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Abstract

Background: Functional annotation of genes is an essential step in omics data analysis. Multiple databases and
methods are currently available to summarize the functions of sets of genes into higher level representations, such as
ontologies and molecular pathways. Annotating results from omics experiments into functional categories is essential
not only to understand the underlying regulatory dynamics but also to compare multiple experimental conditions at
a higher level of abstraction. Several tools are already available to the community to represent and compare
functional profiles of omics experiments. However, when the number of experiments and/or enriched functional
terms is high, it becomes difficult to interpret the results even when graphically represented. Therefore, there is
currently a need for interactive and user-friendly tools to graphically navigate and further summarize annotations in
order to facilitate results interpretation also when the dimensionality is high.

Results: We developed an approach that exploits the intrinsic hierarchical structure of several functional annotations
to summarize the results obtained through enrichment analyses to higher levels of interpretation and to map gene
related information at each summarized level. We built a user-friendly graphical interface that allows to visualize the
functional annotations of one or multiple experiments at once. The tool is implemented as a R-Shiny application
called FunMappOne and is available at https://github.com/grecolab/FunMappOne.

Conclusion: FunMappOne is a R-shiny graphical tool that takes in input multiple lists of human or mouse genes,
optionally along with their related modification magnitudes, computes the enriched annotations from Gene
Ontology, Kyoto Encyclopedia of Genes and Genomes, or Reactome databases, and reports interactive maps of
functional terms and pathways organized in rational groups. FunMappOne allows a fast and convenient comparison
of multiple experiments and an easy way to interpret results.

Keywords: Functional annotation, Pathway visualization, Ontology visualization, KEGG, Gene Ontology, Reactome,
R-Shiny

Background
Functional annotation of large sets of significant genes
is often the final step of omics data analysis. However,
when multiple genes are selected during differential anal-
ysis, it becomes almost impossible to understand the
altered biological processes by manually inspecting the
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individual genes. This task is even more difficult when
comparing functional profiles derived from two or more
related experiments at the gene level, for different sets of
functionally related genes may be specifically affected in
different experimental conditions.
A multitude of tools are already available to the com-

munity to graphically represent enriched functional anno-
tations from single pair-wise comparisons [1–4]. When
considering multiple experiments, these methods require
to run separate analyses for each experiment and subse-
quently collate the results for comparison. The complexity
of this task increases with the number of considered
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experiments, especially for users who are not familiar
with advanced techniques of data manipulation. Some
tools allow the visualization of the enriched Gene Ontol-
ogy terms from multiple experiments [5–7]. However, as
they are typically implemented in R, they require a cer-
tain degree of programming expertise in order to produce
the desired visualizations. Moreover, since these methods
usually offer a static graphical output, the produced plots
become difficult to read and interpret when large number
of functional terms need to be displayed.
An important aspect of some functional annotations is

the possibility to derive a hierarchical structure for their
base terms, such as for Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways [8], Reactome pathways [9]
and Gene Ontology terms [10]. This structure can be used
to organize the functional terms and summarize sets of
related functions in super classes. This feature can be
further exploited to reduce the dimensionality of sets of
enriched terms and to abstract the underlying biological
functions to higher levels of interpretation.
Here we present FunMappOne, an R-shiny user-friendly

software with a simple graphical interface that takes in
input lists of human or mouse genes frommultiple experi-
ments, optionally with their gene-associatedmetrics, such
as fold change and p-value. It provides functionalities
to statistically evaluate over-represented biological terms
from Gene Ontology, KEGG, or Reactome databases,
graphically summarize, and navigate them.

Method
The three-level hierarchy
In order to reduce the dimensionality of the sets of
enriched terms, we introduced the concept of hierarchical
summarization, that is the possibility to explore enriched
terms at higher functional levels. To do this, a hierarchy is
needed to group terms in super-classes. By definition, this
structure needs to be represented as a direct acyclic graph,
with a root category (representing the functional annota-
tion) and a series of meta-terms (real terms or functional
groups), defining progressively specialized group of terms.
This structure is naturally found in the intrinsic organi-
zation of KEGG and Reactome pathways while it can be
easily derived for Gene Ontology terms, as described in
the next section. An important factor for the hierarchy
definition and construction is the number of levels of the
hierarchy, namely the depth of the corresponding graph
structure: KEGG has an intrinsic structure based on three
levels, while Reactome pathways and gene ontology can
have more than three levels that are not uniformly dis-
tributed (the hierarchical chain of meta-terms can have
different length for different terms). Havingmany summa-
rization levels has the advantage of making more special-
ized grouping of terms but would also complicate the task
for the user to reduce the set dimensionality and obtain

easier views of the enrichment data. For this reason, we
chose to follow the KEGGphilosophy and homogenize the
three hierarchies (KEGG, Reactome and Gene Ontology)
in order to have three levels of summarization from the
terms to the root. The detailed implementation of the
hierarchies is described in the following section.

Hierarchy definition
Figure 1 shows the implemented procedure to define hier-
archical structures for KEGG pathways (panel A), Gene
Ontology terms (panel B) and Reactome pathways (panel
C), respectively. For each annotation type, a three-level
hierarchy was defined.

• For KEGG pathways (Fig. 1a), the three levels of
BRITE functional hierarchy was used [8].

• For each Gene Ontology category CAT (Biological
Processes - BP, Cellular Components - CC, and
Molecular Functions - MF), a three-level hierarchy
was extracted by first considering the graph
GO_CAT rooted in CAT (Fig. 1b). Then, the acyclic
directed subgraph GO_CAT_ac was computed by
considering only the edges representing the
relationship “is_a” or “part_of” in GO_CAT. Finally, a
new graph GO_CAT_hier was built by considering
all the nodes in GO_CAT_ac, and adding, for each
node ti, all the edges in the path [ ti, . . . , tr−1] if the
path [ti, . . . , tr−1,CAT] of length at most 3 already
existed in GO_CAT_ac. For the paths
[ti, . . . , tr−2, tr−1,CAT] in GO_CAT_ac of length
greater than 3, only the arcs forming the sequence
[ti, tr−2, tr−1] were added to GO_CAT_hier.

• For the Reactome pathways (Fig. 1C), the set of root
nodes Rs were considered and a three-level hierarchy
was explicated. First, the associated graph
REACT_RSi rooted in CAT was selected. Next, for
each node ti the edges [ ti, tr−1,RSi] were added if the
path [ ti, tr−1,RSi] belonged to REACT_RSi. If the
path [ ti, . . . , tr−2, tr−1,RSi] existed in REACT_RSi,
only the edges forming the sequence [ ti, tr−2,RSi]
were added to the new graph representing the
hierarchy.

FunMappOne algorithmworkflow
Figure 2 shows the FunMappOne algorithm workflow.
The input is provided as N lists of genes, one for each
experimental condition to compare and, optionally, N lists
of modifications (e.g. the fold-change or the p-value) asso-
ciated with each gene. For each experiment analyzed, the
enriched terms in the chosen functional annotation are
computed by using the gProfiler R package [4], and a
matrix Ter[NxM] is created, where M is the total number
of enriched terms. Each element Ter[i,j] is associated with
the hypergeometric test p-value of term j for the genes
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Fig. 1 Definition of the hierarchies. For each functional annotation type, a model reflecting the relationship between functional terms and levels in
their original structure is shown above the corresponding generated hierarchy. Panel a, b and c report hierarchy generation models for KEGG, Gene
Ontology and Reactome, respectively. In the second and third panel, different numbers indicate different functional terms. In panel b, “CAT” can be
one of the Gene Ontology categories BP, CC or MF

in the i-th list. Optionally, Ter[i,j] can also be associated
with a value that summarizes the modification values (e.g.
the median fold change) of the genes from the i-th list
intersecting the gene set of the term j.
To summarize the information at a higher level of inter-

pretation, a new matrix Teri[NxK] is created, where i=1,2
is the desired height of the chosen annotation hierarchy
and K is the number of different terms at level i. Each ele-
ment Teri[i,j] is then associated with a summary statics
(e.g. the median p-value) of the elements Ter[i,k] for all
k such that the term k is a descendant j in the reference
hierarchy.
Finally, given a matrix Teri[NxK] representing the

enrichment at level i as defined above, the possibility to
reorder and cluster experiments, based on a given dis-
tance function Dk,l, is implemented. This is computed
between the vectors Teri[k,] and Teri[l,] using, alterna-
tively, a distance based on the Jaccard index on the num-
ber of common enriched terms, the Euclidean distance
on the values associated with terms, or a combination of
these two.
In the first case, the Jaccard index Jk,l is computed as

|Terms(k)∩Terms(l)|
|Terms(k)∪Terms(l)| , where Terms(x) is the set of enriched
terms for the experiment x and Dk,l is set as 1 − Jk,l.
In the second case, the set comm(k, l) = Terms(k) ∩

Terms(l)| is first considered, where Terms(x) is the set of

enriched terms for the experimental condition x, then if
|comm(k, l)| ≥ 0 the Euclidean distance DEk,l on the sub-
vectors Teri[ k, comm] and Teri[ l, comm] is computed. A
combination of the two methods is implemented by cre-
ating the mean distance matrix Mk = (D + DE01)/2,
where D is the matrix of the Jaccard index and DE01 is the
Euclidean distance matrix scaled in the range [0,1]. In this
way, the experimental conditions are clustered together
not only when they share the same enriched terms, but
also considering how similar are the enriched terms with
respect to their enrichment p-value or summary statistic.
A hierarchical clustering function is then applied to the
matrix using a linkage method between complete, single
and ward.

Results and discussion
The analytical approach presented above was imple-
mented using R-shiny. The typical analysis is performed
by three interaction steps: i) input of gene lists and modi-
fications, ii) graphical visualization of enriched terms and
iii) interactive navigation of the results. A step-by-step
user manual is available in Additional file 1.
In the first step, the application provides a simple graph-

ical interface, where the user can submit a spreadsheet
file with the lists of genes associated to each experimental
condition of interest and (optionally) their modification
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Fig. 2 FunMappOne workflow. The tool accepts as input gene lists and modification values for every experimental condition S1, . . . , Sn for which
the enrichment will be carried out. The analysis performed on the j-th sample will results in a set of enriched terms Tsj1, . . . , Tsjk with an associated
p-value (Enr.P) from the enrichment function applied on the gene list, or a value coming from the application of a summary statistic (SS) on the
associated modification values. A matrix with n rows associated to samples andm columns associated with the enriched terms is then specified to
represent the data structure beneath Level 3 representation of the data. Matrices associated to higher hierarchical levels are composed by n rows
and as many columns as the categories of the level. Each cell of a higher level matrix contains a value obtained by applying SS to the terms
belonging to the associated category from the Level 3 matrix

information (e.g. the associated fold change from a dif-
ferential expression analysis). The input spreadsheet con-
tains a sheet for every experimental condition, named
with a condition id. In every sheet, two columns are pro-
vided, containing the gene identifiers (Entrez Gene, Gene
Symbol, or Ensembl gene ids) and, optionally, their mod-
ifications, respectively. Furthermore, an additional sheet
is required, containing two columns with the condition id
and the condition grouping information, respectively.
The user is then asked to choose the species (human

or mouse), a functional annotation (Gene Ontology - BP,
Gene Ontology - CC, Gene Ontology - MF, KEGG, Reac-
tome), a summarization function (min, median, mean,
max) to annotate and summarize the enriched terms
with provided modifications, a p-value correction method
(gSCS [4], bonferroni, fdr), and a statistical significance
threshold for the enriched functional terms. If the ampli-
tude of gene modification (e.g. fold change, p-value) is
provided, the user selects whether the summarized value
of the enriched terms is plotted in a color-scale associated
to its value, or with three colors only (negative, zero, posi-
tive); this latter feature is useful when emphasis is given to
the dominant sign of the modification in the term. More-
over, if gene modification values are provided in the input,

the user can choose the type of information that will be
associated to the enriched terms: the term enrichment
p-value, the provided modification value, or a combina-
tion of term enrichment p-values (Enr.P) andmodification
values (MVs), specified as MV × −log(Enr.P). Alterna-
tively, if only gene lists without providing modification
values are uploaded, the enrichment p-value for each
enriched term will be displayed.
After loading the needed files, a dedicated panel in the

software graphical environment shows the content of the
provided tables, along with a summary of each column.
After clicking the “Generate Map” button, the tool com-

putes the enrichment and shows the “Plot Maps” panel.
After selecting the desired visualization options and click-
ing the “Plot Map” button, the tool shows the map of
enriched terms as a grid (Fig. 3), where columns represent
experimental conditions, eventually grouped based on the
provided information, and rows represent the enriched
terms grouped and colored based on the corresponding
hierarchy class.
The user can interact with the generated enrichment

map in three different ways: i) by selecting the level at
which the map is displayed, ii) by specifying one or more
categories of terms to be displayed from a desired level
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Fig. 3 Interactive Map Visualization. The user can select the level of hierarchy to visualize (1) as well as a subset of elements to be plotted at each
level of hierarchy (2-4). Furthermore, the user can select a subset of the conditions (5). In the “Plot section” the user can select to show the categories
(6) and to keep the aspect ratio (7) for the plot. By clicking the button “Plot Map” (8) the updated map is visualized. After specifying the desired
height (9) and width (10) for the pdf that will be downloaded, the user can save the image by clicking the “Download” button (11). Experiments can
be clustered by selecting the number of clusters (12), the desired clustering function (13), the distance function (14), and then clicking the “Cluster
samples” button (15). The map can be reset to the initial visualization with the predefined grouping by clicking the “Reset cluster” button (16)

of hierarchy, iii) by choosing a subset of experimental
conditions to be plotted. The selection of the summa-
rization level is performed via a drop-down menu. Once
the desired level is selected and the “Plot Map” but-
ton is clicked, the panel with the results is automatically
updated, providing a newmap where the rows correspond
to the categories of the chosen level, grouped by their
super classes in the hierarchy. The color of the cells in the
new map is associated with the summarized value of all
the enriched terms in the experimental condition column
belonging to the category row.
The concept of level categories can be used to select

subsets of rows of interest. This is done by selecting, for
each represented level, the categories/terms of interest.
The tool subsequently updates themap reporting only cat-
egory/terms from the selected set, thus allowing a more
compact view of the portion of interest of the map. Sim-
ilarly, the user can specify a subset of experiments to be
plotted.
Finally, the columns of the map can be reordered by

grouping experimental conditions having similar enrich-
ment profiles. This is accomplished by selecting a desired
number of groups, a distance function among Jac-
card, Euclidean and “Jaccard+Euclidean”, and a clustering

linkage method between complete, single, and ward. In
the “Clustering” sub-tab of “Plot Maps”, FunMappOne
provides a visualization of the cluster dendrogram as well
as the partitioning based on the number of desired clus-
ters. This functionality can help in selecting the most
appropriate number of clusters to be displayed. Finally,
the current view of the map can be exported in various
graphical formats.
We finally provide a comparison among FunMappOne

features and those offered by a selection of currently avail-
able tools for functional annotation having close scope
to FunMappOne. Table 1 shows the comparison of Fun-
MappOne with the following gene functional analysis
tools: DAVID [1], Enrichr [2], ToppGene [3], g:profiler
[4], clusterProfiler [5], Goplot [6] and BACA [7]. As
shown in Table 1, most of the other tools offer the pos-
sibility to analyze KEGG pathways, Reactome pathways
and Gene Ontology, also with a graphic representation
of the enrichment results. Only Goplot offers the pos-
sibility to map gene associated values to terms, while
Enrichr and g:profiler are the only tools offering a web
based graphical user interface. None of the other tools
offer the possibility to summarize results and to clus-
ter functional profiles from multiple experiments. To
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Table 1 Comparison with existing tools

Feature/Tool DAVID Enrichr ToppGene g:profiler clusterProfiler Goplot BACA FunMappOne

KEGG pathways � � � � � � �
Reactome pathways � � � � � �
Gene Ontology � � � � � � � �
Graphic representation � � � � � �
Graphic user interface � � � �
Hierachycal summarization �
Multiple experiments � � �
Term based clustering �
Mapping values on terms � �
Different tools are reported on columns, desired features are reported on rows. Check-marks represent the presence of the feature in the tool

our knowledge, FunMappOne is the only tool providing
all of these functionalities in a user friendly graphical
interface.

Case study
We showcase the functionalities of FunMappOne on
a transcriptome dataset of mouse hepatocytes exposed
to 26 chemical compounds with different carcinogenic
potential [11]. While Schaap et al. defined the similarity
between the mechanism of action of a pair of chemicals
at the level of individual genes, we tested the hypothesis
that significant similarity patterns can be observed also at
the functional annotation level. An excel file (Additional
file 2) containing the originally described lists of the 30
most up-regulated and 30 most down-regulated genes in
each compound-to-control comparison, along with the
corresponding t-statistics, was uploaded to FunMappOne.
The annotation was performed by selecting the “KEGG”

option and “gSCS” as multiple testing correction method
with “0.05” as significance threshold (Additional file 3).
For the plotting, the “median” function was chosen as
summary statistics and colors were associated to the
summarized modification direction of enriched terms by
selecting the “sign” option (Additional file 3). Chemical
exposures were finally ordered based on the “Jaccard”
distance on the number of shared terms, and further clus-
tered into 11 groups using hierarchical clustering and
“complete” aggregation method.
Additional file 3 shows the KEGG enrichment map at

the level 1 (Additional file 3A), level 2 (Additional file 3B),
and at the individual pathway level 3 (Additional file 3C).
Our analysis confirmed many similarities originally

described by Schaap and collaborators, such as the one
between Wyeth-14643 (WY) and Clofibrate (CF), which
in our analysis were grouped together with Tacrolimus
(FK506) in cluster 11 (Additional file 3C). These chem-
icals modulate PPAR signalling pathway and fatty acid
metabolism related genes, which we observed to be

significantly enriched. Moreover, we identified a large
cluster of compounds (cluster 6) characterized by no
significantly enriched pathway, whose pairwise similarity
of their mechanism of action were also described in the
original report, but with a low significance [11].
Interestingly, enriched alteration of pathways related

to steroid hormone biosynthesis and chemical carcino-
genesis was observed in a group of known carcinogenic
compounds clustered together (cluster 5). The visualiza-
tions produced at higher levels of the pathway hierarchy
help the user to immediately observe that the chemicals in
cluster 5 alter the genes in metabolic pathways and human
diseases (Additional file 3A). When the visualization at
level 2 is inspected, the notion that lipid metabolism
and cancer pathways are enriched also easily emerges.
This functionality of FunMappOne becomes very effec-
tive when analyzing richer functional annotations, such as
gene ontology, where the number of enriched terms can
be significantly higher (as shown in Additional file 4).

Conclusion
We present FunMappOne, a web based standalone appli-
cation that enables users to graphically inspect, navigate,
and compare functional annotations in multiple experi-
ments at different levels of abstraction. This tool facilitates
the analyses of multiple experimental conditions through
a simple user interface and dynamic graphical representa-
tions of the relevant functional categories. The FunMap-
pOne software is open-source and distributed under the
AGPL-3 license.

Availability and requirements
Project name: FunMappOne
Project home page: https://github.com/Greco-Lab/
FunMappOne
Operating system(s): Cross-platform
Programming language: R
Other requirements: Shiny
License: AGPL-3

https://github.com/Greco-Lab/FunMappOne
https://github.com/Greco-Lab/FunMappOne
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Any restrictions to use by non-academics: For commer-
cial use and modifications please contact the correspond-
ing author.

Additional files

Additional file 1: FunMappOne user manual. User manual for the
FunMappOne tool. (DOCX 1940 kb)

Additional file 2: Excel file containing input data for the case study. The
excel file is composed of one sheet for each exposure and a last sheet
containing grouping information. Each exposure sheet is named with the
exposure ID and contains two columns containing the list of selected
genes and the associated t-statistics, respectively. The last sheet contains
two columns: one reporting the list of exposure IDs and another the
corresponding group. (XLSX 63 kb)

Additional file 3: Case study KEGG enrichment maps. KEGG enrichment
maps showing modification direction after clustering analysis with 11
clusters. Panel A (top) shows enrichment results summarized at KEGG Level
1, panel B (middle) shows enrichment results summarized at KEGG Level 2,
panel C (bottom) shows enrichment results summarized at KEGG Level 3
(pathways level). (PPTX 6869 kb)

Additional file 4: Level 1,2,3 Reactome and Gene Ontology (BP, CC, MF)
maps for the proposed case study. Reactome maps have been produced
by providing “Additional file 1” as input and choosing “Reactome”
enrichment, annotation was performed using “Bonferroni” as multiple
testing correction method with “0.001” as significance threshold. Three
classes of Gene Ontology maps have been produced by providing
“Additional file 1” as input and choosing “GO” and alternatively “BP”, “CC” or
“MF” enrichment, annotation was performed using “Bonferroni” as multiple
testing correction method with “0.001” as significance threshold. In both
cases, for the plotting “median” was chosen as summary statistics and map
colors were associated to the summarized each term modification
direction by choosing the sign option. (PDF 3044 kb)
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