid burdens the cells [170] and thus higher product formation might
be obtained by integrating heterologous genes to the host chromosome [203]. In this respect,
ADP1 is an ideal host organism for metabolic engineering, since it readily incorporates foreign
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DNA into its genome (see Natural transformation). Computational models for the metabolism of
ADP1 have also been developed [39], which further makes this bacterium an attractive host or-
ganism for metabolic engineering.

The host organism for metabolic engineering should have a suitable metabolism and physiology
for production of the product molecule, and there should also be tools available for engineering
the genome of the organism [93]. For example, the host organism used in this thesis, ADP1, is
particularly suitable as a chassis in synthetic biology, as has been discussed by Santala [164].
ADP1 has a broad growth substrate range, is easy to cultivate and naturally produces large
amounts of EPSs and WEs. Furthermore, ADP1 is naturally transformable, which makes genetic
engineering of this organism very easy and not very time-consuming. Most biotechnological ap-
plications using ADP1 as a host organism harness it either as a host organism in bioprocesses
or as a whole cell biosensor (see Biotechnological applications). When developing an efficient
host organism in bioprocesses with metabolic engineering, it is important to be able to measure
consumption of the raw materials and formation of the product (and possibly the side products).
Traditionally, the concentrations of these metabolites have been measured with the methods of
analytical chemistry, but more recently it has become possible to assess the efficiency of the
host organisms using biosensors [123]. Biosensors can be used to measure concentrations of
metabolic intermediates like long-chain aldehydes by producing light as an output [106]. This
allows real-time measurement of the intracellular metabolite, which is infeasible with the methods
of analytical chemistry. The analytical chemistry methods are often more laborious and time-
consuming than methods based on biosensors, and biosensors also tend to have higher through-
put.

Synthetic biology is the most advanced form of genetic engineering and differs from the other
sub-disciplines mainly due to the high level of standardization, which makes it much easier to
design and build new genetic constructs [46]. Synthetic biology is considered to be able to pro-
duce solutions to the problems encountered in bioprocesses using more recalcitrant raw materi-
als [59]. Synthetic biology and metabolic engineering partially overlap, but while metabolic engi-
neering is involved mostly in improving existing metabolic pathways or adding few metabolic
steps or pathways to the host organism, synthetic biology allows the construction of completely
new pathways in microorganisms devoted to the formation of the product [131]. Furthermore, the
production of efficient host organisms for bioprocesses benefits from both disciplines, since the
novel metabolic pathways constructed with synthetic biology can be optimized with metabolic
engineering [131]. In addition, the central carbon metabolism might not be geared towards syn-
thesis of a novel compound whose production is possible with synthetic biology, and metabolic
engineering can be used to fix this [131]. Synthetic biology has experienced rapid progress in
the last few decades and is currently moving towards increasingly complex applications, such as
E. coli capable of reacting to light with different wavelengths [51], and to higher organisms [144].
Synthetic biology has also allowed the engineering of metabolic pathways for opioid production
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in yeast [61] which has raised, in addition to hopes, concerns about easier access to the drug by
the public [40]. Traditionally, genetic engineering has been performed using multiple cloning sites
containing restriction digestion sites for the numerous restriction endonucleases. In synthetic
biology, construction of the genetic constructs is standardized, so that only a limited number of
restriction enzymes are used, which greatly simplifies the design of the constructs. Also, the need
to eliminate restriction enzyme recognition sites from the inserts is reduced by the fact that not
s0 many enzymes are used in the construction. Synthetic biology allows automatization of the
engineering of microorganisms, which makes producing applications more economically feasible
[65].

Some prokaryotic species possess an adaptive immune system called clustered regularly inter-
spaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas), which afford
them protection against foreign DNA from viruses, for instance [25]. The immunological memory
is stored in CRISPR arrays as spacers (~25-40 bp) which are located between the palindromic
repeats (~21-40 bp). CRISPR/Cas systems-mediated immunity starts with an adaptation phase
during which the foreign DNA is sampled by Cas proteins and inserted into a CRISPR array as
a new spacer. In the expression phase, the whole CRISPR array is transcribed into precursor
CRISPR RNA (pre-crRNA), which is then processed by Cas proteins and ribonucleases into
crRNAs, which consist of a spacer and a single repeat. Effector CRISPR ribonucleoprotein com-
plexes (crRNP) are then formed, in which the crRNAs are then bound by Cas proteins and other
CRISPR/Cas components. In the interference phase, the cRNP complexes use the crRNAs to
identify the target DNA, which will be degraded.

In addition to being a breakthrough discovery in microbiology, CRISPR/Cas systems have also
been harnessed in genetic engineering [25]. CRISPR/Cas systems can be used to accurately
modify and study the genomes of prokaryotic and eukaryotic species more cheaply and more
quickly than be done with traditional methods. While most research on the applications of
CRISPR/Cas has been carried out with eukaryotes, some applications on prokaryotic organisms
have also been developed. The existence of numerous efficient tools for genetic engineering in
many prokaryotes might be the reason for the relatively greater interest in applying CRISPR/Cas
on eukaryotes. CRISPR/Cas, however, allows prokaryotes to be engineered even if there are no
efficient genetic engineering tools available. Most bacteria cannot repair the double-stranded
breaks generated by CRISPR/Cas by non-homologous end joining, so they require a template
for homology-directed repair. This template can be used to generate desired modifications to the
genome. While the genome of APD1 can be engineered with great ease and there are good tools
for this, the KOs carried out in Publications 1I-IV were produced with a KO cassette containing
an antibiotic resistance selection marker. Since there are only a limited number of such selection
markers for any given host organism, the generation of a large number of gene KOs would re-
quire the use of markerless deletion of the genes, which could be achieved with, for example,
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CRISPR/Cas techniques. This would also allow more sophisticated integration of foreign genes
into the genome of ADP1.

2.5 Acinetobacter baylyi ADP1

Research on A. baylyi ADP1 (Table 1) began in 1960 when Taylor & Juni isolated its parental
strain, BD4, from soil by using meso-2,3-butanediol as a sole carbon source in a minimal medium
[181]. The strain was characterized as a Gram-negative aerobe, which grows in liquid media
either alone or as pairs or short chains of rods which are heavily encapsulated by EPSs [181].
BD4 was characterized as non-motile [181] but later research has shown that the strain ADP1
can move on surfaces by twitching, and that it is inhibited by exposure to blue light [15]. In sub-
sequent research, the central metabolism [182] and EPS capsule synthesis [183], [81] were stud-
ied. Juni & Janik used BD4 in an experiment to elucidate the intermediates of the EPS capsule
synthesis, where unencapsulated mutants, which had different EPS capsule synthesis genes
disrupted by mutations, were grown together [82]. The authors noticed that this resulted in the
formation of stably-encapsulated strains which was shown to be due to the genetic transfor-
mation of the intact gene from one mutant strain into another, which had a different EPS capsule
synthesis gene disrupted than the donor strain. In this study BD4 was subjected to UV mutagen-
esis and a strain was isolated, along with many unencapsulated strains, that produced a small
EPS capsule. This strain was referred to as BD413, and is currently known as ADP1. This strain
has been referred to as A. calcoaceticus (see for example [91]) but has later been shown to
belong to the species A. baylyi [189]. Another less-frequently used name for the strain is A. cal-
coaceticus LMD 82.3 [188]. The genetic difference between BD4 and ADP1 has not been eluci-
dated, and phenotypic differences between the strains have been studied only by comparing
their EPS production [91]. The main difference between the strains in this respect is that, while
most of the EPS produced by BD4 remain on the cell surface as a large capsule, ADP1 excretes
half of the EPS it produces to the growth medium and also produces less EPS than the parental
strain BD4 [91]. This difference causes ADP1 to form much denser pellets in centrifugation, which
makes it easier to study this bacterium [80]. Since the initial studies by Juni & Janik [82], ADP1
has become an important model organism for transformation [204] and metabolism studies [204],
[29], while most of the studies about the EPS capsule have been carried out with the parental
strain BD4 [17], [91], [90], [92], [135]. While most of the early research with ADP1 focused on
natural transformation, more recently its versatile metabolism has also attracted a lot of attention.
In particular, the catabolism of aromatic compounds, and the complex regulatory networks gov-
erning these pathways, have been studied extensively [204]. These studies have elucidated so-
phisticated mechanisms of gene expression and biochemistry of aromatic compounds [16]. How-
ever, glycolysis, pyruvate metabolism and EPS metabolism, the metabolic pathways studied in
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this thesis, have not been studied so extensively with ADP1. The development of metabolic en-
gineering and synthetic biology have enabled the engineering of ADP1 as a host organism for
various biotechnological applications [45]. These applications include production of valuable
chemicals [43] and biosensing [106].

TABLE 1 Taxonomy of A. baylyi ADP1.

Domain Bacteria

Phylum Proteobacteria

Class Gammaproteobacteria
Order Pseudomonadales
Family = Moraxellaceae

Genus Acinetobacter

Species Baylyi

Strain  ADP1

2.5.1 Genetics

The genome of ADP1 is relatively small (3 598 621 bp and 3325 predicted coding sequences)
and has a G+C content of 40.3 % [12]. The single-gene KO mutant study by de Berardinis et al.
indicated that 499 of these 3325 genes might be essential [30]. Approximately one fifth of the
genome has been estimated to code for genes involved in catabolism, and these genes are
arranged in five clusters referred to as "islands of catabolic diversity" [12]. ADP1, however, lacks
genes for the following enzymes that are part of the central metabolism in most organisms: glu-
cokinase (and hexokinase and a glucose transporter phosphotransferase system), 6-phos-
phofructokinase, pyruvate kinase, glucose-6-phosphate dehydrogenase, and 6-phosphogluco-
nolactonase [12]. The lack of, for example, a pyruvate kinase gene is also shared with closely
related A. baumannii strains [185]. ADP1, however, does have genes for the catabolism of glu-
cose via the Entner-Doudoroff (ED) pathway [12]. The lack of several genes for enzymes of
Embden-Meyerhoff-Parnass (EMP) glycolysis complicates metabolic engineering efforts to allow
the ADP1 to catabolise sugars other than glucose. For example, the phosphorylative catabolism
of xylose or arabinose results in the production of fructose-6P and glyceraldehyde-3P, both of
which would need to be processed via EMP glycolysis in order to be completely oxidized.

The genome of ADP1 contains two prophages of 53 kb and 9 kb [12]. The 9-kb prophage can be
activated in cultivations of ADP1 and its emergence reduces the growth and natural transfor-
mation capability of ADP1 [153]. This phage uses the natural transformation machinery of ADP1
to infect the cells and therefore cannot infect cells whose natural-transformation genes have
been knocked out [153]. The authors suggested that the reduced transformability was due to the
selection of phage-resistant cells [153]. In the laboratory evolution experiment by Renda et al.
49 kb of the larger prophage region was lost in all sequenced clones under conditions allowing
adaptive evolution, but none was lost in clones of the mutation accumulation cultivations [154].
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This suggests that deletion of this region from the genome of ADP1 increases the fitness of the
strain [154]. Suarez et al. have removed all six transposon 1S 7236 sequences from the genome
of ADP1 and found out that this strain accumulated mutations that inactivated the reporter gene
7 to 21 times less often [178]. This strain also had an improved ability for natural transformation,
underwent autolysis to a smaller degree, had a shorter lag phase and grew to a higher optical
density [178]. As the authors of the above-mentioned study suggested [178], this strain is much
more suitable as a host organism in metabolic engineering than the WT ADP1.

2511 Natural transformation

Bacteria can acquire novel genes in a process called natural transformation [77]. In natural trans-
formation the bacterium actively takes up and integrates foreign DNA as a part of its physiology
[77]. Thus, natural transformation differs from the other mechanisms of lateral gene transfer,
conjugation and transduction, in the sense that the transfer of DNA is initiated by the recipient
cell, not extrachromosomal genetic elements of the donor cell [77]. The ability of ADP1 to un-
dergo natural transformation was first described by Juni & Janik [82] and has since then been
studied intensively [9], [113]. The exceptional ability of ADP1 to undergo natural transformation
is exemplified by the experiment of Palmen et al. where 25 % of a bacterial population was
transformed with plasmid DNA [137]. The competence of ADP1 to undergo natural transfor-
mation has been shown to decrease in laboratory evolution experiments [9], [154]. Bacher et al.
suggested that this might be due to the fact that the mutant alleles that do not allow the cells to
be competent for transformation can be transferred to the competent cells, but the alleles allow-
ing competence for transformation cannot be transferred to the noncompetent cells [9]. However,
Renda et al. have suggested that the activation of the prophage CRA¢, which resides in the
genome of ADP1, could drive the evolution of diminished transformability, since non-transform-
able mutants of ADP1 are completely resistant to this phage [153]. McLeman et al. have tested
whether an ADP1 strain that is incapable of recombination of foreign DNA into its chromosome
would have decreased evolvability to resistance to different phages. They found out that there
was no difference between the recombigenic WT strain and the non-recombigenic drpA mutant
strain [113].

The competence of ADP1 for natural transformation is induced at the beginning of the exponen-
tial growth phase and lasts until the early stationary phase [137]. The competence induction does
not depend on the carbon source used, nor on whether a minimal or rich medium is used, but
the medium must contain divalent cations (Mg?*, Mn?*, Ca?*) in order for transformation to occur
[137]. Competence induction is also not affected by the acidity of the growth medium, although
the transformation frequency is lower in an acidic (pH below 6.5) medium [137]. Transformation
frequency is also dependent on the DNA homology, the genomic location of the insertion [150]
and the type of DNA and selection marker used [137]. Plasmid DNA that contains an insertion
cassette can integrate into the chromosome of ADP1 by replacement recombination, where the
cassette replaces the DNA sequence corresponding to the flanking regions used in the cassette,
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or by integration of the whole plasmid into the chromosome [137]. While the former has been
shown to occur much more frequently [137], the KO cassette amplified with PCR was used in
transformations carried out for the publications of this thesis in order to eliminate the possibility
of obtaining the latter type of transformants. Transformation frequency increases with increasing
concentrations of DNA up to a limit, after which a maximum frequency is reached [137]. Increas-
ing the cultivation time in the presence of the transforming DNA also increases the transformation
frequency, but a plateau at which the transformation frequency stops increasing is reached after
a few hours of cultivation [137]. Culture supernatants of ADP1 contain extracellular DNA, but it
has been shown that this DNA is not actively excreted but is liberated by lysis of the cells [136].
Bacher et al. have shown that ADP1 and its non-competent com mutant grow slower in the pres-
ence of extracellular DNA [9].

2.5.2 Metabolism

ADP1 is known as a nutritionally versatile bacterium and it can catabolize a wide variety of plant-
derived carbon sources, such as aliphatic and aromatic acids [204], [53], a trait found also in
other A. baylyi strains [52]. Utilization of glucose as a source of carbon and energy is relatively
rare among Acinetobacter strains [83]. Glucose is metabolized via modified ED glycolysis [48].
ED glycolysis produces one molecule of adenosine triphosphate (ATP) per glucose catabolized,
while EMP glycolysis produces two molecules of ATP per catabolized glucose [57]. In ADP1, no
ATP is produced due to lack of pyruvate kinase (see Sugar metabolism). ED glycolysis, however,
requires less protein and might thus be a more optimal glycolytic strategy for aerobic organisms
like ADP1, i.e. those that do not live under energy-deprived conditions [57]. ED glycolysis is
thermodynamically more favourable than EMP glycolysis, if the total change in the Gibbs ener-
gies of all the reactions are compared [57].

2521 Sugar metabolism

Glucose is the only sugar that is known to be able to support the growth of ADP1 as a sole carbon
source [181]. Other sugars present in cellulosic biomass, such as xylose and galactose, can be
oxidized partially to their corresponding lactones by GDH, which then hydrolyze to sugar acids
at an elevated pH [187]. This process provides the bacterium with energy and allows the cells to
grow to higher biomass in cultivations that are limited by carbon [187]. Enzymatic activities for
glucose and gluconate oxidation can only be detected in cells grown on glucose, and not in cells
grown on acetate or EtOH [182]. However, when acetate-grown cells are transferred to a medium
containing glucose, they are able to produce gluconate but do not further catabolize it [188]. The
data presented in Publication IV also indicate that the presence of 2.7 g/l of acetate, but not 1.1
g/l of EtOH, represses glucose catabolism. Thus, it seems that the genes for the production of
gluconate from glucose are constitutively expressed, but the genes for gluconate catabolism are
only expressed when glucose, but not acetate, is present in the growth medium.
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The catabolism of glucose (Figure 2) begins with its oxidation to gluconolactone by GDH. A.
baylyi has GDH in both soluble and membrane-bound forms [37] but it appears that only the
membrane-bound form of GDH is active in glucose oxidation [13]. GDH has PQQ as a prosthetic
group [38]. The electrons derived from glucose oxidation are funneled from GDH to cytochrome
b via ubiquinone [13] and can be used in the production of ATP and the transport of amino acids
into the cell [186]. Gluconolactone is converted by gluconolactonase to gluconate, but this reac-
tion also occurs also spontaneously at pH 7.0 [187]. Gluconate formation results in the production
of H*, and thus a decrease in the pH of the growth medium will always occur when glucose is
used as the sole carbon source in cultivations of ADP1. Gluconate formation from glucose ap-
pears to be pH-dependent, at least in A. calcoaceticus LMD 79.41, and does not proceed at pH
5.0 [187]. Thus, if the pH is not controlled, the decrease in pH caused by gluconate formation
might start to limit the glucose catabolism. Gluconate is imported to the cytoplasm where its
carbon 6 is phosphorylated, after which it is dehydrated and cleaved to pyruvate and glyceralde-
hyde-3P. ADP1 can use pyruvate for the production of ATP, biomass precursors in the TCA cycle
or in gluconeogenesis. Glyceraldehyde-3P, on the other hand, cannot be funneled directly into
TCA, but has to be converted first to PEP, which is then carboxylated to oxaloacetate. Oxalo-
acetate can then be converted to malate, which can be decarboxylated to pyruvate [34]. Dolin
and Juni have proposed that ADP1 could use this pathway to circumvent the lack of pyruvate
kinase [34]. The direct formation of pyruvate from PEP by pyruvate kinase results in the formation
of one molecule of ATP, while pyruvate formation via oxaloacetate and malate does not result in
any synthesis of ATP, or of the other energy carrier molecules (orthophosphate is produced in-
stead of ATP). Glyceraldehyde-3P can be used in gluconeogenesis, which produces precursors
for EPS synthesis [183].

It has been suggested that glucose catabolism in ADP1 might involve recycling the glyceralde-
hyde-3P to 6P-gluconate via a 6P-glucose intermediate [204]. However, BD4 (the parental strain
of ADP1) does not have glucose-6P dehydrogenase activity [182]. Furthermore, a radiolabelling
study has shown that practically all glyceraldehyde-3P (but not pyruvate) formed from glucose is
used in EPS synthesis in the strain BD4 [183]. If there is carbon recycling to 6-phosphogluconate,
the carbon flux through the recycling pathway is probably relatively small. The unencapsulated
mutants of A. baylyi lyse when grown on glucose as a sole carbon source, and it has been sug-
gested that this is due to the lack of pyruvate kinase activity in the cell [182]. The EPS negative
mutant would not be able to funnel all the glyceraldehyde-3P produced from glucose to pyruvate
via the TCA cycle, because CO; might be present in a limiting concentration [182].
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FIGURE 2 Metabolic reactions and pathways of A. baylyi ADP1 relevant to this thesis. Irreversible re-
actions are marked with single-headed arrows and reversible reactions are marked with
two-headed arrows. The crossed arrows indicate reactions which were eliminated by gene
KOs. The arrows going through boxes indicate that the product is formed in the pathway
written in the box. The genes (or their identifiers if names are unavailable) coding for the
enzymes catalyzing the reactions are shown next to the arrows. The WE catabolic pathway
has not been characterized and the arrows marked with question marks indicate reactions
potentially involved in WE catabolism.
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2522 Exopolysaccharide metabolism

A. baylyi strains produce EPS (Figure 3) capsules which protect the cells from desiccation [135]
and prevent them from forming aggregates [81]. The EPS of BD4 and ADP1 also acts as an
emulsifier, but requires a protein component for this function [92]. It has been shown that the
outer membrane protein OmpA is secreted in ADP1, and that this protein possesses emulsifying
activity [193].

—| L-Rhamnose — D-Mannose — L-Rhamnose —| L-Rhamnose — D-Glucose |—

| L-Rhamnose |—|D-Glucuronate|

FIGURE 3 A simplified structure of the repeating unit of the EPS produced by A. baylyi BD4 and ADP1.
Adapted from the more detailed structure determined by Kaplan et al. [90].

BD4 produces EPS at a constant rate (4 mg/h/g of DCW) throughout its growth on succinate [17].
The composition of the EPS produced in this way (rhamnose/glucose/mannose, 4:2:1) does not
change much during growth on this carbon source [17]. However, when the carbon source is
changed to glutamate or EtOH, the composition changes slightly (rhamnose/glucose/mannose,
10:5:1) [17]. When BD4 is cultivated on glucose, the composition differs from the above-men-
tioned values (rhamnose/glucose/glucuronic acid/mannose, 4:1:1:1) [90]. In the article by Kaplan
et al. [90], it was shown that the glucuronic acid can be converted to glucose, and it could be that
the glucose fraction in the studies by Bryan et al. [17] also contains glucuronic acid. Regardless
of the carbon source or the analysis methods used, rhamnose is the most abundant EPS com-
ponent, glucose (and glucoronic acid) is the second most abundant, and the least abundant is
mannose. The synthesis of EPS starts with activation of the gluconeogenically produced sugars.
The rhamnose, glucose and the glucuronic acid components of EPS are produced from glucose-
1P, while the mannose component is produced from fructose-6P (Figure 2). All of these activated
sugars are thus produced from metabolites that cannot be converted to metabolites of the "lower"
part of the gluconeogenic pathway, since ADP1 cannot phosphorylate fructose-6P to fructose-
1,6P (Figure 2).

A laboratory evolution experiment by Renda et al. showed that increased cellular aggregation
due to deletion of EPS synthesis-related genes occurred more frequently under high selective
pressure than under reduced selective pressure [154]. Thus, it appears that, at least when grown
in a rich medium, the presence of an EPS capsule (and/or excreted EPS) does not confer selec-
tive advantage to the cells. Because of this, and also for the reasons explained below, it might
be worthwhile to test how EPS-negative mutants of ADP1 behave in WE-producing bioprocesses.
The mutations that eliminated EPS capsule synthesis in the experiment by Renda et al. [154]
occurred in the genes-coding for perosamine synthase (per) or glucose-6P isomerase (pgi). The
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latter of these genes codes for an enzyme that catalyzes the conversion of fructose-6P to glu-
cose-6P (Figure 2), which can then be converted to glucose-1P, a starting point for synthesis of
three EPS components: glucose, glucuronic acid, and rhamnose. Thus, it seems that metabolites
produced from glucose-6P are not essential to growth, at least in a rich medium. The fourth EPS
component is synthesized from fructose-6P, which is also a metabolite used in PPP. Thus, it
might be possible to prevent synthesis of all four EPS components with two gene KOs. However,
it is uncertain whether glucose-1P is also used by ADP1 for other purposes, and thus it was
considered a safer alternative to knock out the gene for first step in the synthesis of rhamnose,
the main component of the EPS of ADP1, in order to produce the EPS negative mutant while
only having a minimal effect on other metabolic functions.

In a bioprocess where the components of lignocellulosic biomass are converted to WEs, the EPS
capsule can be considered as an unwanted by-product, since the carbon used for its synthesis
could have been used in WE synthesis. The EPS capsule might also lower the purity of the WE-
containing biomass and make it more difficult to collect the cells from the growth medium. Fur-
thermore, under the conditions encountered in the bioprocesses, protection against desiccation,
a biological function of the EPS capsule, is not needed. Thus, it is likely that WE production might
benefit from elimination of this trait from ADP1. It is, however, unclear how this would affect the
survival of the cells and the metabolic flux toward WE synthesis. Another aspect to consider
when studying the suitability of using an EPS synthesis-deficient strain of ADP1 in the above-
mentioned bioprocess is whether the capsule protects the cells from the growth inhibitors formed
during hydrolysis of the lignocellulosic biomass.

2.5.23 Acetate metabolism

ADP1 can catabolize acetate via two pathways (Figure 2). Acetate can be phosphorylated by
acetate kinase into acetyl-P, which is then converted to acetyl-CoA by phosphotransacetylase.
Acetyl-CoA can also be formed directly from acetate by acetyl-CoA synthetase. The former path-
way converts ATP to ADP and P, and is reversible, while the latter pathway converts ATP to
AMP and PP, and is irreversible.

E. coli TG1 starts to accumulate acetate to the growth medium in a fed-batch cultivation when
the specific growth rate exceeds 0.17 h”' [97]. ADP1, on the other hand, does not produce acetate,
even at elevated growth rates when cultivated on glucose (see Results and Discussion). A. baylyi
strains, however, produce acetate as an intermediate of EtOH catabolism and this organic acid
can accumulate in the growth medium when grown on EtOH [1], [145]. Acetate production from
EtOH also occurs with ADP1 (see Results and Discussion). The lack of acetate production is a
beneficial trait because acetate accumulation can harm the bioprocess in many ways. Acetate
formation reduces recombinant protein yields with E. coli [41]. Acetate can also inhibit the growth
of E. coli K12 at low (0.5 g/l) concentrations [126]. The growth-inhibitory effect of acetate varies
widely between different bacterial strains [102]. The carbon sources and the medium composition
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also affect the toxicity of acetate. For example, acetate is more toxic to E. coli in the presence of
glucose than glycerol in a rich medium [102], but the opposite occurs in a minimal medium [126].
Overexpression of phosphoenolpyruvate carboxylase, ppc, has been shown to reduce acetate
formation from glucose by E. coli [49]. Acetate formation from glucose by Bacillus subtilis has
been reduced by knocking out the gene for pyruvate kinase, which also improved the yield of the
biomass and reduced growth rate [60]. Similar results have been obtained with E. coli with both
genes for pyruvate kinase knocked out, which had lowered the growth rate and reduced acetate
production [146]. The elimination of acetate formation by knocking out genes involved in its syn-
thesis has been used to improve the production of pyruvate [22] and citramalate [140] by E. col.
Among these genes is poxB, the product of which funnels carbon away from product formation
in these strains. Recently, acetate excretion by E. coli has been reduced by a synthetic biology
application where the expression of pta, ackA and poxB were controlled by light at three different
wavelengths [51]. E. coli produces acetate primarily through the Pta-AckA pathway [197]. The
Pta-AckA pathway simultaneously produces and consumes acetate, while the direction of the
carbon flow is determined by thermodynamic factors, i.e. the concentrations of reactants and
products [47]. Thus, acetate excretion by E. coli K-12 MG1655 during growth on glucose is not
due to repression of acetate catabolism, but due rather to the higher flux of the acetate production
than the acetate consumption.

2524 Aromatic compound metabolism

The aromatic compound 4-HB, which was used in the experiments for this thesis as a repre-
sentative of lignocellulosic hydrolysate’s aromatic inhibitors, is catabolized by ADP1 into suc-
cinyl-CoA and acetyl-CoA (Figure 2). The catabolism of 4-HB begins with its transport into the
cell via PcaK [141]. It is then converted to protocatechuate and, after four reactions, into B-ke-
toadipate intermediate, which is then converted by two reactions into acetyl-CoA and succinyl-
CoA [53].

The catabolism of aromatic compounds in ADP1 is subject to complex control mechanisms [16],
[27]. There are several carbon sources that repress the catabolism of aromatic compounds, two
of the strongest of these being succinate and acetate [27]. This is unfortunate, as acetate is often
found in lignocellulosic hydrolysates at high (10 g/l) concentrations [179]. In addition to repres-
sion by organic acids, some of the catabolizable aromatic compounds repress the catabolism of
other, less desirable aromatic molecules [16]. The catabolite repression of aromatic compounds
could be decreased by knocking out genes like crc [207], the products of which decrease these
metabolic activities in ADP1. Glucose does not act as a catabolite repressor of aromatic com-
pound catabolism [27]. Gluconate represses the catabolism of some aromatic compounds only
to a small degree, and acts as an inducer for one (catA) of the pathways [16]. Amplification of
the genes responsible for benzoate catabolism in a mutant lacking the two benzoate-catabolism
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inducer genes has been shown to allow benzoate catabolism [151]. The combined weak expres-
sion of the genes from multiple copies allowed enzyme activities high enough to support growth
on benzoate [151].

2525 Wax ester synthesis

WEs are esters of fatty acids and fatty alcohols (Figure 4) and occur in nature as carbon storage
material for plants like Jojoba (Simmondsia chinensis) [158], and microorganisms such as Eu-
glena gracilis [70] and A. baylyi [56]. Jojoba is a perennial shrub that stores WEs in its seeds and
grows mainly in deserts, but can also be cultivated in other environments [158]. WE synthesis
has also been engineered in Nicotiana benthamiana in order to allow it to occur in plants which
can grow in a broader range of conditions [8]. The WEs of the Jojoba plant usually contain 40 to
42 carbon atoms, and both the fatty acyl and fatty alcohol parts are mono-unsaturated [121]. E.
gracilis synthesizes a carbohydrate paramylon as a means of carbon and energy storage under
aerobic conditions, and when the growth cultivations are changed to anaerobic, converts the
paramylon to WEs which also generate ATP [70]. The WEs of E. gracilis are mainly composed
of saturated compounds containing 27 to 30 carbons [71]. A. baylyi produces WEs most effi-
ciently in the presence of an excess carbon source and the simultaneous starvation of other
essential nutrients such as nitrogen [56]. The WEs of ADP1 consist mainly of C16:0, C16:1 and
C18:1 fatty acids and fatty alcohols [162]. The WEs of BD4, the parental strain of ADP1, also
contain mainly these fatty alcohols [19]. The placement of the double bonds and their configura-
tion are not known for the WEs of ADP1, but it has been shown that the WEs of A. calcoaceticus
NCIB 8250, which also contain mostly fatty acids and fatty alcohols with a chain length of 16 or
18 carbons, have the double bonds between carbons 9 and 10 and have a cis configuration
(Figure 4) [56]. Fatty acyl and fatty alcohol compositions of WEs of other A. baylyi species do not
differ dramatically from the composition of the WEs of ADP1 mentioned above [55], but the WEs
of some psychrotrophic members of Acinetobacter appear to contain short (Csy — Cs) alcohols
[62]. WE synthesis has been engineered in microorganisms like E. coli [89], [175] and S. cere-
visiae [190], which do not naturally produce these compounds.

0

FIGURE 4 An example of a WE structure. This kind of WE is produced by for example, A. calcoaceti-
cus NCIB 8250 [56].

WEs can be used in the cosmetics and pharmaceutical industries, as a lubricant, or as a raw
material for biodiesel production, to name a few applications [121], [158]. Jojoba oil acts as a
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moisturizer and can thus be used to improve skin care products [158]. Jojoba oil has anti-inflam-
matory properties and has long been used by the native peoples of America to treat inflammatory
diseases [158]. Jojoba oil can also be used as an additive in diesel [6], [69] or transesterified with
short-chain alcohols like methanol to produce biodiesel [20]. However, due to the high price of
Jojoba oil, it is probably economically more feasible to use this lipid in other applications. The
production of Jojoba oil has increased dramatically in recent years due to the increased demand
for this lipid [158]. The applications where Jojoba oil is used keep increasing, which creates this
increased demand [158]. It has been noted that there is a need for an inexpensive way to produce
large quantities of WEs to meet the demands of various industries [87]. The WEs used in indus-
trial applications today are produced from Jojoba, but producing WEs from microorganisms has
many advantages as they are easier to engineer genetically, and can be fed on different carbon
sources, thus allowing better control of the composition of the resulting lipids [4].

While WEs already have several commercial applications, they could be further improved by
means of metabolic engineering. For example, the properties of Jojoba plant WEs as biofuel
could be further improved by lowering the viscosity [20]. The viscosity of WEs produced by ADP1
could be lowered with WE synthases with different substrate specificities [173]. On the other
hand, the composition of the WEs produced from ADP1 could be modified to more closely re-
semble those of the Jojoba plant by metabolic engineering, as has been done with S. cerevisiae
engineered to produce WEs [190]. The structure of WEs produced by A. baylyi ADP1 could also
be modified so that it contained branches, as has been done with E. coli [118], which improves
properties of WEs as lubricants. It has been proposed that the commercialization of bioprocess
products might be easier for specialised applications than it is for fuels, for example [65]. Thus,
being able to tailor the structure of the WE might make the WE-producing bioprocesses using
ADP1 more economically feasible.

The microbial synthesis of lipids begins with the formation of malonyl-CoA from acetyl-CoA by
carboxylation, a reaction that consumes one molecule of ATP [75]. Malonyl-CoA is then trans-
ferred to the acyl carrier protein, forming malonyl-ACP. The malonyl-ACP is condensed with ac-
etyl-CoA to produce acetoacetyl-CoA, which is converted into butyryl-CoA through two reduc-
tions and one dehydration reaction. Both of these reduction reactions consume two nicotinamide
adenine dinucleotide phosphate (NADPH) molecules. Butyryl-CoA is condensed with malonyl-
ACP and the cycle is repeated until a full-length acyl-ACP has been formed. Thus, elongation of
the growing fatty acid chain by two carbons consumes one molecule of ATP and two molecules
of NADPH. In WE synthesis by ADP1, the fatty acyl-CoA is reduced to fatty aldehyde in an
NADPH-consuming reaction by Acr1, a fatty acyl-CoA reductase encoded by acr?1 [152]. Acr1
can catalyze the reduction of fatty acyl-CoAs with 14 to 22 carbons (but not with 12 or 24 carbons)
and most favourably reduces hexadecanoyl-CoA [152]. The enzymatic step for the conversion
of fatty aldehydes to fatty alcohols has not been elucidated. In the last step in the synthesis of
WEs, a fatty acyl-CoA and a fatty alcohol are condensed to a WE molecule, liberating a CoA-SH
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molecule [87]. This reaction is catalyzed by the WE synthase/acyl-CoA:diacylglycerol acyltranfer-
ase (WS/DGAT) [87], which is mainly located on the inner surface of the cell membrane and at
the surface of the WE bodies, although it occurs to lesser degree in cytosol [177], [199].
WS/DGAT catalyzes, as its name suggests, and also synthesises triacylglycerols, but this activity
is only about a tenth of the WE synthase activity [87]. WS/DGAT has a low substrate specificity
[177], which has been utilized in engineering the production of fatty acid ethyl esters (FAEE) in
S. cerevisiae [86], [173] and E. coli [88]. This E. coli strain has been used in a 20-liter fed-batch
cultivation where a biomass of 61 g/l and a FAEE content of 18.5 % were obtained, by first
cultivating a high cell density with glycerol and then producing the FAEEs from glucose and oleic
acid [44]. The limitation of having to feed the microorganism with fatty acids has been recognised
by Elbahloul & Steinblchel, and they suggested [44] that this process could be carried out in
bacteria naturally producing large quantities of storage lipids, such as Acinetobacter sp. strain
211, which produces up to 25 % of DCW lipids when cultivated on olive oil [5]. Other ester bond-
forming enzymes have been characterized and used in the production of molecules such as ethyl
acetate, isobutyl alcohol, and tetradecyl acetate in E. coli[117]. It has been suggested that ADP1
might be a suitable host organism for biodiesel production [45], but so far biodiesel production
has not been engineered in ADP1.

WS/DGAT appears to be present in the ADP1 cell at a low copy number [199]. It has been pro-
posed that the synthesis occurs at the inner cell membrane, where the WS/DGAT enzymes are
docked prior to the beginning of the WE synthesis. These enzymes catalyze the formation of
small lipid droplets, to which phospholipids attach, forming lipid pre-bodies. The lipid pre-bodies
dissociate themselves from the membrane-bound enzymes and the small lipid droplets inside
them aggregate, which results in the formation of mature lipid bodies. The mature lipid bodies of
WEs are surrounded by a monolayer of phospholipids and are spherical in ADP1 [199], while in
other A. baylyi strains WEs can be found with differently-shaped lipid bodies [200]. Acinetobacter
sp. HO1-N has been shown to excrete WEs, free fatty acids, and mono-, di- and tri-glycerides
(but not significantly free fatty alcohols) to the growth medium when cultivated on hexadecane
[108]. The growth medium did not contain a significant amount of these molecules when the cells
were cultivated in a rich medium [108]. The growth medium also did not contain phospholipids
when cultivated in a rich medium or on hexadecane, which indicates that the cells did not liberate
the lipids by lysis [108].

The accumulation and utilization of WEs by ADP1 is shown schematically in Figure 5. The time
needed to reach time-points A, B and C depends on the carbon source used, and in the experi-
ments for this thesis it took several days to reach time-point C. Prior to time-point A, the cells
grow and synthesize WEs. At time-point A, the growth becomes limited by a nutrient other than
the carbon source, for example nitrogen, and this is when WEs are accumulated most efficiently
[56]. WESs continue to accumulate in the cells until time-point B, when the cells have depleted the
growth medium of the carbon source. At this point, the cells start to consume WEs as a source
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of carbon and energy. When the cells have consumed all of their WE reserves (time-point C) the
number of cells starts to decrease. Therefore, the optimal point for collecting the cells in a WE-
producing bioprocess is time-point B.
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FIGURE 5 A schematic presentation of WE accumulation by ADP1. The number of cells is shown with
a continuous line, the amount of WEs with a dashed line, and the amount of the carbon
source with a dotted line. Adapted from [56].

The WE contents of bacteria are often only a fraction of what Jojoba seeds or E. gracilis contain.
The highest WE content with bacteria (17 %) was obtained by feeding an A. baylyi strain with
alkanes [72]. These carbon sources differ greatly from the ones used in this thesis since their
incorporation into WEs requires only few metabolic steps [73]. Because of this, this value (17 %)
cannot be compared with the WE yields obtained by cultivating the bacteria on lignocellulose-
derived carbon sources. WE production has been enabled in Rhodococcus opacus PD630 by
expressing a heterologous fatty acyl-CoA reductase [101] and in Rhodococcus jostii RHA1 by
overexpressing a fatty acyl-CoA reductase naturally present in the organism [156]. Neither the
WE percentage of DCW or the WE titer were reported for R. opacus PD630, but WEs constituted
46 % of the neutral lipids produced and the strain accumulated over 40 % of DCW of neutral
lipids in a separate cultivation [101]. This suggests that this strain has the potential to accumulate
large quantities of WEs but its suitability as a bioprocess host organism cannot be evaluated
before the WE production by the strain has been properly characterized. R. jostii RHA1 accumu-
lated WEs up to 13 % of DCW, but the cultivation took 72 hours to complete and the authors did
not report the amount of biomass produced [156]. Thus, WE productivity and its titer might remain
low with this organism unless its growth rate and final biomass obtained can be improved.

2.5.3 Biotechnological applications

Acinetobacter strains have been considered suitable for several biotechnological applications,
including bioremediation, the production of biochemical, and as biosensors [2], although most of
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this research involved basic microbiological science [79]. Much of the research work carried out
with ADP1 has focused on genetics and metabolism, but more recently on biotechnological ap-
plications too [45]. For example, Lehtinen et al. have used ADP1 to produce WEs indirectly from
electricity and CO; [105]. In this application Sporomusa ovata first converts CO, and electricity
to organic acids, and then the ADP1 converts the organic acids into WEs [105]. Santala et al.
have used a gntT KO mutant of ADP1 that is unable to transport gluconate into the cells. They
used this in a co-cultivation to consume the acetate produced by E. coli as an overflow metabolite
of glucose catabolism [163]. The production of triacylglycerols with metabolically-engineered
ADP1 has been studied by Santala et al. [161], while Lehtinen et al. have engineered ADP1 for
the production of alkanes [106]. Elbahloul et al. have studied cyanophycin production with ADP1
by optimizing growth conditions [42], and by means of metabolic engineering [43]. A. calcoaceti-
cus RAG-1 has been studied with respect to its ability to produce emulsans [172] and the struc-
ture of the produced emulsan has also been engineered [78]. Even though ADP1 also produces
EPSs that have emulsifying properties [91], the EPS produced by ADP1 has not been studied
extensively or subjected to engineering. The first step in the glucose catabolism of A. baylyi has
been harnessed in the production of D-xylulose [147]. In this application, D-xylulose is formed
enzymatically from D-xylose by xylose isomerase. Then A. baylyi cells are used to convert the
residual D-xylose to D-xylonic acid, which is then removed with methanol precipitation and ion
exchange. ADP1 has also been used as a host for biosensor applications where the synthesis
of WEs [160] or the synthesis or degradation of alkanes [106] have been monitored in real time.
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3 Research Objectives and Questions

The main goal of this work was to improve the growth and WE production by ADP1 on the main
components of lignocellulosic biomass, i.e. sugars, aliphatic acids and aromatic compounds. As
discussed above, ADP1 can use glucose, aliphatic acids like acetate, and certain aromatic com-
pounds like 4-HB as carbon sources. Since ADP1 grows relatively poorly on glucose (low growth
rate and biomass yield), and glucose is the most abundant component of lignocellulosic hydrol-
ysates, much research has concentrated on glucose utilization. The unique characteristics of the
metabolism of ADP1, such as the lack of certain glycolytic enzymes and production of EPSs,
made it possible to test whether modification of its main metabolic pathways would improve the
growth characteristics or the WE production. The objectives of this thesis are summarized below
(the publications where these aspects were studied are shown in parentheses):

e Improvement of growth rate (Publications | & 1V)

e Improvement of biomass yield (Publications Il & 1V)

o Improvement of WE vyield, titer and purity (Publications Il & V)

¢ Improvement of tolerance towards a lignocellulosic inhibitor acetate (Publication V)
e Production of a lignocellulosic hydrolysate biodetoxification strain (Publication Il)

The selective advantage of the lack of pyruvate kinase in ADP1 is not known. However, the
unencapsulated mutants of BD4 lyse when cultivated on glucose, which has been considered to
be due to the lack of pyruvate kinase activity [82]. Thus, it could be hypothesized that the ex-
pression of a gene for this enzyme might affect the growth characteristics of the mini-encapsu-
lated WT ADP1.

The EPS capsule is the major by-product in WE production with ADP1. Although unencapsulated
mutants of BD4 have been produced before, the effects of these mutations on growth, or on
macro-molecular composition, have not been characterized. It is hypothesized that by knocking
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out the gene for the first step in the synthesis of the most abundant component of the EPS of
ADP1, the growth and WE production might be affected on three components of lignocellulosic
hydrolysates: glucose, acetate and 4-HB. The established hypothesis that the lysis of the unen-
capsulated cells grown on glucose is due to the lack of pyruvate kinase activity was also tested.

Lignocellulosic hydrolysates often contain large amounts of acetate, thus making it a major car-
bon source in WE-producing bioprocesses that use ADP1 as a host organism and lignocellulosic
hydrolysates as a raw material. While ADP1 does not excrete acetate when cultivated on glucose,
the strain has a gene for the production of this organic acid from pyruvate. The formation of
acetyl-CoA from acetate requires ATP, and thus the presence of this enzymatic activity might
waste energy, and thus affect the growth and WE production in growth media containing glucose
and/or acetate.

The presence of multiple pathways for sugar catabolism has been shown to be a problem in
engineering E. coli for biodetoxification [100]. Furthermore, S. cerevisiae engineered for selective
acetate removal also consumes the sugars present in the cultivation medium to some degree
[169]. This problem has also been encountered with bacterial strains used in biodetoxification
which have not been subjected to metabolic engineering [58]. ADP1 has a single enzymatic step
for oxidation of all lignocellulosic sugars: the first step in its glucose catabolism, catalyzed by
GDH. It was hypothesized that ADP1 could outperform the above-mentioned strains if the gene
for this enzymatic step was knocked out.
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4 Materials and Methods

4.1 Metabolic engineering

All metabolically engineered strains (Table 2) were produced from A. baylyi ADP1 (DSM 24193)
or strains derived from it by KO mutations (Figure 6). Construction of the plasmids and gene KO
cassettes was performed according to well-established methods [157]. The KO cassettes used
to produce KO mutations of gcd, rmlA and poxB were constructed from the KO cassettes of
Santala et al. [161] by changing the flanking sites and the antibiotic resistance marker when
necessary. The plasmid backbone used was pBAV1C [162], which is a chloramphenicol (Cm)
resistant version of the pBAV1K plasmid [18]. The gene for pyruvate kinase, pykF, was cloned
from E. coli K12 MG1655 and was expressed under control of the arabinose promoter, which
has been shown to work well in ADP1 [125]. The primers used to clone pykF contained standard
BioBrick restriction sites [95]. Metabolic modelling of the effects of the pykF expression on the
metabolism of ADP1 was done with metabolic flux balance analysis [50]. The control plasmid,
pBAV1C, was produced by removing the promoter from pBAV1C-pBAD with Xbal and Spel and
ligating the plasmid backbone with itself. All the transformations of ADP1 were carried out as
explained by Metzgar et al. [119]. Successful construction of the metabolically engineered strains
was verified by amplifying the modified regions with PCR and analyzing the sizes of the PCR
products with agarose gel electrophoresis.
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TABLE 2 The metabolically engineered Acinetobacter baylyi strains used in the experiments.

Strain designation used KO mutation(s)/antibiotic Plasmid/antibiotic marker Publication(s)

in this thesis? marker(s)

ADP1 - - 1,10,
ADP1_ctrl - pBAV1C/Cm |
ADP1_pykF - pBAV1C-pBAD-pykF/Cm 1, 1ll
ADP1Agcd gcd (ACIAD2983)/Cm - Il
ADP1ArmIA rmIA (ACIAD0079)/Cm - 1]
ADP1ArmIA_pykF rmIA (ACIAD0079)/Km pBAV1C-pBAD-pykF/Cm Il IV

rmiA (ACIADO079)Km,
ADP1ArmIAApoXB_pykF ) 5 (ACIAD3381)/Spec

aDifferent designations may have been used in the Publications |-V

pBAV1C-pBAD-pykF/Cm IV

)

BD4

(
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FIGURE 6 Lineage of the Acinetobacter baylyi strains used in the experiments. The strain names are
shown inside the representations of the cells and the presence of the EPS capsule is
shown in grey.
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4.2 Cultivation of the cells

The cultivations were carried out at 30 °C at 300 rpm in 250 ml Erlenmeyer flasks, which were
closed with a loose aluminium foil and contained 50 ml of medium. Co-cultivations with Clostrid-
ium butyricum were carried out in sealed 25 ml glass tubes containing 10 ml of the medium.
Cultivation of the bacteria for transformations was carried out in a slightly modified version of the
LB medium [14] which had the following composition: 10 g/l tryptone, 5 g/l yeast extract, 5 g/l
NaCl. The platings of the bacteria were carried out on a solid medium, which had a similar com-
position to the LB medium described above but also contained 15 g/l of agar. The minimal me-
dium used in the experiments had the following composition: 5.1 g/l KzHPO4, 3.4 g/l KH2PO4, 1.0
g/l NH4Cl, 0.3 g/l MgSO., 22.2 mg/l CaCl,, 4.2 mg/l FeCls (and 2.0 g/l CAA when appropriate).
The co-cultivations with C. butyricum were carried out in the medium used by Seppala etal. [171]
but with slight modifications: 1.5 g/l Kz2HPOy4, 2.0 g/l (NH4)2SO4, 0.2 g/l MgSO4*7H-20, 0.015 g/l
CaCly*2H-0, 0.005 g/l FeSO4*7H-0, 0.3 g/l yeast extract, 2 ml/l of trace element solution (1.0
ml/l 25 % HCI, 70 mg/l ZnCl,, 100 mg/l MnCl;*4H,0, 60 mg/l H3BOs, 200 mg/l CoCl;*6H-0, 20
mg/l CuClz*2H20, 20 mg/l NiCl,*6H.0 and 40 mg/l Na:MoO4*2H,0). The antibiotics used in the
transformations were added to the growth media from stock solutions to achieve concentrations
of 25 — 50 mg/l (Cm), 50 mg/I (Km), or 100 mg/l (Spec). In the cultivation experiments, 25 — 50
mg/l of Cm was used. For experiments where it was intended to cultivate the bacteria using a
substrate as a sole carbon source, the stock solution was not used and the Cm was dissolved
directly into the growth medium. This was done in order to prevent the EtOH from the Cm stock
solution (prepared in 70 % EtOH) from interfering with the experiment. The carbon sources used
in the publications of this thesis are shown in Table 3. The calculations for the optimization of the
substrate and pykF inducer concentrations in Publication | were done with MATLAB [112].

TABLE 3 Carbon sources used in the experiments.

Carbon source Publication

Glucose (I ILY
Gluconate |

Arabinose? Il
Xylose Il
Levulinate ]
Acetate I, 1, v
Formate Il
4-HB I, 1
EtOH i, v
Rice straw hydrolysate I
@The experiments where arabinose was used as an inducer of pykF expression are not listed here.
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4.3 Measurement of growth and metabolites

The measurements carried out in the experiments are summarized in Table 4. The growth of the
bacterial strains was measured spectrophotometrically (growth rate) or gravimetrically (DCW). Con-
centrations of the small metabolites were determined spectrophotometrically or by chromatographic
methods, and the pH was measured with a pocket pH meter. In the preparation of the rice straw
hydrolysate used in Publication Il, a dinitrosalisylic acid assay was used instead of HPLC. The lipids
were solvents extracted from the cells and the total lipid content was measured gravimetrically. The
number of WEs was determined either semi-quantitatively (TLC) or quantitatively (NMR) from the
extracted lipids. In Publication I, the expression level of pykF in ADP1 was determined with an en-
zymatic assay. In Publication lll, the aggregation of the rm/A KO strains was shown to occur by
inspecting the cells with a light microscope.

TABLE 4 The methods used to measure growth and metabolite concentrations in the experi-
ments.

Measured parameter Method Publication

ODsoo Spectrophotometer (600 nm) [, 10, 11, 1V

DCW (or weight of the NMR sample) Gravimetric analysis (after lyophilization) 1, v

C4-HB Spectrophotometer (280 nm) as in Dal et al. [27] I, llI

CH2 GC as in Mangayil et al. [109] Il

Cwax esters (quantitative) NMR (after solvent extraction) ", v

Cwax esters (S€miquantitative) TLC (after solvent extraction) [, IV

Cglucose HPLC I, ”, I”, IV

Cglucose Dinitrosalicylic adic assay [120] Il

Cother metabolites HPLC I, 1, 1LV

Total lipid content Gravimetric analysis (after solvent extraction) i, 1Iv

Pyruvate kinase activity Enzymatic assay as in Netzer et al. [128] I

pH pH meter i, v

Cellular aggregation Light microscopy 1]
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5 Results and Discussion

5.1 Improvements in growth

5.1.1 Growth rate

The specific growth rates for A. baylyi strains on various carbon sources are shown in Table 5.
The highest growth rates were obtained with malate and oxaloacetate, which are TCA cycle
intermediates. Pyruvate and acetate produce intermediary growth rates when used as carbon
sources, while only low growth rates can be obtained when using glucose as the carbon source.
4-HB, which is catabolized to succinyl-CoA and acetyl-CoA, also supports the intermediary
growth rate. It has been hypothesized that the lack of pyruvate kinase activity in BD4, the parental
strain of ADP1, causes some of the carbon from the glucose catabolism to get stuck in the gly-
colysis of the unencapsulated mutants, causing cells to lyse [82]. One way to reduce the con-
centrations of glycolytic intermediates in ADP1 is to improve the flux from glycolysis to the TCA
cycle by expressing pykF. The expression of pykF would also reduce the number of enzymatic
steps needed to produce pyruvate from PEP. Metabolic pathways usually involve a minimum
number of enzymatic steps to produce one essential metabolite from another [132], so it could
be expected that this simplification of metabolism might improve the growth of ADP1. The use of
pyruvate kinase also yields one molecule of ATP per conversion of PEP to pyruvate, while py-
ruvate formation from PEP via oxaloacetate and malate intermediates, the pathway used by WT
ADP1, yields none. It was considered worthwhile to test whether the growth rate of ADP1 on
glucose could be improved by expressing pykF, a gene for pyruvate kinase from E. coli.
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TABLE 5 Growth rates in the exponential growth phase of A. baylyi strains on different carbon
sources.

Strain Carbon source  Concentration (mM) u (h') Reference
ADP1 Glucose 28 0.15 [91]
BD4 Glucose 28 0.26 [91]
ADP1 Glucose 10 0.25 [188]
ADP1 Glucose 10 0.19 Publication Il
ADP1_ctrl Glucose 82 0.18 Publication |
ADP1_pykF Glucose 82 0.42 Publication |
ADP1_pykF Glucose 10 0.30 Publication IlI
ADP1ArmIA_pykF Glucose 10 0.28 Publication Il
ADP1ArmIA_pykF Glucose 22 0.36 Publication IV
ADP1ArmIAApoxB_pykF  Glucose 21 0.25 Publication IV
ADP1_ctrl Gluconate 76 0.12 Publication |
ADP1_pykF Gluconate 75 0.44 Publication |
ADP1 Malate 38 1.09 [34]
ADP1 Pyruvate 57 0.67 [34]
ADP1 Oxaloacetate 38 1.04 [34]
ADP1 Acetate 10 0.69 Publication 111
ADP1ArmIA Acetate 10 0.52 Publication Il
ADP1 4-HB 10 0.55 Publication 11l
ADP1ArmlA 4-HB 10 0.56 Publication 11l

It was shown that there is a correlation between added inducer concentration, pyruvate kinase
activity, and the specific growth rate of ADP1_pykF on gluconate (Publication I). With ADP1_ctrl
there was no increase in pyruvate kinase activity with increasing inducer concentration, but its
specific growth rate increased slightly. This is most likely due to the fact that the cells were culti-
vated on gluconate and the GDH oxidation of sugars (here the inducer, arabinose) allows the
cells to grow faster [187]. If glucose had been used as a carbon source, this effect would probably
have been smaller, or even non-existent, because glucose is more preferred substrate than arab-
inose for the GDH of A. baylyi LMD79.41 [33] and ADP1 (see Figure 1a in Publication Il). Be-
cause the growth rate was found to be dependent on the expression level of pykF, it was decided
to attempt to optimize the growth rate by varying the glucose and arabinose concentrations. This
was done in order to find out the maximum effect of pykF expression so that its other possible
effects on the metabolism of the bacterium could be determined in subsequent experiments.

Two batch cultivations were carried out at optimized substrate and inducer concentrations, using
gluconate or glucose as carbon sources. The metabolism of the former starts at a later point in
the ED glycolysis of ADP1 (Figure 2). The gluconate allows the cell to start growing earlier than
it would when cultivated on glucose since the oxidation of glucose to gluconate causes the cells
to endure a longer lag phase [188]. Glucose, on the other hand, yields more energy through
reactions by GDH and lactonase, and thus gluconate has a lower energy content than glucose.
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The presence of glucose also prevents oxidation of the inducer, arabinose, to arabinolactone,
which allows the expression of pykF to be maintained at an appropriate level. When cultivated
on gluconate, it took approximately twice as long for ADP1_ctrl to grow to the stationary phase
than ADP1_pykF, while both strains had a lag phase of similar length. Furthermore, when culti-
vated on glucose the cells also experienced lag phases of approximately the same length, but
ADP1_pykF grew faster. The difference between the growth rates of the strains was more pro-
nounced on glucose than when gluconate was used as a carbon source. This could be due to
the fact that more energy can be obtained from glucose than gluconate, and the use of gluconate
allows arabinose oxidation by GDH, which decreases pykF expression and thereby the growth
rate. The oxidation of arabinose when ADP1_pykF is grown on gluconate resulted in a more
linear growth than when glucose was used as a carbon source (Publication I). The growth of
ADP1_pykF on glucose ceased to be exponential after approximately half of the carbon source
had been depleted. There could be several reasons for this. One explanation for this behaviour
is that some other medium component was depleted at this point, for example nitrogen, after
which the cells merely accumulated WEs. On the other hand, since conversion of glucose to
gluconate by GDH and gluconolactonase decreases the pH of the medium, it might be that the
pH of the medium started to decrease at this point, if the buffering capacity of the used buffer ran
out.

The rmIA KO eliminated EPS capsule formation and decreased the growth rate on acetate as a
sole carbon source, but did not affect the growth rate when 4-HB was used as a sole carbon
source (Publication IIl). The rmIA KO diminished the growth rate of ADP1 on glucose, as could
be expected. However, the expression of pykF restored the growth rate of ADP1ArmIA to a sim-
ilar level to that of ADP1_pykF. Thus, the rmIA KO did not affect the growth rate of ADP1_pykF
on glucose. When poxB was knocked out from ADP1ArmIA_pykF, the growth rate on glucose
decreased (Publication IV). The decrease in growth rate (and also biomass yield) on glucose has
also been shown to occur with the poxB KO strain of E. coli [3]. The growth rate of
ADP1ArmIAApoxB_pykF in the exponential growth phase was also lower than that of
ADP1ArmIA_pykF when the medium contained glucose, CAA and EtOH, but was unaffected in
a medium containing either acetate alone, or glucose, CAA and acetate (Publication 1V). When
the cells grew linearly, the growth rate was similar for both strains on glucose alone but when
cultivated on glucose, CAA and acetate, the ADP1ArmIAApoxB_pykF grew significantly faster
than the ADP1ArmIA_pykF. This indicates that whether poxB KO increases or decreases the
growth rate of ADP1ArmIA_pykF depends on the medium composition. However, since lignocel-
lulosic hydrolysates often contain large amounts of both glucose and acetate, poxB KO might be
beneficial with respect to growth rate in bioprocesses where WEs are produced with
ADP1ArmIA_pykF from lignocellulosic hydrolysates.



36

5.1.2 Biomass yield and final biomass of the cultivation

The biomass yield (grams of biomass per gram of substrate) from glucose with ADP1_pykF (0.37
+ 0.04 gceis /gaiucose) (Publication 111) is significantly lower than what is usually obtained with E.
coli (0.5 gcelis /gaiucose) [174], although it is in the same range as what has been obtained with the
E. coli strain HB101 (0.35 gcelis /gciucose) [170]. The value obtained with ADP1_pykF might be
slightly lowered by the presence of pBAV1C-pBAD-pykF in the cells, since plasmid maintenance
reduces biomass yield [170]. This effect is larger with high-copy-number plasmids [170]. Indeed,
pBAV1K-T5-luxABCDE, the plasmid containing the backbone from which pBAV1C-pBAD-pykF
has been derived, has a copy number of ~60 in ADP1 [18]. The plasmid RSF1050, which also
has a copy number of 60 and is approximately same size (7.4 kb [36]) as pBAV1K-T5-luxABCDE
(8.6 kb) [18]), decreases the biomass yield of E. coli HB101 from 0.35 gceiis /Jaiucose (M = 0.42 h
") to 0.30 gcelis /aiucose (M = 0.36 h™') in a minimal medium on glucose [170]. Thus, it could be
expected that the presence of pBAV1C-pBAD-pykF (5 - 6 kb (Publication 1V)) might, at least
partly, explain the relatively low biomass yield from glucose of ADP1_pykF. The expression of
pykF, which increased the growth rate, did not affect biomass formation based on ODggo and
glucose consumption values (Publication ).

Since EPS constitutes a large portion of the biomass of ADP1 (see Exopolysaccharide metabo-
lism), an rmIA KO mutant was constructed and its growth on glucose, acetate and 4-HB was
characterized to see if biomass yield could be improved (Publication IIl). The strain grew poorly
on glucose, but the expression of pykF allowed proper growth. When ADP1ArmIA was cultivated
on glucose, the absorbance of the growth medium at a wavelength of 280 nm increased signifi-
cantly (1.55 + 0.02). This was assumed to be caused by lysis of the cells. In the WT ADP1
cultivation, absorbance at 280 nm was also slightly increased (0.05 £ 0.01), but this could be
expected since it has been shown that ADP1 undergoes lysis to a small degree during exponen-
tial growth [136]. However, although ADP1ArmIA_pykF had an increased WE yield (see below),
the biomass yield from glucose was lowered to 0.23 £ 0.07 gceis /aiucose (Publication 111). On
acetate, the biomass yield of 0.52 + 0.09 gceis /acetate Obtained with WT ADP1 in these experi-
ments is significantly higher than what has been obtained by O'Beirne & Hamer with E. coli
W3310, who reported a biomass yield of 0.25 gceis /gacetate [133]. The rmlIA KO did not significantly
affect the biomass yield from acetate (0.58 + 0.12 gceis /gacetate). The biomass yield from 4-HB
was also quite high for both ADP1 (0.52 + 0.02 gcels /g4-+8) and ADP1ArmlIA (0.49 + 0.06 gceis
/ga18). Thus it seems that the effects of the rmIA KO mutation are specific to cultivations carried
out on glucose, and cannot be applied to cultivations on carbon sources such as acetate and 4-
HB. This could be due to the peculiarities of glucose catabolism by ADP1 (see Figure 2). Never-
theless, the high biomass yields of ADP1 from the common inhibitors found in lignocellulosic
hydrolysates, acetate and 4-HB, indicate that this strain might be suitable for efficient WE pro-
duction from these compounds.
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ADP1 cannot grow on sugars other than glucose [181], which limits the biomass obtained when
cultivated on lignocellulosic hydrolysates. Since the GDH of ADP1 also oxidizes pentoses, the
catabolic pathways for pentose utilization would have to be oxidative. An oxidative xylose deg-
radation pathway of Caulobacter crescentus [176] has been successfully used in enabling the
oxidative catabolism of xylose in Pseudomonas putida S12, which also possesses a gene for
GDH [116]. P. putida S12 has also been engineered to catabolize xylose and arabinose via the
phosphorylative pathway [115]. However, efficient pentose catabolism required inactivation of
GDH, which did not affect glucose consumption of P. putida S12 [115]. ADP1 has only ED gly-
colysis and the inactivation GDH eliminates glucose catabolism (Publication Il), so this strategy
cannot be used with ADP1.

The highest final biomass values obtained were 9.7 + 1.4 g/l for ADP1_pykF (Publication Il1), 5.0
+ 0.1 g/l for ADP1ArmIA_pykF (Publication 1V) and 5.2 + 0.1 g/l for ADP1ArmIAApoxB_pykF
(Publication V). It should be noted, however, that these values were determined from samples
that were not washed prior to lyophilization. The samples were not washed in order to ensure
that no cells, and thus WEs, are lost during this phase, and also because the WE content of the
cells might have changed during this time-consuming step. Thus, these samples contained extra
mass from medium components that are not removed during lyophilization. Because of this, they
do not represent the DCW of the cultivation, but rather the masses of the NMR samples. Also,
the biomass value of ADP1_pykF probably contains more of these impurities since it does not
form so dense pellet as the EPS capsule negative rmlA KO strains, and thus less medium is
removed from the sample by removal of the supernatant after centrifugation.

5.1.3 Biomass composition and aggregation of the cells

The rmIA KO improved the purity of the produced WEs (see below) and made it easier to collect
the cells by centrifugation, an effect caused by aggregation of the cells in the absence of the EPS
capsule [81]. The lack of EPS production can be also considered an advantage because the
excretion of EPS in the growth medium increases its viscosity, which in turn makes it more diffi-
cult to maintain good mixing and oxygenation of the growth medium [114]. However, it should be
noted that it was not shown in the research article that the rmIA KO completely eliminates the
synthesis of EPS, and so it cannot be ruled out that the ADP1ArmIA_pykF might produce smaller
fragments of EPS in the growth medium. Rhamnose is part of the backbone of the EPS molecule
produced by ADP1 (see Figure 4). Thus, it could be assumed that if the rm/A KO strain still
produces some extracellular carbohydrates or EPS, they are either compounds of glucuronic
acid, mannose and free glucose, or they are larger molecules with structures that do not contain
rhamnose at all and are unable to form the EPS capsule around ADP1 cells. However, unidenti-
fied compounds were not observed in the HPLC analyses, indicating that at least free glucose or
mannose were not produced. It should be also noted that ADP1 produces mannitol as a compat-
ible solute during salt stress and produces mannitol-1P from fructose-6 (and probably mannitol
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from mannitol-1P) [159]. Thus, ADP1ArmIA might have altered salt stress tolerance due to the
increased concentration of fructose-6P, the starting metabolite for mannitol synthesis.

It has been shown that Acinetobacter sp. strain GJ12 grows as bacilli in a rich medium but as
cocci in a poor medium [74]. It was suggested that this might be due to changes in the growth
rate; under conditions allowing a slow growth rate, the cells would grow as small cocci, while
under conditions allowing fast growth rate, they would grow as bacilli. The same kind of behaviour
was observed with ADP1 (Figure S4 in Publication IIl). When grown on acetate or 4-HB, which
allow faster growth rates, the cells were clearly larger and had a bacillar shape, but when grown
on glucose, on which ADP1 grows slowly, there were also small cells with a coccal shape. The
coccal shape of BD4 cultivated on glucose has been also observed by Taylor & Juni [181]. The
phenomenon of cells being larger at high growth rates was first observed with Salmonella typhi-
murium in 1958 [166].

Although A. baylyi strains are usually considered to be non-pathogenic, they have been shown
to be able to infect immune-compromised patients [24], and the EPSs produced by A. baylyi
strains can harm the host macrophages and increase the pathogenicity of pathogenic bacteria
[134]. In E. coli, adhesin Ag43 causes cells to aggregate and form biofilms [168], and biofilm
formation is often the reason for persistent infections [26]. In E. coli ,a capsule prevents adhesin-
mediated aggregation and biofilm formation [168]. Because of these characteristics, a non-floc-
culating, EPS-negative A. baylyi strain [82] might be the safest alternative for bioprocesses.

5.2 Improvements in the wax ester production

In order to be economically feasible, the bioprocess producing WEs should have high productivity,
yield, titer and WE content of the biomass. For example, some cultivation conditions may result
in a high WE content of the cells, but this might only have been achieved after an unacceptably
long cultivation time. On the other hand, if high WE content were obtained when the cells could
not be cultivated to high cell density, the WE titer would remain low.

5.2.1 Wax ester yield and productivity

The rmlIA KO improved the WE yield on glucose as the carbon source, but not when acetate or
4-HB were used. It has been shown with the parental strain of ADP1 that the cells form approxi-
mately twice as large an EPS capsule on glucose than they do on acetate [181] and that the cells
synthesize the EPS capsule much more rapidly and efficiently from glucose than from acetate
[81]. Thus, it might be that the effects of the rm/A KO mutation on the WE synthesis of ADP1 are
minimal on acetate since less carbon is directed to EPS synthesis.
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The productivity in WE-producing bioprocesses can be increased (if WE-content of the cells does
not change) by increasing the growth rate of the host organism. It was shown with TLC that the
improved growth rate by pykF expression did not decrease WE accumulation by ADP1 (Publica-
tion 1), thus increasing WE productivity. When the growth rate of A. baylyi is limited by nitrogen,
the WE production increases with decreasing growth rate [56]. However, under carbon limitation,
the growth rate slightly increases in WE production [56]. It is likely that the situation occurring
when pykF is expressed in ADP1 is comparable to the latter case. As the rmIA KO did not affect
the WE yield on acetate, but did lower the growth rate, it can be said that WE productivity was
lowered by this modification (Publication Ill). This also applies to the poxB KO in
ADP1ArmIAApoxB_pykF, which had unaltered WE production but a reduced growth rate on glu-
cose as a sole carbon source (Publication IV). The WE productivity of ADP1ArmlIA on 4-HB was
unaffected, since neither the WE yield or growth rate were changed (Publication Ill). On glucose
as a carbon source, since the WE yield was improved and the growth rate unaffected, the rmiA
KO could be said to have increased WE productivity by ADP1_pykF. However, since the rmiA
KO increased the length of the lag phase on glucose, acetate and 4-HB, the amount of WEs
produced per cultivation time cannot be accurately estimated solely from the growth rate and WE
yield values.

5.2.2 Wax ester titer

The only WE titer that has been reported with a WT ADP1 is approximately 0.16 g/l (Table 6),
which was obtained in a 48-hour cultivation [162]. By expressing pykF, a similar titer could be
obtained in 26 hours in a medium containing glucose, CAA and EtOH and the rm/A KO further
improved the WE titer in a similar cultivation (Publication IIlI). When ADP1ArmIA_pykF was culti-
vated in a medium that contained glucose, CAA and acetate, a 24-hour cultivation resulted in
doubling of the WE titer (Publication 1V). Furthermore, under these conditions,
ADP1ArmIAApoxB_pykF, which was able to utilize acetate more efficiently, produced a WE titer
that is approximately three times higher than that of ADP1 or ADP1_pykF. Thus, if compared to
the WT ADP1, the two KO mutations and expression of pykF tripled the WE titer while halving
the cultivation time. A WE titer that is 1.8 times higher than the one obtained with
ADP1ArmIAApoxB_pykF has been obtained with E. coli engineered for the production of multi-
methyl-branched long-chain esters (MBE) [118]. This value was, however, obtained in a high
cell-density, fed-batch cultivation, where an ODgoo of approximately 210 was achieved, and pro-
pionate, n-octanol and oleic acid were supplied to the growth medium [118]. E. gracilis, on the
other hand, can produce a WE titer of 2.1 g/l when cultivated on glucose to a DCW of 4.2 g/I [71].
Thus, although E. coli can be routinely cultivated to high cell densities, it only seems to accumu-
late WEs to very small amount, making it difficult to increase the titers. The WE titer of ADP1
strains could be increased significantly if high cell density cultivation methods were developed
for this strain. If the theoretical maximum cell density of 220 g/l [124] could be achieved with
ADP1 producing a WE content of DCW (8.6 £ 0.7 %), WE titers close to 20 g/l could be obtained.
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However, high cell density cultivations would probably have to be carried out in fed-batch culti-
vations. Batch cultivations, such as the ones carried out in this thesis, do not provide the cells
with enough nutrients to grow to high DCW or, if they do, the elevated nutrient concentrations
start to inhibit growth.

TABLE 6 WE titers obtained with different microorganisms.
Strain WE titer (g/l) Reference
A. baylyi ADP1 0.16 [162]
A. baylyi ADP1_pykF 0.15 Publication Il
A. baylyi ADP1ArmIA_pykF 0.19 Publication I
A. baylyi ADP1ArmIA_pykF 0.31 Publication IV
A. baylyi ADP1ArmIAApoxB_pykF 0.45 Publication IV
E. coli engineered for MBE production 0.79 [118]
E. gracilis 21 [71]

5.2.3 Wax ester content of the biomass

The wax ester content of ADP1 was increased in the experiments of this thesis to 8.6 % (Table
7). The highest yield of de novo-produced WEs obtained with bacteria (14 %) was obtained by
cultivating A. calcoaceticus NCIB 10487 on succinate [56]. This value is ~1.6 times higher than
the value obtained here with ADP1ArmIAApoxB_pykF (Publication V). It might be worthwhile to
better characterize the strain NCIB 10487 to find out if it is suitable for bioprocesses and meta-
bolic engineering. R. josti RHA1 has also been shown to accumulate large amounts (13 %) of
WEs, but this strain had to be grown for 72 hours to achieve that value [156]. Kalscheuer and
Steinblchel have reported a WE yield of 6.9 % w/v when cultivating APD1 for 24 hours on Na-
gluconate in a medium containing 0.1 g/l NH4ClI [87]. In Publications Il and IV, where similar WE
contents of biomass were obtained in cultivations of a similar length, the growth media contained
1.0 g/l NH4Cl and 2.0 g/l CAA. Thus, ADP1ArmIAApoxB_pykF might be able to produce higher
WE content in either longer cultivations (where the carbon to nitrogen ratio increases due to
depletion of NH4Cl) or in cultivations in poorer media. Even though significant improvements in
the WE content of ADP1 were achieved, the highest value obtained is still ~17 % of that of the
Jojoba plant seeds, and the metabolism of ADP1ArmIAApoxB_pykF would have to be further
engineered to improve this value.
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TABLE 7 The highest WE contents of biomass obtained with different organisms.
Organism Carbon source(s) \r/)vgvsvg% of Reference
Escherichia coli BL21(DE3)? Na-oleate (in LB medium)  ~1 [89]

A. calcoaceticus NCIB 8250 Succinate 25-3.0 [54]

A. baylyi ADP1 Glucose, CAA 1.8 [162]

A. baylyi ADP1 Na-gluconate 6.9 [87]

A. baylyi ADP1ArmIA_pykF2 Glucose, EtOH, CAA 7.2 Publication IlI
A. baylyi ADP1ArmIAApoxB_pykF2  Glucose, acetate, CAA 8.6 Publication IV
R. jostii RHA12 Glucose 13 [156]

A. calcoaceticus ATCC 17976 Acetate 13 [56]

A. calcoaceticus NCIB 10487 Succinate 14 [56]
Acinetobacter sp. M-1 N-Hexadecane 17 [72]

E. gracilis SM-ZK EtOH 57 [71]

S. chinensis (seeds) n.a. ~50 [158]

aMetabolically engineered strain.

5.2.4 Metabolism of the lignocellulosic carbon sources
5.2.5 Overflow metabolism

The formation of acetate or any other overflow metabolite could not be detected with ADP1_ctrl
or ADP1_pykF cultivated on glucose (Publication ). However, when gluconate was used as a
carbon source and ADP1_pykF had a similar growth rate, acetate and ethanol could be detected
in the HPLC samples of ADP1_pykF. Thus it seems that the overflow metabolism of ADP1 can
be triggered by expression of pykF but this occurs only when gluconate is used as a carbon
source, but not on glucose. Gluconate has lower energy content than glucose and can be directly
taken up and catabolized by the cells, while glucose needs to be oxidized into gluconate prior to
being taken up. Thus, although the cells grew at similar rates on both carbon sources, the carbon
flux towards metabolites that can be converted to acetate, pyruvate and acetyl-CoA, could have
been larger when cultivated on gluconate. However, since bioprocesses using ADP1 most likely
use glucose instead of gluconate as a carbon source, the overflow metabolism leading to acetate
and ethanol production is not likely to be a problem.

In Publication Il it was shown that in the cultivations of ADP1ArmIA_pykF in a glucose medium,
CAA, EtOH (from the Cm stock solution), acetate and low pH can be observed at the end of the
cultivation at 26 h (Publication Ill). In publication IV it was shown that the acetate was formed in
the medium by EtOH catabolism. In Publication Il it was shown that ADP1ArmIA grows slower
on acetate (and thus also consumed acetate slower) than ADP1. Thus the accumulation of ace-
tate to the growth medium by ADP1ArmIA_pykF could be explained simply by the fact that, if
both strains produced acetate from EtOH, the consumption of acetate by ADP1ArmIA_pykF was
merely slower than with ADP1_pykF.
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The acetate production from EtOH and subsequent accumulation to the growth medium by
ADP1ArmIA_pykF could be alleviated by poxB KO (Publication [V). The strain
ADP1ArmIAApoxB_pykF also produced acetate, but consumed it much more rapidly in the pres-
ence of glucose than ADP1ArmIA_pykF, which prevented the pH from decreasing to the level
that no longer supports growth. ADP1ArmIAApoxB_pykF consumed EtOH more rapidly than
ADP1ArmIA_pykF when cultivated on EtOH as a sole carbon source, but unexpectedly, it also
produced more acetate than ADP1ArmIA_pykF. Since the only difference between the strains
was the poxB KO in ADP1ArmIAApoxB_pykF, it is unclear why this happened. Intuitively, one
might assume that more acetate would accumulate if the cells had pyruvate oxidase activity,
which produces acetate from pyruvate. On the other hand, since acetate is also produced as an
intermediate of EtOH catabolism, the lack of pyruvate oxidase activity might allow more rapid
growth as the cell can funnel more carbon into gluconeogenesis. This could thus allow a faster
growth rate, leading to more acetate production due to the increased amount of enzymes for
conversion of EtOH to acetate at elevated cell densities.

5.2.6 Biodetoxification

The oxidation of the main lignocellulosic sugars, glucose, xylose and arabinose, could be com-
pletely prevented by producing a gcd KO in ADP1. This strain, ADP1Agcd, could rapidly con-
sume acetate and formate in a medium containing the aforementioned sugars. The presence of
4-HB in the growth medium allowed ADP1Agcd to consume formate more efficiently. Formate,
unlike acetate, did not repress 4-HB catabolism. This allows the smallest organic acid to be con-
sumed faster, if acetate is depleted from the medium. Thus, although acetate represses con-
sumption of 4-HB, it might be expected that the lignocellulosic hydrolysate still contains other
compounds in addition to 4-HB, once the acetate had been consumed. Because of this, there
might not be sequential use of inhibitors, if they are treated as inhibitor groups (aromatic inhibitors,
aliphatic inhibitors, etc.). However, the fact that 2.7 g/l of acetate seems to inhibit glucose con-
sumption is more troubling (Publication 1V), as this would delay consumption of the most abun-
dant component of lignocellulosic hydrolysates, glucose. While this is not a problem in the de-
toxification of lignocellulosic hydrolysates, it might reduce the efficiency of gcd-containing strains.

ADP1Agcd tolerated glucose well up to 100 g/l, and also grew also at 150 g/l and was able to
grow on an elevated concentration (10 g/l) of acetate. ADP1Agcd did not start to consume sugars
even in a seven-day cultivation where an ODeoo value of ~5 was reached. With E. coli engineered
not to consume lignocellulosic sugars, it has proven to be difficult to completely eliminate sugar
consumption [100]. Thus, it seems that ADP1Agcd might be more suitable for selective removal
of acetate from sugar-containing solutions than the E. coli strain engineered for the same pur-
pose. However, a major limitation of using ADP1Agcd as a detoxification strain is that it cannot
grow on all growth inhibitors found in lignocellulosic hydrolysates, such as furfural, 5-hy-
droxymethylfurfural (5-HMF) and levulinate. Furfural and 5-HMF are often present in smaller
quantities in lignocellulosic hydrolysates than acetate [179], but they have been shown to inhibit
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growth and ethanol production by an ethanologenic E. coli at these concentrations [205]. Engi-
neering furfural degradation in ADP1 should be feasible, since this has already been achieved
in P. putida S12 [96]. This should improve the performance of ADP1 as a biodetoxification strain
and also as a host organism in other lignocellulose-utilizing bioprocesses, because this com-
pound could serve as an additional carbon source.

ADP1Agcd was used in the elimination of oxygen from closed cultivation tubes, which allowed
H. production by the obligatory anaerobe C. butyricum. Similar experiments have been carried
out previously by Tran et al. who eliminated the need for O, removal by N2 flushing by cultivating
Bacillus subtilis, which also simultaneously saccharificated the starch, allowing acetone-butanol-
EtOH production by C. butyricum [184]. In addition to removing O- from the lignocellulosic hy-
drolysates to allow cultivation of anaerobic microorganisms, ADP1Agcd could also be engi-
neered to produce cellulases, to achieve further hydrolysis of cellulose, or other compounds that
are beneficial to the organism fermenting the biodetoxified lignocellulosic hydrolysate.
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6 Conclusions

ADP1 naturally accumulates WEs but the titers are not sufficiently high for the WE-producing bio-
processes to be economically feasible. ADP1 also grows slowly on glucose, the most common car-
bon source in bioprocesses, commits a large fraction of the carbon to EPS synthesis, and does not
catabolize glucose in the presence of acetate. By engineering the metabolism of ADP1, it was pos-
sible to double the growth rate on glucose, improve the WE vyield and purity by eliminating EPS
capsule synthesis, and improve growth and WE production in the presence of acetate.

The growth rate of ADP1 on glucose was increased to 0.42 h™' by expressing pykF from E. coli K-12
MG1655 (Publication 1). This growth rate is still far from the values obtained, for example, with E.
coliW3110 (~ 1.0 h'") [3] but this improvement nevertheless halves the time needed to run the bio-
processes where WEs are produced with ADP1 from glucose. On the other hand, when compared
to other WE-producing microorganisms like R. jostii (0.19 h™' (when carrying an empty plasmid
pNV18)) [202], the growth rate of ADP1_pykF obtained here is relatively high. The growth rate and
biomass yield from glucose might be further improved by integrating pykF into the genome of ADP1,
since maintenance of a plasmid is known to reduce growth rate and biomass yield [170]. This would
also eliminate the need of supplementing the growth medium with antibiotics. The mass of the NMR
sample in the experiment yielding the highest WE titer (0.45 + 0.05 g/l) was relatively low (5.2 + 0.1
g/l) and WE production by ADP1 would benefit tremendously from the development of high cell-
density cultivations for this strain.

By knocking out rmlA, the gene for the first step in the synthesis of the main component of EPS, it
was possible to improve the WE yield of ADP1_pykF on glucose. This KO mutation also reduced the
biomass yield from glucose and made it easier to collect the cells by centrifugation, thus improving
the WE purity and reducing the cost of downstream processing. The effects of the rmIA KO mutation
could not be extended to cultivations on acetate and 4-HB, which are also components of lignocel-
lulosic hydrolysates. While having a doubled WE yield from glucose, ADP1ArmIA_pykF had a de-
creased tolerance towards acetate produced from EtOH in the growth medium. This drawback could
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be eliminated by knocking out the gene for pyruvate oxidase, poxB, from the genome of
ADP1ArmIA_pykF (Publication IV). Furthermore, the poxB KO improved the WE vyield in a medium
containing glucose and acetate as carbon sources. Since glucose and acetate are both among the
most abundant carbon sources found in lignocellulosic hydrolysates, this modification should im-
prove the properties of ADP1 as a host organism in bioprocesses using this raw material. In the
presence of glucose as a sole carbon source, the growth rate of ADP1ArmIAApoxB_pykF was lower
than that of ADP1ArmIA_pykF, indicating that, as with E. coli W3110 [3], pyruvate oxidase is bene-
ficial when cultivated on this carbon source. Because of this, it might be beneficial to control expres-
sion of poxB in ADP1ArmIA_pykF so that the gene is expressed when only glucose is present, but
not in the presence of both glucose and acetate.

When the gene for GDH, gcd, was knocked out from the genome of ADP1, the strain was rendered
completely unable to catabolize lignocellulosic sugars (Publication Il). These kinds of strains are
suitable for the selective removal of growth inhibitors from lignocellulosic hydrolysates. The initial
characterization of ADP1Agcd indicated that it could perform efficiently as a biodetoxification strain,
although the robustness of the strain should be tested with different kinds of lignocellulosic hydroly-
sates. Also, since the strain is unable to consume, for example, furfural and 5-HMF, the growth
substrate range of this organism should be broadened to include these inhibitors.

In this Doctor of Science thesis it was shown that the properties of ADP1 as a host organism in WE-
producing bioprocesses can be readily improved with metabolic engineering, and that this organism
has the potential to become an efficient host organism in the biodetoxification of lignocellulosic hy-
drolysates. While the modifications made here improved both growth characteristics and WE-
production, the catabolic capabilities of this organism should be broadened to allow consumption of
other lignocellulosic sugars in addition to glucose. The robustness of ADP1 also needs to be eluci-
dated by characterizing its growth in actual lignocellulosic hydrolysates. As biodetoxification using
ADP1Agcd is time-consuming, it might be necessary to engineer other functions like cellulase pro-
duction to ADP1Agcd to make biodetoxification using this strain more attractive. The WE structure
could be tailored for specific applications, which would increase the value of this product. The devel-
opment of a strain for the production of tailored WEs with better properties than those of the Jojoba
plant would make it much more likely that ADP1 could be used in industrial WE production. The rapid
development of the field of synthetic biology should make it increasingly easy to achieve these goals.
In addition to engineering the metabolism of ADP1, cultivation techniques should be developed
which allow the generation of high cell-density, since only that could allow a high titer of intracellularly
accumulating WEs to be produced. The WE titers obtained in this thesis are still far from being high
enough for industrial production for applications such as biofuels. Nevertheless, hopefully the pro-
gress presented in this thesis will encourage other researchers to pursue the goal of engineering
ADP1 into an efficient WE producer.
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